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Abstract

The analysis of environmental data represents an opportunity to use statis-

tical tools to provide a better understanding of changes over time and space,

making it easier to tackle problems such as pollution, water quality or climate

change.

The analysis of environmental data requires methodologies that allow us to fit

models capable of explaining seasonal patterns and changes observed over time

and space.

The work developed in this thesis is centred on the modelling of trends over

time and space simultaneously. The analysis of this information could be carried

out in a marginal manner over time and space; however the main objective of

this thesis is to fit a model using both time and space simultaneously to be able

to provide a closer representation of environmental data.

The data used in this thesis were provided by the Environmental Change Net-

work (ECN), the Acid Water Monitoring Network (AWMN) and the Macaulay

Institute. These data sets correspond to water quality where the main interest is

to assess change over time in the case of the ECN and the AWMN and changes

over time and space for the Macaulay Institute.

A brief description of the problems of water quality, a description of linear and

nonparametric models and the main goals of the analysis are given in chapter 1.
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Chapter 2 provides a detailed analysis of the information provided by the ECN

and AWMN through the use of linear models, indicating the advantages and

disadvantages of this approach. The aim is to explain changes over time for 11

variables related to surface water chemistry and to assess differences between

both sources of information.

Chapter 3 shows the modelling of a catchment using additive models to cap-

ture the trend over time and space for water quality measures for rivers. The

modelling of the trend over space uses 17 sites under the assumption that Eu-

clidean distance is a sensible measure.

A test to assess the need for a linear effect opposed to a nonparametric effect

was carried out as well as a sensitivity analysis, assessing stability in the conclu-

sions under different degrees of freedom. From residuals the need for a covariance

structure over time and/or space is assessed. A comparison between models to

evaluate the improvement under the inclusion of river flow information is also

included in this chapter.

Chapter 4 provides an introduction to the problem of modelling river networks

indicating the difficulty in obtaining an adequate spatial model. The inclusion

of this idea into an additive model to tackle this problem, allows us to capture

the trend over space assuming that not all the points are flow connected, using

upstream distance.

A test to assess the need for a linear effect rather than a nonparametric effect

as well as a sensitivity analysis to evaluate stability under different degrees of

freedom, were carried out with the final models. Finally a comparison between a

model using Euclidean distance and upstream distance to model the trend over

space is made to choose the model with better performance.
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The scientific questions and a discussion of the main outputs observed for each

data set is presented at the end of each chapter. Chapter 5 summarises the main

outputs and findings of the thesis, indicating advantages and disadvantages of

each methodology used as well as some ideas for future work.

Throughout the development of this thesis all the analysis were carried out using

R software [Venables & Smith (2009)]. The packages used provided a suitable

tool to cover descriptive analysis, modelling process and graphic displays. The

large majority of the analysis were carried out using the packages Stats, nlme,

sm, lattice and geoR.
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Chapter 1

Introduction

Nowadays environmental changes have become a critical topic in the agenda

for academics and governments around the world. Answers that allow us to better

understand climate change, pollution, overpopulation or renewable and efficient

energy, are demanded now more than ever.

From a statistical point of view this represents a challenging task to provide

proper guidance to policy makers, assessing how effective the decisions taken in

the past have been or how they can change current policies.

The analysis of environmental data presents a complex problem for several rea-

sons: there is usually a large number of variables involved and the collection

process can be challenging, with spatial and temporal components. These two

reasons make it harder to identify the existence, the magnitude and the factors

associated with environmental changes. For these reasons it is necessary to move

from classical statistical approaches to modern statistical methodologies and in

some cases, depending on the problem, to use more than one methodology simul-

taneously.

1



CHAPTER 1. INTRODUCTION 2

1.1 Environmental Organizations

The development of this project was made possible with the support and

information provided by the Environmental Change Network (ECN), the Acid

Waters Monitoring Network (AWMN) and the Macaulay Institute.

1.1.1 ECN

The Environmental Change Network [ECN (Webpage)] is the UK’s long term

environmental monitoring programme. The main aim is to analyse long term

data based on a set of physical, chemical and biological variables, which drive

and respond to environmental changes at a range of terrestrial and fresh water

sites across the UK. Established in 1992, nowadays the ECN programme has 12

terrestrial and 45 fresh water sites divided into river sites (29) and lake sites (16).

The ECN is a multi-agency programme sponsored by a consortium of 14 UK

government departments and agencies with four main objectives (Information

obtained from the website of the ECN).

• To establish and maintain a selected network of sites within the UK from

which to obtain comparable long-term data sets through the monitoring of

a range of variables, identified as being of major environmental importance.

• To provide for the integration and analysis of these data, so as to identify

natural and man-induced environmental changes and improve understand-

ing of the causes of change.

• To distinguish short-term fluctuations from long-term trends, and predict

future changes.

• To provide, for research purposes, a range of representative sites with good

instrumentation and reliable environmental information.
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1.1.2 AWMN

The Acid Waters Monitoring Network [AWMN (Webpage)] was established in

1988 to monitor the effect of acid deposits in the UK. The information collected

provides a long term data set of water chemistry and biology, obtained from a

network corresponding to 11 lakes and 11 streams across the UK. Samples for

extensive analysis of chemical determinants, including pH, DOC, conductivity

and a standard suite of base cations, anions and metals are collected regularly

over all the sites.

1.1.3 Macaulay Institute

The Maculay Institute [M.I. (Webpage)], founded in 1930, is an international

research group with a main interest in sustainable uses of land and its natural

resources. One of their research interests is the exploration of the relationships

between land use and catchment management, aiming to understand how pol-

lutants move throughout the environment, assessing the impact of pollution on

soil and water, developing methodologies to predict the effect of human activities

in the environment and to provide scientific evidence to develop and implement

government policies.

1.2 Water Quality

The increasing demand to provide clean water for human consumption, agri-

culture and industry is an important topic around the world [Bates et al. (2008)].

The fact that 70% of the surface of the earth is water seems to be a good reason

not to be too concerned about this issue; however the reality is that only 3%

corresponds to fresh water while the remainder corresponds to salt water.

There are several sources of pollution that might affect the quality of the wa-

ter; some, such as litter, can be observed easily. Some, including pathological

agents like bacteria, require the use of a microscope to identify their presence in
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water, while others such as chemical polluting agents, require more sophisticated

chemical analysis to detect them.

The main sources of water pollution are:

• Sewage

• Oil

• Fertilizers and Pesticides

• Soil Sediments

• Industrial Waste

The negative effect that comes with the deterioration of water can have an impact

on human health. The increase of illnesses such as diarrhoea, malaria or cholera,

illnesses which affect mainly elderly and young children, along with the effect of

oils, plastics, pesticides, detergents and personal care products, which are related

to nervous system damage and some specific types of cancers, are examples of

how change in water quality can affect us.

To be able to tackle this problem the best strategy is to monitor the biologi-

cal and chemical characteristics of water aiming to:

• Evaluate water quality for recreation

• Evaluate water quality for fishing

• Evaluate trends and policies

• Evaluate current technologies for use in water treatment plants

An ever growing human population, industry and agriculture production are some

of the main concerns with respect to water quality. Therefore, the European

Union designed a new legal framework for the protection, improvement and sus-

tainable uses of all water bodies.
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The Water Framework Directive (WFD) [European Commission (2000)], ap-

proved on 22 December 2000, establishes a long term policy for the management

of rivers, lakes, groundwater and coastal beaches. The WFD not only define

quality standards for certain types of water (bathing water, fish and shellfish wa-

ter, and water used for drinking water abstraction), the new innovation is that it

covers all water bodies, not only those for human uses, specifying a quality status

”good status” which is measurable and specific for each type of water body, with

agreed deadlines which reflect regional diversity.

1.3 Statistical Methodology

The methodology presented in this thesis includes linear regression and non-

parametric regression applied to environmental data with the aim of identifying

trends over time and space.

Linear regression allows us to identify trends over time and space only when a

single hyperplane captures the information provided for all the covariates. When

the information is collected over time and space simultaneously, it is also nec-

essary to assess the assumptions of independence over time and space for the

residuals.

In environmental data in some cases it is too simplistic to assume that trends

over time and space follow a linear pattern. Seasonal patterns over time and

changes over space are common, indicating that a linear parameter suggesting an

upward or downward trend is not enough to capture the variability involved.

Nonparametric regression provides a useful tool to identify the presence of trends

when the information collected over time and space is not properly explained
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by a linear model. Nonparametric regression follows the same idea of linear re-

gression and the same assumptions, although rather than linear parametric effect

the nonparametric effect correspond to smooth curves, or surfaces in the case of

interactions.

The advantage of nonparametric regression is the flexibility provided by the

smoothing parameter or equivalent degrees of freedom [Hastie & Tibshirani (1990)].

This allows a wide range of possibilities, but there is a cost to this flexibility in a

trade off between bias and variance. Large smoothing parameter values decrease

the variance but tend to increase the bias, and conversely.

1.4 Aims

The aim of this research project is to present statistical methodology applied

to three environmental data sets to identify trends over both time and space,

dealing with missing observations, uneven sampling and non-linear relationships.

Through the development of this thesis, the main objective is to present different

approaches to the analysis of environmental data, looking for suitable methodol-

ogy. The analysis made of the information provided by the ECN and the AWMN

starts with a linear approach to evaluate the strengths and weaknesses of this

methodology.

The analysis of the Macaulay Institute information involves the use of addi-

tive models to capture non-linear trends over time and space, assessing the need

to include a time and space covariance structure. In addition, a methodology

to analyse river network information when the data observed has been collected

over time and space simultaneously is also explored.

The objectives of this thesis are:
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1. To evaluate the presence of trend over time for the information provided

for the ECN and AWMN data.

2. To identify any differences between the two sources of information, ECN

and AWMN.

3. To assess whether there is an improvement in water quality over time and

space for the information provided by the Macaulay Institute, using stan-

dard spatial methods.

4. To assess whether there is an improvement in water quality over time and

space using river distance, including the fact that not all the sites are flow-

connected and to evaluate whether river distance provides a more suitable

form of model.

The main interest in fulfilling these aims is to provide useful tools to analyse en-

vironmental data. Since statistical models do not reproduce reality perfectly, the

idea is to obtain statistical models which capture the behaviour of environmental

events well, while allowing useful conclusions to be drawn.



Chapter 2

AWMN and ECN

This chapter describes the analysis of two data sets provided by the Envi-

ronmental Change Network (ECN) and the Acid Waters Monitoring Network

(AWMN) from a location in the Cairngorms (Figure 2.1). The Cairngorms site

joined the ECN network in 1999. It lies on the western flank of the Cairngorms

and is the catchment of the Allt a’ Mharcaidh, one of the freshwater sites of the

ECN. With an area of 1000 ha and an altitude of 1110m, this place has relatively

low levels of air, water and soil pollution compared to other places in the UK,

making it a good control place for monitoring changes in the environment.

The ECN data have been collected from Aug 1999 to Dec 2006. The information

was collected unevenly and some months have more observations than others. The

AWMN data have been collected from July 1988 to March 2007. The frequency

for the collection process was one observation per month, although December

2001, July 2002 and December 2002 have a second observation.

Throughout this chapter the main aim is to identify trends and seasonal compo-

nents over time and to assess whether there are differences between both sources

of information. This analysis was carried out for 11 variables related to surface

water chemistry (pH, DOC, Sodium (Na), Calcium (Ca), Magnesium (Mg), Iron

(Fe), Chloride (Cl), NO3, Aluminium (Al), Potassium (K) and SO4(S)).

8
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Figure 2.1. ECN network sites
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Throughout this thesis, limits of detection values (LOD) were included in the

analysis. There are several methods to deal with this problem [Cothern & Ross

(1994)], such as use the detection limit value, half the detection limit or replace

them by zero. The method used to handle the limit of detection values, was

the one adopted by the ECN and the AWMN, where a value equal to zero was

assigned for those observation classified as LOD .

2.1 Data Description and Transformations

A log transformation was applied to DOC to remove skewness and to ob-

tain a more normally distributed scale. For Sodium, Calcium, Magnesium, Iron,

Chloride, NO3, Aluminium, Potassium and SO4(S) a log transformation was also

applied, but a constant was added as log(x + c) to deal with values close to

zero. The constants added for each of the variables were: Sodium c=5, Calcium

c=2, Magnesium c=0.5, Iron c=0.5, Chloride c=3, NO3 c=0.5, Aluminium c=0.5,

Potassium c=0.5 and SO4(S) c=1.

Figures 2.2 and 2.3 show the variables after the transformation was applied.

Only pH remained on the original scale. The time series show that the AWMN

data were collected for a longer period of time. The ECN data shows greater

variability than AWMN data. A downward trend for log(DOC), log(Na+5) and

log(Ca+2) is observed in the ECN data, while only for log(DOC) in the AWMN

data is there a clear upward trend.

