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Abstract

Little Higgs models offer an innovative solution of the naturalness problem of the
Standard Model. These models contain new particles which cancel the quadratic di-
vergences in the Higgs mass caused by the top, gauge and Higgs loops. These new
particles contribute to loop induced interactions of the Higgs boson. The loop induced
decays of the Higgs H → gg and H → γγ are examined in two Little Higgs models -
the Littlest Higgs Model and the Schmaltz Model. The production of Higgs pairs from
gluon fusion, which proceeds via heavy quark loops, is also examined in these models.

Another idea considered is the multiple point principle (MPP) applied to the two
Higgs doublet extension of the Standard Model. The MPP stipulates that the coupling
constants will be tuned to allow the existence of a maximal number of degenerate vacua.
This principle is shown to lead to a Peccei-Quinn type symmetry which naturally
suppresses phenomenologically dangerous flavour changing neutral currents. Quasi-
fixed points of the renormalization group are then used to derive predictions for the
Higgs masses and couplings.
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Chapter 1

Introduction

1.1 Little Higgs Models

1.1.1 The Hierarchy Problem

Despite the tremendous success of the standard model (SM) when confronted with
the experimental evidence assembled to date, one crucial element of the it, the Higgs
boson, remains undetected. The Higgs boson is a vital component of the SM since it
provides the mechanism for electroweak symmetry breaking (EWSB).

The potential of the Higgs field is minimised for a non-zero field value, leading to a
vacuum expectation value (vev) which is not invariant under the SU(2)W ⊗ U(1)Y

gauge transformations of the electroweak group. Masses for the electroweak W and Z
gauge bosons, as well as for the fermions, are generated through their couplings to the
Higgs (the Higgs mechanism).

The Higgs mechanism with a single Higgs doublet provides a conceptually simple mech-
anism for EWSB with a minimal new particle content. Despite this simplicity there is
reason to believe that a single elementary Higgs doublet is not the true cause of EWSB
since, as shall be shown, it implies a delicate and unnatural fine tuning of independent
parameters of the theory.

The current experimental lower bound on the SM Higgs mass from direct searches is
MH > 114.4 GeV at 95% C.L.[2]. There is also an upper bound, the triviality bound,
which is obtained by insisting that the Higgs quartic coupling remains finite when
evolved with the renormalisation group for scales below the Planck scale (assuming no
new physics below the Planck scale, ≈ 1019 GeV). This leads to the limit MH . 200
GeV [3].

Another approach to obtaining an upper bound on the Higgs mass is to demand that the
amplitude for WW scattering be compatible with perturbative unitarity. In this case
the upper bound found is MH . 1.2 TeV [3]. In addition, combining the electroweak
precision fits and direct search limits from the LEP experiments favour a light Higgs
with MH . 182 GeV at the 95% C.L. [4].

The mass of the Higgs is modified from its bare value due to corrections from loop
diagrams. The SM particles which have the strongest couplings with the Higgs, and
therefore lead to the largest corrections to the Higgs mass parameter, are the top quark,
the weak gauge bosons and the Higgs itself (see figures 1.1,1.2,1.3). The contributions
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from other SM particles are much smaller than these and may be neglected for the
purposes of the present discussion.

t

Figure 1.1: Higgs with a top loop.

W,Z

Figure 1.2: Higgs with a gauge boson loop.

H

Figure 1.3: Higgs with loop from quartic self-coupling.

Regarding the SM as an effective theory with a cut off of order Λ, the largest corrections
to the Higgs mass are found to vary quadratically with Λ. The top loop contribution
is

− 3

8π2
λ2

t Λ
2, (1.1)

the gauge boson loop contributes

1

16π2
g2Λ2, (1.2)

and the contribution from the Higgs loop is

1

16π2
λΛ2, (1.3)
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where λt is the top quark Yukawa coupling, g is the SU(2) gauge coupling and λ is
the Higgs quadratic self-coupling. The observed mass of the Higgs is obtained from
combining the bare mass m0H with the loop induced corrections

M2
H = m2

0H − 3

8π2
λ2

tΛ
2 +

1

16π2
g2Λ2 +

1

16π2
λΛ2 (1.4)

If the SM is valid all the way up to the Planck scale so that Λ = O(1019) GeV, the
corrections to the Higgs mass are huge. This means that if the observed mass of the
Higgs is to be of order 100 GeV the bare mass must be extremely fine tuned to cancel
the contributions from the loop corrections.

Another way of saying this is that if a hierarchy is introduced between the electroweak
scale and the cut off of the theory, this hierarchy will not be preserved when radiative
corrections are taken into account. This instability of the electroweak scale to radiative
corrections is known as the hierarchy problem.

The hierarchy problem motivates the search for new physics beyond the SM. However,
new physics is constrained by the electroweak precision constraints (EWPCs). The new
physics must enter at a high enough scale to avoid violating the EWPCs, yet without
introducing an unnatural hierarchy between the new physics scale and the weak scale.
This requirement can tell us something about the form the new physics might take.

If there is a Higgs boson, new particles might be expected to enter which eliminate
the divergencies associated with at least the top and gauge boson loops, and possibly
the Higgs loops too. Eliminating these most dangerous contributions to the Higgs
mass means the scale of the new physics can be pushed above the requirements of the
EWPCs without introducing fine tuning.

In practice, this means introducing particles with quantum numbers related to those
of the top quark, the weak gauge bosons and the Higgs whose couplings to the Higgs
are such that their contributions to its mass cancel the quadratic divergences due to
their SM cousins. These new particles should be related to the SM particles by some
symmetry, otherwise the fine tuning is just shifted onto their couplings.

Supersymmetric theories fit this bill. In these theories there are top squarks and gaug-
inos which are related to their SM counterparts by supersymmetry. Supersymmetry
guarantees that they have the same couplings as SM particles but opposite statistics,
meaning there is a relative minus sign between the contributions from loop processes
of particles and their supersymmetric partners which causes them to cancel.

In the last few years a new class of theories which meet the above criteria has been
developed. In these theories the Higgs is naturally light which has inspired the name
“Little Higgs” theories. The next section details the main ideas of Little Higgs models:
pseudo-Goldstone bosons and collective symmetry breaking.

1.1.2 Little Higgs Models

Little Higgs models are an attempt to meet the challenge posed by the hierarchy
problem. The challenge is to construct a theory of EWSB consistent with the EWPCs
and in which the Higgs is naturally light.
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Goldstone’s theorem states that for each spontaneously broken continuous global sym-
metry, the theory must contain a massless particle. By also adding into the Lagrangian
terms which explicitly break the global symmetry a potential for these Goldstone
bosons can be generated radiatively, making them pseudo-Goldstone bosons. If the
global symmetry breaking terms are proportional to a small coupling constant the
terms generated by the radiative corrections will also be proportional to this constant
which allows the radiative corrections to be kept under control.

An example of this is provided by the pions, which are light pseudo-Goldstone bosons
associated with chiral symmetry breaking in QCD. This inspires the intriguing possi-
bility that the Higgs may be a composite particle bound by a new strong force, that it
is a pseudo-Goldstone boson of a spontaneously broken symmetry associated with this
strong force, and that it acquires a potential through radiative corrections.

For example, consider the spontaneous breaking of a global SU(3) symmetry to SU(2)
via a scalar triplet Φ which aquires a vev f . Through an SU(3) transformation it is
always possible to write the vev of the Φ field in the form

〈Φ〉 =





0
0
f



 . (1.5)

The spontaneous breaking of SU(3) to SU(2) results in 8 − 3 = 5 Goldstone bosons
(one for each broken symmetry generator). Small fluctuations around this vacuum may
be parameterised by a non-linear sigma model (nlsm), which is obtained by integrating
out the heavy radial mode. In this scheme Φ is written in the form

Φ = eiΘ/f





0
0
f



 (1.6)

where Θ is a matrix containing the Goldstone bosons which comprise a complex SU(2)
doublet h and a real SU(2) singlet η,

Θ =
η√
2

+





0 0
0 0

h

h† 0



 (1.7)

The nlsm is an effective theory which is valid below some scale Λ ≈ 4πf , since this is
the scale at which it becomes inconsistent with perturbative unitarity.

To generate a potential it is necessary to add terms which break the global SU(3)
symmetry explicitly. In general, the Lagrangian may be written

L = L0 + εL1 (1.8)

where L0 preserves the global SU(3) symmetry, L1 explicitly breaks it and ε is a
coupling constant. The term L1 might be, for example, the top Yukawa or the Higgs
gauge interaction term. This will generate a contribution to the Higgs mass of order
ε2Λ2/16π2. How large is this?

In general, new physics will contribute to higher dimensional operators such as
H†τaHW a

µνB
µν/Λ2 (where W a

µν is the SU(2) gauge boson field strength tensor and Bµν

is the UY (1) gauge boson field strength tensor) which must be suppressed by a scale
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Λ ≈ 10 TeV [5]. It is therefore challanging to build models where strongly coupled new
physics enters below 10 TeV. If, then, the new physics doesn’t enter until ≈ 10 TeV,
and recall ε is supposed to be the top Yukawa coupling or the SU(2) gauge coupling so
this doesn’t lead to much suppression, the Higgs mass generated via loop corrections
will be of order 1 TeV or higher (at least, without some source of fine tuning) which is
unacceptable.

Little Higgs models allow the successful implementation of the pseudo-Goldstone boson
idea by adding the new ingredient of collective symmetry breaking. A Little Higgs
theory introduces two global symmetries, G1 ⊗G2, such that the presence of either of
these symmetries is enough to guarantee that the Higgs remains a Goldstone boson
and so remains massless.

Schematically, two interaction terms are added to the Lagrangian,

L = L0 + ε1L1 + ε2L2. (1.9)

Here, the Li are supposed to represent, for example, a pair of gauge coupling terms, or
a pair of Yukawa coupling terms. The structure of these terms is such that if only one
of the Li is present, the Lagrangian is invariant under one of the global symmetries Gi

and the Higgs is massless. Both these terms must be present to break all the global
symmetries protecting the Higgs mass.

Since the Higgs mass is guaranteed to be zero whenever either of the εi is zero, con-
tributions to the Higgs mass must be proportional to both ε1 and ε2. In particular,
quadratically divergent contributions to the Higgs mass arise only at the two-loop level
giving contributions of order ε2

1ε
2
2Λ

2/(16π2)2 which are small enough for Λ = O(10)
TeV.

To see a concrete implementation of these ideas consider a toy model [6] with a pair of
scalar SU(3) triplets, Φ1 and Φ2, with aligned vevs 〈Φi〉T = (0, 0, f) taken to be equal
for simplicity. Also, enlarge the SM SU(2) gauge group to SU(3) (i.e. embed the SM
SU(2) gauge group within an SU(3) gauge group) and let both these scalar fields be
charged under this SU(3). In the absence of gauge and Yukawa terms this theory has
an SU(3)2 global symmetry which is spontaneously broken down to SU(2)2 via the
scalar vevs. The fields Φi may be parameterized

Φ1 = eiΘ′/feiΘ/f





0
0
f





Φ2 = eiΘ′/fe−iΘ/f





0
0
f



 (1.10)

where Θ′ is the “diagonal” part of the SU(3)2 symmetry which acts on both Φi fields
in the same sense and Θ is the “axial” part of the SU(3)2 symmetry which acts on
them in the opposite sense. The diagonal part of the SU(3)2 symmetry can be rotated
away via an SU(3) gauge transformation giving a mass of order f to the gauge bosons
associated with the broken generators of the SU(3) gauge symmetry. The remaining
Goldstone bosons are therefore parameterized
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Φ1 = eiΘ/f





0
0
f





Φ2 = e−iΘ/f





0
0
f



 . (1.11)

The SU(3) gauge couplings of the Φi fields are

∑

i

|(∂µ + igAa
µT

a)Φi|2. (1.12)

Here, T a are the SU(3) generators and Aa
µ are the gauge fields.

Note that if either of these scalar triplets did not couple to the gauge fields, the model
would have 2 SU(3) global symmetries, one of which acts on one of the scalar fields
and the gauge fields, the other acts on the other scalar fields. In this case the Higgs
field would be an exactly massless Goldstone boson. It is only if both couple to the
gauge fields that all the global symmetries protecting the Higgs mass are broken.

This means that diagrams like figure 1.4 do not contribute to the Higgs mass. This
must be the case since this diagram appears in the theory where one of the Φ fields
does not couple to the gauge fields. In other words, it leaves one of the SU(3) global
symmetries protecting the Higgs mass unbroken.

Φi

Figure 1.4: Quadratically divergent gauge loop contributing to Φi potential.

These diagrams produce the term

g2Λ2

16π2
(Φ†

1Φ1 + Φ†
2Φ2) (1.13)

which is just a constant, as can be seen by substituting in the Φ fields of equation
(1.11).

Only diagrams which contain gauge couplings to both Φ fields can generate a mass
term for the Higgs. A quadratically divergent term can thus be generated only at two
loops. However, the diagram which generates the leading gauge boson contribution to
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Φ2

Φ1

Figure 1.5: Logarithmically divergent gauge loop contributing to Φi potential.

the Higgs potential is in fact the one-loop logarithmically divergent diagram of figure
1.5. These contribute

g4

16π2
|Φ†

1Φ2|2 log(
Λ2

f 2
) =

g4f 2

16π2
log(

Λ2

f 2
)h†h (1.14)

which is small enough to be an acceptable Higgs mass.

A similar game can be played with the top Yukawa couplings. To introduce the notation
used for fermions consider the top quark. The left handed component is written t,
whilst tc will denote ε t∗R where ε is the antisymmetric tensor and tR is the right
handed component. Then the fermionic mass term is t†RtL + h.c. = tc.t + h.c. where
tc.t = t.tc ≡ tcε t.

The left handed SM fermions transform as weak SU(2) doublets. It is necessary to
enlarge these to SU(3) triplets. The top Yukawa coupling is replaced by the terms

λ√
2
(tc1Φ

†
1 + tc2Φ

†
2)





t
b
T



+ h.c. (1.15)

where t and T are left handed up type quarks, and tci are right handed up type quarks.
The Yukawa couplings for these terms are assumed equal in this toy model for simplic-
ity.

If either of these two terms is removed there will be an SU(3) global symmetry pro-
tecting the mass of the Higgs. As in the gauge sector, both these terms are necessary
in order to break enough of the global symmetry to generate a mass for the Higgs. The
one loop quadratically divergent diagrams again contribute only an overall constant
to the potential with the leading contribution to the Higgs mass coming from the one
loop logarithmically divergent diagram.

So far contributions to the potential have been discussed in terms of SU(3) fields such
as the Φi. It is also useful to examine them from the point of view of the SM Higgs
field to better understand how contributions to the Higgs mass are cancelled.

Let’s examine the cancellation in the top sector. Expanding the Φi fields in equation
(1.15) to order h2/f 2 generates some mass terms of order f for the fermions as well as
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interactions between the fermions and the Higgs. Performing a rotation on the right
handed fields,

(

tc

T c

)

=
1√
2

(

1 −1
1 1

)(

tc1
tc2

)

(1.16)

leads to the diagonalized top sector Lagrangian

Ltop = λf(1 − h†h

2f 2
)T cT + λtch†

(

t
b

)

+ h.c. (1.17)

One of the up type quarks has a mass of scale f and a dimension 5 interaction with a
pair of Higgs, the other is the SM top quark with its standard Yukawa coupling.

These couplings give rise to the diagrams portrayed in figure 1.6 where a mass insertion
has been performed in the diagrams involving the heavy partner of the top.

λ λ

t

− λ
2f

− λ
2f

λf λf

T cT T c T

h h

h hh h

t

Figure 1.6: Diagrams contributing to quadratically divergent Higgs mass.

The two diagrams involving the heavy partner of the top quark are proportional to
−λ/2f × λf = −λ2/2 whilst the diagram involving the top quark is proportional to
λ2. These three diagrams therefore sum to zero leading to no quadratically divergent
contribution to the Higgs mass at the one loop level.

It is interesting to note that, unlike supersymmetry, the cancellations occur between
particles of the same spin. The diagrams which cancel the top loop get a relative minus
sign, not because they have different spin statistics, but because they are generated by
a dimension 5 operator with a negative coupling constant.

A realistic model which is very similar in structure to this toy model is considered in
Chapter 3.
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1.1.3 Survey Of Little Higgs Models

Originally, Little Higgs models were inspired by the dimensional deconstruction tech-
nique [7] applied in 5 dimensional theories where the Higgs is the fifth component of
a gauge field. This is where the phenomenon of collective symmetry breaking, the
crucial ingredient of Little Higgs theories, was first identified. Although first identified
in this context, the collective symmetry breaking mechanism can be applied to regular
4 dimensional theories and this is what is done in most Little Higgs models.

The Little Higgs models in the literature can be divided into 2 classes, product group
models and simple group models, based on the structure of their gauge and Yukawa
sectors.

Product group models have a global symmetry group G which is broken to a subgroup
H by the vev of a scalar field. Also, two or more gauge groups are embedded within
the global symmetry group G and these gauge groups are broken down to the SM
electroweak group by the condensate. Each of these gauge groups leaves invariant
some global subgroup of G which protects the Higgs mass so that no single gauge
coupling alone can generate a mass for the Higgs.

Most Little Higgs models are of this type. These include the “Littlest Higgs” [8] based
on SU(5)/SO(5), the so-called “moose” models [9],[10], a model based on SU(6)/Sp(6)
[11], an SU(9)/SU(8) model [12], and variations on the Littlest Higgs with an added
custodial SU(2) [13],[14].

Product group models have in common new free parameters in the gauge sector because
of the new independent gauge groups. They also allow for economical extensions of
the fermion sector. For example, the Littlest Higgs contains only one new fermion,
a heavy top-like quark which cancels the quadratically divergent contribution to the
Higgs mass from the SM top.

Simple group models are based on an extension of the SM SU(2)⊗U(1) gauge group to
SU(N)⊗U(1). They also feature more than one set of sigma model fields, since this is
necessary to implement the collective symmetry breaking. Little Higgs models of this
type are the “simplest” Little Higgs or “Schmaltz model” [15] featuring a SU(3)⊗U(1)
gauge group and a model based on an SU(4)⊗U(1) gauge group [16]. The toy model
of the previous section is also a product group model presented in [6].

Simple group models do not have free parameters in the gauge sector. The gauge
couplings are determined by the necessity to reproduce the SM gauge couplings after
breaking down to the SM gauge group. On the other hand, the various sigma model
fields can in general have different vevs introducing more parameters and it is necessary
to extend all SM fermion weak doublets to N-plets of SU(N).

Supersymmetric models usually are chosen to have an R-parity under which SM parti-
cles are even and supersymmetric partners are odd. This means that supersymmetric
partners can only be produced in pairs which weakens experimental constraints on these
models. For product group Little Higgs models it is possible to define an analogous
discrete symmetry called T-parity under which SM particles are T-even and the new
particles are T-odd. This T-parity forbids the new heavy gauge bosons from contribut-
ing to EWPCs at tree level which significantly weakens the experimental constraints
on these models. [17],[18].
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It is worth bearing in mind that Little Higgs theories are only effective theories which
require a UV completion at around the 10 TeV scale. A UV completion of the Littlest
Higgs is presented in [19] in which the Higgs is a composite particle. This model
contains new strong interactions and softly broken supersymmetry which both enter
at O(10) TeV. There is also a UV completion of the Schmaltz model in which the
collective symmetry breaking mechanism is iterated twice to create a theory which is
weakly coupled below O(100) TeV [20].

There are a number of good reviews in the literature which give an overview of Little
Higgs models [6],[21],[22],[23].

The Littlest Higgs and the Schmaltz models are the simplest examples of product group
and simple group models respectively. It thus makes sense to study these as prototypes
for their respective classes. The Littlest Higgs model is developed in some detail in
chapter 2 whilst the Schmaltz model is developed in chapter 3.

In chapter 4 the loop induced decays of the Higgs to pairs of gluons or photons are
examined in both these models, whilst chapter 5 looks at Higgs pair production from
gluon fusion via quark loops. These processes are of particular interest in Little Higgs
models because they contain the crucial couplings of the Higgs with t and T quarks
which are dictated by the necessity of cancelling quadratic divergences in the Higgs
mass, and are thus robust predictions of the respective models.

Also investigated in this thesis is Higgs physics within another conceptual framework,
that of the multiple point principle.

1.2 The Multiple Point Principle

1.2.1 The Multiple Point Principle

In addition to Little Higgs models, this thesis also contains work on the multiple
point principle (MPP) [24], [25], [26]. The MPP postulates that the universe tunes
parameters such that there exist a maximal number of different vacua with the same
energy density.

To understand the motivation for the MPP, consider the analogy of the temperature
of an ice and water mixture. If a mixture of water and ice exist in equilibrium (at
atmospheric pressure) the system is “tuned” to be at zero degrees celsius. There are
a wide range of values for the extensive variables (such as total energy and number of
molecules) for which the system will be forced to exist in a mixture of phases. When
this is the case, the intensive variables (such as temperature and pressure) will be tuned
to the values they have at the phase transition.

In this analogy the coupling constants of the theory play the role of intensive variables.
If the existence of some extensive variables are assumed, with values which are fixed
for space-time as a whole, they could force the universe to exist in a mixture of phases.
If this is the case the coupling constants will be tuned to the values which allow a large
number of phases with the same energy density to coexist.

In order for a mixture of phases to be likely it should be required for a wide range of
extensive variables. This is the case if the range of extensive variables which allow the
existence of only a single phase is small. Going back to the water and ice analogy this
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would correspond to a large latent heat of fusion. The corresponding requirement in
the quantum field theory is that the vevs of the fields in the different vacua should be
widely separated in energy.

In this thesis, the multiple point principle is simply taken as an ansatz and its conse-
quences investigated.

The MPP has previously been applied to the SM [26]. In this case, the existence
of another vacuum is assumed with energy density Veff(〈φnew〉) equal to that of the
vacuum we are currently in. Here Veff is the effective potential and 〈φnew〉 is the Higgs
vacuum expectation value in the new minimum which is taken to be of order the Planck
scale. With these assumptions it is possible to derive predictions for the Higgs and the
top pole masses, Mt = 173 ± 4 GeV and MH = 135 ± 9 GeV, which are compatible
with current experimental data.

The MPP has also been applied to a supergravity model [29] where it provides an
explanation for the small deviation of the cosmological constant from zero.

In this thesis the consequences of applying the MPP to the two Higgs doublet model
(2HDM) will be considered.

1.2.2 Two Higgs-doublet Models

Although a single Higgs doublet is the simplest way of obtaining EWSB, the scalar
sector has yet to be directly probed by experiments and may well be more complicated.
It is therefore important to examine how it might be extended. The two Higgs doublet
model (2HDM) enlarges the scalar sector by adding an extra Higgs doublet. For n = 1, 2
the Higgs doublets may be written as

Hn =

(

χ+
n

(H0
n + iA0

n)/
√

2

)

(1.18)

The most general (tree level) potential for the two Higgs doublets which satisfies gauge
invariance, renormalisability and CP invariance is

V (H1, H2) = m2
1H

†
1H1 +m2

2H
†
2H2 − [m2

3H
†
1H2 + h.c.] +

1

2
λ1(H

†
1H1)

2 +
1

2
λ2(H

†
2H2)

2

+λ3(H
†
1H1)(H

†
2H2) + λ4|H†

1H2|2 + [
1

2
λ5(H

†
1H2)

2 + λ6(H
†
1H1)(H

†
1H2)

+λ7(H
†
2H2)(H

†
2H1) + h.c.] (1.19)

where the couplings λ1-λ6 are required to be real by CP invariance. The parameters
are assumed to be such that minimising this potential causes the Higgs doublets to
gain vevs triggering EWSB. After EWSB, a linear combination of the charged scalars
and a linear combination of the CP odd scalars are eaten by the W± and Z gauge
bosons respectively. This leaves one charged scalar, one neutral CP odd scalar and a
pair of CP even scalars.

In the most general case both Higgs doublets can couple to all the fermions. This
means that the Cabibo-Kobayashi-Maskawa (CKM) matrix [27],[28] which diagonalises
the fermion masses will not in general diagonalise their coupling with the Higgs bosons.
This is a problem because it induces flavour changing neutral currents (FCNCs) which
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are very strongly constrained by experiment. For instance, bounds from K0 − K̄0

mixing and CP violation in K meson decay imply that the effective Lagrangian term
inducing these processes must be suppressed by some scale of order ≥ 104 TeV.

The undesireable couplings can be avoided by the introduction of a U(1) symmetry
(Peccei-Quinn symmetry). This symmetry requires that the couplings λ6 and λ7 vanish,
each fermion couples to only one Higgs doublet and all fermions with the same electric
charge couple to the same Higgs doublet. The symmetry also requires that m2

3 is zero,
but this is not required to suppress FCNCs at the tree level. If these conditions are
met the Weinberg theorem (which states that tree level FCNCs are not generated in
the Higgs sector if all fermions with the same electric charge couple to the same Higgs
doublet) applies [30] and tree level FCNCs are absent from the theory.

In chapter 6 the MPP is applied to the 2HDM resulting in an approximate Peccei-
Quinn type symmetry. Then, in chapter 7, the implications of the MPP for scalar
masses and couplings are investigated.



Chapter 2

The Littlest Higgs Model

2.1 Overview of the Littlest Higgs Model

The Littlest Higgs model [8] is an economic extension of the SM in which the Higgs
is a pseudo-Goldstone boson which remains naturally light due to the Little Higgs
mechanism. It is based on an SU(5) global symmetry with a locally gauged subgroup,
G1 ⊗G2 = [SU(2)1 ⊗ U(1)1] ⊗ [SU(2)2 ⊗ U(1)2].

At a scale ΛS a 5 × 5 symmetric matrix of scalar fields gains a vev f where f is of
the order a TeV and naive dimensional analysis [31] suggests that ΛS ∼ 4πf . This vev
spontaneously breaks SU(5) to SO(5) and simultaneously breaks the gauge symmetry
G1 ⊗G2 down to its diagonal subgroup which is the SM electroweak group SU(2)L ⊗
U(1)Y .

