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Abstract

The prediction of protein-protein interactions (PPI) has recently emerged
as an important problem in the fields of bioinformatics and systems biology,
due to the fact that most essential cellular processes are mediated by these
kinds of interactions. In this thesis we focussed in the prediction of co-complex
interactions, where the objective is to identify and characterize protein pairs
which are members of the same protein complex.

Although high-throughput methods for the direct identification of PPI have
been developed in the last years. It has been demonstrated that the data ob-
tained by these methods is often incomplete and suffers from high false-positive
and false-negative rates. In order to deal with this technology-driven problem,
several machine learning techniques have been employed in the past to improve
the accuracy and trustability of predicted protein interacting pairs, demonstrat-
ing that the combined use of direct and indirect biological insights can improve
the quality of predictive PPI models. This task has been commonly viewed as
a binary classification problem. However, the nature of the data creates two
major problems. Firstly, the imbalanced class problem due to the number of
positive examples (pairs of proteins which really interact) being much smaller
than the number of negative ones. Secondly, the selection of negative examples
is based on some unreliable assumptions which could introduce some bias in the
classification results.

The first part of this dissertation addresses these drawbacks by exploring the
use of one-class classification (OCC) methods to deal with the task of prediction
of PPI. OCC methods utilize examples of just one class to generate a predictive
model which is consequently independent of the kind of negative examples se-
lected; additionally these approaches are known to cope with imbalanced class
problems. We designed and carried out a performance evaluation study of sev-
eral OCC methods for this task. We also undertook a comparative performance
evaluation with several conventional learning techniques.

Furthermore, we pay attention to a new potential drawback which appears to
affect the performance of PPI prediction. This is associated with the composition
of the positive gold standard set, which contain a high proportion of examples
associated with interactions of ribosomal proteins. We demonstrate that this
situation indeed biases the classification task, resulting in an over-optimistic
performance result. The prediction of non-ribosomal PPI is a much more difficult
task. We investigate some strategies in order to improve the performance of this
subtask, integrating new kinds of data as well as combining diverse classification
models generated from different sets of data.

In this thesis, we undertook a preliminary validation study of the new PPI
predicted by using OCC methods. To achieve this, we focus in three main as-
pects: look for biological evidence in the literature that support the new predic-
tions; the analysis of predicted PPI networks properties; and the identification
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of highly interconnected groups of proteins which can be associated with new
protein complexes.

Finally, this thesis explores a slightly different area, related to the predic-
tion of PPI types. This is associated with the classification of PPI structures
(complexes) contained in the Protein Data Bank (PDB) data base according
to its function and binding affinity. Considering the relatively reduced number
of crystalized protein complexes available, it is not possible at the moment to
link these results with the ones obtained previously for the prediction of PPI
complexes. However, this could be possible in the near future when more PPI
structures will be available.



4

Acknowledgements

First, I would like to thank my supervisor Professor David Gilbert for all the

support, encouragement and advice I received from him during the time I have

been doing my research.

Many thanks go to my friends and to all members, past and present, of

the Bioinformatics Research Centre, who share some time, conversations and

experiences all these years I have spent in Glasgow.

I am very grateful to my parents and family for their love, constant support

and encouragement to pursue this challenge. Without them this thesis would

not have been possible. Thanks for always be there when I needed.



Contents

1 Introduction 15

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Biological Background 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 From DNA to Proteins . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Protein Structure . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Protein Function . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Protein-Protein Interactions . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Identification/Detection of PPI . . . . . . . . . . . . . . . 29

2.4 Availability of PPI Data . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Related Work 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Machine Learning Overview . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Learning Process . . . . . . . . . . . . . . . . . . . . . . . 38

5



CONTENTS 6

3.2.2 Conventional Machine Learning Algorithms . . . . . . . . 41

3.3 Learning from Diverse Types of Data . . . . . . . . . . . . . . . . 43

3.3.1 General Integrative Framework . . . . . . . . . . . . . . . 46

3.3.2 Applications in Bioinformatics . . . . . . . . . . . . . . . . 48

3.4 Machine Learning for Prediction of PPI . . . . . . . . . . . . . . . 50

3.4.1 Machine learning Issues Important for the Prediction of PPI 53

4 One-Class Classification for prediction of PPI 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 One-class Classification . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Gaussian density estimation . . . . . . . . . . . . . . . . . 66

4.2.2 Mixture of Gaussian density estimation . . . . . . . . . . . 66

4.2.3 Parzen density estimation . . . . . . . . . . . . . . . . . . 67

4.2.4 Support vector data description (SVDD) . . . . . . . . . . 67

4.2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Comparative performance evaluation . . . . . . . . . . . . . . . . 71

4.3.1 Reference data set . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Biological features . . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Conventional Machine Learning Methods . . . . . . . . . . 73

4.3.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . 74

4.3.5 Evaluation of diverse OCC methods . . . . . . . . . . . . . 76

4.3.6 Comparative evaluation between OCC and conventional

classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Evaluation of different scenarios . . . . . . . . . . . . . . . . . . . 80

4.4.1 Comparative evaluation on different scenarios . . . . . . . 80

4.4.2 Comparative evaluation when less biological information

is available . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Evaluation of biological feature importance . . . . . . . . . . . . . 87



CONTENTS 7

4.6 Prediction of new potential PPI targets using Parzen OCC method 88

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Prediction of non-Ribosomal PPI 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Analysis of Positive Gold Standard Set composition . . . . . . . . 94

5.3 Integration of Biological Information . . . . . . . . . . . . . . . . 97

5.3.1 mRNA Expression Integration . . . . . . . . . . . . . . . . 97

5.3.2 Protein Secondary Structure Integration . . . . . . . . . . 99

5.4 Combination of OCC Models . . . . . . . . . . . . . . . . . . . . 102

5.4.1 Diversity of Classification Models . . . . . . . . . . . . . . 102

5.4.2 Combination Strategies . . . . . . . . . . . . . . . . . . . . 104

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Analysis and Validation of New Predicted PPI 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Identification of New PPI Targets . . . . . . . . . . . . . . . . . . 110

6.3 Network Topology Analysis of Predicted PPI Network . . . . . . . 114

6.3.1 Power-law distribution . . . . . . . . . . . . . . . . . . . . 115

6.3.2 Small world effect . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Identification of new PPI Complexes . . . . . . . . . . . . . . . . 119

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Prediction of PPI Types 128

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



CONTENTS 8

7.3.1 Interaction Data . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.2 Definition of interface and dom-face . . . . . . . . . . . . 133

7.3.3 Description of dom-face . . . . . . . . . . . . . . . . . . . 133

7.3.4 Association Rule Based Classification . . . . . . . . . . . . 135

7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4.1 Analysis of dom-face Properties . . . . . . . . . . . . . . . 139

7.4.2 Classification of PPI types . . . . . . . . . . . . . . . . . . 142

7.4.3 Interpretation of Discovered Association Rules . . . . . . . 145

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8 Conclusions and Future Work 161

A List of predicted PPI for further validation 168

Bibliography 181



List of Figures

2.1 Scheme of the central dogma of molecular biology. (Figure adapted

from http://encephalon.ca/?p=4 ) . . . . . . . . . . . . . . . . . . 25

2.2 Scheme of different protein structure levels. (Figure adapted from

http://stevebambas.com/AP 220 Chemistry.htm) . . . . . . . . . . 27

2.3 The yeast-two-hybrid system. (a) The DNA-binding domain hy-

brid does not activate transcription if protein “Bait” does not

contain an activation domain. The activation domain hybrid does

not activate transcription either because it does not localize the

DNA-binding site. (b) Interaction between “Bait” and “Prey”

brings the activation domain into close proximity to the DNA-

binding site and results in transcription of a reporter gene. . . . . 31

3.1 A typical machine learning process for classification . . . . . . . . 41

3.2 Scheme of general approaches for the application of machine learn-

ing algorithms over heterogeneous sources of data . . . . . . . . . 47

3.3 Bias-variance trade-off as function of model complexity . . . . . . 61

9



LIST OF FIGURES 10

4.1 Example of ROC curve analysis: (a) Whole ROC curves for the

different learning methods evaluated. (b) Partial ROC curves

for the different learning methods evaluated. The vertical line

indicates the point where approximately the first 50 false-positive

examples are reached. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 AUC-50 comparison for different learning methods evaluated, show-

ing the effect of reducing and incrementing the number of negative

examples used to train the models. The balanced class scenario

is when 2,104 negative examples are used for training. Note that

no corrective action was taken for any of the imbalanced class

situations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 AUC-50 comparison for the different learning approaches evalu-

ated in the case where reduced biological information is available.

Lights bars present the results for OCC methods: SVDD, Gaus-

sian, mixture of Gaussian and Parzen. Dark bars present the re-

sults for conventional classifiers employed: Decision Trees (DT),

Naive Bayes (NB), Logistic Regression (LR) and Support Vector

Machines (SVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Graphical overview of the set of 818 new PPI targets predicted

using the combined OCC approach . . . . . . . . . . . . . . . . . 112

6.2 Node degree distribution of predicted PPI networks. The plot in

(c) exhibits the node degree distribution of the PPI network as-

sociated to the 818 new predictions using the classification model

based on the combination of various Parzen OCC models (AUC-50

based cut-off). (a), (b) and (d) show the node degree distribu-

tion for PPI networks when 300, 500 and 1,500 interactions are

included respectively . . . . . . . . . . . . . . . . . . . . . . . . . 117



LIST OF FIGURES 11

6.3 Shortest path length distribution of predicted PPI networks. The

plot in (c) exhibits the path length distribution of the PPI net-

work associated to the 818 new predictions using the classification

model based on the combination of various Parzen OCC models

(AUC-50 based cut-off). (a), (b) and (d) show the the path length

distribution for PPI networks when 300, 500 and 1,500 interac-

tions are included respectively . . . . . . . . . . . . . . . . . . . . 118

6.4 Diagram of three clusters discovered employing the MCODE al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1 average distribution of SSE elements (helix, strand and non-regular

regions) for different PPI types . . . . . . . . . . . . . . . . . . . 141

7.2 A scatter Plot matrix for PPI types and association rules. This

scatter plot matrix shows clusters as collection of points separated

by association rules encoding SSE content information or a SCOP

class. Different colors of the left in each plot (a cell) correspond to

four PPI types. The right of a plot area presents the distribution

of points met with a rule on the head of a cell. Rules 29, 40, 1,

and 3 separate ENZ and nonENZ from other types remarkably

with few errors. The Rule 1 is a strong discriminator to classify

ENZ from other types completely . . . . . . . . . . . . . . . . . . 150



LIST OF FIGURES 12

7.3 2D plots for pairs of association rules. These plot data points by

pairs of association rules. X and Y axes are a pair of rules and

each of them have two boolean values. 0 represents negative data

points not meeting with a rule of each axis and 1 represents for

positive data points meeting with the rule. The data points on

the upper left corner meet a rule used for Y axis and the data

points on the down right corner meet a rule used for X axis. The

points on the upper right corner meet with both rules used for X

and Y axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4 A hierarchical tree for supporting inference of subtypes. A hi-

erarchical tree drawn from association rules represents different

structural groups in ENZ. Enzyme-inhibitor interactions are char-

acterized with size scales of interaction sites (number of atoms and

df-ASA) and SSE content information (helix content). These dif-

ferences of structural groups result in subtypes of PPIs. Letters

in red are identifiers of rules to split branches of a tree. Dashed

lines show interaction between enzymes and inhibitors in different

subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



List of Tables

2.1 Commonly employed in vitro experimental methods for detection

of PPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 List of public PPI databases . . . . . . . . . . . . . . . . . . . . . 35

4.1 Comparison of AUC and AUC-50 values for different learning

methods evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Evaluation of the individual effect of the different biological at-

tributes in the performance of the OCC parzen approach . . . . . 88

4.3 List of 50 highly ranked new potential PPI targets predicted by

the Parzen OCC method . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Performance of different classifiers measured as AUC-50 scores.

Three cases are evaluated: prediction considering all PPI in the

positive gold standard set, prediction of ribosomal PPI and pre-

diction of non-ribosomal PPI. AUC-50 scores given as mean value

and standard deviation (in brackets) based on a ten fold cross val-

idation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Performance for diverse sets of biological data measured as AUC-

50 scores. AUC-50 scores are given as mean value and standard

deviation (in brackets) based on a ten fold cross validation procedure 99

5.3 Variability of diverse models employed for combination process . . 104

13



LIST OF TABLES 14

5.4 Performance for diverse combination strategies measured as AUC-

50 scores. AUC-50 scores given as mean value and standard de-

viation (in brackets) based on a ten-fold cross validation procedure105

6.1 List of top 100 highly ranked new potential PPI targets predicted

by the combination of four Parzen OCC method . . . . . . . . . . 113

6.2 Description of cluster (a) discovered employing the MCODE al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Description of cluster (b) discovered employing the MCODE al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Continuation of Table 1.4 for Description of cluster (b) discovered

employing the MCODE algorithm. . . . . . . . . . . . . . . . . . 125

6.5 Description of cluster (c) discovered employing the MCODE al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.1 Data set of protein complexes . . . . . . . . . . . . . . . . . . . . 132

7.2 Average values of the properties . . . . . . . . . . . . . . . . . . . 140

7.3 Number of association rules discovered for each PPI type . . . . . 142

7.4 Accuracy for different classification methods . . . . . . . . . . . . 144

7.5 Analysis of SSE content rules over different subsets . . . . . . . . 145

7.6 Representative examples of association rules for each PPI Type . 148

7.7 Representative examples of ENZ Type, presenting different struc-

tural features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.8 PRepresentative examples of overlapping association rules . . . . 156

7.9 PART rules generated by decision trees using C4.5a . . . . . . . . 157



Chapter 1

Introduction

1.1 Motivation

The prediction of protein-protein interactions (PPI) has recently emerged as an

important problem in the fields of bioinformatics and systems biology, due to

the fact that most essential cellular processes are mediated by these kind of in-

teractions. These processes include cell cycle control, differentiation, signalling,

transcription and transport.

Traditionally PPI have been identified through the use of small scale ex-

perimental techniques, which allow the correct and accurate identification of

these kind of interactions. However these small scale methods are expensive

and time consuming. Thus it is not feasible to investigate all potential protein

pairs in this way. In fact currently most PPI remain undiscovered (von Mering

et al. 2002, Futschik et al. 2007).

High-throughput methods for the direct identification of PPI have been re-

cently developed including yeast two-hybrid screens (Y2H) (Uetz et al. 2000, Ito

et al. 2001) for detection of binary physical interactions and mass spectrometry

methods for protein complex identification (Gavin et al. 2002, Ho et al. 2002).

15
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Even though high-throughput techniques can increase the number of predicted

PPI, in general the data obtained by these methods is often incomplete and

suffers from high false-positive and false-negative rates (von Mering et al. 2002).

Considering the limitations of the available experimental techniques for the

detection of new PPI, additional approaches are needed in order to improve the

accuracy and trustability of predicted protein interacting pairs. Various studies

have previously been developed, based on the integrative learning analysis of

diverse biological sources of information (Bader et al. 2004, Lanckriet et al.

2004, Gilchrist et al. 2004, Lee et al. 2004, Yamanishi et al. 2004). These have

demonstrated that the combined use of direct and indirect biological insights

can improve the quality of predictive PPI models.

The prediction of PPI has been commonly viewed as a classical binary clas-

sification problem, where the aim is to predict whether any two proteins do or

do not interact. Several traditional machine learning methods have been em-

ployed in the past for this specific task (Jansen et al. 2003, Lin et al. 2004, Zhang

et al. 2004, Lu et al. 2005, Qi et al. 2005, Ben-Hur and Noble 2005, Qi et al. 2006).

These methods generally use supervised learning algorithms where the final ob-

jective is to generate a classification model from a gold standard reference set of

positive (truly interacting protein pairs) and negative examples (non-interacting

pairs). Two main drawbacks have been identified regarding these previous ap-

proaches:

i) in general they face a highly imbalanced classification problem, where

the number of positive examples is much smaller than the number of negative

examples. This affects the quality of the predictive models which may be biased

towards the majority class and consequently the minority class examples are

poorly predicted. Under-sampling and cost-sensitive strategies have been used

to deal with the imbalanced problem in some of these previous works, whilst
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others did not report any action taken to deal with.

ii) Although the selection of positive examples is based on reliable experimen-

tal techniques (i.e. small scale experiments), there is no experimental method

to find pairs of proteins which do not interact (negative examples). There-

fore, certain assumptions have to be made in order to construct a negative gold

standard set, which can introduce some bias into the learning process and con-

sequently produces a significant effect upon the performance of the classification

approach (Ben-Hur and Noble 2006).

In order to deal with this situation, we propose the use of one-class classi-

fication (OCC) methods in this research as a possible solution to these issues.

The aim of OCC is to use feature information from only one of the classes, posi-

tive examples in this case, to generate a classification model. OCC methods are

known to be able to deal efficiently with highly imbalanced classification prob-

lems (Chawla et al. 2004). Additionally, unlike conventional binary classifiers,

OCC methods produce classification models which are independent of the kind of

negative gold standard set employed. In this thesis we designed and carried out

a performance evaluation study of several OCC methods for this task. Among

them we have found that the Parzen density estimation approach outperforms

the others. We also undertook a comparative performance evaluation between

the Parzen OCC method and several conventional learning techniques, consid-

ering different scenarios, for example varying the number of negative examples

used for training purposes. We found that the Parzen OCC method in gen-

eral performs competitively with traditional approaches and in many situations

outperforms them.

Another potential drawback associated with this prediction task derives from

the composition of the positive gold standard set. Some of the protein complexes

included in the reference data set are bigger than the average. For instance, the
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ribosomal complexes (large and small subunits) represent almost 2/3 of the to-

tal of PPI available in the positive reference data set commonly employed for

yeast. This situation could have an important effect on the performance of the

different classification techniques employed. This situation has not been inves-

tigated before in related literature. In this thesis, we intend to address this

potential problem, demonstrating that the high proportion of ribosomal-protein

based examples does indeed create bias in the PPI prediction results. When

removing these ribosomal-based PPI, we face a more difficult prediction task.

In order to improve the performance of this subtask we first integrate new bio-

logical features based on protein secondary structure information. Subsequently

we investigated and demonstrated that, by combining the predictions of sev-

eral Parzen OCC models induced from different subsets of biological data, it is

possible to significantly increment the performance of this subtask.

The final goal associated with the use of computational methods for pre-

dicting PPI is to predict or identify new potential PPI targets. These potential

targets can then be used, for instance, to guide biologists developing small scale

experiments in order to validate them. In this thesis we undertake a preliminary

evaluation analysis of the capability of the Parzen OCC approach to predict new

potential PPI targets. For this we generate a set of PPI consisting of random

protein pairs not employed to generate the predictive model. We then apply

the parzen OCC model to this random set to predict new potential PPI among

them. In this thesis we focus our analysis in three main topics: firstly, we ana-

lyze the topology properties of the PPI network predicted; secondly we look for

highly interconnected groups of proteins which can be associated to new protein

complexes; finally, we look for evidence in the related biological literature and

data bases to validate these new predictions.

The final part of this thesis explores a slightly different area, related to the
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prediction of PPI types. This is associated with the classification of PPI struc-

tures (complexes) contained in the Protein Data Bank (PDB) data base ac-

cording to its function and binding affinity. Protein structures are obtained by

experimental techniques such as X-Ray crystallography. These structures can be

classified according to their life time and binding affinity into four main classes,

as obligate permanent interactions involving homo or hetero obligomers (Nooren

and Thornton 2003) and non-obligate transient interactions involving Enzyme-

inhibitor or non Enzyme-inhibitor (Bradford and Westhead 2004). Here we

introduce a novel computational approach for the prediction of PPI types em-

ploying association rule based classification (ARBC). This includes association

rule generation and posterior classification based on the discovered rules. We

investigate diverse properties associated with the interaction interface of crys-

talized protein complexes, aiming to discover patterns in the form of association

rules that correctly classify PPI types and at the same time characterize PPI

binding sites. Due the complexity of experimental techniques, at present there is

a reduced number of available protein complexes structures. Consequently there

is not enough examples available to link these results with the ones obtained

previously for the prediction of PPI complexes. However in the near future is

expected that the number of crystalized protein structures will be increased.

In this case the information related to PPI types can be useful to enhance the

predictions made by our previous techniques (one-class classification).

1.2 Contributions

Here we present the main contributions to knowledge associated to this thesis:

• We investigated the use of OCC models for the task of PPI prediction. A

comparative performance evaluation between OCC and conventional clas-
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sifiers for the task of PPI prediction was developed. It was demonstrated

that PPI can be predicted effectively using OCC methods, especially con-

sidering the Parzen OCC approach.

• We demonstrated that OCC models deal efficiently with the imbalanced

class problem associated to this task. On the contrary conventional clas-

sifiers are strongly affected by this situation.

• We investigated the problem of reliability of negative gold standard in

the prediction of PPI task. It was demonstrated that the performance of

conventional classifiers is highly affected by the quantity of negative data

employed on either training and testing the models.

• A new drawback not reported previously in literature for the prediction

of PPI was investigated. This problem is related to the high proportion

of ribosomal-based proteins in the positive gold standard reference data

set generally employed for this task. We demonstrated that this situation

is biasing the results of classifiers and consequently the reliability of new

predicted PPI. The task associated to the prediction of non-ribosomal PPI

is much more difficult.

• Focused in the sub-task of prediction of non-ribosomal PPI, we investigated

the use of protein secondary structure (SS) information into this problem.

Features based on this kind of information have not been employed before

for this task. We demonstrated that protein SS features have a positive

effect, improving significantly the performance of OCC and conventional

classifiers on this task.

• Following with the task of prediction of non-ribosomal PPI. We investi-

gated several strategies for the combination of various Parzen OCC models

generated from diverse sets of biological information. We demonstrated
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that a the combination approach improves significantly the performance

of this subtask.

• To select a set of appropriate OCC models for combination purposes, we

investigated the diversity of their predictions. In this thesis we adapted

several diversity measures focusing in the low false-positive region of dif-

ferent classification models evaluated.

• We developed a preliminary validation study of new PPI predicted em-

ploying OCC models. We demonstrated that the PPI network associated

to these predictions, share similar topological properties with other PPI

and biological networks previously reported in the related literature. We

also identify several PPI clusters (highly connected proteins), which can

be associated for instance to new protein complexes. We demonstrated

that it is possible to infer new biological knowledge from the analysis of

these clusters.

• We implemented a novel approach for prediction of PPI types using asso-

ciation rule based classification (ARBC) approach. We demonstrated that

ARBC performs competitively with other classifiers, but additionally with

the advantage of improving the interpretability of the predictive results.

The main contribution of this thesis was related to the implementation of

the classification stage.

1.3 List of Publications

The list of publications associated to this thesis is as follows:

• Jose A. Reyes and David Gilbert. Prediction of protein-protein interactions

using one-class classification methods and integrating diverse biological



CHAPTER 1. INTRODUCTION 22

data. Journal of Integrative Bioinformatics, 4(3):77, 2007. ISSN 1613-

4516

• Jose A. Reyes and David Gilbert. Combining One-Class Classification

Models Based on Diverse Biological Data for Prediction of Protein-Protein

Interactions. In Proceeding of Data Integration and the Life Sciences DILS

2008. LNCS/LNBI 5109, pp 177-191, 2008. Springer-Verlag .

• Sung Hee Park, Jose A. Reyes, David Gilbert, Sang Soo Kim and Ji Woong

Kim. Prediction of Protein-Protein Interaction Types using Association

Rule based Classification. BMC Bioinformatics 2009, 10(36).

1.4 Thesis Organization

Chapter 2 provides a brief introduction to biological background relevant to un-

derstand further parts of this thesis. Chapter 3 present an overview of machine

learning techniques employed in the past to deal with the problem of predic-

tion of PPI. Chapter 4 exhibits the work associated to the use of OCC models

for the problem of PPI prediction. A comparative performance evaluation with

conventional classification methods is also carried out. In Chapter 5, we inves-

tigated several strategies to improve the performance of OCC models for this

task. Including, the integration of new biological features, and the combination

of several OCC models based on diverse sets of biological information. Chapter

6 presents a preliminary validation study of the new PPI predicted employing

OCC models. In Chapter 7, we describe a computational approach for the pre-

diction of PPI types employing association rule based classification (ARBC).

Finally, Chapter 8 presents the conclusions of this thesis and ideas for future

work.



Chapter 2

Biological Background

2.1 Introduction

In this chapter, we present an overview of the basic concepts of molecular biol-

ogy relevant to understanding further parts of this thesis, including information

about DNA, proteins, protein-protein interactions (PPI) and protein interaction

networks.

In this thesis, we refer to the term “protein-protein interaction” as the as-

sociation of two proteins with each other. PPI can be classified according to

different properties which will be examined here. We specifically focus on in-

teractions related to protein complexes. In this case, any two proteins interact

with each other if they are members of the same complex. We will briefly de-

scribe the main experimental techniques available today to identify these kinds

of biological interactions, and we will discuss their capabilities and limitations.

Finally, we will introduce the major existing biological databases related to this

kind of information.

23
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2.2 Proteins

Proteins are essential macromolecules which are involved in almost all processes

in the cell. They are fundamental structural components of cells and are also

involved in almost every cell function such as transportation, hormonal regu-

lation, metabolism, respiration, repair and control of genes. Proteins do not

usually work alone but interact with other proteins, forming protein complexes

and also protein interaction networks. For this reason, understanding the roles

of proteins, in particular how they interact with each other, is the focus of this

thesis, and a key step to understanding the whole operation of the cell.

2.2.1 From DNA to Proteins

Cells are the fundamental working units of every living system. The nucleus of

every cell in eukaryotic organisms (including animals and plants) contains a large

DNA (Deoxyribonucleic acid) molecule, which carries the genetic information of

every organism.

DNA consists of two long chains of nucleotides. Each nucleotide is composed

of one sugar molecule, one phosphate molecule, and a nitrogenous base. Four

different bases are present in DNA: adenine (A), thymine (T), cytosine (C), and

guanine (G). The particular order of the bases in any of the DNA strands is called

the DNA sequence. The two DNA strands are complementary, which means that

they contain the same genetic information (the information is duplicated) and

are held together by weak hydrogen bonds.

The DNA sequence contains instructions for the synthesis of every protein.

These are the specific sections of the DNA sequence usually called genes. The

way how the information stored in the DNA passed on for the synthesis of

proteins is called the central dogma of molecular biology. A simplified scheme

of this process can be seen in Figure 2.1. This is commonly represented by two
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main steps as follows:

Figure 2.1: Scheme of the central dogma of molecular biology. (Figure adapted
from http://encephalon.ca/?p=4 )

i Transcription (DNA → mRNA): is the process where the information

coded in a specific segment of the DNA sequence (or gene) is passed to a

RNA molecule called messenger RNA (mRNA). RNA molecules are similar

to DNA. They are also a chain of nucleotides, but contain only one strand

and use different nitrogenous bases and sugars. Additionally, mRNA is

smaller due contains the information related to only one gene. The process

by which genes are transcribed into a RNA molecule is usually called gene

expression.

ii Translation (RNA → Protein): is the process where the genetic infor-

mation now coded in the mRNA is used to synthesize a specific protein.
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This process is mediated by other macromolecules called ribosomes and

also other types of RNA molecules. The genetic information is translated

from a chain of nucleotides from the (mRNA) to a chain of amino acids.

This is made using the genetic code, where a nucleotide triplet (codon)

is associated with a specific amino acid. There are a total of 20 different

amino acids. The final sequence of amino acids generated corresponds to

what we know as a protein.

2.2.2 Protein Structure

Proteins are polymers consisting of chains of amino acids. The structure and

shape of the proteins (how the chain of amino acids folds in 3-dimensional space)

is relevant to determine their specific function.

Protein structure can be described at various levels. The first level is called

the primary structure and corresponds to the linear amino acid sequence. The

secondary structure refers to how the amino acid back bone of the protein is

arranged in 3-dimensional space, by forming hydrogen bonds with itself. There

are three main components in the secondary structure: alpha helices, beta sheets

and random coils. The tertiary structure is produced when elements of the

secondary structure fold up among them. Finally, the quaternary structure is

related to the spatial arrangement of several proteins. Figure 2.2 present a

schematic representation of these structural conformations. The final protein

structure determines the function of each protein. More details about this can

be found in (Shoemaker and Panchenko 2007a). In this thesis, we intend to

employ information related to all these protein structure levels to infer PPI.
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Figure 2.2: Scheme of different protein structure levels. (Figure adapted from
http://stevebambas.com/AP 220 Chemistry.htm)

2.2.3 Protein Function

Proteins are involved in almost all the functions performed in a cell. Among

these we find:

• enzymes which catalyze many metabolic reactions

• structural proteins such as those present for instance in the cell wall

• regulatory proteins, such as transcription factors that regulates the tran-

scription of genes

• signalling molecules such as certain hormones like insulin.

Nowadays, due to the availability of high-throughput sequencing techniques,

we know the complete genome sequence (DNA) of several species. Through this,

we are also able to obtain the amino acid sequence of most proteins. However, the
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function of a large portion of these proteins remains unknown, and consequently

the inference of protein functions is still one of the most important research areas

in bioinformatics.

The study of protein-protein interactions can potentially help with this task.

If we are able to predict new PPI, then we could infer, for instance, the unknown

function of certain proteins which interact with known ones (Shoemaker and

Panchenko 2007a). Thus, the study of PPI could help us to understand how

protein functions within the cell.

2.3 Protein-Protein Interactions

As previously mentioned, proteins usually do not work alone but in coordination

with other proteins. This generates binary protein-protein interactions (PPI),

protein complexes and protein interaction networks. Thus, these interactions

control, regulate and participate in most cellular processes. These processes

include cell cycle control, cell differentiation, protein folding, signaling, tran-

scription, translation, post-translational modification and transport.

Considering the task of prediction of PPI, we can distinguish three main

general kinds of PPI which have been studied in previous investigations:

• Protein complexes: these are related to proteins which are members of

the same protein complex. In this case, any two proteins interact with

each other if they are members of the same complex. In general, these

interactions are more related to stable interactions.

• Physical interactions: these are related to direct interactions between two

proteins which can occur at any time.

• Protein interaction networks: where proteins involved in binary and co-

complexed interactions within an organism can be grouped and viewed as
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a whole system.