The larger variability in the ECN data set compared to the AWMN may be

explained by the collection process. The ECN data capture not only the variabil-

ity of the variables over the year, but also capture the monthly variability with

a higher number of observations per month. This characteristic is not observed

in the AWMN data, which provide only one observation per month and so the
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variability within each month in not observed.

Lower variability for variables such as log(Fe+0.5), log(NO3 +0.5) and log(Al+

0.5) in the AWMN can be explained by the presence of limit of detection values.

Values 0.075, 0.018, and 0.02 are observed, corresponding to 43.75% (98), 93.27%

(203) and 64.57% (144) of the total number of observations respectively.

Evidence of differences between the locations where the information was col-

lected may suggest that the physical characteristics for the two catchments are

different, according to the descriptive analysis made to the data at both sites.
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Figure 2.2. Time series graphs for variables pH, log(DOC), log(Na + 5),
log(Ca+ 2) and log(Mg + 0.5) at ECN and AWMN sites
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Figure 2.3. Time series graphs for variables log(Fe+0.5), log(Cl+3), log(NO3+
0.5), log(Al + 0.5), log(K + 0.5) and log(SO4S + 1) at ECN and AWMN sites
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2.2 Descriptive Analysis

Table 2.1 shows a summary for each variable for both data sets. For pH and

log(DOC) both data sets lie in the same range of values. For the other variables,

there is more variability for the information provided by the ECN, although 75%

of the distribution for both data sets lie between the same values.

DESCRIPTIVE ANALYSIS

Variable Min 1stQ Median Mean 3rdQ Max SD n

pH ECN 4.610 6.300 6.500 6.478 6.700 7.420 0.401 313

pH AWMN 5.120 6.333 6.560 6.484 6.740 7.080 0.380 222

log(DOC) ECN -0.248 0.530 0.916 0.946 1.308 2.912 0.605 177

log(DOC) AWMN -2.303 0.262 0.788 0.766 1.238 2.754 0.681 223

log(Na+ 5) ECN 1.702 1.993 2.029 2.063 2.104 2.608 0.124 285

log(Na+ 5) AWMN 1.932 2.041 2.079 2.081 2.116 2.493 0.059 224

log(Ca+ 2) ECN 0.694 0.994 1.061 1.087 1.151 2.129 0.164 292

log(Ca+ 2) AWMN 0.756 0.993 1.040 1.035 1.075 1.230 0.059 224

log(Mg + 0.5) ECN -0.691 -0.205 -0.164 -0.141 -0.105 1.033 0.191 293

log(Mg + 0.5) AWMN -0.400 -0.198 -0.174 -0.164 -0.127 0.488 0.07 224

log(Fe+ 0.5) ECN -0.673 -0.644 -0.631 -0.596 -0.583 -0.242 0.09 59

log(Fe+ 0.5) AWMN -0.691 -0.678 -0.678 -0.665 -0.659 -0.430 0.02 224

log(Cl + 3) ECN 1.386 1.792 1.914 1.888 1.946 2.890 0.149 280

log(Cl + 3) AWMN 1.609 1.841 1.887 1.911 1.946 2.868 0.132 224

log(NO3 + 0.5) ECN -0.634 -0.607 -0.579 -0.555 -0.534 -0.085 0.083 146

log(NO3 + 0.5) AWMN -0.657 -0.657 -0.657 -0.654 -0.657 -0.562 0.014 223

log(Al + 0.5) ECN -0.687 -0.627 -0.588 -0.558 -0.519 0.282 0.101 297

log(Al + 0.5)AWMN -0.653 -0.653 -0.653 -0.600 -0.579 -0.040 0.099 223

log(K + 0.5) ECN -0.691 -0.371 -0.301 -0.171 -0.162 2.170 0.414 285

log(K + 0.5) AWMN -0.510 -0.356 -0.314 -0.313 -0.274 0.067 0.091 224

log(SO4(S) + 1) ECN 0.267 0.499 0.528 0.528 0.550 1.511 0.084 268

log(SO4(S) + 1) AWMN 0.154 0.490 0.510 0.510 0.550 0.773 0.072 224

Table 2.1. Descriptive Analysis for ECN and AWMN sites
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Figures 2.4 and 2.5 show the monthly boxplots for each variable. There is more

variability per month for the ECN compared to the AWMN, as a result of the

collection process with more observations per month in the ECN data while only

one observation per month in the AWMN data. According to the graphs, pH,

log(DOC), log(Ca+ 2) and log(Cl + 3) show evidence of a seasonal component

based on the monthly boxplots.

To identify any linear relationship and to evaluate the strength of correlation

between the variables, Figure 2.6 shows a scatterplot between each pair of vari-

ables for ECN and AWMN separately. The upper panels display the correlation

coefficients while the lower panels display a scatterplot. Based on the correlation

coefficient there is evidence that the relationship between variables is not the

same in both data sources. Specific examples are pH and log(DOC) where the

correlation coefficient is negative in both data sources, while for log(DOC) and

log(Na+0.5) the correlation coefficient is positive for the ECN data and negative

for the AWMN.

To explore the level of agreement between both sources of information, Fig-

ure 2.7 shows the Bland-Altman plots. The aim of this graph [Bland & Altman

(1986)] is to assess the level of agreement between two methods that measure the

same process, or in this case the same variable in two different locations.

From each of the data sets for each variable, the mean of the two measurements

(x-axis) is plotted against the difference between both values (y-axis). Each point

on the graphs corresponds to(
XECN + YAWMN

2
, (XECN − YAWMN)

)
.

Upper and lower limits of agreement can be added. These are defined as d̄+2sd(d),
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Figure 2.4. Monthly Boxplot for variables pH, log(DOC), log(Na+5), log(Ca+
2), log(Mg + 0.5) and log(Fe+ 0.5) at ECN and AWMN sites
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Figure 2.5. Monthly Boxplot for variables log(Cl+3), log(NO3 +0.5), log(Al+
0.5), log(K + 0.5) and log(SO4S + 1) at ECN and AWMN sites
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Figure 2.6. Scatterplot with Correlation Matrix for ECN and AWMN
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under the assumption of normality, with d as the difference between the two mea-

surement, d̄ the sample average and sd(d) the standard deviation.

According to Figure 2.7 only pH, log(DOC) and log(SO4(S) + 1) show a good

level of agreement, with few points below and above the limits of agreement.

log(SO4(S) + 1) shows an outlier with a value in the ECN data which is three

times the corresponding value in the AWMN data.

For the others variables, a clear positive relationship between the difference and

the average can be observed, indicating that the measurement for ECN tends

to provide higher values than for AWMN. On average, the values provided for

the ECN are 25% higher for log(NO3 + 0.5), 16% for log(Mg + 0.5), 13% for

log(Fe+ 0.5), 11% for log(Al+ 0.5), 10% log(K + 0.5) and 3% for log(Ca+ 2).
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Figure 2.7. Bland-Altman plots, level of agreement between both sites
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2.3 Linear Model

The main aim in this section is to identify the presence of trend and seasonality

over time through a non-linear model to capture both components.

y = β0 + β1year + β2cos

(
2π
(days− γ

366

))
+ εi i = 1, ..., n (2.1)

Model (2.1) includes the year and the day, where the term β2cos

(
2π
(
days−γ

366

))
describes a seasonal component [Esterby et al. (1991)]. Using the trigonometric

identity cos(a−b) = cos(a)sin(b)+sin(a)cos(b), the seasonal term in model (2.1)

can be expressed as

β2cos

(
2π
(days− γ

366

))
= β2

[
cos

(
2π
(days

366

))
sin

(
2π
( γ

366

))

+sin

(
2π
(days

366

))
cos

(
2π
( γ

366

))]

To estimate the parameter γ, model (2.1) can be re-expressed in a linear form

as (2.2) where εi are assumed independent with mean 0 and constant variance σ2.

y = β0 + β1year + β′2cos

(
2π
(days

366

))
+ β′′2sin

(
2π
(days

366

))
+ εi i = 1, ..., n

(2.2)

where β′2 and β′′2 are estimated as

β̂′2 =β̂2sin

(
2π
( γ̂

366

))
and β̂′′2 = β̂2cos

(
2π
( γ̂

366

))
(2.3)

Model (2.2) can be fitted by ordinary least squares (OLS) providing an estimate

for β′2 and β′′2 , allowing an estimate of γ̂ to be obtained by solving the equations

in (2.3). Model (2.2) was fitted by OLS for all variables, although in those cases
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where there was evidence of autocorrelation in the residuals using the Durbin-

Watson statistic, these models were fitted by GLS including a continuous AR(1)

for a continuous time covariate. This is a suitable approach when the errors are

separated by a s unit of time, where the correlation between error is ρ(s) = φ|s|

with 0 ≤ φ ≤ 1. [Pinheiro & Bates (2000)].

Table 2.2 provides a summary of the trend and seasonal parameters with their

corresponding p-values for non-linear model (2.1) under a null hypothesis that

these parameters are statistically equal to zero for each variable in both data sets.

For log(Na + 5), log(Ca + 2) and log(K + 0.5) in the ECN data, model (2.1)

was fitted with autocorrelated errors. The conclusion obtained does not change

if uncorrelated errors are assumed, although the AIC shows a slight improvement.

According to the results observed in Table 2.2 is possible to identify if both

variables exhibit similar behaviour with respect to the presence of a linear trend

and/or seasonal component in both sources of information.

• Only log(Ca+ 2) and log(Al+ 0.5) show the same pattern in both sources

of information, with the presence of a seasonal component and a downward

trend.

• For log(DOC) there is a seasonal component and trend in both sources

of information but there is a downward trend for the ECN while for the

AWMN there is an upward trend. However, the size of these parameters

indicates that the trend is not strong.

• log(Na+5) and log(K+0.5) show in both sources of information downward

trend but only log(K + 0.5) has a seasonal component in the AWMN data.

• pH and log(Cl+ 3) show a seasonal component in both sources of informa-

tion but only the ECN data has an upward trend in both variables.

• log(Fe + 0.5) and log(SO4(S) + 1) show a seasonal component with an
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upward and downward trend respectively for the AWMN data.

• log(Mg+0.5) and log(NO3+0.5) show a seasonal component for the AWMN

data.

Only log(DOC), log(Na+ 5), log(Ca+ 2), log(Al + 0.5) and log(K + 0.5) show

a significant parameter for trend in both data sets while pH, log(Fe + 0.5),

log(Cl+ 3) and log(SO4(S) + 1) only in one of them. However the size for these

parameters indicates that despite a statistically significant difference from zero

there is not a strong trend in all the variables.

Figure 2.8 provides the same conclusions observed in Table 2.2, although it allows

us to assess whether the parameters for linear trend or/and seasonal component

are statistically equal in both sources of information, using a 95% confidence in-

terval for the estimated parameters. The left hand side graph provides the C.I.

for trend β̂1, while the right hand side provides the C.I. for seasonal component

β̂2.

• Only for log(Al+0.5) the parameters for trend are not statistically different

in both sources of information.

• None of the parameters for trend or seasonality are statistically equal for

the variable log(DOC) since the confidence intervals do not overlap.

• The trend parameter for log(Na + 5) and log(K + 0.5) are statistically

different in both sources of information.

• None of the parameters for seasonality are statistically equal for pH and

log(Cl + 3) since the confidence intervals do not overlap.