The breaking of the global symmetry leads to a set of Goldstone bosons. Some of these
become the longitudinal components of the gauge bosons associated with the broken
generators of G1 ⊗ G2 leading to these gauge bosons aquiring masses of order f . A
complex doublet (the Little Higgs) and a complex triplet remain.

The couplings of the Little Higgs and complex triplet to fermions and gauge bosons
break the SO(5) global symmetries leading to the generation of a Coleman-Weinberg
potential [32]. This Coleman-Weinberg potential has the form required to give a vev
to the Little Higgs and induce EWSB. At least two of the couplings to gauge bosons or
fermions are required in order to break enough of the global symmetry to contribute
to the mass of the Little Higgs, which means that only logarithmic dependence on the
cut off is allowed at the one loop level and quadratic cut off dependence is only present
at two loops or higher keeping the Higgs mass naturally small.

In this chapter certain aspects of the low energy effective field theory of the Littlest
Higgs Model are worked out in detail, including some corrections to some mixing
angles and the Feynman rules in the literature. The interactions of the scalars with
gauge bosons are examined, followed by their interactions with fermions. Next the
electroweak symmetry breaking is examined along with its consequences in terms of
the masses of the heaviest particles. The modification to the standard model relation
between the Higgs vev and the Fermi constant is considered, since this will be important
in subsequent work, and the chapter concludes with a short summary of the bounds
on the parameters of the model from EWPCs.



2.2: Scalar Kinetic Terms 20

2.2 Scalar Kinetic Terms

The Littlest Higgs model is based on an SU(5) global symmetry which is broken to
SO(5) via the vev of a 5× 5 symmetric matrix of scalar fields. This vev may be taken
to be proportional to the unit matrix but it is conventional to use a different basis in
which the vev is proportional to the matrix

Σ0 =





12×2

1
12×2



 . (2.1)

SU(5) has 52−1 = 24 generators while SO(5) has 5×(5−1)/2 = 10 so, by Goldstone’s
theorem, there will be 14 massless Goldstone bosons associated with the spontaneous
breakdown of the symmetry. Four of these will be removed by the Higgs mechanism
when the [SU(2) ⊗ U(1)]2 is broken to its diagonal subgroup, the 10 remaining Gold-
stone bosons are parameterised by a non-linear sigma model field

Σ = eiΠ/fΣ0e
iΠT /f . (2.2)

Here the Goldstone boson matrix Π is

Π =





02×2 h†/
√

2 φ†

h/
√

2 0 h∗/
√

2

φ hT/
√

2 02×2



 (2.3)

and

h = (h+, h0), φ =

(

φ++ φ+/
√

2

φ+/
√

2 φ0

)

(2.4)

where h is a complex doublet which plays the role of the SM Higgs and φ is a complex
electroweak triplet.

The interactions of the scalars with gauge bosons, as well as the gauge boson masses,
may be obtained from the scalar kinetic term. This is given by

LΣ =
1

8
f 2Tr|DµΣ|2 (2.5)

where the covariant derivative takes the form

DµΣ = ∂µ − i

2
∑

j=1

(gj(WµjΣ + ΣWµ
T
j ) + g′j(BµjΣ + ΣBµ

T
j )) (2.6)

with the SU(2)j fields given by Wj = W a
µjQ

a
j and the U(1)j fields given by Bj = BµjYj

where the generator matrices Qi and Yi are given by

Qa
1 =





σa/2

03×3



 , Qa
2 =





03×3

−σa∗/2



 (2.7)

Y1 =
1

10
diag(−3,−3, 2, 2, 2), Y2 =

1

10
diag(−2,−2,−2, 3, 3). (2.8)
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The numerical constants are chosen such that the scalar kinetic terms are canonically
normalised (i.e. the kinetic term for a scalar field ψ is 1

2
ψ†ψ) and σa are the Pauli

matrices,

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (2.9)

Note that if the gauge couplings of G1 are set to zero there is an SU(3) global sym-
metry (SU(3)1) embedded in the upper left 3 × 3 block of SU(5). This SU(3) global
symmetry would be broken to SU(2) by the vev Σ0 and the Higgs would be a Goldstone
boson corresponding to this breaking and would consequently be exactly massless. Sim-
ilarly, if the gauge couplings of G2 are set to zero there is a different SU(3) symmetry
(SU(3)2) embedded in the bottom right block of SU(5) which would also guarantee the
masslessness of the Higgs. Only if the gauge couplings of both G1 and G2 are present
is the Higgs no longer an exact Goldstone boson. It follows that gauge bosons may
generate a Higgs mass radiatively only through processes involving both sets of gauge
bosons.

Inserting the non-zero vev for the Σ field, (2.1), into expression (2.5) generates mass
terms for the gauge bosons

LΣ ≈ 1

2

f 2

8
(g2

1W
a
1µW

aµ
1 + g2

2W
a
2µW

aµ
2 − 2g1g2W

a
1µW

aµ
2 ) (2.10)

+
1

2

f 2

20
(g′21 B

a
1µB

aµ
1 + g′22 B

a
2µB

aµ
2 − 2g′1g

′
2B

a
1µB

aµ
2 )

These mass terms may be diagonalised to find the pre-EWSB mass eigenstates by
performing the transformations

(

W
W ′

)

=

(

s c
−c s

)(

W1

W2

)

,

(

B
B′

)

=

(

s′ c′

−c′ s′

)(

B1

B2

)

(2.11)

where the mixing angles are given by

c =
g1

√

g2
1 + g2

2

, s =
g2

√

g2
1 + g2

2

(2.12)

c′ =
g′1

√

g′21 + g′22
, s′ =

g′2
√

g′21 + g′22
(2.13)

It might be better to relabel s↔ c and s′ ↔ c′ but the above notation is that which is
used in the literature (for example, [33]). Performing this transformation on the fields
results in heavy gauge bosons W ′ and B′ with masses

mW ′ =
1

2
f
√

g2
1 + g2

2 =
g

2sc
f and mB′ =

1

2
√

5
f
√

g′21 + g′22 =
g′

2
√

5s′c′
f (2.14)

and the SM gauge bosons W and B which are massless at this stage. The SM gauge
boson couplings g and g′ are given by

g =
g1g2

√

g2
1 + g2

2

, g′ =
g′1g

′
2

√

g′21 + g′22
(2.15)
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Later the Coleman-Weinberg potential for the scalar fields h and φ shall be required and
to calculate this the gauge boson mass matrix in the presence of a general background
field Σ, which we define to be M2

ViVj
(Σ) where Vi and Vj run over all the [SU(2)⊗U(1)]2

gauge bosons, is required. This is obtained from expression (2.5) leading to the gauge
boson mass terms

LΣ ≈ 1

2
(M2

V )ij(Σ)ViµV
µ
j (2.16)

where

M2
V (Σ)ij =

1

4
f 2gVi

gVj
Tr[(QVi

Σ + ΣQT
Vi

)(QVj
Σ + ΣQT

Vj
)†] (2.17)

In the above expression gVi
is the coupling associated with vector boson Vi and QVi

is
the 5 × 5 generator matrix associated with Vi.

2.3 Fermion-Scalar Interactions

In order to obtain a large top Yukawa coupling without introducing a corresponding
large quadratic divergence to the Higgs mass, the top sector interactions are defined
such that each individual interaction retains enough of the global symmetry to guar-
antee the masslessness of the Higgs, as in the gauge boson sector.

In addition to the SM third family electroweak doublet q3 = (t3, b3) and the electroweak
singlet u′3

c a new pair of electroweak singlet quarks t̃, t̃c are introduced, with quantum
numbers (3, 1)Yi

and (3̄, 1)−Yi
respectively. The top-sector Lagrangian is defined to be

Lt = −1

2
λ1fǫijkǫxyχiΣjxΣkyu

′c
3 − λ2f t̃t̃

′c + h.c. (2.18)

where {i, j, k} are summed over 1,2,3 and {x, y} over 4,5. Here ǫijk and ǫxy are anti-
symmetric tensors and

χ =

(

σ2q3
t̃

)

(2.19)

This is the top-sector Lagrangian proposed in the original Littlest Higgs paper, [8], but
with some different conventions. A factor of 1

2
has been extracted from the definition of

λ1 for later convenience as in [33] and [23], and some of the quarks have been rephased
as in [23] to ensure that the fermion masses will be real and non-negative.

The first term in Lt is invariant under SU(3)1, which acts on the indices {i, j, k}, but
violates SU(3)2. The second term is a bare mass term for the new quark which is
chosen to be of order f . It violates SU(3)1 but preserves SU(3)2 and so, by the same
argument as that presented underneath equation (2.8), only processes involving both
interactions may generate a mass for the Higgs.

The extra fermions t̃ and t̃′c are the only new fermions in the Littlest Higgs model. All
SM fermions other than the top quark have small Yukawa couplings which don’t lead
to significant fine tuning of the Higgs mass with a cut off at around 10 TeV. This means
there is no need to introduce any other new fermions to cancel their contributions.
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Inserting the non-zero vev for the Σ field (2.1) into the top sector Lagrangian (2.18)
leads to the pre-EWSB (i.e., non field dependent) top sector mass terms

Lt ≈ −λ1f t̃u
′
3
c − λ2f t̃t̃

′c (2.20)

To diagonalize the fermion mass matrix requires performing different transformations
on the left and right handed fermion fields. The pre-EWSB mass eigenstates may be
found by performing the transformations

(

uc
3

t̃c

)

=





λ2√
λ2
1
+λ2

2

− λ1√
λ2
1
+λ2

2

λ1√
λ2
1
+λ2

2

λ2√
λ2
1
+λ2

2





(

u′3
c

t̃′c

)

(2.21)

There is no need for any transformation on the left handed fields. The above transfor-
mation leads to

Lt ≈ −f
√

λ2
1 + λ2

2t̃t̃
c (2.22)

This means that before EWSB there is a single massive quark t̃ with mass mt̃ =
√

λ2
1 + λ2

2f , whilst the SM top quark remains massless at this stage.

As in the gauge boson case the top sector masses in a general background Σ field shall
be required in order to compute the fermion contribution to the effective potential.
The top sector mass matrix is defined by

Lt = −Mt(Σ)ijχiχ
c
j (2.23)

where χc
j = (bc3, u

′
3
c, t̃′c) and Mt(Σ) is given by

[Mt(Σ)]i,j =
λ1

2
fǫiklǫwxΣkwΣlxδj2 + λ2fδi3δj3 (2.24)

2.4 Electroweak Symmetry Breaking

The Coleman-Weinberg potential [32] describes the radiative corrections to the scalar
potential thorough fermion and gauge boson loops. The dominant contribution comes
from one-loop quadratic divergences. The contribution to this from gauge boson loops
is [32]

Vg =
3Λ2

32π2
Tr[M2

V (Σ)] =
3

2
af 2Tr[M2

V (Σ)] (2.25)

where a is a coefficient of O(1) since Λ ≈ 4πf . This differs from the expressions in
[8] and [33] by a factor of 3/2, with the factor of 3 coming from the contraction of the
Lorentz indices. Perhaps they absorb this factor into the coefficient a but here it is
kept explicitly. Substituting the gauge boson mass matrix defined in equation (2.17)
into (2.25) gives

Vg =
3

8
af 4

∑

j

{g2
j

∑

a

[

Tr[(QjΣ + ΣQT
j )(QjΣ + ΣQT

j )†]
]

+Tr
[

(YjΣ + ΣY T
j )(YjΣ + ΣY T

j )†
]

}. (2.26)
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Using the trace identities Tr[ABC] = Tr[CAB] and Tr[(ABC)T ] = Tr[ABC], as well
as the relation ΣΣ∗ = 15×5, this can be shown to be

Vg =
3a

4
f 4
∑

j

(

g2
j

∑

a

Tr[Qa
jΣQ

a
j
∗Σ∗] + g′j

2Tr[YjΣY
∗
j Σ∗]

)

(2.27)

Expanding the Σ field in (2.27) up to quadratic order in φ and quartic order in h (using
(2.2) and (2.3)) leads to the expression

Vg =
3a

4
(g2

1 + g′1
2)

[

f 2Tr(φ†φ) − if

2
(hφ†hT − h∗φh†) +

1

4
(hh†)2

]

3a

4
(g2

2 + g′2
2)

[

f 2Tr(φ†φ) +
if

2
(hφ†hT − h∗φh†) +

1

4
(hh†)2

]

(2.28)

The other quadratically divergent contribution to the effective potential comes from
top-sector fermion loops. The contributions from other fermions are suppressed by
their small Yukawa couplings and so may be neglected. The fermion contribution to
the effective potential is

Vf = −3Λ2

8π2
Tr[Mt(Σ)M †

t (Σ)] (2.29)

where the factor of 3 comes from the colour factor. Using expression (2.24) this gives

Vf = −3Λ2

8π2

λ2
1f

2

4
(ǫiklǫwxΣkwΣlxδj2 + λ2fδi3δj3)(ǫimnǫyzΣmyΣnzδj2 + λ2fδi3δj3) (2.30)

Dropping constant terms proportional to f 4 this gives

Vf = −3a′
λ2

1f
4

2
ǫiklǫwxǫimnǫyzΣkwΣlxΣ

∗
myΣ

∗
nz (2.31)

Here a′ is a constant of O(1). Substituting in the expression for Σ (2.2), and again
retaining terms up to quadratic order in φ and quartic order in h, gives

Vf = 24a′λ2
1

[

f 2Tr(φ†φ) +
if

2
(hφ†hT − h∗φh†) +

1

4
(hh†)2

]

(2.32)

It is interesting to note that the potential generated by the top loops is of the same form
as that generated by the SU(2)1 ⊗ U(1)1 gauge bosons. This should not be surprising
since they both preserve the global symmetry SU(3).

There are some discrepancies between the above work and some work in the literature.
In the gauge boson sector there is the factor of 3/2 noted below equation (2.25). Also,
there is an anomalous factor of −1 between expression (2.27) and equations (A20) and
(A21) in reference [33]. This is probably due to confusion between the Lagrangian and
the potential which differ by a factor of −1, but comparing their equations (A19) and
(A24) it can be seen that this typo also is not present in their final answer.

There are also discrepancies in the fermionic contribution to the effective potential.
Firstly there is again some confusion due to the relative minus sign between the La-
grangian and the effective potential. Equations (A22) and (A23) of reference [33]
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describe the potential, not the Lagrangian. As in the gauge boson sector, this typo
is resolved by equation (A24) where the fermion contribution enters with the correct
sign.

Also, there is a difference of a factor of 6 between equation (2.31) and equation (A22)
of reference ([33]). Comparing equations (2.32) and (A23) of [33] the discrepancy is
reduced to a factor of 3, which can be explained by the omission of a colour factor.
This will affect all coefficients of λ1 in equation (A24) of reference [33].

As advertised, no mass term for the Higgs is present in the one-loop quadratically
divergent effective potential. Higher order contributions will generate a Higgs mass
with equally significant contributions from one loop logarithmically divergent and two
loop quadratically divergent terms of order f 2/16π2 [33]. The Higgs mass µ will be
treated as a free parameter of order f/4π. Including contributions from both gauge
boson and fermion loops, the effective potential has the form

Veff = λφ2f 2Tr(φ†φ) + iλhφhf(hφ†hT − h∗φh†) − µ2hh† + λh4(hh†)2 (2.33)

where the λ coefficients are given by

λφ2 =
3a

4

[

g2

c2s2
+

g′2

c′2s′2

]

+ 24a′λ2
1

λhφh = −3a

8

[

(c2 − s2)g2

c2s2
+

(c′2 − s′2)g′2

c′2s′2

]

+ 12a′λ2
1

λh4 =
1

4
λφ2 . (2.34)

The minimum of this potential can easily be found. For µ2 > 0 this results in the vevs
〈h0〉 = v/

√
2 and 〈iφ0〉 = v′ where

v2 =
µ2

λh4 − λ2
hφh/λφ2

v′ =
λhφh

2λφ2

v2

f
(2.35)

Note that v′/v = O(v/f). This will be important as many quantities will be expanded
as series in powers of v/f .

Expanding the fields around their vevs results in mixing in the scalar sector. Expressed
in terms of the mass eigenstates [33] the scalar fields are

h0 =
coH − s0Φ

0 + v√
2

+ i
cPG

0 − sP ΦP

√
2

φ0 =
sPG

0 + cPΦP

√
2

− i
s0H + c0Φ

0 +
√

2v′√
2

h+ = c+G
+ − s+Φ+

φ+ =
s+G

+ + c+Φ+

i

φ++ =
Φ++

i
. (2.36)
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Here H is the light neutral scalar, Φ0 and ΦP are the heavy neutral scalar and pseu-
doscalar and Φ+, Φ++ are singly and doubly charged heavy scalars and G0 and G+ are
the Goldstone bosons that are eaten by the SM W and Z gauge bosons. Up to order
v2/f 2 the mixing angles are given [33] by

sP =
2
√

2v′√
v2 + 8v′2

≃ 2
√

2
v′

v

cP =
v√

v2 + 8v′2
≃ 1 − 4

v′2

v2

s+ =
2v′√

v2 + 4v′2
≃ 2

v′

v

c+ =
v√

v2 + 4v′2
≃ 1 − 2

v′2

v2

s0 ≃ 2
√

2
v′

v

c0 ≃ 1 − 4
v′2

v2

The mass of the Higgs is given by

M2
H ≃ 2(λh4 −

λ2
hφh

λφ2

) = 2µ2 (2.37)

and, to leading order, the Φ states all have the same mass,

M2
Φ ≃ λφ2f 2 =

2M2
H

1 − x2

f 2

v2
(2.38)

2.4.1 Gauge boson masses and mixing

The EWSB generates vevs for the scalar fields, and these vevs generate mass terms
for the gauge bosons. The gauge boson mass terms may be found by substituting the
scalar vevs into expressions (2.16) and (2.17). The expression for the mass of the W±

differs from the SM case at order v2/f 2 as there is mixing amongst the scalars, mixing
between the heavy and light gauge bosons, and other modifications due to the form of
the couplings of the nlsm fields to the gauge bosons.

Only the charged gauge bosons are relevant to the work in this thesis so only these are
examined here. In terms of the pre-EWSB mass eigenstates, and up to terms of order
v4/f 4 relative to f 2, the charged gauge boson mass terms are

LΣ =
1

2

∑

a=1,2

(

W a, W ′a )M2
W

(

W a

W ′a

)

(2.39)

where

M2
W =

(

a −a(c2 − s2)/2sc
−a(c2 − s2)/2sc −f 2g2/4s2c2 − a

)

(2.40)
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and

a =
1

4
g2v2(1 +

v2

f 2
(2
fv′

v2
− 2

3
)). (2.41)

This mass matrix can be diagonalized by performing the transformation

(

W
W ′

)

=

(

1 β
−β 1

)(

WL

WH

)

(2.42)

where

β =
1

2
sc(c2 − s2)

v2

f 2
(2.43)

Performing this diagonalization gives the masses of the charged gauge bosons,

M2
WL

=
g2v2

4
[1 − v2

f 2
(
1

6
+

1

4
(c2 − s2)2 +

4f 2v′2

v4
)] (2.44)

and

M2
WH

=
f 2g2

4s2c2
−M2

WL
(2.45)

2.4.2 The top sector

The scalar vevs also generate mass terms for the fermions. The top sector mass terms
are of particular interest due to the large coupling of the top quark to scalars. These
mass terms are generated by substituting the scalar vevs into (2.23) and (2.24) which,
in terms of the pre-EWSB mass eigenstates, gives

Lt = −
(

t3, t̃
)

Mt

(

uc
3

t̃c

)

(2.46)

where the mass matrix Mt is given, up to terms of order fv3/f 3, by

Mt =





λ1λ2v√
λ2
1
+λ2

2

[1 + v2

f2 (−1

3
+ fv′

v2 )]
λ2
1
v√

λ2
1
+λ2

2

[1 + v2

f2 (−1

3
+ fv′

v2 )]

− λ1λ2√
λ2
1
+λ2

2

v2

2f
f
√

λ2
1 + λ2

2 −
λ2
1√

λ2
1
+λ2

2

v2

2f



 (2.47)

This is in agreement with [33] after taking account of the quark rephasings to guarantee
real and positive fermion masses. The top sector mass matrix can be diagonalized by
performing the following transformations,

(

t3
t̃

)

=

(

cL sL

−sL cL

)(

tL
TL

)

(

uc
3

t̃c

)

=

(

cR sR

−sR cR

)(

tcR
T c

R

)

(2.48)

where the mixing angles are
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cL = 1 − 1

2

λ4
1

(λ2
1 + λ2

2)
2

v2

f 2

sL =
λ2

1

λ2
1 + λ2

2

v

f
[1 +

v2

f 2
(−5

6
+
fv′

v2
+

λ2
1

λ2
1 + λ2

2

(2 − 3

2

λ2
1

λ2
1 + λ2

2

))]

cR = 1

sR =
1

2

λ1λ2(λ
2
1 + λ2

2)

(λ2
1 + λ2

2)
2

v2

f 2

These rotations lead to the following masses for the t (light top) and T (heavy top)
quarks

mt =
λ1λ2v

√

λ2
1 + λ2

2

[1 +
v2

f 2
(
fv′

v2
− 1

3
+

1

2

λ2
1λ

2
2

(λ2
1 + λ2

2)
2
) + O(

v3

f 3
)], (2.49)

mT = f
√

λ2
1 + λ2

2[1 − v2

f 2

1

2

λ2
1λ

2
2

(λ2
1 + λ2

2)
2

+ O(
v3

f 3
)]. (2.50)

The transformations which diagonalize the mass matrix do not agree with those given
in appendix A of [33], and implicitly used elsewhere by those who take their Feynman
rules from the tables in appendix B of the same paper. Note that the transformation
of the left handed fields given in [33] are not unitary and so must be incorrect. The
transformations of the right handed fields in [33] are unitary but also are incorrect.

2.5 Higgs Couplings

In later chapters it will be necessary to know the couplings of the Higgs to the charged
gauge bosons and the top-sector quarks (other fermions’ Higgs couplings are negligibly
small).

2.5.1 W-Higgs Couplings

The coupling of the charged gauge bosons to the Higgs arises from the scalar kinetic
term (2.5) with the covariant derivative (2.6). Keeping terms quadratic in φ and quartic
in h leads to

L =
f 2

8
(g1W1 − g2W2)

2 + g1g2W1W2[φ
∗φ+

1

2
h∗h

+
1

6f
(φh∗2 + φ∗h2) − 1

4f 2
(φ∗φh∗h+

1

3
(h∗h)2)] + h.o.t. (2.51)

where “h.o.t.” stands for “higher order terms”. The Higgs coupling to WL or WH pairs
is found by expressing the above Lagrangian in terms of the mass eigenstates of the
fields (see equations (2.11), (2.36) and (2.42)). In this fashion the couplings W+

L W
−
L H

and W+

HW
−
HH can be extracted,
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LWWH =
g2v

4

[

1 +
v2

f 2
(−1

3
− 1

2
(c2 − s2)2 + 4

f 2v′2

v4
) + O(

v4

f 4
)

]

W+

L W
−
L H

−g
2v

2
[1 + O(

v2

f 2
)]W+

HW
−
HH. (2.52)

This Lagrangian may be rewritten in the form

L = 2
M2

WL

v
yWL

W+

L W
−
L H + 2

M2
WH

v
yWH

W+

HW
−
HH (2.53)

where

yWL
= 1 +

v2

f 2
[−1

6
− 1

4
(c2 − s2)2]

yWH
= −s2c2

v2

f 2
. (2.54)

Note that in the SM case yWL
= 1 and yWH

= 0 so the above couplings modify the SM
at order v2/f 2.

These couplings agree with those in [34] but, curiously, the WL coupling does not agree
with that given in Appendix B of their earlier paper [33].

2.5.2 Top-Higgs Couplings

The couplings of the quarks t and T to scalars arise from the top-sector Lagrangian
(2.18). Expanding the Σ field and keeping terms up to quadratic order in φ0 and cubic
order in h0 gives the Lagrangian

L =
√

2λ1t3(h
0 +

i

f
h0∗(h0)2)u′3

c

−λ1f t̃(1 − 1

f 2
h0∗h0 − 2

f 2
φ0∗φ0)u′3

c

−λ2f t̃t̃
′c. (2.55)

The coupling of the quarks to the Higgs can be extracted by expressing the fields in
the above equation in terms of their mass eigenstates (see equations (2.21), (2.48) and
(2.36)). This gives the couplings of the quarks to a single Higgs,

L = − λ1λ2
√

λ2
1 + λ2

2

[1 +
v2

f 2
(−1 − 4

f 2v′2

v4
+ 3

fv′

v2
+

3

2

λ2
1λ

2
2

(λ2
1 + λ2

2)
2
)]tLt

c
RH

+
λ2

1λ
2
2

(λ2
1 + λ2

2)
3

2

v

f
TLT

c
RH. (2.56)

This Lagrangian can be rewritten in the form,

L = −mt

v
ytt̄tH − mT

v
yT T̄ TH (2.57)
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where

yt = 1 +
v2

f 2
[−2

3
+

2fv′

v2
− 4f 2v′2

v4
+

λ2
1λ

2
2

(λ2
1 + λ2

2)
2
]

yT = − λ2
1λ

2
2

(λ2
1 + λ2

2)
2

v2

f 2
. (2.58)

Again, this surprisingly agrees with the paper [34], despite the latest version of their
earlier paper [33] having the wrong mixing matrix for the top sector.

The fact that [33] has the wrong mixing matrix for the top sector means that all the
Feynman rules in appendix B which involve the t and T quarks are incorrect. The
correct Feynman rules for the couplings of t and T to scalars, up to order v2/f 2 and
with the quark phase conventions defined in section 2.3, are given in table 2.1.

