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Abstract

This thesis is concerned with the actions of groups on trees and their corresponding de-

compositions. In particular, we generalise the Almost Stability Theorem of Dicks and

Dunwoody [12] and an associated application of Kropholler [23] on when a group of finite

cohomological dimension splits over a Poincaré duality subgroup.

In Chapter 1 we give a brief overview of this thesis, some historical background infor-

mation and also mention some recent developments in this area.

Chapter 2 consists mostly of introductory material, covering group actions on trees,

commensurability of groups and completions of certain spaces. The chapter concludes with

a discussion of a certain completion introduced in [23] and when this has an underlying

group structure.

We then introduce the Almost Stability Theorem in Chapter 3 mentioning some pos-

sible directions in which the result may be generalised, how these various conjectures are

related and some preliminary results suggesting that such generalisations are plausible.

We go on to state the most general version of the theorem currently obtained. The proof

of this result, Theorem A, takes up the bulk of Chapter 4 which is based on the approach

of the book by Dicks and Dunwoody [12]. In removing the finite edge stabiliser condition

we place certain restrictions on the groups that are allowed.

Finally, in Chapter 5 we investigate Poincaré duality groups, the connection between

outer derivations and almost equality classes and show how to use Theorem A to obtain a

more general version of the results of Kropholler. This work culminates in the result that

Theorem B is a corollary of Theorem A.
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Chapter 1

Introduction

The main goal of this thesis is a generalisation of the Dicks-Dunwoody Almost Stability

Theorem (Theorem III.8.5 of [12]). The Almost Stability Theorem asserts the existence

of a G-tree with finite edge stabilisers when given a suitable class of functions on a G-set

with finite stabilisers. We obtain an analogous result for the infinite stabiliser case. There

are known counterexamples in the more general setting and thus further restrictions to

the permitted stabiliser groups are necessary. We attempt to capture the key features of

the class of finite groups that make such a construction possible. One important feature

of finite groups is that whenever they act on a set they do so with finite orbits. In a

similar fashion, for an arbitrary group, G, acting on a set we may still ensure that the

orbits of this action are finite if the stabiliser groups are subgroups of finite index in G.

For this reason we restrict to classes of subgroups that vary up to finite index, so called

commensurability classes. We say that two subgroups H and K are commensurable if

the intersection is of finite index in both groups. This is an equivalence relation on the

collection of subgroups of G and we call an equivalence class a commensurability class.

Since we wish to construct a tree together with an action of our group then we must surely

require that the family of edge stabilisers be closed under conjugation and for this reason

we introduce the commensurator, CommG(H), of H in G. This is the largest subgroup of

G in which H is commensurable with all of its conjugates. The notion of commensurability

is discussed in greater detail in section 2.7.

A detailed examination of the techniques employed by Dicks and Dunwoody reveal

subtle difficulties if no further restrictions are placed on our chosen commensurability

class. One issue already identified in later work of Dicks and Dunwoody is that we must

try to avoid subgroups which contain a conjugate of themselves as a proper subgroup. In

1



CHAPTER 1. INTRODUCTION 2

passing from the case that our group G is finitely generated to the countable case we use

the fact that our stabiliser groups are all finitely generated. We do not know at this time

whether this condition is necessary to prove our result even in the case that G is finitely

generated. The final ingredient for the construction is to have an appropriate notion of

size. In the finite case the order of a subgroup gives a measure of size. In the more

general setting we use a G-map from our family of subgroups to the integers preserving

the partial ordering structure in order to have a measure of size. The G-map structure

arises from the observation that G acts on our commensurability class of subgroups by

conjugation. In fact in our work the function we choose, which is applicable for a large

class of groups, is the Euler characteristic, χ. We require that for any stabiliser group H,

the Euler characteristic χ(H) is a non-zero integer. Notice that if the Euler characteristic

were zero then the ordering need not be preserved. For example, given a group of Euler

characteristic zero, any of its proper subgroups of finite index will also have zero Euler

characteristic. This restriction on the Euler characteristic has the added effect that none of

our stabiliser subgroups are conjugate to proper subgroups of themselves - a condition we

have already mentioned. It is an open question as to whether or not the Euler characteristic

restriction is necessary.

We denote by S the commensurability class containing some finitely generated sub-

group H of G. We call a collection of functions V, defined on the disjoint union of copies of

G a G-stable S -almost equality class of functions if V is a maximal set of functions that

differ from one another on only finitely many cosets of groups in our admissible family,

S . A more formal definition may be found in section 3.2. With the hypotheses discussed

above we are able to show that there exists a G-tree with vertex set given by a G-stable

S -almost equality class of functions. The main result we prove is Theorem A.

Theorem A. Let H be a finitely generated subgroup of G with χ(H) a non-zero integer

and CommG(H) = G. Let S be the class of subgroups commensurable with H and A and

I be non-empty sets. Suppose that V is a G-stable S -almost equality class in S (tIG,A).

Then there exists a G-tree with edge stabilisers in S and vertex set V.

The Almost Stability Theorem of Dicks and Dunwoody [12] which covers the case that

S is the family of finite subgroups follows from our result in the case that H is chosen to

be the trivial group. A full discussion of the connections between our result and that of

Dicks and Dunwoody, as well as other conjectures we have made in this area, is given in

Chapter 3. It can be seen that the complete graph on V, under the hypotheses of Theorem
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A always has commensurable edge stabilisers however, the condition that H be finitely

generated allows us to prove that the edge stabilisers are commensurable with H itself. It

seems likely that in the infinitely generated case that there may exist examples where the

edge stabilisers are ‘smaller’ than the subgroups in S . Furthermore the finitely generated

condition on H is also used in the induction argument for the case when G is countably

infinitely generated. It is this induction argument where the non-zero Euler characteristic

requirement is used. To obtain the result in the case that G is finitely generated requires

only the weaker condition that H may not contain any conjugate of itself as a proper

subgroup.

The Almost Stability Theorem generalises the remarkable work of Stallings and Swan

[29,32] in the 1960s that a group of cohomological dimension 1 is free. The Almost Stability

Theorem refines the work of Dunwoody in the the late 1970s and early 1980s. In particular

the work on groups of cohomological dimension 1, the notion of accessibility of a group [15]

and the method of obtaining tree sets via cuts [16]. Other work on splittings of groups

has been done since furthering the development of this area of mathematics.

In the 1990s the book of Scott and Swarup [27] develops an analogy between the

topological JSJ-decomposition [21, 22] and splittings of certain finitely generated groups.

Other results in this direction include the thesis of Sageev and his work on CAT(0)-cube

complexes [18, 25, 26]. Rather than considering group actions on trees Sageev considers

the notion of a higher dimensional cube complex and obtains splitting results in this way.

The notion of complexity has been introduced by Bestvina and Feighn [2], developing tech-

niques that place a bound on how groups may decompose without the restrictions required

by many existing accessibility arguments. The notion of folding they introduce is further

investigated by Dunwoody [17]. Indeed Dicks and Dunwoody have published further re-

sults [13] generalising their Almost Stability Theorem and detailing a counterexample to

a generalisation of the theorem in one particular direction.

Kropholler has also studied splittings of finitely generated groups of finite cohomolog-

ical dimension. In [23] Kropholler introduces a new cohomological functor and combines

a homological argument with the techniques of Dunwoody to give a sufficient condition

for a finitely generated group to split over a Poincaré Duality subgroup. This work influ-

ences another area of interest in this thesis. We investigate the completion introduced by

Kropholler in Chapter 2 as well as Poincaré duality groups in Chapter 5. Ultimately we

use Theorem A to arrive at the following variant of Kropholler’s result.
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Theorem B. Let G be a group of cohomological dimension n <∞. Let H be an (n− 1)-

dimensional Poincaré duality subgroup of G such that CommG(H) = G and χ(H) is a non-

zero integer. Then there exists a G-tree T with edge and vertex stabilisers commensurable

with H.

Kropholler’s result concerns the case that G is finitely generated but without the

restriction on the Euler characteristic. However, our methods require this condition for

the induction argument in the G countable case and to modify the vertex set of a G-tree

making it suitable for a transfinite induction argument. Hence in the finitely generated

case we may recover the result of Kropholler.



Chapter 2

Preliminaries

2.1 G-sets

We begin by introducing some notation. The work in this thesis builds upon that in [12]

and thus we adopt much of the notation from that book. One exception is that we shall

denote all group actions throughout on the right unless stated otherwise. When we have

an action of a group G on a set, we call such a set a G-set.

Definition 2.1.1. Let X be a G-set. For x ∈ X, we denote by Gx the stabiliser of x in

G, i.e.

Gx = {g ∈ G | xg = x} .

We shall use the notation Hg to denote the conjugate of a subgroup H ≤ G by a group

element g ∈ G. That is to say that Hg = {g−1hg | h ∈ H}. Thus with this convention the

stabiliser Ggx = Ggx.

Definition 2.1.2. Let X be a G-set. We say that a subset T ⊆ X is a G-transversal in

X if

X =
⊔
t∈T

tG.

Notice then that for t1, t2 ∈ T and g ∈ G, t1 = t2g =⇒ t1 = t2. We say that the G-set X

is G-finite if there exists a finite G-transversal in X.

Definition 2.1.3. Suppose that we have a map ϕ : X → Y between two G-sets. We say

that ϕ is a G-map if ϕ(xg) = ϕ(x)g for all x ∈ X and g ∈ G.

Notice that for a G-map, ϕ : X → Y, to be well defined it is necessary that for all

x ∈ X that Gx ≤ Gϕx.

5
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Suppose that X is a G-set and A is some non-empty set. We denote the set of all

functions from X to A by (X,A). This set is itself a G-set with the action of G given by

(fg)(x) = f(xg−1) ∀ g ∈ G, x ∈ X and f ∈ (X,A).

For the remainder of this section let G be a group, X be a G-set and A be some non-

empty set. Suppose that we have a G-map from some G-set Y to (X,A). Then for each

y ∈ Y we denote its image in (X,A) by y|X.

Definition 2.1.4. Let Y → (X,A) be a G-map. Then the dual G-map X → (Y,A), x 7→

x|Y is given by (x|Y )(y) = (y|X)(x).

Proposition 2.1.5. Let Y → (X,A) be a G-map. Then the dual map is also a G-map.

Proof. To see that the dual map is indeed a G-map observe that for all x ∈ X, y ∈ Y and

g ∈ G,

(xg|Y )(y) = (y|X)(xg)

= ((y|X)g−1)(x)

= (yg−1|X)(x) since Y → (X,A) is a G-map.

= (x|Y )(yg−1)

= ((x|Y )g)(y).

2.1.1 Almost Equality

Definition 2.1.6. Let X be a G-set and A be a set. For y1 and y2 ∈ (X,A), we denote

the subset of X on which the two functions differ by y1 5 y2. If this set is finite then we

say that the two functions y1 and y2 are almost equal, i.e. if

y1 5 y2 = {x ∈ X | y1(x) 6= y2(x)}

is a finite set. We denote this y1 =a y2.

Notice that almost equality is an equivalence relation and partitions the set (X,A)

into equivalence classes which we call almost equality classes. Further we observe that

the action of G preserves almost equality and thus G acts on the set of almost equality

classes. If one of these equivalence classes is fixed by the action of G we call such a class

a G-stable almost equality class.
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Remark 2.1.7. It is a common definition in many areas of mathematics to say that two

sets are almost equal if there are only a finite number of elements belonging to one of the

sets but not the other. Observe that we can identify a subset A of B with its characteristic

function χA : B → F2, i.e. χA(b) = 1 iff b ∈ A. We can then give a similar definition as

above to regain the usual meaning of almost equality of sets. Thus we shall often write

A =a B to mean that two sets — without, necessarily, any further structure — are almost

equal.

2.2 G-graphs

Definition 2.2.1. A G-graph Γ is a quadruple (V Γ, EΓ, ιΓ, τΓ) where V Γ and EΓ are

G-sets called the vertex set and edge set of Γ respectively and ιΓ and τΓ are G-maps from

EΓ to V Γ called the incidence maps. For e ∈ EΓ, we call ιΓ(e) and τΓ(e) the initial and

terminal vertices of e respectively.

Remark 2.2.2. 1. Often, when it is clear what G-graph we are working with we omit

the subscript Γ and write simply ι(e) and τ(e) for the initial and terminal vertices

of e.

2. The incidence maps give an orientation to our graph. For each e ∈ EΓ we denote by

e−1 the edge with the opposite orientation. That is to say that ι(e−1) = τ(e) and

τ(e−1) = ι(e).

Definition 2.2.3. Let Γ1,Γ2 be G-graphs. A map of G-graphs, ϕ, is a G-map ϕ : EΓ1 t

V Γ1 → EΓ2 t V Γ2 with the following properties:

1. ϕ(EΓ1) ⊆ EΓ2

2. ϕ(V Γ1) ⊆ V Γ2

3. for all e ∈ EΓ1, ϕ(ι(e)) = ι(ϕ(e))

4. for all e ∈ EΓ1, ϕ(τ(e)) = τ(ϕ(e))

That is to say that a map of G-graphs is simply a pair of G-maps between the vertex sets

and edge sets which respect the incidence maps of the G-graphs. We often wish to extend

the definition of our G-graph map to the oppositely oriented edges. We do so by defining

ϕ(e−1) := (ϕ(e))−1 for all e ∈ EΓ.
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Definition 2.2.4. Let Γ be aG-graph. A path p in Γ is a sequence (v0, eε00 , v1, e
ε1
1 , . . . , e

εn−1

n−1 , vn),

where vi ∈ V Γ, ei ∈ EΓ and εi ∈ {±1} for all 0 ≤ i ≤ n, with ι(eεi
i ) = vi, τ(eεi

i ) = vi+1

for all 0 ≤ i ≤ n− 1.

We say that the path p joins v0 to vn, or is a path between v0 and vn.

A path p is said to be a reduced path if there exists no i such that both ei = ei+1 and

εi = −εi+1.

Further a reduced path p is a circuit if v0 = vn where n > 0.

Definition 2.2.5. Let Γ be a G-graph. We say that Γ is connected if for any two distinct

vertices in Γ there exists a path joining them.

Definition 2.2.6. Let Γ be a G-graph. We say that Γ is a G-tree if Γ is a non-empty,

connected G-graph containing no circuits. We call a disjoint union of G-trees a G-forest.

Remark 2.2.7. Notice that the above definition of a G-tree is equivalent to stating that

there exists a unique reduced path between any two distinct vertices of our graph.

2.3 Cayley Graph of a Group

We now give an important example of a G-graph, namely the Cayley graph of a group.

Definition 2.3.1. Let G be a group and S ⊆ G. We say that S generates G if every group

element g ∈ G may be written as a product of elements in S together with their inverses,

i.e. that we may write,

g = sε11 . . . sεnn ,

where the si ∈ S and εi ∈ {±1} for all 1 ≤ i ≤ n.

Definition 2.3.2. Let S ⊆ G. The Cayley graph, Γ(G,S) of G with respect to S is the

graph with,

V Γ(G,S) = G

EΓ(G,S) = S ×G

ι(s, g) = g

τ(s, g) = sg.
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Remark 2.3.3. • Clearly G acts on the Cayley graph on the right by g · γ = gγ and

(s, g) · γ = (s, gγ) ∀s ∈ S, g, γ ∈ G.

• If S is finite then the Cayley graph Γ(G,S) is locally finite, meaning that for any

vertex there exist only finitely many edges having this vertex as their initial or

terminal vertex.

• If S generatesG then Γ(G,S) is connected since if g = sε11 . . . sεnn ∈ G then (1, (sn, s
εn−1

2
n )εn ,

sεnn , (sn−1, s
εn−1−1

2
n−1 sn)εn−1 , . . . , g) is a path in Γ(G,S) between 1 and g.

2.3.1 The Word Metric

We recall the notion of a metric space.

Definition 2.3.4. A metric space (X, d) is a space X together with a map d : X×X → R

satisfying the following axioms,

1. d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y,

2. d(x, y) = d(y, x) for all x, y ∈ X and

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Similarly, we define a pseudo-metric space to be a space X together with a map d :

X ×X → R satisfying axioms 2 and 3 above and further that d(x, y) ≥ 0 for all x, y ∈ X.

Finally an ultrametric space is a space X together with a map d : X ×X → R satisfying

axioms 1 and 2 above together with

3. d(x, z) ≤ max(d(x, y), d(y, z)) for all x, y, z ∈ X.

Thus we see that an ultrametric space is simply a metric space satisfying a stronger version

of the triangle inequality.

For a finitely generated group, a choice of generating set determines a metric on the

group. The metric is obtained via the notion of the length of a word in the generating set.

Definition 2.3.5. Let G be a finitely generated group with a given finite generating set

S. Then we may write any element of G as a finite product, or word, of elements of S

together with their inverses. We say that the word w = sε11 . . . sεnn (si ∈ S, εi ∈ {±1}) is

reduced if for all 1 ≤ i ≤ n − 1, si = si+1 =⇒ εi = εi+1. That is to say that there is no

trivial way of cancelling terms in the word w. The set of reduced words then forms the
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free group F (S) on S and the inclusion S ⊆ G induces a homomorphism π : F (S) → G.

The length of a reduced word w is denoted len(w).

Definition 2.3.6. Let S be a generating set for G. We define the word metric on G, with

respect to S, denoted dS by

dS(g, h) = min
{
len(w) | w ∈ F (S) and π(w) = gh−1

}
.

Observe then that the word metric dS with respect to a generating set S is the same as

the usual metric in the Cayley graph Γ(G,S) obtained by simply counting the minimum

number of edges in a path between two points. Notice here that the metric we obtain is

almost surely dependent on the choice of generating set for G. For example if S∪S−1 6= G

then there are group elements g, h ∈ G with dS(g, h) > 1, whilst if S ∪ S−1 = G then

dS(g, h) = 0 or 1 for all g, h ∈ G.

The following proposition follows easily from the fact that gk(hk)−1 = gh−1.

Proposition 2.3.7. Let G be a group and S be a generating set for G. Then the action

of G on itself by right multiplication is an isometry.

Notice that we could have defined the word metric with respect to S by,

dS(g, h) = min{len(w) | w ∈ F (S) and π(w) = g−1h},

and we would then have had a metric for which the action of G by left multiplication is an

isometry. The question of whether or not both left and right multiplication by G give rise

to an isometry, for a single choice of such a metric, is an interesting one that is investigated

further in section 2.9.

2.4 Bass-Serre theory

Definition 2.4.1. Let H1 and H2 be groups that contain an isomorphic subgroup K.

That is to say that there exist injective homomorphisms ϕ1 : K → H1 and ϕ2 : K → H2.

The free product of H1 with H2 amalgamated along K denoted H1 ∗K H2 is defined to be

the group with the following presentation,

H1 ∗K H2 = 〈H1,H2 | ϕ1(k) = ϕ2(k) ∀k ∈ K〉.
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Definition 2.4.2. Let K and L be subgroups of H and ϕ : K → L be an isomorphism.

The HNN extension of H by ϕ denoted H∗ϕ,t is defined to be the group with the following

presentation,

H∗ϕ,t = 〈H, t | tkt−1 = ϕ(k) ∀k ∈ K〉.

Remark 2.4.3. • The map ϕ is often supressed in the above notation and once ϕ has

been introduced the HNN extension is commonly referred to as simply H∗K instead

of H∗ϕ,t unless this would otherwise cause confusion.

• We say that a group G splits over a subgroup K if either G ∼= H1 ∗K H2 with

H1 6= K 6= H2 or G ∼= H ∗K .

An important result of Bass-Serre theory (see section I.5.4 of [28]) is that such a

decomposition corresponds to an action of our group on a certain G-tree. Thus we obtain

a more geometric description of the structures of such groups.

Theorem 2.4.4. Suppose that G is the free product of H1 and H2 amalgamated along K.

Then G acts on a G-tree T with one orbit of edges and two orbits of vertices such that

some edge of T has stabiliser K and its endpoints have stabilisers H1 and H2.

Suppose that G is the HNN extension of H by ϕ : K → H. Then G acts on a G-tree T

with one orbit of edges and one orbit of vertices such that the stabilisers are conjugates of

K.

Remark 2.4.5. With the above theorem we see that G splits over K if and only if G acts

on a tree T with one orbit of edges and for some edge e ∈ ET,Ge = K.

2.5 Ends of a group

Let G be a group generated by S = {s1, s2, . . . , sn}.

Definition 2.5.1. The number of ends of a group G, denoted e(G) is defined to be,

e(G) = sup
X

( number of infinite components of Γ(G,S) \X),

where the supremum is taken over all finite subsets X ⊆ EΓ(G,S).

It would appear at first that the number of ends of our group depends upon our

choice of generating set, however it can be shown that the number of ends is equal to the

dimension of H0(G,PG/FG), see Chapter 2 of [11], where PG denotes the power set of
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G and FG denotes the collection of all finite subsets of G. Thus the number of ends of G

is in fact independent of our choice of S.

Example 2.5.1. • We see that e(G) = 0 if and only if G is finite as for a finite group

the Cayley graph must also be finite and indeed for any Cayley graph with a positive

number of ends, removing any single edge must leave at least one infinite component

and so clearly G itself is infinite.

• e(Z) = 2. To see this consider the Cayley graph of Z with respect to the generating

set consisting of a single generator. Then by removing any non-empty finite collection

of edges from the graph we leave two infinite components one of which contains all

integers greater than N, the other containing all integers less than −N for some

N ∈ N.

• e(Z×Z) = 1. This is also clear by considering the Cayley graph with respect to the

generating set {(1, 0), (0, 1)}. Any finite subset of the edge set is contained within

some bounded ball thus leaving only 1 infinite component. In fact e(Zn) = 1 for all

n > 1.

• e(Fn) = ∞ where Fn is the free group of rank n > 1. Let S = {x1, . . . , xn} be

a generating set for Fn. Then in the Cayley graph Γ(G,S) if we remove the edges

joining 1 to x1, x1 to x2
1, . . . , x

m−2
1 to xm−1

1 we see that this leavesm infinite connected

components. Since we may break our graph up in this fashion for any m ∈ N we see

that Fn must have infinitely many ends.

• It can be seen that these are the only possible values that e(G) may take - Theorem

2.11 of [11].

We have seen that e(Z) = 2 and e(Fn) = ∞ for n > 1, and now we observe that Z

may be thought of as the HNN extension of the trivial group and Fn is a free product of

free groups of rank 1. These are in fact special cases of a remarkable result of Stallings

shown in the finitely presented case in [29] and modified to the finitely generated case by

Bergman [1].

Theorem 2.5.2. Let G be a finitely generated group. Then G splits as a free product with

amalgamation or HNN extension over some finite subgroup if and only if G has more than

one end.
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2.6 EG and VG

Let G be a group and E be a G-set. Suppose that V is a subset of (E,A) and that we

have a fixed element v0 ∈ V. We introduce the following notation for certain subsets of V

and E.

Definition 2.6.1. For any subset V ′ ⊂ V, we denote by E(V ′) the subset of E consisting

of the elements on which v0 differs from some function in V ′,

E(V ′) =
⋃
v∈V ′

v5 v0.

Also for any subset E′ ⊂ E, we denote by V (E′) the subset of V consisting of the functions

differing from v0 on some subset of E′,

V (E′) = {v ∈ V | v5 v0 ⊆ E′}.

In particular we are interested in such subsets related to a subgroup. We give the

following definition for all subgroups H of G.

Definition 2.6.2. Let H ≤ G. We define EH by,

EH = E(v0H) =
⋃
h∈H

v0 5 v0h.

Given this we define the set VH consisting of the functions v which differ from v0 on a

subset of EH , i.e.

VH = V (EH) = {v ∈ V | v5 v0 ⊆ EH}.

At this point it may not be clear why such notation is used however later in the proof

we shall see that EH can be considered as the edge set of an H-tree containing v0H.

We mention here an important property of EH .

Proposition 2.6.3. Let H ≤ G, then EHG ⊆ EG and so in particular we have that EH

is an H-set.

Proof. Let e ∈ EH . Then there is some h ∈ H such that

v0h(e) 6= v0(e).

Now let g ∈ G and suppose that

(v0k)(eg) = v0(eg) for all k ∈ G.
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Then we obtain the following two equalities,

v0(e) = v0(eg) taking k = g

(v0h)(e) = v0(eg) taking k = hg.

However this contradicts the definition of e.

Lemma 2.6.4. If G is finitely generated over H then EG − EHG is G-finite.

Proof. Suppose that G is generated by H together with g1, g2, . . . , gn. Then we claim that

E′ := EHG∪(∪ni=1v0 5 v0gi) ⊆ EG. Now by the definition of EH we see that v0|(E−E′) =

v0g|(E−E′) for all g ∈ H∪{g1, g2, . . . , gn} and hence for all g ∈ G. It follows that EG ⊆ E′

and the result holds.

2.6.1 Coboundary of a function

The notion of the coboundary of a function gives a measure of how the function partitions

the vertex set. The coboundary of the characteristic function of a subset in the Cayley

graph provides a means of testing whether a given subset of a group G is almost equal to

its translates under the action of G. We shall see that section 2.5 then tells us that the

existence of a splitting of a group corresponds to the existence of a function on G with

certain conditions on its coboundary.

Definition 2.6.5. Let Γ be a G-graph and A a non-empty set. Let s : V Γ → A be a

function on the vertex set of our graph. We denote by δs the coboundary of s,

δs = {e ∈ EΓ | s(ιe) 6= s(τe)}.

We make the observation here that the coboundary map is a G-map.

Proposition 2.6.6. Let s : V Γ → A be a funcion with the notation as above. Then

δ(sg) = δ(s)g for all g ∈ G.
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Proof. Let e ∈ EΓ. Then

e ∈ δs

⇐⇒ s(ιe) 6= s(τe)

⇐⇒ s(ι(egg−1)) 6= s(τ(egg−1))

⇐⇒ s(ι(eg)g−1) 6= s(τ(eg)g−1) since ι, τ are G-maps

⇐⇒ sg(ι(eg)) 6= sg(τ(eg))

⇐⇒ eg ∈ δ(sg)

There is a result of Cohen (section 2 of [11]) that a group has more than one end if and

only if there exists a function s ∈ (G,Z2) on the vertex set of the Cayley graph of G such

that |δs| is finite. Now by section 2.5 we have that G-splits over a finite subgroup if and

only if there exists a function in (G,Z2) with finite coboundary. This is the motivation

for considering the coboundary of functions on other G-sets when we investigate splittings

over infinite groups.