Figures 2.9 and 2.10 show the residuals versus fitted values. The left panel

corresponds to the ECN while the right panel shows the AWMN. These graphs

allow assessment of whether the linear model works well for these variables.
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PARAMETERS ESTIMATED

Variable/Parameters ECN AWMN p-value (ECN) p-value(AWMN)

pH β1 0.033 0.006 0.001 0.112

pH β2 -0.162 -0.234 < 0.001 < 0.001

log(DOC) β1 -0.090 0.041 < 0.001 < 0.001

log(DOC) β2 0.159 0.188 0.007 0.002

log(Na+ 5) β1 -0.018 -0.001 < 0.001 0.019

log(Na+ 5) β2 0.012 0.004 0.383 0.421

log(Ca+ 2) β1 -0.025 -0.001 < 0.001 0.043

log(Ca+ 2) β2 -0.054 -0.017 0.005 0.001

log(Mg + 0.5) β1 -0.001 -0.001 0.850 0.086

log(Mg + 0.5) β2 0.019 0.019 0.214 0.009

log(Fe+ 0.5) β1 0.006 0.0009 0.358 0.008

log(Fe+ 0.5) β2 0.021 0.008 0.213 0.001

log(Cl + 3) β1 0.011 -0.002 0.003 0.08

log(Cl + 3) β2 0.045 0.069 < 0.001 < 0.001

log(NO3 + 0.5) β1 -0.004 -0.0002 0.157 0.174

log(NO3 + 0.5) β2 -0.007 0.006 0.464 < 0.001

log(Al + 0.5) β1 -0.006 -0.002 0.025 0.018

log(Al + 0.5) β2 0.034 0.025 < 0.001 < 0.001

log(K + 0.5) β1 -0.060 -0.004 0.005 < 0.001

log(K + 0.5) β2 -0.046 0.023 0.439 0.004

log(SO4(S) + 1) β1 -0.002 -0.004 0.273 < 0.001

log(SO4(S) + 1) β2 -0.003 0.023 0.679 < 0.001

Table 2.2. Parameter Estimates and p-values for Trend and Seasonal Compo-
nent (SC) at ECN and AWMN sites under model (2.1)
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Figure 2.8. Confidence Intervals and estimated parameter for trend (left hand
side) and seasonal component (right hand side) under model (2.1) at ECN and
AWMN sites
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Figure 2.9. Residuals versus Fitted Values for variables pH, log(DOC),
log(Na + 5), log(Ca + 2) and log(Mg + 0.5) at ECN and AWMN sites under
model (2.1)

The patterns observed for log(Fe + 0.5), log(NO3 + 0.5) and log(Al + 0.5) in

the AWMN data correspond to limits of detection values with a frequency of 98,

208 and 144 times respectively. For log(Cl+ 3) in the ECN data, corresponds to

values 1.79 and 1.94 with a frequency of 82 and 74 times respectively.
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Figure 2.10. Residuals versus Fitted Values for variables log(Fe+0.5), log(Cl+
3), log(NO3 + 0.5), log(Al + 0.5), log(K + 0.5) and log(SO4S + 1) at ECN and
AWMN sites under model (2.1)
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The results observed indicate that a linear approach works well for this informa-

tion; however the question is also raised of whether a nonparametric regression

would be preferable. The interest here is to evaluate the need for a nonparametric

effect, over three relevant variables related to environment pollution (log(DOC),

log(NO3 + 0.5) and log(SO4(S) + 1)) to assess if there is an improvement in the

model or to confirm the use of a linear approach.

2.4 Nonparametric Regression

When the data observed are not easily described by a linear model, a suitable

approach is to fit a nonparametric regression model of the form

yi = m(xi) + εi i = 1, ..., n (2.4)

where m(xi) corresponds to a smooth function, E(ε) = 0 and V ar(ε) = σ2.

There are different ways to obtain an estimate for m̂(x), one such approach is

to use kernel estimators. Some of the most common are kernel smoothers, local

regression, smoothing splines, regression splines, orthogonal series and wavelets

[Green & Silverman (1994), Wood (2006) Fan & Gijbels (1996)].

Throughout this thesis a kernel smoother and local regression approach are intro-

duced in detail, where the similarities with standard linear models lead to many

useful statistical properties.

An estimate for m̂(x) can be obtained by a local mean estimator [Nadaraya

(1964b), Watson (1964)] as

m̂(x) =

∑n
i=1w(xi − x;h)yi∑n
i=1w(xi − x;h)

, (2.5)
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where w(xi − x;h), the weight function chosen, corresponds to a normal density

centred on zero with standard deviation equal to h [Bowman & Azzalini (1997)].

The solution for expression (2.5) arises through the process of minimising the

weighted least squares over α.

minα

n∑
i=1

[yi − α]2w(xi − x;h) (2.6)

In the case of cyclical variables or seasonal effects, quite common in environmen-

tal information, an estimate for m̂(x) can be obtain using a local mean approach,

where the weight function chosen corresponds to w(xi−x;h) = exp

[
r
h
cos

(
2π(xi−x)

r

)]
,

allowing us to obtain an estimate with period r [Bowman et al. (2009)].

The selection of h, called the smoothing parameter or bandwidth is the key

step here to establish the influence of the data points on the estimate. As the

value of h is increased, the number of observations that contribute to the estimate

increases, reducing the flexibility of the estimate. The opposite effect is observed

when small values of h are chosen, increasing the flexibility of the estimate thus

reproducing the data more closely.

An alternative approach to obtain an estimate is local linear regression, where

an estimate for m̂(x) can be obtained by weighted least squares minimising the

expression

minα,β

n∑
i=1

[yi − α− β(xi − x)]2w(xi − x;h). (2.7)

The weight function w(xi − x;h), as in local mean estimation, corresponds to a

normal density centred on zero with standard deviation equal to h.

The solution for (2.7) corresponds to m̂(x) = vTy where the ith element of v
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can be express as

vi =
1

n

[
s2(x;h)− s1(x;h)(xi − x)

]
w(xi − x;h)

s2(x;h)s0(x;h)− s1(x;h)2
,

where sr(x;h) =
[∑

(xi − x)rw(xi − x;h)
]
/n

Despite that the local linear regression is prefer over the local mean because

its superior properties [Fan & Gijbels (1996)], the local mean provides a better

approach in the case of seasonal effect, thereby throughout this thesis the kernel

estimator chosen corresponds to a local mean estimator.

The estimate m̂(x) at a set of values x for these two estimators can be defined as

Sy, where S corresponds to the smoothing matrix whose rows contain the vectors

v to obtain the estimate at a particular value of x. This provides an important

result, indicating that the estimation process is linear in the response data y.

Based on this result it is possible to define a relationship between the smoothing

parameter and the degrees of freedom of a nonparametric model. The degrees of

freedom under a linear model can be defined as the trace (tr) of the projection

matrix P , where ŷ = Py. In the case of a nonparametric model, the degrees of

freedom can be defined as df = tr(S), with S the smoothing matrix.

2.5 Smoothing parameter selection

The selection of the value for the smoothing parameter h, or degrees of free-

dom df , is still a matter of discussion, although it is clear that we can not simply

choose the value to minimise the residual sum of squares, as this would lead to

an overfitted solution.

In this section the idea is to provide an outline of a method called cross-validation,
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choosing a value of degrees of freedom to minimise
∑n

i=1(yi − m̂−i(xi))
2 under

the idea of use a training set and testing set. Additional methods with detailed

explanations can be found in Hastie & Tibshirani (1990) and Bowman & Azzalini

(1997).

Leaving a point (yi, xi) out, the idea is to estimate the smooth curve at xi

based on the (n − 1) remaining points, evaluating how accurate the prediction

is under different values of degrees of freedom. This procedure is replicated for

each xi i = 1, ..., n, looking for a value of degrees of freedom which minimise∑n
i=1(yi − m̂−i(xi))2 to obtain an adequate value.

This method provides a method of obtaining an optimal value for the degrees

of freedom. However, cross-validation and other automatic selection methods,

tend to be less reliable and far more expensive to implement for additive models

[Hastie & Tibshirani (1990)] which are introduced in the next section, mainly

because several degrees of freedom must be selected simultaneously. In addition,

these methods are not suitable for information collected over time and/or space

with a temporal [Hart (1991)] or spatial correlation structure.

The selection of degrees of freedom throughout this thesis is performed by a

subjective method, as the main objective is to assess different models to cap-

ture trends over time and space rather than choose a model based on automatic

methods. In addition, the assessment of the partial residuals to evaluate the

effect of each variable allows us to explore whether the degrees of freedom cho-

sen is capturing well the relationship between the covariates and the dependent

variable.
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2.6 Additive Models

Additive models developed by Hastie and Tibshirani (1990) follow the same

characteristics as linear models, although they are written as

E(Y |x1, x2, ..., xp) = m1(x1) +m2(x2) + ...+mp(xp) + εi i = 1, ..., n (2.8)

where mj(xj) j = 1, ..., p corresponds to a smooth function that describes the

effect of covariate j on Y and E(ε) = 0 and V ar(ε) = σ2. This has the advan-

tage that each of these smooth functions is not restricted in shape, which means

that even if the relationship between our dependent and independent variables is

non-linear, the smooth function is able to capture this relationship.

The smooth functions are obtained by use of the backfitting algorithm which

corresponds to an iterative process that follows three steps [Hastie & Tibshirani

(1990)].

1. Initialize: mj = m
(0)
j , j = 1, ..., p

2. Cycle:j = 1, ..., p, 1...p, ... mj = Sj(y −
∑

k 6=jmj|xj)

3. Continue (2) until the individual functions do not change

Once the algorithm converges, model (2.8) is written as

E(Y |x1, x2, ..., xp) = β̂0 + m̂1(x1) + m̂2(x2) + ...+ m̂p(xp), (2.9)

where β0 is ȳ and m̂j(xj) correspond to numerical vectors corresponding to the

smooth functions. It is important to recall that Sj(y|xj) denotes a smoothing

matrix for the response y against the predictor xj.



CHAPTER 2. AWMN AND ECN 32

2.7 Comparison of Models

Once a model has been fitted, a natural step is to assess if there is any possibil-

ity to improve that model. Following the idea developed by Hastie and Tibshirani

(1990), this comparison is possible through an approximate F-test.

This test statistic does not follow the exact F distribution, although results based

on simulations [Hastie & Tibshirani (1990)] provide enough evidence to support it

as a guide to choose between different models. The approximate F-test is defined

as
(RSS1 −RSS2)/(df2 − df1)

RSS2/(n− df2)
∼ Fdf2−df1,n−df2 ,

where RSS1 and RSS2 are the residual sum of squares and df1 and df2 are the

degrees of freedom of the models fitted.

Having fitted an additive model the RSS is defined as RSS =
∑n

i=1(yi− m̂(xi))
2

or as a quadratic form as RSS = ytQy where Q = (I − P )t(I − P ). Each of

the smooth functions can be expressed as a set of n x n projection matrices,

providing the fitted values for an additive model as Py = (
∑p

k=0 Pk)y, where P0

corresponds to a matrix with the value 1/n to estimate ȳ.

In the same way as in a linear model, it is possible to obtain an analogous

definition of approximate degrees of freedom for an additive model, where the ap-

proximate degrees of freedom for error can be defined as df = tr[(I−P )t(I−P )],

with P =
∑p

k=0 Pk. [Bowman & Azzalini (1997)].

In the case of correlated data, the main effect of correlation is in the calculation

of standard error and in the implementation of model comparison [Giannitrapani

et al. (2005)]. A modification of the RSS through the generalised least squares



CHAPTER 2. AWMN AND ECN 33

criterion allows this structure to be included as

RSS = yt(I − P )tV −1(I − P )y,

where V corresponds to the estimate of the correlation matrix. In the same way,

the degrees of freedom can be defined as df = tr[(I − P )tV −1(I − P )], allowing

a comparison to be made between different models using an approximate F-test

[McMullan et al. (2007)].

2.8 Testing for No Effect and Sensitivity Anal-

ysis

Using the approximate F-test, the main aim in this section is to test a null

hypothesis that a linear effect is adequate compared to a nonparametric effect,

so assessing whether a nonparametric effect is required. The sensitivity analysis

also allows us to assess possible changes in the conclusions under different values

of degrees of freedom.

Table 2.3 provides the p-values to assess the need for a nonparametric effect

for the three variables under 6 degrees of freedom, indicating that a nonparamet-

ric effect is required for day and year for log(SO4(S) + 1).

Tables 2.4 to 2.6 show the results under different degrees of freedom, indicat-

ing that the results are stable. According to these results there is no doubt that

a linear approach works well for log(DOC) and log(NO3 + 0.5). The opposite

conclusion is observed in the variable log(SO4(S) + 1) where a nonparametric

effect for year and day is required.

Figure 2.11 depicts the estimate for year and day for log(SO4(S) + 1), the upper

panel displays the ECN, while the lower panel displays the AWMN. In each
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log(DOC) log(NO3 + 0.5) log(SO4(S)) + 1)

Parameter ECN AWMN ECN AWMN ECN AWMN

year df(6) 0.120 0.211 0.409 0.063 0.002 0.001

day df(6) 0.804 0.290 0.167 0.496 0.005 0.010

Table 2.3. p-values for the test of the need for a nonparametric effect opposed
to linear effect at ECN and AWMN sites

p values

ECN df=4 df=6 df=8 AWMN df=4 df=6 df=8

year 0.066 0.120 0.162 year 0.248 0.211 0.246

day 0.871 0.804 0.751 day 0.247 0.290 0.453

Table 2.4. p-values sensitivity analysis for variable log(DOC) to assess stability
under different degrees of freedom for year and day

p values

ECN df=4 df=6 df=8 AWMN df=4 df=6 df=8

year 0.512 0.409 0.272 year 0.047 0.063 0.069

day 0.220 0.167 0.110 day 0.429 0.496 0.733

Table 2.5. p-values sensitivity analysis for variable log(NO3 + 0.5) to assess
stability under different degrees of freedom for year and day

p values

ECN df=4 df=6 df=8 AWMN df=4 df=6 df=8

year 0.002 0.002 0.003 year 0.012 0.001 0.001

day 0.006 0.005 0.007 day 0.010 0.010 0.027

Table 2.6. p-values sensitivity analysis for variable log(SO4(S) + 1) to assess
stability under different degrees of freedom for year and day
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graph the points corresponds to partial residuals, the solid line corresponds to

the smooth function fitted and the dashed line corresponds to + 2 standard error

band [Bowman & Young (1996)]. The outliers in the ECN corresponds to 1.5

which is also observed in the time series graphs.

