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Abstract

In this thesis a new method is proposed to estimate major periods of mi-

gration from one region into another using phased, non-recombined sequence

data from the present. The assumption is made that migration occurs in mul-

tiple waves and that during each migration period, a number of sequences,

called ‘founder sequences’, migrate into the new region. It is first shown

through appropriate simulations based on the structured coalescent that pre-

vious inferences based on the idea of founder sequences suffer from the fun-

damental problem that it is assumed that migration events coincide with the

nodes (coalescent events) of the reconstructed tree. It is shown that such an

assumption leads to contradictions with the assumed underlying migration

process, and that inferences based on such a method have the potential for

bias in the date estimates obtained.

An improved method is proposed which involves ‘connected star trees’, a

tree structure that allows the uncertainty in the time of the migration event

to be modelled in a probabilistic manner. Useful theoretical results under

this assumption are derived. To model the uncertainty of which founder

sequence belongs to which migration period, a Bayesian mixture modelling

approach is taken, inferences in which are made by Markov Chain Monte

Carlo techniques.
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Using the developed model, a reanalysis of a dataset that pertains to the

settlement of Europe is undertaken. It is shown that sensible inferences

can be made under certain conditions using the new model. However, it is

also shown that questions of major interest cannot be answered, and certain

inferences cannot be made due to an inherent lack of information in any

dataset composed of sequences from the present day. It is argued that many

of the major questions of interest regarding the migration of modern day

humans into Europe cannot be answered without strong prior assumptions

being made by the investigator. It is further argued that the same reasons

that prohibit certain inferences from being made under the proposed model

would remain in any method which has similar assumptions.
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Chapter 1

Introduction

1.1 Approaches to migration estimation

In this chapter a brief overview of some of the various approaches used to

estimate migration from DNA sequence data will be presented. It is noted

from the outset that although an attempt has been made to place the vari-

ous approaches into categories such as likelihood-based, or Bayesian, many

do not neatly belong to only a single category. It is also mentioned that this

thesis will make a strong assumption about the underlying migration process,

and as a consequence, most approaches discussed in this section would not

be appropriate for analysing a dataset believed to have arisen from the mi-

gration process that will be later assumed. For this reason, only an overview

is given in what follows and the interested reader is directed towards the

referenced works for further details. The methods proposed in the literature

often require very strong prior modelling assumptions, and are often based on

a single approach to analysis (e.g. pure likelihood or Bayesian). As a result,

very few investigators have been able to assess the merits of the common

approaches due to issues such as differences in assumptions and parameters.
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One interesting comparison, however, is the work of Kuhner and Smith [1],

who compare the Bayesian and likelihood versions of LAMARC. Although it

is of interest to assess the performance of the technical approaches to the in-

ference problem when possible, such assessment is difficult and still relatively

infrequent in the literature.

Phylogenetic methods

Rosenberg and Nordborg [2] make the interesting distinction between mod-

ern day genealogical methods, such as those based on coalescent theory, with

phylogenetic methods stating (page 383) that “Phylogenetic methods esti-

mate trees. They were developed to determine the pattern of species descent,

which is assumed to be tree like”.

The point is simply made that phylogenetic methods were designed to allow

species trees to be estimated, and these methods depend on the existence of

a strong correlation between species trees and gene trees. For this reason,

no further comments will be made about classical phylogenetic methods and

focus will be directed towards genealogical methods, where the interest is

(usually) the estimation of parameters (such as migration rates) which give

rise to phylogenetic trees. The actual reconstructed tree is nothing more

than a (high-dimensional) nuisance parameter. Furthermore, a single recon-

structed tree is an extremely difficult object about which to design statistical

hypothesis tests, and this reason alone limits the usefulness of such methods

if taking an approach which depends entirely on phylogenetic methods.

One particularly interesting phylogenetic approach, however, is that of Nested-

Clade-Analysis (NCA), by Templeton et al. [3] This approach involves esti-

mating the ‘haplotype network’ of a given sample. The algorithm used to
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construct such networks attempts to use parsimony but allows nonparsimo-

nious connections when the parsimonious reconstructions have low (≤ 0.95)

probability of being true. Templeton and colleagues suggest a 95% plausible

set of networks is created (which may include nonparsimonious networks).

The plausible set identified is then subject to various rules which aim to split

the haplotypes into specific groups (the“0-step clades, 1-step clades,...” etc.),

with the members of each group being composed of members of the previous

group that are only a single mutation apart. Nested groups of haplotypes

are identified and a set of physical distance values are calculated which are

then used to ‘test’ whether samples from the same population are closer to

each other than would be expected by chance. This is done through permu-

tation methods to simulate the distribution of the distance measures under

the null hypothesis of no geographical associations. Once evidence of geo-

graphical structure has been identified an inference key is used to identify the

demographic factor responsible. This approach is both novel and appealing

on grounds of simplicity (the flow-chart type explanation of the method [3,

page 781-782] is particularly unique) and it is an interesting example of an

attempt at a quantitative phylogenetic approach to the inference problem.

However, the method has been shown to lead to invalid conclusions [4].

Methods which rely purely on tree/network reconstructions are of limited use-

fulness in many areas of statistical genetics, where formal inferential methods

are now generally preferred. These more formal methods attempt to make

parameter estimates from a model which allows many of the stochastic fea-

tures of the true evolutionary process to be accounted for.
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Methods based on summary statistics

Various authors have proposed test statistics which, at certain values, can

suggest migration, and in certain circumstances, allow subjective inferences

to be made. Such a statistic is Tajima’s D [5] which is based on the (nor-

malised) difference between two different estimators of the (scaled) mutation

rate (commonly denoted by θ). The two estimators used in Tajima’s D are

the average number of pairwise differences between two sequences (π̂) and

the Watterson estimator (θ̂W ), and the (normalised) difference between these

two estimators is used as the test statistic. Using the notation of Hein et al.

[6], the quantities e1 and e2 are constants depending on sample size, and Sn

is the number of mutations in a sample assumed to follow the infinite sites

assumption. Then D is defined by

D =
π̂ − θ̂W√

e1Sn + e2Sn(Sn − 1)
. (1.1)

Under the assumptions of a basic coalescent model, Tajima’s D statistic

should have a mean close to zero and variance close to one (although its

distribution is not normal and in fact is close to that of a beta distribution),

while certain departures from the basic coalescent assumptions (such as the

presence of migration) can result in the distribution of Tajima’s D being

changed and hence a means of testing the basic coalescent.

The problem with such methods is that completely different demographic

scenarios can have an identical effect on summary test statistics. For example,

Tajima’s D being positive (on average) happens in any demographic scenario

that gives E[π̂] > E[θ̂W ], such as a recent population bottleneck or with

limited migration between two populations (as e.g. shown in [6]).

Some authors have calculated explicit expressions for some more complicated
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statistics which they then use to assess some population parameters. Wakeley

et al. [7] derive expressions for the expected number of different categories of

polymorphic sites for an isolation model, which is the term used to describe a

model where a single population splits into two descendent populations, and

for the size-change model, where the ancestral population simply changes

size. Although this model involves no migration, for the isolation model,

Wakeley and colleagues derive some complicated expressions for the expected

values of the partitions of segregating sites in the ancestral population, which

they showed to be functions of the parameters in the model. They then

use numerical methods to find the values of the parameters that make the

observed values closely match the expected values. Such approaches can be

viewed as being similar to summary statistic methods, and more generally

to the method of moments.

It is perhaps important to note here that methods based exclusively on sum-

mary statistics of some aspect of the data do have the advantage of ease of

computation, are often simple to understand, and can provide useful insights

into given datasets which can help direct an investigator towards a more

appropriate, involved analysis such as those to be described in the following

sections. Summary-statistic-based methods also have made their way into

more formal methods in what is now commonly referred to as Approximate

Bayesian Computation (ABC) [8]. Of course, using summary statistics in-

volves loss of information: reducing what is a high dimensional dataset into

a single statistic (or vector of statistics) is always going to involve loss of in-

formation from a dataset, unless such an estimator was a sufficient statistic.

In almost all genetic contexts of major interest, no sufficient statistics are

known to exist, with the exception of the number of segregating sites for the

estimation of θ using the Ewens sampling formula [9].
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Likelihood based approaches

Various authors have attempted likelihood-based inference for models with

migration, the likelihood, L, being defined as the probability of the observed

data, D given the parameters of the model, Λ, and any nuisance parame-

ters, G (which could be considered as part of the parameter vector but are

separated here as one may wish to integrate them out).

L(Λ) = P (D|Λ) =

∫

G

P (D|G, Λ)P (G|Λ)dG (1.2)

In practice one would like to maximise the likelihood, which requires aver-

aging over all possible values of the nuisance parameters. The parameters

of interest may be quantities such as the effective population size, an ex-

ponential growth rate, a global migration rate, or any number of possible

model-dependent parameters. In practice, the nuisance parameter is typi-

cally the phylogeny: it is this object that causes the most problems for the

statistician. The space of plausible trees is extremely large and averaging

over the possible phylogenies is an extremely difficult problem. It is for this

reason that methods have been developed which assume a fixed tree and then

make formal statistical inferences with the inherent assumption that the as-

sumed tree is correct and the uncertainty in the tree reconstruction can be

ignored. An example of such an approach is an early method of Slatkin et

al. [10], which gives an estimate of the population migration rate between

a pair of populations from the branching patterns that are present on the

reconstructed tree.

Some attempts at the problem of averaging over gene trees have brought some

success [11], [12]. The problems with models which attempt to average over

all possible genealogies (or a subset of them) is that of computational com-

plexity. Most of these methods are extremely computationally demanding,
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can take long periods to run for some datasets, while there is the additional

problem that these methods can only estimate parameters of well-defined

models where appropriate formulas for likelihoods can be calculated (or ap-

proximated easily).

Difficult inference issues in migration models

I have touched on some of the approaches taken but some issues remain which

are regularly ignored in modelling and analysis. One is that of ascertainment

bias, which can be described as a departure from what one would expect to see

in a random sample of genetic data, due to the data collection/ascertainment

process. Wakeley and colleagues [13] investigate ascertainment bias and show

it to have negative effects on the inference of migration rate parameters

which are described as ‘substantially overestimated when ascertainment bias

is ignored’ (as well as other population parameters such as population size

changes - false signals of population expansion were even shown to result

from ascertainment bias). This issue is a troublesome one which is rarely

considered, but one should be aware of such bias being possible. However, it

is perhaps likely to affect SNP (single nucleotide polymorphism) data more

severely than sequence data, since rare alleles are less likely to be missed in

the latter case.

A further, perhaps more complicated issue with migration rate estimation is

that of ‘ghost populations’. It is commonly assumed in models with migra-

tion that k subpopulations exist, where k is known, or that the number of

populations is infinite. However, it is often the case that one does not know

exactly what subpopulations exist, nor does one always have samples from

every subpopulation. In other cases, one may not know of the existence of
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a subpopulation and not have any data from such ‘ghost’ populations. Pe-

ter Beerli [14] constructs a scenario where three populations are exchanging

migrants but only two are sampled. Various migration patterns are consid-

ered and it is shown that the analysis ‘overestimates the [population] sizes

considerably’ in some cases, but perhaps more interestingly, the effect on the

migration rates reveals ‘no clear pattern’. It is even shown to be the case

that for certain migration scenarios, the two population analysis (assuming

two populations exist, ignoring the third completely) performs better than

the ‘ghost analysis’ (the analysis that assumes a third population does exist

and exchanges migrants at some rate, but is unsampled).

Other interesting conclusions reported include robustness of migration rate

estimates to the number of unsampled populations. The interested reader is

directed to the original paper and follow up work such as the work of Slatkin

[15]. For the purposes of this thesis it is simply stated that inference of

parameters often can be affected by such ‘ghost’ populations. This is rarely

addressed by many authors and options for dealing with it are completely

absent in all standard available software packages.

The issues of ascertainment bias, ghost populations and other rarely discussed

factors (e.g. the consequences of DNA damage in ancient samples) that make

the inference problem more difficult are very specialist areas of research at the

moment. Methods for dealing with these factors within a formal inferential

framework are still in their infancy. Although they are not further considered

in this thesis, they should not be forgotten as potential confounding factors.
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1.2 Software for estimating migration rates

Various authors have made available their software for analysing datasets

where a migration parameter (or set of parameters) is believed to be appro-

priate. Many of these programs are suitable only when a specific demographic

scenario can be assumed. In this subsection I review some of the more well-

known programs and describe briefly what model they assume and what they

return.

GENETREE

Genetree is a program developed by Griffiths and Tavaré [11], [16], which

requires fully aligned sequence data, with each sequence being assigned to a

given subpopulation, with the requirement that the sequences are compat-

ible with the infinitely-many-sites model (although the documentation for

this program does provide some advice on making an incompatible dataset

compatible and states that the data should be ‘close’ to compatible!). This

program assumes a model with migration rates between populations which

are assumed constant throughout time. The program supports multiple sub-

populations but closer examination of the documentation reveals that keeping

the number of subpopulations down is strongly advised. It is suggested that

the analysis should be constrained to two populations or that the number

of free parameters in the migration matrix is ‘two or three’ with all others

‘assumed from prior knowledge’. Additionally, it is suggested that locations

should be amalgamated where possible.

The program allows a variable population size and the probability distribu-

tion of gene trees in subdivided populations is calculated through the use of

complex recursions. Maximum likelihood estimation of various parameters
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is the main focus of interest. These include migration matrix parameters,

together with other statistics which are of particular interest to investigators

assuming that a subdivided population gave rise to their data, such as prob-

abilities of the location of the most recent common ancestors and the prob-

abilities of mutations having occured in each of the various subpopulations.

The program is well developed, but it is clear that the authors encourage

keeping the number of populations small, and attempting to estimate only a

few migration matrix parameters.

MIGRATE-N

Migrate [12] assumes that n populations exist which potentially are all ex-

changing migrants at some rate (which could be zero for some pairs of pop-

ulations), and primarily, aims to estimate the migration rate between popu-

lations. The program gives the option of estimating all migration rates after

scaling, while also allowing for various different migration models to be set up

and parameters estimated (such as stepping stone models, source-sink mod-

els, as well as options for restrictions such as symmetric migration between

demes). The program does allow a Bayesian approach in the estimation of the

parameters in the more recent versions but the author admits that the like-

lihood approach is more ‘mature’ in MIGRATE simply because he ‘started

the coding with it’; for this reason the Bayesian options of MIGRATE are

ignored here.

The method takes a Markov chain Monte Carlo approach with importance

sampling with the aim being to bias the search through tree space to those

trees with higher likelihoods, and then to correct for this feature. The integra-

tion not only involves considering possible genealogies, but also all possible
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branch lengths for every edge on each genealogy. Interestingly, MIGRATE-N

also allows geographic distances between the populations to be entered (or

any other sensible measure of distance between populations) which allows the

migration rates to be scaled further by this distance. MIGRATE also allows

the mutation rate of each locus to vary according to a gamma distribution

with shape parameter α.

The documentation is very honest and self-critical about the software. It

breaks down the problems that can occur that can lead to incorrect infer-

ences being made. Even the possibility of programming errors in the code

is discussed! Beerli demonstrates cases where he is able to compare his pro-

gram with the output from GENETREE and FLUCTUATE [17, not further

discussed here as this program is not primarily designed for estimating migra-

tion between populations], and demonstrates for a few cases that the results

are very similar.

As well as returning parameter estimates, MIGRATE can also return plots

similar to the Skyline plots of Drummond et al. [18], although the most recent

documentation suggests that this feature has not been thoroughly tested yet

and is based on as-yet unpublished original work. Further, limited likelihood-

ratio tests can be done to test hypothesis such as H0 : M12 = M21, that the

migration rates are identical in both directions in a two-population model.

In summary, MIGRATE is a well-developed, well-documented and evolving

piece of software which allows inferences to be made about migration rates

for some general migration models.
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LAMARC

LAMARC [19] stands for Likelihood Analysis with Metropolis Algorithm us-

ing Random Coalescence. The program is an ambitious attempt at a single

method which can simultaneously estimate effective population size, expo-

nential growth rates in each population, migration rates from each population

into every other population, together with a global recombination rate. In

addition, restrictions can be put in place that constrain some of these pa-

rameters to be equal if desired. Additionally, the program accommodates

finite sites mutation models such as the F84 model (e.g. [20]) of nucleotide

substitution (which differentiates between transitions and transversions and

allows for unequal base composition) and general time-reversible models are

permissible.

It is interesting to consider the strong assumptions that are detailed in the

LAMARC paper. Only those specifically concerning the population structure

and migration process are discussed here. The method assumes that the

subpopulation structure is constant across the whole depth of the tree, that

the rate of migration is independent of the size of the populations, and that

the migration rate between populations remains constant. The method is

not suitable if populations have recently diverged from a common ancestor.

The major drawback of this program is the run times required before the

sampler reaches convergence. The documentation for the program suggests

that estimating a “recombination rate using 60 16 kb mtDNA sequences

required 2 GB of memory and 34 weeks of workstation time”. If one wished to

use this program at its full capacity with multiple subpopulations, migration

between each, together with recombination, the computational time required

for a single run becomes prohibitive.
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MDIV and IM

MDIV [21] is a program by Nielsen and Wakeley which allows simultaneous

estimation of the divergence time between two populations assumed to have

arisen from a common population in the past, and migration rates. The pro-

gram required initially the assumption of infinite sites and no recombination,

but now can accommodate the HKY finite-sites model [22]. The program

also assumes equal population sizes in both populations.

The program provides testing for evidence of migration between the two

populations or for evidence of shared recent common ancestry. The program

provides both maximum likelihood estimates of the demographic parameters

and likelihood surfaces. Rasmus Nielsen has since developed a more ad-

vanced version of the program, called IMa (Isolation with Migration model)

[23] which additionally provides estimates of the joint posterior probability

density of the model parameters together with log likelihood ratio tests of

nested demographic models.

Other Programs

The previous list is by no means comprehensive, but illustrates some of the

attempts made by researchers to make available software to the scientific

community that allows sensible inferences to be made on collected datasets.

BATWING (Bayesian Analysis of Trees With Internal Node Generation) [24]

assumes k subpopulations exist at the time of sampling but that they formed

from population-splitting events (going forward in time) and with the very

strong assumption that no subsequent migration takes place between these

subpopulations. This assumption alone leads to the program documentation
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making the admission that “in reality splits may be gradual and followed by

migration.”

BATWING allows the investigator to include various population growth

models and some flexible prior choices to be made. However, as the pro-

gram does not allow migration rates to be estimated, no more will be said

about this program. It is sobering to note however that the program docu-

mentation makes the very general comment that “It must be recognised that

some questions of interest about historic demography cannot be answered

from present-day genetic data alone.”

Other programs include FLUCTUATE, COALESCE and RECOMBINE,

which are now effectively superseded by LAMARC.

1.3 Summary

The various approaches taken to estimate migration rates vary in their un-

derlying model assumptions, the parameters that can be estimated, the ease

with which the method can be performed and the time the analysis takes.

Even the way in which the phylogeny/tree is treated varies across methods.

It should be clear to the reader that no single approach is optimal for all ques-

tions of interest. In the chapter that follows the method of founder analysis

will be presented. This is an interesting approach which starts like a phyloge-

netic method to produce a tree on which all further analysis is conditioned.

The method then deviates from the route most analysis methods take by

making the assumption that migration occurs in waves which give rise to mi-

gration events involving migrant sequences known as founder sequences and

that the migration is approximately unidirectional. The approach is unique
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as it is less concerned with the estimation of migration rates between popu-

lations, and more concerned with estimation of the times when the assumed

migration waves occurred, together with the additional aim of attempting

to identify the sequences involved in migration events. The method can be

viewed as a hybrid approach which allows a unique model of migration to

be considered and set within a statistical framework that allows inferences

of interest to be made.



Chapter 2

Founder analysis

2.1 Founder analysis description

2.1.1 Introduction

Torroni et al. [25] analysed the mtDNA sequences of 167 American Indians

by restriction analysis and observed 50 distinct haplotypes, of which 48 of

these haplotypes separated nicely into four distinct clusters after a parsimony

analysis. Torroni et al. label these clusters as A-D (figure 2.1) and describe

the mutations that define them and the additional subclusters. They then go

on to argue that various haplotypes are likely to be the “founding haplotypes”

with justification being that these haplotypes are the most common within

the cluster, and/or that their position within the cluster of the reconstructed

phylogeny is “nodal within the cluster”, with some additional reasoning given

such as that the haplotypes that are probable founders are found in larger

populations, while other members of the cluster are not - the argument here

is that this indicates that such sequences are older and points towards such

sequences being those that define a given cluster.

26
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Figure 2.1: Reproduction of Figure 1 of Torroni et al. (1992).

Torroni et al. suggest further that the reconstruction indicates that two inde-

pendent migrations took place with “two or three” haplotypes (which they

have numbered haplotypes 1, 9 and 13) being flagged as founders, essen-

tially because they are located deep in the tree, coinciding with nodes that

define two of the clusters they are interested in, and importantly, these hap-

lotypes/nodes essentially define the parts of the tree from which all Nadene

haplotypes derive. This work, although little more than a basic phylogenetic

reconstruction with some sensible subjective interpretation, laid the ground-
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work for what is now generally referred to as “founder analysis”. The work

by Torroni et al. was only possible due to the fact that the reconstructed

phylogeny displayed nice clustering which almost partitioned the mtDNA

into distinct classes, each of which contained haplotypes from only a select

group of individuals suggesting the existence of ‘founder sequences’ involved

in various migrations into new areas.

Richards et al. [26] formalised the method of founder analysis by using ob-

jective methods to a) reconstruct a suitable phylogeny when the data set

(typically mtDNA sequences) may be difficult to resolve due to reccurent

mutations, with the possibility that a very high-dimensional genealogical

network may exist, b) define formal methods to identify the ‘founder se-

quences’, and finally, c) use statistical concepts to try and estimate the age

of the founder sequences and other related quantities of interest, while pro-

viding some estimates of the uncertainties related to these estimates.

It is perhaps somewhat unfortunate that exactly what a ‘founder’ is has

not been formally defined in the scientific literature anywhere as yet. Only

when working on extending the method of founder analysis (as described by

Richards et al.) in this thesis did the clarification of some terms such as

‘founder sequence’ become necessary.

In the work of Torroni et al. and Richards et al. the terms ‘founder’ and

‘founder sequence’ were used loosely to mean a sequence involved in a mi-

gration event into a new area. However, in terms of the methodology (par-

ticularly the more formal parts of [26]), the terms ‘founder’ and ‘founder

sequence’ are ambiguous. The assumption was made that one is talking

about the founder sequence as being one of the internal nodes on the recon-

structed phylogeny, which may or may not be the same sequence involved in
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the migration event of interest.

To clarify, figure 2.2 displays part of a tree that contains an edge which

carries a single migration event; mutations are marked on the edge (one can

assume for now that they represent the exact times of each mutation). From

this diagram I now will define some terms:

• “founding event”: A migration of a sequence into a new area.

• “founder”: The DNA sequence that was brought into the new area by

the founding event.

• “founder sequence type”: The DNA sequence that corresponds to the

node on the reconstructed tree that defines the new cluster. The “founder

sequence type” may be identical to the founder, but it may have been

subject to additional mutations which make it different from the se-

quence of the founder. The distinction between “founder” and “founder

sequence type” may seem a little unnecessary but the distinction will

matter in what follows.

• “founder cluster”: All branches of the phylogeny descending from the

founder sequence type.

At the simplest level, founder analysis attempts to identify and date mi-

grations into a new area by inferring ‘founder sequence types’ (using a set

of selection criteria) in potential source populations. Identified founder se-

quence types have associated with them a cluster of descendent sequences

in the settlement region that are derived from them, and the method at-

tempts to estimate the age of such clusters. The method as proposed then
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Founder

A

B

C

Figure 2.2: The “founder” is marked on the edge between mutations ‘A’

and ‘B’: this is the sequence involved in the “founding event”. Node ‘C’

represents the “founder sequence type”, which is not identical to the founder

in this case as it carries the additional mutation ‘B’ that is absent on the

founder. The cluster of the tree defined by node C is the “founder cluster”.

tries to ‘estimate the proportion of modern lineages whose ancestors arrived

during each major phase of settlement’ [26, page 1251]. That is, under the

assumption that migration occurred in short duration waves, the proportion

of the modern-day sample that is derived from each wave is estimated. The

primary application of the method was to allow a sample of modern mtDNA

sequence data to be collected and analysed to provide a quantitative estimate

of the demic component to the spread of agriculture into Europe from the

Near East (for maternal lineages). The method made use of reduced median

networks [27] (together with some use of RFLP typing and some extensively

discussed rules) to reconstruct the phylogenetic relationships between the

sequences, and to reduce the sample data from a network to a tree.

The major aim of this thesis is to investigate some properties of this method
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of analysis through the creation of appropriate data simulation procedures,

and attempt to identify the performance and limitations of the method. It

will be shown that founder analysis as proposed in the original paper is likely

to suffer from some fundamental problems that cannot be easily overcome

through improved statistical modelling, as the problems identified are essen-

tially problems that arise due to the nature and size of available datasets.

The primary issue is a systematic underestimation of the migration times

(estimates in [26] and derived work are likely to be too young). This is in

contrast to critiques of the method that assume that the estimates are likely

to be too old [28, introducing the famous ‘martian analogy’]. I shall address

this bias through the development of an improved version of founder analy-

sis, which generalises the original method in a way which ameliorates such a

problem and makes the method of founder analysis fully Bayesian.

The new method will be shown to perform well with simulated data for

datasets of appropriate size, overcoming the problem identified at the sim-

ulation stage. An application of the full Bayesian method to re-analyse the

dataset used in the Richards et al. paper then leads to an argument that cur-

rent datasets used to investigate the migration of humans are likely to be too

small to allow any strong inferential statements to be made, and that with-

out the very strong assumption that migration events almost always coincide

with events that can be accurately identified from a reconstructed phylogeny,

the dating of migration events/periods is always likely to be imprecise for

datasets of current sizes, when the number of migration events/periods is

not trivially small.
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2.1.2 The method of founder analysis

This section reviews the major assumptions and methods used in the origi-

nal work of Richards et al. [26]. The reduction of phylogenetic networks to

phylogenetic trees is not discussed here. One simply notes that the mtDNA

sequence data (almost 300 base pairs of the first hypervariable segment of

the control region), augmented with some additional RFLP typing (at di-

agnostic positions in the coding region of mtDNA) are used to reduce the

space of possible networks which described the data, down to a resolved

phylogenetic tree. While it is difficult to ignore the complications of the

tree reconstruction process, and the variability that is lost through assum-

ing a single reconstructed tree as even being close to the ‘truth’, one can at

least assume the reconstruction to be reasonable and investigate the method

of founder analysis conditional on the assumed reconstructed tree, which is

what is done in this thesis. It is also acknowledged now that, with the ex-

istence of complete mtDNA genome datasets, future analysis will be able to

reconstruct the phylogeny with much more precision than was possible when

the founder method was first applied.

It also should be mentioned briefly here that, in all of what follows, dis-

cussions about sequence types, haplogroups, haplotypes and the associated

nomenclature used to denote such objects will follow that used in the origi-

nal papers (described in [29] and [30]) unless it is explicitly stated otherwise.

Some unresolved branching orders in the phylogeny have been resolved since

the Richards et al. paper (for example [31, Resolution of haplogroup U] and

[32, Further resolution of H]), and as a consequence some nomenclature to

denote haplogroups has changed. In the interests of consistency and so that

comparisons can be made more fairly between the original work and what
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follows in this thesis, attempts have been made to keep everything consistent

with the original paper unless explicitly stated otherwise.

Given the reconstructed tree, criteria were established which were used to

identify what are termed in the original paper as “candidate” founders (it

should be noted here that this candidate list is a list of founder sequence types

i.e. corresponding to nodes on the tree, and not founders). The first criterion

is perhaps the most natural. It is the presence of identical sequence types

in both the source and settled populations, since each such match suggests

that an individual or individuals with that sequence type was involved in

a migration event into the settled region (under a crucial assumption of

unidirectional migration).

Three other criteria are described, which identify inferred matches within the

Near Eastern and European phylogeny. They are either:

1. “unsampled types with both European and Near Eastern derivatives;

or

2. sequence types sampled only in the Near East and whose immediate

derivatives include at least one European; or

3. sequence types sampled only in Europe and whose immediate deriva-

tives include at least one Near Eastern individual.” [26, page 1255]

Criterion 1 can be justified by considering that the existence of sequences in

both the Near East and Europe, that are each only mutational steps away

from some other (unsampled) sequence, does suggest that the unsampled

sequence in question could indeed be a possible candidate founder that simply

is not represented in the current dataset under investigation (figure 2.3 shows
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an example initial tree (left) and how the founder sequence type is determined

(right)). Inferred criterion 2 can be justified by realising that the existence

of a sequence type from the Near East that has European derivatives that

are only mutational steps away from that Near Eastern sequence are possible

candidate founders, and that one simply has not observed the same sequence

in the European sample of data, instead having observed a descendent of

such a sequence (figure 2.4). Criterion 3 represents sequence types found in

Europe that have Near Eastern derivatives, which suggests the possibility

that such a sequence could have migrated from the Near East (although

such a Near Eastern sequence is absent from the sample) and existed in both

locations. The existence of sequence derivatives in the Near East suggests

that the sequence was present in the Near East (giving rise to its derivatives

there), while its existence in Europe makes it an obvious candidate founder

sequence (figure 2.5).

The previous paragraph described the criteria for the selection of poten-

tial candidate founders. However, recurrent mutation and back migration

could easily result in candidate founders falsely being identified. The origi-

nal founder analysis paper introduces ‘three levels of stringency to identify

founder candidates’ [26, page 1255], denoted by the f1, f2 and fs criteria,

with the primary aim being to reduce the effects of recurrent mutation on

the candidate founder list. Additionally, the candidate list as initially con-

structed, subject to no stringency checks, was denoted by f0, forming the

largest founder set, but presumably containing the largest number of false

founders. The candidate list after the application (or not) of some stringency

check will be referred to as the founder pool in what follows. To re-iterate, ref-

erences to the list of founder sequence types after application of the f0, f1, f2
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?

Figure 2.3: The question mark displays an unsampled sequence with deriva-

tives in both the Near East (square) and Europe (circles), suggesting the

node ‘?’ did exist, while the assumption of no back migration gives the node

a Near Eastern assignment, most parsimoniously. Filled circles represent

mutations.

or fs criteria will be called the founder pool.

The f1 and f2 criteria were implemented to reduce the possibility of re-

current mutational events resulting in the identification of false candidate

founders. To this end, sequence matches (either sampled directly or inferred

from the previously described criteria) were required to have either one (f1

criterion) or two (f2 criterion) branches deriving from them in the Near East,

while the derived types must not connect to the founder candidate via se-

quence types found only in Europe. Essentially, the f1 and f2 criteria allow

the investigator to filter out sequence matches that have arisen merely as a

consequence of parallel mutations (especially those that occur at ‘fast posi-

tions’ e.g. see [33, page 62]) in both settlement regions, generating identical

sequences that, however, are not identical by descent. An interesting conse-

quence of this criterion noted in the original work [26, page 1255] is that it
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?

Figure 2.4: In this case, one has a sequence only observed in the Near East,

with multiple sequence types that are only a few mutational steps away, one

of which is European. The node marked with a question mark is assumed to

be Near Eastern due to the assumption of no back migration.

brings with it some additional screening against back-migration as recently

back-migrated types from Europe should lack derivatives in the Near East,

which is exactly what the f1 and f2 criteria are screening for. This screen-

ing against back-migration is welcome as more recent work [34] has provided

some evidence of back-migration from Europe.

The fs screening criterion was also discussed, which was an attempt to cor-

rect for the fact that the success of the f1 and f2 criteria is ‘dependent on

the frequency of the founder cluster candidates in Europe’ [26, page 1255].

The frequency-based correction used in the fs criterion is extremely difficult

to justify formally. It should be viewed as little more than an interesting idea

which perhaps could be developed further in the future. Regardless, due to

the ad hoc nature of the correction (particularly the log10 calculation used),

no more will be said about the fs criterion in what follows.
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?

Figure 2.5: The ‘?’ in this case has multiple European derivatives and only

a single Near Eastern derivative. The assumption of no back migration au-

tomatically requires this sequence to be assigned as Near Eastern.

2.1.3 Statistical details of founder analysis

With a suitable founder list selected (the founder pool), the statistic, ρ, was

used to provide an (unbiased) estimate of the age of each founder cluster in

mutational time units, subsequently converted to years based on an assumed

mutation rate of 1 transition per 20, 180 years [35]. Again, it needs to be

stated here that what is being estimated is actually the age of a founder

sequence type (node on the tree), which is assumed to correspond to the

age of that cluster. The ρ estimator is itself an interesting object which

will be discussed in more detail in a later chapter, but, for the moment, one

simply notes that any node on a given phylogenetic tree can be dated in

an unbiased manner using this estimator, and, importantly, it is inherently

assumed in the original method that dating of the founder sequence type

on the phylogenetic tree closely matches that of the migration time of that

founder. In this section the mathematical details of the method are described

in some detail.
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For notational consistency with the original work, this section follows the

exact notation used by Richards et al. [26]. It should be noted here how-

ever that in following chapters similar notation is used to represent slightly

different statistical quantities for convenience.

It is assumed that there exists a pre-determined number, M , of migration

periods, with migration period m (1 ≤ m ≤ M) occurring precisely at time

tm. As the ρ estimator of divergence time requires time to be measured in

mutational time units, the notation τm is introduced to represent mutational

time, so that τm = µtm, with µ being the mutation rate (of the full sequence

typed).

Assume a uniform prior distribution for the time to the most recent common

ancestor (MRCA) of a founder cluster. One also assumes the mutation pro-

cess along tree edges to be Poisson. For a given founder cluster, under the

assumption of a star-like phylogeny (figure 2.6), and assuming the founder

cluster arose from migration period m, the number of mutation events present

in the founder cluster would be distributed as a Poisson random variable

with parameter niτm, where ni denotes the number of descendent sequences

(‘tips’) arising from founder cluster i (1 ≤ i ≤ I). The indicator variables aim

identify whether founder i is associated with migration period m (in which

case, aim = 1). Similarly, aim = 0 when founder i is not associated with

migration period m. Of course, a priori, one does not know which migration

period a given founder belongs to, and an uninformative, discrete uniform

prior distribution is assigned, so that P (aim = 1) = 1/M . With the notation

now defined, one can derive the formula given in the original paper [26, page

1257, unnumbered formula] using Bayes’ theorem.
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Figure 2.6: Example of a basic star tree. The founder sequence type defines

a cluster which is composed of edges leading to external nodes which all are

assumed to have the same length, with no further bifurcations present below

the founder sequence type.

Statistical details - original derivation

Consider, for a given founder, founder i, the average number of mutations, ρi,

on a given star tree of depth τm, with prior uniform allocation to migration

period m. Then

niρi|τm, aim = 1 ∼ Po(niτm) and P (aim) =
1

M
∀m, i.

Then, applying Bayes’ Theorem, we have

P (aim = 1|ρi, τm) = P (ρi|τm, aim = 1)P (aim = 1)/K1,

where K1 =
∑M

m=1 P (ρi|τm, aim)P (aim). Then,

P (aim = 1|ρi, τm) =
(niτm)(niρi)e−niτm

(niρi)!
.

1

M
/K1

= e−niτmτniρi
m

{
nniρi

i

(niρi)!M

}
/K1

= e−niτmτniρi
m /K2, (2.1)
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where K2 =
∑M

m=1 e−niτmτniρi
m , and noting that the contents of the curly

brackets in (2.1) are independent of m. Thus

P (aim = 1|ρi, τm) = e−niτmeln[τ
niρi
m ]/K2

=
e−ni[τm−ρi ln τm]

∑M
m=1 e−ni[τm−ρi ln τm]

(2.2)

Equation (2.2) is that expressed on page 1257 of the original founder paper.

This equation allows the investigator to attribute a probability to the event

that the cluster deriving from candidate founder i [with some given mtDNA

sequence] is associated with the mth migration event/period.