In this thesis we will focus mainly on the predictive task associated with the

first case related to protein complexes. Additionally, we will address a prelimi-

nary analysis of the PPI networks discovered.

Protein interactions can also be classified based on a number of different

characteristics (Shoemaker and Panchenko 2007a):

• Strength: PPI can be stable or transient according to its life expectancy.

Stable interactions are more related to groups of proteins that work to-

gether forming complexes. Transient PPI seems to be associated to the

control of cellular processes.

• Specificity: interactions can be specific or non-specific. A specific interac-

tion means that one protein can only interact with another specific protein

partner.

• Similarity between interacting subunits: PPI are classified as homo-oligomers

or hetero-oligomers, depending on whether the protein subunits involved

are of the same type or not.

The prediction of PPI types based on some of these classification character-

istics will be addressed in the last part of this thesis.

2.3.1 Identification/Detection of PPI

Protein-protein interactions are of central importance for most process in living

organisms. Thus, information about these interactions can help to improve our

understanding of diseases and can also serve as the basis for new therapeutic

approaches (Shoemaker and Panchenko 2007a). Several experimental techniques

have been developed in the past for the direct detection of PPI. Additionally
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indirect detection approaches has been studied in the past, based on different

types of biological information.

Small Scale Experiments

PPI interactions can be studied individually by using small scale experiments.

These are based on the use of of genetic, biochemical and biophysical tech-

niques (Phizicky and Fields 1995). These experiments are performed by mea-

suring the natural affinity of binding partners utilizing either in vitro or in vivo

approaches.

In vitro methods: This type of technique is developed in a controlled envi-

ronment outside a living organism. A list of the most common in vitro methods

is given in Table 2.1. All these methods exhibit advantages and disadvantages

and generally provide complementary information.

Table 2.1: Commonly employed in vitro experimental methods for detection of
PPI

Method Description

Protein Arrays Antibody-based or bait-based arrays detect interactions of
proteins from complexes mixtures

Co-Immunoprecipitation A purification procedure to determine if two different pro-
teins interact

FRET Fluorescence Resonance Energy Transfer (FRET) studies
the transfer of two interacting proteins carrying fluores-
cence labels

NMR Nuclear Magnetic Resonance (NMR) provides insights into
the interaction of proteins in solution

X-ray Crystallography Crystallization of an interacting complex. Allows definition
of the interaction structure

In vivo methods: In this case, the experimental technique is developed

inside the organism. The most widely used in vivo method to detect PPI is the

“yeast two hybrid” (Y2H) system. The Y2H utilizes the transcription process
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to identify protein interactions. Interactions detected by this approach often

require confirmation from in vitro techniques to improve confidence.

Figure 2.3: The yeast-two-hybrid system. (a) The DNA-binding domain hybrid
does not activate transcription if protein “Bait” does not contain an activation
domain. The activation domain hybrid does not activate transcription either
because it does not localize the DNA-binding site. (b) Interaction between
“Bait” and “Prey” brings the activation domain into close proximity to the
DNA-binding site and results in transcription of a reporter gene.

The principle of the Y2H method is described in Figure 2.3. Pair of proteins

to be tested for interaction are expressed as fusion proteins (hybrids) in yeast.

The bait protein is fused to a transcription factor DNA binding domain. The

other protein, the prey protein, is fused to a transcription factor activation

domain. When expressed in a yeast cell containing the appropriate reporter
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gene, interaction of the bait with the pray brings the DNA binding domain and

the activation domain in to close proximity, creating a functional transcription

factor. This triggers transcription of the reporter gene. The interaction can

then be detected by expression of the linked reporter genes (Phizicky and Fields

1995, Shoemaker and Panchenko 2007a).

The Y2H technique has been used extensively both on the large-scale and for

individual interaction experiments. It has been successfully applied to several

organisms.

Small scale experiments are very expensive and time consuming. Conse-

quently, most of the protein-protein interactions have not been discovered and

validated experimentally. It is not possible to study all possible interactions be-

tween two or more proteins. However, at the moment this is the most accurate

and reliable option for the correct detection of PPI. Thus, the main challenge

seems to be in the selection of potential targets (two proteins with more chances

to interact) to be studied employing small scale experiments. In order to address

this challenge, many computational approaches have been proposed in the past,

based on the use of machine learning techniques for the prediction of new PPI.

These approaches will be reviewed in the next chapter.

Large Scale Experiments

The speed at which new proteins are discovered or predicted has created a need

for methods that can detect high-throughput or large scale interaction data. In

recent years, methods that can tackle this problem have been developed and

introduced, resulting in a vast amount of new interaction data (von Mering

et al. 2002). The two most popular types of large scale approaches are as follows:
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Yeast two hybrid (Y2H) assay: high-throughput Y2H screens are based

on the same principle discussed in the previous section (small scale / in vivo

methods), but applied to entire genomes at the same time. This is used to

detect pairwise binary interactions systematically on a large scale.

The first two Y2H analyses were carried out in yeast and revealed 841 and

692 putative interactions respectively (Uetz et al. 2000, Ito et al. 2001). The

overlap between these two investigations results was very small. Only 141 in-

teractions (around 20%). Y2H screens have been recently employed for other

organisms such as fly, worm and human (Rual et al. 2005). This approach

is specifically useful for the prediction of transient and unstable interactions.

However, this technique could easily miss certain interactions due to insufficient

depth of screening and misfolding of the fusion proteins. In addition, the process

associated takes place in the nucleus, so many proteins are not in their native

compartment.

Mass spectrometry methods: Protein complex purification and identifi-

cation techniques using mass spectrometry (Gavin et al. 2002, Ho et al. 2002,

Gavin et al. 2006) are employed to reveal the components of protein complexes,

i.e. multiple proteins that interact with each other mostly directly but also indi-

rectly. The general process of this type of method has four main steps: (a) Indi-

vidual proteins are tagged and employed as baits to biochemically purify whole

protein complexes. (b) Bait proteins are systematically precipitated, along with

any associated proteins, on an “affinity column”. (c) Purified protein complexes

are resolved by one-dimensional SDS-PAGE, a technique that involves running

an electric charge through the complexes on a gel, so that proteins become sep-

arated according to mass. (d) Proteins are excised from the gel, digested with

an enzyme, typically trypsin, and the digest is analyzed by mass spectrometry.
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Data base-search algorithms are finally used to identify specific proteins from

their mass spectra.

For large-scale mass spectrometry based protein complex purification tech-

niques, their advantages include: several members of a complex can be tagged

at once by this technique, and it detects real complexes in physiological set-

tings. However, these methods may miss complexes that are not present under

the given conditions. Also tagging may disturb complex formation, and weakly

associated components may dissociate and scape detection.

In general, the interaction data generated by large scale techniques is in-

complete and noisy, as well as being difficult to reproduce. For these reasons

such studies are frequently criticized in the literature. In this case, the challenge

seems to be how to improve the accuracy and reliability of the PPI inferred by

large scale experiments.

2.4 Availability of PPI Data

In recent years much work has been carried out in order to improve our knowledge

of PPI. However only a small fraction of the total of PPI has been trustworthily

identified. Currently available PPI data generated using experimental techniques

is still preliminary in terms of quality as well as quantity.

The work in von Mering et al. (von Mering et al. 2002) was the first to

undertake a comprehensive analysis to compare different sets of PPI inferred for

yeast. The data analyzed corresponds to PPI detected by using small scale as

well as large scale experiments. They measure the accuracy and identify biases,

strengths and weaknesses for the different approaches. Their results showed

that from among approximately 80,000 interactions between yeast proteins from

different high-throughput methods, only a small portion (around 2,400 PPI) were
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supported by more than one method. This suggested that either the methods

identify different sets of PPI, or the methods produced a high portion of false

positives. In fact they estimated that false positive and false negative rates

associated with high-throughput techniques is around 50%.

In this thesis, we focus in the study of PPI associated with yeast. Several

databases have been created in recent years to compile information about PPI

(Shoemaker and Panchenko 2007b), including data from diverse experiments

reported in the literature as well as manually annotated PPI data sets. Ta-

ble 2.2 exhibits a list of PPI databases which are of public access for researchers.

Among them we found the Munich Information Center for Protein Sequences

(MIPS) (Mewes et al. 2002) database, The IntAct database (Kerrien et al.

2007), The Molecular Interactions (MINTS) (Shoemaker and Panchenko 2007a)

database, the Database of Integrating Proteins (DIP), the Biomolecular Interac-

tion network Database (BIND) (Bader et al. 2001), and the BioGRID (Reguly

et al. 2006) database.

Table 2.2: List of public PPI databases

Database name Number of PPI URL

MIPS 15,488 http://www.mips.gsf.de/services/ppi

IntAct 68,165 http://www.ebi.ac.uk/intact

BioGRID 116,000 http://www.thebiogrid.org

DIP 55,733 http://www.dip.doe-mlb.ucla.edu

BIND 83,517 http:/www.bind.ca

MINT 71,854 http://www.mint.bio.uniroma2.it/mint

STRING 730,000 http://string.embl.de
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2.5 Summary

In this chapter we have presented an overview of protein-protein interactions

from a biological perspective. We first described the basic biological topics

associated, from DNA to protein interaction networks. We then described the

main experimental tools available today for the identification of PPI. Finally the

major PPI databases were reviewed.

Existent experimental technologies for the identification of PPI exhibit many

limitations. Consequently, available interaction data sets are incomplete and

highly noisy. In order to deal with this situation several machine learning tech-

niques have been recently employed to deal with the problem of PPI prediction.

In the next chapter we will provide an overview of the work associated with this

prediction task.



Chapter 3

Related Work

3.1 Introduction

In this chapter we will present an overview of machine learning techniques em-

ployed in the past to deal with the problem of prediction of PPI. Firstly, we will

present a brief overview of the machine learning field, including the description

of several learning algorithms that will be employed in this thesis. Then we

will introduce the concept of “learning from diverse types of data”, describing

a general framework related to how machine learning algorithms can be imple-

mented and applied over heterogeneous sources of data, in order to develop a

joint integrative analysis. Furthermore we will present a detailed review of ma-

chine learning approaches utilized in recent years to deal with the problem of

PPI prediction. Finally we will introduce fundamental issues associated to the

problem of prediction of PPI.

37
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3.2 Machine Learning Overview

3.2.1 Learning Process

Machine learning (ML) can be defined as the study of computational methods

and the construction of computer algorithms and programs capable of learning

from their own previous experience, in order to improve their performance at a

defined task (Mitchell 1997).

This field is usually related to other research areas, such as pattern recog-

nition and statistical inference (Mjolsness and Decoste 2001), and also must be

considered as a multi-disciplinary field that applies ideas from different areas

such as: artificial intelligence (AI), probability, statistics, information theory

and signal processing, computational mathematics, philosophy, control systems

theory, cognitive psychology, biology, economics, operations research (OR) and

others.

The concept of learning, according to Mitchell, 1997 (Mitchell 1997), is re-

lated to “acquiring the definition of a general category given a sample of positive

and negative training examples of the category”. This can be used, for exam-

ple, in the context of finding the hypothesis that best fits the training examples

in a defined space of hypotheses. More simply, the concept of learning can be

related to the incorporation of new information or knowledge from the training

examples into the system being studied.

In the definition of a learning problem, there are three main components to

consider, which are: (1) The Training Experience (E) related to the training

data sets from the system will learn; (2) The Class of Tasks (T), related to the

definition of the target function that determines the type of knowledge will be

learned; (3) The Performance Measure (P) of the knowledge that is acquired in

the process.
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It is possible to recognize two main categories of learning:

• Supervised learning: in this case the goal is to predict the value of an

outcome measure based on a number of input measures, in which both the

inputs and the outputs can be observed (Hastie et al. 2003). The principal

tasks associated with this kind of learning are: Classification, Regression

and Prediction.

• Unsupervised learning: in this case there is no outcome measure and the

goal is to describe the associations and patterns among a set of input

measures (Hastie et al. 2003). The principal tasks associated with this

kind of learning are: Clustering and Association Rules.

In this thesis we focus in the supervised classification task. Classification

attempts to divide the data into classes. A characterization of the classes can

then be used to make predictions for new unclassified data. Classes can be a

simple binary partition (such as a pair of proteins “interact” or “not interact”

for the problem we face in this thesis), or can be complex with multiple classes

as in the prediction of gene functional hierarchies.

To perform any machine learning task, there are general steps one must per-

form for successful pattern recognition. This mainly involves collecting data

(variables and features), performing feature selection (for instance removing

irrelevant and redundant features), choosing the right learning algorithm for

your data (for instance evaluating several alternatives), training the classifier

(or model), and finally evaluating the performance of the classifier (usually per-

formed on a separate test set). A typical machine learning approach for classi-

fication is given in figure 3.1.

Performing feature selection is a critical step in the classification process.

With a large data set and high-dimensional feature vectors, it would be expected
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that the classifier would perform poorly due to the redundant and irrelevant fea-

tures present in the training set. However, by selecting features that are invariant

to irrelevant transformations, insensitive to noise and highly discriminatory then

we could expect to achieve a more successful pattern recognition model.

The choice of a learning algorithm is also an important step. For instance,

some methods such as Support Vector machines (SVM) (Vapnik 1998) are very

flexible to deal with high dimensionality. Some learning algorithms are severely

affected by the imbalanced data problem such as SVM and Decisions Trees(DT),

while others like Naive Bayes (NB) are not. Some machine learning algorithms

produce human readable results whereas others are “black boxes”, whose work-

ing and intuition can not be understood. SVM is and example of a black box

approach. However they are often highly accurate in their results, particularly

on continuous real-valued numeric data. In this thesis we will evaluate diverse

types of learning algorithms.

After training a classifier, the classifier performance is measured by apply-

ing an evaluation procedure. Many statistical and other measurements exits in

Machine Learning. One obstacle that might affect the evaluation procedure is

overfitting. This occurs when a classifier allows for perfect classification on the

training data while performing poorly on a new data set (test data). A common

way of overcoming this situation is to provide an independent test data set (vali-

dation set). While training on the training examples, the learning algorithm will

monitor the error on the training set with respect to the validation set, and thus

adjust the performance of the classifier accordingly. However This is possible

mostly when a large amount of data is available. On smaller amounts of data,

holding out a large enough independent test set may imply that not enough data

is available for training. On these case a common solutions is to perform a cross

validation procedure which will be explained in detail later in this chapter.
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Figure 3.1: A typical machine learning process for classification

3.2.2 Conventional Machine Learning Algorithms

Here we describe several conventional machine learning techniques that have

been used in the past for the task of PPI prediction. These approaches were

also employed in this thesis to develop a comparative performance evaluation

analysis.

Decision Trees: The decision tree is a supervised learning technique that

uses approximating discrete functions to estimate and classify the examples. In

the nodes of trees are attributes and in the leaves are values of discrete func-

tion. The decision tree can be rewritten in a set of “if-then” rules and also give

an estimation of the probability of occurrence of a particular case. This is an
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inductive learning method which is very popular and mostly used for variety of

classification tasks.

Naive Bayes: is a simple probabilistic classifier based on applying Bayes’

theorem with strong (naive) independence assumptions. A more descriptive term

for the underlying probability model would be ”independent feature model”. In

simple terms, a naive Bayes classifier assumes that the presence (or absence) of

a particular feature of a class is unrelated to the presence (or absence) of any

other feature. Depending on the precise nature of the probability model, naive

Bayes classifiers can be trained very efficiently in a supervised learning setting.

In spite of their naive design and apparently over-simplified assumptions, naive

Bayes classifiers often work much better in many complex real-world situations

than one might expect.

Support Vector Machines (SVM): The Support Vector Machines were

developed by Vapnik and co-workers (Vapnik 1998), based on the Structural

Risk Minimization principle from statistical learning theory. This is a super-

vised learning method, mainly applied to classification and regression problems.

The main idea of an SVM is to separate classes with a surface that maximizes

the margins between them. This method combines two main ideas. The first is

the concept of an optimum linear margin classifier that constructs a separating

hyperplane that maximizes distances to the training point. This hyperplane is

supported by some of these training points. The second is the concept of a ker-

nel which is a function that calculates the dot product of two training vectors.

Kernels calculate these dot products in feature space. When using feature trans-

formation, which reformulates input vectors into new features, the dot product

is calculated in feature space, even if the new feature space has higher dimen-
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sionality. The linear classifier is unaffected.

Logistic regression: is a model used for prediction of the probability of

occurrence of an event by fitting data to a logistic curve. It makes use of several

predictor variables that may be either numerical or categorical. For example,

the probability that a person has a heart attack within a specified time period

might be predicted from knowledge of the person’s age, sex and body mass

index. Logistic regression is used extensively in the medical and social sciences

as well as marketing applications such as prediction of a customer’s propensity

to purchase a product or cease a subscription.

3.3 Learning from Diverse Types of Data

In recent years there has been a rapid growth in the generation and storage

of large and diverse data sets related to many scientific and commercial dis-

ciplines. Among them we can mention: business information, marketing and

sales data, medical records, biology and other scientific databases (Caragea

et al. 2004, Friedman et al. 1999, Getoor et al. 2001, Dzeroski 2003). This

has been possible mainly due to the availability of new high-throughput data

acquisition methods and advances in computing, communications and digital

storage technologies. For example, organizations have begun to capture and

store a variety of data about various aspects of their operations (e.g. products,

customers, and transactions). On the other hand, most of the productive pro-

cesses are coupled with complex distributed systems such as computer systems,

communication networks and power systems, which are equipped with sensors

and measurement devices that collect and store a variety of data, for use in

monitoring controlling and improving the operation of such processes.

These large data sets are usually stored in different, autonomously struc-
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tured and relational data repositories. This means that objects in these diverse

data sets often have a rich internal structure and are connected by some re-

lation. The common reason why this information is stored independently is

usually for storage space and retrieval efficiency considerations (i.e. distributed

databases) (Merugu and Ghosh 2005), which results better when dealing with

relatively small data sets linked in some specific manner. In other cases, the gen-

eration of diverse and heterogeneous data sets related to a specific area depend

on other factors such as: the different data sets representing different insights

about the same field (i.e. biological databases include DNA sequences, protein

sequences, gene expression data, etc); each data set being generated by differ-

ent experimental methods so they do not result in the same accuracy; different

data sets presenting a heterogeneous distribution and representation. Due these

reasons it is not possible to store them in single table (Ben-David et al. 2002).

The availability of huge amounts of data represents an important oppor-

tunity for large-scale data-drive knowledge acquisition (Caragea et al. 2004),

especially in scientific areas where it seems to be possible gain a deeper under-

standing in many data-rich domains. Consequently, the integrative analysis of

diverse and relational data sets has become an emergent area of research, with

special emphasis on mining these databases in order to look for patterns and

associations that allow us to improve our understanding in these areas and dis-

cover useful relationships (Friedman et al. 1999, Getoor et al. 2001, Merugu and

Ghosh 2005, Ben-David et al. 2002). This is especially important in fields like

bioinformatics and computational biology, where the relations between different

kinds of information (represented in different datasets) are not previously known

and so the integrative analysis of these diverse data sets could potentially re-

veal novel aspects of biological systems (Kanehisa and Bork 2003, Filkov and

Skiena 2004).
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Unfortunately, most of the common existing machine learning and data min-

ing approaches are restricted to dealing with data stored in a single relation of

a database (Friedman et al. 1999, Getoor et al. 2002, Dzeroski 2003, Domingos

2003), where the instances are independent and identically distributed (i.i.d.),

and so they are not able to deal with multiple heterogeneous data sources in

a direct way. In this sense, it is necessary to develop new machine learning

techniques or an extension of the common ones in order to deal with multiple

sources of data.

In order to solve this problem, a traditional and simple way of mining multi-

ple databases is typically to integrate the diverse data sets into a single table, and

then apply some machine learning and data mining techniques to this new joint

data set in order to generate a new knowledge process. This process is generally

known as data integration (Dhamankar et al. 2004, Rahm and Bernstein 2001),

and has been mainly applied to schema matching, which is the problem of pro-

ducing semantic mappings which transform data instances from one schema to

instances of another.

In relation to the integration of biological databases, recent reviews about

current systems and challenges in this area can be found in (Wong 2002, Stein

2003, Hernandez and Kambhampati 2004).

The integration of diverse and heterogeneous data sets is often hard and in

general presents several important disadvantages most of them related to the

potential performance of the machine learning integrative analysis (Caragea

et al. 2004, Yin et al. 2004, Reinoso et al. 2003), as follow:

• due to the large size of the diverse data sets, gathering all the data in a

centralized location in general is not desirable and some times not feasible

owing to storage and privacy requirements

• the learning process time increases significantly with the data size
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• the integration process can introduce duplication and redundancy

• the integration process removes the structure of the diverse data sets, losing

information, which could be crucial for the objective of discovering hidden

knowledge.

Consequently, the necessity to develop or implement novel machine learning

methods for analyzing and mining heterogeneous and diverse data sources has

started to receive more attention in recent years.

3.3.1 General Integrative Framework

It is important to identify a general framework related to how machine learning

algorithms can be implemented and applied over heterogeneous sources of data,

in order to develop a joint integrative analysis. In this sense, it is possible to clas-

sify two main general approaches (see figure 3.2 for an schematic representation

of both approaches):

• the simpler approach is the direct integration of different databases in or-

der to generate a new unified data set. Then it is possible to apply some

machine learning techniques in order to learn and discover new knowledge

from this unified data set. This approach corresponds to the method previ-

ously presented as data integration, which highlights various disadvantages

related to the potential performance of the machine learning integrative

analysis. The main problem is the possible loss of information as a product

of the elimination of the structure in the integration process. Consequently,

it is not possible to infer all the relations between the different data sets

and therefore results in the generation of an incomplete model that does

not have all the potential knowledge (Getoor et al. 2001).
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Figure 3.2: Scheme of general approaches for the application of machine learning
algorithms over heterogeneous sources of data

This approach must be considered as a baseline in order to compare with

other possible approaches. For example, when any other machine learning

based approach is developed to analyse heterogeneous data sources, the

performance of this learning method (e.g. accuracy and/or interpretabil-

ity) must be at least better than the application of the same machine

learning concept to the simple integration of different data sources.

• a second approach is to treat each data source separately, and to use some

machine learning techniques to generate independent models that represent

and allow us to obtain separate inferences and knowledge from each data

type. After that, the idea is to generate a unified model (a combination of

the previous ones) that represents the information and knowledge of the

whole data set. This unified model is the result of the combination of the

diverse independent learning models at different levels:
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i Combination of knowledge, where information is captured from the di-

verse data sources and then combined in order to perform general

inferences, (i.e. instances are classified by each of the independent

learning models and then the final classification is the combination,

in some way, of these independent classifications).

ii Combination of learning models where the idea is to combine the differ-

ent learning models (i.e. classification models) in some way, in order

to generate a unified model and then use this unified model over the

instances to perform general inferences (i.e. instances are classified

using the unified model).

In both cases, the idea of combination is similar to the ensemble machine

learning framework, where the idea is to learn separate classifiers individ-

ually induced from diverse data sources and combine them in some way at

the end of the learning process. Many studies of ensemble methods have

been developed and are summarized in (Ali and Pazzani 1996, Bauer and

Kohavi 1999, Dietterich 2000b).

Both approaches will be employed and evaluated in this thesis as will be

explained in detail in Chapters 4 and 5 respectively.

3.3.2 Applications in Bioinformatics

Recent developments in high-throughput techniques have generated a wide va-

riety of different sources of biological information at a genome-wide scale, in-

cluding many kinds of data, such as: DNA sequences, gene expression data,

protein sequences, protein-protein interactions, protein-DNA binding data, pro-

tein structural information, phylogenetic profiles, metabolic data, physiology

data, and several others.
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Machine learning techniques have been broadly applied for research in the

field of bioinformatics and/or computational biology (Baldi and Brunak 2001,

Narayanan et al. 2002, Keedwell and Narayanan 2005). However, most of this

work has been dedicated to the analysis of a single type of data at a time, using

other types of data only for validation. In contrast, results of the joint analysis

approach from more than one type of data allow for the finding of new insights

that may not be as readily available from analyzing one type of data in isolation.

The integrative analysis of these diverse biological data is an emerging and

important issue in bioinformatics and computational biology research, consid-

ering that each one of these distinct types of data provide a particular view

of the molecular machinery of the cell and probably contain different and thus

partly independent information. By combining those complementary pieces of

information, it could be possible to enhance our knowledge about the relation-

ships between the different components of a genome, to discover new biological

insights that may not be as readily available from analyzing one type of data in

isolation and therefore improve the results of the previous analysis (Lanckriet

et al. 2004). A major challenge in this sense is to develop a unified framework

for combining the multiple sources of biological data of an organism, and to

look for associations between them, thus obtaining a robust and integrated view

of the underlying biology, which can be also considered as a Systems Biology

approach (Wolkenhauer and Gierl 2003).

The main advantages of using an integrative approach in the field of bioin-

formatics can be summarized in the following list:

• dealing with errors contained in experimental data. Biological datasets

often contain errors arising from imperfections in the applied technology.

If we assume that technological errors across different datasets are largely

independent, then the probability of error in results that are supported
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by two or more different types of data is significantly reduced (Hartemink

and Segal 2005).

• improving the results of previous analysis made using just one kind of

data. For example, in the case of prediction of protein function, the use

of an integrative approach increases the prediction accuracy from 57% to

87% (Deng et al. 2003).

• The integrative analysis of all kinds of biological data available allows to

us to discover new knowledge and thus obtain a better understanding of

complex biological systems and processes. This is not possible with the

analysis of just one kind of data (Wolkenhauer and Gierl 2003).

3.4 Machine Learning for Prediction of PPI

Protein-protein interactions play a key role in most biological processes (Szilágyi

et al. 2005). Thus its identification can help to understand the working mecha-

nisms of the cell. Previously it has been pointed out that high-throughput exper-

imental interaction data exhibit high false positive and false-negative rates (von

Mering et al. 2002, Edwards et al. 2002). On the other hand small-scale experi-

ments are costly and time consuming. Consequently, most of real PPI have not

been discovered experimentally.

In addition to experimental information based on direct interaction evidence.

In recent years many investigations have been focused in the analysis of indirect

sources of evidence about PPIs, with the aim to improve the inference of PPI

pairs. These include:

• it has been demonstrated that in general protein interacting pairs ex-

hibit similar expression profiles (are co-expressed among different condi-

tions) (von Mering et al. 2002).



CHAPTER 3. RELATED WORK 51

• The expression of protein members of the same complex frequently are

regulated by the same transcription factors (Bar-Joseph et al. 21).

• Protein sequence data has been employed to infer PPI, based in the over-

representation of certain domain or motifs pairs (Gomez et al. 2003, Deng

et al. 2002, Wang et al. 2005, Wang et al. 2007, Li et al. 2007, Wu and

Zhang 2008).

• Protein structure information have also been incorporated for this task. Al-

though mostly imitated by the number of available PPI structures (Espadaler

et al. 2005, Chia and Kolatkar 2004).

Based on the above observations, a number of researchers have suggested

that direct data on protein interactions can be with indirect data in a supervised

learning framework (Bader et al. 2004, Gilchrist et al. 2004, Jansen et al. 2003,

Lin et al. 2004, Zhang et al. 2004, Ben-Hur and Noble 2005, von Mering et al.

2005) Investigations employing this general approach generally use a certain

classification algorithm to integrate diverse biological data sets. The classifier is

trained to distinguish between positive (truly interacting protein pairs) from a

set of negative examples of non-interacting pairs. It is important to mention that

most of these approaches have utilized the “data integration” general approach

described previously in figure 3.2.

The problem of accurately inferring PPI from high-throughput data was

firstly discussed in Von Mering et al. (von Mering et al. 2002). The solution

proposed there is based in the intersection of several high-throughput experi-

mental data, achieving a low false-positive rate, but a very low coverage at the

same time. The “STRING” database built by the same authors (von Mering

et al. 2005) integrates protein interaction evidence derived from high-throughput

experimental data, from the mining of databases and literature, and from pre-
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dictions based on a genomic context analysis. The work in (Jansen et al. 2003)

proposed the use of a naive Bayes classifier based on examples derived from

the MIPS database. The approach in (Lin et al. 2004) extended the previous

work evaluating other classifiers. They also discussed the importance of diverse

features and concluded that protein functional information was the most infor-

mative. Logistic Regression (LR) was employed in (Bader et al. 2004) to estimate

the posterior probability that a pair of proteins will interact, based on several

high-throughput experimental data. An approach based on Decision Trees (DT)

was employed in (Zhang et al. 2004), again based in the MIPS protein complexes

database.

When analyzing PPI networks at the level of binary interactions, much infor-

mation is lost, because protein often perform their functions together in groups.

Understanding these interaction groups called complexes, is essential for system-

atically modeling the behavior of cellular networks.

Graph analysis algorithms can help us to understand how proteins are log-

ically connected. The connection between proteins can be represented on an

indirect graph, where the nodes correspond to proteins and the edges corre-

spond to the interactions. Thus the identification of new complexes can be

simply viewed as the computational problem of locating important subgraphs.

This kind of analysis can produce valuable insights, considering the topological

properties as well as the functional organizations of protein networks in cells.

Many cellular functions are performed by complexes containing multiple pro-

tein interaction partners. Predicting molecular complexes, one of the fundamen-

tal units in PPI networks, is one of the most important tasks in the analysis

of protein interaction networks. High-throughput experimental approaches to

identify yeast protein complexes on a proteome-wide scale has been employed

in the past (Ho et al. 2002, Gavin et al. 2002, Gavin et al. 2006). As previ-
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ously stated these kind of information suffers from high false positive and false

negative rates (von Mering et al. 2002). In order to deal with this situation,

there have been various computational attempts to accurately identify protein

complexes from this type of data (King et al. 2004, Dunn et al. 2005, Pereira-

Leal et al. 2004, Bader and Hogue 2003, Adamcsek et al. 2006, Spirin and Mirny

2003, Rives and Galitski 2003, Arnau et al. 2005, Sharan et al. 2005, Scholtens

et al. 2005, Chu et al. 2006). These methods have mostly employed an un-

supervised graph clustering approach, aiming to discover similarly or densely

connected subgraphs (clusters) (Aittokallio and Schwikowski 2006).

In general the methods previously mentioned have presumed that protein

complexes correspond to the dense regions of networks. However this not true

in all cases, there are other topological structures that may also represent a com-

plex. One example is the called “hub” or “star” model, in which many vertices

(proteins) connect to a central “hub” protein (Bader et al. 2004). Another in-

teresting topology is a structure that links several small connected components,

which can be associated to large protein complexes (Qi et al. 2008).