Figure 2.11. partial residuals (points), fitted smooth function (solid line) and +
2 standard error band (dashed line) for additive model variable log(SO4(S) + 1)
at ECN and AWMN sites

2.9 Summary

The descriptive analysis indicates that 75% of the values for all the variables

lie in the same range in both data sets, although a higher variability for the ECN

data is observed in the descriptive analysis as well as in the time series graphs.

The analysis of the behaviour of the variables over the year through monthly

boxplots to identify seasonal patterns, the relationship between variables through

the scatterplot matrix and the Bland-Altman plots, indicates that
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• there are variables with a seasonal pattern such as pH, log(DOC), log(Ca+

2) and log(Cl + 3) in both data sets

• the linear relation between variables is different in both data sets.

• only pH, log(DOC) and log(SO4(S) + 1) show a good level of agreement

while for the other variables the ECN data provide higher values in average

than the AWMN data.

Regarding the scientific questions formulated at the beginning of this chapter the

analysis of the parameters in Table 2.2 allows the presence of linear trend and

seasonal components over time to be identified. In addition, it also allows us to

establish differences between the two data sets.

With respect to the assessment of trend over time, variables such as log(Na+ 5),

log(Ca+2), log(Al+0.5) and log(K+0.5) show a downward trend over both data

sets, log(DOC) shows an upward trend for the AWMN data while the ECN data

show a downward trend. Variables such as pH and log(Cl+3) exhibit an upward

trend in the ECN data while log(Fe + 0.5) and log(SO4(S) + 1) exhibit an up-

ward and downward trend respectively in the AWMN data. Only log(Mg + 0.5)

and log(NO3+0.5) did not show a trend either in the ECN or in the AWMN data.

Looking to identify similar behaviour in both data sets, Table 2.2 allows us to

establish that only log(Ca+ 2) and log(Al + 0.5) show the same behaviour with

a downward trend and seasonal component in both data sets while log(Na + 5)

shows a downward trend but not a seasonal component in both data sets.

For the other 8 variables the results indicate different behaviour, showing a sea-

sonal component in both data sets but only an upward trend in the ECN data

(pH and log(Cl + 3)), trend and seasonal components but only for the AWMN

data (log(Fe + 0.5) and log(SO4(S) + 1)), trend in both data sets but only a

seasonal component for the AWMN data (log(K + 0.5)), seasonal components in
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both data sets but an opposite trends, upward trend for the ECN and downward

trend for the AWMN (log(DOC)) and only a seasonal component for the AWMN

data (log(NO3 + 0.5) and log(Mg + 0.5)).

The differences between the two locations could be explained by several possible

reasons. It is clear that there are differences in the collection process for both

sources of information, as well as differences between locations, indicating that

the physical characteristics of the two catchments are different. The fact that the

information from the ECN data provides higher values than the AWMN, allows

us to confirm that the level of agreement is not good for the large majority of

the variables in the two catchments. Only pH, log(DOC) and log(SO4(S) + 1)

showed a good level of agreement.

The introduction of additive models provides an opportunity to work with en-

vironmental data using nonparametric regression. The variables chosen indicate

that a linear approach was suitable, although for log(SO4(S) + 1) an additive

model using a smooth function for year and day is required.

In the next chapter, the aim is to explore in greater detail the use of these mod-

els over environmental data when information over time and space is collected

simultaneously.



Chapter 3

Catchment Modelling

The main objective of this chapter is to evaluate the quality of the water in the

Tarland catchment located in the north of Scotland (Figure 3.1). The informa-

tion provided by the Macaulay Institute corresponds to nitrates and phosphates

measured in 6 variables (NH4.N, Total N, NO3.N, PO4.P, Total P and Suspended

Solids) collected regularly at 17 sites from April 2004 to November 2008. Site 33

does not have information for the period between April 2007 and November 2008

and the information for suspended solids is missing between 19th of February

2007 and the 4th of July 2007.

This chapter provides a descriptive analysis of the data and a simple model in-

cluding time (trend and seasonal components) and space as covariates. Initially,

standard spatial methods based on Euclidean distance have been used.

Given that the location for each site was not provided by the Macaulay Insti-

tute, coordinates in kilometres were calculated to be able to use the location of

each site. According to the new coordinates the maximum distance is 7 kilome-

tres corresponding to site 8 and 1 which are the most separated sites located in

the map.

38
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3.1 Descriptive Analysis

The first step was to evaluate the need for a transformation of the scale for

the 6 variables and to identify possible outliers. For NH4.N, Suspended Solids

(SuSo), PO4.P and Total P, a log(x) transformation was applied, while for NO3.N

and Total N the transformation applied was log(x+ c) with c = 1.

Figure 3.1 shows a map with the locations of the 17 sites. Figures 3.2 to 3.7

show the time series by site for each of the variables; these shows a diminution

in the sampling frequency since 2006.

Figure 3.8 shows the boxplot by site for each of the six variables.

• For log(NH4.N), sites 1, 27, 30 and 31 shows the highest values.

• For log(NO3.N + 1) and log(TotalN + 1), sites 6, 13 and 16 shows the

highest values while sites 7, 8 and 30 shows the lowest values.

• For log(PO4.P ) and log(TotalP ), sites 1,13, 14 and 27 shows the highest

values while sites 8 and 10 shows the lowest.

• For log(SuSo), sites 14, 20 and 30 shows the highest values while site 13

show the lowest value.

3.2 Model for time and space effects

3.2.1 Linear Model

The data provided by the Macaulay Institute corresponds to observations col-

lected over time and space. One possible way of analysing these data is to treat

the information in a marginal way, separating time and space. A second possibil-

ity, which is the main aim of this chapter, is to fit a model including both time

and space simultaneously, although this means that a proper covariance structure
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Figure 3.1. Location for the 17 sites in the Tarland Catchment

Figure 3.2. Time Series for log(NH4.N) by Site
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Figure 3.3. Time Series for log(NO3.N + 1) by Site

Figure 3.4. Time Series for log(Total.N + 1) by Site
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Figure 3.5. Time Series for log(PO4.P ) by Site

Figure 3.6. Time Series for log(TotalP ) by Site
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Figure 3.7. Time Series for log(SuSo) by Site

Figure 3.8. Boxplot for variables log(NH4.N), log(NO3.N + 1), log(TotalN +
1), log(PO4.P ), log(TotalP ) and log(SuSo) by site
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for both time and space must be included if required.

A very simple approach is available in the model below, which fits a linear effect

over year, a sinusoidal seasonal effect plus a linear spatial trend, where X (North-

South) and Y (West-East) corresponds to the coordinates of the 17 sites. This

model is fitted under the assumption that εi are independent with mean 0 and

constant variance σ2.

y = β0+β1year+β2cos

(
2π
(days

366

))
+β3sin

(
2π
(days

366

))
+β4X+β5Y+εi i = 1, ..., n

(3.1)

Table 3.1 shows the estimated parameters for the six variables under model (3.1).

For log(NH4.N), log(PO4.P ), log(TotalP ) and log(SuSo) there is a trend over

time, although according to the size of this parameter it is not strong. All the

variables show a seasonal pattern that is captured by the sine and cosine terms.

The coordinates X and Y indicate higher values for log(NH4.N), log(PO4.P )

and log(TotalP ) in the direction of X while the opposite behaviour is observed in

the direction of Y. For log(NO3.N + 1) and log(TotalN + 1), X and Y indicate

lower values in both directions while for log(SuSo) neither parameter is signifi-

cant.

Figure 3.9 indicates that a linear approach may be not adequate for variables

such as log(NO3N + 1), log(TotalN + 1) and log(SuSo) where the plots of the

residuals against fitted values show a systematic pattern.

For variables such as log(NH4N), log(TotalP ) and log(PO4.P ) a linear ap-

proach seems to work well, although the idea in the next section is to test it is

suitability by comparing it with a nonparametric effect.
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Linear Model Parameter

log(NH4.N) log(NO3.N + 1) log(TotalN + 1)

Parameter Estimate p-value Estimate p-value Estimate p-value

year -0.049 0.031 0.016 0.067 0.010 0.222

cos -0.086 0.055 0.107 <0.001 0.092 <0.001

sin 0.055 0.169 0.075 <0.001 0.055 <0.001

X 0.059 0.023 -0.123 <0.001 -0.113 <0.001

Y -0.142 <0.001 -0.135 <0.001 -0.135 <0.001

log(PO4.P ) log(TotalP + 1) log(SuSo)

Parameter Estimate p-value Estimate p-value Estimate p-value

year -0.216 <0.001 -0.168 <0.001 -0.203 <0.001

cos 0.133 0.004 0.001 0.994 -0.153 0.019

sin -0.364 <0.001 -0.205 <0.001 0.148 0.010

X 0.139 <0.001 0.062 <0.001 0.018 0.626

Y -0.093 0.003 -0.096 <0.001 0.028 0.521

Table 3.1. Parameters for linear model for all variables

Figure 3.9. Residuals versus fitted values for all the variables under a linear
model
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3.2.2 Use of Additive models in the Tarland Catchment

The results observed in the previous section indicate that a linear model as a

first approach was not adequate to capture the trend over time and space. In this

section the aim is to use additive models [Hastie & Tibshirani (1990)] to capture

in a better way the trend over time and space. The additive model is fitted under

the assumption that the errors are independent, although later in this chapter

the need to include a covariance structure over time and/or space is assessed in

the residuals.

In this case the model to be fitted is model (3.2), where the mj(xj) j = 1, ..., p,

correspond to smooth functions estimated in a nonparametric manner and the εi

are assumed to be independent with mean 0 and constant variance σ2.

y = β0 +m1(year) +m2(days) +m3(X, Y ) + εi i = 1, ..., n (3.2)

For model (3.2), each of the mj(xj) j = 1, ..., p is fitted through the backfitting

algorithm while β0 is estimated by ȳ.

To illustrate how each function is estimated, we rewrite model (3.2) as y − β0 −

m1(year) − m2(days) = m3(X, Y ) + εi, obtaining m̂3(X, Y ) by smoothing the

residuals of the model after fitting m̂1(year) and m̂2(days), i.e. m̂3(X, Y ) =

S(y − ȳ − m̂1(year) − m̂2(days)). In the same way, we can obtain m̂1(year) =

S(y− ȳ−m̂2(days)−m̂3(X, Y )) and m̂2(days) = S(y− ȳ−m̂1(year)−m̂3(X, Y )).

The algorithm is an iterative process which terminates after the individual func-

tions do not change appreciably.

Figure 3.10 depicts the graphs for each of the variables over the 17 sites. These

correspond to the plot of the average of each site over time. The colours over the

maps indicates how the variables change over space.
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Figure 3.10. Distribution over space for the average at each site over time

Figures 3.11 to 3.16 show the fitted components of an additive model over the

six variables. Each term shows the relationship between the dependent variable

and the covariates. The solid line corresponds to the smooth function fitted, the

dashed line corresponds to a + 2 standard error band and the surface corresponds

to a smoothing function in two dimensions to capture the trend for each variable

over space; the last corresponds to m̂3(X, Y ) in model (3.2).

The degrees of freedom value chosen for each single covariate was 6, while a
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value of 12 was chosen to obtain a smooth function over two covariates simul-

taneously, in this case the location of each site. This provides enough flexibility

beyond a linear shape while the relatively modest value used, ensures that we

capture large scale trend rather than small scale fluctuations.

Figure 3.11. Plot of the components of additive models for log(NH4.N)

Figure 3.12. Plot of the components of additive models for log(NO3.N + 1)
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Figure 3.13. Plot of the components of additive models for log(TotalN + 1)

Figure 3.14. Plot of the components of additive models for log(PO4.P )

Figure 3.15. Plot of the components of additive models for log(TotalP )
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Figure 3.16. Plot of the components of additive models for log(SuSo)

3.3 Diagnostic Check

Figure 3.17 shows the graphs of residuals versus fitted values for all vari-

ables indicating that the additive models fit well, with only log(PO4.P ) showing

unusual behaviour. Likely due to observations of limit of detection values.

Figure 3.17. Residuals versus fitted values for all the variables under an additive
model

Since the data are not equally spaced, it is not possible to use an autocorrelation
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function to evaluate the presence of autocorrelation over time. One possibility

explained by Diblasi and Bowman (2001) is to build a variogram for the residu-

als. This test was originally developed to evaluate indepedence over space for a

single sample but it is also useful as a diagnostic check for regression models by

examining the residuals.

The test evaluates the evidence that the empirical variogram changes as a func-

tion of the distance h (in this case h stands for distance between location rather

than smoothing parameter), using γ̂(h) = 1
2

1
|N(h)|

∑
N(h) |Y (si) − Y (sj)|

1
2 as an

estimator, where N(h) denotes the collection of pairs of observations separated

by a distance h. Independence over time or space is reflected in a constant vari-

ogram of the form γ(h) = σ2, where γ(h), the theoretical variogram, is a function

that describes the degree of dependence in two dimensions of a set of observations

collected over space or over time in one dimension.