Table 2.1: Scalar-fermion Couplings

Vertex Feynman Rule

t̄tH
−iλ1λ2
√

λ2
1 + λ2

2

[1 +
v2

f 2
(−1 − 4

f 2v′2

v4
+ 3

fv′

v2
+

3

2

λ2
1λ

2
2

(λ2
1 + λ2

2)
2
)]

T̄TH
iλ2

1λ
2
2

(λ2
1 + λ2

2)
3

2

v

f

t̄TH
iλ2

1
√

λ2
1 + λ2

2

[1 +
v2

f 2
(−3

2
− 4

f 2v′2

v4
+ 3

fv′

v2
+

5

2

λ2
1

λ2
1 + λ2

2

− 3

2

λ4
1

(λ2
1 + λ2

2)
2
)]PR

+
iλ1λ

3
2

(λ2
1 + λ2

2)
3

2

v

f
PL

T̄ tH
−iλ2

1
√

λ2
1 + λ2

2

[1 +
v2

f 2
(−3

2
− 4

f 2v′2

v4
+ 3

fv′

v2
+

5

2

λ2
1

λ2
1 + λ2

2

− 3

2

λ4
1

(λ2
1 + λ2

2)
2
)]PL

+
−iλ1λ

3
2

(λ2
1 + λ2

2)
3

2

v

f
PR

t̄tHH
2iλ1λ2
√

λ2
1 + λ2

2

v

f 2
[1 − 2fv′

v2
− 1

2

λ2
1

λ2
1 + λ2

2

]

T̄ THH
iλ2

1
√

λ2
1 + λ2

2

1

f

t̄tΦ0
−iλ1λ2
√

λ2
1 + λ2

2

v√
2f

[1 − 4fv′

v2
]

T̄ TΦ0
−iλ4

1

(λ2
1 + λ2

2)
3

2

v2

f 2
[1 − 4fv′

v2
]

Here, PL and PR are projection operators that project onto left and right handed
fermion states respectively.

2.5.3 Scalar Trilinear Couplings

Another set of couplings which shall be needed in this thesis are the scalar trilinear
couplings, specifically the Higgs trilear coupling and the coupling of a pair of Higgses
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to a Φ. These arise from the Coleman-Weinberg (CW) potential, equation (2.33). The
relevant trilinear couplings can be found by expressing the CW potential in terms of
the physical eigenstates, given in equation (2.36). Up to leading order, this gives the
Lagrangian

L ≃ v(2λhφh
fv′

v2
− λh4)HHH +

fλhφh√
2
HHΦ (2.59)

This Lagrangian can be rewritten in terms of the masses of the scalars given in equations
(2.37) and (2.38) by using the equations for the scalar vevs (2.35) and the final relation
in (2.34) to give

L ≃ −m
2
H

2v
HHH +

√
2M2

Φ

v

v′

v
HHΦ (2.60)

When corrections of order v2/f 2 are taken into account the scalar trilinear couplings
are found to be

Table 2.2: Scalar Trilinear Couplings

Vertex Feynman Rule

HHH −i(3m
2
H

v
− 66M2

Φv
′2

f 2v
)

HHΦ i(2
√

2
M2

Φ

f

fv′

v2
− 56

√
2
M2

Φ

f

f 3v′3

v6

v2

f 2
+ 29

√
2

3

M2
Φ

f

fv′

v2

v2

f 2

This is in agreement with the result in [35].

Also, in order to extract the couplings Φ+Φ−H and Φ++Φ−−H , the higher order terms
in the potential can be calculated from equations (2.25) and (2.29). These are

∆V = λhφφhhφ
†φh† + λφ2φ2(Tr[φ†φ])2 + λφ4Tr[φ†φφ†φ] (2.61)

where

λhφφh = −4

3
λφ2

λφ2φ2 = −48λ2
1

λφ4 = −a[ g
2

s2c2
+

g′2

s′2c′2
] + 16a′λ2

1 (2.62)

Expanding out this effective potential leads to the Lagrangian

∆L = −2
M2

Φ

v
yΦ+Φ+Φ−H − 2

M2
Φ

v
yΦ++Φ++Φ−−H (2.63)

where

yΦ+ =
v2

f 2
(−1

3
+

4v′2f 2

v4
) (2.64)

yΦ++ = O(
v4

f 4
,

v2

16π2f 2
) (2.65)
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as in reference [34].

2.6 Muon Decay and the Fermi Constant

In the SM the vacuum expectation value of the Higgs field can be obtained from the
Fermi constant GF . The Fermi constant is accurately known from measurements of
the muon lifetime [2]. The muon decays by emitting a W− and a νµ, with the W−

decaying to an e− and ν̄e. The vev of the Higgs can be obtained by integrating out
the W and setting the coefficient of the four fermion operator (which depends on v
through the mass of the W ) to GF/

√
2.

In the SM, the coupling of the W± to the first 2 families of leptons are described by
the Lagrangian

L = g(W+
α J

+

W
α +W−

α J
−
W

α) (2.66)

where

Jα
W

+ =
1√
2
[ν̄eγ

α(
1 − γ5

2
)e+ ν̄µγ

α(
1 − γ5

2
)µ]

Jα
W

− =
1√
2
[ēγα(

1 − γ5

2
)νe + µ̄γα(

1 − γ5

2
)νµ]. (2.67)

Taking the 4-momentum of the intermediate W to be q, we can write a four fermion
effective Lagrangian term for processes where q ≪MW . For the interaction of a muon
and muon neutrino with an electron and electron neutrino the contribution of a single
intermediate W is

Leff ≃ 1

i

(ig)2

2
(µ̄γα(

1 − γ5

2
)νµ)

−igαβ

q2 −M2
W

(ν̄eγ
β(

1 − γ5

2
)e) + h.c.

−−→
q→0

− g2

8M2
W

((µ̄γα(1 − γ5)νµ)(ν̄eγα(1 − γ5)e) + h.c.)

≡ −GF√
2
((µ̄γα(1 − γ5)νµ)(ν̄eγα(1 − γ5)e) + h.c.). (2.68)

This is illustrated in diagram 2.1.

The last line of equation (2.68) is to be understood to define the fermi constant, GF .
This leads to the (tree level) SM relation

GF =
√

2
g2

8M2
W

=
1√
2v2

. (2.69)

Where the SM relation M2
W = g2v2/4 has been used in the last line. So we see that in

the SM the vev of the Higgs field can be traded for the Fermi constant as defined in
the decay of the muon.
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µ

νµ

e−W−

ν̄e

µ e−

νµ

ν̄e

Figure 2.1: Integrating out the W leads to an effective four fermion vertex.

This simple relationship between v and GF is modified in the Littlest Higgs model.
The coupling of the WL boson to the leptons is modified due to the mixing in the
gauge boson sector. Also, the expression for MWL

is modified. Furthermore, the heavy
gauge boson WH also contributes to the decay of the muon.

The Lagrangian of the Littlest Higgs model must be invariant under [SU(2)1⊗U(1)1]⊗
[SU(2)2⊗U(1)2] gauge transformations. If the scalar couplings of the quarks discussed
in the previous sections are to be gauge invariant the left handed SM fermion doublets
must be taken to transform as doublets under SU(2)1 and singlets under SU(2)2. This
means the Littlest Higgs counterpart of equation (2.66) is

L = g1(W1
+
αJ

+

W
α +W1

−
αJ

−
W

α). (2.70)

Using equations (2.11), (2.12), (2.15) and (2.42) to rewrite g1W1 in terms of g and the
mass eigenstates WL and WH gives

L = g

[(

(1 − 1

2
c2(c2 − s2)

v2

f 2
)WL

+
α − c

s
((1 +

1

2
s2(c2 − s2)

v2

f 2
)WH

+
α

)

J+

W
α

+

(

(1 − 1

2
c2(c2 − s2)

v2

f 2
)WL

−
α − c

s
(1 +

1

2
s2(c2 − s2)

v2

f 2
)WH

−
α

)

J−
W

α

]

.(2.71)

The contribution to the effective four fermion vertex arising from the interaction inter-
mediated by a WL is then

(∆Leff)WL
=

−g2

8M2
WL

[1 − c2(c2 − s2)
v2

f 2
](µ̄γα(1 − γ5)νµ)(ν̄eγα(1 − γ5)e) (2.72)

and, similarly, the contribution from the WH intermediated interaction is

(∆Leff)WH
=

−g2

8M2
WH

c2

s2
[1 + s2(c2 − s2)

v2

f 2
](µ̄γα(1 − γ5)νµ)(ν̄eγα(1 − γ5)e). (2.73)

Note that in the limit c → 0, s → 1 the normal four fermion effective theory is
recovered.
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Substituting in the formulae for the masses of the WL and WH , equations (2.44) and
(2.45), and adding the 2 contributions together gives

Leff =
−1

2v2
[1 +

v2

f 2
(

5

12
− 4f 2v′2

v4
)](µ̄γα(1 − γ5)νµ)(ν̄eγα(1 − γ5)e). (2.74)

As before we take this to be equal to −GF/
√

2 giving the ralation

1√
2v2

= GF y
2
GF

(2.75)

where

y2
GF

= 1 +
v2

f 2
(
4f 2v′2

v4
− 5

12
), (2.76)

in agreement with the result stated in [34].

2.7 Electroweak Precision Constraints

Before proceding any further a note on the impact of EWPCs on the Littlest Higgs
model is in order. The parameter f is tightly constrained by the EWPCs. Analyses
of the EWPCs in the Littlest Higgs model which include LEP2 data are to be found
in references [36],[37], [38]. The strongest constraints come from operators generated
through exchange of heavy vector bosons, with smaller contributions coming from the
triplet vev [39].

The stringency of the constraints depend on how the fermions are taken to transform
under the gauge groups. If the SM fermions are taken to transform only under [SU(2)⊗
U(1)]1, reference [36] finds an extremely tight constraint, f & 5 TeV at 99% C.L., and
even then only in certain regions of the parameter space where g2 > g1, g

′
2 > g′1.

However, in some regions of parameter space the 1-loop corrections to the mass of the
Z from the scalar φ partially cancel some of the tree level Little Higgs corrections to
the ρ parameter which may have some effect in reducing this constraint [40].

The fermions may be taken to transform under SU(2)1 ⊗U(1)1 ⊗U(1)2, subject to the
constraint that the correct SM hypercharge quantum numbers are reproduced. In this
case the constraint on f can be weakened to f & 2 − 3 TeV [36].

Another intriguing possibility is to gauge only SU(2)1 ⊗ SU(2)2 ⊗ U(1)Y [41]. In this
case the heavy BH is not present which means a quadratic divergence in the Higgs mass
due to B loops remains. However, due to the relatively small hypercharge coupling
this does not lead to significant fine tuning. Since the BH is the lightest of the new
gauge bosons predicted in the Littlest Higgs model, getting rid of it allows a substantial
weakening of the bounds on f from EWPCs with values as low as 1 TeV allowed [42].

One further way of evading the EWPCs is to introduce a discrete symmetry called
T-parity (in analogy with R-parity in supersymmetric theories) under which all SM
particles are even and the new heavy gauge bosons are odd [17], [18]. This allows
a substantial reduction in the bounds on f because all heavy gauge bosons must be
produced in pairs, eliminating their tree level contributions to EWPCs, as well as pro-
ducing a dark matter candidate (generically the AH). On the other hand, a consistent
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implementation of T-parity requires the introduction of new extra fermions which make
the model more complicated and spoil its “minimal” nature. The Littlest Higgs model
with T-parity will not be considered in this thesis.



Chapter 3

The Schmaltz Model

3.1 Overview of the Schmaltz Model

In the Schmaltz model [16],[15],the SM electroweak gauge group, SU(2)L ⊗ U(1)Y , is
enlarged to SU(3)L ⊗ U(1)X . The model contains two SU(3)L complex triplet scalar
fields which, in the absence of gauge and Yukawa couplings, lead to two global SU(3)
symmetries, both of which must be broken if the Higgs is to gain a mass.

At some scale ΛS the complex triplets aquire aligned vevs, f1 and f2, of order ΛS/4π.
These vevs break the approximate global SU(3)2 symmetry down to SU(2)2 leading
to massless Goldstone bosons. At the same time, the SU(3)L ⊗ U(1)X gauge group is
broken down to the SM SU(2)L ⊗ U(1)Y .

The Goldstone bosons associated with the diagonal part of the broken global symmetry
give mass via the Higgs mechanism to the gauge bosons associated with the SU(3) sym-
metry breaking. The remaining Goldstone bosons comprise a complex SU(2) doublet
h, which plays the role of the SM Higgs, and a real singlet η.

The Schmaltz model implements the Little Higgs collective symmetry breaking mech-
anism to keep the Higgs naturally light. The Yukawa and gauge couplings explicitly
break the global symmetries of the model, however each coupling taken individually
preserves enough of the global symmetry to guarantee the masslessness of the Higgs.
Only by including two or more of these couplings is the Higgs able to aquire a mass
radiatively.

There are no one loop quadratically divergent diagrams which contain two or more
different gauge or Yukawa couplings. This means that the Higgs can only aquire a
logarithmically divergent mass at one loop, with quadradically divergent contributions
only entering at two or more loops.

In this chapter elements of the low energy effective theory of the Schmaltz model are
worked out, as for the Littlest Higgs Model in chapter 2. The method is more or
less the same. First the contributions to the Coleman-Weinberg potential from the
gauge and Yukawa sectors are computed, followed by an account of the EWSB and
the masses and mixing of the fermions and gauge bosons. Next the corrections to the
relation between the Higgs vev and the Fermi constant as measured in muon decay are
computed, and the chapter closes with a brief overview of the EWPCs.
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3.2 Scalar Kinetic Terms

The model contains two complex triplet scalar fields, Φ1 and Φ2, which aquire vevs f1

and f2 respectively. The Goldstone bosons can be parameterised in an nlsm. In the
unitary gauge, where the gauge bosons associated with the longitudinal components
of the heavy gauge bosons have been rotated away with a gauge transformation, the
scalar fields take the form

Φ1 = e
iΘ

f2
f1





0
0
f1



 , Φ2 = e
−iΘ

f2
f1





0
0
f2



 (3.1)

where

Θ =
1

f





η√
2

+





0 0
0 0

h∗

hT 0







 (3.2)

with h = (h+, h0)T and f 2 = f 2
1 + f 2

2 .

Both these scalar fields are complex triplets under SU(3)L and have charge −1/3 under
U(1)X . The scalar kinetic term is

LΦ = |DµΦ1|2 + |DµΦ2|2 (3.3)

where the covariant derivative is given by

DµΦi = (∂µ + igAa
µT

a − i

3
gxA

x
µ)Φi. (3.4)

Prior to EWSB the scalar kinetic term leads to mass terms of order f for the gauge
bosons associated with the broken part of the SU(3)L gauge symmetry. These are

LΦ ≈ g2f 2

4
X ′

µ
+X ′−µ +

g2f 2

4
Y ′

µ
0Ȳ 0

′µ + f 2(A8
µ, A

x
µ)

(

g2

3

ggx√
3

ggx√
3

g2
x

9

)

(

A8
µ

Ax
µ

)

. (3.5)

Here iX ′+ = 1/
√

2(A4 + iA5) and −iY ′0 = 1/
√

2(A6 + iA7) form an SU(2)L doublet.
There is mixing between the neutral gauge boson associated with the diagonal SU(3)L

generator T 8 and the U(1)X gauge boson Ax. These mass terms are diagonalised by
the transformation

(

A8
µ

Ax
µ

)

=
1

√

3g2 + g2
x

( √
3g −gx

gx

√
3g

)(

Z̃ ′
µ

Bµ

)

. (3.6)

Here, Bµ is the hypercharge gauge boson. The term in the covariant derivative which
contains Bµ is

DµΦi ≈ −ig
′

2





1 0 0
0 1 0
0 0 0



BµΦi (3.7)
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showing that the U(1)Y gauge symmetry operates only on those components of SU(3)
triplets which transform under the unbroken SU(2) subgroup. Here, the hypercharge
gauge coupling g′ is given by

g′ =
gx

√

1 + g2
x

3g2

. (3.8)

It is interesting to note that, unlike in the Littlest Higgs model, the gauge couplings
of the Schmaltz model can be calculated in terms of the known SU(2)L ⊗U(1)Y gauge
couplings of the SM.

In order to determine the contribution to the Coleman-Weinberg potential from the
gauge boson sector it is necessary to know the field dependent mass matrix of the gauge
bosons. This originates from the scalar kinetic terms and is given by

LΦ ≈
∑

i=1,2

tr[(gAa
µT

a − 1

3
gxA

x
µ)2ΦiΦ

†
i ]. (3.9)

3.3 Fermion-Scalar Interactions

Since the SU(2)L of the SM is enlarged to SU(3)L in the Schmaltz model, it is necessary
to extend all SM SU(2) doublets to SU(3) triplets. In particular, new left handed
fermions are required to extend the SM quark and lepton doublets to SU(3) triplets,
and new right handed singlet states are required to write mass terms for the new
fermions.

There is some freedom to choose how to extend the SM fermion doublets to SU(3)
triplets. Two models are discussed in the literature.

In model I each generation of fermions is extended to include a new heavy “neutrino”
and a heavy up-type quark. This is attractive in that it preserves the symmetry between
the generations, but it leaves the SU(3) and U(1)X gauge groups anomalous [15], [43],
[22].

In model II each generation receives a heavy “neutrino” but the quark assignments are
more complicated, with the first two generations receiving down-type quarks and only
the third generation receiving an up-type quark. This breaks the inter-generational
symmetry but cancels the SU(3) gauge anomalies [43] making the model easier to UV
complete [20].

It is important that the third generation receives a heavy up-type quark, since this
allows us to cancel the top quark contribution to the Higgs mass in the Coleman-
Weinberg potential. However, the first two generations can receive a quark of either
type since there are no large contributions to the Coleman-Weinberg potential which
need to be cancelled.

3.3.1 Model I

In model I the SM lepton doublets are enlarged to SU(3) triplets via the addition
of a heavy neutrino-like field. Also, a right handed partner for the heavy neutrino
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is required. The leptons of the mth generation (neglecting the right handed νm) are
written as an SU(3) triplet and a pair of singlet states as follows

Lm =





−ie′−m
iν ′m
N ′

m



 , e′m
c, N c

m. (3.10)

Also, each SM quark doublet gets extended to an SU(3) triplet via the addition of
an up-type quark, with a new right handed singlet state also present. Then the mth
generation quarks are

Qm =





−id′m
iu′1m

u′2m



 , u′1
c
m, u′2

c
m, b′m

c (3.11)

The phases of the fermions have been chosen to ensure the masses are real and positive.

The SM Yukawa couplings are reproduced by expanding out the Φi fields to leading
order in h/f , if the scalar fermion couplings take the form

LYuk = −λm
1 u

′
1
c
mΦ†

1Qm − λm
2 u

′
2
c
mΦ†

2Qm − λmn
d Φi

1Φ
j
2Q

k
mǫ

ijkd′n
c

Λ
(3.12)

−λm
NN

c
mΦ†

2Lm − λmn
e Φi

1Φ
j
2L

k
mǫ

ijke′n
c

Λ
(3.13)

where {m,n} are generation indices running over {1, 2, 3} and {i, j, k} are SU(3) indices
also running over {1, 2, 3}.
Note that the assumption has been made that it is possible to find a basis for the
fermions such that the scalar couplings for the up-type quarks and heavy neutrinos
do not couple together fermions from different generations. In principle this is not
forbidden but it is necessary to make some such assumption about the scalar couplings
in order to suppress dangerous FCNCs. As a result of this assumption the up-type
quarks only mix with other up-type quarks of the same generation and the same is
true of the neutral leptons.

This implies that all the mixing between fermions of different generations comes from
the charged lepton and down-type quark couplings. In particular, all the mixing that
leads to the CKM matrix comes from the off diagonal terms of the 3 × 3 matrix λmn

d .
Also, there will in general be a matrix V l which encodes the flavour misalignment in the
lepton sector which will appear in the coupling of leptons to gauge bosons. Neutrino
masses, and a possible right handed νc, are not considered here. Consequently, the
matrix V l can be absorbed into the ν ′i and so will not appear in the lepton couplings
to the light neutrinos except insofar as they have a small mixing with the N ′

i .

The structure of the scalar-fermion couplings is different from that in the original paper,
[15]. In [15] the Lagrangian for the up-type quarks takes the form

L = −λmn
1 u′1

c
mΦ†

1Qn − λmn
2 u′2

c
mΦ†

2Qn (3.14)

If it is assumed that λ2 is proportional to the unit matrix, it is then possible to diag-
onalise the matrix λ1 by unitary transformations of the u′1

c
m and the Qn. The unitary
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matrix which describes the mixing of the Qn then appears in the λ2 term, but it com-
mutes with the λ2 matrix (since λ2 is proportional to the unit matrix) and can be
absorbed into a tranformation on the u′2

c
m. This makes both λ1 and λ2 diagonal with

λ2 proportional to the unit matrix.

The assumption that λ2 is proportional to the unit matrix is a stronger assumption
than that adopted in equation (3.12). To avoid flavour changing effects is enough to
assume there exist some bases for the u′1

c
m, u′2

c
m and Qm such that both λ1 and λ2 are

simultaneously diagonal. Some small amount of flavour changing may be permissible
so there could be small off-diagonal terms in λ1,2, but here it is assumed these are zero.

3.3.2 Model II

In model II the leptons and the third generation quarks are the same as in model I, but
the first and second generations get a new down-type quark instead of a new up-type
quark. This entails adding an extra down-type right handed singlet state and putting
the left handed quarks into the 3̄ representation of SU(3). The generation one and two
fermions are then

Qm =





−iu′m
−id′1m

d′2m



 , d′1
c
m, d′2

c
m, u′m. (3.15)

The quark-scalar couplings are then

LYuk = −λm
1 d

′
1
c
mQ

T
mΦ1 − λm

2 d
′
2
c
mQ

T
mΦ2 +

λmn
u Φ∗

1
iΦ∗

2
jQk

mǫ
ijku′n

c

Λ
(3.16)

−λ3
1u

′
1
c
3Φ

†
1Q3 − λ3

2u
′
2
c
3Φ

†
2Q3 −

λ3
dΦ

i
1Φ

j
2Q

k
3ǫ

ijkd′3
c

Λ
(3.17)

where the generation indices {m,n} run over {1, 2} and the lepton-scalar couplings
are the same as in model I. Here, as before, the phases and couplings of the quarks
have been chosen such that the quark masses are real and positive and the SM Yukawa
couplings are correctly reproduced when the Φi fields are expanded at leading order in
h/f .

Couplings of this form guarantee that the light quarks in each generation only mix with
heavy quarks of the same generation (i.e. they don’t mix with heavy quarks of other
generations). This assumption is made to make the theory safe from flavour changing
effects which could contribute to D̄0 −D mixing.

3.3.3 The Top Sector

Given the flavour structure of the scalar-fermion couplings, chosen to suppress flavour
changing effects, the third generation up-type (top sector) quark mass terms are the
same in both model I and model II. The top sector Lagrangian may be written

Lt = −λ1t
′
1
cΦ†

1Q3 − λ2t
′
2
cΦ†

2Q3 (3.18)
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where for present purposes λ3
i is written as simply λi to ease notation and

Q3 =





−ib
it1
t2



 . (3.19)

Before EWSB the f vevs generate mass terms

Lt ≈ −λ1f1t
′
1
ct2 − λ2f2t

′
2
ct2. (3.20)

This is diagonalized by performing the transformation,

(

tc1 tc2
)

=
(

t′1
c t′2

c
)

(

c s
−s c

)

(3.21)

where c = λ2f2/mT , s = λ1f1/mT and mT =
√

λ2
1f

2
1 + λ2

2f
2
2 . This leads to one heavy

quark of mass mT and one quark which remains massless before EWSB.

The field dependent mass matrix will be required in order to compute the fermion
contribution to the effective potential. Neglecting all Yukawa couplings other than
those in the top sector yields the Lagrangian

Lt = −[Mt(Φ1,Φ2)]ijQ
i
RQ

j
3 (3.22)

where the right handed third generation quarks have been gathered into the object

QR =





bc

t′1
c

t′2
c



 (3.23)

and the quark mass matrix is

Mt(Φ1,Φ2) =





0 0 0

λ1Φ
†
1

λ2Φ
†
2



 (3.24)

3.4 Electroweak Symmetry Breaking

The interactions of the Higgs with fermions and gauge bosons generate an effective
potential for the Higgs of the form

Veff = δm2h†h+ δλ(h†h)2 (3.25)

The fermion contribution to the effective potential is given by the formula

Vf = − 3

8π2
Λ2Tr[MtM

†
t ] +

3

16π2
Tr[(MtM

†
t )2 log(

Λ2

MtM
†
t

)] (3.26)

as in [15]. Note that [15] has a factor 3/16π2 in the first term of the above equation.
This should be 3/8π2, and indeed this mistake is corrected on the next line of that
paper. Using equation (3.24),

MtM
†
t =





0 0 0

0 λ2
1f

2
1 λ1λ2Φ

†
1Φ2

0 λ1λ2Φ
†
2Φ1 λ2

2f
2
2



 (3.27)
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The (non-zero) eigenvalues of this matrix give the squares of the field dependent masses
of the top quarks. The eigenvalues are

m =
1

2
m2

T



1 ±

√

1 − 4(λ2
1λ

2
2f

2
1 f

2
2 − λ2

1λ
2
2|Φ†

1Φ2|2)
m4

T



 (3.28)

which, when expanded to fourth order in terms of h/f and η/f , are

m2
t,4 = λ2

t 〈h†h〉 −
[

1

3
λ2

t

f 2

f 2
1 f

2
2

− λ4
t

m2
T

]

〈h†h〉2 (3.29)

m2
T,4 = m2

T −m2
t,4 (3.30)

where

λt = λ1λ2

f

mT
. (3.31)

Note that the quadratically divergent term in equation (3.26) contributes only a con-
stant term to the effective potential, so there is no quadratically divergent contribution
to the Higgs mass.

