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ABSTRACT 
 

 

The AS/AGU rat originated as a recessive mutation (agu) in a closed colony of 

Albino Swiss (AS) rats.  The mutation is in the gene coding for the gamma isoform of 

protein kinase C. It is characterized by movement impairments and progressive 

dysfunction of the nigrostriatal dopaminergic (DA) and raphe striatal serotonergic (5-

HT) systems. The movement impairments including rigidity of the hind limbs, a 

staggering gait, a tendency to fall over every few steps, a slight whole body tremor 

and difficulty in initiating movements. The dysfunction in both systems is 

characterised by a failure to release DA or 5-HT within the striatum and cell loss 

within the substantia nigra pars compacta (dopaminergic cells) and the dorsal raphe 

nuclei (5-HT+ve cells). 

 

In this study, three experiments were carried out to examine the possible pathological 

responses of midbrain cell groups to the agu mutation in the gene coding for protein 

kinase C-gamma (PKC-γ). 

 

Experiment 1 was carried out to examine levels of two groups of molecules in the 

midbrain cell groups using quantitative immunofluorescence microscopy of cell 

bodies or their surrounding neuropil (a) those molecules giving information about the 

capacity of midbrain aminergic cell bodies to synthesis transmitters; tyrosine 

hydroxylase (TH) in the dopaminergic neurons and serotonin (5-HT) in the 

serotonergic neurons (b) those which have been found to occur in human 

neurodegenerative conditions such as Parkinson’s disease: ubiquitin, parkin and α-

synuclein (Lewy body proteins). Immunofluorescence levels of tyrosine hydroxylase 

(in dopaminergic cells of the SNC) and serotonin (in 5HT+ve cells of the dorsal raphe 

nuclei) were both significantly increased in AS/AGU (mutant) compared to the AS 

(control) rats aged 6 months and older. TH and 5-HT immunofluorescence levels were 

both significantly decreased in the striatum in the AS/AGU (mutant) compared to the 

AS (control) rat aged 12 months. Ubiquitin immunofluorescence show  a gradual 

increase with age in AS and AS/AGU rats and the increase was much greater in the 

mutant in every region except the oculomotor and pontine nuclei.  Parkin 

immunofluorescence show increases in the mutant within the SNC and the dorsal 

raphe nucleus and this increase was significant at older ages. Alpha-synuclein does 

not occur in the cell bodies of the substantia nigra or VTA but outside in the neuropil. 

Alpha-synuclein immunofluorescence levels progressively increased with age in both 

strains in the SN and VTA and were higher in the mutant. The levels of those 

molecules (ubiquitin, parkin and alpha-synuclein) do not differ in the striatum of 

mutants compared to controls. 

 

Experiment 2 examined SNC cell bodies to look for possible strain differences in cell 

size or ultrastructure or any sign of cell death using light and transmission electron 

microscopy. The diameter (maximum and minimum) of the SNC cells and nuclei 

were measured in toluidine blue paraffin wax and immunoperoxidase DAB staining 

for TH sections. Cell diameter was reduced in the AS/AGU mutant compared to the 

AS control. No obvious ultrastructural differences were seen in nigrostriatal neurons 
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of both strains. The volume fractions of mitochondria and rough endoplasmic 

reticulum were significantly higher in the mutant. No Lewy bodies were present. 

 

Experiment 3 examined TH+ve nigrostriatal dopaminergic terminals in the dorsal 

caudate-putamen to determine whether there are (a) differences in the percentages and 

numbers of TH+ve terminals and (b) differences in synaptic vesicles numbers. In 12-

month AS/AGU mutant, there are reduction in TH+ve terminals (40%) together with 

a reduction in vesicle numbers (40%) in such terminals where in 3-month AS/AGU 

mutant, the reduction in TH+ve terminals was more (50%) and a reduction in vesicles 

numbers by three quarters. TH-ve terminals are also reduced in numbers in 12 months 

aged AS/AGU mutant rats. In 12-month AS/AGU rats,  there were significantly 

reduced numbers of synaptic terminals in the striatum compared to AS controls. This 

applied to both dopaminergic terminals (which make up 15% of the total) and to non-

dopaminergic terminals. In 3-month AS/AGU rats, there is a reduction in terminal 

numbers, but this is restricted to the dopaminergic terminals only: non-dopaminergic 

ones are unaffected.  
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1.1  Overview 

This study was designed to take advantage of a unique mutation in a population of 

Albino Swiss (AS) rats. The mutant AS/AGU rat has a stop codon in the gene for 

expression of protein kinase C-gamma (Craig et al., 2001) which lead to disordered 

movement, a major loss in dopamine and serotonin release in the striatum and, with  

time, a loss of midbrain aminergic neurons (Campbell et al., 1997, 1998; Al-Fayez et 

al., 2005). 

Many aspect of human conditions such as Parkinson’s disease (PD) can not be 

properly assessed until after the death of patient, and many Laboratory models of PD 

have therefore been introduced to mimic the disorder. However, since the 

neurological events leading up to symptomatic PD are unknown, these models rely on 

hypotheses which remain unproven. By contrast, the AS/AGU rat is a naturally-

occurring model (Payne et al., 2000) which is under  examination.  

This study is designed to explore three aspects of the AS/AGU rat which have not 

been examined before: 

I. Do midbrain neurons show changes in molecules which are elevated in human 

PD? 

II. What are the morphological changes in the midbrain aminergic neurons in the 

mutant. Can these changes point to a particular pathology? 

III. What changes occur in the synaptic terminals of these cells within the caudate-

putamen?      
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1.2 The Basal ganglia 

 

The term basal ganglia has no precise definition but, in general, the basal ganglia are a 

group of subcortical nuclei located bilaterally in the inferior cerebrum, diencephalon, 

and midbrain. They appear in a fifth week of development in the floor of the 

telencephalic vesicle (FitzGerald and FitzGerald, 1994; Carlson, 2004). The basal 

ganglia play a prominent role in the planning, initiation and execution of movement 

(Albin et al., 1989). 

The term basal ganglia is currently used to describe the large nuclear masses in the 

deep forebrain and midbrain that (a) share a similar motor function and (b) which are 

connected to the cerebral cortex and thalamus by various loops. These include the 

caudate, putamen, globus pallidus, subthalamic nucleus, and substantia nigra. It is 

convenient to describe these components initially before discussing their functional 

circuitry.  

 

1.2.1 Compartmental organization of the  basal ganglia 

 

Two levels of compartmental organization have been deduced by using techniques 

such as retrograde tracing, histochemistry, immunohistochemistry, and 

histopharmacology. 

Striatal patch-matrix systems have been demonstrated by specific neurochemical 

markers. The patch compartment is defined by areas of dense µ-opiate receptor 

binding (Herkenham and Pert, 1981), and by low expression of acetylcholinesterase 

(Butcher and Hodge, 1976). Graybiel and Ragsdale (1978) was used the term 

striosome to describe these areas of low cholinesterase activity. Five-nucleotidase was 
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also found to be an excellent marker for striosome in the rat (Schoen and Graybiel, 

1992).          

The striatal matrix compartment can be detected by positive staining for the calcium 

binding protein calbindin, and by the somatostatin immunoreactive positive fibers 

(Gerfen and Baimbridge, 1985).  Patch-matrix organization is mainly found in the 

caudate-putamen, extending into the dorsolateral and ventromedial areas.   

In the rat, the compartmental organization of cortico-striatal afferent was related to 

their lamina of origin rather than to their cortical areas of origin (Gerfen, 1989). 

The striatal medium spiny neurons can be arranged into separate populations to form 

patch and matrix compartments that have their connections related to the laminae 

(Gerfen, 1989) and regional (Donoghue and Herkenham, 1986) organization of the 

cortex, and they can be also categorized by their projections to the globus pallidus, 

entopeduncular nucleus (EPN) and substantia nigra, with two type of neurons: the 

striatopallidal neurons within the globus pallidus, and the striatonigral neurons 

extending to EPN and substantia nigra (Parent et al., 1984). 

Striatopallidal projections to many cholinergic and substance P-expressing areas of 

the ventral pallidum arise mainly from patch areas, whereas matrix neurons tend to 

project mainly to the GABAergic enkephalin areas of the dorsal pallidum (globus 

pallidus) (Gerfen, 1992). 

In the rat both types of neurons project to the substantia nigra, patch neurons project 

to the dopaminergic cells in the SNC, and cell islands in SNR, whereas matrix 

neurons project to areas containing GABAergic neurons in the SNR (Gerfen, 1984; 

1985). 
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1.2.2 Striatum 

 

The striatum or neostriatum is the largest component of the basal ganglia and the 

major receiving area (Parent, 1990). It receives a glutamatergic projections from the 

whole cerebral cortex (McGeorge and Faull, 1989), from the intralaminar nuclei of 

the thalamus (Berendse and Groenewegen, 1990), and from dopaminergic neuron 

from substantia nigra pars compacta (SNC). It receives smaller projections from the 

globus pallidus (GP), the subthalamic nucleus (STN), the serotonergic dorsal raphe 

nucleus and the pendunculopontine tegmental nucleus (PPN) (Parent, 1990). 

The striatum sends projections to the globus pallidus (GP) and substantia nigra pars 

reticulata (SNR) (Parent and Hazrati, 1995). 

The striatum generally refers to both the putamen and caudate nucleus that are 

separated by the internal capsule in primates but united in rodents. 

In man, the caudate nucleus is a large C-shaped mass of gray matter that form the 

floor of the lateral ventricle, lies lateral to the thalamus, and lies medial to the internal 

capsule. It is divided into a head that is large, rounded and forms the lateral wall of the 

anterior horn of the lateral ventricle, and a body and tail that terminates in the 

amygdaloid nucleus.  

The putamen is a large, dark mass of gray matter and both putamen and globus 

pallidus called the lentiform nucleus. 

The striatum is composed of a large number of medium spiny projection neurons, 

which use γ-amino-butyric acid (GABA) as a neurotransmitter (Kita and Kitai, 1988; 

Parent and Hazrati, 1995a) and a small number of large and medium sized 

interneurons (Wilson and Groves, 1980). 
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1.2.3 Globus pallidus 

 

The globus pallidus represents the principal efferent side of the basal ganglia. 

The globus pallidus (GP) can be subdivided into internal (medial) and external 

(lateral) segments, separated by an internal lamina of myelinated fibers. The GP also 

contains a ventral subcommissural portion termed the ventral pallidum (GPv) 

(Heimer et al., 1982). 

In rodents, the entopeduncular nucleus (EPN) represents the internal segment of 

globus pallidus (Morgan, 1927). The GP receives afferent projections from the 

striatum and subthalamic nucleus and it sends efferent projections to the thalamus, 

subthalamic nucleus, SN and pedunculopontine nucleus (Parent and Hazrati, 

1995b). The principal neurons of GP are large cells with long, thick and generally 

smooth dendrites  (Fox et al., 1974; DiFiglia et al., 1982) and they use γ-

aminobutyric acid (GABA) as a neurotransmitter (Oertel and Mugnaini, 1984). 

 

1.2.4 Substantia nigra 

 

The substantia nigra (SN) is a layer of grey matter containing numerous, deeply 

pigmented, multipolar nerve cells and extending throughout the whole length of the 

midbrain, (i.e from the rostral end of the pons to the subthalamic region) and it is 

considered part of the basal ganglia due to its close ties with the striatum. In sections 

of the midbrain in human, it is easily recognized by the black pigment from which its 

name derives. It is semilunar on transverse section; its concave surface being directed 

toward the tegmentum and its convex surface direct toward the crus cerebri; it is 

thicker medially than laterally. 
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Classically, the SN has been divided into (a) a dorsal pars compacta (SNC) composed 

of numerous medium-sized dopaminergic neurons (A9), containing large amounts of 

melanin pigament–with a few non-dopaminergic neurons; and (b) a ventral pars 

reticulata (SNR) composed of fewer neurons, some of which are also dopaminergic 

and contain small amount of melanin pigament (Fallon and Loughlin, 1995), though 

the majority are GABAergic neurons (Oertel and Mugnaini, 1984; Parent, 1990). 

 A lateral extension of the SNC is called the pars lateralis (SNL). It is insignificant in 

man (Huber and Crosby, 1933) and has a variety of  neurons, some of which are 

dopaminergic (Fallon and Loughlin, 1995).  

The SN has extensive connections with the cortex, spinal cord, hypothalamus, and 

basal ganglia (Table 1.1). Medial to the substantia nigra is the ventral tegmental area 

(VTA) composed of dopaminergic neurons (A10) and non- dopaminergic neurons 

(Fallon and Loughlin, 1985;1995): their terminations are shown in Table 1.1. 
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 INPUT OUTPUT 

SNC  ● Striatum (GABAergic) (human, 

primate,  rat) 

 
● Globus pallidus  (GABAergic) 

(human, primate,  rat) 

 
● SNR (GABAergic) (rat) 

 

● Cerebral cortex (glutamatergic) 
(human, primate,  rat)  

 

● Subthalamic nucleus (glutamatergic) 
(human, primate,  rat) 

 

● Pedunculopontine nucleus 
(glutamatergic and Cholinergic) (human, 

primate,  rat)  

 
● Dorsal raphe (serotonergic) (human, 

primate,  rat) 

 

● Striatum  (A9 dopaminergic) (mainly) 

(human, primate,  rat) 

 
● Subthalamic nucleus  (A9) (sparse) 

((human, primate,  rat) 

 
● Globus pallidus  (A9) (sparse) 

(human, primate,  rat) 

 
● Amygdala (dopaminergic) (a few) 

(human, primate,  rat)  

 
● Cerebral cortex (dopaminergic) 

(a few) (rat) 

 
● Striatum (GABAergic) (a few) (rat) 

 

SNR  ● Striatum (GABAergic) (human, 
primate,  rat) 

 
● Globus pallidus (GABAergic) (rat) 

 

● Accumbens nucleus (GABAergic) 
(rat) 

 

● Ventral pallidum (GABAergic) (rat) 
 

● Subthalamic nucleus (glutamatergic) 

(rat) 
 

● Cerebral cortex (glutamatergic) (rat) 

 
● Amygdala (rat) 

 

● Striatum (A9 dopaminergic) (a few) 
(rat) 

 
● VA-VL thalamus (GABAergic) 

(human, primate,  rat) 

 
● Superior colliculus (GABAergic) 

(human, primate,  rat) 

 
● Pedunculopontine nucleus 

(GABAergic) (human, primate,  rat) 

 
 

SNL  ● Amygdala (rat) ● Striatum (A9 dopaminergic) (a few) 

(rat) 
 

● Amygdala (dopaminergic) (rat) 

 
● Inferior colliculus (non-dopaminergic 

(rat) 

 
 

 

VTA ● Accumbens nucleus (GABAergic) 
(rat) 

 

● Locus coeruleus (noradrenergic) (rat) 
 

● Dorsal raphe (serotonergic) ((human, 

primate,  rat) 
 

 

● Ventral striatum (A10 dopaminergic) 
((human, primate,  rat) 

 

● Amygdala (A10) (human, primate,  
rat) 

 

● Cerebral cortex (A10) (rat) 
 

● Visual cortex  (non-dopaminergic) 

(rat) 
 

● Pedunculopontine nucleus (non-

dopaminergic) (rat) 
 

 

Table 1.1 : Inputs and outputs connections of the substantia nigra 

(SN) and the ventral tegmental area (VTA). (from Fallon and Loughlin, 

1985;1995; Flaherty and Graybiel, 1994; Blandini et al., 2000). 
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1.2.5 The subthalamic nucleus 

 

The subthalamic nucleus (STN) is a small, densely populated and highly vascularized 

structure located dorsomedial to the junction between the crus cerebri and the internal 

capsule, ventral to the thalamus. The STN receives projections from both the frontal 

cortex and GPe and sends projections back to GPe and GPi. 

The STN consists of a multitude of medium-sized and densely packed neurons with 

long, sparsely spiny dendrites radiating from the cell body (Chang et al., 1983; Kita 

et al., 1983). The subthalamic nucleus is the only glutamatergic nucleus of the basal 

ganglia circuit (Smith and Parent, 1988) and most of their neurons are projection 

neurons (Van der Kooy and Hattori, 1980a). 

 

1.3 Basal ganglia circuitry (See figure 1.1) 
 

Early studies using autoradiography suggested that cortical afferents arising from the 

somatomotor cortex preferentially innervate the putamen (Kunzle, 1977), while 

association cortex afferents innervate the caudate nucleus (Goldman and Nauta, 

1977). Different areas of cerebral cortex reach the striatum by excitatory 

glutamatergic projection (Young et al., 1981). The subthalamic nucleus is the only 

other structure in the basal ganglia receiving direct afferents from the premotor and 

motor cortices (Afsharpour, 1985; Stanton et al., 1988). The basal ganglia are not 

isolated structures but form part of neural circuits organized in parallel called cortico-

striato-thalamo-cortical loops. Five such loops have been described (Alexander and 

Crutcher., 1990). 
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Figure 1.1  Basal ganglia circuitry in normal people, showing the direct 

and indirect pathways of basal ganglia. Excitatory projections are shown in green; 

inhibitory projections are shown blue; dopaminergic nigrostriatal projections are shown 

red. (CM/PF: centromedian/farafasicular nucleus of thalamus; D1: dopamine receptor 

1; D2: dopamine receptor 2; DA: dopamine; Enk: enkephalin; GABA: gamma-

aminobutyric acid; GLU: glutamate; Gpe: external segment of globus pallidus; Gpi: 

internal segment of globus pallidus; SNC: substantia nigra pars compacta; SNR: 

substantia nigra pars reticulata; STN: subthalamic nucleus; SP: substance P; VL: 

ventrolateral thalamus) (Partially adapted from Alexander and Crutcher, 1990; 

Blandini et al., 2000). 
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1.3.1 Motor circuit or loop 

The motor circuit is the loop most related to general movement. In the motor circuit 

information is somatotopically organized into distinct zones representing the leg, face 

and arm (Kunzle, 1975; Crutcher and DeLong, 1984; Alexander and DeLong, 

1985). The premotor cortex, the supplementary motor area and the somatosensory 

cortex all send excitatory information to the putamen (Kunzle, 1977; Selemon and 

Goldman-Rakic, 1985), which projects topographically to specific areas of the 

internal and external segment of globus pallidus and the substantia nigra pars 

reticulata (Johnson and Rosvold, 1971; Parent et al., 1984). Topographic 

projections reach thalamic nuclei including nucleus ventralis lateralis pars oralis, 

lateral nucleus ventralis anterior pars parvocellularis, lateral nucleus ventralis anterior 

pars magnocellularis and the centromedian nucleus (DeVito and Anderson 1982; 

Kinsky et al., 1985). The motor loop ends with thalamo-cortical projections to the 

premotor and the supplementary motor cortical area (Wiesendanger and 

Wiesendanger, 1985; Matelli et al., 1989). There are two main pathways through the 

basal ganglia.  

a) The direct pathway is an inhibitory efferent pathway which projects from 

the striatum to the output nuclei (the internal segment of globus pallidus and 

the substantia nigra pars reticulata). The direct pathway contains GABA, 

substance P (Albin et al., 1989), and dynorphin (Vincent et al., 1982) and 

expressed D1 dopamine receptors.  

b)  The indirect pathway projects from the striatum to the external segment of 

the globus pallidus; this in turn projects to the subthalamic nucleus through 

purely GABAergic neurons (Albin et al., 1989; Hamani et al., 2004) and 
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from the subthalamic nucleus to the output nuclei through an excitatory 

glutamatergic projection (Nakanishi et al., 1987; Smith and Parent, 1988). 

The direct and indirect pathways have opposite effects on the output nuclei (Their 

connections to the thalamus) via an inhibitory GABAergic pathway (Penney and 

Young, 1981; Chevalier et al., 1985) (Figure 1.1).                

 

 

1.4 Extrinsic monoaminergic system   
 

Monoaminergic pathways which originate in the midbrain project rostrally and make 

contact with key components of basal ganglia loops or circuits. Even though they are 

not part of the loop, they may exert a considerable effect on its activity and 

disturbances in their input underlie common motor disorders.        

 

1.4.1 Dopamine 

Dopamine (DA) is a member of the catecholamine family and was found in the brain 

in 1959. It has many functions around the body but has an especially important role as 

a neurotransmitter in the brain. 

The existence of dopaminergic innervation within the brain was suggested by 

biochemical studies (Thierry et al., 1973 a,b) and confirmed by anatomical work 

utilizing glyoxylic acid-induced histofluorescence (Lindvall and Bjorklund, 1974 

a,b), histofluorescence in combination with tract-tracing (Tork and Turner, 1981), 

autoradiography (Descarries et al., 1987), immunohistochemistry against the 

synthesizing enzyme tyrosine hydroxylase (TH) (Berger et al., 1985) and 
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immunohistochemistry with antibodies against dopamine (DA); the problem of 

distinguishing between DA and NA in these studies is acknowledged (Papadopoulos 

et al., 1989).  

The amino acid tyrosine is the starting point for dopamine synthesis. It is converted 

into dihydroxyphenyalanine (dopa) by the rate-limiting enzyme tyrosine hydroxylase, 

after which dopa can be converted to dopamine by the enzyme dopa decarboxylase. 

Dopamine synthesis is modulated by the end product inhibition of tyrosine 

hydroxylase (TH) through negative feedback; in addition, depolarization of 

dopaminergic cells results in TH activation, thus maintaing the balance between DA 

synthesis and release (Joh et al., 1978) (Figure 1.2). 

Dopamine can be taken back up into presynaptic terminals via the dopamine 

transporter (Hitri et al 1994), or catabolized by monoamine oxidase (MAO) to 3,4,-

dihydroxyphenylacetic acid or to 3-methoxytyramine by Catechol-O-

methyltransferase (COMT). 

 Dopamine receptors can be divided into five subtypes (D1 to D5) all of which belong 

to the G-protein coupled type (for review, see Wolfarth and Ossowska, (1995). 

 The vast majority of all the brain dopamine (some 80%) is found in the corpus 

striatum (Coyle and Snyder, 1981). 

The midbrain dopaminergic neurons form three groups of cells A8, A9, and A10 and 

three major dopaminergic pathways arise from them.  This classification groups the 

cells according to the transmitter (class “A”  cells contain dopamine or norepinephrine 

while class “B” contain serotonin) while numbers (e.g. 8,9,10) represent regions: thus, 

A9 is a group of cells containing dopamine in the SNC (Dahlstrom and Fuxe, 1964). 
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Figure 1.2  Biosynthetic pathway of catecholamine synthesis.  The 

enzymes needed for this pathway are shown in yellow rectangles. The 

feedback regulation by the end product on TH is shown in red. (TH 

requires cofactors  pteridine or tetrahydrobiopterin (BH4) and molecular 

oxygen and Fe
+2

) partially adapted from Kumer and Vrana (1996).    
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The A9 cell group in the SNC, the A8 cell group in the retrorubral region, and the 

A10 cell group in the medial region of the ventral tegmental area are the main sources 

of dopamine for the ventral striatum, cerebral cortex and limbic system although these  

regions also receive some connections from the medial SNC (Fallon and Loughlin, 

1995). 

The most important dopaminergic pathways are the nigrostriatal, mesolimbic, and 

mesocortical pathways. These all originate from the dopaminergic cells (A9, A8, and 

A10) so, neurons of the A9 and A8 groups supply the nigrostriatal system whereas 

A10 supplies the mesolimbic and mesocortical systems (Prensa and Parent, 2001) 

(see Table 1.2). 

 

Cell groups Regions Pathways Targets 

A8 Retrorubral field (RRF) Mesostriatal 

Mesolimbic 

Caudate-putamen (human, 

primate, rat) 

 

Amygdala (human, primate,  rat) 

 

A9 SNC ventral tier 

(lateral) 

Nigrostriatal Caudal putamen (striosome) 

(human) 

A9 SNC ventral tier 

(medial) 

 

Nigrostriatal Dorsal caudate nucleus 

(human) 

A9 SNC dorsal tier 

 

Nigrostriatal Rostral putamen (human) 

Caudate nucleus (matrix) 

(human) 

 

A9 SNR Nigrostriatal Caudate-putamen (human, 

primate,  rat) 

 

A9 SNL Nigrostriatal 

Mesolimbic 

Caudate-putamen (rat) 

Amygdala (rat) 

A10 VTA Mesolimbic 

Mesocortical 

Ventral striatum (human, 

primate,  rat) 

 

Amygdala (human, primate,  rat) 

 

Prefrontal/Anterior cingulate 

cortices (rat) 

Table 1.2: Dopaminergic cell groups in the midbrain and their 

targets. (from Dahlstrom and Fuxe, 1964; Fallon and Loughlin, 1985;1995; 

Gibb and Lees, 1994; Prensa and Parent, 2001). 
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1.4.2 Dopamine interactions 

Dopamine interacts with many other neurotransmitters in the basal ganglia circuitry. 

In particular, the interaction of dopamine with glutamate has an important excitatory 

effect on the neostriatum (Shimizu et al., 1990; Garcia-Munoz et al., 1991) from the 

converging of glutamatergic and dopaminergic afferents onto the same striatal GABA 

neuron (Bouyer et al., 1984).  Changes in dopamine and other transmitters during cell 

stress may be due to a global response, or may signal a true interaction. Thus, 

ischemia and hypoxia have been found to produce an increase in the concentration of 

dopamine, glutamate and aspartate in the neostriatum of rat (Globus et al., 1988; 

Damsma et al., 1990; Akiyama et al., 1991), while dopamine depletion and 

glutamatergic receptor blockade have both been shown to attenuate neuronal death 

following hypoxic and ischemic injury (Weinberger et al., 1985; Gill et al., 1987; 

Clemens and Phebus, 1988). Conversely, increasing dopamine concentration may 

lead to the release of glutamate and aspartate as a toxic cascade (Barbeito et al., 

1989; Carlsson and Carlsson, 1990), while the inhibitory amino acid GABA and 

taurine are thought to exert a protective role during a hypoxic and ischemic insult 

(Sternau et al., 1989).    

There are also important interactions between acetylcholine and dopamine. The 

striatum has very high expression of acetylcholine receptors and enzymes needed for 

the synthesis or metabolism of acetylcholine such as Choline acetyltransferase and 

acetylcholinesterase within pedunculopontine afferents and cholinergic interneurons 

in the striatum. In normal conditions there is a balance between the inhibition of 

acetylcholine release by dopamine receptor D2 and excitation of it by dopamine 

receptor D1 (Jabbari and Pazdan, 2005). 
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A further important  interaction is between DA and 5-HT. There are projections from 

the serotonergic dorsal raphe nucleus to dopaminergic (DA) cell bodies and dendrites 

in the substantia nigra, ventral tegmental area and striatum (Van der Kooy and 

Hattori, 1980b; Steinbusch et al., 1981; Herve et al., 1987; Nedergaard et al., 

1988; Corvaja et al., 1993).  Moreover, dopamine from the SN and VTA may 

increase 5-HT release in the DRN (Ferre and Arigas, 1993). Other studies show that 

dopamine release is facilitated by serotonin (Benloucif and Galloway, 1991) and the 

regulation of serotonin in the DRN is mediated by dopamine D2 receptor (Ferre et 

al., 1994).     

 

1.4.3 Serotonin 

The midbrain raphe nuclei came to attention in the time of Cajal who described the 

cells in that area as large multipolar neurons with uncertain projections. 5-HT was 

considered as a CNS neurotransmitter when it found in significant but varying 

quantities in different regions of brain. 5-HT cell bodies and their axon terminals have 

been visualized by different methods including autoradiography using light 

microscopy (Conrad et al., 1974; Bobillier et al., 1976; 1979; Azmitia and Segal, 

1978; Moore et al., 1978), electron microscopy (Aghajanian and Bloom, 1967; 

Descarries et al., 1990), histochemistry (Ungerstedt, 1971) or 

immunohistochemistry with antibodies against 5-HT (Steinbusch et al., 1978; Lidov 

et al., 1980; Lidov and Molliver, 1982a,b). 

The 5-HT cell bodies in the brain are located in the raphe nuclei groups in the brain 

stem (Morgan et al., 1987; Jacobs and Azmitia, 1992; Chojnacka-Wojcik, 1995). 

The areas are classified into nine regions (B1-B9) (Dahlstrom and Fuxe, 1964; 



Chapter 1                                                                                      General Introduction 

 

18 

Steinbusch, 1981; Tork, 1990). Serotonin receptors are currently classified into 7 

types (5HT1-5HT7) (Boess and Martin, 1994; Wesolowska, 2002). Some of these 

project to the striatum e.g. dorsal raphe nucleus (see Table 1.3) (Steinbusch et al., 

1981; Vertes, 1991).  

 

Midbrain raphe nuclei Cell groups Targets 

 

Dorsal raphe nucleus 

 

B6 and B7 

       ● Striatum 

       ● Amygdala 

       ● Locus coeruleus 

 

 

Median raphe nucleus 

 

B5 and B8 

       ● Hippocampus 

      ● Anterior hypothalamus 

 ● Mammillary bodies 

 

Table 1.3: Serotonergic cell groups in the midbrain raphe nuclei and 

their targets. (from Dahlstrom and Fuxe, 1964; Azmitia and Segal, 1978; Imai 

et al., 1986; Jacobs and Azmitia, 1992; McQuade and Sharp, 1997). 

1.5 Neuropathology of neurodegenerative diseases 

Neurodegenerative diseases are characterized by the slowly progressive loss of 

neurological function without obvious causes such as infection, neoplasms, localized 

vascular disease or toxicity (Maimone et al., 2001; Bossy-Wetzel et al., 2004). 

Neurodegenerative diseases usually affect older age groups, although the young may 

be affected. Many neurodegenerative diseases are sporadic and a few are inherited. 

The specific clinical characteristics of any particular neurodegenerative disease can 

stem from the anatomical location of the affected region and the pathological changes 

occurring.  Two major classes of neurodegenerative disorder based on biochemical 

and structural abnormalities in certain molecules such as tau or α-synuclein and are  

known as tauopathies and synucleinopathies. Tau is a microtubule-associated 

protein which plays an important role in microtubule assembly and stabilization 

(Weingarten et al., 1975; Cleveland et al., 1977) and it has six different isoforms 
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(Buee et al., 2000; Shahani and Brandt, 2002). Deposition of hyperphosphorylated 

tau is a characteristic feature of neurofibrillary tangles found in Alzheimer’s disease 

(Alonso et al., 2001; Geschwind, 2003; Klucken et al., 2003). 

Filamentous tau pathology is also characteristic of other disorders such as Pick’s 

disease, Progressive Supranuclear palsy, Corticobasal degeneration, familial front 

temporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) 

(Spilliantini and Goedert, 1998). Synucleinopathies are a group of disorders 

characterised by α-synuclein lesions including Parkinson’s disease, Alzheimer’s 

disease, dementia with Lewy bodies, MSA, Down syndrome, Hallervorden-Spatz 

disease and Prion disease (Trojanowski and Lee, 1999).  

1.5.1 Abnormal protein aggregation and neurodegenerative diseases 

Normal cellular functions may lead to the production of significant levels of abnormal 

(e.g. misfolded) proteins (Sherman and Goldberg, 2001; Goldberg, 2003; 

McNaught and Olanow, 2006). Furthermore, within neurons, auto-oxidation of 

neurotransmitters such as dopamine can produce free radicals that can damage 

proteins (McNaught and Olanow, 2006). Abnormal protein aggregations interfere 

with intracellular processes and are frequently associated with neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s diseases (Agorogiannis et al., 2004; 

McNaught and Olanow, 2006). A wide variety proteins implicated in the pathology 

of neurodegenerative diseases and aggregated in inclusions are shown in table 1.4. 

The aggregations known as Lewy bodies contain may proteins, including α-synuclein 

(Zhou et al., 2004) (See table 1.4).    
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Protein Function Disease genes Protein deposits Disease 

14-3-3 Chaperone-like function Associate with α–Syn 

(10) 

 α–Synuclein  inclusion α - Synucleinopathies 

Aββββ (2) Unknown APP, Presenilin1.2 

(8) 

Associate with AS 

and LB (10) 

Extracellular plaques AD 

Ataxin1 Unknown CAG repeat 

expansion (8) 

Inclusion Spinocerebellar ataxia 

type1 

Androgen 

receptor 

Allow body respond to 

androgens 

CAG repeat 

expansion (8) 

Inclusion Spinal and bulbar 

muscular atrophy 

Atrophin 1 Unknown CAG repeat 

expansion (8) 

Inclusion Dentatorubral 

pallidoluysian 

Bc12-antagonist 

of cell death 

(BAD) 

Regulate cell death Associate with  α–

Syn (10) 

α–Synuclein  inclusion α -Synucleinopathies 

Calmodulin 

(CaM) 

Calcium binding protein Associate with α–Syn  

(10) 

α–Synuclein  inclusion α -Synucleinopathies 

Calcium/Calmod

ulin-dependent 

protein kinase 

Modulated the cellular 

response to calcium 

Associate with LB 

(10) 

LB PD 

Clusterin/apolipo

-protein J (6) 

Cell-aggregating factor Associate with LB 

(10) 

LB AD 

Copper/ zinc-

SOD 

Scavenging free-radicals Associate with LB 

(10) 

LB PD 

Cytochrome 

oxidase 

Respiratory chains 

enzyme 

Associate with α–Syn 

(10) 

α–Synuclein  inclusion α -Synucleinopathies 

Cdk5 (4) Phosphorylation a 

molecular component of 

LB 

Associate with LB 

(10) 

LB AD 

DJ-1 (3) Involved in oxidative 

stress response 

PARK7 LB FPD (autosomal 

recessive) 

Plasma 

membrane 

dopamine 

transporter 

(DAT) 

Terminating dopamine 

by reuptake it into 

presynaptic neurons 

Associate with α–Syn 

(10) 

 α–Synuclein  inclusion α -Synucleinopathies 

Extracellular 

signal-regulated 

protein kinases 

(ERKs) 

Involve in many cellular 

function 

Associate with α–Syn 

(10) 

α–Synuclein  inclusion α -Synucleinopathies 

Non-selenium 

glutathione 

peroxidase 

Antioxidant  enzyme Associate with LB 

(10) 

LB PD 

Heme oxygenise Cellular stress protein Associate with LB 

(10) 

LB PD 

Heat shock 

proteins 

Chaperone-like function Both (α–Syn +LB) 

(10) 

LB+ α–Syn  inclusion α -Synucleinopathies 

Huntingtin  Unknown CAG repeat 

expansion (8) 

Huntington inclusion Huntington disease 

LRRK2 Unknown PARK8 LB FPD (autosomal 

dominant) 

Lysosomes 

associate proteins 

Markers of lysosomes Associate with LB 

(10) 

LB PD 

Microtubule-

associated 

protein 1 

(MAP1A, B) 

αααα-SN binding proteins Associate with  α–

Syn (10) 

α–Synuclein  inclusion α -Synucleinopathies 

Microtubule-

associated 

protein 2(MAP2) 

Stabilize microtubule 

assembly 

Associate with LB 

(10) 

LB PD 

Mitogen-

activated protein 

kinases (MARKs) 

Stress response, 

Receptor signalling 

activity 

Both (α–Syn +LB) 

(10) 

LB+ α–Syn  inclusion α -Synucleinopathies 

Myotonin kinase Unknown CAG repeat 

expansion (8) 

Inclusion Myotonic Dystrophy 

Neurofilaments Cytoskeleton of neuron  Associate with LB 

(10) 

LB PD 

P62 Ubiquitin-binding 

protein 

Both (α–Syn +LB) 

(10) 

LB+ α–Syn  inclusion α -Synucleinopathies 

 

 

Parkin 

 

 

Enzyme E3 ligase in UPS 

  

 

PARK2 

 

 

LB+ α–Syn  inclusion 

No LB 

 

PD 

FPD (autosomal 

recessive) 
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Protein kinase C 

isoforms 

Receptor signalling 

activity 

Associate with  α–

Syn (10) 

α–Synuclein  inclusion α -Synucleinopathies 

Prion protein 

(PrP) 

Unknown Mutation in PrP (8) Prion plaque Prion disease 

Phospholipase D2 Enzyme involve in 

phosphatidic acid 

Associate with  α–

Syn (10) 

α–Synuclein  inclusion α -Synucleinopathies 

Proteasome 

subunits 

Proteasome possess the 

proteolytic site and 

stabilized the 

proteasome complex  

Associate with LB 

(10) 

LB PD 

Rab5A Neuronal endocytosis Associate with α–Syn 

(10) 

 α–Synuclein  inclusion α -Synucleinopathies 

Septin Involve in cytokinesis 

and exocytosis 

Associate with LB 

(10) 

LB PD 

Superoxide 

dismutase 

1(SOD1) 

Enzyme calayzes the 

conversion of toxic 

superoxide radicals to 

hydrogen peroxide and 

O2 

Mutation in SOD1 

(8) 

Bunina bodies Familial amyotrophic 

lateral sclerosis 

Synphilin-1 (9) αααα-SN binding proteins Both(α–Syn +LB) 

(10) 

LB+ α–Syn  inclusion α -Synucleinopathies 

TAT-binding 

protein1 (5) 

Proteosome activator Associate with  α–

Syn (10) 

 α–Synuclein  inclusion α -Synucleinopathies 

Tau Microtubule-associated 

protein that stabilize 

neuronal microtubules 

Tau gene mutation  

Associate with α–Syn 

(10)  

Cytoplasmic tangles AD+Tauopathies 

Torsin A (7) Chaperone-like function Associate with LB 

(10) 

LB PD 

Tyrosine 

hydroxylase 

Catalyse the first step in 

biosynthesis of 

catecholamine 

Associate with α–Syn  

(10) 

 α–Synuclein  inclusion α -Synucleinopathies 

Tubulin (1) Accelerate AS 

aggregation 

Both (α–Syn +LB) 

(10) 

LB+ α–Syn  inclusion α -Synucleinopathies 

Ubiquitin 

carboxyl-

terminal 

hydrolase LI 

(UCH-L1) 

De-ubiquitinating 

Enzyme 

 PARK5 LB FPD (autosomal 

dominant) 

 

Table 1.4: Proteins that aggregates in inclusions in neurodegenerative 

diseases, in Lewy bodies in Parkinson disease and proteins that associated with 

α-synuclein (AD: Alzheimer’s disease; α-Syn: alpha-synuclein; FPD; familial 

Parkinson ‘disease; LB: Lewy body; PD: Parkinson’s disease; UPS: Ubiquitin-

proteasome system). (1) Abdul Alim et al. (2002); (2) Arai  et al. (1992); (3) 

Bonifati et al. (2003); (4) Brion et al. (1995); (5) Ghee et al. (2000); (6) Sasaki  et 

al. (2002); (7) Shashidharan et al. (2000); (8) Taylor et al. (2002); (9) 

Wakabayashi et al. (2000); (10) Zhou et al. (2004). 
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1.6 Movement disorders and their neuropathology 

In this introduction I am chiefly concerned with neurodegenerative conditions of 

aminergic neurons and the basal ganglia which lead to movement disorders. These 

include:    

 

1.6.1 Multiple System Atrophy 

The term multiple system atrophy (MSA) was introduced by Graham and 

Oppenheimer (1969) to describe a neurodegenerative disorder occurring sporadically 

and characterized by Parkinsonism, cerebellar dysfunction, and autonomic 

insufficiency (Wenning et al., 1995; Kaufmann, 1998). 