2.7 Commensurability

In this section we introduce the notion of commensurable subgroups and investigate some

of their basic properties and those of their automorphism groups.

Definition 2.7.1. Let G be a group and H and K subgroups of G. We say that H and

K are commensurable if H ∩K is a finite index subgroup of both H and of K.

Remark 2.7.2. • We mention here that the term commensurability is sometimes used

to describe a slightly different notion. Some authors for example Bridson and Hae-

fliger ( [9] I.8.21) use the term commensurable to mean that H and K have isomor-

phic finite index subgroups. This is not the same as our notion, for example take

G = Z×Z, and the two subgroups H and K to be the two factors of Z. Then H and

K are commensurable in this alternative definition but not in the one introduced

above. In particular, it should be noted that H ∼= K is not enough to show that H

and K are commensurable.

• It should be noted that commensurability is an equivalence relation. We call the

equivalence classes commensurability classes.
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Example 2.7.1. Let G be a group. Then the class of all finite subgroups of G is a com-

mensurability class.

This example of a commensurability class is what motivates our use of this concept.

The Almost Stability Theorem gives the existence of a G-tree with edge stabilisers all

belonging to this special commensurability class of finite subgroups. We shall show that

an analogous result holds for many other examples of commensurability classes. In the case

that a group acts on a tree - or indeed on any set - with commensurable edge stabilisers it

follows that the stabilisers must be commensurable with all of their conjugates. Normal

subgroups are obvious examples of groups with this property, however there are less trivial

examples. We shall use the following notation.

Definition 2.7.3. Let G be a group and H ≤ G. We define the commensurator of H in

G,CommG(H) to be,

CommG(H) = {g ∈ G | Hg is commensurable with H}.

If CommG(H) = G then we say that H is near-normal in G.

Remark 2.7.4. The commensurator of H in G is a subgroup of G containing NG(H).

We now give some examples of groups with this property.

Example 2.7.2. Let G = 〈x, y|xy = x2〉 and H = 〈x〉. Then H is near-normal in G.

Remark 2.7.5. IndeedG above is just one member of a family of groups known as Baumslag-

Solitar groups which have this property.

Example 2.7.3. Let n ≥ 1. Then SLn(Z) is near-normal in SLn(Q).

Proof. GLn(Q) acts on Qn by right multiplication and we consider Zn ⊂ Qn. Let X ∈

SLn(Q). We aim to show that | SLn(Z) : SLn(Z) ∩ X−1SLn(Z)X | < ∞ and also that

| X−1SLn(Z)X : SLn(Z) ∩ X−1SLn(Z)X| <∞. Now since X ∈ SLn(Q), it follows that

there exists some natural number α such that X−1SLn(Z)X ⊆ 1
αGLn(Z). For example we

may take α to be the least common multiple of the denominators of the entries of X. Thus

Zn · XSLn(Z)X−1 ⊆ 1
αZn. Thus we also have that αZn ⊆ Zn · XSLn(Z)X−1. Now since

SLn(Z) acts on Zn there is an induced action of SLn(Z) on the collection of subgroups of
1
αZn containing αZn. By the classification of finitely generated abelian groups there exist

only finitely many such groups and therefore | SLn(Z) : SLn(Z) ∩ XSLn(Z)X−1 | <∞.

Since this holds for all X ∈ SLn(Q) and indices are preserved by conjugation we also see

that | XSLn(Z)X−1 : SLn(Z) ∩ XSLn(Z)X−1 | <∞ and the result follows.
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For near-normal subgroups, H of G, it is particularly useful to observe that the subsets

of G given by either finitely many right or left cosets of a group commensurable with H

are the same. We have the following result.

Lemma 2.7.6. Let H be a near-normal subgroup of G. Denote by S the collection of all

subgroups of G commensurable with H. Then any subset of G can be written as a finite

union of left cosets of some subgroup in S if and only if it can be written as a finite union

of right cosets of some subgroup in S .

Proof. Suppose that X is a finite union of right cosets of some subgroup L ∈ S . Then we

may write,

X =
n⊔
i=1

Lgi

=
n⊔
i=1

giL
gi

=
n⊔
i=1

gi

⊔
j

γi,j

(
n⋂
i=1

Lgi

)
=
⊔
i,j

giγi,j

(
n⋂
i=1

Lgi

)
,

where the γi,j are a transversal for ∩ni=1L
gi in Lgi . Notice that such a transversal is finite

since Lgi ∈ S as L is near-normal and S is closed under taking finite intersections.

Thus X has been written as a finite union of left cosets of ∩ni=1L
gi ∈ S and by a similar

argument any finite union of left cosets of L may be written as a finite union of right cosets

of the intersection of conjugates of L.

Thus we are able to switch between finite unions of left cosets and finite unions of right

cosets whenever this is convenient.

We also recall at this point a definition introduced in [13].

Definition 2.7.7. Let H ≤ G. We say that H is G-conjugate incomparable if for all

g ∈ G, Hg ≤ H =⇒ Hg = H.

In particular, normal groups are G-conjugate incomparable as are all finite groups.

In general however this need not be the case. For instance there are examples of non co-

Hopfian groups that do not satisfy this condition. A non co-Hopfian group is a group which

is isomorphic to a proper subgroup of itself. In the example of the Baumslag Solitar group
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given above G = 〈x, y|xy = x2〉, the subgroup H = 〈x〉 is not G-conjugate incomparable

as Hy is a proper subgroup of H. We now have the following lemma asserting that for a

G-tree T, to show that the vertex stabilisers are G-conjugate incomparable it is enough to

check that the edge stabilisers of T satisfy this property.

Lemma 2.7.8. Let T be a G-tree. If the edge stabilisers of T are all G-conjugate incom-

parable then the vertex stabilisers are also G-conjugate incomparable.

Proof. Let us suppose that the edge stabilisers of T are G-conjugate incomparable and

assume that the vertex stabilisers are not. That is to say that there exists a v ∈ V T and

g ∈ G such that Gv < Ggv. Now since Gv is a proper subgroup of Ggv it follows that v 6= vg

and so we may now consider the first edge, e say, in the path in T from v to vg. Clearly

Ge = Gv and thus the edge stabilisers of T are not G-conjugate incomparable. This is our

desired contradiction.

We now introduce the notion of an admissible family of subgroups giving particular

attention to the case that the admissible family consists of commensurable subgroups. The

following definition can be found in [23].

Definition 2.7.9. An admissible family of subgroups is a family of subgroups of G that

is closed under conjugation by G and is downwardly directed, i.e. the intersection of any

finite collection of subgroups in the family contains another element of the family.

We say that the admissible family, S , is stable if for all H and K ∈ S such that

K ≤ H there exists an L ∈ S such that L ≤ K and LCH.

Example 2.7.4. One could simply take the admissible family {N} consisting of a single

normal subgroup NCG. More interestingly, and in most of the cases considered later, for a

near-normal subgroup H ≤ G we could take the family of subgroups of G commensurable

with H. That such a family is downwardly directed follows from the commensurability

condition and that it is closed under conjugation follows from the fact that H is com-

mensurable with all of its conjugates in G. This gives a host of non-trivial examples of

admissible families.

Lemma 2.7.10. Let S be an admissible family of subgroups of G. If S contains a minimal

member N ∈ S then N is the unique minimal member and N CG.

Proof. Let N ∈ S be minimal. Suppose that M ∈ S were also minimal. Then since

S is an admissible family there exists some subgroup L of M ∩ N belonging to S . By
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minimality it follows that M = N and thus N is the unique such minimal subgroup. Let

g ∈ G. Now since S is an admissible family it follows that Ng ∈ S and further that

some subgroup of N ∩Ng belongs to S . Thus Ng ∩N = N. Now suppose that N < Ng,

we would then have that Ng−1
< N contradicting the minimality of N ∈ S . Therefore

Ng = N and so N CG.

Lemma 2.7.11. Let S be an admissible family of commensurable subgroups of G. Sup-

pose that S contains a minimal member. Then the groups in S are all G-conjugate

incomparable.

Proof. Let N be the minimal member of S . Suppose to the contrary that there exists a

subgroupH ∈ S and an element g ∈ G such thatHg < H. Since S is an admissible family

we have that Hgi ∈ S for all i ∈ Z. By the minimality of N we see that N ≤
⋂
i≥0H

gi
.

However, |H :
⋂
i≥0H

gi | =∞, contradicting the fact that N ∈ S is commensurable with

H.

2.8 Completions of G

In [23] Kropholler obtains splittings of certain finitely generated groups introducing a cer-

tain completion of a group G denoted ĜS associated to an admissible family of subgroups,

S of G. Kropholler notes that this generalises the profinite completion of a residually fi-

nite group and asks the question whether this new completion is always a group. In this

section we investigate this completion considering when it is itself a group and also when

we simply obtain the well known notion of the metric completion of the group. We state

the following definition from section 6 of [23].

Definition 2.8.1. Let S be an admissible family of subgroups of G. We define the

completion of G (with respect to S ), ĜS to be the set of all functions f : S → P(G)

satisfying,

• f(H) ∈ H\G for all H ∈ S ,

• f(K) ⊆ f(H) whenever K ⊆ H are members of S .

Notice that we may then define a product on ĜS allowing us to consider the completion

as a monoid. We define the product in the following way. Firstly for all f ∈ ĜS andH ∈ S



CHAPTER 2. PRELIMINARIES 20

denote by Hf the stabiliser of the right coset f(H) under right multiplication by G. Then

for all f, f ′ ∈ ĜS define the product,

f · f ′(H) = f(H)f ′(Hf ).

It can be shown that this product is associative and that the function e : H 7→ H is

the identity element of this monoid. This construction works for any group G together

with some admissible family S . Kropholler has shown that in the case S is a stable

admissible family then this completion is a group. It is also an interesting question to

consider whether the use of right cosets plays any role in this construction. We deal with

this question in the following section.

2.8.1 Anti-isomorphism

One might initially suspect that the completion of G should not depend upon whether left

or right cosets are used in the definition above. We aim to show now that the two different

constructions give anti-isomorphic monoids, thus in particular when the completion is

in fact a group, and thus anti-isomorphic to itself, we have that the constructions give

isomorphic monoids or indeed isomorphic groups.

To avoid confusion we denote the completions of G via left/right cosets as ĜS ,L/ĜS ,R

respectively. We define a map ϕL : ĜS ,R → ĜS ,L, f 7→ fL where for all H ∈ S , fL(H) =

gH where f(H) = Hg−1. The conditions for a function to belong to ĜS ,R corresponds

to the conditions for its image under this map belonging to ĜS ,L. Thus our map is well-

defined and we check that this is an anti-isomorphism of monoids. It is worth observing

at this point that the products in the two monoids are not the same but must be adjusted

in the obvious way to ensure that the image of the product is a coset. Multiplication in

ĜS ,L is given by the following formula,

f · f ′(H) = f(f
′
H)f ′(H),

where f ′H denotes the stabiliser of the left coset f ′(H) under left multiplication. This

makes ϕL an anti-homomorphism of monoids. To see this let f1, f2 ∈ ĜS ,R and H ∈ S .

Suppose that f1(H) = Hg1 and f1(Hg1) = Hg1g2, then we see that (f1)L(H) = g−1
1 H

and (f2)L(Hg1) = g−1
2 Hg1 . So now (f2)L · (f1)L(H) = (f2)L((f1)LH)(f1)L(H) = g−1

2 g−1
1 H

and also that f1 · f2(H) = f1(H)f2(Hf1) = Hg1g2. Hence (f1 · f2)L = (f2)L · (f1)L and

ϕL is an anti-homomorphism. That this is an isomorphism is more straightforward to
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see and the inverse map is ϕR : f 7→ fR where fR(H) = Hg whenever f(H) = g−1H.

Thus our constructions are isomorphic in the case that they are both groups. However

we now show that it is not always the case that ĜS ,R or ĜS ,L is a group. In particular

for G = Symm(N) with the admissible family S = { GX | X ⊆ N is finite }, where GX

denotes the pointwise stabiliser of X, the monoid ĜS is not a group but in fact isomorphic

to the monoid of injective maps from N to itself.

2.8.2 Injective endomorphisms of the natural numbers

We denote the set of all maps from the natural numbers to themselves by (N,N), and all

such injective maps by Inj(N,N). We also write all of these maps on the right.

We define a map from the completion of G to (N,N) as follows.

ĜS
∼ // (N,N)

f � // f̃

where nf̃ = ng where H ∈ S fixes n and f(H) = Hg. We must now verify that this map

is well-defined. Suppose now that Hg = Hg′ for some choice of g′ ∈ G. Then gg′−1 ∈ H,

it follows that ngg′−1 = n and thus ng = ng′. Next suppose that we had chosen a different

subgroup K ∈ S such that K fixes n and that f(K) = Kt, where t ∈ G. Then since S is

an admissible family, there exists an L ≤ H ∩K in S . It is clear that L also fixes n and

since f ∈ ĜS , f(L) ⊆ f(H) ∩ f(K) = Hg ∩Kt. Let us assume that f(L) = La, say, then

ag−1 ∈ H and at−1 ∈ K and we have that ng = na = nt. Hence we observe that the map

f 7→ f̃ is well-defined.

Now we must check that this a map of monoids. Let f, g ∈ ĜS . Then nf̃ = nα where

L ∈ S fixes n and f(L) = Lα. Now nf̃ g̃ = nαg̃ = nαβ where g(Lα) = Lαβ and of course

Lα ∈ S fixes nα. Notice that f · g(L) = Lαβ and it follows that f̃ ◦ g̃ = f̃ · g.

Remark 2.8.2. At this point we notice that in a more general context the map f 7→ f̃

is well-defined if every point of our domain is fixed by some subgroup in our admissible

family. Further this map is always a map of monoids via the closed under conjugation

condition of our admissible family. Indeed this condition also gives that the image of

f 7→ f̃ lies in the injective maps of our object.

We now claim that ĜS is isomorphic as a monoid to the set of injective functions from

N to N. We proceed to show that f̃ is always an injective function and that there exists
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an inverse map of monoids from Inj(N,N) to ĜS .

Let f ∈ ĜS . Suppose that nf̃ = mf̃. Then ng = mg′ where H and K ∈ S fix n

and m respectively, f(H) = Hg and f(K) = Kg′. Then there exists L ∈ S contained in

H ∩K such that f(L) ⊆ Hg∩Kg′. By a similar argument as above na = ng = mg′ = ma,

where f(L) = La and so n = m since a ∈ G. It follows that the image of the map f 7→ f̃

lies in Inj(N,N).

We now construct the inverse map. Let f ∈ Inj(N,N) and X ⊆ N be a finite set.

Choose σ ∈ Symm(X ∪ (X)f) ⊆ G such that xσ = (x)f for all x ∈ X. Notice that we may

choose such a permutation only when f is an injective map. Now for H = GX ∈ S we

define,

f(H) = Hσ.

It remains to show that f ∈ ĜS and that f 7→ f is both a monoid map and inverse to

f 7→ f̃ . To see that f ∈ ĜS let f ∈ Inj(N,N) and K ≤ H belonging to S . Then K = GY

where Y ⊇ X is a finite subset of N, and f(K) = Kσ′ say, where σ′ is such that xσ′ = xσ

for all x ∈ X. Thus we see that σ′σ−1 ∈ H and hence Kσ′ ⊆ Hσ which gives that f ∈ ĜS .

Let f, g ∈ Inj(N,N). Then

f · g(H) = f(H)g(Hf )

= Hσg(Hσ) where xσ = xf ∀x ∈ NH

= Hστ where xστ = xσg ∀x ∈ NH

= Hστ where xστ = xfg ∀x ∈ NH

= fg(H).

Thus we observe that this is in fact a map of monoids. It is now clear from the definitions

that these maps are mutually inverse and it follows that ĜS
∼= Inj(N,N) as monoids.

Therefore in this example ĜS is not a group. It should be noted that the above proof

does not use the structure of N and holds indeed if we replace N with any infinite set. We

now investigate some other natural instances of this completion.

2.8.3 Vector spaces over a field

Let V be a vector space over a field k, G be the group of automorphisms of V and

S = {GW | W is a f.d. subspace of V } be the collection of pointwise stabilisers of finite

dimensional subspaces of V. We now show that the image of the map f 7→ f̃ defined
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previously lies in the injective linear maps from V to itself. To check that the map f̃

is linear let k1, k2 ∈ k and v1, v2 ∈ V. We choose two subgroups H1,H2 that fix v1, v2

respectively. Then we may choose an H3 ∈ S contained in the intersection of the two

subgroups and thus find a linear automorphism φ ∈ G such that f̃ acts on both v1, v2

as φ. To construct an inverse map, thus showing that ĜS is isomorphic to the injective

linear endomorphisms of V, we must observe that every injective linear map on a finite

dimensional subspace of V to V may be extended to an automorphism of V. We may then

construct the analagous inverse map as in the case above.

2.8.4 Topological Spaces

Proposition 2.8.3. Let X be a topological space, G be the group of homeomorphisms of

X to itself and let S be the collection of subgroups fixing (pointwise) some open subset of

X. Then the completion of G, ĜS , is isomorphic to G.

Remark 2.8.4. It is to be expected that the completion in this case should be a group since

the whole space is itself an open set and therefore the trivial group is in the family making

S a stable admissible family of subgroups. That the completion is a group in this case is

proved in [23].

Proof. We first observe that the family of subgroups S is an admissible family since open

sets remain open after conjugation by some homeomorphism and since finite unions of

open sets are also open. We may define a map ĜS → G where f 7→ f̃ in an analogous way

to the above argument. We define f̃(x) = xϕ where x ∈ U is an open subset of X and

f(GU ) = GUϕ. Notice that we may always choose such a U since the whole space itself is

an open set. It is this observation that allows us to see that f̃ ∈ G. Again we observe that

this definition is independent of the choice of coset representative since GU fixes x and

also it is independent of the choice of U ⊆ X by the very definition of admissible family.

That this map is a map of monoids follows from the definition of an admissible family in

the same way as the previous example. We recall that the second axiom for a function

belonging to ĜS is,

f(K) ⊆ f(H) whenever K ⊆ H are members of S .

Thus it is clear that whenever the trivial group belongs to S , the function f ∈ ĜS is

uniquely determined by f(1), i.e. by a single element of G. Hence we may now define a
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map G→ ĜS with ϕ 7→ fϕ where fϕ(H) = Hϕ for all H ∈ S . It is clear that the image

of this map lies in ĜS and further this is a map of monoids since for all ϕ,ψ ∈ G and

H ∈ S we have that,

(fϕ · fψ)(H) = fϕ(H)fψ(Hfϕ)

= HϕHϕψ

= Hϕψ

= fϕψ(H).

It is now straightforward to verify that for all g ∈ ĜS and ϕ ∈ G that fg̃ = g and f̃ϕ = ϕ.

Therefore we have that G ∼= ĜS as claimed.

Remark 2.8.5. Notice that in the above argument we could have chosen to consider the

family of stabilisers of closed subsets rather than open subsets. We would still obtain an

admissible family since finite unions of closed sets are closed and closedness is preserved

under conjugation by homeomorphisms. Again we could note that the whole space X is

closed and thus the trivial subgroup belongs to our family. This would allow an identical

construction of an inverse map f 7→ f̃ . Thus again we would observe that the completion

of G is G itself. This however is not so surprising, for example in the case X = Rn the

pointwise stabiliser of an open set stabilises its closure and so in fact both families of

subgroups are the same.

2.8.5 Compact subsets

For a topological space X we could also choose our admissible family of subgroups to

be the pointwise stabilisers of a given compact subset of X, since compact subsets are

preserved by homeomorphisms and closed under finite unions. Unlike the open/closed

case the whole space X need not itself be compact and therefore the above construction

of the inverse map may no longer be performed.

Let Mcomp(X) be the collection of injective maps ϕ from X to itself such that for any

compact subset C ⊆ X the restriction ϕ|C extends to a homeomorphism of X. We aim to

show that ĜS
∼= Mcomp for G = Homeo(X) and S the family of subgroups fixing compact

subsets of X.

We define a map ĜS → Mcomp, f 7→ f̃ as follows. Let x ∈ X and let C ⊆ X

be a compact subset containing x. Such a set exists since {x} itself is compact. Then
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GC ∈ S and f(GC) = GCϕ say. Then we define xf̃ = xϕ. Again this is well defined

and independent of the choice of C since GC fixes x and the family S is admissible. It

is clear that f̃ ∈ Mcomp since the finite union of compact sets is compact and there is an

obvious choice of homeomorphism extending f̃ . For example, ϕ extends f̃ |C . This is a map

of monoids again by the properties of an admissible family.

We require an inverse map Mcomp → ĜS , ϕ 7→ ϕ. Define ϕ(H) = HψC where H = GC

and ψC is a homeomorphism of X extending ϕ|C . This is well defined since for any other

possible extending homeomorphism θC the restriction of ϕC ◦ θ−1
C to C is the identity. We

check that ϕ ∈ ĜS , let GC ⊆ GC′ ∈ S . Then any extension of ϕ|C is also an extension of

ϕ|C′ and so ϕ(GC) ⊆ ϕ(GC′).

Now observe that for f ∈ ĜS , GC ∈ S , that

f̃(GC) = GCψ where ψ extends f̃ |C

= f(GC) by definition of f̃ .

Also for ϕ ∈Mcomp(X), x ∈ X,

xϕ̃ = xψ where x ∈ C compact and ϕ(HC) = HCψ

= xϕ by definition of ϕ.

2.9 Metric Spaces

In this section we recall the notions of metric spaces and groups that have a metric space

structure. We investigate properties of the metric completion of such spaces and compare

these completions to the other completions defined in section 6 of [23] when they exist.

We shall also show sufficient conditions for these completions to be homeomorphic.

We begin by recalling some basic definitions from the theory of metric spaces. The

following definitions are treated in more detail in for example [9, 14,31].

Definition 2.9.1. Let (X, d) be a metric space. We say that a sequence of elements

(xi)i∈N of X is a Cauchy sequence in X if for all ε > 0 there exists an N ∈ N such that

i, j > N =⇒ d(xi, xj) < ε.
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We say that a sequence (xi)i∈N converges to x ∈ X if for all ε > 0 there exists some

N > 0 such that m > N =⇒ d(xm, x) < ε. We say that a metric space (X, d) is complete

if every Cauchy sequence in X converges to some element of X.

Remark 2.9.2. It can be shown that any Cauchy sequence in R with respect to the usual

metric converges to some element of R and thus R is complete. However, even when a

metric space (X, d) is not complete we may always find a complete metric space in which

(X, d) is dense, namely the so called metric completion of X, denoted (X, d). This can be

shown to be unique up to unique isometry commuting with the inclusions of X into the

respective completions. One construction is given below, for full details see for example

section 11.2 of [31].

Definition 2.9.3. Given a metric space (X, d) we may form the metric completion (X, d)

in the following way. Let CX be the set of Cauchy sequences in X. Then we may de-

fine an equivalence relation ∼ on CX by declaring that (xi)i∈N ∼ (yi)i∈N if and only

if limn→∞ d(xi, yi) = 0. Now X is defined to be the collection of equivalence classes of

Cauchy sequences in X. There is then an induced metric d : X × X → R defined by

d((xi), (yi)) = limn→∞ d(xi, yi). That this limit exists follows from the completeness of R

and this metric is well defined by the definition of the equivalence relation on CX. We may

think of X as being contained in X as the subspace of equivalence classes of the constant

sequences. It is easily seen that on this subspace d agrees with the original metric d and

it can also be checked that X is dense in X.

Definition 2.9.4. Let G be a group. We say that G is a metric group if it is endowed

with a map d : G×G→ R such that (G, d) is a metric space.

Lemma 2.9.5. Let G be a metric group such that G acts on itself by left and right isome-

tries. Then the completion of G is a group with group multiplication given by pointwise

multiplication of Cauchy sequences.

Proof. We define a product ? on the completion of (G, d) as follows. Let [(gi)], [(hi)] be

equivalence classes of Cauchy sequences in G. Then we define [(gi)] ? [(hi)] = [(gihi)]. It

can be seen that this gives another Cauchy sequence as for all ε > 0 there exists an N > 1

such that for all m,n > N we have that d(gm, gn), d(hm, hn) < ε. Then d(gmhm, gnhn) ≤

d(gmhm, gmhn) + d(gmhn, gnhn) ≤ 2ε. Not only does this show that (gihi) is a Cauchy

sequence but the same observation gives that the product is well defined. The other
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properties required follow easily from the fact that G is a group and it is easily seen

that the identity element of the completion is the equivalence class of the trivial sequence

[(e)].

Remark 2.9.6. Observe that the above proof uses the fact that G acts on itself on both the

left and right by isometries. We must insist on both these conditions as there exist groups

with a metric space structure that act only on one side by isometries as can be seen from

the following examples.

Example 2.9.1. It is well known that the dihedral group D2n acts on the regular n-gon by

rotations and reflections. However, this theory may be adjusted to give an action on a prism

with cross section the regular n-gon. We shall describe this action and then verify that this

induces a metric on D2n having the property that the group acts on itself by isometries

on only one side. First we fix a presentation for our group, D2n = 〈a, b | a2, b2, (ab)n〉. We

construct a polyhedron having all sides of length 1 say. For the base of the prism we take a

regular n-gon and label the vertices 1, ab, (ab)2, . . . (ab)n−1 in a clockwise fashion. For the

top of the prism label the vertices a, aba, (ab)2a, . . . (ab)n−1a again in a clockwise fashion.

This construction induces a metric on D2n given by the usual distance between two points

in R3. Now D2n acts on the labels of the vertices by both left and right multiplication.

We notice that the generators a, b act on the left as rotations about the axes indicated in

Figure 2.1. Thus D2n acts on the left by isometries with respect to this metric. Now a

also happens to act on the right by isometries, in particular it acts by swapping the top

and bottom faces of our prism, but b does not act on the right by isometries. The element

b acts on the right by first swapping the top and bottom faces and then turning the top

and bottom faces by 2π/n in opposite directions. It is clear that this is not an isometry.