3.4.1 Machine learning Issues Important for the Predic-

tion of PPI

The problem of prediction of PPI has been classically tackled as a binary clas-

sification problem in a supervised learning context. Where the objective is to

generate a classification model able to predict whether any two proteins do or

do not interact. The final goal associated to this computational approach is

to use this predictive model to to predict or identify new potential PPI. These

targets have to be investigated and validated later by biologists through the

development of small scale experimental techniques for detection of PPI.

In this context we need a gold standard reference set of positive (truly in-
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teracting protein pairs) and negative examples (non-interacting pairs). Positive

and negative examples for this task are pair of proteins which can be represented

by a n-dimensional vector Xi containing the information for the biological fea-

tures considered here, and a label Yi taking two values (Yi = 1) when the pair of

proteins really interact or (Yi = −1) when there is not interaction. Each object

or example is thus represented as one point in the n-dimensional feature space.

We finally expect that biological information encoded in the feature vectors, can

be helpful to characterize and discriminate positive from negative PPI examples.

In this research we will consider several assumptions as follows:

• Complete information: we assume that all available examples (positive

and negative ones) in the gold standard reference set have complete in-

formation. There are no missing values and we assume all examples are

characterized with the same set of features. In practice might happen that

some measurements are not available. The missing values introduce extra

complications and we will not consider this situation.

• Continuity assumption: Further, we assume that the continuity assump-

tion holds. This is a general assumption in pattern recognition, two objects

near in feature space should also resemble each other in real life. When we

are at one position in feature space representing an example object, and we

change the position a bit, then this new position should represent a very

similar object. This also means that available examples in our task are not

randomly scattered into some feature space, but they are distributed in a

cloud-like distribution. When we look in the neighborhood of an object

similar objects are represented.

In general a learning model can be represented by a function f(X) (X in the

n-dimensional feature space), which is able to assign an object X to one of the
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classes Y = 1 (positive class) or Y = −1 (negative class). This is denoted in

equation 3.1. This function is frequently chosen beforehand. Note that depend-

ing of the type of function selected, a set of parameters (W) associated to this

function have to be determined (optimized) during the learning process.

For the case of prediction of PPI, this function divides the input space

(n-dimensional) into two decision regions, one for each class. The boundary

between these decision regions are called decision boundaries or decision sur-

faces (Bishop 2006). Function f(X) is trained using the available examples

denoted in equation 3.2. Such that a new example X is classified by this func-

tion into one of the available classes.

f(X) : R
n → {±1} (3.1)

(X1, Y1), ..., (XN , YN) ∈ R
n × {±1} (3.2)

Where Xi are the N training examples represented as biological feature vec-

tors in the n-dimensional space; Yi are class labels (+1 or -1); and Rn is the

n-dimensional feature space.

From a probabilistic perspective, the classification problem can be divided

in two separate stages as shown in (Bishop 2006).

Firstly we consider the inference stage, where the training data is employed

to model the joint probability distribution p(X,Yk). In the case of prediction of

PPI The input vector X is a set of biological features and the output variable Yk

is the class label indicating whether two proteins do or do not interact (k takes

values +1 or -1 in this binary classification problem).

This joint probability can be used later to estimate the conditional probabil-

ities (p(Yk|X)) of the two classes given a certain feature vector X. For instance
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using the theorem of Bayes we can estimate these probabilities as follows:

p(Yk|X) =
p(X|Yk)p(Yk)

p(X)
(3.3)

It is possible to interpret p(Yk) as the prior probability for the class Yk, and

the p(Yk|X) as the corresponding posterior probability. Thus p(Yk=+1) repre-

sents the probability that two proteins really interact without knowing informa-

tion their biological information, and p(Yk=+1|X) is the corresponding posterior

probability given the biological information.

The term p(X|Yk) is called the class likelihood and is evaluated directly from

the observed training data set. When employing for instance the Naive Bayes

learning approach, we consider that every attribute xj in the feature vector X

of dimension n are conditionally independent given the target value Yk. Where

x1, x2, ..., xn are the sequence of biological attributes (or features) in the vector

X. Thus it is possible to estimate the term p(X|Yk) as shown in equation 3.4.

p(X|Yk) =
n

∏

j=1

p(xj|Yk)p(Yk) (3.4)

Secondly we consider the decision stage, where these posterior probabilities

are employed to make optimal class assignments. For this, a decision function

fBayes(X) associated to this Bayesian approach is used to assign labels, where a

new object (represented by a feature vector X) is assigned to the class with the

largest posterior probability p(Yk|X) according the expression in equation 3.5.

Note that the denominator in equation 3.3, p(X), is common for every posterior

probability, thus we are only interested in the numerator of these expressions

when comparing them.
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fBayes(X) =















+1 if p(Yk=+1|X) ≥ p(Yk=−1|X)

−1 if p(Yk=+1|X) < p(Yk=−1|X)

(3.5)

An alternative solution to the classification problem is to solve both stages

together and simply learn a function f(X), called discriminant function, which

maps each input X directly onto a class label Yk, similar to the one in equa-

tion 3.1. This is the case of learning methods such as Support Vectors Machines

(SVM).

An important objective of the model generated is to make as few misclassifi-

cations as possible. A mistake occurs when an object X belonging to the positive

class is assigned to negative class or vice versa. A simple goal of a classifica-

tion model could be to minimize the number of mistakes. This can be linked

to an error function Err(f(X), Y ) (also called loss function) which is a single,

overall measure of loss incurred during the classification process (Bishop 2006).

This loss function defines a measurable indicator of the miss-match between the

model output f(X) and the actual target value (Y = [±1]) for all available

objects (Xi, Yi), where i = 1, ..., N .

Most often the objects in the training data (i.e. N examples in total) are

assumed to be independently distributed, and the total error of function f(X)

on a training set is decomposed as in equation 3.6.

Err(f(X), Y ) =
1

N

N
∑

i=1

Err(f(Xi), Yi) (3.6)

There are different definitions for the error function, depending on the type of

f(Xi). The most simple is the called zero-one loss (Err0−1) for discrete valued

f(Xi). basically this error function counts the number of wrongly classified

objects (see equation 3.7
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Err0−1(f(Xi), Yi) =















0 , if f(Xi) = Yi

1 , otherwise

(3.7)

The most common error for real-valued functions f(Xi) ∈ [±1] is the mean

squared error (MSE). The expression for MSE can be seen in equation 3.8.

ErrMSE(f(Xi), Yi) = (f(Xi) − Yi)
2 (3.8)

By minimizing the error on the training set Err training, we hope to find a

good classification model. However, this poses a new problem, the set of training

examples might be a very uncharacteristic set. If a limited sample is available,

the inherent variance in the objects and noise in the measurements might be too

big to extract classification rules with high confidence.

In general, the larger the sample size, the better the characteristics of the

data can be determined. But even when a good characteristic sample is avail-

able, there are many functions which approximates or precisely fits the data.

Therefore, good classification of the training objects is not the main goal, but

to obtain a good classification of new and unseen objects. How well a model

trained on the training set predicts the right output for new instances is called

generalization (Alpaydin 2004). The main goal in pattern recognition is to find

classifiers that show good generalization (Bishop 2006).

To estimate how well a classification method generalizes, it has to be tested

with a new set of objects, which has not been used for training. By using such an

independent test set, we avoid an overly optimistic estimate of the performance.

In many situations correctly labeled data is scarce and/or expensive. From these

available objects both a training set as well as a testing set of objects should be

drawn. Leaving out a set of objects from a reduced labeled set might leave out

valuable information and therefore reduce the generalization of the classifier.
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A way to overcoming this problem is to use a N-fold cross-validation proce-

dure, where the training data is divide in N folds (N=10 is usually employed in

machine learning). A portion (N-1)/N of the available data is used for training

while the rest is employed to test the model. Finally this procedure is repeated

N times to complete the process. This approach will be implemented in our

research as will be seen in next chapters.

The phenomenon that a classifier allows for good classification on the training

data (low Err training), while performing poorly on an independent test set (large

Err test), is called overtraining or overfitting. This usually occurs when a too

complex function or classification model f(X) is employed. A sufficiently flexible

function can always perfectly fit the training data and thus obtain a minimal

Errtraining. The function then completely adapts to all available information,

including noise in the given examples.

This overfitting problem becomes more sever when a large number of features

is employed. Because the function f(X) is defined for the complete feature

space (i.e. n-dimensional feature vectors), the volume that should be described

increases exponentially in the number of features n. This is called the curse

of dimensionality (Bishop 1995). By decreasing the number of features per

object, the number of degrees of freedom in the function f(X) decreased and the

generalization performance increases. One solution to the curse of dimensionality

and overfitting is to use feature reduction or feature selection and retain only

the few best features.

As was stated before, the main goal in a classification process is to find clas-

sifiers that show good generalization. For this we have to be able to minimize

the average of the error function Err(f(X), Y ). In other words we want to

minimize the Expected error (E {Err}) as is denoted in equation 3.9. Note

that this integration is over the whole data distribution p(X,Y ) in the com-
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plete n-dimensional feature space. In general this joint distribution is unknown.

Thus, It is hoped that the training set is a representative sample from this true

distribution, but in many situations this might not be the case.

E {Err} =

∫ ∫

Err(f(X), Y )p(X,Y )dXdY (3.9)

Considering the MSE error in equation 3.8, it is possible to decompose the

expected Error in three main terms: a bias component; a variance component;

and a component associated to the noise in the observations. This is shown

in the equation 3.10. A detailed derivation of this can be found in any of the

following references (Domingos 2000, Hastie et al. 2003, Bishop 2006).

E {Err} = (bias)2 + variance + noise (3.10)

The first expression is referred to as the square of the bias. This gives a

measure of the extent to which the average predictions of the learned model

differs from the optimal predictions associated to a “real function” underlying

the data available. Thus bias measures the systematic loss incurred by a learner.

The bias is independent of the training set, and is zero for a classifier that always

makes the optimal prediction.

The second term is referred to as the variance. This represents the variation

of the prediction of learned classifiers, when using different training samples.

The variance measures the loss incurred by its fluctuations around the central

tendency in response to different training sets. The variance is independent of

the true value of the predicted variable, and is zero for a classifier that always

makes the same prediction regardless of the training set.

The last term, also called the irreducible error (Hastie et al. 2003), is beyond

our control and it is independent of the classification model chosen. Note that
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this bias-variance decomposition can be made for other types of errors such as

the zero-one loss (Domingos 2000).

Whilst the complexity of the model selected is increased, the variance tends

to increase and the bias tend to decrease, which is also related to the overfitting

problem mentioned before. On the contrary, when a more rigid model (not

flexible enough to follow all characteristic in the data) is chosen, the bias tend

to increase and the variance tend to decrease (Bishop 2006).

This phenomenon can be clearly appreciated in figure 3.3 (which is adapted

from (Yoo et al. 2008)), where the error associated to bias and variance are

expressed as a function of the model complexity.

Figure 3.3: Bias-variance trade-off as function of model complexity

The best fitting function f(X) for a given sample is therefore an equilibrium

trade-off between the bias and the variance contribution in order to minimize

the test error (Hastie et al. 2003). A good fitting function should have both,
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a small bias and a small variance. The function should be flexible enough to

capture the data, but it should also be simple enough to avoid overfitting.

Summarizing the discussion in this section, for the problem of classification

we need to focus our attention in to three main factor (Alpaydin 2004), as follows:

the complexity of the hypothesis we fit the data; the amount of training data

available; and the generalization error on new examples.



Chapter 4

One-Class Classification for

prediction of PPI

4.1 Introduction

In the previous chapter we have discussed potential problems associated with

the application of conventional binary classification techniques for the prediction

of PPI. These are mainly related to the selection of a trustable set of negative

examples (non-interacting protein pairs) and an imbalance class situation. In

order to deal with this situation, we have proposed the use of one-class classifi-

cation (OCC) methods for this task. These methods employ only examples of

one class (real interacting protein pairs) to generate a predictive model able to

infer new PPI. In addition OCC techniques are able to deal with imbalanced

class situations.

In this chapter, we introduce the concept of “One-Class Classification” and

how these type of methods can be utilized for the problem of PPI prediction.

Several OCC algorithms are described in detail. These OCC methods are then

employed for the prediction of PPI based on the integrative learning analysis

63
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of diverse biological data. Furthermore we present the results of a comparative

evaluation between OCC and conventional binary classification techniques for

this task. We consider different scenarios, for instance varying the number of

negative examples used for training purposes. Among different OCC, methods

we found that the parzen OCC approach performs competitively with traditional

approaches and in many situations outperforms them. Finally, we evaluate the

ability of the parzen OCC approach to predict new potential PPI targets, vali-

dating these results by searching for biological evidence in the literature.

4.2 One-class Classification

The common issue of OCC problems is that feature information is available for

only one of the classes, called the target class, and this is employed to generate a

classification model. The OCC model is constructed with the aim of character-

izing and describing the target examples, and afterwards is used to distinguish

target examples from all other examples which have been classified into a single

different category called the outlier class. The general task in OCC can be re-

garded as being similar to conventional binary classification methods, in that a

decision boundary or separation model is used to separate examples of the two

classes (target and outliers). However, OCC methods face a harder task because

the decision boundary is mainly supported by examples of the target class and

hence less information is employed to build and validate it. Consequently, a suf-

ficiently representative sample of target examples is needed to generate a more

accurate descriptive model, in order to improve the OCC performance.

In this research we consider the task of prediction of PPI as an OCC problem,

in the sense that only examples of one class (positive interaction examples) are

available and/or trustable, becoming the target class. The resulting classifica-

tion model is independent of the kind and quality of the set of negative examples
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employed, because the OCC approach is mainly based on the description of ex-

amples of the target class; this could potentially solve the problem of trustability

associated with the selection of the negative class. In order to develop a com-

parative performance evaluation between OCC and conventional classification

methods, a set of negative examples should be selected as the outlier class. This

is because it is necessary to use examples of both classes for training and testing

purposes when considering conventional binary classifiers. Under these condi-

tions, the performance of OCC methods can be evaluated in a manner similar to

the one for conventional binary classification techniques, by estimating the mis-

classification error, i.e the target class error (or false-negative rate) and, when

outlier examples are available, the outlier class error (or false-positive rate).

OCC methods can be classified according to the way in which they ana-

lyze, describe and generate a model for the separation of targets and outlier

examples (Tax and Duin 2004). Here we consider two types, as follows. (A)

Density estimation methods based on the estimation of the probability density

distribution of the training data using some probabilistic model (e.g. Gaussian

distribution). A threshold is selected and then used to compare with the den-

sity of new objects in order to classify them. (B) Boundary methods based

on the generation of a frontier or boundary around the target objects, which is

optimized to accept most of the target examples and at the same time reject

most of the outliers. Four different OCC learning approaches were evaluated in

this research, namely three density estimation methods (single Gaussian estima-

tion, mixture of Gaussian and Parzen density estimation) and a boundary ap-

proach (Support vector data description SVDD). The dd tools Matlab toolbox

(http://www-ict.ewi.tudelft.nl/~davidt/dd_tools.html) was utilized to

develop the experiments associated with the application and evaluation of all

OCC methods.
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The four OCC methods evaluated in this research (3 density and 1 boundary

approaches) are described in the following sections.

4.2.1 Gaussian density estimation

This is the simplest of the OCC density approaches. The examples of the target

class used for training are modeled as a Gaussian distribution. In the dd tools

implementation, the complete density estimation is not obtained and only the

Mahalanobis distance is employed and calculated for each example X as:

f(X) = (X − µ)T Σ−1(X − µ) (4.1)

where the mean µ and the covariance matrix
∑

are estimated from the entire

sample of objects used. The f(X) value for new objects is then compared against

a threshold θ and classified as a target if f(X) ≤ θ or else as an outlier.

4.2.2 Mixture of Gaussian density estimation

In this case, a linear combination of several (i.e. N) different Gaussian distribu-

tions is employed to model the target class examples used for training, obtaining

a more flexible model compared with the single Gaussian distribution approach.

The training data is divided into N different clusters, each of which is modeled

by a single Gaussian distribution. The distance function f(X) changes in this

case to the form:

f(X) =
N

∑

i=1

αi exp(−(X − µi)
T Σ−1

i (X − µi)) (4.2)

where αi are the mixing coefficients. The parameters of each cluster µi,
∑

i, and

αi are optimized using the EM algorithm. A threshold θ is fixed again and used

to classify new objects as in the previous case. For this approach it is possible
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to include outlier objects in the training phase, setting independent mixtures of

Gaussian distributions for both target and outlier examples, considering Ntarget

and Noutlier different clusters. The number of clusters considered for target and

outlier data should be fixed and consequently can be varied in order to obtain

an optimal performance of the model.

4.2.3 Parzen density estimation

In Parzen density estimation, an independent Gaussian distribution is considered

for each one of the T target objects used to train the model. Consequently, in

this case the distances to all training objects have to be considered. In the

dd tools implementation of this approach, the function f(X) is as follows:

f(X) =
T

∑

i=1

exp(−(X − Xi)
T h−2(X − Xi)) (4.3)

The smoothing parameter h, commonly called the Parzen width, is introduced

here and is related to the width of a region R (in a Gaussian space) generated

around each object in order to separate the target from outlier zones. The rest

of the classification process is similar to the previous density approaches. The

value of h can be varied in order to optimize the performance of the model.

4.2.4 Support vector data description (SVDD)

This technique is a boundary approach based on the binary Support Vector

Machines (SVM) theory. The aim of SVDD is to create a closed hyper-spherically

shaped boundary around the target class examples used to train the model.

Following the description in (Tax 2001, Tax and Duin 2004) the hyper-sphere is

characterized by the centre a and radius R, and is supported for several objects as

in the case of SVM. The objective then is to minimize the volume of the sphere,
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which is possible by minimizing the value of R2. This minimization problem is

similar to that in the SVM approach and consequently it is possible to generate

the same kind of approximation solution. The SVDD method can also employ

a more flexible representation of the data using different kernel functions (i.e.

linear, polynomial and Gaussian kernels). This approach permits the use of

outlier examples in the training stage in order to generate a tighter description

of the hyper-spherical boundary. The kernel type and its respective parameters

can be varied in this implementation, in order to obtain optimal performance

conditions.

4.2.5 Final Remarks

Previously we defined the problem of prediction of PPI and how machine learn-

ing techniques are employed for this, considering this task as a classical binary

classification problem. The focus of this research is to face several drawbacks

related to this binary classification approach. Studying the use of OCC methods

as a possible solution to these problems.

The main assumption made in this thesis, is that OCC models will be able

to properly characterize the feature space associated to positive PPI examples,

and this characterization will be able to correctly discriminate between positive

and negative PPI examples. For this, its results crucial to have a sufficient and

representative sample of objects of the positive PPI class (Tax and Duin 2004).

Additionally it is important to create/generate an adequate set of biological

features associated to our problem. These issues will be discussed later in this

chapter.

The issues previously discussed in chapter 3 when using conventional or clas-

sical binary classification models, such as the definition of the error, atypical

training data (not able to characterize the real data), complexity of the solution
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(learning model), the curse of dimensionality, the generalization of the method

selected, also appear in one-class classification. Some problems become even

more prominent.

In conventional classification, data from two classes are available, the decision

boundary is supported from both sides by example objects. Most conventional

classifiers assume more or less equally balanced data classes and do not work well

when one class is severely under sampled or even completely absent. Because in

one-class classification only examples of one class of data are available, only one

side of the boundary can be determined. It results hard to decide on the basis

of just one class how tightly the boundary should fit in each of the directions

around the data. it is even harder to decide with features should be used to find

the best separation of the target and outlier class. This situation becomes an

important disadvantage faced by OCC methods for the specific task of prediction

of PPI. However, this also becomes one of the principal objectives of our research.

Motivated by the fact that the selection of a negative gold standard set introduce

some bias into the learning process (Ben-Hur and Noble 2006).

For the computation of the error function (in equation 3.6), the joint prob-

ability p(X,Y ) should be known. In the case of one-class classification only

the probability of the target class (really interacting proteins pairs) is known.

Thus in the definition of the Bayes decision in equation 3.5, we only have infor-

mation for the conditional probability p(Yk=+1|X). This might introduce extra

difficulties when employing OCC methods.

In one-class classification a boundary should be defined in all directions

around the data. In particular when the boundary of the data is long and

non-convex, the required number of training objects might be very high. So it is

to be expected one-class classifiers will require a larger sample size in comparison

with conventional ones. Later in this chapter we will evaluate this situation.
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The most straightforward method to obtain a one-class classifier is to esti-

mate the probability density of the training data and to set a threshold on this

density. Here we will consider density methods such as the Gaussian and the

Parzen density. When the training sample data is sufficiently high and a flexible

density model is used (for example the Parzen density estimation), this approach

works very well. Unfortunately, it requires a large number of training samples

to overcome the problem of curse of dimensionality. If the dimensionality of the

data and the complexity of the density model is restricted, this can be avoided,

but then a large bias might be introduced when the model does not fit the data

appropriately.

An important characteristic of one-class classifiers is their robustness against

the presence of few outliers in the training data. here we assumed that the

training set is a characteristic representation of the target distribution. how-

ever it might happen that this training set is already contaminated by some

outliers. This situation can also be related to the existence of noise in the train-

ing data. Although an OCC method should accept as much as possible objects

from the target set, these outliers should still be rejected. Using for instance

the threshold for the OCC density methods, some robustness is automatically

incorporated (Tax 2001).

The OCC methods described previously have different characteristics con-

cerning the number of parameters W associated that have to be chosen before-

hand. When a large number of free parameters is involved, it results difficult

to estimate appropriate values for them. These parameters are often called the

“magic parameters” because they often have a big influence on the final perfor-

mance and no clear rules are given how to set them. When these parameters are

set correctly, good performance will be achieved, but when they are set incor-

rectly, the method might completely fail. This is also related to the complexity



CHAPTER 4. OCC FOR PREDICTION OF PPI 71

of the learning model selected. The number of free parameters should be small

to avoid a too flexible model and rapid overfitting to training data. In our case,

the Parzen density approach contains the lowest number of free parameters.

In the next sections of this chapter, we will present the results of a compar-

ative evaluation between OCC and conventional binary classification techniques

employed for the task of prediction of protein-protein interactions.

4.3 Comparative performance evaluation

4.3.1 Reference data set

In this research we focused on the prediction of co-complexed protein pairs (pairs

of proteins which are co-members of the same complex). In order to evaluate

different machine learning methods, we need a reference data set (gold standard)

containing positive and negative examples. We used the same gold standard sets

employed by Lin et al. (Lin et al. 2004) for the study of PPI in yeast. These

comprise 2,104 positive examples (true interacting protein pairs) derived from

the MIPS complex catalogue (Mewes et al. 2002) and 172,409 negative exam-

ples (non-interacting protein pairs) related to protein pairs where the members

are localized in different cell compartments and consequently are not likely to

interact between them. This reference data set is a subset of the one used by

Jansen et al. (Jansen et al. 2003), considering only examples where complete

information for each one of the biological features is available.

4.3.2 Biological features

An important motivation for this research is that the integration of diverse kinds

of biological data/information could potentially improve our ability to predict

protein-protein interactions. Four different types of biological information were
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considered following (Jansen et al. 2003) and (Lin et al. 2004):

m-RNA expression, following the assumption that proteins which are mem-

bers of the same complex are commonly expressed simultaneously. The Pearson

correlation was estimated for every protein pair considering two different well

known studies: the Rosetta compendium (Hughes et al. 2000) and cell cycle time

series analysis (Cho et al. 1998), generating two numeric values between -1 and

1 which are incorporated as features.

functional similarity of protein pairs was estimated from the gene ontology

(GO) (Ashburner et al. 2000) and the MIPS (Mewes et al. 2002) functional

catalog, according to the procedure previously employed in (Jansen et al. 2003),

obtaining two new numeric features. The assumption here is that proteins in

the same complex tend to share similar functions or to participate in the same

biological processes.

These sources of information can be thought of as a hierarchical tree of func-

tional classes in the case of MIPS functional catalog, or a directed acyclic graph

(DAG) in the case of GO catalog. Each protein describes a “subtree” of the

overall hierarchical tree of classes or a subgraph of the DAG in the case of GO

catalog. Given two proteins, it is possible to calculate the intersection tree of the

two subtrees associated with these proteins (set of functional classes two proteins

share). This estimation is then made for the complete list of protein pairs (∼18

million in yeast), and thus a distribution of intersection trees is obtained. The

“functional similarity” between two proteins is finally defined as the frequency

at which the intersection tree of the two proteins occurs in the distribution. The

more specific the shared functional annotation is, the smaller is the functional

similarity frequency.
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Essentiality information (Mewes et al. 2002), assuming that two proteins in

the same complex are essential or non essential for cell survival. This feature is

then characterized by three possible categories (i.e. both proteins are essential or

both are non-essential or only one of them is essential), and is represented by a

three dimensional vector taking discrete values of +1 or -1 according to each case.

High-throughput experimental interaction data from Y2H and mass spec-

trometry based experiments were integrated as features. Four different exper-

imental studies have been considered (Uetz et al. 2000, Ito et al. 2001, Gavin

et al. 2002, Ho et al. 2002). In each case, a discrete value of +1 or -1 is assigned

to indicate whether the components of a protein pair do interact or do not in-

teract respectively.

Numerical features were normalized to obtain a distribution with a mean of 0

and standard deviation of 1, in order to to put all data in the same range of values

and to avoid possible numerical difficulties associated with imbalanced ranges.

Every pair of proteins available in the reference data set was represented by a

11-dimensional vector Xi containing the information for the biological features

considered here, and a label Yi which can take two values depending on whether

each of the proteins pairs do really interact (Yi = 1) or not (Yi = −1).

4.3.3 Conventional Machine Learning Methods

A representative group of conventional or traditional machine learning tech-

niques, which have been previously used for the task of PPI prediction, was

selected in order to undertake a comparative performance evaluation with OCC

methods for this specific task. These include: Decision Trees (DT), Naive
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Bayes (NB), Logistic Regression (LR) and Support Vector Machines (SVM).

The WEKA machine learning library (Witten and Frank 2005) was used to

perform the experiments related to DT, NB and LR, while the evaluation of

SVM was carried out using the MATLAB interface to the SVM-light toolbox

(http://svmlight.joachims.org).

4.3.4 Performance evaluation

OCC and conventional learning approaches were evaluated in different train-

ing/testing scenarios varying, for instance, the number of negative examples

used to train each of the models. A ten-fold cross validation procedure was car-

ried out for every evaluation, in order to assess the performance variability of

the models generated. In each situation, the negative examples which were not

utilized in the training step were also included in the testing evaluation. This

testing strategy differs from previous approaches used for this task, where only a

fraction or sub-sample of the negative gold standard examples was considered to

test the models. We think that by including all the available putative negative

information each time we test our models, we are carrying out a more relevant

and at the same time more challenging evaluation for the prediction of PPI.

Several learning methods evaluated here have parameters to be tuned in order

to optimize their performance. Including the Parzen density estimation, SVDD,

mixture of Gaussian density estimation and SVM. These parameters have to be

tuned entirely from the training set (independent data set different to the one

employed for testing classification models). For this, a nested (inner or internal)

ten-fold cross validation procedure was developed for each of these classifiers.

The nested cross validation procedure is a standard method to deal with this

situation, helping to reduce bias of models evaluated (Varma and Simon 2006).

Receiver Operator Characteristic (ROC) curves, illustrating the tradeoff be-
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tween the false-positive rates and true-positive rates, were generated for each

approach under the different scenarios evaluated. The area under the ROC

curve (AUC) was calculated for each case to evaluate the overall performance of

different learning algorithms. AUC scores seem to be a better evaluation mea-

sure than simple accuracy in imbalanced class problems (Huang and Ling 2005).

We also calculated partial AUC scores, which are related to the normalised

area under a fraction of the whole ROC curve which represents a condition

of special interest. For example, in the situation of severe class imbalance it

seems more relevant to evaluate the performance in the region of low values

of false-positive rates (Drummond and Holte 2005), which is the case in the

prediction of PPI tasks. In our approach we are interested in evaluating and

comparing the performance of the different classifiers under conditions of a low

false-positive rate. The aim of this is to maximise the number of real interacting

protein pairs predicted while minimizing the number of false-positive predicted

ones. This is of special interest for biologists working in the identification and

validation of new PPI, because they can focus on the study of only the top

ranked predicted PPI targets, instead of evaluating many randomly selected

protein pairs. We considered the area under the ROC curve up to the first

50 false-positive examples (AUC-50), which has become a commonly accepted

performance measure for this specific task (Ben-Hur and Noble 2005, Qi et al.

2006).

Mean values and standard deviation for AUC and AUC-50 were calculated,

based on the ten fold cross-validation individual results, in order to compare

the performance of different approaches. When the difference was unclear be-

tween the AUC or AUC-50 values for two methods, the Wilcoxon signed rank

statistical test (Wilcoxon 1945) for the median of the differences between them

was computed considering a 5% significance level, in order to obtain stronger



CHAPTER 4. OCC FOR PREDICTION OF PPI 76

evidence that one of the methods performed better than the other.

4.3.5 Evaluation of diverse OCC methods

Four different OCC methods were used for the problem of PPI prediction in-

cluding: Gaussian density estimation, Mixture of Gaussian density estimation,

Parzen density estimation and Support Vector Data Description (SVDD). The

methods were evaluated on a balanced class set using all the positive examples

available and an equal size sample of negative examples randomly selected from

the whole negative gold standard set. This was done because some of the OCC

methods can take advantage of the use of a sample of negative examples to im-

prove their performance. This procedure was repeated ten times using diverse

sub-samples of negative pairs. The results of the estimation of AUC and AUC-

50 scores for the OCC performance evaluation are shown in Table 4.1 where the

mean and standard deviation are given.

