
 
 
 
 
 
 
Yin, Jin (2005) Evolving game theory based decision making systems for 
NETA power market modelling, analysis and trading strategy 
development. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/1514/
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/1514/


EVOLVING GAME THEORY BASED DECISION 

MAKING SYSTEMS FOR NETA POWER MARKET 

MODELLING, ANALYSIS, AND TRADING STRATEGY 

DEVELOPMENT 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND ELECTRICAL ENGINEERING 

IN THE FACULTY OF ENGINEERING 

AT THE UNIVERSITY OF GLASGOW 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

By 

Jin Yin 

November 2005 

(OCopyright 2005 by Jin Yin 

All Rights Reserved 



Abstract 

The collapse of the Californian electricity trading system in 2001 and other power 

markets crisis since then have motivated accelerated research in electricity trading 

strategies and intelligent systems for electricity power markets. The market system 

of the UK is physically and economically similar to that of California. Power 

generation companies in the UK are making efforts to develop gaming strategies in 

their trading systems. Although the electricity trading system in the UK is a 

deregulated market with the longest history in global energy industry and has become 

the benchmark of worldwide electricity markets, there are few research results 

published for analyzing such a trading system involving human intelligence. More 

crucially, the market power and market manipulation remain unaddressed by either 

industry or academia so far. Further, current research on modelling market player 

strategies and behaviours are mostly based on noncooperative assumptions rather than 

on competitive and also cooperative game theories, which are commonly practiced 

and cause real problems through market power involving electricity suppliers and 

customers. 

In this thesis, current work carried out on analyzing the strategic behaviours in 

electricity trading is first reviewed. An intelligent decision-making and support 

technique, game theory, is often used in the market practice. Game theory is a 
discipline concerned with how individuals make decisions when they are partly aware 

of what their action might affect each other and when each individual might take this 

into account. Deficiencies and limitations of traditional game theory based methods 
developed for decision-making in electricity trading are also investigated. This 

research then explores to discover the impact of intelligent systems based trading 

strategies in the UK power markets. To model these behaviours and the New 

Electricity Trading Arrangements (NETA) system of the UK, traditional competitive 

and cooperative game theory strategies are taken into account in the work reported in 

this thesis. An improved methodology, "trigger price strategy", is introduced to 

simulate power generation companies' enhanced gaming strategies. Such a modelling 

problem is, however, intractable and hence an extra-numerical search technique, 

Evolutionary Computation, is employed to solve the game theory based system 

modelling problem. An encoded Genetic Algorithm based technique is developed to 
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search for an effective model for the complex decision-making process and to help 

decision-makers evaluate their strategies and bidding parameters. 

A novel and effective electricity trading simulation model is thus developed, where its 

design features are close to the NETA. The model scale is as close as possible to 

NETA. A complex and more realistic two-sided transaction mechanism with demand 

fully incorporated is incorporated in this model. These are a world first in this 

research area. 

Using the intelligent systems methods and the model developed, market states and 

consequences of which some generators maintain strategic gaming behaviours are 

analysed for prediction and decision making. Experimental tests, verification and 

validation are carried out with various strategies, using different model scales and data 

published by NETA. Testing and validation show that the modeling and decision 

making methodologies based on the hybrid game theory and evolutionary algorithm 

provide an effective tool for analysis and prediction under such a circumstances on the 

NETA. 
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Chapter I Introduction 

1 Introduction 

1.1 Problems Facing Power Markets 

I 

Since the 1980's, much effort has been made to restructure the traditional 

monopolistic electricity industries. Whilst the details differ, the core of this reform 

involves the introduction of competition among electricity generators and suppliers' 

through the creation of an open electricity market. Ideally, the market structure and 

management rules in an electricity market are expected to be well designed and it is 

generally believed that opening the power industry to competition would benefit 

trading participants and improve economic efficiency. However, the energy crisis in 

California in the Winter of 2001 and problems in other power markets cross the world 

have motivated research interests into more understanding of the market. 

Before the crisis, the California power systems had been considered a benchmark 

example to which others made reference, and world-wide developments towards 

similar competitive electricity markets were in process. However, during the shocking 

market collapse in California some of the major Californian power generation 

companies successfully manipulated the market to obtain skyrocket profits [1], the 

perceptions of the California market has now completely changed. With the truth of 

the market power applied to this crisis being exposed [2], the "made-up2 shortage of 

installed capacity or plant availability appears to have been a key driver to the 

California difficulties. The emergence of market power and collusion among energy 

1 The word 'suppliers' here is used in the sense of retailing electricity to end consumers, which is the 

convention within the UK industry, as opposed to the physical production of electricity (which is the 

meaning of the term in many other markets). 
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companies have been drawing more attention on strategic gaming behaviour and 

market system on global electricity trading. 

Would an energy crisis develop in the UK electricity markets? Would British power 

generators attempt to carry out market distortions and "price tricks" exploited by 

Californian generators? What consequence would it have under such circumstances9 

These questions should be answered through analysis and modelling of the British 

electricity trading system. 

1.2 Gaming Strategies and Market Power on NETA 

In March 2001 the New Electricity Trading Arrangements (NETA) were implemented 

to operate power markets in England and Wales [3]. The trading management 

mechanisms are still on trial operation and being improved. 

The NETA trading systems do not however alter the fact that, there exist loopholes 

which can be exploited and scope which is left for market power and gaming trading 

strategies to disrupt trading operations and/or distorts market prices in NETA. 

1.3 Aims of This Research 
This aims of this research are to model the dynamic and decision making behaviour of 

the UK electricity trading system under and to discover the impact of gamin trading 

strategies on the NETA. Since gaming strategies are widely practiced in trading 

systems for decision-making and decision support, game theory will be used to model 

such systems. To achieve this goal, Evolutionary Computing, whose search power is 

beyond pure numerical optimisation, will be used to assist the model building. With 

the model established, the research will then attempt to address the following 

objectives. 
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A market model where the number of trading participants is similar to the real 

scale of NETA and real data published by NETA will be established to simulate 

the market operation and trading programs. 

(2) The decision making process of how power generators attempt to employ market 

power and to maintain strategic gaming behaviours to maximize profits on NETA 

will be analyzed based on the designed model. 

(3) The market states and consequence of such actions developed above will then be 

analysed. The study will also search for possible market equilibrium and optimal 

trading strategies under such circumstances. 

(4) Since there are an amount of non-linear and uncertain variables existing on the 

decision support and optimisation process, Evolutionary Computing will be 

introduced to assist the search, learning and optimization problems. 

(5) Based on the research achievements, the formation of such a decision making 

system would also be able to provide an advanced platform for potential 

electricity trading participants to analyse generators and suppliers' behaviours and 

to gain experience of the trading enviromnent that they will face under NETA. 

1.4 Contributions 

*A novel electricity trading system model is developed to reflect the New 

Electricity Trading Arrangements that administers the power markets in England 

and Wales. The model scale is as close as possible to NETA and the model is 

validated against real data published by NETA. 
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eA more sophisticated and realistic two-sided transaction mechanism has been 

developed. The demand is fully incorporated in this new model; a fact that so far 

had not been achieved successfully in this research field. 

9A widely used intelligent decision-making support technique, game theory, has 

been successfully applied to develop the model. The model can take account of 

actions affecting each participant who may or may not apply traditional 

competitive and/or cooperative game theory strategies. An improved 

methodology, "trigger price strategy", is introduced to simulate power 

generation companies' gaming trading strategies. 

9 Evolutionary Computing, an intelligent search and global optimisation 

technique, has been applied to build game theory based models and to solve this 

type of decision-making problems which has been intractable. 

* The methodologies developed are world first in that they employ game theory to 

model the NETA trading players' behaviours and then employ Genetic 

Algorithms to search for the game theory model parameters and market 

equilibrium forecasts; and hence optimal trading strategies. This should help 

decision-makers evaluate and optimize their strategies and bidding parameters. 

1.5 Outline of The Thesis 

Chapter 2. The market structure of NETA and current trading strategies adopted in 

power market are studied. Chapter 2 begins with preliminary information of the 

NETA trading systems, which covers its basic key building blocks, trading 

mechanism, and sequential markets. This is followed by the start-of-the-art analysis 

on the gaming strategies and market power existing in NETA and world-wide power 
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markets. Work carried out in the area of decision making on trading strategies in 

power market, over the past decade, is then reviewed. Evaluation and comparison are 

also presented in this chapter. 

Chapter 3. The trading strategies published in literatures are studied in Chapter 3. This 

Chapter is aim to provide the development trend and direction of the decision-making 

methodologies on trading strategies for power trading, since these results will have 

important practice implications. The deficiency and limitations of traditional 

analytical techniques applied to study trading strategies in power markets are also 

highlighted. 

Chapter 4. Chapter 4 demonstrates the trading strategy modelling of development of 

competition between power generation companies and supply companies through 

hybrid methods of Game Theory and Genetic Algorithms on NETA. A set of trading 

strategies, including gaming generation companies', competitive generation 

companies" and the suppliers', are developed to simulate the market behaviours of 

players from both of two sides of NETA market. A mix of cooperative and 

competitive gaming strategies are adopted, which has never been done in both 

industry and academia. It also attempts to discover the interaction between the market 

environment and the market player's payoff. 

Chapter 5. Based on the trading strategies developed in last Chapter, the NETA 

trading mechanism is simulated in this Chapter. The objective of this market 

modelling is to to simulate the dynamic and decision making behaviour of the UK 

electricity trading system, and to discover the impact of gaming trading strategies on 

the NETA. The model is based on real case of NETA and published documents. Its 

designed feature is as close to NETA as possible. 
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To exercise the model's veracity and efficiency and exercise the modelling's 

performance, the validation experiments are carried out against real NETA data. All 

experimental parameters are from actual published data. 

Chapter 6. Following modelling of the NETA market, the model is used to analyse 

the market behaviour of gaming strategies practiced in the power market and to find 

out possible influence on NETA. Both of cooperative and competitive strategies are 

adopted and examined in two experiments, which involveg various model scales 

including a small-scale market, similar to California power market, and a relatively 

large-scale market where the number of trading participants is similar to the real scale 

of NETA. The experimental results are compared and evaluated. Discussion is carried 

out to evaluate the performance the developed model and trading strategies in this 

marketplace., 

Chapter 7. In order to assess the performance of the proposed NETA market model 

and the evolving trading strategy, it is evaluated with a comparably similar simulation 

model, which adopts Genetic Algorithms coupled with various price forecasting 

techniques to select appropriate bidding strategies for the current market conditions. 

The major modelling results and market trading outputs are compared and discussed. 

The difference of these two models with the developed strategies are discovered. 

Chapter 8. The final Chapter presents the conclusions drawn form this research and 

recommends the possible directions for future work. 
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2. NETA Systems and Current Trading Strategies 

2.1 Introduction 

In this chapter, the market structure of NETA and current trading strategies adopted in 

power market are studied. The aim of this chapter is to provide a clear scheme of the 

NETA market structure and start-of-the-art analysis on the trend and direction of the 

developments. 

2.2 Structure of NETA Market System 

Prior to the introduction of NETA, from April 1990 until March 2001 the trading 

arrangements centered around the electricity Pool which was a traditional centralized 

mechanism for dispatching generating plant at the day-ahead stage to meet forecast 

demand, and operated on a marginal pricing basis with all generator dispatched in a 

particular half-hour being paid the same price. The Pool was criticized that the market 

was dominated by a small number of generators but the Pool facilitated the exercise of 

market power at the expense of customers by enabling all generators to receive a uniforrn 

price that, in practice, was set by just a few of them. 

In order to avoid the unsatisfactory respects of the Pool, the design of NETA was built 

upon a small number of key building blocks encompassing the need for [4]: 

oA two-sided market, with demand fully incorporated; 

0 Bilateral contracting rather than a centralized market as the heart of the 

arrangements, to put greater competitive pressure on generators and encourage 

innovation and customer responsiveness in suppliers; 
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* (Contractually) firm bids and offers, to enable costs and risks to be reduced and 

shared efficiently; 

9 Simple bids and offers, to improve transparency and encourage liquidity; and 

e Centralized real time physical balancing and financial settlement arrangements, to 

allow the system to be balanced and to target appropriately those balancing costs. 

The New Electricity Trading Arrangements are designed to be more efficient and provide 

greater choice for market participants whilst maintaining the operation of a secure and 

reliable electricity system. The proposals are based on bilateral trading between 

generators, suppliers, traders and customers, as shown in Figure 1. These bilateral 

contracts can be traded in [3]: 

* Forwards and futures markets (including short-tenn power exchanges), which 

evolve in response to the requirements of participants, that will allow contracts for 

electricity to be struck up to several years ahead; 

9 Short tenn power exchanges, where participants have the opportunity to "fine 

tune" their contract positions in a simple and accessible way; 

9A Balancing Mechanism in which NGC, as System Operator, accepts offers and 

bids for electricity to enable it to balance the system; and 

eA Settlement Process (for charging participants whose contracted positions do not 

match their metered volumes of electricity, for the settlement of accepted 



Chapter 2 NETA Systems and Current Trading Strategies 9 

Balancing Mechanism offers and bids, and for recovering the System Operator's 

costs of balancing the systern. 

Forward Markets One hour 1/2hour After the event 
II1 01 

Balancing Mechanism Real Time Trading Settlement 
bilateral contracts Period 

Gate 
Closure 

Figure 2.1: Trading stream on NETA 

The system operator and power exchanges are central to the functioning of NETA. The 

physical nature of electricity does not allow a true spot market (instant pricing and 

delivery) so financial transactions must be scheduled some time in advance of the 

physical delivery. Power exchanges thus substitute for a true spot market. A variety of 

financial relationships manifest themselves in electricity market trading. Bilateral 

contracts may be agreed between generators and suppliers, standardised contracts, futures 

and forwards, can be traded through power exchanges and half-hourly spot markets 

provide short-time adjustment of the contractual position of market players close with the 

time of physical delivery. 

As introduced earlier, the NETA market structures are based upon sequential markets, 

which are investigated as following [3] [5] and [64]. 

2.2.1 Forward and Futures Markets 

The Forward and Futures Markets evolve in response to the requirements of double-side 

participants. Essentially these are markets for buying and selling large volumes of 
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electricity in advance. Typical trades would be for an annual amount of electricity, or for 

electricity just for the coming winter or following summer, though they can be for some 

years ahead. They are termed bilateral physical trades, meaning that two parties (for 

example, a generator and a supplier) enter into a contract to deliver electricity at an 

agreed time in the future. These sorts of contracts are used both to manage price risk and 

speculate against future prices to avoid the risk of having to buy or sell at the last minute 

through the Balancing Mechanism where prices are very volatile. 

2.2.2 Power Exchange 

Power exchanges provide the forum for buying and selling power from a few hours ahead 

to many months ahead. There are a number of power exchanges in existence through 

which traders can enter bids and offers onto a System Operator, and these can be taken up 

by other traders with neither party being aware of the other's identity. 

A power exchange offers trading typically of relatively small quantities of electricity to 

enable to participants to fine tune their contract positions by buying or selling up to the 

last possible moment. Contracts, mostly for the very short-term (next day) can be made 

for specified amounts of electricity at specified times and are binding. 

The contract-matching process is performed by System Operator (SO) in UKPX's 

Clearing House. The single matching round proceeds as following [5]. In each iteration 

each market participant from two sides respectively submits a set of bids (offers) 

including prices - responding volumes, i. e., flI. 50/MWh - 11.23MW, E16.62/MWh - 

18.30MW, ... E68.42/MWh - 78.70MW, and so on, to the SO. All the offers are sorted 
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out by their prices in ascending order and all the bids are sorted out in descending order. 

Then the SO matches the prices as below. 

(I)The point of the lowest selling price is matched with the point of the highest buying 

price. If the buying price is higher than the selling, a contract is granted. Then for the 

seller the amount sold is subtracted from the amount available to sell and for the buyer 

the amount bought is subtracted from the amount available to buy. Once a buy and a 

sell order have been matched, the Clearing House becomes the counterparty to both 

the buyer and the seller who never become aware of each others identity. At all times 

the Clearing House has a flat position and it does not hold positions for itself 

(2)After that if the lowest selling point still has electricity available for sale, it is matched 

with the next buying point with second higher bid price. 

The above procedures I and 2 are repeated until the offer exhausts all its electricity 

available for sale on this specific point or run out of buyers available to buy his 

electricity. 

The next offer with second lowest selling price is picked and the above procedures 1 and 

2 are repeated. The procedure is demonstrated in Figure 2.1. Procedures 1,2 and 3 are 

repeated until all offers and bids are matched. 

Based on the trading process the PX mean market clearing price (MCP) is defined as: 

PXP =J(QSPX', - -, 
QSPXiy PSPX 1, 

- -, 
PSPXi; PBPX 1, 

- -, 
PBPX i, QBPXI, 

--, 
QBPý) (2.1) 
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where i is the number of generators, i=I, 2, .... n; j is the number of suppliers, j=19 21 

M'. QSPx ,. and Pspx' . are the quantity and price generator i wants to sell at PX, QBPý 

and PBpx' are the quantity and price supplierj wants to buy at PX. 

Ascending 
Selling Prices Buying Prices 

order 

16MW 
Lowest 1.10.20c/. NjW-16. OONINV 1.45.34CfNjW-68.53XIW 

17.4A 
2.10.48c/N1W-17.401VRV---- 

, z* 2.43.06 C/IvIW-70.0 4XIW 

3.11.04ie/. NIW-I, -q. 9Al[W, e'il. 94MW 3.38.10 C/XjW-67.29XfW 

Descending 
order 

Highest 

Highest Lowest 

60.57.94C/NIW, -78.32VFVV 90.8.12C/IVIW--9. S9-kTW 

Figure 2.2: Clearing Process on Power Exchange 

2.2.3 Balancing Mechanism 

The Balancing Mechanism (BM) is a near real time tool operated by NGC to ensure that 

the supply and demand of electricity exactly matches [ 17]. 

Each trading day is divided into 48 half hour periods. One hour before the start of each 

period trading is effectively 'frozen', this is known as 'gate closure'. Whatever the type 

of contract struck, for the NETA the 'last possible moment' will occur at the 'gate 

closure'. This one-hour interval is used to enable the NGC, as the System Operator (SO), 

to balance the system. In order to enable the NGC to do this, participants will be 

required to notify: 
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9 Their physical positions (either generation or demand) at gate closure; 

9 Their expected production in that period; 

9 Their forecast of customer demand; 

9 Any flexibility available to NGC (bids and offers) 

The NGC will then operate this 'Balancing Mechanism' (BM) by accepting offers of 

electricity (generation increases and demand reductions) and bids for electricity 

(generation reductions and demand increases) at very short notice. 

2.2.4 Settlement Process 

In the Settlement Process generators' metered generation and suppliers' metered demand 

are compared with the contractual position they notify as the Balancing Mechanism 

opens together with any accepted Balancing Mechanism trades. The sum total of 

contracts negotiated in forward and futures bilateral markets and short term PX is added 

together to arrive at these contract positions. Participants that act both as generators and 

suppliers will be exposed to separate production and consurnption imbalance charges for 

the two sides of their business. 

The difference between the amount of electricity bought and sold under contracts and the 

actual amount produced and consumed is calculated by the imbalance settlement system. 

Companies with a mismatch, who either need to buy 'top-up' energy to meet their 

customers demand, or 'spill' excess energy into the system, are subject to an energy 

imbalance price. 
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The price for buying more energy is known as the System Buy Price (SBP), and is a 

weighted average of accepted Offers and generally higher than the forward market price 

because it reflects the cost of extra generation at short notice. Conversely, the price for 

selling excess energy to the system the System Sell Price (SSP), is a weighted average of 

accepted Bids and generally lower than the forward price, reflecting the relatively low 

price that generators are prepared to bid to NGC to reduce output at short notice. 