Remark 2.9.7. The above examples demonstrate the existence of one-sided metric groups,

however the examples stated still satisfy Lemma 2.9.5 since they are finite groups and

thus they are their own metric completion as any Cauchy sequence must eventually be

constant. There are however also examples of infinite groups that act on themselves on

only one side by isometries. To give such examples we return to the notion of the word

metric.
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Figure 2.1: Action of D2n on a regular n-gonal prism

2.9.1 When is left action an isometry?

We have already seen that the action of a group on itself by right multiplication is an

isometry (Proposition 2.3.7). It is known however that left multiplication is not in general

an isometry. One example of such a group for which this is the case is the free group

on two generators F2 with presentation F2 = 〈a, b〉. Then dS(a, b) = 2 6= 4 = dS(ba, b2).

It can be seen that a group element g acts on the left by isometry if g ∈ ζ(G) as right

multiplication by a central element is the same as left multiplication. Thus if G is abelian

then both left and right multiplication is by isometries, however the converse is not true.

Bridson and Haefliger remark in [9] page 139 that the action given by left multiplication

by g ∈ G is an isometry only if g ∈ ζ(G). However, this claim, as stated, is not true. For

example, for any non-abelian finite group G we may take G as a finite generating set and

then dG gives the metric on G where dG(g, h) = 1 ⇐⇒ g 6= h and is thus preserved by

both right and left multiplication. More can be said about which finitely generated groups

act on themselves by left multiplication. We state the following two results which appear

in [24] as 10.1.3 and 10.1.4.

Proposition 2.9.8. Let H be a central subgroup of G such that |G : H| = n < ∞. Then

the map ϕ : G→ G, x 7→ xn is a group homomorphism with image in H.

Lemma 2.9.9. (Schur) Let G be a group such that the centre ζ(G) is of finite index in

G. Then the derived subgroup G′ = [G,G] is finite.

With these results we may now prove the following lemma.

Lemma 2.9.10. Let G be a group generated by a finite set S = {s1, s2, . . . , sk}. Then if
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G acts on the left by isometries with respect to the word metric, dS , then G′ is finite, the

order of every element of G′ is bounded by (2k)! and G′ can be generated by
(
2k
2

)
elements.

Proof. If ζ(G) is of finite index in G then it follows from Proposition 2.9.8 that x|G:ζ(G)| = 1

for all x ∈ G′ since G′ lies in the kernel of ϕ as G/ kerϕ is isomorphic to a subgroup of ζ(G)

and thus abelian. So it is now enough to show that |G : ζ(G)| ≤ (2k)!. Now if G acts on

the left by isometries then it follows that dS(1, si) = dS(sj , sjsi)(= 1) for all 1 ≤ i, j ≤ k.

That is to say that either sjs−1
i s−1

j = st or sjs−1
i s−1

j = s−1
t for some 1 ≤ t ≤ k. Hence

sj acts on S ∪ S−1 by conjugation for all j and thus G acts on S ∪ S−1. The pointwise

stabiliser of S∪S−1 is therefore ζ(G) and it follows that |G : ζ(G)| ≤ (2k)!. That G′ can be

generated by
(
2k
2

)
elements follows from the identities that [xy, z] = [yx

−1
, zx

−1
][x, z] and

[x, yz] = [x, y][xy
−1
, zy

−1
] for all x, y, z ∈ G together with the fact that G acts on S ∪ S−1

by conjugation.

We now have the following corollary answering when a finitely generated torsion-free

group acts on itself on the left by isometries. In particular we now see that any infinite

finitely generated torsion-free non-abelian group is an example of a group which acts on

itself on the right by isometries but the action by left multiplication is not an isometry.

Corollary 2.9.11. Let G be a torsion-free group generated by a finite set S. Then G acts

on the left and right by isometries with respect to dS if and only if G is abelian.

Once again however, the metric spaces we obtain are complete since the word metric

takes values in N and so there are no non-trivial Cauchy sequences. Thus the completion

of these spaces are the groups themselves and trivially have an underlying group structure.

An interesting question then is whether there exist examples for which G acts on only one

side by isometries and the completion of G does not have a group structure given by the

pointwise multiplication of the Cauchy sequences. It is worth noting at this point that

Lemma 2.9.5 may be refined in the following way.

Definition 2.9.12. Let (X, d), (Y, d′) be metric spaces. A map f : X → Y is said to be

Lipschitz continuous if there exists some λ > 0 such that for all x, y ∈ X,

d′(fx, fy) ≤ λd(x, y).

Lemma 2.9.13. Let G be a metric group such that for each g ∈ G left and right action

by g is a Lipschitz continuous map. Then the completion of G is a group with group

multiplication given by pointwise multiplication of Cauchy sequences.
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Proof. The proof of Lemma 2.9.5 is easily modified to obtain the result.

2.9.2 Comparing the completions

We proceed to show that under certain conditions the completion ĜS is not only a group

but is homeomorphic to the metric completion of G with respect to the metric obtained

via the inverse limit structure of ĜS .

Definition 2.9.14. Let G be a group and let S denote a collection of subgroups of G. We

call a function ρGS : S → N a depth in G if it satisfies the following condition,

∀ H < K ≤ G, ρGS (H) > ρGS (K).

Example 2.9.2. LetG be a group and let S denote the collection of all finite index subgroups

of G. Then an example of a depth in G would be the index of a subgroup in G, i.e.

H 7→ |G : H|.

Let G be a group, S a collection of subgroups of G and suppose that ρ is a depth in G

with respect to S. Then we may define a metric on G in the following way.

Suppose that there exists a countable descending chain of subgroups A = (Ai)i∈N

A1 ≥ A2 ≥ A3 ≥ · · · ,

in S with the property that the intersection of all the groups in the chain is trivial. Then

we may define a metric dA on G in the following way.

dA(g1, g2) =


0 if g1g−1

2 ∈ Ai ∀i

1 if g1g−1
2 6∈ A1

1
ρ(As)

if s = minn∈N(g1g−1
2 6∈ An)

Lemma 2.9.15. With the definition given above dA is a metric on G.

Proof. It is clear that for all g ∈ G, dA(g, g) = 0 since all the Ais are groups. Now suppose

that for g1, g2 ∈ G we have that dA(g1, g2) = 0. Then we see that g1g−1
2 ∈ ∩∞i=1Ai = {e}.

That is to say that g1 = g2. Further since the Ai’s are groups it is clear that g1g−1
2 ∈

Ai ⇐⇒ g2g
−1
1 ∈ Ai and it follows that for all g1, g2 ∈ G, dA(g1, g2) = dA(g2, g1). It

remains to show that the triangle inequality holds. Let g1, g2, g3 ∈ G. We may assume

without loss of generality that g1 6= g2 6= g3. Then if dA(g1, g3) = 0 the triangle inequality

holds and we are done. Suppose now that dA(g1, g3) > 0. Thus we may denote by a, b and c
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the minima of the n ∈ N such that An does not contain g1g−1
3 , g1g

−1
2 and g2g−1

3 respectively.

To verify the triangle inequality we require the following observation. For i, j, k ∈ {1, 2, 3}

distinct, gig−1
j , gjg

−1
k , gig

−1
k ∈ Ai if and only if any two of them belong to Ai. This is true

since we may write for example gig−1
j = (gig−1

k )(gjg−1
k )−1 and Ai is a group and thus

closed under both taking of inverses and products. With this result it is now clear that

a ≥ min(b, c). We may assume without loss of generality that min(b, c) = b. Then since ρ

is a depth function we have that ρ(Aa) ≥ ρ(Ab). Thus we have that dA(g1, g3) ≤ dA(g1, g2)

and we are done.

Remark 2.9.16. • It is clear from the proof that we require the chains to have trivial

intersection. Otherwise the function dA may only be a pseudo-metric.

• Indeed we may see immediately from the last line of the above proof that in fact

dA(g1, g3) ≤ max(dA(g1, g2), dA(g2, g3)) and so in fact dA is an ultrametric on G.

• We observe that the proof holds for any function ρ : S → R+ satisfying the condition

that

∀ H < K ≤ G, ρS(H) > ρS(K).

We now appeal to a standard result that for a given metric space, X, the supremum of

a family of metrics on X that are bounded by some real number, N say, is itself a metric.

For the metric just described the maximum distance between any two points is 1 and thus

in the above circumstances we may define a metric on G, dS′ = supA dA where A runs

through any family, S ′, of countable descending chains of subgroups in S. In this way we

may obtain a metric that does not require a particular choice of descending chain.

Proposition 2.9.17. Let X be a metric space, N > 0 and for all i in some indexing

set I, di a metric on X such that for all x, y ∈ X, di(x, y) < N. Then the map dsup :

X ×X → R defined by,

dsup(x, y) = sup
i∈I

di(x, y),

is a metric on X.

Proof. Firstly notice that since all the metrics are bounded above by N it follows that

dsup(x, y) ≤ N for all x, y ∈ X and so the values of dsup certainly lie in R. That dsup(x, y) =

0 ⇐⇒ x = y is clear from the definition since each di is a metric on X. It also follows

easily that dsup(x, y) = dsup(y, x) for all x, y ∈ X. All that remains is to check the triangle
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inequality. Let x, y, z ∈ X. Then dsup(x, z) ≤ supi∈N di(x, y)+supi∈N di(y, z) = dsup(x, y)+

dsup(y, z) and the proof is complete.

Example 2.9.3. • Take G = Z with S the family of all subgroups pnZ for a fixed prime

p and any natural number n. Taking ρ to be the map giving the index of the given

subgroup in G then we get the metric d(a, b) = 1/ (the smallest power of p not

dividing a− b).

• Similarly consider G = Z with S the family of all subgroups of G. Then the metric

we obtain is given by d(a, b) = 1/ (the smallest natural number not dividing a− b).

• G a countable group having a finitely generated subgroup H commensurable with

all its conjugates and S the family of all subgroups of H commensurable with H.

Then taking ρ to be the map giving the index of the given subgroup in H the

metric obtained is d(g1, g2) = 1/|H : L| where L is a finite index subgroup of H not

containing g1g−1
2 of minimal index in H.

Connection with the metric space completion

We now have enough of the theory in place to begin to show how to construct a home-

omorphism between ĜS and the metric completion of G with respect to the metric on

G defined by a descending chain of subgroups. We begin by stating the topology we put

on ĜS . Firstly notice that we may consider ĜS as the inverse limit of the coset spaces

H\G as H runs through the members of S . We then consider the coset spaces as discrete

topological spaces and put the inverse limit topology on ĜS . Thus the basic open sets in

ĜS correspond to unions of finitely many cosets of a given group in S .

We give some examples first to keep in mind throughout the following proofs. These

examples correspond to the metric completions of Examples 2.9.3, and all these facts shall

follow from Theorem 2.9.20.

Example 2.9.4. • G = Z and S the family of subgroups of the form pnZ. This has

metric completion lim←−Z/pnZ.

• G = Z and S the family of all non-trivial subgroups gives rise to the metric com-

pletion lim←−
m∈Z

Z/mZ.

• G with S the family of all subgroups commensurable with a given finitely generated

subgroup H such that CommG(H) = G has metric completion homeomorphic to
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ĜS .

Lemma 2.9.18. Let G be a group, S any collection of subgroups of G with trivial in-

tersection, S an admissible family of subgroups of G and ρ : S → N a depth function

for G. We define the metric dS on G to be the supremum of the metrics obtained for all

countable descending chains in S with trivial intersection. If for each H ∈ S there exists

a countable descending chain of subgroups, A = (An)n∈N in S such that for some m ∈ N

we have that Am ≤ H then there exists a continuous map ϕ : G→ ĜS .

Proof. We construct the map ϕ : G → ĜS as follows. Let x = (xi)i∈N be a Cauchy

sequence in (G, dS). That is to say that,

∀ε > 0, ∃N > 0 such that m,n > N =⇒ dS(xm, xn) < ε.

Fix a descending chain,

K : · · · < K3 < K2 < K1 = K,

of subgroups in S with trivial intersection. Then for any Ki in the chain there exists i′ > 0

such that for all m,n > i′ we have that dK(xm, xn) < 1
ρ(Ki)

. Thus for m,n > i′ we have

xmx
−1
n ∈ Ki or in other words Kixm = Kixn. Thus the Cauchy sequence x eventually

gives a choice of coset of Ki.

Now for any subgroup Ki ≤ H, we observe that the Cauchy sequence eventually lies

in a unique coset of H. We now have a choice of coset for all groups in S given by x

since every group in S contains an Am from some chain, A, in S by hypothesis. For each

H ∈ S we denote this coset by Hx, observing that x is not an element of G but a Cauchy

sequence of elements belonging to G.

We check that for H ≤ L ∈ S we have that Hx ⊆ Lx. Observe that the definition

of Hx is that coset of H to which eventually all elements of x belong. Thus it is clear

that Hx ⊆ Lx and thus we have a map G → ĜS , x 7→ (Hx)H∈S . Observe that this is

well defined if we identify x with its equivalence class given by the relation x ∼ y ⇐⇒

limn→∞ dS(xn, yn) = 0. That is to say that two sequences are equivalent if they eventually

give the same cosets upon passing to sufficiently small subgroups.

It remains to show that this map is continuous. Suppose now that V is an open subset

in ĜS . Recall that a basic open set in ĜS is given by restricting the permitted cosets

of Hi for finitely many subgroups Hi ∈ S . By the downward directed property of S

together with the definition of an element of ĜS we see that such a basic open set is
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defined by restricting the choice of coset at a single H ∈ S . Let f ∈ V and y be a Cauchy

sequence in the pre-image of f. Then the set of Cauchy sequences z in (G, dS) such that

limn→∞ dS(yn, zn) < 1
ρ(H) is an open set in G containing y whose image lies in V. Thus we

see that the map G→ ĜS is continuous.

Lemma 2.9.19. Let G be a group, S any collection of subgroups of G with trivial in-

tersection, S an admissible family of subgroups of G and ρ : S → N a depth function

for G. We define the metric dS on G to be the supremum of the metrics obtained for all

countable descending chains in S with trivial intersection. If there exists a descending

chain (Hi)i∈N ∈ S such that for all A ∈ S with ρ(A) ≤ m, Hm ≤ A, then there exists a

continuous map ψ : ĜS → G.

Proof. Let f ∈ ĜS . Then by the properties of ĜS we obtain a descending chain of cosets,

f(H1) ⊃ f(H2) ⊃ f(H3) ⊃ · · · .

We now choose a sequence of coset representatives, xi ∈ f(Hi). Then the sequence (xi)

shall be a Cauchy sequence in G with respect to the metric induced by the descending

chain of the His since for i, j > N it follows that xix−1
j ∈ HN . That the equivalence class

of (xi) is independent of the choice of descending chain in S follows by passing to the

chain given by the intersection of two such chains. Further the sequence (xi) is in fact

Cauchy with respect to the supremum metric dS since,

i, j > N =⇒ xix
−1
j ∈ HN

=⇒ xix
−1
j ∈ K ∀ K ∈ S s.t. ρ(K) < N

=⇒ dS(xi, xj) <
1
N
.

We define the map ψ : ĜS → G to be the map sending f to the equivalence class of (xi),

obtained above, in G. It remains to show that the map ψ is continuous. To see this let

f ∈ ĜS and let Um denote the open ball of radius 1
ρ(Hm) in G about f. Let y ∈ ψ−1(Um)

then the set Vy = {g ∈ ĜS |g(Hm) = y(Hm)} is an open set in ĜS containing y and

ψ(Vy) ⊆ Um.

Theorem 2.9.20. Let G be a group, S any collection of subgroups of G with trivial

intersection, S an admissible family of subgroups of G and ρ : S → N a depth function

for G. We define a metric, dS , on G given by the supremum of the metrics obtained for all

countable descending chains in S with trivial intersection. If there exist Hi ∈ S , Ai ∈ S
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such that H1 ≥ A1 ≥ H2 ≥ A2 ≥ · · · then there exist continuous maps ϕ : G → ĜS and

ψ : ĜS → G as defined in Lemmas 2.9.18 and 2.9.19 which are in fact homeomorphisms.

Proof. It is clear that the hypotheses of Lemmas 2.9.18 and 2.9.19 are satisfied and thus

the continuous maps ϕ, and ψ exist. It is enough now to verify that the two compositions

are the corresponding identity maps. That ϕ ◦ ψ is the identity on ĜS is clear. The

map ψ gives a Cauchy sequence of coset representatives of the Hi and then ϕ returns the

function picking out the cosets containing the xi together with a uniquely induced choice

of cosets elsewhere. The other composition requires only slightly more thought. We begin

with a Cauchy sequence (xi) and the map ϕ gives the function that identifies the cosets

eventually containing the xi. The map ψ now gives a collection of coset representatives

for these cosets. Notice that this need not return our original xi, instead we may obtain

a sequence (zi), however, by the above construction it is clear that limn→∞ dS(xi, zi) = 0.

Therefore both sequences represent the same element of the metric completion of G.

Corollary 2.9.21. Let G be a countable group, H < G a finitely generated subgroup such

that CommG(H) = G and S the admissible family of subgroups of G commensurable with

H. There is a metric, d, on G obtained by taking the supremum of all metrics obtained

via countably infinite descending chains of subgroups of G starting at H with trivial in-

tersection. Then if there exists a descending chain in S with trivial intersection then the

completion of (G, d) is homeomorphic to ĜS .

Proof. Apply Theorem 2.9.20 taking S to be the family of all finite index subgroups of H.

The required descending chain is given by taking H0 = H and for all i ∈ N,Hi is chosen

to be the intersection of all subgroups of H of index no greater than i. Notice that for this

to be a chain of subgroups in S we need that the group H is finitely generated. Thus

there are only finitely many subgroups of H of a given finite index and we know that S

is closed under finite intersections.

Remark 2.9.22. Notice that the homeomorphisms mentioned in the other examples in the

above section may be obtained from Theorem 2.9.20. For example,

• G = Z and S the family of subgroups of the form pnZ. This has the particularly

nice property that the family of subgroups S itself forms a descending chain and

thus the supremum metric can be thought of in terms of a metric defined by a single

descending chain of subgroups.
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• G = Z and S the family of all non-trivial subgroups. In this example a suitable

choice of descending chain would be

Z ≥ 2!Z ≥ 3!Z ≥ · · · .



Chapter 3

Generalisations of the Almost

Stability Theorem

In Chapter 4 we shall prove the following theorem. The notation used shall be explained

fully in section 3.2.

Theorem A. Let H be a finitely generated subgroup of G with χ(H) a non-zero integer

and CommG(H) = G. Let S be the admissible family of subgroups commensurable with

H and A and I be non-empty sets. Suppose that V is a G-stable S -almost equality class

in S (tIG,A). Then there exists a G-tree with edge stabilisers in S and vertex set V.

Then in the final chapter we use Theorem A to obtain the following result.

Theorem B. Let G be a group of cohomological dimension n < ∞. Let H be a PDn−1

subgroup of G such that CommG(H) = G and χ(H) is a non-zero integer. Then there

exists a G-tree T with edge and vertex stabilisers commensurable with H.

In this chapter we introduce the Almost Stability Theorem and make some basic ob-

servations about when this theorem is straightforward to check. We then mention some

conjectures we have made, how they relate to the Almost Stability Theorem, when these

results are equivalent and the open questions concerning these conjectures that remain.

3.1 The Almost Stability Theorem

We now state the Almost Stability Theorem.

37
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The Almost Stability Theorem (Dicks-Dunwoody). Let G be a group, E a G-set with

finite stabilisers and A some non-empty set. Let V be a G-stable almost equality class in

(E,A). Then there exists a G-tree T with finite edge stabilisers and vertex set V.

Remark 3.1.1. We first note some special cases of the Almost Stability Theorem for which

the proof is trivial. Observe, firstly that if V contains a fixed point, v0 say, then we may

construct a G-tree with an edge joining every point of V \ v0 to v0. It is easy to see that G

acts on this tree. In order to show that the edge stabilisers are finite as required we make

the assumption here, which shall follow from Proposition 3.7.1, that the complete graph

on V has finite edge stabilisers. We can use this argument to obtain a straightforward

proof in the following cases:

• V contains some constant function. Clearly the constant functions are fixed by G.

• |E| <∞. Then V = (E,A) and so clearly contains the constant functions.

• The action of G on E is trivial. Here every element of V is fixed by G.

• |A| < 2, since V consists of a single function and our tree is a single vertex.

We now give some justification of the statement by showing that the vertex set of a

G-tree can be thought of as a subset of a G-stable almost equality class of (ET,Z2). The

following example demonstrates a key technique in obtaining a class of functions from a

G-graph.

Example 3.1.1. For a G-tree T, the structure map ET → (V T,Z2) is given by sending

each edge, e, of T to the set of vertices which it points towards, i.e. the set of vertices in

the component of T −{e} which contains τe. The dual map, also known as the costructure

map, then is that which sends each vertex to the set of edges which point towards that

vertex. It then follows that for any two vertices v1, v2 ∈ V T the set v1|ET 5 v2|ET is

just the set of edges in the path in T joining v1 to v2 and thus v1|ET =a v2|ET. Thus we

have that each vertex may be considered as a function from the edge set to Z2 and that

these functions lie in an almost equality class. To see that this class is in fact G-stable we

observe that for all v ∈ V T, g ∈ G we have that vg ∈ V T and thus v|ET =a vg|ET.

3.2 Some Conjectures

We now wish to introduce some potential generalisations of the Almost Stability Theorem.

However, before we may discuss these conjectures it is necessary to introduce some new
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terminology.

Definition 3.2.1. Let F denote a family of subgroups of G. We denote by F (G,A) all

functions from G to A that are constant on the left cosets, gK, of some group K ∈ F .

In a similar fashion we denote by F (tIG,A) all functions from tIG to A, where I is an

arbitrary indexing set, that are for each factor Gi constant on the cosets of some group

Ki ∈ F .

Definition 3.2.2. Let S be an admissible family of commensurable subgroups of G.

We say that two functions f, g ∈ (G,A) are S -almost equal, denoted f =S g if the set

{x ∈ G|f(x) 6= g(x)} is contained in finitely many left cosets of some group in S . More

generally for an arbitrary indexing set I and two functions f, g ∈ (tIG,A), we say that f

and g are S -almost equal, denoted f =S g, if for all but finitely many i ∈ I the restriction

of the two functions to Gi, the i-th copy of G, are equal and for the finitely many such

exceptions the functions f |Gi and g|Gi are S -almost equal in the original sense.

Remark 3.2.3. 1. Observe that S -almost equality is an equivalence relation and par-

titions the set of functions from G to a non-empty set A into S -almost equality

classes. If a function f from G to A satisfies f · g =S f for all g ∈ G then we say

that the S -almost equality class containing f is a G stable S -almost equality class.

2. Notice that we use here that S is an admissible family to show that S -almost

equality is an equivalence relation. For example for f1, f2, f3 ∈ (G,A) if f15 f2 lies

in a finite union of cosets of H1 and f2 5 f3 lies in a finite union of cosets of some

subgroup H2 then f15 f3 lies in a union of cosets of H1 ∩H2. That this final union

is finite follows from the fact that H1 ∩H2 is of finite index in both H1 and H2 as

the subgroups in S are commensurable. That a finite index subgroup of H1 ∩ H2

belongs to S follows from the fact that S is an admissible family.

3. Notice that in the case that S consists of the family of all finite subgroups we

retrieve the definition of almost equality.

The following lemma concerning when the properties of a G-stable S -almost equality

class passes down to a subgroup will be of particular use in our later induction arguments.

Lemma 3.2.4. Let S be a commensurability class of finitely generated near-normal sub-

groups of G. Suppose that H ≤ G contains a member of S . Let T = {H ∩K|K ∈ S }

and let V ⊆ S (
⊔
I G,A) be an H-stable S -almost equality class. Then T is also a
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commensurability class of finitely generated near-normal subgroups of H. Suppose that

G =
⊔
j∈J xjH. Then V is isomorphic as an H-set to an H-stable T -almost equality class

in T (
⊔
I×J H,A).

Proof. We first observe that T is a commensurability class of finitely generated near-

normal subgroups of H. It is clear that the groups in T are commensurable with one

another as S is a commensurability class. Since T contains a member of S it follows

that the members of T are commensurable with the subgroups contained in S and thus

are also finitely generated. In fact, T = {K | K ∈ S , K ⊆ H}.

We define a map V → (
⊔
I×J H,A), v 7→ v by,

v(h(i,j)) = v((xjh)(i)).

To see that this is an H-map, let h1, h2 ∈ H,

(v · h2)(h
(i,j)
1 ) = v((h1h

−1
2 )(i,j))

= v((xjh1h
−1
2 )(i))

= (v · h2)(xjh
(i)
1 )

=
(
v · h2

)
(h(i,j)

1 ).

This is then an injective H-map and since V is an S -almost equality class it follows that

the image lies in a T -almost equality class. It remains to show that the image lies in

T (
⊔
I×J H,A). Suppose that our function v is constant on the cosets of L ∈ S in the ith

factor. Then we claim that v is constant on the cosets of L ∩H in the (i, j)th factors for

all j. By assumption then for all l ∈ L and g ∈ G, we have that v(gl) = v(g). Now for all

l2 ∈ L ∩H,h ∈ H,

v(hl(i,j)2 ) = v(xjhl
(i)
2 )

= v(xjh(i))

= v(h(i,j)).

Hence we obtain our result.

We may now state the conjectures under consideration. This first conjecture seems the

most natural of our generalisations of the Almost Stability Theorem.

Conjecture A. Let H be a finitely generated subgroup of G such that CommG(H) = G.

Let E be a G-set with stabilisers commensurable with H and A be a non-empty set. Let
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V be a G-stable almost equality class in (E,A). Then there exists a G-tree T with edge

stabilisers commensurable with H and vertex set V.

We have simply replaced the finite stabilisers condition with a finitely generated and

commensurable with all of its conjugates condition. It should be straightforward then to

notice that this generalises the Almost Stability Theorem as this is simply the case that

H is taken to be the trivial group. However, when we consider our attempt to prove

Theorem B in Chapter 5 it can be seen that we deal with a system of sets of functions and

we wish to allow functions that differ on finitely many cosets of arbitrarily small subgroups

commensurable with H. We do not necessarily have a fixed G-set, E in this setting. It is

for this very application that we arrive at the following conjecture.