Table 4.1: Comparison of AUC and AUC-50 values for different learning methods
evaluated

Method AUC AUC-50

OCC methods:

SVDD 0.9766 ± 0.0032 0.2451 ± 0.0321
Gaussian 0.9377 ± 0.0136 0.1224 ± 0.0136
Mixture of Gaussian 0.9855 ± 0.0094 0.2262 ± 0.0515
Parzen 0.9801 ± 0.0075 0.4010 ± 0.0282

Conventional methods:

Decision trees (DT) 0.9946 ± 0.0033 0.2129 ± 0.1903
Naive Bayes (NB) 0.9908 ± 0.0017 0.2299 ± 0.0275
Logistic Regression (LR) 0.9928 ± 0.0018 0.0917 ± 0.0307
Support Vector Machines (SVM) 0.9934 ± 0.0018 0.2683 ± 0.0251

The results for the global AUC scores show that there is no significant dif-

ference between most of the OCC methods evaluated, with the exception of the
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simple Gaussian density estimation method which exhibits the lowest overall

performance. On the contrary, the analysis of the results for the AUC-50 scores

clearly shows that the Parzen density estimation method (AUC-50 = 0.401) by

far outperforms the rest of the OCC methods considered here. The good per-

formance obtained by the Parzen method can be explained because this density

estimation method takes into account the information of every target example

available. This is different to the rest of the OCC approaches evaluated, where

for example only an average probability density estimation from the available

data is employed, as in the case of Gaussian and Mixture of Gaussian approaches,

or in the case of the SVDD method where just a few examples are utilised to

support a boundary between target and outlier examples.

The second best performance for OCC methods considering AUC-50 scores

is obtained by the SVDD approach using a Gaussian kernel (AUC-50 = 0.2455).

We note that a recent paper by Alashwal et al. (Alashwal et al. 2006) used

one-class support vector machines (OCSVM) (Schölkopf et al. 2001), which is

an extension of the classical binary SVM technique, to deal with the task of

prediction of PPI. In that work, the authors only considered one biological fea-

ture based on protein sequence and domain information, reporting that the best

results are obtained using a Gaussian kernel. In contrast, in our research we

evaluated several different OCC approaches, used diverse biological features and

also carried out a comparative performance evaluation with several conventional

binary classification methods. Moreover, it has been shown that the SVDD and

OCSVM techniques give equivalent solutions (Tax and Duin 2004, Schölkopf

et al. 2001) when using a Gaussian kernel.
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4.3.6 Comparative evaluation between OCC and conven-

tional classifiers

The Parzen OCC method was selected, due to its good performance, to be com-

pared in a more exhaustive evaluation with several conventional classifiers such

as Decision Trees (DT), Naive Bayes (NB), Logistic Regression (LR) and Sup-

port Vector Machines (SVM). Firstly, all the learning approaches were evaluated

on the same ten different balanced class sets previously used. Estimates for AUC

and AUC-50 scores for these experiments are given in Table 4.1.

Comparative analysis of overall AUC scores shows that conventional clas-

sifiers perform only slightly better that the Parzen OCC approach. This was

expected because the task associated with OCC only uses examples of one class

to generate a classification model. However, in relation to the AUC-50 compar-

ative evaluation, we found that the Parzen OCC approach clearly outperforms

all conventional classification techniques (AUC-50 = 0.401). The performance of

conventional classifiers in these cases is only comparable with some of the other

OCC methods previously evaluated, and is sometimes worse as in the case of the

LR approach. SVM showed the best performance for the conventional classifiers

(AUC-50 = 0.2687). It is interesting to note that DT exhibits high variabil-

ity compared with the rest of the methods evaluated. The detailed analysis of

AUC-50 results shows that in some of the ten fold cross validation subsets DT

performs better than OCC methods, but in others (the majority) it performs

very poorly. The Wilcoxon signed rank test (Wilcoxon 1945) was applied in this

case demonstrating that the Parzen OCC method effectively outperforms the

rest of conventional classifiers.

The difference between the AUC and AUC-50 analysis can be clearly ap-

preciated from the ROC curves of the different learning methods evaluated (see

Figure 4.1).
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Figure 4.1: Example of ROC curve analysis: (a) Whole ROC curves for the
different learning methods evaluated. (b) Partial ROC curves for the different
learning methods evaluated. The vertical line indicates the point where approx-
imately the first 50 false-positive examples are reached.

Figure 4.1(a) shows an example of the ROC curves for the different learning

techniques used in the evaluation of one cross validation subset. No important

differences between these ROC curves is observed and consequently there is no
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significant difference in total AUC scores. When we focus on the portion of these

curves related to the AUC-50 region, presented in Figure 4.1(b), there are clear

differences in the performance of the diverse methods. In this region, the Parzen

OCC method outperformed the rest of the conventional learning approaches

evaluated. This is still the case if we extend the partial AUC analysis up to the

first 100 false-positive examples. This corroborates our assumption that analysis

based on partial AUC scores (i.e. AUC-50) is more appropriate than that using

overall AUC scores, for predicting PPI.

4.4 Evaluation of different scenarios

4.4.1 Comparative evaluation on different scenarios

We also evaluated and compared the effect of the use of negative examples in

the performance of the diverse learning approaches. Different scenarios were

generated varying the number of negative examples used for training the re-

spective models, from none to all of the negative examples available. Figure 4.2

shows the performance results, measured as AUC-50 scores, for all the situations

considered.

Firstly we analysed the cases where less negative than positive examples were

used to train the models, including the balanced class scenario when 2,104 neg-

ative examples are employed. The Parzen OCC method clearly outperforms the

rest of conventional learning techniques, exhibiting a very stable (almost invari-

ant) performance in the different situations. This can be explained because it

only uses positive examples for training purposes. On the contrary, the perfor-

mance of most of conventional classification methods, with the exception of NB,

tends to decrease as less negative information is used. SVM exhibits the best

performance for binary classifiers followed by the NB approach. DT and LR
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exhibit low performance and high variability compared with the rest of meth-

ods evaluated. Note that in the situation where no negative examples are used,

only the Parzen OCC method can be employed and consequently no results for

conventional classifiers are available.
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Figure 4.2: AUC-50 comparison for different learning methods evaluated, showing the effect of reducing and incrementing
the number of negative examples used to train the models. The balanced class scenario is when 2,104 negative examples are
used for training. Note that no corrective action was taken for any of the imbalanced class situations.
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The effect in the performance of conventional classifiers suggests that classi-

fication models generated by these type of techniques, are not able to correctly

discriminate between positive from negative examples. The presence of negative

examples seems to be very important for the quality of these classifiers. Parzen

OCC models, based only on positive examples information, are more affective

to discriminate between both classes under these conditions.

The analysis is quite different for scenarios where more negative than positive

examples are employed to train the models. The Parzen density estimation OCC

technique tends to maintain its performance stability and a significant increment

in the AUC-50 performance only occurs when more than 50,000 negative exam-

ples are employed. This can be explained because in these cases the models were

tested on a reduced number of negative examples (most of the negative infor-

mation is used to train the models). The performance of conventional classifiers

tends to increase gradually as more negative examples are incorporated for the

generation of their respective classification models. This was expected because

these techniques can take advantage of the negative object class information.

These results suggest that performance of conventional classification tech-

niques is strongly influenced by the presence of negative examples information.

Only under under these conditions, models generated by these kind of techniques

seems to be able to correctly discriminate between positive and negative exam-

ples. Interestingly we also noted that complexity of conventional classification

models tends to increase under these scenarios, (i.e the size of DT models tend

to increase as more negative examples are employed in the training phase; more

examples are employed as support objects in SVM models). This also support

our previous suggestion about the effect of negative examples information on

conventional classification models. This results to be the main difference with

Parzen OCC models, which does not employ negative information to generate a
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predictive model, and consequently maintains its complexity unaffected through

the different scenarios evaluated

The Parzen OCC method performs very competitively in most of the sce-

narios evaluated, and outperforms the other methods up to the case where

50,000 negative examples are used for training. At this point, the DT technique

performs as well as the Parzen OCC approach. Thereafter, the DT method

outperforms all the rest of the learning approaches, suggesting that DT is the

traditional binary learning approach most influenced by the availability of the

negative class information. Other conventional classifiers evaluated (NB, LR

and SVM) do not exhibit outstanding performance and slightly outperform the

Parzen OCC method only when all available negative examples are used.

Finally, we studied the effect of imbalanced classes on the performance of

the different classifiers. While OCC methods are intrinsically able to cope with

this situation, this is not the case for conventional classifiers. Consequently,

some strategy is needed to deal with the imbalanced class problem. Here we

used a cost-sensitive analysis, where the misclassification cost for examples of

the minority class is bigger than the misclassification cost for the majority class

(note that on the different scenarios the minority class is not always the same).

In situations where fewer negative than positive examples were used, we ob-

served an increment in the performance of most of the conventional classifiers,

reaching AUC-50 scores similar to those obtained for each approach in the bal-

anced class scenario. The exception is the NB approach, the performance of

which was almost invariant in these cases.

When more negative than positive examples were used, the AUC-50 per-

formance for all conventional classifiers tended to decrease in comparison with

those obtained without cost-sensitive analysis. This can be explained because in

these cases the classification model is generated considering positive and nega-
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tive examples information in a balanced way and is not biased towards negative

class information. Another accepted strategy to deal with the imbalanced class

problem is to under-sample the majority class; we have done this when training

on ten different balanced class sets (see previous section).

The analysis of the results presented in this section strongly suggests that

the performance of conventional binary classification models is highly affected

by the presence or absence of negative examples. This can also explain the

high performance (AUC-50) observed for conventional classifiers when all nega-

tive examples are employed for training. Another explanation for this observed

high performance is the availability of a high-quality negative gold standard set

(protein pairs located on different cell localization), which has been previously

discussed in (Ben-Hur and Noble 2005) and (Ben-Hur and Noble 2006). How-

ever this will not be the case when undertaking the prediction of PPI on other

organisms when protein cell localization information is unavailable.

4.4.2 Comparative evaluation when less biological infor-

mation is available

Most of the previous studies which use a machine learning integrative approach

for PPI prediction have been developed considering yeast as a model organism,

mainly because more types of biological information are available and conse-

quently it is possible to use these to obtain new evidence and insights about

this problem. For other organisms, where less information is accessible, the

problem of the inference of PPI is more complex and difficult. In our research

we addressed this possible scenario by developing another comparative perfor-

mance evaluation between OCC and conventional classifiers, considering the case

where a reduced number of biological features is available. Two biological fea-

tures were extracted from the original data set used here, the GO and MIPS
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functional annotations, which have been identified to play an important role in

the PPI prediction task for yeast in several previous studies (Lin et al. 2004, Lu

et al. 2005, Ben-Hur and Noble 2005, Qi et al. 2006). Consequently, by removing

these, it is possible to generate a more difficult classification task.

Similarly to the previous analysis developed on the complete data set, a com-

parative performance evaluation of different OCC methods was performed first

for this new data-reduced scenario (using the same ten balanced class sets as

before but reducing the number of biological features employed). The AUC-50

scores results for these learning approaches are presented in Figure 4.3, exhibit-

ing again that Parzen density estimation clearly outperforms the rest of the

single OCC techniques evaluated. It is important to note that in this reduced-

data scenario, the AUC-50 performance score for all the methods evaluated was

drastically reduced. For example in the case of the Parzen OCC method, the

AUC-50 scores are reduced from approximately 0.4 when the original complete

data set was used to arround 0.2 in the reduced data situation, confirming our

assumption that this new scenario represents a more difficult prediction task.

The performance evaluation between selected OCC and conventional learn-

ing approaches was also carried out on these data-reduced conditions. Figure 4.3

presents the results of the AUC-50 scores for these conditions. Similarly to the

results obtained on the complete-data scenario, both OCC methods (Parzen and

OCC combination) outperform the rest of the conventional classifiers evaluated

here. The SVM and NB approaches show the best performance for the con-

ventional learning approaches obtaining AUC-50 scores slightly over 10%. For

these conditions, the performance of the DT method shows an even more high

variability compared with the complete-data scenario, confirming the suspicion

that DT are highly dependent on the presence of negative examples and even

more so in a reduced-information problem.
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Figure 4.3: AUC-50 comparison for the different learning approaches evaluated
in the case where reduced biological information is available. Lights bars present
the results for OCC methods: SVDD, Gaussian, mixture of Gaussian and Parzen.
Dark bars present the results for conventional classifiers employed: Decision
Trees (DT), Naive Bayes (NB), Logistic Regression (LR) and Support Vector
Machines (SVM)

4.5 Evaluation of biological feature importance

We then evaluated the individual effect of the different biological features used

in this research on the performance of the Parzen OCC approach. For this we

removed each of the biological attributes one at time from the data set and

tested the effect of this action on the AUC and AUC-50 scores, compared with

those obtained when all available biological information is used. Table 4.2 shows

the results of this procedure.

The major effect on the Parzen OCC performance occurs when either func-

tional similarity or m-RNA expression data are removed. This is consistent with

results previously reported in the literature (Lin et al. 2004, Lu et al. 2005, Qi

et al. 2006). It is interesting to observe that the overall AUC performance only

increases when high-throughput information is removed, which can be explained
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due to the high false-positive and false-negative rates associated with these kinds

of features.

Table 4.2: Evaluation of the individual effect of the different biological attributes
in the performance of the OCC parzen approach

Feature description AUC AUC-50

ALL features 0.9801 ± 0.0075 0.4010 ± 0.0282
GO removed 0.9186 ± 0.0121 0.2094 ± 0.0189
MIPS removed 0.9412 ± 0.0135 0.1983 ± 0.0225
m-RNA expression removed 0.9775 ± 0.0050 0.1883 ± 0.0238
Essentiality removed 0.9800 ± 0.0081 0.3380 ± 0.0273
High-throughput removed 0.9887 ± 0.0037 0.3463 ± 0.0261

4.6 Prediction of new potential PPI targets us-

ing Parzen OCC method

Finally, we evaluated the ability of the Parzen OCC approach to predict new

potential PPI, which could be used as a targets in future investigations. For this

we generated a new set of random protein pairs which were not included in our

positive and negative gold standards sets. We were able to collect a set of ap-

proximately 518,000 protein pair examples with complete biological information

from the data previously used in (Jansen et al. 2003). We classified the examples

in the random set using the Parzen OCC model trained on all positive examples

available (parameters being optimized on ten fold cross validation procedure),

and found that 928 of them were predicted as a new potential PPI.

We focused on the analysis of the top 50 new potential PPI with the high-

est prediction scores generated by the Parzen OCC model. This score is the

probability associated with the positive examples class and consequently can

be seen as a confidence value. To validate our predictions we employed the
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IntAct database (Kerrien et al. 2007) (http://www.ebi.ac.uk/intact), which

compiles molecular interactions reported in published literature, containing in-

formation for around 50,000 binary protein interactions for yeast (May 2006).

We found that of the 50 top ranked examples, 36 were supported by at least

one reference in INTACT. These were mostly associated with mass spectrom-

etry experiments which are related to the identification of groups of proteins

that interact to form complexes. This is statistically significant considering that

if we randomly selected 50 protein pairs not in the positive gold standard, the

probability that 36 of them will be annotated in INTACT is very low (p < 10−77)

using Fisher’s exact test (Fisher 1922). The list of the top 50 potential new PPI

targets predicted by the Parzen OCC model is given in the Table 4.3.

4.7 Conclusions

The research described in this chapter has focused on the application and evalu-

ation of one-class classification (OCC) methods for the problem of prediction of

protein-protein interaction (PPI). We also considered the use of diverse biological

data types in order to develop a joint integrative learning analysis.

Among various OCC methods evaluated, the Parzen OCC density estima-

tion approach clearly exhibited the best performance. This can be explained

because the Parzen OCC technique utilises all examples in the training set to

generate a classification model unlike the other OCC methods investigated here.

This approach was then selected to develop a comparative performance evalu-

ation against several well known conventional machine learning methods. Dif-

ferent scenarios were considered varying the number of negative examples used

to train the models. We found that the Parzen OCC approach performs very

competitively and outperforms the rest of conventional classifiers in most of the

situations, up to the case where the ratio of negative to positive examples is



CHAPTER 4. OCC FOR PREDICTION OF PPI 90

Table 4.3: List of 50 highly ranked new potential PPI targets predicted by the
Parzen OCC method

No ID-1 ID-2 P

1 YDR025W YLR029C 0.93420
2 YOL039W YOL139C 0.93085
3 YBR189W YOR063W 0.92811
4 YKL156W YPL131W 0.92766
5 YBR118W YPL131W 0.92748
6 YML063W YPL131W 0.92665
7 YKL156W YPL143W 0.92578
8 YGL135W YNL178W 0.92496
9 YBR048W YLR029C 0.92441
10 YHR010W YNL178W 0.92375
11 YBR189W YPL143W 0.92253
12 YBL092W YML063W 0.92183
13 YBR189W YPL237W 0.92140
14 YEL034W YOL127W 0.91935
15 YBR189W YMR260C 0.91858
16 YEL034W YLR340W 0.91823
17 YDL082W YNL178W 0.91801
18 YDR382W YNL178W 0.91736
19 YBR118W YLR029C 0.91652
20 YKL156W YNL244C 0.91650
21 YML063W YNL244C 0.91649
22 YDL136W YNL244C 0.91628
23 YDL082W YLR249W 0.91615
24 YGL135W YHL015W 0.91591
25 YEL034W YOR063W 0.91568
26 YDL191W YNL244C 0.91460
27 YDR064W YGL135W 0.91417
28 YEL034W YKL060C 0.91353
29 YHL015W YPL220W 0.91250
30 YBR118W YOL040C 0.91235
31 YHR010W YNL244C 0.91169
32 YDR025W YLR249W 0.91152
33 YBR118W YOL127W 0.91072
34 YML024W YNL244C 0.91037
35 YNL244C YPL220W 0.90981
36 YML024W YPL143W 0.90814
37 YHR010W YPL237W 0.90769
38 YER131W YPL143W 0.90761
39 YER131W YLR075W 0.90642
40 YBL027W YHL015W 0.90638
41 YKL156W YOR063W 0.90594
42 YGL135W YOL139C 0.90561
43 YBR189W YLR075W 0.90505
44 YDL130W YDR064W 0.90369
45 YDL136W YPL237W 0.90351
46 YDL136W YNL178W 0.90273
47 YAL003W YDR418W 0.90200
48 YEL034W YOL040C 0.90180
49 YDL082W YOL040C 0.90125
50 YDR385W YOL040C 0.90094



CHAPTER 4. OCC FOR PREDICTION OF PPI 91

approximately 25 to 1.

We have demonstrated that for this specific task, the performance of con-

ventional binary classification approaches is highly influenced by the quantity

of negative examples used to train the respective models. This suggests that

classification models generated from these type of methods are more reliant on

negative information (in this case an untrustworthy set of negative PPI exam-

ples) than on positive information (experimentally corroborated PPI examples).

Our results indicate that the task of the prediction of PPI can indeed be

formulated as an OCC problem where the predictive model is based on real

(trustworthy) PPI data. In the specific case of prediction of co-complexed pro-

teins, we found that the Parzen OCC method is able to generate models which

perform competitively with those generated by conventional classifiers, indepen-

dently of the quality and quantity of the negative examples available. We have

also carried out an initial study on the ability of the Parzen OCC approach to

predict new potential PPI targets, showing that many of the highly ranked new

predictions can be validated by reference to published results in the literature.

Most of the work associated to this chapter has been included in a referred

publication in (Reyes and Gilbert 2007).

4.8 Summary

In this chapter we focused on the application and evaluation of OCC methods

for the prediction of PPI, considering the use of diverse biological data types in

order to develop a joint integrative learning analysis. Among various OCC meth-

ods evaluated, the Parzen OCC approach exhibited the best performance. We

then developed a comparative performance evaluation between Parzen OCC and

several conventional machine learning methods. The Parzen OCC approach per-

forms competitively and outperforms the other conventional classifiers in many
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scenarios evaluated. We have demonstrated that the performance of conven-

tional classifiers is highly influenced by the quantity of negative examples used

to train the respective models. These models are more reliant on negative in-

formation (untrustworthy set of non-interacting protein pairs) than on positive

information (experimentally corroborated PPI examples).

In the next chapter we will evaluate another potential drawback related to

the task of prediction of PPI, this time associated with the composition of the

positive gold standard set (set of real interacting protein pairs).



Chapter 5

Prediction of non-Ribosomal PPI

5.1 Introduction

In this chapter, we discuss and evaluate the effect of a new potential draw-

back for the problem of prediction of PPI. Positive gold standard sets frequently

employed for the task of prediction of co-complexed PPI contain a high pro-

portion of instances related to ribosomal proteins. We demonstrate that this

situation biases the classification results and additionally that the prediction of

non-ribosomal based PPI is a much more difficult task.

In order to improve the performance of this subtask, we implement two strate-

gies: integration of more biological data into the classification process, including

data from mRNA expression experiments and protein secondary structure in-

formation, and investigating several strategies for combining diverse one-class

classification (OCC) models generated from different subsets of biological data.

We demonstrate that the integration of new biological data has a positive

effect on the performance of the Parzen OCC classifier, especially in the case

of secondary structure information. In relation to the combination strategy

evaluation, the results indicate that the weighted average combination approach

93
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exhibits the best results, significantly improving the performance attained by

any single classification model evaluated.

5.2 Analysis of Positive Gold Standard Set com-

position

In order to predict co-complex protein pairs (pairs of proteins which are co-

members of the same protein complex) we need a reference data set or gold

standard set containing positive (true interacting protein pairs) and negative

examples (non-interacting protein pairs). Although only positive examples are

needed in order to train OCC methods, a set of negative ones is still required

to obtain a comparable performance evaluation measure. Here we extend the

data set we previously employed in (Reyes and Gilbert 2007) to consider a larger

number of positive and negative examples. For this we removed the information

related to high-throughput experiments for direct detection of PPI. We followed

the work in (Jansen et al. 2003) to derive the positive gold standard set from

the MIPS complex catalogue (Mewes et al. 2002), and also the negative gold

standard set which is related to protein pairs which are present in different cell

localizations and consequently are more likely not to interact. A similar reference

data set has been employed before in (Jansen et al. 2003, Lin et al. 2004, Lu

et al. 2005, Browne et al. 2006). The final data set we employed in this research

includes ∼6,700 positive examples and ∼550,000 negative ones, considering only

examples where complete information for each one of the biological features were

available.

three different types of biological data were employed as features to develop

our classification approach, as follows:

• mRNA expression: the Pearson correlation is estimated for every protein
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pair considering two different studies the Rosetta compendium (Hughes

et al. 2000) and cell cycle time series analysis (Cho et al. 1998).

• Functional similarity of protein pairs was estimated from the gene ontology

(GO) (Ashburner et al. 2000) and the MIPS (Mewes et al. 2002) functional

catalog, obtaining two new numeric features. The assumption here is that

proteins in the same complex tend to participate in the same biological

processes.

• Essentiality information, was also used (Mewes et al. 2002), assuming that

is more expected that two proteins in the same complex are both essential

or non essential but not a mixture of these two attributes.

Analyzing the composition of the positive gold standard set, we found that

a high proportion of these examples (∼66%) are related to ribosomal protein

pairs. This is because ribosomal protein complexes (cytoplasmic and mitochon-

drial) are the most numerous among all the different complexes included in the

MIPS complex catalogue (Mewes et al. 2002) which contain a large number of

proteins. In this research, we argue that this situation could considerably af-

fect the performance of the classifiers, biasing the classifiers to mostly recognize

interactions related to ribosomal proteins. In order to assess this situation we

proceeded to divide our positive gold standard set in two subsets containing all

ribosomal related PPI and all non-ribosomal related PPI respectively, generat-

ing at the same time two new classification subtasks related to the prediction of

ribosomal and non-ribosomal PPI. The new positive gold standard sets contain

∼4,600 and ∼2,100 protein pairs respectively. We employed the same negative

reference data set in both cases.

The performance of the Parzen OCC approach was evaluated for the three

situations considered above. Here we follow the same approach as in the previ-
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ous chapter (Chapter 4) to evaluate the performance of different classification

methods. Focusing in the performance evaluation of models under conditions

of low false-positive rate, aiming to maximize the number of real interacting

protein pairs predicted while minimizing the number of false-positive predicted

ones. The performance of the Parzen OCC classifier for the different tasks men-

tioned above is shown in Table 5.1. As in previous chapter, several conventional

classifiers were also included in this evaluation (Decision Trees, Support Vector

Machines and Naive Bayes). The performance of conventional classifiers is also

given in Table 5.1.

Table 5.1: Performance of different classifiers measured as AUC-50 scores. Three
cases are evaluated: prediction considering all PPI in the positive gold standard
set, prediction of ribosomal PPI and prediction of non-ribosomal PPI. AUC-50
scores given as mean value and standard deviation (in brackets) based on a ten
fold cross validation procedure

Classifier All PPI ribosomal non-ribosomal

Parzen OCC 0.5425 (0.0228) 0.7422 (0.0121) 0.1239 (0.0179)

Binary classifiers:

Decision Trees 0.4916 (0.2902) 0.4808 (0.4486) 0.0439 (0.0280)
Naive Bayes 0.0064 (0.0021) 0.4710 (0.0202) 0.0207 (0.0105)
Support Vector Machines 0.2687 (0.0250) 0.5479 (0.1217) 0.0433 (0.0124)

We observed a clear difference between the performance in the prediction of

ribosomal and non-ribosomal PPI. In the case of prediction of ribosomal PPI,

the Parzen OCC approach exhibits a high performance of ∼0.75 measured as an

AUC-50 score. The prediction of non-ribosomal PPI seems to be a more difficult

task; here the performance of Parzen OCC approach is significantly reduced to

only ∼0.12 measured as an AUC-50 score. Interestingly, the performance in the

situation when all PPI available in the positive gold standard are employed reach

an AUC-50 score of ∼0.54 which is in-between the performance of both subtasks.

The same behavior was observed when conventional classifiers were evaluated.
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The results show that the Parzen OCC approach clearly outperforms all conven-

tional classification techniques for the different tasks evaluated, confirming our

previous results reported in (Reyes and Gilbert 2007).

These results suggest that the performance obtained using the whole positive

gold standard set is biased towards the prediction of ribosomal related PPI.

The high performance exhibited in the prediction of the ribosomal PPI can

be explained because they share common patterns in most of the biological

features employed in the classification process, specifically those associated with

functional similarity and mRNA expression based features. This is not the

case when predicting non-ribosomal PPI which appears to be a much more

difficult challenge and needs more attention by the scientific community in order

to improve its performance. However, a similar positive gold standard set derived

from MIPS complex catalogue (Mewes et al. 2002) has been employed in many

studies related to the prediction of co-complex PPI (Jansen et al. 2003, Lin

et al. 2004, Zhang et al. 2004, Lu et al. 2005, Qi et al. 2006, Browne et al.

2006, Van Berlo et al. 2007). The problem associated with the high proportion

of ribosomal related proteins has not been previously reported or addressed

according to the best of our knowledge. Furthermore in this chapter we have

focused on the task of prediction of non-ribosomal PPI and how to improve the

performance of the Parzen OCC method for this task.

5.3 Integration of Biological Information

5.3.1 mRNA Expression Integration

In order to improve the performance of prediction of non-ribosomal PPI, we eval-

uated the effect of integrating more biological information into the classification

process. The first approach developed was related to the integration of informa-
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tion associated with mRNA expression experiments. Here we explore the idea

that m-RNA expression data obtained under different experimental conditions

could give insights about different sets of new potential PPI. This is related to the

identification of PPI sub-networks associated with cell adaptation to changing

environments proposed and discussed in detail in (Guo et al. 2007). We inte-

grated the data generated in (Gasch et al. 2000) related to yeast stress response.

mRNA data previously employed in our study was related to yeast cell-cycle

time series analysis (Cho et al. 1998) and the Rosetta compendium (Hughes

et al. 2000) which was related to gene mutations and chemical treatments. We

evaluated the performance of the Parzen OCC method for this new data set

following the same procedure as described in chapter 4. Initially, we considered

the case when all the biological features are integrated in a single data set which

is then employed to generate and evaluate the performance of the Parzen OCC

method, in order to evaluate the individual effect of the different mRNA expres-

sion data in the performance of the Parzen classifier. We also considered cases

where information related to only one of the mRNA expression experiments

is employed. Finally, we considered the situation where no mRNA expression

data is employed. The results for all these situations are exhibited in Table 5.2

(middle column).

We observed that when all the data is employed together, the performance

of the Parzen OCC classifier is only slightly improved, reaching an AUC-50

score of ∼0.14 (compared with an AUC-50 score of 0.1239 in the original sit-

uation as shown in Table 5.1). When data from only one mRNA expression

experiment is employed we found a significant increment in the performance of

the Parzen OCC method for the case of cell-cycle and stress response condition

and a slight increment when using Rosetta experiments. The fact that models

based on individual mRNA information perform better than the case when all
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Table 5.2: Performance for diverse sets of biological data measured as AUC-
50 scores. AUC-50 scores are given as mean value and standard deviation (in
brackets) based on a ten fold cross validation procedure

Description of data employed mRNA Integration Plus SS Integration
AUC-50 AUC-50

All mRNA expression data 0.1404 (0.0033) 0.2271 (0.0183)

Only Rosetta Compendium 0.1424 (0.0249) 0.2395 (0.0177)

Only Cell-Cycle 0.1859 (0.0208) 0.2344 (0.0146)

Only Stress response 0.2493 (0.0283) 0.2694 (0.0181)

No mRNA expression data 0.1249 (0.0220) 0.2656 (0.0238)

data is integrated together suggests that the integration of features related to

diverse mRNA expression conditions does not have a synergistic effect on the

performance of the Parzen OCC method. On the contrary, the integration of

these features in a single data set seems to induce some kind of misclassification

effect and consequently tends to reduce the overall performance. One possi-

ble explanation for this situation is that individual mRNA expression data sets

(related to different experimental conditions) give different insights to the pre-

diction problem. Moreover, the classifier based on all the features together is not

able to correctly discriminate between these situations. Finally the case when

no mRNA information is employed exhibits a performance similar to the one

obtained in the original situation described in section 5.2. Considering all these

results we believe that it might be useful to investigate other ways to combine

the information related to individual mRNA predictive models – see section 5.4.

5.3.2 Protein Secondary Structure Integration

Following the idea of integrating more biological information, we investigated

the use of protein secondary structure (SS) information. SS information has

been employed in recent years for the characterization of protein-protein binding
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sites (Neuvirth et al. n.d., Hoskins et al. 2006, Guharoy and Chakrabarti 2007a,

Zhou and Qin 2007). However, these approaches consider only a reduced number

of PPI which have been crystallized and are available in the Protein Data Bank

(PDB) and additionally are focused exclusively on the interaction site region.

In our approach we extend this idea to incorporate a larger number of PPI. To

the best of our knowledge, this is the first investigation associated with the use

of secondary structure information for the prediction of PPI in a broad context.