A final quantity that is calculated is the proportion of the total sample that

is associated with the mth migration period, denoted by Sm and calculated

using the following formula, with n denoting the total sample size:

Sm =
1

n

I∑
i=1

aimni. (2.3)

Sm is a more interesting expression than it appears to be at first glance, since

it relates what I have called the founder pool to the original data sample. One

can regard the founder pool as the ‘data’ once the founder assignments have

been made, and it is tempting to think of each member of the founder pool

as somehow being equal or having common properties shared with all other

founder sequence types. However, an identified founder sequence type whose

founder cluster has a large number of descendants is not the same object

as a founder cluster that may only be associated with a small descendant

cluster of only a handful of sequences. Furthermore, it may be the case

that the strength of belief that a given sequence is in fact a genuine founder

differs between founders. This relationship is not one that is described in

much detail by Richards et al. but it is extremely important to note that all

founders are not equal, and the founder pool represents a set of sequences
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that necessarily have differing numbers of descendants in the present-day

sample.

The issue described in the previous paragraph resurfaces later and becomes

important for understanding limitations that can arise for methods which

reduce a modern-day sample of sequences to a reduced founder pool. It is

always going to be the case due to the phylogenetic nature of the data that

the number of potential candidate founder sequence types (nodes in the tree)

is non-increasing going back in time (and decreasing to 1, the MRCA of the

sample). This brings with it the consequence that the older founder sequence

types are likely to have more descendants in the present-day sample than the

recent founder sequence types, which are likely to represent founder clusters

with only a small number of modern-day descendants. Formula 2.3 actually

can be viewed as a way of circumventing this problem by re-establishing the

link between founder sequence types and the members of the clusters that

each founder defines.

The model used by Richards et al. [26] assumed five migration periods rep-

resenting major prehistoric migrations from the Near East to Europe, the

Neolithic at 9, 000 YBP, the Mesolithic at 11, 500 YBP, the late Upper

Palaeolithic (LUP) at 14, 500 YBP, the middle Upper Palaeolithic (MUP)

at 26, 000 YBP, and the early Upper Palaeolithic (EUP) at 45, 000 YBP,

with a final period being assigned at 3, 000 YBP, simply to mop up recent

migration events that are of only minimal interest.

Statistical details - dating the founder clusters

In the original paper, it was mentioned [26, page 1256] briefly that the dating

of founder clusters was done from the “(gamma-distributed) posterior” with-
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out derivation. Below I derive this result which was used to date individual

founder clusters.

We assume that a star tree describes the founder cluster, with n tips in

this founder cluster. The founder cluster sample size n is assumed known

(observed) and fixed (it is not a random variable). Let tk denote the migration

time of founder k. One wishes to determine the distribution of tk given n

and the ρ value for that founder cluster. Under the star tree assumption,

nρ|tk ∼ Po(µtkn), (2.4)

where µ is the mutation rate of the sequence under consideration.

tk is assumed to be uniformly distributed over the entire allowable time pe-

riod, that is to say,

tk ∼ Un(0,∞). (2.5)

The (improper) distribution (2.5) is important as it indicates that tk is a

random variable whose value may not necessarily coincide with any of the

assumed migration periods (which were assumed to be point masses in the

same paper [26] and were chosen by the investigators). Then,

P (tk|n, ρ) =
P (tk, ρ|n)

P (ρ|n)

∝ P (ρ|tk, n)P (tk|n)

∝ e−µtkn(µtkn)nρ

(nρ)!
. (2.6)

Note, (2.6) follows since P (tk|n) is uniform in tk, and the distribution of nρ

from (2.4) can be used since, with n known, it is simply a 1-to-1 transforma-

tion of the discrete random variable. Thus,

tk|n, ρ ∼ Ga(nρ + 1, nµ). (2.7)
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2.1.4 Performance of the original method

The method is applied and gives rise to age estimates for some of the major

founder clusters, and the proportion of lineages in each cluster is reported. An

important feature of the results not discussed in much detail is the dating of

various founder clusters not coinciding with any of the assumed migration pe-

riods. For example, Figure 1, page 1266 of Richards et al. [26] shows founder

clusters HV, U4 and H to have 95% credible regions for the age estimates

that do not overlap with any migration period; this figure is reproduced be-

low (figure 2.7). This could simply be attributed to some of the uncertainty

in the age estimates being lost as a result of the model assumptions (e.g.

uncertainty exists in tree reconstruction: a perfect star tree assumption for

each founder cluster is unrealistic but necessary for the model). Furthermore,

the major migration periods were assigned a single date. The idea that pre-

historic migration periods can be reliably assigned to a single date with any

certainty is unrealistic. Such estimates themselves would have uncertainty

(which would not even be the same for each period) and this is not at all

represented. However, it is notable that some founder clusters are assigned

intervals that do not lie even close to any of the assumed migration periods,

regardless of whether it is the intervals that are not wide enough or the dates

of the migration periods which are unsuitable.

Table 4 of the original work (figure 2.8) displayed the posterior estimates of

Sm for all the criteria across the migration periods, where the Late Upper

Palaeolithic is seen to consistently contain, on average, the largest proportion

of the sample. In the following chapter this result will be revisited and it will

be argued that interpretation of a single estimate of this statistic, instead of

the complete posterior distribution of Sm, is highly problematic and hides an



CHAPTER 2. FOUNDER ANALYSIS 44

Figure 2.7: Reproduction of figure 1 of the original founder paper [26].

important property of the Sm statistic.

Founder analysis can be summarised as being a novel method of reducing a

modern-day sample of sequences down to a much reduced pool of founder

sequence types, assumed to represent the founder sequences involved in the

major migration periods of prehistory. Under some assumptions explicitly

stated in the original work, the founder pool can be used to date major

founder clusters and provide a quantitative estimate of the proportion of

a modern-day sample that can be attributed to migration periods that are

assumed to have taken place. The method however has not been subjected

to any testing with appropriate simulation studies. The original work does

not attempt to hide the assumptions required for such a method of analysis

to produce valid conclusions, and in the following chapter a simulation study

will be developed to investigate some important properties of the method and

will indicate that one of the assumptions in particular is highly problematic

and needs to be dealt with.
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Figure 2.8: Reproduction of Table 4 of the original founder paper [26].

2.1.5 Criticisms of founder analysis

The method of founder analysis has been criticised by various authors. Bar-

bujani and Dupanloup [36, Chapter 33] describe some of their problems with

the method. They appreciate the work making its modelling assumptions ex-

plicit, but express concern that the mutations generating a new haplogroup

may not necessarily be followed by population expansion, one of the strong

assumptions of the original method. The authors suggest that the dating of

founding events via the founder analysis method is unsatisfactory [36, page

423] and that the idea of inferring a largely Palaeolithic origin of the Euro-

peans is likely to be incorrect. This view was expressed in a reply [28] to

earlier work [37] when founder analysis was not yet formalised. In that reply

Barbujani et al. construct an imaginary scenario where Europeans colonise

Mars and say that “It would not be wise for a population geneticist of the

future to infer from that a Paleolithic colonisation of Mars”. They then ex-
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plain in some detail how using MRCA dates as an estimate of migration time

leads to overestimates.

The problem with this criticism is that Barbujani and colleagues are wrongly

assuming that the age of the most recent common ancestor of two populations

is what founder analysis is trying to estimate at some point. It is indeed

correct that, if one were to use the date of the MRCA of sequences from two

different populations as an estimate of the date at which migration between

these populations occurred, then a ridiculously large and incorrect date would

be obtained. However, the founder analysis method is not at any point trying

to estimate the time of the MRCA of sequences from two populations, or any

related quantities. It never at any point is concerned with the divergence time

or MRCA’s of the populations, but rather the divergence times of founder

clusters.



Chapter 3

Founder analysis simulation

study

3.1 Introduction

The following section introduces a structured coalescent model which in-

corporates population expansion in each of the demes at a common scaled

growth rate together with a migration process which varies discontinuously

over time. The idea here is to extend a coalescent model to create a model

that will generate sequence data appropriate to what the method of founder

analysis assumes, namely a model where migration periods occur at various

time points, generating founder sequence types with associated founder clus-

ters. The aim here is to build up a model which resembles that assumed in

founder analysis gradually, starting with results from the structured coales-

cent theory.

The simulation requires short periods/bursts of migration to mimic the as-

sumed prehistoric demography. However such a simulation procedure does

47
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raise some theoretical issues related to the strong migration limit [38], which

is nicely summarised by Wakeley [39], who summarises that “if ‘Nm’ is large

a subdivided population behaves like a well-mixed, or panmictic, popula-

tion”. During the migration periods, Nm will need to be large to generate

any appreciable number of migrants. However, since the migration periods

will be very short I do not believe the strong-migration limit to be a problem-

atic issue here. Nm could be reduced and the length of the migration periods

increased to compensate for the reduction in all of what follows, although

this would result in a simulation which did not closely resemble that assumed

by the founder analysis method. The aim here is simply to approximate a

migration process, with which one can start to look at the properties of the

founder analysis method.

3.2 The model

The model described here builds on that described by Nordborg and Krone

[40, chapter 12].

One envisages a subdivided population consisting of d demes, exchanging

migrants forward in time from deme j to deme i in a single generation, with

probability mji. Note the order of the indexes here. Recalling that the coales-

cent is a backwards-in-time process, one reserves the natural ordering of the

index for the backwards in time process. Deme k, k ∈ {1, 2, . . . , d} has initial

(present-day) population size of Nk = N/d (this convenient assumption of

equal population size in every deme is not necessary, and is relaxed later).

For now, assume the population sizes and migration probabilities within each

deme are not varying as a function of time.

Let bij denote the probability of migration backwards in time from deme i
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to deme j, in a single generation. It is necessary to express bij as a function

of the forward-in-time migration probabilities so that coalescent arguments

can be invoked and the scaled backwards-in-time migration probabilities be

established.

3.2.1 The relationship between the forward and back-

ward migration probabilities

Recall,

mji = P [lineage in j migrates from j to i]

= P [‘parent’ in j has ‘child’ in i].

The forward migration probabilities can be represented by the d× d matrix:

M =




m11 m12 . . . m1d

m21 m22 . . . m2d

...
...

. . .
...

md1 md2 . . . mdd




.

Note that in the above, the artificial migration from a deme back into itself

is assigned a probability. This artificial construction allows the constraint
∑

i mji = 1 to be imposed, since one now can conceptually view the en-

tire deme migrating each generation, with a meaningful migration fraction

(from one deme to a different deme that changes the state of the system) of
∑

i,i 6=j mji = 1−mjj.

The backwards-in-time probabilities can be described in a variety of ways:

bij = P [lineage in i migrates backwards in time from i

to j in a single generation]
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= P [‘child’ in i has ‘parent’ in j in a single generation]

= P [‘child’ in i descended from ‘parent’ in j in a single generation]

= number of children (of parents from j) that were sent to i/

number of children (of parents from j) that were sent to anywhere

= proportion of children in i that originated from parents in j,

in a single generation.

The above description is instructive in understanding what the backwards

migration probabilities represent. However, a simple application of Bayes

Theorem gives

bij =
Nj

N
mji∑

k
Nk

N
mki

=
Njmji∑
k Nkmki

. (3.1)

Figure 3.1 is instructive for understanding this result.

N1 N2

N3

N1 N2

N3

N2m21

N1m11

N3m31

N1m13

N1m12

N2m22

N2m23

N3m33

N3m32

b12

Figure 3.1: The backwards migration probabilities. Inner circles represent

the current generation. Outer circles represent the next generation.



CHAPTER 3. FOUNDER ANALYSIS SIMULATION STUDY 51

3.2.2 Simple example

In a simple case, let d = 3. Then Ni = N/d = N/3. Also, suppose an

isotropic migration process, giving mji =





m
d−1

, i 6= j

(1−m), i = j
, resulting in

M =




(1−m) m/2 m/2

m/2 (1−m) m/2

m/2 m/2 (1−m)


 .

Then we obtain bij =
NjmjiP
k Nkmki

=
mjiP
k mki

=





m
d−1

, i 6= j

(1−m), i = j.

In general, the relationship between bij and mji can be more complicated.

3.2.3 The rates of events

Suppose now we have a sample of lineages from the present and wish to trace

the ancestry of the sample going back in time. Denote the number of lineages

in deme i by ki. In a single generation the probability of a coalescent event

and hence the rate per generation is approximately given by
(

ki

2

)
1

Ni
. In one

generation in deme i, the probability of migration into i from j is kibij.

In time units of N generations (continuous time), the coalescence rate in

deme i is (
ki

2

)
N

Ni

=

(
ki

2

)
1

ci

,

(
where ci =

Ni

N

)

and the migration rate into i from j is kibijN.
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3.3 Time-dependent migration and popula-

tion size

Suppose now Ni and mji are time-dependent. Let N(t) and mji(t) denote the

time-dependent population size and migration rates. In one generation, the

probability of coalescence is
(

ki

2

)
1

Ni(t)
and the probability of migration into i

from j is kibij(t), where bij(t) =
Nj(t)mji(t)P
k Nk(t)mki(t)

. In units of N(0) generations,

the rate of coalescence in deme i is
(

ki

2

)
N(0)

Ni(t)
=

(
ki

2

)
1

ci(t)
,

(
where ci(t) =

Ni(t)

N(0)

)
, (3.2)

and the rate of migration into i from j is

kibij(t)N(0). (3.3)

3.4 Simulation

Suppose we have currently moved t time units into the past. Let tci be a

simulated waiting time for a coalescent event in deme i. If X ∼ Ex(1), then

[41, Chapter 11]

X =

∫ t+tci

t

λci(u) du, where λci(t) =

(
ki

2

)
1

ci(t)
, (3.4)

induces the correct distribution for tci. Similarly, let tmji
be a simulated

waiting time for migration into deme i from deme j. If X ∼ Ex(1), then

X =

∫ t+tmji

t

λmji
(u) du, where λmji

(t) = kibij(t)N(0). (3.5)

These results need extending however to a model which incorporates migra-

tion periods, which is covered in the next section.
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3.5 Piecewise constant migration

In this section the simulation process for generating the time of migration

events is described. We assume the migration probabilities between demes

are constant within given time intervals (epochs). This artificial scenario is

considered as it allows analytic formulae for the times to the next migration

events to be created and is clearly a first approximation to a process which

has migration rates varying continuously over time. From previous sections

it has been stated that if X ∼ Ex(1), then X =
∫ t+tmji

t λmji
(u) du, where

λmji
(t) = kibij(t)N(0). From this it is possible to find explicit analytic for-

mulas for t+ tmji
, under certain assumptions about the underlying migration

and demographic processes. The assumptions considered in this section are

that the population sizes in all demes are equal, so that Nj(t) = N(t)/d, ∀j, t,
so that

X =

∫ t+tmji

t

kibij(u)N(0) du

= kiN(0)

∫ t+tmji

t

Nj(u)mji(u)∑
k Nk(u)mki(u)

du (3.6)

= kiN(0)

∫ t+tmji

t

(N(t)/d)mji(u)

(N(t)/d)
∑

k mki(u)
du

= kiN(0)

∫ t+tmji

t

mji(u)∑
k mki(u)

du. (3.7)
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3.5.1 Modelling notation

I will now consider a model which allows the migration rates to vary in a

piecewise-constant fashion (the change points separating so-called ‘epochs’),

with exponential population expansion within each deme. This provides

migration rates which are varying between epochs together with a reasonable

model of population expansion.

One envisages a two-deme (d = 2) population scenario (e.g. representing

the Near East and Europe). We envisage epochs corresponding to impor-

tant periods of demographic pre-history. The simplest model would contain

four epochs of non-zero migration corresponding to the periods Early Up-

per Palaeolithic, Middle Upper Palaeolithic, Late Upper Palaeolithic and

Neolithic. By assigning zero migration rates to each of these periods but

allowing migration for a short epoch between these periods, one can model

the process of migration into Europe. Figure 3.2 shows an example of the

periods of migration and no migration in relation to the epochs of this model.

For simplicity, the plot below shows only three epochs: this is sufficient to

demonstrate the model and is the model used to test code correctness and

to explore some simple, but important, aspects of the model. Of course, the

true underlying process would be more complicated than this.

Now, define the epoch boundaries by Tj, j ∈ (0, 1, . . . , E), T0 = 0 and let

εr = (Tr−1, Tr), r ∈ (1, 2, . . . , E). Generating the migration event times

t + tmji
involves (3.7).

Recall that (3.7) assumes that Nj(t) = N(t)/d, ∀j, t, which eliminates the

Nj(t) component of (3.6). The value of the next migration event time t+tmji

can fall within any of the epochs (provided it is a time greater than t). Noting

that the integral in (3.7) is an integral of a piecewise constant function, we
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Figure 3.2: Plot demonstrating two epochs with zero migration, separated

by a single epoch where migration between demes is allowed.

can calculate a value for t+tmji
assuming we pass through 1, 2, . . . epochs. In

what follows it is shown that under the model of piecewise linear migration

only a single t + tmji
, calculated when assuming the migration event falls in

epoch εr, will be a valid migration event. All other t + tmji
will be shown to

be invalid as they do not belong to the epoch that the migration event was

assumed to occur in.



CHAPTER 3. FOUNDER ANALYSIS SIMULATION STUDY 56

3.5.2 Deriving t + tmji
when assuming the migration

event occurs in the current epoch

Let tα−1 be the current time (time of last event that changed the configura-

tion of the system). The reader is reminded that the event tα−1 may have

been associated with either a coalescent or migration event, whereas in what

follows we are implicitly assuming tα is the time associated with the next

migration event. Suppose we are considering a backwards migration event

from deme i to j, and, at time tα−1, k lineages are present in deme i. Let

tα = tα−1 + tmji
.

Assuming that tα occurs during the same epoch as tα−1, epoch p say, then

the integral in (3.7) involves integration of a single continuous function, so tα

can be calculated by directly integrating (3.7) and solving for tα as follows:

X = kiN(0)

∫ tα

tα−1

mji(u)∑
k mki(u)

du (3.8)

= kiN(0)
mji(p)∑
k mki(p)

[tα − tα−1]. (3.9)

Note, (3.9) follows from (3.8) because within a given epoch, epoch p say, the

ratio
mji(u)P
k mki(u)

is a constant. Thus, the integral (3.8) is simply the area of a

rectangle of dimension
mji(p)P
k mki(p)

by [tα − tα−1]. Solving (3.9) for tα,

tα =
X

kiN(0)

∑
k mki(p)

mji(p)
+ tα−1. (3.10)

3.5.3 Deriving t + tmji
when assuming the migration

event occurs in the subsequent epoch

Using the notation of the previous section, we further define lα−1 to be the

index of the epoch boundary prior to (to the left of) tα−1. For example, index

the epoch boundaries by 0, 1, . . . and suppose tα−1 ∈ ε1, i.e. the first epoch.
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Then lα−1 = 0. Further, define lα to be the index of the epoch boundary prior

to tα. Note that, since we are always assuming we know the epoch within

which the migration event occurs in these calculations, lα is always known.

Then, the integral in (3.7) when assuming the migration event occurs in the

subsequent epoch is the sum of the area of two rectangles, one of dimension

mji(lα−1+1)P
k mki(lα−1+1)

by [Tlα − tα−1] and the second of dimension
mji(lα+1)P
k mki(lα+1)

by

[tα − Tlα ], where we have made use of the fact that, given tα−1 ∈ εp, then

lα−1 = (p − 1), and hence mji(p) = mji(lα−1 + 1). Although the l notation

seems unnecessary, it will be seen to be most useful in the next section when

we consider generalising to passing through an arbitrary number of epochs.

However, for the case under consideration, (3.7) is evaluated as follows:

X = kiN(0)

∫ Tlα

tα−1

mji(lα−1 + 1)∑
k mki(lα−1 + 1)

du + kiN(0)

∫ tα

Tlα

mji(lα + 1)∑
k mki(lα + 1)

du

= kiN(0)
mji(lα−1 + 1)∑
k mki(lα−1 + 1)

[Tlα − tα−1] + kiN(0)
mji(lα + 1)∑
k mki(lα + 1)

[tα − Tlα ].

(3.11)

Solving (3.11) for tα,

tα =

{
X

kiN(0)
− mji(lα−1 + 1)∑

k mki(lα−1 + 1)
[Tlα − tα−1]

} ∑
k mki(lα + 1)

mji(lα + 1)
+ Tlα .

(3.12)
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3.5.4 Deriving t + tmji
when assuming the migration

event occurs after ≥ 2 epochs

Suppose now the general case where at least a single full epoch is passed

through before the migration time tα. In this case the integral in (3.7) is the

sum of the area of two rectangles of dimensions
mji(lα−1+1)P
k mki(lα−1+1)

by [Tlα−1+1 −
tα−1] and

mji(lα+1)P
k mki(lα+1)

by [tα − Tlα ], together with the sum of the area of the

rectangles corresponding to the epochs which are fully passed through when

going from tα−1 to tα. (3.7) is evaluated as follows:

X = kiN(0)

∫ Tlα−1+1

tα−1

mji(lα−1 + 1)∑
k mki(lα−1 + 1)

du

+ kiN(0)

∫ tα

Tlα

mji(lα + 1)∑
k mki(lα + 1)

du

+
lα−1∑

s=lα−1+1

kiN(0)

∫ Ts+1

Ts

mji(s + 1)∑
k mki(s + 1)

du

= kiN(0)
mji(lα−1 + 1)∑
k mki(lα−1 + 1)

[Tlα−1+1 − tα−1]

+ kiN(0)
mji(lα + 1)∑
k mki(lα + 1)

[tα − Tlα ]

+ kiN(0)
lα−1∑

s=lα−1+1

mji(s + 1)∑
k mki(s + 1)

[Ts+1 − Ts].

(3.13)

Solving (3.13) for tα,

tα = Tlα +

∑
k mki(lα + 1)

mji(lα + 1)

{
X

kiN(0)
− mji(lα−1 + 1)∑

k mki(lα−1 + 1)
[Tlα−1+1 − tα−1]

−
lα−1∑

s=lα−1+1

mji(s + 1)∑
k mki(s + 1)

[Ts+1 − Ts]

}
.

(3.14)
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3.6 Simulation of the migration process and

the consequences

The previous section details the assumed migration process, and various for-

mulae derived for tα, the time of the next (migration) event. In this section

the process is simulated and it is shown that only one migration event occur-

ring during a single epoch can be a valid migration event for a given random

draw from an exponential distribution with rate 1.

Consider a model with four epochs, assuming the migration rates within

each epoch are m21 = (0.00001, 0.00005, 0.00001, 0.00005). For the purposes

of this simulation we will denote by T.vec, the vector of break points (in con-

tinuous time) which separate the epochs, T.vec = (T0, T1, T2, T3, T4), T0 =

0, T4 →∞.

Let T.vec = (0, 0.1, 0.2, 0.3,∞). Assume a two-deme model with migration

in only a single direction, from deme 2 → 1 backwards in time. Assume also

a constant population size of 5000 in each deme (so scaling in units of 10, 000

generations), and assume further that k = 10 lineages exist in each deme at

time 0. Note that all of the previous assumptions have been made as simple

as possible, although this is not required. The purpose of this section is to

demonstrate that the mathematics of the migration process yields simulation

results that are reasonable. We now imagine drawing a realisation of an ex-

ponential random variable with rate 1, and, with this, calculate the time to

the next migration time.

Using R [42], 10, 000 simulations of tα were undertaken, each calculated from

a draw from an exponential distribution with rate 1. The values of tα were
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calculated, assuming the events occur during each specific epoch. Table 3.1

shows the first 10 rows of output from this simulation. It can be seen that only

a single tα falls within the assumed epoch under which it was calculated. In

all 10, 000 simulations, only a single migration time was valid for each draw.

Table 3.1: tα assuming event occurs in each epoch.

Epoch 1 Epoch 2 Epoch 3 Epoch 4

1 0.76 0.23 0.36 0.31

2 1.87 0.45 1.47 0.53

3 1.73 0.43 1.33 0.51

4 0.17 0.11 −0.23 0.19

5 1.99 0.48 1.59 0.56

6 0.21 0.12 −0.19 0.20

7 0.05 0.09 −0.35 0.17

8 0.84 0.25 0.44 0.33

9 1.40 0.36 1.00 0.44

10 0.01 0.08 −0.39 0.16
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3.6.1 Proof that only a single time corresponding to a

single epoch is a valid migration time

This section requires some mathematical analysis and basic measure theory.

Minimal reference to the concept of measure has been made in this thesis,

and this approach will be continued in later sections. For the required proof

here, however, one cannot avoid measure and the concept of almost surely.

Recall the Intermediate Value Theorem, e.g. see [43]:

Consider a function f(x) continuous at every point of an interval. Let a and

b be any two points of the interval and let η be any number between f(a)

and f(b). Then there exists a value ξ between a and b for which f(ξ) = η.

Let Λ denote the integrated intensity function, which is continuous. Recall

that, in the standard coalescent, an infinite sample of sequences finds a com-

mon ancestor in finite time e.g. see [6]. Consequently, a coalescent process

with (non-zero) migration between two populations will also find a common

ancestor in finite time. Suppose for the moment the integrated intensity func-

tion is also strictly increasing, which will be the case provided the migration

rate is always non-zero. Let Λ(tα) be the value of the function such that

the integral from tα−1 to tα equals X, the value of the draw from the Ex(1)

distribution, i.e
∫ tα

tα−1
λ(u)du = Λ(tα) − Λ(tα−1) = X. By the Intermediate

Value Theorem, a tα exists that gives the required Λ(tα). Uniqueness of tα

follows from the assumed strictly increasing assumption of the Λ(.) function.

In the more general case when Λ(.) is not assumed to be strictly increasing,

but only monotonically increasing, we require the concept of a result being
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true almost surely. Recall the elementary probability object, a probability

space (Ω,F , P ), where Ω is the sample space, F is a σ-field of subsets of

Ω, and P is a probability measure, a mapping from F to the real numbers

such that 0 ≤ P (A) ≤ 1 for all A ∈ F , with P (∅) = 0, P (Ω) = 1, and

P countably additive. It can be shown (e.g. see [44]) that for a continuous

random variable, Y , P (Y = y) = 0.

Consider now the possibility that the migration rate could be zero within

some epoch. By the Intermediate Value Theorem, a value of tα which satisfies

(3.5) still exists. However, a zero migration rate within an interval now means

that the tα which satisfies (3.5) is no longer guaranteed to be unique. In

fact, as soon as a migration epoch is entered with a zero migration rate, the

function Λ(.) is constant within that epoch. Suppose this epoch corresponds

to times (Tp, Tp+1), with the value of Λ(.) within this interval being q. Then

every t ∈ (Tp, Tp+1) satisfies (3.5), when Λ(tα) takes on the single specific

value q. However, P (Λ(tα) = q) = 0. Thus, the event that Λ(tα) = q

has zero measure. Thus, a value of tα which satisfies (3.5) exists by the

intermediate value theorem and is unique almost surely.
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3.7 Coalescent event rates

This section briefly describes the process of simulating coalescent event times

under a model with constant population size in each deme and that consists

of possibly different initial (present day) population sizes. This section also

helps relate the models (notation) described in chapter 4 of [6] and pages

231-255 of [45]. Structured coalescent processes such as those described in

([6],[45]) are often scaled in the size of the total global population, here

denoted by N (in many diploid applications it is common and convenient to

introduce a factor of 2 and use quantities such as 2N , but not here). The

consequence of this is that the coalescent rate within a deme (subpopulation)

of size Ni is larger than the coalescent rate that would apply to a single

population of size Ni. Letting N denote the size of the total global population

in a d-deme model and supposing the size of the population at time t = 0

in each deme is N
d
, and that deme i has size N(t) = N

d
,∀t, then the rate of

coalescence in deme i becomes:

(
ki

2

)
N

Ni(t)
=

(
ki

2

)
dN

d
N
d

= d

(
ki

2

)
. (3.15)

The factor of d arises due to the time scaling in the size of the global pop-

ulation size. This is similar to the notation used in [6]. [45] generalises this

slightly by allowing the population sizes to vary between demes according to

some ci values. These can be viewed as the fractions of the total population

that is present in deme i, and can be related to the model of [6] by noting that,

in [45], N is still the global population size, with N =
∑

i ciN, with
∑

i ci = 1.

Now, assuming Ni(t) = ciN, ∀t, then within a single deme the rate is just:

(
ki

2

)
N

Ni(t)
=

(
ki

2

)
N

ciN
=

1

ci

(
ki

2

)
. (3.16)
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To relate this back to the model in [6], note that, for a d-deme model, when

each deme is of equal size ci = 1
d
∀i, the coalescent rate (3.16) becomes d

(
ki

2

)
,

as in (3.15).

3.7.1 Coalescent event times under exponential expan-

sion

(3.15) describes the rate of coalescence in deme i for the model under consid-

eration (specifically with the assumption that each deme has the same initial

population size). Suppose further that the populations are decreasing in size

going back in time at the rate β (measured on the coalescent time-scale),

corresponding to exponential growth forward in time. Then (3.15) becomes

(
ki

2

)
N

Ni(0)e−βt
=

(
ki

2

)
dN

d
N
d
e−βt

= d

(
ki

2

)
eβt. (3.17)

Thus, the time to the next coalescent event tα in deme i is obtained from

solving a slightly modified version of (3.4) with the appropriate rate function

from (3.17) above:

X =

∫ tα

tα−1

d

(
ki

2

)
eβu du (3.18)

= d

(
ki

2

)
1

β

[
eβtα − eβtα−1

]
. (3.19)

Solving for tα yields

tα =
1

β
log

{
Xβ

1

d

(
ki

2

)−1

+ eβtα−1

}
. (3.20)
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3.8 Simulation

Equations (3.10), (3.12), (3.14) and (3.15) are all that are required to simu-

late the structured coalescent process without exponential population growth

(forward in time), together with a migration process which is constant within

each given epoch. The purpose of the first simulations is to investigate how

close the founder sequence types are to the migration epoch boundary; this

is something which can only be determined by simulation techniques and

is something that has not been discussed in the literature, with no effort

directed so far to estimate any discrepancy between these two dates.

3.8.1 First simulation output (no exponential growth)

The first simulation was designed to make use of the structured coalescent

process without exponential growth and was undertaken to investigate how

close the founders occurred in relation to the start of the designated migration

boundary. This is important as, given sequence data, the inferred founder

sequence types can only be taken to be any of sequences present or common

ancestors of a subset of the sequences. However, the founder that actually

took part in the migration need not match the sequence of the node we

infer from any given tree as being the founder sequence type. The migration

event could have occurred much further back in time and we can only infer

a derived sequence as being the founder (recall figure 2.2).

3.8.2 Parameter values

The starting number of ancestors in each deme was varied from 250 to 1000

in increments of 250. We prohibit migration for 7500 years and then a hypo-

thetical migration period is envisaged 7500 years ago from the present, which
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lasts 1000 years. During this period one-way migration is permitted. After

this period no migration occurred, until a period of fast migration at 13500

years, corresponding to the settlement of the descendent population. The

total population size was set at 5000, with a generation assumed to last 25

years. 25 trees were simulated for the cases where the number in each deme

was 250 or 500, and 10 trees were simulated for the cases where the sample

size in each deme was 750 or 1000. The forward migration rate, denoted by

m, was varied from 0.0001 to 0.01 per generation.

The time 7500 years ago corresponds to 300 generations, after which a migra-

tion period occurs which lasts for 40 generations. The main point of interest

here is the difference between the time of the migration period, and the time

of the founder sequence types. The complete output from these simulations

is not shown (but was retained), as the conclusions were similar across all

runs. The most illustrative sets of summaries are presented below (those sim-

ulations with the largest migration rates and, subsequently, largest numbers

of founder sequence types), in figures 3.3 and 3.4.

From the plots, it is clear that the difference between the time of the mi-

gration boundary and the time of the founder sequence types can be very

different. This is problematic and suggests that the method of founder anal-

ysis may be estimating founders as being too young i.e. occurring too close

to the present. However, the method of founder analysis assumes a star tree

topology for founder clusters, which is more probable under situations of

population expansion. The previous model does not include expansion and

this could be the reason that the discrepancies between the migration time

and founder sequence type times are so large. Furthermore, for the simu-

lation to be relevant to the results that one may obtain from analysis of a
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Figure 3.3: Summaries of the number of generations before (in reversed time)

the migration boundary that the founder sequence types actually were located

across all simulations. Note that negative values indicate that the founder

sequence type was located within the designated migration period. The mi-

gration period starts 300 generations before present. Summaries for sample

sizes 250 (left) and 500 (right) are presented in this figure, both for m = 0.01.

real dataset, it is necessary that the tree depths from the simulations are in

some way ‘similar’ to the tree depths that would be expected for real human

mtDNA. This forms the focus of the next section.
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Figure 3.4: Summaries of the number of generations before (in reversed time)

the migration boundary that the founder sequence types actually were located

across all simulations. Note that negative values indicate that the founder

sequence type was located within the designated migration period The mi-

gration period starts 300 generations before present. Summaries for both

sample sizes 750 (left) and 1000 (right) are presented in this figure, both for

m = 0.01.

3.9 Considering tree depth

Before embarking on some more detailed investigation of the most basic

properties of founder analysis, it seemed sensible to look at the range of tree

lengths that were obtained for various values of N and β. It is well known

that, as the population expansion rate increases, the expected total tree

depth decreases for a population of fixed initial size N , although no analytical

formula is available for its expected value. This could be problematic as a tree

with star-like founder clusters is assumed in founder analysis, and to obtain

such a tree, if this is at all possible, the population expansion rate may need to

be high. This potentially could result in trees being obtained of unreasonable
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total depth. To compensate for the increasing values of population expansion,

N can be increased. The following section looks to vary N , and, for each N

value, vary the population expansion rate so that trees of sensible depth are

obtained. For the moment, a sensible range is defined to be trees of depth

ranging from 60, 000 − 90, 000 years [46]. Although this is a fairly vague

choice, it will allow some investigation of the relationship between N and β.

Table 3.2 shows the summary of the investigation. Although the migration

model parameters are not of particular relevance within this setting, a model

with epoch boundaries at (0, 19500, 20500, 40000,∞) years back in time from

the present day was selected with a forward migration rate of m = 0.001

between 19, 500 and 20, 500 years (a period of 40 generations starting from

780 generations from present), and a ‘fast’ forward migration rate of m = 0.05

in the final epoch to bring the lineages into a single deme. Epochs 1 and 3

were assigned zero migration rates. As before a two-deme model was used

with one-way migration from population 1 to 2 forward in time, with 250

lineages in each deme at the start. Some plots of trees at various parameter

combinations are also shown (figures 3.5 and 3.6). Note however that the y

axis scale is not constant across plots. Four trees which have lengths close to

60, 000 − 90, 000 years were randomly selected for presentation and a set of

illustrative figures has been produced, figures 3.5 and 3.6, which demonstrate

the visible change in the trees obtained when the expansion rate is increased

but the tree depth is held approximately constant. The complete set of

figures is not presented here (although were retained).
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Table 3.2: Investigating tree depth for various N and β combinations. Note

that, for each of the combinations selected, 10 trees were initially generated,

and if any of the tree lengths fell within the correct range then a further 10

were generated, and the β value classed as ‘accepted’ if at least 3 of the 20

trees were accepted; otherwise the parameter combination was rejected.

N β Rejected β Accepted Notes

1000 0.000001,0.1 NA N = 1000 too small

2000 5 0.000001,0.1 β = 5 too large

5000 10 0.1,5 3 trees accepted for β = 5

10000 0.1,20 5,10

100000 50,100,300 150,200,250

1000000 ≤ 1750 2000,3000

100000000 ≤ 20000 All trees too deep

With parameter combinations which give rise to trees of appropriate depth

now known, it is now possible to investigate the discrepancy between the

date of the founder sequence type and the migration epoch date.
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Figure 3.5: Some examples of the trees obtained for two parameter sets (left:

N = 2, 000, β = 0.1, right: N = 10, 000, β = 10). Note the increasing length

of the external branches as the expansion rate increases.

0
0.

01
0.

02
0.

03

0
0.

01
0.

02
0.

03

0
0.

01
0.

02
0.

03

0
0.

01
0.

02
0.

03

0
5e

−
04

0.
00

15
0.

00
25

0
5e

−
04

0.
00

15
0.

00
25

0
5e

−
04

0.
00

15
0.

00
25

0
5e

−
04

0.
00

15
0.