Conjecture A*. Let H be a finitely generated subgroup of G such that CommG(H) = G.

Let S be the admissible family of subgroups of G commensurable with H and A be a non-

empty set. Suppose that V is a G-stable S -almost equality class in S (G,A). Then there

exists a G-tree T with edge stabilisers in S and vertex set V.

It will be shown in Chapter 5 that Conjecture A* is sufficient to prove Theorem B.

However, what is not so clear any more is whether the Almost Stability Theorem may

be recovered from this conjecture. This is because there is the following method for

identifying a G-stable almost equality class in (E,A) with a G-stable S -almost equality

class in S (tG,A) whenever the G-set E has stabilisers in S .

Definition 3.2.5. Let W ⊆ (G/H,A) for some subgroup H ≤ G and non-empty set A.

Then there is an injective map ι : (G/H,A) ↪→ {H}(G,A) where (ι(φ))(g) = φ(gH). This

injection allows us to consider W as a subset of {H}(G,A).

Throughout this chapter we shall often use this map to pass from a function on the

set of cosets of a subgroup H to a function with domain G and constant on the cosets

of H without further mention. However, to relate conjectures concerning functions with

differing domains it would be helpful to be able to go the other way. That is to say that

given a function v in S (G,A) is there an appropriate choice of G-set, E, such that v arises

from a function in (E,A). We can show that there is such a suitable choice in the case that

the admissible family contains a minimal, and thus normal by Lemma 2.7.10, subgroup

N.

Lemma 3.2.6. Let S be an admissible family of commensurable subgroups containing

a minimal element N, say. Suppose that V is a G-stable S -almost equality class in
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S (tIG,A). Then there is a G-stable almost equality class, W, in (tIG/N,A) such that

V ∼= W as G-sets.

Proof. Observe that if N is a minimal element of S then S (tG,A) = {N}(tG,A) which

may clearly be identified with (tG/N,A). Almost equality in (tG/N,A) corresponds to

S -almost equality in S (tG,A). We already have a map in one direction cf. Definition

3.2.5. Now there is a map S (tG,A) → (tG/N,A) : v 7→ v where v(gN) = v(g). That

this map is a G-map follows from the fact that N CG being a minimal element of S . For

γ, g ∈ G,

v · g(γN) = v(γNg−1)

= v(γg−1N) as N CG

= v(γg−1)

= (v · g)(γ)

= v · g(γN).

In particular the admissible family of finite subgroups contains a minimal element,

namely the trivial group. Thus we see that in the case H is taken to be the trivial group

Conjecture A* is simply a restatement of the Almost Stability Theorem in the case that

E is a transitive G-finite G-set. Thus we make the following minor modification to obtain

another conjecture.

Conjecture A**. Let H be a finitely generated subgroup of G such that CommG(H) = G.

Let S be the admissible family of subgroups of G commensurable with H and A and I be

non-empty sets. Suppose that V is a G-stable S -almost equality class in S (tIG,A). Then

there exists a G-tree T with edge stabilisers in S and vertex set V.

We will see via Corollary 3.3.9 that Conjecture A** then implies the Almost Stability

Theorem. That Conjecture A** implies Conjecture A* is clear as it is the special case

where the disjoint union is of a single copy of G, i.e. |I| = 1. It is not known whether

Conjecture A* is in fact equivalent to Conjecture A**. However in the proof of 3.3.9 we

show that the vertex set in Conjecture A is a G-retract of the vertex set in Conjecture A**

and so whenever we have the additional condition that the edge stabilisers are G-conjugate

incomparable then we may use Theorem 3.3.4 to show that these two conjectures are

equivalent.
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We also mention at this stage an interesting potential application of any such a gener-

alisation of the Almost Stability Theorem and some variants on this application that may

be proved under certain additional hypotheses. These conjectures are known to be true in

the case that G is finitely generated by a result of Kropholler [23].

Conjecture B. Let G be a group of cohomological dimension n <∞. Let H be a PDn−1

subgroup of G such that CommG(H) = G. Then there exists a G-tree T with edge and

vertex stabilisers commensurable with H.

Conjecture B′. Let G be a group of cohomological dimension n <∞. Let H be a PDn−1

subgroup of G such that CommG(H) = G. Suppose that the subgroups of G commensurable

with H are G-conjugate incomparable. Then there exists a G-tree T with edge and vertex

stabilisers commensurable with H.

Again, it is straightforward to see that Conjecture B′ is a special case of Conjecture B.

The motivation for the second conjecture is that theG-conjugate incomparability condition

seems to be the minimum restriction for which our techniques used in the proof of the A

conjectures are applicable. In fact we can prove that this is true in the case G is finitely

generated by Theorem 4.2.16 together with the fact that Conjecture A implies Conjecture

B shown in Chapter 5. This retrieves the main result of Kropholler in [23]. In the following

section we investigate the relations between the conjectures and discuss the cases in which

they are known to be true.

3.3 Connecting the conjectures

In order to prove the more interesting connections between these conjectures we must first

utilise a theory that allows us to manipulate the vertex sets of G-trees. To this end we

introduce the notion of a G-retract which will allow us to extend and contract G-trees.

Definition 3.3.1. Let V be a G-set. We say that a G-set U is a G-retract of V if there

exist G-maps ι : U → V and π : V → U such that ι is an injective map.

Remark 3.3.2. • Observe that if U is a G-retract of V we may always choose π such

that the composition π ◦ ι is the identity on U. This follows from the fact that ιU is

a G-subset of V and since ι is injective it follows that the G-map π′ : V → U,

π′v =

 πv if v ∈ V − ιU

u if v = ιu,
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is well defined.

• If T is a G-tree and T ′ is a G-subtree then V T ′ is a G-retract of V T. The required

maps being the inclusion map and the G-map sending each vertex in T to the unique

closest vertex of T ′.

Having noticed the connection between G-retracts and subtrees an important result is

that we may always extend a G-tree whenever the vertex set is a G-retract of some other

G-set.

Theorem 3.3.3. Let T be a G-tree. Suppose that V T is a G-retract of a G-set V ′. Then

the tree T may be extended to a G-tree with vertex set V ′.

Proof. For each vertex v ∈ V ′ \ V T we add an edge ev with initial vertex v and terminal

vertex π(v). Clearly this new graph is connected and closed under the action of G. It

follows that it is a tree since we have only added vertices of valency 1 and so any circuits

give rise to closed reduced paths in our original tree.

It is not however the case that every G-retract of the vertex set of a G-tree is itself the

vertex set of a G-tree. A partial result in this direction has however been proved by Dicks

and Dunwoody in [13].

Theorem 3.3.4. Let T be a G-tree and let U be a G-retract of V T. Suppose that the edge

stabilisers of T are G-conjugate incomparable. Then there exists a G-tree with vertex set

U.

Remark 3.3.5. In fact the result in [13] is obtained in the more general case that no

stabiliser of a vertex in V T − U is G-conjugate incomparable. Thus, provided we do not

remove any of the vertices with stabilisers conjugate to proper subgroups of themselves,

we may extend and contract G-trees with vertex sets that are G-retracts of each other.

Further Dicks and Dunwoody give an example of a G-retract of the vertex set of a G-tree

that is not the vertex set of any G-tree. The original tree in their example does not have

commensurable edge stabilisers.

We make the following observations concerning the conjectures. We would like to

show that Conjecture A** =⇒ the Almost Stability Theorem. Firstly we recall that

given an almost equality class, V say, in (E,A) for some G-set E with stabilisers in some

admissible family S , we obtain an S -almost equality class in (tG,A) by identifying a



CHAPTER 3. GENERALISATIONS OF THE ALMOST STABILITY THEOREM 45

function ϕ : tG/Ge → A with the function ϕ̂ : tG→ A where ϕ̂(g(i)) = ϕ(gGei). This is

a more general version of the map ι from Definition 3.2.5. We have already dealt with the

case that S has a minimal element (Lemma 3.2.6), however in the more general setting

the S -almost equality class in (tG,A) may be larger than our original almost equality

class. Now if we can show that the S -almost equality class, Ṽ , that we obtain contains

our original V as a G-retract then by Theorem 3.3.4 we see that the tree obtained via

Conjecture A** implies the existence of a tree with vertex set V and thus we are done.

The difficulty lies in constructing a G-map ψ : Ṽ → V and also in choosing a suitable V

for a given Ṽ .

Further if such a retraction map exists then we would have that a G-tree with vertex

set V extends to a G-tree with vertex set Ṽ . This together with the fact that the complete

graph on Ṽ has edge stabilisers in S whenever the groups in S are finitely generated

(Proposition 3.7.1) gives that Conjecture A implies Conjecture A*. Indeed by the same

argument we see that Conjecture A implies Conjecture A**.

Lemma 3.3.6. Let S be an admissible family of commensurable subgroups of G containing

H ≤ G and let A be a non-empty set. Suppose that V ⊂ (G/H,A) and Ṽ ⊂ S (G,A) are a

G-stable almost equality class and G-stable S -almost equality class respectively, such that

V ⊂ Ṽ when identifying (G/H,A) with its inclusion in S (G,A). Then V is a G-retract

of Ṽ .

Proof. By hypothesis we already have an injective G-map V → Ṽ . Thus it is enough to

show the existence of a G-map Ψ : Ṽ → V. For this it is sufficient to show that for each

ϕ ∈ Ṽ there exists an f ∈ V such that Gϕ ≤ Gf .

Let ϕ ∈ Ṽ . Then since V ⊂ Ṽ we have that there exists an f ′ ∈ V such that f ′ =S ϕ.

We denote the finitely many cosets of H on which f ′ and ϕ differ by Hg1, . . . ,Hgn. Fix

some a0 ∈ A. Let f be the function in V that agrees with f ′ apart from, at most, on the

finitely many cosets Hgi where f takes the value a0.

We claim that Gϕ ≤ Gf . This follows from the fact that Gϕ permutes the cosets

Hg1, . . . ,Hgn. This is true since ϕ must be constant on the cosets of H apart from the

Hgi since it agrees with f and so for all x ∈ Gϕ, ϕ · x must be constant on the cosets of H

apart from Hg1x, . . .Hgnx as ϕ · x(g) = ϕ(gx−1). To now prove the claim let x ∈ Gϕ and



CHAPTER 3. GENERALISATIONS OF THE ALMOST STABILITY THEOREM 46

suppose g ∈ G \
⊔n
i=1Hgi. Then

(f · x)(g) = f(gx−1)

= ϕ(gx−1) since Gϕ permutes the Hgi

= (ϕ · x)(g) = ϕ(g) = f(g) since g 6∈
n⊔
i=1

Hgi.

On the other hand if g ∈
⊔n
i=1Hgi then g ∈ Hgi for some 1 ≤ i ≤ n, then we have that,

(f · x)(g) = f(gx−1)

= f(gi) = a0 since Gϕ permutes the Hgi and f is constant on the Hgi.

Hence Gϕ ≤ Gf and the result is clear.

Lemma 3.3.7. Let S be an admissible family of commensurable subgroups of G, E be a

G-set with stabilisers in S and A be a non-empty set. Then we may write E ∼= tIG/Gei .

Suppose that V ⊂ (E,A) and Ṽ ⊂ S (tIG,A) are a G-stable almost equality class and

G-stable S -almost equality class respectively, such that V ⊂ Ṽ when considering (E,A)

as a subset of S (tIG,A). Then V is a G-retract of Ṽ .

Proof. The proof of Lemma 3.3.6 may easily be modified to obtain the result. Notice that

in the notation of the proof of 3.3.6 we have that f ′ and ϕ differ on only finitely many

G(i) and for each factor on only finitely many cosets of the corresponding Gei . Set f to be

a0 on all such cosets and by the same argument Gϕ ≤ Gf .

Corollary 3.3.8. Conjecture A implies Conjecture A**.

Proof. The difficulty in proving that Conjecture A implies Conjecture A** lies in choosing

a suitableG-set E andG-stable almost equality class, V say, in (E,A) lying in the preimage

of our G-stable S -almost equality class, V, under the map ι from Definition 3.2.5. Let

v ∈ V. Then by definition v ∈ (tG/Ki, A) for some Ki ∈ S . Now let E = tG/Ki and

V be the almost equality class in (E,A) generated by v. It follows that V is G-stable as

V itself is G-stable. Now we have that V is in fact a G-retract of V and thus the G-tree

obtained via Conjecture A may be extended to have vertex set V.

Corollary 3.3.9. Conjecture A** implies the original Almost Stability Theorem.
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Proof. That Conjecture A** implies the Almost Stability Theorem follows from Theorem

3.3.4. This is since any function in (E,A) corresponds to a function in S (tG,A) and so

generates an S -almost equality class containing the image of our original almost equality

class. Theorem 3.3.4 applies since finite groups are G-conjugate incomparable.

Indeed this proves the following more general result.

Corollary 3.3.10. Suppose that S consists of G-conjugate incomparable subgroups. Then

Conjecture A** implies Conjecture A.

Proof. The proof is exactly the same as for the previous corollary. We obtain a G-tree

from Conjecture A** that has vertex set containing our G-stable almost equality class as

a G-retract. The condition on S then ensures that we may apply Theorem 3.3.4.

Thus we observe that in the special case that we are able to prove our main result,

i.e. that S consists of subgroups with Euler characteristic a non-zero integer, Conjecture

A and Conjecture A** are equivalent. Thus we could have chosen to prove our main

result in either context. We give our proof of Conjecture A** however as it remains an

open question whether our techniques may be modified to prove the result in the case

G is finitely generated without the condition that the subgroups in S are G-conjugate

incomparable. We mention this possibility at the end of the proof of Lemma 4.2.16. A

summary of how the conjectures are related is displayed in figure 3.1, where the unlabelled

implications are obvious special cases. The most general versions of these results that are

known to be true are the consequences of Theorem A, this is simply Conjecture A** with

the Euler characteristic restriction on the stabilisers.

Conjecture A* 5.5 +3 Conjecture B +3 Conjecture B′ 3.4.4 +3 Theorem B

Conjecture A** 3.3.9 +3

3.3.10-When S are G-conjugate incomparable

��

KS

Almost Stability Theorem

Conjecture A

3.3.8

KS

Figure 3.1: Known relations between the conjectures
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3.4 The Euler characteristic of a group

The hypotheses of Theorem A include a condition on the Euler characteristic of the sta-

biliser groups. Before we may show that Theorem B is a corollary of Conjecture B′ it

is necessary to recall the notion of the Euler characteristic of a group. The following

definitions may be found in, for example [10] Section IX.6.

Definition 3.4.1. We say that a group G is of finite homological type if G has finite

virtual cohomological dimension and for every G-module M that is finitely generated as

an abelian group, Hi(G,M) is finitely generated for all i.

The Euler characteristic is then defined firstly for torsion-free groups and extended.

Definition 3.4.2. Let G be a torsion-free group of finite homological type. Then we

define the Euler characteristic of G to be

χ(G) =
∑
i

(−1)irankZ(Hi(G,Z)).

Let G be a group of finite homological type. Then since G has finite virtual cohomological

dimension we may choose a torsion-free subgroup H such that |G : H| <∞ and we define

the Euler characteristic of G to be

χ(G) =
χ(H)
|G : H|

.

Thus in general, the Euler characteristic of a group of finite homological type is a

rational number and need not be an integer. That the two definitions above agree and

that the second is independent of the choice of H is dealt with in Section IX.7 of [10].

Example 3.4.1. The fundamental group of a closed orientable manifold of even dimension

and genus not equal to 1 has Euler characteristic a non-zero integer - Section 2.2 of [20].

We now make a brief observation connecting the B conjectures. We first recall a result

of Strebel [30] regarding Poincaré duality groups.

Theorem 3.4.3 (Strebel). Let H be a PDn subgroup of G. Suppose that K is a subgroup

of H of cohomological dimension n. Then |H : K| <∞.

Theorem 3.4.4. Conjecture B′ =⇒ Theorem B

Proof. Suppose that there exists a group L commensurable with H that is not G-conjugate

incomparable. Then there exists an element g ∈ G such that Lg < L. Then by a standard
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result that appears as Proposition IX.7.3 in [10] we have that χ(Lg) = |L : Lg|χ(L).

However, since L ∼= Lg it follows that χ(L) = χ(Lg) and therefore χ(L) = 0 as |L : Lg| 6= 0.

Now since L is commensurable with H the same argument gives that χ(H) = 0. Thus if

χ(H) were non-zero, it follows that every subgroup commensurable with H is G-conjugate

incomparable and thus the hypotheses of Conjecture B′ are satisfied.

Next we shall introduce some of the key tools required in the proof of the Almost

Stability Theorem. In order to construct a tree we have two useful methods. The first

involves the introduction of tree G-sets and the second is the construction of a fibred G-

tree which can be used to build a G-tree given some other trees on which subgroups of G

act.

3.5 Tree G-sets

We are interested now in the construction of G-trees from certain subsets of functions in

(E,A). At this point we restrict to the case A = Z2 since little generality is lost over the

case that Z2 ⊂ A as we shall observe later and we have already seen that in the case

|A| < 2 the proof of the Almost Stability Theorem is trivial. Thus functions in (E,Z2) can

be thought of as subsets of E and often we shall refer to subsets and their corresponding

functions as if they were the same. Notice that intersection of sets is equivalent to the

product of their corresponding functions.

Before we say what we mean by a tree set we must first introduce some additional

notation.

Definition 3.5.1. Given two subsets U, V of a larger set X we denote by U�V the

following four sets,

U�V = {U ∩ V,U ∩ V ∗, U∗ ∩ V,U∗ ∩ V ∗},

where by U∗ we denote the complement of U in X.

3.5.1 An alternative to the Venn diagram

Often when we think of these four sets a Venn diagram springs to mind. However, when we

are interested in the coboundaries of functions which give rise to these sets this particular

picture is not always helpful. For example, an edge in the coboundary of one of these

four sets has endpoints in two distinct sets and thus crosses one of the boundary lines.
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Typically a Venn diagram collapses the boundary between U ∩ V ∗ and V ∩ U∗ as well as

the boundary between U ∩ V and U∗ ∩ V ∗ to a pair of points which are easily overlooked.

A perhaps more helpful style of diagram is used in [12] which we mention now. Consider

the following diagram,

�
�

�
�

�
�

�
�
�@

@
@

@
@

@
@

@
@

&%
'$

&%
'$

&%
'$

&%
'$
U∗ ∩ V ∗

U∗ ∩ VU ∩ V

U ∩ V ∗

The four circles represent the four sets and the lines joining them represent the sets

of edges with one endpoint in each of the relevant sets. We have that the union of the

two sets on the left are U and the union of the top sets are V thus we have that the

coboundary of U is just the union of the four lines between the left and right of the page

and the coboundary of V is simply the union of the four lines between the top and bottom

of the diagram. This style of diagram will prove useful later.

3.5.2 Nested sets

Definition 3.5.2. We say that two subsets U and V of X are nested if one of the four sets

in U�V is the empty set. A collection of subsets of X is said to be nested if its elements

are pairwise nested.

Observe that were we to think of these subsets as functions then the nested condition

is simply that the zero function must be contained in U�V. Our interest in nested sets

lies in the fact that they may in certain circumstances be used to construct trees.

Example 3.5.1. Let T be a G-tree. Then for each edge e ∈ ET recall that the structure

map sends e to e|V T : V T → Z2 the function that corresponds to the vertex set of the

component of T \ {e} containing τe. Then the collection of all such functions ET |V T is a

nested subset of (V T,Z2).

We notice however, that a nested subset obtained from aG-tree as in the above example

has a number of additional properties and so we introduce the following definition.
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Definition 3.5.3. Let U be a G-set. A subset, E, of (U,Z2) is a tree G-set if it is a nested

G-subset of (U,Z2) which contains no constant functions and such that the image of the

dual map U → (E,Z2) lies in an almost equality class.

The reason for this terminology should become clear from the following result, Theorem

II.1.5 from [12].

Theorem 3.5.4. Let E ⊂ (U,Z2) be a tree G-set. Then there exists a G-tree, T (E), with

edge set E and vertex set a subset of (E,Z2). Furthermore, U |E ⊆ V T (E).

Sketch proof. The proof of this theorem can be found in [12], however the details of the

proof are elementary and so we try to outline here only the key steps.

We define a graph with edge set E and declare the initial vertex of an edge e to be the

set of all subsets in E strictly containing e or strictly containing its complement and that

the terminal vertex of this edge should be ιe ∪ {e}. The proof then proceeds to show that

this graph is in fact a G-tree.

The fact that the image of the dual lies in an almost equality class gives us that there

exists a finite path between any two vertices and furthermore the set v1�v2 tells us the

edges and their orientations in the path from v1 to v2. We also require the other conditions

to show that the graph is connected and contains no simple closed paths.

3.6 Fibred G-trees

The second important construction we have available to us is that of a fibred G-tree. The

idea is to take a G-tree T as our base and take for each v ∈ V T Gv-trees as fibres. If for

each edge incident to a vertex, the edge stabiliser fixes some point in the corresponding

fibre then we may attach this edge in our base tree to a vertex in the fibre in a G-invariant

fashion. We must introduce one further piece of notation before we may give the formal

definition.

Definition 3.6.1. Let H be a subgroup of G and let U be a right H-set. We denote by

U ⊗HG the quotient of U ×G given by identifying (uh, g) with (u, hg) for all h ∈ H, g ∈ G

and u ∈ U. We denote the image of (u, g) in this quotient by u⊗ g.

We now state the following definition taken from [12].

Definition 3.6.2. Given a G-tree T, a G-transversal U for V T and for each u ∈ U a

Gu-tree, Tu we may form the G-forest Z = ∪u∈UTu ⊗Gu G. Let ψ : V Z → V T be the
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G-map sending the fibre V Tu to its corresponding vertex u for each u ∈ U. Suppose that

there exist G-maps φι, φτ : ET → V Z such that ψ ◦ φι(e) = ι(e), ψ ◦ φτ (e) = τ(e). Then

we may form the G-tree T̃ consisting of Z together with the edges ET where the initial

and terminal vertices of ET are given by the maps φι and φτ . We call T̃ the fibred G-tree

with base T, fibre Tu over u ∈ U and attaching maps φι and φτ . We sometimes simply

refer to T̃ as the fibred G-tree with base T and fibres Tu when the additional information

is clear from the context.

Remark 3.6.3. That T̃ is in fact a tree is shown in [12]. By construction, we may obtain

the base tree T from T̃ by contracting the edges of the fibres.

This is one of the reasons for the requirement of finite stabilisers since for this con-

struction it is necessary only that the stabiliser of each edge in T starting at u stabilises

some vertex of Tu to which the initial vertex of T may then be connected. In the finite

stabiliser case we can always find such a vertex, however, it can be shown that this is a

special case of the following more general result.

Lemma 3.6.4. Let T be a G-tree and v ∈ V T. Let K be a subgroup of G commensurable

with some subgroup L, say, of Gv. Then K fixes some vertex of T.

Proof. Since K is commensurable with L it follows that

K =
n⊔
i=1

(K ∩ L)ki for some n ∈ N, ki ∈ K.

Thus we see that,

vK =
n⊔
i=1

v(K ∩ L)ki

=
n⊔
i=1

vki since L ≤ Gv

= {vk1, vk2, . . . , vkn}.

Thus vK is a finite orbit. To see that this implies that K fixes a vertex of T, consider

the finite K-tree generated by vK. If this is a single vertex or edge fixed by K then we are

done. Otherwise K acts on the subtree obtained by removing the vertices of valency 1 and

their incident edges. This gives a tree with strictly fewer edges. Continuing inductively in

this way we arrive at a vertex or edge (and hence a pair of vertices) fixed by K.
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Corollary 3.6.5. Let T be a G-tree with commensurable edge stabilisers. Let H ≤ G be

a subgroup commensurable with the edge stabilisers of T. Then H stabilises some vertex of

T.

This result allows us to construct the fibred tree described above whenever the edge

stabilisers of both the base and the fibres are commensurable with each other.

Remark 3.6.6. Notice that an important particular case of the above lemma is when the

subgroup L is the trivial group. Here we recover the well known result that all finite

groups stabilise a vertex.

It should be noted that for the resulting tree to have commensurable edge stabilisers

it is enough that the edge stabilisers of the base and fibres are commensurable with each

other.

3.7 The complete graph on V

The first step in proving the Almost Stability Theorem is observing that the complete

graph on V, our G-stable almost equality class has finite edge stabilisers. From here our

task is to find some maximal subgraph which is a tree. We do not give the proof from [12]

here, instead we show the more general result that the edge stabilisers are commensurable

with one another which shall be a key starting point in the generalisation and go on to

show that in the finite stabiliser case we have that the complete graph on V has finite edge

stabilisers.

The following proposition is enough to show the result.

Proposition 3.7.1. Let V ⊆ S (tIG,A) be a G-stable S -almost equality class. Suppose

that S consists of a commensurability class of finitely generated subgroups of G. Then the

complete graph on V has edge stabilisers in S .

Proof. Let v1 6= v2 ∈ V. Then Gv1,v2 acts on the set v15v2. This follows since for g ∈ Gv1,v2
and x ∈ v1 5 v2,

v1(xg) = v1g
−1(x) = v1(x) 6= v2(x) = v2g

−1(x) = v2(xg).

Now we may write v1 5 v2 as a finite union of cosets of some subgroup, K say, in S .

Indeed, we may choose such a K so that the restriction of both v1 and v2 to v1 5 v2

is constant on the right cosets of K. Then |Gv1,v2 : Gv1,v2,Kg| < ∞, where by GKg we
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denote the coset-wise stabiliser (in our case Kg) and not the point-wise stabiliser. Next

we claim that Gv1,v15v2 = Gv1,v2,v15v2 = Gv2,v15v2 where Gv15v2 is the coset stabiliser of

the collection of cosets of K contained in v1 5 v2.

Let g ∈ Gv1,v15v2 . Let x ∈ v1 5 v2. Then we have that

v2g(x) = v2(xg−1) = v2(x).