In order to develop our approach instead of using 3D structure informa-

tion, we employed the whole linear protein sequence which is available for all

yeast proteins. For each protein involved in our study, we predicted the SS

and relative solvent accessibility (RSA) for each residue employing the SSPRO

program (Cheng et al. 2005). In this case SS, is related to three possible types

for each residue: helix (H), strand (E) and the rest(C). RSA is associated with

buried (b) or exposed (e) residues. Once SS and RSA sequences have been pre-

dicted we faced the problem of how to generate features that could reflect some

kind of relationship between SS and RSA for any two proteins. These features

were then integrated into our general task of prediction of PPI and so were esti-

mated for each instance included in the positive and negative PPI gold standard

sets. A total of 13 features were generated as follows:

• SS similarity: Three features were generated based in the similarity of two

SS sequences. Local and global alignments scores were estimated using the

SSEA software (Fontana et al. 2005). Additionally, we incorporated the

common Edit Distance between them.

• SS and RSA composition: Four features were generated based on the SS

and RSA composition following the work in (Cheng and Baldi 2006). For

every protein, a composition vector H,E,C,b,e containing the fraction of

each residue type in the whole sequence, was estimated. Then, four sim-
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ilarity scores were calculated using dot product, cosine, Gaussian kernel

and correlation between any two composition vectors.

• Ratios: Six features were generated based on the ratios of the composition

of SS and RSA (measured this time as the number of residues of each type)

and the total protein sequence length.

Firstly, we evaluated the performance of the Parzen OCC method when only

the 13 features based on SS and RSA information were employed. However, the

results (AUC-50 scores) in this case were very poor (results not reported here).

Further we evaluated the effect of integrating these 13 features with the rest of

the biological data previously employed. For this we used the same data set

previously evaluated in section 5.3.1, incorporating the SS and RSA information

for each of them. The results related to the performance of the Parzen OCC

approach when secondary information is integrated are shown in table 5.2 (left

column).

We could see that the integration of secondary structure information has

the effect of significantly incrementing the performance of the Parzen OCC ap-

proach in all situations (different subsets of biological data). This suggests that

this type of information can indeed contribute to improving the performance of

PPI prediction. Even though each of these features do not perform well when

employed alone, it seems that integration with other types of biological data

helps in the discrimination between positive and negative examples in the AUC-

50 region. Similar to the analysis developed in section 5.3.1, we again observed

that models based on individual mRNA expression conditions perform better

than when all biological information is employed together. This confirms our

initial assumption that no synergistic effect is obtained when different mRNA

expression data is utilized together. However, in this case, the effect seems to

be less significant, which can be attributed to the presence of SS features.
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Interestingly, the strongest increment in performance is shown in the case

when no mRNA expression data is employed at all, more than doubling the

performance of the original case. This suggests that the Parzen OCC model

generated in this last configuration can give different insights to the problem of

prediction of non-ribosomal PPI than those models based on individual mRNA

expression information. This is also supported by the fact that SS based features

contribute to improving the performance of every model based on individual

mRNA data.

5.4 Combination of OCC Models

Based on the results obtained in the previous section, we further investigated

the possibility of combining the predictions of different Parzen OCCC models in

order to improve the performance of the prediction of non-ribosomal PPI. This

exploits the idea of combining models that give us different insights to the prob-

lem of prediction of non-ribosomal PPI. Four models evaluated in sections 5.3.1

and 5.3.2 were selected which could potentially satisfy this assumption. Three

were based on individual mRNA expression experiments (without SS features)

and one was based on SS features with no mRNA information.

5.4.1 Diversity of Classification Models

By combining the predictions of different classifiers we aimed to improve the

performance of the overall classification task (Dietterich 2000a). This general

approach is known under different names in the literature: classifier ensembles,

ensemble learning systems, mixture of experts, etc. Other works (Kuncheva and

Whitaker 2003, Tsymbal et al. 2005, Tang et al. 2006) have shown that a good

ensemble is only possible when the base classifiers perform diversely. This means
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correctly classifying and/or misclassifying different sets of objects. However,

diversity between classifiers can not ensure that there is an improvement in the

overall performance. Without diversity there is no point in investigating the

combination of diverse classification models.

In order to evaluate the diversity of the four selected classification methods,

we considered three general diversity measures commonly employed in the re-

lated literature: Disagreement measure, related to the degree of disagreement

between two classifiers simply calculating the number of cases where one classifier

is correct and the other is incorrect (Ho 1998); Q statistics, related in this case to

the degree of similarity in the performance between two classifiers (Yule 1900);

and Kohavi-Wolpert variance, which is associated with the variance derived from

the decomposition formula of the classification error of a classifier (Kohavi and

Wolpert 1996). To calculate these diversity measures for the four models selected

in our approach, we followed the general guidelines proposed in (Kuncheva and

Whitaker 2003). In our approach, we are interested in the diversity of different

classification models specifically in the AUC-50 region (low false-positive rate

values). Thus we adapted the diversity measures as follows: we considered ex-

clusively the first“N” instances with the highest prediction confidence for each

of the four Parzen OCC classifiers. We then generated a unique list of instances

integrating all selected sets. Finally, instead of considering if an object is cor-

rectly or incorrectly classified by a classification model, we focused on whether

any object belonged or not to the highest confidence list of each model.

Estimates of these diversity measures are shown in table 5.3. The results are

given as mean value and standard deviation (in brackets) based on 10 fold cross

validation (10FCV) procedure. These results were estimated using N=150; this

value was selected arbitrarily considering that on each evaluation related to the

10FCV procedure around 200 positive examples are classified (non-ribosomal
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PPI gold standard set contains a total of ∼2,100 instances). Diversity estimates

employing N equals 100 and 200 were also calculated (results not included here)

exhibiting similar values. In the case of the Disagreement measure and Q statis-

tics, the average over all binary combinations of the four models selected was

calculated. The table 5.3 also shows the theoretical minimum and maximum

values for each diversity measure considering the case when four models are

combined. The Q statistic measure was normalized to have values between 0

and 1 (maximum diversity) following the approach in (Tsymbal et al. 2005).

Table 5.3: Variability of diverse models employed for combination process

Diversity measure mean value Min. Max.

Disagreement 0.4946 (0.005) 0 1

Q statistic 0.5850 (0.022) 0 1

Kohavi-Wolpert variance 0.1855 (0.002) 0 0.25

From the results in Table 5.3, it is possible to see that the four Parzen OCC

classification models selected show a high diversity in all cases. This confirms

our initial hypothesis that these models which were induced from diverse bio-

logical subsets of data give different insights into the problem of prediction of

non-ribosomal PPI. We then are interested in to evaluate if by combining their

prediction scores, it might be possible to improve the performance of the overall

task.

5.4.2 Combination Strategies

In order to combine the predictions of the four Parzen OCC methods selected, we

investigated several strategies commonly employed in the literature. Each clas-

sifier in our ensemble assigns a predictive (or confidence) value to every object

classified. These individual predictions were then combined in several ways in
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order to generate a single prediction score, which is employed for the final classi-

fication of diverse instances included in the test set. Four fixed combination rules

were firstly investigated, which are related to the Mean, Median, Maximum and

Product combination of the predictions of different classifiers. These approaches

are fixed in the sense that it is not necessary to optimize any extra parameter(s).

Additionally, we investigated the weighted average combination approach, where

different weights are assigned to each classifier prediction, and the finally pre-

diction score was calculated by a linear combination of them (Kuncheva 2004).

In order to optimize the performance obtained by the weighted average

combination approach (AUC-50 score), we developed the following procedure.

Firstly, we constrained the sum of all weights to be equal to 1 (no negative

weights were considered). Then we evaluated the performance (AUC-50 score)

under different situations assigning different sets of weights to each classifier. For

this we considered the whole range of possibilities, varying the weights assigned

to each classifier between 0 and 1. Finally, we selected the set of weights ex-

hibiting the highest AUC-50 score. The results derived using these combination

strategies are shown in Table 5.4.

Table 5.4: Performance for diverse combination strategies measured as AUC-50
scores. AUC-50 scores given as mean value and standard deviation (in brackets)
based on a ten-fold cross validation procedure

Model combination strategy AUC-50

Mean combination 0.2897 (0.0218)

Median combination 0.2679 (0.0213)

Max combination 0.2226 (0.0234)

Product combination 0.3594 (0.0303)

Weighted average combination 0.3809 (0.0314)

We can see that most of the combination strategies produce an increment in

the performance of the prediction of non-ribosomal PPI (with the exemption of
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the Maximum rule combination strategy), compared to the performances previ-

ously given in Table 5.2. The best performance was obtained when employing

the weighted average combination approach. In this case, an AUC-50 score of

over 0.38 was achieved, representing a significant increment in the performance

of this task. The weights assigned to each classifier in the weighted average

combination approach can be assigned a certain degree of importance. In the

optimum situation achieved here, the Parzen OCC model based on SS data

without mRNA expression information was given the highest weight (∼0.5), fol-

lowed by the models based on mRNA expression associated with Stress response

(∼0.3), cell-cycle(∼0.15) and Rosetta compendium(∼0.05). The second best

performance was achieved by the product combination approach with an AUC-

50 score of ∼0.36; interestingly, this combination technique seems to perform

well if the outcomes of individual classifiers are independent (Duin 2002).

5.5 Conclusions

The research described in this section addressed the problem of the prediction

of co-complex PPI using the Parzen OCC method and integrating diverse kinds

of biological data. The positive gold standard set usually employed in this task

contains a high proportion of ribosomal PPI. We have demonstrated that this

situation introduces a bias in the classification task. We also showed that the

subtask associated with the prediction of non-ribosomal PPI is a more difficult

problem. This subtask has not received attention in the past, and according

to the best of our knowledge, our work is the first attempt to deal with this

situation.

We focused our efforts on improving the prediction of non-ribosomal PPI. We

investigated the effect of integrating new biological information into the process,

based on data from mRNA expression experiments and protein secondary struc-
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ture (SS) information. We have demonstrated that the integration of data from

diverse mRNA expression experiments into a single data set has a negative effect

on the performance of the Parzen OCC approach. There is no synergy effect in

this case, and Parzen OCC models based on individual mRNA expression exper-

iment outperform the one which integrates all the data. On the other hand, the

integration of protein secondary structure information results in a positive effect

on the increment of performance of this predictive task. The performance of all

of the models evaluated is improved when SS-based features are incorporated

into the classification process, including the case when no mRNA expression

data is used. These results are very promising, and according to the best of our

knowledge this is the first attempt to integrate this kind of information for the

prediction of PPI.

Finally, we investigated several strategies to combine predictions of different

Parzen OCC models induced from diverse subsets of biological data. Four models

were selected for this procedure, three based on individual mRNA expression

experiments (without SS information) and one based on SS information (without

mRNA expression data). These models exhibited a high degree of diversity in

their predictions, corroborating our assumption. We have demonstrated that

it is possible to significantly improve the performance of the prediction of non-

ribosomal PPI by combining the predictions of several Parzen OCC models. The

weighted average combination approach exhibited the best performance, and also

gave some insights regarding the relative importance of the different classifiers

employed. Most of the work associated to this chapter has been included in a

referred publication in (Reyes and Gilbert 2008).
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5.6 Summary

In this chapter we evaluated the effect of positive gold standard set composition

in the performance of Parzen OCC for the prediction of PPI. We demonstrated

that this situation introduces a bias in the classification task. We also showed

that the subtask associated with the prediction of non-ribosomal PPI is a more

difficult problem.

Focusing our efforts on improving the prediction of non-ribosomal PPI. We

investigated the effect of integrating new biological information into the pro-

cess. We have demonstrated that the integration of data from diverse mRNA

expression experiments into a single data set has a negative effect on the perfor-

mance of the Parzen OCC approach. Parzen OCC models based on individual

mRNA expression experiment outperform the one which integrates all the data

together. The integration of protein secondary structure information results in

a positive effect on the increment of performance for this predictive task. The

performance of all of the models evaluated is improved when SS-based features

are incorporated into the classification process.

Finally, we investigated several strategies to combine predictions of different

Parzen OCC models induced from diverse subsets of biological data. We have

demonstrated that it is possible to significantly improve the performance of the

prediction of non-ribosomal PPI by combining the predictions of several Parzen

OCC models. The weighted average combination approach exhibited the best

performance, and also gave some insights regarding the relative importance of

the different classifiers employed.



Chapter 6

Analysis and Validation of New

Predicted PPI

6.1 Introduction

In previous chapters we have demonstrated that parzen OCC approach can deal

efficiently with the problem of prediction of PPI. In this chapter we will present

a preliminary evaluation analysis of the capability of the parzen OCC approach

to predict new potential PPI targets. For this we generate a new data set of PPI

consisting of random protein pairs not contained in previous gold standard sets.

We then apply the parzen OCC model to this random set to predict new potential

PPI among them. These new PPI can be used afterwards as new, and hopefully

more trustable, targets for biologist developing small scale experiments. Here

we focus our analysis in three main areas:

• Firstly we consider the new predictions as a PPI network. In this case the

proteins are nodes and interactions are indirect edges. We then analyze in

detail the topological properties of this network such as power law vertex

degree distribution and small world effect.

109
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• Secondly we look for highly connected modules of proteins in the predicted

network. For this we employed two clustering techniques commonly ap-

plied to this task, clique percolation and Molecular Complex detection

methods.

• Finally we look for evidence in the related biological literature and data

bases to validate these new predictions.

6.2 Identification of New PPI Targets

In order to develop a preliminary validation study of the ability of the parzen

OCC approach to predict new potential PPI targets. We have generated a new

set of random protein pairs which were not included in the positive or negative

gold standards sets. For this, we follow the same approach as described in section

4.6 of this thesis, collecting in this case a set of ∼1,500,000 protein pair examples

with complete biological information from the data previously used in (Jansen

et al. 2003).

In Chapter 5, we demonstrated that it is possible to significantly improve

the performance of the prediction of non-ribosomal PPI by combining the pre-

dictions of several Parzen OCC models, derived form diverse sets of biological

information. In this case we follow the same strategy in order to classify the

examples in the random set previously mentioned. Firstly, we generated four

Parzen OCC models utilizing diverse biological data sets. These models were

trained on all positive examples available, employing the same parameters op-

timized before. These models were employed to make predictions associated to

each example in the random PPI set previously mentioned. We then proceeded

to combine these predictions in the same way as stated previously in section 5.4

utilizing a weighted average combination methodology. The final combination
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approach assigned predictive scores to each example contained in the random

PPI set.

We then were able to select a group of new potential PPI targets for further

validation. To do this we focused again in the region associated to the AUC-50

region of our combined OCC classification model. We chose a cut-off prediction

score obtained when training on all positive examples and testing on the exam-

ples of the negative gold standard set, but in this case utilizing a “leave one

out cross validation” approach. Negative examples were related to protein pairs

which are present in different cell localizations and consequently are more likely

not to interact. Those protein pairs which exhibited a prediction score over the

selected cut-off were classified as new potential targets.

Finally, a set of 818 new PPI targets, involving a total of 306 different pro-

teins, was predicted using this methodology. Figure 6.1 exhibits the PPI network

associated to these 818 new targets predicted using our combination approach.

For this we utilized the Cytoscape visualization software (Shannon et al. 2003).

The complete list of these new PPI targets is given in Appendix A. Further

analysis of the topological properties of this network will be discussed in the

next section.

Similarly as was made in section 4.6, here we develop an initial validation

analysis of the top ranked new potential PPI with the highest prediction scores.

For this, we focused in the analysis of the first 100 new PPI targets and searched

for biological evidence in the literature and related databases. In this case we

employed the IntAct database (Kerrien et al. 2007), which compiles molecu-

lar interactions reported in published literature, containing information for over

50,000 binary protein interactions for yeast. We found that approximately half of

these new predictions were supported by at least one reference in these databases.

These were mostly associated with mass spectrometry based experiments, which
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Figure 6.1: Graphical overview of the set of 818 new PPI targets predicted using
the combined OCC approach

are related to the identification of groups of proteins that interact to form com-

plexes. This result is statistically significant according to the Fisher’s exact

test (Fisher 1922). The list of the top 100 potential new PPI targets is exhibited

in Table 6.1 for further analysis.
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Table 6.1: List of top 100 highly ranked new potential PPI targets predicted by
the combination of four Parzen OCC method

No ID-1 ID-2 No ID-1 ID-2

1 YDL126C YDR394W 51 YDL126C YML092C
2 YDL126C YDR427W 52 YKL210W YOR157C
3 YDL126C YER021W 53 YDL097C YKL210W
4 YDL126C YMR314W 54 YDL132W YKL010C
5 YDL126C YPR108W 55 YHR200W YKL210W
6 YDL126C YOR259C 56 YDR177W YPR108W
7 YDL126C YOR157C 57 YER094C YJR099W
8 YDL126C YOR261C 58 YJR099W YOR261C
9 YDL132W YDL147W 59 YDL132W YML092C
10 YDR177W YOR261C 60 YOR124C YOR249C
11 YER021W YKL210W 61 YDR394W YOR249C
12 YER021W YOR249C 62 YDL132W YFR050C
13 YDL126C YOR362C 63 YDL132W YKL213C
14 YBL041W YDL126C 64 YGR135W YOR249C
15 YDL132W YDR394W 65 YFR004W YKL210W
16 YDL132W YER021W 66 YGL048C YOR124C
17 YDR177W YER021W 67 YKL022C YOR117W
18 YDL132W YPR108W 68 YDL150W YHR143WA
19 YDR177W YDR394W 69 YDR092W YGR253C
20 YDL126C YGL011C 70 YGR232W YKL210W
21 YBL041W YDL132W 71 YDR092W YJL001W
22 YDL126C YOR117W 72 YDL147W YDR177W
23 YDL126C YFR050C 73 YDR177W YOR259C
24 YKL210W YOR117W 74 YKL210W YKL213C
25 YDL126C YDL147W 75 YJR099W YOR117W
26 YDL097C YDL126C 76 YDL150W YNR003C
27 YFR050C YOR249C 77 YJL001W YKL213C
28 YDL126C YKL210W 78 YKL145W YOR124C
29 YKL210W YPR108W 79 YDL165W YGR005C
30 YDL126C YFR004W 80 YKL210W YOR362C
31 YDR394W YKL210W 81 YDL147W YDR092W
32 YDL007W YDL126C 82 YBL041W YKL213C
33 YOR157C YOR249C 83 YHR143WA YOR174W
34 YOR249C YOR261C 84 YDL007W YDR092W
35 YDL132W YOR261C 85 YDL150W YOR224C
36 YDR394W YLL039C 86 YML111W YPR108W
37 YDL132W YDR427W 87 YCR093W YHR143WA
38 YDL132W YGL011C 88 YDL150W YKL144C
39 YDL007W YOR124C 89 YJL197W YPR108W
40 YDR427W YOR249C 90 YKL058W YOR174W
41 YDR394W YOR124C 91 YDR177W YOR117W
42 YFR004W YJR099W 92 YIL075C YKL010C
43 YBR082C YDL007W 93 YDR429C YER025W
44 YGL011C YOR249C 94 YIL156W YJL001W
45 YDL126C YOL038W 95 YDL150W YOR210W
46 YDL132W YOR259C 96 YDR092W YER012W
47 YDR092W YOR259C 97 YDL126C YKL010C
48 YDR054C YOR117W 98 YDL097C YJL197W
49 YBR082C YER094C 99 YKR094C YPR108W
50 YBR082C YOR261C 100 YBR058C YDL126C
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6.3 Network Topology Analysis of Predicted PPI

Network

In previous section we were able to predict a set of 818 new PPI targets. The

network of interactions between proteins is usually represented as an interaction

graph, “Protein Interaction Network”, where proteins are nodes and pairwise

interactions are undirect edges. The predicted PPI network previously generated

is presented in Figure 6.1.

Graph theory approaches have been applied to describe the topological prop-

erties of this kind of networks. The topology of a network refers to the relative

connectivity of its nodes, affecting the specific network properties. It has been

realized that the architectural features of molecular interaction networks within

a cell exhibit similar features to other complex systems, such as the “World Wide

Web” or even “social networks”. This unexpected similarity indicates that simi-

lar laws may govern most complex networks in nature. This enabled the expertise

previously acquired in the analysis of large and well-mapped non-biological sys-

tems to be employed in the characterization of complicated inter-relationships

that govern cellular functions (Barabasi and Oltvai 2004). The relative positions

of proteins within the interaction networks might indicate their functional im-

portance. For instance a positive correlation between biological essentiality and

graphical connectivity has been demonstrated in (Han et al. 2005).

Considering this, it is important to understand and model the topological and

dynamic properties of various biological networks. There are various types of

interaction networks in the cell, including protein-protein interaction, metabolic,

signalling and transcription-regulatory networks. These biological networks do

not work independently, together they form a “network of networks” which is

responsible for the behavior of the cell (Barabasi and Oltvai 2004).
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There are a number of previous investigations related with the topological

analysis of real biological networks, including protein-protein interaction net-

works (Jeong et al. 2001, Ravasz et al. 2002, Goldberg and Roth 2003, Ravasz and

Barabasi 2003, Barabasi and Oltvai 2004, Han et al. 2005, Yook et al. 2004, Li

et al. 2006). These analyzes have led to the observation of some apparently re-

current properties of biological networks. The main ones are “power-law distri-

bution”, and “small world effect” (Chakrabarti 2005), they are described below.

6.3.1 Power-law distribution

The most elementary characteristic of a graph node is its degree or connectivity.

Degree “k” measures how many links a node has to other nodes. In the case of

undirected networks as in the PPI graph, “k” is related to the number of edges

a node is related to (Barabasi and Oltvai 2004). The degree distribution of this

kind of networks is a plot of the count “Ck” of nodes with degree “k”, versus

the degree “k”, typically in a log-log scale (Chakrabarti 2005). Investigations

focusing on large real networks have demonstrated that many of them have a

scale-free topology, in which the number of nodes follows a power-law distribu-

tion (Yook et al. 2004). This means that the number of nodes “Ck” with degree

“k” is related to “k” by equation 6.1. Where “c” and “r” are positive constants.

The constant “r” is often called the “power-law” exponent. On the contrary,

random networks are characterized because most nodes have roughly the same

number of links (Yook et al. 2004).

Ck = c ∗ kr (6.1)

Recent studies have shown the relevance of this type of connectivity for

biological networks. In particular protein-protein interaction networks have

been associated to a scale-free topology (Jeong et al. 2001, Giot et al. 2003, Li
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et al. 2004, Li et al. 2006). Scale-free networks are dominated by a few highly

connected nodes (“hubs”). These type of networks are resistant to random

failure but are vulnerable to targeted attacks, specifically against hubs (Han

et al. 2005). This property is related to the robustness of biological networks to

perturbations like mutations and environmental stress.

In order to validate the PPI predictions we made using a combination of

Parzen OCC models (818 new PPI targets shown in figure 6.1), we estimated

the degree distribution of the network associated to these interactions, which

is exhibited in figure 6.2. In addition we also estimated the degree distribu-

tion for other related PPI networks. Considering the first 300, 500 and 1,500

PPI with the highest prediction scores. This was done to compare the stability

of the network topological properties associated to our PPI predictions. Plots

for these networks are also exhibited in figure 6.2. These plots were made us-

ing the NetworkAnalyzer (Assenov et al. 2008) plugin for the the Cystoscape

software (Shannon et al. 2003).

The results of node degree distribution of these PPI networks exhibits that

all of them show evidence of a scale-free topology. Each of them follow the

power-law degree distribution, indicating that they are all described by scale-

free networks. It is important to notice that all networks analysed exhibit a

similar degree exponent (r ∼ 1.4 - 1.5).

6.3.2 Small world effect

A common feature of many real networks is that any two nodes can be connected

through a path of a few links only (Barabasi and Oltvai 2004). This so-called

“small-world effect”. was originally observed in the research of social networks

and is often characterized as the famous “six degrees of separation” (Chakrabarti

2005). Scale-free networks are generally small, their path length is much shorter
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(a) 300 PPI predictions (b) 500 PPI predictions

(c) 818 PPI predictions, (d) 1,500 PPI predictions

Figure 6.2: Node degree distribution of predicted PPI networks. The plot in
(c) exhibits the node degree distribution of the PPI network associated to the
818 new predictions using the classification model based on the combination of
various Parzen OCC models (AUC-50 based cut-off). (a), (b) and (d) show the
node degree distribution for PPI networks when 300, 500 and 1,500 interactions
are included respectively

than predicted by the small-world effect for random networks. Within the cell,

the “small-world effect” was first observed for metabolism, where paths of only

three to four reactions can link most pairs of metabolites (Barabasi and Oltvai

2004). The shortest path length indicates that local perturbations in metabolite

concentrations could reach the whole network very quickly. In protein-protein

interaction networks, highly connected nodes (“hubs”) are not connected to each

other and instead connect to proteins with only a few interactions (Barabasi and

Oltvai 2004).

Here we analyzed the small-world properties of the predicted PPI network.

The distance between any two nodes is defined as the number of edges along the
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shortest path connecting them. We estimated the shortest path length distribu-

tion for the predicted PPI networks previously considered in section 6.1. These

results are exhibited in figure 6.3.

(a) 300 PPI predictions (b) 500 PPI predictions

(c) 818 PPI predictions, (d) 1,500 PPI predictions

Figure 6.3: Shortest path length distribution of predicted PPI networks. The
plot in (c) exhibits the path length distribution of the PPI network associated to
the 818 new predictions using the classification model based on the combination
of various Parzen OCC models (AUC-50 based cut-off). (a), (b) and (d) show
the the path length distribution for PPI networks when 300, 500 and 1,500
interactions are included respectively

These results indicate that the predicted PPI networks exhibit relatively

short paths between their nodes, which can be associated to small-world prop-

erties of them. This especially evident in the network associated to the AUC-50

cut-off in figure 6.3.c (818 predited PPI), where most nodes are connected by

paths of length between 2-4. The same behavior is observed when only 300

and 500 predicted PPI are included in the analysis (figure 6.3.a and 6.3.b re-

spectively). The path length distribution when 1,500 predicted PPI are utilized
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shows a different pattern. In this situation the path lengths are clearly bigger,

which can be explained because in this case we are including for the analysis

more false-positive predictions (over AUC-50 cut-off region).

6.4 Identification of new PPI Complexes

The network of interactions between proteins is generally represented as an in-

teraction graph, where nodes represent proteins and edges represent pairwise

interactions. An important property associated to currently available protein-

protein interaction networks is that they tend to be fragmented into many dis-

tinct clusters (Yook et al. 2004). These clusters have been usually related to

functional modules so-called “protein complexes”. The identification of these

functional modules from global interaction networks has become one important

challenge in systems biology, aiming to understand the relationship between the

organization of a network and its function (Bader and Hogue 2003).

To achieve this goal, several clustering methods have been applied to pro-

tein interaction networks in order to identify highly connected subgraphs (King

et al. 2004, Dunn et al. 2005, Pereira-Leal et al. 2004, Bader and Hogue 2003,

Adamcsek et al. 2006, Spirin and Mirny 2003, Rives and Galitski 2003, Arnau

et al. 2005, Sharan et al. 2005, Scholtens et al. 2005, Chu et al. 2006). Among

these methods, in our research we employed the “Molecular Complex Detection”

(MCODE) algorithm (Bader and Hogue 2003). MCODE algorithm utilizes con-

nectivity values in PPI networks to identify complexes, MCODE is focused in

the detection of densely connected regions, which is one of the goals associated to

our validation analysis. The MCODE algorithm has been successfully employed

for this task in several recent investigations (Brohee and van Helden 2006, Zhang

et al. 2006).

In order to identify new potential protein complexes, we applied the MCODE
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algorithm to our predicted PPI network containing 306 nodes (proteins) and 818

edges (interactions). As a result we were able to identify three independent clus-

ters, which involve a total of 8, 14 and 7 proteins respectively. These correspond

to highly connected protein modules, which can potentially be associated to new

protein complexes.

Figure 6.4 shows a diagram of these clusters. Proteins involved in each clus-

ter are also listed in tables 6.2, 6.3, 6.4 and 6.5, including details about GO

annotations (molecular function and biological process) extracted from the Sac-

charomyces Genome Database (SGD) (Hong et al. 2008). Following we present

a brief description and analysis of each cluster based this information:

Cluster (a):

This cluster groups a set of 8 proteins involved in different RNA translation

processes according to the information retrieved from SGD (Hong et al. 2008).

Although these proteins have similar cellular function, they are members of

different protein complexes. This suggest that our predictive method is able to

infer functional relationships between different groups of proteins.

The information related to these new PPI predictions, can be utilized to infer

new functional properties of some proteins, improving their functional annota-

tions.

Cluster (b):

This cluster groups a set of 14 proteins. Seven of these proteins are members

of known protein complexes related in the RNA transcriptional process at dif-

ferent levels (activation, control and regulation). This again suggests that our

predictive model is able to infer functional relationships between different pro-

teins modules. Interestingly, the other half of proteins (7 of 14) are not linked
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to any of the protein complexes utilized in the positive gold standard set. These

proteins are involved on diverse cell processes such as, metabolic regulation, gene

expression regulation and cellular biosynthetic processes.

In this case our predictive approach seems to be able to infer novel rela-

tionships between different groups of proteins, which can be investigated and

validated in the future by biologists. These results can be used as new evidence

for the identification of new members of known protein complexes. Finally the

new PPI interactions discovered can also be used to improve functional annota-

tions of several of these proteins.

Cluster (c):

This cluster groups a set of 7 proteins. Although four of these proteins are

members of the same protein complex, here we also find two proteins not linked

to any of the protein complexes utilized in the positive gold standard set. This

corroborates the assumption about the capability of our predictive model to

infer novel interactions between different functional groups of proteins. However

these new predictions requires further validation. Finally, one protein is involved

in a different cellular process, suggesting that our model can potential help in

the identification of undiscovered links between different protein complexes.
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Figure 6.4: Diagram of three clusters discovered employing the MCODE algorithm
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Table 6.2: Description of cluster (a) discovered employing the MCODE algorithm.