00
25

Figure 3.6: Some examples of the trees obtained for two parameter sets (left:

N = 100, 000, β = 150, right: N = 1, 000, 000, β = 3000). Note how these

trees start to display more obvious star-like structure.
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3.10 Second simulation

The founder simulation was run again using parameter values that gave trees

which both looked star-like and had a sensible time to the most recent com-

mon ancestor. 250 lineages initially were present in each deme with β ∈
{150, 200, 250} for N = 100, 000 and β ∈ {2000, 2500} for N = 1, 000, 000.

The migration rate, m, in the migration epoch (Epoch two) was set to either

0.1 or 0.001 so the difference in the number of founders could be inspected,

and the migration period started at 19, 500 years from present, and concluded

at 20, 500 years from present. The output for four parameter combinations

are presented below (Figures 3.7 and 3.8). The results from the other simu-

lations are omitted (but retained) since they offer no additional insight.
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Figure 3.7: Summary plots of the discrepancy between the founder sequence

type dates and the migration period.
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Figure 3.8: Summary plots of the discrepancy between the founder sequence

type dates and the migration period for particularly large β cases.

Figures 3.7 and 3.8 display the same troubling features seen previously,

namely that the founder sequence types are often located on the tree many

generations away from the migration period. Some of these founder sequence

types actually even occur at the tips of the tree, indicating that only allowing

founders to occur on nodes of a tree may introduce significant bias in the age

estimates of founders, while suggesting that the sequence actually involved in

the migration/founding event may be markedly different from the sequence

of the founder sequence type.

Of course, one can argue that this simulation is still far from appropriate.

Firstly, the migration rates have simply been selected for the migration epoch

(which itself has its duration simply defined), and this may be far from the

true rate, or the migration periods may be too short (or long); all that this af-

fects however is the number of migration events/founders; it does not change

the fact that the founder sequence types are located far from the migration

epoch. Secondly, one could argue that any simulation should also try to in-
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corporate the assumed idea that founding events are followed by expansion.

However, tying migration with demography at the level of founders is very

troublesome from a technical point of view. Coalescent theory applies to the

entire history of a sample, so working in ideas to allow subsets of the sample

to be subject to different demographic processes is not possible. Perhaps a

more important reason that demography should not be tied tightly to mi-

gration events at the founder level is the simple fact that the assumption of

migration followed by instantaneous expansion is an extremely strong (and

unrealistic) one, so trying to develop a simulation procedure for such a very

artificial scenario does not seem ideal.

It is necessary however to point out that the above problem of the large

numbers of generations between founder sequence types and the migration

periods would arise under certain simulation conditions in a perfectly natural

manner depending on the combinations of parameter values selected and the

locations of the migration periods. A good example is to consider what

would happen in the above simulations if the migration period were brought

closer to the present. In this case the lower parts of the tree would remain

unchanged, so one would still see the long external edges. However the

migration period being closer to the present would result in more founder

sequence types occurring on external edges of the tree. Similarly, a very old

migration period would reduce the number of founder sequence types on the

external edges as fewer edges on the tree exist at the time of the migration

period which terminate at the bottom of the tree. It is simply noted here that

this fact does not mean that this problem can be ignored, and it is shown in

future chapters that the problem of founder sequence types existing on the

external edges of a tree is very real and presents itself in real datasets.
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3.11 Third simulation

Developing the model further, it is possible to give the different populations

different initial starting sizes and different expansion rates. Define Ni(0) =

ciN(0), with
∑

i ci = 1 so that ci is the fraction of the total initial population

in deme i. Assuming populations experience expansion at different rates,

then

Ni(t) = ciN(0)e−βit, (3.21)

where βi = biN(0) and

N(t) =
d∑

i=1

ciN(0)e−βit. (3.22)

In the special case when d = 2,

N(t) = [c1e
−β1t + c2e

−β2t]N(0). (3.23)

Now, generalising (3.1), we have

bij(t) =
Nj(t)mji(t)∑
k Nk(t)mki(t)

. (3.24)

Inserting (3.21) into (3.24) gives

bij(t) =
cje

−βjtmji(t)∑
k cke−βktmki(t)

, (3.25)

and, for the d = 2 case,

bij(t) =
cje

−βjtmji(t)

c1e−β1tm1i(t) + c2e−β2tm2i(t)
. (3.26)
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Consider a backwards migration from deme r to deme s(s 6= r), for which

(3.26) becomes

brs(t) =
cse

−βstmsr(t)

cre−βrtmrr(t) + cse−βstmsr(t)

=
1

1 + mrr(t)
msr(t)

cr

cs
e−(βr−βs)t

. (3.27)

(3.27) features in (3.5) and needs to be integrated appropriately. To make

the integration process symbolically easier, some notation is introduced which

nicely emphasises the fact that parts of this formula are constant within an

epoch. Let

γε =
mrr(t)

msr(t)
, (3.28)

β = βr − βs, (3.29)

δ =
cr

cs

. (3.30)

It is worth noting that β and δ are constants, and that γε is constant within

each epoch (the ε subscript is in place to acknowledge the fact that γ may

be different in each epoch). Now, (3.5) becomes

X = krN(0)

∫ tα

tα−1

1

1 + mrr(u)
msr(u)

cr

cs
e−(βr−βs)u

du (3.31)

= krN(0)

∫ tα

tα−1

1

1 + γεδe−βu
du. (3.32)

The solution to the integral in (3.32) when assuming one stays within a single

epoch (so that γε does not change) is readily seen to be (Appendix B)

[
1

β
log

(
γεwδ + eβu

)]tα

tα−1

. (3.33)
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3.11.1 Deriving tα when tα−1, tα belong to same epoch

Assume tα−1, tα ∈ εw, i.e. the previous and next events both lie in the same

epoch, w. Then

X = krN(0)

[
1

β
log

(
γεδ + eβu

)]tα

tα−1

.

(3.34)

Solving for tα gives

tα =
1

β
log

{[
γεδ + eβtα−1

]
exp

[
Xβ

krN(0)

]
− γεδ

}
. (3.35)

3.11.2 Deriving tα when tα−1 ∈ εz, tα ∈ εz+h, h ≥ 1

Suppose tα−1 ∈ εz, tα ∈ εz+h, h ≥ 1. Then

X = krN(0)

{ ∫ Tlα−1+1

tα−1

du

1 + γεlα−1+1
δe−βu

+

∫ tα

Tlα

du

1 + γεlα+1
δe−βu

+
lα−1∑

s=lα−1+1

∫ Ts+1

Ts

du

1 + γεs+1δe
−βu

}
.

Integrating and solving for tα, after some tidying (Appendix B), gives

tα =
1

β
log

{
exp [A− E1]

CD

B
− F

}
(3.36)

where A− F are defined as follows:

A =
Xβ

krN(0)
,

B = γεlα−1+1
δ + eβTlα−1+1 ,

C = γεlα−1+1
δ + eβtα−1 ,
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D = γεlα+1
δ + eβTlα ,

E1 =
lα−1∑

s=lα−1+1

[
log

(
γεs+1δ + eβTs+1

)− log
(
γεs+1δ + eβTs

)]
,

F = γεlα+1
δ.

An equivalent way of computing (3.36) can also be established by further

rearrangements and simplifications shown in Appendix B.

3.11.3 Simulating the model

The model described in the previous section was used to investigate the

likely effect of increasing β on the founder sequence type times. Although

it has already been noted that care needs to be taken to ensure that the

resulting trees are of sensible length, the first simulation undertaken simply

set N to 20, 000, and m during the migration period to 0.01 (a preliminary

run indicated that this would result in a reasonable number of migrations

occurring). 250 lineages were present in each deme at the start and 20 trees

were simulated for varying values of β. The β parameter in deme 2 in this

simulation took on the values 5, 10, 20, 50, 100, 200. It was found in previous

simulations, for N = 10, 000 and β = 5− 20, that trees of reasonable depth

(between 60, 000 and 90, 000 years) were produced. Although these previous

simulations were done using a model where both demes were experiencing

population expansion at equal rates, the β range covered here is likely to

span at least some of the range of values which result in trees being obtained

which are of sensible depth. Regardless, the main purpose of this simulation

was to investigate the founder sequence type times and how they varied as

β increased in a single deme. Figure 3.9 shows the difference in the dates of

the founder sequence type and the migration boundary across all trees.

From figure 3.9 it can be seen that an increase in β does indeed seem to reduce
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Figure 3.9: Boxplots of the number of generations between the founder se-

quence type and start of the migration period.

the difference between the founder sequence type date and the start of the

migration period, with the exception of β = 200. However, β = 200 produced

the fewest founders. This is due to the fact that the large β value necessarily

forces the tree to reach a most recent common ancestor very quickly. In fact,

by the time the migration boundary is reached (780 generations ago), the

population size in deme 2 is approximately c2Ne−200∗(0.039) ≈ 4. Under such

conditions the coalescent process is a poor approximation to the underlying

process as the population size is no longer large. In contrast, for the β = 100

case, the same calculation yields a population size of just over 200. For large

β values the descendent population is very likely to have coalesced before the

migration boundary.

It has also been mentioned previously that how far founder sequence types

are from the migration boundary also depends on where the migration period

is in relation to the parts of the tree that display large numbers of bifurca-
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tions. If one were artful it would be possible to find parameter sets (N, β1, β2)

that have many coalescent events ‘close’ to the migration period. In such in-

stances the difference between the founder sequence type dates and the true

migration period dates would be small. This would be an artificial way of

making the method of founder analysis look to be doing something sensible

by assuming that the date of the founder sequence closely matches that of

the founder sequence type!

The above observation regarding the decrease in population size going back

in time necessitates a more careful approach to investigating the method of

founder analysis. Ideally, it would be best to ensure that the population size

up until a given (chosen) point in the past is not too small. A little thought

is all that is required to realise that such an approach, under the model of

much larger population expansion in deme 2 than deme 1 (deme 1 possibly

not expanding), would require the population size of deme 2 potentially to be

much larger than the population size of deme 1 at the present. Fortunately,

the model already developed is flexible enough to allow such an idea to be

incorporated.
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3.12 Simulation 4: Regulating the initial pop-

ulation size and ci fractions

3.12.1 The model

In all previous models the initial population sizes in each deme have been

equal. In this section a method is described which, in the case of unequal

exponential expansion in each deme, will result in the initial population sizes

of each deme being different.

As before, we denote the total initial population size as N . This is now an

unknown quantity, but we always have

N = N1(0) + N2(0)

= N1 + N2(0), if N1(t) = N1(0) ≡ N1∀t. (3.37)

Define Ne to be the effective population size of deme 2 (the deme that is

receiving the migrants going forward in time). It is worth noting here that

the effective population size for a subdivided population is not the same as

the effective population size of a single population that we are using here. [47]

gives a detailed explanation of some of the different effective population sizes

that arise in different settings, and it is proved that (page 95) ‘the effective

is always larger than the actual population size and can be much greater

when 4Nm is small’, this proof being based on work of Nei and Takahata

[48]. However, it is important to realise we are defining Ne to be the effective

population size in a single deme and looking at this in isolation (and not

the effective population size in the full subdivided population model), but

accept that this is an approximation, as the arrival of immigrants from deme

1 does make it more likely that it will experience more variability than a
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single isolated population of the same size. Then, measuring time in units of

generations,

1

Ne

=
1

T

T∑
t=0

1

N2(t)
(3.38)

≈ 1

T

∫ T

0

1

N2(t)
dt

=
1

T

∫ T

0

1

N2(0)e−bt
dt

=
1

T

1

c2N

[
1

b
ebt

]T

0

, (3.39)

Since N2(0) = c2N , where c2 is the fraction of the initial total population

size in deme 2 (c1 is analogously defined). So,

1

Ne

≈ 1

T

1

c2N

[
1

b
ebt

]T

0

=
1

T

1

c2N

1

b

(
ebT − 1

)
. (3.40)

It is worth noting that, as b → 0,
(
ebT − 1

)

b
→ (1 + bT )− 1

b
= T

and thus, Ne → c2N , as one would hope.

We now fix the initial size of deme 1, i.e. Nc1 = Ω. Then, from (3.40), we

have (see Appendix B for detailed derivation),

N ≈ Ω + Ne
1

T

1

b

(
ebT − 1

)
. (3.41)

Now, from (3.41), we have a way to estimate N , the initial combined popula-

tion size, given a value for b, the population expansion rate per generation in

deme 2, and an arbitrary time point in the past, T , in generations. From the

obtained N , one can then calculate the relevant β = bN , and the initial pop-

ulation sizes in each deme using N2(0) = N−Ω and N−N2(0) = N1(0) = N1.
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Once N1(0) and N2(0) are known, the fraction of the initial starting popu-

lation that is present in each deme can be calculated using c1 = N1/N and

c2 = N2(0)/N .

So, by setting values for Ω and b and Ne, all of the variables necessary for

the process to be simulated can be derived, and the procedure described

above ensures the effective population size of the second deme is Ne, while at

the same time taking into account that the population has been expanding

at rate b per generation from T generations ago. This ensures that the

population size at generation T is still ‘large’, and that the assumption for

the coalescent process to be valid, that the population size is much larger

than the sample size, is upheld, at least up to a point T generations into the

past. (Although one might expect that violation of this assumption would

invalidate the coalescent approximation, it has been shown [49] that, in some

situations, inference that cannot usually be done under the normal coalescent

framework with the population size assumptions can in fact be done when

the sample size equals the population size.)

However, the main benefit of the above approach is that one is now confident

that, up until a time T generations in the past, the population size in deme 2

will remain large and the situation experienced in the previous model, where

the population size at the start of the migration period was as low as four

individuals, should not be encountered.

Investigating founder times under the new model

The value of Ω = Nc1 was set to 10, 000, Ne to 10, 000, and T , the time point

in generations in the past which would be used to calibrate the parameters

was set to 820 (or 20, 500 years, the date used in the past that represented
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the end of the migration period). The choice of T , for the moment, is fairly

arbitrary. The expansion rate b for deme 2 was set to values between 10−2

and 10−8. These values and the values of the derived parameters are shown

in table 3.3. Note that the b value was varied initially to try to obtain β

values that would allow the founder times to be investigated across a sensible

range of β values, and that, for the low b case, we obtain N ≈ 20, 000 and

c1 ≈ c2 ≈ 0.5, which is what we would expect to see in the case where both

demes were experiencing almost identical demographic histories.

Table 3.3: Parameter settings for simulations.

Nc1 Ne T b β c1 c2 N

1 10000 10000 820 0.010000 44489 0.002248 0.9978 4448963

2 10000 10000 820 0.005324 1000 0.0532 0.9468 187985

3 10000 10000 820 0.003300 203.36 0.1623 0.8377 61623

4 10000 10000 820 0.003000 160.55 0.1869 0.8131 53515

5 10000 10000 820 0.001000 25.494 0.3923 0.6078 25494

6 10000 10000 820 0.000500 11.181 0.4472 0.5528 22361

7 10000 10000 820 0.000100 2.042 0.4897 0.5103 20421

8 10000 10000 820 10−8 0.00002 0.5 0.5 20000

For each parameter set 50 trees were simulated, starting with 250 samples

in each deme. The forward migration rate m was set to 0.01 and the differ-

ence between the founder sequence type times and the migration boundary

recorded as before. Figure 3.10 shows boxplots of the difference between

the founder sequence type time and the migration boundary together with

histograms of the actual distributions of the difference between the founder
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sequence type times and the start of the migration period.
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Figure 3.10: Summary plots of the discrepancy between the founder sequence

type dates and the start of the migration period when Ne is 10, 000.

It is important to notice that, even when the population expansion rate in

deme 2 is extremely high, founder nodes still exist which are the maximum

time away from the migration boundary that they could be (e.g. ≈ 800

generations). These founders account for the spike at the right-hand side

of each of the distributions. It is notable however that the distribution of

founder times appears to move from being approximately uniform (ignoring

the spike discussed already) when the expansion rate is very low, to becoming

right skewed when the population expansion rate in deme 2 increases. This

move could suggest that the method of founder analysis will indeed perform

better as the phylogeny becomes more ‘star like’, and, regardless of whether

this is the case or not, it is clear that in all instances the number of founder
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sequence types that occur far from the migration periods is particularly large

and worth attempting to address.

3.12.2 Changing Ne

The effect of changing Ne was briefly investigated for a more limited range

of parameter values. Ne was set to be 1000, while Nc1 was held at 10, 000

as before. Some limited evidence [37, Table 1, page 188] suggests that mi-

gration from the Near East to Europe perhaps involved a larger population

in the Near East than in Europe, as migration into Europe was possibly

then followed by expansion of the founders as they colonised Europe through

breeding. This is some justification for looking at a reduced Ne with all other

things being equal. Table 3.4 shows the parameter values used for this simu-

lation. The interest here in this final simulation model is to bring the model

to a level that it could be considered to resemble one possible view about

the migration of modern humans into Europe, and to demonstrate that the

method of founder analysis is likely to be biased with its inherent assumption

that the dating of founder sequence types is representative of the date of the

founder events.

Table 3.4: Parameter settings for simulations.

Nc1 Ne T b β c1 c2 N

1 10000 1000 820 0.0001 1.1042 0.9056 0.0944 11042

2 10000 1000 820 0.003 43.0547 0.6968 0.3032 14351

3 10000 1000 820 0.01 4538.964 0.0220 0.9780 453896

Figure 3.11 shows the results and should be compared to figure 3.10. The
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first thing to notice about the Ne = 1000 case is the decrease in the number

of founders. This is expected simply because we have reduced the effective

population size 10-fold. As the population size decreases, the time until two

lineages share a common ancestor decreases. Thus, the number of lineages

available for migration when Ne is reduced is stochastically smaller than

when Ne is larger.
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Figure 3.11: Summary plots of the discrepancy between the founder sequence

type dates and the start of the migration period when Ne is reduced to 1, 000.

It also appears to be the case that the spike at ≈ 800 generations is less

evident for the Ne = 1000 case, for (non-zero) expansion rates. This can be

attributed to the faster coalescence rate within deme 2 due to the smaller

effective population size. As the coalescence rate increases, the number of

lineages available for migration that have not been involved in a coalescent

event already (and thus, would give rise to a difference of approximately

800 generations between the founder sequence type time and the migration

period) is decreased, meaning that the spike is less evident as the expansion

rate increases. It is apparent for these parameter values and model that an
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increase in b from 0.0001 to 0.03 results in the median difference between

the founder sequence type time and migration time decreasing by about 200

generations, although there still is a visible problem that one would wish to

address in any inferential process based on the ideas of founder analysis.

It has already been mentioned that obtaining trees of reasonable depth is

an important consideration, so the depths of the trees for the two expansion

cases described previously are shown in figure 3.12. It can be seen that the

point T , chosen to be the time in generations to calibrate the other parame-

ters, also gives some indication of the likely depths of the tree, although the

huge variability in the coalescent process can be seen from the figures. The

well known fact that, as the exponential growth rate increases, the expected

length of the tree decreases is clearly visible from figure 3.12, as, going back

in time, as b increases, the population is getting smaller faster, this forces

the process to end sooner. The reader may be a little concerned about the

depth of the trees for the β ≈ 4500 case, with the median of the tree depths

across the 50 simulated trees being close to the time of the migration period.

This, in part, explains why the difference between the founder sequence type

dates and the start of the migration period is smaller for this parameter set.

By the time the migration period is entered a large part of the tree has co-

alesced, and very few founder sequence types will occur on tree edges which

extend to the bottom of the tree, so differences in the order of hundreds of

generations as seen in other cases are not likely to occur.

3.12.3 What this process is actually doing

It is worth suggesting at this point what our current model may be doing

in terms of how close the founder sequence types will be to the designated
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Figure 3.12: Boxplot of depth of Trees when Ne = 1000.

migration boundaries. The time T can be viewed as roughly defining some

sort of approximate end-point of the process (accepting that this is a vast

over-simplification, as for the process to end all lineages must be in the same

deme to allow coalescence of the entire sample), as the effective population

size is largely determined by the times during which the population is small.

For a given fixed T and Ne, an increase in b will cause the tree to become more

star-like. This should reduce the difference between the founder sequence

type date and the migration boundary time, on average, assuming that the

coalescent events still take place within the same epoch - in essence, the

expansion rate increasing simply reduces the number of tree edges which

extend down to the present day, which in turn reduces the number of founder

sequence types that occur at the maximal time from the migration period.

This is satisfactory (assuming the method of generating N by choosing values

for Ne and Nc1 is appropriate) for the case of two epochs of no migration

separated by an epoch of migration. What is unclear however is how such
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a model will behave when more than a single migration epoch is permitted.

This concern is what is looked at in the following final simulation.

3.13 Two migration epochs

Assume now that we have five epochs, an epoch of 19, 500 years, during

which there is no migration, followed by 1, 000 years of migration, followed

by a further 19, 000 years of no migration, then another period of 1, 000

years of migration, followed again by 19, 000 years of no migration, then a

final burst of migration corresponding to initial settlement. Thus, the epoch

boundaries are at 0, 19500, 20500, 39500, 40500, 59500, ∞. Set T = 1620

generations (40, 500 years, the end of the second migration period) as being

the point to calibrate N , and suppose Ω = Nc1 = 10, 000. The parameter

settings for this simulation are tabulated in table 3.5.

Table 3.5: Parameter settings for two epoch simulation.

Nc1 Ne T b β c1 c2 N

10000 10000 1620 0.000001 0.02 0.4998 0.5002 20008

10000 10000 1620 0.001 35.02 0.2856 0.7144 35019

10000 10000 1620 0.0015 78.94 0.19 0.81 52629

10000 10000 1620 0.002 171.44 0.1167 0.8833 85721

10000 10000 1620 0.003 820.27 0.037 0.963 273424

10000 10000 1620 0.01 66997130 10−6 ≈ 1 6699713024

This simulation serves two purposes. Most importantly, it demonstrates

that using founder sequence type dates in a model with multiple migration
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periods can lead to very unfortunate situations where the natural conclusions

an investigator might like to believe are incorrect, and the dating based on

founder sequence types leads to the date estimates of founding events being

completely inappropriate, with the migration event being wrongly assumed

to have occurred during a more recent migration period than it actually did.

The assumption that the founder sequence type should in some way be close

to the founding event is seen in this simulation (figures 3.13 and 3.14) to

lead to unfortunate situations where the founding event takes place during

the later migration period (39, 500 - 40, 500 years), but occurs on an edge

that can extend to near the very bottom of the tree. Assuming that one

has a sensible way to date such founder sequence types (which is discussed

in the next chapter, and merely assumed for now), it is clear that even

any unbiased estimator of the date of such founder sequence types does not

necessarily reflect the true date of the founding event, and in many cases

may be tens of thousands of years from the true founding event.

A second purpose of this simulation is to demonstrate that, although the

magnitude of the discrepancy between the founder sequence type date and

the true founding event date is something which is often heavily dependent on

the choice of parameters made by the investigator, together with the location

of the migration boundaries, in any real example one would wish to consider

multiple migration periods. In this more general case, the problem seen in

the previous simulations is one which will always be present, and without

a doubt it is a problem which should be addressed in any inference method

based on the idea of founder events which do not nicely occur on the nodes

of any reconstructed phylogeny. Assuming this in any inference procedure

does seem unreasonable.
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It is interesting that Richards et al. [26] did not worry about this problem,

instead focussing on the consequences of issues such as back-migration and

recurrent mutation. I was fortunate to be able to talk to Prof. Richards at

various points throughout my research and it became clear that this prob-

lem was never considered at all, and even the distinction between founder

sequence type and founder (which I have since defined) was not ever con-

sidered necessary. The consequences of this problem is bias in the founder

age estimates, and this bias can only result in the founder dating being too

young. It is of interest to note that, although bias is an undesirable prop-

erty, there is an irony in the direction of the bias as criticism about the date

estimates obtained from the original founder method assumes the estimates

are too old, as described in Chapter 2. The simulations undertaken and

the problem identified show further evidence that the criticisms about the

method are related to a misunderstanding about what it is actually doing,

and one would hope that work such as these simulations and the extensions

to founder analysis which I will propose in the following chapters will help

clear up any misunderstandings.
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Figure 3.13: Boxplots of the difference between the founder sequence type

dates and the migration boundaries for the five epoch case.
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Figure 3.14: Histograms of the difference between the founder sequence type

dates and the migration boundaries for the five epoch case.



Chapter 4

Founder analysis extension

4.1 The ρ estimator of divergence time

Forster et al. [35] describe an estimator of the ‘arrival time of each founding

control region sequence’ which they define as ρ, the average number of sites

differing between a set of sequences and a specified common ancestor. This

estimator is simply the ‘average distance to the root’, as used in previous

work [50]. In this section some properties of the ρ estimator are derived.

The formulae, notation and derivation of properties below do not follow that

of [35], but incorporate the ideas and notation of [51] and [52], with some

modifications to ensure consistency in what follows. It also should be noted

that some of the properties described below are not formally derived in the

literature, but are routinely assumed. Further, ‘paths’ are defined and the ρ

estimator expressed using the concept of ‘paths up a tree’. Furthermore, the

concept of a ρ mutation is something I wish to introduce. The ρ statistic is

important in founder analysis as it is the estimator that was used to date the

founder sequence types. Although it has been shown through simulation that

this estimate does not always coincide with the event one wishes to estimate

95
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(the actual founding date), the properties of this estimator are of interest in

their own right.

Define u to be the expected number of scored mutations per coalescent time

unit across the length of a sequenced segment (the mutation rate). Further,

assume the number of mutations on a given tree edge of length ti coalescent

time units is a Poisson distributed random variable, Ti, with parameter µi =

tiu. A bifurcating tree with n external nodes has k = 2n− 2 edges of lengths

t1, t2, . . . , tk. Edge i defines a clade which has ni descendants in total. The

coalescent time of the sample, t, can be expressed as

t =
1

n

k∑
i=1

niti. (4.1)

Now, consider the random variable T = 1
n

∑
niTi. Then, given the ti,

E [T ] = E

[
1

n

k∑
i=1

niTi

]

=
1

n

k∑
i=1

niE [Ti]

=
1

n

k∑
i=1

nitiu, (since Ti ∼ Po(tiu)) (4.2)

= u

[
1

n

k∑
i=1

niti

]

= ut, (from (4.1)). (4.3)

Further,

V [T ] = V

[
1

n

k∑
i=1

niTi

]

=
1

n2

k∑
i=1

n2
i V [Ti] (since Ti independent, given ti)



CHAPTER 4. FOUNDER ANALYSIS EXTENSION 97

=
1

n2

k∑
i=1

n2
i tiu. (4.4)

One sees from (4.3) that the random variable T has an expected value equal

to the coalescent time, t, multiplied by the mutation rate, u. In practice,

however, the number of mutations on a given edge of the tree will rarely be

equal to its expected value. Denoting the number of observed mutations on

edge i from an inferred phylogeny by li, and using this as an estimate of tiu,

the statistic ρ can be calculated for any given internal node, node q say, by

the formula

ρ =
1

n

∑
i∈Dq

nili, (4.5)

where n is the number of external nodes (or external edges) below node q,

ni is the number of descendants of node i, and Dq is the set which contains

all labels of edges below q, both internal and external. In summary, the

estimator ρ is simply the random variable defined above as T , when it is

evaluated with tiu = li, ∀i.

Further, an estimator for the variance of ρ [51] follows by replacing tiu with

li in equation (4.4):

σ̂2 =
1

n2

k∑
i=1

n2
i li. (4.6)

An alternative expression for ρ is possible by defining ‘paths up a phylogeny’.

Consider a tree with n external nodes/edges. Denote the path up the tree

from external node j, j = 1, 2, ..., n, to the common ancestor of the nodes

by ‘path’ ℘j. Further, denote the number of mutations on path ℘j by M℘j
.

Then the ρ statistic can be re-expressed with this new notation as
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ρ =
1

n

n∑
j=1

M℘j
. (4.7)

Although this description of ρ in (4.7) may be more intuitive than that

of (4.5) (nicely demonstrating why this estimator can be described as the

average distance to the root/node), it does not allow an estimator of the

variance of ρ to be derived. However, (4.7) has been described, and ‘paths’

defined, as they allow much simpler descriptions in some situations which

will follow.

4.1.1 Further properties of the ρ statistic

One can re-express (4.4) as

V [T ] =
1

n2

k∑
i=1

n2
i tiu =

1

n

{
1

n

k∑
i=1

n2
i tiu

}

≥ 1

n

{
1

n

k∑
i=1

nitiu

}
, since ni ≥ 1.

V [ρ ] ≥ 1

n

{
1

n

k∑
i=1

nili

}
=

1

n





1

n

∑
i∈Dq

nili





=
1

n
ρ, by recognising the formula for ρ. (4.8)

Saillard et al. [51] note that, in the case of a perfect star phylogeny, (4.8)

becomes an equality. Torroni et al. [53] define a ‘star index’, which is a

score between 0 and 1, essentially a frequency measure of how often pairs of

sequences coalesce in the root of the tree. A star index score of 1 (which arises

for a perfect star tree) yields an equality for (4.8). Formula (4.8) is important

as it allows a lower bound on the variance of the estimator. Although a

minimum bound on the variance may not seem immediately useful, how
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close this minimum bound is to the true variance can be (albeit subjectively)

assessed by computing the star index for a given observed phylogeny. Saillard

et al. [51] define ρ/σ2, rounded to the nearest integer, to be the “effective

star size”; this is ‘the size of a perfect star sample with approximately the

same values of ρ and σ as the given [observed] sample’ [51, page 721]. They

further define the “efficiency” of the sample as ρ/(nσ2).

An approximate upper bound on the variance is provided by Thomson et al.

[52], who use different notation, T̂ instead of ρ, and work within a framework

similar to that described previously concerning ‘paths’, although they do not

specifically describe the estimator in this manner. Thomson notes that the

variance of T̂ would be less than the variance one would obtain by picking a

single random sequence and using that alone to estimate the variance of the

time to the given node in question.

4.1.2 Consistency of the ρ statistic?

At present, no work has been published regarding the consistency of the

ρ estimator. Proving consistency (or lack of) is a difficult problem due to

the dependency of the estimator. To see this problem clearly, one needs to

distinguish between a mutation and a ρ mutation. Define a ρ mutation to be

a mutation present on an internal branch of a phylogenetic tree (see figure

4.1).

This distinction between mutations on the internal and external branches

of a tree is necessary to allow clear explanations below. These ρ mutations

are the reason why establishing consistency (or not) of the ρ estimator is

difficult. Consider, for simplicity, the standard coalescent with no migration

or population expansion. Kingman [54] has shown that the time to the
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Mutation 2

Mutation 1

A B C

Figure 4.1: Plot showing both a standard mutation (Mutation 1), and a ‘ρ

mutation’ (Mutation 2).

most recent common ancestor is finite, even for a sample of infinite size.

As the sample size tends to infinity, i.e. as the number of external edges of

a tree grows to infinity, the ρ mutations on the innermost branches of the

tree contribute more and more to the ρ estimator. Certainly, in the case of

the standard coalescent, increasing the sample size results only in the tree

displaying a larger and larger number of (small) external or near external

branches (and thus, carrying few mutations). However, these small external

edges can in fact dramatically alter the ρ value, particularly when the number

of sequences within the cluster of interest is low (as will be the case for some

founder clusters). This is shown in figure 4.2.
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Tree 1

Mutation 2

Mutation 1

A B C

Tree 2

Mutation 2

Mutation 1

A D B C

Figure 4.2: Plot showing the addition of a single external edge to a phyloge-

netic tree. Tree 1 has a ρ value of 1. However the addition of a new sequence,

D, which coalesces with A close to the present, results in a large increase in

ρ, becoming 5/4.

At a more fundamental level though, consistency is a difficult question as

even what is the ‘sample size’ that is to be considered is unclear. One could

argue that the sample size increase that should be considered is not that of

the number of external nodes/sequences, but that of the number of sites or

length of the DNA sequence under consideration. Conceptually, it is feasible

to suggest that, as the number of sites sequenced increased to infinity, the

tree would become better resolved, and the variance of the estimator would

decrease. Consistency of this estimator is something which has not been
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explored in the scientific literature. Despite the consistency of this estimator

being in doubt, the ρ estimator provides a useful tool in estimating, in an

unbiased manner, the time of given nodes in any phylogenetic tree. In the

sections that follow the estimator is used as the starting point of a Bayesian

method to estimate the times of sequence migration.

It is perhaps interesting to note that one may derive an analytic formula for

the distribution of the number of mutations along a single path (as defined

previously), under the standard n-coalescent, using the theory of ‘Phase-

Type Distributions’ [55]. The derivation I considered during my research

allowed all moments to be calculated analytically for a single path under

some specific assumptions, but did not help in establishing consistency, as

multiple paths overlapped. The distribution of the number of mutations

along the entire length of the tree is a much more complicated object as a

result of this dependency.

4.1.3 Recent criticisms of the ρ estimator

Recent work [56] tries to cast some doubt on the ‘accuracy’ of the estimator

and attempts a ‘validation exercise’. A reasonable-seeming simulation proce-

dure based on various demographic models (as well as a basic n-coalescent)

is presented. It is unfortunate however that equations (2) and (3) [56, page

339], which are supposed to be the expected value and variance of ρ, are

incorrect due to a misunderstanding of what the sum is over, which should

be all edges in the tree, not ‘unique haplotypes sampled from n individuals’,

as described. The tone of the paper is unfortunate and seems to suggest

that Cox is unconvinced about the mathematical properties of the ρ estima-

tor. It is stated that ‘Forster et al. (1996) suggest that multiplication of
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the ρ statistic with a known mutation rate scalar yields an unbiased estima-

tor of molecular age for the given ancestral node in real chronological time.’

Cox proceeds to examine the ‘bias and variance of point estimates of dates

obtained from a simple constant-size population’.

In the simulation results presented, it is claimed that the ρ statistic is (among

other things) biased. This is mysterious when the simple result, my (4.3),

invalidates Cox’s analysis and conclusions. It is unfortunate that this paper

starts by giving incorrect equations for the expected value and variance of

this estimator, and I believe that some of the results in this paper have been

created using incorrect formulae.

However, Cox does make some important notes in his discussion section

that are true and often overlooked, namely that the date estimates that

arise from ρ calculations are totally dependent on the mutation rate used.

However, the ρ estimate itself (non-scaled by mutation rate) has the same

meaning in every case. It is also mentioned that mutation rate can change

over time, which would indeed make date estimates from ρ extremely difficult

to justify and interpret. A third point is that of different mutation rates in

different areas of the region sequenced. However, by a very simple property

of the Poisson distribution it is only the average rate that is relevant. Cox

mentions as a fourth problem the fact that often a single tree is not found,

and instead a network due to recurrent mutations may arise. Indeed, the ρ

estimates obtained are conditional on the assumed tree. A more questionable

part of the discussion is that regarding choice of locus. I would argue that,

although the choice of locus could affect the date estimates obtained, any

dating estimate is conditional on the tree that results from the region that was

sequenced, and this does not have any bearing on the statistical properties
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of the estimator.

Note that I am not claiming that this estimator cannot be improved upon (for

example, any estimator that down-weighted the mutations on the internal

branches would presumably have smaller variance), but hold the position

that it is a good starting point with which to date nodes of a tree in an

unbiased manner.

4.1.4 Estimating migration time using ρ

Recall from the previous simulation chapter that the migration time of a

given sequence was not always close to any given node on a phylogenetic

tree. This problem exists simply because migration events do not necessarily

coincide with any coalescent events.

4.1.5 Connected star trees

The method of founder analysis assumed star-tree topologies for founder

clusters, together with the implicit assumption that the migration events

were followed by a period of rapid expansion. From previous simulations it

has been seen that the time of migration events may in fact not coincide

with the time of internal nodes in the phylogenetic tree (these nodes denote

possible founder sequence types). This section introduces the concept of a

connected star tree, which is used in what follows to bound the migration

time of a single sequence (founder) between two (unbiased) estimates.

Consider the tree shown in figure 4.3, where we imagine a migration event

on the edge connecting the subtree consisting of na = 4 sequences (itself a

perfect star tree), with the other nb − na = 9− 4 = 5 edges, which form the
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‘comb’ of the tree. Note that in general this whole tree is itself a sub-tree of

the full tree of the sample.

1 2 3 4 5 6 7 8 90
0.