Further for x /∈ v1 5 v2, noticing then that by the above xg−1 /∈ v1 5 v2 we have

v2g(x) = v2(xg−1) = v1(xg−1) = v1g(x) = v1(x) = v2(x).

Thus we have that the edge stabilisers of the complete graph on V are commensurable with

each other since our functions lie in an S -almost equality class. It remains to show that

the edge stabilisers lie in S . For this we use the fact that S consists of finitely generated

groups.

By the above it is enough to show that for some coset Kx of K in S , and for all v ∈ V

we have that

|GKx : GKx ∩Gv| <∞.

Now for each H ∈ S , we have that KxH = LF where L ∈ S and F is a finite subset of

G. Let h1, . . . , hm be a generating set for H. Then for 1 ≤ i ≤ m, v5 vhi is a finite union

of cosets of some group in S and thus
⋃

(v 5 vgi)H is also a finite union of such cosets

by the following result.

(v1 5 v2)g = v1g5 v2g,

and

v1 5 v3 = v1 5 v2 + v2 5 v3,

taking A = F2, or indeed more generally that

v1 5 v3 ⊆ v1 5 v2 ∪ v2 5 v3.
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Hence, we observe that for hi ∈ H (1 ≤ i ≤ m),

v5 vh1h2 . . . hm

⊆ v5 vhm ∪ vhm 5 vh1h2 . . . hm

= v5 vhm ∪ (v5 vh1 . . . hm−1)hm

⊆ v5 vhm ∪ (v5 vhm−1 ∪ vhm−1 5 vh1 . . . hm−1)hm
...

⊆ v5 vhm ∪ (v5 vhm−1)hm ∪ (v5 vhm−2)hm−1hm ∪ . . . ∪ (v5 vh1)h2 . . . hm

⊆
m⋃
i=1

(v5 vhi)H

and we have the desired result.

Remark 3.7.2. An important point to note is that if K is any subgroup of G then we may

consider the complete graph on V to be a K-graph by restricting the G-action. Then the

above result shows that the edge stabilisers of this graph when considered to be a K-graph

are commensurable by Proposition 4.1.9, this is despite the fact that the stabilisers H ∩K

need no longer be finitely generated.

3.8 Some technical lemmas

We proceed to discuss some important lemmas required in the remainder of the proof. On

their own these results do not appear to be very enlightening but they are necessary at

many points in our later work.

We begin by proving the following generalisation of Lemma III.5.3 from [12].

Lemma 3.8.1. Suppose that X is a G-graph with edge stabilisers in some commensura-

bility class S . Let I be an arbitrary indexing set and let ϕ : tIG→ (V X,A) be a G-map

such that the image of the dual map V X → (tIG,A) lies in an S -almost equality class.

Then for any G-transversal S in tIG and any G-finite G-subset F of EX,⊔
s∈S

F ∩ δ(s|V X) is finite.

Proof. Fix an edge e of X. Then ιe| tG =S τe| tG so the set,

{g ∈ tG|{e} ∩ δ(g|V X) 6= ∅} = s1x1H t . . . t snxnH
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is finite where si ∈ S(1 ≤ i ≤ n), xi ∈ G, H ∈ S .

We proceed to show that the set

{s ∈ S : eG ∩ δ(s|V X) 6= ∅}

is finite.

Suppose there exists some eg ∈ eG ∩ δ(s|V X) for some g ∈ G, s ∈ S. Then

e ∈ {e} ∩ δ(sg−1|V X)

=⇒ sg−1 ∈ s1x1H t . . . t snxnH

=⇒ s = si for some 1 ≤ i ≤ n since S is a G-transversal.

Thus

{s ∈ S : eG ∩ δ(s|V X) 6= ∅}

is finite as required.

Since F is a G-finite G-subset of EX it follows that

{s ∈ S : F ∩ δ(s|V X) 6= ∅}

is finite.

It remains to show that ⋃
s∈S

F ∩ δ(s|V X)

is finite.

It is now enough to show that eG ∩ δ(s|V X) is finite for all e ∈ EX, s ∈ S.

We aim to show that

eG ∩ δ(s|V X) ⊆
n⋃
i=1

eHx−1
i (s ∈ S)

and the result follows from the hypothesis thatH ∈ S is commensurable with the stabiliser

of e.

Suppose eg ∈ eG ∩ δ(s|V X) where s ∈ S.

By the argument above we observe that sg−1 = sixih for some 1 ≤ i ≤ n and further

that s = si since S is a G-transversal. Thus xihg ∈ Gs = {1}. Therefore hg = x−1
i and so

eg = eh−1x−1
i ∈ eHx

−1
i . It follows that,

eG ∩ δ(s|V X) ⊆
n⋃
i=1

eHx−1
i (s ∈ S).
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3.9 The Boolean ring of a graph

Finally in this chapter we state an important theorem of Dicks and Dunwoody that shall

be crucial in our generalisation.

Definition 3.9.1. Let X be a connected G-graph. The Boolean ring of X, BX is the set

of all s ∈ (V X,Z2) such that their coboundary δs is finite. Considering the elements of

this set as subsets of V X the ring operations are symmetric difference and intersection.

We also define an interesting family of subrings.

Definition 3.9.2. For n ∈ N let BnX denote the subring of BX that is generated by

the elements of s ∈ BX with |δs| ≤ n. An element s ∈ BX is n-thin if |δs| = n and

s 6∈ Bn−1X.

Example 3.9.1. Let T be a G-tree. Then B1T = BT. To see this notice that every edge of

T determines a subset of V T, namely the set of vertices in the same component of T −{e}

as τe. Now for any subset s ∈ (V T,Z2) with finite coboundary, the subset may be obtained

by taking the intersection of all such subsets obtained from the edges of the coboundary

δs with the appropriate choice of orientations of those edges.

The following result is Theorem II.2.20 in [12]. This theorem allows us to construct

trees for any connected G-graph retaining information about how our original graph was

connected.

Theorem 3.9.3. If X is a connected G-graph then there exists an ascending chain E0 ⊆

E1 ⊆ E2 ⊆ · · · of tree G-sets, in (V X,Z2), of thin elements such that for each i ∈ N the

set Ei generates BiX as a Boolean ring.



Chapter 4

Proof of Theorem A

We prove the theorem using an induction argument with three main steps. In the first

step we show that whenever G is finitely generated over H and we have a given H-tree

TH with vertex set VH (and a few other technical restrictions) we can embed the G-forest

THG into a G-tree. We then investigate the notion of incompressibility which is crucial

to the second step - manipulating the G-tree in such a way that it now has vertex set VG.

The final step is then a transfinite induction argument that obtains the result from our

earlier work. Our approach follows that of Dicks and Dunwoody in Chapter III of [12].

We fix the following notation for the rest of this chapter. Let S be an admissible family

of finitely generated commensurable subgroups of G. Let I be an arbitrary indexing set

and let V be a G-stable S -almost equality class in (tIG,A), for some non-empty set A,

as introduced in Definition 3.2.2. To emphasize the relation to the work of [12] we define

E = tIG so that V ⊆ (E,A). Notice here that in fact G acts freely on E and so will not

in general have stabilisers in S however this allows us to retain the notation EG from

Definition 2.6.2.

4.1 Step 1 - The finitely generated case

The setup for this section is as follows. We assume that our group G is finitely generated

over some subgroup H. That is to say that H ∪{g1, . . . , gb} generates G. We fix a specified

element v0 ∈ V.We are given anH-tree TH with vertex set VH and assume that EHg∩EH =

∅ for all g ∈ G−H. Our aim is to show that the H-tree TH may be extended to a G-tree

with vertex set VG. The proof of this shall take up the first half of this chapter. We require

first some preliminary results and to this end we introduce some additional notation.

58
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Let W be a G-finite G-subset of VG, with G-transversal {w1, . . . , wa}. We define X

to be the G-subgraph of the complete graph on V consisting of THG ∪W with the G-

set generated by the edges joining v0 to w1, . . . wa, v0g1, . . . , v0gb with loops omitted. We

abbreviate THG to Y and write F for X − (Y ∪W ).

Let STH be an H-transversal in ETH , we shall later see that this turns out to be a

G-transversal for EY and let SH be an H-transversal in EH . By the above hypothesis that

EH ∩ EHg = ∅ for all g ∈ G−H this may be extended to a G-transversal SG in EG.

Notice that similarly to Remark 3.1.1, it is easy to see that Theorem A is true in the

case that |A| < 2. Thus we may assume that Z2 ⊆ A. Now in an analogous fashion to the

structure and costructure maps associated with a G-tree, cf. Example 3.1.1, it is desirable

for us to think of the edges of this graph as being functions in (V X,A). We do so as

follows. Since V X ⊆ VG ⊆ (EG, A) we have the dual G-map EG → (V X,A). Further we

use our H-tree TH to get that (VH ,Z2) ⊆ (V X,A) thinking of A as containing a copy of

Z2. Composing with the structure map for TH gives an H-map ETH → (V X,A) that we

aim to show in Corollary 4.1.5 extends to a G-map EY → (V X,A). This now allows us

to identify elements of EY ∪ EG with functions in (V X,A).

The first step towards Theorem A is to construct a G-tree extending TH , that contains

W and for which there is a G-map to VG. That there is a G-map to VG shall allow us

to find such a G-tree with precisely vertex set VG using the results of section 4.2. The

importance of the G-set W is in dealing with the troublesome vertices which do not have

stabilisers in S . We construct a fibred G-tree for this purpose, the base for this tree is

obtained via the following theorem.

Theorem 4.1.1. There exists a G-tree TY having a map of G-graphs Y ∪W → TY which

is bijective on edge sets.

We require some preliminary results before we can prove this theorem. The full proof

shall be given once we have Lemma 4.1.19 in place.

4.1.1 Preliminaries

Before we discuss the proof there are a few technical points we must note about the setup

introduced above.

Lemma 4.1.2. X is a connected G-graph.
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Proof. Contract all the edges of X and denote the image of v0 by v0. We are left with

a G-graph which consists of a set of vertices, one for each connected component of X,

and no edges. Notice that Y = THG is contracted into v0G since TH is a tree and thus

connected. Furthermore W is contracted to v0 since we have edges attaching each element

to v0. Thus the whole of X is contracted to v0G. Since H acts on TH we see that v0 is

fixed by H, since W is fixed under the action of {g1, g2, . . . , ga} we see that v0 is fixed by

{g1, g2, . . . , ga} and hence v0 is fixed by the whole of G, i.e. v0G = v0 and our graph X is

connected.

Lemma 4.1.3. The map V X → VH : v 7→ v|EH is an H-retraction.

Proof. There is an obvious inclusion map VH ↪→ V X ⊆ VG. This is the required H-map

in the opposite direction.

Lemma 4.1.4. For g ∈ G −H the H-retraction V X → VH : v 7→ v|EH sends VHg to a

single vertex

Proof. Let g ∈ G−H. Recall that part of our hypothesis above was that EHg ∩EH = ∅.

Therefore we have that EHg−1 ⊆ EG −EH . Since v ∈ VH we have that v and v0 agree on

EG − EH and so agree on EHg
−1. Thus we observe that vg|EH = v0g|EH and the result

holds.

Corollary 4.1.5. For all g ∈ G −H,ETHg ∩ ETH = ∅. Hence STH is a G-transversal

in EY = ETH ⊗H G, and thus the H-map ETH → (V X,A) extends to a G-map EY →

(V X,A), s 7→ s|V X.

Proof. Let g ∈ G − H and suppose that e ∈ ETH ∩ ETHg. Then by Lemma 4.1.4 this

edge is both left fixed and collapsed to a single vertex by the H-retraction V X → V TH .

Clearly then ETH ∩ ETHg = ∅ and the result follows.

We define F0 as follows,

F0 =
⋃
s∈SH

(F ∩ δs),

where we recall that F is the G-finite set of edges joining W and Y, and SH was an

H-transversal for EH .

Lemma 4.1.6. HF0 =
⋃
s∈EH

(F ∩ δs) and F0 =
⋃
s∈SH

(F ∩ δs) is finite.
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Proof. By definition we have that EH = SHH. Furthermore since F is a G-set and H ≤ G

it follows that FH = F, and so F0H =
⋃
s∈EH

(F ∩ δs). Here we are using Proposition

2.6.6 to see that (δs) · g = δ(s)g.

We wish to obtain the result by applying Lemma 3.8.1. By definitionX is aG-subgraph

of the complete graph on VG and thus is a G-graph with commensurable edge stabilisers

by Lemma 3.7.1. SG ⊆ E is a G-transversal for EG and V X can be thought of as a subset

of S (EG, A) by restriction since V X ⊆ VG. By our definition of the set E it follows that

EG = tJG where J ⊆ I and we have a dual G-map tJG→ (V X,A). Finally since VG ⊆ V

lies in an S -almost equality class it follows that the double dual G-map V X → (tJG,A)

has image lying in an S -almost equality class and so Lemma 3.8.1 applies to give that⋃
s∈SG

(F ∩ δs) is finite and therefore any subset, in particular F0 is also finite.

Lemma 4.1.7. For all s ∈ STH , we have that s ∈ δs ⊆ {s} ∪ F0H.

Proof. Let s ∈ STH . Notice that the edges of X are simply the edges of Y = THG together

with the G-finite edge set F.

We first consider those edges of TH lying in δs. Let e ∈ ETH . Since V TH = VH ,

the retraction onto VH preserves the endpoints of e. That is to say that ιe|EH = ιe and

τe|EH = τe. Therefore we see that δs ∩ ETH = {s}.

Now since TH is an H-tree, the only edges of Y left to consider are those belonging to

ETHg for g ∈ G−H. However, Lemma 4.1.4 tells us that in this case all of VHg is sent to

a single vertex and thus s is constant on this component. It follows that δs ∩ ETHg = ∅

for all g ∈ G−H.

It remains only to consider the edges in F. Let f ∈ F. Suppose that f ∈ δs. Then s

must lie in the path in TH between ιf |EH and τf |EH . In particular we have that ιf |EH

and τf |EH are distinct and so f ∈ δe for some e ∈ EH . That is to say that f ∈ F0H and

we have the desired result.

Lemma 4.1.8. Suppose that a group G acts on two sets, E and V say, in such a way that

the stabilisers are commensurable as subgroups of G. Then for any subgroup H ≤ G, the

G-action restricts to an H-action on E and V and the stabilisers remain commensurable

as subgroups of H.

Proof. This follows from an elementary property of indices, i.e.

Proposition 4.1.9. Let K,L ≤ G such that |G : K| <∞. Then |L : K ∩ L| ≤ |G : K|.



CHAPTER 4. PROOF OF THEOREM A 62

Proof. Let T be a transversal to K ∩ L in L.

∀t, t′ ∈ T

Kt = Kt′

=⇒ t′t−1 ∈ K ∩ L

=⇒ (K ∩ L)t = (K ∩ L)t′

=⇒ t = t′

Lemma 4.1.10.
⊔
s∈STH

(F0H ∩ δs) is finite.

Proof. We have an H-map from ETH to (V X,A). Namely retraction onto VH followed

by the structure map. Again this determines a map tH → (V X,A) via the isomorphism

ETH ∼= tH\He. The dual of this map V X → (tH,A) is given by the costructure map

of the retraction of the vertex onto VH . In particular, if we denote by T the admissible

family of subgroups H ∩K where K ∈ S then the image of the dual lies in a T -almost

equality class since it arises from the costructure map for TH . Furthermore the stabilisers

of ETH are commensurable with the edge stabilisers of X considered as an H-graph by

4.1.8. This together with Lemma 4.1.6 gives us our result by Lemma 3.8.1.

Corollary 4.1.11. The set {e ∈ EY |δe 6= {e}} is G-finite, and for all e ∈ EY, δe is finite

and δe ∩ EY = {e}. Hence there exists some integer n such that |δe| ≤ n for all e ∈ EY.

Proof. We notice from Lemma 4.1.7 that, s ∈ δs ⊆ {s} ∪ F0H for all s ∈ STH . Therefore

by Lemma 4.1.10 we immediately see that δs is finite for all s ∈ STH and for almost

all s ∈ STH , δs is simply {s}. The corollary now follows from the fact that STH is a

G-transversal for EY, by Corollary 4.1.5, and that δ(eg) = (δe) · g.

We would like that EY |V X is nested which would allow us to construct a G-tree since

this set contains no constant functions (it has already been shown that {e} ⊆ δe) and the

image of the dual lies in an almost equality class by definition. The resulting tree would

have precisely edge set EY and the vertex set would contain V X when identified with

the double dual V X|(EY |V X). However this set will not in general be nested and so we

consider the obstruction to this nesting, construct a tree using the dual of this set then
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show that we may construct a second tree from what remains and that this tree is suitable

for a fibre over v0|R in our first tree. In the remainder of this section we sketch the proof.

For the following definition recall the use of the square notation introduced in Definition

3.5.1.

Definition 4.1.12. We define the obstruction to the nesting, R, in the following way,

R = {r ∈ (V X,Z2) | ∃ e, e′ ∈ EY, r ∈ (e|V X)�(e′|V X), δr ∩ EY = ∅}.

This set is the obstruction to EY |V X being nested as will be seen later in the proof.

At this moment however we focus on using this set to construct the base of our fibred tree

before concerning ourselves with how this set arises.

Lemma 4.1.13. The set R is a G-set.

Proof. Let r ∈ R, g ∈ G. Then

δ(rg) ∩ EY = gδr ∩ EY

= (δr ∩ EY g−1)g

= (δr ∩ EY )g since EY a G-set.

= ∅.

Since r ∈ R we know that

r = (e|V X)ε1 ∩ (e′|V X)ε2 ,

for some e, e′ ∈ EY, ε1, ε2 ∈ {1, ∗}.

Hence, for g ∈ G,

rg = (e|V X)ε1g ∩ (e′|V X)ε2g

= (eg|V X)ε1 ∩ (e′g|V X)ε2 ,

since EY → (V X,A) is a G-map. Further eg, e′g ∈ EY as EY is a G-set. Thus R is

a G-subset of (V X,Z2).

We note further that for each r ∈ R, |δr| ≤ |δe∪ δe′| ≤ 2n, where the last inequality is

obtained from Lemma 4.1.11.
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4.1.2 The graph X|R

The graph X|R has vertex set V X|R and edge set EX. The incidence maps and other

properties are given below.

The coboundary map

Recall the double dual map R→ (V X|R,Z2) sends r 7→ r∗ where

r∗(v∗) = v∗(r) = r(v).

We denote the incidence maps for the graph X|R by ιX|R and τX|R.

The incidence maps are defined as the composition,

EX
ι,τ−→ V X → V X|R.

Notice that δr has the same meaning as it did for X,

δr = {e ∈ EX | r(ιe) 6= r(τe)},

δr∗ = {e ∈ E(X|R) | r∗(ιX|Re) 6= r∗(τX|Re)}

= {e ∈ EX | r∗((ιe)∗) 6= r∗((τe)∗)}

= {e ∈ EX | r(ιe) 6= r(τe)}

= δr.

Lemma 4.1.14. X|R is a connected G-graph.

Proof. Since R is a G-set, the identity map from R → (V X,Z2) is a G-map. Thus the

dual map V X → (R,Z2) is a G-map by Proposition 2.1.5.

Now for g ∈ G, e ∈ EX,

ιX|R(eg) = (ι(eg))|R

= (ιe)g|R since X is a G-graph and so ι is a G-map

= ((ιe)|R)g since the dual map V X → (R,Z2) is a G-map.

To see that X|R is connected suppose that we have two vertices v1, v2 ∈ V X connected

by an edge e. Then it is clear that the points v1|R, v2|R are joined in X|R by the edge e.

It follows that X|R is connected since X is connected.
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The existence of a tree G-subset ER

Since X|R is a connnected G-graph it follows from Theorem 3.9.3 that B2n(X|R) contains

a tree G-subset, ER which generates B2n(X|R) as a Boolean ring, where n is the integer

obtained from Corollary 4.1.11. Notice that

Bm(X) ⊆ B(X) ⊆ (V X,Z2),

and so in the case of interest ER is contained in (V X|R,Z2).

Lemma 4.1.15. Since ER ⊆ (V X|R,Z2) there exists a dual map V X|R→ (ER,Z2). This

map is injective.

Proof. Let v1|R, v2|R be distinct elements of V X|R.

Thus there exists some r ∈ R such that v∗1(r) 6= v∗2(r), i.e. r∗(v∗1) 6= r∗(v∗2).

Now R|(V X|R) lies in the Boolean ring generated by ER since it is a collection of

subsets, r, of V X|R with |δr| ≤ 2n.

Thus r∗ belongs to the Boolean ring generated by ER. Therefore there exists an element

of ER containing one of v∗1 and v∗2 but not the other (i.e. if ER does not distinguish between

v∗1 and v∗2 then the Boolean ring generated by ER cannot distinguish them either).

∴ V X|R→ (ER,Z2) is injective.

We are now able to form a G-tree TR from the tree G-set ER which contains V X as a

subset of its vertex set since by the construction of the tree the image of the double dual

is contained in the vertex set and so we obtain the inclusion V X|R ⊆ V TR. This tree shall

be used as the base for our fibred G-tree. We proceed to construct the required fibres.

Notice now that for any edge e ∈ EY, then for all r ∈ R we have that δr ∩ EY = ∅

and so we see that the components of Y map to single vertices of the graph X|R. We now

denote the stabiliser of v0|R by G0 and the G0-subgraph of Y of components mapped to

v0|R by Y0. We observe the following fact about Y0.

Proposition 4.1.16. Y = Y0 ⊗G0 G

Proof. Denote the map, Y → X|R discussed above, by φ. Then φ−1(v0|R) = Y0. Recall

that Y = THG = Y0G (TH ⊆ Y0 and Y0 is a subgraph of the G-graph Y ) where Y0 is the set

of components sent to v0|R by the map e 7→ e|R. Thus Imφ = Y |R = Y0G|R = (v0|R)G.

The result follows by Lemma III.3.4 from [12], namely,
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Lemma 4.1.17. If U, V are G-sets, φ : V → U a G-map and U0 a G-transversal in U

then there is a natural identification of G-sets V =
⋃
u∈U0

φ−1(u)⊗Gu G.

Next, we denote by V X0 the subset of V X which is sent to v0|R. We aim to show that

EY0|V X0 is always nested and so we can use this set to form the fibres for our G-tree.

Lemma 4.1.18. EY0|V X0 is a nested set.

Proof. Let e, e′ be distinct elements of EY0. By Corollary 6.8, we have that δe∩EY = {e}

and δe′ ∩ EY = {e′}. Consider the diagram below which was introduced in section 3.5.1.

�
�

�
�

�
�

�
�

�@
@

@
@

@
@

@
@

@

"!
# 

"!
# 

"!
# 

"!
# 
e∗e′∗

e∗e′ee′

ee′∗

It is easily seen that e and e′ meet at a corner. The element at the opposite corner,

r say, then belongs to (e|V X)�(e′|V X). It also has the property that e, e′ /∈ δr and so

δr ∩EY = ∅ or else δe( or δe′)∩EY would contain more than one element. Thus we see

that r ∈ R. It is now that we see how the definition of the set R, the obstruction to the

nesting, was obtained.

We next recall that V X0 is the set of vertices sent to v0|R. Hence for all v ∈ V X0, r ∈ R

we have that

v∗(r) = v∗0(r)

=⇒ r(v) = r(v0)

Thus r|V X0 is constant for all r ∈ R.

Furthermore we notice that in our case above neither e|V X0 nor e′|V X0 are constant

since both have coboundary in EY0. Thus it follows that r|V X0 is zero by considering the

two cases (one of which is impossible) and looking at each of the four sets. A perhaps
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simpler way of observing this is that in order for the function to be constantly 1 it would

be necessary for both e|V X0 and e′|V X0 to be constantly 1 which would contradict the

fact that neither was constant. Thus EY0|V X0 is a nested G0-subset of (V X0,Z2).

Lemma 4.1.19. EY0|V X0 is a tree G0-subset of (V X0,Z2).

Proof. At this point we should note that since V Y0 ⊆ V X0, the set EY0|V X0 contains

no constant functions thus to prove that it is a tree G0-subset it is enough to show that

V X0|EY0 the image of the dual lies in an almost equality class. The argument is identical

to the finite stabiliser case in III.6.9 of [12]. Observe that by Lemma 4.1.7 we have the

following inclusion,

⊔
s∈STH

(eG ∩ δs) ⊆

 ⊔
s∈STH

(eG ∩ {s})

⊔ ⊔
s∈STH

(F0H ∩ δs)

 ,

for any e ∈ EX.

Clearly the second term is finite since STH is a G-transversal. The third union is finite

by application of Lemma 4.1.10 and we see that the first term must also be finite. We

notice at this point that the above implies that there exist only finitely many elements y

of EY such that e ∈ δy for a fixed edge e.

Thus we have that ts∈STH
(eG ∩ δs) is finite. Now we see that for almost all s ∈ STH

that eG∩ δs = ∅. We denote the finitely many elements of STH such that eG∩ δs 6= ∅ as

{s1, s2, . . . , st}. We denote the finitely many elements in these sets as follows,

eG ∩ δsi = {egi1, egi2, . . . , egim(i)} where m(i) ∈ N and 1 ≤ i ≤ t.

Suppose now that we have an element y ∈ EY such that e ∈ δy. Then since STH is a G-

transversal in EY we may write y = sjg for some 1 ≤ j ≤ t. Now we have that eg−1 ∈ δsj ,

i.e. eg−1 = egjk for some 1 ≤ k ≤ m(j). Thus we see that gjkg ∈ Ge. It follows that

sjg ∈ sjg
−1
jk Ge

⊆
⋃

1≤j≤t
1≤k≤m(j)

sjg
−1
jk Ge,

which is a finite set since the edge stabilisers of X are commensurable.

We may now complete the proof of Theorem 4.1.1.
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Proof. Let v, v′ ∈ V X0. We may now choose a path p in X joining v to v′ and from the

above we see that there are only finitely many edges e ∈ EY such that δe meets p, and

so v|EY0 =a v
′|EY0. Hence we are now able to form a G0-tree T0 = T (EY0|V X0). By

construction this has edge set EY0 and the double dual V X0|(EY0|V X0) is contained in

the vertex set of T0 giving us a G-map V X0 → V T0. Again we can easily check that such

a construction connects the vertices with the expected edges and so we obtain a map of

G0-graphs Y0 ∪ V X0 → T0 bijective on edge sets.