The field dependent masses of the gauge bosons are calculated from equation (3.9).
The eigenvalues of the gauge boson mass matrix are given in [15] up to order h4/f 2.
These are given in table 3.1.

Table 3.1: Gauge Boson Mass Eigenvalues

Particle Mass (to order h4/f 2)

W± g2

2
[1 + 〈h†h〉

f2 (1 − 1

3

f4

f2
1
f2
2

)]〈h†h〉
X± g2f2

2
−m2

W±,4

Y 0 g2f2

2

Z g2

2
(1 + t2)[1 + 〈h†h〉

f2 (1 − 1

3

f4

f2
1
f2
2

− 1

4
(1 − t2)2)]〈h†h〉

Z ′ g2f2

2

4

3−t2
−m2

Z,4

B 0

Here, t = tan θW = g′/g where θW is the weak mixing angle. Denoting the squared
gauge boson mass matrix in the diagonal basis as M2

V , the contribution of gauge boson
loops to the effective potential is [15]

Vg =
3

32π2
Λ2Tr[M2

V ] − 3

64π2
Tr[M4

V log (
Λ2

M2
V

)]. (3.32)

Note that, again, the quadratically divergent term contributes only a constant to the
effective potential and there is no quadratically divergent contribution to the Higgs
mass. Substituting the field dependent masses of the fermions and gauge bosons into
equations (3.26) and (3.32) gives [15]

δm2 = − 3

8π2
[λ2

tm
2
T log (

Λ2

m2
T

) − g2

4
m2

X log (
Λ2

m2
X

) − g2

8
(1 + t2)m2

Z′ log (
Λ2

m2
Z′

)] (3.33)
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and

δλ = −δm
2

3

f 2

f 2
1 f

2
2

+
3

16π2
× (3.34)

[λ4
t (log

(

m2
T

m2
t

)

− 1

2
) − g4

8
(log

(

m2
X

m2
W

)

− 1

2
) − g4

16
(1 + t2)2(log

(

m2
Z′

m2
Z

)

− 1

2
)].

This generates a Higgs mass which is too large, MH = O(1TeV) for a typical set of
parameters. This undesireably large Higgs mass can be remedied by including a tree
level potential term,

Vtree = µ2Φ†
1Φ2 + h.c.

= µ2 f 2

f1f2

(h†h +
1

2
η2) − 1

12
µ2 f 4

f 3
1 f

3
2

(h†h)2 + h.o.t.. (3.35)

This introduces a partial cancellation of the Higgs mass term. Some tuning is needed
between µ2 and δm2. However, this tuning is not too severe because, without the
µ2 term, there exists a global U(1) symmetry under which Φ1 and Φ2 have opposite
charges. The µ2 term is the only term in the theory which breaks this symmetry so it is
stable against radiative corrections and therefore does not constitute a reintroduction
of the hierarchy problem. In addition to lowering the Higgs mass, the µ2 term also
generates a mass for the singlet scalar η.

3.4.1 Gauge Boson Masses And Mixing

The Higgs potential takes the required form for EWSB to occur. The Higgs mass is
a free parameter since µ2 is arbitrary. The Higgs will develop a vev, 〈h†h〉 = v2/2,
generating mass terms for the fermions and gauge bosons.

The Higgs vev introduces mixing between the gauge bosons. Later on the mixing angles
of the charged gauge bosons will be needed in order to calculate their couplings to the
Higgs. The heavy X ′± gauge boson mixes with the light W ′± with a mass term of
order v3/f . In the charged gauge boson sector the mass terms, up to terms of order
v4/f 4, are

LW =
1

2

(

W ′−, X ′− )MW±

(

W ′+

X ′+

)

(3.36)

where W ′+ = (A1 + iA2)/
√

2, X ′± is defined below equation (3.5) and the matrix MW±

is

MW± =

(

g2f2

2
[1 − 1

2

v2

f2 + 1

12
(1 − 1

3

f4

f2
1
f2
2

) v4

f4 ] −g2v2

6
√

2

f2
1−f2

2

f1f2

v
f

−g2v2

6
√

2

f2
1
−f2

2

f1f2

v
f

g2v2

4
(1 − 1

6
(1 − 1

3

f4

f2
1
f2
2

) v2

f2 )

)

. (3.37)

The mass terms may be diagonalised by performing the transformation

(
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=
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This leads to a light W± and a heavy X± with masses (up to order v4/f 2)

M2
W±,4 =

g2v2

4
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v2

2f 2
(1 − 1

3

f 4

f 2
1 f

2
2

)] (3.39)

M2
X±,4 =

g2f 2

2
−MW±,4. (3.40)

3.4.2 The Top Sector

The Higgs vev also generates mass terms for the fermions. Of particular interest are
the third generation up-type quarks (the top sector) since these have the strongest
coupling to the Higgs. After substituting in the Higgs vev, the top sector mass terms,
up to terms of order v4/f 3, are
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(
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These mass terms may be diagonalized by separate transformations on the left and
right handed fermions. The pre-EWSB mass eigenstates may be found by expressing
the right handed fields in terms of tc1 and tc2, defined in equation 3.21. The post-EWSB
mass eigenstates (up to order v4/f 3) are found by performing the tranformations

(

t
T

)

=

(

CL −SL

SL CL

)(

t1
t2

)

(3.42)

and

(

tc T c
)

=
(
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(
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)

(3.43)

where
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Here, c and s are as defined below equation (3.21). Performing these transformations
allows the calculation of the masses of the t and T quarks, denoted Mt and MT , up to
order v4/f 3.
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and
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where mT is defined below equation (3.21).

3.5 Higgs Couplings

It will be necessary in subsequent chapters to know the couplings of the Higgs to the
W± and X± gauge bosons and to the t and T quarks.

3.5.1 W-Higgs Couplings

The W+W−H and X+X−H couplings arise from the scalar kinetic term, equation
(3.9). The Φ fields are expanded in terms of h and the subsitution hT = (0, (v+H)/

√
2)

is made. Keeping terms linear in H , this leads to
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2
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In order to extract the couplings of the Higgs to the charged gauge boson mass eigen-
states it is necessary to perform the rotation of equation (3.38). This leads to the
couplings
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W±

v
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where

yW± = 1 +
1

2
(1 − 1

3

f 4

f 2
1 f

2
2

)
v2

f 2
(3.53)

yX± = −1

2

v2

f 2
. (3.54)

Note that the SM couplings are reproduced in the limit v/f → 0, i.e. f → ∞.
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3.5.2 Top-Higgs Couplings

The coupling of the t and T quarks to Higgses arises from the Yukawa-like terms in
equation (3.18). In order to express the couplings in terms of the mass eigenstates of
the particles it is necessary to perform the transformations defined in equations (3.21),
(3.42) and (3.43). Also the substitution hT → (0, (v+H)/

√
2) is made. The couplings

of the top quarks to the Higgses which are relevant to the later chapters of this thesis
are given, to order v2/f 2, in table 3.2.

Table 3.2: Top-Higgs Couplings

Vertex Feynman Rule
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In table 3.2, PL and PR are the left and right projection operators respectively.

In particular, the flavour diagonal couplings of t and T quarks to a single Higgs can be
written up to order v2/f 2 in the form

LttH ≈ −Mt

v
ytt̄tH − MT

v
yT T̄ TH (3.55)

where

yt = 1 + (
1

2
λ2

t

f 2

m2
T

− 1

6

f 4

f 2
1 f

2
2

)
v2

f 2
(3.56)
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3.6 Muon Decay and the Fermi Constant

In the SM the vev of the Higgs field, v, can be calculated via the relation

GF =
1√
2v2

(3.58)

where GF is the Fermi constant as measured in muon decay (see section 2.6). In the
Schmaltz model this relation is modified, because the mass of the W± is modified and
because of mixing between the neutral leptons of each generation. The heavy X− gauge
boson might be expected to play a role since it can mediate muon decay, but it turns
out not to have any effect at order v2/f 2. The interactions of leptons with the gauge
bosons arises from the leptons’ kinetic terms,

Llept =
3
∑

k=1

L̄kiDαγ
αLk (3.59)

where Lk is the SU(3) lepton triplet for the kth generation, as in equation (3.10), and
the covariant derivative Dα is as defined in equation (3.4).

The neutral lepton ‘Yukawa’ couplings do not couple fermions of different generations
so mixing only occurs within each generation. The neutral lepton mass terms will have
a similar structure to the top quark mass terms, but with λ1 set to 0. The mixing
matrix will then be like the top mixing matrix, but with c = 1 and s = 0. Then the
mass eigenstates would be νk and Nk where
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Note that the mixing angles are the same for all generations.

This coupling of leptons to charged gauge bosons may be extracted from the Lagrangian
(3.59)

∆L =
g√
2
[(ēmγ

αν ′m)W ′
α
− − V l†

nm(ēmγ
αN ′

n)X ′
α
− + h.c.] (3.61)

where V l is the equivalent of the CKM matrix for the leptons and em (without a primed
index) are the mass eigenstates of the charged leptons. Including the mixing betwen
neutral leptons gives
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2
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− (3.62)
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f
. (3.64)

The aim here is to calculate order v2/f 2 corrections to the SM relation between the
Higgs vev and the Fermi constant. The mixing between W ′ and X ′ is of order v3/f 3

(see equation (3.38)), so it is irrelevant at this order. The contribution to muon decay
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from the X mediated interaction is proportional to δ2
ν/M

2
X and so is also irrelevant at

this order. The only contribution is from the W mediated interaction, which gives

Leff = − g2

8MW±

(1 − δ2
ν)(µ̄γ

α(1 − γ5)νµ)(ν̄eγα(1 − γ5)e). (3.65)

Plugging in the mass of the W± from equation (3.39) and setting the coefficient of this
operator equal to −GF/

√
2 gives the relation
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3.7 Electroweak Precision Constraints

Bounds on the scale f from the EWPCs were reported in the original Schmaltz model
paper, [15]. Bounds from the mass shift of the Z due to mixing with the heavy Z ′ and
from 4 fermion operators associated with Z ′ exchange (for example, (ēγµγ5e)2) imply
that f & 2 TeV at 95% c.l. for both model I and model II.

The original paper also notes stringent constraints from atomic parity violation mea-
sured in the ‘weak charge’ of Caesium. In model I these constraints are very tight,
f & 3.9 TeV at 95% c.l. In model II the constraint is not so severe with f & 1.7 TeV
at 95% confidence.

A constraint on the mass of the W ′ boson is derived in [38]. The W ′ must be heavier
than 1.8 TeV at 95% C.L.. This implies a tighter constraint on f , requiring f > 4 TeV
at 95%C.L..

The mass of the Z ′ is given by

m2
Z′ =

2g2

3 − t2
(f 2

1 + f 2
2 ) (3.68)

and the mass of the heavy Top is

MT =
√

λ2
1f

2
1 + λ2

2f
2
2 . (3.69)

It is possible to increase the mass of the Z ′ to avoid EWPCs whilst keeping mT light
by going to a region of parameter space where one of the fi is much larger than the
other (dominating the Z ′ mass). Then the corresponding Yukawa coupling, λi can be
made much smaller than the other (reducing the impact of a large fi on the heavy Top
mass). This helps to keep δm2 small (equation (3.33)) which leads to a lighter Higgs.



Chapter 4

Loop Induced Decays of Little

Higgs

The Higgs particle can couple to pairs of gluons or photons via loop processes. Figure
4.1 shows how a loop involving a massive coloured particle induces a Higgs decay to
gluons, while figure 4.2 shows how a loop involving a massive charged particle induces
a Higgs decay to photons.

H

g

g

q

q

q

Figure 4.1: The Higgs can decay to a pair of gluons via a quark loop.

H
W

γ

γ

W

W

Figure 4.2: The Higgs can decay to a pair of photons via a loop of any charged particle
which couples to the Higgs. For example, a loop of W± gauge bosons.
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Higgs production via gluon fusion is the dominant method of Higgs production at
hadron colliders (e.g. the LHC), the cross section for this process being about an
order of magnitude higher than the next largest contribution from weak boson fusion
in the SM (see, for example, [44]). This makes it of paramount importance to calculate
corrections to this coupling in alternative models.

The coupling of the Higgs to photons is also important since this governs the production
of the Higgs at photon colliders, which are a satellite mode of e+e− or e−e− colliders
with photon beams created by the Compton backscattering of laser light off the electron
beams.

The loop induced couplings of the Higgs to gluons and photons are also important for
Higgs decays. The decay to photons is particularly interesting because, although it is
a rare decay (≈ 0.22% [45]), it has a clearer signal than many other Higgs decays (such
as bb̄, for example).

These loop induced processes are sensitive to new coloured or charged particles which
couple to the Higgs since they can contribute by running in the loops. Interestingly,
new heavy particles whose coupling to the Higgs are proportional to their masses do not
decouple. The Higgs coupling compensates for the inverse power of the mass coming
from the loop integral. Although the new particles present in Little Higgs models do
not couple to the Higgs in proportion to their masses, their couplings to the Higgs are
still large enough to warrant a calculation of their contributions to these processes.

For the SM, the leading order result for the cross section for the process H → gg
has been known for a while [46],[47],[48],[49]. The NLO QCD corrections to loops
involving top and bottom quarks have been calculated in full in [50] and can increase
the cross section by up to 100%. In the limit of a very large top mass, the NNLO QCD
corrections have been calculated in [51] and [52]. These amount to a further increase
of ≈ 20 − 30%). Also in this limit, the NNNLO corrections are given in [53] and [54]
where they are found to be of order 5 − 10%.

Due to the possibility of final state gluon radiation, corrections to the inverse process
gg → H must be considered separately. The NLO QCD corrections to the top and
bottom loops have been calculated in [50], enhancing the partial decay width by around
70%. In the heavy top limit, the NNLO corrections are found in [55] and the NNNLO
corrections in [56] which increase the hadronic widths by about 20% and a few percent
respectively.

The leading order (one loop) contribution to the decay H → γγ may be found in refs
[57],[58],[59]. The NLO corrections involving QCD and electroweak corrections have
been calculated [60]. The QCD and electroweak corrections are negligable below 2MW

because they are of opposite sign and similar magnitude, but above 2MW they have
the same sign and lead to a correction of about 4%. The NNLO QCD corrections have
been calculated in the limit of a heavy top quark and are of the order of a percent or
so [61].

The QCD corrections to the cross section of γγ → H are equivalent to those of the
decay cross section H → γγ. Unlike the case of theHgg coupling, the external particles
are colour neutral so there are no real radiation effects.

Let the Higgs interaction Lagrangian describing the coupling of a single Higgs to the
various fermions, gauge bosons and scalars be expressed in the form
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L =
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where the index f runs over all fermions, V runs over the gauge bosons, and Φ runs
over the scalars. Also, in Little Higgs models, the simple relation between the Higgs
vev and the Fermi constant GF (equation (2.69)) will be modified. Let the relation
between these parameters in a Little Higgs model be written in the form

1

v2
=

√
2GF y
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GF

(4.2)

The formulae for the partial widths for the processes Γ(H → gg) and Γ(H → γγ) are
then given (to one loop level) by [3]
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where the index i runs over all coloured fermions, the index j runs over all charged
particles, and Ncj and Qj are the colour factor and electric charge of particle j. Here,
the functions Fj depend on the spin of the particle. They are given by

F1 = 2 + 3τ + 3τ(2 − τ)f(τ)

F1/2 = −2τ [1 + (1 − τ)f(τ)]

F0 = τ [1 − τf(τ)] (4.5)

where

f(τ) =

{

[sin−1(1/
√
τ )]2 for τ ≥ 1

−1

4
[log(η+/η−) − iπ]2 for τ < 1

. (4.6)

Here τj and η± are given by

τj =
4M2

j

M2
H

(4.7)

η± = 1 ±
√

1 − τ . (4.8)

For τj ≫ 1, the function f(τj) is well approximated by

f(τj) ≈ (
1

√
τj

+
1

6

1
√
τj

3
)2. (4.9)

In this limit, the functions Fj approach the asymptotic values F1 → 7, F1/2 → −4/3,
F0 → −1/3.

The functions Fj are plotted, along with their asymptotic values, in figures 4.3-4.5.
As can be seen, the asymptotic limit is already an excellent approximation if τj > 16,
corresponding to Mj > 2MH , which is the case for the new particles in the Littlest
Higgs and the Schmaltz models.
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Figure 4.3: The scalar loop function F0 and its asymptotic value.
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Figure 4.4: The fermion loop function F1/2 and its asymptotic value.



4.1: Loop Induced Decays in the Littlest Higgs Model 53

 1

 10

 0  5  10  15  20

F
1

tau

Real part
Imaginary Part

Asymptotic Value

Figure 4.5: The vector loop function F1 and its asymptotic value. Here a log scale
is used on the y-axis and, since F1(τW ) develops an imaginary part for MH > 2MW ,
the real and imaginary parts are plotted separately. Note that the asymptotic value is
purely real.

4.1 Loop Induced Decays in the Littlest Higgs Model

The loop induced decays of the Higgs to gluons or photons were studied in [34]. How-
ever, in light of the errors in their previous paper [33] with respect to the couplings of
the top quark to the Higgs, it is important to check these results.

In the Littlest Higgs models there is a new top-like quark T which can contribute to
the loop induced decays of the Higgs to either gluons or photons. In addition, the new
charged gauge boson WH and charged scalars Φ+ and Φ++ can also run in the loop
contributing to the decay of the Higgs to photons.

Following reference [34], the Littlest Higgs contributions to the loop induced decays of
the Higgs are written in terms of the parameters

c =
g1

√

g2
1 + g2

2

(4.10)

ct =
λ1

√

λ2
1 + λ2

2

(4.11)

x =
4fv′

v2
. (4.12)

Each of these parameters may vary between 0 and 1. The constraint x < 1 arises from
requiring MΦ > 0. Also, define s2 = 1 − c2, s2

t = 1 − c2t .

Writing the Lagrangian in the form of equation (4.1), one has
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The masses of these particles are given by equations (2.38), (2.44), (2.45) and (2.49),
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and the couplings yj are given by equations (2.54), (2.58) and (2.64),
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All SM quarks other than the top are neglected here since their contributions are
suppressed by their small Yukawa couplings.

Also, recall the correction to the SM relation between GF and the vev of the Higgs
from equation (2.76),
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GF

(4.20)
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4.1.1 Higgs Decay To Gluons

Using equation (4.3), the partial width Γ(H → gg) in the Littlest Higgs model is

Γ(H → gg) =

√
2GFα

2
sM

3
H

32π3

∣

∣

∣

∣

−1

2
F1/2(τt)ytyGF

− 1

2
F1/2(τT )yTyGF

∣

∣

∣

∣

2

. (4.22)

Substituting in the expressions for yt, yT and yGF
from (4.19) and (4.20) this leads to

Γ(H → gg) =

√
2GFα

2
sM

3
H

32π3
| − 1

2
F1/2(τt) −

1

2

v2

f 2
[(−7

8
+
x

2
− x2

8
)F1/2(τt)

+c2t s
2
t (F1/2(τt) − F1/2(τT ))]|2. (4.23)

This is in agreement with equation (11) of (the latest version of) reference [34]. This is
perhaps surprising as they take their couplings from their previous paper [33] in which
they are incorrect.

The effects of the Littlest Higgs corrections to this process are best illustrated by taking
the ratio of the Littlest Higgs result to the SM result.

Γ(H → gg)LH

Γ(H → gg)SM
=

∣

∣

∣

∣

1 +
1√

2GFf 2
[−7

8
+
x

2
− x2

8
+ c2ts

2
t (1 −

F1/2(τT )

F1/2(τt)
)]

∣

∣

∣

∣

2

. (4.24)

Substituting in the numerical value of GF [2] and the asymptotic value of F1/2(τT ) =
−4/3, and performing the square to order v2/f 2 gives

Γ(H → gg)LH

Γ(H → gg)SM
= 1 + (−0.106 + 0.061x− 0.015x2

+0.121c2ts
2
t (1 +

4

3F1/2(τt)
))(

1 TeV

f
)2. (4.25)

This equation depends on x, ct and, implicitly in the function F1/2(τt), the Higgs and
top masses.

Most of the deviation from the SM case comes from the terms in yt and yGF
which are

independent of both x and ct. The process is suppressed relative to the SM case, due
to the reduced coupling of the top quark to the Higgs and the correction to the Fermi
constant.

The deviation falls off rapidly with increasing f as can be seen from figure 4.6, created
by plotting equation (4.25). Even for f as low as 1 TeV the deviation is at most 12%.

The variation with x is plotted in figure 4.7. The effect is largest when x = 0 and
smallest when x = 1. The effect of the terms proportional to ct is very small as can be
seen from figure 4.8 and, since the only dependence on the Higgs mass is in this term,
varying the Higgs mass also has little effect as shown in figure 4.9.
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4.1.2 Higgs Decay To Photons

The decay of the Higgs to photons is more complicated than the gluons case because
there are more new charged particles which can run in the loop. In addition to the SM
top quark and W±

L gauge boson there are the heavy T quark, the heavy gauge boson
W±

H and the scalar Φ+. The doubly charged scalar Φ++ might be expected to have a
large effect due to its enhancement by a factor of Q2 = 4, but its coupling to the Higgs
boson is highly suppressed (equation (4.19)) and it may safely be neglected.

The partial width is obtained from equation (4.3). This gives

Γ(H → γγ) =

√
2GFα

2M3
H

256π3
|yGF

[
4

3
ytF1/2(τt) + yWL

F1(τWL
)

+
4

3
yTF1/2(τT ) + yWH

F1(τWH
) + yΦ+F0(τΦ+)]|2. (4.26)

Plugging in the expressions for yGF
(equation (4.20)) and the other yj (equations (4.19))

gives

Γ(H → γγ) =

√
2GFα

2M3
H

256π3
|4
3
F1/2(τt) + F1(τWL

) +
v2

f 2
[
4

3
(−7

8
+
x

2
− x2

8
)F1/2(τt)

+
4

3
c2t s

2
t (F1/2(τt) − F1/2(τT )) + (−5

8
+
x2

8
)F1(τWL

)

+c2s2(F1(τWL
) − F1(τWH

)) + (−1

3
+
x2

4
)F0(τΦ)]|2 (4.27)

in agreement with equation (13) of reference [34]. As in the case of the decay to gluons,
the results are best illustrated by taking the ratio with respect to the SM value. This
gives

Γ(H → γγ)LH

Γ(H → γγ)SM

= |1 +
1√

2GFf 2
[
4

3
(−7

8
+
x

2
− x2

8
)F1/2(τt)

+
4

3
c2t s

2
t (F1/2(τt) − F1/2(τT )) + (−5

8
+
x2

8
)F1(τWL

)

+c2s2(F1(τWL
) − F1(τWH

))

+(−1

3
+
x2

4
)F0(τΦ)]/[

4

3
F1/2(τt) + F1(τWL

)]|2. (4.28)

The process is slightly suppressed relative to the SM. The most important parameter
in determining the magnitude of the suppression is f . For f as low as 1 TeV the
suppression is only about 7%, and it falls off proportionally with 1/f 2 as is illustrated
in figure 4.10.

The largest contribution to this process comes from the W±
L gauge bosons. Conse-

quently, the correction to the W+

L W
−
L H coupling is responsible for most of the devi-

ation from the SM. Varying the parameters x and c change the size of the deviation
from the SM by less than 1% each, as can be seen from figures 4.11 and 4.12. Varying
ct and MH has very little effect as is shown in figures 4.13 and 4.14.
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The results presented here are not in exact agreement with those in paper [34]. A
close inspection of some of the plots (e.g. figure 4.11 compared with their figure 4)
shows some very slight discrepancies. However, the main conclusions are the same.
The deviation from the SM result is about 7% for f = 1 TeV and scales like 1/f 2.

4.2 Loop Induced Decays in the Schmaltz Model

In the Schmaltz model the new heavy quark of the third generation contributes to the
loop induced decays of the Higgs to gluons or photons. Although there are other heavy
quarks living in the first and second generations these couple to the Higgs no more
strongly than the other quarks of the first two generations so their contributions to
these loop induced decays are negligable.

The other new particle which is relevant to these processes is the heavy gauge boson,
X±, which can contribute to the decay of the Higgs to photons.