5
1

1.
5

2

Figure 4.3: A ‘connected star tree’ with na = 4, nb = 9, τA = 1, τB = 2.

Assume that the migration event of interest takes place (at time τ) on the

connecting edge, that the time of the coalescence of the first na sequences on

the subtree is τA, and that the time of coalescence of the whole tree is τB.

Founder analysis attempts to estimate the time to a given node that was in

some sense ‘close’ to the migration event (τA) and use this as an estimate

of the migration time (τ). When estimating migration times, one is actually

trying to estimate a time which falls between two estimated sequences (τ in

the current notation), not the time that a given inferred DNA sequence arose

or the time to some most recent common ancestor of a subset of sequences.

To this end, a model which assumes what shall be called a ‘connected star

tree’ is proposed, an example of which is shown in figure 4.3. This improves
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on what is considered in founder analysis by directly addressing the issue

that one wishes to estimate a time that does not directly correspond to any

inferred DNA sequence on a phylogenetic tree, while allowing the star-tree

assumption to be relaxed slightly. The strength of this approach will be

seen shortly when an analytic formula is derived for the joint probability

distribution of the quantities we are interested in (P [τ, τA, τB]). The method

is based on the fact that, for a given connected star tree, we can use the ρ

estimator for two internal nodes to be bounds on the true migration time

we wish to estimate (τ , in mutational units). One then can derive the joint

probability density of the τ ’s given the ρ’s. The exact details are derived in

the next section.
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4.1.6 Deriving the joint distribution of interest

Suppose one calculates ρA and ρB for a given founder cluster and its con-

taining cluster respectively, which are our (unbiased) estimates of τA and τB.

The full joint density can then be derived as follows:

P [τ, τA, τB, ρA, ρB] = P [τ |τA, τB, ρA, ρB] P [τA, τB, ρA, ρB]

= P [τ |τA, τB, ρA, ρB] P [ρA, ρB|τA, τB] P [τA, τB]

= P [τ |τA, τB] P [ρA, ρB|τA, τB] P [τA, τB] , (4.9)

since τ is conditionally independent of ρA and ρB, given τA and τB.

Furthermore,

P [τ, τA, τB, ρA, ρB] = P [τ, τA, τB|ρA, ρB] P [ρA, ρB] . (4.10)

Thus,

P [τ, τA, τB|ρA, ρB] =
P [τ |τA, τB] P [ρA, ρB|τA, τB] P [τA, τB]

P [ρA, ρB]
(4.11)

∝ P [τ |τA, τB] P [ρA, ρB|τA, τB] P [τA, τB] , (4.12)

by an application of Bayes’ theorem.

At this point one notes that, within a Bayesian framework, P [τ |τA, τB] can

be viewed as a prior distribution on τ , given τA and τB, while P [τA, τB] can be

viewed as a prior distribution on τA and τB. This leaves only P [ρA, ρB|τA, τB]

unspecified.



CHAPTER 4. FOUNDER ANALYSIS EXTENSION 108

4.2 The distribution of ρA, ρB|τA, τB

Assuming conditional independence, and working with naρA (the product of

the number of edges in the subtree multiplied by the value of ρA, which is

simply the total number of mutations on the subtree), as opposed to ρA,

P [naρA, nbρB|τA, τB] is the product of a standard Poisson random variable

(under the infinite-sites model) coming from the smaller subtree:

P [naρA = γ|τA] =
(naτA)γ exp {−naτA}

γ!
, (4.13)

multiplied by the contribution from P [nbρB|τA, τB, naρA]. Note that (4.13)

is simply a Poisson random variable with parameter naτA, the total length

of the subtree.

Deriving an analytic formula for the distribution of nbρB given τA, τB, naρA =

γ is more difficult due to the connecting edge which carries ‘ρ mutations’ (all

other edges on the tree can carry mutations, but each mutation is counted

only once in the current connected star tree framework). Below shows the

formula for the probability that nbρB = k given τA and τB, together with the

observed number of mutations (γ) on the subtree. The proof of this result is

covered in the following sections.

P [nbρB = k|τA, τB, γ]

=

b k−γ
na
c∑

j=0

[(nb − na) τB]k−γ−naj (τB − τA)j e−[(nb−na)τB+(τB−τA)]

j! (k − γ − naj)!

=

b k−γ
na
c∑

j=0

µk−γ−najηje−(µ+η)

j! (k − γ − naj)!
, (4.14)

where η = τB − τA, µ = (nb − na) τB and bxc = max {n ∈ Z|n ≤ x}. The

above can be used to give an analytic representation of the joint distribution

of τ , τA, τB:
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P [τ, τA, τB|ρA, ρB] ∝ P [τ |τA, τB] P [τA, τB] P [naρA, nbρB|τA, τB]

= P [τ |τA, τB] P [τA, τB] P [naρA|τA] P [nbρB|τA, τB, naρA = γ] ,

where P [naρA|τA] and P [nbρB|τA, τB, naρA = γ] are as stated previously.

4.3 Consequences of the factorisation

Although the ρ estimator has been shown to be unbiased in its unconditional

form, factorising has the consequence of introducing ρ conditional on other

random variables. This section demonstrates some consequences of such a

factorisation.

Recall one of the fundamental probability objects, the probability generating

function (p.g.f.). A random variable, X, taking nonnegative integer values,

has probability generating function GX(z), defined to be:

GX(z) =
∞∑

l=0

pX(l)zl, |z| ≤ 1. (4.15)

Further, recall that, if such a random variable, X, is a linear combination of

other independent random variables Yi, i = 1, 2, . . . , M , then the probability

generating function is computed as follows. If

X = a1Y1 + a2Y2 + . . . + aMYM ,

then

GX(z) =
M∏
i=1

GYi
(zai). (4.16)

Now, nbρB is a random quantity which is the sum of three independent ran-

dom quantities, the number of mutations that fall on the subtree, the number
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of mutations that fall on the connecting edge, and the number of mutations

that fall on the comb. However, conditioning on γ in P [nbρB|τA, τB, naρA = γ]

has the effect of removing some of the randomness, as the computation is con-

ditioning on γ being fixed/already observed. Thus, nbρB can be expressed in

the following manner:

nbρB = γY1 + naY2 + Y3, (4.17)

where Y2 ∼ Po(τB − τA), Y3 ∼ Po((nb − na)τB) and Y1 is a random variable

taking on the value 1 with probability 1 (i.e. a constant).

We now go on to calculate the first two moments of this random quantity us-

ing probability generating functions, to investigate the effect of conditioning

on naρA = γ.

From (4.16) and (4.17), the p.g.f of nbρB|naρA = γ is

G(z) = GY1(z
γ)GY2(z

na)GY3(z). Hence,

G(z) =
∞∑

l1=0

pY1(l1)(z
γ)l1

∞∑

l2=0

pY2(l2)(z
na)l2

∞∑

l3=0

pY3(l3)(z
l3)

= 1(zγ)
∞∑

l2=0

ηl2e−η

l2!
znal2

∞∑

l3=0

µl3e−µ

l3!
zl3 (4.18)

= zγe−ηe−µ

∞∑

l2=0

(ηzna)l2

l2!

∞∑

l3=0

(µz)l3

l3!

= zγe−ηe−µeηzna
eµz

= zγ exp {η (zna − 1) + µ (z − 1)} . (4.19)

With the p.g.f. established, one can calculate the falling factorial moments.

Here, the mean of nbρB|naρA = γ is computed. Recall that a random variable,

X, with probability generating function GX(z), has mean E[X] equal to the

value of the first derivative of its probability generating function, evaluated
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when z = 1. So, from (4.19),

G(z) = zγ exp {η (zna − 1) + µ (z − 1)}
G(1)(z) = γzγ−1 exp {η (zna − 1) + µ (z − 1)}

+ zγ[µ exp {η (zna − 1) + µ (z − 1)}
+ naηzna−1 exp {η (zna − 1) + µ (z − 1)} ]

G(1)(1) = γ + µ + naη

= γ + nbτB − naτA. (4.20)

Expression (4.20) shows that nbρB|naρA = γ is unbiased only when γ = naτA,

i.e. only when the number of mutations on the subtree is equal to its expected

value.

One could proceed further and calculate the falling factorial moments. It is

simply stated here that

V [nbρB|naρA = γ] = n2
a (τB − τA) + (nb − na) τB, (4.21)

whereas the equivalent formula for the variance, under the connected star

tree assumption, but not conditioning on naρA = γ, is

V [nbρB] = n2
a (τB − τA) + (nb − na) τB + naτA. (4.22)

Conditioning on γ reduces the variance as the variability in the subtree is

lost.

A further interesting result is shown in Appendix B. It is shown there that

the covariance of naρA and nbρB is equal to the variance of naρA.

4.4 Single founder case

In this section, (4.14) is proved for a special (but important) case. For a

single migration event on a connected star tree, the proof is given here for
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the degenerate case, na = 1, by making use of the standard probability

generating function approach. It was shown in (4.19) that the probability

generating function of nbρB|naρA is given by zγ exp {η (zna − 1) + µ (z − 1)} .

Deriving the required result using probability generating functions is a non-

standard induction problem, because the result required is the general for-

mula for the kth derivative of a function that contains a variable z, that

needs to be evaluated with z = 0 for each derivative. The following lemma

concerning the kth derivative of the probability generating function is the

starting point, noting here that (x)(y) is the falling factorial (x)(y) = x(x −
1)(x− 2) . . . (x− y + 1) and S = exp {η (z − 1) + µ (z − 1)}.
Lemma.

G(k)(z, γ, na = 1) =
k+1∑
j=1

(
k

j − 1

)
(γ)(j−1)z

[γ−j+1](η + µ)[k−j+1]S.

(4.23)

Proof (by induction).

True for k = 1?

G(z) = zγ exp {η(z − 1) + µ(z − 1)} = zγS

G(1)(z, γ, na = 1) = γzγ−1S + zγS(η + µ)

=
2∑

j=1

(
1

j − 1

)
(γ)(j−1)z

[γ−j+1](η + µ)[2−j]S, (4.24)

as required.

Now suppose (4.23) is true for the (k − 1)th derivative, i.e.

G(k−1)(z, γ, na = 1) =
k∑

j=1

(
k − 1

j − 1

)
(γ)(j−1)z

γ−j+1(η + µ)k−jS.
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Then G(k)(z, γ, na = 1) =
d

dz
G(k−1)(z, γ, na = 1)

=
d

dz

{(
k − 1

0

)
(γ)(0)z

γ(η + µ)k−1S

}

+
d

dz

{(
k − 1

1

)
(γ)(1)z

γ−1(η + µ)k−2S

}

+ . . . +

+
d

dz

{(
k − 1

k − 2

)
(γ)(k−2)z

γ−k+2(η + µ)1S

}

+
d

dz

{(
k − 1

k − 1

)
(γ)(k−1)z

γ−k+1(η + µ)0S

}

=
d

dz

{
1zγ(η + µ)k−1S

}

+
d

dz

{(
k − 1

1

)
(γ)zγ−1(η + µ)k−2S

}

+ . . . +

+
d

dz

{(
k − 1

k − 2

)
(γ)(k−2)z

γ−k+2(η + µ)S

}

+
d

dz

{
1(γ)(k−1)z

γ−k+1S
}

= γzγ−1(η + µ)k−1S + zγ(η + µ)kS

+

(
k − 1

1

)
(γ)(2)z

γ−2(η + µ)(k−2)S

+

(
k − 1

1

)
γzγ−1(η + µ)k−1S

+ . . . +

+

(
k − 1

k − 2

)
(γ)(k−1)z

γ−k+1(η + µ)S

+

(
k − 1

k − 2

)
(γ)(k−2)z

γ−k+2(η + µ)2S

+(γ)(k)z
γ−kS + (γ)(k−1)z

(γ−k+1)S(η + µ).
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So,

G(k)(z, γ, na = 1) = zγ(η + µ)kS

+
[
γzγ−1(η + µ)k−1S

] [(
k − 1

0

)
+

(
k − 1

1

)]

+
[
(γ)(2)z

γ−2(η + µ)k−2S
] [(

k − 1

1

)
+

(
k − 1

2

)]

+ . . . +

+
[
(γ)(k−1)z

γ−k+1(η + µ)S
] [(

k − 1

k − 2

)
+

(
k − 1

k − 1

)]

+(γ)(k)z
γ−kS

=
k+1∑
j=1

(
k

j − 1

)
(γ)(j−1)z

γ−j+1(η + µ)k−j+1S,

as required by (4.23). Thus, the lemma follows by induction.

Having established the formula for the kth derivative, one could recover

P [nbρB|na = 1, ρA = γ] using the standard result for probability generat-

ing functions, since P [nbρB = k|na = 1, ρA = γ] = G(k)(0)/k!. But,

G(k)(z)

k!
=

k+1∑
j=1

(
k

j − 1

)
(γ)(j−1)z

γ−j+1(η + µ)k−j+1S/k!

=
k∑

i=0

(
k

i

)
(γ)(i)z

γ−i(η + µ)k−iS/k!. (4.25)

So,

G(k)(0)

k!
=

(
k

γ

)
(γ)(γ)0

0(η + µ)k−γS/k! (4.26)

=
k!γ!(η + µ)k−γS

k!γ!(k − γ)!

=
(η + µ)k−γ exp {− (η + µ)}

(k − γ)!
. (4.27)

Note that (4.26) follows since all terms of the sum disappear, except when

i = γ. One recognises this as simply the probability of a draw of k − γ from
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a Poisson distribution of rate (η +µ) = (nbτB− 1.τA) = (nbτB− 1.τB) (under

the assumption that na = 1, and, as such, the connecting edge is of length

0, so that τA = τB), which simply says the probability of k− γ mutations on

the remaining (nb − 1) edges of total length τB(nb − 1) is a Poisson random

variable, which is what one would expect in this special case.

Although the above method of proof is very satisfying from a technical point

of view, demonstrating the power of the method of generating functions, the

approach for the general case (na arbitrary) is far more involved. Instead,

one uses a more intuitive method of proof in the following section, which

shows from where each part of (4.14) originates.

4.4.1 Single founder case: general proof

Consider a general connected star tree with naρA = γ mutations on the

subtree. Suppose now that one wishes to calculate P [nbρB = k|τA, τB, γ].

The tree under consideration has both mutations and ρ mutations (on the

connecting edge). The total mutation count is k, a random quantity (being

careful to note here that this count is not simply the number of unique

mutations since each ρ mutation contributes na to the mutation count). After

accounting for the γ mutations on the subtree (which are unique mutations),

k−γ of the mutation count is left to be placed on the connecting edge and/or

the additional (nb − na) edges (the ‘comb’).

Each mutation on the connecting edge contributes na to the mutation count,

while the total mutation count cannot exceed k. Suppose j ‘ρ mutations’

occur on the connecting edge. These contribute naj to the ρ count. This

leaves k − naj − γ mutations that must have occurred on the comb. The

previous intuitive reasoning immediately provides the maximal number of ρ



CHAPTER 4. FOUNDER ANALYSIS EXTENSION 116

mutations, which is given by
⌊

k−γ
na

⌋
. The number of mutations, j, on the

connecting edge is simply a Poisson random variable with rate (τB−τA) = η,

while the number of mutations, k−naj− γ, on the comb is simply a Poisson

random variable with rate (nb − na)τB = µ.

With the previous work established by intuitive reasoning, the proof of (4.14)

can be neatly expressed as follows, avoiding the need to determine by induc-

tion a formula for the kth derivative of the relevant probability generating

function.

Let j be the number of ρ mutations on the connecting edge, which will be a

positive integer, j = 0, 1, 2, ...,
⌊

k−γ
na

⌋
.

Now,

P [nbρB = k|τA, τB, γ] =

b k−γ
na
c∑

j=0

P (nbρB = k, j|τA, τB, γ) , (4.28)

where P (nbρB = k, j|τA, τB, γ) is the probability of j mutations on the con-

necting edge and k − γ − naj mutations on the comb, i.e.

P (nbρB = k, j|τA, τB, γ) =
e−ηηj

j!

e−µµk−γ−naj

(k − γ − naj)!

=
e−(η+µ)ηjµk−γ−naj

j!(k − γ − naj)!
.

Thus, (4.28) becomes

P [nbρB = k|τA, τB, γ] =

b k−γ
na
c∑

j=0

e−(η+µ)ηjµk−γ−naj

j!(k − γ − naj)!
(4.29)

as required.
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It is not immediately obvious that this formula is identical to the result

derived using probability generating functions for the case when na = 1.

This is shown below.

When na = 1, the ‘connecting edge’ has length zero. This has the conse-

quence of restricting the number of mutations on the connecting edge to be

zero. All the additional k−γ mutations must have occurred on the additional

nb − 1 edges which formed the comb. This observation removes the sum in

formula (4.29), as all terms disappear except for the j = 0 case. Setting

j = 0 and na = 1 gives rise to

P [nbρB = k|τA, τB, γ, na = 1] =
e−(η+µ)µk−γ

(k − γ)!
. (4.30)

This is equivalent to (4.27) when one realises that η = (τB − τA) = 0 when

the connecting edge is of length zero, and (4.30) can simply be re-expressed

to agree with (4.27) as

P [nbρB = k|τA, τB, γ, na = 1] =
e−(η+µ)(µ + η)k−γ

(k − γ)!
.

4.5 MCMC estimation of a single migration

time

The parameter of interest here is τ , the time of the migration event, which is

assumed to fall somewhere on the connecting edge of a connected star tree.

It was previously shown (4.12) that

P [τ, τA, τB|ρA, ρB] ∝ P [τ |τA, τB] P [ρA, ρB|τA, τB] P [τA, τB] .

Integrating out τA and τB gives rise to the density of τ , noting carefully the

implicit inequality τA ≤ τ ≤ τB that gives rise to the integral limits shown
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below:

P [τ |ρA, ρB] ∝
∫ ∞

τ

∫ τ

0

P [τ, τA, τB|ρA, ρB] dτAdτB

=

∫ ∞

τ

∫ τ

0

P [τ |τA, τB] P [ρA, ρB|τA, τB] P [τA, τB] dτAdτB

=

∫ ∞

τ

∫ τ

0

P [τ |τA, τB] P [ρA|τA] P [ρB|τA, τB, ρA] P [τA, τB] dτAdτB.

(4.31)

It is interesting to note that τ only appears above on the limits of the relevant

integrals. Using MCMC, one can sample from the joint density of τA and τB,

while τ can be sampled with only a small extension to the MCMC algorithm.

This algorithm is implemented in R [42], assuming the prior distribution of

τ |τA, τB is Un(τA, τB), and that the prior on (τA, τB) is uniform in a finite

region of (τA, τB) space (such that 0 ≤ τA ≤ C1, 0 ≤ τB ≤ C2, C1, C2 ∈ R).
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4.6 Examples of estimation of a single migra-

tion time by MCMC

In this section pseudocode for the algorithm is described in some detail and

examples are given of the code’s operation. The method uses the Metropolis-

Hastings algorithm ([57], [58]).

1) Set τ
(1)
A = ρA and τ

(1)
B = ρB.

2) Preliminary check that τ
(1)
A ≤ τ

(1)
B . If this inequality is not satisfied, adjust

τ
(1)
A and τ

(1)
B to obtain appropriate starting values which obey the inequality.

3) Create a matrix to store the (τA, τB, τ) values for each retained iteration.

4) Set a counter to 0 which will store the number of successful moves made

by the MCMC algorithm for the (τA, τB) move proposals.

5) Compute P [τ, τA, τB|ρA, ρB] using formula (4.12) (i.e. up to a normalising

constant) with τA = τ
(1)
A , τB = τ

(1)
B .

6) Enter loop (set i = 1). Loop through (7)-(12) until enough burn-in and

real draws have accumulated.

7) Propose new (τA, τB) combination using τ
(i+1)
A = τ

(i)
A + N(0, σ2

1), and

τ
(i+1)
B = τ

(i)
B + N(0, σ2

2), where σ2
1 and σ2

2 are set by the user.

8) Check that the new τ
(i+1)
A , τ

(i+1)
B proposals obey the necessary constraints

τ
(i+1)
A ≤ τ

(i+1)
B , τ

(i+1)
A ≥ 0. If not, reject proposals and set τ

(i+1)
A = τ

(i)
A and

τ
(i+1)
B = τ

(i)
B .

9) If necessary constraints are satisfied, calculate P [τ, τA, τB|ρA, ρB] using

formula (4.12) with τA = τ
(i+1)
A , τB = τ

(i+1)
B .
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10) Form an acceptance ratio
P
h
τ,τ

(i+1)
A ,τ

(i+1)
B |ρA,ρB

i

P
h
τ,τ

(i)
A ,τ

(i)
B |ρA,ρB

i .

11) Accept move with probability min

(
1,

P
h
τ,τ

(i+1)
A ,τ

(i+1)
B |ρA,ρB

i

P
h
τ,τ

(i)
A ,τ

(i)
B |ρA,ρB

i
)

.

12) Store the final values of τA and τB for iteration i+1 and update the move

counter if the proposal was accepted at this iteration and the burn-in period

has passed. Draw τ (i+1) uniformly between τ
(i+1)
A and τ

(i+1)
B . If the move

was accepted, store the value of P
[
τ, τ

(i+1)
A , τ

(i+1)
B |ρA, ρB

]
for use at the next

iteration. Otherwise, store the previous value.

13) Calculate the acceptance rate for (τA, τB) by dividing the move counter

by the number of iterations.

Two simple simulations are shown below to demonstrate the previous al-

gorithm’s usefulness and to demonstrate code correctness. In case 1, na =

10, nb = 20, τA = 2, τB = 10, and suppose the number of mutations on each

edge is set to its expected value. This situation would give rise to ρA = 2

and ρB = 10, with 8 mutations falling on the connecting edge. Using the ap-

proach detailed previously, one can simulate the joint (posterior) distribution

of τA and τB, while, adding the assumption that τ lies uniformly between τA

and τB, one can investigate the distribution of τ . From the output shown,

figure 4.4, one can see that the distribution obtained is centred around the

correct values. This procedure involved 105, 000 iterations, starting values of

τA = 5, τB = 15, with a burn-in of 5, 000, and σ1 = σ2 = 0.2.

In cases where the connecting edge is short the method performs better

(in terms of the posterior distribution of τ), giving a posterior distribution

which is peaked around a small range of values (figure 4.5) for the case

na = 10, nb = 20, τA = 2, τB = 2.05, where the number of mutations on each
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Figure 4.4: Long connecting edge case. Posterior distribution of (τA, τB)

illustrated by 100, 000 draws (left) and a contour plot (middle), together

with the (unnormalised) posterior distribution of τ (right).

edge is set to its (rounded) expected value. This situation would give rise

to ρA = 2 and ρB ≈ 2, with no mutations falling on the connecting edge.

This procedure involved 105, 000 iterations (after thinning), starting values

of τA = 5, τB = 5, with a burn in of 5, 000. In this case, σ1 = σ2 = 0.1,

and some thinning was done since the (τA, τB) region was smaller than the

previous case, with every fifth draw being retained.

Figures 4.4 and 4.5 demonstrate that the procedure is giving posterior den-

sities which look as one would expect under the hypothesised connected star

trees with the number of mutations on each edge set at its expected value

under an infinite sites model. In the next section the problem of combin-

ing the set of all estimated migration times across many founder clusters is

addressed, and a model is proposed which not only allows Bayesian estima-

tion of the time of specific founding sequences, but also potentially allows

Bayesian estimation of the dates of the main periods of migration, while ad-
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Figure 4.5: Short connecting edge case. Posterior distribution of (τA, τB)

illustrated by 100, 000 draws (left) and a contour plot (middle), together

with the (unnormalised) posterior distribution of τ (right).

ditionally providing an objective way of estimating the probability that a

given founder sequence belongs to any one of the specific migration periods.
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4.7 Estimating migration periods with a mix-

ture model

The previous section detailed Bayesian inference of the migration time of a

single migration/founding event. In this section, a hierarchical framework

is used to combine the information from every migration/founding event,

to attempt to estimate quantities that relate to the migration history of an

entire sample of sequences and the derived founder sequences.

While it would be possible at this point to go straight to formally defining

a full Bayesian model, defining prior distributions and such, one feels the

need to justify the reasoning behind the model choice. An attempt to give

the reader some context-specific explanations of what the parameters of the

Bayesian model represents is first provided. To this end, in this section, the

model is first described at an intuitive level, introducing the parameters in

a way which is intended to offer the reader some insight into the reasoning

behind the model choice, and simultaneously giving an explanation of what

types of parameters the model ideally should be able to estimate, in the

context in which the model will be implemented. Once this introduction

is complete, the model is defined in a formal statistical manner with only

brief comments about what the parameters represent. The penultimate part

of this section discusses the model parameters and what they represent in

the context-specific case of interest, in some detail. The final part of this

section then demonstrates the model’s operation on some simulated data,

with attempts to display both the positive features of the model, and the

problems which arise in some important cases.
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4.7.1 Modelling the migration history of a sample

It is assumed in what follows that a sample of sequences has a migration his-

tory which is composed of a number of major migration periods, during which

multiple founding events would occur. The correctness of this assumption

is, of course, open to question. However, in what follows, it is the assump-

tion that is being made. Under the given assumption, natural quantities of

interest arise that one may wish to estimate. The first is simply the times

and durations of these major migration periods. In the human context, the

dating of the migration periods may be linked to periods of pre-history such

as the Neolithic and (Upper, Middle and Lower) Palaeolithic. One may wish

to ask at what time did migration periods occur, and how long did these

migration periods last? The times and duration of major migration periods

are thus natural parameters that should be represented and estimated in any

sensible model.

One may also be interested in the relative differences in the number of migra-

tion events that occurred in each of the migration periods. This is perhaps not

a immediately natural parameter to wish to estimate, but with some thought

one can see that a question such as ‘Is there evidence from our present day

sample that some migration period occurring during the Neolithic involved a

larger number of migration/founder events than some migration period dur-

ing the Upper Paleolithic?’ could be of interest. These types of questions are

indeed more difficult to answer for a variety of reasons (namely that popula-

tion sizes are likely to be different in both periods, so quantities such as the

number or fraction of migration/founder events are difficult to define clearly,

while further complications arise because we know that migration periods

occurring further back in time are likely to have fewer associated/inferred
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founder sequences than those closer to the present). Regardless, it is desir-

able that a model of the migration history should provide at least some basis

to attempt to answer such questions.

A more fundamental question is simply how many major migration periods

can be inferred from a given sample. This is again a non-trivial problem as

such an inference will be affected by many factors, some of which will be

shown in what follows to be non-statistical and independent of model choice,

prohibiting such inferences from being made.

Finally, while a global model for inference of the migration process is the

primary aim here, one may in fact be more interested in estimating exactly

which migration period a specific migrant/founder sequence belongs to. So,

given an inferred founder sequence, one may wish to estimate the probability

that the founder sequence originated from each of the specific migration pe-

riods. This is of course, conceptually, another extremely difficult question to

address; answering such a question relies on the founder sequence of interest

being assigned in some systematic manner to a specific migration period.

Assigning founder sequences to migration periods requires the migration pe-

riods to have been defined, but, as stated earlier, the times, lengths and even

number of migration periods may not be specified from the outset and are

in fact items one wishes to estimate.

In summary, one can build up a picture of what parameters a useful model

should have, and what questions any such model should allow to be investi-

gated. Furthermore, from previous sections, a method to infer the migration

time of a single founder event has been described. In what follows, a hier-

archical Bayesian mixture model is described which performs simultaneous

estimation of the individual founder times as described in the previous sec-
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tion, and the set of founder times is then used within a mixture model to

estimate probability densities which represent the quantities described above.

4.7.2 Model specification

The mixture model is parameterised following Roberts’ notation [59, page

319], with only some minor changes (which follow Gelman et al. [60]) to

clear up some ambiguity. The migration time of founder j (j = 1, . . . , J)

shall be denoted by τj in what follows, and we shall initially assume the τj’s

are known, i.e. data. The joint distribution of the data given the parameters

θ is taken as

p(τ |θ) =
J∏

j=1

p(τj|θ)

=
J∏

j=1

k∑
i=1

piϕ(τj; µi, σ
2
i ),

∑
i

pi = 1, 0 ≤ pi ≤ 1 ∀i. (4.32)

Equation (4.32) represents the founders as coming (independently) from a

mixture distribution [61], with the migration periods represented by the dis-

tributions ϕ(τ ; µi, σ
2
i ), i = 1, . . . , k (assumed normal distributions with means

µi and variances σ2
i ), with the fractions pi representing the a priori proba-

bility that an arbitrary founder sequence originates from migration period i.

In what follows, the collection of means and variances (µi, σ
2
i , i = 1, . . . , k)

of every component will be denoted by θ for notational convenience.

The above specification immediately provides parameters which represent

some of the primary quantities of interest described previously. One views

the normal distributions as representing each of the migration periods, and

the parameters of the distributions represent estimates of both the time and

spread of the migration periods. Furthermore, the pi can be thought of as an
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approximate measure of the proportion of the founder sequences that belong

to each of the migration periods. It is noted here however that it is difficult

to assign a precise interpretation to these pi parameters for reasons that will

be explained later.

One of the main benefits of the mixture-model framework is the fact that

each data point’s component membership can be represented by an indicator

vector, a ‘missing variable’ which can be estimated. One does not know

which migration period each founder belongs to. Within the mixture model

framework an indicator variable (a vector) is assigned to each data point

(founder), and this provides a means to estimate the probability that a given

founder sequence originated from a specific migration period.

Define the indicator vector for founder j to be zj, with its ith element,

zij =





1 if τj ∼ ϕ(τj; µi, σ
2
i ),

0, otherwise.
(4.33)

That is to say, each founder has a k-element indicator vector with element

i (i = 1, . . . , k) being 1 if founder j is assigned to component (migration

period) i, with all other elements of the indicator vector being 0.

At this point, the parameters of interest (µi, σ
2
i , pi), i = 1, . . . , k, and the

assignment indicator variables zj, j = 1, . . . , J have been described. One

now assumes that given the component mean and variances, θ, the founder

assignment indicator vectors are a draw of size 1 from a multinomial distribu-

tion with parameters pi. Further, given that founder j belongs to component

i (i.e. given the indicator vector zj), and given the component means and

variances, θ, one assumes that the founder migration time τj comes from a

normal distribution with mean µi and variance σ2
i , as shown below:

zj ∼ Mult(1; p1, . . . , pk), (4.34)
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τj|zj, θ ∼ N

(
k∏

i=1

µ
zij

i ,

k∏
i=1

σ
2zij

i

)
. (4.35)

A hierarchical model is gradually being built up here. Under a connected

star-tree assumption, one can estimate a (τA, τB) pair for each of the J

founders. Using the result in the previous section, a Bayesian estimate of the

actual migration time, τ , can be made (under reasonable prior assumptions)

for each of the J founders. One is now adding on top of this the assumption

that the set of actual migration times arise from a mixture model. The assign-

ment of founders to a specific component is done using indicator variables,

which are determined by a multinomial probability model depending on pa-

rameters pi. Once the assignments of founders to the k components has been

made, the migration event times are assumed to follow normal distributions

with means and variances (µi, σ
2
i ), i = 1, . . . , k. Now that the parameters of

interest have been described and the mixture model framework introduced,

appropriate prior distributions for the parameters are given.

It is hoped that the previous details have convinced the reader that the

model specification and framework as described are indeed suitable for the

problem at hand, and not merely an artificial parameterisation that involves

parameters that do not represent quantities of real interest to anyone investi-

gating migration processes (with the assumption that the migration process

did indeed involve distinct periods of migration).

Denote by π(.) a prior distribution to be defined by the investigator. The

natural prior distributions are the conjugate priors:

πi(µi, σ
2
i ) = πi(µi|σ2

i )πi(σ
2
i ), (4.36)

µi|σ2
i ∼ N(ξi, σ

2
i /κi), (4.37)
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σ2
i ∼ IG(νi/2, S

2
i /2), (4.38)

p ∼ Dir(α1, . . . , αk). (4.39)

Note that the prior for the component means depends on the component

variance. This is discussed by Gelman et al. who state that “it often makes

sense for the prior variance of the mean to be tied to σ2, which is the sampling

variance of the observation y [τ in this work]”. The conjugate prior for the

pi’s is the Dirichlet distribution. IG is the inverse gamma distribution.

Specifying the hyperparameters is an additional complication that the in-

vestigator must undertake. It is usual in Bayesian statistical applications

to ensure that prior specification is suitably vague to allow the data to be

the primary factor in determining the posterior densities of the parameters

of interest. The model however does provide an opportunity for informative

priors to be selected in the event that the investigator has strong reason to

believe in his/her prior beliefs in the migration history of a sample. The

hyperparameters ξ represent the prior component means of the normal dis-

tributions (the prior mean times of the migration periods of interest). The κ

parameters can be viewed to represent the strength of one’s belief in the prior

component mean values, noting that, as κi increases, the prior component

mean density becomes tightly peaked around ξi.
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4.7.3 Full conditional distributions of (µ, σ2)

In this section, the full conditional distributions of the parameters are de-

rived. These distributions allow one to make draws from each variable in

turn, conditional on the other variables which will be known at every stage

of the algorithm. The existence of such conditional distributions allows one

to use Gibbs sampling to investigate the parameters of interest. The poste-

rior densities of the parameters of the normal distributions are calculated by

first deriving an expression for the product of the prior density and the like-

lihood, as shown below. For simplicity in notation the derivation is done for

the single normal case. This is acceptable since, in the finite mixture model

case, once the allocation vectors are assigned and the data points belong to a

single component, the mixture model essentially simplifies to estimating the

parameters of k independent normal distributions.

The prior density is

π(µ, σ2) = π(µ|σ2)π(σ2)

=
1√

2π(σ2/κ)
exp

{
−1

2

(µ− ξ)2

(σ2/κ)

}

× [S2/2]
[ν/2]

Γ(ν/2)
(σ2)−[ν/2+1] exp

{− [
S2/2σ2

]}

∝ (σ−1)(σ2)−[ν/2+1] exp

{
− 1

2σ2

[
S2 + (µ− ξ)2κ

]}
.

The likelihood is a product of normals (e.g. see [62]):

L(µ, σ2) = P (τ |µ, σ2)

=
J∏

j=1

1√
2πσ2

exp

{
−(τj − µ)2

2σ2

}

∝ (σ2)−J/2 exp

{
− 1

2σ2

[
J(µ− τ̄)2 +

∑
j

(τj − τ̄)2

]}
.
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Multiplying the prior density by the likelihood yields the posterior density

(up to a normalising constant):

p(µ, σ2|τ) ∝ (σ−1)(σ2)−(ν+J+2)/2

× exp

{
− 1

2σ2

[
S2 + (µ− ξ)2κ +

∑
j

(τj − τ̄)2 + J(τ̄ − µ)2

]}

(4.40)

Considering the terms in the square bracket of the argument of the expo-

nential in isolation, (4.40) can be re-expressed (after some tedious algebra)

as

p(µ, σ2|τ) ∝ (σ−1)(σ2)−[(ν+J)/2+1]

× exp

{
− 1

2σ2

[
S2 +

∑
j

(τj − τ̄)2 + (J + κ)

[
µ− (Jτ̄ + ξκ)

(J + κ)

]2

+
Jκ

(J + κ)
(ξ − τ̄)2

]}
. (4.41)

The full conditional distribution of µ (given σ2 and τ) is proportional to the

above:

p(µ|σ2, τ) ∝ exp

{
−(J + κ)

2σ2

[
µ− (Jτ̄ + κξ)

(J + κ)

]2
}

(4.42)

One recognises the above as a quantity proportional to a normal density

N(α, β) with parameters

α =
(Jτ̄ + κξ)

(J + κ)
,

β =
σ2

κ + J
.

Similarly, the full conditional of σ2 (given µ and τ), is seen to be an inverse

gamma, IG(γ, δ), with parameters

γ =
ν + J

2
, (4.43)

δ =
1

2

[
S2 +

∑
j

(τj − τ̄)2 +
Jκ

(J + κ)
(ξ − τ̄)2

]
. (4.44)



CHAPTER 4. FOUNDER ANALYSIS EXTENSION 132

4.7.4 Full conditional distributions of pi, zj, τj, (τ j
A, τ j

B)

With a Dirichlet prior on the pi, p ∼ Dir(α1, . . . , αk), and noting that the

pi are connected to the other parameters in the model only via the hyperpa-

rameters (the α’s) and the allocation vectors (the zj), due to the hierarchical

nature of the mixture model, one can derive the full conditional of the pi.