Neuronal loss and gliosis affect the substantia nigra, putamen, locus coeruleus, 

pontine nuclei, cerebellar Purkinje cells, inferior olive, intermediolateral columns of 

spinal cord and the dorsal motor nucleus of the vagus. There is evidence of loss of 

dopaminergic neurons in SNC (confirmed by the loss of pigment, but without Lewy 

bodies) as well as loss of dopamine and it’s synthetic enzyme TH; in addition, there is 

loss of  noradrenergic neurons in the locus ceruleus and adrenergic neurons in the 

rostral ventrolateral medulla (Burn and Jaros, 2001; Rehman, 2001). The 

characteristic neuropathology of MSA is the presence of many cytoplasmic inclusions 

in glia (glial cytoplasmic inclusion) and, later, in neurons in the absence of Lewy 

bodies (Lantos and Papp, 1994). Immunocytochemistry shows that glial cytoplasmic 

inclusions are ubiquitin, tau and alpha-synuclein positive (Gai et al., 1998; Lantos, 

1998; Terni et al., 2007). 

Data from PD brain banks showed that up to 10% of  patients diagnosed with PD turn 

out to have MSA (Colosimo et al., 1995; Kaufmann., 1998). 
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1.6.2 Progressive Supranuclear Palsy 

Progressive Supranucelear palsy (PSP) is commonly known as Steele-Richardson 

syndrome and was described by Steele et al (1964). 

Postural instability, gaze palsy, Parkinsonism and subcortical dementia clinically 

characterize PSP. The degeneration is principally in the brain stem, midbrain and 

basal ganglia. The main lesions are in the substantia nigra, globus pallidus, 

subthalamic nucleus and pons (Litvan, 1996). The major neurons affected are the 

dopaminergic nigrostriatal neurons in the SNC (particularly the ventromedial portion) 

and decreases in dopamine and homovanillic acid levels in the striatum; the 

mesolimbic and mesocortical systems are not affected. There is loss of the 

postsynaptic dopamine D2 receptors in basal ganglia, GABAergic neurons in the 

striatum and the cholinergic neurons in brainstem and other areas of the brain 

(Ruberg et al., 1985; Lowe et al., 1997; Rehman, 2000). Pathological ultrastructural 

changes centre around neurofibrillary degeneration, particularly the deposition of 

hyperphosphorylated tau protein as neurofibrillary tangles (Schmidt et al., 1996). The 

treatment of PSP with L-dopa has little effect due to loss of the postsynaptic 

dopamine D2 receptors in basal ganglia  (Collins et al., 1995; Lowe et al., 1997). 

 

1.6.3 Corticobasal degeneration 

Corticobasal degeneration (CBD) is a rare and slowly progressive neurological 

disease, first described by Rebeiz (1968). CBD is characterized clinically by an 

asymmetrical akinetic-rigid syndrome  associated with cognitive problems (apraxia 

and aphasia), extrapyramidal motor dysfunction (rigidity and dystonia) and moderate 

dementia late in the course of the disease (Rinne et al., 1994). The neuropathological 
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changes in CBD include gliosis, nerve cell loss and atrophy of the posterior frontal or 

parietal lobes of the cerebral cortex with the presence of swollen, achromatic tau 

positive Pick-like cells (Dickson et al., 2000) and loss of pigmented nigral neurons in 

the lateral portion of the SN; Lewy bodies are absent (Rebeiz et al., 1968; Gibb et al., 

1989; Riley et al., 1990; Lowe et al., 1997).   

 

1.6.4 Huntington’s disease 

Huntington’s disease (HD) is a hyperkinetic, autosomal dominant inherited disorder 

characterized by progressive chorea, rigidity, dystonia, dementia, cognitive deficits 

and psychological disturbance. Huntington’s disease takes its name from the 

American physician George Huntington who described it in 1872. The age of onset is 

normally 30 to 45, but the extreme range is 2-80 years. The mutation which is 

responsible for HD is an expanded polyglutamine repeat (CAG) within exon 1 of the 

gene in chromosome 4 that codes for the Huntingtin protein (Hedreen and Folstein, 

1995; Reddy et al., 1999; Myers, 2004). 

Neuropathological changes in HD include degeneration of the caudate and putamen 

(Vonsattel et al., 1985) and selective loss of GABA-and enkephalin-positive medium 

spiny neurons that project from the striatum to the external segment of the globus 

pallidus (Perry et al., 1973; Sapp et al., 1995; Mitchell et al., 1999) (Figure 1.3).  

Some studies also report a loss in both nigrostriatal and in nonpigmented cells in the 

substantia nigra (Oyanagi et al., 1989; Bohnen et al., 2000). Dopamine levels have 

been found to be normal or increased, whereas homovanillic acid was found to be low 

(Bird and Iversen, 1974; Spokes, 1980; Kish et al., 1987).  
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Figure 1.3: Basal ganglia circuitry in Huntington’s disease, showing the 

direct and indirect pathways of the basal ganglia. Excitatory projections are shown in 

green; inhibitory projections are shown in blue; dopaminergic nigrostriatal projections 

are in shown red. Differences in the thickness of arrows indicates the relative degree of 

activation.  (CM/PF: centromedian/farafasicular nucleus of thalamus; D1: dopamine 

receptor 1; D2: dopamine receptor 2; DA: dopamine; Enk: enkephalin; GABA: gamma-

aminobutyric acid; GLU: glutamate; Gpe: external segment of globus pallidus; Gpi: 

internal segment of globus pallidus; SNC: substantia nigra pars compacta; SNR: 

substantia nigra pars reticulata; STN: subthalamic nucleus; SP: substance P; VL: 

ventrolateral thalamus) (Partially adapted from DeLong, 1990). 
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A major ultrastructural pathological change is the aggregation of inclusions in neurons 

of the striatum and cortex (Roizin et al., 1974; DiFiglia et al., 1997). These 

inclusions contain aggregations of Huntingtin protein and ubiquitin (Davies et al., 

1997; DiFiglia et al., 1997). The mechanisms of neuronal degeneration resulting from 

the mutation in Huntingtin protein are poorly understand and many hypotheses have 

been advanced including glutamatergic excitotoxicity (Young et al., 1988; Beal et al., 

1991; Ferrante, 1993), mitochondrial dysfunction (Horton et al., 1995; Gu et al., 

1996; Koroshetz et al., 1997), endoplasmic reticulum stress (Nishitoh et al., 2002) 

apoptosis (Saudou et al., 1998; Ona et al., 1999) and dysfunction of the ubiquitin-

proteasome system (Seo et al., 2004, 2007).      

 

1.6.5 Parkinson’s disease 

Parkinson’s’ disease (PD) is a progressive neurodegenerative movement disorder, first 

described by James Parkinson in 1817; it is the second most common 

neurodegenerative disease affecting 1-2% of people over 65 years of age (de Rijk et 

al., 1997). There are two major classes of PD (i) the late onset sporadic form which 

occurs over the age of 55 and (ii) the early onset familial form (Gwinn-Hardy, 2002). 

The majority of cases of PD (90%) are sporadic (McNaught et al., 2006; Olanow 

and McNaught, 2006). 

 PD is characterized clinically by tremor that occurs at rest but decreases with 

voluntary movement (“resting tremor”), rigidity (increased limb resistance to passive 

movement), bradykinesia (slowness of movement), gait dysfunction, postural 

instability (Dauer and Przedborski, 2003), depression and dementia.  

The clinical symptoms appear after massive reduction of striatal dopamine levels 

(80%) (Bernheimer et al., 1973; Hornykiewicz, 1998) associated with severe loss of 
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dopaminergic neurons in the substantia nigra pars compacta (A9 dopaminergic 

neurons) (Hirsch et al., 1988; German et al., 1989; Pakkenberg et al., 1991). The 

ventrolateral tier of the SNC which projects to the putamen is more affected (Gibb 

and Lees, 1991). The dopaminergic neurons (A10) in the VTA (that project to 

cortical and limbic areas) show less severe cell loss (Jellinger, 2005). Levels of 

dopamine  are decreased in the substantia nigra, and ventral tegmental area and there 

is decreased TH activity in the SN and in the striatum (Fahn et al., 1971; Rinne et al., 

1974; McGeer and McGeer, 1976; Ploska et al., 1982; Javoy-Agid et al., 1990). 

The level of dopamine metabolites (such as DOPAC and HVA) are also decreased in 

SN and the striatum (Sian et al., 1999). 

Loss of nigrostriatal dopaminergic neurons promotes an activation of the indirect 

pathway through the basal ganglia circuit (Filion et al., 1988). The initial part of this 

pathway is inhibitory with GABA/Enkephalin striatal neurons that project to the 

external segment of the globus pallidus. Inhibition of GABAergic neurons of GPe will 

release the subthalamic nucleus from it’s inhibition (= disinhibition) by GPe. 

Increased activity in the subthalamic nucleus will, in turn, cause excitation of the 

basal ganglia output nuclei (internal segment of globus pallidus and the substantia 

nigra pars reticulata) via the excitatory glutamatergic pathway that connects both of 

them. Reduced activity of GABA/substance P neurons of the direct pathway will also 

result in disinhibition of the output nuclei projections leading to inhibition of 

thalamocortical neurons via the GABAergic projection which reduces activity of the 

glutamatergic neurons projecting to the motor areas of the cerebral cortex. This will 

result in many of the hypokinetic symptoms of Parkinson’s disease (Filion et al., 

1988) (Figure 1.4). Many observations support this mechanism, such as reduced 

substance P in the output nuclei of the basal ganglia in Parkinson’s disease patients  
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Figure 1.4: Basal ganglia circuitry in Parkinson’s disease, showing the 

direct and indirect pathways of the basal ganglia. Excitatory projections are shown in 

green; inhibitory projections are shown in blue; dopaminergic nigrostriatal projections 

are shown in red. Differences in the thickness of arrows indicates the relative degree of 

activation.  (CM/PF: centromedian/farafasicular nucleus of thalamus; D1: dopamine 

receptor 1; D2: dopamine receptor 2; DA: dopamine; Enk: enkephalin; GABA: gamma-

aminobutyric acid; GLU: glutamate; Gpe: external segment of globus pallidus; Gpi: 

internal segment of globus pallidus; SNC: substantia nigra pars compacta; SNR: 

substantia nigra pars reticulata; STN: subthalamic nucleus; SP: substance P; VL: 

ventrolateral thalamus) (Partially adapted from DeLong, 1990; Blandini et al., 2000). 
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(Agid et al., 1987; Waters et al., 1988) and unchanged enkephalin levels in the 

external segment of the globus pallidus (Agid et al., 1987). Moreover, ablation 

surgery performed on the subthalamic nucleus reduces the symptoms of Parkinson’s 

disease suggesting that excessive subthalamic nucleus activity is a key feature of the 

disorder (Bergman et al., 1990; Aziz et al., 1991; Limousin et al., 1995). Chesselet 

and Delfts (1996) suggest that the model may need correcting following evidence that 

activity in the external segment of globus pallidus is increased after nigrostriatal 

dopamine depletion by MPTP, probably due to the increased neuronal discharge rate 

of excitatory glutamatergic projections from the subthalamic nucleus (Pan and 

Walters, 1988; Tremblay and Filion, 1989). A similar finding was noted in 6-

hydroxydopamine-lesioned animals (Porter et al., 1994). 

1.6.5.1 Etiology of Parkinson’s disease 

The etiology of PD is not fully understood, but many cases may involve an interaction 

between genetic and environmental factors (Duvoisin, 1999; Mizuno et al., 1999; Le 

Couteur et al., 2002; Sherer et al., 2002; Schapira, 2006). Epidemiological studies 

suggest that exposure to environmental agents, such as pesticides, may increase the 

risk of PD (Gorell et al., 1998; Menegon et al., 1998). In addition to the involvement 

of environmental factors in PD, genetic factors are also involved, since about 5-10 % 

cases are believed to have a familial Parkinsonism (Olanow and Tatton, 1999; 

McNaught et al., 2006). Familial cases of PD have been  associated with mutations in 

proteins such as α-synuclein on chromosome 4 (Polymeropoulos et al.,1997) and 

parkin on chromosome 6 (Kitada et al., 1998).   Mutation also in UCH-L1 (Leroy et 

al., 1998), PINK1 (Valente et al., 2004), DJ-1 (Bonifati et al., 2003; Abou-Sleiman 

et al., 2004) and LRRK2 (Funayama et al., 2002). For reviews see, Cookson, 

(2005); Jain et al., (2005); Schapira, (2006). Many different genes involved in PD 
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may relate to protein mis-folding (McNaught et al., 2002; Ryu et al., 2002). For 

reviews, see Soto, (2003); Agorogiannis et al., (2004); McNaught and Olanow, 

(2006). This topic will be discussed later. 

 

Many factors lead to neurodegeneration in PD (Olanow and Tatton, 1999). These 

include: 

1) Oxidative stress, where damaging levels of hydrogen peroxide and then 

reactive oxygen species are increased as a result of: 

                    a- Increased dopamine turnover, 

                    b- A deficiency in glutathione, 

                    c- A build up of reactive iron which can lead to formation of hydroxyl   

                    radicals. 

2) Mitochondrial dysfunction. 

3) Excitotoxicity, which results from increased glutamate formation. 

4)  Apoptosis. 

Alongside these factors,  protein aggregation or mis-folding is implicated in the cell 

death mechanisms in PD and other degenerative conditions (Moore et al., 2005; 

McNaught et al., 2006). 

1.6.5.2 Neuropathology of Parkinson’s disease 

There are no changes in the gross morphology of the brains of PD patients. However, 

gross slices or histological sections reveal loss of neuromelanin pigmention in the 

substantia nigra (DA) and locus ceruleus (NE). Other regions such as the striatum and 

the globus pallidus appear normal. 

On histopatholgical examination there is loss of the dopaminergic neurons of the 

substantia nigra pars compacta. In typical PD (as well as other diseases where 

   Indirect 
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parkinsonism is a component) the neuronal loss is usually most marked in the 

ventrolateral tier of neurons which mainly project to the striatum (putamen) 

(Bernheimur et al., 1973).  The substantia nigra contains  about 550,000 

dopaminergic neurons (and approximately 450,000 dopaminergic one are in pars 

compacta) and are reduced by at least two thirds in PD patients and nondopaminergic 

neurons are 260,000 and reduced by about a quarter in PD patients (Pakkenberg et 

al., 1991; Lang and Lozano, 1998a). The neuronal loss in the substantia nigra is 

accompanied by astrocytosis and microglial activation (Teismann et al., 2003). 

Other systems are affected in PD, and there is loss of (a) noradrenergic neurons and 

depletion of noradrenaline concentration in the locus ceruleus (Mann et al., 1983; 

Cash et al., 1987; Jellinger, 2005), (b) cholinergic neurons in the nucleus basalis of 

Meynert, pedunculopontine nucleus, Edinger-Westphal nucleus and the dorsal motor 

nucleus of the vagus (Nakano and Hirano, 1983; Zweig et al., 1989; Gai et al., 

1992) together with depletion of the cholinergic enzymes (such as Choline 

Acetyltransferase) in the putamen, globus pallidus and the SNC (Nishino et al., 

1988), (c) serotonergic neurons of the dorsal raphe nucleus (Jellinger, 2005) and a 

reduction in serotonin concentration in areas such as the striatum, substantia nigra, 

and hippocampus (Rinne et al., 1974; Scatton et al., 1983; Agid et al., 1987; 

Mizuno, 2005). There is also a reduction in tryptophan hydroxylase activity in 

Parkinson’s disease patients (Sawada et al., 1985), as well as depleted 5-HT and its 

metabolites in the cerebrospinal fluid (CSF) (Tohgi et al., 1993). 

Other histopatholgical characteristics are the presence of neuronal intracytoplasmic 

inclusions called Lewy bodies, Lewy neurites (ubiquitin-positive degenerating 

neuronal processes), pale bodies which are considered as precursors of Lewy bodies 

(Dale et al., 1992) and a variable amount of extracellular neuromelanin and gliosis 
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(McGeer et al., 1988; Fearnley and Lee, 1991; Cornford et al., 1995; Forno, 

1996).   

1.6.5.3 Lewy body 

The Lewy body is a neuronal intracytoplasmic inclusion body and it is widely 

considered as the histopatholgical hallmark of PD (Pollanen et al., 1993; Cornford et 

al., 1995; Forno, 1996; Galvin et al., 1997; Shults, 2006). Lewy bodies were first 

described in the neurons of the substantia inominata and the dorsal vagal nucleus in 

PD by Friederich Lewy in 1912 and bear his name (Gibb and Poewe, 1986).  

Lewy bodies can be seen in the surviving dopaminergic neurons of the substantia 

nigra pars compacta in all most every case of PD (Jellinger, 1987; Hughes et al., 

1993; Pollanen et al., 1993; Cornford et al., 1995; Forno, 1996), dead and they are 

also seen in other groups of neurons including dopaminergic mesolimbic neurons, the 

cholinergic neurons of the nucleus basalis of Meynert, the noradrenergic neurons of 

the locus coeruleus, the serotonergic neurons of the raphe nuclei, the motor vagal 

nuclei, pedunculopontine nucleus, the Edinger-Westphal nucleus, the 

intermediolateral cell column of the spinal cord,  the hypothalamus and autonomic 

ganglia (Jellinger, 1991).  Neurons with Lewy bodies which do not stain for TH  may 

be either non-dopaminergic cells or dopaminergic cells that may be defective or non 

functional (Iravani et al., 2006).      

Morphologically, Lewy bodies can be divided into two types which are found in 

different locations in the brain:   

1) classical brainstem LB is a spherical intraneuronal eosinphilic inclusion that 

has a diameter of 8-30 µm with a central dense core and a pale peripheral halo 

(Lowe et al., 1997; Jellinger, 2005).  
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2) Cortical Lewy bodies are a round intraneuronal eosinphilic inclusions without  

a halo but they have also angular and reniform shapes (Gibb et al., 1987; 

Lowe et al., 1997; Jellinger, 2005) and were first described by Okazaki  

(1961).  

Most affected neurons have a single LB, though multiples do occur LB (Dickson, 

2005).   Ultrastructurally, both classical and cortical Lewy bodies are composed of 

radially arranged intermediate filaments (7-20 nm) associated with granular electron 

dense material (Rajput and Rozdilsky, 1976; Pirozzolo et al., 1982; Crystal et al., 

1990; Xuereb et al., 1990; Forno, 1996; McKeith et al., 1999; Jellinger et al., 

2001) (Figure 1.5). Both classical and cortical Lewy bodies are immunopositive for 

ubiquitin, α-synuclein (Lennox et al.,1989; Love and Nicoll, 1992; Irizarry et al., 

1998; Spillantini et al., 1997;1998a) (Figure 1.5) and neurofilaments (Goldman et 

al., 1983; Hill et al., 1991; Schmidt et al., 1991) in addition to other components (see 

table 1.4).  Lewy neurites are ubiquitin-positive degenerating neuronal processes first 

described in the hippocampus (Dickson et al., 1991) and also found in other brain 

regions such as amygdala, cingulate gyrus and temporal cortex (Dickson, 2005). Pale 

bodies are rounded granular pale eosinophilic areas seen in neurons of the substantia 

nigra and the locus coeruleus (Lowe et al., 1997). Lewy bodies are widely accepted 

pathological hallmark of both sporadic and familial PD, as well as dementia with 

Lewy bodies (Gibb et al., 1987; Gomez-Tortosa et al., 2000). Lewy bodies can be 

also seen in a number of other disorders, such as Alzheimer’s disease, Down 

syndrome and Hallervorden-Spatz disease (Arawaka et al., 1998; Lippa et al., 1999; 

Wakabayashi et al., 1999; Yokota et al., 2007).The mechanism by which Lewy 

bodies are formed and their relationship to neurodegenerative disease or age process  
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Figure 1.5: Lewy bodies are a characteristic feature of Parkinson’s 

disease. Lewy bodies are small spherical inclusions that (a) can be stained with 

haematoxylin/eosin, and (b) contain the protein α-synuclein, which in this specimen was 

detected with a specific antibody. (c) Lewy bodies consist of radiating filaments that can 

be seen in this electron micrograph. (Panels a and b © Macmillan Magazines Ltd; panel 

c is adapted with permission from (Forno, 1996) American Association of 

Neuropathologists). The set of three photos is from Beal, (2001).  
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remained unknown. One  possibility is that Lewy bodies reflect damage since proteins 

such as α-synuclein or ubiquitin will accumulate and aggregate if  the ability of cells 

to degradate these proteins are exceeded or proteasomal function impaired (Sherman 

and Goldberg, 2001); those aggregated proteins will  subsequently provide a 

nucleation center for the formation of inclusion bodies such as Lewy bodies (Chung 

et al., 2001a) and the accumulation of these inclusion bodies might induce further 

neuronal dysfunction and/or cell death leading to neurodegeneration (Alves-

Rodrigues et al., 1998; Bence et al., 2001; Chung et al., 2001a). Anther possibility 

is that Lewy bodies are a protective device as they form and function in a way similar 

to an aggresome (McNaught et al., 2002; Olanow et al., 2004). Aggresomes are 

cytoplasmic inclusion bodies that form at the centrosome (a perinuclear structure 

linked to the microtubular system) as a cytoprotective response to high levels of 

misfolded proteins (Johnston et al., 1998; Kopito, 2000). There is evidence that 

Lewy bodies in PD resemble aggresomes (cytoprotective) since they stain positively 

for specific markers of aggresome such as  γ-tubulin and pericentrin as well as UPS 

components (McNaught et al., 2002).  In PD, the aggresome might be an 

intermediate stage in the formation of Lewy bodies which form if there is continued 

failure to clear abnormal proteins (McNaught et al., 2002; Olanow et al., 2004). 

Mutations in parkin (ubiquitin-ligase) cause dysfunction in UPS components required 

for protein ubiquitination leading to accumulation of poorly degraded cytotoxic 

proteins as well as impaired transport of ubiquitinated proteins to the aggresome; this 

may explain the lack of Lewy bodies in autosomal recessive juvenile parkinsonism 

and the lack of a cytoprotective response may further explain the early age of onset, 

and the rapidity and severity of neurodegeneration in such patients (McNaught and 

Olanow, 2003).  Inclusion bodies are not always found in neurodegenerative 
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conditions. For example, they do not occur in most laboratory models of Parkinson’s 

disease such as those produced through 6-OH-dopamine or MPTP toxicity (Forno et 

al., 1993; Dauer and Przedborski, 2003), although they are present in rotenone-

induced degeneration in rat (Betarbet et al., 2000). Moreover, some human 

Parkinsonian conditions occur without Lewy body formation. As mentioned above, 

this is especially true of patients with mutations in  parkin (E3 ligase of UPS) and 

suggests that the E3 ligase may be critical for Lewy body formation. 

1.6.5.4 Treatments of Parkinson’s disease 

(A) Drugs treatments used in PD include:  

i. Levo-dopa has been commonest drug in the treatment of Parkinson’s disease 

since 1967 (Cotzias et al., 1967). Levodopa or L-dopa (3,4 

dihydroxyphenyalanine) is the precursor of the neurotransmitter dopamine 

and can easily cross the blood-brain barrier where it is converted into 

dopamine by aromatic L-amino acid decarboxylase. Unfortunately, efficacy 

reduces with prolonged treatment and motor complications such as 

dyskinesias and fluctuations (Lang and Lozano, 1998b). 

ii. Bromocriptine, Pramipexole and Apomorphine are dopamine agonists which 

directly bind to and activate dopamine receptors in the brain and therefore 

have the same effect as dopamine, for review, see Lang and Lozano, 

(1998b); Kuniyoshi and Jankovic, (2005). 

iii. Monoamine oxidase-B (MAO-B) inhibitors such as Selegiline, prevent the 

metabolism of dopamine, and so will increase the availability of dopamine in 

the brain, for review, see Lang and Lozano, (1998b); Bertoni and Elmer, 

(2005). 
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iv. Catechol-O-methyl transferase (COMT) inhibitors such as Entacapone, 

prevent the peripheral metabolism of dopamine thus allowing additional L-

DOPA to gain access to the brain, for review, see Wahba et al., (2005). 

v. Anticholinergic drugs such as Benztropine and Trihexyphenidyl have been 

found effective in the treatment of Parkinson’s disease and may reduce the 

tremor and rigidity due to the imbalance in  cholinergic and dopaminergic 

systems interaction, for review, see Jabbari and Pazdan, (2005).   

(B) Surgical treatment has also been used to alleviate Parkinson’s disease and four 

procedures have been used :  

a. lesions of the basal ganglia such as pallidotomy which leads to 

improved parkinsonism symptoms and suppresses L-dopa induced 

dyskinesias (Laitinen et al., 1992; Dogali et al., 1995), 

b. thalamotomy to relieve tremor and L-dopa induced dyskinesias 

(Ohye et al., 1982; Narabayashi et al., 1984). 

c. Subthalamotomy to relieve contra-lateral tremor, rigidity, and 

bradykinesia (Alvarez et al., 2001; Patel et al., 2003; Su et al., 2003) 

and  

d.  Deep Brain Stimulation (DBS)- a surgical technique used to 

improve motor symptoms and L-dopa induced dyskinesias by placing 

a small electrode tip in target areas such as subthalamic nucleus, 

thalamus and globus pallidus to block abnormal nerve signals that 

cause motor symptoms in PD. The electrode is connected to a battery-

operated neurostimulator placed in near the clavicle (for review see 

Kumar, 2002).  
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1.7 Lewy body proteins 

Lewy bodies contain a wide variety of proteins, but those that have received most 

attention (and which have been linked to human disorders such as PD) include 

ubiquitin, parkin and α-synuclein.  I shall review each. 

1.7.1 Ubiquitin and the ubiquitin–proteasome system 

1.7.1.1 Ubiquitin: 

Ubiquitin (Ub) is a small protein (8.5 KDa) made up of 76 amino acids; due to its 

ubiquitous nature, it was named ubiquitin. It is expressed in human by three genes 

(Mayer et al., 1991). It was originally extracted from bovine thymus in the early 1970 

S  where it was thought to have properties relating to the differentiation of T and B 

lymphocytes (Goldstein et al., 1975) but it has now been found in all eukaryotic cells.   

It has a central role in the degradation of cytosolic, nuclear and endoplasmic reticulum 

proteins (Hochstrasser, 1996), so it acts as a covalent tag to mark damaged or short-

lived proteins for degradation by the ubiquitin–proteasome system.  Studies indicate 

that It is implicated in cell functions such as the mediation of stress responses, 

regulation of differential gene expression, repair of damaged DNA (Goldstein et al., 

1975) and control of the cell cycle. 

 

1.7.1.2 The degradation of proteins by the ubiquitin–proteasome 

system: 

 

The ubiquitin–proteasome system (UPS) is an ubiquitous, multienzymatic proteolytic 

pathway that removes misfolded, ubiquitinated proteins (Ciechanover et al., 2000; 

Betarbet et al., 2005; Olanow and McNaught, 2006). The UPS plays an important 



Chapter 1                                                                                      General Introduction 

 

39 

role in rapid degradation of 30 % or more of newly made proteins within the cell 

(Schubert et al., 2000) and it also plays a crucial role in a number of cellular events 

such as signal transduction, cell cycling, metabolism and the immune response 

(Pagano, 1997; Ben-Neriah, 2002; Mukhopadhyay and Riezman, 2007). 

 Ubiquitin is first activated by the ubiquitin–activating enzyme (E1) in its C- terminal 

glycine residue to the thiol group of a cysteine residue on the activating enzyme (E1) 

via an ester bond. After that it is transferred to a cysteine thiol group on a ubiquitin 

carrier protein or ubiquitin–conjugating enzyme (E2) and, finally, it is ligated to a 

protein substrate by a ubiquitin–protein ligase (E3). At this step, two options exist; 

either ubiquitin is transferred to a protein substrate via the ubiquitin - protein ligase or  

the ubiquitin – protein ligase  accepts both protein substrate and ubiquitin–conjugating 

enzyme  for direct transfer of ubiquitin from the ubiquitin-conjugating enzyme to the 

protein substrate (Hershko and Ciechanover, 1998). 

The degradation of proteins is enhanced when more than one ubiquitin binds 

covalently to the target protein to form polyubiquitin chains (Cook et al., 1994). The 

proteins attached by polyubiquitin chains are usually degraded by ubiquitin / ATP – 

dependent proteinase known as 26S proteasome. The 26S proteasome is a large 

multiprotein complex (2.5 MDa) (Voges et al., 1999), which is mainly cytosolic but 

can also be found in nuclei (Palmer et al., 1996). Ultrastructurally, the 26S 

proteasome is composed of a central catalytic 20S core complex, comprising 28 

subunits in a cylindrical arrangement and containing the protease active sites, with 

19S regulator complexes at each end (Coux et al., 1996). The 19S particle contains at 

least 17 subunits, including ATPases, de-ubiquitinating enzyme and polyubiquitin-

binding subunits (Pickart, 1997). The ubiquitin molecule can be removed from the 
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ubiquitin-protein by de-ubiquitinating enzymes (Wilkinson, 1997; Betarbet et al., 

2005; Olanow and McNaught, 2006) (Figure 1.6).       

 

1.7.1.3 The role of the ubiquitin–proteasome system in 

neurodegenerative disorders: 

 

Many neurodegenerative disorders are characterized by the presence of intraneural 

cytoplasmic inclusions containing ubiquitinated filamentous protein aggregates. 

These inclusions are found in the cytoplasm (e.g. endosomes, lysosomes) in 

Alzheimer’s disease and Prion encephalophathies (Mayer et al., 1996) and in nuclei 

in Huntington’s disease and spinocerebellar ataxias (Davies et al., 1997). 

Aggregations of ubiquitin protein were first detected in the neurofibrillary tangle 

(NFT) of Alzheimer’s disease (Mori et al., 1987) and have since been shown to be       

a feature of Lewy bodies (LB) in Parkinson’s disease and dementia with Lewy bodies 

(DLB), as well as inclusions in Pick’s disease and amyotrophic lateral sclerosis (Lowe 

et al., 1988) and polyglutamine expansion diseases such as Huntington’s disease 

(DiFiglia et al., 1997).  

 The ubiquitinated filamentous protein aggregates within these inclusions result from 

a dysfunction or overload of the ubiquitin–proteasome system, structural changes in 

the protein substrates (Alves-Rodrigues et al., 1998), mutations that impair the 

normal ubiquitin pathway e.g. in ubiquitin-ligase enzymes (parkin), or de-

ubiquitinating enzymes (UCHL1) or protein substrates of UPS (α-synuclein) or in 

transcripts for ubiquitin itself (Layfield et al., 2001), mitochondrial dysfunction and 

oxidative stress (Reinheckel et al., 2000; Shamoto-Nagai et al., 2003). 

For example, mutant genes encoding for proteins of the ubiquitin–proteasome system 

were found to be responsible for inherited forms of familial Parkinson’s disease (PD) 
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Ubiquitin-activating enzyme (E1) 

Monomeric ubiquitin 

Activated ubiquitin 

Ubiquitin-conjugated enzyme (E2) 

ATP 

Abnormal or damaged or 

mutant proteins 

Ubiquitin ligase (E3) such as Parkin 

Activated ubiquitin/E2 

Ubiquitin carboxy-terminal 

hydrolase (UCHL1) 

26S proteasome 

Polyubiquitin-protein conjugate 

ATP 

Polyubiquitin chain 
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 + 

Figure 1.6: Degradation of abnormal proteins by the ubiquitin-

proteasome system. Proteins are ubiquitinated by a series of enzymatic 

reactions: E1 enzymes activate ubiquitin monomers, E2 enzymes 

conjugate ubiquitin to proteins or to E3, which are in turn a series of 

ubiquitin ligases and attach chains of ubiquitin to specific protein 

substrate. Labelling of proteins with multiple ubiquitin molecules are 

recognized by proteasome and degraded in an ATP manner. In the final 

step, ubiquitin monomers are removed from ubiquitin-protein adducts by 

deubiquitinating enzymes (such as UCHL1) so they can recycle to 

degradate additional abnormal proteins. Partially adapted from 

McNaught et al. (2001).       
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(Polymeropoulos et al., 1997; Kitada et al., 1998; Leroy et al., 1998; Shimura et 

al., 2000). These genes include PARK1 of α-synuclein, PARK 2 of parkin and PARK 

5 of ubiquitin-C-hydrolase-1 (UCHL1), all of which decrease the activity of the 

ubiquitin-proteasome system (Kitada et al., 1998; Leroy et al., 1998; Chung et al., 

2001a; Steece-Collier et al., 2002; Betarbet et al., 2005; Olanow and McNaught, 

2006). 