We now patch together the maps we have formed above to obtain a map of G-graphs

as follows,

Y ∪ V X = (V X − V X0 ⊗G0 G) ∪ ((Y0 ∪ V X0)⊗G0 G)

→ (V TR − (v0|R)G) ∪ (T0 ⊗G0 G) ⊆ TY .

We observe that this map is injective on edge sets with image ETY − ETR thus by

contracting all the edges of TY which also belong to ETR we obtain the required tree.

We now state a technical lemma which shall be used in the proof of Theorem 4.1.21.

Lemma 4.1.20. Let K ≤ G,SK a K-transversal for EG, and E′ be a G-set with stabilisers

in a class, S , of commensurable subgroups of G. Let θ : EG → PE′ be a G-map. Then

for e ∈ E′, we have the following result,

⊔
f∈EG

({e} ∩ θf) is finite =⇒
⊔
s∈SK

(eK ∩ θs) is finite.

Proof. Suppose that tf∈EG
({e} ∩ θf) is a finite set. Then we have a finite subset

{s1k1, s2k2, . . . , snkn} ⊆ EG with kj ∈ K, sj ∈ SK (1 ≤ j ≤ n) such that {e}∩θ(siki) 6= ∅.

Notice now that,

ek ∈ θs ⇒ e ∈ θ(s)k−1 = θ(sk−1)

⇒ s ∈ {s1, . . . , sn}.

Thus we have that eK ∩ θs = ∅ for almost all s ∈ SK . It remains to show that eK ∩ θs is

finite for all s ∈ SK . We use a similar argument to the above. Suppose now that ek ∈ θs.
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Then from the above argument it is clear that sk−1 = siki for some 1 ≤ i ≤ n. Since SK

is a K-transversal it follows that s = si and kik ∈ Gsi . Therefore,

ek = ek−1
i kik

∈ ek−1
i Gsi

⊆
⋃

1≤i≤n
ek−1
i Gsi .

Here Gsi is trivial and so ek ∈ {ek−1
i | 1 ≤ i ≤ n}.

We now proceed to construct the fibres for our G-tree and at the same time observe

the existence of associated G-maps to VG that shall be pieced together to complete the

proof of our first step.

Theorem 4.1.21. There exists a G-tree TW with edge stabilisers commensurable with the

complete graph on V such that there are G-maps V Y ∪W → V TW → VG whose composite

is the inclusion map.

Proof. Let E1 = {e ∈ EY |δe = {e}}. We have that EX − E1 is G-finite since both

F = EX − EY, and EY − E1 are G-finite by definition of the graph X and Corollary

4.1.11 respectively. Now X is a G-graph with commensurable edge stabilisers, and so it

follows from Lemma 3.8.1 that δ = ts∈SG
((EX−E1)∩δs) is finite. We setm = max{1, |δ|}.

Now we have as before a tree G-subset Em of (V X,Z2) such that Em generates BmX.

Furthermore, since m ≥ 1 then by construction we may assume that E1 belongs to Em.

Immediately then we obtain a G-tree Tm = T (Em). This is the tree we require and the

difficulty in the remainder of the proof is to show the existence of a G-map V Tm → VG.

Firstly, we notice that the edge stabilisers of Tm are commensurable with the edge

stabilisers of the complete graph on V. This follows from the fact that for any element e of

Em the corresponding coboundary contains no more than m elements, and that any group

element stabilising e must also stabilise the set δe.

Let s ∈ SG. We proceed to find a subset δs ⊆ Em that refines s as a function on V X.

Begin by observing that each component of X−δ has coboundary in δ and so lies in BmX.

Since there are only a finite number of such components it follows that there exists a finite

subset δm of Em such that each component of X − δ belongs to the ring generated by δm.

In the remainder of the proof we shall adopt the following notation. Let S′G = {s ∈

SG|δs ⊆ E1} and S′′G = SG − S′G. For s ∈ SG, we define,
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δ′s =

 {e|V X : e ∈ δs ∩ E1} if s ∈ S′G
{e|V X : e ∈ δs ∩ E1} ∪ δm if s ∈ S′′G.

Let v, v′ ∈ V X such that v(e) = v′(e) for all e ∈ δs. We claim that v and v′ lie in the

same component of X − ((EX − E1) ∩ δs). Firstly, notice that if s ∈ S′G, then this claim

amounts to saying that both vertices lie in the same component of the connected graph X

and there is nothing to prove. Consider now the case where s ∈ S′′G. Since δs ⊇ δm, we see

that each of the generators of X − δ agree on v and v′ and thus each component of X − δ

agree, that is to say that v and v′ lie in the same component as claimed. Hence we may

choose a reduced path p between v and v′ that does not intersect (EX −E1)∩ δs. Further

we observe that v and v′ agree on e ∈ δs ∩ E1 and so p does not meet the edge e either.

We have proved that no edge of δs lies on p and thus s is constant on p and v agrees with

v′ on s also and so δs refines s as required.

We have shown the existence of a subset of Em refining s for each s ∈ SG and since

SG is a transversal for EG we see that the partition of V X induced by deleting all the

edges of Tm is finer than the e partition for any e ∈ EG. Recall that we may identify V X

with V X|EG and so we see that the map V X → V Tm is injective and treat this map as

an inclusion.

Finally, we must construct a G-map V Tm → VG. Notice that to satisfy the statement of

the theorem it is necessary that this map be inclusion on V X. In order to define a G-map

on the remainder of V Tm we must find an element of VG fixed by Gv for all v ∈ V Tm. Let

v ∈ V Tm and henceforth let K denote Gv. Observe that for e ∈ Em we have the following

inequality,

⊔
s∈SG

(eG ∩ δs) ⊆

 ⊔
s∈S′′G

(eG ∩ δm)

⊔ ⊔
s∈SG

(eG ∩ δs ∩ E1)

 ,

and we show that the right hand side is finite. That the first term is finite follows from the

fact that S′′G is finite, as is δm. Since the stabilisers of E are commensurable with those of

δm, together with the fact that ιe =S τe as functions on EG we see that the second term

on the right hand side is also finite and so therefore the left hand side is also finite.

We now make the following additional definition. For each f ∈ EG we let δf =

∪{δsg|(s, g) ∈ SG ×G, sg = f}. Thus we easily observe that δf refines f, δfg = δfg for all

g ∈ G and further, by above, that tf∈EG
({e} ∩ δf ) is finite for all e ∈ Em.

We proceed to construct an element of VG fixed by K by considering the K-subtree
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TK of Tm generated by v0K, and the partition of this tree induced by SK a K-transversal

for EG.

We have by Lemma 3.8.1 that ts∈SK
δs∩ETK is finite and by Lemma 4.1.20 that also

ts∈SK
δs ∩ ETK is finite. Therefore we have that for almost all s ∈ SK that s is constant

on v0K, and by removing only finitely many branches from ETK we arrive at a graph T̃K

on which s is constant for all s ∈ SK . Since the edge stabilisers of TK are commensurable

we are able to construct an element of VG which is fixed by K as follows.

Define w : EG = SKK → A to be,

w(sk) =

 v0(sk) if s is constant on v0K,

v0(sk′) whenever v0k′ ∈ T̃K .

Clearly this function is stabilised by K, it remains to show that it belongs to VG and so we

aim to show that w is S -almost equal to v0. Note firstly that for all s ∈ SK , if v0k ∈ T̃K

then w(sk) = v0(sk) by definition of the graph T̃K .

Let S̃K = {s1, s2, . . . , sp} be the set of s ∈ SK such that s is not constant on TK , and

K ′ = {k ∈ K| v0k /∈ T̃K}. If we denote the edge of TK which has endpoint v0 by e0, then

it follows that for all k ∈ K ′, e0k ∈ {e0k1, e0k2, . . . , e0kq} for some q ∈ N, ki ∈ K ′ since

we removed only finitely many edges from TK to obtain T̃K . Hence we see that for each

k ∈ K ′ that kk−1
j ∈ Ge0 for some 1 ≤ j ≤ q. Therefore for 1 ≤ i ≤ p,

sik = sikk
−1
j kj for some 1 ≤ j ≤ q

∈ siGe0kj

⊆
⋃

1≤i≤p
1≤j≤q

siGe0kj .

Notice that this is a finite collection of cosets of Ge0kj
∈ S as the stabilisers of the edges

of TK are commensurable with the stabilisers of the elements of E as TK is a K-subtree

of Tm.

We complete the first step of the proof by piecing together the trees obtained in the

previous two results.

Theorem 4.1.22. There exists a G-tree T with edge stabilisers commensurable with those

of the complete graph on V which has Y ∪W as a G-subgraph and there exists a G-map

V T → VG.
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Proof. We already have by Theorem 4.1.1, aG-tree TY and a map ofG-graphs ψ : Y ∪W →

TY , and by Theorem 4.1.21 a G-tree TW with an injective G-map V Y ∪W → V TW . Let U

be a G-transversal in V TY , and Z =
⋃
u∈U TW ⊗Gu G. Then by Lemma 4.1.17 we observe

that V Y ∪W =
⋃
u∈U ψ

−1(u)⊗Gu G and we have the following injections,

V Y ∪W ⊆
⋃
u∈U

(V Y ∪W )⊗Gu G ⊆
⋃
u∈U

V TW ⊗Gu G = V Z.

The map from V Z → V TY sending everything in V TW ⊗Gu g to ug is then a G-map and

by the definition of the isomorphism in the proof of Lemma 4.1.17 we also see that this

map agrees with the map ψ on V Y ∪W. Thus we now speak of the map ψ : V Z → V TY .

Let φ : ETY → EY be inverse to the map ψ : EY → ETY . Then we have that for all

e ∈ ETY , ψ(ιφe) = ι(ψφe) = ιe and ψ(τφe) = τe, since ψ is a graph homomorphism.

Next, form the fibred G-tree, T, with base TY and for each u ∈ U, fibre TW over u.

We use the maps ιφ, τφ : ETY → V Y ⊆ V Z as the attaching maps. By Theorem 4.1.1,

we may identify ETY with EY in T and now we have that Y ∪W is a G-subgraph of the

fibred tree T which has commensurable edge stabilisers by construction and we also have

a G-map,

V T =
⋃
u∈U

V TW ⊗Gu G→
⋃
u∈U

VG ⊗Gu G→ VG.

Thus by combining results 4.1.1, 4.1.21 and 4.1.22 we arrive at the following result.

Theorem 4.1.23. Suppose that G is finitely generated over H and that EHg ∩ EH = ∅

for all g ∈ G−H. For any G-finite G-subset W of VG and any H-tree TH with vertex set

VH , the G-graph W ∪THG embeds in a G-tree T with edge stabilisers commensurable with

those of the complete graph on V and for which there exists a G-map V T → VG.

Notice that so far in our proof we have used neither the condition that the groups

in S have non-zero Euler characteristic or even the weaker condition that those groups

are G-conjugate incomparable. The latter condition is used in our proof of step 2 in the

following section.

4.2 Step 2 - Adjusting the vertex set

In this section we aim to adjust the G-tree obtained in the previous section in order to

arrive at a G-tree with vertex set VG. This shall be crucial in order to use our induction
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argument in the subsequent section. We manipulate the vertex set by considering the

notion of G-incompressibility as introduced in section III.7 of [12].

Definition 4.2.1. Let V ⊆ W be G-sets. We say that W is G-incompressible over V

if every G-map W − V → W is an automorphism of W − V. Equivalently, for every

w ∈W − V, w′ ∈W, if Gw ⊆ Gw′ then wG = w′G and Gw = Gw′ .

Proof. Suppose that V is G-incompressible over W. Let v ∈ V −W and v′ ∈ V such that

Gv ⊆ Gv′ . We define the map ϕ : V −W → V to be the identity map on (V −W ) − vG

and ϕ(vg) = v′g. Clearly this is a G-map and since Gv ⊆ Gv′ we see that this map is well

defined. Since V is G-incompressible over W we have that ϕ is an automorphism of V −W

and so v′ ∈ V −W. However, by our definition of ϕ we see that ϕ(vG) = vG = v′G, and

also since ϕ is an automorphism it follows that there is a well defined inverse G-map and

so Gv′ ⊆ Gv as desired.

To see that the converse is true, let φ : V −W → V be a G-map and let v ∈ V −W.

Then φv ∈ V and Gv ⊆ Gφv. So by our hypothesis we have that vG = (φv)G,Gv = Gφv. In

particular φv ∈ V −W and since Gφv ⊆ Gv we may construct a map ψ : φ(V −W )→ V −W

sending φv to v. That this is a G-map and that the maps φ and ψ are mutually inverse is

easily verified.

Remark 4.2.2. We now observe the fact that the condition that ∀ v ∈ V −W and v′ ∈ V

we have that Gv ⊆ Gv′ =⇒ vG = v′G is equivalent to every G-map from V −W → V

being a surjective endomorphism. The above proof is easily modified to obtain this result.

In such a case we shall say that V is G-almost incompressible over W.

Definition 4.2.3. Let T be a G-tree and Y a G-subgraph of T. If T ′ is a G-tree obtained

from T by contracting edges, and V T ′ is a G-retract of V T containing V Y, then we say

that T ′ is obtained by compressing T over Y. If the only such tree T ′ is T itself we say

that T is incompressible over Y.

Example 4.2.1. Let G = Z = 〈x〉. Let T be the tree with vertex set Z and having for each

i ∈ Z an edge joining i to i+ 1. We consider two different actions of G on this tree.

• Suppose that the action of G is given by x sending the vertex i to i+ 1 for all i ∈ Z.

Then there is only one G-orbit of edges and thus the only G-tree T ′, other than T

itself, that may be obtained by contracting edges is the tree consisting of a single

vertex. This vertex then has stabiliser G and so there does not exist a G-map from
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V T ′ to V T as G acts freely on T. Thus V T ′ cannot be a G-retract of V T unless T ′

is T itself and so T is G-incompressible over any G-subgraph.

• Suppose instead that the action of G is given by x sending the vertex i to i+ 2 for

all i ∈ Z. Now denote by Y the G-subgraph consisting of the vertices labelled by

even integers. Let e be the edge of T connecting 0 to 1. Obtain a G-tree T ′ by

contracting the G-orbit of e, collapsing the vertex 1 to 0. Now V T ′ = V Y and there

is a G-map V T → V T ′ given by the identity on the even integers and sending every

odd i to i− 1. Thus T ′ is obtained by compressing T over Y. Notice that the tree T ′

obtained is isomorphic as a G-tree to the tree in our previous example.

Definition 4.2.4. Let e ∈ ET, where T is a G-tree. Then we say that e is compressible

over a G-subgraph Y if e has a vertex v ∈ V T−V Y and other vertex v′ such that vG 6= v′G

and Gv ⊆ Gv′ .

If e is not compressible then it is said to be incompressible over Y.

The following result is based on Lemma III.7.2 in [12].

Lemma 4.2.5. Let T be a G-tree with edge stabilisers that are G-conjugate incomparable

and Y be a G-subgraph of T. Then the following are equivalent.

1. V T is G-incompressible over V Y.

2. T is incompressible over Y.

3. T has no compressible edges over Y.

Proof. (1) =⇒ (2). Suppose that there exists a G-tree T ′ 6= T which may be obtained by

compressing T over Y. Then V T ′ is a proper G-retract of V T containing V Y and thus there

is a G-map from V T − V Y → V T ′ (the restriction of the retraction map) which is clearly

not a surjective endomorphism of V T −V Y and it follows that V T is G-compressible over

V Y.

(2) =⇒ (3). Now suppose that there exists a compressible edge e of T over Y. Then

if we contract each edge in the orbit of e we obtain a G-tree T ′, say. Then there is a well

defined G-map V T → V T ′ sending v to v′ in the notation of 4.2.4. Clearly there is a

G-map V T ′ → V T since we may identify V T ′ with a subset of V T as the stabiliser of the

vertex obtained via contracting e is Gv′ .
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(3) =⇒ (1). Assume that there are no compressible edges of T over Y. Let v ∈

V T − V Y and v′ ∈ V T such that Gv ⊆ Gv′ . Suppose that the path in T connecting v and

v′ is a single edge, then it is easy to see that either this edge is compressible or Gv = Gv′

and hence Gv = Gv′ by G-conjugate incomparability. Thus we may assume that the length

of the path is strictly greater than 1. Now let e be the first edge in this path and let the

vertices be denoted v and v′′. Then it is clear that Gv ⊆ Gv′′ , Ge = Gv and since there

are no compressible edges we have that vG = v′′G. It is now obvious that v′′ ∈ V T − V Y

and that Gv = Gv′ as the edge stabilisers are G-conjugate incomparable. Thus the result

holds by induction on the length of the path between v and v′.

Definition 4.2.6. Let V be a G-set. Then there is a decomposition,

V = VHNN t Vcomm,

where,

VHNN = {v ∈ V | Gv is not G-conjugate incomparable}

Vcomm = {v ∈ V | Gv is G-conjugate incomparable}.

Notice that both VHNN and Vcomm are G-sets as G-conjugate incomparability is preserved

by conjugation by an element of G.

With the above definition in place we have the following result.

Lemma 4.2.7. Let T be a G-tree and let Y be a G-subgraph of T. Then the following are

equivalent.

1. Every G-map V T → V T − V Y restricts to an automorphism of (V T − V Y )comm.

2. T is incompressible over Y.

3. T has no compressible edges over Y.

Proof. Identical to proof of Lemma 4.2.5.

Remark 4.2.8. We would like to replace (1) in the statement above by the statement V T is

G-almost incompressible over V Y. However, in the proof of (3) =⇒ (1) the final induction

argument on the length of the path no longer holds since Gv may be a strict subgroup of

Gv′′ .
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Definition 4.2.9. Denote by

(V )∞ = {v ∈ V : |Gv : Gvv′ | =∞, v 6= v′ ∈ V }.

That is to say that (V )∞ is the subset of V whose stabilisers in G are not commensurable

with the edge stabilisers of the complete graph on V.

The size of an incompressible G-tree

We now introduce a notion of size for G-finite G-incompressible G-trees which includes

Dicks and Dunwoody’s notion of size from section III.7 of [12] whilst allowing us to bound

the length of chains of G-maps between such trees in the more general case that their

edge stabilisers have non-zero integral Euler characteristic. We first introduce the notion

of order reversing and order preserving functions.

Definition 4.2.10. Let T be a G-finite, G-incompressible G-tree with edge stabilisers in

S . We say that a function ρ : S → N is order reversing if for all H and K ∈ S and

g ∈ G we have that,

H < K =⇒ ρ(H) > ρ(K) and ρ(H) = ρ(Hg).

We say that a function π : S → N is order preserving if for all H and K ∈ S and g ∈ G

we have that,

H < K =⇒ π(H) < π(K) and π(H) = π(Hg).

Two useful examples to keep in mind throughout this chapter are given below.

Example 4.2.2. • Given a family of subgroups S with Euler characteristic a non-zero

integer, an example of an order reversing map would be π : S → N given by

π(H) = |χ(H)|.

• If S is a family of finite groups then an example of an order preserving map would

be the map π : S → N where π(H) is simply the order of H.

Notice that by definition such a function may only exist when the edge stabilisers

are G-conjugate incomparable. We proceed to define the size sequences of a G-tree with

respect to such maps.

Definition 4.2.11. Let T be a G-finite G-incompressible G-tree with edge stabiliser in

S . Suppose that we are given an order preserving map π : S → N. We define the π-size
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of T to be the following sequence of natural numbers,

sizeπ(T ) = (|G\ET | − |G\V T |, |G\E1|, |G\E2|, . . .),

where En = {e ∈ ET |π(Ge) = n}. Since T is G-finite we see that size(T ) is an eventually

zero sequence.

We give the usual lexicographical ordering on these π-size sequences. Notice that in

the case that π gives the order of the subgroup we retrieve the Dicks-Dunwoody notion

of size. We now introduce a different notion of size which will be useful not in the finite

stabiliser case but in the case that our stabilisers are of non-zero Euler characteristic. In

the transfinite induction argument it is necessary to bound the possible length of a chain of

certain G-trees with G-maps from one to the next, this is ensured in the original proof by

the finite edge stabiliser condition. The restriction on the Euler characteristic is sufficient

to form such a bound even in the more general setting, to see this requires this new notion

of size which we define for all order reversing functions. Lemma 4.2.15 demonstrates how

this bound is obtained by Dicks and Dunwoody together with how the argument may be

modified for the infinite stabiliser case.

Definition 4.2.12. Let T be a G-finite G-incompressible G-tree with commensurable

edge stabilisers in S . Suppose that we are given an order reversing map ρ : S → N. We

define the ρ-size of T to be the following sequence of natural numbers,

sizeρ(T ) = (|G\ET | − |G\V T |, |G\E1|, |G\E2|, . . .),

where En = {e ∈ ET | ρ(Ge) = n}.

Since ρ reverses the ordering we must place a different ordering on these sequences.

We say that sizeρ(T1) < sizeρ(T2) if |G\ET2| − |G\V T2| < |G\ET1| − |G\V T1| or if

|G\ET2| − |G\V T2| = |G\ET1| − |G\V T1| and |G\Ei|T1 = |G\Ei|T2 for all i > N and

|G\EN |T1 > |G\EN |T2 for some N ∈ N.

The following lemma appears as Lemma III.7.3 in [12].

Lemma 4.2.13. If T and T ′ are G-trees and V T ≈ V T ′ as G-sets then ET ≈ ET ′ as

G-sets.

This shall allow us to replace our G-tree in Lemma 4.2.15 with one for which it is easier

to study the edge orbits.

Observe the following isomorphisms of G-sets.
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Lemma 4.2.14. Let T1 and T2 be incompressible G-finite G-trees, U1 and U2 be G-

transversals in V T1 and V T2 respectively. Then there are the following isomorphisms

of G-sets, ⋃
u∈U2

V T1 ⊗Gu G ≈
⋃
u∈U2

V T1 ×G/Gu ≈ V T1 × V T2.

Proof. We define the following maps, let

ϕ :
⋃
u∈U2

V T1 ⊗Gu G→
⋃
u∈U2

V T1 ×G/Gu

be defined by

ϕ(v ⊗ g) = (vg,Gug),

and

ψ :
⋃
u∈U2

V T1 ×G/Gu → V T1 × V T2

be defined by

ψ(v,Gug) = (v, ug).

That these are well defined G-set isomorphisms is easily seen.

The following lemma is both useful in this section as well as being key to the induction

argument in the following section. The finite stabiliser version of this result is to be found

in [12] as Lemma III.7.5.

Lemma 4.2.15. If T1 and T2 are incompressible G-finite G-trees with edge stabilisers in S

and there exists a G-map V T1 → V T2 then |G\T1| ≥ |G\V T2|. Furthermore, if ρ : S → N

is an order reversing function (resp. π : S → N an order preserving function) then

sizeρ(T1) ≥ sizeρ(T2) (resp. sizeπ(T1) ≥ sizeπ(T2)) with equality if and only if V T1 → V T2

is an isomorphism.

Proof. Let U1, U2 be G-transversals in V T1, V T2, respectively. Since the edge stabilisers

of T1 and T2 are commensurable we may form the fibred G-tree T̃ with base T2 and fibre

T1 over u for each u ∈ U2. By Lemma 4.2.14 we see that the vertex set of T̃ considered as

a G-set is isomorphic to the following,

V T̃ =
⋃
u∈U2

V T1 ⊗Gu G ≈
⋃
u∈U2

V T1 ×G/Gu ≈ V T1 × V T2.

Since we are given a G-map V T1 → V T2, call this map ϕ, say. Then we see that for v ∈

V T1, the composition of this map with the identity and projection maps, v 7→ (v, ϕv) 7→ v,
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gives the identity G-map on V T1. Thus we observe that V T1 is a G-retract of V T̃ . The

map V T1 → V T̃ carries edges of T1 to paths of T̃ (Notice that it does not necessarily send

edges to edges since the G-map need not be a graph map - a simple example to keep in

mind is taking the star of a vertex and bisecting each edge). Since our trees are G-finite

we may collect these paths to obtain a G-finite G-subtree. By adding only finitely many

G-orbits of edges we may include all of ET2 in this tree. Here we are identifying T2 with

the subtree of V T̃ obtained by contracting all the edges of the fibres.

We next define the G-tree T obtained from T̃ by contracting all edge orbits of com-

pressible edges in ET̃ −ET2. Notice that T is then a G-finite G-tree, all of its compressible

edges lie in ET2 and T contains a copy of T2. We now compress the tree T to an incom-

pressible G-tree T ′. Since we obtained both T and T ′ from T̃ by contracting compressible

edges it follows that V T ′ is a G-retract of V T, which is itself a G-retract of V T̃ and

so there exists a G-map V T ′ → V T̃ . Further since V T1 is a G-retract of V T̃ we also

have a G-map V T̃ → V T1. We may now compose maps to obtain the following G-maps,

V T1 → V T̃ → V T → V T ′ and V T ′ → V T̃ → V T1. Since both V T1 and V T ′ are incom-

pressible it follows that they have no G-maps onto proper G-subsets of themselves and so

the compositions V T1 → V T ′ → V T1 and V T ′ → V T1 → V T ′ must be bijections. Thus

we see that V T1 ≈ V T ′ as G-sets and so by Lemma 4.2.13 we have that ET1 ≈ ET ′ and

so for the remainder of the proof we identify T1 with T ′, since we are only concerned with

the number of orbits and not the structure of how the tree is connected.

We consider ET1, ET2 to be subsets of ET. Since all the compressible edges of T

lie in T2 we see that all the edges of T not in T2 must belong to T1 and so we take

ET = ET1 ∪ ET2, and observe that all of the edges ET2 − ET1 are compressible whilst

all of ET1 − ET2 are incompressible. We now consider the components of the graph

T − ET2 to be the vertices of T2 and we write V T2 = V T21 t V T22 where V T21 are

the vertices of V T2 which consist of just a single vertex of T and V T22 the remainder

of the vertices of T2, that is to say the vertices which consist of more than one vertex

(and thus contain some edge) of T. We now observe that V T21 can clearly be identified

with a G-subset of V T and thus we obtain an injective G-map V T21 → V T. Next we

compose this map as follows V T21 → V T → V T1 → V T → V T2 (this last map is obtained

by V T → V T̃ → V T1 → V T2). Notice that since V T2 is incompressible it follows that

the image of the above map must be V T21 and so in particular the image of the map

V T1 → V T2 must contain V T21. Since the vertices in V T22 must contain an edge in
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ET1−ET2 it follows that we have a surjective G-map ET1−ET2 → V T22. Combining the

two maps constructed above we observe that

|G\V T2| ≤ |G\(V T1 ∪ (ET1 − ET2))| ≤ |G\T1|.