In the derivation that follows, {pi} denotes the set of mixing fractions, {αi}
denotes the set of α hyperparameters, and {z} denotes the complete set of

indicator vectors, while mi(z) =
∑J

j=1 zij denotes the number of data points

currently assigned to component i. Then,

p({pi} | {αi} , {z}) ∝ p({pi} | {αi})p({z} | {pi}) (4.45)

∝
k∏

i=1

pαi−1
i p

mi(z)
i (4.46)

i.e. {pi} | {αi} , {z} ∼ Dir({αi + mi(z)}). (4.47)

The full conditional distribution of the allocation vectors, the zj, is calculated

as follows. Again, one uses the hierarchical nature of the mixture model,

which is helpful since the allocation vector for founder j depends only on the

founder migration times (the current τ value for founder j, τj), together with

the pi’s:

p(zij = 1|τj, {pi} , θ) =
p(zij = 1| {pi})p(τj|zij = 1)∑k
l=1 p(zlj = 1| {pl})p(τj|zlj = 1)

(4.48)

=
piϕ(τj; θi)∑k
l=1 plϕ(τj; θl)

, (4.49)

i.e. zj|τj, {pi} , θ ∼ Mult

(
1;

{
piϕ(τj; θi)∑k
l=1 plϕ(τj; θl)

})
, (4.50)

where ϕ(τj; θi) is the value of the pdf of a normal density with mean µi and

variance σ2
i , evaluated at τj.
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The full conditional distribution of τj, given the allocations (the zj), the pa-

rameters of the normal distributions for each component (the θi’s), together

with the (τA, τB) for founder j (where, for clarity, the founder index now ap-

pears as a superscript) is seen to be simply a truncated normal distribution

since, once the allocation for a given founder is known and the parameters of

the normal distribution to which it belongs are determined, the distribution

of τj|zj, θ, (τ
j
A, τ j

B) is normal with mean µi and variance σ2
i , subject to the

additional constraint that τ j
A ≤ τj ≤ τ j

B, which is a truncated normal, i.e.

p(τj|zj, θ, (τ
j
A, τ j

B)) =
p(τ j

A, τ j
B|τ j)p(τ j|zj, θ)∫

τj
p(τ j

A, τ j
B|τ j)p(τ j|zj, θ)dτj

,

p(τj|zj, θ, (τ
j
A, τ j

B)) =
I(τ j

A ≤ τj ≤ τ j
B)ϕ(τj; θi)∫ τ j

B

τj
A

ϕ(τj; θi)dτj

, (4.51)

where I denotes the indicator function. The denominator of (4.51) follows

since p(τ j
A, τ j

B|τ j) is a constant in the range space.

Finally, given τj and (ρj
A, ρj

B) for each founder, the full conditional of (τ j
A, τ j

B)

is calculated in a similar manner:

p(τ j
A, τ j

B|τj, ρ
j
A, ρj

B) =
p(τ j

A, τ j
B|τj)p(ρj

A, ρj
B|τ j

A, τ j
B)∫ ∫

p(τ j
A, τ j

B|τj)p(ρj
A, ρj

B|τ j
A, τ j

B)dτ j
Adτ j

B

. (4.52)

Under the assumption that τ j
A, τ j

B|τj is uniform in τ j
A ≤ τ ≤ τ j

B, one realises

that this is simply a truncated form of the distribution previously determined

when considering only a single founding event (implicitly assuming that it

migrated during the only possible migration period, i.e. a mixture model

with a single component).

At this point the full conditionals for every parameter in the model have

been explicitly evaluated, and an appropriate Bayesian procedure (Gibbs

sampling) can be used to create samples from the posterior distributions of
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the parameters, given appropriate prior choices and data (data here mean-

ing ρA, ρB estimates for a set of J founder sequences). Before doing this

however, I shall summarise the statistical features of the mixture model and

demonstrate proof of concept at the mixture model level (and code correct-

ness at the computational level) in a similar manner to what was done when

considering estimating the migration time for a single founding event.
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4.7.5 Mixture model summary

Assume for the moment that the data are actually the set of actual migra-

tion event times for each founder, and not the set of (ρA, ρB) values for every

migration event. With this assumption, which is made purely for model test-

ing purposes here, one has removed the additional uncertainty introduced

through the (τA, τB) estimation process, and reduced the hierarchical struc-

ture of the model down to a more standard finite mixture model. Further,

assume that the number of migration periods is fixed and known.

The prior distributions and the resulting posteriors which were derived pre-

viously for the mixture model level of the complete hierarchical model are

summarised below.

Priors:

πi(µi, σ
2
i ) = πi(µi|σ2

i )πi(σ
2
i ),

µi|σ2
i ∼ N(ξi, σ

2
i /κi),

σ2
i ∼ IG(νi/2, S

2
i /2),

p ∼ Dir(α1, . . . , αk).

The resulting full conditionals were shown to be

µi|τ, z, σi ∼ N(ξi(τ, z), σ2
i /(κi + mi(z))), (4.53)

σ2
i |τ, z ∼ IG

(
νi + mi(z)

2
,
1

2

[
S2

i + Ŝ2
i (τ, z) +

κimi(z)

κi + mi(z)
(τ̄i(z)− ξi)

2

])
,

(4.54)

p|τ, z ∼ Dir (α1 + m1(z), . . . , αk + mk(z)) , (4.55)

where

ξi(τ, z) =
κiξi + mi(z)τ̄i(z)

κi + mi(z)
,
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mi(z) =
J∑

j=1

zij,

τ̄i(z) =
1

mi(z)

J∑
j=1

zijτj,

Ŝ2
i (τ, z) =

J∑
j=1

zij(τj − τ̄i(z))2.

The four functions above can be recognised (respectively) as a weighted mean

of prior and actual migration times in component i, the number of founders

assigned (currently) to component i, the mean migration time in component

i and the sum of squares of deviations of migration times from their relevant

component means.

The posterior distribution of the allocation vectors is

zj|τj, θ ∼ Mult(1; p1(τj, θ), . . . , pk(τj, θ)), (4.56)

where

pi(τj, θ) =
piϕ(τj; µi, σi)∑k
l=1 plϕ(τj; µl, σl)

.

An MCMC sampler to produce draws from the posterior distributions in the

model is now described, assuming appropriate data is provided and suitable

priors selected. Note here that, within the finite mixture model level of

the hierarchical model, all of the parameter updates will be Gibbs updates,

i.e. they are draws from a full conditional probability distribution, and not

a move which depends on an acceptance ratio. This is in contrast to the

(τA, τB) update step seen earlier which was a Metropolis-Hastings move and

which, even in the presence of thinning, could result in the parameter updates

remaining constant over short periods of the chain. One could argue that
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Gibbs updates are more attractive, since the parameters should always be

updating. However, small movements from Gibbs updates can actually result

in poor mixing which could be harder to detect than in cases when moves were

based on acceptance ratios. In such cases bad mixing is easier to determine

as it is clear to the investigator that mixing is taking place at a very slow

rate. A further disadvantage of Gibbs moves is that the moves cannot be

tweaked by altering proposal distributions.

4.7.6 A note about identifiability

Up until this point, the issue of identifiability has been ignored. Finite mix-

ture models suffer from identifiability issues in general due to the fact that

the components are exchangeable unless some additional constraints are im-

posed on them. To see this problem, consider a two component mixture

model with the true component mean values being equal to 5 and 10 (in

some appropriate units). In the absence of any further information, one can

see that it should make no difference whether the component with the smaller

mean is labelled as the first or second component and a permutation of the

labels should not affect any posterior densities of interest if an appropriate

algorithm was devised and ran to convergence.

To avoid this label-switching problem, an ordering is imposed on the com-

ponent means, and it is assumed that the component designated as the first

component is that component with the smallest mean, that is, µ1 ≤ µ2 ≤
. . . ≤ µk.
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4.7.7 Pseudocode for the mixture model

Recall for the moment that the data here is still for the time being assumed

to be the τ values. The following describes the process of the Bayesian

estimation of the parameters of the mixture model.

1) Choose hyperparameters appropriately so that ξ, κ, α, ν, S2 and number of

components are defined. An additional parameter is required, µMAX, which

represents some maximal value that the largest component mean cannot

exceed. This ‘parameter’ is required only for computational/coding purposes

and is chosen to be large enough so that no component mean will ever be

even of the same order of magnitude as it. Essentially, this is a way of making

the prior on the means proper (normalisable).

2) Generate sensible starting values for the parameters. It is worth noting

here that the starting parameter values should not affect the posterior den-

sities, and, regardless of the starting location, the same posterior densities

should be obtained subject to satisfactory mixing with some burn-in. Let the

index used to denote the iteration one is at be u, initialised at u = 1. The

initial component mean vector, µ(1) is set to equal the prior component mean

vector, ξ. The component variance vector, σ2(1), is set to equal the expected

value of the prior distributions on the variances i.e. σ2
i (1) = S2

i /(νi − 2).

The p(1) vector is initialised so that the starting prior probability that a

founder belongs to each of the k components is 1/k. The starting values of

the allocation matrix z(1) are obtained by assigning each data point to the

component that its τ value is closest to in terms of absolute value (with ties

broken at random).

3) Create storage variables to store the values of µ, σ2, p at every iteration,

as well as the number of data points assigned to each component at each
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iteration. Storing the allocation matrix, z, in its entirety at every iteration

is not done due to its size (a model with 4 components, containing even just

100 founders, with 50, 000 iterations after burn-in, would require an array

with dimensions (100, 4, 50000) for complete storage). Instead, create one J

by k matrix which will store the sum of the z matrix across all iterations,

so that row j of the matrix represents a vector that displays the number of

times that founder j was assigned to each of the components.

4) Loop through the following until ‘burn.in (B) + number.draws (I)’ is

reached.

5) Update the mixing fractions. Draw p(u + 1), using (4.55). If (u + 1) > B,

store p.

6) Update the z matrix (allocation of founders). Draw z(u + 1) using (4.56).

If (u + 1) > B, add z(u + 1) to the cumulative z matrix.

7) Update the component means. Draw µ(u + 1) using equation (4.53). If

(u + 1) > B, store µ.

8) Update the component variances. Draw σ2(u+1) using (4.54). If (u+1) >

B, store σ2.

9) Increment u

10) Restart loop provided u < B + I.

11) Return storage objects.
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4.7.8 Some examples

In this section, the algorithm is demonstrated in some constructed cases

where data (the τ ’s still) are simulated and known, and the priors are selected

to be appropriate for the simulation. One notes here that the scale of the

parameters is set to loosely match what will be used in real data analysis,

namely that time will be measured in units where 1 unit corresponds to

approximately 20, 000 years, matching the mutation rate of the segment of

mitochondrial DNA to be analysed later in this thesis. This time scaling

knowledge aids hyperparameter selection since one can be confident that the

migration periods of interest (in the case of humans) all would have occurred

within the last 100, 000 years, or certainly within the last 200, 000 years. This

allows the scale of time measurement to be safely constrained within (0, 10),

corresponding to (0, 200, 000) years before present (YBP).

The first example considered shows the method’s performance for a case with

two hypothetical components which have some degree of overlap in their tails.

Namely, one imagines two migration periods, corresponding to two normal

distributions with means (0.45, 1.3). The components are assumed to have

standard deviations of 0.2, and, from this, 100 data points are simulated from

both distributions. Figure 4.6 shows the two distributions which were used

for this simulation.

It should be noted here, before considering the model’s performance, that

this case, although very artificial, does demonstrate what could be consid-

ered a problem with using a mixture model to estimate the dates of migration

periods. One can conceptually imagine a data point being simulated from

the normal distribution centred at 0.45 in figure 4.6, and being found to have

come from the right tail of the distribution, for instance a value of 1.1. The
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Figure 4.6: Plot showing the theoretical normal distributions (components)

used to generate the data. Two components are envisaged, with means at

0.45 and 1.3 ρ units, both with standard deviation 0.2.

mixture model set-up makes use of the allocation vectors (the z) to assign

each data point to a component at every stage of the process with a Gibbs

update. One could argue here that it makes little sense that this hypo-

thetical data point could be (correctly) assigned to the first component with

mean 0.45, yet its actual value is close to the mean of the second component

(1.3). This is indeed a troublesome issue conceptually. If the model was

correctly identifying this hypothetical point to belong to the first component

consistently, but also correctly identifying the component means, one is in

the unsatisfactory situation where the investigator would be forced to report

a migration event consistently associated with a migration period despite

the fact that its actual migration time (here assumed known, as it is simu-

lated, but would be otherwise inferred) suggests that it belongs to a different

migration period.

The problem described above though is not one that is consistent with the
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assumed migration process which generates the data. The migration process

is assumed to have occurred in short bursts, with each migration period

possibly even involving a large number of migration events over a relatively

small time scale. The assumptions about the migration process mean that

such a ‘problem’ that may be seen in a real data case is merely a consequence

of the data being relatively uninformative. It is important however to realise

that the model as discussed so far may in fact display such unfortunate cases

when a data point (inferred migration time) is assigned to a component

even although its migration time suggests such a component membership

to be unlikely. It is perhaps best to consider such problem cases as merely

indicating that the data point in question belongs to a founder sequence that

cannot be reliably assigned to any one specific component (such problem

cases generally will lie in the tails between consecutive components).
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4.7.9 Simulation 1

The data as simulated is graphed in figure 4.7.
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Figure 4.7: Histogram (left) and boxplot (right) of the 200 simulated data

points, 100 from each component. The standard deviations of both compo-

nents was set to 0.2.

With the data simulated, appropriate priors are chosen to match the data

well. In reality of course, this luxury is one which the investigator does not

have, but is of interest in this case to see the posterior densities under such

a case. To this end, priors are set as follows: ξ = (0.45, 1.3), ν = (4, 4),

S2 = (0.1, 0.1), κ = (1, 1), α = (1, 1).

The choice of ν and S2 gives rise to an identical prior density for both σ2
1 and

σ2
2 (figure 4.8), which has an expected value equal to 0.05, which corresponds

to a prior standard deviation of ≈ 0.22, and infinite variance.

One now looks at the posterior densities that are obtained. These examples

involved retaining 5, 000 iterations after first discarding 2, 000 iterations for
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Figure 4.8: Plot showing the prior distribution of σ2.

burn-in, with thinning so that every fifth draw was retained (resulting in a

total of 25, 000 iterations being undertaken after burn-in).

Figure 4.9 shows that over the course of the inference process, on average,

the correct number of data points are assigned to each component.
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Figure 4.9: Posterior distribution of number of data points in each compo-

nent.

Figure 4.10 shows that the posterior means of the components are slightly

shifted from their true values. This can be explained by considering the sys-



CHAPTER 4. FOUNDER ANALYSIS EXTENSION 145

Posterior Mean Density, Component 1

Component Mean

F
re

qu
en

cy

0.40 0.45 0.50 0.55

0
20

0
40

0

Posterior Mean Density, Component 2

Component Mean

F
re

qu
en

cy

1.20 1.25 1.30 1.35

0
10

0
30

0

0 1000 2000 3000 4000 5000

0.
0

0.
5

1.
0

1.
5

2.
0

Trace Plot of Component Means

Kappa=1
Iteration (Thinning=5)

C
om

po
ne

nt
 M

ea
n

Figure 4.10: Unnormalised posterior distribution of µ (left), together with

trace plot of component means (right).

tematic way that each component has data points incorrectly assigned to it.

The earliest component (which involved data simulated from a distribution

with mean 0.45) can only have data points incorrectly assigned to it from

those that belong to component 2, and these are likely to be data points

that when incorrectly assigned to the first component, would be found in

the right tail of the first component. Similarly, any incorrect assignments of

data points to component 2 that should belong to component 1 are likely to

be found in the left tail of the second component. Whether this issue is a

substantial problem or not is going to depend on the uncertainty in the data

from the outset. One notes that the true values of the component means are

not too far into the tails of the posterior density, and one can see that 95%

highest posterior density intervals would contain the true component mean

values.

One would hope to recover the correct standard deviation, which was set to

be 0.2 (with the sample standard deviations found to be 0.1796 and 0.1916
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Figure 4.11: Posterior distribution of σ (left) and the pi fractions (right).

Both unnormalised.

for components 1 and 2, respectively), which is the case (figure 4.11, left).

Figure 4.11 also shows the posterior distribution of the pi fractions, which is

seen to reflect what one would hope to see, in that the densities are centred

approximately on 0.5.

It should be clear that the method is performing reasonably well.
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4.7.10 Simulations with badly-chosen priors

In this section, the previous simulation is repeated except that the prior

hyperparameters are modified to ill-match the parameter choices in the sim-

ulation of the data. This section can be viewed as a test of robustness of the

method under prior misspecification. The first simulation involves a simple

change in the ξ vector, which was previously set at the true values of the

µ’s, (0.45, 1.3). One would hope that changing this vector so that it differs

from the truth would not have serious consequences on the posterior densities

obtained, particularly when the number of data points in each component is

as high as 100. Figure 4.12 shows the posterior densities to be little changed

when the ξ vector is set to (0.9, 0.95), with everything else remaining identical

to the previous case.
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Figure 4.12: Posterior distribution of µ after modifying the ξ hyperparameter

values (left) and the associated trace plot with the ξ hyperparameter values

being modified to (0.9, 0.95), shown as the broken lines in the figure (right).

While the ξ values only express one’s prior belief about the location of the
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component means, the κ hyperparameters can be viewed as being related

to the strength of one’s belief about the location of the components. Recall

that the prior component mean, conditional on the component variance, is

distributed as N(ξi, σ
2
i /κi). Setting κ to 1 is an obvious choice as it makes

setting (and interpreting) the prior distributions of the component means

more straightforward. Increasing κi above 1 tightens the prior distribution

of the component mean around its ξi value. Thus, as κ increases the hyper-

parameter ξ is given more weight: the parameters of the distributions which

lead to the posterior draws start to become dominated by the ξi prior, as κ

increases. This effect is shown in the next three brief simulations.

Holding ξ = (0.9, 0.95), but increasing κ1 and κ2 to 10, with everything else

held fixed, one obtains the posterior density and trace plot for the means as

shown in figure 4.13. Note that the component mean estimates have been

pulled closer to the ξ values (shown as the broken line on the trace plot).

It is also worth noting here that the posterior standard deviation starts to

show deviations from the true value, with both components demonstrating

slightly inflated posterior mean standard deviations of 0.221 and 0.226.

When increasing κ further one starts to see the prior having a significant

effect on the posterior densities obtained. Figure 4.14 shows the posterior

mean densities and associated trace plots when κ is increased to 20. It is

clearly visible now that the posterior mean densities are being strongly pulled

towards the ξ values. It is notable that other recorded variables, particularly

the number of data points assigned to each component, start to show large

departures from the previous cases seen with the less informative priors.

Figure 4.15 shows the posterior density estimates of the number of founders

in each component and the standard deviations.
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Figure 4.13: Posterior distribution of µ after modifying the κ hyperparameter

values to be 10 (left) and the associated trace plot (right).
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Figure 4.14: Posterior distribution of µ after modifying the κ hyperparameter

values to be 20 (left) and the associated trace plot (right).
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Figure 4.15: Posterior distribution of number of data points in each compo-

nent with ξ = (0.9, 0.95) and κ = (20, 20) (left) and the distribution of σ

(right).

Across the simulation the number of data points assigned to each component

spans the entire possible range of values. What is happening here is that

the large κ value is forcing the posterior component means to take on values

which are not supported by the data originating from either component. This

results in the allocations to components being fairly arbitrary (assuming that

both component means are far from the truth); the consequence of this is

that components can become empty. Empty components are problematic

as the next component mean (and other) updates then essentially become

draws from the priors, which are strongly peaked on the wrong values with

large κ. Further, the data points must be assigned to some component, and

this is why the number of data points in a given component is fairly uniform

when the component is not empty or containing all the data points. This

example shows that inappropriate prior choices can lead to problem cases

such as empty components, that is when the hyperparameters are chosen
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to be strongly informative with large mass at areas that the data does not

support. The posterior standard deviations show an incremental increase

again, which is to be expected when the posterior mean estimates are forced

(through prior choice) to occupy areas of migration time that the data does

not support.
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4.7.11 The sample size effect

An important issue is that of sample size. The luxury of a simulated data

set is one that an investigator does not have, and components are likely to

exist with a relatively small number of members. In this section, the number

of members in a given component is reduced to try to gain some insight into

the effects on the posterior density estimates.

The first example considered involved reducing the number of members of

the second (older) component to 50, while retaining the 100 members of the

first component. The means of the simulated data from each component were

found to be 0.456 and 1.293, respectively, with standard deviations 0.189 and

0.222 respectively.

With identical (the original reasonable) prior choices as described previously

one simply needs to inspect the plots that arise from the simulation. Figure

4.16 shows the number of data points assigned to each component, together

with a histogram of the stored values of the mixing fractions.

From figure 4.17, one can see that the component mean histograms do cer-

tainly contain the true values. What is perhaps more interesting though is

the trace plot of the posterior means, which displays greater variability in

the posterior mean for the second component (the one which contained only

50 observations).
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Figure 4.16: Posterior distribution of number of data points in each com-

ponent (left) and the histograms of the mixing fractions when component 2

only has 50 members (right).
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Figure 4.17: Posterior distribution of µ when sample size in component 1 is

100 and in component 2 is 50 (left) and the associated trace plot(right).
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4.7.12 The α hyperparameters

Recall from equation (4.55) that the full conditional distribution of the

mixing fractions is distributed as a Dirichlet distribution with parameters

αi + mi(z). Within Bayesian mixture models, it is normal for the hyperpa-

rameters to be chosen so that the prior on the mixing fractions is uniform on

the simplex
∑

i pi = 1, i.e. with αi = 1,∀i. While this seems reasonable, in

some instances this hyperparameter choice leads to results with some notable

consequences for cases that could be important in practice.

As discussed briefly previously, the process of reconstructing a phylogeny

from a modern day sample with the aims of attempting a founder analysis

necessarily brings with it the issue of a decreasing pool of sequences which

could be founder sequence types as one goes back further in time. This

has consequences in the allocation of founder sequence types for founders

that are estimated to have originated from periods which lie between two

components. The problem of allocating founder sequences that lie in the

tails of two components is actually more difficult than one would first think;

it turns out that founders lying exactly between 2 components with equal

variances, are more often assigned to the component with the largest number

of members. This can be explained by considering the following theoretical

example. Of course, such an artificial construction is not likely to occur as

clearly as shown below in practice. However, the case discussed is instructive

in explaining the issue at hand.

Assume a two-component model with component densities which have lit-

tle overlap in the tails of the distributions, for example two normal densi-

ties which are fairly well separated and sharply peaked so that little mass

is contained in the tails. Now, suppose the data is informative enough so
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that at every stage of the inference process, the posterior component means,

variances and all other parameters of the model are accurate (within some

acceptable range of values since these will be varying at every iteration).

Further, consider the allocation update (4.56):

zj|τj, θ ∼ M2(1; p1(τj, θ), p2(τj, θ)),

where

pi(τj, θ) =
piϕ(τj; µi, σi)∑2

l=1 plϕ(τj; µl, σl).

One can see that, in the allocation equation, in the case where the τj (mi-

gration time) does not give any information about component membership

through its probability density value (i.e. it lies between two components in

such a manner that the normal density part of (4.56) contributes the same

for both components), all that remains that determines the parameters of the

allocation update are the pi fractions. This leads to a problematic situation

where a founder is assigned more often to one component over another, sim-

ply because the distribution which determines the assignment has parameters

that are strongly influenced by the number of members of each component.

Formally, the full conditional distribution of the p vector is p|τ, z ∼ Dir(α1 +

m1(z), α2 + m2(z)). When the number of members of both components are

finite (and ‘small’), and one component has twice the members of the other

(call the sizes N and 2N), with αi = 1, the full conditional distribution that

is drawn from becomes Dir(1+2N, 1+N). This distribution tends to give p

vectors which can assign relatively large values to the entry that corresponds

to the component with the largest number of members. Figure 4.18 demon-

strates this property for the specific case when N = 50. Now, when one
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returns to the allocation update equation, in the absence of any information

about component membership from the respective τ value of the founder,

the multinomial draw which assigns the founder to a given component can

be viewed as almost exclusively being determined by the p vector. The end

result of this is when the founder time is very uninformative with regards to

component membership, the allocations of founders to components can be

strongly influenced by the number of founders in each component, as this

determines the p vector’s contents. Of course, one may argue that the above
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Figure 4.18: Density curve of the Dirichlet distribution, Dir(1 + 2N, 1 + N),

with N = 50.

is in fact not a problem with the model or the updates, and instead argue

that this is in fact one of the strengths of the Bayesian approach. To this

end, it can be argued that one is using the information in the complete data

set which has determined (we can assume for the moment, correctly) that

one component does indeed have more members than another. In the cases

when the migration times are unclear or even completely uninformative with

regards to an assignment to one of two possible components, one can argue
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that the complete dataset has identified that it is more likely to have come

from one component (the larger) over another. Taking this hypothetical ar-

gument to an extreme, one could ask the question ‘In the absence of any

migration time data, in a two-component model in which the experimenter

was satisfied that one component contained double the number of data points

of the other, where would such an experimenter assign such an uninformative

migration time if such an assignment had to be made?’.

While this discussion is of interest in its own right, the issue is slightly more

complicated within population genetic models where one knows from the

outset that the pool of sequences from which one could identify founders

is non-increasing as one goes back in time (since the number of ancestral

lineages is a death process). Relating this to the discussion at hand, one

could argue that the complete data set may not always be correctly identifying

that one component contains more than the next, and instead may just be

reflecting the fact that the number of coalescent events decreases going back

in time, as does the number of potential founder sequence types at each

migration period. The consequence of this is that it is plausible that the

number of founders belonging to each component decreases as one moves

from the most recent migration period to the oldest only because of the way

in which a phylogeny is reconstructed. It is in fact very plausible that the

latest migration period considered may in fact only contain a very small

number of founder sequences. In such a situation it is difficult to support

the idea that in cases where the migration times are very uninformative one

should put significant weight on the number of founders assigned to each

component.

With the previous discussion complete, one returns to specifying the α vector
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hyperparameter. The first question of interest is whether setting αi = 1,∀i, is

a sensible, or even ‘safe’, hyperparameter choice. The answer to this question

turns out more straightforward when considering the possible alternatives.

One could attempt to incorporate the prior knowledge that the pool of possi-

ble founder sequences types is decreasing as one moves from the most recent

migration period (component) to the latest migration period and try to ma-

nipulate the prior distribution in such a way as to model this effect. This

would involve a non-symmetric α vector, with αi ≤ αj, i < j. Essentially,

this option puts more weight on assignments to older components (compared

to the αi = 1,∀i, case) when the τ value is relatively uninformative. The

problem with such a hyperparameter choice is that it relies on a prior judge-

ment being made by the investigator about the relative rate of decrease in

component size due to the ancestral death process. This is a difficult problem

in its own right and such an approach would be extremely difficult to justify

in practice.

An intermediate hyperparameter choice would be one which involved a Dirich-

let prior with an alpha vector consisting of a single value greater than 1.

This option brings with it the nice feature that, for components with very

few founders assigned to them, in cases where the τ value is uninformative

for assignment purposes, the p vector is moved closer to being a symmetric

vector with all entries equal to 1/(number of components). The problem of

course in this case is that, as αi = α →∞, the model is essentially throwing

away any information in the data that exists about the relative number of

founders contained in each component.

The final option is a compromise that attempts to reduce the effect of the

death process that is likely to cause the number of founders to decrease as one
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goes back further in time, while, at the same time, attempts to reduce the

number of allocations that are made based on only the number of founders

that belong to different components. A possible option is to repeat the

analysis for a range of α values, including 1, and up to the α value which

results in no single element of the p vector falling below a given threshold

(ω) set by the investigator, on average (e.g., in a two-component model, the

investigator may wish to increase α in increments of 5, until such a time that

the minimal element of the p vectors, on average, is no less than ω).



Chapter 5

Data analysis - preparing the

dataset

5.1 Extracting the data

With the method of analysis previously described, I set out to prepare a

suitable dataset to analyse. Fortunately, the original database used in the

work of Richards et al. [26] was available to me. This automatically provided

the necessary data/founder sequence type age estimates (ρA and na) under

each of the f0, f1, f2 and fs criteria. However, this was no longer sufficient

since my method requires the ρ data for the enclosing/containing clusters. In

what follows the cluster that is defined by the ancestor of a founder sequence

type will be referred to as the ‘containing cluster’. To obtain the required

data (nb and ρB), the original networks as constructed by Prof. Richards

were necessary to enable the trees to be re-created and the nb and ρB data

calculated.

Before discussing the data preparation process in some detail it is worth not-

160
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ing here an important difference in the containing cluster data compared to

the founder cluster. The original cluster (defined by the identified founder se-

quence type) contains only European sequences, while the containing cluster

almost always contains at least a single Near Eastern sequence (the pres-

ence of such sequences was necessary to identify the founder; however recall

that some founders were inferred founders). In many instances it was the

case that the containing cluster was much larger than the founder cluster

(perhaps twice the size or more). The initial reaction one has is to assume

that this is a good feature as (under the assumption of a connected star-

tree model) a larger number of descendants should be good for inferential

purposes when the ρB calculation is done. This raises some other statistical

issues which are open to discussion, e.g. those of sampling.

5.1.1 Sampling considerations.

Sampling issues in this context encompass some standard statistical problems

such as sample size, but unique sampling questions arise which are specific

to genetic data, and some of which are particular to any method which is

based on identifying sequences which are likely to be involved in migration

events. It is somewhat unfortunate that a present-day sample of thousands

of sequences may give rise to only 100−200 inferred founder sequence types.

This problem is one which can be easily appreciated by considering that

the most common European sequence types are necessarily sampled most

often in a random sample, and these common sequences contribute almost

nothing in defining more founder sequences, since, under the assumption that

the correct founder(s) have already been identified, most common European

sequence types will simply add one to the na value of that founder cluster,

essentially contributing nothing to the dataset that is actually used in the
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analysis, other than a slight refinement of the na and ρA values for that

cluster.

Increasing the sample size of Near Eastern sequences is a more difficult con-

cept to evaluate, as founders can be inferred based on only a single Near

Eastern sequence. With a finite European sample, fixed and unchanging,

increasing the number of Near Eastern sequences in the sample is useful only

up to the point where the founder list is saturated (every founder sequence

type is identified). As far as I am aware, no work has been published to

try and model the number of inferred founder sequences as a function of the

number of Near Eastern sequences sampled. It is my belief that the number

of inferred founder sequences would increase relatively quickly as the number

of Near Eastern sequences increased from zero to some small value as each

newly introduced sequence would have a high probability of defining some

new founder cluster. However, once the number of Near Eastern sequences

sampled reaches more moderate levels, the rate at which new founder se-

quences would be identified would decrease (as some Near Eastern sequences

would not define new clusters), and, given a finite European sample, adding

more Near Eastern sequences would eventually result in no change to the

founder list.

Of course, in reality, the number of European and Near Eastern sequences

will be finite and not extremely large. The sampling issue that one has to

deal with initially is that of sampling proportion. Does one sample more

Europeans with the aim of obtaining relatively good ρA values (especially

for the founders of the most common sequence types), but accept that this

could result in few inferred founder clusters, some with a large number of

members? Or, does one sample more Near Eastern sequences with the aim
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of identifying more founder clusters, but accepting that some may be very

poorly defined with perhaps only one or two European sequences contained

in many clusters? A more difficult sampling question, but perhaps a more

important one, brings cost into the problem: even assuming that the optimal

sampling proportion had been identified, given a finite amount of money, does

one sample more sequences (in the ‘optimal’ proportion) or does one sequence

more sites on the sequences of a smaller present-day sample?

Sampling issues are unfortunately, by their very nature, issues which should

be worried about before any data is collected, and as a consequence no solu-

tion or any suggestions as to a proper sampling procedure will be put forward

here. However I would hope that any future studies that may be undertaken

using methods such as founder analysis will think harder about such issues

at the data-collection stage.

5.1.2 Reconstructing the networks

The original hand-drawn networks of Richards et al. were obtained through

personal communication and formed two folders of drawings which were used

as the starting point in the original work. Before continuing it is necessary to

clarify the original notation. The notation r was used to define the number

of mutations on the (assumed star) tree of that founder cluster. Such founder

clusters often did not resemble perfect star trees and had ρ mutations which

contributed more than a single count to the r value. Thus, I now simply

extend this notation a little and introduce rA as the number of mutations

(being careful to remember that ρ mutations contribute more) on the subtree

defined by the founder sequence type, and rB as the total mutation count on

the full part of the tree defined by the founder sequence type.
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The founder criterion f1 was selected for analysis, the primary consideration

being that of sample size: the f1 criterion identified 134 founder sequence

types compared to f2 which identified only 58 founder sequence types. Al-

though use of the f0 criterion would have involved a larger founder pool (210

founder sequence types), it undoubtedly is subject to the largest number of

false positives as it involves no filtering of the founder candidate list: inflat-

ing the size of the founder list is difficult to justify when one knows that

the additional founders do not pass the more stringent criteria for inclusion

under the f1, f2 and fs criteria. The fs criterion (106 founders identified)

was rejected due to the rather arbitrary formula used to identify founders

as has been explained earlier. It is perhaps worth noting that [26] put more

weight on the fs list; it is my belief that, until this criterion is subject to

more thorough investigation, its performance is open to question. The f1

criterion filters out the most likely false positives, provides a relatively large

number of founder sequence types and the method it uses to select founders

is very well determined and clear. It is noted here that 31 founders identified

under f1 were not identified under fs, while only 3 founders identified under

fs were not identified as founders under f1. This observation is of interest

as it shows that the fs list contains the same core inferred founder sequences

as that of the f1 list.
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5.1.3 The data extraction process

The reader is encouraged to consider the data preparation and cleaning de-

scribed here as it gives insight into some simplifications that are made in

the method. Before worrying about any nb or ρB calculations, the database

and diagrams were used to re-construct the phylogenies. As the na and ρA

values were calculated from European sequences, it became clear that the

assumption of a star tree and no (or little) recurrent or parallel mutation

actually was an extremely strong one, as often one would see identical Euro-

pean and Near Eastern sequence types (defining the founder cluster), but yet

the necessary reconstruction that gave a founder cluster with only European

sequences required parallel mutations, and in some instances involved sites

which were not ‘fast’.

An example of this is founder sequence type h10 (256), which was a sequence

seen twice in Europe and once in the Near East. The problem with recon-

structing h10 (and the other similar founder clusters) was that it had founder

sequence type h73 (148 256 319) as a subcluster (although this was a founder

only under the f0 criterion). Figure 5.1 shows this cluster. The resolution of

this h10 cluster provides some insight into a problem which was not obvious

from the original paper. Dealing with h73 first (although this would not

feature in the f1 dataset), this f0 founder sequence type consists of a cluster

only with 2 members having the same mutations (148 256 319).

Reconstructing h73 was indeed trivial, but the problems start appearing

when one considers reconstructing h10 which also contains both sequences

from h73. At first glance, h10 looks equally as trivial to reconstruct, it

contains only a single Near Eastern sequence that shares the same sequence as

the founder sequence type (256). All of the additional European sequences in
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148, 319, 256

Founder h73 Founder h10

256

Figure 5.1: Founder sequence types h73 (left) and h10 (right). Mutations

which feature in both founder clusters are numbered, other mutations are

represented by solid circles. The two members of h73 are part of h10 and

need to be added to it.

h10 have a mutation at 256 and some other mutations that are easily resolved

(no additional shared mutations at all). However, the European sequence

(148 256 319) that formed part of h73 now needs to be considered part of

this founder cluster. It is natural to assume that one can just place an extra

branch on the tree with the 148 and 319 mutations to represent this European

sequence in this founder cluster. This is problem-free as these mutations do

not feature elsewhere in the reconstruction of h10. The issue that presents

itself is how to deal with the Near Eastern sequence (148 256 319). None of

these sites is ‘fast’, so one does not really wish to add an identical sequence

to the Near Eastern side of the tree: such a parallel mutation is unlikely.