A mutant form of ubiquitin called ubiquitin
+1

 has been detected in the brain of 

Alzheimer’s patients (Van Leeuwen et al., 1998). In this case, polyubiquitin chains 

made by ubiquitin
+1

 are completely resistant to disassembly by deubiquinitinating 

enzymes. This causes an accumulation and aggregation of ubiquitinated proteins, 

leading to neurodegeneration (Lam et al., 2000). In sporadic Parkinson’s disease 

there is a reduction in mitochondrial complex 1 activity in the substantia nigra pars 

compacta (Schapira et al., 1990b); inhibition of complex 1   activity might lead to 

impairment of the UPS which is an ATP dependent, leading to accumulation of 

ubiquitin proteins (DeMartino and Slaughter, 1999). 

 Impairment of the ubiquitin-proteasome system leading to accumulation and 

aggregation of ubiquitinylated proteins does not appear to be a primary event in 

inclusion formation, but rather a secondary protective cellular response, so oxidative 

damage (Giasson et al., 2000) or glycosylation (Shimura et al., 2001) may be the 

initiating events in aggregation and inclusion formation, with ubiquitination forming a 

later stage in inclusion biogenesis as part of the normal cellular response to disease 

states. Immunohistochemical studies give insights in the relationship between UPS 

and inclusion formation. These shows that, while ubiquitin is often found in 

inclusions, it is not obligatory. For example, the tau protein is the main component of 

NFTs but ubiquitin appears to become associated later with the more mature lesions 
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(Bancher et al., 1989) although it should be noted that tau protein can form fibrils in 

the absence of ubiquitin (Goedert et al., 1996).   In Parkinson’s disease, not all Lewy 

bodies are ubiquitin-positive (Spillantini et al., 1998b) and α-synuclein can also form 

fibrils in the absence of ubiquitin (Hashimoto et al., 1998). The degradation of non-

ubiquitinylated forms of α-synuclein and tau proteins by proteasome in the absence of 

ubiquitin (Tofaris et al., 2001; David et al., 2002) is probably possible because both 

belong to natively unfolded proteins (Schweers et al., 1994).  

1.7.1.4 The ubiquitinylated inclusions and neurodegenerative 

disorders: 

 

One study (Kakizuka, 1998) has suggested that the formation of these inclusions 

might induce neural dysfunction and/or cell death because ubiquitin protein 

aggregations cause neural toxicity and apoptosis. If so, the aggregation of proteins 

directly impairs the function of the ubiquitin-proteasome system (UPS) which is likely 

to be involved in the positive feedback mechanism induced by the protein 

accumulation that altered its function, which in turn increases the production of 

aggregated proteins and ultimately results in neuronal cell death (Bence et al., 2001).     

Conversely, other concept have suggested that the formation of these inclusions is one 

of the protective strategies of the cell to process damaged, misfolded, mutant proteins.  

For example, the Lewy bodies in Parkinson’s disease may represent a protective 

cellular response to protein aggregates as they behave structurally and functionally as 

aggrosome (Forno, 1996; Goldberg and Lansbury, 2000; McNaught et al., 2002; 

Olanow et al., 2004).  Similarly, in a mouse model of Huntington’s disease, nuclear 

inclusions are present in surviving neurons, suggesting that (at worse) the inclusion 

bodies are sub-lethal or (at best) they might be protective (Reddy et al., 1998). 
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Inclusion bodies are not always found in neurodegenerative conditions. For example, 

they do not occurs in most laboratory models of Parkinson’s disease such as those 

produced through 6-OH-dopamine or MPTP toxicity (Forno et al., 1993; Dauer and 

Przedborski, 2003), through they are present in rotenone-induced degeneration in rat 

(Betarbet et al., 2000). Moreover, some human Parkinsonian conditions occur 

without Lewy body formation. This is especially true of patients with parkin (E3 

ligase of UPS) mutation, who lack Lewy bodies: it also suggest that the E3 ligase may 

be critical for Lewy body formation. 

The AS/AGU rat does not appear to produce Lewy bodies yet has dopamine release 

deficits and cell loss.  

 

1.7.2  Parkin 

 
Parkin is a 465 amino acid protein that has a molecular weight of 52 KDa (Kitada et 

al., 1998; Shimura et al., 1999), contains a ubiquitin-like homology domain at its N-

terminus and may be involved in the recognition of the substrates (such as Pael-R, 

synphilin-1, Cdc-Rel 1 and O-glycosylated from of α-synuclein, see below) (Shimura 

et al., 2000), it has a central domain with unknown function and two ring fingers at 

the C-terminus involved in E2 and substrate recognition and binding. Parkin has E3 

ubiquitin-ligase activity (Imai et al., 2000; Shimura et al., 2000; Zhang et al., 2000), 

and is a component of ubiquitin-proteasome system that identifies and degradates 

misfolded proteins (reviewed by Sherman and Goldberg, 2001; Cookson, 2005). 

Mutation in the gene encoding parkin has been implicated in autosomal-recessive 

parkinsonism (Kitada et al., 1998) and the gene responsible was mapped on 

chromosome 6 (Matsumine et al., 1997). Parkin mutations are found in patients with 

early-onset Parkinson’s disease which has the similar clinical signs to Parkinsonism 
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but where disordered sleep and abnormal dystonic movement can be alleviated by 

Levodopa (Dauer and Przedborski, 2003). Pathologically it is characterized by loss 

of SNC dopaminergic neurons but without Lewy bodies (Mizuno et al., 2001). 

Parkin has been implicated in the ubiquitination of four proteins, the putative G-

protein-coupled transmembrane receptors Pael-R (Imai et al., 2001), the interacting 

protein synphilin-1 (a protein with unknown function present in Lewy body) which 

interacted to α-synuclein (Chung et al., 2001b), the synaptic vesicle protein Cdc-Rel 

1(it have roles in synaptic vesicle transport, fusion and recycling)  (Field and 

Kellogg, 1999; Zhang et al., 2000; Kartmann and Roth, 2001) and an O-

glycosylated from of α-synuclein (Shimura et al., 2001).   

The loss of parkin function leads to the toxic accumulation of substrate protein (Dev 

et al., 2003a); overexpression of mutated forms of parkin causes oxidative stress and 

lead to cell death via proteosomal inhibition (Hyun et al., 2002).  

1.7.3 Alpha-synucleins 

 

Synucleins are a family of 15-20 KDa proteins that have been described in 

vertebrates, are present in neurons, and are especially abundant at presynaptic 

terminals. Originally, synuclein proteins were identified in the electric organ of the 

electric ray (Torpedo california) and the name synuclein is a contraction of “synapse 

and nucleus” (Maroteaux et al., 1988; Jakes et al., 1994). 

Three genes produce synucleins whose client forms include α-synuclein, β-synuclein 

and γ-synuclein (Lavedan, 1998). 

Alpha-synuclein is a presynaptic protein made up of 140-amino acids and is encoded 

by a gene on chromosome 4 (Ueda et al., 1993; Chen et al., 1995).  Normally, α-

synuclein is abundant in presynaptic terminals (Lee and Trojanowski, 2006). 

Originally, α-synuclein was isolated from amyloid plaques of Alzheimer’s disease 
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(Ueda et al., 1993) and it has been identified as the major component of inclusions in 

many neurodegenerative disorders. Such as the Lewy body and Lewy neurites of 

Parkinson’s disease (Spillantini et al., 1997), the Lewy body variant of Alzheimer’s 

disease, dementia with Lewy body (Spillantini et al., 1997; Wakabayashi et al., 

1997; Arawaka et al., 1998; Baba et al., 1998; Irizarry et al., 1998; Takeda et al., 

1998) and glial neuronal cytoplasmic inclusions as in multiple system atrophy (Gai et 

al., 1998; Tu et al., 1998). 

The normal cellular functions of α-synuclein are unknown, but several observations 

suggest synaptic functions and neural plasticity (Clayton and George, 1998). It is 

associated with synaptic vesicles in cultured rat hippocampal neurons (Withers et al., 

1997; Murphy et al., 2000) and it linked to dopaminergic transmission (e.g. 

inhibition of tyrosine hydroxylase activity, binding to the presynaptic dopamine 

transporter (DAT) and being translocated to the cell surface where it accelerates 

dopamine uptake) (Lee et al., 2001; Perez et al., 2002).  

1.7.3.1 Alpha-synuclein aggregation 

 

Alpha-synuclein is naturally unfolded (Weinreb et al., 1996) and assumes an α-

helical structure in association with membranes (Davidson et al., 1998).  By contrast, 

α-synuclein aggregations exist in β-sheet structure (El Agnaf  et al., 1998; Narhi et 

al., 1999; Conway et al., 2000a). 

Alpha-synuclein tends to form fibrils and unfolded α-synuclein can adopt a partially 

folded intermediate and protofibril during fibril formation. Changes in cellular 

conditions such as elevated temperature and decreased pH accelerate α-synuclein 

fibril formation and tend to result in a partially folded intermediate structure (Uversky 

et al., 2001). 
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Abnormal aggregation of α-synuclein is a feature of many neurodegeneration 

disorders. Several mechanisms lead to aggregation: impairment of breakdown due to 

failure in the ubiquitin-proteasome system (McNaught et al., 2003) such as 

proteosomal inhibition leads to  α-synuclein accumulation (Bennett et al., 1999) and 

aggregation (Rideout et al., 2001) and also an accumulation and aggregation α-

synuclein interact with ubiquitin-proteasome system lead to impair it is function 

(Bence et al., 2001; Tanaka et al., 2001; Snyder et al., 2003; Lee et al., 2004).  

1.7.3.2 Alpha-synuclein and dopamine 

 

Aggregation of α-synuclein also mediated by the oxidation environment in 

dopaminergic neurons such as oxidative stress and mitochondrial impairment. 

Overexpression of  α-synuclein may increase generation of intracellular ROS that 

induced dopaminergic cell death (Junn and Mouradian, 2002). 

Alpha-synuclein plays a role in the regulation of dopamine biosynthesis by interacting 

directly with tyrosine hydroxylase (Perez et al., 2002) or deceasing it is gene 

expression and a wild-type α-synuclein inhibit enzyme that producing BH4 which is a 

cofactor required for tyrosine hydroxylase activity (Baptista et al., 2003). 

Anther hand, a loss of  α-synuclein due to decreasing on the expression (Neystat et 

al., 1999) or aggregation (El Agnaf and Irvine, 2000) lead to more dopamine 

production.    

1.7.3.3 Alpha-synuclein aggregation and Parkinson’s disease 

 

Two α-synuclein mutants the A53T (Polymeropoulos et al., 1997) and A30P 

(Kruger et al., 1998) cause rare inherited forms of familial Parkinson’s disease and 

stimulate α-synuclein fibril formation (Conway et al., 1998; Narhi et al., 1999) as 

does another mutation E46K discovered by Zarranz et al (2004) in a Spanish family. 
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1.8 Animal models in Parkinson’s disease 

To understand the pathophysiology of Parkinson’s disease (PD), as well as to test 

potential therapeutics, a number of animal models of PD have been developed. Many 

of these are based on the simple premise that the disease state is due to the death of 

dopaminergic neurons, so the most widespread models have employed neurotoxins 

such as 6-OHDA, MPTP and Rotenone.  

1.8.1 Neurotoxin based models 

1.8.1.1  6-hydroxydopamine (6-OHDA) 

6-hydroxydopamine was the first chemical agent used to produce an animal model of 

PD that had specific neurotoxic effects on catecholaminergic neurons (Ungerstedt, 

1968). Usually the 6-OHDA is injected unilaterally or bilaterally into the substantia 

nigra or striatum, so that it accumulates in dopaminergic neurons and induces 

degeneration probably through the generation of hydrogen peroxide and hydroxyl 

radicals in the presence of iron (Sachs and Jonsson, 1975; Glinka et al., 1997; Bove 

et al., 2005). The greatest loss was in the dopaminergic neurons of the SNC (A9), 

followed by the retrorubral field (A8) and the VTA (A10) (Rodriguez et al., 2001). 

There was a reduction in striatal dopamine and animals showed characteristic 

symptoms such as rotation (provided the 6-OHDA injection was unilateral) and 

akinesia (with a bilateral 6-OHDA injection) (Betarbet et al., 2002; Schober, 2004).  

6-OHDA lesions do not result in Lewy body formation in the substantia nigra 

(Betarbet et al., 2002; Shimohama et al., 2003; Melrose et al., 2006). 



Chapter 1                                                                                      General Introduction 

 

49 

1.8.1.2 1-methyl-4-phenyl-1, 2,3,6-tetrahydro-pyridine (MPTP) 

1-methyl-4-phenyl-1, 2,3,6-tetrahydro-pyridine (MPTP) was discovered accidentally 

in 1982 when a group of drug addicts developed sub acute severe parkinsonism 

(Langston et al., 1983). MPTP crosses the blood-brain barrier and is metabolized to 

1-methyl-4-phenylpyridin (MPP
+
) by monoamine oxidase B.  MPP

+ 
is taken up via 

the dopamine transporter and accumulates in dopamine neurons, where it inhibits 

complex I of the electron transport chain leading to oxidative stress (Nicklas et al., 

1985; Tipton and Singer, 1993; Betarbet et al., 2002) (Figure 1.7). In primates, 

MPTP causes severe Parkinsonism symptoms including degeneration of dopaminergic  

neurons; there is also the appearance of micro-inclusions which are unlike the Lewy 

bodies characteristic of idiopathic Parkinson’s disease pathology (Forno et al., 1993; 

Betarbet et al., 2002; Shimohama et al., 2003) but which nevertheless contain α-

synuclein aggregations (Kowall et al., 2000).  MPTP administration to mice and 

nonhuman primates causes a greater loss in dopaminergic neurons in SNC (A9) and 

mainly in the ventrolateral segment (Sirinathsinghji et al., 1992; Varastet et al., 

1994; Jackson-Lewis et al., 1995). As in PD, the neurons of the VTA (A10) and 

locus coeruleus are less affected (Mitchell et al., 1985; Forno et al., 1986; 

1993;1996) but there is massive loss of the dopamine (90-99%) in the striatum 

(Hantraye et al., 1993; Jackson-Lewis et al., 1995); degeneration of dopaminergic 

neurons terminals was greater in the putamen than in the caudate (Moratalla et al., 

1992; Snow et al., 2000).  Mice have some locomotor defect comparable to PD such 

as hypokinesia, bradykinesia and akinesia (Sedelis et al., 2001) and primates develop 

motor dysfunctions such as tremor, bradykinesia, rigidity and postural impairment 

(Langston et al., 1984; Schultz et al., 1985; Stern, 1990; Jenner, 2003). Rodents 

such as mice and rats are less sensitive to MPTP neurotoxicity (Betarbet et al., 2002;  
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Figure 1.7: Pathogenesis of neuronal dysfunction produced by 

neurotoxins that affect dopamine neurons. The mechanisms by which 

neurotoxins kill dopamine neurons involve mitochondrial dysfunction and oxidative damage. 6-

hydroxydopamine (6-OHDA) is taken up by the dopamine transporter and it then generates free 

radicals. 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP) is converted by monoamine 

oxidase B (MAOB) to 1-methyl-4-phenylpyridinium (MPP
+
). MPP

+
 is taken up by the dopamine 

transporter and can then be accumulated by mitochondria, leading to complex 1 inhibition and 

the generation of free radicals, or by the vesicular monoamine transporter, thus reducing 

toxicity. Rotenone is a direct inhibitor of complex 1, which also leads to free-radical generation. 

MPTP and rotenone treatment increase the expression of α-synuclein and, in later case, this leads 

to the formation of Lewy bodies.  From Beal, (2001).  
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Shimohama et al., 2003; Bove et al., 2005) and it’s use has generally been in primate 

studies. The main difficulty with MPTP as a model of PD is that it is an acute process, 

whereas PD is a slowly progressive disease (Shimohama et al., 2003). 

1.8.1.3 Rotenone 

Another model of PD is based on systemic exposure of rats to the pesticide rotenone 

which is an inhibitor of mitochondrial complex 1. In rodents, rotenone caused 

selective death of nigrostriatal dopaminergic neurons and the formation of ubiquitin 

and α-synuclein-positive inclusions and treated animals showed rigidity, bradykinesia, 

postural instability, unsteady gait and tremor (Betarbet et al., 2000; Sherer et al., 

2003).   The major disadvantages of this model are its variability, with some animals 

developing lesions and other not. For this reason bilateral lesions are not as 

predictably effective as bilateral treatment with 6-OHDA or MPTP (Betarbet et al., 

2002). 

 

1.8.2 Genetic based models  

A second groups of animal models has been developed from the knowledge that 

genetic defects can cause some forms of PD. 

 

1.8.2.1  Parkin genetic model 

Mutations in the gene encoding parkin are linked to the familial PD known as 

autosomal recessive juvenile parkinsonism (AR-JP) (Kitada et al., 1998). 

Drosophila  which has parkin mutation has been developed to investigate the role of 

parkin loss in degeneration of dopaminergic neurons. The results suggest that the 
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mutation does not cause degeneration of dopaminergic neurons and the locomotor 

problems (climbing and flying defects) are caused by mitochondrial defect in muscles. 

The flies exhibit reduced life span, muscle degeneration and males have spermatid 

defects (Greene et al., 2003). Several studies have described mutations and knockout 

of the parkin gene in mice and, again, there was no evidence for a reduction of 

nigrostriatal dopaminergic neurons. Brain morphology appeared normal and 

extracellular dopamine levels were increased in the striatum while synaptic 

excitability was reduced in medium-sized striatal spiny neurons (Goldberg et al., 

2003; Itier et al., 2003; Von Coelln et al., 2004; Perez and Palmiter, 2005). These 

models give some insight into parkin function but do not explain the role of parkin in 

PD pathogenesis since Parkinsonian symptoms are largely lacking (Betarbet et al., 

2005).  

 

1.8.2.2 Alpha-synuclein genetic model 

Mice which lack the α-synuclein gene show normal brain structure and only modest 

alterations in dopaminergic pathways  such as (a) increased dopamine release 

following strong electrical stimuli, (b) a small reduction in striatal dopamine content 

and (c) attenuation of the dopamine-dependent locomotor response to amphetamine 

(Abeliovich et al., 2000).  However, the over-expression of both mutant and wild-

type α-synuclein in mice led to the formation of cytoplasmic and nuclear micro-

inclusions containing α-synuclein and ubiquitin in the neocortex, hippocampus and 

substantia nigra (albeit lacking fibrillar aggregates that are a characteristic of Lewy 

bodies). It led also to loss of nigrostriatal dopaminergic terminals in the striatum (but 

no loss of the nigrostriatal dopaminergic cells in the SNC) and reduced motor activity 

as examined by the rotorod test  (Beal, 2001; Masliah et al., 2000; van der Putten et 



Chapter 1                                                                                      General Introduction 

 

53 

al., 2000; Giasson et al., 2002; Lee et al., 2002; Fleming et al., 2004).  The over-

expression of wild type or mutant α-synuclein in Drosophila led to the formation of 

Lewy body-like inclusions containing synuclein, loss of dopaminergic neurons and 

locomotor dysfunction in the form of a progressive decline in climbing ability (Feany 

and Bender, 2000). There was retinal degeneration (which is not a feature of PD) 

(Feany and Bender, 2000). It remains unclear whether the motor defect can be 

attributed to the dysfunction of dopaminergic neurons (Beal, 2001). Lentiviral-

mediated overexpression of wild type α-synuclein in rats led to intraneuronal 

cytoplasmic aggregates but no cell loss (Lo Bianco  et al., 2002). 

1.8.3 Spontaneous rodent mutant models 

In addition to neurotoxic and genetically modified models, there have been a number 

of spontaneous rodent mutant models including the weaver, lurcher, reeler, Tshrhyt, 

tottering, and coloboma mice and circling (ci) rat. These models display altered 

dopaminergic function or neurodegeneration that occur in PD and have deficits in 

motor behavior (Heintz and Zoghbi, 2000). The AS/AGU rat belong to this category 

of model.   

 

1.9 The AS/AGU rat 

The AS/AGU rat arose as a spontaneous mutation within a closed inbred colony of 

Albino Swiss (AS) rats in the Laboratory of Human Anatomy at Glasgow University. 

The mutation is recessive (Campbell et al., 1996), and AS/AGU rats have been 

isolated as a true breeding substrain. The phenotypic differences result from a single 

point mutation in the gene coding for the gamma isoform of protein kinase C (PKC-γ) 

(Craig et al., 2001). The AS/AGU mutant exhibits serious movement impairments 
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including hindlimb rigidity, a staggering gait, a tendency to fall over every few steps, 

a slight whole body tremor and difficulty in initiating movement (Clark and Payne, 

1994; Payne et al., 1998).  Previous studies including histological, neurochemical, 

immunocytochemical, and pharmacological and locomotor analysis revealed that in 

the mutant AS/AGU rats there are: 

A. No obvious gross morphological differences between the brain of the normal 

AS and the mutant AS/AGU rats. The neocortical and cerebellar histology 

looks normal. 

B. Neurochemical and immunocytochemical studies showed a loss in tyrosine 

hydroxylase immunoreactive cell bodies in the SNC of the mutant strain at 

aged beyond one year (Clark and Payne, 1994). 

C. There is 20-30% reduction in whole tissue dopamine levels of 6 months 

AS/AGU mutants compared to the normal AS rats at same age measured in 

striatal micropunches using High Performance Liquid Chromatography with 

electrochemical detection (HPLC-ECD) (Campbell et al., 1996). 

D. Microdialytic studies found a great reduction (80-90%) in extracellular 

dopamine in the dorsal caudate putamen of 3 months AS/AGU mutants and 

older compared to the normal AS strain when measured with HPLC-ECD 

(Campbell et al., 1998). 

E.  Behavioural studies found that AS/AGU rats have a marked difficulty in 

initiating movement, and generally the mutant rats perform badly in simple 

locomotor tests such as rotating in mid-air and walking down a variety of 

inclined ramps of various widths compared to AS controls. The deficits are 

significant at 6 and 12 months. Locomotor deficiencies in AS/AGU rats can 

be ameliorated by L-dopa administration (Campbell et al., 1998). 
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F. There is a marked depletion in utilization of 2-deoxy-glucose in the substantia 

nigra pars compacta, subthalamic nucleus and ventrolateral thalamus (Lam et 

al., 1998). 

G. These characteristics have been reviewed by Payne et al. (2000). They have 

been work out primarly on male AS/AGU rat because movement deficent are 

more obvious. 

H. The serotonergic (5-HT) raphe-striatal system has a reduction in the 

extracellular levels of 5-HT (70%) in the dorsal caudate-putamen of the 

mutant compared to the controls and an increase in the levels of the 5-HT 

metabolite (5-HIAA) at 3 months and older. At later ages, there are reductions 

in whole tissue 5-HT and increases in 5- HIAA in the striatum and the dorsal 

raphe nucleus region, companied by a decrease in the number of 5-HT-

immunoreactive cells in the dorsal raphe nucleus. The median raphe nucleus 

was not affected (Al-Fayez et al., 2005).    

 

1.9.1 The AS/AGU mutation 

Genetic analysis involving multiple backcrossing, has shown a very tight linkage 

between the agu mutation and a marker in the 3’ untranslated region of protein kinase 

C- γ isoform encoding gene. The protein kinase C-γ gene is a single point mutation 

resulting from a stop codon between the regulatory and catalytic domains (Craig et 

al., 2001). 

Protein kinase C is a family of calcium-activated, phospholipid-dependent enzymes 

that are found in a wide variety of tissues (Saito and Shirai, 2002). In the nervous 

system, PKC is involved in widely diverse functions including activation of PKC in 

nerve cells which it linked to modulation of ion channels (Baraban et al., 1985; 
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Madison et al., 1986; Shearman et al., 1989), the desensitization of receptors 

(Huganir and Greengard, 1990), modification of neuronal plasticity (Routtenberg, 

1985; Akers et al., 1986), the enhancement of neurotransmitter release (Malenka et 

al., 1986; 1987; Tanaka and Nishizuka, 1994; Stevens and Sullivan, 1998), 

implicated in general cellular processes such as apoptosis (Zirpel et al., 1998; Lee, 

2001; Ghoumari et al., 2002) and cell surface signal transduction (for review see 

Nishizuka, 1984 a,b; 1986). PKC has at least 10 isoforms that have been identified in 

mammalian tissue one of them is PKCγ (Ohno and Nishizuka, 2002; Popp et al., 

2006). 

  

PKCγ is a member of the PKC family which was originally thought to be restricted to 

brain and spinal cord (Huang et al., 1988; Nishizuka, 1988; Tanaka and Saito, 

1992; Saito and Shirai, 2002). It is highly expressed in purkinje cells and in the 

medium-sized neurons of the striatum and globus pallidus that project to the 

substantia nigra (Chen et al., 1995), in perikarya and neuropil in the striatum, and 

neuropil in substantia nigra (Yoshihara et al., 1991). Within the nervous system, it 

has been associated with a variety of functions including neuron-glial plasticity 

(Narita et al., 2004), memory (Abeliovich et al., 1993), alcohol intake (Bowers and 

Wehner, 2001), sensory processing (Martin et al., 2001; Narita et al., 2001), anxiety 

(Bowers et al., 2000) and cerebellar afferent regulation (Chen et al., 1995).  Now 

known to be found in the heart (Rouet-Benzineb et al., 1996), pulmonary epithelial 

cells (Lin et al., 2000), pulmonary fibroblast (Ludwicka-Bradley et al., 2000) and 

immortalized mammary epithelial cells (Mazzoni  et al., 2003) so it is clearly not 

restricted to the nervous system.   
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There is a PKCγ-ko mutant mouse which was developed to give insight into the effect 

of the mutation on cerebellum and this mouse is characterized by motor impairment 

and defects of Long-term potentation (LTP), due to the persistence in adulthood of 

multiple climbing fibres from the inferior olivary nucleus to Purkinje cells 

(Abeliovich et al., 1993; Chen et al., 1995). There is no evidence of a similar 

problem in the AS/AGU rat: equally, there is no evidence of basal ganglia 

involvement in the PKCγ-ko mouse.  

However, it is of interest that the protein kinase C-gamma gene is mutated in 

spinocerebellar ataxia type 14 which is an autosomal dominant neurodegenerative 

disorder characterized by slowly progressive cerebellar dysfunction including gait 

ataxia, dysarthria and abnormal eye movements (Verbeek et al., 2005). 

 

1.10 Aims of the study 

In this study, three complimentary experiments were carried out to examine the 

possible pathological responses of midbrain cell groups to the agu mutation in the 

gene coding for protein kinase C-gamma (PKC-γ). 

 The three experiments were: 

1) Experiment 1 to examine levels of certain molecules in the midbrain cell 

groups using quantitative immunofluorescence microscopy of cell bodies or 

their surrounding neuropil. These molecules consisted of two groups:                                             

a) Those giving information about the capacity of midbrain aminergic 

cell bodies to synthesise transmitters: tyrosine hydroxylase for 

dopaminergic neurons and serotonin for serotonergic ones.  
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b) Those which have been found to increase in human neurodegenerative 

conditions such as Parkinson’s disease: ubiquitin, parkin and α-

synuclein. 

2) Experiment 2 to look at cell bodies in the SNC of the AS (control) and 

AS/AGU (mutant) rats using light and transmission electron microscopy 

(TEM) to determine whether there are any strain differences in cell size or 

ultrastructure  or any signs of cell morbidity.                                                                                                                                                               

3) Experiment 3 to look at TH+ve nigrostriatal dopaminergic terminals in the 

dorsal caudate-putamen of the AS (control) and AS/AGU (mutant) rats using 

TEM to determine whether there are: 

a) Differences in the percentages and numbers of such terminals. 

b) Differences in synaptic vesicles numbers. 
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EXPERIMENT 1: 

Quantification of transmitter synthesis and degeneration-

associated molecules in midbrain and striatum: a 

comparison of AS and AS/AGU rats 
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2.1 Introduction 
 

 

The AS/AGU rat has been characterised as a mutation in the gene coding for protein 

kinase C-γ (Craig et al., 2001) which results in an inability to release biogenic amines 

such as dopamine and serotonin in the striatum (Campbell et al., 1997; Al-Fayez et 

al., 2005). 

The physiological failure, measured by in vivo microdialysis and HPLC-ECD, occurs 

from an early age. Only in later life is there a measurable decrease in whole tissue 

dopamine or serotonin levels (Campbell et al., 1998, 2000; Payne et al., 2000; Al-

Fayez et al., 2005) or a decrease in aminergic cell numbers (Clarke and Payne, 

1994; Scott et al., 1994; Stewart et al., 1994; Al-Fayez et al., 2005). This suggests 

that synthesis of amines is not compromised in early stages of the disorder, even 

though release is. However, overall levels of amines (as analysed by micropunch and 

HPLC-ECD) could mask considerable variation between non-functional senescent 

neurons and hyperactive compensatory ones. The first aim, therefore, was to examine 

the synthetic capabilities of cells in the substantia nigra (dopamine) and midbrain 

raphe nuclei (serotonin) at different ages. A second aim was to examine levels of  

molecules associated with neurodegeneration in Parkinson’s disease, especially those 

associated with Lewy bodies such as ubiquitin, parkin and α-synuclein (Love and 

Nicoll, 1992; Irizary et al., 1998). This is because most laboratory models of 

nigrostriatal dysfunction do not exhibit the cellular inclusions which are traditionally 

thought of as a defining characteristic of the human condition (Forno et al., 1993; 

Dauer and Przedborski, 2003). Even if no such pathological features occur, it is 

important to know if there are elevations in intracellular levels of these molecules 
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since this would imply kinship between the laboratory model and the human disorder 

and, perhaps, similar mechanisms of dysfunction.    

 

2.1.1 Tyrosine hydroxylase (TH)      

Tyrosine hydroxylase (TH) has frequently been used as a marker of dopaminergic 

neurons (Pearson et al., 1983). TH catalyses the first and rate-limiting step in 

biosynthesis of catecholamines (Nagatsu et al., 1964; Kuhar et al., 1999; Lehmann 

et al., 2006) responsible for the conversion of L-tyrosine to L-DOPA.  In the rat it is a 

homotetrameteric protein composed of 498 identical amino acid residue subunits 

(Grima et al, 1985). It appears to be encoded by a single gene in all species (Kumer 

and Vrana, 1996; Fitzpatrick, 1999). The conversion of L-tyrosine to noradrenaline 

and adrenaline was first shown in the adrenal medulla (Blaschko, 1939) and later 

confirmed in  the CNS and PNS (Flatmark, 2000). TH is present in a soluble and a 

membrane-bound form (Nagatsu et al., 1964; Kuczenski and Mandell, 1972; Kuhn 

et al., 1990). TH activity is regulated by various mechanisms including induction of 

TH gene transcriptional regulation, phosphorylation by different kinase systems 

(PKA, PKC and PKG) and feedback inhibition by the end product; it also requires 

tetrahydrobiopterin or pteridine (BH4) as a co-factor, molecular oxygen and ferrous 

iron (Fe
+2

) for it is reaction (for review see, Kumer  and Vrana, 1996). 

TH  levels and  distribution have been studied enzymatically (McGeer et al., 1971; 

McGeer and McGeer, 1976; Sawada et al., 1987), by using immunohistochemical 

techniques (Gaspar et al., 1985; Martin et al., 1991 ; Holt et al., 1997; Hedreen, 

1999) and by fluorescence microphotometry in rat (Sutoo et al., 1991) and  human 

brain (Sutoo et al., 2001).   



Chapter 2                                                                                                     Introduction                                                                                  

 

62 

TH immunofluorescence levels have been determined in normal and pathological 

brains by TH messenger RNA (detected by in situ hybridization) and TH protein 

content in the cells (Kastner et al., 1993; Sutoo et al., 1994). 

Many points must be considered in analysing TH immunostaining in normal 

dopaminergic neurons of the mesencephalon as described by Kastner et al. (1993). 

TH immunostaining was variable from one neuron to another in the same region and 

from region to region (e.g. dopaminergic neurons of A8 have higher TH content).  TH 

immunolabelling of the midbrain are related to their projection organization within the 

striatum as in the striosome that has lower TH immunoreactivity.  TH concentrations 

are not related to the neuromelanin content and are not age dependent. TH 

immunostaining levels are reduced in PD patients as is TH mRNA in surviving 

dopaminergic nigral neurons and in TH-ve dopaminergic neurons.  

 

2.1.2 Serotonin (5-HT) 

Serotonin (5-HT) is an aminergic neurotransmitter synthesized in several cell 

groupings located in the midbrain and brain stem (Morgan et al., 1987; Jacobs and 

Azmitia, 1992; Chojnacka-Wojcik, 1995). Like dopamine, midbrain serotonergic 

neurons project mainly to the striatum and other forebrain regions (Azmiti and Segal, 

1978; Imai et al., 1986; Jacobs and Azmitia, 1992) and are depleted in human PD 

(Halliday et al., 1990; Paulus and Jellinger, 1991).  

Serotonin is formed from the amino acid tryptophan which is converted to 5-hydroxy-

tryptophan by the rate-limiting enzyme tryptophan hydroxylase (Fitzpatrick, 1999), 

then converted to 5-HT by aromatic-L-amino acid decarboxylase. Serotonin can be 

metabolised initially into 5-hydroxy-indole-acetaldehyde by monoamine oxidase 
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(MAO) and is further oxidised by aldehyde dehydrogenase to 5-hydroxy-indole acetic 

acid (see Osborne, 1982). 

A reduction in serotonin concentration has been detected in the striatum, substantia 

nigra, hippocampus, and other regions of the Parkinsonian brain (Rinne et al., 1974; 

Scatton et al., 1983; Agid et al., 1987; Mizuno, 2005). Also, a reduction in 

tryptophan hydroxylase activity occurs in Parkinson’s disease patients (Sawada et al., 

1985),  together with depleted 5-HT and its metabolites in the cerebrospinal fluid 

(CSF) (Tohgi et al., 1993). The situation in laboratory models of PD can only be said 

to be highly variable and confusing. In animals treated with MPTP, the serotonin 

concentration in the striatum and the  raphe nuclei has been reported as decreased 

(Pifl et al., 1991; Frechilla et al., 2001), unchanged (Rose et al., 1989) or increased 

(Gaspar et al., 1993). Rats treated neonatally with 6-OHDA exhibit serotonergic fibre 

hyperinnervation in the striatum accompanied by increased 5-HT and its metabolite 

(5-HIAA) in the striatum (Kostrzewa et al., 2006). Conversely, others have found 

that the tissue content of 5-HT and 5-HT innervation were significantly decreased in 

the striatum of 6-OHDA-treated rat (Takeuchi et al., 1991). 

 

2.1.3 Lewy body proteins 

Many age-related neurodegenerative disorders including PD involve abnormal 

aggregation and deposition of mis-folded proteins within affected neurons. 

In PD, the aggregation and deposition of mis-folded proteins in the nigrostriatal 

dopaminergic neurons of the substantia nigra is a noted characteristic. Mis-folded 

proteins such as ubiquitin, parkin and α-synuclein are  accumulated in the Lewy 

bodies that are a pathological hallmark feature of PD (Pollanen et al., 1993; 

Cornford et al., 1995; Forno, 1996; Galvin et al., 1997; Shults, 2006). 
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(i) Ubiquitin is a 76 amino acid protein that has a major role in regulated protein 

degradation by the ubiquitin-proteasome pathway (Hershko and Ciechanover, 

1998). This pathway plays a major role in the degradation of abnormal proteins that 

result from oxidative stress, neurotoxicity and mutations (Alves-Rodrigues et al., 

1998). 

Ubiquitin appears to be incorporated into inclusion bodies which occur in the major 

neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease 

(Lowe  et al., 2001).  

(ii) Parkin is a protein that has ubiquitin-ligase a activity (Imai et al., 2000; Shimura 

et al., 2000; Zhang et al., 2000) and therefore also plays an important role in the 

ubiquitin-proteasome pathways. A mutation in the parkin gene is implicated in a 

familial type of PD called autosomal recessive juvenile parkinsonism (Kitada et al., 

1998). 