It remains now only to consider the size sequences. We first prove the result in the case of

an order preserving function π. Notice first that if V T1 → V T2 were an isomorphism then

ET1
∼= ET2 and so sizeπ(T1) = sizeπ(T2). Thus we must show that sizeπ(T1) < sizeπ(T2) if

the map V T1 → V T2 is not an isomorphism. Firstly, observe that T1 is obtained from T

by contracting orbits of compressible edges thus for each orbit contracted both one orbit

of edges and one orbit of vertices are lost and so |G\ET1|− |G\V T1| = |G\ET |− |G\V T |.

However T2 is obtained from T by contracting orbits of edges that needn’t be compressible

and so when one orbit of edges are removed either one or none of the vertex orbits are

lost and so |G\ET2| − |G\V T2| ≤ |G\ET | − |G\V T |. Thus we have that the first term in

the size sequences are as desired and we may assume without loss that equality holds. If

equality holds then one important observation is that for any edge f ∈ ET1−ET2 we lose

one vertex orbit by contracting this edge and so ιf and τf lie in different G-orbits and

since the edge is incompressible in T we see that Gf is a proper subgroup of both Gιf and

Gτf .

There are now two cases to consider. Suppose that ET2 − ET1 = ∅. Then ET1 =

ET, T = T1 and it is clear that sizeπ(T1) > sizeπ(T2) unless T1 = T2 in which case

V T1 → V T2 must be an isomorphism as V T1
∼= V T2 are both G-incompressible. Finally

suppose that ET2 − ET1 6= ∅. We choose e ∈ ET2 − ET1 with π(Ge) minimal. We shall

denote the end points of e by u and v, and we assume without loss that e is compressed to

u in T1. Let v denote the image of v in T2. Now if v = {v} then Gv = Gv = Ge but e is not

compressible in T2 and so u and v must belong to the same orbit and therefore u = {u}.

Hence u and v belong to the same orbit contradicting the fact that e is compressible in T.

It is therefore the case that v ∈ V T22. Thus we may find an edge f ∈ v incident to v with

f ∈ ET1 − ET2. However, by the above argument we have that Gf is a proper subgroup

of Gv = Ge. Thus we have found an edge stabiliser in ET1 that is a strict subgroup of

Ge and thus sizeπ(T1) > sizeπ(T2) as desired. Notice that the same proof as above holds

in the case ρ is an order reversing map. We instead choose e ∈ ET2 − ET1 with ρ(Ge)

maximal.

We may now complete the second step of our argument. The finitely generated case
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of our main result is given by the following lemma.

Lemma 4.2.16. Suppose that G is finitely generated over H and that EHg ∩EH = ∅ for

all g ∈ G − H. Further suppose that the subgroups in S are G-conjugate incomparable.

Then any H-tree TH with vertex set VH extends to a G-tree TG with vertex set VG. Further,

for any such TG, the G-tree obtained by contracting TH to a vertex can be compressed to

an incompressible G-finite G-tree.

Proof. By Theorem 4.1.23, we have that for W any G-finite G-subset of (VG − VHG)∞

there exists a G-tree T with commensurable edge stabilisers containing W ∪ THG as a G-

subgraph and a map V T → VG. If we assume that G is generated by H ∪{g1, . . . , gm} and

choose a finite subtree X of T containing {v0, v0g1, . . . v0gm} then we see that XG∪ THG

is connected by contracting all the edges of XG∪THG and observing that the image of v0

is stabilised by a generating set for G. Since XG is G-finite we may proceed to contract

orbits of edges until we arrive at a G-tree denoted TW that is G-incompressible over THG.

Notice now that V TW −THG is G-finite and there is a G-map V TW −THG→ VG obtained

by collapsing G-orbits.

Since TW is incompressible over THG it follows that the image of this map does not

meet THG i.e., we have a G-map V TW − THG→ VG − THG.

T contains W by definition and so we have an embedding W ⊆ V TW − VHG. Let TW

be the G-finite G-tree obtained by contracting all the edges in THG, and denote by v0 the

image of v0 under this contraction.

Then we have that V TW = (V TW −VHG)∪v0G where W is contained in the first term

and so the embedding of W is into V TW . Thus we now see that |G\W | ≤ |G\(V TW )∞|

since W ⊆ (VG)∞.

In particular, we have T∅ and a map (V T∅ − VHG)∞ → (VG − VHG)∞. let W be a

G-finite G-subset of (VG − VHG)∞ which contains the image of (V T∅ − VHG)∞. We also

have the map (VHG)∞ → VHG. Thus we have a G-map

(V T∅)∞ → (VG − VHG)∞ ∪ (VHG)∞ = (VG)∞.

Let v ∈ V T∅ − (V T∅)∞. Then Gv is commensurable with the stabilisers of the edges of

TW and so we have that Gv fixes some vertex of TW and we obtain a G-map

V T∅ − (V T∅)∞ → V TW .

Combining these two maps we arrive at a G-map V T∅ → V TW .
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This induces a map V T∅ → V TW . Compressing edges of these trees cannot increase

|G\T∅| and does not alter |G\(V TW )∞|. Thus we may apply Lemma 4.2.15 to obtain

|G\T∅| ≥ |G\(V TW )∞| ≥ |G\W |. Thus we may takeW = (VG−VHG)∞ and set TG = TW .

This final part of the argument requires that the stabilisers are G-conjugate incompa-

rable. We currently have G-maps V TG → VG → V TG which restrict to the identity on

VHG. Now since TG is incompressible over THG we have that the composition must be

bijective on V T −VHG and thus in particular the map V TG → VG is injective. Thus V TG

is a G-retract of VG and we may extend TG to a G-tree with vertex set VG and we have

our result.

In the general case where the edge stabilisers needn’t be G-conjugate incomparable

we observe that the map V TG → VG needn’t be injective. However, if it were true that

whenever such a G-map exists then there must exist another such G-map that is injective

then our result would still hold. Notice that the only difficulty here is in the case that a

vertex stabiliser is G-conjugate comparable thanks to Lemma 4.2.7. Thus we arrive at the

following question.

Question. Let V be a G-stable S -almost equality class in S (tG,A). Suppose that E is

a G-set with stabilisers in S such that every G-map E → E restricts to an automorphism

on Ecomm. If there exist G-maps E → VG and VG → E then does there exist an injective

G-map E → VG?

This is equivalent to the statement that if for all e ∈ E, there exists e′ ∈ E and v ∈ VG

with the property that Ge ≤ Gv ≤ Ge′ then for all e ∈ E there exists some v̂ ∈ VG such

that Ge = Gv̂.

If the answer to the above question is true then we may remove the G-conjugate

incomparable condition from the hypotheses of Lemma 4.2.16. It is worth noting however

that even without this conjecture in the general case we do obtain a G-tree together with

a G-map from its vertex set to VG. This is sufficient together with the work in Chapter 5

to prove Conjecture B in the case that G is finitely generated. Thus we recover the result

of Kropholler [23].

We pause at the end of this section to notice that although we have introduced the

size sequence attached to the Euler characteristic function, we have not yet utilised the

condition that the subgroups in S have non-zero Euler characteristic. This shall be used

in the following final segment of our proof.
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4.3 Step 3 - Transfinite Induction

Having proven the finitely generated case we proceed to the induction argument to com-

plete our proof. In order to repeatedly apply our result for the finitely generated case we

require to show that certain groups are finitely generated for which the following lemma

shall be utilised. The following result is a modification of Lemma III.8.1 from [12] however

the proof goes exactly the same way.

Lemma 4.3.1. Let T be a G-tree with finitely generated commensurable edge stabilisers

and let H stabilise a vertex v0 of T. If G is finitely generated over H then Gv0 is finitely

generated over H, and for each v ∈ V T − v0G, Gv is finitely generated.

Proof. We follow the construction given in [12]. We let H ∪ {g1, g2, . . . , gn} generate G.

We have a G-map from G\H to V T which sends H to v0. We proceed to construct a

graph by drawing each vertex of T as a circle and for each edge in the star of that vertex

we add a vertex to the boundary of our circle and attach the edge there (Notice that this

construction ensures that the endpoints of edges in T now have the same stabilisers in our

new graph as the original edges). Inside the circle we add one vertex for each element of

G\H which maps there. For each 1 ≤ i ≤ n, we add edges to our diagram joining u0 to

u0gi corresponding to the paths in T joining v0 to v0gi. We let X be the G-graph composed

of the G-translates of these paths. Notice here that X must be G-finite and further X is

connected. Extend the G-map from G\H → V T above to a G-map φ : X → V T as in [12].

Let v ∈ V T. If v does not lie in the image of φ, then v is not a vertex of the subtree T̃

of T generated by v0G. It follows that Gv acts on the component of T − T̃ . In particular

Gv fixes the closest vertex of T̃ which is at least one edge away, so Gv fixes the path

and therefore is commensurable with the edge stabilisers which are by hypothesis finitely

generated and it follows that Gv is itself finitely generated. We may now assume that v

lies in the image of φ. Taking the graph Xv = φ−1(v), we observe that Xv is a connected

Gv-finite Gv-graph. Thus by the structure theorem for groups acting on connected graphs

(Theorem I.9.2 [12]) we have that Gv is finitely generated over H.

4.4 The Induction Argument

Our induction argument follows the proof found in [12] which itself draws on techniques

that originally appear in section 6 of [11]. We prove the following result, crucial to the

proof of the main theorem in the countable case.
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Theorem 4.4.1. Suppose that H contains a subgroup commensurable with the edge sta-

bilisers of the complete graph on V and that the Euler characteristic of the edge stabiliser

is a non-zero integer. Let G be finitely generated over H such that EHg ∩EH = ∅ for all

g ∈ G − H. Suppose also that H ≤ K ≤ G and whenever K ≤ L ≤ G and L is finitely

generated over H and EKL = EL then EKg ∩ EK = ∅ for all g ∈ L−K.

If an H-tree TH with vertex set VH extends to a K-tree TK with vertex set VK , then

TK extends to a G-tree TG with vertex set VG.

Proof. The idea of this proof is to construct a chain of subgroups (Gn) of G containing

K and finitely generated over H. We then construct a descending chain of Gn-subtrees

containing VH and show that this process must eventually terminate. In this proof we use

the following notation:

Let

E0 = EG, V0 = V (E0) = VG, G0 = GV0 = G.

Now for all n ≥ 1, let

En = EKGn−1, Vn = V (En), Gn = GVn ∩Gn−1.

We observe then that,

En ⊆ En−1, Vn ⊆ Vn−1, Gn ≤ Gn−1, EnGn = En.

Further for A ≤ G, denote by SA the collection of subgroups,

SA = { S ∈ S | S ⊆ A }.

Recall that Lemma 3.2.4 gives that SA is a commensurability class of finitely generated

subgroups whenever H ≤ A.

Let n ≥ 0. Assume that Gn contains K and is finitely generated over H. We proceed

to show that Gn+1 is finitely generated over H and contains K.

Recall that Vn = {v ∈ V | v 5 v0 ⊆ En}. Furthermore since Vn is contained in an

S -almost equality class, all functions SGn-almost equal to some v ∈ Vn are elements of

Vn, and by definition En+1 is a Gn-set. From this we obtain Gn-set isomorphisms,

Vn → Vn|En → Vn|(En − En+1)× Vn|En+1.

In particular we have the map,

φ : Vn → Vn|(En − En+1),
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and define v0 = v0|(En − En+1).

Let v0 ∈ U be a Gn-transversal for Vn|(En − En+1). Then for u ∈ U,

φ−1(u) ∼= {u} × Vn|En+1
∼= Vn|En+1

as Gnu-sets. A special case of note is that φ−1(v0) = Vn+1. Clearly φ(Vn+1) = v0, and

this fact together with that that φ is a Gn-map gives us that Gnv0 = Gn+1 since for

g ∈ Gnv0 , v ∈ Vn+1 we have that,

φ(vg) = φ(v)g = v0g = v0,

and so vg ∈ Vn+1, and Gnv0 ≤ GVn+1 ∩Gn = Gn+1. To see that the reverse inclusion holds

notice firstly that Gn+1 ≤ Gn by definition and also for g ∈ Gn+1, v ∈ Vn+1 we have that,

v0 = φ(vg) = φ(v)g = v0g,

where the first equality holds since Vn+1 is a Gn+1-set (since En+1 is also) and it follows

that Gn+1 ≤ Gv0 . Thus we now have that Gnv0 = Gn+1.

We now observe that we have an isomorphism of Gn-sets,

Vn ∼=
⊔
u∈U

(Vn|En+1)⊗Gnu Gn,

with the Gn-action on the right on the tensor product. This isomorphism is obtained via

Lemma 4.1.17 having observed φ−1(u) ∼= Vn|En+1.

In particular we have the following isomorphisms,

θ : Vn →
⊔
u∈U

(Vn|En+1)⊗Gnu Gn

(v2|En+1, v1|(En − En+1)) = (v2|En+1, ug) 7→ ((v2|En+1)g−1 ⊗ g).

ψ :
⊔
u∈U

(Vn|En+1)⊗Gnu Gn → Vn

v ⊗ g 7→ (vg, ug).

Thus we aim to construct a fibred G-tree with the vertex set of the fibres given iso-

morphic to Vn|En+1 as Gnu-sets for each u ∈ U.

Now EK ⊆ EKGn = En+1. Recall, EK = ∪k∈Kv05 v0k ⊆ En+1, and therefore K fixes

v0. Further, by the induction hypothesis we have that K ≤ Gn and so K ≤ Gnv0 = Gn+1.

To see that Gn+1 is finitely generated over H we construct a Gn-tree and apply Lemma

4.3.1
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LetW = Vn|(En−En+1). ThenW is aGn-stable SGn-almost equality class, via Lemma

3.2.4, and since H fixes v0 it follows that WH = {v0}. We may now apply Theorem 4.2.16

to extend {v0} to a Gn-tree with vertex set WGn . This may in turn be extended to a Gn-

tree with vertex set W as WGn is a Gn-retract of W. We shall use this tree as the base for

a fibred Gn-tree. The fibres are obtained as follows. First apply Lemma 4.3.1 to the above

tree to see that Gn+1 is finitely generated over H and that for all u ∈ U − {v0} the group

Gnu is finitely generated. We then proceed in a similar fashion as to the construction

of the base. Let W ′ = Vn|En+1 be a Gn+1-stable SGn+1-almost equality class. Since

EH ⊆ En for all n ∈ N it follows that VH ⊆ Vn for all n ∈ N. Thus we may think of VH as

sitting inside W ′. Now apply Theorem 4.2.16 to extend TH to a Gn+1-tree with vertex set

W ′
Gn+1

which may again be extended to a Gn+1-tree T ′n+1 with vertex set W ′ as W ′
Gn+1

is

a Gn+1-retract of W ′. The tree T ′n+1 shall be our fibre over v0.

Similarly, for each u ∈ U−{v0} we let W ′′ = Vn|En+1 be the corresponding Gnu-stable

SGnu-almost equality class. Since Gnu is finitely generated we may take the tree {v0|En+1}

on which the trivial group acts and use Theorem 4.2.16 to extend this to a Gnu-tree with

vertex set W ′′
Gnu

, again this may be further extended to a Gnu-tree with vertex set W ′′.

This shall be our fibre over u. Then we may form the fibred Gn-tree Tn with base and

fibres as given above.

From the above identification of Vn, we see that there is a natural identification V Tn =

Vn and that we have a Gn+1-subtree T ′n+1 with vertex set Vn+1 containing TH .

We next construct a sequence of G-trees denoted T (i) for each i ∈ N having vertex set

VG such that T (n) contains Tn as a Gn subtree with vertex set Vn. To begin we take T (0) to

be T0 as above. Recall that T0 contains a subtree T ′1 with vertex set V1. To construct T (1)

we contract the orbits of edges in T ′1 and use the resulting tree as a base for a fibred tree

having fibre T1 over v0 and all other fibres trivial. Thus we arrive at another G-tree with

vertex set VG that now contains T1 ⊇ T ′2 as subtrees. We continue this process constructing

T (j) by contracting T ′j+1 to a single vertex and forming the fibred G-tree with this base

and fibre Tj+1 over v0. Notice that by construction we now have that Tng ∩ Tn = ∅ for

all g ∈ G−Gn. We now claim that for some value of n we have that Gn−1 = Gn. This is

easy to see in the case that Gi ∈ S for sufficiently large i since each Gi contains H which

in turn contains some subgroup in S . Since S consists of finitely generated subgroups

there exists only finitely many subgroups between any two members of S . Hence we may

now assume that no Gi belongs to S . In this event we use Theorem 4.2.16 to construct an
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incompressible G-finite G-tree T (∞) by contracting TH to a vertex in T (0) and compressing

edges. Now in a similar fashion we may for n ≥ 0 use Theorem 4.2.16 to construct G-finite

G-incompressible G-trees T (n) from T (n) by contracting Tn and compressing edges. Since

Gn 6∈ S and compressing edges preserves vertices with stabilisers not in S we see that

Gn fixes a vertex of T (n)
. Since we now have a descending sequence of trees,

T0 ⊇ T1 ⊇ · · · ⊇ TH ,

we arrive at a sequence of G-maps,

V T
(0) ← V T

(1) ← · · · ← V T
(∞)

,

and the following information on their |χ|-sizes,

size|χ|(T
(0)) ≤ size|χ|(T

(1)) ≤ . . . ≤ size|χ|(T
(∞)).

We denote by |χ| in the above the function |χ| : S → N,H 7→ |χ(H)|. Notice that

this is simply the Euler characteristic in the case that S contains a subgroup of positive

Euler characteristic. It is at this point that we first use the condition that the Euler

characteristic is non-zero. This is crucial to our argument, in that it allows us to consider

the corresponding size sequences (from Definition 4.2.12) and thus deduce that the above

sequence of trees terminates. Since there are only finitely many size sequences between

size|χ|(T
(0)) and size|χ|(T

(∞)) we have by Lemma 4.2.15 that eventually these G-maps

are isomorphisms. Since the vertex with stabiliser Gn−1 gets mapped to the vertex with

stabiliser Gn it follows that Gn−1 = Gn for some n ∈ N.

To complete the proof we observe that v0Gn−1 = v0Gn ⊆ Vn. Hence E(v0Gn−1) ⊆

E(Vn) = EV (EKGn−1) = EKGn−1. However, it is clear that EKGn−1 ⊆ EGn−1 for all n

and so EGn−1 = EKGn−1 which gives that VGn−1 = V (EGn−1) = V (EKGn−1) = Vn. Now

by hypothesis we have that EKg∩EK = ∅ for all g ∈ Gn−1−K and so by Theorem 4.2.16

we may extend TK to a Gn−1-tree with vertex set Vn. Now if we take this tree as Tn in

our earlier construction then the tree T (n) is as required.

We have now completed the necessary work to generalise the Almost Stability Theorem.

The following two results are simply Theorems III.8.4 and III.8.5 of [12] stated in our

more general setting. The only change necessary to the proofs are that our more general

preliminary results are used instead. We include the full proofs here for completeness.
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Theorem 4.4.2. Suppose that G is countably generated over H, that H contains a sub-

group belonging to S , and that EHg ∩ EH = ∅ for all g ∈ G −H. Then any H-tree TH

with vertex set VH extends to a G-tree TG with vertex set VG.

Proof. Let g1, g2, . . . be a countable sequence of elements in G such that G is generated

by H ∪ {g1, g2, . . .}. We now construct a chain of subgroups H = G0 ≤ G1 ≤ · · · which

have the following properties, for all n ≥ 0,

1. gn ∈ Gn

2. Gn is finitely generated over H

3. If L is finitely generated over H with Gn ≤ L ≤ G, then EGnL = EL implies that

EGng ∩ EGn = ∅ for all g ∈ L−Gn.

Let n ≥ 1 and suppose that we have constructed G0, . . . , Gn−1. Let K be a subgroup of

G which is finitely generated over H and contains Gn−1 ∪ {gn}. We observe from Lemma

2.6.4 that K\(EK − EHK) is finite and thus there exists a K with the above properties

such that |K\(EK − EHK)| is minimal. We take this group K to be our Gn. Clearly

properties 1 and 2 hold. Suppose that 3 does not. Then there exists a group L ≤ G

such that Gn ≤ L is finitely generated over H,EGnL = EL but EGng ∩ EGn 6= ∅ for

some g ∈ L−Gn. The last two conditions above can be seen to be equivalent to the map

EGn ⊗Gn L → EL which sends e ⊗ l 7→ el being surjective but not injective. Thus in

this case we may remove EHL from both domain and image to obtain a surjective map

(EGn − EHGn)⊗Gn L→ EL − EHL. It can be observed from this then that

|L\(EL − EHL)| < |L\((EGn − EHGn)⊗Gn L)| = |Gn\(EGn − EHGn)|.

However this contradicts our choice of Gn and thus property 3 is also satisfied and we

obtain the chain of groups we desire.

Now let T0 = TH . We may use Theorem 4.4.1 to show that T0 extends to a G1-tree

T1, and inductively for each n ≥ 1, that Tn extends to a Gn+1-tree Tn+1. We now take the

G-tree T =
⋃
n≥0 Tn to be our tree TG and it is clear that the result holds for this tree.

We now complete the proof of our main theorem, namely Theorem A. With our pre-

liminary results in place the final transfinite induction argument is almost identical to

the proof of the Almost Stability Theorem in [12] though we appeal to our more general

versions of the previous results.
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Proof. (of Theorem A)

Index the elements of G with some ordinal γ. We shall construct a chain of subgroups

Gβ for β ∈ [0, γ]. We denote EGβ
, VGβ

by Eβ and Vβ respectively and require that our

chain of groups satisfy the following properties for all β ∈ [0, γ],

• {gα : α ∈ [0, β)} ⊆ Gβ,

• Eβg ∩ Eβ = ∅ for all g ∈ G−Gβ,

• Gβ is countably generated over Gβ−1 if β is a successor ordinal,

• Gβ =
⋃
α<β Gα if β is a limit ordinal.

Let β ∈ [1, γ] and assume now that we have constructed Gα for all α ∈ [0, β). If β is

a limit ordinal then we define Gβ =
⋃
α<β Gα and clearly the four conditions above are

satisfied.

We may now assume that β is a successor ordinal. We proceed to construct a second

ascending chain of groups, the union of which we shall use as our Gβ. The same technique

may be utilised to ensure that the group G1 contains an element of S (by instead choosing

K0 to be generated by g1 together with a finitely generated subgroup in S ). Let K0 be

the group generated by Gβ−1 ∪ {gβ}. Suppose that n ≥ 0 and that we have constructed

a subgroup Kn of G which is finitely generated over Gβ−1. We define Kn+1 to be the

subgroup generated by Kn ∪ {g ∈ G|EKng ∩ EKn 6= ∅}. We claim that Kn+1 is finitely

generated over Kn. To see this let Sβ−1 ⊆ Eβ−1 and S be Kn-transversals for Eβ−1Kn

and EKn −Eβ−1Kn respectively. We observe from Lemma 2.6.4 that S is finite and write

S = {s1, s2, . . . st}. Further we have that Sβ−1 is in fact a G-transversal for Eβ−1G, since

we have constructed Gβ−1 satisfying the above hypothesis and Gβ−1 ≤ Kn. It is a trivial

observation that every group element g ∈ G such that Sβ−1g∩Sβ−1 6= ∅ belongs to Gβ−1.

We proceed to show that if Sg ∩ (S ∪ Sβ−1) is non-empty then g belongs to some finitely

generated subgroup of G.

Suppose that e ∈ Sg∩(S∪Sβ−1). Then e = sig for some 1 ≤ i ≤ t. Let us first consider

the case where e = sj for some 1 ≤ j ≤ t. For each 1 ≤ a, b ≤ t, choose a group element

gab such that sagab = sb. If no such element exists then we set gab = 1. Denote by A the

set of elements, A = {gab|1 ≤ a, b ≤ t}. Now it is clear that g belongs to the subgroup

generated by
⋃t
k=1Gsk

∪A.
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The other case which we must consider is where e ∈ Sβ−1. First we observe that there

is only a finite set of elements of Sβ−1 such that Sg ∩ Sβ−1 6= ∅, since

sig1 = s′, sig2 = s′′

=⇒ s′′g−1
2 g1 = s′

=⇒ s′ = s′′

for all g1, g2 ∈ G, si ∈ S, 1 ≤ i ≤ t, s′, s′′ ∈ Sβ−1. We denote this finite subset of Sβ−1 by

B.

It is now clear that for g ∈ G,

Sg ∩ (S ∪ S′) 6= ∅

implies that g belongs to the group generated by

t⋃
i=1

Gsi ∪A ∪
⋃
b∈B

Gb.

Since the stabilisers are all finitely generated by hypothesis it follows that the above group

is itself finitely generated. Thus we have that Kn+1 is finitely generated over Kn, and we

define Km inductively for all m ≥ 0. Define Gβ = ∪n≥0Kn. It is easy to check that the

conditions for Gβ are satisfied and so by transfinite induction we have the desired chain

of subgroups.

Next we form the same ascending chain of subtrees of the complete graph on V as

in [12]. Our more general version of Theorem III.8.4 can now be applied, namely Theorem

4.4.2 and we now obtain our more generalised version of the Almost Stability Theorem.

In fact, now combining this result with that of Dicks and Dunwoody [13], stated in

this thesis as Theorem 3.3.4 we obtain the following theorem.

Theorem 4.4.3. Let H be a finitely generated subgroup of G with χ(H) a non-zero integer

and CommG(H) = G. Let S be the admissible family of subgroups commensurable with

H and A and I be non-empty sets. Suppose that V is a G-retract of a G-stable S -almost

equality class in S (tIG,A). Then there exists a G-tree with edge stabilisers in S and

vertex set V.