Under the assumption that the distribution does not change over space, known

as stationarity and uniformity in all direction, known as isotropy [Cressie (1993)],

a model for the data can be expressed as

Y (s) = µ+ ε(s),

where ε(s) are assumed to be independent with variance equal to γ(h). To assess

if the variogram changes as a function of the distance, the idea is to use nonpara-

metric regression models, using a linear approach to provides an smooth function

from the differences pairs (|si− sj|, |Y (si)−Y (sj)|
1
2 ), denoted by (hij, dij), where

i < j. The estimate of the variogram is defined as γ̂(h) =
∑

i<j wijdij, where wij

the weights are derived from a nonparametric regression.

This approach corresponds to a special case for checking a linearity assump-

tion in regression models [Azzalini & Bowman (1993)], allowing us to establish a



CHAPTER 3. CATCHMENT MODELLING 52

similar idea; if the errors are independent the variogram γ(h) is constant, other-

wise any significant evidence provided by the nonparametric regression, indicates

the presence of spatial correlation. Diblasi and Bowman (2001), provide a test to

assess the presence of spatial correlation, allowing us to obtain a p-value under a

null hypothesis that γ(h) = σ2.

The inclusion of references bands [Bowman & Young (1996)], provides a graphical

tool to assess changes in the variogram as a function of the distance, where these

bands display pointwise standard errors at each value of h, as 2[v̂ar(γ̂(h)− d̄)]
1
2 ,

where d̄ is the mean value of dij.

To be able to construct the variogram to test autocorrelation over time, the

date when the data was collected was taken in Julian format as a distance vari-

able. Figure 3.18 depicts the variogram for each variable with their respective

p-values under a hypothesis of independence over time, indicating no evidence of

autocorrelation over time for all six variables.

Following the same idea Figure 3.19 depicts the variograms for each of the six

variables with their corresponding p-values, under a hypothesis of independence

over space. It is important to highlight here that the reason why the test devel-

oped by Diblasi and Bowman (2001) can be applied is that there is no evidence of

autocorrelation over time. According to the results observed in the variograms,

only log(TotalP ) show evidence of spatial correlation with a p-value=0.038, al-

though it is not a strong evidence in accordance with the output for the other

variables.

To confirm the previous statement Figure 3.20 shows the variogram proposed by
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Figure 3.18. Independence test over time for residuals under an additive model

Figure 3.19. Independence test over space for residuals under an additive model
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Cressie and Hawkins (1980) fitted for all variables.

γ(h) =

(
1
Nh

∑Nh

i=1 |Y (si+h)− Y (si)|1/2]4
)

(
0.914 + 0.988

Nh

)
Only log(TotalP ) shows a shape that might fit with some spatial model [Webster

& Oliver (2007)] while for the rest of the variables it confirms the results observed

in figure 3.19 indicating no correlation over space.

Despite the fact that the evidence for correlation over space is not strong for

the variable log(TotalP ), it is possible to assess further whether a spatial model

could be fitted. Table 3.2 depicts the results for different models (Exponential,

Figure 3.20. Cressie and Hawkins variogram for residuals under an additive
model

Gaussian, Spherical and Pure Nugget), showing the estimated parameter for the

nugget, the sill, the range and in addition the sum of squares for each model fit-

ted to the residuals. The estimated parameters where obtained using the variofit
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option in the package geoR [Pinheiro & Diggle (2009)], using the weighted least

squares approach as suggested by Cressie (1980).

According to the results for the parameters, the model that fits best is a pure

nugget effect. Recalling that the maximum distance between the two most sepa-

rated sites in the map is 7 kilometres, the parameter for the range is unacceptably

large mainly for the Exponential and Spherical models, making these models un-

suitable to describe the residuals of model (3.2).

Spatial model over residuals model 3.2

Model Nugget Sill Range Sum of Squares

Pure Nugget 0.2209 0 0 0.0031

Exponential 0.1988 20.61 2709.809 0.0009

Spherical 0.1988 2.336 462.07 0.0009

Gaussian 0.2040 0.5141 19.7707 0.0005

Table 3.2. Spatial model for residuals under an additive model for log(TotalP )

3.3.1 Testing for No Effect and Sensitivity Analysis

Having fitted an additive model for the six variables the next step is to assess

the need for a nonparametric effect rather than a linear effect, following the

same idea developed by Hastie and Tibshirani (1990) to compare different models

based on an approximate F-test. The test was performed under the assumption

of independence based on the earlier results. According to Table 3.3 there is clear

evidence that a nonparametric effect is required for all the variables.

The sensitivity analysis allows us to assess changes in the conclusions under dif-

ferent values of degrees of freedom, showing that the evidence of the need for a

nonparametric term is stable.
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log(NH4.N) log(NO3.N + 1) log(TotalN + 1)

Parameter p-value Parameter p-value Parameter p-value

year df(6) <0.001 year df(6) <0.001 year df(6) 0.030

day df(6) <0.001 day df(6) 0.028 day df(6) 0.023

(X,Y) df(12) <0.001 (X,Y) df(12) <0.001 (X,Y) df(12) <0.001

log(PO4.P ) log(TotalP ) log(SuSo)

Parameter p-value Parameter p-value Parameter p-value

year df(6) <0.001 year df(6) <0.001 year df(6) <0.001

day df(6) <0.001 day df(6) <0.001 day df(6) <0.001

(X,Y) df(12) <0.001 (X,Y) df(12) <0.001 (X,Y) df(12) <0.001

Table 3.3. p-values for the test of the need for a nonparametric effect opposed
to linear effect for year, day and (X,Y) for all variables

Table 3.4 shows the conclusions over different values of degrees of freedom. Ac-

cording to these results, for log(NH4.N), log(PO4.P ), log(TotalP ) and log(SuSo)

there is a clear evidence that nonparametric effects are required for year, day and

(X,Y).

For log(NO3.N + 1) and log(TotalN + 1) there is a marginal result observed

for day, year and day respectively, nevertheless the overall result suggests that a

nonparametric effect is required for these two variables where a non-linear pattern

can be observed in Figures 3.12 and 3.13.

3.3.2 Additive Model including river flow information

River flow information provides a measure of the overall water resources of

a region, reflecting regional rainfall and evaporation patterns. In addition, it is

sensitive to climatic and other factors, such as land uses and pollutants, allow-

ing us to capture more information about the dynamics of the catchment. It is

therefore a natural candidate to include in models for water quality,
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p values log(NH4.N)

df=4 df=6 df=8 df=10 df=12 df=14

year <0.001 <0.001 <0.001 (X,Y) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

p values log(NO3.N + 1)

df=4 df=6 df=8 df=10 df=12 df=14

year 0.001 <0.001 <0.001 (X,Y) <0.001 <0.001 <0.001

day 0.297 0.028 <0.001

p values log(TotalN + 1)

df=4 df=6 df=8 df=10 df=12 df=14

year 0.104 0.030 <0.001 (X,Y) <0.001 <0.001 <0.001

day 0.161 0.023 <0.001

p values log(PO4.P )

df=4 df=6 df=8 df=10 df=12 df=14

year <0.001 <0.001 <0.001 (X,Y) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

p values log(TotalP )

df=4 df=6 df=8 df=10 df=12 df=14

year <0.001 <0.001 <0.001 (X,Y) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

p values log(SuSo)

df=4 df=6 df=8 df=10 df=12 df=14

year <0.001 <0.001 <0.001 (X,Y) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

Table 3.4. p-values sensitivity analysis under different degrees of freedom
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To be able to include the flow information as a covariate, there are particular

issues which must be addressed. The information provided by the Macaulay In-

stitute contains flow information at one single site. It would be more informative

to have a measure of flow as each site of the river. However, based on previous

discussion with the Macaulay Institute experts, it was decided to use the infor-

mation available, assuming that this information reflects the behaviour over all

the catchment, given that we are working with a small catchment.

For this exercise we have daily river flow information from 2000 to 2006 and

the six variables with information from 2004 to 2008. We took only the informa-

tion from 2004 to 2006 and matched the river flow information with the specific

dates when our six variables were collected.

Figure 3.21 depicts the time series for river flow, indicating a trough between

2005 and 2006. Figure 3.22 depicts plots of flow against all the six variables,

indicating non-linear patterns.

Figure 3.21. Time Series of river flow information
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Figure 3.22. River flow against all six variables

The first step is to assess the improvement achieved by including the flow in-

formation in an additive model. The additive model to be fitted corresponds to

model (3.3), where m4(flow) corresponds to a smooth function for river flow,

where εi are assumed independent with mean 0 and constant variance σ2.

y = β0 +m1(year) +m2(days) +m3(X, Y ) +m4(flow) + εi i = 1, ..., n (3.3)

Table 3.5 shows the p-values under a null hypothesis that a model without flow

is an adequate description of the data. The results of the approximate F-test

confirm that the model which includes flow is superior for all six variables.

Figures 3.23 to 3.28 depict the smooth functions fitted for all six variables under

model (3.3). Each plot shows the relationship of the dependent variable against

the covariates to assess trend over time and space.



CHAPTER 3. CATCHMENT MODELLING 60

ANOVA between model with and without flow

log(NH4.N) log(NO3.N + 1) log(TotalN + 1)

<0.001 <0.001 <0.001

log(PO4.P ) log(TotalP ) log(SuSo)

<0.001 <0.001 <0.001

Table 3.5. Comparison between models including flow

Figure 3.23. Plot of the components additive models for log(NH4.N) including
flow
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Figure 3.24. Plot of the components additive models for log(NO3.N + 1) in-
cluding flow

Figure 3.25. Plot of the components additive models for log(TotalN + 1) in-
cluding flow
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Figure 3.26. Plot of the components additive model for log(PO4.P ) including
flow

Figure 3.27. Plot of the components additive model for log(TotalP ) including
flow
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Figure 3.28. Plot of the components additive model for log(SuSo) including
flow

Figures 3.29 to 3.34 provide a comparison of the estimates for year, day and (X,Y)

under an additive model without flow (upper panel) and the additive model in-

cluding flow (lower panel). Both models were fitted using the same period of

information from 2004 to 2006. The upper panel corresponds to the additive

model without river flow, while the lower panel corresponds to the additive model

including river flow.

According to these results only log(NO3.N + 1) does not show changes in the

estimates for all the three covariates. With respect to year, the estimate for

log(TotalN + 1) is the same in both models, for log(NH4.N), log(TotalP ) and

log(SuSo), the estimates of the model including river flow are better, showing

less dispersion for the fitted values in respect to the residuals. For log(PO4.P )

the estimate under the model without river flow is better.

For the covariate day, the estimate for log(NH4.N) and log(SuSo) do not show
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any change. For log(TotalN + 1) and log(TotalP ), the estimates are better un-

der the model including river flow. For log(PO4.P ) the estimate under model

without flow river is better.

With respect to (X,Y), the estimate of the trend over space, there is no change in

the estimates irrespective of whether a model with or without river flow is used.

Figure 3.29. log(NH4.N) comparison of the estimates for year, day and (X,Y)
under an additive model without flow and an additive model including flow

Figure 3.30. log(NO3.N + 1) comparison of the estimates for year, day and
(X,Y) under an additive model without flow and an additive model including flow
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Figure 3.31. log(TotalN + 1) comparison of the estimates for year, day and
(X,Y) under an additive model without flow and an additive model including flow

Figure 3.32. log(PO4.P ) comparison of the estimates for year, day and (X,Y)
under an additive model without flow and an additive model including flow
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Figure 3.33. log(TotalP ) comparison of the estimates for year, day and (X,Y)
under an additive model without flow and an additive model including flow

Figure 3.34. log(SuSo) comparison of the estimates for year, day and (X,Y)
under an additive model without flow and an additive model including flow
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3.4 Testing for No Effect and Sensitivity Anal-

ysis including flow.