Ideally, one would wish to add this sequence to the same part of the tree as

the identical European sequence just added (a back-migration into the Near

East). This, however, violates the assumption that the original migration

occurred, forming a founding sequence (assumed here as 256), which then
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dispersed in Europe giving rise to derived sequence types. The only recon-

struction that gives only European sequences below the h10 founder sequence

(256) requires a parallel mutation in Europe and the Near East that gives rise

to the (148 256 319) sequence seen in both areas. If one allows Near Eastern

sequences in the founder cluster (perhaps arising due to back migrations)

and one simply wishes to include only the European sequences in the ρ cal-

culation then this is fine and such a reconstruction would give values which

agree with the original database. In all of the reconstructions undertaken,

the trees were resolved by parallel mutations in such circumstances, leading

to values which agreed with the original work, although this does raise some

questions about likely back-migration.

Taking the previous issue further (perhaps a more obvious complication that

arises when considering the need now for nb and ρB data), the containing

clusters which make up the connected star tree from which the nb and ρB

values are determined often contain multiple f1 founder clusters as part of the

comb, and in some rare cases the containing cluster coincides with a major

cluster/haplogroup. An example of this is founder u22 (reference sequence

in U) which had as its containing cluster all of U, which amounts to 1296

sequences. Further, founder hv06 ([067]) has as its containing cluster all of

HV, which includes the most frequent haplogroup in Europe, H, as well as V.

It is perhaps worth naming the founders here that coincide with the major

haplogroups, as the nb and ρB data that arise from them are of some interest.

They are u22 (reference sequence in U), w01 (W, 223 292), v01 (V, 298), i01

(I, 129 223), k01 (K, 224 311), ph01 ( (pre-HV)1, now R0a [63], 126 362),

x01 (X, 189 223 278), n05 (N1a, 172 147t 223 248 355), n01 (N1b, 145 176t

223), n07 (N1c, 201 223 265), j00 (J, 69, 126), hv06 (HV1, [067]), t01 (T,

126 294), and h00 (reference sequence in H).
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Perhaps a more troublesome issue results from the fact that the reconstructed

phylogenies occasionally had common mutations (at fast sites) occurring

more than once in different parts of the tree, and occasionally as back mu-

tations within a given cluster. The definition of ρ essentially is the average

number of mutational differences between the node in question and those

forming the external edges. However, when calculating the ρB data it was

seen in some instances that the containing cluster could have a mutation

at some fast site (e.g. 189), and then much further down towards the tips

of the comb, that same mutation could occur again (perhaps for more than

one sequence). The site in question could then agree with the sequence it

is being compared to, but only because two transitions have been assumed

to have occurred at that site (for each of the sequences that have had the

back-mutation).

The question is whether one counts these as being an extra two mutations

different from the node they are to be compared with. I have counted these

as multiple mutations. This is motivated by considering a (hypothetical)

reasonable tree reconstruction, for example, done by a reputable geneticist.

The reconstruction has a node labelled A carrying no mutations (some sort

of reference that we wish to date). This node has many descendants, and one

major branch of its descendants carries the mutation, mutation 1 occurring

at site α. Within this major branch a minor branch is reconstructed which

contains a new mutation, mutation 2 at site β (defining this minor branch).

However, within this minor branch a sequence exists (node B) which has

a back mutation at site α. Assuming the reconstruction to be correct, it

seems perfectly reasonable that, when trying to date node A using ρ, both

mutations at site α are counted. Failing to do so suggests that one is unhappy

with the reconstruction or is being selective in the use of the data provided
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by the geneticist’s reconstruction.

Figure 5.2 shows a summary of the complete dataset as will be analysed

with the extended founder analysis method and table A.1 of Appendix A

shows the complete dataset. More detailed figures (figures A.1-A.10) can be

found in Appendix A which explicitly detail the founder label, as well as

the na and nb values for each founder. These additional figures do warrant

some inspection as they do contribute to one’s understanding of some of

the problems of both the original founder analysis method and the proposed

extended founder analysis method.
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5.1.4 Observations on the prepared dataset

The additional figures in the Appendix use hollow points to signify when the

ρA and ρB values exhibit the property that ρA ≥ ρB, which is particularly

problematic for any method (such as my proposed method) which uses this

data to estimate the relevant τA and τB values. It should be noted here

however that this issue, where using a dating method to date the ages of

nodes on an assumed phylogeny can suggest nodes having the ‘wrong’ date

ordering, is a problem which never manifested itself in the original method

[26] since only a single ρ estimate was calculated for each founder sequence

type. The only new problem here is that of ensuring this feature does not

disrupt the statistical analysis (in particular, the mixing).

It is of substantial interest to note that many (41) of the dataset ρA values are

zero. This is unsatisfactory if the investigator wishes to relate these estimates

to the migration time of that founder. Almost every major haplogroup has at

least a single founder sequence with a zero ρA value - the reconstructed cluster

that belongs to that founder sequence type does not display any mutations

at the sites that have been sequenced (usually due to the cluster being tiny,

perhaps of only 1 or 2 lineages).

On a related point, it is notable in many instances (e.g. founders j00, j03, n05,

u22, u31, to name a few) that the ρA and ρB values can differ quite markedly.

The issue which then arises is which estimate is likely to be closest to the

true unknown migration time/founding event. This is something that one

cannot say with any certainty.

A final note is that, in the cases where the ρA and ρB values do not display

the natural ordering one would expect, it is extremely rare in such cases to see

large discrepancies (≥ 0.25) between the ρ values, and in almost all cases the
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sizes of the founder clusters (the na and nb values) in question are small. An

exception is h01 which has na = 108, nb = 131 with ρ estimates in the wrong

order (although very close), while hv06 has na = 5, nb = 1254 (due to the

containing cluster containing all of H and V), with the ρ estimates again in

the wrong order. These odd-seeming cases actually are helpful in evaluating

and understanding the method’s performance and for investigating mixing:

these issues will be revisited in the data analysis section.



Chapter 6

Data analysis

6.1 Re-analysing the original dataset using

the original method of analysis

The dataset (in terms of the ρA and na values) as reconstructed was only

slightly different from that which was used previously [26]. These differences

arise because of the way in which mutations on singleton founders were allo-

cated. This change however has the effect of making some founder clusters

appear older, as well as possibly having implications for the Sm proportions

(recall equation 2.3). Regardless of these (minor) changes, it is desirable to

re-analyse the data in the identical manner to that of the original paper so

that comparisons can be made between the old and improved methods. To

this end the na and ρA data was used in isolation and the original method of

analysis was re-coded in R [42]. Using the same assumed mutation rate of 1

transition per 20, 180 years [35] (between positions 16090 and 16365), the age

estimate of each founder cluster was evaluated (note however that a recent

recalibration [64] suggests that a faster rate is likely). The re-analysis gives

173
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50% and 95% credible regions for the age of various founder clusters as shown

in figure 6.1 (which requires 25 or more members in the founder cluster for

inclusion, approximately 1% of the European sample), while figure A.11 in

Appendix A shows a similar plot (which requires 40 or more members in the

founder cluster for inclusion, approximately 1.5% of the European sample).

These figures display the founders in order of age as measured by the lower

end of the 50% credible region.

The dashed vertical lines at 9000, 14500, 26000 and 45000 YBP represent

estimates of the ages of the Neolithic, late Upper Palaeolithic (LUP), middle

Upper Palaeolithic (MUP) and early Upper Palaeolithic (EUP) respectively,

with an additional period added at 3000 YBP to ‘mop-up’ sequences aris-

ing from more recent migration periods/events as described in the original

paper. A figure (Figure 1, page 1266) of the original paper displayed sim-

ilar information (but for ≥ 40 lineages). It should be noted however that

the original paper used the fs founder-identification criterion, so direct com-

parisons cannot be made without considering the consequences of using f1

instead of fs. The entire set of credible region values can be found in table

A.2 of Appendix A.
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The Sm values returned from this analysis can be seen in table 6.1, which very

closely matches the original values [26, table 4, page 1267], with some minor

differences due to minor dataset modifications. A graphical representation

of table 6.1 is presented in figure 6.2.

Recent Migrations

Neolithic

late Upper Palaeolithic
middle Upper Paleaolithic

early Upper Paleaolithic

Figure 6.2: Pie chart of the Sm proportions for the f1 founder list using the

original founder analysis method.
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Table 6.1: Percentage of the European sample assigned to each period under

the assumed migration model, together with the root-mean-square error.

Period Mean posterior percentage RMS Error

Recent Migrations 6.20 1.25

Neolithic 22.22 3.10

late Upper Palaeolithic 60.60 3.42

middle Upper Palaeolithic 9.40 2.14

early Upper Palaeolithic 1.59 1.03

6.1.1 Some observations

It is reassuring from a code correctness perspective that the results obtained

do not differ to any significant degree from those presented in the original

work. The Sm proportions obtained and the dates of founder clusters closely

match those presented in the relevant figures and tables detailed in the pre-

vious sections.

What is more interesting to note is that the f1 criterion provides dates for

founder clusters which are, in general, more recent than those obtained by

the fs analysis. This information was essentially available for extraction in

the original paper but it is slightly disconcerting that substantial differences

in the age of clusters can occur when the criteria used to define the candidate

founder list is changed. The selection of the f1 founder list has been justi-

fied previously. However the reader is reminded that the extended founder

method which I am proposing in this thesis is likely to place the age estimates

of founders further back, essentially allowing them to appear older due to the

removal of the assumption that the sequence involved in the migration event
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coincides with a node on the reconstructed phylogeny and then immediately

disperses (forming the assumed star tree).

It is reasonable to assume that the original method is assigning dates which

are too recent, and the reader with some concerns as to the dating of some

clusters under the f1 criteria, which may appear too young, is reminded that

these can now be viewed as an estimate of the youngest age of such founders.

A specific example is founder u22, the reference sequence in U; this has a

95% CR with an upper limit of 28, 312 YBP. However, the ρB estimate for

this founder (which is ignored in the re-analysis using the original method)

is just below 3, which corresponds to a date of just under 60, 000 YBP. It is

acknowledged here that the choice of founder criterion used does affect the

results when using the original method and this leads to the acknowledgement

that the choice of criterion would almost certainly affect the results of the

extended founder analysis method in the coming sections. Regardless, for the

purposes of investigating the method and its performance, and comparing it

with the previous method, the choice of a single criterion (f1) is sufficient

and reduces the need for duplicate analyses that contribute very little towards

gaining a better understanding at a statistical level of the extended method

of founder analysis that I am proposing.

A thorough re-reporting of the conclusions relating to the Sm proportions

already published in the original work is not appropriate here, and instead

it is perhaps best to hypothesise how the Sm estimate (or the equivalent

estimator) is likely to work in the extended method. Recall that, at every

stage of the extended founder analysis method, every founder is assigned to

a component (period); from this, the distribution of the proportion of the

European sample that is assigned to each period can be produced.
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6.1.2 Some limitations of the analysis

Inferred founder sequences, age estimates of such founders and an estimate

of the proportion of the European sample assigned to each migration period

of interest are useful and informative, but one may ask what is missing from

this analysis. It is of concern that the age estimates of some founders do not

span any of the proposed migration periods. A problem with the age esti-

mation procedure used in the original work (based on a gamma distribution)

is that the investigator is led to think that the ‘best’ (most probable) age

estimates lie somewhere near the middle of the age bands shown in figure

6.1. For instance, the 95% CR for founder u22 (reference sequence in U)

is seen to span both the early and middle Palaeolithic, with the 50% CR

being uncomfortably centred between both. If the assumption that the early

and middle Palaeolithic define significant periods of migration (with little

migration in between), it is reasonable to suggest that one would wish the

most probable ages of any given founder cluster to be close (in some sense)

to these assumed significant periods of migration, and not instead centred

directly between them.

Taking the previous point a step further one can see a related problem, in

the presence of uninformative data subject to large variability (as is the case

in many genetic datasets), but where the investigator is prepared to make

the assumption that the major migration periods defined certainly existed,

were at least ‘close’ to the assumed dates, and were separated by periods of

little migration. Then, one would hope that an appropriate analysis would

acknowledge this uncertainty with perhaps disjoint credible intervals, one for

the situation where the cluster was assigned to the first period, and one when

assigned to the second period. It is difficult to argue for a method that returns
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age estimates which in many respects contradict the model assumptions that

allow the analysis to be possible.

Indeed, it may be the case that some of the problems just described arise

simply because of the uncertainty that is underestimated due to simplifi-

cations and assumptions (e.g. assuming a single phylogeny being ‘correct’,

ignoring other possible reconstructions, greatly underestimates the variabil-

ity). Accounting for such sources of uncertainty certainly would result in

date estimates which had more variability associated with them (and thus

founders which span no migration periods become less likely). Regardless of

this, it is undesirable that the original method cannot return age estimates in

a way which attempts to respect the defined migration periods. It is never the

case that an α% CR for a founder age estimate can be composed of disjoint

intervals, with each interval being close to the assumed migration periods.

The gamma distribution on the ages of founders which do not lie close to a

given migration period is basically inappropriate due to the contradictions it

introduces with the original modelling assumptions that are believed to give

rise to the data.

A final concern with the original method’s conclusions arises due to the fact

that over 50% of the European sample of sequences is assigned to only six

founder clusters (from the total set of 134 founders). One could argue that

a quantity such as the proportion of the European sample assigned to each

migration period is highly influenced by these six founder clusters. Indeed,

founder cluster h00 contains 31.25% of the European sequences and as a result

is highly influential in the Sm proportions obtained. Removing this founder

from the analysis changes the values obtained dramatically, and one could

argue that this makes the method extremely sensitive to a small number of
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data points.

It will be shown in the remainder of this thesis that the extended version

of founder analysis that is based on the use of Bayesian mixture modelling

allows some (but not all) of these issues to be addressed, although the cost of

extending the analysis to relax the star-tree assumption is that of lost preci-

sion in the estimates obtained. It will be argued however that the estimates

which arise from the extended model are more consistent with the under-

lying assumptions about the migration process. Additionally, the extended

model will be shown to return useful parameter estimates which could not

be obtained with the original method.

6.1.3 Extended founder analysis - fixed components

In this section, the extended founder analysis model will be used to re-analyse

the dataset once the new issue of MCMC mixing has been investigated. Re-

call from the previous chapter, which described the extended founder analysis

method, that the τA and τB updates arise from a Metropolis move with pro-

posals being the previous values with a small normally distributed deviation

on top of these. Moving through the (τA, τB) space for each founder is the

practical problem of mixing. In this section it will be assumed that the mi-

gration periods of interest are well defined and composed of k = 5 periods,

centred on some appropriate times which can be defined by the investigator,

with normal distributions with some appropriate variance representing each

migration period. Although this may seem restrictive, it will be shown that

this version of the model allows some estimates to be obtained which are

well-defined and interesting, and that are more difficult to interpret under

the more general extended method, and, as far as I am aware, no alternative



CHAPTER 6. DATA ANALYSIS 182

methods have been proposed in the literature which allow such estimates to

be obtained in such an objective manner as part of a more general method.

I feel it is necessary here to very briefly summarise some main features of

the extended founder analysis model already presented, together with some

features of the dataset that complicate any analysis (and particularly what

these mean for mixing).

It has been assumed throughout that the migration periods defined by the

investigator gave rise to founder sequences. As a consequence, the assumed

migration process that gave rise to the data does not really support large

numbers of founders that date between the assumed major migration periods.

Unfortunately, the ρA and ρB data does not always respect the assumed

dates of the major migration periods. The extended founder analysis method

provides a compromise to the fact that the data appears to contradict the

assumed model by putting distributions which are centred on the dates that

are believed to represent the major migration periods, while still having

probability mass on the periods between these assumed peaks of migration.

If the data were extremely informative, one would hope that each founder

would have ρ data which would allow its dating (τ values) to be close (in

some sense) to the centre of one of the migration periods. In the absence

of informative data, such as the case of a founder with ρ values which span

the entire range of conceivable values, it is of particular interest to ask what

one would wish to see in such date estimates - this issue has been touched

on very briefly already. One would not wish to give such a founder a date

estimate centred on the middle of the allowable region, together with an

estimate that put least mass on the extreme lower and upper ends of the

allowable dates. What one would like to see is an uninformative estimate
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of the date of the founder, that in some sense respected the model that was

assumed to give rise to the data. Of course, the completely uninformative

data point case is not the best case to aid any data analysis procedure, but

it is important that, in the completely uninformative case, the scope for a

(false) informative-seeming inference is low and, more generally, one would

hope that the parameter estimates obtained would be uninformative while

still respecting the assumed underlying migration process.

With a little thought, one realises that such an uninformative estimate should

consist of date estimates that are disjoint and close to the peaks of migration.

Assuming a fixed component model, and then given an additional single

founder sequence with, e.g. ρA = 0, ρB = 3.5, a satisfactory uninformative

estimate of the date of such a founding event would simply be one which

respected the current components, namely that the new founder belonged to

component i (i = 1, 2, . . . , k) with some probability Pi, and the only sensible

‘interval’ for the age of that founder that one could envisage is a sequence

of perhaps disjoint intervals (I1, I2, . . . , Ik), with each representing the age

estimate if that founder originated from migration period/component i.

6.1.4 Fixed mean and variance case

With the previous discussion in mind, a k-component model with fixed means

and variances can be set out. Overlapping components which cover the entire

space of allowable dates will be selected so that all possible ρ estimates are

supported in the model. Having such overlapping periods is not inconsistent

with the underlying assumption of major peaks of migration that define the

periods of interest. It simply represents our knowledge that no dataset is

ever going to strongly support the model of point masses at k distinct dates.
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k will be chosen to be 5 as in the original founder analysis work, and the

components will be defined in what follows.

If the MCMC chain for the extended founder analysis method could be run

for an infinite number of iterations, it would be the case that the proposal

distributions on the (τA, τB) updates would be largely irrelevant (under some

mild conditions). However in reality one needs to worry about the acceptance

rates of the proposed updates. Ideally, one does not wish to have an accep-

tance rate that is too low, as low rates mean that the parameters are not

mixing well, and can even result in cases where the procedure does not reach

a state of stationarity (and so does not in fact return draws from the posterior

distributions of interest). The converse is when the acceptance rates are too

high, which usually reflects not making large enough moves to explore the

parameter space. One wishes to explore the entire allowable region, includ-

ing the boundaries, and it is therefore expected that proposals will be made

which give parameter values that are not accepted. An acceptance ratio of

1 can often simply mean that the proposals are almost identical to current

values and, as such, the procedure is not mixing well.

In many MCMC applications, one can suggest various parameter values for

the proposal distributions and then use shorter runs of the code to help

select the appropriate proposal distributions which give satisfactory mix-

ing/acceptance rates. The issue of mixing is complicated further for the

dataset I will analyse. It has already been shown for some founders that

the ρ estimates obtained do not obey the natural ordering one would hope

they would. This is problematic as the τA and τB updates which depend

on the ρ data turn out to be rejected more often (on average) than those

cases where the ρ data do obey the natural ordering. It is fortunate that
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the proposal distributions do not need to be identical for every founder. The

proposals will remain fixed as being normally distributed with a mean equal

to the previous τA or τB value, with some standard deviation, σ, that is to be

defined. One could attempt to use some appropriate estimate of σ for each

founder computed from the data (eg the Saillard estimator [51]). Such an

estimate may be appropriate for a method which respects the true (binary)

tree structure of each founder cluster. Under the assumption of a connected

star tree for founder clusters, however, it is difficult to justify the use of such

involved estimators, when any σ value that gives reasonable mixing will lead

to identical posterior distributions. Alternatively, adaptive MCMC schemes

exist which could also be considered, which involve tuning the proposal dis-

tributions over runs (see [65]).

To investigate mixing, components will be assumed to have means centred

at 0.15, 0.45, 0.725, 1.3 and 2.25 units (roughly corresponding to 3000, 9000,

14500, 26000, and 45000 YBP). The standard deviations of the components

are more difficult to select and ideally should be elicited from researchers

working in the area. For the purposes of establishing mixing however, only

two values will be selected, 0.2 (representing very weakly defined components

with some large overlap), and 0.1 (representing better defined components

with some overlap, with only the oldest component being fairly isolated from

the rest). Graphical representations of these scenarios are shown in figure 6.3.

It is acknowledged here that both selected values are perhaps inappropriate

for the earliest component as large amounts of the component’s mass are lost

due to 0 YBP being the minimal allowable date; the final fixed mean and

variance case analysis will not have this problem as it will involve component

distributions that have been chosen appropriately: the cases considered here

are to investigate mixing only and in order to demonstrate a particularly
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interesting feature of this model.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.3: Hypothetical probability distributions of migration times for 5

components. Standard deviations 0.2 (solid lines), and 0.1 (dashed lines).

With the migration periods so defined, the variance of the proposal on the

τA and τB updates can be varied and the acceptance rates for each founder

determined. The σ values used here are 0.05, 0.1, 0.2, 0.3 and 0.5. The only

optional parameter values here were chosen to be αi = 1,∀i, and the compo-

nent means were fixed (assumed known) as mentioned previously. Burn-in

was set to 2, 000 iterations, and 5, 000 iterations were stored with no thin-

ning (thinning would be meaningless here as only the acceptance rates are

of interest, which do not change with thinning).

Tables 6.2 and 6.3 show the acceptance rates on the (τA, τB) moves for each of

the values of σ under the model with components of fixed standard deviation

equal to 0.2 and 0.1, respectively. It is notable that the standard deviation

of the components changing from 0.2 to 0.1 does not appear to have a large

effect on the number of founders in each band of (τA, τB) acceptance rates.
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Other runs (not shown) at the same parameter values gave almost identical

tables in all instances. It is clear however from the tables that a proposal σ of

0.05 is too low as over half the founders have (τA, τB) acceptance rates of 0.7

or greater, which is large (especially considering this is an acceptance rate on

a 2-dimensional parameter vector, and not a single parameter). Similarly, σ

values of 0.3 and 0.5 result in large numbers of founders having unacceptably

low rates. The decision between using σ being equal to 0.1 or 0.2 (or some

different intermediate value) is more of a subjective one. In what follows I

select 0.1 simply because further inspection of the acceptance rates at 0.2

revealed acceptance rates for some founders as low as 3%, while the high

acceptance rates of 0.6 (when σ = 0.1) or more which account for just over

40% of the founders can be dealt with using sufficient thinning to ensure that

the parameters have moved reasonably far from the previous values at each

stored iteration.

It is important to remember that the choice of the standard deviation of the

proposal distributions would be irrelevant if the method could be run indefi-

nitely. The previous provisional runs simply help to ensure that the process

mixes at a reasonable rate, and this in turn helps ensure that the chain has

indeed reached stationarity by the end of the burn-in period, and that the

stored parameter values represent draws from the posterior distributions. It

is clearly beneficial though to use pilot runs on the actual dataset to be anal-

ysed to help select appropriate proposal distributions. While it would be

possible to attempt to give general proposal distributions for any dataset to

be analysed using this method, it is my strong belief that datasets should be

dealt with on a case-by-case basis.
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Table 6.2: Number of founders with acceptance rates in each band when the

component standard deviation is set to 0.2.

Band σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.5

0.0− 0.1 0 0 6 14 48

0.1− 0.2 0 5 11 33 56

0.2− 0.3 0 5 31 45 19

0.3− 0.4 6 9 30 23 9

0.4− 0.5 4 25 33 10 2

0.5− 0.6 8 33 10 9 0

0.6− 0.7 33 34 11 0 0

0.7− 0.8 53 16 2 0 0

0.8− 0.9 24 7 0 0 0

0.9− 1.0 6 0 0 0 0

6.1.5 Extended founder analysis - fixed mean and vari-

ance case analysis

In this subsection, a complete re-analysis of the dataset will be undertaken,

using the same parameter choices, with a proposal distribution for the τA, τB

updates having a standard deviation of 0.1 (in light of the previous section).

Particular emphasis will be on displaying what is returned by the method.

Recall that the lowest acceptance rates seen when the proposals involved a

standard deviation of 0.1 were within the 0.1−0.2 band. A closer examination

of the runs for this proposal distribution revealed the lowest acceptance rate

to be ≈ 0.15. Acceptance rates are often misleading quantities as thinning of

MCMC chains is normal. An acceptance rate of 0.1, say, is not a major prob-
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Table 6.3: Number of founders with acceptance rates in each band when the

component standard deviation is set to 0.1.

Band σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.5

0.0− 0.1 0 0 6 13 48

0.1− 0.2 0 4 9 33 55

0.2− 0.3 0 7 27 41 19

0.3− 0.4 6 6 35 27 10

0.4− 0.5 6 18 31 10 2

0.5− 0.6 5 41 12 10 0

0.6− 0.7 33 35 13 0 0

0.7− 0.8 47 14 1 0 0

0.8− 0.9 31 9 0 0 0

0.9− 1.0 6 0 0 0 0

lem if the procedure is thinned substantially. That is, if no thinning was in

place, such a parameter’s trace plot would display regions where it was stuck

at a particular value, while thinning so that every jth iteration is stored,

where j is of moderate size, would still give the identical 10% acceptance

rate (approximately), but the trace plot would not display the same large

regions where the chain had not moved from previous iterations. In some

sense, thinning improves the distributions one obtains from an MCMC pro-

cedure, while at the same time reducing the dependence between the stored

iterations. Of course, the more thinning one does the longer the chain must

be run in order to obtain the same number of stored iterations.

Subjective inspection of autocorrelation plots of some of the parameters (not

shown) from the pilot runs suggested that storing every 4th or 5th iteration
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would be sufficient for removing the obvious correlation between iterations.

However, I opted to store every 7th iteration, simply because it further re-

duced any worry about dependence issues, while at the same time meaning

that the (τA, τB) values were likely to have moved between each stored it-

eration, reducing the ‘stickyness’ of trace plots. With the lowest observed

acceptance rate being 0.15, storing every seventh iteration meant that, on

average, the trace plots obtained should not display many regions where

(τA, τB) appear stuck.

Burn-in was set to 5, 000 iterations. Note that, for the fixed component

case, the (sensible) starting values for the parameters should mean that the

process reaches stationarity long before the end of the burn-in period, and

the burn-in here is, in fact, generous. A much larger number of iterations

will be stored here, and the number chosen to be stored was 25, 000, meaning

that 5, 000 burn-in iterations would take place, followed by 175, 000, of which

25, 000 would be stored after thinning. A run of this size takes approximately

8 hours on a Pentium 4 (3GHz) processor with 1Gb of RAM.

At the founder level, the analysis provides trace plots of τA, τB and τ , sum-

marised by a posterior density estimate of the date of the migration/founding

event (τ). An example of such output is shown in figure 6.4, where the output

for founder v01 is displayed. This plot is for the case when the components

were assumed to have a standard deviation of 0.1.

Such trace plots of quantities such as τ are informative as they often demon-

strate cases where the founder does not always get assigned to a single com-

ponent and this can often be clearly visible on the plot, with obvious jumps

where the founder has been re-allocated to a different component as the sam-

pler progresses. A more direct measure of component membership for a given



CHAPTER 6. DATA ANALYSIS 191

0 5000 10000 15000 20000 25000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Iteration Progress

T
au

 V
al

ue

0 5000 10000 15000 20000 25000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Iteration Progress

T
au

 A
 V

al
ue

0 5000 10000 15000 20000 25000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Iteration Progress

T
au

 B
 V

al
ue

Age of Founder (Rho units)

Tau

0.6 0.8 1.0 1.2 1.4

0
1

2
3

4
5

Figure 6.4: Trace plots of the three τ values for founder v01, together with

a histogram estimate of the posterior density of τ .
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founder is the z proportion matrix, which contains, for every founder, the

proportion of the stored iterations that each founder was assigned to each

component. The first few lines of such a return is shown in table 6.4.

Table 6.4: Extract of z proportion matrix. Note rounding means that some

rows do not sum to one.

Founder Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

1 0.00 0.01 0.99 0.00 0.00

2 0.00 0.01 0.99 0.00 0.00

3 0.00 0.04 0.94 0.01 0.00

4 0.01 0.10 0.89 0.00 0.00

5 0.00 0.00 0.30 0.70 0.00

6 0.00 0.00 0.87 0.12 0.00

7 0.00 0.09 0.90 0.01 0.00

8 0.00 0.00 0.55 0.45 0.00

9 0.01 0.05 0.84 0.10 0.00

10 0.00 0.01 0.91 0.08 0.00

The proportion matrix, together with the trace and density plots provide

useful information at the founder level. The z proportion matrix provides

some measure of how strongly to believe that a given founder does belong

to a given component. Similarly, some density plots are multi-modal, which

addresses the issue posed earlier regarding what the investigator would wish

to see when the data is uninformative.

Moving from the parameters at the level of single founders to those param-

eters and summaries that are global to the model, one obtains densities for
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the pi fractions, the probability that a random founder belongs to compo-

nent i (Figure 6.5, left), the number of founders assigned to each component

(Figure 6.5, right), and the proportion of the European sample assigned to

each component (Figure 6.6).
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Figure 6.5: Posterior density plots for the pi fractions (left), and the posterior

distribution (unnormalised) of the number of founders in each component

(right).

One of the major benefits of the fixed component case is the fact that

the global densities obtained have a consistent meaning, e.g. if ≈ 90 − 110

founders are being assigned to a given component and the component has

a fixed mean and variance, then interpretation is relatively straightforward.

Looking ahead, a density plot displaying identical features is much harder

to interpret if it is the case that the component’s location and spread are

varying throughout the iterations.

I now wish to touch on a troublesome issue relating to prior choice of the



CHAPTER 6. DATA ANALYSIS 194

Component 1
Prop European Sample

D
en

si
ty

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0
10

0
20

0
30

0
40

0

Component 2
Prop European Sample

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
10

20
30

40

Component 3
Prop European Sample

D
en

si
ty

0.4 0.6 0.8 1.0

0
2

4
6

8

Component 4
Prop European Sample

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8

Component 5
Prop European Sample

D
en

si
ty

0.00 0.01 0.02 0.03 0.04

0
50

15
0

25
0

35
0

Figure 6.6: Posterior distribution of the proportion of the European sample

in each component.

standard deviations of the components. In cases where a founder’s ρ values

are far apart, one would expect conflicting signals from the density plots for

the τ values of such founders - the age of such a founder should be unclear.

One would wish such uncertainty to be reflected in the density obtained,

and in previous sections some effort has been directed to trying to justify the

existence of a density plot that both respected the uncertainty in the age and

agreed to some extent with the process that is being assumed to have given

rise to the data, that is, waves of migration periods.

It is comforting to see density plots for some founders which display such den-

sities. Figure 6.7 (left) shows trace and density plots for such a founder, u27,

when components have an assumed standard deviation of 0.1. This founder

has ρA = 0.259, ρB = 1.615, and the dating under the original founder analy-

sis method gave a 50% CR of (4451.64, 7238.21) which can be back-translated

into ρ units to become (0.221, 0.359). Although interpretation is not the ma-
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jor issue here, it is worth noting that the 50% CR obtained from the basic

founder analysis method lies almost centrally between two assumed periods

of migration, and as such is inconsistent with the underlying model of migra-

tion.

The extended founder method gives older dates (reflecting the use of the ad-

ditional information that ρB = 1.615, which suggests that this founder’s age

is uncertain, and possibly much older than the ρA data alone suggests), while

the posterior density obtained is multi-modal, with most mass in the third

component, although the founder has been assigned to an older component

a smaller fraction of the time. The important point here is that the density

is no longer inconsistent with the assumed underlying migration process -

the modes in the density plot roughly correspond with two of the assumed

migration periods, while the extended tail at the left-hand side of the plot

represents the fact that this founder has been allocated to a more recent com-

ponent an even smaller fraction of the time. This is reflected in the z propor-

tion vector for this founder which displays (0.002, 0.043, 0.794, 0.161, 0.000).

It is difficult to argue that this is not an improvement over the original

founder method. The identical founder, but for the case when the compo-

nent standard deviation is assumed to be 0.2, gives rise to a trace and density

plot also shown in figure 6.7 (right), and a corresponding z proportion vec-

tor (0.003, 0.028, 0.836, 0.132, 0.001). The issue to note is that the posterior

density is not now multi-modal. Although this is perhaps a minor point (the

densities are not inconsistent, and one can see that they both display similar

information), but it should be clear that the prior choice of standard devi-

ation of the components has to be done with some care. Note that the τA

and τB densities seem less sensitive to changes in the component standard
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Figure 6.7: Trace and density plots for founder u27 when assuming the com-

ponents have a standard deviation of 0.1 (left) and 0.2 (right).

deviations, particularly when ρA and ρB are not close together.

6.1.6 Some observations

The dating of founding/migration events now respects the assumed under-

lying model: every τ estimate draws on the location and spread of the com-

ponents (currently fixed by the investigator). The original founder method

based its estimate of the date of each founder on the data provided by that

founder alone. In contrast, the extended method provides estimates which

are not inconsistent with the assumed underlying migration process.

Multi-modal density plots appear for founders whose ρA and ρB values are far

apart. The uncertainty is now represented in two ways: (i) in the migration

period that the founder should be assigned to, and (ii) within a migration

period, the uncertainty of that founder age conditional on it belonging to a
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given migration period.

The extended method appears to be mixing well for most parameters. How-

ever this has been helped by appropriate provisional examination of accep-

tance rates for (τA, τB) and adequate thinning. It needs to be stated however

that one parameter where mixing is potentially unsatisfactory for a very

small selection of founders is the z matrix. The z matrix is a quantity for

which mixing is quite difficult to evaluate. In some instances the ρA and

ρB data are extremely informative, in the correct order, and lie close to an

assumed peak of migration. In such cases one would expect the appropriate

row of the z-matrix rarely to change. This would not imply poor mixing.

The data supports a single allocation with movement to other components

not expected very often.

In other instances the ρ data span a range between two migration periods,

and inspection of the trace plots revealed that the sampler was jumping

between two components, but only very rarely, with large numbers of itera-

tions between each ‘jump’. This suggests poor mixing and one cannot really

trust the relative heights given to each period in the posterior density plots

(although the shape within each period should be more reliable).

It turns out that, if one ensures sufficient overlap in the tails of the component

distributions, the z matrix mixing greatly improves and no longer do trace

plots display only rare jumping between components. This is the first fix for

this mixing issue. A second fix exists which will briefly be discussed once

the problem has been illustrated. Figure 6.8 demonstrates the problem for

founder u21, which has ρA = 1.70, ρB = 2.22, an obvious problem case as

these values lie between the assumed migration periods centred at 1.300 and

2.250 ρ units.
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Figure 6.8: Trace and density plots for founder u21 when assuming the com-

ponents have a standard deviation of 0.1 (left) and 0.2 (right). Note the

two jumps in the trace plot when component membership changes when the

standard deviation was set to 0.1.

The two densities do support slightly different age estimates. However there

is no real contradiction. Dates that are closer to the assumed peaks of migra-

tion are supported more strongly when the standard deviation is set to 0.1

simply because the prior component distributions were set up to give much

stronger support for these dates. When the standard deviation is increased

to 0.2, the date estimates that lie firmly between the two assumed migration

periods have more support, which allows the data (via the ρ estimates) to

have a much larger influence on the dating, as it now conflicts less with the

locations and spreads of the components; essentially the data are now sup-

ported by the prior component distributions instead of conflicting with them

and the founder’s migration date is no longer forced to jump uncomfortably

between two periods when its ρ data support neither of them very strongly.

A mention is made here of the previous theoretical example given in Chapter
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Figure 6.9: Trace and density plot for founder h01 when assuming the com-

ponents have a standard deviation of 0.1 and prior alpha vector elements

equal to 20 (left). Marginal pi fractions when the elements in the α vector

are increased to 20 (right).

4, namely the effect of changing the α parameters so that the pi fractions (the

mixing fractions) are more balanced. It was suggested that the α values could

be increased so that the pi fractions would not display negligible support

for the components with least founders (particularly the oldest component,

reflecting the thinning out of the tree). It turns out that such an increase

in the values in the α vector also increases the number of jumps between

components in many cases, even for components which display almost no

jumps when α is 1, as figure 6.9 demonstrates for founder h01, when the

standard deviation is 0.1, but the α vector was (20, 20, 20, 20, 20), rather

than (1, 1, 1, 1, 1). This founder experienced no moves in the latter case.