The Schmaltz model contains a number of new parameters which enter the couplings of
the Higgs. Those relevant to the current process are written in terms of the independent
parameters

β = tan−1 f2

f1

f =
√

f 2
1 + f 2

2

k =
λ2

λ1

(4.29)

Also, the shorthand notation tβ = tanβ, sβ = sin β and cβ = cos β will be utilised.
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The Lagrangian describing the Higgs couplings of the particles relevant to the loop
induced decays of the Higgs can be expressed in the form of equation (4.1) using
equations (3.52), (3.53), (3.55) and (3.56),

L = −Mt

v
ytt̄tH − MT

v
yT T̄ TH + 2

M2
W±

v
yW±W+W−H + 2

M2
X±

v
yX±X+X−H (4.30)

where the masses of these particles are given (see equations (3.39), (3.48) and (3.49))
by

M2
W± =

g2v2

4
[1 +

v2

2f 2
(1 − 1

3

1

s2
βc

2
β

)]

M2
X±,4 =

g2f 2

2
−M2

W±

Mt = λt
v√
2
[1 +

1

4

(

k2(1 + t2β)

(1 + k2t2β)2
− 1

3

1

s2
βc

2
β

)

v2

f 2
]

MT = mT (1 − 1

4

k2(1 + t2β)

(1 + k2t2β)2

v2

f 2
) (4.31)

where, recall, mT =
√

λ2
1f

2
1 + λ2

2f
2
2 , λt = λ1λ2f/mT and the yj factors are,

yW± = 1 +
1

2
(1 − 1

3

1

c2βs
2
β

)
v2

f 2

yX± = −1

2

v2

f 2

yt = 1 + (
k2

2

(1 + t2β)2

(1 + k2t2β)2
− 1

6

1

c2βs
2
β

)
v2

f 2

yT = −k
2

2

(1 + t2β)2

(1 + k2t2β)2

v2

f 2
. (4.32)

Also, recall the correction to the SM relationship between the Higgs vev v and the
Fermi constant GF from equations (3.66) and (3.67)

1√
2v2

= GF y
2
GF

(4.33)

where

y2
GF

= 1 +
1

2
(1 − 1

3

1

c2βs
2
β

+
1

t2β
)
v2

f 2
. (4.34)

4.2.1 Higgs Decay To Gluons

Using equation (4.3), the partial width Γ(H → gg) in the Schmaltz model is given by
the expression

Γ(H → gg) =

√
2GFα

2
sM

3
H

32π3

∣

∣

∣

∣

−1

2
F1/2(τt)ytyGF

− 1

2
F1/2(τT )yTyGF

∣

∣

∣

∣

2

. (4.35)
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Substituting in the expressions for yt, yT and yGF
from (4.32) and (4.34) this leads to

Γ(H → gg) =

√
2GFα

2
sM

3
H

32π3
| − 1

2
F1/2(τt) −

1

2

v2

f 2
[−1

4
(1 + t2β)F1/2(τt)

+
k2

2

(1 + t2β)2

(1 + k2t2β)2
(F1/2(τt) − F1/2(τT ))]|2. (4.36)

As in the Littlest Higgs model, the effects of the new terms in the Schmaltz model are
best illustrated by taking the ratio of the Schmaltz model partial width to that of the
SM.

Γ(H → gg)Sch
Γ(H → gg)SM

= |1 +
v2

f 2
[−1

4
(1 + t2β) +

k2

2

(1 + t2β)2

(1 + k2t2β)2
(1 − F1/2(τT )

F1/2(τt)
)]|2 (4.37)

Performing the square, substituting in the numerical value for GF and taking the
asymptotic value for F1/2(τT ) leads to the expression

Γ(H → gg)Sch
Γ(H → gg)SM

= 1 + 0.606[−0.5 − 0.5t2β + k2
(1 + t2β)2

(1 + k2t2β)2
(1 − 4

3F1/2(τt)
)]

(

1 TeV

f 2

)

.

(4.38)
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Figure 4.15: Ratio of Schmaltz partial width to SM partial width Vs tanβ (The ratio
of the scalar triplet vevs) for k = 1 and MH = 120 GeV.

The most interesting feature of the Higgs decay to gluons is the variation with tβ , as
illustrated in figure 4.15 which is a plot of equation (4.37). The suppression of the
Schmaltz model branching ratio becomes large for tβ ≫ 1, which corresponds to taking
f2 ≫ f1, with the large deviation coming from the factor yt.

Since the top sector coupling is symmetric under relabelling tc1, λ1 etc to tc2, λ2 etc, it
may at first be surprising that the deviation is large for f2 ≫ f1 but not for f1 ≫ f2.
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Figure 4.16: Ratio of Schmaltz model partial width to SM partial width Vs f for
k = 1 and MH = 120 GeV.
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Figure 4.18: Ratio of Schmaltz partial width to SM partial width Vs MH for k = 1
and tan β = 2.

The reason for this is that an asymmetry was introduced by defining Φ2 to be the scalar
triplet which couples to the heavy neutral singlet N c. Because of this, the factor yGF

is not invariant under interchanging f1 and f2, and one of the terms in yGF
precisely

cancels the term from yt which would have led to large deviations for tβ ≪ 1 if it had
remained present.

The deviation from the SM falls of as f 2 at seen in figure 4.16. For moderate values of
tβ the deviation is less than about 10% for f & 1.5 TeV.

Almost all of the deviation from the SM comes from the first 2 terms in the square
brackets in equation (4.38). The terms involving the parameters k and MH (MH is
implicit in the function F1/2(τt)) do not make a large contribution. Figures 4.17 and
4.18 show that the deviation is virtually unchanged when these parameters are varied.

4.2.2 Higgs Decays To Photons

The partial width for the loop induced decay of the Higgs to a pair of photons in the
Schmaltz model can be found by using the general formula (4.3) and allowing the t, T ,
W± and X± particles to run in the loop. This gives

Γ(H → γγ) =

√
2GFα

2M3
Hy

2
GF

256π3
|yGF

[yt
4

3
F1/2(τt) + yW±F1(τW±)

+yT
4

3
F1/2(τT ) + yX±F1(τX±)|2. (4.39)

Substituting the yj factors of equations (4.32) and (4.34) into this formula leads to the
expression
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Γ(H → γγ) =

√
2GFα

2M3
Hy

2
GF

256π3
|[4

3
F1/2(τt) + F1(τW±)

+
v2

f 2
[−1

4
(1 + t2)(

4

3
F1/2(τt) + F1(τW±)) +

2k2

3

(1 + t2)2

(1 + k2t2)2

×(F1/2(τt) − F1/2(τT .)) +
1

2
(F1(τW±) − F1(τX±))]|2 (4.40)

Taking the ratio of this and the SM result (given by the first 2 terms inside the square
brackets) yields the result

Γ(H → γγ)Sch
Γ(H → γγ)SM

= |1 +
v2

f 2
[−1

4
(1 + t2) +

1

2

F1(τW±) − F1(τX
±)

4

3
F1/2(τt) + F1(τW±)

+
2k2

3

(1 + t2)2

(1 + k2t2)2

F1/2(τt) − F1/2(τT )
4

3
F1/2(τt) + F1(τW±)

]|2. (4.41)
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Figure 4.19: Ratio of Schmaltz partial width to SM partial width Vs tanβ for k = 1
and MH = 120 GeV.

As in the case of the decay to gluons, the most interesting feature is how the process
is suppressed relative to the SM at large tanβ, where f2 ≫ f1, as shown in figure
4.19. The suppression falls off proportionally with 1/f 2 as shown in figure 4.20 and,
for moderate values of tanβ, is less than 10% for all values of f allowed by the EWPCs.

4.3 Prospects For Observation

At a hadron collider such as the LHC, the Higgs may be produced via gluon fusion
which allows the coupling of the Higgs to gluon pairs to be probed. A comparison of
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k = 1 and MH = 120 GeV.
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Figure 4.22: Ratio of Schmaltz partial width to SM partial width Vs MH for k = 1
and tan β = 2.

the rates for Higgs production via gluon fusion and Higgs production via weak boson
fusion with common final states yields the ratio Γ(H → gg)/Γ(H → WW ). This can
be measured to an accuracy of about 20− 30% for a Higgs with mass between 100 and
180 GeV [65].

The Higgs coupling to gluons cannot be probed through Higgs decays at the LHC due
to overwhelming dijet backgrounds [66].

Similarly, the ratio Γ(H → γγ)/Γ(H → WW ) can be measured by counting decays
with common production methods. Combined with measurements of the partial width
Γ(H →WW ), these ratios allow the partial widths Γ(H → gg) and Γ(H → γγ) to be
measured at the LHC with accuracy of about 30% for a Higgs mass below 140 GeV
[67],[68].

Taking into account the errors in determining the ratio Γ(H → γγ)/Γ(H →WW ) and
the partial width Γ(H → WW ), deviations relative to the SM are only observable in
these processes at the LHC if they are of order 50% or larger [67] which is not the case
in the Little Higgs models studied here.

At a 500 GeV linear e+e− collider Higgs decays may be used to extract the couplings
of the Higgs to gluon or photon pairs in a model independent way. Branching fractions
can be determined by tagging the process e+e− → Z∗ → ZH (where Z∗ denotes an off-
shell Z boson) using the Z recoil mass, then counting final states. The Higgs coupling
to W s can then be determined via the process e+e− → W ∗W ∗ → Hνν̄ which allows
us to solve for the individual partial widths.

In this fashion, with 500 fb−1 of data, the branching ratio Γ(H → γγ) can be measured
to within about 15 − 25% for a Higgs mass below 140 GeV, the limiting factor being
the rarity of this decay [70],[71]. The branching ratio Γ(H → gg) can be measured to
as well as 6− 12.5% if the Higgs is lighter than 140 GeV [73],[72]. For heavier Higgses
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measurements of these branching ratios at an e+e− collider is not feasible [73]

Although deviations from the SM in the littlest Higgs and Schmaltz models approach
the precision with which they can be measured at an e+e− collider, the unknown cor-
rections from higher order QCD effects are large so the discrepancy cannot be verified
without higher order calculations.

The best prospect for observation of the width Γ(H → γγ) comes from γγ colliders.
Here, a Higgs is produced from photon collisions which can then decay to bb̄ pairs.
Combining this with measurements of H → bb̄ decays from a linear collider can provide
a measurement of the Higgs to photons branching ratio at the order of 2−3% [71],[45],
making the suppression with respect to the SM potentially observable in some regions
of parameter space. Higgs production at a γγ collider was studied in detail for the
Littlest Higgs model in [74].



Chapter 5

Two Higgs Production Via Gluon

Fusion

5.1 Higgs Pair Production

Pairs of Higgs bosons can be produced from gluon fusion via quark loops. In the SM,
there are two topologies which contribute to this process at the one-loop level; the
triangle topology, figure 5.1, and the box topology, figure 5.2.

g

g

H

H

q

Figure 5.1: Higgs pair production via gluon fusion, triangle topology.

g

g

H

H

q

Figure 5.2: Higgs pair production via gluon fusion, box topology.
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Variations on these diagrams can be created by permuting the vertices, but all are of
either box or triangle type.

For a quark q, the box diagrams are proportional to λ2
qqH where λqqH is the Yukawa

coupling of the quark q to the Higgs boson. The triangle diagrams are proportional to
λqqHλ3 where λ3 is the Higgs trilinear coupling. In the SM only the top quark has a
large coupling to the Higgs boson. The other SM quarks can be neglected since their
contribution to the amplitude will be suppressed by a factor of ≈ mq/mt.

Gluon fusion is the dominant mechanism for production of Higgs boson pairs at the
LHC. It is important to calculate the cross section for this process either as a way to
check the SM prediction for the Higgs trilinear coupling, or as a signal for new physics
beyond the SM [75].

The leading order (one loop) SM contribution to the process gg → HH was first
computed in [76]. The NLO QCD corrections have been calculated in the heavy top
limit where they were found to increase the cross section by about 100% [77], although
there is doubt about whether this limit is applicable in multi-Higgs production [75].

5.2 The Program: General Outline

The calculation of the cross section for Higgs pair production from gluon fusion would
be extremely arduous to perform by hand. Even in the SM and neglecting all quarks
other than the top there are 8 graphs already at the one-loop level. It is much more
efficient, and a more reliable result is obtained, if the calculation is automated with a
computer. A program for doing this has been created by the authors of [75], who have
calculated the cross section for this process at the LHC at the one-loop level in the
SM and in the 2 Higgs doublet model. This program was adapted by myself, Stefan
Karg and Thomas Binoth to calculate the cross section in the Littlest Higgs and the
Schmaltz models. A brief outline of the method employed follows below.

The program Qgraf [78] - if given a process, a list of particles and vertices present in
the theory and a number of loops - gives an algebraic representation of all the graphs
which contribute to the given process at the given number of loops. Qgraf is used to
identify the distinct Feynman diagrams contributing to the process gg → HH at the
one-loop level.

The Qgraf output is then automatically converted into a format suitable for using
in the algebra program Form [79]. Form was used to perform the gamma matrix
algebra and also to implement tensor integral reduction algorithms. These algorithms
take integrals which transform non-trivially under Lorentz transformations and express
them in terms of objects built from metric tensors and external momenta (to carry the
Lorentz structure) and form factors consisting of linear combinations of integrals which
are Lorentz scalars. These tensor reduction algorithms, supplied by Thomas Binoth,
make the integrals simpler to perform and will be discussed in more detail below.

The amplitude can be written in the form

Γ(gg → HH) = ε1,µε2,νMµν (5.1)

where ε1,µ and ε2,ν are the polarization vectors of the external gluons. Let the external
particles be labelled g1, g2, h1 and h2 with momenta p1, p2, p3 and p4 respectively. The
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only objects which can carry the Lorentz indices of the scattering tensor Mµν are the
metric tensor gµν and the external momenta. Using this information, and also using
momentum conservation to eliminate p4, the scattering tensor can be written in the
form

Mµν = Agµν +
3
∑

i,j=1

Bijp
µ
i p

ν
j . (5.2)

Here, the coefficients A and Bij are linear combinations of scalar loop integrals which
fall out of the tensor reduction algorithms. For example, we might write

A =
∑

k

AkIk (5.3)

where {Ik} is a set of scalar integrals. The coefficients of each of these functions were
then exported to Maple for simplification.

Spinor helicity methods [80][81] were employed to simplify the calculation further.
Here, the gluon polarization vectors are represented in terms of helicity eigenstates of
massless spinors and gamma matrices. These can be chosen in such a way that the
contraction of the polarization vectors with the tensor pµ

i p
ν
j vanishes whenever i or j

is equal to 1 or 2, drastically reducing the complexity of the amplitude. More details
about the helicity method, showing how these contributions vanish, will be given below.

The scalar integrals were evaluated using LoopTools-2.2 [82].

The LHC collides protons, not gluons, so in order to compute the cross section for
double-Higgs production at the LHC the cross section for production via gluon fusion
must be convoluted with the parton distribution functions (PDFs) using the formula

σpp→HH =

∫ 1

0

dx1dx2fg1/p(x1, µ
2
F )fg2/p(x2, µ

2
F )σgg→HH (5.4)

Here µF is the factorisation (and renormalisation) scale. The answer computed to all
orders in perturbation theory would be independent of µF but at any particular order in
perturbation theory some factorisation scale dependence is present. The factorisation
scale dependence will be discussed later. The xi are the ratios of the energy of the
gluons gi to the energy of the protons. The functions fgi/p(xi, µ

2
F ) are the parton

distribution functions which are empirically extracted from deep inelastic scattering
experiments, fixed target experiments and jets at Tevatron. The MRST2002nlo PDF
set [83] as implemented in LHAPDF [84] was used to provide the gluon density as well
as the strong coupling.

The integrations over dxi, along with the other relevant phase space integrations, were
performed numerically using the Monte Carlo (MC) integration package Bases [85].

The program expresses the result in terms of the total cross section σ(PP → HH).
The following parameters [2] were used for the SM case,
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Ecom = 14 TeV

αs(MZ) = 0.120

α(0) = 1/137.036

mt = 174.2 GeV

GF = 11.66 × 10−5 GeV−2 (5.5)

The centre of mass energy Ecom was taken to be 14 TeV because this is the centre of
mass energy of the LHC. The parameter GF is used to find the Higgs vev via equation
(4.20).

5.3 Tensor Integral Reduction Algorithm

One loop Feynman diagrams, of the form of figure 5.3, lead to tensor integrals (i.e.,
integrals which transform as tensors under Lorentz transformations) of the form

p1

p2

p3

pm

k1

k12

k1..m−1

Figure 5.3: A generic loop diagram with m external legs

Iµ1..µi
m =

∫

dnk

(2π)n

kµ1 ..kµi

(k2 −m2
1 + iǫ)(k2

1 −m2
2 + iǫ)..(k2

12..m−1 −m2
m + iǫ)

. (5.6)

Here, k12..j = k+p1..j where p1..j is p1 + ..+pj and pi is the 4-momentum of the particle
attached to the ith external leg and k is the loop momentum. The components of k
in the numerator may, for example, arise from fermion propagators or gauge boson
tri-linear vertices.

The simplest loop integrals are those with no Lorentz indices in the numerator. Since
these transform as scalars under Lorentz transformations they are referred to as scalar
integrals. It is possible to reduce the calculation of non-scalar tensor integrals to the
calculation of linear combinations of scalar integrals. The most well know way of doing
this is Passarino-Veltman reduction [86]. The best way to illustrate Passarino-Veltman
reduction is by example. The example chosen here is the integral (from [87])

Iµ(p1, p2) =

∫

dnk

(2π)n

kµ

(k2 + iǫ)(k2
1 + iǫ)(k2

12 + iǫ)
(5.7)
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which arises in the case of a loop diagram with 3 external legs and a massless particle
running in the loop. I has been written as a function of p1 and p2 only since p3 can
be eliminated by momentum conservation.

p1 p2

p3

k + p1

k + p12k

Figure 5.4: A triangle loop diagram

In this case the only objects which can carry the Lorentz index are the external mo-
menta p1 and p2. The integral may thus be written

Iµ(p1, p2) = B1(p1, p2)p
µ
1 +B2(p1, p2)p

µ
2 . (5.8)

Both sides of this equation may be contracted with the external momenta p1 and p2 to
obtain the matrix equation

(

p1.I
p2.I

)

=

(

p2
1 p1.p2

p1.p2 p2
2

)(

B1

B2

)

(5.9)

In order to find the form factors B1 and B2 this matrix equation must be inverted.
This gives

(

B1

B2

)

=
1

∆

(

p2
2 −p1.p2

−p1.p2 p2
1

)(

p1.I
p2.I

)

(5.10)

where ∆ is called the Gram determinant and is given by

∆ =

∣

∣

∣

∣

p2
1 p1.p2

p1.p2 p2
2

∣

∣

∣

∣

= p2
1p

2
2 − (p1.p2)

2. (5.11)

The dot product p1.k may be rewritten by the use of the following relation

k2
1 = k2 + 2k.p1 + p2

1 (5.12)

⇒ p1.k =
1

2
(k2

1 − k2 − p2
1) (5.13)

and, similarly, p2.k may be written in the form

p2.k =
1

2
(k2

12 − k2
1 − p2

12 + p2
1). (5.14)

These relations are useful because they express the dot products of loop and external
momenta as a linear combination of terms which appear in the denominator of the
integral I and terms involving only the external momenta (i.e., no loop momenta).
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They may be used to rewrite the scalar integrals on the right hand side of equation
5.10, viz

p1.I =

∫

dnk

(2π)n

p1.k

k2k2
1k

2
12

=
1

2

∫

dnk

(2π)n

k2
1 − k2 − p2

1

k2k2
1k

2
12

=
1

2

∫

dnk

(2π)n

1

k2k2
12

− 1

2

∫

dnk

(2π)n

1

k2
1k

2
12

− 1

2
p2

1

∫

dnk

(2π)n

1

k2k2
1k

2
12

(5.15)

and, in a similar fashion

p2.I =
1

2

∫

dnk

(2π)n

1

k2k2
1

− 1

2

∫

dnk

(2π)n

1

k2k2
12

− 1

2
(p2

12 − p2
1)

∫

dnk

(2π)n

1

k2k2
1k

2
12

. (5.16)

Evaluating the scalar integrals occuring in (5.15) and (5.16) is much simpler than
evaluating the original tensor integral of equation (5.7). These may be performed by
the standard method of Feynman parameters.

After calculation of the integrals p1.I and p2.I, the coefficients B1(p1, p2) and B2(p1, p2)
may be obtained via equation (5.10) which, in turn, yield an expression for Iµ upon
substitution into equation (5.8). To summarize, the Passarino-Veltman [86] method for
the reduction of tensor integrals with m external legs proceeds in the following steps.

• Use Lorentz invariance to equate the tensor integral with terms proportional to
products of metric tensors and external momenta multiplied by form factors,
using momentum conservation to eliminate one of the external momenta. (e.g.
equation (5.8))

• Take dot products of this equation with the m− 1 remaining external momenta
to create a set of linear equations. (c.f. equation (5.9))

• Invert the system of linear equations obtained to express the form factors in
terms of a linear combination of dot products of the tensor integal with external
momenta. (c.f. equation (5.10))

• Rewrite the dot products of the external momenta and the loop momenta in
terms of factors which appear in the denominator of the tensor integral (as in
equations (5.12),(5.14))

• Substitute these relations into the dot products of the tensor integral with the
external momenta to obtain a linear combination of comparatively simple scalar
integrals. (c.f. equations (5.15),(5.16))

• Evaluate the scalar integrals to obtain the form factors.

• Combine the form factors with the relevant products of metric tensors and ex-
ternal momenta to obtain the result for the tensor integral.

Some comments on the Passarino-Veltman method can be made.
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• There will always occur an inverse Gram determinant (c.f. equation (5.10)) which
becomes singular in certain regions of phase space. These singularities are an
artifice of this calculational scheme and should cancel out. However, it is often
difficult to spot how these cancellations occur and this can lead to numerical
instabilities when evaluating the amplitude.

• For higher order tensors the tensor reduction algorithm must be iterated several
times. The number of iterations is equal to the rank of the tensor. This leads to
multiple Gram determinants in the denominator and in general requires a shift
of the loop momentum at each iteration.

The Passarino-Veltman method is used here to evaluate the one loop cross section
for the process gg → HH . The form factors are decomposed in terms of a basis of
Feynman parameter integrals which is defined in reference [88].

5.4 Spinor Helicity Methods

5.4.1 Introduction And Notation

When computing cross sections (here meaning the squared amplitude |M|2 before any
phase space integration) the standard goal is to reduce the expression to terms involving
four-vector dot products. This is achieved by first squaring the amplitude and then
using spin sum relations such as

∑

s

us(p)ūs(p) = p/ ±m (5.17)

for spinors of fermions of momentum p and mass m, where the sign is +(−) for a
fermion (anti-fermion), and

∑

λ

εµ
λε

∗
λ

ν → −gµν (5.18)

where λ is helicity, for the polarization vectors of (massless) gauge bosons. Note the
above substitution is not an equality, but is valid in the context of a squared amplitude
|M|2 in the Feynman gauge with similar substitutions applicable in other gauges.

Applying these spin-sum relations result in traces over Dirac matrices which can easily
be evaluated to yield an expression in terms of four-vector dot products.

Although conceptually simple enough, this scheme runs up against issues of computing
capacity when the size of the expressions becomes large. The amplitude must be
squared before these techniques can be applied so both the number of traces and their
length quickly increases at higher orders in perturbation theory [80]. It is easy to see
that any scheme which results in simplifications at the level of M rather than |M|2
will eventually become superior to this approach.

In the spinor helicity approach [80],[81] spinor products such as ū(k)u(p) are used rather
than vector products k.p. These spinor products are not much more complicated than
vector products and, as shall be demonstrated, lead to simplifications at the level of
the amplitude M making them more suitable for use in larger expressions.
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In preparation for the discussion of spinor helicity methods it is useful to revise a few
important spinor identities. In the case of a massless fermion with momentum p and
helicity λ (so λ = ±1) there is the relation

uλ(p)ūλ(p) = ωλp/ (5.19)

where

ωλ =
1

2
(1 + λγ5). (5.20)

Another useful identity relates spinor products of massless fermions to four-vector dot
products,

|ū−(p)u+(k)|2 = ū−(p)u+(k)ū+(k)u−(p)

= Tr[ω−p/ω+k/]

= Tr[ω2
−p/k/]

= pαkβTr[ω−γ
αγβ]

= 4pαkβ × 1

2
gαβ

= 2p.k (5.21)

or, a little more generally,

|ūλ(p)u−λ(k)|2 = 2p.k. (5.22)

5.4.2 Spinor Representation Of Polarization Vectors

The polarization vectors for massless gauge bosons with momentum p and of definite
helicity, ε±, are required to have the properties [80]

ελ.p = 0

ελ.ελ = 0

εµ
−λ = (εµ

λ)
∗

ελ.ε−λ = −1 (5.23)

Any object with these properties is valid as a representation of the polarization vectors.
In particular, the polarization vectors may be chosen to take the form [80],[81].

εµ
+(p, q) =

ū−(q)γµu−(p)√
2ū−(q)u+(p)

(5.24)

εµ
−(p, q) =

ū−(p)γµu−(q)√
2ū+(q)u−(p)

(5.25)

where q is any vector such that q2 = 0 and q is not collinear with p. In general changing
q results in changing the polarization vector by a gauge transformation and a complex
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phase. This freedom to choose the vector q is what makes it possible to achieve a
simplified form for the amplitude.

Going back to equation (5.1), the tensor Mµν must be contracted with external gluon
polarization vectors of helicity (++), (+−), (−+) and (−−). Due to parity invariance,
only two of these helicity amplitudes need be known.

M−− = M++

M−+ = M+− (5.26)

The combination of external gluon polarization vectors which contract with M++ is

εµ
1+ε

ν
2+ =

ū−(q1)γ
µu−(p1)ū−(q2)γ

νu−(p2)

2ū−(q1)u+(p1)ū−(q2)u+(p2)
(5.27)

Here q1 and q2 are arbitrary other than that they must satisfy the constraints q2
1 =

q2
2 = 0 and q1(q2) not collinear with p1(p2). It shall be shown that simplifications in

the calculation may be achieved by setting q1 = p2 and q2 = p1, so that

εµ
1+ε

ν
2+ =

ū−(p2)γ
µu−(p1)ū−(p1)γ

νu−(p2)

2ū−(p2)u+(p1)ū−(p1)u+(p2)
(5.28)

The numerator of this expression may be written

ū−(p2)γ
µu−(p1)ū−(p1)γ

νu−(p2) = Tr[ω−p/1γ
νω−p/2γ

µ]

= Tr[ω−p/1γ
νp/2γ

µ]

where equation (5.19) has been utilized. Also, the denominator may be rewritten,

2ū−(p2)u+(p1)ū−(p1)u+(p2) =
2ū−(p2)u+(p1)ū−(p1)u+(p2)ū+(p2)u−(p1)

ū+(p2)u−(p1)

=
2ū−(p2)u+(p1)Tr[ω−p/1ω+p/2]

ū+(p2)u−(p1)

=
4ū−(p2)u+(p1)p1.p2

ū+(p2)u−(p1)

Then, defining s12 = (p1 + p2)
2 = 2p1.p2 (since p2

1 = p2
2 = 0 for the external gluons)

and using the identity ū−(p2)u+(p1) = −ū−(p1)u+(p2), the denominator is found to be

−2s12ū−(p1)u+(p2)

u+(p2)u−(p1)
(5.29)

Finally, putting the numerator and denominator together leads to the expression

εµ
1+ε

ν
2+ = − ū+(p2)u−(p1)

2s12ū−(p1)u+(p2)
Tr[ω−p/1γ

νp/2γ
µ] (5.30)

The other combination of polarization vectors which is needed is εµ
1−ε

ν
2+, which con-

tracts with M+−.