Protein ID GO Molecular Function GO Biological Process

YOR260W Contributes to guanyl-nucleotide exchange factor activity Regulation of translational initiation
Translation initiation factor activity

YMR309C Translation initiation factor activity Translational initiation

YNL062C Contributes to tRNA activity translational initiation
tRNA binding tRNA methylation

YOL139C Phosphatidylinositol 3-phosphate binding Nuclear-transcribed mRNA catabolic process
Translation initiation factor activity Regulation of cell cycle

Translational initiation

YMR146C Translation initiation factor activity Translational initiation

YLR291C Enzyme regulator activity Regulation of translational initiation
Contributes to guanyl-nucleotide exchange factor activity

Translation initiation factor activity

YER025W Translation initiation factor activity Translational initiation

YDR211W guanyl-nucleotide exchange factor activity Regulation of translational initiation
Translation initiation factor activity
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Table 6.3: Description of cluster (b) discovered employing the MCODE algorithm.

Protein ID GO Molecular Function GO Biological Process

YCR039C Contributes to DNA bending activity Donor selection
Sequence-specific DNA binding Regulation of transcription - RNA polymerase II promoter

Transcription corepressor activity Regulation of transcription
Sequence-specific DNA binding

YGL207W RNA polymerase II transcription elongation Nucleosome assembly
factor activity RNA elongation from RNA polymerase II promoter

Transcription elongation regulator activity Transcription initiation from RNA polymerase II promoter

YJL140W DNA-directed RNA polymerase activity mRNA export from nucleus
Nuclear-transcribed mRNA catabolic process

Transcription from RNA polymerase II promoter

YCR040W DNA bending activity Regulation of transcription from RNA polymerase II promoter
Transcription coactivator activity Regulation of transcription

YIL128W RNA polymerase II transcription factor activity methionine metabolic process
nucleotide-excision repair

Transcription from RNA polymerase II promoter

YKL058W General RNA polymerase II transcription factor activity Transcription initiation from RNA polymerase II promoter

YBR193C RNA polymerase II transcription mediator activity Transcription from RNA polymerase II promoter

YGL035C Sequence-specific DNA binding Negative regulation of transcription from
Specific transcriptional repressor activity RNA polymerase II promoter

Sequence-specific DNA binding

YDR404C DNA-directed RNA polymerase activity Nuclear-transcribed mRNA catabolic process
Positive regulation of nuclear-transcribed mRNA
Transcription from RNA polymerase II promoter



C
H

A
P

T
E

R
6
.

A
N

A
L
Y

S
IS

O
F

P
R

E
D

IC
T

E
D

P
P

I
-

N
E

T
W

O
R

K
S

125

Table 6.4: Continuation of Table 1.4 for Description of cluster (b) discovered employing the MCODE algorithm.

Protein ID GO Molecular Function GO Biological Process

YOR363C Specific RNA polymerase II transcription factor activity Fatty acid metabolic process
Transcription activator activity Peroxisome organization

Positive regulation of transcription
Response to oleic acid

YHR084W Transcription factor activity Conjugation with cellular fusion
Sequence-specific DNA binding Invasive growth in response to glucose limitation

Positive regulation of transcription from RNA polymerase II
Pseudohyphal growth

YER148W Chromatin binding General transcription from RNA polymerase II promoter
DNA bending activity Transcription from RNA polymerase I promoter

DNA binding Transcription from RNA polymerase III promoter
General RNA polymerase II transcription factor activity transcriptional preinitiation complex assembly

Protein homodimerization activity
RNA polymerase I transcription factor activity

RNA polymerase III transcription factor activity
Sequence-specific DNA binding

YER022W NA polymerase II transcription mediator activity Transcription from RNA polymerase II promoter

YDL165W Contributes to ubiquitin-protein ligase activity Negative regulation of transcription from
RNA polymerase II promoter

Nuclear-transcribed mRNA catabolic process
Nuclear-transcribed mRNA poly(A) tail shortening

Protein ubiquitination
Regulation of cell cycle

Regulation of transcription from RNA polymerase II promoter
Response to pheromone during conjugation with cellular fusion

RNA elongation from RNA polymerase II promoter
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Table 6.5: Description of cluster (c) discovered employing the MCODE algorithm.

Protein ID GO Molecular Function GO Biological Process

YKL210W ubiquitin activating enzyme activity Protein ubiquitination
YER021W Molecular function unknown ubiquitin-dependent protein catabolic process
YPR108W Structural molecule activity ubiquitin-dependent protein catabolic process
YOL038W endopeptidase activity ubiquitin-dependent protein catabolic process
YIL156W ubiquitin-specific protease activity Protein deubiquitination
YOR249C Protein binding Anaphase-promoting complex-dependent

ubiquitin-protein ligase activity proteasomal ubiquitin-dependent protein catabolic process
Chromatin assembly or disassembly

Cyclin catabolic process
Mitotic metaphase/anaphase transition

Mitotic sister chromatid segregation
Mitotic spindle elongation

Protein ubiquitination
YJL001W endopeptidase activity Ascospore formation

Response to stress
ubiquitin-dependent protein catabolic process
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6.5 Summary

In this chapter, we developed a preliminary study to validate the new potential

PPI predicted by using the parzen OCC approach. We focused on the PPI net-

work generated with these predictions, and analyzed different properties related

to it. Firstly we focus our analysis in the top 100 ranked PPI predicted, search-

ing in the literature and biological databases for evidence that support them. We

then demonstrated that the new predicted PPI interaction network has similar

topological properties to those generally observed in most molecular interaction

networks. Finally, we discovered three clusters or highly interconnected groups

of proteins into the predicted PPI network, and briefly analyzed the biological

importance of these novel inferences.



Chapter 7

Prediction of PPI Types

7.1 Introduction

So far we have focused our research in the prediction of PPI, employing several

commonly used types of biological information in a proteome-wide scale. Using

this data we were able to generate an OCC model to predict new PPI.

Another important source of data is related to structural information. Pro-

tein structures are obtained at present by experimental techniques, such as XRay

crystallography previously described in Chapter 2. Among the available struc-

tures, individual proteins are more frequent than structures of protein com-

plexes. Protein complex structures can be classified according to their life time

and binding affinity into four main classes, as obligate permanent interactions

involving homo or hetero obligomers and non-obligate transient interactions in-

volving enzyme-inhibitor or non enzyme-inhibitor. In this chapter, we describe

a computational approach for the prediction of PPI types employing associa-

tion rule based classification (ARBC). This includes association rule generation

and posterior classification based on the discovered rules. We investigate diverse

properties associated with the interface of protein complexes. Aiming to discover

128
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patterns, in the form of association rules, that characterize interaction sites in

different PPI types based on these properties.

7.2 Motivation

Protein-Protein Interactions (PPIs) play a key role in many essential biological

processes in cells, including signal transduction, transport, cellular motion and

gene regulation. The comprehensive analysis of these biological interactions has

been regarded as very significant for the understanding of underlying mechanisms

involved in cellular processes.

Computational approaches for the prediction of PPI based on atomic level

interactions can accurately determine the binding affinity and the specificity of

binding partners. Thus, structure based prediction methods including mod-

eling of PPI by homology modeling, threading-based methods and protein-

protein docking are more accurate than methods that do not employ struc-

ture data. A major drawback of these structure-based methods is the relatively

low coverage of available crystallized protein complexes in the Protein Data

Bank (PDB) (Berman et al. 2000). This is especially the case for those pro-

teins associated with transient interactions, which is the majority of functional

PPIs, and these do not form complexes stable enough for x-ray crystallogra-

phy (Vakser 2004). Due to these restrictions the detailed analysis of the struc-

ture of protein complexes, specifically the area related to the interaction site

between proteins, can reveal important clues for the understanding of protein

functions and also characterize the specificity of these interaction regions. The

prediction of protein interaction sites has gained much attention in recent years

with over 20 different methods proposed (Zhou and Qin 2007). Interaction re-

gions can be characterized by a diverse set of physico-chemical properties (Jones

and Thornton 1997, William S. J. Valdar 2001, Neuvirth et al. 2004), topo-
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logical properties (Davis and Sali n.d.) and conserved residues (Livingstone

and Barton 1993). A variety of studies have employed different classification

approaches including Support Vector Machines (Bock and Gough 2001, Koike

and Takagi 2004, Bradford and Westhead 2004, Zhu et al. 2006) and Random

Forests (Chen and Liu 2005). These studies have shown that the interfaces of

interaction sites share common properties that distinguish them from the rest

of the protein (Chothia and Janin 1975, Jones and Thornton 1996, Jones and

Thornton 1997). Despite their good performance in the prediction of protein

interaction sites, these machine learning approaches generate final prediction

models which do not provide users with explicit rules and thus result in low

interpretability of the results and poor knowledge extraction capability.

The identification, analysis and characterization of different PPI types can

be classified according to their life time and binding affinity into four main

classes (Jones and Thornton 1996, Nooren and Thornton 2003, Bradford and

Westhead 2004), as obligate permanent interactions involving homo or hetero

obligomers and non-obligate transient interactions involving enzyme-inhibitor or

non enzyme-inhibitor. In obligate protein interactions, protomers which are not

individually structurally stable in vivo, form permanent functional complexes

that are stable and exist in their complexed form. Protomers of non-obligate

interactions are independently stable and can form transient or permanent com-

plexes. Non enzyme-inhibitors are participants in transient interactions not

involving enzymes and their protein inhibitors.

The characterization of PPI types can help for instance in the functional

annotation of newly crystallized protein complexes as suggested in (Nooren and

Thornton 2003). Several studies have been developed in this direction, focused

on the discrimination of different PPI types with the aim of characterizing tran-

sient and obligate protein complexes (Nooren and Thornton 2003, Gunasekaran
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et al. 2004). These include the statistical analysis of the interface properties (De

et al. 2005), and the analysis from an evolutionary view of issues related to these

interactions (Mintseris and Weng 2005). A recent computational approach (Zhu

et al. 2006) classified binary protein complexes into three categories (obligate

interactions, non-obligate interactions and crystal packing) using six interface

properties and employing Support Vector Machines (SVM).

In our work we describe a computational approach for the prediction of PPI

types employing association rule based classification (ARBC) (Liu et al. 1998, Li

et al. 2001), which includes association rule generation and posterior classifica-

tion based on the discovered rules. In a similar manner to previous approaches

we investigate diverse properties associated with the interface of protein com-

plexes. But instead of considering the entire interface area between two proteins

we only consider the region associated with domain information by using the

SCOP classification (Andreeva et al. 2004). The use of domain profile pairs

can provide better prediction of protein interactions than the use of full-length

protein sequences as reported in (Wojcik and Schachter 2001). In addition

we also incorporate secondary structure information related to these domain-

binding sites into our predictive approach. These features appear to be useful

for the characterization and classification of binding interfaces as reported re-

cently in (Guharoy and Chakrabarti 2007b). The aim is to discover patterns, in

the form of association rules, that characterize interaction sites in different PPI

types. An important advantage of using such a classification approach is the

interpretability of the final predictive model based on the analysis of the discov-

ered set of rules. Here we focus on the prediction of four different PPI types (i.e.

transient enzyme inhibitor/non enzyme inhibitor and permanent homo/hetero

obligomers), trying to gain more specific insights into the characterization of

diverse kinds of interactions.
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7.3 Methods

7.3.1 Interaction Data

We employed the same data set of non-redundant interacting protein complexes

reported by (Bradford and Westhead 2004). The set of 147 complexes was se-

lected from a comprehensive set of 180 proteins taken from the PDB. 25 of

these 147 complexes are involved in enzyme-inhibitor (ENZ) interactions, 21 in

non-enzyme -inhibitor (nonENZ) interactions, 14 in hetero-obligate (HET) in-

teraction, and 87 in homo-obligate (HOM) interactions as shown in Table 7.1.

Proteins sharing > 20% sequence identity with a higher resolution structure of

the same complex type were removed. Crystal packing structures were also elim-

inated by investigating evidence in the literature that the complex occurs nat-

urally and is stable as a dimer. Permanent complexes are more easily available

from stable complexes by x-ray crystallography. Transient PPIs often neither

form stable complexes nor give good NMR structures. This is reflected in the

small number of validated transient complexes available in the PDB.

Table 7.1: Data set of protein complexes

Type Name Type of Interaction ♯. of Complexes ♯. of Domains
ENZa enzyme-inhibitors 25 49

nonEnzb non enzyme-inhibitors 21 47
HETc hetero-obligomers 14 33
HOMd homo-obligomers 87 225
Total 147 354

aENZ: enzyme-inhibitor interactions;
bnonENZ: non-enzyme-inhibitor interactions;
cHET : hetero-obligate interactions;
dHOM : homo-obligate interactions.
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7.3.2 Definition of interface and dom-face

An interface is a set of interacting atoms whose Solvent Accessible Surface Area

(SASA) is decreased by > 1Å upon the formation of a complex (Jones and

Thornton 1997). The SASA for each atom was calculated using MSMS (Sanner

et al. 1996) with a probe sphere of radius 1.5Å. Given a pair of interacting

proteins, we define a set of interacting atoms for a single protomer as a face.

An interface comprises a pair of interacting faces. We define the set of atoms

comprising the face of a single domain as a dom-face. In order to calculate

dom-faces, the interfaces extracted from complexes are mapped onto ranges of

SCOP 1.65 domain definitions (Andreeva et al. 2004). A total of 354 SCOP

domains were extracted related to form the 147 protein complexes considered in

our study of the different PPI types, see Table 7.1.

7.3.3 Description of dom-face

We generated 14 different physico-chemical properties and structural features

to characterize each of the dom-faces considered in our study including: dom-

face area (df-ASA), hydrophobicity (HH), residue propensity (inPro), number of

amino acids (nAA), number of atoms (nAtom), number of Secondary Structure

Elements (nSSE), length of consecutive residues (LCS), number of fragments

(nFrag), Size ratio of dom-face area to domain area (sRatio), Secondary Struc-

ture Elements (SSEs) content (Helix, Strand, Non-Regular) and SCOP class

number (SCOPClass). Hydrophobicity and residue propensity were analyzed in

the same way as Jones and Thornton (Jones and Thornton 1997).

The solvent accessible surface area (SASA) of a dom-face is calculated as

the sum of the total decreased SASA for the interface atoms in a domain, see

Equation 7.1. If A and B are two protomers in the complex AB, SASAA, SASAB

and SASAAB are SASA values for A, B, and AB respectively, and n is the total
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number of interface atoms in a domain presented in protomers A and B, then:

dom-face Area = (
n

∑

i=1

(SASAA(i), SASAB(i)),−SASAAB(i)) (7.1)

We employed the hydrophobicity scale of Fauchere and Pliska (Fauchere and

Pliska 1983) to estimate the average hydrophobicity value for each dom-face.

The average hydrophobicity (HH) is calculated using Equation 7.2, where HIAA

is the hydrophobicity value for each amino acid residue and NAA is the number

of residues in a dom-face.

HH =

∑

l

i=1 HIAA

NAA

(7.2)

Residue propensity (inPro) indicates the relative frequency of different amino

acid (AA) residues in dom-faces of complexes. We estimated residue propensities

for all dom-faces using Equation 7.3(Jones and Thornton 1996), where AAPi is

the natural logarithm of each AA propensity and NR is the total number of

residues in a dom-face.

inPro =

∑n

i=1 AAPi

NR

(7.3)

In order to analyze the size of interaction sites, we computed the ratio be-

tween dom-face and the whole domain area (SR) employing Equation 7.4.

SR =
ASAdom-face

ASAdomain

(7.4)

The sequence continuity in the interaction sites is described by calculating

average length (number) of consecutive residues (LCS) and counting the number

of consecutive residues (nFrag) in dom-faces. The SSE content is calculated by
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the percentages of interaction atoms located in Secondary Structure Elements

(SSEs), classified using the types defined in DSSP (Kabsch and Sander 1983):

helix, strand and non-regular regions (turn, bend and loop). PPI types become

the heads of association rules in ARM and the target classes in our classifica-

tion. We used four different types of PPI, namely enzyme inhibitor/non enzyme

inhibitor as transient interaction types and homo/hetero obligomers as perma-

nent interaction types. Other properties estimated for the diverse dom-faces

analyzed were the SCOP class number at the first level of the SCOP hierarchy,

the number of AA, the number of atoms and the number of SSEs present in the

different interaction interfaces.

7.3.4 Association Rule Based Classification

The problem of predicting PPI types for a given complex of binary proteins

is transformed into the task of assigning a pre-determined target class (i.e.,

homo/hetero obligate and non-obligate) using properties of interaction sites. We

applied an efficient association rules based classification method (ARBC) to per-

form classification based on rules generated by Association Rule Mining (ARM).

Previous studies (Liu et al. 1998, Li et al. 2001) have proposed that ARBC con-

sistently outperforms other rule-based classifiers such as decision trees. ARBC

comprises three main steps: association rule generation, pruning association

rules and classification based on association rules.

Association rule generation

In our approach we employed Association Rule Mining to discover a set of fre-

quent patterns expressed as association rules describing the relationship between

properties of PPI interaction sites and PPI types. Association rules have the

form R : X → Y [c, s], where X and Y are the body and the head of the rule
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respectively. X and Y are disjoint predicates (X ∩ Y = φ). Each X and Y

consists of a conjunction of distinct predicates which describe properties related

to interaction sites. Note that we can consider a conjunction as a set for our

purposes. In our approach, the heads of all rules Y are restricted to be one of

the PPI types considered, which are the target classes defined in this task. The

strength of the association rules can be measured in terms of their support (s)

and confidence (c). The support of a rule (X → Y ) is the probability that the

cases in a database contain both X and Y . The confidence of the rule is the

probability that a case contains Y given that it contains X.

The generation of association rules was carried out employing the Apriori

algorithm(Agrawal and Srikant 1994). We used the 10g Oracle Data Miner

(ODM) software which implements the Apriori algorithm to compute the type

of association rules required for our ARBC approach. We set a minimum support

and confidence of 3% and 25% respectively to reduce the number of association

rules generated. Association mining is not directly applicable to real valued

continuous data such as some of the dom-face properties we generated; hence we

used discretisation to manipulate continuous attributes before the ARM process

was executed. In this process, adjacent values of continuous data were binned

into a finite number of intervals.

Pruning association rules

The number of rules generated by ARM can be very large. It is necessary to

prune the set of association rules by removing redundant information in order

to make the classification more efficient.

Given two rules R1 : X1 → Y1 and R2 : X2 → Y2, we define:

Definition 1. The significance of a rule: R1 is more significant than R2

if and only if either (1) conf(R1) > conf(R2) or (2) conf(R1) = conf(R2) but
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sup(R1) > sup(R2) or (3) R1 has fewer attributes on its left hand side than R2⋄

Definition 2. General rule: Given two rules R1 : X1 → Y1 and R2 : X2 →

Y2, R1 is a general rule if and only if X1 ⊆ X2⋄

Definition 3. Overlapping rule: Given two rules R1 : X1 → Y1 and R2 :

X2 → Y2, then R3 : X1 ∨ X2 → Y1(conf(R1), sup(R1)) ∨ Y2(conf(R2), sup(R2))

is an overlapping rule if and only if X1 = X2 and Y1 6=Y2⋄

If the body of a rule R1 is identical to the body of a rule R2 and the head of

rule R1 is inconsistent with that of rule R2, then an overlapping rule R3 between

two different PPI types can be identified.

Overlapping rules can be considered as common rules between two or more

PPI types. On the other hand unique rules are distinctive patterns which can

be used to classify interaction sites into different PPI types. We then evaluated

the following condition in order to prune the set of association rules previously

generated. Given two rules R1 and R2, where R1 is a general rule R2, ARBC

eliminate R2 if R1 has more significance than R2. Sets of unique and overlapping

rules were generated with the pruning procedure used in the classification.

Classification:

In the classification step, we employed the pruned set of unique and overlapping

rules to generate a rule profile consisting of an m × n matrix, where m is the

number of examples (i.e. dom-faces) and n is the number of different association

rules obtained after the pruning step. Each row of this matrix represents one of

the dom-faces considered in our research and is associated with one of the PPI

types we wish to classify. The rule profile matrix takes values of 1 or 0 depending

whether the different rules are contingent or not on the respective dom-face

example. A similar approach was previously employed in (Viksna et al. 2003)

for protein structure comparison. The rule profile matrix was generated following
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Algorithm 1 and then used as input to the ARBC process.

Algorithm 1 Generation of a rule profile

Input: A set of rules (R1, · · · , Rn) and

A set of training data comprising

m objects (O1, · · · ,Om)

Output: An m × n matrix, RPro-

file(i,j )(1 ≤ i ≤ m and 1 ≤ j ≤ n)

Method:

1. Sort rules in the descending order

of confidence and support

2. for each rule Rj in the descending

order of the rules

for each data object Oi in the

training data

find match between Oi and

rule Rj

if match(Oi, Rj)

set RProfile(i, j ) = 1

else

set RProfile(i, j ) = 0

end-for

end-for

We evaluated several classification techniques for this task including Deci-

sion Trees (DT), Random Forest (RF), K Nearest Neighbor (KNN), Support
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Vector Machines (SVM), and Naive Bayes (NB). The WEKA machine learn-

ing library (Witten and Frank 2005) was used to perform these experiments.

We also performed conventional classification based only on the physicochemi-

cal properties of the different dom-faces examples, without generating a set of

association rules (CWAR). This was done in order to evaluate if the employment

of the ARBC approach could be associated with a loss of information of some

interacting complexes due, for example, to the pruning step or the discretisation

of continuous value feature information. In all cases, a 10 fold-cross validation

procedure was performed. As the task of classification of different PPI types

involves imbalanced classes (see table 7.1) we utilized a cost-sensitive strategy,

where the misclassification cost for examples of the minority class (PPI types

with few examples) is bigger than the misclassification cost for the majority

class.

7.4 Results and Discussion

7.4.1 Analysis of dom-face Properties

We found that 98.8% of the interaction sites studied are contained within corre-

sponding ranges of SCOP domains. This suggests that the analysis of interaction

sites based on structural domains (i.e. dom-face) does not lose interaction in-

formation.

Average values of diverse dom-face properties for different PPI types are

shown in Table 7.2. It is possible to observe a distinct difference in the distribu-

tion of non-obligate (i.e., ENZ and nonENZ) and obligate (i.e., HET and HOM)

complexes. The distribution patterns of dom-face area for ENZ are similar to

those of nonENZ and the same trend occurs between HET and HOM. In the

distribution of the area of interaction sites, obligate PPI types exhibit a greater
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variance and in general tend to have larger interaction sites than non-obligate

complexes.

The average hydrophobicity (HH) values for ENZ, nonENZ, HET and HOM

are respectively 0.40, 0.37, 0.41, and 0.42. Even though average HH values

are similar for different PPI types, the distributions of hydrophobicity exhibit

distinctive separation patterns between non-obligate and obligate interactions

(results not shown here). The distribution of HH for ENZ is similar to nonENZ

and that of HET is similar to HOM.

We note that Arg, His, Tyr, Gln and Trp exhibit higher propensities than

other amino acids, while Gly has a low propensity in our analysis. Average

residue propensities are shown in Table 7.2. HET has the highest residue propen-

sity and HOM the lowest. We also analyzed the top four frequent residues for

each interaction type calculating the sum of ASA for each amino acid. Hy-

drophobic residues including Leu, Ala, and Val frequently occur in types HET

and HOM. The charged residue Glu also appears frequently in HET. In nonENZ,

charged residues including Asp, Glu, Lys, and Arg are present in the top four

frequent residues.

Table 7.2: Average values of the properties

Type ASA(Å2) HH inPro nAtom nAA nSSE LCS nFrag
ENZ 860.42 0.40 0.596 121.73 33.71 11.22 3.3 12.32

nonENZ 823.06 0.37 0.530 106.89 29.59 12.91 2.5 12.91
HET 2237.92 0.41 0.982 344.26 82.56 21.35 3.5 21.35
HOM 1306.37 0.42 0.262 184.55 48.14 13.00 2.9 16.78

ENZ includes not only some polar residues Ser and Tyr but also the charged

residue Glu. We observed that the charged residues occur very frequently in

all interaction types and appear dominantly in HET. Trp, Cys, and Met rarely

occurred in interface area through all types.
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We observed that 92% of dom-faces are smaller than a half of their domain

sizes based on the calculation of ASA values. The average length of consecutive

residues (LCS) are 3.3, 2.5, 3.5 and 2.9 for ENZ, nonENZ, HET, and HOM

respectively as shown in Table 7.2.

The average distribution of SSE elements (helix, strand and non-regular re-

gions) for different PPI types is shown in Figure 7.1. We have seen that inter-

action sites are mostly composed of non-regular regions followed by helix and

strand regions. ENZ contains 64.15% of non-regular regions, which is the high-

est percentage. Helix content are greater than 36% in types nonENZ, HET and

HOM but are less than 17% in ENZ. Strand content for all types are less than

20% and HET exhibits the lowest value (13.72%).

Figure 7.1: average distribution of SSE elements (helix, strand and non-regular
regions) for different PPI types

The variation in the number of amino acids (nAA) is similar to that for the

number of atoms (nAtom). Average values for nAtom, nAA, nSSE and nFrag are
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shown in Table 7.2. We found that values for Types HET and HOM are higher

than for Types ENZ and nonENZ in all these categories. The distribution of

these properties for ENZ is similar to nonENZ.

7.4.2 Classification of PPI types

We were able to discover a total of 1,168 rules describing associations by employ-

ing ARM. After the pruning stage a total of 157 association rules were selected

for the classification process. The number of rules associated with types ENZ,

nonENZ, HET and HOM are 65, 49, 19, and 24 respectively (Table 7.3). A total

of 58 of these are unique, i.e. rules exclusively associated with just one PPI type.

The remaining 99 rules are overlapping (non-unique) rules related to two or more

PPI types. We are interested in this distinction because unique rules appear to

be related to specific characteristics of PPI types, whilst overlapping rules can

be related to common attributes of different interaction types or, for instance,

to distinctive properties between obligate and non-obligate interactions.

Table 7.3: Number of association rules discovered for each PPI type

Type ♯. of Domainsa ♯. of Rulesb Unique Rulesc Overlapping Rulesd

ENZ 49 65 34 (52.31%) 31 (47.69%)
nonENZ 47 49 16 (32.65%) 33 (67.35%)

HET 33 19 7 (36.84%) 12 (63.16%)
HOM 225 24 1 (4.17%) 23 (95.83%)
Total 354 157 58 (36.94%) 99 (63.06%)

a♯ . of Domains: A number of domains in ecah PPI type;
b♯ . of Rules: A number of association rules discovered for each PPI type;
cUnique Rules: A number of association rules associated with just one PPI
type;
dOverlapping Rules: A number of rules of which bodies are identical to those of
rules in other types.

The performance for different classification methods measured as total accu-
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racy over 10 fold cross-validation for ARBC is shown in Table 7.4. Additionally,

we performed classification based on the physicochemical properties of the dif-

ferent dom-faces (CWAR), and also ARBC classification based on a rule profile

generated using only the set of 58 unique rules discovered (UR). Performance

results for these approaches are also given in Table 7.4. We have seen that in

all these cases SVM exhibited the best performance among diverse classifiers

studied, reaching over 99% accuracy in some cases. However this high accuracy

suggests that overfitting problems can be associated with the use of SVM. The

other classification approaches evaluated still exhibit a high accuracy with the

exception of NB. The performance reached by them is comparable to that previ-

ously reported in (Zhu et al. 2006) although not exactly the same instances and

features were employed. Additionally, we observed that there was no significant

appreciable difference between the performance of ARBC and CWAR in most

of the situations, although it seems that CWAR performed slightly better than

ARBC.

These results strongly suggest that ARBC performs competitively with con-

ventional classification approaches for this task, and consequently the use of

ARBC does not involve an important loss of information derived from ARM.

The performance of ARBC using only unique rules clearly decreased for all clas-

sification methods evaluated, although maintaining an acceptable accuracy of

near or over 90% in most of the cases. This suggests that unique rules can be

influential in classifying most of the PPI types considered in our study and that

overlapping rules are important to improve the accuracy of the classification

task. It is important to emphasize that the aim of our research is focused on the

advantage of interpretability of the discovered rules, rather than the optimization

of the classification task.

We further investigated the influence of SSE information on the classification
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Table 7.4: Accuracy for different classification methods

Methoda DT RF KNN SVM NB
All data1:
ARBCb 0.919 0.961 0.941 0.995 0.517
CWARc 0.922 0.966 0.971 0.999 0.525
URd 0.865 0.926 0.888 0.965 0.512

No SSE data2:
ARBC WO SSEe 0.91 0.950 0.931 0.993 0.501
CWAR WO SSEf 0.917 0.968 0.972 0.986 0.510
UR WO SSEg 0.800 0.843 0.805 0.889 0.507

aMethod represents different classification methods such as Decision Tree (DT),
Random Forest (RF), K Nearest Neighbor(KNN), Support Vector Machine
(SVM) and Naive Bayes (NB);
bARBC: Association rule based classification;
cCWAR: Classification based on physicochemical properties;
dUR: ARBC classification using 58 unique association rules;
e,f,g: Data sets with exclusion of SSE content from All data1;
1All data: Data sets including SSE content;
2No SSE data: Data sets without inclusion of SSE content.

of PPI types. We evaluated three different data sets without using the secondary

structure elements of proteins, including ARBC WO SSE, CWAR WO SSE and

UR WO SSE. Each of the two rule profiles in this case contains a total of only

135 association rules and 43 unique rules. Results for these evaluations are

also highlighted in Table 7.4. It was found that in all cases, the performance

of diverse classifiers tended to decrease when SSE data was omitted, although

only a slightly reduction is observed in most of the classifiers evaluated. In-

terestingly the major decrement in performance was observed when employing

UR WO SSE, with accuracies of less than 90% for all classifiers including SVM.

These results strongly suggest that SSE content in interaction sites could have an

important role in the discrimination of different PPI types for both approaches

including ARBC and CWAR.

This implies that the average confidences of the rule sets that include this
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SSE content information may be higher than those without it. There were

14.01% (22 out of 157) such rules that included SSE content information and

their average confidence was 0.533 (see Table 7.5). When we considered the top

31 rules that are covered by 20% of all the rules, their confidence was 0.642.

Among them, 42% (13 out of 31) contained SSE information with an average

confidence of 0.661. The SSE content rules were enriched among those rules

exhibiting higher confidences. The same trend was also seen with unique rules:

while the average confidence of 58 unique rules was 0.536, that of the 16 unique

SSE rules was 0.622. Here we infer that SSE content in interaction sites is a

significant feature that permits reliable classification of the interaction types.