Chapter 5

Conjectures concerning duality

groups

In this chapter we recall the notion of a duality group, some recent work of Kropholler [23]

in this area and how we may use our generalisation of the Almost Stability Theorem to

extend these results.

5.1 Duality groups

For compact oriented manifolds there is a well known notion of Poincaré duality arising

from the standard homology and cohomology of manifolds. This corresponds to a duality

of the fundamental groups of such manifolds in terms of their usual group cohomology.

This concept may be generalised to capture a similar notion of duality for other groups and

for cohomology computed over some ring other than Z. Thus we introduce the following

definitions from section 9.2 of [6].

Definition 5.1.1. A group G is said to be an n-dimensional duality group over R if there

exist for all i ∈ Z and for all right RG-modules M isomorphisms

H i(G,M) ∼= Hn−i(G,M ⊗RG D)

where we call the left RG-module D the dualising module. We often refer to G as simply

a duality group when the ring R and dimension n is clear from the context. Notice that

in the above definition of duality group that D has a G-module structure and that this

may or may not be given by the trivial action of G on D.

91
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In the case that G is a duality group over Z and D ∼= Z we say that G is an n-

dimensional Poincaré duality group, written PDn group.

Remark 5.1.2. • When D has trivial G-action we say that G is an orientable duality

group. We call G non-orientable when this is not the case. Notice that in the case of

Poincaré duality groups we may always pass to a subgroup of finite index to ensure

orientability. This is because the automorphism group of Z has order 2.

• The notion of a Poincaré Duality group was first introduced in [7] and detailed

accounts of such groups and their properties may be found in [3–6,8, 30].

5.2 Elementary properties of duality groups

We state here some basic properties of such groups that we shall use in the proceeding

work. All of the results in this section may be found in for example Section 9 of [6].

Proposition 5.2.1. The module D is isomorphic to Hn(G,RG) as an abelian group.

Theorem 5.2.2. Let G be a group. Then G is an n-dimensional duality group over R if

and only if the following 3 conditions hold.

1. G is of type FP over R,

2. H i(G,RG) = 0 for i 6= n,

3. Hn(G,RG) is flat as an R-module.

This classification is particularly useful since the first condition tells us that the group

G is necessarily finitely generated.

Proposition 5.2.3. Let G be an n-dimensional duality group with dualising module D

and H a finite index subgroup of G. Then H is also an n-dimensional duality group with

dualising module D with the original action restricted to H.

Notice however from the equivalent definition given above that a duality group must

be of type FP and since this property is not preserved by taking finite index supergroups

the converse does not hold in general, we do however have the following result.

Proposition 5.2.4. Let G be a group without R-torsion. Then if G has a finite index

subgroup that is an n-dimensional duality group over R then G is also an n-dimensional

duality group.
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In particular if G is a group of finite cohomological dimension over R then a subgroup

H is a duality group if and only if every subgroup of G commensurable with H is a duality

group.

5.3 Conjecture B

The following theorem appears in [23].

Theorem 5.3.1 (Kropholler). Let G be a finitely generated group of cohomological di-

mension n < ∞. Let H be a PDn−1-subgroup of G such that CommG(H) = G. Then G

splits over a subgroup commensurable with H.

We wish to remove the condition that G be finitely generated and aim to show that

our generalisation of the Almost Stability Theorem can be used to prove a more general

version of this result.

In the paper [23] Kropholler generalised the Lyndon-Hochschild-Serre spectral se-

quence obtained for normal subgroups to admissible families of subgroups. The functors

H i(S ,−) = lim−→
H∈S

H i(H,−) are defined for all i ∈ Z. In particular the first such functor

is given by H0(S ,M) = ∪H∈SM
H . The category Mod−ZG/S is then defined to be the

full subcategory of right ZG-modules, with objects the modules M that may be written

as M = ∪H∈SM
H . The functors H i(S ,−) are then seen to be functors from Mod−ZG

to Mod−ZG/S . The functor H0(G\S ,−) is defined to be the restriction of the G-fixed

point functor to the new category Mod−ZG/S with right derived functors H i(G/S ,−).

More details on these functors may be found in [23]. We make particular note of the

following key result, Theorem A from section 1 of the Kropholler paper that will play an

important role in our work.

Theorem 5.3.2. Let S be an admissible family of subgroups.There is a spectral sequence

Hp(G/S ,Hq(S ,M)) =⇒ Hp+q(G,M),

natural in the G-module M.

In particular we have the following reuslt.

Corollary 5.3.3. Let S be an admissible family of PDn−1-subgroups of a group G of

cohomological dimension n. Let A be an abelian group. Then there is an isomorphism,

H1(G/S ,Hn−1(S , AG)) ∼= Hn(G,AG).
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Proof. This follows from Theorem 5.3.2 since H i(K,AG) = 0 for all K ∈ S and i 6= n− 1

as K are PDn−1-groups.

We now recall the following conjecture from Chapter 3:

Conjecture A*. Let H be a finitely generated subgroup of G such that CommG(H) = G.

Let S be the admissible family of subgroups of G commensurable with H and A be a non-

empty set. Suppose that V is a G-stable S -almost equality class in S (G,A). Then there

exists a G-tree T with edge stabilisers in S and vertex set V.

Remark 5.3.4. We begin by noticing that in the case that S is the admissible family of

finite subgroups of G that we recover the original Almost Stability Theorem in the special

case that the G-set is G-finite. This may not seem to be the most obvious generalisation

of the Almost Stability Theorem indeed originally we aimed to prove another conjecture:

Conjecture A. Let H be a finitely generated subgroup of G such that CommG(H) = G. Let

E be a G-set with stabilisers commensurable with H and A be a non-empty set. Let V be a

G-stable almost equality class in (E,A). Then there exists a G-tree T with edge stabilisers

commensurable with H and vertex set V.

However, this was modified to become Conjecture A* for the purposes of the application

we shall use in this chapter for which it will become apparent that there is no clear choice

of G-set E.

We also recall a further conjecture that we shall proceed to show follows from Conjec-

ture A*.

Conjecture B. Let G be a group of cohomological dimension n <∞. Let H be a PDn−1

subgroup of G such that CommG(H) = G. Then there exists a G-tree T with edge and

vertex stabilisers commensurable with H.

Before we show that Conjecture A* implies conjecture B we introduce some notation

which will simplify our discussion of G-trees arising from derivations.

5.4 Modules and derivations

In the rest of this section we let G denote a group. Our motivation for studying the objects

below is that they arise as the vertex sets of G-trees and knowledge of the structure of
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the derivations, in particular the subgroups on which they restrict to inner derivations,

provides information on the stabilisers of the action of the group G on the tree.

Definition 5.4.1. Let Ω be a G-set with an abelian group structure and δ : G→ Ω be a

function. We say that δ is a derivation if for all g, h ∈ G,

δ(gh) = δ(g)h+ δ(h).

Remark 5.4.2. The definition of a derivation typically requires that Ω be a G-module,

however in our definition above we do not require that the addition is respected by the

group action. In the following two subsections we investigate a certain case in which a

G-module structure arises on Ω.

Definition 5.4.3. Let M be a G-module. We denote by Der(G,M) the collection of all

derivations from G to M. We say that a derivation d ∈ Der(G,M) is inner if there exists

an element m ∈M such that for all g ∈ G, d(g) = mg −m.

Definition 5.4.4. Let M be a G-module and d ∈ Der(G,M). We define (M)d to be the

G-set with underlying set M and with G-action defined as follows,

m ∗ g = mg + dg for all m ∈M, g ∈ G.

The following results will answer the question as to when a function δ : G→M gives

a G-action in the same way as above.

5.4.1 Which functions define actions?

Lemma 5.4.5. Let M be a G-module and δ : G→ M be a function. Then the operation

∗ defined in 5.4.4 is a G-action if and only if δ is a derivation in the sense of Definition

5.4.1.

Proof. For all m ∈M, g, h ∈ G,

m ∗ (gh) = (m ∗ g) ∗ h

⇐⇒ mgh+ δ(gh) = (mg + δ(g))h+ δ(h)

⇐⇒ δ(gh) = δ(g)h+ δ(h) since M is a G-module.

Now suppose that δ is a derivation. Then δ(1) = 0 and the result is clear.
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It is now a natural question to ask whether δ being a derivation from some G-set Ω,

and the operation ∗ being a G-action implies that Ω is in fact a G-module. In fact this is

not the case as can be seen in the following example.

Example 5.4.1. Let Z act on Z by addition. Then we have that Z is a Z-set but clearly not

a Z-module. If we take δ : Z→ Z to be the zero map then we have that δ is a derivation

and ∗ is simply our original action. Thus (Z)δ = Z, i.e. the identity map is also a map of

Z-sets.

Thus we may obtain a G-set from a derivation together with a G-set which was not

a G-module to begin with. Indeed this example can be adjusted to give a whole family

of examples for all G-sets which are not G-modules but do however have an underlying

abelian group structure together with the zero derivation.

We now address the question of which G-module structures arise in general.

5.4.2 Module Structure

In this section we assume that we have a G-set M with underlying abelian group structure

and a derivation d : G→M such that the operation ∗ from Definition 5.4.4 is a G-action.

Notice that we do not assume that M is a G-module, we do not require that the G-action

distributes over the addition in M. Although M need not be a G-module we aim to show

that certain subgroups of M do indeed have a G-module structure.

Since M has an abelian group structure, to prove that a subgroup of M is a G-module

it is enough to show that the action of G distributes over addition in the subgroup and

that the subgroup is closed under the action of G. This of course is trivially satisfied when

M is a G-module. We now state the first result in this direction.

Lemma 5.4.6. The action of G distributes over addition in the abelian subgroup generated

by the image of d.

Proof. Since ∗ is an action we have for all m ∈M, g, h ∈ G,

mgh+ d(gh) = (mg + dg)h+ dh.

Now since d is a derivation this simplifies to give,

mgh+ d(g)h = (mg + dg)h.

This holds for all m ∈ M and so in particular for all m in the image of d. This allows,

inductively, to prove that the action of G distributes over finite sums of elements in the
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image of d. It remains to show that the G-action distributes over additive inverses, however

this follows from two simple observations. Firstly that the above formula gives that

(m+ d(g)h)k = mk + d(g)hk

for all m ∈ M, g, h, k ∈ G. Then secondly, that since d is a derivation we see that for all

g ∈ G,−d(g) = d(g−1)g. Hence (m+m′)g = mg +m′g for all g ∈ G,m,m′ in the abelian

group generated by the image of d.

The following result allows us to show that M contains a G-module.

Theorem 5.4.7. The abelian subgroup generated by the image of d is invariant under the

action of G.

Proof. Since d is a derivation we have that for all g, h ∈ G,

d(gh) = d(g)h+ d(h).

Thus for g1, g2 ∈ G we have,

d(g1)g2 = d(g1g2)− d(g2).

This gives that the generators of the subgroup generated by d remain in the subgroup

under the action by G and the result follows from Lemma 5.4.6.

Corollary 5.4.8. The abelian subgroup generated by the image of d is a G-module.

Thus we see that M must have some subgroup which is a G-module.

Remark 5.4.9. It should be noted that as we stated earlier it is easy to construct examples

where ∗ is a G-action if we take d to be the zero derivation. However, in this case the

G-module generated by the image of d is the zero module and as uninteresting as we would

expect.

Corollary 5.4.10. If the image of d generates M as an abelian group then M is a G-

module.

5.4.3 G-summands and G-retracts

We investigate the structure of the G-sets (M)d obtained from G-modules M and deriva-

tions d : G → M and how this corresponds to the structure of the original G-module

M.
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Definition 5.4.11. Let M be a G-module and N be a G-submodule. We say that N is

a G-summand of M if there exist G-linear maps ι : N → M,π : M → N, such that the

composition π ◦ ι is the identity on N.

Definition 5.4.12. Let U, V be G-sets. We say that U is a G-retract of V if there exist

G-maps ι : U → V, π : V → U, such that ι is injective and π is surjective.

Lemma 5.4.13. Let M be a G-module and suppose that N is a G-summand of M and

that we have a derivation d : G→ N. Then (N)d is a G-retract of (M)d.

Proof. Since N is a G-summand we have G-linear maps N → M → N such that the

composition is the identity. It is then a straightforward check that these maps are G-maps

(N)d → (M)d → (N)d. Since the maps have not changed as maps of sets it is clear that

the composition is still the identity on N and thus (N)d is a G-retract of (M)d.

The following result will be of most use to us in the following arguments.

Lemma 5.4.14. Let M be a G-module and δ : G → M be a derivation. Then the

stabilisers of (M)δ are precisely the subgroups of G on which δ is inner.

Proof. Suppose that δ is inner on H. Then there is an m ∈M such that δh = mh−m for

all h ∈ H. We claim now that H stabilises −m.

(−m) ∗ h = −mh+ δh

= −mh+mh−m

= −m.

Let m ∈ M. We aim to show that δ is inner on Gm. We claim that for all x ∈ Gm, δx =

(−m)x− (−m). To see this let x ∈ Gm.

m ∗ x = mx+ δx

= m since x ∈ Gm

i.e. δx = m−mx.
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5.5 Proof of Theorem A =⇒ Theorem B

We aim to prove Theorem B by showing that it follows as a consequence of Theorem A.

We do so by showing that, more generally Conjecture A* =⇒ Conjecture B and our

result follows as a special case. We introduce the following useful piece of notation.

Definition 5.5.1. We denote by A S (G,A) the collection of functions in S (G,A) that

are S -almost equal to their translates by G. That is to say that

A S (G,A) = {f ∈ S (G,A) | f · k =S f ∀k ∈ G}.

We denote by A SF (G,A) the family of all functions in A S (G,A) supported on finitely

many cosets of some subgroup in S .

Now we shall first prove that Conjecture B follows from Conjecture A* in the particular

case that n = 2 and later state a result needed to obtain the more general case from this

same argument.

Theorem 5.5.2. Let G be a group of cohomological dimension n and H a n-dimensional

duality group over R such that CommG(H) = G. Then there exists a derivation δ : G →

Hn−1(S , AG) that is outer on all subgroups of cohomological dimension n and restricts

to the zero map on some L ∈ S .

Proof. Since G has cohomological dimension n then there exists a projective resolution of

the trivial module,

0 // K
dn−1// Fn−1

dn−2 // · · · // F0
// Z // 0

such that the modules Fi are free RG-modules for all 0 ≤ i ≤ n − 1. We may use this

resolution to compute the cohomology of G, in particular we obtain the following exact

sequence.

0 // HomRG(Fn−1,K) // HomRG(K,K) // Hn(G,K) // 0

Thus we observe that the identity map onK gives rise to a non-trivial element ofHn(G,K)

if and only if the map dn−1 does not split as an RG-map. It is clear that this map cannot

split since G is of cohomological dimension n. Similarly we may use the resolution to

compute the cohomology of any subgroup H of G and hence the identity map on K gives

a non-trivial element of Hn(G,K) that restricts to a non-trivial element of Hn(H,K)
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for all subgroups H of G of cohomological dimension n. Now since K is a projective

G-module we may consider this as a non-trivial element in Hn(G,AG) for some abelian

group A. Thus by virtue of the isomorphism Hn(G,AG) ∼= H1(G/S ,Hn−1(S , AG)) from

Corollary 5.3.3 we have an outer derivation δ : G → Hn−1(S , AG) that restricts to zero

on some subgroup in S yet remains outer when restricted to any cohomological dimension

n subgroup.

It is necessary at this point then to take a moment to investigate H1(S , AG). Indeed

we study Hn(S , AG) in the more general setting that S is an admissible family of n-

dimensional duality groups.

Lemma 5.5.3. Let K be an orientable duality group of dimension n over R with Hn(K,RK)

a free R-module. Then Hn(K,AG) is isomorphic as an RG bimodule to the set of func-

tions from G to a direct sum of copies of A that is supported on finitely many cosets of K

and constant on those cosets.

Proof. Firstly observe that

Hn(K,AG) ∼= H0(K,AG⊗RK D) by duality

∼= AG⊗RK D ⊗RK R

∼= AG⊗RK D since D has trivial G-action

∼= AG⊗RK ⊕R

∼= ⊕ (AG⊗RK R) .

So it is enough to show that AG⊗RKR is isomorphic to the functions from G to A constant

and non-zero on finitely many cosets of K. We define the following map and check that

this is an isomorphism. Let ϕ : AG ⊗RK R → A SF (G,A) such that ϕ(ag ⊗ 1)(g) = a.

Since ag⊗ 1 = agk⊗ 1 for all k ∈ K (as G acts on R trivially) it follows that any function

in the image of ϕ is constant on the cosets of K and clearly is supported on only finitely

many such cosets. That this is a G-map again follows from the fact that the action of G on

R is trivial since for x, g ∈ G, x · (ϕ(ag ⊗ 1))(xg) = ϕ(ag ⊗ 1)(g) = a = ϕ(axg ⊗ 1)(xg) =

ϕ(x · (ag ⊗ 1))(xg).

Now any function f : G→ A that is non-zero and constant on finitely many cosets of

K is uniquely determined by a finite list of coset representatives xi of the support of f

together with the corresponding values of f on each of these representatives, αi say. Then
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there is a map ψ : A SF (G,A)→ AG⊗RK R defined by f 7→
∑
αixi ⊗ 1. It is clear that

ψ is then the inverse of ϕ.

Theorem 5.5.4. Let S be an admissible family of n-dimensional duality groups over R

with dualising modules all free over R. Then Hn(S , AG) is isomorphic as an RG-bimodule

to the functions from G to a direct sum of copies of A supported on finitely many cosets

of some subgroup L ∈ S and constant on those cosets.

Proof. Let K ∈ S then it can be found in Bieri [6] that the following diagram commutes,

Hn(K,AG) //

res

��

AG⊗RK D

Tr
��

Hn(L,AG) // AG⊗RL D,

where the horizontal maps are duality isomorphisms and L is a finite index subgroup of

K. The map Tr is the transfer map given by Tr(ag ⊗ d) =
∑

t∈T agt ⊗ t−1d where T is

a set of right coset representatives of L in K. It can be shown that this is independent

of the choice of transversal T. In the case that our groups are orientable duality groups

then we have that Tr(ag ⊗ d) =
∑

t∈T agt ⊗ d. Now in the case that D is a free R-

module we have that D ∼= ⊕R and thus AG ⊗ D ∼= ⊕(AG ⊗ R). Then we have that

Tr(ag ⊗ r) =
∑

T agt ⊗ r =
∑

T argt ⊗ 1, and we claim that this preserves the function

in ASF (G,A) obtained via the isomorphism defined in Lemma 5.5.3. This can be seen

since ag ⊗ 1 ∈ AG ⊗RK D corresponds to the function that evaluates to a on the coset

gK and
∑

T agt⊗ 1 corresponds to the function that evaluates to a on the cosets gtL and

tt∈T tL = K and thus we have the same functions on G.

Lemma 5.5.5. Suppose that S consists of n− 1 dimensional duality groups. Then there

exists the following exact sequence:

0 // A // A S (G,A) // Der(G,Hn−1(S , AG)) // Der(S ,Hn−1(S , AG)),

where Der(S ,Hn−1(S , AG)) = lim−→
H∈S

Der(H,Hn−1(S , AG)).

Proof. We should first make clear what the maps are in this sequence. The first map is that

which sends a to the function that is constantly a on G. Clearly this map is injective and so

our sequence is exact at A. The final map is the restriction map to Der(S ,Hn−1(S , AG)).

The remaining map A S (G,A) → Der(G,Hn−1(S , AG)) is defined by v 7→ dv where

dv is given by dv(g) = vg − v. That vg − v ∈ Hn−1(S , AG) follows from the fact that
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v ∈ A S (G,A) together with the identification from Theorem 5.5.4. That dv is a derivation

follows from the definition of our map as for g, h ∈ G we have that,

dv(gh) = vgh− v

= vgh− vh+ vh− v

= (vg − v)h+ vh− v

= dv(g)h+ dvh.

If dv = 0 then it follows that for all g ∈ G, dvg = vg− v = 0. That is to say that v is fixed

by G, thus constant and in the image of A. Therefore our sequence is exact at A S (G,A).

We proceed to demonstrate exactness at Der(G,H1(S , AG)). The fact that the image of

A S (G,A) lies in the kernel of the following map uses the fact that v ∈ A S (G,A) is

constant on the cosets of some subgroup, K say, in S . Thus for all g ∈ G, k ∈ K,

v · k(g)− v(g) = v(gk−1)− v(g)

= 0.

Hence the image of v restricts to zero on K. That every element of the kernel lies in the

image of A S (G,A) follows from the fact that the original definition of v given a derivation

δ holds and this is constant on the cosets of the group that it restricts to zero on. That

is to say that we define v : G → A by v(x) = −δ(x)(x). Then as in the original case we

observe that this function maps to our original derivation δ since for all g, x ∈ G,

δx = δ(xg−1g)

= δ(xg−1) · g + δg,

and so,

(δg)(x) + v(x) = (δg)(x)− δ(x)(x)

= −((δ(xg−1)) · g)(x)

= −(δ(xg−1))(xg−1)

= v(xg−1)

= (vg)(x).

Then it follows that (vg − v)(x) = (δg)(x). It can be seen that the function v defined as

above is then constant on the cosets of K, a subgroup in S that δ restricts to zero on,
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since for all x ∈ G, k ∈ K,

v(xk) = −δ(xk)(xk)

= −(δ(x) · k + δ(k))(xk)

= −δ(x) · k(xk)

= −δ(x)(x).

Thus v ∈ A S (G,A).

Thus for every outer derivation δ of G to H1(S , AG) that restricts to zero on a

subgroup in S there exists a corresponding G-stable S -almost equality class in S (G,A).

This is particularly useful thanks to the following version of Theorem IV.2.5 from [12].

Theorem 5.5.6. Suppose that Conjecture A* is true. For an abelian group A and deriva-

tion d : G → Hn−1(S , AG), there exists a G-tree with edge stabilisers in S and with

vertex set given by (Hn−1(S , AG))d.

Proof. It is clear from Lemma 5.5.5 that such a derivation gives rise to a G-stable S -

almost equality class in SG,A generated by v ∈ A S (G,A) such that d = dv. Now this

S -almost equality class V = v + A SF (G,A) is isomorphic as a G-set to (A SF (G,A))δ

with the isomorphism given by v + f 7→ f. Conjecture A* then gives a G-tree with vertex

set (A SF (G,A))δ.

It follows that the application of Conjecture A* gives the existence of a G-tree T with

edge stabilisers commensurable with H ∈ S and all vertex stabilisers of cohomological

dimension 1 by the properties of the groups on which δ is inner. It remains to show that

the vertex stabilisers are free of rank strictly less than 2. The following theorem is to be

found in [19].

Theorem 5.5.7 (M. Hall). Let G be a free group and H a finitely generated subgroup.

Then there exists a subgroup F of finite index in G that contains H as a free factor.

In light of the above result suppose that one of the vertex stabilisers Gv, is free of rank

> 1. Then for any edge e incident to v,Gv contains a subgroup F = F ′ ∗ Ge where F ′ is

non-trivial. Then clearly for any x ∈ F ′ it cannot be true that Gxe is commensurable with

Ge. This contradicts the fact that S is an admissible family and it follows that the vertex

stabilisers must all be infinite cyclic and therefore we have that Conjecture A* implies
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Conjecture B in the case that n = 2 and R = Z. Now most of the above argument goes

through in full generality. What is needed, however is some analogue to the Hall Theorem

in the more general case. To this end we have the following results using the spectral

sequence argument from section 1 of [23].

Theorem 5.5.8. Let G be a group of cohomological dimension n over R. Let H be an

n-dimensional duality group over R with dualising module free as an R-module. Suppose

further that H is near-normal in G. Then |G : H| <∞.

Proof. By Lemma 5.2.2 we see thatH i(H,RH) = 0 for all i 6= n.Denote by S the family of

subgroups of G commensurable with H. Now by Theorem 5.3.2 there is a spectral sequence

with Hj(G/S ,H i−j(S , RG)) =⇒ H i(G,RG). Since G has cohomological dimension

n it follows that Hn(G,RG) 6= 0, however for all i 6= n we have that H i(H,RG) =

0 as RG = RH ⊗RH RG. Thus we have that Hn(G,RG) ∼= H0(G/S ,Hn(S , RG)),

and since H0(G/S ,−) is simply the restriction of the G-fixed point functor we see that

Hn(G,RG) ∼= Hn(S , RG)G. Now by Lemma 5.5.4 we see that this is non-zero if and only

if |G : H| < ∞ since G acts on those functions by permuting the finitely many cosets of

its support.

With these results our previous proof now gives the following theorem.

Theorem 5.5.9. Let G be a group of cohomological dimension n over R. Suppose that H

is an n−1-dimensional duality group over R such that CommG(H) = G and the dualising

module of H is R-free. Then Conjecture A* implies that there exists a G-tree with edge

and vertex stabilisers commensurable with H.

Proof. Theorem 5.5.2 produces a derivation δ : G→ Hn−1(S , AG) that is outer on every

subgroup ofG of cohomological dimension n yet restricts to zero in Der(S ,Hn−1(S , AG)).

Lemma 5.5.5 then gives a G-stable S -almost equality class in S (G,A). Thus Conjecture

A* gives a G-tree, T with edges stabilisers in S and vertex stabilisers all of cohomological

dimension n − 1. Now Theorem 5.5.8 tells us that no group of cohomological dimension

n may contain an infinite index n − 1-dimensional duality group and thus the vertex

stabilisers are themselves duality groups in S .

However, in the case that S consists of subgroups of non-zero Euler characteristic then

the statement of Conjecture A* is precisely Theorem A, thus we arrive at the following

corollary.
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Corollary 5.5.10. Theorem A implies Theorem B.

Hence we now have the following theorem generalising the results of Kropholler [23].

Theorem B. Let G be a group of cohomological dimension n < ∞. Let H be a PDn−1

subgroup of G such that CommG(H) = G and χ(H) is a non-zero integer. Then there

exists a G-tree T with edge and vertex stabilisers commensurable with H.
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