Having shown the improvement by including flow, the next step is to assess the

need for a nonparametric effect. According to Table 3.6, there is clear evidence

that a nonparametric effect is not required for the variable day for log(NO3.N+1)

and for the variable year for log(TotalN + 1). For the other variables there is

evidence that a nonparametric effect is required.

log(NH4.N) log(NO3.N + 1) log(TotalN + 1)

Parameter p-value Parameter p-value Parameter p-value

year df(6) <0.001 year df(6) 0.003 year df(6) 0.064

day df(6) <0.001 day df(6) 0.551 day df(6) 0.026

(X,Y) df(12) <0.001 (X,Y) df(12) <0.001 (X,Y) df(12) <0.001

flow df(6) <0.001 flow df(6) <0.001 flow df(6) 0.002

log(PO4.P ) log(TotalP ) log(SuSo)

Parameter p-value Parameter p-value Parameter p-value

year df(6) <0.001 year df(6) <0.001 year df(6) <0.001

day df(6) <0.001 day df(6) <0.001 day df(6) <0.001

(X,Y) df(12) <0.001 (X,Y) df(12) <0.001 (X,Y) df(12) <0.001

flow df(6) <0.001 flow df(6) <0.001 flow df(6) <0.001

Table 3.6. p-values for test of the need for a nonparametric effect opposed to a
linear effect including flow

Following the same idea discussed earlier, the sensitivity analysis allows us to

assess the sensitivity of the test under different values of degrees of freedom. Ac-

cording to Table 3.7, for log(NH4.N), log(PO4.P ), log(TotalP ) and log(SuSo)

a nonparametric effect is better than a linear effect over different values of de-

grees of freedom. For log(NO3.N + 1) and log(TotalN + 1) the conclusion is

that a nonparametric effect is not required for day and year, indicating that a

semiparametric model could be the best approach.
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p values log(NH4.N)

df=4 df=6 df=8 df=10 df=12 df=14

year <0.001 0.005 <0.001 (X,Y) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

flow <0.001 <0.001 <0.001

p values log(NO3.N + 1)

df=4 df=6 df=8 df=10 df=12 df=14

year 0.015 0.003 0.001 (X,Y) <0.001 <0.001 <0.001

day 0.996 0.550 0.190

flow <0.001 <0.001 <0.001

p values log(TotalN + 1)

df=4 df=6 df=8 df=10 df=12 df=14

year 0.081 0.064 0.019 (X,Y) <0.001 <0.001 <0.001

day 0.117 0.026 0.006

flow <0.001 0.002 0.005

p values log(PO4.P )

df=4 df=6 df=8 df=10 df=12 df=14

year 0.006 0.003 0.004 (X,Y) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

flow <0.001 <0.001 <0.001

p values log(TotalP )

df=4 df=6 df=8 df=10 df=12 df=14

year 0.015 <0.001 <0.001 (X,Y) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

flow <0.001 <0.001 <0.001

p values log(SuSo)

df=4 df=6 df=8 df=10 df=12 df=14

year <0.001 <0.001 <0.001 (X,Y) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

flow <0.001 <0.001 <0.001

Table 3.7. p-values sensitivity analysis under different degrees of freedom in-
cluding flow information
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According to the results in Table 3.7, a model with linear effect for days for

log(NO3.N + 1) and year for log(TotalN + 1) will be adequate. In this case the

linear terms added for day corresponds to sin
(

2π day
366

)
and cos

(
2π day

366

)
which

capture the seasonality effect suitably [Esterby (1993)].

For log(NO3.N+1) the model chosen is y = β0+β1sin
(

2π day
366

)
+β2cos

(
2π day

366

)
+

m1(year) +m2(X, Y ) +m3(flow).

For log(TotalN+1) the model chosen is y = β0+β1year+m1(days)+m2(X, Y )+

m3(flow).

3.5 Diagnostic Check

Figure 3.35 depicts the residuals versus fitted values for all the variables indi-

cating that the models fit well. The linear pattern for log(PO4.P ) correspond to

limit of detection values. The results for log(NO3.N + 1) and log(TotalN + 1)

correspond to the semi-parametric models.

Figure 3.36 and 3.37 show the variograms to evaluate the independence over

time and space showing no autocorrelation over time. Based on that result the

test for independence over space can be applied, and this indicates that only

log(TotalP ) shows correlation over space, with a p-value=0.035, although it is

not strong.
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Figure 3.35. Residuals versus fitted values under an additive model including
flow

Figure 3.36. Independence test over time for residuals under an additive model
including flow
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Figure 3.37. Independence test over space for residuals under an additive model
including flow

Figure 3.38 shows the variogram suggested by Cressie and Hawkins (1980) for all

the six variables. As well as in the previous section only log(TotalP ) shows a

shape that might fit with some spatial model.

In the same way as in the previous section, Table 3.8 depicts the results of dif-

ferent spatial models (Pure Nugget, Exponential, Spherical and Gaussian ) for

the residuals of model (3.3) for log(TotalP ). According to this result a Gaussian

model could be used to explain the spatial covariance structure of log(TotalP ).

However, based on the previous test of independence over space carried out over

the residuals of model (3.2), where the amount of information used was twice (ob-

served period 2004 to 2008) the amount of information that we are using in model

(3.3) (observed period 2004 to 2006), the fact that log(NH4.N), log(NO3.N+1),

log(TotalN + 1), log(PO4.P ) and log(SuSo), did not show evidence of correla-

tion over space and a weak evidence of spatial correlation with a p-value=0.035,

the decision was to assume independence over space for log(TotalP ).
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Figure 3.38. Cressie and Hawkins variogram for residuals under an additive
model including flow

Spatial model over residuals model 3.3

Model Nugget Sill Range Sum of Squares

Pure Nugget 0.1494 0 0 0.0008

Exponential 0.1074 150.93 10998 0.0001

Spherical 0.1075 17.294 1890.71 0.0001

Gaussian 0.1141 0.1284 6.012 0.0006

Table 3.8. Spatial model for residuals under an additive model including flow
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Given that the assumption made here corresponds to a specific case, it is impor-

tant to highlight that the use of additive models for correlated data is possible,

regarding that the principal effects of correlation are in the calculation of stan-

dard errors and in the implementation of model comparison [Giannitrapani et al.

(2005)]. In the case of correlated data, a modification of the RSS through the

generalised least squares criterion allows us to include the correlation structure

as

RSS = yt(I − P )tV −1(I − P )y,

where V corresponds to the estimate of the correlation matrix, providing a solu-

tion for correlated data.

3.6 Summary

The ability of additive models to fit a smooth function, unrestricted with

respect to shape, improves the representation of trend over time and space simul-

taneously. This helpfully extends the statistical tools available for environmental

data, when a linear approach does not offer a suitable description.

In the analysis made in this chapter, a sequence of steps was presented to cover

the following issues:

• assessment of time and/or space correlation

• fit of additive models

• model comparison (between models and linear versus nonparametric effect)

• sensitivity analysis

The comparison between a linear and a nonparametric effect allows us to confirm

whether a nonparametric effect is required. Although the test suggested by Hastie

and Tibshirani (1990) does not follow all the properties of an F distribution, it

provides good guidance that allows comparisons between different models to be
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made.

The inclusion of flow as a covariate provided useful information that significantly

improves the fitted models.

For log(NH4.N), log(PO4.P ) log(TotalP ) and log(SuSo) there is a upward

trend with a peak when flow values are between 1.2 and 2.0. For log(NO3.N+1)

and log(TotalN + 1) the values fluctuate showing a peak close to 1.3 and two

trough in 0.5 and 1.7.

The comparison between a linear effect and a nonparametric effect for log(NO3.N+

1) and log(TotalN + 1) allows us to identify that a semi-parametric model is the

best approach.

Regarding the scientific question mentioned at the beginning of this chapter,

it can be observed how each variable shows a fluctuation over time and a clear

trend over space. The following conclusions correspond to the results observed

in model (3.2), given that there are more data available and the interest of the

Macaulay Institute corresponds to this period of time. This corresponds to the

information collected regularly at 17 sites from April 2004 to November 2008.

• For log(NH4.N) there is fluctuation over the years showing a slightly down-

ward trend with two peaks, the first one in the middle of 2005 and the

second one in the middle of 2008, while a trough is observed between 2007

and 2008. Over space, a trend in the direction of site 1 and 31 is observed

where the highest values are located.

• log(NO3.N + 1) showed a fluctuation over the years with a slightly upward

trend, with two peaks in the middle of 2005 and the beginning of 2008 and

two troughs at the end of 2004 and in the middle of 2007. With respect to
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space, the highest concentration are observed in the site 2, 5, 6, 13, 15 and

27, with 6 and 13 the sites with the highest values.

• log(TotalN+1) showed a fluctuation over the years, with a slightly upward

trend with two peaks in the middle of 2005 and the beginning of 2008 and

two troughs at the end of 2004 and in the middle of 2007. Over space, the

variable followed the same pattern as log(NO3.N + 1).

• log(PO4.P ) showed a downward trend over time with two main drops in

the middle of 2006 and at the end of 2008. Over space, the highest concen-

trations were observed in the sites 1, 13,14, 27 and 31.

• log(TotalP ) showed a clear downward trend until 2007, with a subsequent

shift in the trend, reaching a peak in the middle of 2008. Over space, the

conclusions follow the same pattern observed for log(PO4.P ).

• log(SuSo) showed a clear downward trend until the beginning of 2005 with

a diminution in the slope but still downward until the end of 2007, reaching

a peak in the middle of 2008. Over space, the highest values were observed

in the sites 20, 30 and 33, with 30 the site with the highest value .



Chapter 4

Statistical Models for River

Networks

In the previous chapter, the main aim was to fit an additive model to capture

the trend over time and space simultaneously, assuming that all the 17 sites were

connected over space and a Euclidean distance model was appropriate. In this

chapter, the main aim is to fit an additive model using distance measures which

reflect the fact that not all sites are flow-connected and that distance should be

measured along the river network.

The first part of this chapter provides an introduction to the uses of spatial

modelling over a river network. The second part which is the main aim of this

chapter, discusses how this idea can be used in fitting an additive model.

The analysis of a river network comes with two main questions: 1) what is the

proper distance measure to be used to capture the behaviour of the river over

space and 2) are the current models based on Euclidean distance suitable to cap-

ture the behaviour over space.

The use of Euclidean distance over the river seems to be a good first approach.

However, the river distance discussed by Ver Hoef et al (2005) might be more

76
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appropriate. Indeed, it would also be feasible to use a mixture of both, river

distance and Euclidean distance [Cressie et al. (2006)], adding the continuity of

land over space too.

The use of river distance, as discussed by Ver Hoef et al. (2005), has the problem

that the spatial autocovariance models based on Euclidean distance might not be

positive-definite, resulting in an invalid model. To tackle this problem the use of

moving averages, or kernel convolutions, provides suitable models for the spatial

covariance structure. The integration of

Z(s) =

∫ ∞
−∞

g(x− s|θ)W (x)dx, (4.1)

where W (x) is white noise and g(x|θ) is called the moving average function, al-

lows a valid autocovariance function defined as

C(h|θ) =


∫∞
−∞(g(x|θ))2dx+ ν2, if h=0,∫∞
−∞ g(x|θ)g(x− h|θ)dx, if h > 0,

(4.2)

where h corresponds to Euclidean distance and v2
j corresponds to the nugget ef-

fect at h = 0.

It is necessary to include in this expression a proper weighting to compensate

for the effect in the variance caused by splits in some part of the river [Ver Hoef

et al. (2005)]. The idea is to provide a weight to those cases where there are splits

upriver in such a way that the sum of all of them is equal to 1.

Different options have been mentioned as possible weights: flow, area of each

basin or river order. This modifies expression (4.2) by adding the proper weight-

ings as
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C(si, tj|θ) =


0 if s and t are not flow-connected,

C1(0) + ν2 if s=t,∏
j∈Bsi,tj

√
wjC1(d(si, tj)) otherwise.

(4.3)

where C1(h) =
∫∞
−∞ g(x|θ)g(x− h|θ)dx and d(si, tj) is the river distance.

Following the same idea, Cressie et al (2006) suggested a mixture of river dis-

tance and Euclidean distance, including a parameter λ ∈ [0, 1] which controls

the contribution of spatial dependence provided by river distance and Euclidean

distance. In the particular case of the exercise developed by Cressie et al (2006),

the kernel chosen was (1− d
r
) I(0 ≤ d ≤ r). Following the same notation of Cressie

et al (2006) the covariance function can be written as

cov(Y (s), Y (t)) = λσ2

[(Ω(t)

Ω(s)

) 1
2
(

1− 3

2

|s− t|
r1

)
+

1

2

( |s− t|
r1

)3
]

+ (1− λ)σ2

[(
1− 3

2

||s− t||
r2

)
+

1

2

( ||s− t||
r2

)3
]

(4.4)

where Ω(t) and Ω(s) provide the weighting based on the basin order and |s− t| =

d ≤ r1 and ||s − t|| = d ≤ r2 correspond to the river distance and Euclidean

distance respectively.

This brief explanation introduces the problem of working with river network

information and the use of different distances, Euclidean and/or river distance,

with a proper weighting to ensure a proper autocovariance function.
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4.1 River Network Modelling using Nonpara-

metric Regression

The main aim of this section is to present the use of nonparametric regression

using river distance, including the fact that all sites are not flow-connected.

The use of a directed acyclic graph (DAG) [Whittaker (1990)], helps us to un-

derstand the meaning of flow-connected or connectedness. Each of the circles

represent a site measured over the river network, while the arrows allow the flow

direction and the sites which are flow-connected to be identified.

According to Figure 4.1, S1, S2, S4 and S5 are flow-connected as well as S3,

S4 and S5, while S1 and S2 are not flow-connected with S3.