Table 7.5: Analysis of SSE content rules over different subsets

Subset #. of rules Fraction(%) confa
1 #. of SSE rules conf b

2

SSEc 22 14.01% 0.533 - -
TOPKd 31 19.75% 0.642 13 0.661
Uniquee 58 36.94% 0.536 16 0.622

aconf1: Average confidence of a rule subset;
bconf2: Average confidence of SSE content rules in a rule subset;
cSSE: Association rules encoding SSE content;
dTOPK: Top K rules covering top 20% in confidence;
eUnique: Unique rules.

7.4.3 Interpretation of Discovered Association Rules

Identification of Important Rules

To select a set of informative and discriminative rules for the extraction of knowl-

edge, most of the existing approaches rank the association rules based on the

confidence value of a individual rule. A strong rule which is highly confident

and represents general knowledge, may not be a good discriminative rule for

the classification. Instead, a better measure of the importance of a rule should
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include the following factors considered together: correlation between a prop-

erty and a class, the degree of classification power, confidence and support, top

K coverage and uniqueness of a rule. As noted in the previous section, the in-

clusion of the SSE content information in our ARBC approach has a positive

effect on the classification accuracy (Table 7.4). The importance of a rule can

be quantified by integrating the various factors including the SSE content in-

formation. We defined an importance factor “I” in Tables 7.6 and 7.7, by an

average value of all the factors. In order to illustrate the informativeness of the

rules in understanding interface features, some representative rules within the

top 30% (ranked higher than 48) of factor “I” are listed in Table 7.6. The list

was complemented by some other rules ranked below 48 in order to explain over-

lapping rules and compare association rules to rules generated from a decision

tree. Similarly, rules describing the ENZ type with varying different structural

features are listed in Table 7.7. Rules in Tables 7.6 and 7.7 are sorted by Type

and factor “I”.

We have shown that the interaction sites were dominated by non-regular

region: especially for ENZ interactions, almost 2
3

of the sites in average were

composed of non-helix and non-beta strand regions (Figure 7.1). This is mani-

fested in rules 29 (Table 7.7), 1, 4 and 6, all of which require 50−80% content of

non-regular regions to be classified as ENZ. Some of the rules containing nega-

tion predicates are strong indicators of certain interaction types. For example,

“Nohelix” and “Nostrand” in the interaction sites imply ENZ (Rule 29) and

nonENZ (Rules 7, 12 and 15), respectively. HET is characterized by relatively

small portions of strands (Rules 18, and 19) and “Nostrand” (Rule 24). It is

also observed that rules containing such SSE content information conjuncted

with other properties (Rules 29, 7, 12, 15 and 24 in Figure 7.2) or combined

with other rules (Figure 7.3(a), (b) and (c)) become stronger discriminators for
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classifying PPI types than rules containing only SSE content information (Rules

1, 2, 4, 6, 14, 18, 19 and 21 in Figure 7.2). We note that some rules (Rules

29 and 7 in Figure 7.2) containing SSE information with SCOP classes are the

most discriminative and informative in order to characterize ENZ and nonENZ.
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Table 7.6: Representative examples of association rules for each PPI Type

#a
Ob Rule descriptionc Typed Confe Suppf Cg Gh Ki Uj Sk Il

1 3 If 77.31 ≤ Loop < 80.56 ENZ 0.811 0.032 1 0.214 1 1 1 0.722

2 8 If 17.57 ≤ Helix < 20.87 ENZ 0.545 0.032 1 0.102 1 1 1 0.668

3 9 If SCOPClass = 7 ENZ 0.725 0.053 1 0.184 1 1 − 0.660

4 26 If 67.59 ≤ Loop < 70.83 ENZ 0.526 0.032 − 0.048 1 1 1 0.601

5 28 If 461.83 ≤ df-ASA < 681.42 AND 2.3 ≤ LCS < 2.73 ENZ 0.625 0.032 − 0.120 1 1 − 0.555

6 37 If 57.87 ≤ Loop < 61.11 ENZ 0.467 0.037 − 0.045 − 1 1 0.510

7 2
If SCOPClass = 1 AND 12.25 ≤ nFrag < 16 AND

NoStrand
nonENZ 0.882 0.032 1 0.250 1 1 1 0.738

8 11 If .66 ≤ inPro < .87 nonENZ 0.597 0.042 1 0.129 1 1 − 0.628

9 15 If 26.74 ≤ nAA < 35.32 AND 901.01 ≤ df-ASA < 1120.6 nonENZ 0.556 0.032 1 0.133 1 1 − 0.620

10 18 If SCOPClass = 1 AND 1.87 <= LCS < 2.3 9 nonENZ 0.545 0.032 1 0.137 1 1 − 0.619

11 20 If 1.43 ≤ LCS < 1.87 nonENZ 0.556 0.042 1 0.074 1 1 − 0.612

12 21 If NoStrand AND 1.87 ≤ LCS < 2.3 nonENZ 0.515 0.037 − 0.113 1 1 1 0.611

13 36 If 58.11 ≤ ASAPR < 59.52 nonENZ 0.476 0.032 1 0.065 − 1 − 0.515

14 38 If 41.67 ≤ Loop < 44.91 nonENZ 0.423 0.032 − 0.046 − 1 1 0.500

15 40 If SCOPClass = 1 AND NoStrand nonENZ 0.484 0.064 − 0.074 − 1 0.406

16 46
If 125.14 ≤ nAtom < 165.52 AND 901.01 ≤ df-ASA <

1120.6
nonENZ 0.412 0.037 − 0.050 − 1 − 0.375

17 64 If .42 ≤ HH < .44 nonENZ 0.347 0.037 − 0.009 − 1 − 0.348

18 5 If 7.78 ≤ Strand < 10.27 HET 0.660 0.037 1 0.141 1 1 1 0.691

19 7 If 2.8 ≤ Strand < 5.29 HET 0.565 0.037 1 0.089 1 1 1 0.670

20 12 If 205.9 ≤ nAtom < 246.28 HET 0.574 0.037 1 0.143 1 1 − 0.626

21 25 If 44.91 ≤ Loop < 48.15 HET 0.479 0.037 1 0.110 − 1 1 0.604

22 32 If 3.6 ≤ LCS < 4.03 HET 0.461 0.037 1 0.100 − 1 − 0.520

23 33 If .44 ≤ HH < .46 HET 0.467 0.045 1 0.070 − 1 − 0.516

24 63 If SCOPClass = 1 AND NoStrand HET 0.282 0.037 − 0.074 − − 1 0.348

25 31 If SCOPClass = 3 AND 2.3 ≤ LCS < 2.73 HOM 0.470 0.033 1 0.100 − 1 − 0.521

26 98 If 3.17 ≤ LCS < 3.6 HOM 0.337 0.035 − 0.034 − − − 0.135

27 133 If 26.74 ≤ nAA < 35.32 HOM 0.237 0.039 − 0.041 − − − 0.106

Representative examples of 27 rules within top 30% are listed by sorting Columns
Type and I. Rules of which order is below 48 are added for explaining overlapping rules and
the comparison to rules produced from a decision tree.
a♯: Rule identifier;
bO: Order of a rule ranking by importance factor;
cRule description: The body of a rule;
dType: The head of a rule representing a PPI type;
eConf : Confidence of a rule;
fSupp: Support of a rule;
gC: Rules selected from correlation-based feature subset selection (Hall 1998);
hG: The worth of a rule by measuring the gain ratio (Quinlan 1993) with respect to PPI
types;
iK: Top K rules ranked within top 30%;
jU : Unique rules;
kS: SSE content rules;
lI: Importance factor of a rule calculated by an average of all factors such as Conf, Supp, C,
G, K, U and S; “−“ is replaced with value 0 when the importance factor was calculated.
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Table 7.7: Representative examples of ENZ Type, presenting different structural features

# O Rule description Subtype Conf Supp C G K U S I

28 24 If NoHelix
ENZ A, ENZ B,

ENZ C
0.508 0.069 − 0.058 1 1 1 0.606

29 1 If SCOPClass = 7 AND NoHelix ENZ A, ENZ B 1.000 0.032 1 0.315 1 1 1 0.764

30 17 If 461.83 ≤ df-ASA < 681.42 AND NoHelix ENZ A, ENZ B 0.593 0.037 − 0.085 1 1 1 0.619

31 39 If 461.83 ≤ df-ASA < 681.42 ENZ A, ENZ B 0.477 0.111 1 0.076 − − − 0.416

32 16 If NoHelix AND nFrag < 4.75 ENZ A 0.612 0.032 − 0.076 1 1 1 0.620

33 19 If 4.75 ≤ nSSE < 6.62 AND NoHelix ENZ A 0.588 0.032 − 0.072 1 1 1 0.538

34 51 If 461.83 ≤ df-ASA < 681.42 AND 4.75 ≤ nSSE < 6.62 ENZ A 0.417 0.032 − 0.018 − 1 − 0.367

35 77
If 44.38 ≤ nAtom < 84.76 AND 461.83 ≤ df-ASA <

681.42
ENZ A 0.396 0.058 − 0.023 − − − 0.159

36 34
If 9.58 ≤ nAA < 18.16 AND 44.38 ≤ nAtom < 84.76

AND 461.83 ≤ df-ASA < 681.42
ENZ A 0.500 0.032 − 0.045 1 1 − 0.515

37 60 If 18.16 ≤ nAA < 26.74 AND 44.38 ≤ nAtom < 84.76 ENZ A 0.357 0.032 − 0.015 − 1 − 0.351

38 10
If 84.76 ≤ nAtom < 125.14 AND 461.83 ≤ df-ASA

<681.42
ENZ B 0.617 0.053 1 0.145 1 1 − 0.636

39 13
If 12.66 ≤ sRatio < 15.06 AND 461.83 ≤ df-ASA <

681.42
ENZ B 0.600 0.032 1 0.113 1 1 − 0.624

40 14

If 461.83 ≤ df-ASA < 681.42 AND 10.38 ≤ nSSE <

12.25

AND SCOPClass = 2

ENZ B 0.857 0.032 − 0.230 1 1 − 0.624

41 27
If SCOPClass = 2 AND 461.83 ≤ df-ASA < 681.42

AND 84.76 ≤ nAtom < 125.14
ENZ B 0.789 0.032 − 0.176 1 1 − 0.599

42 35 If 10.38 ≤ nSSE < 12.25 AND 12.25 ≤ nFrag < 16 ENZ B 0.500 0.032 − 0.043 1 1 − 0.515

43 73 If 84.76 ≤ nAtom < 125.14 AND SCOPClass = 2 ENZ B 0.408 0.042 − 0.043 − − − 0.164

44 114 If 84.76 ≤ nAtom < 125.14 AND 26.74 ≤ nAA < 35.32 ENZ B 0.307 0.037 − 0.024 − − − 0.123

45 109 If 681.42 ≤ df-ASA < 901.01 ENZ C 0.317 0.048 − 0.013 − − − 0.126

46 137
If 84.76 ≤ nAtom < 125.14 AND 681.42 ≤ df-ASA <

901.01
ENZ C 0.252 0.032 − 0.009 − − − 0.098

47 146 If SCOPClass = 4 ENZ C 0.221 0.042 − 0.011 − − − 0.091

48 101 If 35.32 ≤ nAA < 43.9 AND 125.14 ≤ nAtom < 165.52 ENZ D 0.323 0.032 − 0.041 − − − 0.132

49 130 If SCOPClass = 3 ENZ D 0.238 0.069 − 0.016 − − − 0.108

50 141 If 901.01 ≤ df-ASA < 1120.6 ENZ D 0.207 0.032 − 0.050 − − − 0.096

51 54 If 1120.6 ≤ df-ASA < 1340.19 ENZ E 0.392 0.042 − 0.018 − 1 − 0.363

abbreviation of column names is the same as that of Table 7.6.
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Figure 7.2: A scatter Plot matrix for PPI types and association rules. This scatter plot matrix shows clusters as collection
of points separated by association rules encoding SSE content information or a SCOP class. Different colors of the left in
each plot (a cell) correspond to four PPI types. The right of a plot area presents the distribution of points met with a rule
on the head of a cell. Rules 29, 40, 1, and 3 separate ENZ and nonENZ from other types remarkably with few errors. The
Rule 1 is a strong discriminator to classify ENZ from other types completely
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Figure 7.3: 2D plots for pairs of association rules. These plot data points by
pairs of association rules. X and Y axes are a pair of rules and each of them
have two boolean values. 0 represents negative data points not meeting with a
rule of each axis and 1 represents for positive data points meeting with the rule.
The data points on the upper left corner meet a rule used for Y axis and the
data points on the down right corner meet a rule used for X axis. The points on
the upper right corner meet with both rules used for X and Y axes.

Inference of Subtypes

Some rules which share the same sets of properties but differ in their value

ranges or have other properties can be effective in order to compare features of

different interaction types or to identify subtypes in a PPI type. For example,

among the top 30% rules, Rules 38 (Table 7.7) and 16 (Table 7.6) describe types

ENZ and nonENZ respectively, using the same set of properties such as number

of atoms and df-ASA. However, their values imply that the interaction sites of

nonENZ (Rule 16) are generally larger than those of ENZ (Rule 38). The ranges

of size scales of interaction sites in ENZ are presented in Rules 35, 38 and 46
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(Table 7.7) that share the same set of properties but differ in their values. The

overall size of interaction sites in ENZ are described by Rule 38 with the highest

confidence among those rules encoding the size of interaction sites. These are

interesting cases where the structural difference between types can be directly

inferred and subtypes of a PPI type can be derived by grouping different features

of interaction sites. We deduced five subtypes of ENZ and a hierarchical tree

(Figure 7.4) to account for those subtypes. We compiled a list of representative

association rules (Table 7.7) to show structural features different among these

subtypes.

Figure 7.4: A hierarchical tree for supporting inference of subtypes. A hierar-
chical tree drawn from association rules represents different structural groups in
ENZ. Enzyme-inhibitor interactions are characterized with size scales of inter-
action sites (number of atoms and df-ASA) and SSE content information (helix
content). These differences of structural groups result in subtypes of PPIs. Let-
ters in red are identifiers of rules to split branches of a tree. Dashed lines show
interaction between enzymes and inhibitors in different subtypes

We note that interaction sites of enzymes are distinguished from those of

enzymes-inhibitors. Interaction sites for enzyme-inhibitors are small i.e., mainly

< 1000Å (Rules 34, 35, 37, 38 and 46), and are made up of strands (Rule 41)
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and mostly non-regular regions (Rules 1, 4 and 6) without helix content (Rule

3, 28, 29, 30, 32, and 33) which is very informative in order to characterize

enzyme-inhibitors. Remarkably Rules 30 and 28 generalize common features

of inhibitors with respect to the size of interaction sites and SSE content. As

Rule 29 was considered to be very discriminative to differentiate ENZ from other

types, it can depict characteristics of a small group of inhibitors with indicating

that enzyme-inhibitors in SCOP class 7 do not contain helix in interaction sites,

(see Figure 7.3(a), (b) and (c)).

In contrast, enzymes have larger interaction sites than their inhibitors and

form mixtures of helices and strands in interaction sites (Rules 40, 48, 49, 50

and 51). Both Rules 33 and 40 show that enzymes (Rule 40) have SSEs twice as

many as inhibitors (Rule 33). This indicates that both enzymes and inhibitors

may contain mainly strands as regular SSEs in interaction sites since enzymes

are included in SCOP class 2 (mainly β) and inhibitors do not contain helices

in interaction sites. This suggests that non regular regions and beta strands

are mainly involved in the interfaces of enzyme-inhibitor interactions. Such

extracted information can be useful for the prediction of interaction sites for

enzyme-inhibitor complexes. This observation is demonstrated by some small

inhibitors in Type ENZ A (1tabi , 2ptci , and 4sgbi ) and Type ENZ B (1mcti ).

Those inhibitors interact with enzymes in Type ENZ B. The enzymes described

by Rules 40, 41 and 43 are included in SCOP superfamily trypsin-like serine pro-

teases (2.47.1) and the inhibitors are mainly in SCOP class 7 which is composed

of small proteins dominated by metal ligand, heme, and disulfide bridges.

It is possible in a similar wayto infer subtypes of other PPI types. Among

PPI types, ENZ has plenty of rules (a total of 65) to derive subtypes. Hence,

the comparative analysis of association rules was presented for ENZ.
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Comparison of Association Rules to PART Rules

To improve our understanding of the association rules discovered, we compared

PART rules produced from a decision tree built using C4.5 over our properties

with the association rules. There were a total of 44 PART rules generated and

their average confidence and support were 0.99 and 0.02 respectively. We have

collected a representative list of PART rules in Table 7.9. In the comparison

of the association rules with PART rules, PART rules are more complicated

with the composition of more predicates in rule bodies than those in association

rules. Typically, one PART rule corresponds to more than 2 ∼ 3 association

rules (Table 7.9). Both rules provided quantitative descriptions. However, prop-

erty values in PART rules represent split points for classification and are not

represented by intervals of quantitative values. Some PART rules (Rules 1, 3

and 38 in Table 7.9) including identical properties with different split points in

the same rule bodies were not clear enough to determine decision boundaries

of properties. These limit the readability and understandability of PART rules

whilst the association rules were simple enough to be interpreted by users. It

was also possible with association rules to support the comparative analysis of

rules between different PPI types as we inferred the possibility of subtypes and

relative information by comparison of size scales of interaction sites in ENZ. A

set of association rules discovered by ARM comprises mostly weak rules together

with a small number of strong rules. On the contrary, most PART rules consist

of a number of very strong rules which have the highest confidences and low

supports.

One of the most notable differences between association rules and PART rules

is in how to handle overlapping rules between different types. If two different

interaction types are predicted from the identical head of a rule, these are called

overlapping rules. There were 99 such cases out of a total of 157 rules (Table 7.3).
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Table 8 shows representative examples of overlapping rules. Examination of

the overlapping rules shared by ENZ and nonENZ indicated that these types

are similar in terms of df-ASA, nAtom, and nAA (Table 8) differentiated by

combination with the rest of properties such as SSE content, average length

of consecutive residues, size ratio, and hydrophobicity. PART rules are unique

cross PPI types.
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Table 7.8: PRepresentative examples of overlapping association rules

#a #b Rule descriptionc Typesd Confe Suppf Confg Supph

52 43 If 84.76 ≤ nAtom < 125.14 AND SCOPClass = 2
ENZ1 OR

nonENZ2
0.408 0.042 0.306 0.032

53 35 If 44.38 ≤ nAtom < 84.76 AND 461.83 ≤ df-ASA < 681.42
ENZ1 OR

nonENZ2
0.396 0.058 0.252 0.037

54 48 If 35.32 ≤ nAA < 43.9 AND 125.14 ≤ nAtom < 165.52
ENZ1 OR

nonENZ2
0.323 0.032 0.376 0.037

55 46
If 84.76 ≤ nAtom < 125.14 AND 681.42 ≤ df-ASA < 901.01 ENZ1 OR

nonENZ2
0.252 0.032 0.336 0.042

56 26 If 3.17 ≤ LCS < 3.6 HET1 OR HOM2 0.357 0.037 0.337 0.035

Examples of overlapping rule are selected from Tables 6 and 7.
a♯ Rule identifier;
b♯: Rule identifier in Tables 6 and 7;
Rule descriptionc: The body of overlapping rules between the two types;
dTypes: PPI Type1 and Type2 having overlapping rules in common;
e,gConf : Confidences of overlapping rules for Type1 and Type2 respectively;
f,hSupp : Supports of overlapping rules for Type1 and Type2 respectively.
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Table 7.9: PART rules generated by decision trees using C4.5a

#b Rules discovered by C4.5 Decision Tree Type Conf Supp
Corresponding

rulesc

5
AVGASA > 68.73025 AND nAtom > 60 AND LCS > 2.611111 AND Strand ≤

32.857 AND SCOPClass = 7
ENZ 1 0.03

35, 5, 3,

36

38
sRatio ≤ 29.411765 AND HH > 0.277096 AND SCOPClass = 2 AND Strand >

16.949 AND Strand > 21.324 AND nSSE > 10
ENZ 1 0.02 40, 39

4
Loop > 50.299 AND nAtom > 60 AND Helix ≤ 33.636 AND AVGASA ≤

41.137133
ENZ 0.99 0.07 35, 6

27
inPro ≤ 2.016077 AND Helix > 48.485 AND LCS > 1.727 AND Strand ≤ 8.571

AND SCOPClass = 1 AND AVGASA ≤ 53.133
nonENZ 1 0.02 8, 10

40 SCOPClass = 1 AND Strand ≤ 2.26 nonENZ 1 0.01 15

1
nAtom > 189 AND Loop ≤ 66.316 AND nSSE > 13 AND Helix > 19.481 AND

sRatio ≤ 80.833 AND inPro > -1.570 AND LCS > 3.714 AND Loop ≤ 46.7
HET 1 0.05 20, 21

3
nAtom > 212 AND Strand ≤ 10.738 AND nSSE > 13 AND inPro > -1.476973

AND nAtom > 384
HET 1 0.05 20, 18, 19

34 SCOPClass = 3 AND Helix > 18.421 HOM 1 0.02 25

15 HH > 0.433 AND AVGASA > 55.984 AND nAA ≤ 34 HOM 1 0.01 27

a: A total of 44 rules produced by a decision tree using C4.5 algorithm in WEKA machine learning library;
b♯: PART rule identifier;
cCorresponding rules: Association rule identifiers (Tables 7.6, 7.7 and 7.9)



CHAPTER 7. PREDICTION OF PPI TYPES 158

7.5 Conclusions

We have developed a classification method that categorizes each PPI into one

of four different types using association rule based classification (ARBC). The

application of association rule mining over 354 known PPI types using 14 prop-

erties yielded a total of 157 rules, which in turn discriminated the features of

interaction sites for different PPI types and were used to generate a classifica-

tion model to predict PPI types. Our ARBC approach performed competitively

compared with conventional methods applied directly to the property values:

for example, the work in (Zhu et al. 2006) reported an accuracy of 91.8% for

the classification of three types of interactions by directly applying SVM. Al-

though it is not possible to make a direct comparison of their method with ours

due to heterogeneity of the data set, this suggests that the processes of asso-

ciation rule generation and subsequent pruning do not incur a loss of relevant

information. At the same time, our results demonstrated that we were able to

considerably improve the accuracy of the prediction of PPI types through the

use of structural domain information for the description of interaction interfaces,

and also the use of secondary structure content. Although SSE content alone

could not classify interaction sites with high accuracy, its incorporation with

other properties improved the accuracy of classification.

Our approach based on ARBC has a clear advantage over conventional meth-

ods because results are reported in terms of rules that are a quantitative descrip-

tion of properties and hence their interpretation is straightforward and simple.

Thus, biologists can easily judge if a discovered rule is interesting or not for

further investigation. Analysis of common and unique properties together is a

unique feature of our approach, unlike conventional classification methods which

typically capture unique properties only. Common rules capture those properties

which are common between PPI types. In particular enzyme inhibitor (ENZ)
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and non-enzyme inhibitor (nonENZ) interactions, both being non-obligate or

transient, share more properties in common than with other types. As we have

demonstrated, all these features produce descriptive rules, enabling their sim-

ple and powerful interpretation. We observed that the property distributions

of homo-obligate interactions are similar to those of hetero-obligate interactions

but distinct from those of non-obligate interactions. We found that obligate in-

teractions have larger and more hydrophobic interaction sites than non-obligate

interactions. Hydrophobic residues including Leu, Ala, and Val were found more

frequently in obligate interactions whilst polar residues including Ser and Gly

were present in non-obligate interactions. Charged residues (Glu, Asp, Lys, and

Arg) were seen frequently in all interaction types. On the basis of a detailed

analysis of association rules, it was observed that interactions between enzymes

and their inhibitors were separated into several different structural subgroups.

This may lead to the possibility of different subtypes of PPIs being involved in

transient interactions. Our findings based on the interpretation of association

rules are consistent with the description of homo-obligate complexes in previous

studies (Nooren and Thornton 2003, Zhu et al. 2006).

In future work we plan to improve our approach by incorporating additional

properties such as energy functions and electric potentials for the generation of

more accurate and meaningful association rules. The unique contribution of our

work is the development of a novel methodology that analyzes specificities and

commonalities for interaction types, and we intend to extend this to the predic-

tion of interaction partner and interaction sites. Most of the work associated to

this chapter has been included in a publication recently submitted to the journal

BMC Bioinformatics in (Park et al. 2009).
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7.6 Summary

In this chapter we have presented a new computational approach for the predic-

tion of PPI types based on protein complex structure information. Our approach

utilized association rule based classification (ARBC) to correctly classify types

and characterize PPI binding sites.

Owing to complexity of experimental techniques, at present there is a reduced

number of available protein complex structures. There are not enough examples

available to develop an integrative learning approach as in previous chapters.

However, in the near future, it is expected that the number of crystalized protein

structures will increase. In this case, the information related to PPI types can

be useful to enhance the predictions made by our previous techniques (one-class

classification). Consequently, the ARBC approach described in this chapter aims

not only to deal with the problem of prediction of PPI types but also to develop

and initial framework to generate new useful data for the task of prediction of

PPI in a broader context.



Chapter 8

Conclusions and Future Work

Protein-protein interactions (PPI) operate at every level of cellular function.

The correct identification of these interactions is important to systematically

understand the roles played by cellular proteins in diverse biological functions.

Consequently, the prediction of protein-protein interactions (PPI) has emerged

recently as an important problem in the fields of bioinformatics and systems

biology.

Large scale biological experiments for identification of PPI can directly detect

hundred or thousands of protein interactions at a time. However the resulting

data sets are often incomplete and exhibit high false-positive and false-negative

rates. On the other hand, small scale experiments for identification of new PPI

are more accurate but are expensive and time consuming, and consequently

it is not feasible to test every possible PPI. For all these reasons, there has

been an increasing need to develop computational approaches, especially in the

machine learning investigation area, to improve our knowledge about this type

of biological interactions. In general proteins do not work alone but in groups

called protein complexes. In this thesis we focussed specifically in the prediction

of co-complex interactions, where the objective is to identify and characterize

protein pairs which are members of the same protein complex.

161
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Several studies have been developed in the past based on the integrative

learning analysis of diverse biological sources of information. Several machine

learning techniques, mostly supervised learning approaches, have been employed

to improve the accuracy and trustability of predicted protein interacting pairs.

They have demonstrated that the combined use of direct and indirect biological

insights can improve the quality of predictive PPI models. The prediction of

PPI has been commonly viewed as a binary classification problem (whether any

two proteins do or do not interact). However the nature of the data creates

two major problems which can affect results. These are firstly imbalanced class

problems due to the number of positive examples (pairs of proteins which re-

ally interact) being much smaller than the number of negative ones. Secondly

the selection of negative examples can be based on some unreliable assumptions

which could introduce some bias in the classification results.

In the first part of this thesis (Chapter 4) we addressed these common draw-

backs by exploring the use of one-class classification (OCC) methods to deal

with the task of prediction of PPI. According to our knowledge, when we ini-

tiate this research, OCC models have never been employed before to deal with

this predictive task. OCC methods utilize examples of just one class to generate

a predictive model which consequently is independent of the kind of negative

examples selected; additionally these approaches are known to cope with imbal-

anced class problems. We designed and carried out a performance evaluation

study of several OCC methods for this task. Among available techniques em-

ployed, we found that the Parzen density estimation approach clearly exhibited

the best performance. We then undertook a rigorously comparative performance

evaluation between the Parzen OCC method and several conventional learning

techniques, which had been employed before to deal with the task of PPI predic-
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tion. For this evaluation, different scenarios were considered, for instance varying

the number of negative examples used for training purposes. We demonstrated

that the Parzen OCC approach performs very competitively and outperforms

the rest of conventional classifiers in most of the situations, up to the case where

the ratio of negative to positive examples is approximately 25 to 1.

The performance of conventional binary classification approaches is highly

influenced by the quantity of negative examples used to train the respective

models. Thus, classification models generated from these type of techniques are

more reliant on negative information (in this case an untrustworthy set of neg-

ative PPI examples) than on positive information (experimentally corroborated

PPI examples). Our results indicate that the problem of prediction of PPI can

indeed be formulated as an OCC problem where the predictive model is based on

real (trustworthy) PPI data. In the specific case of prediction of co-complexed

proteins, we found that the Parzen OCC method is able to generate models

which perform competitively with those generated by conventional classifiers,

independently of the quality and quantity of the negative examples available.

Most of the work associated with this chapter has been included in a referred

publication in (Reyes and Gilbert 2007).

Further in our investigation we addressed a new drawback which appears

to be affecting the performance of the PPI prediction task (Chapter 5). This

is associated with the composition of positive gold standard set (set of protein

pairs that really interact), which contain a high proportion of examples (2/3 of

the total) related to ribosomal protein. The ribosomal-based protein complexes

contain a large number of proteins. We demonstrated that this situation indeed

biases the classification task, resulting in an over-optimistic performance results.

The models generated employing all examples are biased toward the prediction
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of ribosomal-based PPI. It was observed that the problem of prediction of non-

ribosomal PPI is a much difficult task.

The problem associated with the high proportion of ribosomal-based proteins

has not been previously reported or addressed according to the best of our

knowledge. Consequently, we focused our research to deal with this specific

subtask, aiming to improve the performance associated to the prediction of non-

ribosomal PPI when using the Parzen OCC model. We investigated the effect

of integrating new biological information into the classification process, based

on data from mRNA expression experiments and protein secondary structure

(SS) information. We demonstrated that the integration of data from diverse

mRNA expression experiments into a single data set has a negative effect on the

performance of the Parzen OCC approach. There is no synergy effect in this

case, and Parzen OCC models based on individual mRNA expression experiment

outperform the one which integrates all the data. The integration of protein

secondary structure information significantly improves the performance of the

Parzenn OCC approach for this predictive task. The performance of all of the

models evaluated is improved when SS-based features are incorporated into the

classification process, including the case when no mRNA expression data is used.

Based on previous results obtained, we investigated several strategies to com-

bine predictions of different Parzen OCC models induced from diverse subsets

of biological data. The hypothesis behind this approach, was related to the

observations that single mRNA and SS-based information seems to incorpo-

rate independent insights to the PPI prediction problem. Four models were

selected for this procedure, three based on individual mRNA expression exper-

iments (without SS information) and one based on SS information (without

mRNA expression data). We demonstrated that these models exhibited a high

degree of diversity in their predictions, corroborating our assumption. We also
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demonstrated that it is possible to significantly improve the performance of the

prediction of non-ribosomal PPI by combining the predictions of several Parzen

OCC models. The weighted average combination approach exhibited the best

performance, and also gave some insights regarding the relative importance of

the different classification models employed. Most of the work associated to this

chapter has been included in a referred publication in (Reyes and Gilbert 2008).