If a generator is producing electricity and find at the last minute that it has generated 

more than it contracted customers demand, the generator will have to sell its excess 

production at a discounted price. This is the System Sell Price. 

However if it finds at the last minute that it has not generated enough electricity to meet 

customer demand, it will have to buy some more. Not surprisingly the genarator would 

need to pay a premium because it is buying at the last minute. In fact, with electricity it 

could pay 10,100 or even 1000 times as much as the normal price. This is the System 

Buy Price. 

The same goes for suppliers. If a supplier contracts or sells more electricity than they said 

they would (the demand forecast), they will have to pay a premium for the extra 

consumption (the System Buy Price). Similarly, if they contract less than the demand 

forecast, they will have some excess electricity to sell and may not be able to get a very 

good price for it (the System Sell Price). 

This is one of the main principles of trading electricity. If a market participant falls to 

achieve what it predicted then it is going to cost it to balance the system. The nsk of 
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having to buy and sell in this way through the Balancing Mechanism with its very 

volatile prices emphasises the importance of suppliers working closely with their 

customers to get the prediction of demand correct. 

The spread between the two prices is intended to provide a penalty for being out of 

balance: The SSP (SBP) is expected to be considerably lower (higher) than forward 

market price PXP [ 18 ]. 

SBP is calculated as [ 19]: 

x 
(QA aar * Paar * TLMar)+BCAr 

a SBPb 
x 

1: (QA aar * TLMar)+BVAr 
a 

where 
QAO'ar is the Unit a Total Accepted Offer Volume, 

Paar is the Offer Price for the Offer acceptance x, Unit a and 

Settlement Period r, 

TLMar is the Transmission Loss Multipliers, set as 1 in this model, 

BCAr is the Buy Price Cost Adjustment, 

B VA, is the Buy Price Volume Adjustment, 

SSP is calculated as [19]: 

x Y (QAByar * PBvar * TLMar) + SCA, 
Sspb ax 

II (QAByar *TLMab) + SVAr 

a 

where 

(2.2) 

(2.3) 

Q. 4Y', is the Unit a Total Accepted Bid Volume, 
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PBY,, is the Bid Price for the Bid acceptance y, Unit a and 

Settlement Period r. 
TLMaris The Transmission Loss Multipliers, 

SCAr is the Sell Price Cost Adjustment, 

SVAr is the Sell Price Volume Adjustment. 

2.3 Problems Existing in NETA Market 

In a perfect electricity market, any power supplier is a price taker. Microeconomic theory 

holds the optimal trading strategy for a supplier is simply to bid marginal cost. When a 

generator bids other than marginal cost, in an effort to exploit imperfections in the market 

to increase profits, this behaviour is called gaming strategic bidding. If the generator can 

successfully increase its profits by strategic behaviours or by any means other than 

lowering its costs, it is said to have market power. Theoretically the NETA is not 

perfectly competitive, and consequently the generation companies would be able to 

increase profits through gaming trading strategies, specially, through exercising market 

power on trading in NETA. 

Since competition mainly exists at the generation side on NETA, and the transmission 

and distribution systems remain regulated monopolies [20], the gaming problem in 

electricity markets is concerned mainly with power generators although demand side 

gaming is also gaining importance. 

Research of the relationship between generators spot market behaviours and their 

financial trading or hedging contract position on NETA market conclude that a generator 

in the physical spot market can directly exploit the rigidities of the electricity market to 
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exert a 'dramatic' influence over the physical balancing and financial settlements within 

NETA. In other words, in the very short term, the market is vulnerable to the exercise of 

market power by any physical participant whose flexibility (whether in supply or 

demand) is required, at a particular time, to achieve system balance and to avoid very 

costly supply failures. 

The 'rigidities' of the physical market for electricity, namely highly variable demand and 

order flows coupled with inelastic supply, also make the financial markets related to 

electricity vulnerable to potential indirect manipulation strategies being adopted. These 

strategies could potentially be used by players who have relatively small positions in 

physical markets. 

All these economic interactions between the physical and financial market, and the 

physical characteristic of only a limited number of generating companies to service a 

given geographic region described above, which conduct in one can affect trading in the 

other, make the NETA vulnerable to market power yet, in particular under a critical 

situation on NETA where the supply exceeds demand, and thereafter the price of 

electricity on the wholesale market has dropped 40% in the past six years. As a 

consequence, some major market players are being driven out from the industry [6]. It 

has been more realistic and practicable that generators tend to maximize profit in using 

gaming strategies to exploit the loopholes and scopes of NETA. 

There has been an amount of effort imposed on analysing the mechanism of gaming 

strategies and market power and their influences over the electricity trading market. game 
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theory is the most widely used methodology to model market players' strategies [7] [8] 

[9]. The performance of trading participants who attempt to make coalition in 

competitive market, particularly the bargaining process and negotiation protocols, are 

also studied by intelligent-agent systems [ 10] [II]. Some employ probability distribution 

to predict market players' behaviours [12]. 

Research for the practice of gaming trading strategies over the world-wide power market 

has demonstrated that, the direct exercise of market power by those who control 

deliverable supply can occur in various ways, such as through changes in the quality of 

the product supplied, or through artificial increases in price or restrictions in supply, as 

what happened in California. In addition, the potential may also exist for market power to 

be exercised indirectly, through gaming the relationship between the physical and 

financial markets. 

The indirect exercise of market power in this way seeks to exploit the relationship 

between the spot price for the physical electricity and the price of financial contracts over 

it. Given the relationship between the spot price and the prices of financial contracts, this 

may provide an opportunity for a firm to profit substantially in a tightly constrained 

market from movements in either the spot price of the electricity or from the increase in 

prices of financial contracts. The classic market 'squeeze' or 'comers' are two examples 

of market manipulation strategies, which could be introduced on NETA by trading 

participants. Occurrences of manipulation strategies such as comers and squeezes have 

been detected in power electricity markets as diverse as in worldwide [2 1 ]. 



Chapter 2 NETA Systems and Current Trading Strategies 19 

A market 'squeeze' occurs where an artificial scarcity in deliverable physical supply is 

created, which raises the price that those who have large contractual obligations to supply 

are forced to pay to close out of their contracted position in financial markets. Similarly, 

a 'long' comer occurs where a market participant, who typically has control over a 

significant amount of deliverable supply, commits other participants to large contractual 

positions to supply at a future date (through buying large numbers of long futures 

contracts for example) and then subsequently artificially restricts physical supply for 

which those who are contracted to supply are forced to pay to close out their position as 

the delivery date approaches. 

In the extreme, for example, consider a situation whereby a generator withdrew all of its 

available capacity from the NETA market, and the reduced level of available generation 

results in an upward movement in prices. If attention were confined to the physical 

market, such an action would clearly not be profitable, since the generator supplies no 

output. If, however, the generator contracts ahead of time to purchase claims to output, a 

profit will be obtained from any difference between the spot price (which is raised by 

capacity withdrawal) and the contract price. 

2.4 Review of Decision Making on Trading Strategies 

Current research has focused on designing optimal trading strategies in electricity market. 

Broadly speaking, there are three ways for developing optimal trading strategies on 

NETA. The first one relays on estimations of the MCP in the next trading period, the 

second utilizes estimations of bidding behaviour of the rival participants, and the third is 

game theory based. Besides, market simulation and empirical analysis methods are also 
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used for investigating gaming strategic behaviour [22], but these do not lead to systematic 

approaches for building gaming strategies. 

The first approach is simple in principle. Based on the estimation of the MCP, it is quite 

straightforward for a power supplier to determine its strategy by simply offering a price a 

little cheaper than the MCP. However, predicting electricity price in a pool requires 

analysis that combines demand forecasts with an understanding of participants' bidding 

and transmission congestion. Since there is very little historical data available in most 

electricity markets, it is difficult to achieve accurate predication because of the fast- 

moving reform of the electricity industry. Another problem with this method is an 

implicit assumption that the bid from one supplier will not influence the MCP. Since the 

electricity market is basically an oligopoly, this assumption is unlikely to hold for any 

reasonable length of time. This method has seldom been applied in developing bidding 

strategies in electricity markets. 

Most of the methods published so far are based on estimations of trading strategy on 

bidding of rival participants in which different techniques, such as probability analysis 

and fuzzy sets, are utilized for estimation. A description of publications under this group 

will be given in the next several sections according to their features. 

The third approach is the most sophisticated which is to apply some methods or 

techniques from the game theory. There are many publications available in the area of 

electricity markets that follow this. There are basically three methods in this catalogue. 



Chapter 2 NETA Systems and Current Trading Strategies 21 

The first method is the matrix game based [23] [24] where gaming bidding strategies 

have to be represented as discrete quantities such as "bidding high", "bidding medium" or 

"bidding low" to cater for the nature of this game. With discrete bidding strategies, 

payoff matrices are constructed by enumerating all possible combinations of strategies, 

and an equilibrium state of the bidding game that corresponds to the optimal bidding 

strategies for the participants can be obtained. However, in realistic situations, bidding 

strategies can be continuous and therefore it is not theoretically guaranteed that an 

equilibrium state does exist for an electricity market. While this method may be suitable 

for roughly analyzing the strategic behaviours of power suppliers, it is not appropriate as 

a tool for developing bidding strategies. 

The second method follows oligopoly games such as the Stackelberg model and supply 

function. Basically, these models are more appropriate for analysis of potential market 

power than constructing trading strategies, although in principle the equilibrium state of 

these models represents the optimal bidding strategies of the participants. This is because 

many simplification assumptions have been made in applying these models, and as a 

result, the equilibrium state may not make sense for building optimal trading strategies. 

Coalition gaming is the third and most sophisticated approach employed which is a fonn 

of cooperative gaming among the members in subgroups while non-cooperative gaming 

may still apply among the subgroups. Most coalition strategies studied, which some 

generators make an agreement including the allocation of production among the members 

and the policing of the agreement (sometimes and the allocation of organization profits), 

are based on methods and techniques from cooperative game theory techniques. Most of 
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coalition strategies on electricity markets are on a basis of cooperative game theory. In 

[14], a classical game theory, Cournot gaming strategy, is adopted to model a coalition 

among generators. In [I I], cooperative gaming is implemented to perforn-1 negotiation 

with potential collusion partners and then suggests market strategies that the generator 

can adopt. 

2.5 Summary 

The trading strategies currently used in power trading systems have been reviewed in this 

chapter. The approaches for building gaming strategies on different forms of markets 

models will systematically analysed in next chapter. And the advantages and drawbacks 

of current trading strategy research will also be addressed. 
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Current Research Review 

3.1 Introduction 

In this chapter, the trading strategies published in the literature are studied. Although 

these have been attempted by many in both academia and industry, the aim of this chapter 

is to provide a more comprehensive analysis on the trend and direction of the 

developments. 

The main aim of investigating these objectives is to identify methodologies for analyzing 

and modelling trading strategies, since these results will have important market 

implications. In recent years, some research has been done in building optimal trading 

strategies for competitive/cooperative generators and/or large consumers, and on 

investigating the associated market power in world wide electricity markets in which the 

gaming strategies are widely utilized. 

3.2 Developed Activity Rules and Market Model 

The development of gaming trading strategies on NETA is based on a mechanism in 

which the power generators, and sometimes large consumers also, are required to offer 

price and quantity bids to a market operator. The market operator then determines the 

winning bid and a market clearing price (MCP) using a simple merit order dispatch 

procedure. The current research in this field is focused on market model and activity 

rules, especially, auction rules and bidding protocols. 

An auction is an economically efficient mechanism to allocate demand to suppliers, and 

the formation of electricity markets in many countries is based on auctions. Bidding is an 
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issue connecting to the auction. 

24 

Many auction methods exist, and can be classified in many ways [25]. Two main 

categories differ according to whether the auction is static or dynamic. In static auctions, 

the bidders submit sealed bids, while in dynamic auctions bidders can observe the bids of 

others and revise their own sequentially. Static auctions can be classified according to 

discriminating or non-discriminating pricing. In the former bidders are paid their offered 

prices if they win. In non-discriminating auctions, all winning bidders are paid a uniform 

price, such as the first losing bid or the last winning bid. In cases of multiple sellers or 

multiple buyers, the non-discriminating pricing auction is usually employed to encourage 

the bidders to bid their marginal costs or benefits. 

Auctions can also be classified as "open" or "sealed-bid". Open auctions may be 

classified as English (ascending bid) or Dutch (descending bid). Scaled-bid auctions can 

be classified into "first price' and "second price' auctions, and both of them are usually 

referred to as non-discriminating auctions, the only difference is whether the uniform 

price is set according to the last winning bid or the first losing bid. An auction is called a 

double one when both the sellers and buyers are required to submit bids. 

To our knowledge, almost all operating electricity markets worldwide employ the sealed 

bid auction with uniform mar et price. 

Another important factor related to trading strategies is auction bidding protocols. 

Depending on different market designs, the energy bids may include several price 

components (multipart bid) or a single price component (single-part-bid). In either case, 
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the energy bid include several energy price segments depending on the amount of energy 

supply (e. g., a separate price for each block of energy from the same unit or a portfolio of 

units). 

P3 

P2 

Pl 

(MW) 

Figure 3.1: MultiPart bid curves of generators 

Various auction bidding protocols bring significantly different concerns while developing 

trading strategies. The research on design and performance of development trading 

strategies on different bidding models in electricity markets are discussed below. 

3.2.1 Strategies on Multipart Bidding 

A multipart bid, sometimes called a complex bid, may include separate prices for ramps, 

start-up costs, shut-down costs, no-load operation, and energy. This kind of bid can 

reflect the cost structure and technical constraints of generation units. The market 

clearing procedure must be based on an optimization algorithm that determines the 

winning bids and wholesale prices taking into account not only the bid prices, but also 

technical constraints and related economic information. 

This approach leads to a centralization of the unit commitment decisions at the market 

operator Is level and does not make market power involved: bidders are required to send 

Qmin Ql Q2 Qmax 



Chapter 3 Current Research Review 26 

all the relevant information and the market operator makes optimal decisions. This 

approach can guarantee the technical feasibility of the resulting schedule. 

The unit commitment problem is non-convex, and there does not exist a method that can 

guarantee to converge to the global optimal solution for large scale systems. This 

an roach has been widely because a local optimal solution may not produce equitable r-P 

dispatches for all participants. 

A well-known example of the multipart bid is the Pool of England-Wales electricity 

market, in which a combined bid of many items had been required for the next 48 half- 

hours before the NETA was introduced. 

The trading strategic problem for competitive power suppliers was addressed for the first 

time in [26]. A conceptual optimal bidding model and a dynamic programming based 

ap roach was developed for this market in which each supplier is required to bid a r, p 

constant price for each block of generation. System demand variations, unit conunitment 

costs, and commercial considerations such as profit or economic utility maximization and 

expectations of competitor behaviour were considered in the model. In [27], an analytical 

formulation for building the optimal gaming strategy in this type electricity market was 

developed under a very stringent assumption that the market clearing price is independent 

of the bid of any supplier, or in other word, the market is perfectly competitive. Under 

this assumption the MCP can be accurately known before the auction takes place. This 

assumption seems not reasonable for the electricity market, which is more akin to 

oligopoly than a perfectly competitive market. While this method contains elegant 
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theoretical development, it provides little insight into the formulation of the optimal 

bidding problem under nonperfect competitive conditions. 

3.2.2 Strategies on Single-Part Bidding 

In this scheme, generators' strategy is only based on independent prices for each hour, 

and a simple market clearing process based on the intersection of supply and demand bid 

curves is used to determine the winning bids and schedules for each hour. This approach 

is intrinsically decentralized: the market operator does not make unit commitment 

decisions. Hence, suppliers need to internalize all involved costs and physical constraints 

in preparing their bids since this bidding structure does not explicitly account for 

recovery of these costs. 

This approach does not guarantee feasibility. Therefore, whenever a generation unit 

presents significant technical constraints, this approach typically requires a mechanism to 

eventually introduce modification in the schedule, such as a short term balancing market, 

which is incentive for market participants to adopt strategic bidding. 

The single-part bid has been implemented in several electricity markets such as 

California, Australia and Norway/Sweden. A variation of the simple bid approach is 

employed in Spain, in which certain complex conditions were allowed for but were not 

used in the bid sorting itself Most of the publications discussed next aim at developing 

bidding strategies for this kind of markets. 

In [28], a simple suboptimal strategic bidding strategy was proposed for the situation 

when two buyers (utilities) are competing for a single block of energy, and the 
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competitor's cost function are modeled with probability density functions. This method 

cannot be extended to the general case with multiple suppliers and/or multiple buyers. In 

[29], a dynamic model of strategic bidding for the situation with three power suppliers 

was proposed by utilizing the historical and current market clearing prices. This model is 

heuristic in principle, and is not applicable to the general case with more than three 

suppliers. In [30], a linear supply function model was presented to investigate strategic 

bidding behaviour, and to illustrate some of the ways market power can be exercised. A 

similar linear supply function model was employed in [31] to build optimal trading 

strategies for competitive suppliers, and the rival suppliers' bidding behaviours are 

represented as discrete probability distributions. Moreover, a payment rule named 

4multiple-commodity second price auction' is compared with the popular uniform price 

rule, and it is shown by simulation results that the suppliers have a larger incentive to bid 

at marginal costs if the former rule rather than the latter one is utilized. In [12], the 

bidding problem over a planned horizon is represented as a multiple stage probabilistic 

decision-making problem, and a discrete-state and discrete-time type Markov Decision 

Process (MDP) was applied to calculate a supplier's bidding decisions, in which a 

competitor is modeled by its discrete bidding options associated with a corresponding 

probability. In [32], the authors argue that since the electricity market is relatively new 

and there is not sufficient data, it may not be realistic to calculate some probabilities such 

as the probability of rivals' bidding option and heuristic methods may be an alternative. 

A probabilistic/fuzzy heuristic inference system based on observable evidences and the 

subjective probabilities is then proposed as a tool for this purpose. In [33], a trading 

bidding strategy for suppliers in the uniform price clearing auction is developed by 
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estimating the probability of winning below and on the margin, and a simple bidding 

model is then obtained under some simplified assumptions. The result indicates that 

suppliers have incentive to mark up their bids above their costs. In [34], intelligent 

trading agents, such as genetic algorithm, genetic programming and finite state automata, 

are utilized for developing adaptive and evolutionary bidding strategies. 

Up to now, research work on strategic bidding has been concerned with one-period 

auctions, only little has been done on multiple-period auction [35] [36] [37]. In [35], this 

problem was described as a two-level optimization procedure. At the top level a 

centralized economic dispatch is employed to determine the market clearing price, the 

production and demand levels of all generators and consumers, and at the lower level a 

self-unit commitment based on a parametric dynamic programming with an embedded 

variable bidding parameter is used by each supplier to determine a profitable bid. An 

implicit assumption is that each supplier has complete information about rivals so that a 

centralized economic dispatch can be used to design the bidding strategy, and certainly 

this assumption is not reasonable. In [36], a Lagrangian relaxation based method is 

presented for daily bidding and self-scheduling decision from the viewpoint of a utility 

which can bid part of its energy to the market and self-schedule the rest, as is the case in 

New England. Bids are represented as quadratic functions of power supply levels, and the 

parameters in rivals' bids are assumed to be available as discrete distributions. In [37], a 

systematic approach is presented for developing bidding strategies for power suppliers 

participating in the California-type day-ahead energy market. In this market, a series of 

24 auctions are conducted simultaneously and separately, one for each hour. A supplier 

first builds optimal bidding strategies for each of the 24 hours, if the unit cannot be 
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dispatched in some hours, a self unit commitment algorithm is then employed to account 

for operating constraints and startup and shutdown costs to develop an overall bidding 

strategy in the day-ahead market. 