Figure 4.1. Directed acyclic graph (DAG) to explain flow connectedness using
5 sites measured over a river network.
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The connectedness between sites can be expressed as an n x n symmetric matrix,

where n corresponds to the number of sites. The connectedness matrix corre-

sponds to a matrix with 1’s in the diagonal, while off the diagonal the matrix

has the value 1 if both sites are connected and otherwise takes the value 0. In

this case the connectedness matrix corresponds to a 17 x 17 matrix which was

defined based on Figure 3.1 with a water flow direction to site 1.

The distance corresponds to river distance between each of the sites expressed in

a distance matrix. Alternatively, a vector of distances from the river mouth to

each observation can also being used. In this case a vector d with the distance

from each site to site 1 was calculated along the river network.

Having defined a distance along the river and indicated which sites are flow-

connected through a connectedness matrix, the modelling of a river network is

carried out using a nonparametric model of the form

yi = m(xi) + εi i = 1, ..., n (4.5)

where E(ε) = 0 and V ar(ε) = σ2 . An estimate for m̂(x) can be obtained by a

local mean estimator as

m̂(x) =

∑n
i=1w(xi − x;h)yi∑n
i=1w(xi − x;h)

, (4.6)

where w(xi − x;h), the weight function chosen, corresponds to a normal density

centred on zero with standard deviation equal to h, with h the smoothing pa-

rameter.

Given that we are using river distance, (xi − x) is replaced by (di) in (4.6) as,

m̂(x) =

∑n
i=1w(di;h)δijyi∑n
i=1w(di;h)δij

, (4.7)
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where

δij =

1 if i and j are flow-connected,

0 otherwise.

allowing us to obtain an estimate m̂(x), using only flow-connected points.

If the interest is to obtain an estimate for a new location along the river network,

the same idea can be used over new points. Expression (4.7) can be defined as

m̂(x) =

∑n
i=1w(xi − x;h)δiyi∑n
i=1w(xi − x;h)δi

, (4.8)

where x corresponds to the new point to be estimated. In the same way, δi allows

us to identify if x is flow-connected to xi, where .

δi =

1 if x is flow-connected to xi,

0 otherwise.

At this point we have the weighting, the river distance and the connectedness

but it still is necessary to select a suitable value for h. The idea is to evaluate

how different values of h capture the trend observed over the 17 sites.

Under a particular value of h, it is possible to assess if the pattern in the ob-

served values is reflected in the estimate, however in an attempt to provide a

better representation, an alternative is to obtain an estimate over new points

along the river network. The idea of this section is to provide the estimate of the

observed values, the estimate over new observations along the river network and

to assess how different values of h change the estimates.

For simplicity this example was carried out for one specific date (12 April 2004),

using the observed values of log(NH4.N), while the new points correspond to 136

points generated to reproduce the pattern on Figure 3.1. To obtain an estimate
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for the new points, the river distance between each of the new points and site 1

was calculated, including how the new points are flow-connected to each of the

17 sites.

Figure 4.2 depicts the estimates and the new estimates under different values

of h. In addition, it is possible to observe how the estimates tend to be more

similar as the h value is increased. This provides a graphical approach to choose

particular values of h. For this specific example a value of h = 1.5 seems to

provide a suitable result.

Figure 4.2. Choosing a smoothing parameter for log(NH4.N) on 12-April 2004
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4.2 Additive Model Including River Distance

Following this idea, the model to be fitted corresponds to model (4.9) un-

der the assumption that εi are independent with mean 0 and constant variance

σ2, where d corresponds to the upstream distance from each site to site 1 in

kilometres.

y = β0 +m1(year) +m2(days) +m3(d) + εi i = 1, ..., n (4.9)

Figures 4.3 to 4.8 depict the additive model fitted for each of the variables, show-

ing the smooth function fitted for year, day and upstream distance. For year and

day, the partial residuals can be observed as well as + 2 standard error bands.

To assess if the term m3(d) was capturing the trend over space suitably, the

strategy was to obtain the partial residuals as ri = yi− ȳ− m̂1(year)− m̂2(day),

calculate the average partial residuals by site and calculate the estimate over the

136 points created, using expression (4.8). The average partial residuals provides

a guide to the pattern. These values correspond to the bigger circles for each of

the 17 sites.

For log(NH4.N), log(NO3.N+1), log(TotalN+1), log(PO4.P ) and log(TotalP )

a similar value of degrees of freedom was used for all the variables. For log(SuSo)

the value for the smoothing parameter h for the upstream distance was lower, as

a smaller value was required to capture the trend over space in the catchment.
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Figure 4.3. Plot of the components additive model for log(NH4.N) river net-
work structure

Figure 4.4. Plot of the components additive model for log(NO3.N + 1) river
network structure
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Figure 4.5. Plot of the components additive model for log(TotalN + 1) river
network structure

Figure 4.6. Plot of the components additive model for log(PO4.P ) river network
structure
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Figure 4.7. Plot of the components additive model for log(TotalP ) river network
structure

Figure 4.8. Plot of the components additive model for log(SuSo) river network
structure
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4.3 Testing for No Effect and Sensitivity Anal-

ysis using the River Network

The results presented in this section were obtained under the assumption of

independent data. The evidence for independence over time and space observed

in earlier chapters, allows us to make that assumption, ensuring that the results

for no effect and the sensitivity analysis are valid.

Having fitted the additive models the next step is to assess the need for a non-

parametric effect versus a linear effect. Following the same idea as in the previous

chapters, Table 4.1 shows the results indicating that a nonparametric effect is re-

quired for year, day and d.

The sensitivity analysis allows us to assess the sensitivity of the test under differ-

ent values of degrees of freedom. Table 4.2 confirms the need for a nonparametric

effect for year, day and d.

log(NH4.N) log(NO3.N + 1) log(TotalN + 1)

Parameter p-value Parameter p-value Parameter p-value

year df(6) <0.001 year df(6) <0.001 year df(6) <0.001

day df(6) <0.001 day df(6) <0.001 day df(6) <0.001

(d) h(1.5) <0.001 (d) h(1.5) <0.001 (d) h(1.5) <0.001

log(PO4.P ) log(TotalP ) log(SuSo)

Parameter p-value Parameter p-value Parameter p-value

year df(6) <0.001 year df(6) <0.001 year df(6) <0.001

day df(6) <0.001 day df(6) <0.001 day df(6) <0.001

(d) h(1.5) <0.001 (d) h(1.5) <0.001 (d) h(0.5) <0.001

Table 4.1. p-values for test of the need for a nonparametric effect opposed to a
linear effect, River Network structure
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p values log(NH4.N)

df=4 df=6 df=8 h=2 h=1.5 h=1

year <0.001 <0.001 <0.001 (d) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

p values log(NO3.N + 1)

df=4 df=6 df=8 h=2 h=1.5 h=1

year <0.001 <0.001 <0.001 (d) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

p values log(TotalN + 1)

df=4 df=6 df=8 h=2 h=1.5 h=1

year <0.001 <0.001 <0.001 (d) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

p values log(PO4.P )

df=4 df=6 df=8 h=2 h=1.5 h=1

year <0.001 <0.001 <0.001 (d) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

p values log(TotalP )

df=4 df=6 df=8 h=2 h=1.5 h=1

year <0.001 <0.001 <0.001 (d) 0.005 <0.001 <0.001

day <0.001 <0.001 <0.001

p values log(SuSo)

df=4 df=6 df=8 h=2 h=1.5 h=1

year <0.001 <0.001 <0.001 (d) <0.001 <0.001 <0.001

day <0.001 <0.001 <0.001

Table 4.2. p-values sensitivity Analysis under different degrees of freedom, River
Network structure
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The residuals versus fitted values (Figure 4.9) show no evidence that the models

do not fit well, confirming that the models perform suitably over all the six

variables. For log(PO4.P ) the linear pattern corresponds to limit of detection

values.

Figure 4.9. Residuals versus Fitted Values River Network

4.4 Comparison of Euclidean and upstream dis-

tance

As part of this chapter, one of the main aims is to assess if there is an im-

provement when the trend over space is captured by river distance rather than

Euclidean distance. The comparison for all variables was carried out, assessing

the performance of the additive models using Euclidean and river distance.
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Figures 4.10 to 4.15 depict the smooth function for each variable using both

distances as well as the residuals versus the fitted values.

According to these results for log(NH4.N), log(NO3.N + 1), log(TotalN + 1),

log(PO4.P ) and log(TotalP ), both results are similar, while for log(SuSo) the

smooth function using Euclidean distance, captured better the trend over space.

The residuals versus fitted values indicated that the models fitted using river dis-

tance and Euclidean distance, fit well for log(NH4.N), log(PO4.P ), log(TotalP )

and log(SuSo).

For log(NO3.N + 1) and log(TotalN + 1) both models showed a good perfor-

mance, although a slight trend is observed in the residuals when the additive

model is fitted using river distance.

Figure 4.10. log(NH4.N) comparison of the smooth function fitted to capture
the trend over space and the residuals using Euclidean and river distance
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Figure 4.11. log(NO3.N + 1) comparison of the smooth function fitted to
capture the trend over space and the residuals using Euclidean and river distance

Figure 4.12. log(TotalN + 1) comparison of the smooth function fitted to
capture the trend over space and the residuals using Euclidean and river distance
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Figure 4.13. log(PO4.P ) comparison of the smooth function fitted to capture
the trend over space and the residuals using Euclidean and river distance

Figure 4.14. log(TotalP ) comparison of the smooth function fitted to capture
the trend over space and the residuals using Euclidean and river distance
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Figure 4.15. log(SuSo) comparison of the smooth function fitted to capture
the trend over space and the residuals using Euclidean and river distance

4.5 Summary

The main aim in this chapter was to test a new methodology for modelling

trend over space for river networks, adding the structure of the catchment into

an additive model indicating which stations are connected and which are not and

measuring distance along the river. This provides an approach that allows us to

be more accurate, providing a closer representation of the catchment.

Based on the scientific questions established by the Macaulay Institute and the

use of river distances to capture the trend over space rather than Euclidean dis-

tances, the main findings are:

• For log(NH4.N) there is a fluctuation over the years showing a slightly

downward trend with two peaks, the first one in the middle of 2005 and the

second one in the middle of 2008, while a trough is observed between 2007

and 2008.
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• log(NO3.N + 1) showed a fluctuation over the years with a slightly upward

trend, with two peaks in the middle of 2005 and the beginning of 2008 and

two troughs at the end of 2004 and in the middle of 2007.

• log(TotalN+1) showed a fluctuation over the years, with a slightly upward

trend with two peaks in the middle of 2005 and the beginning of 2008 and

two troughs at the end of 2004 and in the middle of 2007.

• log(TotalP ) showed a clear downward trend until 2007, with a subsequent

shift in the trend, reaching a peak in the middle of 2008.

• log(SuSo) showed a clear downward trend until the beginning of 2005 with

a diminution in the slope but still downward until the end of 2007, reaching

a peak in the middle of 2008.

• The term for trend over space for log(NH4.N), log(PO4.P ), log(TotalP ),

log(NO3.N + 1) and log(TotalN + 1) capture the variability of the catch-

ment suitably, according to the graphs of the partial residuals and the

estimates.

• The comparison between the smooth function for trend, using upstream

and Euclidean distances, indicates that for log(NH4.N), log(PO4.P ) and

log(TotalP ) the conclusion is the same indicating a trend in the direction

of site 1 and 31 where the highest values are observed. This indicates an

increment in the level of these variables in the direction south-east (SE).

• For log(NO3.N + 1) and log(TotalN + 1) the trend over space is the same

indicating higher values in sites 2, 5, 6, 13, 15 and 27. Over the 136 points

created, only site 30 shows a high value while the observed value is low.

However to be sure about the performance of the model, the value obtained

for this site was verified checking the fitted values, where a low value for

this site was observed confirming that the model performs well.

• For log(SuSo) the comparison of the average partial residuals values in
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respect to the 136 points created, indicates that for this variable the result

is not as good as the other variables. Despite that the residuals versus fitted

values shows that the model performs well, this model does not allows us

to answer properly one of the scientific questions in respect to the trend

over space.

• The sensitivity analysis confirms the need for a nonparametric effect to

explain the trend over time and space for all the variables.

• The comparison between models using Euclidean and river distance, in-

dicated that for log(NH4.N), log(PO4.P ) and log(TotalP ), the additive

models using river distances are better. For these three variables the mod-

els captured the trend over space, the residuals versus fitted value showed

that the models fitted well and allowed to provide a better description of

the structure of the catchment, adding the fact that not all the points are

flow-connected.

• For log(NO3.N + 1) and log(TotalN + 1), the models using Euclidean

distance perform better, according to the residuals versus fitted values.

These models perform well, capturing the trend over space.

• For log(SuSo) despite that the residuals versus fitted values showed that

both models perform well, the model using river distance did not capture

the variability of the catchment over space.



Chapter 5

Conclusions and Discussion

5.1 Statistical Methodologies

Throughout this thesis, different statistical methodologies have been pre-

sented to analyse environmental data, providing a framework for modelling sea-

sonal patterns and to capture trends over time and space.