There is one consequence of this, beyond that of a mere sensitivity analysis

(how robust is the inference to changes in priors). Increasing the elements in

the α vector makes the number of founders in each component more balanced
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Figure 6.10: Number of founders in each component when assuming the

components have a standard deviation of 0.1 and prior alpha vector elements

equal 20 (left), together with the proportion of European lineages in each

component (right).

by making the mixing fractions more balanced. This in turn has the effect

of making our equivalent of the Sm fraction, the proportion of the European

sample assigned to each component, display a troublesome feature: some

of the components with largest na values now change membership, whereas

before they rarely moved and contributed their na to a single component

at almost every iteration. As a result the density plot of Sm displays some

bi-modality. Figure 6.10 illustrates this.

With the previous exploratory runs undertaken, together with some discus-

sion of the output and some important observations, one requires sensible

prior choices for a ‘final’ run to be possible. The previous runs are important

however not only for investigating performance, but also as a fair comparison

with the conclusions of the original founder analysis work, with component

locations set to match those used in the original work [26].
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6.1.7 Prior elicitation

The process of selecting the appropriate locations and scales of the prior

component distributions, together with suitable choices for the α hyperpa-

rameters is one which ideally should be guided by expert opinion in the

subject area. Prof. M. Richards (University of Leeds) provided his opinions

on some features of the extended method. This section would not be mean-

ingful without his input: the informative priors that were based on his input

allow this run of the analysis to be a proper data analysis run, where con-

clusions can be made and some interpretation made beyond those purely of

a statistical nature.

After a day of discussing the extended founder analysis method, Prof. Rich-

ards’ view on some features of the model became clear. The issue of bi-

modal densities for founder migration time estimates was troublesome, as

interpretation was more difficult under the new method. The possibility of

bimodal densities for the proportion of the European sample belonging to

each component would be a difficult concept to interpret/report within the

archaeogenetics community.

It is perhaps more interesting to report his views on the α parameters, ar-

guably the most difficult hyperparameters to select and justify. The view

emerged that this parameter is indeed important, but deciding a priori on

its value was not judged as the best approach. Instead, the view emerged

that the model should be analysed for a few values of α and any notable

differences in conclusions openly reported. Selecting some (average) minimal

number of founders that should be allocated to each component and fixing

α to ensure this was too artificial. It is likely to be the case that very few

founders originate from the oldest component so ‘forcing’ more into it was
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unsatisfactory. The conclusion reached was to keep the components of the

α vector equal, but explore analyses where this value was changed. If any

judgement was to be made on minimal requirements for a single component

it should not be based on number of founders (but perhaps on the aver-

age proportion of the European sample assigned to a component - since this

quantity reflects the raw sequence level of the data, and not the founder level

data).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.11: Prior component distributions (set 1), as proposed by Profes-

sor Martin Richards (left). Prior component distributions (set 2, with an

additional period) (right).

Prof. Richards gave two models, one with five components, a second with six

components. The first model had components centred at 3000, 8000, 14000,

27000, 41000 YBP, representing updated time estimates of the same periods

described in the original founder work. It is notable that the latest component

is now centred at a more recent time than previously, which should make
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more founder ρ estimates consistent with it. A second set of times included

an additional period being inserted at 11000 YBP. The standard deviations

of these components was chosen by Prof. Richards, giving rise to the plots

shown in figure 6.11. The analysis that follows focuses on the five component

model, as the six component model offered no additional insight into the

method’s performance.
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6.1.8 Five component model

The means of the components were set to 0.159, 0.425, 0.743, 1.433, 2.176

(by scaling the times in the previous section by a recent calibration of 18845

years per ρ unit in the first hypervariable segment of the control region [64]).

5, 000 iterations of burn-in were set, 20, 000 iterations were to be stored, with

every 7th iteration stored (thinning). The elements of the α vector were set

initially to 1. The output for a few founder sequence types is discussed below,

which display some important features of the model. Interpretation of the

results in terms of the prehistory of Europe is outside the scope of this work.
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Figure 6.12: h00 trace and density plots of τ .

Founder sequence type h00 is an interesting case (na = 855, nb = 1017, ρA =

0.621, ρB = 0.646), by far the most frequent founder cluster in Europe. It

provides very informative ρ data that lie close to an assumed component

(component 3). One would hope that the output for this founder would not
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be bimodal and that it would be reasonably well defined close to component

3. This is indeed the case (figure 6.12).

Founder u22 provides a contrasting scenario (na = 28, nb = 1296, ρA =

0.964, ρB = 2.972). It has very uninformative ρ data that span multiple

components. One would hope that the output for this founder would dis-

play some considerable uncertainty while respecting the assumed migration

model. This is indeed shown in the output (figure 6.13). This sort of out-

put, together with z proportion vector (0.00000, 0.00020, 0.36295, 0.56085,

0.07600) demonstrates the tricky interpretation that needs to be undertaken

for some founders. However, after some discussion it was generally accepted

that in cases of large uncertainty, such plots are indeed desirable, and more

honest than the dating obtained by the original founder method.
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Figure 6.13: u22 trace and density plot.

Similarly, u21 provides another multimodal plot (figure 6.14). The ρ data
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for this founder na = 54, nb = 278, ρA = 1.70, ρB = 2.22 support both the

fourth and fifth components, and the z proportion vector confirms it indeed

spends considerable time in both of these (0.00000, 0.00000, 0.00000, 0.62115,

0.37885). It is also satisfying (and important to note) that the peaks of the

bimodal density obtained for this founder age are shifted relative to the prior

densities. This is a good feature of the model as it shows that, in cases

where the data do not agree with the component means, but are informative

as much as indicating which of the components the founder is likely to lie

between, the data can define the peaks and the posterior density does not

simply resemble the prior.
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Figure 6.14: u21 trace and density plot.

Founder w01 (na = 38, nb = 73, ρA = 0.82, ρB = 1.14) is another very

interesting case, with data that generally support the third component with

some possible minor support for the fourth component (figure 6.15). The
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density plot obtained very nicely displays what the ρ data suggest, while the

relevant row for the z proportion vector (0.00000, 0.00015, 0.70600, 0.29375,

0.00010) confirms this.
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Figure 6.15: w01 trace and density plot.

It is worth noting that in the cases seen so far the mixing generally ap-

pears good and no extremely rare jumping between components of the type

displayed earlier (for founder u21) is apparent. Founder v01 further demon-

strates this with data that are very informative (na = 127, nb = 134, ρA =

0.6771, ρB = 0.6791), yet this founder is still occasionally assigned to other

components, with a z proportion vector of (0.00000, 0.00005, 0.99110, 0.00885,

0.00000) (figure 6.16).

It is at this point that the reader may be starting to see one of the major

problems: the third component has considerable support for most founders

due to the fact that many founders have ρ data that span across it. This is
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Figure 6.16: v01 trace and density plot.

problematic as it results in a very large pi fraction for the third component,

which has the effect of putting founder sequences whose ρ data are very

uninformative in this component more often than one would perhaps wish

(recall that the pi fraction is, on average, larger for those components with

the largest number of members).

To see founders which are assigned to the most recent components it is best

to look at the runs which have increased α elements. It was decided to do

a run with α being a vector of elements all of value 20. Figure 6.17 shows

the resulting trace and density plots for founder j00, which has substantial

support for the more recent components, as indicated in the original founder

paper (na = 172, nb = 382, ρA = 0.43, ρB = 1.59).

It is interesting to inspect the posterior probability plots of the number of

founders assigned to each component and the proportion of the European
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Figure 6.17: j00 trace and density plots when α is 20.

sample derived from each of the migration periods for the two α cases (fig-

ures 6.18 and 6.19). They illustrate what happens as the elements of the α

vector are increased. It is clear that the earliest and latest components see

large increases in the number of founders assigned to them as α is increased.

Figure 6.20 demonstrates why this is happening by showing the marginal pos-

terior densities of the pi fractions. No attempt is made here to suggest the

‘correct’ value of α to select. This parameter is perhaps the one that requires

most input from the subject expert; selection of it involves much deeper con-

sideration of the underlying process, together with an understanding of the

implications of the death process on lineages in the phylogeny.

Note that figure 6.19 does not display the bimodality properties seen earlier

when using the dates very similar to that of the original founder method. The

large clusters (in terms of na values) are not moving around as much under
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Figure 6.18: (Unnormalised) Posterior probability distribution of the number

of founders assigned to each component, when α was 1 (left), and 20 (right).

the new migration dates provided by Prof. Richards. This is in many ways

satisfactory from a reporting of conclusions perspective but it is important

to recall that the proportion of the European sample assigned to each com-

ponent is a potentially unstable quantity when large founder clusters exist

which are not consistently assigned to the same component at all iterations

of the process.
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Figure 6.19: (Unnormalised) Posterior probability distribution of the pro-

portion of the European sample assigned to each component, when α was 1

(left), and 20 (right).

6.1.9 Summary and conclusions

The fixed components model provides an improved method of dating founder

sequences using the assumption of a connected star tree for each founder, to

model the migration dates on the connecting edges.

The method has all the strengths of the original founder method. That

is, it allows the inclusion of an expert’s beliefs on the locations of the ma-

jor migration periods, provides dating of each founder cluster and provides

an equivalent estimator of the Sm fraction, the proportion of the European

sample assigned to each migration period. In addition, though, many of the

weaknesses and problems present in the original method are overcome by this

extended method.

By using the idea of a connected star tree, one is no longer assuming that mi-

gration/founding events coincide with a specific node (the founder sequence
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Figure 6.20: (Unnormalised) Marginal pi fraction densities, when α was 1

(left), and 20 (right).

type) on the reconstructed phylogeny. In essence, the extremely strong as-

sumption that every migration event results in the instantaneous expansion

of that sequence in Europe is relaxed, and one is now adequately allowing

for the migration events to occur anywhere along the entire depth of the

reconstructed tree, not merely at the finite number of points where a node of

the tree is located. The reasonable criteria for identifying possible founder

sequences still remain in effect. However, they are now being used to iden-

tify edges where a migration event has occurred and the uncertainty in the

location of the event on that given edge is now being modelled appropriately.

The mixture modelling approach provides dating that is fully consistent with

the assumed underlying migration process, founder sequences which do not

have informative data being allowed to be assigned to different components

over the MCMC steps, which results in such components being uninforma-

tively dated over multiple migration periods. This feature is indeed desirable:

cases where the assignment of a sequence to a migration period is in doubt
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should be reflected in the output obtained instead of reported by a misleading

estimate that may not even represent a period in which the expert believes

any migration was taking place.

The strength with which one should believe a founder to belong to a given

component can be readily estimated by the relevant row of the z proportion

matrix, while the assignments of founders to components at each iteration

provides the necessary information to estimate the proportion of the Euro-

pean sample assigned to each component. The quantity Sm of the original

method can be thought of as a single point estimate/summary of the marginal

posterior distributions obtained in the extended method. It has been shown

that this distribution can be multimodal, a fact that the single Sm estimate

cannot capture. The distribution of the proportion of the European sample

assigned to each component is now being estimated.

The method allows the interested investigator to use his/her own prior choices

for the distributions of the components and gives the dating estimates and

assignments conditional on those prior choices. This, of course, leads to

conclusions which depend on informative prior choices, but this is in fact a

strength of the method, provided one is prepared to make such assumptions

(which many archaeologists and palaeodemographers are prepared to do).

On the issue of prior selection, the interesting consequence of varying the α

vector was demonstrated. This vector poses interesting questions for both

the statistician and the expert. On the one hand, the idea of setting the α

vector equal to a vector whose elements are all one is appealing as it allows

the data to determine the likely mixing fractions. On the other hand, one

knows that lineages will be lost for reasons such as genetic drift, while it

is also well understood that fewer lineages will be available for designation
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as being a founder sequences type as one goes further back into the past

(towards the root of the tree). In such instances one does need to question

whether increasing the elements of the α vector to keep all the pi fractions

‘non-negligible’ is desirable. This is a difficult issue and one for which no

definite answer is provided. It could even be argued that an α vector whose

elements were not all equal could be in some sense optimal, but defining and

justifying such a choice is difficult.

6.2 Extended founder analysis - full

The remaining issue which is covered in this small penultimate section is

the extension of the method to allow the identified founder sequences to

define the components. The theory for this section has already been covered

and it has been demonstrated in a previous chapter that in the presence of

informative τ data this wish can indeed be satisfied.

It is stated here from the outset that this wish is one which cannot be re-

alistically achieved with the dataset at hand. It turns out that to define

components to any reasonable level of resolution, a non-negligible number of

founder sequences needs to be assigned to each component. It has already

been demonstrated in the previous chapter that one component, the third

(fixed) component takes in the majority of the founder sequences, while the

ρ data do not regularly support any component whose date lies > 35, 000

YBP, or < 5, 000 YBP. This is unfortunate - having only a very small num-

ber of founders which plausibly originate from very recent migration periods

or very old migration periods means that these components are unable to be

clearly defined. The problem is made more troublesome by the fact that the

ρ data for many founders span a large range of the allowable dates, so even
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in the cases where the ρ values appear to offer some limited support for very

recent or old dating, it is not uncommon for the data to support a wide range

of dates. As a result, it is very rare to see a founder assigned exclusively to

very recent or very late components.

It is important, however, to demonstrate that the estimation of migration

periods using the idea of founder sequences is an extremely difficult prob-

lem, and that the difficulties arise because the number of founder sequence

types will always be very low relative to the number of raw sequences used

in the phylogeny reconstruction. The result of this is that the number of

founder sequence types in many of the components is likely to be extremely

low. These are problems which would affect any method which attempts to

identify founder sequences.

6.2.1 Extended founder analysis - estimating compo-

nent means and variances

The extended founder model is now supplemented with the code that es-

timates the component means and variances at every iteration, in addition

to all the parameters which were sampled in section 6.1.3. If the data were

informative enough, one would hope that it would be possible to use the

posterior density estimates as an indication of the locations of the major

periods of migration. Extensive simulations for various parameter sets were

undertaken. In this section the results of a small number are reported, which

demonstrate some of the posterior distributions obtained under the method,

but more importantly show the limitations with the method that arise due

to the large uncertainty in the date estimates of each founder and the unfor-

tunate problem of empty components.
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The ξ hyperparameter was set to match values used in the original founder

work [26, page 1256], for dates that roughly correspond to 3000, 9000, 14500,

26000, 45000 YBP. The choice of hyperparameters on the variance gives

an expected prior variance of ≈ 0.05, for each component. In summary,

ξ = (0.15, 0.45, 0.725, 1.3, 2.25), ν = (4, 4, 4, 4, 4), S2 = (0.1, 0.1, 0.1, 0.1, 0.1),

κ = (1, 1, 1, 1, 1), and α = (1, 1, 1, 1, 1).

The first analysis that is reported represents an ideal case which one would

wish to investigate if the data allowed informative posterior distributions

to be obtained. The code was run for 100, 000 iterations with 2, 000 burn-

in (inspection of multiple trace plots that involved no burn-in appeared to

indicate that this was more than adequate). Of the 100, 000 iterations, 10, 000

were stored after thinning (every 10th iteration was stored).

Focusing on the level of components (rather than individual founders), in-

spection of the trace plot of component means, figure 6.21, at first glance,

suggests that some separation into components has occurred.

Inspection of figure 6.21 in isolation possibly could lead to the view that a

late component and perhaps even an early component have been determined

by the model. This view is, however, unfounded: the posterior distributions

of the component means for the latest and earliest components are seen to

be estimated very often from the prior alone. In the run reported here,

the z proportion matrix indicates that only five founders are placed in the

latest component in more than 5% of the stored iterations. Further, only

founders u21 and u22 are allocated to the latest component in over 10% of

the iterations (82% and 11%, respectively. Note that u21 has a lower ρB

value than u22, yet is assigned to this latest component more often - this

is due to the ρA value of u21 being much larger than that of u22, at 1.7
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Figure 6.21: Trace plot of component means in the 5-component model.

Component prior means are shown as solid lines. (left), together with the

posterior densities of the component means (right).

compared to u22’s 0.96). In approximately a tenth of the stored iterations,

however, this later component is empty, and it is extremely rare to see more

than five founders allocated to it (in this simulation > 97% of iterations

had five or fewer founders in this component). Similarly, for the earliest

component, in ∼ 83% of iterations the number of founders allocated to the

earliest component was five or fewer, and indeed the component was empty

∼ 34% of the time.

The issue of empty or almost empty components is a troublesome one, and

one for which no easy solution is available. The founder data are particularly

bad for defining late and early components because very few founders’ ρ data

support only very late or very early dates; in most cases the range of ρ values

supported is large. A section discussing the issue of estimating the number of
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components will follow shortly, but for now, one simply notes that the founder

ρ data does not lend itself well to establishing early or late components

because these components are often near-empty, and the prior values are in

many cases contributing as much weight to the posterior inference as the

data are. It is also worth recalling here that fewer founder sequence types

(on average) can originate from the oldest periods, as a natural consequence

of the tree structure and the decreasing number of nodes present as one

moves towards the root of the tree. Of course, there is always the alternative

view that these components are useful as they mop up the ‘outliers’/extreme

founder sequence types, allowing the other components to be better defined.

The main point I wish to make here is that the earliest and latest components

are largely being defined by only a few founder sequence types that are

competing with the prior, and by competing one is admitting that the prior

is often playing a crucial role in the posterior estimate of the parameter,

which is far from ideal.

A further and perhaps less obvious problem is when multiple components

are essentially the same. Further inspection of figure 6.21 reveals that the

posterior means of multiple components are extremely similar. The problem

with this is simply that one may not know whether a model is identifying

multiple components, each of which has its own members, or if a single

component is all that is required to contain these founder sequence types.

It is difficult to argue against the view that components 2 and 3 appear

extremely similar since there is a large overlap in the posterior distributions

of their component means. Components 3 and 4 appear better defined with

less overlap in posterior mean estimates, but one could still argue that there

is the possibility that a single component could do instead of three separate

components.
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In light of the observations above, the method was re-run after removing the

earliest and latest components to look at the effect of this exclusion on the

component means one obtains. In addition, some checks were taken to ensure

that the posterior distributions obtained were robust when the prior values on

the component mean were varied. Provided that the prior means were varied

only within the range (0.25, 1.5), then the posterior densities obtained were

insensitive to all such sensible choices. Some output from the run when the

earliest and latest components are removed and all other hyperparameters

are as before is shown in figure 6.22.
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Figure 6.22: Trace plot of component means in the three-component model.

Component prior means are shown as solid lines (left), together with the

posterior densities of the component means (right).

Choosing three components with one having a very large prior mean (e.g.

> 2), however, did result in behaviour similar to that of the five-component

case reported above, with this one component often being empty and only

containing a very few founder sequence types a minority of the time. In

essence, very late components are either empty and estimated by the prior,
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or near empty but with some founders (such as u21) in them, with almost

every other founder sequence type being consistently allocated to more recent

components, at around 1.2 − 1.5 ρ units. It is still apparent in figure 6.22

that components 1 and 2 have considerable overlap. It is also important to

note that the variability in the mean value of component 2 is less than that

of component 1 partly because it is constrained between the current values

of the means of components 1 and 3 at every iteration. While some formal

methods do exist to try and estimate the number of components, such as

reversible jump MCMC ([66] and [67]), this method (or alternative simpler

methods using ideas such as those in [68], which were explored in my research

but were largely unsuccessful in this application) will not be presented in this

thesis. Instead, more subjective and intuitive arguments are used in what

follows to demonstrate that such formal methods are unnecessary and would

not help much in the problem at hand due to the specific nature of the data

used.

Recall that the initial model with five components was rejected because the

latest and earliest components were often empty, or else contained only a very

small fraction of the founder sequence types. Removing these components

gave rise to a three-component model with components that rarely emptied,

but components 1 and 2 still share similar posterior means, which could

suggest that they should be merged into a single component. Although this

argument is rather heuristic, it is further strengthened when one considers

the entries in the z proportion matrix for these two components.

It is seen for this simulation (and repeated in all others) that it is uncommon

for any founder sequence type to be allocated to either component 1 or com-

ponent 2 exclusively, and in fact, for the simulation presented, 110 founder
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sequence types (of the 134) were assigned to the earliest two components in

over 90% of the stored iterations, and, of these 110 founders, the number

of founders which were allocated to both of the early components in almost

equal proportions was 89 (if 0.2 is used as the maximum difference between

the allocation proportions for a founder sequence type) or 46 (if 0.1 is used

instead). What is happening here is that the model essentially is not treat-

ing these two components as being different and the founders which reside in

them are spending relatively equal proportions of their time moving between

them. This suggests that one may wish to remove one of these components

and go down to a two-component model.

It is at this time that one may wish to consider what this is saying in a broader

perspective. The extended model, which correctly tries to model the fact that

migration events occur on edges that connect nodes of the tree, is unable to

reliably infer a non-trivial number of components. I would argue that this

is not a weakness of the method, but is in fact little more than an honest

reflection of how vague the data are. The estimation of the components

is based on τ estimates which are changing at every iteration. This alone

makes it extremely difficult to guess where the majority of the τ values for

each founder sequence type lie in the space of allowable τ values. This idea

and the problems that result from it are explored in the discussion section

to follow. For now, I simply go on to present the reduced two-component

model and show that it leads to components being identified which agree

with what is intuitively suggested from the previous three-component case,

namely that the extended founder model does appear to be able to identify

two major components centred at around 0.8 and 1.2 ρ units.

When moving down to just two components, the z proportion matrix starts
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Figure 6.23: Trace plot of component means in the two-component model.

Component prior means are shown as solid lines (left), together with the

posterior density estimates of the component means (right).

to display rows which indicate that the founder sequence types are being

relatively unambiguously assigned to a single component, although movement

to the other component is visible for every founder sequence type (none of

the z proportion matrix entries is zero), suggesting reasonable mixing. Out

of the 134 founder sequence types, 100 are assigned to a single component

> 90% of the time (which is stable across runs), and this number rises to

122 if using > 80% as the cut-off figure. Although this is not in any way

a formal method to justify a two-component model, it is difficult to argue

against the idea that, in this case, the components are being defined by the

data. Both components are non-empty (although the most recent component

has the larger proportion of the founders in it, approximately 85%), the

majority of the founder sequence types are spending a large proportion of

the time in a single component, and the posterior estimates obtained were

seen to be insensitive to prior hyperparameter values on component means
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(not shown). Further, reasonable mixing is demonstrated by the fact that

the founder sequence types are moving between the components and are not

simply stuck in a single component across all iterations.

Table 6.5 displays the mean values of the posterior component means for the

previously discussed runs, with the addition of the single component model.

The single component case is rather uninteresting from both a modelling and

an interpretation perspective, but it is included for completeness.

Table 6.5: Mean values of the posterior component means for each model

considered. Standard deviations of the posterior mean are given in brackets.

Comps. Mean 1 Mean 2 Mean 3 Mean 4 Mean 5

5 0.32(0.324) 0.63(0.119) 0.82(0.075) 1.17(0.177) 2.14(0.238)

3 0.60(0.144) 0.81(0.070) 1.27(0.193)

2 0.79(0.041) 1.44(0.225)

1 0.86(0.037)

Of course, all the models above provide posterior distributions for the com-

ponent variances. However, these provide limited additional insight. The

posterior distributions of components’ σ2 for the latest and earliest compo-

nents (which were either empty or close to being empty) display distributions

which closely resemble the prior, with some extra variability often visible

due to the fact that the handful of founder sequences that often make it into

these components have τ values which can sometimes be quite far from the

component mean. An example of this is the five-component model’s oldest

component which often only has a few founders in it, whose τ values can be
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very varied and are changing at every iteration. Components which contain

particularly large numbers of founders are seen to have posterior distributions

with support for smaller standard deviations, and this is particularly true for

components which lie between other components and do not see the same

variability in the τ values of their members as do those on the extreme ends

of the ρ scale. An example of the posterior distributions for the standard

deviations of the components in the two-component model case is shown in

figure 6.24.
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Figure 6.24: Posterior distribution of σ for each component in the two-

component model.

Additionally, one may be interested not just in the posterior distributions

of the parameters of the components, but in parameters at the founder se-

quence type level. The same posterior distributions (such as the τ values)

are estimated for every founder as were estimated in the more restricted case

when components were assumed to be fixed, as are the more global parame-

ters such as the proportion of the European sample assigned to each of the

components under each model considered. It is here that a problem lies with
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the very general extended founder case that involves estimating the locations

of components.

The problem is best demonstrated by a particular example, founder sequence

type u22. This founder is unusual as it has ρ values of (0.96, 2.97), and

so is one of the few components with ρ data that obviously suggest that

this founder sequence type could plausibly originate from an older migration

period/component. This founder sequence type differs from u21 however

(which also has a large ρB value) by having a ρA value which suggests the

possibility that it originated not from an older migration period, but a more

recent period. As such, u22 can be viewed as an interesting ‘problem’ case.

It then becomes interesting to investigate the posterior distributions of the τ

values of this founder sequence type under each of the models as the number

of components changes.
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Figure 6.25: Posterior distribution of founder u22 and trace plot under the

five-component model (left) and three-component model (right).

Figures 6.25 and 6.26 show the posterior distribution of τ for founder se-
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quence type u22 under each of the considered models. Firstly note how the

τA and τB estimates are almost unchanged across the models. It is very in-

teresting to see the change that takes place in the τ estimates when moving

from five to three components. Removal of the oldest component results in a

clear visible change in the distribution of the τ density for this founder. It is

clear that the five-component model results in some support for this founder

having a τ value of perhaps ≈ 2.25 ρ units. The change from three to two

components has a less dramatic effect, while, with a single component, it is

seen that the τ value is very close to τA which defines a lower limit on the

allowable τ ’s.
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Figure 6.26: Posterior distribution of founder u22 and trace plot under the

two-component model (left) and one-component model (right).

It might not be immediately obvious from the u22 case that this is in fact

a problem. In the fixed mean and variance case, posterior distributions for

the τ values nicely represent the distribution of the migration times of that

founder, conditional on the well defined components. Quantities such as the

z proportion vector had clear interpretations that allowed the investigator
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to make statements such as “The fraction of the time founder sequence type

X was assigned to component Y centred at Z ρ units was approximately...”.

Such interpretations are now much more difficult as the components are not

so well defined, and in some instances, such as the u22 case, a component we

would hope the method would allocate them to (e.g. a very late component)

may not even be in the model as it had been removed for regularly containing

only a few members!

Further, all of the problems of the fixed mean and variance case remain,

particularly specification of the α hyperparameters. In summary, the more

general method which attempts to estimate the locations and spreads of the

components brings with it substantial extra uncertainty and difficult ques-

tions relating to the number of components, and, even deeper, the question

about when is a component worth keeping remains.

Prof. Richards suggested (pers. comm.) that you would not want to remove

a migration period just because it only had a trivial number of founders in

it, especially if this meant the model was reduced to one which had few mi-

gration periods. This would especially be the case if fewer migration periods

remained than the number of periods that are widely believed to have the

potential for some migration (e.g. the LUP, MUP, EUP etc). An analogy can

be made with the statistical idea of leaving terms in a regression model that

are not found to be statistically significant. This idea goes against the idea of

reducing a model down to what can be shown to be statistically significant,

but allows expert views to guide a model, even when the statistical evidence

does not necessarily demonstrate agreement with beliefs commonly held by

experts in the area of work.

Accepting the expert view that a late (and early) migration period should
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be left in the model, even if the statistical evidence is not strong in favour of

this idea, one is led to ask the question “If a component is left in the model

because the general expert opinion in the field supports it, but one does not

have the informative data required to accurately infer such components, is

it best to allow the model to make such an inference on component location

and variance, or is it best, if accepting the expert view, to put all of one’s

faith in the expert opinion and simply allow them to define these components

completely (i.e. the fixed mean and variance case)?”.

The answer to this question is one about which I can only provide my opin-

ion. It is my strong belief that the general extended founder method that

estimates the component means and variances is likely to be unsuccessful

while the number of founder sequence types is relatively small, and, more

importantly, very uninformative. Even in the case of a perfectly resolved

phylogeny, with perfect dating of all the nodes on the tree, the extended

founder analysis method will always have problems defining components,

simply because it honestly attempts to model the discrepancy between the

date of the founder sequence type and the founder that was involved in the

migration event.

The general full model may help refine expert scientists’ beliefs in the lo-

cation of some major migration periods, but not those of much older mi-

grations for which very limited evidence exists based just on reconstructions

from modern-day DNA sequences. The substantial uncertainty that exists

in the dating of the nodes of the phylogeny, combined with the small num-

ber of founder sequence types that can be identified, is prohibitive to formal

inferential methods, and I believe one must instead put trust in the expert

scientist by allowing him/her to define the components of interest.
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The inference that can be made for the fixed mean and variance extended

founder analysis case is a step closer to giving scientists the tools they require

to investigate the periods of migration of modern humans. The method allows

informative statements to be made about parameters of interest while at the

same time takes the method of founder analysis to the next level by removing

the dating/conclusions that were inconsistent with the migration model and

introducing connected star trees, which allows one to account for the fact

that the migration event of interest does not in fact coincide with any event

we can reconstruct reliably on a phylogenetic tree.



Chapter 7

Summary and discussion

7.1 Summary of the work undertaken

In this thesis I have investigated and extended founder analysis, a popular

method for analysing modern-day DNA sequences with the aim to identify

the sequences involved in migration events on a reconstructed phylogeny, and

to date such migration events. Through simulation methods the method was

shown to display a major weakness in that it was actually not estimating

the time of any migration event of interest, and instead estimating a more

recent time that corresponded to a coalescent event on the phylogeny. My

model was built up appropriately to try to mimic the migration process that

was assumed in the original founder analysis work, and it was seen that the

problem identified remained throughout. Once this problem was identified it

became apparent that it was one which was very real in the original dataset

[26], with founder sequences having ρ estimates arising which suggested they

could be dated close to the present day which was obviously a problem, and

suggested the possibility of large bias in the dating.

The problem identified required the definition of a ‘founder’ to be revis-

230
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ited, and the distinction between ‘founder’ and ‘founder sequence type’ be-

ing made. This distinction made it clear that the method put forward in the

original work [26] could be improved upon by developing a method which was

designed to estimate the date of founders, and not founder sequence types.

With the distinction between founder and founder sequence type made, the

concept of a connected star tree was introduced, a simple form of phylogeny

which contains a single edge that is assumed to carry a migration event of

interest that one wishes to date. The complete phylogeny of the sample

was then assumed to be composed of a set of connected star trees. This

object, although still much simpler than a general bifurcating tree, allowed

me to model the actual migration time of interest by bounding this event

time between two nodes on the connected star tree which can be dated by a

simple estimator.

The revisiting of what actually constituted a founder, together with the new

concept of a connected star tree, formed the necessary foundations for an

extension of the founder analysis method to be made. This extension was

done by clearly defining parameters (τA, τB) which represented boundaries

on each migration time of interest (and coincided with coalescent events on

the tree), with additional parameters τ which represent the actual migration

times one wished to estimate. Appropriate probability results were derived

under a connected star-tree assumption which allowed one to formally de-

scribe the probability distribution of these parameters given the data (in the

form of the ρ estimates).

The idea was developed and it was shown that it was possible to accurately

estimate the posterior distribution of a single migration time on a connected

star tree (the τ ’s) using the probability results derived. By using only a small
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amount of extra data that is obtainable from any dataset that the original

founder method could be applied to, the additional uncertainty in the founder

migration time could be accounted for. Perhaps more importantly, the use of

connected star trees with the new results removed the (inherent) assumption

that founders/founding events coincide with founder sequence types. Such

an assumption meant that the original founder method was in fact giving

date estimates to founders that were too young, as the original method was

actually trying to date the founder sequence type.

After showing that an improvement in the dating of a single founding event

was possible with the use of connected star trees and the results derived, the

idea was extended to allow the set of τ values from every founder to form the

input to a mixture model. A hierarchical mixture model was built up with

components which represented periods of migration. It was shown through

simulation of τ data (ignoring the (τA, τB) level of the model) that, in the

presence of informative τ data, such a mixture model would allow sensible

inferences to be made about the components.

The dataset used in the original analysis of Richards et al. [26] was revisited

and the additional data required (nb, ρB) were calculated from the original

diagrams and network reconstructions (Prof. Richards, pers. comm.). The

extended founder analysis method with fixed component means and variances

was used to re-analyse the (supplemented) dataset. The method was seen

to remove some of the contradictions seen in the conclusions of the original

founder method; the estimates of founder migration times were shown to be

consistent with the underlying migration model which was assumed to have

given rise to the data, whereas the original method was not.

Further, it was demonstrated that the extended method presented in this
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thesis provided additional posterior density estimates of parameters that had

no equivalent in the original founder work. Of particular interest was the

posterior probability that a given founder sequence was allocated to each

component. This vector provides some insight into the migration history of

sequences which do not nicely belong to a single component. Until now, such

an inference has not been possible in such an objective manner, and, within

the extended founder method, this is returned routinely for every founder.

The proportion of the European sample assigned to each component was

considered in this thesis, and it was shown that, under the extended founder

analysis method, the distribution of this estimator can be multimodal and is

very sensitive to large founder clusters which are not unambiguously assigned

to a single component. How informative the average of this distribution is,

as used in the original founder method, after such a discovery, is open to

question.

One of the strengths of the extended founder method is that the model is

flexible enough to allow expert scientists to incorporate their views through

prior choices, and provides parameter estimates that arguably represent nat-

ural quantities that have an interpretation in terms of the migration history

of a sample. In fact, one of the best features of the model presented is that

it is not merely an artificial model with parameters which do not have an in-

terpretation that the expert scientist would understand. Even the z matrix,

which is typically a nuisance parameter in the context of mixture models, has

a natural interpretation in terms of the probability a given founder originated

from each migration period.

The α hyperparameter vector is more difficult than usual to specify in this

context. The unique nature of founder sequence types which arise on the
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nodes of a phylogeny result in this hyperparameter being of increased impor-

tance. It was demonstrated that assigning the α vector to be suitably vague

was not a trivial matter since it is not clear that the number of founder se-

quence types in each component should be, a priori, assumed to be similar. It

was in fact argued that the pool of founder sequence types is a non-increasing

quantity as one goes from the tips of the tree (present day) to the root, and

as a result one would expect (on average) a very old component to have fewer

founder sequence types in it than a very recent component. This issue was

explored a little and it was argued that this hyperparameter required special

consideration because of the nature of the data the method operates on.

The extended founder analysis method was run with suitable prior distribu-

tions set after the model was discussed with a subject expert. The output

obtained gave posterior density estimates for the migration time of each

founder sequence type that was consistent with what one would expect from

the ρ values, while at the same time consistent with the underlying migra-

tion model. The posterior estimates for various founder sequence types were

presented to demonstrate the workings of the method.

An attempt was made to demonstrate the more general analysis on the origi-

nal founder dataset which incorporated the additional task of estimating the

locations and spreads of the components. The work presented in this sec-

tion was purposely brief as the data available were not informative enough

for the task, and actually made interpretation of other parameters more dif-

ficult. This task, when one is aiming to estimate a non-trivial number of

components (ideally, five or six, according to the expert) is prohibitively

difficult because of the small number of founder sequence types. Although

there were 134 of these, many are uninformative since their ρ data spanned a
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large fraction of the allowable range. The small number of founder sequence

types, many providing very uninformative data, resulted in early and later

components being extremely difficult to determine. The method struggled

with issues such as empty components, while on other occasions it appeared

to be the case that some components were unnecessary.

It was then argued that the complete extended founder analysis that esti-

mated the migration times of each founder, the component means and vari-

ances, and all other quantities of interest (such as the proportion of the

European sample that originated from each period), was in fact less useful

than the fixed mean and variance case, as interpretation of parameters at

the founder level becomes much more difficult when the components are not

as clearly defined.

7.2 Criticisms and areas for improvement

Although a step forward, the work of thesis still has room for improvement.

In this section I suggest some obvious areas where the method presented

could be improved, and discuss other ideas and concepts that one may wish

to build into further attempts at developing founder analysis.

7.2.1 Direct additions to the extended founder method

Some areas for improvement in the method I have proposed in this thesis

have been mentioned already. I summarise them here.