(iii) Alpha-synuclein  is a presynaptic protein (Clayton and George, 1998; 

Spillantini et al., 1998a). Like parkin, a mutation of α-synuclein has been identified 

in one form of autosomal dominant familial PD (Polymeropoulos et al., 1997; 

Kruger et al., 1998). 

Lewy body proteins have been discussed in depth in chapter 1 (the general 

introduction).   
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2.2 Rationale for measurement technique  

Levels of compounds can be measured in brain regions by traditional techniques such 

as competitive protein binding or high pressure liquid chromatography (Thorpe and 

Thorpe, 2000; Wilson, 2000). Similarly, enzymes can be measured by incubation of 

tissue slices with radiolabelled precusors (Thorpe and Thorpe, 2000). 

However, in each case, measurements are being made on a heterogeneous tissue 

sample, whether it be a core or a slice. This has the disadvantage of including neurons 

and glial cells of many types- as well as the inability to distinguish between cell 

bodies and neuropil. To get round these obvious disadvantages, the decision was 

made to sample large numbers of individual cells from known regions of CNS. One 

way to do this is to employ immunocytochemistry where the primary antibody is 

directed toward a molecule of interest (e.g. ubiquitin) and the secondary antibody is a 

fluorescent one. The amount of fluorescence coming from each cell gives a 

quantitative measure of the abundance of the molecule. Provided measurements are 

made on tissues which have been prepared, processed, treated and measured in 

exactly the same way, this allows good comparisons to be made between individuals 

or groups (Kastner et al., 1993). This is especially true where a pair of animals 

(control and mutant) are analysed together at every stage. This was the case here. All 

inter-group comparisons are then made by dependent (i.e. paired) statistics.    

The aim of Experiment 1 is therefore to examine levels of molecules that give 

information about  

i. synthesis of the aminergic neurotransmitters TH and 5-HT and  

ii. levels of molecules which have been found in intracellular inclusions in 

Parkinson’s disease using quantitative immunofluorescence microscopy.    
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2.3 Materials and Methods  

  

2.3.1 Animals 

18 AS control and 18 AS/AGU mutant male rats were used in this experiment. 

The numbers in each age group were: 

(1)  6 AS and 6 AS/AGU aged 6 months old. 

(2)  6 AS and 6 AS/AGU aged 12 months old. 

(3)  6 AS and 6 AS/AGU aged 18  months old. 

2.3.2 Tissue preparation 

All rats were deeply anaesthetized with an overdose of sodium pentobarbitone B.P 

(Vet.), (2 ml of 60 mg/ml, Rhone-Merieux, Spire Greencentre, Harlow, Essex)  

injected intraperitoneally, and then the thoracic cavity was opened. One hundred ml of 

mammalian Ringer solution containing the vasodilator Lignocaine was injected into 

the left ventricle  followed by 500ml 4% paraformaldehyde (Sigma- Aldrich Inc, 

P6148) in 0.1M phosphate buffer, excess fluid being drained via an incision through 

the right atrium (Appendix 1). The brains were dissected out and immersion-fixed in 

4% paraformaldehyde in 0.1M of phosphate buffer overnight. Pieces of brain 

containing areas of interest were dehydrated through an ascending ethanol series using 

a Histokinette 2000 automatic tissue processor (Reichert-Jung, Germany) then 

embedded in paraffin wax at 57ºC and serially sectioned at 7µm using a Microtome 

(Spencer, 820, USA) (Appendix 2). The ribbons of sections were laid out in parallel 

rows on a tray. 
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2.3.3 Toluidine blue Staining 

Three sections from the middle and ends of each row were collected and stained with 

1% aqueous toluidine blue (R.ALAMB, UK) (Appendix 3A). They were then 

examined under a light microscope to locate the rostral, central and caudal ends of the 

substantia nigra, dorsal and median raphe nuclei and the striatum in order to provide 

reference sections for matching sections of the AS and the AS/AGU rats using a 

standard atlas of the rat brain (Paxinos and Watson, 1982).(Figure 2.1). 

2.3.4 Immunocytochemistry (ICC) on paraffin sections 

 It is an essential feature of this experiment that AS and AS/AGU sections were 

processed and assessed together as pairs. Adjacent sections were chosen, collected 

and stretched in a paraffin section-mounting bath for 1-3 mins at 40ºC. They were 

then mounted on APES (3-aminopropltriethoxysilane)-coated slides and dried in a 

37ºC oven overnight and then at 56ºC for 2 hours. The sections were deparaffinized 

and rehydrated before undergoing a heat-mediated antigen retrieval technique (Shi et 

al., 1991). Slides were immersed in boiling 0.01M sodium citrate buffer (pH 6.0) in a 

Prestige stainless steel pressure cooker (Norton et al., 1994).  The temperature was 

then raised to 120ºC for 1 minute. Sections were rinsed in distilled water followed by 

0.01M phosphate buffered saline (PBS, 1x5 mins), and then incubated in 1.5% 

hydrogen peroxide (H2O2) for 10 minutes to inactivate endogenous peroxidase. After 

rinsing in distilled water (2x5 mins) and in PBS (2x5 mins), sections were treated 

with 1% normal goat serum (NGS, Sigma-Aldrich, G9023, UK) in PBS with 3% 

Triton X-100 (Sigma Chemical. CO) for 60 min at room temperature to reduce 

nonspecific background staining (Appendix 3B). 
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Figure 2.1:  Coronal sections of midbrain to show substantia nigra: 

Sections (a, d, and g) were stained with toluidine blue. Sections (b, e and h) were 

stained with immunoperoxidase DAB for TH. 

The sections show the rostral (a and b) central (d and e) and caudal (g and h) 

regions of the substantia nigra (x2.5). (c, f and i from Paxinos and Watson, 1982). 
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2.3.5 Immunoperoxidase staining 
 

This method of ICC staining was carried out according to a protocol that has been in 

use for 25 years (Hsu et al., 1981) and was used to confirm the identify of the 

substantia nigra, midbrain raphe nucleus and the striatum in matching sections of the 

AS and the AS/AGU rats by staining for the rate-limiting enzyme tyrosine 

hydroxylase (TH) (within the SN and striatum) and serotonin (5-HT) (within the 

midbrain raphe nucleus),(Figure 2.1 and 2.2). 

Sections were incubated for 24 h in a humidity chamber at 4ºC with the primary 

antibody to TH or 5-HT diluted in blocking serum (1% NGS in PBS with 0.3% Triton 

X- 100). The rest of the procedure was carried out at room temperature. After rinsing 

in PBS (3x5 mins), sections were incubated for 60 min in a biotinylated  secondary 

antibody. Following incubation for 60 min in Avidin-Biotin-Complex (ABC) reagent 

(1:50; 20µl of solution A and 20µl of solution B in 1ml of PBS; Vectastain ABC kit, 

Vector Laboratories, INC, PK-6100, Peterborough UK), sections were then rinsed in 

PBS (3x5 mins) and 0.1 M phosphate buffer (PB, 1x5 mins). The location of the 

antigen-antibody complex was visualized by incubating sections in a medium 

containing 0.05% 3,3-diaminobenzidine (DAB substrate KIT for peroxidase, Vector 

Laboratories, INC, SK-4100, Peterborough UK) for 2-5 min. This step was carried out 

with care in fume cupboard and all equipment which came in contact with DAB was 

soaked with bleach in order to denature it, as DAB is potentially carcinogenic 

(International Agency for Research on Cancer, 1972). Finally, the sections were 

rinsed in distilled water, dehydrated and mounted with glass coverslips using 

histomount (RALAMB, HS-103, UK). Slides were then examined under a light 

microscope using a standard atlas of the rat brain (Paxinos and Watson, 1982).  
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Figure 2.2 : Coronal sections of (a) substantia nigra (x40), (c) dorsal and 

median raphe nuclei (DRN and MRN),(x20) and (e) striatum,(x20) from a 

control (AS) male rat aged 12 months. Sections have been immunostained for 

TH. VTA, ventral tegmental area; SNC, substantia nigra pars  compacta; SNR, 

pars reticularis; SNL, pars lateralis; DCPU, dorsal caudate-putamen; LCPU, 

lateral caudate-putamen; VCPU, ventral caudate-putamen; GP, globus pallidus. 

(b, d and f from Paxinos and Watson, 1982). 
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Control sections were obtained by removing the primary antibody to test for any non–

specific background staining. 

Areas of interest were recorded using a digital camera, NIKON; Coolpix 995 (3.34 

Mega pixel). 

2.3.6 Immunofluorescence staining 

Whilst toluidine blue and immunoperoxidase DAB staining for TH were used to 

confirm the position of sections, strain differences were assessed by quantitative 

immunofluorescence. The same procedures used in ICC were followed to prepare 

sections for the primary antibody. Sections were incubated in a humidity chamber for 

24 h at 4ºC with primary antibody  diluted  in the blocking serum. After rinsing in 

PBS (3x5 mins), the sections were incubated in a humidity chamber for 24 h at 4ºC 

with a fluorescent secondary antibody at a dilution of 1:100 in PBS. Slides were 

covered with a caterwrap foil to give protection from bleaching in this step and during 

the rest of the procedure. The sections were then mounted with glass coverslips using 

Vectashield (H-1400, UK) after rinsing in distilled water (3x5 mins) and were ready 

for fluorescence quantification that was carried out on the same day. The area of 

interest was recorded using a Leica Wild MP52 photo-automat camera fitted to the 

microscope.   

2.3.7 Double labeling Immunofluorescence staining 

This method was used to confirm the present of Lewy body proteins such as ubiquitin, 

parkin and α-synuclein in the (TH) +ve cells or neuropil in the substantia nigra in the 

adjacent sections of the AS and the AS/AGU rats. 

Sections were incubated in a humidity chamber for 24 h at 4ºC with a mixture of two 

primary antibodies (e.g. anti-tyrosine hydroxylase and anti-ubiquitin) diluted at 1:500 
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in the blocking serum. After rinsing in PBS (3x5 mins), the sections were incubated in 

a humidity chamber for 24 h at 4ºC with a fluorescent secondary antibody 

(Fluorescein  and Rhodamine ), at dilution of 1:100 in PBS for both. Slides were 

covered to give protection from bleaching in this step and the rest of the procedure. 

The sections were then mounted with glass coverslips using Vectashield (H-1400, 

UK) after rinsing in distilled water (3x5 mins). 

Areas of interest were recorded using a Leica Wild MP52 photo-automat camera 

fitted to the microscope. 

2.3.8 Fluorescence and the quantitative fluorescence 

microscope: 
 

The physiological or pathological changes that occur in cells can be studied by 

sensitive techniques involving the use of fluorescent compounds coupled with a 

photometric fluorescence microscope. 

Fluorescence is a type of luminescence where the absorption of light energy raises a 

molecule to a higher energy state, with subsequent releasing of energy in the form of 

light. In practical terms the wavelength of the emitted light is always longer than the 

excitatory light, so excitation in the ultraviolet leads to fluorescence in the visible 

range (usually in the blue or green) and excitation in the blue or green will usually 

lead to emission in the red. The advantage of using fluorescence is that it is possible to 

quantify the uptake of probe into a cell surface membrane or into cell organelles 

without damaging the cell. 

The sensitivity and selectivity of fluorescence detection has excited the interest of 

microscopists since the1950s (for review see Taylor and Salmon, 1989; Wampler 

and Kutz, 1989). 
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Immunofluorescence has been the most common application of fluorescence 

microscopy in cell biology. It combines the specificity and sensitivity of fluorescence 

microscopy with the selective binding of antibodies to restricted regions of antigen 

molecules.  

Immunofluorescence quantification in these studies was achieved by using a Leitz 

Laborlux S microscope and photometric system (Figure 2.3), which consisted of a 

photometer attachment with photomultiplier (ERNST LETZ WETZLAR GMBH, 

301-289,133, Germany), which converts the light flux into electric signals. A control 

panel (Figure 2.4) allows the starting of the automatic measuring process, and coarse 

and fine amplification of the measuring signal, digital display unit and the power units 

for stabilizing the light sources. I followed immunofluorescence quantification 

techniques used over several years by researchers in the Division of Biochemistry and 

Molecular Biology in Glasgow University  (Modha et al., 1997; Ribeiro et al., 1998 

; Al-Adhami et al. , 2001 ; Akhkha  et al, 2002 ; Al-Adhami et al. , 2003). 
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Figure 2.3: Leitz Laborlux S microscope photometer showing the major 

components (photometer, control panel and the power units). 

 

 
 

Figure 2.4: Leitz Laborlux S microscope photometer control panel showing the 

Display, A button for the starting the measuring process and I button to take the 

measurement and JO knob (adjust display reading to zero). 
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2.3.9 Fluorescence quantification 
 

Fluorescence immunoreactivity of certain molecules in the midbrain cell groups or the 

striatum was quantified using a Leitz Laborlux S microscope photometer equipped 

with the filter set for Rhodamine Red-X (excitation, 570 nm and emission, 590 nm) an 

objective lens x50 (Fluoreszenz) and with a measurement field set at 150 µm
2
 (The 

measurement was confirmed using a graduated slide from Graticules LTD Tonbridge 

Kent, England).
 
Immunofluorescence was quantified in cells of the rostral substantia 

nigra pars compacta (SNC; Approximately -4.8mm relative to bregma), central SNC 

(Approximately -5.3mm relative to bregma), caudal SNC (Approximately -6.3mm 

relative to bregma), pars lateralis (SNL), pars reticularis (SNR),  the ventral tegmental 

area (VTA), the dorsal raphe nucleus (DR; Approximately -7.8 mm relative to 

bregma) and the median raphe nucleus and dorsal, lateral and the ventral parts of the 

caudate-putamen (Approximately -0.3 mm relative to bregma) (Paxinos and Watson, 

1982) of both AS (control) and AS/AGU (mutant) rats. The central SNC (the largest 

part) was also subdivided into medial and lateral halves and measurement started from 

the medial half and progressed toward the lateral half. 

After the sections were put on the Leitz Laborlux S microscope stage, a bright 

sampling frame, viewed down the microscope eyepiece, was adjusted to a constant 

size of 15x10 µm throughout the experiment as this size was found to enclose the cell 

body satisfactorily. The only exception was α-synuclein since this is a pre-synaptic 

protein and therefore not found in cell bodies; here, the sampling frame  was adjusted 

to enclose an area of neuropil of constant size (120x120 µm) throughout the 

experiment (Figure 2.5 and 2.6).  

As well as immunofluorescence-positive cells or neuropil areas the background 

fluorescence was also measured and subtracted from the recorded measurements.  
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Figure 2.5: A coronal section of substantia nigra shows a bright sampling 

frame and its size (10x15 µm) that is adjusted to enclose a TH-immunostained 

cell (x1000). 
 

 

Figure 2.6: A coronal section of substantia nigra shows a bright sampling 

frame and its size (120x120 µm) that is adjusted to enclose α-Synuclein-

immunostained neuropil (x500). 

15 µm 

10 µm 

120 µm 

120 µm 
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(Appendix 5). 

The number of measured cells per animal was at least 50 in each area. This being the 

approximate numbers on a single section which showed a nucleus and nucleolus. 

The fluorescence measurements are shown in arbitrary units, the range of values 

obtained being from 0.01-30. Tyrosine hydroxylase immunofluorescence per volume 

of cell was measured (the volume of SNC cells measured in chapter 3 page 154). 

2.3.10  Statistical analysis 

The results were analysed by paired t-test using the Minitab statistics package 

(MINITAB Release 13.30). 
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2.3.11  Calibration of fluorescent measurements 

It was not possible to calibrate the arbitrary units against objects of known fluorescent 

emission. However, it was possible to test the relationship between fluorescence 

observed and primary antibody for TH on adjacent midbrain sections. Concentrations 

ranged between 1:50 and 1:2000 and show a strong liner relationship (Table 2.1 and 

Figure 2.7).  

 

 

Primary antibody concentrations 

(TH) 

Fluorescence (arbitrary units) 

1:50 20.48 

1:100 19.44 

1: 250 16.86 

1: 500 13.83 

1: 1000 11.85 

1: 2000 8.16 

Table 2.1: Calibration of fluorescent measurements: first column a series of  

primary antibody concentrations against TH and their fluorescent 

measurements (arbitrary units) in a second column. 
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Figure 2.7: Calibration of fluorescent measurements: a series of primary 

antibody concentrations (TH) and their fluorescent measurements (arbitrary 

units). 
 

 

 

 

 

 

Correlations: Primary antibody concentrations, Fluorescence (arbitrary 
units)  
 
Pearson correlation of Primary antibody concentrations 

and Fluorescence 

(arbitrary units) = -0.944 

 

P-Value = 0.005 
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2.4 Results for tyrosine hydroxylase 
 

2.4.1 Quantified tyrosine hydroxylase immunofluorescence in the 

midbrain of AS and AS/AGU rats aged six months. 

 

The results for tyrosine hydroxylase (TH) immunofluorescence show a statistically 

significant difference between the two groups in the rostral and caudal ends of the 

SNC, and the lateral half of the central SNC. (P<0.05 or higher). There are no 

statistical differences between the two groups in the levels of TH in the medial half of 

the central SNC, SNL, VTA or the SNR. In each case where there is a significant 

difference, the mutant rats have higher levels than the control strain. Tyrosine 

hydroxylase immunofluorescence per volume of cell show a statistically significant 

difference between the two groups in the rostral, cental and caudal ends of the SNC. 

The results are summarized in table 2.2. 
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AS 

 

AS/AGU 

 

P 

Rostral SNC 

                        

      

     Flu/cell volume 

 

  8.53 ± 1.40 

 

0.015 ± .002 

 

12.44 ± 2.21 

 

0.061 ± .009 

 

< 0.05 

 

< 0.01 

 

13.98 ± 2.19 

 

  0.021 ± 0.003 

 

18.45 ± 3.37 

 

  0.077 ± 0.014 

 

< 0.05 

 

< 0.05 

 

16.81 ± 2.50 

 

  0.017 ± 0.003 

 

18.88 ± 3.40 

 

  0.075 ± 0.014 

 

NS 

 

< 0.01 

Central SNC 

 (a) overall       

 

     Flu/cell volume          

 (b) medial 

 

           

     Flu/cell volume         

 (c)  lateral 

 

 

     Flu/cell volume 

 

11.17 ± 2.02 

 

  0.026 ± 0.004 

 

18.02 ± 3.43 

 

  0.079 ± 0.014 

 

< 0.05 

 

< 0.05 

 

Caudal SNC 

 

     Flu/cell volume 

 

10.20± 1.38 

 

 0.013 ± 0.002 

 

14.54 ± 2.05 

 

  0.052 ± 0.009 

 

< 0.01 

 

< 0.01 

 

SNL 

 

 

16.73 ± 2.46 

 

17.18 ± 1.94 
 

NS 

 

SNR 

 

 

17.83 ± 2.20 

 

18.06 ± 1.79 
 

NS 

 

VTA 

 

 

14.10 ± 1.67 

 

17.81 ± 3.57 
 

NS 

Table 2.2: Tyrosine hydroxylase (TH) quantification (arbitrary units of 

fluorescence) in the midbrain of AS control and AS/AGU mutant rats aged six 

months (n=6 per group),(Flu/cell volume: fluorescence per cell volume). All 

values are mean arbitrary units ± SEM. All comparisons are paired t-tests (NS,  

not significant). 

 

 

 

 

 

 

 

 

 

 



Chapter 2                                                                                                              Results 

 

86 

2.4.2 Quantified tyrosine hydroxylase immunofluorescence in the         

midbrain of AS and AS/AGU rats aged 12 months. 

 
The results for tyrosine hydroxylase (TH) immunofluorescence show a statistically 

significant difference between the two groups in all TH +ve cells in the SNC. (P<0.05 

or greater). In the SNL, SNR and the VTA there are no statistical differences between 

the two groups. Tyrosine hydroxylase immunofluorescence per volume of cell show a 

statistically significant difference between the two groups in the rostral, cental and 

caudal ends of the SNC. The results are summarized in table 2.3. In each case where 

there is a significant difference, the mutant rats have higher levels than the control 

strain. 
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AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

     Flu/cell volume 

 

11.09 ± 0.47 

 

  0.017 ± 0.001 

 

16.36 ± 0.57 

 

  0.068 ± 0.003 

 

< 0.001 

 

< 0.001 

 

11.93 ± 0.47 

 

  0.018 ± 0.001 

 

15.02 ± 0.67 

 

  0.062 ± 0.003 

 

< 0.01 

 

< 0.001 

 

11.32 ± 0.53 

 

  0.019 ± 0.001 

 

       14.89 ± 1 

 

    0.062 ± 0.002 

 

< 0.05 

 

< 0.001 

Central SNC 

 (a) overall 

 

     Flu/cell volume 

           

 (b) medial 

 

     Flu/cell volume 

           

 (c)  lateral 

 

     Flu/cell volume 

 

12.53 ± 0.43 

 

  0.017 ± 0.001 

 

15.14 ± 0.42 

 

  0.061 ± 0.004 

 

< 0.01 

 

< 0.001 

 

Caudal SNC 

 

     Flu/cell volume 

 

10.59 ± 0.55 

 

  0.016 ± 0.001 

 

15.39 ± 0.64 

 

  0.064 ± 0.003 

 

< 0.001 

 

< 0.001 

 

SNL 

 

 

10.13 ± 0.26 

 

10.18 ± 0.26 
 

NS 

 

SNR 

 

 

12.09 ± 0.65 

 

12.82 ± 0.84 
 

NS 

 

VTA 

 

 

11.92 ± 0.30 

 

12.11 ± 0.31 
 

NS 

Table 2.3: Tyrosine hydroxylase (TH) quantification (arbitrary units of 

fluorescence) in the midbrain of AS control and AS/AGU mutant rats aged 12 

months (n=6 per group),(Flu/cell volume: fluorescence per cell volume). All 

values are mean arbitrary units ± SEM. All comparisons are paired t-tests (NS,  

not significant). 
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2.4.3 Quantified tyrosine hydroxylase immunofluorescence in the 

midbrain of AS and AS/AGU rats aged 18 months. 

 
The results for tyrosine hydroxylase (TH) immunofluorescence show a statistically 

significant difference between the two groups in all regions except the SNL (P<0.05 

or greater). Tyrosine hydroxylase immunofluorescence per volume of cell show a 

statistically significant difference between the two groups in the rostral, cental and 

caudal ends of the SNC. The results are summarized in table 2.4. In all regions, the 

mutant rats have higher levels than the control strain.  
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AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

     Flu/cell volume 

 

9.29 ± 0.54 

 

0.014 ± 0.001 

 

18.56 ± 1.63 

 

0.063 ± 0.012 

 

< 0.01 

 

< 0.01 

 

10.28 ± 1.33 

 

0.016 ± 0.002 

 

19.26 ± 2.75 

 

0.08 ± 0.011 

 

< 0.01 

 

< 0.01 

 

10.34 ± 1.56 

 

0.016 ± 0.002 

 

18.64 ± 3.15 

 

0.075 ± 0.014 

 

< 0.01 

 

< 0.01 

Central SNC 

 (a) overall 

 

     Flu/cell volume 

            

 (b) medial 

 

     Flu/cell volume    

 (c) lateral 

 

 

     Flu/cell volume 

 

10.25 ± 1.25 

 

0.015 ± 0.001 

 

19.93 ± 2.38 

 

0.083 ± 0.01 

 

< 0.001 

 

< 0.001 

 

Caudal SNC 

 

     Flu/cell volume 

 

11.30 ± 2.18 

 

0.017 ± 0.003 

 

19.14 ± 2.58 

 

0.08 ± 0.012 

 

< 0.01 

 

< 0.01 

 

SNL 

 

 

9.85 ± 1.17 

 

15.46 ± 3.03 
 

NS 

 

SNR 

 

 

9.68 ± 0.84 

 

15.58 ± 2.11 
 

< 0.05 

 

VTA 

 

 

9.88 ± 0.93 

 

16.01 ± 2.38 
 

< 0.05 

Table 2.4. Tyrosine hydroxylase (TH) quantification (arbitrary units of 

fluorescence) in the midbrain of AS control and AS/AGU mutant rats aged 18 

months (n=6 per group),(Flu/cell volume: fluorescence per cell volume). All 

values are mean arbitrary units ± SEM. All comparisons are paired t-tests (NS,  

not significant). 
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2.4.4 A comparison of tyrosine hydroxylase(TH) levels in the 

midbrain of AS and AS/AGU rats at different ages. 

 
Tyrosine hydroxylase levels decrease with age in AS (control) rats in the central SNC, 

SNL, SNR and VTA. In general, the decreases are progressive but modest. In other 

regions such as the rostral and caudal SNC, there are no effects of age and TH levels 

are constant over the range examined in this experiment. 

By contrast, TH levels in AS/AGU (mutant) rats may rise with age (rostral SNC, 

caudal SNC) or fall initially but then rise again, so that TH levels at 18 months 

resemble those at 6 months (all other regions).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2                                                                                                              Results 

 

91 

2.5 Results for serotonin 

2.5.1 Quantified serotonin (5-HT) immunofluorescence in the 

midbrain of  AS and AS/AGU rats aged six months 

The results for serotonin (5-HT) immunofluorescence show a statistically significant 

difference between the two groups for the dorsal raphe nucleus (P<0.05). AS/AGU 

(mutant) rats had higher levels than AS (control). There was no statistical difference 

between the two groups for the median raphe nucleus. The results are summarized in 

table 2.5. 

  

AS 

 

 

AS/AGU 

 

P 

 

Dorsal raphe 

nucleus 

 

4.81 ± 0.23 

 

 

6.07 ± 0.23 
 

< 0.05 

 

Median raphe 

nucleus 

 

4.36 ± 0.13 

 

 

4.74 ± 0.19 
 

NS 

Table 2.5. Serotonin quantification (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged six months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant) . 
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2.5.2 Quantified serotonin (5-HT) immunofluorescence in the 

midbrain of AS and AS/AGU rats aged 12 months 

 

The results for serotonin (5-HT) immunofluorescence show a statistically significant 

difference between the two groups in the dorsal raphe nucleus (P<0.01) with mutants 

having higher levels than controls. There is no statistical difference between the two 

groups in the levels of serotonin in the median raphe nucleus. The results are 

summarized in table 2.6. 

  

AS 

 

 

AS/AGU 

 

P 

 

Dorsal raphe 

nucleus 

 

3.93 ± 0.33 

 

 

5.45 ± 0.47 
 

< 0.01 

 

Median raphe 

nucleus 

 

3.51 ± 0.58 

 

 

5.58 ± 1.07 
 

NS 

 

Table 2.6: Serotonin quantification (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are by 

paired t-tests (NS,  not significant). 
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2.5.3 Quantified serotonin (5-HT) immunofluorescence in the 

midbrain of AS and AS/AGU rats aged 18 months 

 
The results for serotonin (5-HT) immunofluorescence show a statistically significant 

difference between the two groups in the dorsal raphe nucleus (P<0.001) with mutants 

having higher levels than controls. There is no statistical difference between the two 

groups in the levels of serotonin in the median raphe nucleus. The results are 

summarized in table 2.7. 

  

AS 

 

 

AS/AGU 

 

P 

 

Dorsal raphe 

nucleus 

 

3.23 ± 0.4 

 

 

7.98 ± 0.24 
 

< 0.001 

 

Median raphe 

nucleus 

 

3.46 ± 0.36 

 

 

4.46 ± 0.59 
 

NS 

Table 2.7: Serotonin quantification (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged 18 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are by 

paired t-tests (NS,  not significant). 

 

 

 

 

2.5.4 A comparison of serotonin (5-TH) levels in the midbrain of 6, 

12 and 18 months AS and AS/AGU rats 

5-HT levels progressively decrease with age in the AS (control) rats in the dorsal 

raphe nucleus, whereas they increase at the oldest age in AS/AGU rats. 5HT levels do 

not change with age in the median raphe nucleus in either group. 
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2.6 Results for ubiquitin 
 

2.6.1 TH and ubiquitin (Ub) labelling of adjacent sections 

In the case of senescence-associated molecules, it was essential to confirm that 

measurements were being made on aminergic cells. This was achieved by a labelling 

carried out in adjacent sections. For both strains, adjacent sections were stained 

respectively for TH and ubiquitin using fluorescent secondary antibodies. 

A double labelling with TH and ubiquitin showed that about 90% of the cells in the 

SNC  stained with both TH and ubiquitin and only 10% stained with only one of them 

(table 2.8 and figure 2.8).  Only those cells positively confirmed for TH were 

measured for ubiquitin fluorescence.  
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Percentage %  

Cell stained 

 AS 
                              SEM 

AS/AGU 
                           SEM 

               91.5 %    (±1.4)                90.9 %  (± 0.43) 

                88.9 %   (± 0.05)                88.3 %  (± 0.04) 

TH and Ub                   6 M 

                                      

                                   12 M 

 

                                

                                   18 M 
                89.7 %   (± 0.08)                88.1%   (± 0.12) 

                7.5 %     (± 0.06)                8.1%     (± 0.04) 

                9.6 %     (± 0.01)               10.2 %   (± 0.03) 

Ub not TH                    6 M  

 

                                   12 M                     

                                            

                                    

                                   18 M         
                9.1 %     (± 0.01)                9.9 %    (± 0.01) 

                 1 %       (± 0.13)                 1 %      (± 0.05) 

                1.5 %   (± 0.005)                 1.5 %   (± 0.007) 

TH not Ub                    6 M 

 

                                   12 M 

 

                                           

                                   18 M                                                    
                 1 %      (±0.025)                  2 %     (± 0.026) 

Table 2.8: Percentage of cells in the SNC that immunofluorescence stained with 

tyrosine hydroxylase (TH) or ubiquitin (Ub) or both of them.  
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Figure 2.8: TH and ubiquitin (Ub) labelling of adjacent sections. (a) AS TH-

immunostained cells of substantia nigra (green color). (b) AS Ub-immunostained 

cells of substantia nigra (red color). (c) AS/AGU TH-immunostained cells of 

substantia nigra (green color). (d) AS/AGU Ub-immunostained cells of 

substantia nigra (red color). (x500).  

     

Examples 

 

            Cell bodies immunostained with both TH (a and c) and ubiquitin (b and  

            d). 

            
          Cell bodies immunostained with TH only (c) which appear black in (d). 

 
          Cell bodies immunostained with ubiquitin only (b and d) which appear     

            black in (a and c). 

 

 

a b 

c d 
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2.6.2 Quantified ubiquitin immunofluorescence in the midbrain of 

AS and AS/AGU rats aged 6 months 

 
The results for ubiquitin (Ub) immunofluorescence show a statistically significant 

difference between the two groups in the rostral SNC, central SNC (overall, medial 

and lateral regions), caudal SNC, and the dorsal raphe nucleus (DRN) (P<0.05 or 

greater). Ubiquitin levels are significantly higher in the AS/AGU mutant. There are no 

statistical differences between the two groups in the levels of Ub (P>0.05) in the SNL, 

SNR, VTA, median raphe nucleus (MRN), oculomotor nucleus or pontine nucleus. 

The results are summarized in table 2.9. 
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AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

4.16 ± 0.25 

 

 

5.74 ± 0.15 

 

 

< 0.01 

 

5.79 ± 0.35 

 

 

7.79 ± 0.35 
 

< 0.001 

 

5.75 ± 0.46 

 

 

7.21 ± 0.39 
 

< 0.05 

Central SNC 

         (a) overall 

 

          

         (b) medial 

 

 

         (c)  lateral   

 

 

5.82 ± 0.28 

 

 

8.35 ± 0.50 
 

< 0.001 

 

Caudal SNC 

 

 

4.55 ± 0.25 

 

 

6.14 ± 0.19 
 

< 0.001 

 

SNL 

 

 

5.54 ± 0.66 

 

5.90 ± 0.29 
 

NS 

 

SNR 

 

 

5.23 ± 0.45 

 

5.56 ± 0.44 
 

NS 

 

VTA 

 

 

5.79 ± 0.44 

 

6.57 ± 0.59 
 

NS 

 

Oculomotor 

nucleus 

 

4.56 ± 0.60 

 

4.88 ± 0.24 
 

NS 

 

DRN 

 

 

4.26 ± 0.32 

 

6.05 ± 0.24 
 

< 0.01 

 

MRN 

 

 

4.32 ± 0.23 

 

4.45 ± 0.29 
 

NS 

 

Pontine nucleus 

 

3.77 ± 0.25 

 

4.11 ± 0.41 
 

NS 

 

Table 2.9: Ubiquitin quantification (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged 6 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.6.3 Quantified ubiquitin immunofluorescence in the midbrain of 

AS and AS/AGU rats aged 12 month 

 

The results for ubiquitin (Ub) immunofluorescence show a statistically significant 

difference between the two groups in the rostral SNC, central SNC (overall and lateral 

region), caudal SNC and the dorsal raphe nucleus (DRN) (P<0.05 or greater).  In each 

case, AS/AGU mutants had higher levels than controls. There are no statistical 

differences between the two groups in the levels of Ub in the central SNC (medial 

region), SNL, VTA, median raphe nucleus (MRN), oculomotor nucleus or pontine 

nucleus. The results are summarized in table 2.10. 
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AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

 

4.21 ± 0.35 

 

 

6.97 ± 0.79 

 

 

< 0.05 

 

 

4.25 ± 0.50 

 

6.00 ± 0.58 
 

< 0.001 

 

5.06 ± 0.61 

 

5.85 ± 0.55 
 

NS 

Central SNC 

        (a) overall 

 

 

        (b) medial 

 

 

         (c) lateral 

 

 

3.69 ± 0.63 

 

6.34 ± 0.79 
 

< 0.01 

 

Caudal SNC 

 

 

4.77 ± 0.47 

 

6.97 ± 0.71 
 

< 0.01 

 

SNL 

 

 

4.94 ± 0.05  

 

4.96 ± 0.04 
 

NS 

 

SNR 

 

 

4.87 ± 0.13 

 

4.92 ± 0.12 
 

NS 

 

VTA 

 

 

4.79 ± 0.26 

 

5.19 ± 0.37  
 

NS 

 

Oculomotor 

nucleus 

 

4.99 ± 0.69 

 

5.01 ± 0.58 
 

NS 

 

DRN 

 

3.68 ± 0.46 

 

7.05 ± 0.95 
 

< 0.05 

 

 

MRN 

 

 

4.43 ± 0.27 

 

4.47 ± 0.26 
 

NS 

 

Pontine nucleus 

 

 

4.59 ± 0.31 

 

4.74 ± 0.17 
 

NS 

Table 2.10: Ubiquitin quantification (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.6.4 Quantified ubiquitin immunofluorescence in the midbrain of 

AS and AS/AGU rats aged 18 month 

 

The results for ubiquitin (Ub) immunofluorescence show a statistically significant 

difference between the two groups in the rostral SNC, central SNC (overall, medial 

and lateral regions), caudal SNC, SNL, SNR, VTA, DRN and the MRN. (P<0.05 or 

higher). In each case, AS/AGU mutants had higher levels than AS controls. There are 

no statistical differences between the two groups in the levels of Ub (P>0.05) in the 

oculomotor nucleus or pontine nucleus.. The results are summarized in table 2.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2                                                                                                              Results 

 

102 

 

 

 

 

AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

 

7.94 ± 0.20 

 

 

16.26 ± 0.46  

 

 

< 0.001 

 

7.28 ± 1.02 

 

15.75 ± 0.93 
 

< 0.001 

 

7.85 ± 1.14 

 

17.18 ± 0.77  
 

< 0.001 

Central SNC 

         (a) overall 

 

 

         (b) medial 

 

 

         (c) lateral 

 

 

6.60 ± 0.89  

 

14.30 ± 1.18 
 

< 0.001 

 

Caudal SNC 

 

 

6.59 ± 0.47 

 

14.26 ± 0.84 
 

< 0.001 

 

SNL 

 

 

8.37 ± 0.59 

 

11.00 ± 0.66 
 

< 0.01 

 

SNR 

 

 

8.61 ± 0.57 

 

11.09 ± 0.52 
 

< 0.001 

 

VTA 

 

 

7.06 ± 0.40 

 

11.53 ± 0.49 
 

< 0.001 

 

Oculomotor 

nucleus 

 

4.59 ± 0.24 

 

4.83 ± 0.19 
 

NS 

 

DRN 

 

 

6.15 ± 0.38 

 

13.47 ± 1.03 
 

< 0.001 

 

MRN 

 

 

7.46 ± 0.42 

 

9.60 ± 0.57 
 

< 0.05 

 

Pontine nucleus 

 

 

6.41 ± 0.35 

 

7.08 ± 0.67 
 

NS 

Table 2.11: Ubiquitin quantification (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged 18 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.6.5 A comparison of ubiquitin(Ub) levels in the midbrain of 6, 12 

and 18 months AS and AS/AGU rats 

 
In every region except the oculomotor nucleus, cells show a gradual increase in 

ubiquitin immunofluorescence with age in AS (control) rats. However, the increase 

with age is much greater in AS/AGU (mutant) rats, leading to significant differences 

between the two strains at 18 months in all regions except the pontine and oculomotor 

nuclei.  
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2.7 Results for parkin 

 

2.7.1 TH and parkin labelling of adjacent sections 

Both TH and parkin labelling were carried out in which adjacent sections from AS 

and AS/AGU brains were stained for TH and parkin using fluorescent secondary 

antibodies. 