One of the main objectives was to provide results for data analysed over time and

space simultaneously, rather than take a marginal approach for time and space.

The use of time and space as covariates in a single model, allows us to obtain

a better understanding of environmental changes, ensuring that the influence of

both sources of variability are included.

Each of the methodologies used here have strengths and weaknesses which were

evaluated to obtain the best model, looking to reach a closer representation of the

variables analysed and providing an adequate answer to the scientific questions.

As a first approach, a linear model is useful to capture trends and seasonal

patterns [Esterby (1993)] over time, when a single plane suitably captures the

variability of the covariates.

96
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The inclusion of additive models provides an opportunity to relax the linear

assumptions [Hastie & Tibshirani (1990)], allowing the fitting of models where

the covariates exhibit patterns beyond a linear trend.

Since both methodologies assume that εi are independent with E(εi) = 0 and

V ar(εi) = σ2, an independence test for time and space [Diblasi & Bowman (2001)]

was included as part of the diagnostic check on the residuals. This allows an as-

sessment of the need to include a proper covariance structure over time and space

and the possible resulting changes in the conclusions [McMullan et al. (2007)].

The comparison between different models is an important step in the modelling

procedure developed in this thesis, allowing a choice to be made between different

models. The use of an approximate F-test [Hastie & Tibshirani (1990)] allows

the identification of the most suitable model and also the assessment of the need

for a linear effect versus a nonparametric effect, ensuring this evidence through

a sensitivity analysis.

The use of nonparametric regression provides an alternative to modelling river

networks, allowing a closer representation of the variability of the river, using

river distance and a connectedness matrix.

5.2 ECN and AWMN

The analysis carried out covers a descriptive analysis and a linear approach

to identify differences between variables, assessing the presence of linear trend

and seasonal components in both sources of information. The outputs presented

throughout this thesis, have identified that there are some differences between

the two data sources of information and therefore also the characteristics of the

11 variables analysed.
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Throughout this section, limits of detection values (LOD) were included in the

analysis, where a value equal to zero was assigned for those observation classified

as LOD, according to the method adopted by the ECN and the AWMN. However,

it is important to highlight that there are different methods such as survival and

replacement analyses [Eastoe et al. (2006)] to cope with this problem, when the

main interest is to evaluate trends.

In this particular case would have been better to be able to treat these ob-

servation as censored data through a survival analysis rather than assign a value

equal to zero, mainly for variables such as log(Fe + 0.5), log(NO3 + 0.5), and

log(Al + 0.5) in the AWMN data and log(Cl + 3) in the ECN data. The reason

to suggest the survival analysis rather than the replacement analysis, obey to the

fact that under the presence of high number of LOD, the survival analysis has

shown a better performance [Eastoe et al. (2006)].

The comparison between both sources of information through the descriptive

analyses, indicated higher variability in the ECN data. This difference may be

explained by the collection process with only one observation per month for the

AWMN, while the ECN data collected more observations per month, allowing us

to include the variability over the years and also the variability within the month.

The fact that the information was collected at different locations might help to

explain the higher variability, indicating different physical characteristics for the

11 variables. In the specific case of log(Fe+0.5), log(NO3+0.5) and log(Al+0.5)

in the AWMN data, the lower variability can perhaps be explained by the pres-

ence of limit of detection values.

The Bland-Altman plots provided evidence that only pH, log(DOC) and log(SO4(S)+

1), show a good level of agreement, while for the rest of the variables the ECN

data showed higher values than the AWMN.
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A linear approach provided a suitable result to identify trends over time along

with a sine/cosine term to capture seasonal patterns. The analysis of the pa-

rameters for trend and seasonality allowed us to confirm the difference between

both data sets, indicating that only log(Ca + 2) and log(Al + 0.5), showed the

same conclusion in respect to the parameters for trend and seasonal components.

However, only for log(Al + 0.5) the parameters for trend are statistically equal.

The analysis of the parameter for trend allowed us to establish that despite being

significantly different from zero, the trend observed in the variables over time is

weak.

5.3 Tarland Catchment

The use of time and space simultaneously rather than a marginal approach

separating time and space, allowed a closer representation for the catchment, in-

cluding both sources of variability.

The first approach through a linear model gave a good performance. However

for variables such as log(NO3.N + 1), log(TotalN + 1) and log(SuSo), the trend

over space was not properly captured, indicating the need for a different approach.

The use of additive models to capture trends over time and space simultane-

ously, allows the assumptions of linear models to be relaxed. The flexibility of

additive models allowed non-linear patterns over time and space to be captured,

providing a closer representation of the variability of the catchment using year,

day and the coordinates of each site as covariates.

The question of the best value for the degrees of freedom is still a matter of

discussion and research nowadays. The existing automatic methods tend to be
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less reliable and far more computationally expensive to implement, mainly when

several degrees of freedom must be selected simultaneously [Hastie & Tibshirani

(1990)]. In addition, these methods are not suitable for information collected over

time and/or space with a temporal [Hart (1991)] or spatial correlation structure.

The selection of the degrees of freedom throughout this thesis was carried out

looking for flexibility from a linear shape and to avoid overfitting the data, rely-

ing on a graphical approach where the assessment of the partial residuals, allows

identification of a suitable value for each covariate. The models fitted showed a

good performance capturing the trend over time and space for all six variables,

confirming the need for a nonparametric effect through the sensitivity analysis.

Regarding the assumption of independence of the residuals of the additive mod-

els, the need to incorporate correlated errors over time and/or space was assessed,

and there was no evidence that this was required. Only log(TotalP ) showed weak

evidence indicating the need of a covariance structure over space, although ac-

cording to the results the best model to explain the variability of the residuals

was a pure nugget effect.

The independence test applied [Diblasi & Bowman (2001)], was developed to

assess correlation over space for a single sample, although the test also works as

a diagnostic check for models assuming independence for the residuals. In the

particular case of the Tarland catchment, the test was used to assess indepen-

dence over space, based on the conclusion of no autocorrelation over time.

As part of the modelling process the river flow information was included to assess

the effect of this variable. These models were fitted for a shorter period of time

according to the data available for the flow river information obtained for site

1. The results showed an improvement in those models which include flow in-

formation, although the sensitivity analysis has identified that a semi-parametric
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model provides a better approach for log(NO3.N + 1) and log(TotalN + 1).

The overall conclusions in respect to trend over time and space were obtained

from the additive models using year, day and the coordinates of each site. This

corresponds to information collected regularly at 17 sites from April 2004 to

November 2008.

The analysis of the smooth functions confirms a nonlinear trend fluctuating over

time exhibiting peaks and troughs. Variables such as log(NH4.N), log(PO4.P ),

log(TotalP ) and log(SuSo) showed a downward trend while log(NO3.N+1) and

log(TotalN + 1) showed a slightly upward trend.

The analysis of the trend over space indicated that log(NH4.N), log(PO4.P )

and log(TotalP ), presented a clear trend in direction of site 1 and 31 where the

highest values are located. The increment in the concentration level for these

three variables is progressive, indicating a clear pattern in direction south-east

(SE).

Variables such as log(NO3.N + 1) and log(TotalN + 1) showed a higher con-

centration in the large majority of the catchment, showing higher values in sites

2, 5, 6, 13, 15 and 27 and lower values in sites 7, 8 and 33. For log(SuSo) the

higher concentrations are in sites 20, 30 and 33 with lower values in sites 5, 6 and

13.

This reveals similar patterns between variables allowing us to gather them in two

groups in respect to the trend over time. Group one corresponds to log(NH4.N),

log(PO4.P ), log(TotalP ) and log(SuSo) showing a downward trend, although

the peaks and troughs are not located at the same dates. A second group cor-

responds to log(NO3.N + 1) and log(TotalN + 1) showing a similar behaviour

with a slightly upward trend.
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In the same way but over space three groups can be observed. The first group cor-

responds to log(NH4.N), log(PO4.P ) and log(TotalP ), showing a similar trend

in direction south-east (SE). A second group corresponds to log(NO3.N +1) and

log(TotalN + 1) with similar behaviour and finally log(SuSo) exhibit a different

trend in respect to the other 5 variables with two peaks (sites 20,30 and 33) and

a trough (sites 5, 6 and 13).

The advantages to use additive models to capture the trend over time and space

is clear making it easier to fit a model to variables with non-linear patterns. De-

spite that the linear model approach indicated a similar conclusion in respect

to a positive or negative trend, the additive model allowed to obtain the same

conclusion for the trend, reproducing better the peaks and troughs observed over

time.

The improvement to capture the trend over space is also clear, mainly for log(NO3.N+

1), log(TotalN + 1) and log(SuSo), where the use of a smooth function fitted

as a surface is able to capture the trend suitably, allowing us to get a closer

representation.

5.4 Modelling of River Networks

The modelling of river networks comes with a lot of questions about the

best way to include the structure of the river into a spatial model. The existing

methodologies tackle the problem through the design of new spatial models, using

Euclidean, river distance or both, adding a weighting to ensure a valid covariance

structure [Ver Hoef et al. (2005)] , [Cressie et al. (2006)].

The approach used in this thesis adopted this idea using a nonparametric re-

gression (local mean estimator), allowing the structure of the river to be included
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into an additive model using river distance rather than Euclidean distance. The

inclusion of a connectedness matrix n x n, with n the number of sampling points

in the river network, allowed us to get a closer representation of the catchment,

by including which sites are flow-connected.

The choice of h for the smooth function to capture the trend over space, was

made with a view to maintain a balance between smoothness and goodness-of-fit,

assessing the performance with new points to reproduce the shape of the catch-

ment and providing a graphical result of the partial residuals.

This approach to modelling river networks has several advantages, since that

the smooth function for the upstream distance is fitted under the framework of

an additive model. This allows us to assess the effect of a linear effect versus

a nonparametric effect and to assess the sensitivity of the test under different

values of degrees of freedom.

The comparison between Euclidean distance and river distance, indicated that

for log(NH4.N), log(PO4.P ) and log(TotalP ), the additive models using river

distance are better based on how these models capture the trend over space, an

absence of evidence that indicates that the models do not fit well and the fact

that they provide a closer representation of the catchment, by including which

sites are flow-connected.

For log(NO3.N + 1), log(TotalN + 1) and log(SuSo), the additive models using

Euclidean distance perform better. For log(SuSo), the trend over space is cap-

tured better using Euclidean distance rather than river distance.

This type of model offers a new tool to tackle the analysis of river networks

to obtain a closer representation, by accounting for the fact that the variability

of river networks requires a different approach, since that not all the points are
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flow-connected and therefore the effect of each sampling point does not affect the

variability of the river in the same way.

5.5 Suggestions

The main aim of this section is to provide recommendations based on the re-

sults obtained throughout this thesis, suggesting better practices or simply some

ideas that could lead to the implementation of strategies, to improve the quality

of the environmental variables analysed.

For the ECN and AWMN data, one of the main reasons to support the differ-

ences between both sources of information was the differences in the procedure

to collect the data. This problem is common and it is clear that is impossible to

minimise the variability of external factors. However, it is important to indicate

that if it is possible to reduce the variability generated by the sampling process,

collection frequency or issues related to how the outcome of interest was mea-

sured, the results obtained could lead to better understanding of the information

analysed.

Based on the results presented throughout this analysis for the Tarland catch-

ment, it is important to define a strategy to evaluate how the levels of NO3.N

and Total N can be reduced in the catchment, given the slightly upward trend

observed over time and the presences of high values in the large majority of the

sampling stations. For NH4.N, PO4.P and Total P, the results indicate a down-

ward trend over time with a progressive trend over space in direction south-east

(SE). The implementation of agreements to protect locations in direction north-

west (NW) could lead to an improvement of the water quality of the catchment

and a reduction in the levels observed nowadays.
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5.6 Further Work

The work presented through this thesis provided a set of tools to identify

trends over time and space simultaneously, allowing changes in environmental

data to be assessed. Looking to improve the modelling process to understand

better the complex systems exhibited in the environment, there are two main

ideas to be considered as the next step in the modelling of river networks.

According to the ideas developed by Ver Hoef et al. (2005) and Cressie et al.

(2006), the distance to be used is an important factor to ensure a proper model,

although the weight assigned is the key part to ensure a validate covariance struc-

ture. The use of different weights added to the additive model could provide a

closer representation of river networks, where river order, basin area or flow are

some of the possibilities suggested.

The assumption of independence over the residuals in the particular case of the

Tarland catchment was assessed over all the variables, indicating there was no

need to include a covariance structure for time and space. The analysis of bigger

and more complex river networks could lead to the need for a covariance struc-

ture over space, where the traditional spatial models do not work properly. This

represents an opportunity to use different spatial models [Ver Hoef et al. (2005),

Cressie et al. (2006)] to include correlation over space and at the same time to

fit models to capture the trend, taking advantage of the flexibility of additive

models.
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