Since a uniform price over the whole network cannot provide economic signals for the 

suppliers and consumers, much research work on nodal pricing has been carried out 

which is the most complicated but accurate pricing method derived from the marginal 

cost theory. This method determines prices for power at each bus of the system, 

accounting for all costs and transmission constraints. The nodal prices are typically 

calculated as dual variables or LaGrange multipliers of an optimal power flow (OPF) 

calculation. A major advantage of this method is that the right operational pricing signals 

are revealed. Although there is not a fully operative example of nodal pricing in the 

industry, some research work has been done to address the potential strategic behaviours 

of power suppliers by intentionally causing congestion and exploiting arbitrage 

opportunities of nodal price differences [25]. 

3.2.3 Strategy on Iterative Bidding 

In [38], an iterative bidding scheme is suggested in which generators and consumers are 

permitted to modify their bids, according to several rules, to make sure that their costs are 

appropriately allocated and their technical constraints respected. This method may have 

heavy computational burden and could pose practical problems. Ref [39] first argues that 

a single bid may not be the best mechanism to ensure the market is driven to an efficient 

operating condition, and then presents an asynchronous iterative strategic scheme in 

which a feedback mechanism is introduced such that upon receiving generation levels 
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following the first-round of market clearing, suppliers are allowed to modify their bids 

once more if they so desire. The optimal trading bidding problem is addressed based on 

this bidding scheme, and a radial basis function neural network has been employed for 

this purpose. Ref [35] also addressed the bidding strategy problem under a suggested 

iterative bidding scheme in which the auction proceeds iteratively and closes when a 

physical feasible dispatch and a stable market clearing price is obtained. 

3.2.4 Demand Side Strategies 

In some electricity markets such as NETA, California, New Zealand and Spain, demand 

side bidding is permitted for large consumers to react to electricity pricing. In this case 

the maximization of social welfare approach should be employed for bid clearing, and the 

minimum price approach employed in those markets only with supply side bidding is no 

longer fair to the sellers. This is because in this case both the sellers and buyers are 

bidders, and the buyers are no longer passive. If the demand side bidding is not permitted, 

the minimum price approach should be employed because in this case the buyers are 

passive and their benefits should be protected by regulations. 

Up to now, research work on trading strategies is concentrated on the supply side, quite 

little attention has been imposed on demand side. In [40], the potential impacts of the 

demanding side trading strategies on market prices are analyzed and several somewhat 

negative remarks on the effects of the demand side bidding are made. In [41], a two-level 

optimization procedure for building trading strategies was presented in which market 

participants try to maximize their profits under some constraints. An independent system 

operator (ISO) determines their dispatches and market price utilizing a transparent 
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optimal power flow (OPF) program with an objective of maximizing social welfare. It is 

assumed that each participant has an estimated value for the bid from each of the other 

participants. In [42], the optimal trading strategies of generators and large consumers are 

addressed simultaneously utilizing linear bidding functions, and the behaviours of rival 

competitors are represented as continuous probability distributions. A Monte Carlo based 

method is developed to find the optimal bidding strategies and the associated market 

power is evaluated. It is shown that the market power can be mitigated through 

introduction of the demand side bidding. 

3.2.5 Trading Strategies in Ancillary Service Market 

Similar to energy markets, it has been recognized that most of the generation based 

ancillary services such as spinning reserves and AGC provision can be procured through 

auction based competitive markets. In some electricity markets such as NETA and Spain, 

some ancillary services markets such as AGC provision have been in operation for a 

period. 

Serious strategic behaviour by power suppliers has been observed at the initial operation 

stages of the NETA ancillary services markets. It has been noted in [43] that these 

markets did not operate in a manner consistent with workable competition and prices do 

not fluctuate in a manner that reflects changes in the underlying marginal costs of 

supplying these products. These markets have exhibited extreme price volatility, even 

during periods when demand was unchanged for long periods of time. The conditions are 

not yet in place to rely on these markets to set efficient, cost-reflective prices. Prices for 

lower quality services such as replacement reserve routinely exceed the prices for higher 



Chapter 3 Current Research Review 33 

quality services such as regulation. Often ancillary services capacity prices exceed the 

energy market price for the same hour. For example, on July 9,1998 the prices in the 

replacement reserve market was as high as $9999/MW in Californian ancillary services 

markets. Since then a price cap was introduced to limit this strategic bidding behaviour. 

Some of the main factors that lead to these problems are structural deficiencies, irrational 

procurement method for ancillary services, and perverse incentives created by reliability 

must-run contracts. A rational buyer algorithms [44] has been utilized for ancillary 

services procurement since August 18,1999 as a partial solution to these problems. 

3.3 Discussions 

Current research results have gain significant insights into overall aspects of most 

existing power market trading systems in the world, especially the mode of the California 

power market. Most linear and static strategy development problems have been 

successfully solve out by these research efforts. Besides, solely using either of 

competitive game strategy or cooperative game strategy has been able to the traditional 

game theory 

While a lot of work has been done, quite limited attention has been paid to the NETA 

market research. [13] analyses the economic dispatch for the NETA balancing 

mechanism. A load management technology is developed in [14]. [15] presents risk 

assessment on local demand forecast uncertainty. The wind generation trading in NETA 

short-terrn energy markets is carried out in [16]. There exists a lack of attempt to model 

this trading market mechanism in current research. Furthermore the other major work that 
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has so far not been undertaken by academia and industry is to study the possibility and 

consequence of gaming behaviours and market power on NETA. 

Furthennore, the effort on studying trading strategic behaviours is to find suitable 

solutions to solve the problems that have happened and would happen in power 

industries. However current strategies research is inadequate in some aspects described as 

below. 

(1) Game theory has been widely utilized analyzing market power and market 

participants' gaming behaviours. However there are deficiencies existing. For 

example, Nash Equilibrium, which is the most adopted Game theory to simulate 

participants' strategies, assumes that the rules of the game, the strategies available to 

the players, and the payoffs are common knowledge, which does not reflect the real 

cases in power markets. Also, some research model which employ Coumot game 

theory to stimulate oligopoly game, only involves two firms deciding how much to 

produce without knowing the output decision of the other, turns into a simplified 

duopoly game that are not applicable to the general cases with more than two or 

three trading participants. More crucially, all published research contributions have 

only solely used either noncooperative or cooperative game theory to model and 

develop market player's gaming strategies. It is not capable of analyzing the gaming 

behaviours practiced in power market, because market players have been using mix 

of both to manipulate the market prices to maximize their profits, especially the 

cooperative game, which is getting more practical to study the real problems caused 
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be market power and coalition game practiced by electricity suppliers in global 

electricity market. 

(2) Although a vast amount of contributions has been done by academia, there are a few 

published research results of analysis on NETA, which is one of blueprint 

deregulated electricity trading arrangements in the world. Principally, the research on 

modelling this market structure and trading strategies are still in their infancy. For 

instance, the process of how power generators attempt to employ market power and 

to maintain strategic gaming behaviours to maximize profits has never been 

addressed. And the possibility of forming cooperation agreement among generation 

companies and consequence of such actions were unknown for industry. This 

problem has become acute since the prices of global energy products have been 

soaring. 

(3) Many real world problems generally do not have accurate measurement of its 

variables. Many published electricity bidding strategies are represented as discrete 

quantities at which in realistic situations, bidding strategies can be continuous. Some 

models are calculus-based that require derivatives information to find out 

equilibrium; it is easy to be trapped on local peaks. 

Considering the problems and lack of current research stated above, it is necessary and 

important to go further of developing more practical and complete game theory strategies 

and analysing the influence of gaming strategies on NETA market. Further, the extra- 

numerical search technique should also be taken into account to solve the search, learning 

and optimization problems. 
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4 Development of Game Theory Based Trading Strategy 

and Decision Making Systems 

4.1 Introduction 

Based on the analysis of the previous chapters, the main purpose of this chapter is to 

demonstrate the trading strategy modelling of development of competition between power 

generation companies and supply companies through hybrid methods of Game Theory and 

Genetic Algorithms on NETA. A set of trading strategies are developed to simulate 

market players' behaviors and to discover the interaction between the market environment 

and the market player's payoff. The essential feature of the stretegy design and 

development is based on the market structure of NETA [3], [5], [17], [181, [19] and [58]. 

4.2 Generator Cooperative Trading Strategy Modelling 

4.2.1 Introduction 

The fundamental fact on NETA is that high level of over-capacity exsits in the market, the 

wholesale prices have been gradually falling down and some major British generation 

companies, like British Energy, were forced to edge of bankcuptcy. The central object 

behind these generators' strategic trading is to manipulate the market prices through 

reaching coalition among main generators under NETA, in order to transform the 

marketplace into a profitable situation, idealy given oligopoly in some markets of NETA 

for some periods. Along with this challenge, electricity suppliers are forced to adjust their 

trading methodology keeping their profits. 

Such action in which major market players bind together to control market and manipulate 

the market prices has been applied to other kinds of commodity markets. For instance, 
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or a rise since 2003, OPEC producers have increased their output 10 percent to make up f 

in global oil demand, however the oil price has still been pushing up over the last two 

years. It is believed that it is unlikely that either lifting the group's quota or indicating that 

it is ready to produce more oil will bring much new supply to the market, because the 

bottleneck in energy supplies comes from the inability of refiners to process enough oil to 

meet demand, not from a shortage of crude oil. Analysis results [59] present that some 

major oil companies, like Royal DutchShell, Chevron, have been making up constraint on 

the downstream of this industry - to withhold their refining capacity to cause the shortfall 

in energy markets. 

Coalition is a form of cooperative gaming strategy among the members in subgroups while 

non-cooperative gaming may still apply among the subgroups. It is simply a subset of N 

that is allowed to make a binding agreement. As pointed out by Heap [60], "In the N- 

person case, ... if a coalition is to form and remain for some time, the different members of 

the coalition must reach some sort of equilibrium or stability. It is this idea of stability that 

must be analyzed in any meaningful theory. " In this model, the equilibrium (or stability) in 

a coalition is defined as follows: each and every member's profit in a coalition is greater 

than the profit it can obtain from a non-cooperative game among all of the producers. This 

means that the individual profits of the n producers in a completely non-cooperative game 

must be calculated first. The individual profits from any non-cooperative game between or 

among the coalition subgroups are then calculated and compared with the profits obtained 

from the complete non-cooperative game. If no individual profit falls short in the latter 

case, the equilibriums within the subgroups can be achieved on condition that an 

equilibrium is also achieved among the subgroups. Note that the case of complete 

collusion (all producers act together as a monopolist) is assumed infeasible and is excluded 
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from our analysis. This is why n is set to be no less than 3; the case with N=2 has only 

one coalition that is also collusion. 

The coalition formation is a process of forming a profitable partnership among some main 

generators. The objective of these generation companies is to artificially restricts physical 

power supply volumes during some specific periods, i. e. in Christmas or Easter, then lead 

the whole marketplace to an oligopoly situation then subsequently make the market prices 

driven up. 

It is assumed that participants form a coalition either by being the founder or by joining 

one at a time with a coalition that already exists. There are some uncertainties involved 

with this strategy that need be solved by the partnership members: 

(1) As the NETA consists of two separate markets, i. e. PX and BM, how do cooperative 

strategy players arrange output volumes between these two markets and make the 

most profits through this strategy? 

(2) For each generator, how much are the optimal volume of withheld output capacity and 

selling prices? 

(3) How do coalition agreement members keep cooperative generators loyally carrying 

out the agreement? 

(4) Is it likely that there exists equilibrium that collusive generators can make best profits 

meanwhile the markets trading can be kept in balance, e. g., may not lead to endless 

competition or collapse? 

Currently in studying the gaming trading strategy used in electricity trading, cooperative 

gaming strategy has hardly been intruduced to model market participants' behaviours 
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because of the extensice application of traditional game theories, Nash and Cournot game 

theories, which are applicable to noncoperatIve strategy. The problems in real power 

market call for more practical solutions. Furthermore present research examples examined 

by academia have never been involved with the constraint among binding agreement 

members, which may be the most difficult and intereting point that collusive energy firms 

are concemed about. 

4.2.2 Strategy Combination of Generator Gaming Strategies 

Based on the introduction outlined in Chapter 2, the imbalance penalties in BM are much 

higher than market clearing prices in wholesale market PX where most of power volumes 

are traded. As effect of maintaining this stragety at which gaming generators make the 

supply/demand unbalanced on this market, power suppliers are expected to be driven to 

BM and purchase the shortfall with imbalance charges. 

The cooperative power generators' strategy combination can be described by a small 

number of paths together with rules stating when to switch from one paht to another. The 

first path, is followed at the beginning and continues to be followed until a deviation from 

it occurs. In this model, the initial step to implement this gaming strategy is that a certain 

number of collusive generators withhold a portion of their available capacities to change 

the PX market into an oligopoly situation. Withholding can be physical (bid only a portion 

of one's capacity) or economic (bid a portion at a very high price). Theoretically which 

type of withholding a generator should choose depends on the market structure. In NETA 

circumstance, all markets (forwards and futures markets, short-term Power Exchange and 

BM) are continuous and interchangeable. Therefore both of physical and economic 
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withholding is employed to make the maximal profit by gaming generators. The details are 

descnbed as below. 

The basic content of this cooperative strategy is presented below: 

(1) Each member of the agreement withholds a portion of its total capacity, as variable X, 

expressed as a percentage of its total generation capacity. The range of X is assumed to 

be from 10% to 25%. Then the remaining volume Q,, na,, '. (I-X), is traded into the PX, 

where Q,,,, al 
is generator i's maximal generation capacity. 

(2) After the suppliers are driven to BM and have to submit bids for getting extra supply 

with paying SBP, the gaming generators need to provide offers to BM to meet the 

shortfall demand and determine how much volume should be taken from the withheld 

volumeQsmaxi .X to trade in BM. Given the part taken from(? smaxi * X'SY, expressed 

as a percentage from 0- 100%. 

(3) The last part of the cooperative strategies is to optimise the trading on forward 

markets. Because the state of suppliers is no longer superior when the market is under 

an oligopolistic condition, generators can improve their selling curves to drive up the 

market prices as high as the suppliers could accept under PX. 

Each generator is characterized by a set of portfolio parameters: 

(1) S elf-electri city generation parameters. Each agreement participant first derives its 

local information, for example, the maximal generation capacityQsrriaxl marginal cost 

Pn,, 
ý' , and so on, then detennines the profit when acting alone. This profit is called the 

player's self-value. This set of such local information depends on the player's 

environment. 
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Once each participant has the requested information from all other participants in the 

environment, the local calculation phase begins. Here, each participant calculates the 

strategic variables and parameters. 

(2) Strategic variables: X being generator i's portion parameter on PX, Pspxl being the 

price that generator i wants to sell on PX, Qspxl being the quantity that generator 1 

wants to sell on PX, portfolio instrument 1 expressed as a percentage of its total 

generation capacity, BM Offer price Pol and Qs,, ml being the quantity generator i 

wants to sell at BM. Their relationship is fonnulated as: 

Qsmaxl * 
1= (? SPX1+QSBM1 

(3) Collusion parameters: PTR, T, Q, Onp and QcOOp. 

There are two types of remaining paths being used by cooperative generators in the game. 

One follows a strategy called "opportunistic collusion" whereby generators withhold 

capacity from the market only when they perceive an "opportunity" to raise profits by 

doing so exists. Opportunistic collusion might result in a generator setting aside a portion 

of their capacity and deciding for each hour whether or not to offer that capacity to the 

market depending on expectations of raising profits. This is different from the other type, 

suggesting that generators should "always" withhold a portion in anticipation of an 

agreement. The second kind is named "loyal cooperator". 

For making the agreement more efficient, a more extreme management-enforcement is 

utilized to constrain the agreement members. In this application, a well-known technique 

of cooperative game strategy, "trigger price strategies" [61], which was created and used to 

constrain "Coffee Cartel" that dominated 80 percent of global coffee market share in 
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1970s, is employed to enhance this agreement by "loyal cooperator". In a trigger price 

strategy, "loyal cooperators" make inferences about any members in this agreement from 

the observation of market price PpX. If market price remains above some critical value - 

the trigger value - then these generators will infer no cheating on the collusive agreement 

and will maintain a cooperative output level. If the price falls below the trigger, then some 

punishment must be imposed on the cheater(s). 

Trigger price strategies depend on four parameters, PTR, T QcOmp and Q, 
O,, P, where PTR is 

the trigger price, T is the number of time periods the punishment will last, Q, 
OmP 

is the 

competitive output, given 100% generation volume Q, ma, l in this model, and Qc,,. p is the 

cooperative output given Q,.,,, ' . (I -X). 

Th trigger price strategy works as follows: 

Each trading round is designatedas either cooperative or competitive. In a competitive 

round, a menber of the "loyal cooperator" produces an output level Q,,, np, where 

Qcomp=Qsmax1, and in a cooperative round, it produces an output level Q, 00P. In initial rounds, 

both of the "opportunistic generator" and "loyal cooperator" cooperate. After that, the 

"loyal cooperators" continue to cooperate as long as there is evidence that the other 

member of the agreement is cooperating. However the "opportunistic generator" will 

decide for each round whether or not to cooperate depending on expectations of raising 

profits by doing so. With the trigger price strategy, the evidence that the other member is 

cheating consists of a "suspiciously low" market price, PTR. So if the market price, PpX, 

fell below the trigger price, PTR, the next T-I years are competitive and year t+T is 

again cooperative. 
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The trigger price strategy described above is less extreme than traditional grim strategy. 

Unlike grim strategy, the punishment is of limited rounds. After a fixed period of time has 

elapsed, the players begin cooperating again instead of the punishment lasting forever. 

4.3 Generator Noncooperative Strategy Modelling 

The generators who do not join the collusion independently sell their individual output 

volume on the NETA markets. The relationship among these individual market 

participants and those gaming generators is completely non-cooperative. There are two 

situations existing that these non-cooperative generators need to face. Firstly, according to 

the initial situation on NETA that there is high level of over-capacity emitting in the 

market, the state of such generators is inferior to suppliers because the latter have enough 

choices to select generators with low selling prices to make contracts, and hence all 

suppliers' demand is theoretically satisfied. The contracted prices, as forward markets 

prices, could be as low as what generators could accept. Consequently, generators can only 

sell out parts of their total volumes at PpX level. Secondly, because some major generators 

are using gaming strategies in manipulating the trading, the market circumstance might be 

driven to oligopoly situation. The non-cooperative generators would adjust their strategies. 

4.4 Suppliers Combined Strategy 

As introduced earlier, the dual cash out prices of BM are intended to discourage market 

participants from being out of balance because the penalty for contracting at less than 

actual demand can be extremely high. The main concens of the suppliers focus on two 

main issues: demand prediction capabilities and contract cover (how much of there 

expected demand they want to buy in the PX). The first is beyond the covery of this 
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research. Therefore the study here is to discover how suppliers respond to NETA 

imbalance prices by over-contracting to reduce exposure to SBP [58]. The cost of over- 

contracting can be viewed as an insurance premium that reduces exposure to the 

potentially high risks of being short. 