Labelling with TH and parkin showed that about 90% of the cells in the SNC  stained 

with both TH and parkin and the remainder with only one of them (Table 2.12). 

(Figure 2.9).  In dopaminergic areas, such as the SNC and VTA, only cells which  

were TH positive were counted for parkin. 
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Percentage %  

Cell stained 

 AS 
                         SEM 

AS/AGU 
                             SEM 

           89.6 %    (± 0.01)               89.1 %      (± 0.24) 

          88.9 %    (± 0.02)               88.2 %       (± 0.03) 

TH and parkin              6 M 

                                      

                                   12 M 

 

                                

                                   18 M 
          87.8 %    (± 0.04)               87.7 %      (± 0.05) 

           8.9 %     (± 0.05)                9.9 %       (± 0.04) 

          9.6 %     (± 0.02)                10.3 %     (± 0.03) 

Parkin not TH               6 M  

 

                                   12 M               

                                            

                                    

                                   18 M         
          10.7 %   (± 0.03)                11.3 %     (± 0.05) 

            1.5 %    (± 0.02)                  1 %        (± 0.03) 

           1.5 %    (± 0.01)                 1.5 %      (± 0.03) 

TH not parkin               6 M 

 

                                   12 M 

 

                                           

                                   18 M                      
           1.5 %    (± 0.01)                  1 %        (± 0.05) 

Table 2.12.: Percentage of cells in the SNC that immunofluorescence stained with 

tyrosine hydroxylase (TH) or parkin or both of them.  
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Figure 2.9: TH and parkin labelling of adjacent sections. (a) AS TH- 

immunostained cells of substantia nigra (green color). (b) AS parkin 

immunostained cells of substantia nigra (red color). (c) AS/AGU TH- 

immunostained cells of substantia nigra (green color). (d) AS/AGU parkin 

immunostained cells of substantia nigra (red color). (x500). 

 

Examples 

 

            Cell bodies immunostained with both TH (a and c) and parkin.(b and d). 

            
          Cell bodies immunostained with TH only (c) which appear black in (d). 

 
          Cell bodies immunostained with parkin only (b and d) which appear       

            black in (a) and (c). 

 

 

 

a b 

c d 
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2.7.2 Quantified parkin immunofluorescence in the midbrain of AS 

and AS/AGU rats aged 6 months 

 

The results for parkin immunofluorescence show a statistically significant difference 

between the two groups for the central SNC, caudal SNC and the DRN. (P<0.05 or 

greater). AS/AGU (mutant) rats have higher levels than AS (control).  There are no 

statistical differences between the two groups in the rostral SNC, SNL, SNR, VTA, 

median raphe nucleus (MRN), oculomotor nucleus or pontine nucleus. The results are 

summarized in table (2.13). 
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AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

4.88 ± 0.27 

 

 

6.29 ± 0.70 

 

 

NS 

 

 

4.19 ± 0.17 

 

5.32 ± 0.26 
 

< 0.05 

 

4.19 ± 0.11 

 

5.44 ± 0.62 
 

NS 

Central SNC 

        (a) overall 

 

       

        (b) medial 

 

         

        (c) lateral 

 

 

4.21 ± 0.33 

 

5.96 ± 0.89 
 

NS 

 

Caudal SNC 

 

 

5.35 ± 0.74 

 

6.44 ± 0.67 
 

< 0.01 

 

SNL 

 

 

4.38 ± 0.39 

 

4.66 ± 0.25 
 

NS 

 

SNR 

 

 

3.85 ± 0.27 

 

4.64 ± 0.24 
 

NS 

 

VTA 

 

 

3.76 ± 0.25 

 

4.55 ± 0.40 
 

NS 

 

Oculomotor 

nucleus 

 

4.11 ± 0.17 

 

4.19 ± 0.10 
 

NS 

 

DRN 

 

 

3.18 ± 0.19 

 

4.31 ± 0.10 
 

< 0.01 

 

MRN 

 

 

3.15 ± 0.08 

 

3.33 ± 0.24 
 

NS 

 

Pontine nucleus 

 

 

3.41 ± 0.07 

 

3.43 ± 0.09 
 

NS 

Table 2.13: Parkin quantification (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged 6 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.7.3 Quantified parkin immunofluorescence in the midbrain of AS 

and AS/AGU rats aged 12 months 

 

The results for parkin immunofluorescence show a statistically significant difference 

between the two groups for the rostral SNC, central SNC (overall, medial and lateral 

regions), caudal SNC and the DRN (P<0.05 or greater). In each case, AS/AGU 

mutants had higher levels than AS controls. There are no statistical differences 

between the two groups in the levels of parkin in the SNL, SNR, VTA, MRN, 

oculomotor nucleus or pontine nucleus. The results are summarized in table 2.14. 
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AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

3.17 ±  0.13 

 

5.02 ± 0.15 

 

 

< 0.001 

 

 

3.55 ± 0.66 

 

5.18 ± 0.39 
 

< 0.01 

 

3.70 ± 0.75 

 

5.14 ± 0.40 
 

< 0.05 

Central SNC 

         (a) overall 

 

 

         (b) medial 

 

 

         (c)  lateral 

 

 

3.41 ± 0.59 

 

5.23 ± 0.41 
 

< 0.001 

 

Caudal SNC 

 

 

2.79 ± 0.18 

 

4.78 ± 0.14 
 

< 0.001 

 

SNL 

 

 

3.64 ± 0.58 

 

3.64 ± 0.57 
 

NS 

 

SNR 

 

 

3.67 ± 0.59 

 

3.74 ± 0.59 
 

NS 

 

VTA 

 

 

3.53 ± 0.58 

 

3.54 ± 0.43 
 

NS 

 

Oculomotor 

nucleus 

 

3.71 ± 0.30 

 

3.79 ± 0.26 
 

NS 

 

DR 

 

 

2.65 ± 0.09 

 

4.69 ± 0.45 
 

< 0.01 

 

MR 

 

 

2.99 ± 0.12 

 

3.16 ± 0.09 
 

NS 

 

Pontine nucleus 

 

 

3.01 ± 0.04 

 

3.07 ± 0.06 
 

NS 

Table 2.14: Parkin immunofluorescence (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.7.4 Quantified parkin immunofluorescence in the midbrain of AS 

and AS/AGU rats aged 18 months 

 

The results for parkin immunofluorescence show a statistically significant difference 

between the two groups in the rostral SNC, central SNC (overall, medial and lateral 

regions), caudal SNC and the DRN (P<0.05 or greater). In each case, AS/AGU 

mutants had higher levels than AS controls. There are no statistical differences 

between the two groups in the levels of parkin in the SNL, SNR, VTA, MRN, 

oculomotor nucleus or pontine nucleus. The results are summarized in table 2.15. 
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AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

3.02 ± 0.16 

 

5.73 ± 0.63 

 

 

< 0.01 

 

3.48 ± 0.39 

 

6.40 ± 1.06 
 

< 0.01 

 

3.37 ± 0.32 

 

6.29 ± 1.11 
 

< 0.05 

Central SNC 

         (a) overall 

 

 

         (b) medial 

 

 

         (c)  lateral 

 

 

3.58 ± 0.46 

 

6.51 ± 1.02 
 

< 0.01 

 

Caudal SNC 

 

 

3.33 ± 0.19 

 

6.29 ± 0.17 
 

< 0.001 

 

SNL 

 

 

3.11 ± 0.26 

 

4.58 ± 0.63 
 

NS 

 

SNR 

 

 

3.53 ± 0.37 

 

4.74 ± 0.67 
 

NS 

 

VTA 

 

 

4.08 ± 0.37 

 

4.12 ± 0.56 
 

NS 

 

Oculomotor 

nucleus 

 

3.33 ± 0.22 

 

 

3.42 ± 0.34 
 

NS 

 

DRN 

 

 

2.56 ± 0.31 

 

5.64 ± 0.33 
 

< 0.001 

 

MRN 

 

 

2.86 ± 0.23 

 

3.43 ± 0.26 
 

NS 

 

Pontine nucleus 

 

 

3.26 ± 0.25 

 

3.37 ± 0.23 
 

NS 

Table 2.15: Parkin quantification (arbitrary units of fluorescence) in the 

midbrain of AS control and AS/AGU mutant rats aged 18 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 

 
 

 

 

 

 



Chapter 2                                                                                                              Results 

 

113 

2.7.5 A comparison of parkin levels in the midbrain of 6, 12 and 18 

months AS and AS/AGU rats 

 
In AS (control) rats, there was a gradual, slight decrease in parkin 

immunofluorescence with age in virtually all brain regions. By contrast, there was a 

gradual, slight rise in parkin immunofluorescence with age in the AS/AGU mutant 

rats for regions such as the central SNC and dorsal raphe nucleus. In some cases this 

led to a statistically significant difference between the two groups at older ages, but 

not at earlier ones. 
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2.8 Results for α-synuclein 

 

2.8.1 Double labelling 

The staining with alpha-synuclein was in the neuropil of the SNC. A double labelling 

was carried out on a same sections from AS and AS/AGU rats using fluorescent 

secondary antibodies for TH and alpha-synuclein. 

A double labelling with TH and alpha-synuclein showed that most of the cells in the 

SNC of both AS(control) and AS/AGU(mutant) rats were stained with TH.  In the 

adjacent sections, stained for alpha-synuclein, the SNC cells are non-fluorescing and 

appear brown or black.  (Figure 2.10).   
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Figure 2.10: TH and Alpha-synuclein double labelling. (a) AS TH- 

immunostained cells of substantia nigra (green color). (b) AS alpha-synuclein 

immunostained in the substantia nigra (red color). (c) AS/AGU TH- 

immunostained cells of substantia nigra (green color). (d) AS/AGU alpha-

synuclein immunostained in the substantia nigra (red color). (x500). 

 

Examples 

 
         Cell bodies  immunostained with TH (a and c) not stained with alpha-

synuclein and appear black or brown (b and d). Alpha-synuclein immunostained 

in the neuropil. 

 

 

 

 

 

 

a b 

c d 
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2.8.2 Quantified α-Synuclein immunofluorescence in the midbrain of 

AS and AS/AGU rats aged 6 months 

 

Alpha-Synuclein immunofluorescence of the neuropil showed a statistically 

significant difference between the two groups in the rostral SNC, central SNC and the 

caudal SNC. (P<0.05) with levels being highest in AS/AGU mutants. There are no 

statistical differences between the two groups in the levels of α-Synuclein in the SNR 

and the VTA. The results are summarized in table 2.16. 

 

 
 

 

 

 

AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

1.33 ± 0.4 

 

1.67 ± 0.3 

 

 

< 0.05 

 

Central SNC 

 

 

1.15 ± 0.11 

 

1.98 ± 0.41 
 

< 0.05 

 

Caudal SNC 

 

 

0.64 ± 0.08 

 

0.97 ± 0.08 
 

< 0.05 

 

SNR 

 

 

1.43 ± 0.19 

 

1.98 ± 0.32 
 

NS 

 

VTA 

 

 

0.48 ± 0.06 

 

0.52 ± 0.08 
 

NS 

Table 2.16: Alpha-Synuclein quantification (arbitrary units of fluorescence) in 

the midbrain of AS control and AS/AGU mutant rats aged 6 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.8.3 Quantified α-Synuclein immunofluorescence in the midbrain of 

AS and AS/AGU rats aged 12 months 

 
Alpha-Synuclein immunofluorescence of the neuropil showed a statistically 

significant difference between the two groups in the rostral SNC, central SNC and the 

caudal SNC (P<0.01 or greater) with levels being highest in AS/AGU mutant. There 

are no statistical differences between the two groups in the levels of α-Synuclein in 

the SNR and the VTA. The results are summarized in table 2.17. 

 
 

 

 

 

AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

1.07 ± 0.14 
 

2.46 ± 0.35 

 

 

< 0.01 

 

Central SNC 

 

 

1.88 ± 0.51 

 

4.56 ± 0.61 

 

< 0.01 

 

Caudal SNC 

 

 

1.51 ± 0.16 

 

3.26 ± 0.12 

 

< 0.001 

 

SNR 

 

 

4.25 ± 0.72 

 

5.42 ± 0.45 

 

NS 

 

VTA 

 

 

1.13 ± 0.11 

 

1.16 ± 0.10 

 

NS 

Table 2.17: Alpha-Synuclein quantification (arbitrary units of fluorescence) in 

the midbrain of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.8.4 Quantified α-Synuclein immunofluorescence in the midbrain of 

AS and AS/AGU rats aged 18 months 

 
Alpha-Synuclein immunofluorescence of the neuropil showed a statistically 

significant difference between the two groups in the central part of the SNC. (P<0.05). 

There are no statistical differences between the two groups in the levels of α-

Synuclein in the rostral SNC, the caudal SNC, SNR or the VTA. In some cases, this 

may be due to the large standard errors within the group.  The results are summarized 

in table 2.18. 

 
 

 

 

 

AS 

 

AS/AGU 

 

P 

 

Rostral SNC 

 

1.58 ± 0.28 

 

 

3.74 ± 0.69 

 

 

NS  

 

Central SNC 

 

 

2.78 ± 0.75 

 

       6.12 ± 0.8 
 

< 0.05 

 

Caudal SNC 

 

 

1.79 ± 0.45 

 

4.66 ± 1.06 
 

NS  

 

SNR 

 

 

3.91 ± 1.04 

 

6.43 ± 1.41 
 

NS  

 

VTA 

 

 

1.55 ± 0.36 

 

1.55 ± 0.39 
 

NS 

Table 2.18: Alpha-Synuclein quantification (arbitrary units of fluorescence) in 

the midbrain of AS control and AS/AGU mutant rats aged 18 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 

 
 

2.8.5 A comparison of α-synuclein levels in the midbrain of AS and 

AS/AGU rats aged 6, 12 and 18 months  

 
Alpha-synuclein levels progressively increase with age in the AS (control) and the 

AS/AGU (mutant)  in the central SNC, caudal SNC and the VTA. 
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2.9 Results in the striatum 
 

2.9.1 Quantified Tyrosine hydroxylase (TH) immunofluorescence in 

the striatum of AS and AS/AGU rats aged 12 months 

 

The results for TH immunofluorescence show a statistically significant difference 

between the two groups in the dorsal caudate-putamen (DCPU) (P<0.01) with TH 

levels significantly reduced in the AS/AGU rats. There are no statistical differences 

between the two groups in the levels of TH in the lateral or ventral caudate-putamen 

(LCPU,VCPU). The results are summarized in table 2.19. 

 

 

 

 

 

AS 

 

AS/AGU 

 

P 

 

DCPU 

 

24.75 ± 2.87 

 

13.5 ± 4.02 

 

 

< 0.01 

 

LCPU 

 

 

17.45  ± 3.55 

 

14.58 ± 4.55 
 

NS 

 

VCPU 

 

 

10.6 ± 3.33 

 

9.57 ± 3.88 
 

NS 

Table 2.19: Tyrosine hydroxylase quantification (arbitrary units of fluorescence) 

in the striatum of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS  not significant). 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2                                                                                                              Results 

 

120 

2.9.2 Quantified serotonin (5-HT) immunofluorescence in the 

striatum of AS and AS/AGU rats aged 12 months 

The results for 5-HT immunofluorescence show a statistically significant difference 

between the two groups in the dorsal caudate-putamen (P<0.05) with 5-HT levels 

significantly reduced in the AS/AGU rats. There are no statistical differences between 

the two groups in the levels of 5-HT in the lateral striatum or ventral striatum. The 

results are summarized in table 2.20. 

 

 

 

 

AS 

 

AS/AGU 

 

P 

 

DCPU 

 

6.7 ± 0.99 
 

4.72 ± 0.94 

 

 

< 0.05 

 

LCPU 

 

 

4.25 ± 1.50 

 

3.68 ± 0.98 
 

NS 

 

VCPU 

 

 

4.22 ± 1.00 

 

4.00 ± 1.00 
 

NS 

Table 2.20: Serotonin quantification (arbitrary units of fluorescence) in the 

striatum of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.9.3 Quantified ubiquitin (Ub) immunofluorescence in the striatum 

of  AS and AS/AGU rats aged 12 months 

There are no statistical differences between the two groups in the levels of Ub in the 

dorsal, lateral or the ventral caudate-putamen or in the striatum cells. The results are 

summarized in table 2.21. 

 

 

 

 

 

AS 

 

AS/AGU 

 

P 

 

DCPU 

 

6.8 ± 0.76 

 

 

9.17 ± 2.29 

 

 

NS 

 

LCPU 

 

 

6.6 ± 0.69 

 

7.43 ± 2.24 
 

NS 

 

VCPU 

 

 

6.37 ± 0.73 

 

7.05 ± 2.27 
 

NS 

 

Striatum cells 

 

 

1.13 ± 0.12 

 

1.29 ± 0.25 
 

NS 

Table 2.21: Ubiquitin quantification (arbitrary units of fluorescence) in the 

striatum of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.9.4 Quantified parkin immunofluorescence in the striatum of AS 

and AS/AGU rats aged 12 months 

There are no statistical differences between the two groups in the levels of Parkin in 

the dorsal, lateral or the ventral caudate-putamen or in the striatum cells. The results 

are summarized in table 2.22. 

  

             AS 

 

AS/AGU 

 

P 

 

DCPU 

 

 

5.98 ± 0.29 
 

9.80 ± 1.60 

 

 

NS 

 

 

LCPU 

 

       4.90 ± 0.41 

 

7.15 ± 1.34 
 

NS 

 

VCPU 

 

5.28 ± 0.61 

 

6.42 ± 1.02 
 

NS 

 

Striatum cells 

 

1.10 ± 0.04 

 

1.19 ± 0.05 
 

NS 

Table 2.22: Parkin quantification (arbitrary units of fluorescence) in the 

striatum of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2                                                                                                              Results 

 

123 

2.9.5 Quantified α-Synuclein immunofluorescence in the striatum of 

AS and AS/AGU rats aged 12 months 

 

There are no statistical differences between the two groups in the levels of α-

Synuclein in the dorsal, lateral or the ventral caudate-putamen. The results are 

summarized in table 2.23. 

 

 

 

 

AS 

 

AS/AGU 

 

P 

 

DCPU 

 

5.33 ± 0.99 
 

9.00 ± 1.02 

 

 

NS 

 

LCPU 

 

 

3.53 ± 1.45 

 

5.15 ± 1.55 
 

NS 

 

VCPU 

 

 

4.30 ± 1.42 

 

5.88 ± 1.65 
 

NS 

Table 2.23: Alpha-Synuclein quantification (arbitrary units of fluorescence) in 

the striatum of AS control and AS/AGU mutant rats aged 12 months (n=6 per 

group). All values are mean arbitrary units ± SEM. All comparisons are paired t-

tests (NS,  not significant). 
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2.10  Discussion 
 

 

2.10.1 Tyrosine hydroxylase  

 

The synthesis and the release of dopamine are modulated by known mechanisms 

including presynaptic and dendritic autoreceptors (Nowycky and Roth, 1978; 

Santiago and Westerink, 1991), changes in the firing rate of dopamine neurons 

(Farnebo and Hamberger, 1971) and the  feedback inhibition of TH by the end 

product (Nagatsu et al., 1964 ; Lovenberg and Victor, 1974; Kumer and Vrana, 

1996). 

The above should be borne in mind when considering the results found in the present 

experiment for TH immunofluorescence in individual cells of the substantia nigra. 

These neurons are known to release very little dopamine in the striatum – with 

extracellular levels only 10-20 % of normal (Campbell et al., 1996). However, there 

has never been any evidence that they lack the ability to synthesise dopamine - in fact 

whole tissue micropunches of the midbrain and striatum have shown that dopamine 

levels remain normal until six months or more (Campbell et al., 1997). Here, I can 

now demonstrate that TH levels in the cell bodies of the SNC are actually elevated. 

This is what might be expected of a relatively normal neuron where the primary 

deficit was in synaptic release.  

In the central part of the SNC, TH levels were higher in the lateral region than in the 

medial. Although it is unclear why this is so, it is of interest that Goto et al (1989) and 

Suttoo et al (2001) found the greatest loss of dopaminergic neurons in the lateral SNC 

region of Parkinson’s patients that projects to the dorsal putamen (Gibb and Lees, 

1991; 1994). TH levels per volume of cell were higher in the rostral, central and 
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caudal.   By contrast to the SNC, the SNL and VTA (see chapter1 page 8) show little 

change in TH levels with age in either groups.  In the first description of the AS/AGU 

rat the SNL and VTA were not as severely affected as the neighbouring SNC (Clarke 

and Payne, 1994) and the VTA is also less affected in human PD (Uhl et al., 1985).  

Unlike the SNC, TH levels are considerably reduced in the dorsal caudate-putamen of 

the AS/AGU mutant rats compared to the controls. This where the dopaminergic 

terminals (rather than the cell bodies) are located. Whole tissue dopamine levels in the 

dorsal and lateral caudate-putamen are known to be  reduced in the AS/AGU mutant 

rat compared to the AS control between 6 and 12 months of age using high 

performance liquid chromatography with electrochemical detection of micropunch 

samples (Campbell et al., 1996; 1998). Similar effects reductions of dopamine levels 

in the dorsal striatum have been seen in the weaver mouse (Roffler-Tarlov and 

Graybiel, 1984), in post-mortem Parkinson’s disease patients (Hornykiewicz, 1995) 

and in living patients with the disorder (Leenders et al., 1986,1990).  MPTP exposure  

(Moratalla et al., 1992; Snow et al., 2000) can also greatly reduce striatal dopamine 

(Campbell et al., 1998, 2000). 

One possible conclusion from these results is that, whilst the terminals are clearly 

dysfunctional, the cell bodies of DA neurons are not only normal at these ages, but 

capable of normal physiological responses to depleted DA release.  

2.10.2 Serotonin 

Serotonin appears to mimic dopamine. Thus, 5-HT levels in individual cells of the 

dorsal raphe nucleus are elevated in the AS/AGU mutant compared to the AS control 

- even though 5-HT release in the striatum is known to be greatly reduced  (Al-Fayez 

et al., 2005). Again, this suggests that the neuron remains relatively normal in terms 

of its synthesising capacity and, perhaps, its feedback responses. 
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It is interesting  that the dorsal raphe nucleus (which projects to the striatum) is 

affected in the AS/AGU mutant, but the median raphe nucleus (which does not) is not. 

The effects include not only the reduced ability to release 5-HT in the striatum under 

normal physiological conditions, but also the loss of serotonergic cell bodies in the 

dorsal raphe with age (Al-Fayez et al., 2005). 

Many studies have described a reduction in the levels of serotonin in several brain 

regions of Parkinson’s disease patients (Rinne et al., 1974; Scatton et al., 1983; Agid 

et al., 1987) and lesions of the DRN lead to a decrease in serotonin levels in the 

striatum whereas lesions of MRN do not (Van der Kar and Lorens, 1979). The AS 

(control) rats  have reduced 5-HT levels with age in the dorsal raphe nucleus and, 

again, it is known that old rats show lower levels of serotonin and dopamine 

(Goicoechea et al., 1997).   

2.10.3  Lewy body proteins 

Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in 

Parkinson’s disease and other neurodegenerative disorders and ubiquitin (Ub) is a 

major component of inclusions such as Lewy bodies in PD (Gai et al., 2000; 

McNaught et al., 2002). In the present study Ub, parkin and α-synuclein levels were 

increased in SNC cell bodies or striatal neuropil with age in both controls and 

mutants, but more in the mutant. In particular, the lateral half of the central SNC 

showed increasing levels of Ub and parkin with age compared to the medial half in 

the mutants. It is of interest that the lateral half of the SNC is also more affected in 

rats following treatment with proteasome inhibitors (McNaught et al., 2004). The 

levels of Ub, parkin and α-synuclein do not change in the SNR, SNL and the VTA in 

the mutant rats.  Again, rats treated with proteasome inhibitors demonstrate a lack of 

neurodegeneration in the SNR (McNaught et al., 2004), and the VTA less is affected 
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in human PD (Uhl et al., 1985).  The levels of Ub and parkin also increase with age in 

AS/AGU mutant rats compared to AS controls in the dorsal raphe nucleus; however, 

there is no change in the median raphe nucleus, suggesting that the raphe-striatal 

serotonergic system is affected differentially. Despite this, levels of Ub, parkin and α-

synuclein in the striatum were not changed with age, nor did they differ between the 

two strains. However, it must be remembered that the technique samples  a mixture of 

cells and terminals so that a change in one population might be masked. The dorsal  

raphe nucleus and the caudal end of the SNC showed higher ubiquitin and parkin 

levels compared to other areas in the midbrain of AS/AGU mutant rats, perhaps 

indicating that these areas are especially affected. Neuronal death is more severe in  

lower regions of the midbrain and the rate increases with age (Braak et al., 2003).  

Elevations in molecules such as ubiquitin, parkin and alpha-synuclein  in mutants (and 

with age) are difficult to interpret since the normal function of some of these 

molecules is poorly understood (see chapter 1 page 38, 44, 45) (Clayton and 

George, 1998). The comparison here must be with neurodegenerative states, such as 

Parkinson’s disease, where levels are elevated and the proteins incorporated into cell 

inclusions (Lennox et al.,1989; Love and Nicoll, 1992; Spillantini et al., 

1997;1998a; Irizary et al., 1998). Such inclusions have not been found in rodents - 

except under special treatments such as rotenone (Betarbet et al., 2000) - so it is 

uncertain whether the elevations found in present study suggest a pre-inclusion state. 

This will be one of the features looked for in the second experiment. 

The first experiment shows that biogenic amine activity (DA and 5-HT) is lowered in 

the striatum, but that the midbrain cell bodies remain synthetically active. In addition, 

molecules associated with human Lewy bodies (ubiquitin, parkin and α-synuclein) are 

elevated in the mutant - even though  inclusion bodies as such do not occur.          
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CHAPTER 3 

 

EXPERIMENT 2: 

Stereology of dopaminergic neurons in the SNC of the 

AS and AS/AGU rats using light and transmission 

electron microscopy 
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3.1 Introduction 
 

The substantia nigra is implicated in Parkinson’s disease through degeneration of its  

dopaminergic neurons (Hornykiewicz and Kish, 1987; Lang and Lozano, 1998a; 

Hague et al., 2005; Jenner and Olanow, 2006). The cell bodies in the substantia 

nigra pars compacta can be classified chemically (dopaminergic or nondopaminergic) 

or morphologically (medium or small) (Fallon and Loughlin, 1985). The 

dopaminergic neurons project to the striatum (Chiodo, 1988; Parent and Hazrati, 

1994; 1995a; Blandini et al., 2000; Crossman, 2000; DeLong and Wichmann, 

2007). 

The first description of the substantia nigra was made by Vicqd’Azyr in 1786 and 

Soemmering in 1791 (Hajdu et al., 1973). Many studies have described the 

population of cells in the substantia nigra according to their appearance using the light 

microscope (Cajal, 1904; Rioch, 1929; Taber, 1961; Hanaway et al., 1970; Fallon 

and Loughlin, 1985; 1995).  The first description of the ultrastructure of the 

substantia nigra using electron microscopy was carried out in the mouse by Bak 

(1967), who examined different forms of pharmacological treatment on the substantia 

nigra and caudate nucleus. He described a single type of neuron (15 µm diameter) and 

characterized it as electron lucent.  Shortly afterward Hirosawa (1968) and Schwyn 

and Fox (1969)  also described a single cell type in the substantia nigra of monkeys 

with a diameter of 30-40 µm and a granular reticulum distributed in the periphery of 

the cytoplasm; in the cat, a single neuron type was described in both the substantia 

nigra pars compacta and reticulata, 15-50 µm in diameter and with a prominent rough 

endoplasmic reticulum (Rinvik and Grofova, 1970). By contrast, three distinct 
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neurons were described in the rat substantia nigra, large neurons (25-40µm) with well 

developed RER in the substantia nigra pars reticularis, medium neurons (15-20µm) 

with an eccentric nucleus  in the pars compacta and small neurons (10-12µm) in both 

nigral regions (Gulley and Wood, 1971). In another rat study  Hajdu et al. (1973) 

described two different types of neuron in the substantia nigra, including a large 

neuron up to 40µm in a diameter with well developed RER and a small neuron with  

pale cytoplasm.  D’Agostino and Luse, (1964) described the ultrastructure of 

pigmented cells in human substantia nigra.  

The death of dopaminergic neurons in the substantia nigra of PD patients can 

potentially occur in three main ways:  

i. Necrosis is characterized by excessive ionic flux through the plasma 

membrane leading to swelling of cellular organelles and rupture of the outer 

membrane (Jenner and Olanow., 1998; Murphy et al., 1999; Sapolsky, 

2001).  

ii. Apoptosis, or  programmed cell death, is characterised by chromatin 

condensation, nuclear fragments and cytoplasmic shrinkage (Kerr et al., 

1972; Mochizuki et al., 1996; Anglade et al., 1997; Tompkins et al., 1997; 

Burke and Kholodilov, 1998; Tatton, 2000; Andersen, 2001; Jellinger, 

2001; Tatton et al., 2003).   

iii. Autophagy is characterised by nuclear chromatin condensation, numerous 

vacuoles in the cytoplasm, moderate vacuolation of endoplasmic reticulum; 

mitochondria remain intact (Anglade et al., 1997).  

 

Changes in ultrastructure in the substantia nigra have been studied in animal models 

of Parkinson’s disease such as MPTP. A study by Cochiolo et al. (2000) showed  
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marked mitochondrial swelling in SNC neurons with deformation, disruption and 

disintegration of cristae, but no changes in other organelles in the SNC. By contrast, 

Mizukawa et al. (1990) found dilated RER and Golgi apparatus, and a decrease in the 

number of ribosomes in their RER as well as disarranged mitochondrial cristae. After 

6-OHDA administration, the SNC showed round, homogeneous, electron-dense 

chromatin clumps in the nucleus and nuclear membrane invagination, but other 

organelles remained intact (Marti et al., 2002).  

It is difficult to establish whether such changes in cell structure are due to necrosis or 

apoptosis. One possible is that some insults can induce both necrosis and apoptosis 

(and could be responsible for neuronal loss in either PD or animal models) such as 

exposure to high glutamate concentration and ATP depletion or lipid and protein 

peroxidation induced by reactive oxygen species and depletion of glutathione 

(Dawson and Dawson, 1996; Jenner, 2001; Sapolsky, 2001; Higuchi, 2004). A 

second possible is that improve methods of differentiating of apoptosis and necrosis 

suggest that both modes of cell death could be found in the same cell (Proskuryakov 

et al., 2003; Wei et al., 2004). 

Cell death involving apoptosis and necrosis can be detected by different techniques 

such as ISEL (e.g. TUNEL) or fluorescent DNA binding dyes, and electron 

microscopy (Olanow and Tatton, 1999) as well as by conventional gel 

electrophoresis (Smyth and Berman, 2002). A few studies using TUNEL techniques 

have failed to detect apoptosis in Parkinson’s disease patients (e.g. Dragunow et al., 

1995; Kosel et al., 1997; Wullner et al., 1999); nevertheless electron microscopy has 

demonstrated many features of this form of cell death (Baba et al., 1994; Oztas and 

Topal, 2003), and a combination of TUNEL method and morphological identification 
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(e.g. electron microscopy)  has been considered quite an effective way to detect 

apoptosis (He et al., 2000). 

Death by apoptosis has also been reported in other neurodegenerative disorders such 

as Alzheimer’s disease (AD), Huntington’s disease (HD) and Multiple system atrophy 

(MSA) (Jellinger, 2000) by necrosis in AD (Akiyama et al., 2000) and Creutzfeldt-

Jakob disease (Ferrer, 1999) and by autophagy in AD (Cataldo et al., 1994) and 

Huntington’s disease (Roizin et al., 1974).  

The death of dopaminergic neurons in animal models of PD can occur by (i) necrosis 

(such as MPP
+
-induced necrosis in a mesencephalon-derived dopaminergic neuronal 

cell line) (Choi et al., 1999) (ii) apoptosis  from agents such as MPTP (Tatton and 

Kish, 1997; Spooren et al., 1998; Serra et al., 2002), 6-OHDA (He et al., 2000; 

Marti et al., 2002) and Rotenone and MPP
+
 (in cultures of rat mesencephalic 

neurons)
 
 (Lim et al., 2007) and (iii) autophagy from agents such as MPTP (Oztas 

and Topal, 2003).  

 

The aim of experiment 2 is therefore to look at cell bodies in the SNC to see if there 

are difference between the AS (control) and AS/AGU (mutant) rats and look for any 

signs of cell death using TEM. 
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3.2 Materials and Methods  
 

3.2.1 Animals 

Three AS control and 3 AS/AGU mutant male rats aged 12 months were used for 

TEM. 

Five AS control and 5 AS/AGU mutant male rats aged 12 months were used for light 

microscopy. 

3.2.2 Initial tissue preparation 

3.2.2.1  for TEM 

All rats were deeply anaesthetized with an overdose of sodium pentobarbitone B.P 

(Vet.), (2 ml of 60 mg/ml, Rhone-Merieux, Spire Greencentre, Harlow, Essex) 

injected intraperitoneally, and then the thoracic cavity was opened. A mammalian 

Ringer solution (200 ml) containing the vasodilator Lignocaine was injected into the 

left ventricle for one minute followed by 500 ml 3% glutaraldehyde (Agar- Aldrich 

Inc, P6148) in 0.1M phosphate buffer, blood and excess fluid being drained via an 

incision through the right atrium (Appendix 1). The brain was dissected out and 

immersion-fixed in 3% glutaraldehyde in 0.1M of phosphate buffer overnight. Pieces 

of brain containing areas of interest were serially sectioned at 70µm using a 

Vibrotome (Agar Scientific, BNBA 010664, Agar Scientific LTD, UK). 

3.2.2.2  for light microscopy 

All rats were deeply anaesthetized with an overdose of sodium pentobarbitone B.P 

(Vet.), (2 ml of 60 mg/ml, Rhone-Merieux, Spire Greencentre, Harlow, Essex)  
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injected intraperitoneally, and then the thoracic cavity was opened. One hundred ml of 

mammalian Ringer solution containing the vasodilator Lignocaine was injected into 

the left ventricle  followed by 500ml 4% paraformaldehyde (Sigma- Aldrich Inc, 

P6148) in 0.1M phosphate buffer, excess fluid being drained via an incision through 

the right atrium (Appendix 1). The brains were dissected out and immersion-fixed in 

4% paraformaldehyde in 0.1M of phosphate buffer overnight. Pieces of brain 

containing areas of interest were dehydrated through an ascending ethanol series using 

a Histokinette 2000 automatic tissue processor (Reichert-Jung, Germany) then 

embedded in paraffin wax at 57ºC and serially sectioned at 7µm using a Microtome 

(Spencer, 820, USA) (Appendix 2). The ribbons of sections were laid out in parallel 

rows on a tray. 