εµ
1+ε

ν
2− =

ū−(q1)γ
µu−(p1)ū−(p2)γ

νu−(q2)

2ū−(q1)u+(p1)ū+(q2)u−(p2)
(5.31)
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Again putting q1 = p2 and q2 = p1, the polarization vectors may be written in the
form,

εµ
1+ε

ν
2− =

ū−(p2)γ
µu−(p1)ū−(p2)γ

νu−(p1)

ū−(p2)u+(p1)ū+(p1)u−(p2)
(5.32)

The value of this spinor representation of the polarization vectors is seen when they
are contracted with the scattering tensor Mµν as given in equation (5.2). Many of the
external momenta contract with the epsilon tensors to give zero. For example,

εµ
1+ε

ν
2+p

µ
i p

ν
1 ≈ pµ

i p
ν
1Tr[ω−p/1γ

νp/2γ
µ]

= Tr[ω−p/1p/1p/2p/i]

= Tr[ω−p
2
1p/2p/i]

= 0 (5.33)

After the dust settles all the terms involving Bij vanish when i or j is equal to 1 or 2
for all helicities as well as the term proportional to A in the opposite helicity, i.e. (+−)
or (−+), case and only the following terms are left.

M++ =
ū+(p2)u−(p1)

ū−(p1)u+(p2)
(A− Tr[ω−p/1p/3p/2p/3]

2s12

B33) (5.34)

M+− =
ū−(p2)p/3u−(p1)

ū−(p1)p/3u−(p2)

Tr[ω−p/1p/3p/2p/3]

2s12

B33 (5.35)

This results in a much shorter expression for the amplitude because it contains only 2
form factors leading to speedy evaluation.

5.5 The Standard Model Case

A calculation of the cross section for the process gg → HH in the SM, using the same
computational methods employed in this thesis to calculate the process in little Higgs
models, was presented in the paper [75]. The motivation for studying this process in the
SM is to measure the parameter λ3 and to check the SM relation λ3 = 3M2

H/v. Mod-
ifications to this relation could, for example, arise from higher dimensional operators
of the type [75]

∞
∑

k=1

gk

Λ2k
(h†h− v2

2
)2+k (5.36)

where gk is a coupling constant and Λ is some mass scale.

The SM result for the total cross section σ(gg → HH) at the LHC is shown in figure
5.5. This shows that for a Higgs mass ranging between 110 GeV and 250 GeV the total
LHC cross section falls from about 23 fb to about 2.5 fb. These results are those from
the leading order (1-loop) processes. Next to leading order corrections are expected to
be large leading to k-factors as large as 2 [77][89].

Of particular interest is the dependence on the factorisation and renormalisation scale
(which are set to be equal and are denoted by µ) plotted in figure 5.6. For figure 5.5,
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Figure 5.5: Higgs mass dependence of LHC cross section (i.e. at Ecom = 14 TeV) for
the process gg → HH in the SM using µ = 2MH
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Figure 5.6: Factorisation and Renormalisation scale dependence of the LHC cross
section for the process gg → HH in the SM using MH = 150 GeV
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and for all other figures in this chapter except for figure 5.6, the value µ0 = 2MH was
used. Varying µ between µ0/3 and 3µ0 leads to a variation in the cross section of order
50%. This uncertainty is due to the large next to leading order (NLO) corrections to
QCD processes and dominates any uncertainties from the parameters and PDFs.

5.6 The Littlest Higgs Model Case

The same computational methods as used in the SM case (see [75]) are here employed
to calculate the total LHC cross section for the process gg → HH in the Littlest Higgs
model. The new particles and interactions of the Littlest Higgs model introduce many
new channels for this process.

The box and triangle diagrams as were present in the SM case are also present in the
Littlest Higgs case, only now the heavy T quark can also run in the loop as shown in
figures 5.7, 5.8. In addition, there are new types of box diagram where t and T quarks
both run in the loop in the same diagram as shown in figure 5.9. This diagram appears
because of the t TH coupling of the Littlest Higgs model.

There are also new triangle diagrams. Those in figure 5.10 arise because of the dimen-
sion 5 ttHH and TTHH couplings, while those in figure 5.11 are similar to those in
figure 5.8 except that there is an intermediate Φ particle instead of a H .

As in the SM case variations on these diagrams exist with different permutations of
the Higgs and gluon vertices.

g

g

H

H

t, T

Figure 5.7: Box topology

The top-Higgs couplings are given in table 2.1 with the masses of the quarks given
by equations (2.49). The scalar masses and trilinear couplings are given by equations
(2.37) and (2.38) and table 2.5.3. All these couplings were included up to order v2/f 2.

A number of features of this calculation make it more tricky than the SM case. There
are, of course, a larger number of Feynman diagrams to evaluate. There are 36 in
total after all the possible permutations of the vertices are taken into account (swap
incoming gluons, swap outgoing Higgses, different combinations of t and T quarks in
the loop). Compare this with the SM where there are only 8. However, the calculation
is highly automated so that the higher number of diagrams is not in itself a problem.
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Figure 5.8: Triangle topology
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Figure 5.9: Box topology with tTH couplings
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Figure 5.10: Triangle topology with dimension 5 vertex
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Figure 5.11: Triangle topology with intermediate Φ scalar

One complication of the Littlest Higgs model is that there are box diagrams with more
than one type of quark in the loop. In the SM case all box diagrams have only t quarks
in the loop which makes the tensor reduction simpler to perform. In the Littlest Higgs
model this is no longer the case. This makes this stage of the calculation slower in the
Littlest Higgs model.

Perhaps the most important new feature of the Littlest Higgs model is that there are
couplings which contain the matrix γ5. This causes a problem because the calculation
is performed in dimensional regularisation and γ5 cannot be defined in general for
d 6= 4. This problem was solved using the methods presented in the paper [90].

Originally, the plan was to perform an independent calculation of the PP → HH
cross section which had previously been presented in the papers [91],[92], then there
would be an original calculation of the Schmaltz model case. These papers present
calculations of the total LHC cross sections for PP → HH in the Littlest Higgs model
and the Littlest Higgs model with T-parity. According to these authors the T-parity
case is the same as the non T-parity case except that there is no contribution from
the Φ particle. However this is not the case. The T-parity case contains more heavy
fermions and cannot be obtained in any simple limit of the non T-parity case.

The authors of the above papers also neglect mixing effects in both the Higgs and the
top sectors which gave them only very small deviations from the SM. However, the
mixing effects are at least as important as the direct corrections from the propagation
of new virtual particles and cannot be neglected.

A more thorough calculation which takes mixing effects into account is presented in [35].
However, these authors take their couplings from the paper [33] which, as was shown
in chapter 2, has an incorrect expression for the mixing in the top sector, meaning
that the couplings of the t and T quarks with the Higgs are not correct. The results
presented here are therefore the first treatment of this process which correctly takes
into account all contributions from new particles and mixing at order v2/f 2.

The cross section depends on the Littlest Higgs model parameters {λ1, λ2, f, v, v
′}.

However, these parameters are constrained in that they must recreate the experimen-
tally determined top mass according to the formula (2.49) and also the Fermi constant
GF as in equation (2.76). The cross section may be reexpressed in terms of the set of
parameters {mt, GF , k, f, x} where
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k = λ2/λ1

x =
4fv′

v2
(5.37)

Graphs which plot the dependence of the total LHC cross section on the free parameters
MH , f, k, x are shown below. All graphs show LHC cross sections with the factorisation
and renormalisation scales taken at 2MH .
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Figure 5.12: Higgs mass dependence of LHC cross section for the process PP → HH
in the Littlest Higgs Model. For x = 0.85, k = 2.5 and f = 2 TeV, MT = 4.10 TeV
and MΦ runs from 2.61 to 5.44 TeV as MH runs from 120 to 250 GeV. Changing f to
3 TeV leads to MT = 6.15 TeV and MΦ running from 3.92 to 8.17 TeV.

The cross section falls off with increasing Higgs mass in both the SM and the Littlest
Higgs model as shown in figure 5.12. Plotting the ratio of these cross section as in
figure 5.13 shows that the cross section is enhanced in the littlest Higgs model and
that this enhancement is largest for a relatively heavy Higgs of about 190 GeV.

Plots 5.14 and 5.15 show the dependence on the parameter f . These plots show that
the enhancement can be substantial if f is very low at about 1 TeV, as is allowed in
some variations of the Littlest Higgs models, but falls off rapidly as f increases.

The dependence of the cross section on the parameter k is shown in figures 5.16 and
5.17. These plots show that the enhancement of the cross section is most pronounced
in the region k & 2.

Finally the dependence on the parameter x is shown in figures 5.18 and 5.19. These
show that the cross section can be substantially enhanced as x approaches 1. This
behaviour is also seen in [35] where it is noted that it is due to a term in the Higgs
trilinear coupling which is proportional to 1/(1 − x). They also note that in the limit
x→ 1 the Higgs potential behaves badly. For x & 0.95 the Higgs potential parameters
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Figure 5.13: Higgs mass dependence of LHC cross section for the process PP → HH in
the Littlest Higgs model vs the SM. For x = 0.85, k = 2.5 and f = 2 TeV, MT = 4.10
TeV and MΦ runs from 2.61 to 5.44 TeV as MH runs from 120 to 250 GeV. Changing
f to 3 TeV leads to MT = 6.15 TeV and MΦ running from 3.92 to 8.17 TeV.
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Figure 5.14: Dependence of the LHC cross section on the parameter f for the process
PP → HH in the Littlest Higgs model. For x = 0.85, MH = 120 GeV and k=1.5,
MT runs from 1.51 to 5.36 TeV and MΦ runs from 1.30 to 4.58 TeV as MH runs from
120 to 250 GeV. When k is changed to 2.5, MT runs from 2.04 to 7.18 TeV whilst the
range for MΦ is unchanged.
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Figure 5.15: Dependence of LHC cross section on f for the process PP → HH in the
Littlest Higgs model vs the SM. For x = 0.85, MH = 120 GeV and k=1.5, MT runs
from 1.51 to 5.36 TeV and MΦ runs from 1.30 to 4.58 TeV as MH runs from 120 to
250 GeV. When k is changed to 2.5, MT runs from 2.04 to 7.18 TeV whilst the range
for MΦ is unchanged.
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Figure 5.16: Dependence of the LHC cross section on the parameter k = λ2/λ1 for the
process PP → HH in the Littlest Higgs model with MH = 120 GeV and x = 0.85.
For f = 2 TeV, MΦ = 2.612 TeV and MT runs from 5.14 to 5.35 TeV when k runs over
the range 0.3 to 3.5, whilst for f = 3 TeV, MΦ = 3.92 TeV and MT runs from 7.71 to
8.03 TeV.
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Figure 5.17: Dependence of LHC cross section on k = λ2/λ1 for the process PP → HH
in the Littlest Higgs model vs the SM with MH = 120 GeV and x = 0.85. For f = 2
TeV, MΦ = 2.61 TeV and MT runs from 5.14 to 5.35 TeV when k runs over the range
0.3 to 3.5, whilst for f = 3 TeV, MΦ = 3.92 TeV and MT runs from 7.71 to 8.03 TeV.
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Figure 5.18: Dependence of the LHC cross section on the parameter ’x’ for the process
PP → HH in the LH model with MH = 120 GeV and k = 2.5. For f = 2 TeV, MT

is 4.10 TeV for x between 0 and 0.95, and MΦ runs between 1.37 and 4.41 TeV. For
f = 3 TeV MT is increased to 6.15 TeV and MΦ runs between 2.07 and 6.62 TeV.
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Figure 5.19: Dependence of LHC cross section on ’x’ for the process PP → HH in the
LH model vs the SM with MH = 120 GeV and k = 2.5. For f = 2 TeV, MT is 4.10
TeV for x between 0 and 0.95, and MΦ runs between 1.37 and 4.41 TeV. For f = 3
TeV MT is increased to 6.15 TeV and MΦ runs between 2.07 and 6.62 TeV.

|λφ2|, |λhφh|, |λh4| and |λhφφh| are all beyond order 1 so such high values of x should
not be considered physical.

5.7 The Schmaltz Model Case

The Feynman diagrams contributing to the process gg → HH in the Schmaltz model
have the same structure as those in the Littlest Higgs model. There is a heavy T
quark in the Schmaltz model as in the Littlest Higgs case and the same couplings
appear. The only difference being that there is no particle which plays the role of
the Φ particle in diagrams like figure 5.11. There is a neutral scalar, the η particle,
which might be expected to contribute to this process, but it has no tri-linear coupling
to two Higgs particles. There are also two more heavy quarks (up-type in model I,
down-type in model II), but their coupling to the Higgs is highly suppressed making
their contribution negligible.

The relevant couplings of the Higgs to t and T quarks are summarised in table 3.2. The
only other coupling which is needed to perform this calculation is the Higgs tri-linear
coupling. Since the Higgs potential is the same as in the SM a Higgs-trilinear coupling
contributes −3iM2

H/v to a Feynman diagram, as in the SM.

There are no complications in the Schmaltz model case beyond those encountered in
the Littlest Higgs model. There are 6 parameters which appear in the Feynman rules.
These are,

{λ1, λ2, f1, f2, v,MH} (5.38)
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These parameters are not all independent. They are constrained by equation 3.48
since the top mass is known from experiment. The following parameters may be used
instead,

{mt, k, f, β, v,MH} (5.39)

where mt is as defined in equation 3.48 and

k =
λ2

λ1

f 2 = f 2
1 + f 2

2

β = tan−1 f2

f1

(5.40)

In the following figures all cross sections are LHC cross sections and the factorization
and renormalization scales were set at 2MH .

In figure 5.20 the Higgs mass dependence of the total LHC cross section is plotted for
values of MH between 110 GeV and 250 GeV. The values tan β = 3 and k = 1 and 2
values of f were used, f = 2, 3 TeV. The results show that the cross section falls off
as MH increases, as one would expect, and is slightly enhanced relative to the SM. In
figure 5.21 the ratio of the Schmaltz model cross section to the SM are plotted for the
same parameter choices. This shows that the enhancement is larger for lower Higgs
masses but falls off to the SM value for larger Higgs masses.
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Figure 5.20: Higgs mass dependence of LHC cross section for the process PP → HH in
the Schmaltz Model with tan β = 3, k = 1. For f = 2, 3, 4 TeV, MT = 1.99, 2.00, 3.00
TeV.

The dependence of the cross section on the parameter f is shown in figure 5.22 for
MH = 120 GeV and k = 1, with various values of tanβ. This plot shows that the
result tends towards the SM value for large f , as expected since the SM Feynman rules
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Figure 5.21: Higgs mass dependence of LHC cross section for the process PP → HH
in the Schmaltz model vs the SM with tan β = 3, k = 1. For f = 2, 3, 4 TeV,
MT = 1.99, 2.00, 3.00 TeV.

are recovered in the limit f → ∞. Figure 5.23 shows the ratio to the SM result, this
shows that the enhancement is typically less than 15% for values of f greater than
about 3 TeV.
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Figure 5.22: Dependence of the LHC cross section on the parameter f for the process
PP → HH in the Schmaltz model with MH = 120 GeV and k = 1. Over this range
of f , MT runs over approximately 1 to 5.5 TeV.

Figure 5.24 shows the variation of the cross section with the parameter tan β in the
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Figure 5.23: Dependence of LHC cross section on f for the process PP → HH in the
Schmaltz model vs the SM with MH = 120 GeV and k = 1. Over this range of f , MT

runs over approximately 1 to 5.5 TeV.

range 1/5 to 5 with the other parameters taking the values k = 1 and MH = 120
GeV. The cross section varies substantially as a function of tanβ. There is a large
enhancement when tan β is significantly different from 1, particularly for tanβ . 0.5.
Figure 5.25 shows the enhancement relative to the SM. This shows that even for f as
large as 3 TeV the enhancement relative to the SM can be larger than 25% when tan β
is significantly less than 1.

The dependence on k is shown in figure 5.26 showing that the cross section increases
as k increases. Here MH = 120 GeV and tan β = 3. The enhancement over the SM
cross section is shown in figure 5.27 which shows that decreasing k can also lead to
significant enhancement relative to the SM.

5.8 Prospects For Observation

Higgs pair production is difficult to measure at the LHC. A light Higgs decays predom-
inantly to bb̄ pairs and Higgs pairs decaying to 2 bb̄ pairs are overwhelmed by QCD
backgrounds, which are more than two orders of magnitude larger than the signal [93].

The case where one Higgs decays to a bb̄ pair and the other to a τ τ̄ pair was also
examined in [94]. It was found that although the signal to background ratio is better
than in bb̄bb̄, multiple additional small branching ratios in the observable part of the
decay mode make this signal useless too. Even for a luminosity upgraded LHC (SLHC)
achieving a 3000 fb−1, the measurement of the cross section is too weak to be useful
[94].

Higgs pair production can, however, be identified by utilizing rare decays. The case
where the Higgs decays to bb̄γγ and one of the bs is tagged is the most promising [94].
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Figure 5.24: Dependence of the LHC cross section on the parameter tan β for the
process PP → HH in the Schmaltz model with MH = 120 GeV and k = 1. The mass
of the heavy T quark is ≈ f over this range.
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Figure 5.25: Dependence of LHC cross section on tanβ for the process PP → HH in
the Schmaltz model vs the SM with MH = 120 GeV and k = 1. The mass of the heavy
T quark is ≈ f over this range.
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changes to 1.94 to 5.56 TeV and for f = 4 TeV it becomes 2.59 to 7.41 TeV.
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Figure 5.27: Dependence of LHC cross section on ’k’ for the process PP → HH in the
Schmaltz model vs the SM with tanβ = 0.3 and MH = 120 GeV. For this range of k
and f = 2 TeV MT runs between 1.28 and 3.71 TeV. For f = 3 TeV this range changes
to 1.94 to 5.56 TeV and for f = 4 TeV it becomes 2.59 to 7.41 TeV.
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The background for this process is from QCD as well as single Higgs production followed
by H → bb̄ or H → γγ as well as from fake signals such as c quarks misidentified as b
quarks or a light jet misidentified as a photon.

Even in this case, with a reasonable set of cuts the SM predicts only about 6 signal and
14 background events with 600 fb−1 of data [93], [95]. Given the factorisation scale
uncertainties in our calculation and the typical size of little Higgs model corrections this
means the enhancement due to little Higgs model effects is too small to be observable at
the LHC. At the SLHC it is necessary to tag both b quarks to reduce the background
from multiple interactions. In this case it is possible to improve to 21 signal with
25 background events. This is however still too small to allow the measurement of
deviations from the SM due to Little Higgs corrections.

Although the cross section for Higgs pair production is smaller at larger Higgs masses
the signal is much cleaner. For a larger Higgs mass the Higgs predominantly decays
to weak boson pairs. States involving six or more jets are overwhelmed by QCD
background. The most useful case is HH → W+W−W+W− → l±νjjl′±νjj where j
is a jet and the two l± are charged leptons with the same sign. This eliminates the
background from Drell-Yan (qq̄ → γ∗ → l+l− where γ∗ is an off-shell photon) and tt̄
[96].

In this case, for 600 fb−1 of data, the SM expectation is for about 110 events with
signal to background ratio of about 1:5 [95]. In this case even an enhancement of 50%
over the SM cross section leads only to a 2σ deviation. This, in addition to the large
factorization scale uncertainty, means that the little Higgs enhancement of the cross
section is not observable at the LHC.

For the SLHC with 6000 fb−1 and after all cuts there are 350 signal events to 4180
background events for a Higgs of mass 170 GeV, whilst for a Higgs of mass 200 GeV this
changes to 220 signal events vs 3280 background [97]. This is still too small to observe
deviations from the SM cross section but will help provide a very useful measurement
of the Higgs tri-linear coupling.



Chapter 6

The 2HDM and the Multiple Point

Principle

6.1 The Scalar Potential

In this work the approximation of the renormalisation group improved effective po-
tential [98] is used. This has the form of the tree level potential but with running
coefficients where the renormalisation point is taken to be the field strength. In this
case the scalar potential of the 2HDM, equation (1.19) may be written

Veff(H1, H2) = m2
1(Φ)H†

1H1 +m2
2(Φ)H†

2H2 − [m2
3(Φ)H†

1H2 + h.c.] + (6.1)
1

2
λ1(Φ)(H†

1H1)
2 +

1

2
λ2(Φ)(H†

2H2)
2 + λ3(Φ)(H†

1H1)(H
†
2H2)

+λ4(Φ)|H†
1H2|2 + [

1

2
λ5(Φ)(H†

1H2)
2 + λ6(Φ)(H†

1H1)(H
†
1H2)

+λ7(Φ)(H†
2H2)(H

†
2H1) + h.c.].

The parameters are assumed only to depend on the sum of the squared norms of the
Higgs doublets,

Φ2 = Φ2
1 + Φ2

2 (6.2)

where

Φ2
n = H†

nHn =
1

2
[(H0

n)2 + (A0
n)2] + |χ+

n |2. (6.3)

Minimising this potential leads the Higgs doublets to develop vevs. In order for these
vevs to break the electroweak SUW (2) ⊗ UY (1) down to the electroweak Uem(1) it is
necessary that only the neutral components of the Higgs doublets aquire a vev. Define
these vevs to be

〈Hn〉 =
vn√
2
. (6.4)

The overall squared sum of these vevs, v2 = v2
1 + v2

2, where v = 246 GeV, is known
through the masses of the weak gauge bosons. The ratio of the vevs remains arbitrary
and is parameterised through the definition tanβ = |v2|/|v1|.
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In accordance with the MPP, assume that this potential has another minimum degen-
erate with our current vacuum with the scalar fields aquiring vevs much larger than
the electroweak scale. Due to gauge invariance, these vevs may be written without loss
of generality in the form

〈H1〉 = Φ1

(

0
1

)

, 〈H2〉 = Φ2

(

sin θ
cos θ eiω

)

. (6.5)

Define Λ, called the MPP scale, through the relation Λ2 = Φ2
1 +Φ2

2. It is assumed that
Λ ≫ v so it is a good approximation to take V (H1, H2) = 0 at the MPP scale because
all the couplings in the potential must be very close to zero to suppress terms of order
Λ2 or Λ4. Also, if Φ1 and Φ2 are of order Λ, it follows that the terms quartic in the
Higgs fields are much larger than the terms quadratic in the Higgs fields so the mass
terms may be neglected.

The MPP requires a large set of degenerate vacua so search for the conditions required
for degeneracy with respect to the parameter ω.

Substituting the vacuum configuration (6.5) into the potential (6.1) shows that the
part of the potential which depends on the parameter ω is

Vω =
1

2
λ5(Φ)Φ2

1Φ
2
2 cos2 θ e2iω + [λ6(Φ)Φ3

1Φ2 + λ7(Φ)Φ1Φ
3
2] cos θ eiω + h.c.. (6.6)

Note that in order for there to be degeneracy with respect to ω it is necessary that
cos θ and both Φ1 and Φ2 are non-zero. For the potential to be independent of ω at
the scale Λ implies that λ5(Λ) = 0 and λ6(Λ)Φ2

1 + λ7(Λ)Φ2
2 = 0.

Information can also be extracted from the requirement that the vacuum configuration
6.5 minimizes the potential at the scale Λ. Derivatives of the potential with respect to
Φ1 and Φ2 should be zero at the minimum and for this to be the case for all ω it is
required that these derivatives are independent of ω. This leads to the requirement

∂Vω

∂Φ1

= [λ5(Λ)Φ1Φ
2
2 + βλ5

(Φ)
Φ3

1Φ
2
2

2Φ2
] cos2 θ e2iω + (6.7)

[3λ6(Φ)Φ2
1Φ2 + βλ6

(Φ)
Φ4

1Φ2

Φ2
+ λ7(Φ)Φ3

2 + βλ7
(Φ)

Φ2
1Φ

3
2

Φ2
] cos θ eiω + h.c.|Φ=Λ

= 0

and

∂Vω

∂Φ2

= [λ5(Λ)Φ2
1Φ2 + βλ5

(Φ)
Φ2

1Φ
3
2

2Φ2
] cos2 θ e2iω + (6.8)

[λ6(Φ)Φ3
1 + βλ6
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2
2
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+ 3λ7(Φ)Φ1Φ

2
2 + βλ7

(Φ)
Φ1Φ

4
2

Φ2
] cos θ eiω + h.c.|Φ=Λ

= 0.

Here the renormalisation group beta functions are defined by βλi
(Φ) =

d λi(Φ)

d ln Φ
. For

both the derivatives to vanish it is required that the coefficients of eiω and e2iω are zero
for both equations.
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The vanishing of the coefficients of e2iω combined with the previously derived condition
λ5(Λ) = 0 require that βλ5

|Φ=Λ = 0. The vanishing of the coefficients of eiω along with
the previously derived condition for λ6(Λ) and λ7(Λ) give three linear equations relating
the four unknowns λ6(Λ), λ7(Λ), βλ6

|Φ=Λ and βλ7
|Φ=Λ.

Solving this system of linear equations gives the MPP conditions λ6(Λ) = λ7(Λ) = 0
and (βλ6

Φ2
1 + βλ7

Φ2
2)|Φ=Λ = 0. Of course, the partial derivatives of the potential with

respect to the parameters θ and ω must also be independent of ω, but it is easy to see
that this yields no new information about the parameters.