Each supplier's objective is to optimize its contract position, as well as trading prices, to 

minimize the cost of contracting in order to maximize total daily profits. The strategy of 

each supplierj, is characterized as following [62]: 

48 

cL -Pxpr. Qr D 

r 

(4.2) 

where C..,, is the marginal revenue of supplierj, r is the settlement period number, PXP is 

the PX clearing price and Q, 1 is the actual demand at settlement period r: 

48 

Cs =I (pXpr. Qcr - Max[O, (? cr- QD r]. SSpr + Max[ 0, QD r- Qcr] . SBpr) (4.3) 
r 

where Cc.,, is the contracted revenue of supplier j, Qý is the contracted volume at 

settlement period r on PX. 

A percentage premium for supplier's strategy can be defined as (Cs/ C, ) . 100; the lower 

the premium the more efficient the strategy. 

4.5 Strategy Development 

In order to find out the best solutions, both sides of the trading need to constantly improve 

and optimize their adopted strategies through varied tools during the trading procedure. 
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On the selling side of this marketplace, cooperative generators have many strategic 

parameters, i. e. 5 
Pspxiý QSpxi, 1, X POiý QSBMi. which need to be optimaized. Whereas non- 
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cooperative generators face a dilemma: on one hand, they need to offer selling prices 

higher than individual marginal cost P 
.. cl to cover the production cost; on the other hand, 

they have to make their selling prices appropriately low to win contracts. On the other side 

of this competition, supply companies also face the evaluation and optimization problems 

expressed in equations (4.2) and (4.3). 

The major task here is to model generators and suppliers as decision-making participants. 

Many performancec and problems in the power market trading strategy developernent do 

not have accurate measurement of their varibles. Pure maths is not enought here. Many 

incommensurable and competing objectives require to met before any solution is 

considered adequate. By the nature of Genetic algorithms, it can handle this inaccuracy 
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Figure 4.2: Flowchart of "loyal generators" gaming strategy 

problems. Strategic variables and parameters of market players are mapped into GA 

chromosomes. Each auction round represents a generation. The GA population is divided 

into sellers and buyers. Infonnation is exchanged solely within each type of trader. There 

is no information exchange between buyers and sellers other than the amount of profit they 

make. The fitness of each trader is proportional to the profit made in the auction round and 

is recalculated every round. Once a population of individuals with assigned fitness values 
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I ive anses, the next step is to preferentially select a subset of that should survi 

into the next generation. These genetic operators introduced in Chapter 3 are perfonned on 

the populations. 

Tournament selection is employed in this research. This is based on grouped competition. 

Here a population is divided into subgroups or members with the best fitness among the 

subgroups get selected. The subgroups could be any size, it is set as three in this model. 

The tournament is repeatedly held in which N individuals are selected from the current 

population and the fittest individual is copied into the inteirmediate population (this may be 

with or without replacement). The uniform crossover method is employed in this research, 

in which offspring individuals are created from a ramdomly genereted uniform bit mask. 

An elitism scheme is also implemented. The elitism shceme retains the top perforining 

individuals forrn each population, copies them to the new population. The rest fo the 

population is filled with individuals generated by the crossover and mutation as described 

above. The percentage of top perforn-ling individuals to be retained is set at the beginning 

of the auction run. The elite is not mutated. 

Given gaming generators are concerned about the expected payoff in the long run rather 

than the pay-off in a particular round of auction, the average of 6 generations (6 trading 

rounds) fitness is utilized as one fitness. 
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5. Model Simulation and Validation Experiments 

5.1 NETA Trading Mechanism Modelling 

The NETA trading mechanism is simulated in this Chapter. The motivation behind 

developing this market model is to to model the dynamic and decision making 

behaviour of the LTK electricity trading system, and to discover the impact of gaming 

trading strategies on the NETA. Although extensive effort has been made to simulate 

power trading mechanisms with their performance and player's strategies, the 

traditional modelling techniques, which solely apply noncooperative game theory 

and/or traditional optimization methodologies, have been not able to conduct the 

study on existence of gaming strategies and market power practiced in global 

electricity markets. It is understood that traditional mathematical methods are not 

suitable to demonstrate the decision-making procedure, especially search the optimal 

solutions. Therefore Evolutionary Algorithms is introduced to help building this 

morel. Not only can it generally provide the trade-off for each individual problem, 

also be capable of evaluating and detennining the final suitable solution. The 

fundamental structure of the market modelling is based on market structure of NETA 

and developed from published documents of Office of Gas and Electricity Markets 

[3], [5], [17], [18], [19] and [58]. 

5.1.1 The Broad Objectives 

Three broad objectives are set for the modelling activities: 

* To gain insights into aspects of the new trading arrangements; 

* To search for possibility and impact of market manipulation on the UK power 

market given Britain's generation companies make effort to attempt market power 

and gaming strategies; 
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To provide a platfonn which potential participants can use to gain experience of 

the trading envirom-nent that they will face under NETA. 

The first and second objectives are achieved by conducting a series of experiments 

using the simulation model that has been developed. The third could be achieved by 

encouraging the industry to participate in those experiments and then making the 

model generally available. 

5.1.2 The Approach to Modelling 

To capture all the markets expected to operate under the new trading arrangements 

and explore all their interactions within one model would be a considerable task and 

would result in a model of substantial complexity, both in its construction and its 

operation. This would lead to significant risks, including that: 

* The development and operation of the model would be prohibitively time 

consuming; 

* The results of any run of the model would be hard to interpret, as so many factors 

would need to be taken into account; and 

9 The model would be too complex for meaningful insights to be obtained from its 

use by potential participants. 

The research therefore focuses its modelling efforts on the specific parts of the New 

Electricity Trading Arrangements proposals most likely to generate results of interest. 

A range of modelling approaches has been considered. The principal interest is not 

only to investigate what level of prices might be obtained, but also to explore how 

different incentives might influence participants' behaviour. It was therefore decided 
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to commission an experimental simulation model, as this is fit best the need to assess 

behaviour by market participants. 

5.1.3 The NETA Model 

Since the interest is in the incentives to trade in the various markets that together 

make up the new trading arrangements, the modelling effort can not focus solely on 

the those elements that are being procured by the program, namely the Balancing 

Mechanism (BM) and the Imbalance Settlement Mechanism (ISM). 

At the same time, as noted above, it cannot capture all the markets in their entirety. It 

is therefore decided to focus on trading in a Power Exchange (PX), with the 

assumption that prior trading has taken place on the forwards and futures markets, and 

assess the impact of the Balancing Mechanism and the ISM in terms of what trades 

take place in the PX, and what are left to those mechanisms. In doing this, the implicit 

assumption is that the PX trades are a proxy for trades in all the markets that might 

operate in advance of gate closure, including those with longer-tenn activities than the 

day ahead usually assumed for the PX. 

It is accepted that this is only one of a number of approaches that could have been 

used and that other models could also provide insights into the operation of the 

markets under the NETA proposals. 

5.1.4 Outline of the Model 

The model simulates trading in a PX. A number of players trade in real time, each 

playing the role of a market participant and working from infon-nation on prior trades, 

production or consumption costs, capacity limits and potential prices, to develop 

trading bids and offers. The model simulates the operation of a PX and matches 
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beneficial trades and then allows unmatched positions to be offered into the Balancing 

Mechanism; any open positions that are not closed out by the acceptance of offers or 

bids became subject to Imbalance Settlement. The overall results of trading are then 

analyzed and passed back to participants to allow them to amend their behaviour in 

future runs in the light of experience. 

The trading model with these set of parameters introduced in Chapter 4 is 

experimented and then profits from the participants with complete non-cooperative 

strategy and coalition members are then calculated and compared in next chapters. A 

set of validation and experiments are carried out based on different system parameters 

on which the model scale is limited. The estimates used are consistent with those used 

in published studies on the NETA electricity market, i. e. actual demand profiles, 

generation and supply system parameters. There are five sorts of power generation 

concerned in this model, including gas turbine, oil, coal, combined cycle gas turbine 

(CCGT) and nuclear plants. 

Because the flexibility of each kind of generation plant is different and it results in 

different market performance, it is reasonable to introduce the flexibility (maximal 

numbers of startups within one day) of each type of plants in the UK: 

(1) Gas turbine and oil generation plants were classified as having three daily cycles. 

(2) Midmerit technologies were classified with one and two cycles, which include 

CCGT and coal. 

(3) Finally, the base-load plants (running in a nonstop regime) are the nuclear stations, 

which need to run continuously and specify zero cycle. 
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This is a reasonable way of incorporating some consideration of dynamic plant 

constraints. We define the parameter cycles for each type of plant (see above). Thus, 

base-load plants with high startups or inflexible technology need to run continuously 

and specify zero or just one cycle. Flexible plant with low startup cost can have a 

higher number of cycles. The availability of installed capacity is specified by 

individual generator's self-parameter. 

Plants owned by each generator are specified at the generating set level. Plants of the 

same type are assumed to have similar operating generation cost (marginal costs, 

fixed costs including startup costs, and no-load costs). This model does not take into 

account the fixed cost. Thus, each agent has an objective for the position of each plant 

in the load duration curve (we identify for each plant the maximum number of cycles 

per day that it can operate). 

We impose some lower bounds of rationality through operational rules. 

1) Portfolio Management: a plant with higher or equal number of cycles will never 

undercut the offers of another plant with equal or less number of cycles. 

2) Noninterruption: plants that have to run continuously or plants with one cycle may 

run without profit in certain hours of the day. 

3) Peak Premia: Peak plant never offer prices below marginal cost. 

The estimated marginal generation costs for each plant ranged from f9/MWh to 

f 88/MWh. The base-load generation plants, i. e. nuclear, combined cycle gas turbine 

(CCGT), and some large coal plants, are operated in lower marginal costs. The gas 

turbines and oil plants are associated with higher marginal costs. Generation plants on 

the same type are assumed to have similar marginal costs. The estimates used are 
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consistent with those used in other published studies on the UK generation market, as 

well as with known data on plant efficiencies and fuel costs. The estimated marginal 

generation costs Pmc' . for each generator and assumed maximal generation capacity, 

Qsmax 1. 
, of each generator of each generation type are presented in Table 5.1: 

Table 5.1 Generators' system self-parameters 

Type of generation Nuclear Combined cycle Large Gas Oil 

plants Gas turbine coal turbines 

(CCGT) 

Marginal generation 24.50 9.72 33.23 66.95 87.91 
cost (E/MWH) 

For suppliers, their individual self-parameters are assumed as identical and the 

estimated marginal revenues C,,,, J for each supplier is set as 71f/MVM. 

Once this is completed, the generators' profits and suppliers' revenues are calculated, 

so that each seller and buyer will respectively get their fitness on each round. The 

operating cost function of each generator, usually is represented as the following 

fonn; 

Ci(Qd = ai + biQi + ciQi 
2i=152, 

.... n (5.1) 

min < Qi.: S, I, Qimax 

where 

Ci(Qd operating costs of entity i with generation; 

V111.17, Qj" minimum and maximum generation output of entity I, 

ai, bi, ci constants. 

The profit PG of generation entity i at time t will be; 

PFi, t= P"t Qi, t allocated _ Ci Qi'tallocated (5.2) 
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where 
PXPI 

Qi, tallocated 

market clearing price (MCP) at time t, 

allocated generation volume of entity i. 

The profit PS of supplying entityj at time t will be; 

where 

-) allocated pXpt Q allocated Psi, tý Cmrl Qj' t ý. 't 

Cmrj marginal revenue of entityj with supplying; 

PxPt market clearing price (MCP) at time t, 

Q allocated t allocated supply volume of entityj. 

5.1.5 Running the Model 

A run of the model proceeded as follows. 

(5.3) 
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* Forwards contracts arising from any vertical integration and the customer base are 

represented by an 'opening position' provided to each participant before a model 

run begins. 

9 The PX opens for trading and participants post offers and bids as introduced 

earlier. 

e There are 48 trading rounds running each day. The market both clears any 

mutually acceptable offers and bids (in other words an offer at or lower than a bid) 

and allowed participants to accept an extant offer or bid. The clearing procedure is 

based on the methodology introduced in Chapter 4. The Market Clearing Prices 

(MCP) will be used as one of benchmarks to asses the different trading strategies. 

Until the end of trading, participants were allowed to post new offers and bids and 

to remove unaccepted extant offers and bids. 
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* Once the relevant trading period was closed, participants submit FPNs for 

generation to the system operator and, if they so choose, Balancing Mechanism 

bids. 

9 The model's system operator(SO) then optimizes and balances the system at a 

single turn, accepting offers and bids necessary to do this and allowing for any 

random perturbations in demand or generation failures introduced by the model 

operator. System and participant imbalances were then calculated. 

9 Imbalance prices and payments are calculated. Participants who are out of balance 

are charged or paid at energy imbalance prices. 

* Results are collated and participants are infonned how they have perfonned. 

* Participants' strategies and strategic parameters adopted in previous trading round 

are evaluated and new parameters are searched out by optimization tool for next 

round. 

In the experiments conducted by the program, the model is run with up to a number of 

players representing a variety of industry participants. A supervisor, acted as both 

market and system operator, takes overall charge of each run. 

The model provided the following types of output: 

0 Traded prices in the PX; 

& Balancing Mechanism trades prices; 

Imbalance Settlement pnces and volumes; 

Distribution of profits between participants. 
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0 Costs of generation; 

0 Short run profitability for each participant. 

5.1.6 Simplification 

Before evolving the strategy, some features of this model are described as following: 

9 Trading participants include m electricity generators (sellers), as some generation 

companies that sell energy in the market, n power suppliers (buyers), as energy 

service companies, i. e. power transmission companies that buy electricity to serve 

end-users, and the System Operator (SO) who operates the markets; 

* Bilateral bidding mechanism is adopted following the fact on NETA; 

9 Collusive generators are concerned about the expected payoff in the long run 

rather than the pay-off in a particular round of trading; 

e System Operator broadcasts 2-14 day-ahead demand forecast and provides real 

time information and offers made and accepted, as the same case on NETA; 

e The total amount of bidding generations is enough to provide the market demand 

(Le. , Ei Qi, bid 

-> L,, where Qi,, bid denotes the bidding generation of entity i, and L, 

denotes total system demand at time t); 

9 The bidding generation of each player is less than the total system demand in a 

specific spot market (i. e., Qj, bid <Lt'). 

The model makes several simplifications. These include the following: 
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* All trades contain price and quantity only. Other contract fonns, such as caps, ) 

collars and load following were excluded; 

9 Plant technical constraints, such as ramping, are not modeled or included in the 

Balancing Mechanism calculations; 

* Transmission constraints and loss are not modeled or included in the Balancing 

Mechanism calculations; 

9 Offers and bids to the Balancing Mechanism were made once only; 

* The Balancing Mechanism is treated as a 'one-shot' market and the real time 

effects of emerging Balancing Mechanism acceptances is not modeled. 

5.1.7 Scenarios in the Experiments 

The experiments look at two types of scenarios: 

0 Validation test is carried out in the first set of experiments. The scenario is run 

with an approximation of the market structure likely to be in place in around 

October 2004. All these experiments are based on the average winter daily 

demand profile in October published by NETA, shown earlier in Figure 4.3 in this 

Chapter. On the validation test, all market players only employ non-cooperative 

strategy to conflict on this marketplace at which no gaming behaviour is 

attempted. The relationship among each generator is completely competitive, 

following the general reality on NETA. 

The feasibility and efficiency of this model and analysis technique are tested in 

this examination. The experimental results will present if the sequences of 
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strategic actions designed for the model is capable of producing similar outputs 

from the real market, in the absence of disturbance. 

Application experiments are made in Chapter 6. Cooperative gaming strategies 

will be covered on the second and third tests based on different model scales. 

Because the modelling exercise employs only a certain number of players, some 

simplifications to the full complexity of the anticipated structure have to be made 

introduced previously. As well as the two main scenarios, sensitivities are run either 

with shocks, such as a generator failure or a change in fuel prices, or with a changed 

industry structure, especially greater vertical integration. 

5.2 Setup of Validation Experiments 

In order to evaluate perfon-nance of this research technique, the model is examined in 

this section. The modelling results are compared with real data of NETA to identify 

its efficiency and against unseen data. 

The model is organized into running 4 weeks in October 2004, given 20 trading days 

totally. Therefore each week has 5 trading days. On each trading day the market 

mechanism runs 48 iterations according to the reality of NETA market, 

correspondingly they are represented by 48 generations in GA algorithms. 

Each trading day starts with the System Operator (SO) publishing one-day demand 

forecast, then the market participants buying (selling) electricity in the Power 

Exchange (PX). In the PX, the suppliers try to buy, at a price as low as possible, the 

amount of electricity needed to fulfill their contract covering objectives. Oppositely, 

the generators will try to sell at a price as high as possible. On each single trading 
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round in PX market, each market participant from two sides respectively submits a set 

of bids (offers) including prices - responding volumes, i. e., f 11.50/MW - 11.23MWI 

f 16.62/MW - 18.30MW, ... 
f68.42/MW - 78.70MW, and so on, to the SO. The 

overall matching procedure follows the market running process introduced in section 

2.2.2 in Chapter 2. 

At gate closure, each participant will know exactly how much it has sold or bought 

and provides the SO with its final physical notifications (FPNs). 

Then the trading in the Balancing Mechanism (BM) begins. The System Operator 

total demand forecasts are common knowledge in the industry, period by period (and 

it is assumed for these experiments that the forecasts are accurate). Nevertheless, each 

one of the suppliers will have some uncertainty predicting its own demand. Thus, 

using their FPN's and its demand forecast, the SO calculates the total system surplus 

or shortfall for each. Given this total system position, the SO will accept either 

spillage or top-up in the BM. The trades in the BM are done between the SO and each 

one of the generators and suppliers offering (bidding) the spillage (top-up) into the 

BM. 

After all trading in the BM has occurred and the SO has bought or sold whatever 

energy is needed to balance the system, the SO will compare the contract positions 

(quantities contracted), plus whatever is bought or sold in the BM with the actual 

position (quantities generated or consumed) for each one of the suppliers and 

generators (plant by plant) to calculate the imbalances, then the imbalance prices and 

volumes of each generator and supplier are calculated. If the SO accepts spillage, the 

will be defined as the weighted average of the offers accepted in the BM. Otherwise, 
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if the SO accepts top-up, the SSP will be defined as the weighted- average of the bids 

accepted in the BM. Thus, if a trading participant is long (short) when the system is 

short (long), there will be no imbalance price defined for its case. We adopted a rule 

that the SO has indicated it may have to use if there are insufficient bids (offers), 

which is to take the average of past SBP (SSP) values for that particular hour for the 

SBP (SSP) not defined. The formulations of calculating SBP and SSP were presented 

in Chapter 2. 

It should be noted that a supplier without load management will not be influencing the 

net position of the system and so its bids in the BM are only to cover its own 

uncertainty to avoid the imbalance charges. The bids (offers) of these players will 

only be accepted if there is an arbitrage opportunity. 