3.2.3 Tissue verification 

In order to confirm the identity of the area from which semi-thin and ultra-thin 

sections would eventually be analysed, toluidine blue and anti-TH 

immunocytochemistry with DAB staining were carried out. 

3.2.3.1 Toluidine blue staining 

Sections from the central SNC  (Approximately -5.3mm relative to bregma) (Paxinos 

and Watson, 1982) from AS and AS/AGU rats were stained with 1% aqueous 

toluidine blue (R.ALAMB, UK) (Appendix 3A). Slides were then examined under a 

light microscope. 

3.2.3.2 Immunoperoxidase staining 

The sections containing  the central SNC (Approximately -5.3mm relative to bregma) 

(Paxinos and Watson, 1982) from the AS (control) and the AS/AGU (mutant) rats 
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were incubated for 24 h in a humidity chamber at 4ºC with the primary antibody 

(Monoclonal mouse anti-tyrosine hydroxylase, MAB 5280, Chemicon Europe Ltd (1: 

1000) diluted in blocking serum (1% NGS in PBS with 0.3% Triton X- 100). The rest 

of the procedure was carried out at room temperature. After rinsing in PBS (3x5 

mins), sections were then incubated for 60 min in a biotinylated anti-mouse secondary 

antibody (1:200 dilution), (Vector Laboratories, INC, BA-2001, Peterborough UK). 

Following 60 min incubation in Avidin-Biotin-Complex (ABC) reagent (1:50; 20µl of 

solution A and 20µl of solution B in 1ml of PBS; Vectastain ABC kit, Vector 

Laboratories, INC, PK-6100, Peterborough UK), sections were then rinsed in PBS 

(3x5 mins) and 0.1 M phosphate buffer (PB, 1x5 mins). The location of the antigen-

antibody complex was visualized by incubating sections in a medium containing 

0.05% 3,3-diaminobenzidine (DAB substrate KIT for peroxidase, Vector 

Laboratories, INC, SK-4100, Peterborough UK) for 2-5 min; this step was carried out 

with care in a fume cupboard, and all equipment which came in contact with DAB 

was soaked with bleach in order to denature it, as DAB is potentially carcinogenic 

(International Agency for Research on Cancer, 1972). Finally, the sections were 

rinsed in distilled water, dehydrated and mounted with glass coverslips using 

histomount (RALAMB, HS-103, UK). Slides were then examined under a light 

microscope.  

3.2.4  Electron microscopy 

Once the area of the SNC had been confirmed with toluidine blue and anti-TH 

staining (see above). Sections containing  the SNC from AS (control) and the 

AS/AGU (mutant) rats were rinsed with PB and placed in a solution of 1% Osmium 

tetroxide in PB for 20 minutes in an agitator. The sections were rinsed with distilled 

water (3x30 mins) and dehydrated through a series of graded concentrations of 
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acetone from 70 to 100%, followed by a descending ratio of acetone to durcupan resin 

(3:1, 1:1, 1:3) and two changes of durcupan resin. The sections were flat-embedded in 

durcupan resin between two small sheets of acetate, sandwiched between two glass 

slides, weighted down with metal weights and heated at 60ºC overnight in an oven 

(Appendix 6). The top acetate sheet were peeled off, stock embedded sections 

attached onto the end of a blank embedding block using RS adhesive and left for at 

least 30 min in an oven. The block containing the area of interest was trimmed. 

3.2.4.1  Semi-thin sections processing and staining 

 Semi-thin sections (1µm) containing the SNC from the AS (control) and AS/AGU 

(mutant) rats were cut from the block using diamond knives (Drukker International, 

Netherlands) on a Reichert-Jung Ultracut E ultramicrotome. The semi-thin sections 

were stained with 1% Toluidine Blue buffered to pH 8.5 with sodium borate and 

examined under the light microscope to determine the area to be thin sectioned and to 

be used in stereology. 

3.2.4.2 Ultrathin sections processing and staining 

Ultrathin sections (80-90nm thickness) from the SNC of AS (control) and AS/AGU 

(mutant) rats were cut from selected blocks using diamond knives (Drukker 

International, Netherlands) on a Reichert-Jung Ultracut E ultramicrotome. Ultrathin 

sections were collected on 300 mesh-coated copper grids (300 Mesh Thin Bar Copper 

3.05mm, G2720C, Agar Scientific, UK) and double stained with uranyl acetate and 

lead citrate (Reynolds, 1963). The grids containing sections were stained in lead 

citrate for 5 mins, placed in sodium hydroxide 7 times, washed in distilled water 7 

times, stained in 12.5% methanolic uranyl acetate for 5 mins, washed in distilled 
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water 7 times, stained in lead citrate for 5 mins, placed in sodium hydroxide 7 times , 

washed in distilled water 7 times and left to dry for 20 mins. 

Ultrathin sections were examined at a magnification of 5900X using a transmission 

electron microscope (JEOL JEM-100S, No. IEM 100S-4, JEOL LTD, Tokyo, Japan). 

All the SNC cells containing a nucleolus were photographed. This organell was used 

to confirm that the section is centrally placed through the cell body (Oorschot, 1996). 

3.2.4.3 Pre-embedding immunocytochemistry 

See chapter 4 page 163. 

Cells are often  considered positive (and immunogold labelling specific) when two or 

more particles are located within the cytoplasm (Mengual and Pickel, 2002). In the 

present study, I have used five  or more as a criterion.  

3.2.5 Image analysis 

 Images were captured on plate film. The films were put in a  working dilution of 

500ml D19 Kodak developer (Kodak-path, Paris) in 500ml of water for 3 mins, and 

then were rinsed in water for one minute before placing in Amfix (Amfix, Champion, 

UK) for 5 mins, rinsed in water for 20 mins and dried. The negatives of electron 

micrographs were scanned using an Epson scanner (Epson perfection 4990), and the 

contrast and exposure were adjusted using Paint Shop before printing. 

3.2.6  Stereological techniques   

Stereological methods are used to obtain quantitative information about three-

dimensional structures from simple counts made on two-dimensional slice images to 

facilitate correlation between structure and function. 
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3.2.6.1 Volume fraction (Vv) 

The stereological method was developed for use on geological specimens by Delesse 

in 1848, who indicated that the volume fraction of mineral in the whole rock was 

equal to the area fraction of mineral on the cut surface of a sample of the rock. This 

confirmed that the area of the phase of interest per unit of area is equivalent to the 

volume of that phase per unit of volume. 

                                        Aa (area fraction) = Vv (volume fraction) 

                                                  Aphase / Aref  = Vphase / Vref 

Thomson in 1930 and Glagolev in 1933 showed that we could estimate volume 

fraction through a random point counting method.   The volume fraction Vv and area 

fraction Aa can be estimated in an unbiased manner by using a randomly positioned 

point grid and counting the number of points hitting the phase of interest P (phase) 

and the number of points hitting the reference space P (ref), the volume fraction of 

the phase of interest being estimated from 

                                               Vv = Aa = P (phase) / P (ref)   

The volume of a particular phase V(phase) can be estimated from  

V(phase) = V(ref) x Vv (phase, ref) 

The volume reference V(ref) can be calcaulated by the Cavalieri principle. 

 

3.2.6.2 Surface density (SV) 

Surface density (SV) represents the amount of surface contained in a reference volume 

and it can be estimated by dividing the number of intersections (I) by the total length 

of test line (LT) 

SV  = 2 x I /LT 
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3.2.6.3 Volume estimates 

The volume (V) of any arbitrary object can be estimated using the Cavalieri principle 

(Mayhew, 1991; 1992). The object has to be serially sectioned at known distance (d) 

where  the sectiones are  parallel and the first slice must be randomly placed. The 

areas of only one face of each section are estimated by randomly superimposing a 

systematic array of test points on each face. 

The volume can be estimated using:  

V = P x a x d 

Where (P) is the sum of points falling on all section faces, (a) the area associated with 

each test point and (d) the distance between the sections (Mayhew, 1991; 1992). 

Other stereological methods can estimate volume-weight mean volume which 

provides an unbiased estimate of particle volume (Mayhew, 1992). 

The volume-weight mean volume can be estimated from  

Volume-weight mean volume = (I 0)
3

 x п/3 

Where I 0  is the point-sampled intercept length average. 

 

3.2.6.4 Stereology using the light microscope 

This method was used to estimate the diameter (maximum and minimum) of the 

dopaminergic neurons in the SNC of 3 AS (control) and 3 AS/AGU (mutant) rats. 

One section (7 µm thick) per animal  from the central SNC (Approximately -5.3mm 

relative to bregma) (Paxinos and Watson, 1982). 

 Sections were stained with: 

(a) 1% aqueous toluidine blue  to analyse at least 50 cells per section  

      (Figure 3.1). 
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(b) Immunoperoxidase for tyrosine hydroxylase to analyse at least 50 cells 

per section (Figure 3.2). 

The sections were analysed using a NIKON light microscope with a drawing tube 

(NIKON, OPTIPHOT-2, Japan). Average sizes of dopaminergic neurons containing a 

nucleolus were calculated. 
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Figure 3.1: Coronal sections of substantia nigra pars compacta (SNC) from (a) 

control (AS) and (b) mutant (AS/AGU) male rats aged 12 months. Sections have 

been stained with toluidine blue. In the inset box, lines show a maximum 

diameter (MAX DM) and a minimum diameter (MIN DM) (x400). 
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Figure 3.2: Coronal sections of substantia nigra pars compacta (SNC) from (a) 

control (AS) and (b) mutant (AS/AGU) male rats aged 12 months. Sections have 

been DAB immunostained for TH. In the inset box, lines show a maximum 

diameter (MAX DM) and a minimum diameter (MIN DM) (x400). 
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3.2.6.5 Stereology using the transmission electron microscope 

In this stereological method, a simple point counting technique was used to estimate 

the Vv of mitochondria, rough endoplasmic reticulum and lipofuscin granules. The 

measurement was made on 30 SNC dopaminergic cells per animal from 3 AS 

(control) and 3 AS/AGU (mutant) rats. 

The Vv was determined using a 1cm square grid. The square grid was superimposed 

on each micrograph randomly three times. The number of grid points that fell on the 

cell organelle (mitochondria, RER, lipofuscin granules) and the number of grid points 

that fell on the reference space (cell and cytoplasm) were counted (Weibel, 1979; 

Mayhew, 1991) and the Vv were calculated.    

 

3.2.7 Statistical analysis 

The results were analysed by two-sample t-test using the Minitab statistics package 

(MINITAB Release 13.30). 
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3.3 Results 

 

3.3.1 The diameter of SNC cells and nuclei in paraffin wax sections 

stained with toluidine blue in the midbrain of AS and AS/AGU 

rats aged 12 months 

 

The results show statistically significant differences between the two groups in the 

diameter (maximum and minimum) of the SNC cells and their nuclei with AS/AGU 

(mutant) rats having smaller neurons than the AS (control) animals. The results are 

summarized in table 3.1. 

 

 

 

SNC cells 

 

AS 

 

 

AS/AGU 

 

P 

Maximum dimension of cell 

body (µm) 

 

 

16.76 ± 0.64 

 

 

11.76 ± 1.1 

 

 

< 0.01 

 

Minimum dimension of cell 

body (µm) 

 

 

6.99 ± 0.24 

 

 

5.06 ± 0.44 

 

 

< 0.01 

Maximum dimension of 

nucleus (µm) 

 

 

5.74 ± 0.31 

 

4.30 ± 0.05 
 

< 0.05 

Minimum dimension of 

nucleus (µm) 

  

 

 

5.56 ± .0032 

 

4.15 ± 0.04 
 

< 0.001 

Table 3.1: The diameter (maximum and minimum) of the SNC cells and their 

nuclei stained with toluidine blue in the midbrain of AS control and AS/AGU 

mutant rats aged 12 months (n=5 per group). All values are mean µm ± SEM. All 

comparisons are two-sample t-tests. 
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3.3.2 The diameter of SNC cells and nuclei in paraffin wax sections 

stained with immunoperoxidase DAB staining for TH in the 

midbrain of AS and AS/AGU rats aged 12 months 

 

The results show statistically significant differences between the two groups in 

minimum cell body diameter and maximum nucleus diameter of the SNC cells with 

AS/AGU (mutant) rats being smaller than the AS (control).  Differences in maximum 

cell diameter and minimum nucleus diameter did not reach significant. The results are 

summarized in table 3.2. 

 

 

 

SNC cells 

 

AS 

 

 

AS/AGU 

 

P 

Maximum dimension of cell 

body (µm) 

 

 

16.88 ± 0.99 

 

 

14.27 ± 0.26 

 

 

NS 

 

Minimum dimension of cell 

body (µm) 

 

 

7.26 ± 0.42 

 

 

5.59 ± 0.13 

 

 

< 0.05 

Maximum dimension of 

nucleus (µm) 

 

 

6.77 ± 0.46 

 

5.32 ± 0.21 
 

< 0.05 

Minimum dimension of 

nucleus (µm) 

  

 

5.98 ± 0.27 

 

5.23 ± 0.19 
 

NS 

Table 3.2: The diameter (maximum and minimum) of the SNC cells and nuclei 

stained with immunoperoxidase DAB staining for TH in the midbrain of AS 

control and AS/AGU mutant rats aged 12 months (n=5 per group). All values are 

mean µm ± SEM. All comparisons are two-sample t-tests (NS, not significant). 
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3.3.3 A Comparison of ultrastructure of the SNC cells of AS 

(control) and AS/AGU (mutant) rats aged 12 months 

 

 

No obvious morphological differences were seen in the nigrostriatal neurons of AS 

(control) compared to AS/AGU (mutant) rats. Neurons were of medium size with 

rounded nuclei exhibiting one or more indented envelopes, many mitochondria and 

considerable rough endoplasmic reticulum, Golgi apparatus and lipofuscin granules 

(see figure 3.3-3.6).  

There were no obvious Lewy body inclusions. Many microglial cells were seen near 

SNC cells in AS/AGU rats (see figure 3.6). In figure 3.7 a cell in the SNC has 

cytoplasm shrinkage, cell membrane budding and chromatin condensation at the 

nuclear membrane. 

 

Most SNC cells stained with immunogold have more than 5 gold particles (at least 

two gold particles in cytoplasm are considered positive)  and most of these gold 

particles are near the RER. 
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Figure 3.3: Electron micrograph showing SNC cell (immunogold stained with 

TH) in an AS (control) rat aged 12 months (x6000). In inset boxes (a) lipofuscin 

granule (b) Golgi Apparatus, (c) rough endoplasmic reticulum (RER) and (d and 

e) mitochondria. (N, Nucleus; NE, Nucleolus; small arrows show gold particles). 
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Figure 3.4: Electron micrograph showing SNC cell in an AS (control) rat aged 12 

months (x5900). In inset boxes (a) Lipofuscin granules (b) RER and (c) 

mitochondria. (N, Nucleus; NE, Nucleolus; blue arrows show indented 

envelopes). 
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Figure 3.5: Electron micrograph showing SNC cell (immunogold stained with 

TH) in an AS/AGU (mutant) rat aged 12 months (x6000). In inset boxes (a) 

lipofuscin granule and (b) rough endoplasmic reticulum (RER) (c) Golgi 

apparatus and (d and e) mitochondria (x50,000). (N, Nucleus; NE, Nucleolus; 

small arrows show gold particles). 
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Figure 3.6: Electron micrograph showing SNC cell in an AS/AGU (mutant) rat 

aged 12 months (x5900). In inset boxes (a) RER (b) mitochondria and (c) 

Lipofuscin granules. (N, Nucleus; NE, Nucleolus; blue arrows show indented 

envelopes; M, microglial cell). 
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Figure 3.7: Electron micrograph (A) showing a shrunken SNC cell (immunogold 

stained with TH) in an AS/AGU (mutant) rat aged 12 months (x6000). (B) shows 

a detail of the same cell (x20,000). (N, Nucleus; small black arrows show gold 

particles). 

           Chromatin condensation at nuclear membrane. 

           Cell membrane budding. 
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3.3.4 The volume fraction (Vv), surface density (SV) and volume (v) 

of SNC neuron organelles in the midbrain of AS and AS/AGU 

rats aged 12 months 

 

The results show statistically significant differences between the two groups in the 

volume fraction of the mitochondria (in cell and cytoplasm) and the rough 

endoplasmic reticulum (in cell and cytoplasm), cell volume and the nuclear volume of 

SNC cells. The AS/AGU (mutant) rats had higher volume fractions, cell volume and 

nuclear volume than the AS (control). There were no statistical differences in the 

volume fraction of  lipofuscin granules or the numbers of nuclear indentations and 

nuclear surface density. The results are summarized in table 3.3. 
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SNC cell organelles 

 

AS 

 

 

AS/AGU 

 

P 

 

Mitochondrial Vv:  Cell 

 

 

0.042 ± 0.002 

 

 

0.051 ± 0.002 

 

 

< 0.05 

Mitochondrial Vv: 

Cytoplasm 

 

0.0817 ± 0.001 

 

0.089 ± 0.006 

 

 

< 0.05 

 

RER Vv: Cell 

 

 

  0.0247 ± 0.0003 

 

0.0313 ± 0.0009 

 

 

< 0.05 

 

RER Vv: Cytoplasm 

 

 

0.0463 ± 0.0023 

 

 

0.0563 ± 0.011 

 

 

< 0.05 

Lipofuscin granules Vv: 

Cell 

 

 

0.0067 ± 0.0003 

 

 

0.017 ± 0.003 

 

 

NS 

Lipofuscin granules Vv: 

Cytoplasm 

 

 

0.012 ± 0.001  

 

0.031 ± 0.007 
 

NS 

 

Nuclear membrane SV 

 

 

0.09 ± 0.006 

 

0.11 ± 0.01 
 

NS 

 

SNC cell volume (V) 

 

 

664.1 ± 25 

 

240.3 ± 22 
 

< 0.001 

 

SNC nuclear volume (V) 

 

 

133 ± 7.3 

 

53.13 ± 0.60 

 

 

< 0.001 

Table 3.3: Volume fraction (Vv), surface density (SV) and volume (V) of the SNC 

cell and its organelles in the midbrain of AS control and AS/AGU mutant rats 

aged 12 months (n=3 per group). All values are mean ± SEM. All comparisons 

are two-sample t-tests (NS, not significant). 
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3.4 Discussion 
 

 

 

The AS/AGU rat has a dysfunction of the midbrain monoaminergic systems 

projecting to the caudate-putamen, including the nigrostriatal dopaminergic system 

(Clarke and Payne, 1994) and the raphe striatal serotonergic system (Al-Fayez et al., 

2005). That dysfunction takes the form of  a marked  reduction in dopamine and 

serotonin release in the striatum (Campbell et al., 1997; Al-Fayez et al., 2005) as 

well as reduced whole tissue levels of dopamine and serotonin as revealed by 

micropunch (Campbell et al., 1998; 2000; Al-Fayez et al., 2005). The dysfunction is 

known to occur before any gross morphological difference or cell loss can be 

identified (Payne et al., 1998). 

The animals  examined in Experiment 2 were aged 12 months. That is, they would be 

expected to display both physiological and morphological evidence of the disorder as 

this is in the beginning of the period of cell loss (Payne et al., 2000). The movement 

disorder is, of course, also well established (Payne et al., 2000).  

The first point to make is that the ultrastructure of SNC neurons in AS animals 

resembled existing reports in other rat strains (Gulley and Wood, 1971; Hajdu et al., 

1973) that have medium size neurons containing a round eccentric nucleus with slight 

nuclear indentations, and an abundance of cellular organelles including endoplasmic 

reticulum and Golgi apparatus.  

Regarding possible pathological changes, no inclusion bodies can be seen in the 

AS/AGU (mutant) neurons, though these are a hallmark of Parkinson’s disease 

(Pollanen et al., 1993; Forno, 1996; Takahashi and Wakabayashi, 2001; Yokota 

et al., 2007). Inclusion bodies are not always found in neurodegenerative laboratory 
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models. For example, they do not occur in most laboratory models of Parkinson’s 

disease such as those induced by 6-OH-dopamine or MPTP toxicity (Forno et al., 

1993; Dauer and Przedborski, 2003), though they are present in rotenone-induced 

degeneration in rat (Betarbet et al., 2000).    

Lewy bodies in human Parkinson’s disease contain a complex mixture of mis-folded 

proteins-including α-synuclein, parkin and ubiquitin (Lennox et al., 1989; Love and 

Nicoll, 1992; Spillantini et al., 1997; 1998a; Irizary et al., 1998; McNaught et al., 

2006). It is of interest that, even though inclusion bodies were not seen in the 

AS/AGU rat, Experiment 1 showed that levels of these molecules were elevated in 

cell bodies within the midbrain (or in the surrounding neuropil). There has been 

controversy over the role of some of these molecules in the pathological process 

(McNaught and Olanow, 2006). Recently, Periquet et al. (2007) have shown that 

some truncated forms of α-synuclein lead reliably to aggregate formation whereas 

other do not. In the case of the AS/AGU rat, fluorescence readings show that α-

synuclein is not present in the cell bodies in detectable amounts, so no inclusions 

would be expected. It is also possible that there could be changes in  α-synuclein in 

the AS/AGU rat (and in other laboratory models) but they do not affect key regions of 

the molecule.  

A robust finding is that the size and volume of nigrostriatal dopaminergic neuron cell 

bodies are reduced in AS/AGU mutant rats suggesting that they are shrinking. Similar 

observations were found in dopaminergic neurons in the SNC treated with MPTP 

(Langston et al., 1984) or 6-OHDA (Chio et al., 1999) as well as in the SNC of PD 

patients (Anglade et al., 1997).  The nucleus is also reduced in size and volume, 

suggesting that the whole cell is affected. 
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Regarding cell organelles, the volume fractions of mitochondria and rough 

endoplasmic reticulum of the SNC cells are higher in the AS/AGU mutants rats. 

There are many possible reasons for this observation:  

i. The numbers of mitochondria and RER increase in AS/AGU (or decrease in 

AS) rats.  

ii. The numbers of mitochondria and RER stay the same, but the organelles 

change their size. This would increase the chance of “hitting” a 

mitochondrion with a grid point. One possibility is that this is due to an 

increase in mitochondrial size as part of the swelling which occurs in the SNC 

neurons of other PD animal models as a characteristic feature of cell death 

(Langston et al., 1984; Tanaka et al., 1988; Arai et al., 1990; Mizukawa et 

al., 1990; Rapisardi et al., 1990; Cochiolo et al., 2000). 

iii.  The number (and size) of mitochondria and RER stay the same, but the cell 

or its cytoplasm shrinks in AS/AGU rats or swells in AS ones. Again, this 

would increase the chance of “hitting” a mitochondrion and/or RER as they 

become packed together.  

 

As mentioned above, the size of the SNC nuclei are greater in AS (control) than in 

AS/AGU (mutant) rats. However, nuclear indentation (a characteristic of pathological 

change) (Anglade et al., 1997; Marti et al., 2002) and the nuclear surface density 

(SV) were not increased in the mutants nor was chromatin clumping seen, although it 

occurs in MPTP treatment (Tanaka et al., 1988). 

 

The nucleolus of both AS and AS/AGU TH+ve cells in the SNC frequently showed  a 

few gold particles. We know that the nucleolus has a role in ribosomal RNA 

synthesis, processing and ribosome maturation (Gerbi et al., 2003). It may also have 
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a role in TH regulation of gene expression (Kumer and Vrana, 1996). In addition to 

that there is positive staining of the nucleolus in 6-OHDA-treated rats used silver 

impregnation methods (Jeon et al., 1995).   

 

Many microglial cells were seen near SNC cells in AS/AGU rats and the microglial 

activation accompanies the neuronal loss in the substantia nigra in the brains of PD 

patients (Banati et al., 1998; Teismann et al., 2003), as well as MPTP-treated mice 

(Czlonkowska et al., 1996; Kohutnicka et al., 1998) and 6-OHDA-treated rats 

(Akiyama and McGeer, 1989; Rodrigues et al., 2001). Ultrastructurally, microglial 

cells can be seen near the SNC cells in the brain of PD patients (Anglade et al., 

1997).  

Taken collectively, these characteristic features may indicate that SNC cells are 

starting to die by apoptosis which occurs in many other animal model of PD (Tatton 

and Kish, 1997; Spooren et al., 1998; He et al., 2000; Marti et al., 2002; Serra et 

al., 2002; Novikova et al., 2006) and in Parkinson’s disease patients (Mochizuki et 

al., 1996; Anglade et al., 1997; Tompkins et al., 1997; Burke and Kholodilov, 

1998; Tatton, 2000; Andersen, 2001; Tatton et al., 2003). It is possible that cells 

with more altered ultrastructure have died already and therefore can not be sampled. 
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CHAPTER 4 

 

EXPERIMENT 3: 

Nigrostriatal dopaminergic terminals in the AS and 

AS/AGU rat 
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4.1 Introduction 

 
Nigrostriatal dopaminergic neurons mainly project to the striatum (for other 

connections, see table 1.1, chapter 1 page 8) (Chiodo, 1988; Pickel et al., 1992a; 

Parent and Hazrati, 1994; 1995a; Blandini et al., 2000; Crossman, 2000; DeLong 

and Wichmann, 2007) where they form synapses on medium spiny neurons (12-

20µm) (Smith and Bolam, 1990), which are the main neurons in the caudate-

putamen (DiFiglia et al., 1976; Bishop et al., 1982; Gerfen and Wilson, 1996). They 

form about 95% of striatal neurons (Kemp and Powell, 1971) and they use GABA as 

a neurotransmitter (Parent and Hazrati, 1995a). The remainder of striatal neurons 

are interneurons (DiFiglia et al., 1976; Bishop et al., 1982) which are classified into 

large cholinergic neurons (25-40µm in diameter) (Bolam et al., 1984), medium size 

(5-15 µm) neurons which use GABA as a neurotransmitter (DiFiglia et al., 1976; 

Bishop et al., 1982; Bolam et al., 1984; Oertel and Mugnaini, 1984; Smith et al., 

1987; Pasik et al., 1988; Kita, 1993) and medium neurons containing neropeptide Y, 

Somatostatin or nitric oxide synthase (Vincent et al., 1983 a,b; Smith and Parent, 

1986; Dawson et al., 1991). 

Another group of striatal cells are TH-positive and have been described in non-human 

primates by Dubach et al. (1987) and in the rat (Tashiro et al., 1989). They have also 

been described in MPTP- and 6-OHDA- treated animals (Betarbet et al., 1997), so 

they may be less susceptible to these toxins.   

The degeneration of  nigrostriatal dopaminergic neurons occurs in animal models 

treated with MPTP (e.g. monkey  and baboons) (Shimohama et al., 2003) and in rats 

treated with 6-OHDA (Ichitani et al., 1991; Betarbet et al., 2002). Regarding 
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ultrastructural changes in axons and terminals,  the striatal degeneration that occur in 

animals treated with MPTP appears quite variable. For example, axonal swelling and 

myelin sheath disruption has been reported in the dog (Rapisardi et al., 1990) and  

terminals lacking synaptic vesicles occur in MPTP-treated mice (Cochiolo et al., 

2000). In 6-OHDA-treated rats  there are increases in the terminal size and the number 

of vesicles (Pickel et al., 1992b; Stanic et al., 2003). 

The AS/AGU rat is characterised by its apparent inability to release DA in the 

striatum (Campbell et al., 1997). This evidence comes from microdialysis 

experiments with indwelling cannulae. The fact that greatly reduced extracellular DA 

(10% of normal) is matched by greatly increased DA metabolites such as DOPAC and 

HVA, led Payne et al. (2000)  to propose a dysfunction of synaptic packaging of DA, 

leaving it free within the cytoplasm to be acted  upon by mitochondrial enzymes. 

However, there is no information on (a) the abundance of dopaminergic terminals in 

the striatum of the AS/AGU mutant, (b) the abundance of synaptic vesicles in 

dopaminergic terminals or (c) their zonation within the terminal relative to the 

synaptic cleft and the “readily-releasable pool”. 

 

The aim of experiment 3 is therefore to look to TH+ve dopaminergic terminals in the 

dorsal caudate-putamen to see if there are difference between the AS (control) and 

AS/AGU (mutant) rats using TEM. 
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4.2 Materials and Methods  
 

 

4.2.1 Animals 

Three AS control and three AS/AGU mutant male rats aged 12 months. 

Three AS control and three AS/AGU mutant male rats aged 3 months. 

 

It is essential to be able to distinguish dopaminergic terminals within the striatum 

from other terminals. This involves immunocytochemical labelling of terminals with 

an antibody to tyrosine hydroxylase followed by secondary labelling by 3,3-

diaminobenzidine (DAB) or immuno-gold particles for visualization. To ensure 

labelling, fixation must be with the lowest possible percentage of glutaraldehyde that 

is consistent with the retention of ultrastructural detail.  After considerable trial-and-

error a mixture of 1% glutaraldehyde: 4% paraformaldehyde was chosen as permitting 

visualization with both  

(a) DAB,  and  

(b) Immunogold particles (1 nm) with silver enhancement. 

4.2.2 Tissue preparation for transmission electron microscopy  

All rats were deeply anaesthetized with an overdose of sodium pentobarbitone B.P 

(Vet.), (2 ml of 60 mg/ml, Rhone-Merieux, Spire Greencentre, Harlow, Essex) 

injected intraperitoneally, after which the thoracic cavity was opened. A mammalian 

Ringer solution (200 ml) containing the vasodilator Lignocaine was perfused via the 

left ventricle for one minute followed by 500 ml mixture of 4% paraformaldehyde and 

1% glutaraldehyde (Agar- Aldrich Inc, P6148) in 0.1M phosphate buffer, blood and 

excess fluid being drained via an incision through the right atrium (Appendix 1). The 
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brain was dissected out and immersion-fixed in a mixture of 4% paraformaldehyde 

and 1% glutaraldehyde  in 0.1M of phosphate buffer overnight. Pieces of brain 

containing areas of interest were serially sectioned at 70µm using a Vibrotome (Agar 

Scientific, BNBA 010664, Agar Scientific LTD, UK). 

4.2.3 Tyrosine hydroxylase immunoperoxidase staining 

The sections containing the dorsal region of the caudate-putamen (Approximately -0.3 

mm relative to bregma Paxinos and Watson, 1982), from the AS (control) and the 

AS/AGU (mutant) rats were incubated for 24 h in a humidity chamber at 4ºC with the 

primary antibody (Monoclonal mouse anti-tyrosine hydroxylase, MAB 5280, 

Chemicon Europe Ltd (1: 1000) diluted in blocking serum (1% NGS in PBS with 

0.3% Triton X- 100). The rest of the procedure was carried out at room temperature. 

After rinsing in PBS (3x5 mins), sections were then incubated for 60 min in a 

biotinylated anti-mouse secondary antibody (1:200 dilution), (Vector Laboratories, 

INC, BA-2001, Peterborough UK). Following 60 min incubation in Avidin-Biotin-

Complex (ABC) reagent (1:50; 20µl of solution A and 20µl of solution B in 1ml of 

PBS; Vectastain ABC kit, Vector Laboratories, INC, PK-6100, Peterborough UK), 

sections were then rinsed in PBS (3x5 mins) and 0.1 M phosphate buffer (PB, 1x5 

mins). The location of the antigen-antibody complex was visualized by incubating 

sections in a medium containing 0.05% 3,3-diaminobenzidine (DAB substrate KIT for 

peroxidase, Vector Laboratories, INC, SK-4100, Peterborough UK) for 2-5 min; this 

step was carried out with care in a fume cupboard, and all equipment which came in 

contact with DAB was soaked with bleach in order to denature it, as DAB is 

potentially carcinogenic (International Agency for Research on Cancer, 1972). 

Finally, the sections were rinsed in distilled water, dehydrated and mounted with glass 
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coverslips using histomount (RALAMB, HS-103, UK). Slides were then examined 

under a light microscope.  

4.2.4 Pre-embedding immunocytochemistry 

The sections containing the dorsal region of the caudate-putamen (Approximately -0.3 

mm relative to bregma Paxinos and Watson, 1982), from the AS (control) and the 

AS/AGU (mutant) rats were treated with 1% sodium borohydride for 30 min (Kosaka 

et al., 1986), rinsed in PBS many times (9x10 min), incubated in blocking solution 

(Appendix 7) for 30 minutes and incubated overnight in mouse antiserum to tyrosine 

hydroxylase (Monoclonal mouse anti-tyrosine hydroxylase, MAB 5280, Chemicon 

Europe Ltd) diluted to 1:300 in incubation buffer (Appendix 7). Sections were then 

processed using a silver-enhanced immunogold method (Chan et al., 1990). After the 

sections were rinsed in washing buffer (3x10 min), they were incubated for 4 hours in 

1nm goat anti-mouse IgG immunogold (Amersham UK) diluted 1:50 in incubation 

buffer. Sections were then rinsed in washing buffer (3x15 min) and in PBS (3x5 min), 

postfixed in 2% glutaraldehyde in PBS for 10 minutes, rinsed in distilled water, and 

treated with a silver enhancement solution (IntenSE  M kit, Amersham UK) according 

to the manufacturer’s instructions. The optimal time for the silver enhancement step 

was found to be between 12 and 15 minutes at approximately 20
o
C. The sections were 

then rinsed in distilled water (3x5 min), osmicated, dehydrated and embedded in 

Durcupan.  

4.2.5 Electron microscopy 

Sections containing  the dorsal region of the caudate-putamen from AS (control) and 

the AS/AGU (mutant) rats were rinsed with PB and placed in a solution of 1% 

Osmium tetroxide in PB for 20 minutes in an agitator. The sections were rinsed with 
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distilled water (3 x 30 mins) and dehydrated through a series of graded concentrations 

of acetone from 70 to 100%, followed by a descending ratio of acetone to durcupan 

resin (3:1, 1:1, 1:3) and two changes of 100% durcupan resin. The sections were flat-

embedded in durcupan resin between two small sheets of acetate, sandwiched 

between two glass slides, weighted down with metal weights and heated at 60ºC 

overnight in an oven (Appendix 6). The top acetate sheet was peeled off, and stock 

embedded sections were attached onto the end of a blank embedding block using RS 

adhesive and left for at least 30 min in an oven. The block containing the area of 

interest was trimmed. 

4.2.5.1 Ultrathin sections processing and staining 

Ultrathin sections (50-70nm thickness) from the dorsal region of the caudate-putamen 

of AS (control) and AS/AGU (mutant) rats were cut from selected blocks using 

diamond knives (Drukker International, Netherlands) on a Reichert-Jung Ultracut E 

ultramicrotome. Ultrathin sections were collected on 300 mesh-coated copper grids 

(300 Mesh Thin Bar Copper 3.05 mm, G2720C, Agar Scientific, UK) and double 

stained with uranyl acetate and lead citrate (Reynolds, 1963). The grids containing 

sections were stained in lead citrate for 5 mins, placed in sodium hydroxide 7 times, 

washed in distilled water 7 times, stained in 12.5% methanolic uranyl acetate for 5 

mins, washed in distilled water 7 times, stained in lead citrate for 5 mins, placed in 

sodium hydroxide 7 times, washed in distilled water 7 times and left to dry for 20 

mins. 

Ultrathin sections were examined at a magnification of 10,000X and 50,000X using a 

transmission electron microscope (JEOL JEM-100S, No. IEM 100S-4, JEOL LTD, 

Tokyo, Japan). All areas of interest were photographed. 
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4.2.6 Data analysis 

 

4.2.6.1 The classification of neuronal elements 

Tyrosine hydroxylase +ve neuronal elements can be positively identified with 

immunoperoxidase DAB reaction when they showed a higher electron density in 

comparison to neighbouring elements. Similarly, they were considered positive with 

immunogold when one or more gold particles were located in the labeling area. The 

classification of neuronal elements was made according to the descriptions of  Peters 

et al. (1976). Axon terminals were 0.25 µm or larger in diameter and contained many  

small synaptic vesicles. A synapse can normally be defined as symmetric  when it has 

a thin postsynaptic density and asymmetric when it has a thick postsynaptic density. 