To summarise the progress so far, for the potential to exhibit degeneracy with respect
to ω at the MPP scale minimum the restrictions on the Higgs self couplings are

λ5(Λ) = λ6(Λ) = λ7(Λ) = 0 (6.9)

βλ5
|Φ=Λ = (βλ6

Φ2
1 + βλ7

Φ2
2)|Λ = 0. (6.10)

This means that near the MPP scale the potential (6.1) takes the form

Veff(H1, H2) ≈ 1

2
(
√

λ1(Φ)Φ2
1 −

√

λ2(Φ)Φ2
2)

2 + (6.11)

(
√

λ1(Φ)λ2(Φ) + λ3(Φ) + λ4(Φ) cos2 θ)Φ2
1Φ

2
2.

For λ4(Λ) > 0 this potential is minimized for cos θ = 0. Since degeneracy with respect
to ω can only be realised if cos θ 6= 0 this leads to the requirement that λ4 < 0. In this
case the potential is minimized for cos θ = ±1. Then near the MPP scale minimum
the potential has the form

Veff(H1, H2) ≈
1

2
(
√

λ1(Φ)Φ2
1 −

√

λ2(Φ)Φ2
2)

2 + λ̃(Φ)Φ2
1Φ

2
2. (6.12)

where λ̃(Φ) =
√

λ1(Φ)λ2(Φ) + λ3(Φ) + λ4(Φ).

For the vacuum to be a stable minimum clearly λ̃ cannot be negative. However, if
λ̃ > 0 the potential has a greater than zero energy density and cannot be degenerate
with our current vacuum. The only option then is that

λ̃ = 0. (6.13)

Furthermore, the minimum of the potential is reached for values of Φ1 and Φ2 such
that the condition

√

λ1(Λ)Φ2
1 −

√

λ2(Λ)Φ2
2 = 0 (6.14)

is fulfilled. This requirement, along with the requirement that Φ2
1+Φ2

2 = Λ2, determine
that

Φ1 = Λ cos γ, Φ2 = Λ sin γ, tan γ = (
λ1

λ2

)1/4. (6.15)
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Since this represents a minimum of the potential the partial derivatives with respect
to Φ1 and Φ2 must vanish. When combined with the condition λ̃ = 0 and equation
(6.14) this leads to the requirement

βλ̃|Φ=Λ = [
1

2
βλ1

√

λ2(Φ)

λ1(Φ)
+

1

2
βλ2

√

λ1(Φ)

λ2(Φ)
+ βλ3

+ βλ4
]|Φ=Λ = 0. (6.16)

The potential is also minimized with respect to θ and ω but no information is gained
from this because partial derivatives with respect to θ vanish when cos θ = ±1 and the
potential is degenerate with respect to ω by construction.

To summarise the results of this section, the MPP conditions derived are

λ̃(Λ) = λ5(Λ) = λ6(Λ) = λ7(Λ) = 0 (6.17)

and

βλ̃|Λ = βλ5
|Λ = (βλ6

Φ2
1 + βλ7

Φ2
2)|Λ = 0. (6.18)

Also, the condition cos θ = ±1 means that the vacuum expectation values of the Higgs
fields at the MPP scale vacuum are given by

〈H1〉 =

(

0
Φ1

)

, 〈H2〉 =

(

0
Φ2e

iω

)

(6.19)

where Φ1 and Φ2 fulfill equation (6.15).

6.2 Yukawa Couplings

In the most general 2HDM all quarks and leptons can couple to both Higgs doublets.
The largest couplings appear in the third generation for the t and b quarks and the
τ lepton. Defining Q and L as the left handed third generation quark and lepton
doublets, the third generation Yukawa couplings may be written in the form

LYuk = ht(H2εQ)t̄R + gb(H
†
2Q)b̄τ (H

†
2L)τ̄R + gt(H1εQ)t̄R (6.20)

hb(H
†
1Q)b̄R + hτ (H

†
1L)τ̄R + h.c..

These couplings appear in the renormalisation group equations (RGEs) for the Higgs
self couplings, presented in Appendix A. Using the explicit forms of the beta functions
along with the MPP conditions (6.17), (6.18), (6.19) leads to two conditions that the
Yukawa couplings must satisfy at the MPP scale. Note that the Higgs fields can always
be defined so that gt(Λ) = 0. The first condition comes from the vanishing of βλ5

,

3h2
b(Λ)g∗b

2(Λ) + h2
τ (Λ)g∗τ

2(Λ) = 0. (6.21)

The second condition comes from the condition relating βλ6
|Λ and βλ7

|Λ,

3h2
b(Λ)g∗b

2(Λ)[
√

λ2(Λ)|hb(Λ)|2 +
√

λ1(Λ)|gb(Λ)2]

+h2
τ (Λ)g∗τ

2(Λ)[
√

λ2(Λ)|hτ (Λ)|2 +
√

λ1(Λ)|gτ(Λ)2] = 0. (6.22)
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In order that both of these conditions are satisfied simultaneously, it is required that
the b quark and the τ lepton each couple to only one of the Higgs fields. There are
four possibilities which are labelled Models (I)-(IV).

Model I hb(Λ) = hτ (Λ) = 0
Model II gb(Λ) = gτ (Λ) = 0
Model III hb(Λ) = gτ (Λ) = 0
Model IV gb(Λ) = hτ (Λ) = 0.

These are exactly the conditions required for the absence of FCNCs at tree level. Each
fermion field couples to only one of the Higgs doublets and the third generation Yukawa
couplings possess a U(1) symmetry (Peccei-Quinn symmetry). Precisely which U(1)
symmetry depends on which of the four models is correct but whichever one it is the
symmetry excludes FCNCs at tree level.

The MPP conditions also require that λ5(Λ) = λ6(Λ) = λ7(Λ) = 0. If in addition the
mass term which mixes the two Higgs doublets, m2

3, is zero then the full Lagrangian
is invariant under a U(1) global symmetry. This global symmetry is spontaneously
broken when the Higgs fields aquire vevs leading to a massless axion [99],[100]. In this
case the QCD θ term [101] [102] [103] is eliminated from the theory.

The MPP conditions do not, however, require that m2
3 = 0 so there is no reason to

expect this to be the case. For m2
3 6= 0 the U(1) symmetry is explicitly (softly) broken

in which case the QCD θ term cannot be eliminated by an axion.

This does not destroy the suppression of FCNCs. The renormalisation group equations
for the Yukawa couplings and the Higgs self couplings are given in Appendix A. Given
the derived MPP conditions, these show that if the U(1) symmetry violating couplings
are zero (or small) at the scale Λ, they will remain zero (or small) at any scale below
Λ. (For example, λ5, λ6 and λ7 remain zero (or small) below the scale Λ.)

The most stringent constraints on FCNCs come from processes involving fermions of
the first and second generations. So far, the symmetries which protect the theory from
FCNCs have only been derived for the third generation fermions.

The method used to show how the U(1) symmetry violating couplings are suppressed
for the third generation fermions cannot be generalized to all fermions. If other fermion
Yukawa couplings are not neglected they appear in the RGEs for the couplings λ5, λ6

and λ7. Then the two constraint equations, (6.21) and (6.22), now contain extra terms
involving the other fermions’ Yukawa couplings. These equations cannot be used to
derive strong constraints on the Yukawa couplings.

To see how to achieve constraints on all fermion Yukawa couplings we must consider
the effective potential. The one loop contribution to the effective potential may be
written

V1 =
1

64π2
Str|M |4[ln |M |2

µ2
− C]. (6.23)

Here “Str” is the “super-trace” operator which counts the number of bosonic (fermionic)
degrees of freedom with a +(−) sign. Also, C is a diagonal matrix which depends on
the renormalisation scheme and µ is the renormalisation scale.
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The MPP scale minimum of the effective potential must be degenerate with respect
to ω. This means all order partial derivatives of the effective potential with respect to
ω must be zero. This can only be the case for the one loop contribution (6.23) if the
mass matrix M is independent of ω.

The most general Yukawa Lagrangian not including neutrino masses of the 2HDM may
be written.

LYuk = ŪRiYU ij(H2εQLj) + D̄RiXDij(H
†
2QLj) + ĒRiXLij(H

†
2LLj)

ŪRiXU ij(H1εQLj) + D̄RiYDij(H
†
1QLj) + ĒRiYLij(H

†
1LLj) (6.24)

Here ŪRi, D̄Ri and ĒRi are the ith generation right handed up type quark, down type
quark and charged lepton respectively. Also, QLj and LLj are the jth generation left
handed quark and lepton doublets and the various X and Y matrices contain the
Yukawa couplings.

Define the mass matrices of the fermions through the relation

Lmasses =
∑

f=U,D,L

(

f̄R f̄L

)

(

0 Mf

Mf 0

)(

fR

fL

)

(6.25)

Then substituting the MPP scale Higgs vevs (6.19) into the Lagrangian (6.24) yields
the fermion mass matrices

MU = YUΦ2e
iω +XUΦ1

MD = XDΦ2e
iω + YDΦ1 (6.26)

ML = XEΦ2e
iω + YLΦ1

The eigenvalues of the matrices MfM
†
f are the absolute values of the fermion masses

squared. For the up type quarks the matrix MUM
†
U is given by

MUM
†
U = YUY

†
UΦ2

1 + YUX
†
UΦ1Φ2e

iω +XUY
†
UΦ1Φ2e

−iω + YUY
†
UΦ2

1 (6.27)

The eigenvalues of this matrix are independent of ω if

YUX
†
U = XUY

†
U = 0 (6.28)

Similar reasoning for the down type quarks and charged leptons lead to the conclusion
that the masses are independent of ω only if

YfX
†
f = XfY

†
f = 0 (6.29)

Through transformations on the right handed and left handed fermion fields it is always
possible to find a basis in which one of the Yukawa matrices for each species, Hf say,
is diagonal. Then applying (6.29) implies that the matrices can be written in the form

Yf =





yf1
0 0

0 yf2
0

0 0 yf3



 , Xf =





xf1
0 0

0 xf2
0

0 0 xf3



 (6.30)
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where yfi
.xfi

= 0 (note there is no summation here, the product vanishes for each value
of i). This result shows that either yfi

or xfi
= 0. In other words, each fermion couples

to only one Higgs doublet. This guarantees that FCNCs are forbidden at tree level as
required by the experimental data.

When the Yukawa couplings take this form the Yukawa sector of the 2HDM is invariant
under extra symmetry transformations. Writing those right handed fermions which
couple to H1 with a prime (f ′

R) and those which couple to H2 with two primes (f ′′
R)

these symmetries are

H1 → eiαH1

U ′
Ri → eiαU ′

Ri

D′
Ri → e−iαD′

Ri (6.31)

e′Ri → e−iαe′Ri

and

H2 → eiβH2

U ′′
Ri → eiβU ′′

Ri

D′′
Ri → e−iβD′′

Ri (6.32)

e′′Ri → e−iβe′′Ri

These symmetries forbid the appearence of tree level FCNCs. All the terms which
break these symmetries in a general 2HDM are forced to be zero by the MPP with the
exception of the Higgs mass term m2

3. However, m2
3 does not contribute to FCNCs so

this is not a problem. Furthermore, all the terms which appear in the RGEs respect
these symmetries so the renormalisation group running does not cause the troublesome
terms to appear at scales below the MPP scale making the theory safe from FCNC
effects.



Chapter 7

2HDM Phenomenology

7.1 Quasi-Fixed Point in 2HDM

It can be the case that for a large range of parameters at a high energy scale the
solutions of the RGEs (see Appendix A) are concentrated around some particular
value at low energy scales. If the interval between the MPP scale and the electroweak
scale is large there will be a large range of parameters at the MPP scale which tend
towards such quasi-fixed point (QFP) values at the electroweak scale.

In this chapter the QFPs of the MPP inspired 2HDM are investigated. Firstly, the
Yukawa couplings are examined and are found to lead to a prediction for tan β, the ratio
of the vevs of the Higgs doublets. Then the Higgs self couplings are examined followed
by the implications for Higgs phenomenology in terms of the scalar mass spectrum and
couplings to top quarks and gauge bosons.

7.2 Yukawa Couplings

7.2.1 QFP Solutions At Low-Moderate tanβ

Consider the case where only the top quark has a large Yukawa coupling. This is
guaranteed to be the case if the Yukawa couplings satisfy the conditions in Model I.
In this case the bottom quark and tau lepton get their masses from the same Higgs
doublet as the top and their Yukawa couplings must be strongly suppressed in order to
generate the required mass hierarchy. It will also be the case if tan β is small compared
with mt/mb, since in this case also the b and τ Yukawa couplings must be small in
order to generate the observed fermion mass hierarchy.

The RGE for the top Yukawa coupling ht is given in Appendix A. As noted before,
by appropriate redefinition of the Higgs fields the coupling gt may without loss of
generality be taken to be zero. Also, in the case currently considered the bottom and
tau Yukawa couplings may be neglected. This leaves the RGE

dht

dt
=

1

16π2
[ht

9

2
|ht|2 − ht(8g

2
3 +

9

4
g2
2 +

17

12
g2
1)]. (7.1)

Some transformations of the variables of this equation serve to simplify it somewhat.
Define Yt = (ht/4π)2 and αi = (gi/4π)2 (note: don’t confuse this with the common
definition αi = g2

i /4π. This normalization removes awkward factors of 4π from the



7.2: Yukawa Couplings 103

RGEs). Also, change the variable t = ln(µ) to t = ln(Λ2/µ2). The equation then takes
the form

dYt

dt
= −9

2
Y 2

t + Yt(
∑

i

ciαi) (7.2)

where
∑

i ciαi = 8α3 + 9

4
α2 + 17

12
α1. Then another change of variables, Yt = 1/X, serves

to turn the equation into a linear equation,

dX

dt
+ (
∑

i

ciαi)X =
9

2
. (7.3)

The definition of a (first order) linear differential equation is that it is of the form

dy

dx
+ p(x)y = q(x) (7.4)

and the general solution is

y =
C +

∫

u(x)q(x)dx

u(x)
(7.5)

where C is a constant and u(x) is an integrating factor defined as

u(x) = exp(

∫

p(x)dx). (7.6)

Define the integrating factor for the top RGE to be E(t). This is given by

E(t) = exp(

∫

∑

i

ciαi(µ)dt). (7.7)

To find the integrating factor, the form of the running gauge couplings must be known.
The RGEs for the gauge couplings are

dαi

dt
= −biα2

i (7.8)

where b1 = 7, b2 = −3 and b3 = −7. Defining the couplings in terms of αi(Λ), these
equations have solutions

αi(µ) =
αi(Λ)

1 + biαi(Λ)t
. (7.9)

Using the above expression for the functions αi(µ) to find the integrating factor gives

E(t) = Πi

[

αi(µ)

αi(Λ)

]−ci/bi

=

[

α3(µ)

α3(Λ)

]8/7 [

α2(µ)

α2(Λ)

]3/4 [

α1(µ)

α1(Λ)

]−17/84

. (7.10)

Using this expression the solution for the function X can be found

X(µ) =
9

2
F (t) + C

E(t)
. (7.11)



7.2: Yukawa Couplings 104

Here F (t) is defined as

F (t) =

∫ t

0

E(t′)dt′. (7.12)

Defining the solution in terms of Yt(Λ), the expression for Yt(µ) is then found to be

Yt(µ) =

2E(t)

9F (t)

1 +
2

9Yt(Λ)F (t)

. (7.13)

For Λ of order the Planck scale, the function F (t) is found (via numerical integration)
to be about 170 when t = t0 = ln(Λ2/M2

t ) where Mt is the pole mass of the top quark.
In this case the denominator of the above expression for Yt(µ) is approximately equal
to 1 + 1/5h2

t (Λ). This means that when ht(Λ) & 1 the solution for the RGE becomes
approximately independent of ht(Λ). The solutions are gathered in the region of the
quasi fixed point (QFP),

Y
qfp
t (Mt) =

2E(t0)

9F (t0)
. (7.14)
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Figure 7.1: Top Yukawa coupling ht(µ) vs ln(Λ2/µ2) for Λ at the Planck scale. The
renormalisation group running is plotted for various values of the top Yukawa coupling
at the Planck scale.

The renormalisation group running for ht(µ) is shown in figures 7.1 and 7.2 for the
MPP scale at the Planck scale (1.22× 1019 GeV) and at 1013 GeV respectively. These
plots show how the top Yukawa couplings are gathered near the QFP at the scale Mt

for ht(Λ) & 1.
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Figure 7.2: ht(µ) vs ln(Λ2/µ2) for Λ = 1013 GeV. The renormalisation group running
is plotted for various values of the top Yukawa coupling at the MPP scale.

The top running mass, mt(µ), is related to the Yukawa coupling,

mt(µ) =
ht(µ)√

2
v sin(β). (7.15)

The running mass can also be calculated from experimental data. The running mass
is related to the pole mass via the two loop relation in the MS scheme [104],[105],

mt(Mt) = Mt[1 − 1.333
αs(Mt)

π
− 9.125(

αs(Mt)

π
)2]. (7.16)

Here αs(µ) is the strong running coupling defined in the usual way, αs(µ) = g2
s(µ)/4π,

not to be confused with α3(µ) which is smaller by a factor of 4π.

The world average top mass is Mt = 171.4 ± 2.1 GeV [106]. This gives a running
mass mt(Mt) = 161.6± 2 GeV. Using this experimentally determined value of the top
running mass and the solution for the running top Yukawa coupling (7.13), the angle
β can be determined via equation (7.16) if ht(Λ) is known.

Perhaps more usefully, a lower bound on tanβ can be extracted. The QFP value for
the top Yukawa coupling given in equation (7.14) represents an upper bound. This
translates into a lower bound on β which is calculated via equation (7.15).

Table 7.1: Lower bounds on tanβ

MPP scale (GeV) tan(β)
1.22 × 1019 1.07

1013 0.91
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Table 7.1 shows the lower bounds on tan(β) for Λ at the Planck scale and for Λ = 1013

GeV. If Λ > 1013 GeV and ht(Λ) & 1, tan β will be close to 1.

7.2.2 QFP Solutions At Large tanβ

If tanβ is large it is no longer the case that only the top quark may have O(1) Yukawa
coupling. In this case the fermion mass hierarchy can be generated by the ratios of the
Higgs doublet vevs if the b and/or τ masses are generated by different Higgs doublets
from the t quark.

In model IV hb(Λ) and gτ (Λ) are non-zero. In this case the τ lepton gets its mass from
the same Higgs doublet as the t quark so it must be strongly suppressed and may safely
be neglected. The b quark, however, gets its mass from the other Higgs doublet and so
can be large.

The RGEs describing the evolution of ht(µ) and hb(µ) take very similar forms (Ap-
pendix A). In fact, if g1 (which doesn’t have a large effect on the running) is neglected
and if the Yukawa couplings are equal at the scale Λ then the equations are invariant
under interchanging ht(µ) and hb(µ). In this limit, and defining Yb(µ) = (hb(µ)/4π)2,
the solutions for the RGEs are

Yt(µ) = Yb(µ) =

E1(t)

5F1(t)

1 +
1

5Y0F1(t)

(7.17)

where Y0 = Yt(Λ) = Yb(Λ) and

E1(t) =

[

α3(µ)

α3(Λ)

]8/7 [

α2(µ)

α2(Λ)

]3/4

, F1(t) =

∫ t

0

E1(t
′)dt′. (7.18)

For large values of Y0 the solutions are gathered in the vicinity of the QFP,

Y
qfp
t (Mt) ≈ Y

qfp
b (Mt) ≈

E1(t0)

5F1F1(t0)
. (7.19)

The b quark running mass is related to its Yukawa coupling at the scale Mt via the
equation

mb(Mt) =
hb(Mt)√

2
v cos(β). (7.20)

For hb(Mt) ≈ ht(Mt) this means tan(β) ≈ mt(Mt)/mb(Mt) ≈ 55−60. Using this value
of tan(β) leads to a running top mass in excess of 200 GeV which is unacceptably large.
This rules out the QFP solution in model IV.

In model III gb(Λ) and hτ (Λ) are non-zero. The coupling hτ (Λ) can be large but gb(Λ)
must be highly suppressed (in order to generate the required mass hierarchy between
the b and t quarks). Neglecting gb(Λ) the RGEs (Appendix A) for ht(µ) and hτ (µ)
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are independent. The solution for the top Yukawa is given by equation (7.13) and the
solution for the τ Yukawa in terms of Yτ(µ) = (hτ (µ)/4π)2 is found to be

Yτ (µ) =

2E2(t)

5F2(t)

1 +
2

5Yτ(Λ)F2(t)

(7.21)

where

E2(t) =

[

α2(µ)

α2(Λ)

]3/4 [

α1(µ)

α1(Λ)

]−15/28

, F2(t) =

∫ t

0

E2(t
′)dt′. (7.22)

The QFP value for the τ mass is obtained in the limit where Yτ (Λ) becomes large,

Y qfp
τ =

2E2(t0)

5F2(t0)
(7.23)

The running mass of the τ lepton is given by

mτ (Mt) =
hτ (Mt)√

2
v cos(β). (7.24)

Using the fixed point solution for hτ (Mt) leads to tan β ≈ 100. Such a large tanβ leads
to a running top mass in excess of 200 GeV which is unacceptably large. This means
the QFP solution is also ruled out in model III.

The most tricky case is for model II where ht(Λ), hb(Λ) and hτ (Λ) may all be large. In
this case more advanced techniques are needed.

In the Yukawa coupling parameter space there is an object called the invariant line.
The invariant line is such that if the boundary values of the parameters are on the
line (i.e. at t = 0) then the parameters will remain on the line when evolved with the
RGEs (i.e. for all t). Solutions of the RGEs often are attracted to the invariant line.
In particular the QFPs are located on the invariant line [107],[108],[109].

The QFPs regime corresponds to the case when the Yukawa couplings at the MPP scale
are large. The gauge couplings are relatively small at the MPP scale so the invariant
line can be located in the ultraviolet (UV) limit by looking for fixed points in the limit
where the gauge couplings go to zero. In this region the equations take the form

dYt

dt
= −9

2
Y 2

t − 1

2
YtYb

dYb

dt
= −9

2
Y 2

b − 1

2
YtYb + YτYb (7.25)

dYτ

dt
= −5

2
Y 2

τ − 3YτYb

where t = ln(Λ2/µ2). Then, differentiating the ratio of Yb and Yt gives

d

dt
(
Yb

Yt

) =

dYb

dt
Yt − Yb

dYt

dt
Y 2

t

. (7.26)
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Substituting in the derivatives from equation (7.25) and simplifying then gives the
equation

4
Yb

Yt

+
Yτ

Yt

= 4. (7.27)

Similarly, differentiating the ratio of Yτ and Yt leads to the equation

5
Yτ

Yt
+ 5

Yb

Yt
= 9. (7.28)

Soving these simultaneous equations leads to the conditions for the UV fixed point in
the gaugeless limit,

Yb =
11

15
Yt

Yτ =
16

15
Yt. (7.29)

Starting with large values of Yukawa couplings which fulfill the above conditions at the
MPP scale and numerically evolving the couplings produces the invariant line to which
all solutions converge. Evolving this line down to the scale of Mt locates the vicinity
of the QFPs at this scale [107],[108],[109]. Using the running τ mass to find tanβ in
this model allows the running t and b masses to be calculated.

The top running mass is again found to be in excess of 200 GeV which is too high
while the bottom running mass is found to be less than 2.5 GeV which is too low. This
shows that the QFP solution is not viable in model II either. Consistent realisation
of the QFP scenario is only possible in the case when only ht is large and in this case
tanβ can be found via comparison with the top running mass and is found to be of
order 1 for large values of the MPP scale.

7.3 Higgs Self Couplings

The technique of finding UV fixed points in the gaugeless limit and evolving them down
to the scale of Mt may also be used to find QFPs for the Higgs self couplings. It will
be useful to define Ri(µ) by

Ri(µ) =
λi(µ)

h2
t (µ)

. (7.30)

Recall that in our model only the top quark has a non-negligible Yukawa coupling and
the Higgs self couplings which are non-zero at the MPP scale are λ1, λ2, λ3 and λ4.

The RGEs for the λi are given in appendix A. In order to rewrite these equation in
terms of the ratios Ri, we differentiate Ri with respect to t = ln(Λ2/µ2),

dRi

dt
=

1

h2
t

(
dλi

dt
− 2Riht

dht

dt
). (7.31)

In the gaugeless limit the RGE for ht is

dht

dt
= − 1

16π2

9

4
h3

t . (7.32)
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Substituting this into equation (7.31) gives

dλi

dt
= h2

t

dRi

dt
− 1

16π2

9

2
Rih

4
t . (7.33)

Using this equaiton to rewrite the RGEs in terms of the ratios Ri gives

− 2
16π2

h2
t

dR1

dt
= 12R2

1 + 4R2
3 + 4R3R4 + 2R2

4 − 9R1

−2
16π2

h2
t

dR2

dt
= 12R2

2 + 4R2
3 + 4R3R4 + 2R2

4 + 3R2 − 12

−2
16π2

h2
t

dR3

dt
= 2(R1 +R2)(3R3 +R4) + 4R2

3 + 2R2
4 − 3R3 (7.34)

−2
16π2

h2
t

dR4

dt
= 2R4(4R1 +R2 + 4R3 + 2R4) − 3R4.

In order to locate UV fixed points in the gaugeless limit we look for values of the
functions Ri such that

dRi

dt
= 0. (7.35)

This leads to four algebraic equations involving R1, .., R4. These equations have six
solutions with all the Ri real,

Table 7.2: Values of Ri satisfying equation (7.35)

Solution R1 R2 R3 R4

i 0.75 -1.133 0 0
ii 0 -1.133 0 0
iii 0 0.883 0 0
iv 0.742 0.880 -0.166 0.259
v 0.75 0.883 0 0
vi 0.742 0.880 0.099 -0.259

Solutions which are compatible with the MPP must fulfill the MPP conditions for
vacuum stability,

λ1(Φ) > 0, λ2(Φ) > 0 λ̃(Φ) ≥ 0 (7.36)

which must be fulfilled for all Φ between the electroweak scale and the MPP scale.
This immediately implies that solutions (i), (ii) and (iii) are not valid.