The objective of the power generators in this experiment is to search for optimal 

bidding points to sell power at prices as high as possible in PX market, and no 

cooperative strategy is adopted in the validation experiment. Whereas, the objective 

of the suppliers is to buy power at prices as low as possible. However, on the other 

hand, since the imbalance penalties in imbalance settlement system are much different 

from market clearing prices in wholesale market PX where most of power volumes 

are traded, the risk of having to buy and sell in this way through the Balancing 

Mechanism with its very volatile prices emphasises the importance of market 

participants' trading strategies. A lot of efforts with introducing traditional 

mathematical methods have not been able to solve this kind of challenges with many 

uncertainties and incommensurable objectives. Evolutionary Computation, which was 

not so far effectively employed in this field, plays a vital role to lead the search 

process and solve the optimization problem. 
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By the nature of Genetic Algorithms, the trading strategies parameters are evaluated 

and determined by GA. In the task each seller runs its own GA. Each participant's 

portfolio parameters are mapped into a GA's chromosomes. The trading procedure 

and searching process are described in Figure 5.1: 

Start? I 

Define start-up availability 

Round =0 

Mapping trading variables into GA 

Generate bidding parameters, i. e. 
price and quantity from GA 

Market participants submit 
offer/bid to System Operator 

SO runs the Power Exchange 

Market price and contracted quantity 
is calculated in PX Clearing House 

Unmatched participants submit 
bids and offers to Balancing 

Mechanism to match shortfall 

By end of this round, calculating 
individual traded volume and profit 

Evaluate fitness of individuals 

Select individuals for 
reproduction according to fitness 

Combine parent genotypes to produce 
Offspring, replace parents with offspring 

No 
Expire? 

Yes 

End 

Figure 5.1: Flowchart of generators strategy algorithms 
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5.3 Validation Experiments and Experimental Results 

To exercise the model's veracity and efficiency, the validation experiments are carried 

out against standard daily demand profile in October 2004, published by NETA and 

shown in Figure 5.2. The experimental model runs for 4 trading weeks continuously, 

given 20 trading days, at which there are 5 working days per week and 48 trading 

iterations within one day. As introduced in chapter 4, there are five sorts of power 

generation type investigated in this model, including gas turbine, oil, coal, combined 

cycle gas turbine (CCGT) and nuclear power generators. The number of generators, 

is assumed to 15, given 3 generators each generation type, and suppliers', n, is 

assumed to 10 in this experiment. The generators of the same type are assumed to 

have similar marginal costs and generation capacity. The estimated marginal 

generation costs P,,,, ' for each generator and assumed maximal generation capacity, 

Qsmax I, of each generator on each generation type are presented in Table 5.1 below. 

The total available generation capacity is set as 66.7GW. Oppositely, the maximal 

market demand is 50GW9 which is same as the market scale of the NETA. Hence the 

average maximal demand, Qdniax% of each supplier is 500OMW. The ratio of maximal 

market demand to total available generation capacity is therefore 0.75, following the 

real situation in NETA. 
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Figure 5.2: Standard daily demand profile in October 2004 [63] 
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Table 5.2 Generators' system self-parameters 

Type of generation Nuclear Combined cycle Large Gas Oil 
plants Gas turbine Coal Turbines 

(CCGT) 

Marginal generation 24.50 9.72 33.23 66.95 87.91 
cost (fIMVVH) 

Maximal generation 4450 4450 4450 4450 4450 
capacity (MW) 

5.3.1 Modelling Results 

In order to validate the model's performance, three major model outputs, the 

wholesale market clearing price PXP, imbalanced settlement prices System Buy Price 

SBP and System Sell Price SSP, are presented and evaluated with NETA data below. 

5.3.1.1 Traded Market Clearing Prices in Power Exchange 

In order to have a better view of how the model works and the evolution of market 

participants strategies, the model's running process, given 20 days, are divided into 

four consecutive stages, given the first week, the second week, the third week and the 

fourth week. These three trading results, including PX market clearing price PXP, 

imbalanced settlement prices System Buy Price SBP and System Sell Price SSP, in 

each trading week, are separately represented by three typical mean daily trading 

results. Consequently for each of the three model outputs, there are 4 sets of 

experimental results corresponding to the four trading weeks, and one set consists of 

48 experimental outputs which are coming from 48 trading iterations in which the 

market player take part within one trading day. These trading results are demonstrated 

week by week to discover how the market players learn through GA and how their 

behaviours influence the market results. 
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As introduced previously, the PX trades are a proxy for trades In all the markets that 

might operate in advance of gate closure, those with longer-term activities. 

The market clearing price in PX, PXP, calculated by equation (2.1), which is the 

fundamental output and evaluation parameter of this model, is presented following. 

Market clearing price in PX 
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Figure 5.3: Mean daily market clearing price in PX in the first trading week 

As one of the most important system outputs and model perfon-nance references, the 

market clearing price in Power Exchange, PXP, in each of the four weeks, is 

represented by a set of mean daily market clearing price. The PXP in the first week is 

aggregated into a mean daily PX clearing prices and is demonstrated in Figure 5.3. 

This price value curve is consisted of 48 PXP values. We can see that in the initial 

stage there are a large number of price spikes rising up, and the PXP is waving around 

a high level after the first peak demand period starts at 7: 00am to 8: 00am, ranging 

from f 37/MWh to f 88/MVvlh. 
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Figure 5.4: Mean daily market clearing price in PX in the second trading week 

Since the trading runs over 4 periods continuously, there are 4 sets of Power 

Exchange market clearing prices as experimental results. Figure 5.4 shows the mean 

daily PXP in the second week. 
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Figure 5.5: Mean daily market clearing price in PX in the third trading week 

Figure 5.5 shows the development of mean daily PXP in the third week. Figure 5.4 

and Figure 5.5 show two clear trends exhibited on these two weeks. First, the PXP is 

going down along with the model's running and strategies evolution. Second, the 

price spikes have less appearance. 
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Figure 5.6: Mean daily market clearing price in PX in the forth trading week 
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Figure 5.6 illustrates mean daily PXP from the last trading week. An observation is 

evident that the PXP remains stable in most of the trading periods. There are only two 

price spikes rising in peak demand periods, 17: 00pm to 18: 00pm and 21: 00pm to 

22: 00pm. The detailed discussion for these results will be taken in the end of this 

chapter. 

5.3.1.2 Traded Prices in Imbalance Settlement System - System Sell Price and 

System Sell Price 

This is one of the main principles of trading electricity. If a market participant falls to 

achieve what it predicted then it is going to cost it to balance the system. In the 

imbalance settlement process, the generators' metered generation and suppliers' 

metered demand are compared with the contractual positions they notify. The sum 

total of contracts negotiated in PX is added together to arrive at these contract 

positions. Participants that act both as generators and suppliers will be exposed to 

separate production and consumption imbalance charges for the two sides of their 

business. The difference between the amount of electricity bought and sold under 

contracts and the actual amount produced and consumed is calculated by the 
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imbalance settlement price. The price for buying more energy is known as the System 

Buy Price (SBP), and is a weighted average of accepted Offers and calculated by a 

function illustrated in chapter 2. Generally it is higher than the PXP because it reflects 

the cost of extra generation at short notice. Conversely, the price for selling excess 

energy to the system the System Sell Price (SSP), is a weighted average of accepted 

Bids and generally lower than the forward price, reflecting the relatively low price 

that generators are prepared to bid to SO to reduce output at short notice. It is 

calculated by the other function introduced in chapter 2. The same goes for suppliers. 

Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10 reveal the effect of market 

participants' strategies on the imbalance settlement process in tenus of showing the 

other two important reference parameters, imbalanced settlement prices System Buy 

Price SBP and System Sell Price SSP. Since the market model's trading process is 

divided into four consecutive weeks, for each of these two imbalanced settlement 

prices, there are four sets of mean daily prices corresponding to the four trading 

weeks, separately. There are 48 price values in each set representing 48 trading 

iteration results from each typical trading day. 
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Figure 5.7: Mean daily System Imbalance Price in the first trading week 
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Figure 5.7 demonstrates the mean daily price curves of the imbalanced settlement 

prices SBP and SSP in the beginning week. 
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Figure 5.8: Mean daily System Imbalance Price in the second trading week 

The mean daily price imbalance settlement prices curves in the second week are 

presented in Figure 5.8 above. Based on the figures shown here and in previous 

section, when PXP curves has price spike ansing, so does the System Buy Price 

during the same trading period, and the SBP is considerably higher than the price in 

PX market. 
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Figure 5.9: Mean daily System Imbalance Price in the third trading week 

Figure 5.9 shows the development of mean daily imbalanced settlement prices in the 

third week. 
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Figure 5.10: Mean daily System Imbalance Price in the forth trading week 

The model's mean daily imbalanced settlement prices in the last trading week are 

introduced in Figure 5.10. Next, we shall proceed to investigate the results efficiency 

against real NETA data. 

5.3.2 Discussion of Modelling Error 

To asses the accuracy of the market model, the NETA market outcome data 

corresponding to the standard daily demand profile in October 2004 which is shown 

in Figure 5.2, are presented as benchmark data in Figure 5.11 to Figure 5.18. Then the 

modelling error is measured next. 
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Figure 5.11: Mean market clearing pnce on NATE in the first trading week 
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The NETA PX market clearing prices which are from the trading happened in the first 

week in October 2004 , is aggregated into a single dally price curve and illustrated in 

Figure 5.11. 
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Figure 5.12: Mean market clearing price on NATE in the second trading week 

The NETA mean daily prices in the second week in October 2004 is demonstrated in 

Figure 5.12. 
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Figure 5.13: Mean market clearing price on NATE In the third trading week 

The NETA mean daily prices in the third week in October 2004 is shown below in 

Figure 5.13. 
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Figure 5.14: Mean market clearing price on NATE in the forth trading week 
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The NETA imbalance settlement prices which are from the trading happened in the 

first week in October 2004, is aggregated into a single daily price curve and illustrated 

in Figure 5.15. 
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Figure 5.15: Mean System Imbalance Price in the first trading week 
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Figure 5.16: Mean System Imbalance Price in the second trading week 

The NETA mean daily imbalance prices in the second week in October 2004 is 

illustrated in Figure 5.16. 

System Imbalance Price 
I)r)n 

zvu 

160 

120 

80 

40 

n 
16 11 16 21 26 31 36 41 46 

-System Sell Price Trading iterations 
---#-System Buy Price 

Figure 5.17: Mean System Imbalance Price in the third trading week 

Figure 5.17 presents the mean daily imbalance prices in the third week in October 

2004. 
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Figure 5.18: Mean System Imbalance Price in the forth trading week 

The imbalance system result from the last week is shown above in Figure 5.18. 
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Next, all the experimental results, including market clearing price PXP, imbalanced 

settlement prices System Buy Price SBP and System Sell Price SSP are measured 

against the NETA market results presented in Figure 5.11 to Figure 5.18 above, to 

assess the modelling. The modelling error is discovered by RMS (root-mean- square) 

error which is introduced following. 

n=48 
RMSpxp = square-root of (PXPiinodel 

- 
PXPineta )2 /48) (5.5) 

where PXPhnodel IS the model estimated PXP value at the ith trading iteration in one 

trading week, and PXPi,,,, is true PXP value on NETA at the ith trading iteration in 

one trading week. 

n=48 

RMSssp = square-root of (SSPiniodel - 
SSPineta )2 /48) (5.6) 

where SSPintodel is the model estimated SSP value at the ith trading iteration in one 

trading week, and SSPineta is true SSP value on NETA at the ith trading iteration in 

one trading week. 
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n=48 

RMSsBp = square-root of (SBPimodel 
- 

SBPineta )2 /48) (5.7) 

where SBPi,,, dl is the model estimated SSP value at the ith trading iteration in one 

trading week, and SBPi,,,,, is true SBP value on NETA at the ith trading iteration in 

one trading week. 

Table 5.3 shows the results of modelling error during the overall trading process. 

Table 5.3 Modelling error performance during 4 trading weeks 

Trading Period 1 st Trading 
Week 

2nd Trading 
Week 

3rd Trading 
Week 

4th Trading 
Week 

RMSpxp 9.30 8.55 6.98 5.65 

RMSssp 7.19 3.09 3.70 2.86 

RMSSBP 12.02 11.12 11.80 9.47 

Based on the experimental results and the modelling errors demonstrated above, the 

evolvement trend of major modelling results, market clearing price, PXP, system 

imbalance prices, SSP and SBP, are considerably similar to the NETA market 

outcomes. The proposed model appears to be capable of running the trading 

mechanism well in the way of which NETA is doing. 

5.4 Discussion 

A validation experiment against unused real NETA data has been finished, and the 

modelling performance has been exercised. 

An example of how the market participants leams and how they improve their 

strategy can be observed from Figure 5.2 to Figure 5.9 and Table 5.2, in terms of 

displaying the development progress of main model outputs, including mean daily 
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prices in the PX and in the Imbalance Settlement Process (PXP, SBP, and SSP) during 

the large number of trading iterations of the baseline experiment. For detailed 

analysis, according to the results shown above, in the initial stages the prices in the 

wholesale PX market, PXP, and in balancing mechanism and imbalance settlement, 

SSP and SBP, are very volatile. Occasionally, high priced bids and offers have been 

taken at very short notice. The volumes of accepted bids and offers in the balancing 

mechanism have sometimes been very small. SSP for spilling have been low with 

sometimes extreme high SBP for shortfalls. It appears that the spread between the SSP 

and SBP reduces in later weeks. It is not unreasonable because the market 

participants, especially the players on demand side, are learning to respond to the 

mechanism and improve their trading strategies. The relationship between supply and 

demand gets loose and it is likely to lead further convergence of SSP and SBP prices. 

There are also price spikes on wholesale market price PXP happened in later stage. 

These price spikes emerge when the demand is on peak periods, 9: 00am to I 1: 00am, 

14: 00am to 16: 00am, and 20: 00pm to 22: 00pm. For most industries, standard 

economic theory suggests that, under perfect competition, where no individual 

supplier has market power, the bids offered by each supplier should equal their 

marginal production costs. Under this scenario, price spikes should only occur when 

demand exceeds supply. However, in virtually all electric power markets, price spikes 

giving profits much in excess of marginal costs have been observed, even when 

sufficient supply is available. 

Note that market prices do emerge to create a wide spread between SBP and SSP and 

that PX clearing price is centrally located between them. This is what the advocates of 

NETA hoped would occur in that out-of-balance players would regret they had not 
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traded forward at PX. The level of prices that have emerged around f 80MWh for 

winter days is rather high because in this experiment, as will be seen below, market 

participants learn to create price spikes at the three peak periods. Notice that the SBP 

is much more volatile than the PX market clearing price or the SSP, also the 

emergence of daily price cycles (with high prices at the peaks) as participants learn 

from experience. 

The prices in all cases come out below existing NETA real prices. There seem to be at 

least two reasons for this: 

1. The experiments lasts for a maximum of twenty days. This gives less 

opportunities for participants to observe the behaviour of others and subsequently 

adjust offers accordingly. In real life, participants literally have years to achieve 

this; 

2. and one of the modelling assumptions is that the PX trades are a proxy for trades 

in all the markets, including those with longer-term activities than the day ahead 

usually assumed for the PX. The model assumes a higher degree of trade 

concentration than is currently the reality. 

The study in this chapter has certified that the model designed here is well capable of 

operating over simulating the market mechanism and players' trading behaviours. In 

general, the type of trading system envisaged by this model is able to respond 

efficiently to changing supply and demand conditions. The response of prices to 

demand vanations through the days is close to actual, and there is no evidence from 

the experiments that there would be any problems in the system responding to supply 

and demand shocks. 
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It is clear that the proposed technique for search, learning and optimisation of best 

strategies is efficient. The next chapter will use the model to discuss the development 

of gaming strategies on NETA. 
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6. Strategy Development and Prediction Experiments 

6.1 Gaming Behaviours 

Following successful modelling of the NIETA market, the model can then be used to 

analyse the market behaviour of gaming strategies practiced in the power market and 

to find out possible influence on NETA. The cooperative strategy is adopted and 

examined in this model, which is based on two different scales. The experiment 

results are discussed and compared with the results of the first set of experiments, 

which represents the actual market performance in this marketplace. 

Based on what has been discussed previously, it is revealed that generators have an 

incentive to withhold capacity from the market. That is, under certain conditions, 

enough generation companies cooperatively withholding capacity can drive the 

market into an oligopoly situation. 

Nevertheless the relationship among the collusive members is not stiff. There are two 

types of gaming generators. The first is the classical "tacit collusion" that occurs in 

static repeated withholding output capacity, where the object is for all players to learn 

that they can always make excess profits if they withhold amount of capacity from the 

market. This kind is referred to "loyal cooperators", suggesting that these generators 

should "always" withhold a portion in anticipation of an agreement. The second type 

assertsl however, that it is not always profitable to withhold capacity from the market, 

since the opportunity for raising profits does not always exist due to internalities and 

externalities, such as collaborative generators breaking the agreement, the demand 

bid , imbalance prices, etc. In other words, the payoff in the payoff matrix change with 

the internalities and externalities, making it necessary to recognize when the 

66 opportunity ljý to drive up profits exists. We refer this phenomenon to "opportunistic 
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tacit collusion" to distinguish it from the classical "tacit collusion". These generators 

follow an "opportunistic collusion" strategy whereby generators withhold capacity 

from the market only when they perceive an "opportunity" to raise profits by doing so 

exists. Opportunistic collusion might result in a generator setting aside a portion of 

their capacity and deciding for each trading round whether or not to offer that capacity 

to the market depending on expectations of raising profits. Once this is learned 

suppliers "tacitly collude" to sustain high market prices. 

For the "opportunistic collusive" generators, it is difficult to judge an "opportunity" to 

get more profits by estimating possible profit with cooperative strategy. Because in a 

certain market environment where a wide number of market participants are trading 

interactively, there are uncertainties and it is unlikely to precisely predict all 

participants' future moves and trading consequence. Nevertheless, the market clearing 

price in PX, PXP, and individual generators' capacity used in both of PX and BM, are 

introduced as the reference for the "opportunistic collusive" generators to decide 

whether or not to join the coalition agreement and withhold capacity from the market. 

6.2 Experimental Setup for Analysis 

The market clearing prices in PX is divided into three periods: 

1) A low price period, where the prices tend to be close to individual generator's 

specific marginal costs; 

2) An average price period, where the prices are at least 75% above the marginal 

costs; 

3) A high price period, where the prices rise to at least 20 times the marginal cost. 

The generators' used capacity is also divided into three stages: 
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1) A low demand period, below 75% of individual generator's particular available 

capacity; 

2) An average demand period, between 75% and 85% of available capacity; 

3) A high demand period, above 85% of available capacity. 

We assume if, and only if, that the market clearing prices, PXP, is in either of average 

price period or high price period of a "opportunistic collusive" generator, and its used 

capacity is in low demand period, this "opportunistic collusive" generator will quit 

coalition agreement and trade independently in market. If either of these two 

conditions is unsatisfied, it will rejoin the collusive group. 

The base-load plants (running in a non-stop regime), say the nuclear stations, are 

specified as "the "loyal cooperator", because they need to run continuously and 

specify zero start-up cycle so that they are not able to respond flexibly to real time 

trading in the BM. The gas turbine power plants and oil generation plants are defined 

as "opportunistic collusive" generators as they own the highest flexibility which 

means their generation features allow them to start up a numbers of times within one 

day. CCGT and coal power plants are assumed only adopt non-cooperative strategy 

and trade independently in power market. 

Besides, as we assume, this gaming behaviour can take place independently of 

transmission constraints, or insufficient supply, and is only enhanced by those factors. 

6.3 Small-Scale Model Experiment and Verification 

In order to gain a better view of the effects of gaming trading strategies on NETA, the 

first application experiment is carried out based on a small scale model. The total 
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available generation capacity is assumed as 33.3GW in this experiment, half size of 

the model experimented in last chapter. The number of generators, m, is assumed to 5, 

and suppliers', n, is assumed to 4 in this experiment. The total demand is set as 25 

GW, therefore the individual maximal demand, Qdm ax', of each supplier is set as 

6250MW. These experiments are based on the standard daily demand profile in 

November 2004, published by NETA and shown in Figure 6.1. 