In terms of testing methods like founder analysis that assume specific mi-

gration histories such as those involving bursts of migration, further mathe-

matical work on the structured coalescent would be welcome to investigate
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formally the validity of the approach taken in this thesis. It is unfortunate

that the structured coalescent theory does not aim to accommodate short

bursts of strong migration. It is my belief that the approach taken in this

thesis was reasonable for what the simulations were trying to achieve, even

if the simulations are viewed merely as a crude approximation to the mi-

gration process of interest. However, I believe that the types of migration

histories that one would wish to simulate may be better done through other

means (perhaps forward in time simulations). Further work on appropriate

simulation methods would be welcome.

Further, one could argue that a larger mathematical problem is to develop the

structured coalescent process so that expansion is allowed to occur soon after

every migration event (what was assumed in the original founder analysis)

for each founder cluster. This is not easily accommodated in the structured

coalescent which only allows global parameters at the level of subpopula-

tions - developing a mathematical structured coalescent model which allows

this type of behaviour at the level of single founder clusters seems a tough

mathematical problem and I imagine one for which no easy solution may

exist.

Formally estimating the number of components in the full extended mixture

model is certainly a statistical problem that could be attempted in the future.

Some standard statistical approaches to this problem were touched upon

briefly in Chapter 6 of this thesis. I would suggest this problem is best left

until the method of founder analysis can be shown to perform better in the

case where the number of components is non-trivial. Currently this standard

statistical problem appears to be unnecessary due to the uninformative data

and the small number of founders assigned to the early and later components.



CHAPTER 7. SUMMARY AND DISCUSSION 237

Within the extended founder model presented, the α hyperparameter vector

was discovered to take on a unique role due to the fact that the proportion of

founder sequence types expected (a-priori) to be assigned to each component

is a very difficult quantity to estimate. It would be of interest, to start with,

to try to model (or even just simulate) this vector of proportions, to attempt

to gain an understanding of the way in which founder sequence types are dis-

tributed throughout the migration periods under different migration models.

For such a problem, one could even start with a very general structured coa-

lescent model with a migration rate matrix which was fixed and unchanging

throughout the entire depth of the tree. Once an understanding of this de-

veloped, one could perhaps justify and decide on suitable prior values of the

α vector that may not be equal in all elements. Such a decision would be

difficult to justify unless it also was accepted by experts in the application

of the method.

7.2.2 Design issues

At the data collection level, one could undertake some work to try to es-

timate the optimal sampling proportions of source (e.g. Near Eastern) and

descendent (e.g. European) populations. It was argued earlier that sampling

more European sequences may give diminishing returns if the number of Near

Eastern sequences is held fixed. It was also suggested that sampling more

Near Eastern sequences was also likely to result in only a limited number of

additional founder sequence types being identified once the majority of the

founder sequence types were found. The relationship between the number

of founder sequence types identified and the proportion of Near Eastern se-

quences sampled is likely to be a complicated one, and this relationship is

also most probably going to depend on total sample size, which makes such
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a task more difficult. Even the question “Does one prefer having large num-

bers of small founder clusters, or small numbers of large founder clusters?”

remains open to debate. The answer to this question, however, is an essential

consideration if the larger problem of trying to decide on the proportions of

our sample to be taken from each population is to be investigated.

Another design issue that one may wish to investigate is that of the sam-

pling locations within each subpopulation. Attempting to select which parts

of Europe or the Near East to draw samples from, in order to gain the most

information from a sample of fixed size, is not a trivial issue. It is diffi-

cult to suggest how such a sampling strategy could be determined, but the

convenient approach of simply using all of the available data (the approach

taken by Richards et al. [26]) is unlikely to give as good information about

the migration history of a sample as that which would be available from a

sample (of identical size) that had been sampled according to some sensible

sampling strategy. If new sequence data were to be collected the question

of where to sample from would be one that should be considered before any

data was collected.

7.2.3 Phylogenetic improvements

The connected star-tree idea presented in this thesis provides a starting point

in modelling a migration time which can be assumed to have occurred be-

tween two nodes on a reconstructed tree. One could envisage taking the

idea further and developing an approach based on a more general (perhaps

multifurcating) phylogeny. Such an approach would allow the investigator

to better accommodate the large amount of dependence that actually ex-

ists on a general reconstructed tree. Using a more general tree introduces
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more ρ mutations which would complicate any likelihood calculations and

deriving expressions for quantities similar to P (τA, τB|ρA, ρB) would become

more difficult. The benefit of such a generalisation though would be that of

more accurate posterior distributions on parameters such as (τA, τB) being

obtained.

An important inherent assumption of founder analysis is that it assumes a

single migration event occurs with each founding event. Essentially, a parsi-

mony approach to this problem is suggested. In reality, however, a founding

event may have involved multiple migration events which occurred at vari-

ous points along a single edge of a tree. The consequence of this parsimony

approach is clearly an underestimation of the number of founder sequence

types, and, interestingly, this adds even more support to the idea that not all

founders are equal, and that perhaps one may wish to weight the information

from the founder sequence types in some systematic way. Both the informa-

tion provided by a founder cluster (e.g. its size and length of connecting

edge) and the number of migration events involved in a given founding event

are factors which make the information from founder clusters highly variable

between clusters. Estimating the number of migrations involved in a given

founding event, together with weighing the information appropriately from

given founder sequence types, is another example of a difficult statistical issue

which researchers may wish to attempt to tackle in the future.

Little mention was made in this thesis about the conditioning on the single

reconstructed phylogeny and how this would affect any founder analysis. One

of course acknowledges the variability that is lost through such a process. It

is difficult to argue against the view that this uncertainty ideally should

be dealt with in some formal statistical manner. However, in light of the
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considerable uncertainty already present and the lack of information in the

data, this area of ‘improvement’ is likely to achieve little more than massively

complicating the method to obtain an inference which is more uninformative

than the current approach (although it would be a move towards a more

honest inference procedure). At this time I believe the effort required to add

in this level of detail would be better directed elsewhere.

Perhaps an area worth exploring in the future would be the differences be-

tween the f0, f1, f2 and fs criteria on the founder sequence types identified.

This could be done through simulation procedures to generate founder se-

quence types and then each of the criteria could be used to form a candidate

founder list. This would be interesting as it would allow some understanding

of the numbers of founder sequence types that were being wrongly identified

under each of the criteria. Further, it may even be possible through such an

investigation to determine how the age of the migration period affects the

number of falsely identified founder sequence types under each of the criteria.

Currently the consequences of selecting, say, the f1 candidate founder list

over the f2 candidate list is unknown.

7.2.4 Better use of genetic/other data

mtDNA has been the primary type of data used in founder analysis work.

One uses such data primarily because it is non-recombining and relatively fast

mutating. However, there is no reason why other parts of the genome cannot

be used in any founder analysis approach. If appropriate care were taken

to ensure that multiple independent parts of the genome were selected (e.g.

on different chromosomes), and that each part was not severely disrupted

by recombination (e.g. a haplotype block between recombination hotspots),
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then one could obtain independent phylogenies from each of the independent

sequence data.

It is possible (in the ideal world where the data at each part of the genome

are very informative) that different parts of the genome could display sim-

ilar numbers of founder sequence types from similar numbers of migration

periods. In contrast, one could imagine a situation where different parts of

the genome gave rise to vastly different numbers of founder sequence types

and/or founder sequence types which appear to indicate different migration

histories for the sample under consideration. Combining information from

different sites in a formal statistical manner would be a difficult task, but one

which would allow a stronger inference to be made, particularly if the data at

each independent part of the genome were essentially telling the same story.

Even the case where every location suggests a different migration history

would be interesting as it a) would suggest that founder analysis is not an

ideal method to use, and b) suggests that further work should be directed to

establish why the reconstructed migration history of a single sample should

differ greatly when using different independent parts of the genome.

Perhaps a more difficult task a statistician would be interested in would be

the problem of adding non-sequence data into a statistical founder analysis.

The beliefs held by expert scientists in the field are partly driven by archae-

ological data. This of course would be a non-trivial problem. However, one

would hope that the information in any suitable archaeological data would

supplement the genetic data. It is reasonable to argue that one is already

relying on non-genetic data in a founder analysis as prior specifications (even

the locations of the migration bursts in Richards et al. [26]) typically encom-

pass the expert’s view based on his/her exposure to multiple different sources
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of information, one of which is the archaeological data.

These open questions and problems remain. This thesis presents a first step

at putting founder analysis on a firm statistical foundation.



Appendix A

Figures, tables and

miscellaneous output

Dataset to be analysed

Founder na rA nb rB ρA ρB

1 h00 855 531 1017 657 0.62 0.65

2 h01 108 73 131 88 0.68 0.67

3 h02 2 1 18 14 0.50 0.78

4 h05 6 4 14 6 0.67 0.43

5 h06 39 42 42 45 1.08 1.07

6 h07 31 29 35 30 0.94 0.86

7 h08 34 15 42 19 0.44 0.45

8 h10 8 9 10 11 1.13 1.10

9 h12 1 0 3 2 0.00 0.67

10 h13 19 15 26 21 0.79 0.81

11 h14 30 14 36 14 0.47 0.39
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12 h15 3 2 4 4 0.67 1.00

13 h16 11 4 12 5 0.36 0.42

14 h18 4 1 6 2 0.25 0.33

15 h21 6 2 9 3 0.33 0.33

16 h23 5 1 6 2 0.20 0.33

17 h25 7 0 11 1 0.00 0.09

18 h26 26 14 33 20 0.54 0.61

19 h28 8 2 12 5 0.25 0.42

20 h29 6 7 7 8 1.17 1.14

21 h30 10 3 12 4 0.30 0.33

22 h32 8 4 12 8 0.50 0.67

23 h35 23 9 29 15 0.39 0.52

24 h36 4 3 8 7 0.75 0.88

25 h37 7 8 11 11 1.14 1.00

26 h38 1 0 4 5 0.00 1.25

27 h39 9 5 10 6 0.56 0.60

28 h40 1 0 3 1 0.00 0.33

29 h41 3 1 5 2 0.33 0.40

30 h43 2 3 3 5 1.50 1.67

31 h44 1 0 3 1 0.00 0.33

32 h45 2 2 8 10 1.00 1.25

33 h46 4 0 7 1 0.00 0.14

34 h52 2 0 8 2 0.00 0.25

35 h53 1 0 2 1 0.00 0.50

36 h62 2 0 5 3 0.00 0.60

37 h76 1 0 3 4 0.00 1.33

38 h78 5 1 6 3 0.20 0.50
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39 h79 3 1 5 2 0.33 0.40

40 h81 2 4 5 4 2.00 0.80

41 hv01 5 9 38 40 1.80 1.05

42 hv02 3 2 4 3 0.67 0.75

43 hv03 15 11 25 12 0.73 0.48

44 hv04 1 0 6 4 0.00 0.67

45 hv06 5 6 1254 1034 1.20 0.82

46 hv07 1 0 3 1 0.00 0.33

47 hv08 5 0 6 0 0.00 0.00

48 hv09 1 0 7 10 0.00 1.43

49 i01 22 8 74 125 0.36 1.69

50 i02 27 27 44 62 1.00 1.41

51 i03 2 2 5 8 1.00 1.60

52 i05 2 2 5 5 1.00 1.00

53 i06 3 1 4 6 0.33 1.50

54 i07 2 1 6 17 0.50 2.83

55 i08 1 0 2 1 0.00 0.50

56 j00 172 74 382 608 0.43 1.59

57 j01 27 7 34 15 0.26 0.44

58 j02 17 20 31 29 1.18 0.94

59 j03 22 3 132 278 0.14 2.11

60 j04 17 24 49 54 1.41 1.10

61 j05 3 4 104 165 1.33 1.59

62 j13 1 0 4 2 0.00 0.50

63 j18 2 3 8 15 1.50 1.88

64 k01 122 71 221 182 0.58 0.82

65 k02 27 7 45 19 0.26 0.42
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66 k03 6 3 8 4 0.50 0.50

67 k04 2 3 3 5 1.50 1.67

68 k09 1 0 4 1 0.00 0.25

69 n01 3 2 27 28 0.67 1.04

70 n02 2 1 3 2 0.50 0.67

71 n03 1 0 3 2 0.00 0.67

72 n04 2 5 3 6 2.50 2.00

73 n05 1 0 10 21 0.00 2.10

74 n06 4 6 6 7 1.50 1.17

75 n07 1 0 8 9 0.00 1.13

76 ph01 6 5 55 65 0.83 1.18

77 ph02 2 0 16 11 0.00 0.69

78 ph03 2 2 3 4 1.00 1.33

79 ph05 2 0 3 1 0.00 0.33

80 t01 43 13 70 33 0.30 0.47

81 t02 82 50 98 62 0.61 0.63

82 t03 12 3 17 5 0.25 0.29

83 t04 6 0 12 2 0.00 0.17

84 t05 8 2 11 5 0.25 0.45

85 t06 1 0 4 5 0.00 1.25

86 t07 1 0 3 3 0.00 1.00

87 t08 7 5 11 8 0.71 0.73

88 t09 1 0 4 1 0.00 0.25

89 t11 64 28 114 82 0.44 0.72

90 t13 3 0 4 1 0.00 0.25

91 t14 1 0 3 3 0.00 1.00

92 u01 9 12 39 49 1.33 1.26
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93 u02b 3 1 5 3 0.33 0.60

94 u04 2 1 10 6 0.50 0.60

95 u06 12 17 28 42 1.42 1.50

96 u07 6 7 10 11 1.17 1.10

97 u09 16 8 88 87 0.50 0.99

98 u10 3 0 9 6 0.00 0.67

99 u11 2 3 4 4 1.50 1.00

100 u12 3 0 5 1 0.00 0.20

101 u13 1 0 3 4 0.00 1.33

102 u14 1 0 2 3 0.00 1.50

103 u16 58 35 105 109 0.60 1.04

104 u17 6 2 7 4 0.33 0.57

105 u18 20 21 23 27 1.05 1.17

106 u21 54 92 278 617 1.70 2.22

107 u22 28 27 1296 3852 0.96 2.97

108 u23 1 0 3 2 0.00 0.67

109 u24 1 0 2 4 0.00 2.00

110 u25 3 1 20 31 0.33 1.55

111 u26 3 3 9 6 1.00 0.67

112 u27 27 7 135 218 0.26 1.61

113 u28 81 78 98 103 0.96 1.05

114 u29 11 8 13 9 0.73 0.69

115 u31 3 2 8 18 0.67 2.25

116 u33 1 0 2 1 0.00 0.50

117 u34 3 2 4 3 0.67 0.75

118 u35 63 54 81 78 0.86 0.96

119 u36 16 4 18 6 0.25 0.33
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120 u38 2 1 4 3 0.50 0.75

121 u40 1 0 4 5 0.00 1.25

122 u41 1 0 5 5 0.00 1.00

123 u42 1 0 2 2 0.00 1.00

124 u45 1 0 4 2 0.00 0.50

125 v01 127 86 134 91 0.68 0.68

126 v04 1 0 2 1 0.00 0.50

127 w01 38 31 73 83 0.82 1.14

128 w02 10 4 13 7 0.40 0.54

129 w04 6 2 10 4 0.33 0.40

130 x01 34 29 78 81 0.85 1.04

131 x02 2 2 4 3 1.00 0.75

132 x03 1 0 3 2 0.00 0.67

133 x04 2 2 4 3 1.00 0.75

134 x09 3 5 4 6 1.67 1.50

Table A.1: Table of the founder sequence type data.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT249

0.00.51.01.52.02.53.0

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 H

Rho Range

h00
h01
h02
h05
h06
h07
h08
h10
h12
h13
h14
h15
h16
h18
h21
h23
h25
h26
h28
h29
h30
h32
h35
h36
h37
h38
h39
h40
h41
h43
h44
h45
h46
h52
h53
h62
h76
h78
h79
h81

855
108

2
6
39
31
34
8
1
19
30
3
11
4
6
5
7
26
8
6
10
8
23
4
7
1
9
1
3
2
1
2
4
2
1
2
1
5
3
2

na

1017
131
18
14
42
35
42
10
3
26
36
4
12
6
9
6
11
33
12
7
12
12
29
8
11
4
10
3
5
3
3
8
7
8
2
5
3
6
5
5

nb F
ig

u
re

A
.1

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

H
.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT250

0.00.51.01.52.02.53.0

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 H

V

Rho Range

hv01

hv02

hv03

hv04

hv06

hv07

hv08

hv09

5

3

15

1

5

1

5

1

na

38

4

25

6

1254

3

6

7

nb

F
ig

u
re

A
.2

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

H
V

.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT251

0.00.51.01.52.02.53.03.5

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 I

Rho Range

i01

i02

i03

i05

i06

i07

i08

22

27

2

2

3

2

1

na

74

44

5

5

4

6

2

nb F
ig

u
re

A
.3

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

I.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT252

0.00.51.01.52.02.53.03.5

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 J

Rho Range

j00

j01

j02

j03

j04

j05

j13

j18

172

27

17

22

17

3

1

2

na

382

34

31

132

49

104

4

8

nb F
ig

u
re

A
.4

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

J
.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT253

0.00.51.01.52.02.53.03.5

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 K

Rho Range

k01

k02

k03

k04

k09

122

27

6

2

1

na

221

45

8

3

4

nb F
ig

u
re

A
.5

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

K
.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT254

0.00.51.01.52.02.53.03.5

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 N

Rho Range

n01

n02

n03

n04

n05

n06

n07

3

2

1

2

1

4

1

na

27

3

3

3

10

6

8

nb F
ig

u
re

A
.6

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

N
.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT255

0.00.51.01.52.02.53.03.5

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 P

H

Rho Range

ph01

ph02

ph03

ph05

ph01

ph02

6

2

2

2

6

2

na

55

16

3

3

55

16

nb

F
ig

u
re

A
.7

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

P
H

.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT256

0.00.51.01.52.02.53.03.5

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 T

Rho Range

t01

t02

t03

t04

t05

t06

t07

t08

t09

t11

t13

t14

43

82

12

6

8

1

1

7

1

64

3

1

na

70

98

17

12

11

4

3

11

4

114

4

3

nb F
ig

u
re

A
.8

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

T
.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT257

01234

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

 in
 U

Rho Range

u01
u02b
u04
u06
u07
u09
u10
u11
u12
u13
u14
u16
u17
u18
u21
u22
u23
u24
u25
u26
u27
u28
u29
u31
u33
u34
u35
u36
u38
u40
u41
u42
u45

9
3
2
12
6
16
3
2
3
1
1
58
6
20
54
28
1
1
3
3
27
81
11
3
1
3
63
16
2
1
1
1
1

na

39
5
10
28
10
88
9
4
5
3
2

105
7
23

278
1296

3
2
20
9

135
98
13
8
2
4
81
18
4
4
5
2
4

nb F
ig

u
re

A
.9

:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p

U
.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT258

0.00.51.01.52.02.53.03.5

R
h

o
 D

at
a 

b
y 

F
o

u
n

d
er

 (
f1

)

F
ou

nd
er

s 
in

 V
,W

 a
nd

 X

Rho Range

v01

v04

w01

w02

w04

x01

x02

x03

x04

x09

127

1

38

10

6

34

2

1

2

3

na

134

2

73

13

10

78

4

3

4

4

nb

F
ig

u
re

A
.1

0:
P

lo
t

of
th

os
e

fo
u
n
d
er

s
lo

ca
te

d
in

h
ap

lo
gr

ou
p
s

V
,
W

or
X

.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT259

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

A
g

e 
R

an
g

es
 F

o
r 

M
aj

o
r 

F
o

u
n

d
er

s

F
ou

nd
er

 C
lu

st
er

s 
W

ith
 4

0 
O

r 
M

or
e 

Li
ne

ag
es

Y
ea

rs
 B

ef
or

e 
P

re
se

nt
 (

Y
B

P
)

Founder (f1)

t0
1

t1
1

j0
0

k0
1

u1
6

t0
2

h0
0

h0
1

v0
1

u3
5

u2
8

u2
1

1.
57

 %

2.
34

 %

6.
29

 %

4.
46

 %

2.
12

 %

3 
%

31
.2

5 
%

3.
95

 %

4.
64

 %

2.
3 

%

2.
96

 %

1.
97

 %

F
ig

u
re

A
.1

1:
C

re
d
ib

le
re

gi
on

s
fo

r
ag

es
of

m
a
jo

r
fo

u
n
d
er

cl
u
st

er
s

u
si

n
g

th
e

or
ig

in
al

m
et

h
o
d

(g
am

m
a

d
is

tr
ib

u
ti

on
on

ag
es

).
T

h
e

in
n
er

b
ar

s
re

p
re

se
n
t

th
e

50
%

cr
ed

ib
le

re
gi

on
s

w
h
il
e

th
e

ou
te

r
b
ar

s
re

p
re

se
n
t

th
e

95
%

cr
ed

ib
le

re
gi

on
s.



APPENDIX A. FIGURES, TABLES AND MISCELLANEOUS OUTPUT260

Credible regions by founder

The following table gives the 2.5%, 25%, 75%, 97.5% credible region values for

every founder under the f1 criterion, together with the number of members

in the founder cluster (na), with the percentage of the European sample

contained in the cluster detailed in the final column.

Founder 2.5% 25% 75% 97.5% na Percentage

h00 11511.99 12185.10 12919.22 13645.61 855 31.25

h01 10857.20 12711.64 14874.61 17150.49 108 3.95

h02 2443.89 9699.30 27168.68 56217.88 2 0.07

h05 5460.33 11329.73 21103.00 34445.88 6 0.22

h06 16102.25 19877.02 24434.81 29375.77 39 1.43

h07 13176.16 17020.79 21801.39 27112.05 31 1.13

h08 5428.05 7806.13 10972.28 14684.05 34 1.24

h10 12096.37 19488.55 30052.68 43096.42 8 0.29

h12 510.91 5805.42 27975.42 74441.59 1 0.04

h13 9713.36 13968.87 19634.60 26276.72 19 0.69

h14 5647.30 8232.64 11704.31 15800.69 30 1.10

h15 4161.60 11618.97 26371.24 48598.07 3 0.11

h16 2978.36 6179.85 11510.73 18788.66 11 0.40

h18 1221.95 4849.65 13584.34 28108.94 4 0.15

h21 2080.80 5809.48 13185.62 24299.03 6 0.22

h23 977.56 3879.72 10867.47 22487.15 5 0.18

h25 72.99 829.35 3996.49 10634.51 7 0.26

h26 6516.11 9499.19 13504.98 18231.56 26 0.95

h28 1560.60 4357.11 9889.21 18224.27 8 0.29

h29 11616.39 20032.38 32571.97 48508.26 6 0.22
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h30 2199.35 5116.28 10310.82 17692.36 10 0.37

h32 4095.24 8497.29 15827.25 25834.41 8 0.29

h35 4207.43 6778.63 10453.10 14990.06 23 0.84

h36 5498.37 12790.69 25777.06 44230.89 4 0.15

h37 11864.03 19711.95 31141.91 45443.02 7 0.26

h38 510.91 5805.42 27975.42 74441.59 1 0.04

h39 4937.14 9460.41 16643.35 26162.99 9 0.33

h40 510.91 5805.42 27975.42 74441.59 1 0.04

h41 1629.26 6466.20 18112.45 37478.59 3 0.11

h43 10996.74 25581.38 51554.12 88461.79 2 0.07

h44 510.91 5805.42 27975.42 74441.59 1 0.04

h45 6242.40 17428.45 39556.86 72897.10 2 0.07

h46 127.73 1451.36 6993.86 18610.40 4 0.15

h52 255.46 2902.71 13987.71 37220.79 2 0.07

h53 510.91 5805.42 27975.42 74441.59 1 0.04

h62 255.46 2902.71 13987.71 37220.79 2 0.07

h76 510.91 5805.42 27975.42 74441.59 1 0.04

h78 977.56 3879.72 10867.47 22487.15 5 0.18

h79 1629.26 6466.20 18112.45 37478.59 3 0.11

h81 16380.98 33989.18 63309.01 103337.63 2 0.07

hv01 19354.19 31181.68 48084.28 68954.27 5 0.18

hv02 4161.60 11618.97 26371.24 48598.07 3 0.11

hv03 8341.84 12805.73 18996.88 26478.90 15 0.55

hv04 510.91 5805.42 27975.42 74441.59 1 0.04

hv06 11358.77 20513.60 34541.97 52708.04 5 0.18

hv07 510.91 5805.42 27975.42 74441.59 1 0.04

hv08 102.18 1161.08 5595.08 14888.32 5 0.18
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hv09 510.91 5805.42 27975.42 74441.59 1 0.04

i01 3774.92 6271.99 9908.79 14459.14 22 0.80

i02 13906.11 18141.82 23442.22 29360.84 27 0.99

i03 6242.40 17428.45 39556.86 72897.10 2 0.07

i05 6242.40 17428.45 39556.86 72897.10 2 0.07

i06 1629.26 6466.20 18112.45 37478.59 3 0.11

i07 2443.89 9699.30 27168.68 56217.88 2 0.07

i08 510.91 5805.42 27975.42 74441.59 1 0.04

j00 6921.30 8094.46 9461.79 10899.57 172 6.29

j01 2581.42 4451.64 7238.21 10779.61 27 0.99

j02 15430.97 21076.18 28350.67 36666.32 17 0.62

j03 999.70 2325.58 4686.74 8041.98 22 0.80

j04 19205.05 25487.39 33435.65 42389.99 17 0.62

j05 10920.65 22659.45 42206.00 68891.75 3 0.11

j13 510.91 5805.42 27975.42 74441.59 1 0.04

j18 10996.74 25581.38 51554.12 88461.79 2 0.07

k01 9318.46 10935.20 12823.78 14813.58 122 4.46

k02 2581.42 4451.64 7238.21 10779.61 27 0.99

k03 3665.58 8527.13 17184.71 29487.26 6 0.22

k04 10996.74 25581.38 51554.12 88461.79 2 0.07

k09 510.91 5805.42 27975.42 74441.59 1 0.04

n01 4161.60 11618.97 26371.24 48598.07 3 0.11

n02 2443.89 9699.30 27168.68 56217.88 2 0.07

n03 510.91 5805.42 27975.42 74441.59 1 0.04

n04 22217.11 42571.82 74895.06 117733.47 2 0.07

n05 510.91 5805.42 27975.42 74441.59 1 0.04

n06 14198.46 25642.00 43177.46 65885.05 4 0.15
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n07 510.91 5805.42 27975.42 74441.59 1 0.04

ph01 7405.70 14190.61 24965.02 39244.49 6 0.22

ph02 255.46 2902.71 13987.71 37220.79 2 0.07

ph03 6242.40 17428.45 39556.86 72897.10 2 0.07

ph05 255.46 2902.71 13987.71 37220.79 2 0.07

t01 3592.01 5316.53 7654.44 10432.78 43 1.57

t02 9345.03 11325.16 13687.51 16222.45 82 3.00

t03 1832.79 4263.56 8592.35 14743.63 12 0.44

t04 85.15 967.57 4662.57 12406.93 6 0.22

t05 1560.60 4357.11 9889.21 18224.27 8 0.29

t06 510.91 5805.42 27975.42 74441.59 1 0.04

t07 510.91 5805.42 27975.42 74441.59 1 0.04

t08 6347.75 12163.38 21398.59 33638.13 7 0.26

t09 510.91 5805.42 27975.42 74441.59 1 0.04

t11 6123.92 7948.84 10225.04 12760.00 64 2.34

t13 170.30 1935.14 9325.14 24813.86 3 0.11

t14 510.91 5805.42 27975.42 74441.59 1 0.04

u01 15520.56 23367.80 34120.53 47000.53 9 0.33

u02b 1629.26 6466.20 18112.45 37478.59 3 0.11

u04 2443.89 9699.30 27168.68 56217.88 2 0.07

u06 17939.92 25202.33 34729.46 45772.69 12 0.44

u07 11616.39 20032.38 32571.97 48508.26 6 0.22

u09 5190.51 8623.98 13624.58 19881.32 16 0.58

u10 170.30 1935.14 9325.14 24813.86 3 0.11

u11 10996.74 25581.38 51554.12 88461.79 2 0.07

u12 170.30 1935.14 9325.14 24813.86 3 0.11

u13 510.91 5805.42 27975.42 74441.59 1 0.04
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u14 510.91 5805.42 27975.42 74441.59 1 0.04

u16 8772.72 11061.51 13863.39 16936.07 58 2.12

u17 2080.80 5809.48 13185.62 24299.03 6 0.22

u18 13911.37 18849.70 25181.06 32389.64 20 0.73

u21 28051.32 32260.59 37112.63 42164.93 54 1.97

u22 13409.46 17493.90 22604.99 28312.24 28 1.02

u23 510.91 5805.42 27975.42 74441.59 1 0.04

u24 510.91 5805.42 27975.42 74441.59 1 0.04

u25 1629.26 6466.20 18112.45 37478.59 3 0.11

u26 7331.16 17054.25 34369.42 58974.52 3 0.11

u27 2581.42 4451.64 7238.21 10779.61 27 0.99

u28 15582.21 18146.38 21126.64 24252.76 81 2.96

u29 7549.84 12543.97 19817.58 28918.29 11 0.40

u31 4161.60 11618.97 26371.24 48598.07 3 0.11

u33 510.91 5805.42 27975.42 74441.59 1 0.04

u34 4161.60 11618.97 26371.24 48598.07 3 0.11

u35 13271.88 15962.38 19156.33 22569.02 63 2.30

u36 2047.62 4248.65 7913.63 12917.20 16 0.58

u38 2443.89 9699.30 27168.68 56217.88 2 0.07

u40 510.91 5805.42 27975.42 74441.59 1 0.04

u41 510.91 5805.42 27975.42 74441.59 1 0.04

u42 510.91 5805.42 27975.42 74441.59 1 0.04

u45 510.91 5805.42 27975.42 74441.59 1 0.04

v01 11072.53 12797.68 14792.82 16876.41 127 4.64

v04 510.91 5805.42 27975.42 74441.59 1 0.04

w01 11623.67 14882.75 18912.15 23367.39 38 1.39

w02 3276.20 6797.84 12661.80 20667.53 10 0.37
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w04 2080.80 5809.48 13185.62 24299.03 6 0.22

x01 12013.55 15518.96 19877.73 24719.81 34 1.24

x02 6242.40 17428.45 39556.86 72897.10 2 0.07

x03 510.91 5805.42 27975.42 74441.59 1 0.04

x04 6242.40 17428.45 39556.86 72897.10 2 0.07

x09 14811.41 28381.22 49930.04 78488.98 3 0.11

Table A.2: 50% and 95% credible region end points for

f1 founder clusters.
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Some mathematical derivations

Proof of (3.33):

d

du

1

β
log

[
γεwδ + eβu

]
=

1

β

1

[γεwδ + eβu]

(
βeβu

)

=
eβu

[γεwδ + eβu]

=
1

1 + γεw δ
eβu

=
1

1 + γεwδe−βu
.

By the Fundamental Theorem of Calculus [43], it is clear from the above that

(3.33) is indeed the solution to (3.32).
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Result (3.35)

X = krN(0)

[
1

β
log

(
γεδ + eβu

)]tα

tα−1

⇒ Xβ

krN(0)
= log

(
γεδ + eβtα

)− log
(
γεδ + eβtα−1

)

⇒ log
(
γεδ + eβtα

)
=

Xβ

krN(0)
+ log

(
γεδ + eβtα−1

)

⇒ γεδ + eβtα = exp

{
Xβ

krN(0)
+ log

(
γεδ + eβtα−1

)}

⇒ eβtα = exp

{
Xβ

krN(0)
+ log

(
γεδ + eβtα−1

)}− γεδ

⇒ βtα = log

{
exp

[
Xβ

krN(0)
+ log

(
γεδ + eβtα−1

)]− γεδ

}

⇒ tα =
1

β
log

{
exp

[
Xβ

krN(0)
+ log

(
γεδ + eβtα−1

)]− γεδ

}

⇒ tα =
1

β
log

{
exp

[
Xβ

krN(0)

]
exp

[
log

(
γεδ + eβtα−1

)]− γεδ

}

⇒ tα =
1

β
log

{
exp

[
Xβ

krN(0)

] [
γεδ + eβtα−1

]− γεδ

}
. (B.1)
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Result (3.36)

X = krN(0)

{∫ Tlα−1+1

tα−1

du

1 + γεlα−1+1
δe−βu

+

∫ tα

Tlα

du

1 + γεlα+1
δe−βu

+
lα−1∑

s=lα−1+1

∫ Ts+1

Ts

du

1 + γεs+1δe
−βu

}

⇒ X

krN(0)
=

[
1

β
log

(
γεlα−1+1

δ + eβu
)]Tlα−1+1

tα−1

+

[
1

β
log

(
γεlα+1

δ + eβu
)]tα

Tlα

+
lα−1∑

s=lα−1+1

[
1

β
log

(
γεs+1δ + eβu

)]Ts+1

Ts

⇒ Xβ

krN(0)
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log
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− log
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+
[
log

(
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δ + eβtα
)− log

(
γεlα+1

δ + eβTlα
)]

+
lα−1∑
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[
log

(
γεs+1δ + eβTs+1

)− log
(
γεs+1δ + eβTs

)]

⇒ log
(
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=
Xβ

krN(0)
− log
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+ log
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+ log
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−
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log

(
γεs+1δ + eβTs+1

)− log
(
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δ + eβtα = exp
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Xβ

krN(0)
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{
− log

(
γεlα−1+1

δ + eβTlα−1+1
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.
[
γεlα−1+1

δ + eβtα−1

] [
γεlα+1

δ + eβTlα
]

. exp



−

lα−1∑

s=lα−1+1

[
log

(
γεs+1δ + eβTs+1

)− log
(
γεs+1δ + eβTs

)]




⇒ F + eβtα = exp {A− E1}B−1CD

⇒ eβtα = exp {A− E1}B−1CD − F
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⇒ βtα = log
{
exp [A− E1] B

−1CD − F
}

⇒ tα =
1

β
log

{
exp [A− E1] B

−1CD − F
}

⇒ tα =
1

β
log

{
exp [A− E1]

CD

B
− F

}
.

An equivalent result that is sometimes easier to work with is shown below.

First, note that E1 can be re-expressed as:

E1 = log





lα−1∏

s=lα−1+1

[
γεs+1δ + eβTs+1

γεs+1δ + eβTs

]

 . (B.2)

In light of (B.2), exp [A− E1] can be re-expressed as:

exp [A− E1] = exp[A] exp



− log





lα−1∏

s=lα−1+1

[
γεs+1δ + eβTs+1

γεs+1δ + eβTs

]







= exp[A]





lα−1∏

s=lα−1+1

[
γεs+1δ + eβTs+1

γεs+1δ + eβTs

]



−1

= exp[A] [E2]
−1 ,

where,

E2 =
lα−1∏

s=lα−1+1

[
γεs+1δ + eβTs+1

γεs+1δ + eβTs

]
. (B.3)

Thus, equation (3.36) becomes

tα =
1

β
log

{
exp [A]

CD

BE2

− F

}
. (B.4)
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Result (3.41)

c2N = Ne
1

T

1

b

(
ebT − 1

)

⇒ (1− c1) N = Ne
1

T

1

b

(
ebT − 1

)
.

Since c2 = (1− c1)

⇒ N −Nc1 = Ne
1

T

1

b

(
ebT − 1

)
.

But Nc1 = Ω, hence,

N −Nc1 = Ne
1

T

1

b

(
ebT − 1

)

⇒ N = Ω + Ne
1

T

1

b

(
ebT − 1

)
.
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Covariance of naρA and nbρB

The calculation of the covariance between naρA and nbρB leads to an inter-

esting result that the covariance of these two random quantities is equal to

the variance of naρA.

Recall,

naρA ∼ Po(naτA),

V [naρA] = naτA. (B.5)

Now,

Cov[naρA, nbρB] = Cov[Y1, Y1 + naY2 + Y3]

Where Y1 ∼ Po(naτA), Y2 ∼ Po(τB − τA), Y3 ∼ Po((nb − na)τB)

Y1, Y2, Y3 are all independent, which gives,

Cov[naρA, nbρB] = Cov[Y1, Y1 + naY2 + Y3]

= Cov[Y1, Y1] + Cov[Y1, naY2] + Cov[Y1, Y3]

= V ar[Y1] + 0

= naτA.
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