Dendrites were identified by their large diameter, the presence of postsynaptic 

densities and/or an abundance of microtubules and endoplasmic reticulum.   

 

4.2.6.2 Sampling of TH+ve and unlabelled terminals (Figure 4.1) 

To determine the proportions of  TH+ve terminals compared to unlabelled terminals 

in the dorsal caudate-putamen, at least 180 electron micrographs from 12 animals (at 

least 10 electron micrographs per animal) were photographed randomly at 

magnifications of x10,000 in areas (10.5 x 8.5 µm) in which immunogold or 

immunoperoxidase DAB for TH were present.  For each animal (and stain) 10 squares 

from a 300 – square grid (G) were sampled in a manner which was uniform for all 

animals (see figure 4.1).  

The uppermost complete horizontal row was identified and  
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i. the first square (i.e. the one at the left hand end) was photographed in the top 

left corner.  

ii.  Five grid squares were omitted and the sixth grid photographed in the top 

right corner.  

iii.  The third and fourth grids were photographed in the bottom left and bottom    

right corners respectively. In each case, 5 grid squares were omitted between 

sample grids.  

iv. The sequence began again.  

v. Once a horizontal row had been completed, the next row was omitted and 

counts began again on the following row. 

The aim was to cover as large an area on the grid as possible, but to sample in a 

standardised manner. 
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Figure 4.1 : A schematic diagram to show standard sampling 

methods for TEM photography and analysis (refer also to 

text).  
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4.2.6.3 Measurements of synaptic vesicle numbers  

Figure 4.2 shows schematically the method for counting the number of vesicles and is 

partially modified from a recent study by Tao-Cheng (2006). This anther studied the 

distributions of seven pre-synaptic proteins in the active zone using immunogold 

labelling. The active zone is a well-defined area in the presynaptic terminal directly 

apposed to the post-synaptic density (PSD) and a site of synaptic vesicle exocytosis 

and neurotransmitter release.  He measured the numbers of immunogold particles and 

vesicles in three zones:  

(i) Zones I and II (each 33 nm wide) contain the two rows of synaptic vesicles 

immediately adjacent to the presynaptic membrane known as the proximal or 

“readily releasable” pool. Active zone cytomatrix materials (pyramidal in 

shape and 50 nm wide) extend through these two zones (I and II).  

(ii) Zone III is twice as wide as zone I and II together, and contains almost all the 

remaining synapses known as the distal or reserve pool.  

In my study, vesicles were counted in  four zones if they lay between the two parallel 

lines perpendicular to the synaptic cleft. The visible synapse length (L) of the synapse 

(determined by the post-synaptic density, PSD) was measured: 

a) Zone I (0-41.7 nm).  

b) Zone II (41.7-83.3 nm). 

c) Zone III (83.3- 166.7 nm).  

d) Zone IV (166.7- 300 nm). 
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Figure 4.2: Schematic diagram of synaptic measurement 

zones. Two parallel lines (A + B) perpendicular to the segment of the 

presynaptic membrane define the two sides of the area of measurement; 

the distance between them is the index length (L). Three parallel bands 

with increasing distance from the presynaptic membrane were marked 

in dotted lines: Zone I, 0-41.7 nm; Zone II, 41.7-83.3 nm; Zone III, 83.3- 

166.7 nm and Zone IV,  166.7- 300 nm. The postsynaptic density (PSD) is 

shown as a dark gray rectangle. Partially modified from Tao-Cheng 

(2006). 
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Zone I (immediately adjacent to the presynaptic terminals) and Zone II are both 41.7 

nm in wide. I choose this width to reflect the average diameter of vesicles (35-45 nm)  

in each zone. Zone III is four times as wide as Zone I. In my study a few vesicles were  

present further than 200 nm from the presynaptic membrane, so I added Zone IV (up 

to 300 nm from the presynaptic membrane) to cover the remaining vesicles. 

The number of vesicles per synaptic length was calculated by dividing the number of 

vesicles in a zone by the length of the synapse (L). The number of synapses are at 

least 10 in each animal. 

 

4.2.7 Image analysis 

 Images were captured on plate film which was then developed. The films were put in 

a  working dilution of 500ml D19 Kodak developer (Kodak-path, Paris) in 500ml of 

water for 3 mins, and then were rinsed in water for one minute before placing in 

Amfix (Amfix, Champion, UK) for 5mins rinsed in water for 20 mins and dried. The 

negatives of electron micrographs were scanned using an Epson scanner (Epson 

perfection 4990), and the contrast and exposure were adjusted using Paint Shop before 

printing. 

4.2.8 Statistical analysis 

The results were analysed by two-sample t-test using the Minitab statistics package 

(MINITAB Release 13.30). 
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4.3 Results 
 

4.3.1 Comparison of numbers and percentages of TH+ve nigrostriatal 

dopaminergic terminals in the dorsal caudate-putamen (DCPU) with 

immunoperoxidase DAB staining for TH in AS and AS/AGU rats 

aged 12 months 

 

The results show statistically significant differences between the two groups in the 

total number of TH+ve terminals, unlabeled terminals and total terminals in the dorsal 

caudate-putamen (< 0.05).  The AS/AGU (mutant) rats had fewer terminals than the 

AS (control). The results are summarized in table 4.1. 

Despite the marked difference in absolute numbers the percentage of TH+ve 

nigrostriatal dopaminergic terminals as a proportion of the total number of terminals 

was approximately the same in both strains at this age (Table 4.4).  

The sampling methods used here led to the inclusion of 1-200 synaptic terminals per 

animal for analysis. Several feature emerged: 

(i) There were simply fewer synaptic terminals per unit area in AS/AGU rats 

compared to the AS parent strain. 

(ii) In both strain, about 15% of terminals were dopaminergic, as revealed by 

DAB staining. 

(iii) The reduction in numbers of synapses in the AS/AGU rats included both 

the dopaminergic and non-dopaminergic ones. 

 

 

 

 

 



Chapter 4                                                                                                              Results 

 

172 

 

Number 

 

AS 

 

 

AS/AGU 

 

P 

 

TH+ve terminals 

 

 

35.7 ± 2.3 
 

19.3 ± 0.9 
 

< 0.05 

 

Unlabeled 

terminals 

(TH-ve terminals) 

 

182.3 ± 0.9 
 

118 ± 5.3 
 

< 0.01 

 

Total terminals 

 

 

218 ± 2.6 
 

137.3 ± 6.1 
 

< 0.01 

 

Table 4.1: Number of terminals within the DCPU with immunoperoxidase DAB 

staining for TH in AS control and AS/AGU mutant rats aged 12 months (n=3 per 

group). All values are mean number of terminals ± SEM. All comparisons are 

two-sample t-tests. 
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4.3.2 Comparison of numbers and percentages of TH+ve nigrostriatal 

dopaminergic terminals in the DCPU with immunogold staining for 

TH in AS and AS/AGU rats aged 12 months 

 

As with DAB staining, immunogold staining results show statistically significant 

differences between the two groups in the number of TH+ve terminals, unlabeled 

terminals and total terminals in the dorsal caudate-putamen (< 0.05). The AS/AGU 

(mutant) rats had fewer terminals than the AS (control). The results are summarized in 

table 4.2. 

Despite the marked difference in absolute numbers the percentage of TH+ve 

nigrostriatal dopaminergic terminals as a proportion of the total number of terminals 

was only slightly less in AS/AGU (mutant) rats at this age (13%) than in AS controls 

(17%) (Table 4.4).  

It appears that DAB and immunogold staining give similar numbers of TH+ve and –

ve terminals. For 3 – month old animals, only immunogold staining was used. 

 

 

 

 

 

 

 

Number 

 

AS 

 

 

AS/AGU 

 

P 

 

TH+ve terminals 

 

 

43.7 ± 2 
 

23 ± 2.1 
 

< 0.01 

Unlabeled 

terminals 

(TH-ve terminals) 

 

207.7 ± 9.3 
 

148.3 ± 10 
 

< 0.05 

 

Total terminals 

 

 

251.3 ± 11 
 

171.3 ± 12 
 

< 0.05 

Table 4.2: Number of terminals within the DCPU with immunogold staining for 

TH in AS control and AS/AGU mutant rats aged 12 months (n=3 per group). All 

values are mean number of terminals ± SEM. All comparisons are two-sample t-

tests. 
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4.3.3 Comparison of numbers and percentages of TH+ve nigrostriatal 

dopaminergic terminals in the DCPU with immunogold staining for 

TH in AS and AS/AGU rats aged 3 months 

 

The results show statistically significant differences between the two groups in the 

number of TH+ve terminals in the dorsal caudate-putamen (< 0.05). The AS/AGU 

(mutant) rats had significantly fewer dopaminergic terminals than the AS (control) 

strain. The results are summarized in table 4.3.  However, unlike the 12 month 

animals, the number of unlabelled terminals (and the total number of terminals) was 

similar in the two strains i.e. only the TH +ve terminals were reduced. 

The percentage of TH+ve nigrostriatal dopaminergic terminals as a proportion of the 

total number of terminals was reduced in AS/AGU (mutant) (Table 4.4).  A chi-

square (X
2
) analysis of the percentage of TH+ve terminals (using absolute numbers) 

shows that the two strains are significantly different (X
2
 =7.19, df = 1,  P<0.01). 
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AS 

 

 

AS/AGU 

 

P 

 

TH+ve terminals 

 

 

54.67 ± 2.8 

 

 

25.67 ± 0.33 

 

 

< 0.01 

Unlabeled 

terminals 

(TH-ve terminals) 

 

254.3 ± 12 

 

 

245 ± 9.7 

 

 

NS 

 

Total terminals 

 

 

309 ± 15 

 

 

270.7 ± 9.5 

 

 

NS 

Table 4.3: Number of terminals within the DCPU with immunogold staining for 

TH in AS control and AS/AGU mutant rats aged 3 months (n=3 per group). All 

values are mean number of terminals ± SEM. All comparisons are two-sample t-

tests (NS: not significant). 

 

 

 

Strains AGE Techniques percentage 

AS 12 month TH immunoperoxidase DAB 16.4% 

AS/AGU 12 month TH immunoperoxidase DAB 14.1% 

AS 12 month TH immunogold 17.4% 

AS/AGU 12 month TH immunogold 13.4% 

AS 3 month TH immunogold 17.7% 

AS/AGU 3 month TH immunogold 9.5% 

Table 4.4: percentages of TH+ve terminals within the DCPU with 

immunoperoxidase DAB and immunogold staining for TH in AS control and 

AS/AGU mutant rats aged 3 and 12 months (n=3 per group). 
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4.3.4 Comparisons of synaptic vesicles numbers of TH+ve 

nigrostriatal dopaminergic and unlabelled terminals in the DCPU 

(identified by immunogold staining for TH) of AS and AS/AGU rats 

aged 12 months 

 

 

The results show statistically significant differences between the two groups in the 

number of synaptic vesicles in each zone and in the total numbers of vesicles and also 

in the number of vesicles per synaptic length in both TH+ve and unlabelled terminals 

of the DCPU at this age (< 0.05). The AS/AGU (mutant) rats had fewer vesicles than 

the AS (control) rats. The results are summarized in table 4.5. 
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Terminals 

 

AS 

 

 

AS/AGU 

 

P 

 

9.98 ± 0.94 

 

5.08 ± 0.17 

 

< 0.05 

TH +ve 

                    NV                               

 

                 NV/L 
 

36.15 ± 2.7 

 

14.2 ± 0.96 

 

< 0.05 

 

7.28 ± 0.39 

 

5 ± 0.1 

 

< 0.05 

 

Zone I               

(0-41.7 nm) 

Unlabeled            

   (TH-ve)      NV 

 

                 NV/L 
 

29.59 ± 1.7 
 

18.31 ± 0.79 
 

< 0.05 

 

10.11 ± 0.78 
 

5.57 ± 0.6 
 

< 0.05 

TH +ve 

                        NV                               

 

                 NV/L 
 

36.61 ± 1.7 

 

15.64 ± 2.2 

 

< 0.01 

 

7.72 ± 0.81 

 

5.49 ± 0.003 

 

NS 

 

Zone II 

(41.7-83.3 nm) 

Unlabeled            

   (TH-ve)      NV 

 

                 NV/L 
 

31.46 ± 3.7 

 

20.16 ± 0.002 

 

NS 

 

26.48 ± 3.3 
 

12.64 ± 2.6 
 

< 0.05 

TH +ve 

                    NV                               

 

                 NV/L 
 

95.7 ± 9.3 

 

35.7 ± 8.2 

 

< 0.05 

 

26.44 ± 1.5 

 

14.39 ± 0.92 

 

< 0.01 

 

Zone III 

(83.3- 166.7 

nm) 

Unlabeled            

   (TH-ve)       NV 

 

                 NV/L 
 

107.12 ± 1.5 

 

52.65 ± 3.7 

 

< 0.01 

 

16.63 ± 2.9 
 

2.72 ± 0.87 
 

< 0.05 

TH +ve 

                    NV                               

 

                 NV/L 
 

60.9 ± 12 

 

7.76 ± 2.6 

 

< 0.05 

 

20.67 ± 0.35 

 

6.28 ± 0.71 

 

< 0.01 

 

Zone IV 

(166.7- 300 

nm) 

Unlabeled            

   (TH-ve)       NV 

 

                 NV/L 
 

84.21 ± 5.1 

 

23.16 ± 3.5 

 

< 0.01 

 

63.20 ± 4.4 

 

26.01 ± 4.1 

 

< 0.01 

TH +ve 

                    NV                               

 

                 NV/L 
 

229.4 ± 13 

 

73.3 ± 14 

 

< 0.01 

 

62.11 ± 1.3 

 

31.17 ± 0.19 

 

< 0.01 

 

Total  

 

Unlabeled            

   (TH-ve)      NV 

 

                 NV/L 
 

252.4 ± 7.3 

 

114.3 ± 6.1 

 

< 0.01 

Table 4.5: Numbers of synaptic vesicles in TH+ve nigrostriatal dopaminergic 

and unlabelled terminals within the DCPU (identified by immunogold staining 

for TH) in AS control and AS/AGU mutant rats aged 12 months (n=3 per group). 

All values are mean number of synaptic vesicles (NV) or numbers per synaptic 

length (NV/L) ± SEM. All comparisons are two-sample t-tests (NS: not 

significant). 
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4.3.5 Comparison of synaptic vesicles numbers in TH+ve 

nigrostriatal dopaminergic and unlabelled terminals in the DCPU 

(identified by immunogold staining for TH) of AS and AS/AGU rats 

aged 3 months 

 

 

The results show statistically significant differences between the two groups in the 

number of TH +ve synaptic vesicles in each zone and in the total number of vesicles 

and also in the number of vesicles per synaptic length in TH+ve nigrostriatal 

dopaminergic terminals of the DCPU.  The AS/AGU (mutant) rats had fewer vesicles 

than the AS (control). By contrast, there were no significant differences between the 

two strains in the number of vesicles in unlabelled (i.e. non-dopaminergic) terminals. 

The results are summarized in table 4.6. 
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Terminals 

 

AS 

 

 

AS/AGU 

 

P 

 

7.89 ± 0.46 

 

3.44 ± 0.29 

 

< 0.01 

TH +ve 

                    NV                               

 

                 NV/L 
 

29.97 ± 1.5 
 

11.49 ± 0.51 
 

< 0.01 

 

7.39 ± 0.63 

 

6.72 ± 0.29 

 

NS 

 

Zone I               

(0-41.7 nm) 

Unlabeled            

   (TH-ve)      NV 

 

                 NV/L 
 

30.23 ± 2.1 

 

29.4 ± 3 
 

NS 

 

8.83 ± 0.82 
 

3.67 ± 0.35 
 

< 0.05 

TH +ve 

                    NV                

 

                 NV/L 
 

33.43 ± 2.1 

 

12.23 ± 0.62 

 

< 0.01 

 

8.33 ± 1.1 

 

7.72 ± 0.2 

 

NS 

 

Zone II 

(41.7-83.3 nm) 

Unlabeled            

   (TH-ve)      NV 

 

                 NV/L 
 

34.64 ± 2.8 

 

33.55 ± 1.7 

 

NS 

 

32.17 ± 2.7 
 

7.89 ± 1.9 
 

< 0.01 

TH +ve 

                    NV                               

 

                 NV/L 
 

122.5 ± 12 

 

26.2 ± 5.8 

 

< 0.05 

 

32.56 ± 2.6 

 

29.94 ± 2.1 

 

NS 

 

Zone III 

(83.3- 166.7 

nm) 

Unlabeled            

   (TH-ve)      NV 

 

                 NV/L 
 

133.6 ± 11 

 

129.33 ± 3.2 

 

NS 

 

18.83 ± 3.3 
 

2.95 ± 1.5 
 

< 0.05 

TH +ve 

                    NV                               

 

                 NV/L 
 

70.6 ± 8.1 

 

9.51 ± 4.5 

 

< 0.01 

 

13.89 ± 0.56 

 

10.94 ± 2.7 

 

NS 

 

Zone IV 

(166.7- 300 

nm) 

Unlabeled            

   (TH-ve)      NV 

 

                 NV/L 
 

57.21 ± 4.4 

 

46.1 ± 9.6 

 

NS 

 

67.72 ± 5 

 

17.95 ± 3.6 

 

< 0.01 

TH +ve 

                    NV                               

 

                 NV/L 
 

256.5 ± 8.8 

 

59.4 ± 9.8 

 

< 0.001 

 

62.5 ± 2.1 

 

55.33 ± 4.5 

 

NS 

 

Total  

 

Unlabeled            

   (TH-ve)      NV 

 

                 NV/L 
 

256.3 ± 9.5 

 

238.42 ± 3.3 

 

NS 

Table 4.6: Numbers of synaptic vesicles in TH+ve nigrostriatal dopaminergic 

and unlabelled terminals within the DCPU (identified by immunogold staining 

for TH) in AS control and AS/AGU mutant rats aged 3 months (n=3 per group). 

All values are mean number of synaptic vesicles (NV) or numbers per synaptic 

length (NV/L) ± SEM. All comparisons are two-sample t-tests ( NS: not 

significant). 
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4.3.6 Distributions of vesicles and average length of synaptic 

terminals in AS and AS/AGU rats aged 3 and 12 months. 

 

 

 

The percentage zonal distribution of vesicles in TH+ve and unlabelled terminals are 

approximately the same in both strains at both ages (Figure 4.3-4.6). Zone III  often 

thought of as the “reserve pool” has the highest percentage of vesicles. The actual 

synapse length is significantly greater in AS/AGU mutants than AS controls at 12 

months, otherwise there are no strain differences (Figure 4.7). 
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Figure 4.3: Distribution of vesicles of TH+ve terminals within the DCPU 

(identified by immunogold staining for TH) in control (AS) and mutant 

(AS/AGU) male rats aged 12 months. The figures are expressed as percentages 

(n=3 per group). 
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Figure 4.4: Distribution of vesicles of unlabelled terminals within the DCPU 

(identified by immunogold staining for TH) in control (AS) and mutant 

(AS/AGU) male rats aged 12 months. The figures are expressed as percentages 

(n=3 per group).  
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Figure 4.5: Distribution of vesicles of TH+ve terminals within the DCPU 

(identified by immunogold staining for TH) in control (AS) and mutant 

(AS/AGU) male rats aged 3 months. The figures are expressed as percentages 

(n=3 per group).  
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Figure 4.6: Distribution of vesicles of unlabelled terminals within the DCPU 

(identified by immunogold staining for TH) in control (AS) and mutant 

(AS/AGU) male rats aged 3 months. The figures are expressed as percentages 

(n=3 per group).  
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Figure 4.7: Synaptic terminals length within the DCPU (identified by 

immunogold staining for TH) in control (AS) and mutant (AS/AGU) male rats 

aged 3 and 12 months.  Means ± SEM (n=3 per group). (* P < 0.05; NS: not 

significant). 
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4.3.7 Electron micrographs of nigrostriatal dopaminergic terminals 

in the AS and AS/AGU rat  

 

Figure 4.8 shows TH+ve  and TH-ve terminals identified by DAB staining for TH. 

The quality of this figure reflects the small amount of glutaraldehyde used in the 

fixative (1% : 4% paraformaldehyde). 

Figures 4.9-4.13 show TH+ve and TH-ve terminals identified by immunogold 

staining for TH in both AS and AS/AGU rats aged 3 and 12 months. 
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Figure 4.8: Electron micrograph (A,B,C and D) showing TH+ve terminals (red 

rectangular) stained with DAB for TH and TH-ve terminals (yellow circle) of AS 

rats aged 12 months, (x20,000). In inset boxes (a,b,c and d) a high magnification 

of TH+ve terminals and there synapses (arrows) (x50,000).  
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Figure 4.9: Low magnification electron micrograph showing TH+ve terminals 

stained with immunogold and TH–ve terminals of an AS rat aged 12 months, 

(x10,000).  
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Figure 4.10: Electron micrograph showing TH+ve terminals (A and B) stained 

with immunogold for TH and TH –ve terminal (C), unlabelled dendrite (Ud) and 

synapses (arrows)  of AS rats aged 12 months, (x50,000). Scale bars = 0.2 µm. 
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Figure 4.11: Electron micrograph showing TH+ve terminals (A and B) stained 

with immunogold for TH and TH –ve terminal (C), unlabelled dendrite (Ud) and 

synapses (arrows)  of AS/AGU (mutant) rats aged 12 months, (x50,000). Scale 

bars = 0.2 µm. 
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Figure 4.12: Electron micrograph showing TH+ve terminals (A) stained with 

immunogold for TH and TH –ve terminal (B), unlabelled dendrite (Ud) and 

synapses (arrows)  of AS (control) rats aged 3 months, (x50,000). Scale bars = 0.2 

µm. 
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Figure 4.13: Electron micrograph showing TH+ve terminals (A) stained with 

immunogold for TH and TH –ve terminal (B), unlabelled dendrite (Ud) and 

synapses (arrows)  of AS/AGU (mutant) rats aged 3 months, (x50,000). Scale 

bars = 0.2 µm. 
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4.4 Discussion 
 

 

It is well established that the midbrain dopaminergic system is affected in AS/AGU 

rats (Payne et al., 2000). The levels of dopamine in the dorsal and lateral  caudate-

putamen are  reduced in both post-mortem micropunches which measures intra - and 

extra-cellular dopamine and by in vivo microdialysis which measures extra-cellular, 

released, dopamine (Campbell et al., 1997, 1998). 

Terminals were considered to be labeled (a) with immunoperoxidase when they 

showed a higher electron density in comparison to neighboring elements (Mengual 

and Pickel, 2002) and (b) with immunogold-silver when they contained one or more 

silver particles which appear as small black aggregates in pre-synaptic terminals 

(Mengual and Pickel, 2002). Terminals were only included in the analysis if they 

showed pre-synaptic, post-synaptic membranes and ten or more vesicles.    

The first control used in this experiment were sections from the same region (dorsal 

striatum) which underwent the same procedure for preembedding 

immunocytochemistry except for the omission of TH primary antibody. In this type of 

control, no gold particles were seen. The second control used in this experiment was 

the examination of the lumen of blood vessels in same sections. Sections had to reach 

the criterion that no gold particles were seen in the blood vessels lumen.    

This study can be improved by (a) decreasing the concentration of glutaraldehyde 

fixative to less than 1% but this may effect the good morphology of the tissue or (b) 

the use cryosections treated with immunogold with silver enhancement (Monaghan 

and Atherton, 1992).    

There are some limitations of using immunocytochemistry :  (a) TH protein is altered 

by fixation, dehydration and heating which lead to decreased recognition by  
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antibodies (Chan et al., 1990), (b) using glutaraldehyde in high concentration  leads 

to increased non-specific staining and decreased antigenicity of some protein (Kosaka 

et al., 1986), (c) Avidin-biotin-peroxidase labelling is diffuse and may lead to 

artifactual labelling (Beier, 1992) and (d) immunogold-silver labelling is more 

localized but less deeply penetrating into the tissue (Chan et al., 1990).    

 

My results show firstly that the number of TH+ve terminals in the striatum of AS 

(control) rats aged 3 and 12 month (16-17%) are consistent with the figures obtained 

previously in human (approximately 16%) (Kung et al., 1998) and rat studies (9-

21%) (Hokfelt, 1968; Tennyson et al., 1974; Pickel et al., 1981; Descarries et al., 

1996).   Secondly, AS/AGU (mutant) rats aged 12 months have a reduction in 

numbers of TH+ve terminals and in unlabelled terminals and also in the number of 

synaptic vesicles compared to AS (control) rats. However, in younger, 3-month 

animals, the reduction is in TH+ve terminals only; TH-ve terminals are unaffected. 

Several issues are raised by this: 

(i) Extracellular dopamine levels are reduced in AS/AGU rats by 80-90% 

compared to the control (AS) strain (Campbell et al., 1998). In 12-month 

animals studied in the present experiment, the arithmetic sum of a 40% 

reduction in TH+ve terminals, together with a 40% reduction in vesicle 

numbers in these TH+ve terminals which remain, could account entirely 

for this reduction in released DA within the striatum. The figures are 

equally compelling for AS/AGU animals aged 3 months where there is a 

50% reduction in TH+ve terminals and a reduction in vesicles by three 

quarters. 
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(ii) The susceptibility of TH+ve terminals in both young and old AS/AGU rats 

(while TH-ve terminals are only affected in old animals) suggests (a) that 

dopaminergic neurons are unusually vulnerable to the effect of the PKC-γ 

mutation but that (b) the eventual reduction in all terminals suggests a very 

fundamental mechanism underlies terminal loss. 

(iii) The zonal figures for synaptic vesicle numbers suggest that the loss is 

general, is not linked particularly to the readily-releasable in the storage 

pool, and is probably not linked to a molecularly characteriseable 

population of vesicles. In particular, there is no evidence that the region 

closest to the synaptic cleft is devoid of vesicles.     

The loss of nigrostriatal dopaminergic neurons that results in a marked reduction of 

dopaminergic nerve terminals in the striatum is a characteristic post-mortem feature of 

PD (Frost et al., 1993) and may be confirmable in living Parkinson’s patients 

(Leenders et al., 1990). The loss of dopaminergic terminals in the striatum occurred 

also in animal models such as MPTP-treated monkeys and baboons (Herkenham et 

al., 1991; Hantray et al., 1993) and in rats treated with 6-OHDA (Pickel et al., 

1992b; Ichitani et al., 1994). 

Reduced vesicle counts have been seen in mice treated with MPTP. Low doses cause 

axon terminals to swell and show reduced vesicles; with high doses, terminals 

disappear (Cochiolo et al., 2000). Paradoxically, in rats treated with 6-OHDA 

terminal size and vesicle numbers may increase (Pickel et al., 1992b; Stanic et al., 

2003) a finding very much at variance with the present study. 
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General Discussion  

Each of the three experiments reported in this thesis has its own Discussion section. 

This General Discussion seeks to place the findings in context by posing a series of 

questions. 

 

(1) Do the aminergic cells in the substantia nigra and midbrain raphe 

nuclei have a normal capacity to synthesise their neurotransmitters 

in the AS/AGU mutant ?  

 
 

This question arises because of an apparent paradox. It has been previously shown 

(using in vivo microdialysis of caudate-putamen and HPLC/ECD) that, at all ages, the 

AS/ AGU rat only possesses 10-20% of the extracellular dopamine levels found in the 

AS parent strain under normal physiological conditions (Campbell et al., 1998; 

2000). Conversely, whole tissue micropunches of the caudate-putamen (which will 

include a wide and heterogeneous variety of cells and cell parts) show no strain 

differences in dopamine until six months of age, and relatively modest differences 

thereafter (Campbell et al., 1996; 1997). Since the strain difference in whole tissue 

dopamine levels is of order of 20-30%, whilst the strain differences in released 

(extracellular) dopamine is of the order of 80-90%, this could suggest either 

(a) that there is a fundamental dysfunction of release (as has been proposed Payne 

et al. 2000) or 

(b) that there is a fundamental deficiency of synthesis such that the relatively 

normal levels are built up over a lengthy period. 

It should be pointed out that these data were obtained from rats of an age where a 

major decrease in SNC cell numbers would not be expected (Clarke and Payne, 

1994) - and I used rats of this age range in my own experiments also. 
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(a) Tyrosine hydroxylase 

My results (Experiment 1) suggest that there is no deficit in levels of tyrosine 

hydroxylase within the cell bodies of the substantia nigra pars compacta and, since 

TH is the rate-limiting enzyme for catecholamine synthesis (Blanchard et al., 1995), 

it is difficult to conclude that there is any deficiency in dopamine synthesis in the 

mutant strain at the ages tested.  

Is the use of a quantitative immunofluorescent technique a suitable one to answer this 

question?  A widely used method of measuring TH activity would involve incubations 

of homogenized post mortem brain with radiolabelled precursors followed by 

measurement of labeled catecholamines (Nagatsu et al., 1964; McGeer et al., 1971). 

However, this type of approach has drawbacks such as (a) a lack of knowledge of how 

many  catecholaminergic neurons are actually present in the micropunches / culture 

(and , therefore, the “dilution factors” of other tissue components) (b) ignorance of the 

possible contribution made by other neurons and glial cells to dopamine synthesis and 

(c) ignorance of whether these are marked interneuronal differences in synthetic 

capacity e.g. between healthy and senescent neurons. The method I have used enabled 

me to sample individual dopaminergic neurons only. The main conclusions are: 

i. that, despite being unable to release dopamine at striatal terminals  (Campbell 

et al., 1998) dopaminergic cell bodies in the SNC of  the AS/AGU mutant did 

not show reduced TH activity. Rather, 

ii. they exhibited enhanced TH activity compared to AS controls, suggesting that 

they were operating a feedback control mechanism and 

iii. that, whilst there was variation in TH activity from cell to cell, this was no 

greater in AS/AGU mutants than in AS controls.  
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The fact that TH levels are actually increased in the SNC neurons of mutant rats also 

requires some discussion. The simplest explanation is that it is due to feedback 

inhibition by the enzymatic end products (Nagastu et al., 1964; Spector et al., 1967; 

Kumer and Vrana,1996).  In the light of this, it is interesting to note that a reduction 

in dopamine levels in the striatum increases the ability of pteridine (which is a 

cofactor for TH) to bind to TH thus decreasing its ability to form a complex with 

ferric iron and resulting in an increase in TH activity (Okuno and Fujisawa, 

1985,1991; Andersson et al., 1988,1992; Haavik et al., 1991; Almas et al., 1992; 

Daubner et al., 1992; Ribeiro et al., 1992). 

The possible loss of transmission of dopaminergic neurons with age in rats or mice 

could be due to one or more of the following: a reduction in dopamine release, a 

change in dopamine synthesis or a loss of dopaminergic cells in the SNC and VTA; it 

could even be due to a loss of port synaptic receptor density (McNeill and Koek, 

1990; Tatton et al., 1991; Della et al., 1992; Hamdi et al., 1992). 

Unlike the cell bodies of the SNC, TH levels in the striatum (where nigrostriatal 

terminals are located) are diminished in AS/AGU rats. This may reflect a decreased 

activity in dopaminergic terminals themselves, or a decreased activity in cells of the 

caudate-putamen, some of which are TH +ve (Tashiro et al., 1989), or a decreased 

number of dopaminergic terminals per unit area within the striatum: the results 

obtained in my third experiment (see below) suggest that the latter explanation is the 

correct one. 

In the caudate-putamen, the sampling area is a large rectangle which will be 

heterogeneous in its content. In such circumstances, an immuno-fluorescent approach 

is less beneficial than in the case of the mid-brain where individual neurons could be 

sampled. However, I believe that the benefits of sampling cell bodies and striatum 
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with the same methodology outweighs this disadvantage (which is, in any case, no 

greater than that occurring in other techniques such as tissue slice incubation). 

Moreover, the fact that a statistically significant difference could be found is 

indicative of a very real effect, given the “dilution” provided by the vast mass of 

surrounding cells and neuropil in which the dopaminergic terminals are embedded. 

Previous studies have shown that reduced dopamine release in the striatum of the 

AS/AGU rat is accompanied by elevated dopamine metabolites such as DOPAC and 

HVA (Campbell et al., 1996; 1997; 1998; 2000). It has been suggested that this is 

due to an underlying dysfunction of vesicle formation and packaging, leaving 

dopamine free in the cytoplasm to be acted upon by mitochondrial monoamine 

oxidase (Payne et al., 2000). An alternative explanation, that there is massive over-

production of dopamine at the terminal, which the vesicular packaging system cannot 

cope with, appears unlikely from my data. 

 

(b) Serotonin 

Like dopaminergic neurons, serotonergic neurons in the dorsal raphe are reduced in  

number (and striatal release greatly impaired) in the AS/AGU mutant (Al-Fayez et 

al., 2005). A loss of serotonergic neurons in the dorsal raphe nucleus (Jellinger, 

2005) and a reduction in serotonin concentration in the striatum, substantia nigra and 

hippocampus have been documented in the brains of the Parkinson’s patient (Rinne et 

al., 1974; Scatton et al., 1983; Agid et al., 1987; Mizuno, 2005) as has a depletion of 

5-HT and its metabolites in the cerebrospinal fluid (CSF) (Tohgi et al., 1993). 

Nevertheless, the present experiment shows that (like the data for TH) the 5-HT 

content of the cell bodies in the midbrain is higher in AS/AGU than in AS rats. This 

implies continual activity and (perhaps) a regulatory feedback mechanism. Whilst 
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end-product inhibition can apply to TH in the synthesis of dopamine, it is not so 

certain that it applies to tryptophan hydroxylase (TPH) which is the rate-limit enzyme 

of serotonin synthesis (Martinez et al., 2001; Wang et al., 2002). In assessing the 

activity of serotonergic neurons, it is more common to measure 5-HT directly, rather 

than TPH (Tappaz and Pujol, 1980; Moret and Briley, 1992; Martinez et al., 

2001; Wang et al., 2002).    

 

 

(2) Are typical Lewy body proteins elevated in the dopaminergic and 

serotonergic systems of PKC-γ mutant rats? 
 

This question is important for two reasons: 

i. in general, whilst Lewy bodies are a major feature of Parkinson’s disease 

(Pollanen et al., 1993; Cornford et al., 1995; Forno, 1996; Galvin et al., 

1997; Shults, 2006), rodent models such as 6-OHDA do not show them. 

Nevertheless, it may be possible to measure levels of  the molecules most 

commonly associated with Lewy bodies to see it if there are elevated. 

ii. Because it remains a controversial issue whether the Lewy body and its 

contents are a harmful, pathological feature of Parkinson’s disease, or whether 

they represent an attempt by the neuron to counteract the degenerative process 

(Alves-Rodrigues et al., 1998; Bence et al., 2001; Chung et al., 2001a; 

McNaught et al., 2002; Olanow et al., 2004). The matter is made more 

difficult by a lack of information on the normal physiological role of some 

molecules characteristic of Lewy bodies.  
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(A) Ubiquitin 

The immunofluorescence levels of ubiquitin are higher in the SNC (especially the 

lateral region) and the dorsal raphe nuclei of AS/AGU mutants compared to AS 

controls.  These are cell groups which are affected in AS/AGU mutant rats (loss of 

cell numbers in the midbrain and depletion of striatal transmitters) (Clarke and 

Payne, 1994; Campbell et al., 1997; 1998; Al-Fayez et al., 2005). Other regions 

such as SNR, SNL, VTA and MRN are less affected this suggest that, despite the lack 

of Lewy bodies in rats, elevated ubiquitin is associated with loss of function in very 

specific cell groups.  

Ubiquitin is present in the Lewy bodies in Parkinson’s disease (Lennox et al.,1989; 

Love and Nicoll, 1992).   