Average daily demand profile in Nevember 
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Figure 6.1: Standard daily demand profile in November [63] 

There are still five sorts of power generation concerned considered in this model, 

including gas turbine, oil, coal, combined cycle gas turbine (CCGT) and nuclear 

plants. The generators of the same type are assumed to have similar marginal costs 

and generation capacity. Their generation system self-parameter is demonstrated in 

Table 6-1. 

Table 6.1 Generators' system self-parameters 

Type of generation Nuclear Combined cycle Large Gas turbines Oil 
plants Gas turbine coal 

(CCGT) 

Marginal generation 24.50 9.72 33.23 66.95 87.91 
cost (f/MWH) 

Maximal generation 6600 6600 6600 6600 6600 

capacity (MW) 
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6.3.1 Market Results 

In order to assess the perfon-nance of market players' different strategies, three major 

model outputs, the wholesale market clearing price PXP, imbalanced settlement prices 

System Buy Price SBP and System Sell Price SSP, are presented and evaluated below. 

6.3.1.1 Traded Market Clearing Prices in Power Exchange 

For gaining insights into aspects of the model and observing the evolution of the 

trading strategy, the analysis method imposed on the data in last chapter is also 

adopted here. The model's running process, given 20 days, is divided into four 

consecutive stages, week by week. These three trading results, including market 

clearing price PXP, imbalanced settlement prices System Buy Price SBP and System 

Sell Price SSP, in each trading week, are respectively represented by three typical 

mean daily trading results. Then for each of the three model outputs, there are overall 

4 sets of experimental results corresponding to the four trading weeks, and one set 

includes 48 model experimental outputs. These trading results are shown week by 

week to observe how the market players improve their strategies and how their 

behaviours influence the market outcomes. 

The PX runs as a proxy for trades in all the markets. As the crucial system output and 

model perfon-nance assessment reference, the market cleanng price in Power 

Exchange, PXP, in each of the four weeks, is represented by a set of mean daily 

market price. Each daily PXP curve has 48 PXP values coming from the 48 trading 

iterations within each typical trading day. Figure 6.2 demonstrates the mean daily 

Power Exchange market prices in the first week. 
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Figure 6.2: Mean daily market clearing price in PX in the first trading week 
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Figure 6.3: Mean daily market clearing price in PX in the second trading week 

According Figure 6.2 and Figure 6.3 above, there are a number of extremely sharp 

price spikes emerged in demand peak periods during the first two weeks. It is 

interesting that in the rest of trading times the PXP remains on similar level to the 

experimental data in last experiment in Chapter 5, where no cooperative strategy is 

introduced. 
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Figure 6.4: Mean daily market clearing price in PX in the third trading week 

Figure 6.4 shows the development of mean daily PXP in the third week. 
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Figure 6.5: Mean daily market clearing price in PX in the forth trading week 

The market's mean daily Power Exchange clearing prices from the last trading week 

are presented in Figure 6.5. We can see that the degree of price spikes has dropped 

down along with the model's running and strategies evolution. 

6.3.1.2 Traded Prices in Imbalance Settlement System - System Sell Price and 

System Buy Price 

In the Imbalance Settlement Process, the generators' metered generation and 

suppliers' metered demand are compared with the contractual position they notify. 
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The difference between the amount of electricity bought and sold under contracts and 

the actual amount produced and consumed is calculated by the imbalance settlement 

system. The weighted average of accepted Offers price for buying more energy is 

known as the System Buy Price (SBP). Conversely, the price for selling excess energy 

to the system the System Sell Price (SSP), is a weighted average of accepted Bids.. 

The same goes for suppliers. 

Figure 6.6 to Figure 6.9 reveal the impact of market participants' strategies, especially 

the gaming strategy, on the Imbalance Settlement Process. The other two fundamental 

system outputs, imbalanced settlement prices System Buy Price SBP and System Sell 

Price SSP are illustrated below. Figure 6.6 demonstrates the mean daily price curves 

of the imbalanced settlement prices SSP and SBP in the beginning week. 
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Figure 6.6: Mean daily System Imbalance Price in the first week 
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Figure 6.7: Mean daily System Imbalance Price in the second week 

Figure 6.7 shows the mean daily price curves of the imbalanced settlement prices SSP 

and SBP in the second week. There is evident observation that both of SSP and SBP 

stay stable at much higher degrees than previous experiment data in most of the 

trading rounds. 
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Figure 6.8: Mean daily System Imbalance Price in the third week 

Figure 6.8 shows the development of mean daily imbalanced settlement prices in the 

third week. 
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Figure 6.9: Mean daily System Imbalance Price in the forth week 
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The model's mean daily imbalanced settlement prices in the last trading week are 

introduced in Figure 6.9. 

6.3.1.3 Discussion of Results 

Based on the experiment results demonstrated above, significantly different to the 

results in last experiments at which generators only employ non-cooperative strategy, 

the PXP is driven to very high degrees during demand peak times and in the rest of 

trading times the PXP remains on similar level to the experimental data in last 

experiment with no cooperative strategy employed. The reason will be discussed in 

the section of summary. 

Also, the System Buy Price SBP is varied within an extremely wide of range, between 

40f/MVvlh to 790f-/MWh. Further, much more price spikes emerges in SBP rather 

than only at the three peak periods, 9: 00am to 1 1: 00am, 14: 00am to 16: 00am, and 

20: 00prn to 22: 00pm, in previous experiments, due to sharper supply function's 

shape. 
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6.3.2 Generators Capacity Used 

As we assume, if and only if, that the market clearing prices, PXP, is in either of 

average price period or high price period of a "opportunistic collusive" generator, and 

its used capacity is in low demand period, this "opportunistic collusive" generator will 

quit coalition agreement and trade independently in market. If either of these two 

conditions is unsatisfied, it will rejoin the collusive group. The generator used 

capacity is an important reference to measure the efficiency of generators' strategies 

and individual generator's position in this environment. For the "opportunistic 

collusive" generators it is also a reference parameter to decide the next move on the 

trading. Figure 6.10 shows the individual mean used capacity of the all five types 

generators in the first week. 
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Figure 6.10: Comparison of used capacity for different generators in the first week 

It is clear in Figure 6.10 that the type of nuclear stations, assumed as "loyal 

cooperator", has the largest market share in the initial stage. The experiment results 

show that suppliers often use nuclear plant as base-load plants because of its 

continuous running feature to avoid the risk of having to buy and sell in this way 

through the Balancing Mechanism with its very volatile prices. 
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Figure 6.11: Comparison of used capacity for different generators in the second week 

Figure 6.11 and Figure 6.12 have shown that the generation types with more 

flexibility have sold more power to the market than base-load plants, given the 

nuclear. 
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Figure 6.12: Comparison of used capacity for different generators in the third week 
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Figure 6.13: Comparison of used capacity for different generators in the fourth week 



Chapter 6 Strategy Development and Prediction Experiments 90 

The evolvement of the use capacity of individual generation type is these trading 

process is shown following. 

Table 6.2: Mean Percentage of Used Generation Capacity 

Generation Type Nuclear CCGT Large coal Gas turbine Oil 

First Week 0.802 0.763 0.736 0.724 0.703 

Second Week 0.712 0.770 0.749 0.729 0.754 

Third Week 0.659 0.742 0.766 0.775 0.807 

Forth Week 0.685 0.749 0.741 0.780 0.832 

6.3.3 Profitability Prediction of Individual Generators 

As we know, there are five sorts of power generation systems run into this model, 

including gas turbine, oil, coal, combined cycle gas turbine (CCGT) and nuclear 

plants. For each generation type, the weekly individual profit is represented by mean 

daily individual profit. The mean daily individual profit of each generation type is 

calculated by function 4.4. In order to compare their strategy's efficiency, the mean 

individual profit of nuclear generator on each trading day is divided by the other four 

type's, respectively. The calculated results are shown below from Figure 6.14 to 6.17. 
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Figure 6.14: Comparison of individual profit of each generation type in the first week 
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Figure 6.15: Comparison of individual profit of each generation type in the second 

week 

Based on the figures shown here, the individual profit of each generation type has 

very similar development trend to the case of their used capacity. 
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Figure 6.16: Comparison of individual profit of each generation type in the third week 

I Ou 

140 

120 

lou 
80 
60 
40 
20 

0 

CCGT 

Large 
coal 

Gas 
turbin 
e 

-Oil 

123456789 10 11 12 13 14 
Trading iterations 

Figure 6.17: Comparison of individual profit of each generation type in the fourth 

week 
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6.3.4 Results of Suppliers 

Each supplier's objective is to optimize its contract position, as well as trading prices, 

to minimize the cost of contracting in order to maximize total daily profits. Although 

in NETA the demand side service is full incorporated, the position of suppliers is still 

subordinate in this marketplace. Some may argue that demand service providers can 

withdraw demand from the PX market to counter the generator's strategy. On one 

hand, NETA's transition rules limited the ability of the major providers to do this by 

requiring that they purchase a majority of their needs from the PX markets. On the 

other hand, even when demand providers can move their purchases between markets, 

the generators always have an advantage. Once the PX market clears, generators can 

use System Operator load forecasts to know how much energy is required by the 

market. 

As described in previous part, the suppliers have adopted a strategy to respond to 

NETA imbalance prices by over-contracting to reduce exposure to the penalty in BM. 

The strategy is represented by functions 4.2 and 4.3. A percentage premium, which is 

used to evaluate supplier's strategy and profit efficiency, can be defined as (Cs/ CL) * 

100; the lower the premium the more efficient the strategy. The mean daily premium 

on each round are presented week by week. The efficiency of the suppliers' strategy 

optimization is clearly demonstrated in the Figure 6.17 to Figure 6.20. 



Chapter 6 Strategy Development and Prediction Experiments 

35 

Suppliers' profit effiency 

30 
25 
20 
15 
lo 
5 
0 

-5 
-10 

93 

Trading iterations 

Figure 6.18: Average suppliers' percentage of overcontracting in the first week 

In each of the four trading weeks, the suppliers' percentage of overcontracting is 

represented by a set of mean daily overcontracting points. Figure 6.18 shows the 

suppliers overcontract situation in the initial stage. 
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Figure 6.19: Average suppliers' percentage of overcontracting in the second week 

Figure 6.19 and 6.20 present the development of suppliers' overcontracting when the 

model is running in the midway. 
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Figure 6.20: Average suppliers' percentage of overcontracting in the third week 
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Figure 6.2 1: Average suppliers' percentage of overcontracting in the forth week 
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According to results above, the suppliers' strategy effectiveness is quite poor when 

gaming strategy is adopted by a number of generators. The over-contracting maintains 

serious especially in peak periods when the risks of being short and cost for imbalance 

are high. 

6.3.5 Summary 

Based on the application experimental results presented above, it has been proved that 

gaming generators have the potential to unilaterally raise the market price by 
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withholding generation under certain situation. The detailed analysis will be taken in 

the last section of this chapter. 

6.4 Large-Scale Model Experiment and Verification 

In order to compare the effects of market player strategies under different market 

circumstance, the second application experiment is taken on a large-scale model 

which is comparably similar to the NETA market. The total available capacity is set 

same as the experimental model at which the non-cooperative strategy is employed, 

say 66.7GW. The number of generators, m, is assumed to 15, and suppliers', n, is 

assumed to 10 in this experiment as well. There are five sorts of power generation 

systems run into this model, including gas turbine, oil, coal, combined cycle gas 

turbine (CCGT) and nuclear plants. The generators of the same type are assumed to 

have similar marginal costs and generation capacity. The generators' system 

parameters, i. e. estimated marginal generation costs P,,,, i, assumed maximal 

generation capacity, Qsmaxi, of each generator on each generation type are presented in 

Table 6.3 below. The total available generation capacity is set as 66.7GW. 

Oppositely, the maximal market demand is 50GW, which is same as the market scale 

of the NETA, so that the average maximal demand, Qdniax i, of each supplier is 

1125MW. The ratio of maximal market demand to total available generation capacity 

is set as 0.75, following the real situation in NETA. The large-scale experiments are 

based on the same winter daily demand profile introduced in the previous experiment. 



Chapter 6 Strategy Development and Prediction Experiments 

Table 6.3 Generators' system self-parameters 
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Type of generation Nuclear do-mbined cycle Large Gas Oil 
plants Gas turbine Coal Turbines 

(CCGT) 
Marginal generation 24.50 9.72 33.23 66.95 87.91 

cost (f/MWH) 

Maximal generation 4450 4450 4450 4450 4450 
capacity (MW) 

6.4.1 Modelling Results 

6.4.1.1 Traded Market Clearing Prices in Power Exchange 

The method to analyse the experimental results is same as in the last expenment. 

These major trading results, including market clearing price PXP, imbalanced 

settlement prices System Buy Price SBP and System Sell Price SSP, generators used 

capacity, individual profit are shown and assessed. 

In each trading week, the PX market clearing price, is represented by a set of mean 

daily market clearing price. There are overall 4 sets of experimental results 

corresponding to the four consecutive trading weeks. 
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Figure 6.22: Mean daily market clearing price in PX in the first trading week 
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Figure 6.23: Mean daily market clearing price in PX in the second trading week 

From the diagraphs above, there is an interesting trend arising, that the wholesale 

price PXP under cooperative situation in the first small-scale model is more higher 

than in the large-scale model with same trading strategy. There are a few price spikes 

on wholesale market price PXP happened in the later model as compared with in 

former where the price spikes arise even when sufficient supply is available. Whereas, 

in the second model these price spikes only emerge when the demand is on peak 

times, 10: 00am to 12: 00am, and 19: 00pm to 21: 00pm. Also, in the second 

experiment, the PXP in the rest of trading rounds are very close to the PXP in the 

model at which market participants adopt non-cooperative strategy. Hence, in order to 

get better understanding of how the strategies work, we adjust an crucial gaming 

strategy parameter, X, which represents the percentage of how much output capacity 

each member of the coalition agreement intends to withhold in its total generation 

capacity, to a new range between 10% and 40%, which was set between 10% and 

25%. The new variable is experimented in the third and forth trading weeks. 
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Figure 6.24: Mean daily market clearing price in PX in the third trading week 

Market clearing price in PX 

200 

160 

120 

80 

40 

0 
59 13 17 21 25 29 33 37 41 45 

Trading iterations 

Figure 6.25: Mean daily market clearing price in PX in the forth trading week 
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On the last two experiments, the emergence of price spikes keeps same as in the first 

two experiments. The discussion for this feature will be carried out later on. 

6.4.1.2 Traded Prices in Imbalance Settlement System - System Sell Price and 

System Buy rice 

Imbalance Settlement prices are parameters to observe the efficiency of gaming 

generators strategy and how market players' performance influence on the market. 
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Figure 6.26: Mean daily System Imbalance Price in the first week 
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Figure 6.26 to Figure 6.29 reveal the impact of market participants' strategies on the 

Imbalance Settlement Process in terms of showing the other two important reference 

parameters, imbalanced settlement prices System Buy Price SBP and System Sell 

Price SSP. Figure 6.26 demonstrates the mean daily price curves of the imbalanced 

settlement prices SBP and SSP in the beginning week. 
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Figure 6.27: Mean daily System Imbalance Price in the second week 

Figure 6.27 and 6.28 present the development of mean daily System Imbalance price 

when the model is running in the midway. It is clear that the price spikes only emerge 

in peak demand penods in the model. 
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Figure 6.28: Mean daily System Imbalance Price in the third week 
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Figure 6.29: Mean daily System Imbalance Price in the forth week 

The model's mean daily imbalanced settlement prices in the last trading week are 

illustrated in Figure 6.29. 

6.4.1.3 Generators Capacity Used 

The traded generation output volumes from different types of generators are presented 

as following by week: 
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Figure 6.30: Comparison of used capacity for different generators in the first week 

The generator used capacity is a crucial reference to measure the efficiency of 

generators' strategies and to decide the next move on the trading. Figure 6.30 shows 

the individual used capacity for different generators in the first week. Similar to the 

last experiment carried out in a small-scale model, the nuclear plants get more market 

share than others in the initial stages. 
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Figure 6.3 1: Comparison of used capacity for different generators in the second 
week 



Chapter 6 Strategy Development and Prediction Experiments 

Comparison of Different Generators' Capacity Used 

I L)U 

80 
c2. 

(3 60 
70 

40 

20 

0 

CCGT 

Large 
Coal 

Gas 
Turbin 
e 

-Nuclea 
r 

56789 10 11 12 13 14 
Trading iterations 

102 

Figure 6.32: Comparison of used capacity for different generators in the third week 

Figure 6.32 shows the development of used capacity for different generators in the 

third week. 
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Figure 6.33: Comparison of used capacity for different generators in the forth week 

The evolvement of the use capacity of individual generation type is these trading 

process is shown following. 

Table 6.4: Mean Percentage of Used Generation Capacity 

Generation Type Nuclear CCGT Large coal Gas turbine Oil 

First Week 0.829 0.755 0.729 0.728 0.727 

Second Week 0.832 0.778 0.748 0.722 0.728 

Third Week 0.68 0.729 0.782 0.727 0.75 

Forth Week 0.685 0.734 0.713 0.761 0.82 
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6.4.1.4 Profitability of Individual Generators 

There are five sorts of power generation systems run into this model, including gas 

turbine, oil, coal, combined cycle gas turbine (CCGT) and nuclear plants. The mean 

daily individual profit of each generation type is calculated by function 4.4. To 

compare the individual generation sort's strategy efficiency, the mean profit of 

nuclear generation plant on each trading round is set as the benchmark. The 

experiment results are shown below. 
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Figure 6.34: Comparison of individual profit of each generation type in the first 

week 

Corresponding to the situation at which the nuclear plant has more used generation 

capacity and gain more market share, its profit is the highest in the beginning. 

4AA 

I +L) 

120 

"loo 
(D 

80 

60 
(D 40 

20 

0 

CCGT 

---*- Large 
coal 

Gas 
turbines 

-Oil 

56789 10 11 12 13 14 

Trading iterations 

Figure 6.35: Comparison of individual profit of each generation type in the second 

week 
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The evolvement of the individual profit when the trading is running in midway is 

shown in Figure 6.35 and Figure 6.36. 
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Figure 6.36: Comparison of individual profit of each generation type in the third 

week 
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Figure 6.37: Comparison of individual profit of each generation type in the forth 

week 

The individual profit of each generation type from the last trading week are presented 

in Figure 6.37. 
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6.4.2 Results of Suppliers 

A percentage premium, which is used to evaluate supplier's strategy and profit 

efficiency, is calculated by equations 4.2 and 4.3. The lower the premium the more 

efficient the strategy. The mean daily premium on each round are presented week by 

week. The efficiency of the suppliers' strategy optimization Is clearly demonstrated 

from these figures. 
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Figure 6.38: Comparison of suppliers' percentage of overcontracting in the first week 

In each of the four trading weeks, the suppliers' percentage of overcontracting is 

represented by a set of mean daily overcontracting points. Figure 6.38 shows the 

suppliers overcontract situation in the initial stage. 
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Figure 6.39: Comparison of suppliers' percentage of overcontracting in the second 

week 
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In the first two stages, the suppliers' percentage of overcontracing is around 5%. 
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Figure 6.40: Comparison of suppliers' percentage of overcontracting in the third week 
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Figure 6.41: Comparison of suppliers' percentage of overcontracting in the fourth 

week 

We can observe that the evolution of supplier strategy has significantly made less 

overcontracting in last stage. 

6.5 Summary 

From the generalisation and prediction experiments carried out, the experiment results 

have revealed some significant changes and differences among the outputs of the 
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models with different trading strategies and two different scale models, they have also 

drawn some conclusions below. 