Further in this thesis we undertook a preliminary evaluation analysis of the

capability of the Parzen OCC approach to predict new potential PPI targets

(Chapter 6). The final goal associated with the use of computational methods

for predicting PPI is to predict or identify new potential PPI targets. These

potential targets can then be used, for instance, to guide biologists developing

small scale experiments in order to validate them.

Employing the classification approach we previously generated based in the

combination of several and diverse Parzen OCC models, we were able to pre-

dict a set of 818 new PPI for further analysis. With this validation study we

intend to look for evidence that support the new PPI predictions. Firstly, we

searched in the literature and related databases for experimental evidence re-

lated to these new predictions. We found that many of them are supported

by experiments associated to the identification of PPI complex. Secondly, we

analyze the topological properties of the PPI network associated to these new

PPI predictions. Computationally, a protein-protein interaction network could

be conveniently modeled as an undirected graph, where the nodes are proteins

and two nodes are connected by an undirected edge corresponding to a certain

kind of of interaction. We found that our predicted PPI network, share sev-

eral common properties that have been recently associated to many biological

networks, especially PPI networks. Finally, we focused in the identification of
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highly connected groups of proteins within our predicted PPI network. These

groups or clusters can be associated for instance to novel protein complexes. We

were able to identify, describe and analyze three important clusters. The initial

analysis of these clusters, showed certain biological evidence supporting the PPI

predictions generated using the Parzen OCC approach.

Finally in this thesis we explored a slightly different area related with the

prediction of PPI types (Chapter 7). This is associated with the classification

of PPI structures (complexes) contained in the Protein Data Bank (PDB) data

base according to its function and binding affinity.

For this we implemented a computational approach for the prediction of PPI

types employing association rule based classification (ARBC), which includes

association rule generation and posterior classification based on the discovered

rules. Our approach based on ARBC has a clear advantage over conventional

methods because results are reported in terms of rules that are a quantitative

description of properties and hence their interpretation is straightforward and

simple. Thus, biologists can easily judge if a discovered rule is interesting or not.

The unique contribution of our work is the development of a novel methodology

that analyzes specificities and commonalities for interaction types. The analysis

of common and unique properties together is a unique feature of our approach,

unlike conventional classification methods which typically capture unique prop-

erties only. Common rules capture those properties which are common between

PPI types. Due the relatively reduced number of crystalized protein complexes

available, it is not possible at the moment to link the results and biological fea-

tures of this task with the one studied before related with the prediction of PPI

complexes. However this could be possible in the near future when more PPI

structures will be available. The results associated to this investigation has been
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included in a publication recently submitted to the journal BMC Bioinformat-

ics (Park et al. 2009).

Computational learning of protein-protein interactions and protein interac-

tion networks is still an undergoing research topic. Many important questions

and drawbacks related with these tasks remain as open challenges. In this sense

we can visualize some future directions to guide our work, as follows:

• In the future we will extend the use of OCC models for prediction of PPI

complexes in other species, for instance in human-based protein complexes.

• We will investigate the incorporation of other kind of biological informa-

tion, in order to improve the performance of classifiers for PPI prediction.

Specifically, we are interested in the use of protein structural information.

• We are also interested in the evaluation of novel strategies for the combi-

nation of diverse classification models. An example of this is the “stacked

generalization” approach, which according to our knowledge, has never

been utilized for the combination of predictions made by OCC models.

• An important area for future work, is to continue with the validation of

new PPI predicted in this thesis. We are specifically interested to develop

an in-depth analysis of the protein clusters discovered in the predicted

PPI network. In order to gain biological knowledge about these inferred

relationships.

• We intend to improve our approach based on ARBC for prediction of PPI

Types, by incorporating additional properties such as energy functions

and electric potentials, aiming to generate more accurate and meaningful

association rules.



Appendix A

List of predicted PPI for further

validation

The following table exhibit the complete list of new 818 PPI predicted in our

research, as showed in Chapter 6. The classification model utilized is based in

the combination of several parzen OCC classifiers, generated from diverse sets

of biological data:

No ID-1 ID-2 No ID-1 ID-2

1 YDL126C YDR394W 11 YER021W YKL210W

2 YDL126C YDR427W 12 YER021W YOR249C

3 YDL126C YER021W 13 YDL126C YOR362C

4 YDL126C YMR314W 14 YBL041W YDL126C

5 YDL126C YPR108W 15 YDL132W YDR394W

6 YDL126C YOR259C 16 YDL132W YER021W

7 YDL126C YOR157C 17 YDR177W YER021W

8 YDL126C YOR261C 18 YDL132W YPR108W

9 YDL132W YDL147W 19 YDR177W YDR394W

10 YDR177W YOR261C 20 YDL126C YGL011C

168
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No ID-1 ID-2 No ID-1 ID-2

21 YBL041W YDL132W 56 YDR177W YPR108W

22 YDL126C YOR117W 57 YER094C YJR099W

23 YDL126C YFR050C 58 YJR099W YOR261C

24 YKL210W YOR117W 59 YDL132W YML092C

25 YDL126C YDL147W 60 YOR124C YOR249C

26 YDL097C YDL126C 61 YDR394W YOR249C

27 YFR050C YOR249C 62 YDL132W YFR050C

28 YDL126C YKL210W 63 YDL132W YKL213C

29 YKL210W YPR108W 64 YGR135W YOR249C

30 YDL126C YFR004W 65 YFR004W YKL210W

31 YDR394W YKL210W 66 YGL048C YOR124C

32 YDL007W YDL126C 67 YKL022C YOR117W

33 YOR157C YOR249C 68 YDL150W YHR143WA

34 YOR249C YOR261C 69 YDR092W YGR253C

35 YDL132W YOR261C 70 YGR232W YKL210W

36 YDR394W YLL039C 71 YDR092W YJL001W

37 YDL132W YDR427W 72 YDL147W YDR177W

38 YDL132W YGL011C 73 YDR177W YOR259C

39 YDL007W YOR124C 74 YKL210W YKL213C

40 YDR427W YOR249C 75 YJR099W YOR117W

41 YDR394W YOR124C 76 YDL150W YNR003C

42 YFR004W YJR099W 77 YJL001W YKL213C

43 YBR082C YDL007W 78 YKL145W YOR124C

44 YGL011C YOR249C 79 YDL165W YGR005C

45 YDL126C YOL038W 80 YKL210W YOR362C

46 YDL132W YOR259C 81 YDL147W YDR092W

47 YDR092W YOR259C 82 YBL041W YKL213C

48 YDR054C YOR117W 83 YHR143WA YOR174W

49 YBR082C YER094C 84 YDL007W YDR092W

50 YBR082C YOR261C 85 YDL150W YOR224C

51 YDL126C YML092C 86 YML111W YPR108W

52 YKL210W YOR157C 87 YCR093W YHR143WA

53 YDL097C YKL210W 88 YDL150W YKL144C

54 YDL132W YKL010C 89 YJL197W YPR108W

55 YHR200W YKL210W 90 YKL058W YOR174W
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No ID-1 ID-2 No ID-1 ID-2

91 YDR177W YOR117W 126 YBR082C YDR394W

92 YIL075C YKL010C 127 YBR082C YDL147W

93 YDR429C YER025W 128 YFR052W YJL197W

94 YIL156W YJL001W 129 YDL132W YOR124C

95 YDL150W YOR210W 130 YER021W YJR099W

96 YDR092W YER012W 131 YDR311W YOR174W

97 YDL126C YKL010C 132 YDR092W YOR261C

98 YDL097C YJL197W 133 YGL240W YOR261C

99 YKR094C YPR108W 134 YDR092W YDR394W

100 YBR058C YDL126C 135 YDR092W YMR314W

101 YKR094C YOR117W 136 YJR007W YMR309C

102 YDL007W YDR390C 137 YGL025C YPR056W

103 YBR049C YOR194C 138 YER021W YOR124C

104 YKL213C YPR108W 139 YOR117W YOR124C

105 YDR054C YOR261C 140 YDR092W YER021W

106 YDL132W YFR004W 141 YKL144C YPR186C

107 YFR050C YKL213C 142 YNL062C YOL139C

108 YBR154C YDL150W 143 YDL147W YIL156W

109 YDR092W YOL038W 144 YBR049C YDR404C

110 YBR193C YIL143C 145 YKL210W YPR103W

111 YKL213C YPR103W 146 YGL025C YOR194C

112 YER133W YNL084C 147 YBR193C YCR093W

113 YFR004W YHR166C 148 YDR092W YGL048C

114 YDR328C YER021W 149 YDL147W YLL039C

115 YDR394W YJR099W 150 YDR092W YPR103W

116 YDL147W YOR124C 151 YHR058C YKR062W

117 YDL150W YNL151C 152 YER025W YLR291C

118 YDR092W YOR362C 153 YGR083C YNL062C

119 YBL041W YKL210W 154 YDL164C YHR118C

120 YER021W YGL240W 155 YBR082C YFR004W

121 YIL075C YOR249C 156 YDL147W YJR099W

122 YER148W YFL031W 157 YBL014C YKL125W

123 YOR048C YOR098C 158 YLR291C YPL237W

124 YDL150W YPR190C 159 YBR082C YER021W

125 YIL046W YOR339C 160 YER021W YLL039C
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No ID-1 ID-2 No ID-1 ID-2

161 YBR154C YML112W 196 YDL132W YGR135W

162 YKR062W YOL051W 197 YDL132W YOR362C

163 YKL145W YKR094C 198 YIL156W YOL038W

164 YLR131C YOR224C 199 YDL097C YKL213C

165 YDL147W YMR275C 200 YOR151C YPL042C

166 YDL150W YPR110C 201 YER022W YIL021W

167 YHR143WA YPR186C 202 YGL025C YKL028W

168 YBR038W YDR182W 203 YFL031W YPR086W

169 YDR092W YFR052W 204 YDL150W YOR207C

170 YGL011C YMR275C 205 YDL007W YLL039C

171 YDL165W YKL028W 206 YBR154C YPR186C

172 YLR291C YMR309C 207 YER151C YOR117W

173 YBR082C YOR117W 208 YKR062W YLR131C

174 YDR427W YGL240W 209 YJL148W YML043C

175 YBR079C YDR211W 210 YGL070C YOL135C

176 YGL048C YKL210W 211 YML112W YOR194C

177 YER012W YMR275C 212 YPR186C YPR187W

178 YDL097C YOR124C 213 YGR186W YNL025C

179 YER021W YKL010C 214 YGR083C YJR007W

180 YGL240W YOR259C 215 YDL150W YNL113W

181 YBL008W YGR005C 216 YML098W YOL135C

182 YDR308C YJL127C 217 YER021W YKL213C

183 YJL197W YOL038W 218 YOR210W YPL042C

184 YMR146C YOL139C 219 YNL113W YPR186C

185 YER144C YKL022C 220 YGL025C YML098W

186 YJL197W YML092C 221 YBR154C YCR093W

187 YDL097C YJR099W 222 YNL025C YPR168W

188 YJL056C YOR210W 223 YCR093W YGL070C

189 YER025W YMR260C 224 YDL005C YIL021W

190 YKL213C YOR249C 225 YOR363C YPR086W

191 YDR054C YHR200W 226 YJR007W YNL062C

192 YOR249C YOR259C 227 YHR027C YKL210W

193 YBR193C YJL127C 228 YCR039C YKL028W

194 YGR253C YMR275C 229 YFL031W YGR005C

195 YGL025C YPR187W 230 YOR249C YPR108W
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No ID-1 ID-2 No ID-1 ID-2

231 YDR394W YJL197W 266 YDR211W YPL237W

232 YDR167W YHR143WA 267 YKL028W YPL042C

233 YBR097W YDL217C 268 YBR193C YCL066W

234 YCL066W YPR086W 269 YNL261W YOR217W

235 YJL001W YJL197W 270 YBR198C YPR187W

236 YML043C YPR010C 271 YDR054C YER144C

237 YGL240W YOR157C 272 YDR429C YPL237W

238 YER098W YIL046W 273 YBR060C YJL173C

239 YDR177W YKL213C 274 YKL213C YML092C

240 YDR167W YGL025C 275 YDR328C YOR117W

241 YMR275C YOR157C 276 YGR186W YML112W

242 YDR390C YHR200W 277 YBR193C YML112W

243 YJL006C YOR151C 278 YNR003C YPR186C

244 YCR040W YKL058W 279 YHR143WA YKL028W

245 YJL006C YOR194C 280 YDR308C YPL042C

246 YDR390C YPR108W 281 YIL156W YMR314W

247 YER171W YPR168W 282 YOL005C YOR174W

248 YJL140W YLR071C 283 YBR057C YDR182W

249 YCR039C YOR174W 284 YDR328C YHR200W

250 YDR427W YML111W 285 YDR207C YPL122C

251 YCR039C YGR186W 286 YDL147W YER100W

252 YCL066W YDL140C 287 YGR186W YIR017C

253 YDR092W YGL011C 288 YFL031W YKL028W

254 YKL058W YLR131C 289 YER133W YNL233W

255 YER025W YMR146C 290 YGL025C YPR086W

256 YBR193C YDR146C 291 YFL031W YOR151C

257 YML043C YNL248C 292 YNL236W YOL005C

258 YER094C YLL039C 293 YMR227C YPR168W

259 YDR054C YDR394W 294 YKL139W YPL046C

260 YHR058C YOR210W 295 YDR394W YKR094C

261 YBR193C YJL140W 296 YKL145W YMR275C

262 YCR040W YOR174W 297 YHR143WA YML112W

263 YDR167W YIL021W 298 YDR404C YKL058W

264 YGL048C YJR099W 299 YDL005C YPR187W

265 YJL140W YPR168W 300 YDL097C YDR092W
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No ID-1 ID-2 No ID-1 ID-2

301 YDR308C YHR084W 336 YGL048C YIL148W

302 YDL126C YGR135W 337 YBL093C YKL058W

303 YDR211W YJR007W 338 YGR186W YJL056C

304 YEL032W YOL006C 339 YBR278W YMR001C

305 YDL132W YER151C 340 YDL097C YGR184C

306 YDL097C YDR059C 341 YLL004W YNL290W

307 YIL128W YOR151C 342 YDL005C YKR062W

308 YCR039C YER022W 343 YOL115W YPR162C

309 YBL093C YPR187W 344 YER021W YKR094C

310 YBL093C YOL005C 345 YDL217C YDR142C

311 YFR004W YMR275C 346 YDR311W YGL070C

312 YNL216W YNL221C 347 YJR068W YPR175W

313 YDR207C YIL143C 348 YDL147W YGR184C

314 YFL031W YOR174W 349 YJL127C YPR187W

315 YDL097C YLL039C 350 YGL070C YGR005C

316 YDR394W YHR166C 351 YJR007W YLR291C

317 YDL007W YKL213C 352 YCR039C YKL058W

318 YBL093C YHR143WA 353 YBL084C YDL147W

319 YBR193C YOR363C 354 YOL005C YPL042C

320 YLL004W YNL312W 355 YKL010C YOR249C

321 YNL062C YOR260W 356 YDR429C YMR260C

322 YJL194W YNL312W 357 YHR166C YOR261C

323 YBR082C YDL097C 358 YDR211W YNL062C

324 YGL043W YOR174W 359 YDR394W YIL156W

325 YER094C YIL148W 360 YOL135C YPL122C

326 YLR071C YPR187W 361 YGL035C YKR062W

327 YDL140C YLR131C 362 YDR092W YPR108W

328 YDR059C YER021W 363 YKR094C YOR261C

329 YBL041W YMR275C 364 YDL007W YKL210W

330 YFR050C YMR275C 365 YHR058C YJL140W

331 YAR007C YJL194W 366 YGR186W YLR131C

332 YGL025C YKL058W 367 YIL148W YKL145W

333 YNL025C YOL135C 368 YBR154C YMR270C

334 YLR131C YPR086W 369 YGL201C YOL094C

335 YFR004W YKL213C 370 YKL210W YOL038W
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No ID-1 ID-2 No ID-1 ID-2

371 YDL140C YJL056C 406 YDL126C YHR200W

372 YDL064W YER021W 407 YDL005C YMR236W

373 YDR308C YJL056C 408 YBR193C YIL128W

374 YBR202W YJR068W 409 YJL127C YPR086W

375 YJL025W YPR187W 410 YMR146C YPL237W

376 YDL102W YMR001C 411 YDR443C YKR062W

377 YAR007C YIL150C 412 YBR058C YFR052W

378 YDR404C YDR443C 413 YHR041C YPR056W

379 YDR059C YOR261C 414 YER012W YJL197W

380 YJL001W YOR249C 415 YOL005C YOL051W

381 YGL011C YKL213C 416 YER171W YHR143WA

382 YDL126C YJL001W 417 YBR058C YLR127C

383 YKL028W YPR187W 418 YDL005C YPR086W

384 YKL010C YPR108W 419 YCR040W YER148W

385 YIR017C YKR062W 420 YER148W YJR063W

386 YDR182W YNL233W 421 YJL006C YPR086W

387 YKL058W YOL135C 422 YJL148W YMR270C

388 YHR084W YKR062W 423 YDL147W YKR094C

389 YBL008W YKL028W 424 YER021W YJL197W

390 YDR443C YHR058C 425 YBL023C YOL006C

391 YDL132W YOL038W 426 YCR081W YHR058C

392 YDR311W YGR044C 427 YHR058C YPL122C

393 YHR164C YML065W 428 YDL017W YOL094C

394 YHR084W YKL058W 429 YBL008W YPR086W

395 YGR005C YOR038C 430 YDR404C YOL051W

396 YJR006W YOR217W 431 YDR087C YJR063W

397 YOR260W YOR361C 432 YGL035C YKL058W

398 YER022W YLR131C 433 YBL093C YMR236W

399 YER025W YOL139C 434 YDR146C YDR308C

400 YBL084C YER094C 435 YNL062C YPL237W

401 YKL028W YPR168W 436 YBR087W YML065W

402 YBR038W YBR109C 437 YBL041W YOR249C

403 YDR052C YHR164C 438 YER133W YIR006C

404 YDL097C YIL156W 439 YGR083C YMR146C

405 YDR311W YNL236W 440 YBR198C YOL005C
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No ID-1 ID-2 No ID-1 ID-2

441 YKL010C YOR261C 476 YHR058C YPL042C

442 YDR118W YER017C 477 YBR079C YOR260W

443 YDR404C YJL006C 478 YGL240W YOR117W

444 YDR443C YOR194C 479 YGL112C YOR224C

445 YGL025C YGR005C 480 YML111W YOL038W

446 YIR017C YOR174W 481 YDL108W YHR041C

447 YDL147W YJL197W 482 YGR186W YPL042C

448 YCL066W YOR194C 483 YBR038W YKR048C

449 YDR443C YGL025C 484 YDL005C YGL112C

450 YBR198C YOR151C 485 YER144C YIL075C

451 YDL064W YOR261C 486 YDL008W YER017C

452 YCL066W YKL058W 487 YBL093C YDL140C

453 YBR193C YDL140C 488 YGR005C YIR017C

454 YLR291C YNL062C 489 YGR083C YMR309C

455 YER025W YGR083C 490 YBR193C YGR005C

456 YCR040W YKR062W 491 YER148W YIL021W

457 YER022W YGL035C 492 YIL148W YOR117W

458 YDL140C YGL043W 493 YDL132W YMR314W

459 YFR004W YKR094C 494 YBR058C YPR103W

460 YBR193C YGL043W 495 YBR198C YOR210W

461 YJL127C YOR174W 496 YDL147W YIL148W

462 YHR041C YPR086W 497 YBL093C YGR186W

463 YDR177W YFR004W 498 YER148W YOR038C

464 YER094C YKR094C 499 YIL148W YOR261C

465 YGL011C YJL197W 500 YBR193C YPR025C

466 YGL153W YNL131W 501 YDR328C YPR108W

467 YCL066W YKR062W 502 YCL066W YER022W

468 YJR007W YMR146C 503 YER148W YJL056C

469 YOR210W YPR186C 504 YER148W YKL144C

470 YBL008W YKR062W 505 YDR146C YOR174W

471 YJL056C YKL058W 506 YBL023C YNL088W

472 YJR007W YOR260W 507 YLR274W YNL088W

473 YER022W YPL042C 508 YJL194W YOL094C

474 YBL008W YGR186W 509 YGL048C YGR184C

475 YDL150W YPR187W 510 YPL042C YPR187W
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No ID-1 ID-2 No ID-1 ID-2

511 YCR040W YDR404C 546 YBL008W YDR308C

512 YER094C YHR166C 547 YBL014C YJR063W

513 YIL021W YPL042C 548 YER177W YPL242C

514 YCL031C YJL148W 549 YMR236W YOR174W

515 YJL140W YKL058W 550 YGR005C YJL056C

516 YGL025C YOR210W 551 YPL122C YPL139C

517 YGL025C YOL005C 552 YDL017W YJL173C

518 YBL084C YDL007W 553 YDL164C YLL004W

519 YDR404C YPL042C 554 YOR038C YOR194C

520 YBR058C YDL147W 555 YGL201C YOL115W

521 YDR167W YOR210W 556 YML112W YOR151C

522 YKL058W YNL025C 557 YMR227C YOL135C

523 YFL031W YKR062W 558 YLR131C YPR187W

524 YBR049C YHR041C 559 YHR041C YPR025C

525 YLR131C YOR194C 560 YCR093W YHR041C

526 YJL173C YJL194W 561 YLL004W YPR135W

527 YDL165W YIL128W 562 YGL207W YJL140W

528 YCR081W YGR186W 563 YDL165W YOR174W

529 YBL008W YBR193C 564 YMR227C YOR174W

530 YGR082W YLR191W 565 YLR291C YOR361C

531 YDR362C YPR186C 566 YBR058C YDL132W

532 YHR143WA YPL042C 567 YBL008W YOL005C

533 YBL008W YPR187W 568 YGR005C YJL127C

534 YJL001W YMR275C 569 YGR186W YHR084W

535 YER022W YPL046C 570 YKR062W YOR363C

536 YCL066W YER148W 571 YCR081W YDR308C

537 YBR193C YDL165W 572 YBL084C YLR263W

538 YBR193C YJL056C 573 YDL164C YOL115W

539 YOR224C YPL042C 574 YLR274W YNL290W

540 YMR229C YNL216W 575 YKL139W YOR174W

541 YDR059C YER094C 576 YOR174W YOR363C

542 YGL025C YMR236W 577 YMR236W YOR210W

543 YKL058W YOR363C 578 YHR143WA YOL051W

544 YFL031W YPR187W 579 YBR088C YML065W

545 YGR032W YPL075W 580 YHR143WA YOR038C
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No ID-1 ID-2 No ID-1 ID-2

581 YDR118W YIL156W 616 YNL290W YPR019W

582 YBR198C YOL051W 617 YGR013W YKR086W

583 YCR081W YPR168W 618 YFL031W YHR143WA

584 YBR198C YDL005C 619 YDL005C YER171W

585 YOR124C YOR261C 620 YGR005C YHR041C

586 YDL097C YNL172W 621 YDR146C YKL028W

587 YGL043W YJL006C 622 YJR112W YLR263W

588 YCR040W YGR005C 623 YOL051W YOR224C

589 YBL008W YOR210W 624 YGR005C YLR131C

590 YMR309C YPL237W 625 YHR013C YPL175W

591 YOL135C YPL046C 626 YIL156W YOR261C

592 YDR427W YKL213C 627 YDR092W YFR050C

593 YMR227C YNL236W 628 YDL140C YPL046C

594 YDL007W YJR099W 629 YHR118C YOL094C

595 YDR211W YOR361C 630 YER094C YKL210W

596 YDR092W YDR427W 631 YMR309C YOR260W

597 YJR068W YPR019W 632 YKL213C YOR259C

598 YPR186C YPR190C 633 YMR275C YOR117W

599 YDL150W YER148W 634 YJL197W YOR362C

600 YDL005C YGL035C 635 YER012W YER144C

601 YBL093C YIL021W 636 YGL025C YIL021W

602 YBL093C YOR210W 637 YGL112C YHR058C

603 YDL007W YMR275C 638 YER148W YNL236W

604 YBR154C YPL042C 639 YML112W YPR086W

605 YBL093C YBR154C 640 YFR004W YGL240W

606 YMR275C YOR259C 641 YCR018C YNL216W

607 YER098W YLR127C 642 YOR174W YPL042C

608 YBR058C YKL145W 643 YER133W YIL162W

609 YDR054C YPR135W 644 YHR143WA YLR131C

610 YJL006C YOL005C 645 YLR274W YPR135W

611 YGR005C YNL025C 646 YER171W YGL025C

612 YDR211W YER025W 647 YER017C YIL046W

613 YDL126C YGR253C 648 YGR119C YJL050W

614 YKL028W YOR151C 649 YHR058C YIL128W

615 YCL066W YDR404C 650 YHR058C YMR227C



APPENDIX A. APPENDIX A 178

No ID-1 ID-2 No ID-1 ID-2

651 YCR042C YOR210W 686 YER021W YML111W

652 YDR311W YGL025C 687 YKL028W YOL135C

653 YLL039C YPR108W 688 YDL140C YOR174W

654 YGL201C YJL090C 689 YML112W YOR174W

655 YDL132W YIL148W 690 YOL005C YOL135C

656 YDL097C YKL010C 691 YDR308C YIR017C

657 YDL008W YOR117W 692 YBL014C YOR224C

658 YDL108W YDR308C 693 YGR274C YOL135C

659 YJR007W YOL139C 694 YBL093C YGL112C

660 YCR081W YGR274C 695 YBR079C YER025W

661 YGR184C YPR108W 696 YCR042C YDR404C

662 YIL021W YLR131C 697 YDL007W YDR059C

663 YDR156W YJL025W 698 YBL093C YKR062W

664 YIL143C YOR174W 699 YER171W YPL139C

665 YIL143C YPL139C 700 YHR118C YPR135W

666 YBL008W YER022W 701 YBL084C YER021W

667 YDL007W YGL240W 702 YJL025W YOR210W

668 YGL035C YGR186W 703 YDL005C YJL056C

669 YDR177W YIL022W 704 YML043C YOR224C

670 YBR193C YHR084W 705 YER025W YOR361C

671 YBR193C YKL058W 706 YDR211W YMR309C

672 YKR062W YOR038C 707 YDR092W YFR004W

673 YLR071C YML112W 708 YJR094C YKL089W

674 YKL058W YML112W 709 YCR081W YDL005C

675 YMR275C YMR314W 710 YCR042C YOR151C

676 YML112W YOR224C 711 YDR108W YDR182W

677 YGL043W YHR058C 712 YGR186W YNL236W

678 YJL127C YOL005C 713 YGL240W YPR108W

679 YBR058C YDR427W 714 YGL048C YKR094C

680 YDL005C YPR056W 715 YGR274C YOR337W

681 YER022W YIR017C 716 YDR328C YER098W

682 YLL039C YOR117W 717 YDL165W YER022W

683 YOR260W YPL237W 718 YBL014C YPR187W

684 YOL094C YPR019W 719 YGL240W YML092C

685 YGL025C YKR062W 720 YCR093W YGR104C



APPENDIX A. APPENDIX A 179

No ID-1 ID-2 No ID-1 ID-2

721 YOL038W YOR249C 756 YDL020C YOR249C

722 YJL056C YKL028W 757 YGL025C YGR186W

723 YGR253C YKL213C 758 YFL039C YKL013C

724 YML043C YOR341W 759 YDR129C YML064C

725 YER021W YER100W 760 YDR207C YDR311W

726 YDR394W YER100W 761 YBR193C YDR443C

727 YER021W YMR275C 762 YBR038W YDR477W

728 YML111W YOR259C 763 YDR177W YPL149W

729 YER094C YER100W 764 YDR477W YJL174W

730 YML043C YOR340C 765 YDL097C YLR102C

731 YKL145W YKL213C 766 YOL005C YPL046C

732 YGR005C YPL042C 767 YER098W YHR166C

733 YBR193C YGR186W 768 YHR200W YIL046W

734 YER025W YOR260W 769 YBL084C YDL097C

735 YJL127C YOR224C 770 YMR275C YPR103W

736 YDL097C YFR036W 771 YFL031W YOR224C

737 YKL139W YOL051W 772 YBR193C YIR018W

738 YMR275C YOR362C 773 YER148W YGL207W

739 YDR308C YML098W 774 YDR087C YJL148W

740 YIL021W YOR174W 775 YDR443C YOR174W

741 YHR065C YNL216W 776 YKL028W YLR131C

742 YAL009W YNL126W 777 YKL213C YOR362C

743 YBR193C YML098W 778 YBR080C YPR181C

744 YBR253W YPR056W 779 YBR058C YOR157C

745 YGR184C YIL075C 780 YDL165W YOR194C

746 YDL008W YHR200W 781 YHR118C YNL290W

747 YBR193C YCR042C 782 YJL197W YKL145W

748 YHR166C YOR117W 783 YCR040W YPR086W

749 YGL112C YOR174W 784 YHR084W YPR086W

750 YEL022W YOR326W 785 YBL041W YBR058C

751 YFR004W YOR124C 786 YGL166W YPR086W

752 YDR025W YJL085W 787 YBL084C YOR261C

753 YJL197W YOR259C 788 YDR177W YKL145W

754 YDL005C YIL143C 789 YDL003W YIL072W

755 YCL029C YIL072W 790 YDR180W YER132C
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No ID-1 ID-2 No ID-1 ID-2

791 YGR274C YNL236W 805 YDL126C YFR052W

792 YBL008W YDL140C 806 YDL008W YHL027W

793 YBL008W YBR154C 807 YGL171W YJL148W

794 YKL010C YOR117W 808 YMR260C YOL139C

795 YCR042C YHR143WA 809 YBR198C YPR168W

796 YDR394W YMR275C 810 YBR049C YJL140W

797 YDR146C YOL005C 811 YCL054W YDR227W

798 YDL164C YML065W 812 YDR201W YDR488C

799 YOL135C YPR056W 813 YGR030C YMR059W

800 YJR094C YOR058C 814 YBR193C YGL207W

801 YGL207W YGR186W 815 YEL032W YNL088W

802 YER017C YGL116W 816 YJL197W YMR314W

803 YOL139C YPL237W 817 YMR146C YOR260W

804 YDR118W YOR261C 818 YDL147W YKL010C
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