Lewy bodies (neuronal intracytoplasmic inclusion bodies) can be seen in the surviving 

dopaminergic neurons of the substantia nigra pars compacta in all most every case of 

PD (Jellinger, 1987; Hughes et al., 1993; Pollanen et al., 1993; Cornford et al., 

1995; Forno, 1996) and isolated Lewy bodies (presumably the remains of dead 

neurons) can be found in the neuropil (Jellinger, 1991; Mackenzie, 2001).  Lewy 

bodies can also be seen in other non-dopaminergic neurons such as cholinergic 

neurons in the nucleus basalis of Meynert, noradrenergic neurons in the locus 

coeruleus,  serotonergic neurons in the raphe nuclei, the motor vagal nuclei, the 

pedunculopontine nucleus, the Edinger-Westphal nucleus, in the intermediolateral cell 

column of the spinal cord, the hypothalamus and the autonomic ganglia (Jellinger, 

1991). They due therefore not restricted to a transmitter-specific neuron population.  

The mechanism by which Lewy bodies are formed and their relationship to 

neurodegenerative disease, or the ageing process,  remains unknown. One hypothesis 

is that Lewy bodies are harmful. Proteins such as α-synuclein or ubiquitin will 
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accumulate and aggregate if  the ability of cells to degradate these protein is exceeded 

or if proteasomal function is impaired (Sherman and Goldberg, 2001). Further, 

aggregated proteins will  provide a nucleation center for the formation of inclusion 

bodies such as Lewy bodies (Chung et al., 2001a) and the accumulation of these 

inclusion bodies might in turn induce neuronal dysfunction and/or cell death (Alves-

Rodrigues et al., 1998; Bence et al., 2001; Chung et al., 2001a). A quite different 

hypothesis is that Lewy bodies are beneficial and protective for neurons because they 

behave structurally and functionally as aggresomes (McNaught et al., 2002; Olanow 

et al., 2004).  Aggresomes are cytoplasmic inclusion bodies formed at the centrosome 

(a perinuclear structure linked to the microtubular system) as a cytoprotective 

response to high levels of misfolded proteins (Johnston et al., 1998; Kopito, 2000).  

Ubiquitin accumulation may suggest a failure of the ubiquitin-proteasome system 

(UPS) leading to accumulated abnormal proteins as ubiquitin aggregates or inclusion 

bodies associated with cell degeneration (Alves-Rodrigues et al., 1998). Many 

investigators have assumed that the immunopositive ubiquitin staining in Lewy bodies 

must represent elevated levels of intracellular ubiquitin-protein conjugates (e.g. 

Andersen, 2000) in both sporadic and hereditary neurodegenerative diseases 

(Ciechanover et al., 2000).  However, it must be remembered that most forms of 

immunocytochemistry do not lend themselves to easy quantitative interpretation. If 

ubiquitin levels are indeed elevated (and if that elevation is injurious) then a cascade 

could follow in which a primary failure of UPS leads to aggregated proteins, which 

could further inhibit the UPS by direct interaction with the proteasome (Akopian et 

al., 1997; Bence et al., 2001) or by saturating the capacity of one or more molecular 

chaperones which are required for UPS function (Bercovich et al., 1997).  
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Many factors in the SNC in the midbrain of PD patients could potentially contribute 

to failure of the UPS these include:  

a) high levels of protein oxidation (Alam et al., 1997),  

b) high levels of 3-nitrotyrosine in the SNC which may indicate excitoxicity 

(Good et al., 1998),  

c) reduction in the levels of α-subunits of 20S proteasome and levels of 26S 

proteasome enzyme activities (McNaught et al., 2001),  

d) inhibition of complex 1 activity (Schapira et al., 1990a,b; DeMartino and 

Slaughter, 1999) since UPS is an ATP-dependent system (Alves-Rodrigues 

et al., 1998),  

e) dopamine itself can produce free radicals by auto-oxidation or through 

metabolism by monoamine oxidase (Olanow, 1990; Jenner and Olanow, 

1998; Jenner, 1998) and  

f)  4-hydroxy-2-nonenal (HNE) is a product of lipid peroxidation present in 

surviving dopaminergic neurons in PD patients (Yoritaka et al., 1996); it 

leads to enhanced cross-linking of proteins and mediated inhibition of 

proteasomal function (Okada et al., 1999).  

In the present study,  elevated levels of ubiquitin can be found inside the cell bodies of 

the SNC and dorsal raphe – cell bodies which appear to remain viable and responsive 

in terms of their transmitter synthesising capacity (see above), but whose terminals are 

incapable of releasing physiological normal amounts of DA or 5-HT in the striatum 

(Campbell et al., 1997; 1998; Al-Fayez et al., 2005). 
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(B) Parkin 

The immunofluorescence levels of parkin are higher in the cell bodies of both SNC 

and dorsal raphe neurons in the mutants compared to the controls. Other areas such as 

SNR, SNL, VTA and MRN are less affected. The affected regions are also those 

which exhibit loss of neurons and depletion of their neurotransmitters (dopamine and 

serotonin) in the striatum in AS/AGU mutant rats (Clarke and Payne, 1994; 

Campbell et al., 1997; 1998; Al-Fayez et al., 2005) and in PD (Bernheimer et al., 

1973; Hornykiewicz, 1998; Jellinger, 2005).  

 Parkin staining is characteristically found in the cytoplasm of neuronal cell bodies 

(Shimura et al., 1999; Gu et al., 2000; Horowitz et al., 2001), in rough endoplasmic 

reticulum (Imai et al., 2002), Golgi apparatus (Shimura et al., 1999) and also in the 

nucleus (Stichel et al., 2000; Horowitz et al., 2001). 

In addition, parkin is present in Lewy bodies in the brain of PD patients 

(Schlossmacher et al., 2002) except in an autosomal recessive juvenile parkinsonism 

patients that, interestingly, have a mutation in the parkin gene and no Lewy bodies 

(Takahashi et al., 1994; Mori et al., 1998; Shimura et al., 1999; Hayashi et al., 

2000). The ubiquitin-homology domain at the N-terminal of parkin is involved in 

substrate recognition (Shimura et al., 2000) and it has importance in multi-ubiquitin 

formation (Finley and Chau, 1991). 

This correlation between ubiquitin and parkin is strengthened by examples of  the lack 

of parkin (e.g. by mutation) leading to accumulation and overexpression of substrate 

proteins such as Pael-R and CDcrel-1 (Zhang et al., 2000; Imai et al., 2001) and to 

dysfunction of UPS and the death of dopaminergic neurons (Dong et al., 2003; Yang 

et al., 2003). 
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Moreover, the overexpression of mutated forms of parkin causes oxidative stress and 

cell death via proteasomal inhibition (Hyun et al., 2002).  

Like ubiquitin (see above) there are diverse views on the significance of supra-normal 

levels of parkin within neurons. Thus, overexpression of parkin has been associated 

with reduced ubiquitinated proteins levels (Hyun et al., 2002), parkin may be playing 

a protective role against apoptotic cell death by delaying mitochondrial swelling and 

reducing Cytochrome C release (Darios et al., 2003; Feany and Pallanck, 2003; 

Greene et al., 2003), parkin may mitigate α-synuclein-induced neuronal cell death 

(Yamada et al., 2005) and may have aggresome-like properties (Ardley et al., 2003). 

These proposal would suggest that over-expression of parkin (such as was found in 

my study) may have a protective role. 

 

(C) Alpha-synuclein 

In my study, staining with alpha-synuclein  was found in the neuropil of the SNC and 

striatum. This is to be expected, give that α-synuclein normally has a pre-synaptic 

distribution (Lee and Trojanowski, 2006) except in pathological conditions when it 

is found in the Lewy bodies (Spillantini et al., 1997) which neither occur in 

conventional rat models of PD (e.g. 6-OHDA)  (Betarbet et al., 2002; Shimohama et 

al., 2003; Melrose et al., 2006) nor in the AS/AGU mutant (see chapter 2 and above).  

Alpha-synuclein immunofluorescence levels were higher in the SNC neuropil of the 

AS/AGU mutants compared to the AS controls rats and levels progressively increase 

with age in the SNC of both strains. The neuropil of the SNC contains projections 

from several different regions such as GABAergic neurons from the striatum, globus 

pallidus and the adjacent SNR (Ribak et al., 1980; Smith and Bolam, 1989; Tepper 

et al., 1995), glutamatergic neurons from the prefrontal cortex, subthalamic nucleus 
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and the pedunculopontine tegmental nucleus (which also provides cholinergic 

projections) (Flaherty and Graybiel, 1994; Naito and Kita, 1994; Reese et al., 

1995; Smith et al., 1996; Bezard and Gross, 1998; Blandini et al., 2000) and 

serotonergic neurons from the dorsal raphe nucleus (Flaherty and Graybiel, 1994; 

Blandini et al., 2000).  

There is little doubt that the SNC and its projections are particularly affected in 

Parkinson’s disease (Bernheimer et al., 1973; Spillantini et al., 1997; 

Hornykiewicz, 1998; Sian et al., 1999) and in the AS/AGU mutant rat (Clarke and 

Payne, 1994; Campbell et al., 1997; 1998). 

However, the link between α-synuclein, Lewy bodies and toxicity in rodents remains 

unclear. Transgenic mice that over-express α-synuclein show remarkably little 

neuropathology (Matsuoka et al., 2001). Although, Lewy bodies occur in rotenone-

treated mice, they do not seen to occur in rats, nor do they occur with other treatments 

designed to mimic PD (such as 6-OHDA) (Betarbet et al., 2002; Shimohama et al., 

2003; Melrose et al., 2006). The most parsimonious explanation is that α-synuclein 

levels are not high enough to lead to Lewy body formation, but another factors could 

be increasing levels of parkin which may prevent the accumulation of α-synuclein in 

dopaminergic cells in the SNC (Lo Bianco et al., 2004).  Recently, Periquet et al. 

(2007) have shown that some truncated forms of α-synuclein lead reliably to 

aggregate formation, whereas others do not. In the case of the AS/AGU rat, 

fluorescence readings show that α-synuclein is not present in the cell bodies in 

detectable amounts, so no inclusions would be expected. 

As alpha-synuclein is not present in cell bodies but in the neuropil of the SNC (with 

AS/AGU rats having higher levels), there are many possible explanations: 
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a) alpha-synuclein is present in glial cells and is seen in the form of glial 

cytoplasmic inclusions in PD (Arai et al., 1999; Piao et al., 2000; 2001; 

Hishikawa et al., 2001; Takahashi and Wakabayashi, 2001; Mori et al., 

2002) and MSA (Braak and Braak, 1999; Burn and Jaros, 2001; Wenning 

and Jellinger, 2005). 

b) Alpha-synuclein is present in dendrites or axons or blood vessels. 

c) Alpha-synuclein is present in the terminals as it is a pre-synaptic protein 

(Withers et al., 1997; Lee and Trojanowski, 2006). High levels of alpha-

synuclein in the terminals leads to:  

i. toxicity (Conway et al., 2000 a,b; Hegde and Jagannatha Rao, 

2003; Yamada et al., 2004).  

ii.  Loss of the physiological function of alpha-synuclein (Rajagopalan 

and Andersen, 2001). Both factors may affect the ability of terminals 

to carry out their functions (such as the packaging and release of 

transmitters). 

 

 

(3). What are the possible mechanisms of death of SNC cells in PKC-

γ mutant rats?  
 

This question is discussed because, although my experiments did not examine cell 

death, they did examine:  

a) Cell structure which may give insight into degenerative morphology. 

b) Molecules associated with pathological change. 

 

The progressive loss of dopaminergic nigrostriatal neurons in the SNC is a major 

pathological feature of Parkinson’s disease. One of the degenerative mechanisms that 
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occurs in human SNC cells is apoptosis (Mochizuki et al., 1996; Anglade et al., 

1997; Tompkins et al., 1997; Tatton, 2000). A similar mechanism also occurs in 

laboratory animal models such as treatment with MPTP (Tatton and Kish, 1997; 

Spooren et al., 1998; Serra et al., 2002), 6-OHDA (He et al., 2000; Marti et al., 

2002) or rotenone and MPP
+ 

 (Lim et al., 2007). 

The dopaminergic cells of the SNC number approximately 450,000 (Lang and 

Lozano, 1998a). The process of apoptosis in general takes a few hours to a day 

(Barret and Preston, 1994) and post-mortem studies on the SNC of PD patients 

suggest a timing of 8 hours (Anglade et al., 1997). Whilst it is highly likely  to find 

numerous apoptotic cells in the immediate aftermath of a neurotoxic treatment 

(MPTP, 6-OHDA), it is highly unlikely that significant numbers of such cells will be 

found in a naturally-occurring model of cell loss. However, it is possible to use 

stereological techniques to identify differences in ultrastructure between the 

dopaminergic cell bodies of mutant AS/AGU rats and the parent AS strain which may 

suggest decreased viability.  Regarding cell organelles, the volume fraction of 

mitochondria and rough endoplasmic reticulum of the SNC cells is higher in the 

AS/AGU mutants rats. There are many possible reasons for this observation:  

a) The number of mitochondria and RER increase in AS/AGU or decrease in AS 

rats. 

b)  The number and size of mitochondria and RER stay the same, but the cell or 

its cytoplasm shrinks in AS/AGU rats or swells in AS rats.  

c)  The number of mitochondria and RER stay the same, but the organelles 

change their size.  

Several studies indicate that the mitochondria and rough endoplasmic reticulum are  

affected in the SNC in neurodegenerative situations:  
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i. endoplasmic reticulum stress occurs due to the accumulation of mis-

folded proteins that interferes with protein degradation (Friedlander 

et al., 2000), and occurs after treatment with MPTP, 6-OHDA and 

rotenone (Ryu et al., 2002). It is known that endoplasmic reticulum 

stress may, in turn, affect different components of mitochondrial 

Cytochrome C oxidase leading to mitochondrial dysfunction (Hori et 

al., 2002),  

ii. mitochondrial dysfunction is an indication of apoptosis and leads to 

cell death (Deckwerth and Johnson, 1993; Vayssiere et al., 1994; 

Petit et al., 1995; Zamzami et al., 1995 a,b; Liu et al., 1996; 

Schinder et al., 1996; Susin et al., 1996; White and Reynold, 1996; 

Ellerby et al., 1997), and future studies could profitably examine 

mitochondrial activity, for example, how oxidative stress due to 

dopamine, plays an important role in sporadic PD (Mouradian, 2002) 

by causing a degenerative cascade  in which increasing ROS 

production and an increase in mis-folded proteins leads to  impairment 

of the ubiquitin-proteasome system, endoplasmic reticulum stress, 

mitochondrial dysfunction  and cell death (Parker et al., 1989; 

Schapira et al., 1990 a,b; Shoffiner et al., 1991; Mann et al., 1992; 

Martin et al., 1996; Sheehan et al., 1997; Bence et al., 2001; 

Nishtoh et al., 2002).  

iii. Furthermore, loss of parkin (which is an ubiquitin ligase) (Shimura et 

al., 2000)) leads to accumulation of parkin substrate in the 

endoplasmic reticulum, endoplasmic reticulum stress and cell death 

(Imai et al., 2001).  
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iv. Other effects of dopamine and its metabolites lead to the loss of 

oxidative phosphorylation function and mitochondrial swelling that 

allow the opening of the mitochondrial transition pore (MTP) (Cohen 

et al., 1997; Kim et al., 1999; Berman and Hastings, 1999).  

AS/AGU rats have smaller neurons and less volume than AS (control) rats within the 

SNC (see chapter 3) which may indicate cell shrinkage. One example of cytoplasmic 

shrinkage, together with cell membrane budding and chromatin condensation at the 

nuclear membrane is shown in figure 3.7 (page 151). All these features may be 

morphological characteristics of apoptosis (Anglade et al., 1997; Jellinger, 2001). 

No signs of necrosis were found in AS/AGU rats. 

 

(4)- How can a mutation in PKC-γ lead to a pathological dysfunction 

of dopaminergic and serotonergic systems? 
 

The PKC family is thought to be involved in widely diverse functions including 

modulation of ion channels (Baraban et al., 1985; Madison et al., 1986; Shearman 

et al., 1989), the desensitization of receptors (Huganir and Greenyard, 1990), 

modification of neuronal plasticity (Routtenberg, 1985; Akers et al., 1986), the 

enhancement of neurotransmitter release (Malenka et al., 1986; 1987), vesicle 

packaging and release (Tanaka and Nishizuka, 1994; Stevens and Sullivan, 1998) 

and cell surface signal transduction (for review see Nishizuka, 1984 a,b; 1986). 

The mutation in PKC-γ in the AS/AGU rat must underlie dysfunction of both 

dopaminergic  and serotonergic systems, although it is unclear whether the mutation 

directly underlies dysfunction of both systems or whether one system is primarily 

affected and the other secondarily. 

Dopamine levels in the striatum are reduced in AS/AGU (mutant) compared to AS 

(control) rats as measured by micropunches and by  microdialysis (Campbell et al., 
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1996; 1997; 1998). The reduction of  extracellular dopamine (as measured using 

microdialysis) is greater than the reduction in whole tissue dopamine levels (as 

measured by micropunch) suggesting that the main impairment is in the release rather 

than in synthesis and/or storage, a suggestion which is supported by pharmacological 

interventions (Campbell et al., 2000).  In addition, dopamine metabolites are greatly 

increased in the AS/AGU (mutant) rats (Campbell et al., 1998; 2000). One 

possibility is that dopamine may be free within the cytoplasm of the nerve terminal 

where it can be metabolized by mitochondrial enzymes such as monoamine oxidase. 

This is a strong possibility given (a) normal-or increased-TH activity for synthesising 

DA (b) greatly reduced numbers of vesicles in identified DA terminals in the striatum. 

Free dopamine can cause inhibition of the dopamine transporter system (Berman et 

al., 1996) as well as being cytotoxic through the formation of dopa-quinone 

(Graham, 1978; Hastings et al., 1996; Stokes et al., 1999) or reactive oxygen 

species (Cohen et al., 1997).   Like dopamine, serotonin levels are reduced in several 

areas of the striatum as well as in the dorsal raphe nuclei. Extracellular levels in the 

striatum (as measured by microdialysis) are especially reduced, and there is also a 

reduction in serotonin neuron numbers in the DRN by age 12 months while the MRN 

is unaffected (Al-Fayez et al., 2005). The level of 5-HT metabolites are also elevated 

in the striatum and midbrain of the AS/AGU (mutant) rats (Al-Fayez et al., 2005). If 

this means that, like DA, 5-HT is free in the cytoplasm, it may also be toxic since it  

can be metabolized to toxic dimmers and quinone-imines (Perez-Reyes and Mason, 

1981). Moreover, the aberrant oxidation of 5-HT is known to occur in conditions such 

as Alzheimer’s disease (Wong et al., 1993).   

The reduction in the number of TH+ve terminals and synaptic vesicles in the caudate-

putamen of AS/AGU mutant rats as seen in Experiment 3 may explain the reduction 
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in the levels of extracellular dopamine. This reduction is greater than the loss of 

dopaminergic cell bodies in the SNC (Payne et al., 2000) and suggests that the 

reduction in extracellular dopamine in the caudate-putamen of AS/AGU mutant rats 

may be due to the failure in dopamine packaging and release. We hypothesize that the 

mutation of PKC-γ interferes with this process, because the PKC family are involved 

in vesicles packaging and release (Tanaka and Nishizuka, 1994; Stevens and 

Sullivan, 1998).  

 

Does the AS/AGU rat continue to be a useful model that give insight 

into conditions such as Parkinson’s disease?  

 

The AS/AGU rat  has been suggested as model that gives insight into conditions such 

as Parkinson’s disease (Petzinger and Jankowec, 2003; 2005; Dev et al., 2003b; 

Huang et al., 2004). It is a spontaneous animal model with progressive movement 

disorder and dysfunction of aminergic transmitters release which, together with the 

parent AS control strain, provides a useful model to investigate the factors that lead to 

(or prevent) reductions in both dopaminergic and serotonergic function. Previous 

studies have shown that the agu mutation in the gene coding for PKCγ  affects both 

the dopaminergic and serotonergic nigro-striatal systems. The major effects (reduction 

in striatal transmitter release, elevation in metabolite levels and loss of cell numbers in 

the midbrain) are the same for both systems and mimic characteristics of PD 

(Bernheimer et al., 1973; Jellinger, 1990; 2005; Hornykiewicz, 1998; Mizuno, 

2005). In the present study, I show that, whilst the terminals are clearly dysfunctional, 

the cell bodies of DA and 5-HT neurons remain relatively normal at these ages, and 

may well be responsive to depleted DA and 5-HT release. This suggest that the cell 

bodies may be capable of being rescued by an appropriate therapeutic treatment – 
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unlike the situation with toxic treatments such as 6-OHDA or MPTP – which gives 

the AS/AGU rat a positive advantage.  Nevertheless, molecules associated with 

human Lewy bodies (ubiquitin, parkin and α-synuclein) are elevated in the mutant - 

even though  inclusion bodies do not occur. This confirms the similarity of the model 

to human PD, but may also give insight into the significance of raised levels.  The size 

of nigrostriatal dopaminergic neuron cell bodies are reduced in AS/AGU mutant rats.  

The number of TH+ve terminals and vesicles are reduced in AS/AGU mutant rats.  

This demonstrates that dysfunction can stem from a reduction in terminal numbers 

and/or terminal function – and not necessarily from a reduction in midbrain cell 

numbers. This is important because cell counts of nigral dopaminergic neurons can 

only be mode post mortem. It thus remains unclear what stage in the course of the 

Parkinson’s disease cell loss has occurred.     
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CONCLUSIONS 

Despite being unable to release dopamine and serotonin at striatal terminals  

(Campbell et al., 1998) dopaminergic cell bodies in the SNC and serotonergic cell 

bodies in the DRN of  the AS/AGU mutant did not show reduced TH or 5-HT 

activity. Rather, they exhibited enhanced TH and 5-HT activity compared to AS 

controls, suggesting that they were operating a feedback control mechanism.  Whilst 

there was variation in TH  and serotonin activity from cell to cell, this was no greater 

in AS/AGU mutants than in AS controls.   

Lewy body proteins, ubiquitin and parkin, are elevated in the cell bodies of the SNC 

and raphe nuclei of AS/AGU rats and increase with age within the SNC area of both 

AS and AS/AGU rats. Control areas (such as oculomotor and pontine nuclei) are 

unaffected. Alpha-synuclein does not occur in the cell bodies of the midbrain nuclei, 

but in the surrounding extracellular tissue. It is elevated in the neuropil of the SNC of 

AS/AGU rats but other areas are unaffected.   

AS/AGU (mutant) rats have smaller SNC neurons than AS (control) rats and their 

volume was decreased.  However, within that overall decreased size, no obvious 

ultrastructural morphological differences were seen between the two strains. 

Both the number of TH+ve terminals and the number of vesicles within them were 

decreased within the dorsal caudate-putamen of AS/AGU mutant rats aged 3 and 12 

months compared to AS controls. In 12 month AS/AGU mutant rats, there are also 

reductions in the number of non-dopaminergic terminals but there is no evidence of a 

reduction at 3 months. There is no evidence that the region closest to the synaptic cleft 

is devoid of vesicles.  

The AS/AGU rat provides a useful spontaneous experimental model for studying 

factors leading to the reduction in dopaminergic and serotonergic function, and for 
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testing the capability of cell bodies of being rescued by appropriate therapeutic 

treatments. The elevation in levels of Lewy body-associated molecules (ubiquitin, 

parkin and alpha-synuclein), even without Lewy bodies being present, confirm the 

similarity of the model to human PD. 
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APPENDICES 

 

Appendix1 
 

 

Preparing paraformaldehyde fixative: 

To prepare 1000 ml of 4% paraformaldehyde in 0.1 M phosphate buffer (PB): 

1) Heat 500 ml of distilled water in a conical flask until water temperature 

reaches 70º C. 

2) Weigh 40 mg of paraformaldehyde then add to the flask. 

3) Add concentrated 1% sodium hydroxide solution drop by drop until all is 

dissolved. 

4) Add 500 ml of 0.2 M PB to make 1000 ml. 

5) Filter the solution. 

 

Preparing glutaraldehyde fixative: 

To prepare 1000 ml of 3% glutaraldehyde in 0.1 M phosphate buffer (PB): 

1) Add 1000 ml distilled water to a conical flask. 

2) Measure and add 120 ml of 25% glutaraldehyde to the flask. 

3) Filter the solution. 
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Preparing a mixture of 1%glutaraldehyde and 4% 

paraformaldehyde fixative: 
 

To prepare 1000 ml of mixture of 1% glutaraldehyde and 4% paraformaldehyde 

1) Prepare  4% paraformaldehyde using the same procedures as above. 

2) Add to it  40 ml of 25% glutaraldehyde.  

 

Preparing mammalian  ringer : 

Add the following substances to 1000 ml distilled water: 

1) Sodium Chloride                                  9g. 

2) Potassium Chloride                              0.4 g 

3) Calcium Chloride                                 0.25g 

4) Magnesium Chloride                           0.005g 

5) Sodium Hydrogen Carbonate              0.5g 

6) Sodium Dihydrogen Phosphate           0.05g 

7) D-glucose                                             1g 
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Appendix 2 
 

Histokinette automatic tissue processor and Wax embedding 

1) Remove the specimens from the fixative. 

2) Rinse the specimens with 0.1 M PB. 

3) Label and place the specimens into a Histokinette basket. 

4) The sequence for the Histokinette is as follows: 

I. 70% ethanol                       (1x2 hours) 

II. 90% ethanol                       (1x2 hours) 

III. Absolute alcohol                (3x2 hours) 

IV. Amyl acetate                      (3x2 hours) 

V. Wax bath                            (2x4 hours) 

5) Place the specimens into a vacuum embedder for 20 minutes to get rid of air 

that may be present and allow further penetration of wax within the specimens. 

6) Leave to cool for 30 min before sectioning at 7 µm with microtome. 
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Appendix 3 

(A) Staining 

 Toluidine blue Staining 

1) Place slides in histoclear for 10 minutes. 

2) Hydration  

First Absolute Alcohol              1 min 

Second Absolute Alcohol          1 min 

90% Alcohol                              1 min 

70% Alcohol                              2 min 

3) Wash in water. 

4) Place slides in 1% aqueous toluidine blue for 30 seconds. 

5) Wash in water. 

6) Dehydration  

70% Alcohol                             1 min 

90% Alcohol                             1 min 

First Absolute Alcohol              1 min 

Second Absolute Alcohol          2 min 

7) Place in Histoclear for 10 minutes. 

8) Mount in Histomount. 
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Appendix 3 

 

(B) Immunocytochemistry on wax sections 

1) Cut and mount the sections on slides coated with APES. 

2) Place the slides into a 37º C oven overnight. 

3) Place the slides into a 56º C oven for 2 hours. 

4) Boil 1600 ml of 0.01 M sodium citrate buffer (pH 6.0) in a stainless steel 

pressure cooker. 

5) Position the slides onto metal staining racks and lower into the pressure 

cooker, ensuring the slides are totally immersed in citrate buffer solution, and 

close the lid. 

6) When the pressure cooker reaches its operating temperature (120º C) and 

pressure (103 kPa/ 15 PSI) (after about 4 minutes) start a timer for 1 minute. 

7) Remove the pressure cooker from the heat source and run cold water until the 

pressure decreases. 

8) Place the slides into distilled water. 

9) Place the slides into PBS (1x5 min). 

10)  Place the sections into 1.5% H2O2 for 10 minutes. 

11)  Rinse the sections in distilled water (2x5 min), followed by PBS (2x5 min). 

12)  Circle the individual sections with a wax pen, cover sections with blocking 

serum for 60 minutes and incubate overnight in primary antibody diluted in 

blocking serum. 

13)  Rinse the sections in PBS (3x5 min). 



                                                                                                                       Appendices 

 

289 

14)  Incubate the sections in biotinylated secondary antibody for 60 mins. (For a  

fluorescent secondary antibody the sections were incubated for 24 hours, then 

rinsed in distilled water (3x5 mins). Proceed to step 21). 

15)  Rinse the sections in PBS (3x5 min). 

16)  Incubate the sections in ABC complex for 60 mins 

17)  Rinse the sections in PBS (3x5 mins). 

18)  Rinse the sections in 0.1M PB (1x5 mins). 

19)  Incubate in DAB solution for 2-5 mins. 

20)  Rinse the sections in 0.01M PB (2x5 mins). 

21)  Dehydrate, clear and mount. 
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Appendix 4 

Solutions 

1) 0.01M Sodium Citrate buffer (pH 6.0) 

Add 3.84g of Citric acid (anhydrous) to 1.8 L of distilled water. Adjust to pH 6.0 

using concentrated NaOH. Add 200 ml to make up 2 L. 

 

2) 0.01 M Phosphate Buffered Saline (PBS) 

Add 36g NaCl to 200 ml Phosphate buffer and  add 1800 ml distilled water. 

 

3) Phosphate buffer (PB) 

(A) To make 0.2 M PB, Add 17.47g Sodium Dihydrogen Phosphate and 40.75g di-

Sodium hydrogen Phosphate to two litres of distilled water. 

(B) To make 0.1 M PB, add one litre of distilled water to one litre of 0.2 phosphate 

buffer. 

 

4) Blocking serum 

Add 10µl of 1% normal goat serum ( NGS ) to 990 µl of 0.3% Triton in PBS. 

 

5) 0.3%Triton X-100 in PBS 

Add 30µl Triton to 10 ml of PBS. 

 

6) Primary antibody in antiserum diluent 

1:500        Add 1µl of primary antibody to 0.5 ml blocking serum. 

1:1000      Add 1µl of primary antibody to 1ml blocking serum. 
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7) Biotinylated secondary antibody 

Add 5µl secondary antibody to 1ml blocking serum. 

 

8) Fluorescent secondary antibody 

Add 1µl secondary antibody to 0.1 ml PBS. 

 

9) ABC Reagent 

Add 20µl reagent A and 20µl reagent B to 1ml PBS. Mix well immediately and allow 

to  stand for at least 30 minutes. 

 

10) DAB Solution 

1) Add 2 drops of Buffer Stock Solution to 0.5 ml of distilled water. Mix well. 

2) Add 4 drops of DAB Stock Solution. Mix well. 

3) Add 2 drops of Hydrogen Peroxide Solution. Mix well. 

4) Add 2 drops of the Nickel Solution (to achieve a gray-black staining). Mix well.  
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Appendix 5 

Fluorescence quantification  using Leitz Laborlux S Fluorescence 

microscope (Figure 2) 
 

1) Focus the square on specimen with UV light on. 

2) Press A, adjust display reading to zero with knob JO. 

3) Press I and record value from display.( Note, all values read negative). 

4) Press A once. This resets display. 

5) Press A again, zero should appear in the display. 

6) Focus the square again (Remember to take background readings). 

7) Press I and record new value. 

8) Repeat procedure. 

 

Points to note 

1) If more sensitivity is required turn from 

                                                                   x1 to x10  

                                                                        or 

                                                                  x10 to x100 

2) If increased sensitivity is used either (x10 or x100 which is very 

sensitive) than remember that the background reading will also be 

higher. Take new background reading. 

3) If values are higher than 100 a blank reading shows in the display. 

It is then necessary to decrease sensitivity. 
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Appendix 6 

Processing tissue for Transmission electron microscopy 
1) Rinse in 0.1 phosphate buffer    (3x5 mins). 

2) Osmicate with 1% osmium tetroxide in agitator 20 mins . 

3) Rinse in a distilled water (3x30 mins). 

4) Dehydrate: 

70% Acetone 15 mins 

90% Acetone 15 mins 

100% Acetone (4x15 mins) 

5) Mixture of 75% Acetone and 25% Durcupan 2 hours. 

6) Mixture of 50% Acetone and 50% Durcupan 2 hours. 

7) Mixture of 25% Acetone and 75% Durcupan 2 hours. 

8) 100% Durcupan overnight. 

9) 100% Durcupan 3 hours. 

10)  Embed in durcupan and leave overnight in oven at 70
o
C. 

11)  Stick embedded tissue onto the end of blank embedding block and leave in 

oven at 70
o
C for at least 30 mins. 

Durcupan resin 

                       
   1)   Add 10g of Durcupan (Durcupan, ACM Fluka, 44611, Netherlands). 

2) Add 10g of DDSA (dodecenyl succinic anhydride, R1052, Agar Scientific 

LTD, UK). 

3) Add 0.3g of DMP-30 (2,4,6-Tri-dimethylaminomethyl phenol, R1065, Agar 

Scientific LTD, UK). 

4) Add 0.3g of Bibutyl Pthalate (R1071, Agar Scientific LTD, UK). 

5) Mixed and leave for at least 30 min in oven. 
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Appendix 7 

Pre-embedding immunocytochemistry 

1) Incubate the sections in blocking solution for 30 minutes. 

2) Rinse the sections in washing buffer for 5 min. 

3) Incubate the sections overnight in primary antibody  in incubation buffer. 

4) Rinse the sections in washing buffer (3x10 min).  

5) Incubate the sections in 1nm goat anti-mouse immunogold (1/50) in incubation    

    buffer for 4 hours.                    

6) Rinse the sections in washing buffer (3x15 min) and in PBS (3x5 min). 

7) Postfix the sections with 2% glutaraldehyde in PBS for 10 min. 

8) Rinse the sections in distilled water (2x5 min). 

9) Prepare the silver enhancement solution by mixing equal parts of Enhancer and                

    Initiator of the IntenSE M kit just before use. Apply at least 4 drops of silver  

    enhancement mixture on the sections for 10-15 min. 

10) Rinse the sections in distilled water (3x5 min). 

11) Dehydrate in acetone and embed in Durcupan. 

Solutions 

Blocking solution  

0.8 % Bovine Serum Albumin (BSA), 0.1% gelatin IGSS, 5% normal goat serum 

(NGS) and 2mM NaN3 in PBS (pH 7.4). 

Washing buffer 

0.8 % BSA , 0.1% gelatin IGSS and 2mM NaN3 in PBS (pH 7.4). 

Incubation buffer 

0.8 % BSA , 0.1% gelatin IGSS, 1% NGS and 2mM NaN3 in PBS (pH 7.4). 
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Appendix 8 

The primary antibodies used in immunocytochemistry 

 

Molecules 

 

 

Primary antibody 

 

Types 

 

Concentration 

 

Manufacturer 

 

α-synuclein (ASN) 

 

 

Rabbit anti-ASN 

 

Polyclonal 
 

1: 100 

* Kind gift from 

Dr.Poul Henning 

 

Parkin 

 

 

Rabbit anti-parkin 

 

Polyclonal 
 

       1: 100 

* Kind gift from 

Dr.Poul Henning 

 

Serotonin (5HT) 

 

 

Rabbit anti-5HT 

 

Polyclonal 
 

1: 500 

AFFINITI, 

UK 

 

Tyrosine hydroxylase 

(TH) 

 

Mouse anti-TH 

 

Monoclonal 
 

1:500 

Chemicon 

Europe Ltd 

 

Ubiquitin (Ub) 

 

 

Rabbit anti-Ub 

 

Polyclonal 
 

1:500 

 

DAKO Ltd 

* Dr.Poul Henning. Institute of Medical Biochemistry, University of Aarhus, Denmark. 

The secondary antibodies used in immunocytochemistry 
(A) Fluorescence 
 

Secondary antibody 

 

 

Concentration 

 

Fluorescence 

 

Manufacturer 

 

Anti-mouse 

 

 

1: 100 

 

Fluorescein (green) 

 

Jackson 

ImmunoResearch 

 

Anti-mouse 

 

 

1: 100 

 

Rhodamine (Red) 

 

Jackson 

ImmunoResearch 

 

Anti-rabbit 

 

 

1: 100 

 

Fluorescein (green) 

 

Jackson 

ImmunoResearch 

 

Anti-rabbit 

 

 

1: 100 

 

Rhodamine (Red) 

 

Jackson 

ImmunoResearch 

(b) Biotinylated 
Secondary antibody 

 
Concentration Manufacturer 

 

Anti-mouse 

 

 

1: 200 

 

Vector Laboratories 

 

Anti-rabbit 

 

 

1: 200 

 

Jackson ImmunoResearch 

 