1. In the small-scale model where the market size is similar to the scale of 

Californian electricity market, but much smaller than the reality in NETA, a 

number of generation companies adopt cooperative strategy. The market 

circumstance has been successfully changed by gaming generation companies. 

The Imbalance Settlement price SBP is driven up to a significantly high level and 

the PX market price PXP has a number of sharp price spikes which are not 

affordable for electricity suppliers. Further, the individual profit of gaming players 

are much higher than in both of the large-scale model where some generation 

companies adopt same cooperative strategy and the model where all trading 

participants employ non-cooperative strategy. 

2. Experimental results from the large-scale model where some generation 

companies adopt cooperative strategy have revealed that, on one hand, the PX 

market prices PXP are not obviously influenced by the strategic trading imposed 

by some gaming generators, whereas the PXP results are close to the results in the 

model with all using non-cooperative strategy, even when the percentage of 

withheld output capacity of individual coalition member is tuned to 40% of its 

maximal generation volume; on the other hand, the Imbalance Settlement prices 

SBP and SSP have caused lots of serious price spikes in demand peak times. And 

individual profit of gaming players is comparably higher than other market 

participants employing non-cooperative strategy. Experimental results expose that 

one of major reasons for this phenomena in which the trading outcomes from two 

models are obviously different is that, in the large-scale market place where a 
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large number of participants are involved, a minority group of players do no have 

significant effect on market share. Another reason is that the "opportunistic 

collusion" generators do not always join the agreement to withhold output and, 

according to their strategy evaluation results, in some trading rounds they choose 

non-cooperative strategy to work independently and try to make their individual 

profit maximized in the market place. 

3. Experimental results also illustrate that implementing both physical (bid only a 

portion of one's capacity) and economic (bid a portion at a very high price) 

withholding generation capacity is an efficient methodology to change the market 

circumstance, given causing price spikes. Theoretically which type of withholding 

a generator should choose depends on the market structure. In NETA 

circumstance, all markets (forwards and futures markets, short-term Power 

Exchange and BM) are continuate and interchangeable. Therefore both of physical 

and economic withholding is employed to make the maximal profit by gaming 

generators. 

4. It is evident that a number of price spikes do emerge on PX market price PXP and 

Imbalance Settlement Prices, no matter in our designed models or in actual NETA 

market. In the experiment with non-cooperative strategy the price spikes often 

emerge when the demand is on peak times, 10: 00am to 12: 00am, and 19: 00pm to 

21: 00pm. When the market is driven to an oligopoly situation in the small-scale 

model, much more price spikes arises. For most industries, standard economic 

theory suggests that, under perfect competition, where no individual supplier has 

market power, the bids offered by each supplier should equal their marginal 

production costs. Under this scenario, price spikes should only occur when 
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demand exceeds supply. However, in virtually all electric power markets, price 

spikes giving profits much in excess of marginal costs have been observed, even 

when sufficient supply is available. 

5. Based on the experimental results, the power plants in base-load position with 

lower marginal costs, like nuclear power generators, have sole out more 

generation volume and got comparably higher profits in initial weeks. Along with 

the development of strategy and algorithms optimization, the other power 

generation with lower startups which are flexible in Balancing Mechanism are 

meeting the mechanism's system balance requirements and learning to improve 

their trading strategies. In the later weeks, the power plants with flexibility which 

means their generation features allow them to start up a numbers of times within 

one day to respond the 48-round market trading in one day, whereas the power 

plants with inflexible technology have to run continuously, have sold more 

volumes and won significantly high profits from the BM. 

In general, the performance of developed models and the experimental results have 

proved that, on one hand, there is no evidence that on a non-naturally oligopoly 

electricity market where the market scale is similar to the NETA, the effort that a part 

of generators make a coalition of withholding output capacity to drive the market to 

an oligopoly circumstance could achieve its original targets, when the generation 

capacity of these gaming generators do not account for significant share of the total 

market supply; on the other hand, withholding capacity may have an extreme impact 

on the imbalance settlement prices, hence cause extra profit for related generators. 
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7. Evaluation Experiments of Developed Model and 

Method 

7.1 Introduction 

In order to assess the performance of the proposed NETA market model and the 

evolving trading strategy, it is necessary to compare them against other related works. 

A comparably similar simulation model with its developed strategies from [34] is 

chosen to be examined in this Chapter. In this chosen research work, the designed 

model's scale is close to the model proposed in this thesis. The trading agents in this 

model use Genetic Algorithm coupled with various price forecasting techniques to 

select appropriate bidding strategies for the current market conditions. The bidding 

strategies adapt, or evolve, as other traders change their trading behavior. The 

research results from this work are compared with my experimental results following. 

7.2 Evaluation Results 

To evaluate the efficiency of the two different developed strategies, three major 

system parameters from two models, the ratio of PX market clearing price PXP to 

mean marginal cost MC, the individual generator capacity used, and the market 

imbalance volume, are compared respectively. 

7.2.1 Traded Market Clearing Prices in Power Exchange 

Because the PX is the marketplace where most trades are made and its clearing price 

PXP is one of the most important model outputs, the ratio of PXP to mean marginal 

cost MC, PXPIMC, is a significant reference which directly assess the effect of 
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generation companies5 gaming strategy on the wholesale market, and also measures 

the interaction between the market environment and the market player's payoff. 

As introduced previously, the model's running process, given 20 days, is divided into 

four consecutive stages, week by week. The PXPIMC, in each trading week, are 

respectively represented by a set of mean daily trading results. There are 4 sets of 

experimental results corresponding to the four trading weeks, and one set includes 48 

calculated values. Figure 7.1 demonstrates the mean daily PXPIMC in the first week. 
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Figure 7.1: Comparison of PXP/MC from two strategies in the first trading week 
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According Figure 7.1 and Figure 7.2 above, during the first two weeks the two 

strategies have similar performance in most trading rounds. The trading strategy 

proposed by this thesis works better in demand peak periods. 
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Figure 7.3: Comparison of PXP/MC from two strategies in the third trading week 
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Figure 7.4: Comparison of PXP/MC from two strategies in the fourth trading week 

Based on the experiment results demonstrated above, the difference of two strategies 

is calculated through dividing the mean PXPIMC of the chosen model by mean 

PXPIMC of my model. There is significant evidence that the latter has stronger 

influence on the PX prices. 



Chapter 7 Evaluation Experiments 

Table 7.1 Comparison of PXP/MC from two strategies 

Comparison of 
Pxpýmc from two 

strategies 
Mean PXPVMC of 
chosen model 

Mean PXPIMC of 
my model 

Ratio of two 
PXPVMC 

First Week 1.72 1.83 6.40% 

Second Week 1.68 1.93 14.88% 

Third Week 2.39 2.98 24.69% 

Forth Week 2.40 2.83 17.92% 

7.2.2 Generators Capacity Used 

113 

As we assume,, there are three kinds of generation companies playing in the trading 

system. The first is "loyal cooperator", which "always" withhold a portion in 

anticipation of coalition agreement. The second is "opportunistic collusive" generator. 

They follow an "opportunistic collusion" strategy whereby generators withhold 

capacity from the market only when they perceive an "opportunity" to raise profits by 

doing so exists. The third is assumed only adopt non-cooperative strategy and trade 

independently in power market. 

As we introduced earlier, the generator used capacity is an important reference to 

measure the efficiency of generators' strategies and individual generator's position in 

this environment. The individual mean used generation capacities of "loyal 

cooperator", "opportunistic collusive" generator, competitive generator and the 

generator in the chosen model are shown below from Figure 7.5 to 7.8. 
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Figure 7.5: Comparison of used capacity for different generators in the first week 
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Figure 7.6: Comparison of used capacity for different generators in the second week 

It is clear in Figure 7.1 and Figure 7.2 that the "loyal cooperator" and competitive 

generators have sold more generation volumes in the initial stage. 
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Comparison of Different Generators' Capacity Used 
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Figure 7.7: Comparison of used capacity for different generators in the third week 
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Figure 7.8: Comparison of used capacity for different generators in the fourth week 

The evolvement of the use capacity of individual generation type is these trading 

process is shown in Table 7.2. 
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Table 7.2 Mean percentage of used generation capacity of different strategies 

116 

Kinds of generators' 
strategies 

Loyal 
cooperator 

Competitive 
generator 

opportunistic 
collusive" 
generator 

Generator of 
chosen model 

First Week 0.82 0.76 0.69 0.72 

Second Week 0.79 0.77 0.77 0.72 

Third Week 0.67 0.72 0.82 0.74 

Forth Week 0.69 0.73 0.82 0.76 

Mean Used Capacity 
0.74 0.75 0.78 0.74 

7.2.3 Imbalance Volume In PX of Two Strategies 

The fundamental objective of gaming generators is to make up supply/demand 

imbalance in PX and drive the market into an oligopoly situation. The imbalance 

volume in PX is the major parameter to assess the efficiency of the strategy. The 

mean imbalance volume in PX on each trading week are shown below from Figure 

7.9 to 7.12. 
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Figure 7.9: COmPan*son of imbalance volume for different generators in the first week 
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Figure 7.10: Comparison of imbalance volume for different generators in the second 
week 
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Figure 7.12: Comparison of imbalance volume for different generators in the fourth 

week 

Comparison of imbalance volume 
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7.3 Summary 
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Based on the evaluation experiments carried out, the comparison results have revealed 

some significant differences between the two models and their developed trading 

strategies. The experimental results have drawn conclusions that the proposed model 

and the designed trading strategies have better perfonnance than other related work. 

In contrast to those related work from the literature, the proposed market model and 

the trading strategy evolving method have advantages following, 

1. Although the electricity trading system in the U. K. is a deregulated market with 

the longest history in global energy industry and has become the benchmark of 

worldwide electricity markets, there are few research results published for 

analysing such a trading market mechanism, especially involving human 

intelligence. Furthermore the other major work that has not been proposed by 

academia and industry is to study the possibility and consequence of gaming 

behaviours and market power on NETA. The research demonstrated in this thesis 

has done some pioneering work to first model the trading mechanism of this 

market and to study the influence of market manipulation by trader's gaming 

strategies. 

2. The features of the designed model has made closer to the reality in power market 

than any other research models which had been developed before, such as 

e The number of market participants is same as the real case in NETA; 

9 The market model simulates a two-side market, with demand fully 

incorporated, which had been achieved by others; 
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3. While there has been an amount of effort imposed on analysing the gaming 

strategies and their influences over the electricity trading market by adopting 

game theory, only had they solely used either noncooperative or cooperative game 

theory to analyse the market player's gaming behaviours. However the energy 

crisis in California and problems happening in other power markets have 

demonstrated that it is not capable of analyzing the gaming strategies practiced in 

power market, because market players have been using mix of both when they are 

making collusion among energy companies. 

One of the creative contributions presented by this research is that both of the 

cooperative and competitive game strategies are employed together to simulate 

various forms of trading strategies of different market players, which follows the 

reality of power market trading. 

4. So far, no research work has ever studied how to make gaming binding more 

efficient when market participants are cooperating. In this case, a more extreme 

management- enforcement cooperative gaming technique, "Trigger price 

strategies", is introduced to enhance this strategy and has been proved to be a 

useful method for executing cooperative agreements among gaming generators. 

5. Incorporating these problems into a decision making process requires search and 

optimisation techniques. Most research have tried using conventional optimization 

techniques to find best trading strategies. However many of the classical learning 

and search methodologies require the use of derivative information that usually is 

not available. Others are limited to one dimension only. In addition all of the 

classical techniques are single-peak optimisation techniques. Yet modelling these 

complex market behaviours and search the right trading strategies often do not 
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have accurate measurement of their variables and require many objectives to be 

met before any solution is considered adequate. These deficiencies have made 

most research in this field have to bring a lot of assumptions to make their 

algorithms work. Therefore, a search technique which can handle these problems 

should be: 

9 Be capable of handling possible non-linear interactions between various 

elements; 

9 It is able to deal with incomplete, uncertain and imprecise of information; 

* Non-detenninistic and posterior; 

9 Global optimization; 

9 Be able to deal with non-numerical variables. 

Evolutionary Computing, a new breed of learning and search techniques that meets 

the requirements of this research, is chosen and well overcome these decision-making 

problems. 

6. In previous related work that adopted Evolutionary Computing as the search and 

learning technique, Evolutionary Computing has been used as only fundamental 

method to develop trading strategies. This fact made the evolvement of market 

player's strategy start from random, which had no sense to reality of power markets. 

In our study, Evolutionary Computing is used as a search, learning and optimization 

technique to assist game theory to discover the optimal strategies. 

Although this research work has made some creative work and achievements, there 

are still some deficiencies existing in this model and developed method, which could 

be improved in future work: 
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1. In this research, Genetic Algorithms are introduced to search and optimize market 

players' trading strategies. Limited range of GA operators have been used in this 

research. 

2. Currently the simulated NETA market model does not take transmission 

constraints and losses into account when market trading is carried out for 

simplicity reason. These lack of physical features of power system made this 

model less feasible. 

3. The current model omits some endogenous power system variables, including 

start-up costs and no-load costs, and does not consider the vertical generators who 

own both power generation and transmission obligations. 

In general, the developed market model and the designed trading strategies is capable 

of providing a better simulation platform to analyse the dynamic and decision making 

behaviour of the UK electricity trading system, and of developing an effective tool of 

predicting the impact of the gaming strategy and market power on such a 

circumstance like NETA. 
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8. Conclusions and Future Work 

8.1 Conclusions 

This research is motivated by the market collapse events occurring in California in 

year 2001, for which no effective system models existed to predict and take prompt 

action rom. An effective model appeared to be difficult to establish, due to human 

involvement in the trading system and gaming strategies practised. It is hence hard to 

qualify using conventional modelling and data fitting techniques. 

This work has attempted the application of Game Theory to the modelling and 

application of Evolutionary Algorithms to evolve a game theory based model. The 

aims are to model the market structure and trading behaviours in the New Electricity 

Trading Arrangements and to analyse and predict the possibility and consequence of 

gaming behaviours and market power on NETA. The work has led to the following 

achievements. 

e An effective NETA system model has been established, using a hybrid method of 

game theory and evolutionary computation. The model is capable of reproducing 

NETA market mechanism, which has not been achieved before. 

9 Compared with existing models, a more sophisticated and more realistic two-sided 

transaction mechanism with demand fully incorporated is anommodated in this 

new model, which has not been achieved successfully in this research field so far. 

e By utilizing game theory, the gaming strategies of power generation finns are well 

simulated and the market manipulation and strategic trading behaviours made by 
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market players can hence be analysed. Further, the impact of such market 

performance on NETA has been found out. 

* Another creative contribution in this research is that, the cooperative strategy 

which is being more frequently employed by electricity firms in global markets, 

can now be modeled, simulated, and explored fro analysis and prediction. 

e "Trigger price strategies" is introduced to enhance this research and has been 

proved to be a useful method for executing cooperative agreements among 

gaming generators. 

Evolutionary Computation based methods are developed to search for trading 

strategies against many uncertainties and incommensurable objectives. 

In summary, this research has successfully addressed problems identified in the 

Introduction. The research has shown that the model designed and methodologies 

developed are a useful decision- support tool for developing competent strategies and 

decision-making for the NETA system. 

8.2 Future Work 

The work presented in this thesis could be extended in a number of directions: 

* In Chapter 5, Genetic Algorithms are introduced to search and optimize market 

players' trading strategies. Limited range of GA operators have been used in this 

research. For instance, Tournament selection is chosen as the only selection 

method to pick up parents. Research could be performed to employ more 

selection, crossover and mutation techniques, and find the suitability of different 
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functions for this task. Therefore research into this would be fruitful. It would also 

be interesting to compare these techniques for improving the algorithms' power. 

e It has been recognized that most of the generation based ancillary services such as 

spinning reserves and AGC provision, are playing more important roles in power 

markets. In some electricity markets such as NETA and Spain, serious strategic 

behaviour by power suppliers has been observed in some ancillary services 

markets. There have exhibited extreme price volatility in these markets. Further 

attempts to extend the research interests to go through the influence of market 

player's gaming trading strategy on these concerned market would be reasonable. 

Similarly, it would also be attractive to cover the reactive power provision field. 

Optimal Power Flow that is able to gain reliable, analytical and experimental 

insight of power system could be employed as a main technique to solve these 

problems out. 

* Currently the simulated NETA market model does not take transmission 

constraints and losses into account when market trading is carried out for 

simplicity reason. These physical features of power system would be covered by a 

more realistic market model in future work. 

e Another direction of future research work would be a deeper theoretical and 

experimental study. The current model omits some endogenous power system 

variables, including start-up costs and no-load costs, and does not consider the 

vertical generators who own both power generation and transmission obligations. 

This model could be improved by considering more if data are available. 
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Appendices 

Tools to Analyse Trading Competition and Strategies 
1 Introduction 

As described in Chapter 2, there exists no electricity market that is perfectly 

competitive in the world. Market participants in the electricity market develop gaming 

strategies in order to maximize their own profits. The electricity generators (main 

sellers) are neither competitive price-takers who have no control over price, nor 

monopolistic price-setters who are the single decision makers. Market Clearing Price 

(MCP), market share allocation and then individual profit are results of the 

interactions among individual market participants, as individual decision makers. 

Each market participant has to determine and evaluate its strategic behaviours based 

on a great deal of uncertainty and risk. 

Game theory is a discipline that is concerned with how individuals make decisions 

when they are aware that their actions affect each other and when each individual 

takes this into account. It is the interaction among individual decision makers, all of 

who are behaving purposefully, and whose decisions have implications for other 

people that make strategic decisions different from other decisions [45]. 

Necessarily gaming strategies need to be explored and evaluated. Incorporating these 

problems into a decision making process requires some search and optimisation 

techniques. Many of the classical learning and search methodologies require the use 

of derivative information that usually is not available. Others are limited to one 

dimension only. In addition all of the classical techniques are single-peak optimisation 

techniques [461. Therefore Evolutionary Computing, a new breed of learning and 
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search techniques that are non-deterministic and a suitable solution to search the 

global optimum, is chosen to solve this decision-making problem. 

This chapter deals with the two evolving tools that are being employed in this project, 

namely game theory and Evolutionary Computing (EC). The first part provides 

background and application of developing strategic behaviours on electricity markets 

through Game Theory. EAs is discussed in the second part. 

2 Game Theory 

Game theory is a discipline that is used to analyze problems of conflict among 

interacting decision makers. It may be considered as a generalization of decision 

theory to include multiple players or decision makers. Game theory can be classified 

into two areas: cooperative and non- cooperative, in which the distinction relates to 

whether agreements made between trading participants are binding. Cooperative game 

theory assumes that such agreements are binding, whereas non-cooperative game 

theory does not. 

2.1 Noncooperative Game Theory 

So far there are much more research contribution of using non-cooperative game 

theory on electricity market research and developing gaming strategies. 

Noncooperative games can be zero-sum games or nonzero-sum games. In zero-sum 

games, the gains of one player equal the losses of the other player. In nonzero-sum 

games, the gains of one player do not equal the losses of the other player. The solution 

for nonzero-sum games was first fon-nulated by John Nash, and the Nash equilibrium 
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is now a universally used game theory methodology on the research of electricity 

trading strategy. 

Noncooperative games can be described using two kinds for formats. The first format 

is the normal or strategic form, and the second is the extensive form. In the strategic 

fonn, one deals with a set of players, a set of choices or strategies available to the 

players, and a set of payoffs corresponding to these strategies. The payoff for a given 

player depends not only on the strategy chosen by that player but also on the 

strategies chosen by the other players. Additionally, it is assumed that the rules of the 

game, the strategies available to the players, and the payoffs are common knowledge. 