Furthermore, the fixed point should be a stable fixed point, which means that small
deviations should tend to die off. To examine the behaviour of small deviations write

Ri(t) ≈ R0
i + ri(t) (7.37)
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where the R0
i solve equation (7.35) and ri(t) is small. To linearise the RGEs, we perform

a Taylor series expansion around Ri = R0
i . The linearized system of equations is

dri

dt
=

4
∑

j=1

∂βRi

∂Rj

∣

∣

∣

∣

∣

Rj=R0
j

rj,
∂βRi

∂Rj

∣

∣

∣

∣

Rj=R0
j

= −2
h2

t

16π2
aij (7.38)

where the matrix aij is given by

aij =









24R0
1 − 9 0 8R0

3 + 4R0
4 4(R0

3 +R0
4)

0 24R0
2 + 3 8R0

3 + 4R0
4 4(R0

3 +R0
4)

6R0
3 + 2R0

4 6R0
3 + 2R0

4 6R0
1 + 6R0

2 + 8R0
3 − 3 2R0

1 + 2R0
2 + 4R0

4

2R0
4 2R0

4 8R0
4 2R0

1 + 2R0
2 + 8R0

3 + 8R0
4 − 4









.

The fixed point is stable when the eigenvalues of this matrix are positive. This rules
out solutions (iv) and (vi) so only solution (v) is valid. Solution (v) may be written as

R1 =
3

4

R2 =

√
65 − 1

8
(7.39)

R3 = 0

R4 = 0.

The position of the QFP at the electroweak scale is found by numerically evolving the
couplings via the RGEs using the above equations as boundary conditions and a large
top Yukawa coupling. This gives

λ
qfp
1 = 0.465

λ
qfp
2 = 0.946

λ
qfp
3 = −0.015 (7.40)

λ
qfp
4 = −0.018

λ̃qfp = 0.631.

The MPP conditions (6.17) and (6.18) require

λ̃(Λ) = βλ̃ |
Λ

= 0. (7.41)

These lead to conditions that the Higgs self couplings must satisfy at the MPP scale,

λ2
4(Λ) =

6h4
t (Λ)λ1(Λ)

(
√

λ1(Λ) +
√

λ2(Λ))2
− 2λ1(Λ)λ2(Λ) − 3

8
(3g4

2(Λ) + 2g2
2(Λ)g2

1(Λ) + g4
1(Λ))

λ3(Λ) = −
√

λ1(Λ)λ2(Λ) − λ4(Λ). (7.42)

Here λ4(Λ) < 0. These conditions show that if values are chosen for λ1(Λ), λ2(Λ) and
ht(Λ), these will set the values for λ3(Λ) and λ4(Λ).
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There are restrictions on the allowed range of λ1(Λ) and λ2(Λ). The quantity λ2
4(Λ)

must remain greater than zero. For example, when λ1(Λ) = λ2(Λ) = λ0 this leads to
the restriction

λ0 <

√

3h4
t (Λ)

4
− 3

8
(3g4

2(Λ) + 2g2
2(Λ)g2

1(Λ) + g4
1(Λ)). (7.43)

The other restriction on the allowed range comes from the vacuum stability condition.
The function λ̃(µ) must remain positive for all µ between the electroweak scale and
the MPP scale, otherwise there is another minimum of the potential with much lower
energy than our current vacuum.

These conditions constrain the values of λ1(Λ) and λ2(Λ) to be close to the UV fixed
point values. For example, let us set λ1(Λ) = λ2(Λ) = λ0. Then, taking ht(Λ) = 1.5
and setting the MPP scale to be the Planck scale, numerical studies show that R0 must
lie between 0.79 and 0.86. The lower limit comes from the vacuum stability condition
and the upper limit from the condition λ2

4(Λ) > 0.

Increasing ht(Λ) narrows the range of allowed values for R0. Taking ht(Λ) = 2.5, R0

is constrained to lie in the range 0.83 to 0.87. On the other hand, the bounds are less
tight if the MPP scale is lowered.

The running of the Higgs self couplings is examined in figures 7.3-7.7 below. Here
the solid thick line is the QFP solution and the other lines are solutions satisfying the
MPP boundary conditions. Since there is a close relation between ht(Λ) and λ0(Λ)
these are varied simultaneously with each curve representing a solution for a different
pair (ht(Λ), λ0(Λ)). The solid thin line is for (2.65,6), the dot-dash line is for (2.3,4.5),
the dashed line is for (1.9,3) and the dotted line is for (1.35,1.5).

These plots show that the convergence to the fixed point is strong for λ1, λ2 and λ3

but is weaker for λ4 and λ̃ (because it depends on λ4). Also, note that λ4 < 0 which is
necessary if the minimum of the potential is to preserve electric charge.

7.4 Higgs Masses

The Higgs doublets aquire vevs which trigger EWSB with 〈H1〉 = v sin β and 〈H2〉 =
v cosβ. The Higgs doublets may be written in terms of the field basis (h,H), defined
through the relation

(

h
H

)

=

(

cosβ sin β
− sin β cosβ

)(

H1

H2

)

. (7.44)

In this basis 〈h〉 = v and 〈H〉 = 0 so all the symmetry breaking comes from the doublet
h. Also, all components of h other than the neutral CP-even component are eaten by
the W and Z bosons via the Higgs mechanism, whereas H contains the charged χ±,
the neutral CP-odd A and another neutral CP-even scalar.

The pseudoscalar (CP-odd) state aquires a tree level mass

m2
A =

2m2
3

sin 2β
(7.45)
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Figure 7.3: λ1(µ) vs ln(µ2/Λ2) for Λ at the Planck scale. The solid thick line is the QFP
solution (the invariant line). The other lines are for various values of (ht(Λ), λ0(Λ))
where λ0(Λ) = λ1(Λ) = λ2(Λ) and then λ3(Λ) and λ4(Λ) are chosen so as to satisfy
the MPP boundary conditions. The solid thin line is for (ht(Λ), λ0(Λ)) = (2.65, 6), the
dot-dash line is for (2.3,4.5), the dashed line is for (1.9,3) and the dotted line is for
(1.35,1.5).
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Figure 7.4: λ2(µ) vs ln(µ2/Λ2) for Λ at the Planck scale. The solid thick line is the QFP
solution (the invariant line). The other lines are for various values of (ht(Λ), λ0(Λ))
where λ0(Λ) = λ1(Λ) = λ2(Λ) and then λ3(Λ) and λ4(Λ) are chosen so as to satisfy
the MPP boundary conditions. The solid thin line is for (ht(Λ), λ0(Λ)) = (2.65, 6), the
dot-dash line is for (2.3,4.5), the dashed line is for (1.9,3) and the dotted line is for
(1.35,1.5).
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Figure 7.5: λ3(µ) vs ln(µ2/Λ2) for Λ at the Planck scale. The solid thick line is the QFP
solution (the invariant line). The other lines are for various values of (ht(Λ), λ0(Λ))
where λ0(Λ) = λ1(Λ) = λ2(Λ) and then λ3(Λ) and λ4(Λ) are chosen so as to satisfy
the MPP boundary conditions. The solid thin line is for (ht(Λ), λ0(Λ)) = (2.65, 6), the
dot-dash line is for (2.3,4.5), the dashed line is for (1.9,3) and the dotted line is for
(1.35,1.5).
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Figure 7.6: λ4(µ) vs ln(µ2/Λ2) for Λ at the Planck scale. The solid thick line is the QFP
solution (the invariant line). The other lines are for various values of (ht(Λ), λ0(Λ))
where λ0(Λ) = λ1(Λ) = λ2(Λ) and then λ3(Λ) and λ4(Λ) are chosen so as to satisfy
the MPP boundary conditions. The solid thin line is for (ht(Λ), λ0(Λ)) = (2.65, 6), the
dot-dash line is for (2.3,4.5), the dashed line is for (1.9,3) and the dotted line is for
(1.35,1.5).
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Figure 7.7: λ̃(µ) vs ln(µ2/Λ2) for Λ at the Planck scale. The solid thick line is the QFP
solution (the invariant line). The other lines are for various values of (ht(Λ), λ0(Λ))
where λ0(Λ) = λ1(Λ) = λ2(Λ) and then λ3(Λ) and λ4(Λ) are chosen so as to satisfy
the MPP boundary conditions. The solid thin line is for (ht(Λ), λ0(Λ)) = (2.65, 6), the
dot-dash line is for (2.3,4.5), the dashed line is for (1.9,3) and the dotted line is for
(1.35,1.5).

and the charged state gains a tree level mass

m2
χ± = m2

A − λ4

2
v2. (7.46)

The mass terms mix the 2 neutral CP-even scalars. The mass matrix has the form

M2 =

(

M2
11 M2

12

M2
21 M2

22

)

(7.47)

where, at tree level,

M2
11 = (λ1 cos4 β + λ2 sin4 β +

λ

2
sin2 2β)v2

M2
12 = M2

21 =
v2

2
(−λ1 cos2 β + λ2 sin2 β + λ cos 2β) sin 2β (7.48)

M2
22 = m2

A +
v2

4
(λ1 + λ2 − 2λ) sin2 2β

and λ = λ3 + λ4. Note, dependence on m2
1 and m2

2 has been eliminated using the
equations for the extrema of the potential.

Define the lighter of these CP-even scalars to be h1 and the heavier to be h2. Then,
the masses are given by the eigenvalues of the mass matrix,

m2
h1,h2

=
1

2
(M2

11 +M2
22 ∓

√

(M2
22 −M2

11)
2 + 4M4

12). (7.49)
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The mass eigenstates h1 and h2 are related to the original fields H1 and H2 via the
transformation

(

h2

h1

)

=

(

cosα sinα
− sinα cosα

)(

H0
1 − v1

H0
2 − v2

)

(7.50)

where the mixing angle α is given by

tanα =
(λv2 −m2

A) sin β cos β

m2
A sin2 β + λ1v2 cos2 β −m2

h1

. (7.51)

Other than m2
3 (or equivalently m2

A) the parameters which determine the Higgs masses
can be obtained by evolving the RGEs with appropriate boundary conditions at the
MPP scale down to the electroweak scale. This allows the scalar masses to be predicted.

We choose R1(Λ) = 0.75, R2(Λ) = (
√

65 − 1)/8 (the values taken at the UV fixed
point) and take R3(Λ) and R4(Λ) to fulfill the MPP condtions (7.42). Taking the MPP
scale to be the Planck scale and h2

t (Λ) = 10, the scalar mass spectrum is plotted as
a function of mA in figure 7.8. The thick solid line is the light CP-even Higgs, the
thin solid line is the heavy CP-even scalar and the dotted line is the charged scalar.
Recall that these scalar masses are computed from the renormalisation group improved
effective potential, so they contain the leading logarithms of the one-loop potential.
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Figure 7.8: The scalar mass spectrum as a function of mA, the CP odd Higgs mass,
for h2

t (Λ) = 10. The thick solid line is the light CP even Higgs, the thin solid line is
the heavy CP even Higgs and the dashed line is the charged Higgs.

Figure 7.9 shows how the scalar mass spectrum changes for h2
t (Λ) = 2.25, with the

other parameters the same as for figure 7.8.

The mass of the lightest CP-even Higgs is relatively insensitive to the mass of the
pseudo-scalar mA. For h2

t (Λ) = 10 the mass of the lightest Higgs is below 113 GeV
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Figure 7.9: The scalar mass spectrum as a function of mA, the CP odd Higgs mass,
for h2

t (Λ) = 2.25. The thick solid line is the light CP even Higgs, the thin solid line is
the heavy CP even Higgs and the dashed line is the charged Higgs.

even for mA as large as 600 GeV (figure 7.8), whilst for h2
t (Λ) = 2.25 this is raised to

120 GeV (figure 7.9). The masses of the heavy CP-even Higgs and the charged scalar
by contrast strongly depend on the parameter mA, being given by mA plus terms of
order v2/m2

A.

7.5 Higgs Couplings

In this section the couplings of the Higgs to weak gauge bosons and the top quark are
examined. These couplings are important because they control the generation of Higgs
bosons at the LHC.

The coupling of the neutral scalars to Z bosons takes a particularly simple form in the
field basis (h,H) [110].

LHi−Z =
g

2
MZZµZ

µh+
g

2
Zµ[H(∂µA) − (∂µH)A] (7.52)

However, these are not the mass eigenstates. After transforming to the mass eigen-
states, which are given by equation (7.50), both the light h1 and the heavy h2 couple
to Z pairs and to a Z and an A.

These couplings may be parameterized as gZZhi
= RZZhi

g

2
MZ and gZAhi

=
g

2
RZAhi

.

They may be expressed in terms of the angles α and β [111],

RZZh1
= −RZAh2

= sin(β − α) (7.53)

RZZh2
= RZAh1

= cos(β − α). (7.54)
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Similarly, the coupling to W pairs may be defined as gWWhi
=

g

2
MWRWWhi

where

RWWhi
= RZZhi

.

In the original Higgs field basis the top quark coupled only to H2. The coupling is
given by ht which is proportional to 1/v sin β. The coupling to the mass eigenstates is
then determined by the mixing angle α. The couplings may be defined to be the SM
coupling multiplied by an R-factor,

gt̄thi
= −mt(Mt)

v
Rt̄thi

. (7.55)

Then

Rt̄th1
=

cosα

sin β
, Rt̄th2

=
sinα

sin β
. (7.56)

The R-factors parameterizing the couplings of the Higgs to the top quark and weak
gauge bosons can be calculated from the coupings λi(Mt) and ht(Mt). The MPP scale
is taken to be at the Planck scale and h2

t (Λ) is taken to be 10, firmly in the QFP
regime. The couplings λ1(Λ) and λ2(Λ) are calculated using the UV fixed point values
R1 = 0.75 and R2 = 0.833, whilst λ3(Λ) and λ4(Λ) are found using the MPP conditions
7.42.

The R-factors found are plotted in figures 7.10 and 7.11. Here the solid lines denote
the coupling of the light Higgs h1 and the dotted line denotes the coupling of the heavy
Higgs h2.
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Figure 7.10: The R-factors for the Higgs-gauge boson couplings with Λ at the Planck
scale and h2

t (Λ) = 10. These denote the modification to the coupling of the Higgses to
the W and Z gauge bosons. The solid line is for the light Higgs and the dashed line is
for the heavy Higgs.

At such a large MPP scale the couplings of the light Higgs to Z is within about 10%
of the SM value for all mA, and extremely close for mA & 200 GeV. The coupling of
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Figure 7.11: The R-factors for the Higgs-top couplings with Λ at the Planck scale and
h2

t (Λ) = 10. These denote the modification to the coupling of the Higgses to the top
quark. The solid line is for the light Higgs and the dashed line is for the heavy Higgs.

the light Higgs to the top quark is strongly suppressed for very low values of mA, less
than about 200 GeV. However it too approaches the SM value for mA & 300 GeV.

Low values of mA are disfavoured by data on B → Xs, γ decays. For example, in model
II the charged scalar mass is constrained to be greater than 350 GeV [112]. This means
the couplings must be very close to the SM values.

The situation does not change dramatically when h2
t (Λ) is lowered to 2.25 as shown in

figures 7.12 and 7.13. This is to be expected since the couplings should still be close
to their QFP values.

Data from LEP [113] constrains the mass of the Higgs. The Higgs was searched for in
so-called Higgsstrahlung processes, where e+e− → ZH . This means the constraints on
the Higgs mass depend on the coupling of the Higgs to the Z boson.

As is shown in figures 7.10 and 7.12, the QFP scenario at large MPP scales implies
that RZZh1

> 0.85 across the whole range of mA. Comparing this with Figure 10 of
reference [113], this can be seen to lead to a slight relaxation of the constraints on the
mass of the Higgs from MH > 114.4 GeV at 95% C.L. in the SM to MH & 113 GeV.

Non-observation of the Higgs at LEP thus rules out most of the parameter space for
the QFP scenario at large MPP scales, since the mass of the lightest Higgs in this
scenario is below the LEP bounds.

The situation changes when low values of the MPP scale are considered, for instance
Λ = 10 TeV. In this case the convergence to the QFP is very weak and represents only
an upper bound on ht(Mt) and correspondingly an upper bound on tanβ.

The values R1 = 0.75 and R2 = 0.883 are used as a benchmark, with R3 and R4 chosen
to satisfy the MPP conditions. Using these values along with h2

t (Λ) = 10, the scalar
mass spectrum can be found. This is shown in figure 7.14. As before, the thick line
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Figure 7.12: The R-factors for the Higgs-gauge boson couplings with Λ at the Planck
scale and h2

t (Λ) = 2.25. These denote the modification to the coupling of the Higgses
to the W and Z gauge bosons. The solid line is for the light Higgs and the dashed line
is for the heavy Higgs.
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Figure 7.13: The R-factors for the Higgs-top couplings with Λ at the Planck scale and
h2

t (Λ) = 2.25. These denote the modification to the coupling of the Higgses to the top
quark. The solid line is for the light Higgs and the dashed line is for the heavy Higgs.
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is the light Higgs, the thin line is the heavy Higgs and the dotted line is the charged
Higgs.
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Figure 7.14: Higgs mass spectrum for Λ = 10 TeV as a function of mA, the CP odd
Higgs mass. The thick solid line is the light CP even Higgs, the thin solid line is the
heavy CP even Higgs and the dashed line is the charged Higgs.

The R-factors in the low MPP scale scenario are plotted in figures 7.15 and 7.16. The
solid lines denote couplings of h1 and the dotted lines denote couplings of h2. It can
be seen that RZZh1

& 0.81 across the range of mA which translates into a Higgs mass
bound from LEP of MH & 112 GeV at 95% C.L..

In this scenario, the mass of the lightest Higgs is comfortably above the LEP limit for
all allowed values of mA, as can be seen in figure 7.14.

In this case the couplings of the light SM-like Higgs to the top quark are enhanced
considerably due to the low values of sin β. Even for mA & 600 GeV the coupling is
enhanced by 25% relative to the SM. The cross section is correspondingly boosted by
a factor of about 1.5-2.5. This allows the MPP inspired 2HDM with low MPP scale
to be distinguished from the SM and supersymemtric extensions of the SM even if the
extra scalars are heavy (& 500 − 700 GeV).
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Figure 7.15: R-factors for Higgs-gauge boson couplings with Λ = 10 TeV. These denote
the modification to the coupling of the Higgses to the W and Z gauge bosons. The
solid line is for the light Higgs and the dashed line is for the heavy Higgs.
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Figure 7.16: R-factors for Higgs-top couplings with Λ = 10 TeV. These denote the
modification to the coupling of the Higgses to the top quark. The solid line is for the
light Higgs and the dashed line is for the heavy Higgs.



Chapter 8

Summary and Conclusions

The hierarchy problem motivates the search for new physics beyond the standard
model. The Higgs mass suffers from a quadratic instability in its mass term which
requires the introduction of new physics to avoid unnatural fine-tuning. However,
there is a tension between naturalness, which favours new physics at a low energy
scale, and the electroweak precision constraints, which favour a high energy scale for
new physics.

Little Higgs models provide an innovative and interesting solution of the hierarchy
problem. The Higgs is taken to be a pseudo-Goldstone boson associated with the
spontaneous breakdown of some global symmetry at the scale of about 10 TeV. A
Higgs mass is generated through radiative corrections, but global symmetries prevent
any diagram involving only a single (large) gauge or Yukawa coupling from generating a
contribution to the Higgs mass. In particular, no quadratically divergent contribution
is present below the two-loop level, with the leading order contribution coming from
one-loop logarithmically divergent diagrams. This leads to a naturally light “little
Higgs” without violating the electroweak precision constraints.

Two particular Little Higgs models, the Littlest Higgs and the Schmaltz model, were
examined in detail as representative of the two broad classes of Little Higgs models,
namely the product group and simple group classes respectively.

A detailed exposition of the Littlest Higgs model was performed, resulting in the cor-
rection of some mistakes in the literature. In particular, the correct mixing angles of
the t and T quarks were found and used to calculate the couplings of these quarks to
scalars.

Along the same lines, a detailed analysis of the Schmaltz model was undertaken. The
masses, mixing angles and couplings of particles in the weak gauge boson and top
sectors were calculated up to terms of order v4/f 4, which is necessary for detailed
phenomenological investigations.

The results of this analysis were applied to calculate corrections to loop induced inter-
actions of the Higgs boson. In the standard model, the Higgs can interact with gluon
pairs via top quark loops, and with photon pairs via loops of top quarks or W bosons.
Little Higgs models introduce corrections to these processes both due to modification
of the standard model couplings and through the introduction of new paricles (such as
the T quark and heavy gauge bosons) which can run in the loop.

The Little Higgs corrections to these processes tend to be relatively small, typically no



123

more than 10-20%. The largest corrections for a given value of f arise in the Schmaltz
model if the ratio f2/f1 is large.

The prospects for observing this discrepancy are not so good. The best chance is at
a photon collider which can measure the coupling of Higgs to photons to within 2
or 3%. However, NLO QCD corrections are expected to be larger than the one-loop
Little Higgs corrections calculated meaning that higher order calculations would be
required in order to use these processes to distinguish the Little Higgs scenario from
the standard model.

Higgs pair production via gluon fusion at the LHC was also examined in both the
Littlest Higgs and the Schmaltz models. Due to the complexity of this process it was
necessary to use automated techniques to evaluate the cross section. It was found that
the corrections are typically less than 20%, but can be significantly higher in certain
regions of the parameter space of the Littlest Higgs model where f . 2 TeV and when
x & 0.85, i.e. when the vev of the scalar triplet is comparatively large. However,
factorisation scale uncertainty along with prohibitively large QCD backgrounds mean
that even in this scenario the Little Higgs model corrections are not observable.

In addition to Little Higgs models, this thesis also investigated the consequences of
applying the multiple point principle (MPP) in the two Higgs doublet model (2HDM).
The MPP posits that nature tunes the values of the parameters of the theory such that
there is a large set of vacua degenerate with our current vacuum. This condition was
shown to result in a Peccei-Quinn type symmetry which naturally suppresses flavour
changing neutral currents.

Particular attention was paid to the quasi-fixed point (QFP) regime of the MPP in-
spired 2HDM. For large values of the MPP scale the top quark Yukawa coupling was
found to be well approximated by the QFP value at the weak scale for a large range
of values at the MPP scale. This allowed the ratio of the doublet vevs, tan β, to be
calculated from the running mass of the top quark. In addition, the QFP scenario with
large b or τ Yukawa couplings was ruled out, because it leads to phenomenologically
unacceptable large values of the running top mass.

Numerical solution of the renormalisation group equations, using the MPP conditions
as boundary conditions, allowed the Higgs mass spectrum to be calculated as a function
of the mass of the pseudo-scalar. The couplings of the lightest Higgs to top quarks and
weak bosons were also found. The mass of the lightest Higgs tends to be below the
LEP bounds when the MPP scale is taken to be the Planck scale (≈ 1.22× 1019 GeV)
although one-loop corrections to the scalar masses are large so this does not rule out
the Planck scale MPP scenario.

The most interesting scenario is if the MPP scale is low. In this case the couplings of
the lightest Higgs can be substantially modified. Taking the MPP scale to be 10 TeV
the coupling of the light Higgs to the top quark is enhanced by 25% or more.
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Appendix A

2 Higgs Doublet Model β Functions
The renormalisation group equations describing the evolution of the Higgs self-couplings
in a 2 Higgs doublet model are presented below. Here, the definition of the beta func-
tions are

βλi
=
dλi

dt
(1)

where i = 1..7 and t is defined to be lnµ where µ is the renormalization scale.

All Yukawa couplings other than those of the third generation are neglected. Also,
λ6 and λ7 are taken to be zero since this will always be the case in this thesis. The
renormalization group equations are

βλ1
=

1

16π2
[12λ2

1 + 4λ2
3 + 4λ3λ4 + 2λ2

4 + 2|λ5|2 +
9

4
g4
2 +

3

2
g2
2g

2
1 +

3

4
g4
1

−λ1(3(3g2
2 + g2

1) − 12|hb|2 − 4|hτ |2) − 12|hb|4 − 4|hτ |4]

βλ2
=

1

16π2
[12λ2

2 + 4λ2
3 + 4λ3λ4 + 2λ2

4 + 2|λ5|2 +
9

4
g4
2 +

3

2
g2
2g

2
1 +

3

4
g4
1

−λ2(3(3g2
2 + g2

1) − 12|ht|2 − 12|gb|2 − 4|gτ |2) − 12|ht|4 − 12|gb|4 − 4|gτ |4]

βλ3
=

1

16π2
[2(λ1 + λ2)(3λ3 + λ4) + 4λ2

3 + 2λ2
4 + 2|λ5|2 +

9

4
g4
2 +

3

2
g2
2g

2
1 +

3

4
g4
1

−λ3(3(3g2
2 + g2

1) − 6|ht|2 − 6|gb|2 − 2|gτ |2 − 6|hb|2 − 2|hτ |2) − 12|ht|2|hb|2
−12|hb|2|gb|2 − 4|hτ |2|gτ |2]

βλ4
=

1

16π2
[2λ4(λ1 + λ2 + 4λ3 + 2λ4) + 8|λ5|2 + 3g2

2g
2
1 − λ4(3(3g2

2 + g2
1) (2)

−6|ht|2 − 6|gb|2 − 2|gτ |2 − 6|hb|2 − 2|hτ |2) + 12|ht|2|hb|2 − 12|hb|2|gb|2
−4|hτ |2|gτ |2]

βλ5
=

1

16π2
[2λ5(λ1 + λ2 + 4λ3 + 6λ4) − λ5(3(3g2

2 + g2
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2]

βλ6
=

1

16π2
[(λ1 + λ3 + λ4)(3g
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∗
τ ) + λ5(3h

∗
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βλ7
=

1

16π2
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The renormalization group equations for the Yukawa couplings will also be required.
These are given by
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dgt
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