Each player is assumed to act rationally to maximize its profit. 

As introduced above, the Nash Equilibrium is the most widely used noncooperative 

game theory among then. The formal definition of his concept is given below [47]: 

Suppose there are N players in a game, Xi is the set of possible strategies for player i, 

and vi (si, SN). A Nash Equilibrium is a strategy profile f Si .... 
sNj I such that 

each strategy si is an element of Xi and maximizes the function Qx) = vi (s, S, _, , x. 

Sj+j sNj I among the elements of Xi. That is, at a Nash Equilibrium, each 

player's equilibrium strategy is a best response to the belief that other players will 

adopt their Nash Equilibrium strategies. In Nash Equilibrium it is assumed that the 

rules of the game, the strategies available to the players, and the payoffs are common 

knowledge, which does not reflect the real cases in power markets. 

Finite nonzero-sum games are also called bimatrix games, given the notation used to 

represent the payoffs in the game. A bimatrix game consists of two players, each of 
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whom has a finite number of actions called pure strategies. When player I chooses 

pure strategy i and player 2 chooses pure strategy j, their payoffs or gains are 

represented by aij, and bij, respectively. A mixed strategy for player I is a vector x 

whose i-th component represents the probability of choosing pure strategy i. Thus xi 

ý! O and Z xi = 1. A mixed strategy for player 2 is defined analogously. If x and y are a 

pair of mixed strategies for players 1 and 2, their expected gains are xAy and xBy, 

respectively. A pair of mixed strategies (x*, y*) is said to be a Nash equilibrium if 

(x*)'Ay* >- x'Ay* Vx>0, Z xi =1 

and 

(x*)'By*>-(x*)'By*Vyýý0, Z yi= 1 

In other words, (x*, y*) is a Nash equilibrium if neither player can gain by unilaterally 

changing its strategy. 

A particularly interesting special case of a Nash equilibrium is a Nash equilibrium in 

pure strategies, i. e., one in which the probability of choosing a particular strategy is I 

for each player. 

Noncooperative games are the foundation for some of the standard models in 

oligopoly. The study of oligopoly models is essential to study market power. 

2.1.1 Cournot Duopoly 

A Cournot model [48] involves a duopoly game in which two firms produce an 

identical product and must decide how much to produce without knowing the output 

decision of the other. For convenience, assume that each firrn's cost is 0. Assume that 

x, andX2, represent the output decisions of each firm. The market price is represented 
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by p(xl+ X2),, where p(x) is the inverse demand curve. The profits or payoffs for each 

firm are Ai = p(xi + x2). The strategy of each fin-n is to choose xi in order to maximize 

its profit without knowing the decision of the other firm. 

2.1.2 Bertrand Duopoly 

Under a Bertrand model, each firm must choose the price at which it is willing to 

produce. Ignoring bounds on output, we can assume that the lower priced firm will 

capture market share and that both firms will have equal outputs at equal price. If x(p) 

represents the market demand function, the payoff or profit of firm I can be 

represented as 

PI X(PI)5 if PI P2 

k](Pli, P2Y::::::: 
I 

pi x(pl)/2, if PI P2 
oil if PI : ý: P2 

Bertrand game has a structure similar to the problem of simple prisoner's dilemma 

[57]. If both players cooperate, they can both charge the monopoly price. However, 

each player has an incentive to reduce its price slightly and capture market share, even 

though it knows that both players will be worse off if they both cut price. 

2.1.3 Market Power Mitigation 

Market power can be defined as the ability of a market participant to raise prices 

above the competitive level by restricting output or restricting new entrants. 

Horizontal market power is often associated with a single firm or a few finns 

controlling a large part of the supply. 

Although generation divestiture has been used as a remedy for this problem in the 

electric power industry, it is not always a viable option. In such instances, financial 
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contracts such as contracts for differences (CfD) can be used to accomplish what 

might be termed as virtual divestiture. Game theory can be used to study the effects of 

CfDs on bidding incentives. The purpose of a CfD is to insulate the supplier against 

the temporal price variations in the market. Once counter party in the CfID agrees to 

pay the other the difference between the contract price and the prevailing market or 

pool price. 

A CfD can be either two-way or one-way. A two-way CfD is similar to a financial 

futures contract and is defined in tenns of a strike price (f/MWh), and a quantity 

(MWh). For the defined quantity, the seller pays the buyer if the pool price rises 

I"k Wove the strike price, and the buyer pays the seller if the pool price falls below the 

strike price. A one-way CfD is similar to a financial option contract and also includes 

an option fee in addition to the strike price and contract quantity. Under a one way 

contract, difference payments are made only if the pool price rises above the strike 

price. 

The effect of a CfD is to fix or bound the revenue for a generator. In the extreme, 

where the entire output of a generator is contracted under a CfD, the generator's 

revenue will be completely insulated from market price variations, and, consequently, 

the generator should have no incentive to raise prices. Ideally, one would like to 

contract just the appropriate fraction of output required to mitigate market power. 

To illustrate how CfDs can eliminate incentives to raise prices, we will set up a simple 

Cournot model with two generators (A and B) and one load. Each of the generators 

has an incremental cost of EIO/MYvlh and a maximum output of 75 MW. The strategic 

decision for the generators is to choose a level of output that maximizes their profits. 
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The price is set by the demand curve. We will assume that each generator chooses 

between two levels of output, a high output of 75 MW and a low output of 20 MW, as 

shown in Table 1. 

Table A. 1: Output decisions of A and B 

Generator B 
Output (MW) 

High Low 

75 75 
High 

Generator 75 20 

A 20 20 
Low 

75 20 

Table A. 2: Prices corresponding to output decisions 

Generator B 
Pirce (f/MW) 

High Low 

High 40 45 

Generator 

A 

Low 45 150 

Table A. 3. Profits without CfD 

Generator B 
Profit (f) 

High Low 

2250 2625 A's profit 
High 

Generator 2250 700 B's profit 

A 700 2800 A's profit 
Low 

2625 2800 B's profit 
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Table A. 4. Profits with CfD for 30MW 

Generator B 
Profit (f) 

High Low 

High 
2250 2475 jks-p-rofit 

Generator 2250 550 B's profit 
A 

Low 
700 -500 A's profit 

2475 -500 B's profit 

Table A. 5. Profits with CfD for I OMW 

Generator B 
Profit (f) 

High Low 

2250 2575 A's profit High 
Generator 2250 650 B's profit 

A 650 1700 A's profit Low 
2575 1700 B's profit 

The low output may be interpreted as withholding of capacity with a motivation to 

increase prices. If prices increase sufficiently, the generator can make a higher profit 

at the low output. There are four possible cases to consider, depending on the decision 

of each generator. The prices corresponding to these cases are shown in Table 3.2. 

Table 3.3 shows a Nash equilibrium for the case when both generators choose low 

levels of output to maximize their profits. However, if a CfD is applied to 30 MW of 

the generators output, the Nash equilibrium changes, as shown in Table 3.4. The 

strike price in the CfD is assumed to equal the competitive price of f40/MWh. In this 

case, profits are maximized at the competitive price corresponding to the high output 

by each generator. Similarly, Table 3.5 shows the profits if a CfD is applied to 10 

MW of the output. 
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2.2 Cooperative Game Theory 

Cooperative game theory, which is quite different from noncooperative game theory, 

used to be generally applied to solve allocation problems. The various solutions 

proposed for cooperative games could be interpreted as alternative solutions to an 

allocation problem. The energy crisis in California and problems happening in other 

power markets, where more collusion and price tricks among energy companies 

reveal have emerged, have motivated research interests in adopting cooperative game 

theory to study coalition gaming strategies. The key ideas involve the concept of 

coalitions or groups that are formed to benefit from economies of scale. 

For instance, equity arguments call for solutions that allocate costs to coalitions in a 

manner that guarantees that all coalition members are at least as well off as they 

would be if they were not a part of the coalition. This is sometimes called the stand- 

alone test. Solutions that exactly allocate the total costs and satisfy the stand-alone 

test, are called core solutions. Alternative solution concepts such as the Shapley Value 

are also possible. 

The emphasis in cooperative game theory is on solutions that are equitable. In 

contrast, noncooperative game theory helps us study efficient solutions under new 

market designs. Just as we study the stability of an engineering system, we can study 

how efficient a market design might be by using game theory. 
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2.3 Application of Game Theory in Analyzing Trading Strategies in 

Power Markets 

Solely using either noncooperative or cooperative game theory is not capable of 

analyzing the gaming strategies practiced in power market, because market players 

have been using mix of both to manipulate the market prices to maximize their 

profits. 

The gaming strategies studied here is often called supergame. The word is intended to 

suggest a sequence of games, finite or infinite in number, played by a fixed set of 

players. Particularly, the strategies employed in electricity market is in semlextensice 

fonn, means that the simultaneous moves of the market players are modeled as game 

in strategic form. Thus, there is a succession of points in time (t = 0,1,2, .. . ). At 

each point each player makes a choice. The simultaneous choices at one such time are 

represented within a game in strategic form and the supergame is the sequence of 

these games. 

The interaction among the market players in power market could be simply 

represented by a modified famous game theory game, a repeated prisoners' dilemma, 

which is presented as following. 

Table 3.6: A prisoners' dilemma game 

A 
Confess 

B 
Not confess 

Confess 5,5 15,0 

Not confess 0,15 10,10 
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A certain strategy added to improve the traditional repeated prisoners' dilemma, 

which represents the real strategy that gaming market players employ to enhance their 

binding agreement, is called trigger strategy. It is a strategy under which a player uses 

two single-shot actions, si* and si'. The player will begin by choosing si* and will 

have in mind some action combination s*. If all players j E=- N choose sj* in each 

iteration of the game, them player i continues to choose si*; however, if any playerj 

ever deviates from sj* then, as soon as that deviation is detected by player i she 

switches to choosing sic and continues to choose sic in all future iterations, no matter 

what choices are made by others. When sc is an equilibrium of the game (such as 

confess, confess in the repeated prisoners' dilemma), yields a large payoff to each 

player than does, the strategy combination is a perfect equilibrium. 

Modelling these complex market behaviours and search the right trading strategies 

often do not have accurate measurement of their variables and require many 

objectives to be met before any solution is considered adequate. Therefore, a search 

technique which is able to handle this inaccuracy more effectively is needed. 

3 Evolutionary Computing 

3.1 Introduction 

The limitations of classical optimisation techniques were explained earlier. Classical 

techniques are single-peak numerical optimisation techniques. This works well for 

reaching the optimum of a local peak but for problems that are multi-modal, this 

optimum will most likely not be the global optimum [49]. Optimisation of real-life 
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solutions must often satisfy more than one objective and may have constraints 

imposed on the search, including non-numerical parameters. 

Newer optimisation techniques are non-deterministic, by adding a degree of 

randomness and probability to the search for solutions. The search techniques is 

mostly a posterior, are widely adopted in machine learning. These encourage the 

search position to escape a local peak in the hope of finding higher peaks. 

Evolution is ubiquitous natural force that has shaped all life on the Earth for 

approximately 3.2 billion years. For several thousand years, humanity has also utilised 

artificial selection to shape domesticated plant an animal species. In the past few 

decades, however, science has learned that the general principles at work in natural 

evolution can also be applied to a completely artificial environment. In particular, 

within Computer Science, the filed of automated machine learning has adopted 

algorithms based on the mechanisms exploited by natural evolution. 

Darwin [50] first proposed that there are four essential requirements for the process of 

evolution to occur: 

o Reproduction of some individuals within a population. 

*A degree of variation that affects probability of survival. 

* Heritable characteristics, that is, similar individuals arise from similar parents. 

9 Finite resources, which drive competition and fitness selection. 

The consequence of these processes is the gradual adaptation of the individuals in a 

population to the specific ecological niche they occupy. This can therefore be viewed 
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as a form of long-term learning by a population, on the characteristics suited to their 

particular environment. 

The term Evolutionary Computing (EC) refers to the study of the foundations and 

app icat ons of certain heuristic techniques based on the principles of natural 

evolution. In spite of this fact, these techniques are traditionally classified into three 

main categories, namely, Genetic Algorithms (GAs), Evolution Strategies (ESs) and 

Evolutionary Programming (EP). This classification is based on some details and 

historical development facts rather than major functioning differences. In fact, their 

biological basis is essentially the same. 

It is particularly useful to consider the history of evolution within computing as it 

covers much of the timeframe of computing itself Some of the earliest work can be 

traced back to [51], who introduced the idea of an evolutionary algorithm approach 

for automatic programming. Later significant development included the creation of 

EP by [52]. [53] founded the initial work on GAs at the University of Michigan. 

Parallel work was also initiated by [54] in ESs. However, the major barrier to the 

early adoption of evolutionary algorithm in the computing domain came from 

opposition within the computing science community itself That was often based on 

the incorrect belief that such algorithms, with probabilistic processed as a core 

mechanism, would not be amenable to produce functional code. The second barrier 

was the problem that contemporary computing technology in software, and 

particularly hardware, in the early 1970s was barely capable of generating useful 

results in acceptable time scales (i. e., less than a few weeks). This problem added to 

the belief that such methods, while theoretically interesting, would never be capable 

for practical applications. 
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Now Evolutionary Computing is frequently used as a generic term that incorporates 

GA, ES, EP and their variants. The origin of EA was an attempt to mimic some of the 

processes taking place in natural evolution. Although the details of biological 

evolution are not completely comprehended (even nowadays), there exist some points 

supported by strong experimental evidences: 

e Evolution is a process operation over chromosomes rather than over organisms. 

The former are organic tools encoding the structure of living being, i. e. a creature 

is 'built' decoding a set of chromosomes. 

* Natural selection is the mechanism that relates chromosomes with the efficiency 

of the entity they represent, thus allowing those efficient organisms that are well- 

adapted to the envirom-nent to reproduce more often than those which are not. 

* The evolutionary process takes place during the reproducing stage. There exists a 

large number of reproductive mechanisms in the Nature. Most common ones are 

mutation (that causes the chromosomes of offspring to be different to those of the 

parents) and recombination (that combines the chromosomes of the parents to 

produce the offspring). 

All EAs have two prominent features which distinguish themselves from other search 

algorithms. Firstly, they are all population-based. Secondly, there are communication 

and infonnation exchanges among individuals in a population. Such communication 

and information exchanges are the results of selection and/or recombination in EAs. 
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The Genetic Algorithms (GA) is a representative of this new breed of search, machine 

learning and optimisation techniques that are non-deterministic and a posterior. GA 

employs coding and hence deals with non-numencal variables. An organism's genetic 

code is its position in solution space while its survival in its environiment and its 

number of offspring indicates probabilistically the degree to which it meets its 

objectives. Evolutionary algorithms are powerful techniques in the search for global 

optimal solutions, but they usually require to evaluate objective functions many times. 

These objective ftinctions may, in a real problem, be difficult or time-consuming to 

evaluate. Hence the less evaluations the better. 

3.2 Fundamentals of Genetic Algorithms 

3.2.1 The Working Mechanism 

Genetic algorithms [46] [55] that represent a paradigm of evolutionary computation, 

is a general-purpose global search method for solving complex problems. Based on 

Darwinian's survival-of-the-fittest, GAs work by repeatedly modifying a population 

of artificial structures through the application of selection, crossover, and mutation 

operators. A GA's fitness function measures the quality of a particular solution. 

The following sequence is a common starting point for most GAs: 

1. Create generated population of N chromosomes, each of some length m bits. 

2. Test each chromosome (i. e. a possible task solution) within the problem space 

and assign a measure of fitnessf(x). 

3. Selection phase: Select a pair of chromosomes from the population with 

probability based on their fitness. 
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4. Apply a set of genetic operators to the two parent chromosomes: With some 

crossover probability p, apply crossover at some randomly selected point 

along each chromosome. 

5. Apply mutation to each new chromosome with a probability p,,. 

6. Place the new chromosomes in the new population. 

7. Replace the old population with the new population. 

8. Test if target termination criteria is met, such as a specific best fitness value; 

else repeat from stage 2. 

output best 
individual or results 

- ----------- --- 

Figure A. 1: GA sequence of operations 
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Each loop of the sequence, illustrated in Figure 3.1, is termed a generation. The 

central concept of the GA is the chromosome, which is the encoding of information in 

a string of symbols. These strings can be manipulated by a set of genetic operators. 

Using the process of fitness proportional selection, the chromosome strings, which 

encode a potential solution the specific task or function, evolve toward an improved 

solution. 

3.2.2 Technical Details 

I Encoding 

The user should select a "reasonable" (i. e., not one bit quantity) or the smallest 

possible coding alphabet that permits a natural expression of the problem. The basic 

coding methods are outlined below [46]. 

" Integer coding; 

" Real coding; 

" Logarithmic coding; 

" Byte coding; 

" One-Integer-One-Parameter coding; 

The advantage of coding is that logic values or decisions, e. g., those concerning 

whether to have a particular component in a design, and logic operators can be 

encoded ina chromosome and this included in the search. This makes the search and 

optimisation more versatile and complete and may lead to novel creation or 

inventions. 
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Figure A. 2: Genetic Algorithm - Working principles and standard operators [46] 

2 Initial population 

This needs to be large and mainly random when string lengths are large. However, 

known or a-priori parameter sets and those that the user would like to start with 

should be included for a faster convergence or for further improvement [56]. 

3 Objectives and fitness 

In GA, optimisation error is usually measured by the sum of absolute errors 

norm) between the actual and the simulated output of the system, as given by: 

NA 

e(Pi) =II yj- yj 
j= / 

where N is the total number of data of simulation steps. Clearly, the fitness or 

perfon-nance can also be measured by an 12 or 1, nonn, as they and 1/ are finitely 

bounded with one another. 
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Note that non-numerical functions, such as rules or fuzzy logic terms, can also be 

included in the fitness or perforinance index [57]. 

4 Selection 

Selection is the population improvement or "survival of the fittest" operator. The 

purpose of selection is to increase the frequency of fitter individuals within the 

population over repeated generations. Basically, it duplicates structures with higher 

fitness and deletes structures with lower fitness to create a new population. 

prop 

Pselect (n) = J(n) /I J(k) 
K=l 

Where n is the nth string, p= total number of strings in the population, and f(h) is 

the fitness of the nth string. The selected individuals are then copied into the next 

generation using the set of genetic operators, normally composed of mutation and 

crossover. However there is always a pressure between exploiting the population 

through selection and exploring the search space via crossover and mutation. 

Excessive selection will lead to fit but suboptimal individuals taking over the 

population before a target solution is found. It is then difficult for the population to 

recover sufficient diversity to explore the remaining search space. If the selection 

pressure is too weak, however the rate of evolution will fail to converge on a useful 

solution. 

The current adopted selection mechanisms are addressed as following: 

0 Roulette-Wheel selection; 

0 Ranked roulette wheel; 

* Ranking selection; 

* Tournament selection; 
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0 Elitist selection; 

0 Proportionate selection; 

9 Fuzzy selection; 

9 Boltzmann tournament selection; 

0 Steady-State selection. 

5 Crossover 

Crossover, when combined with selection, results in good components of good 

structures combining to yield even better structures. It works by selecting two 

parent individuals from the population with a fitness-dependent probability, and 

swapping sections of each individuals chromosome. The offspring are the results of 

cutting and splicing the parent at various crossover points. 

6 Mutation 

Mutation is a mechanism where a randomly selected gene within the chromosomes 

id replaced with an alternative allele. Mutation creates new structures that are 

similar to current structures. A common perspective is that mutation is primarily a 

secondary operator and acts to replace or regenerate bits or genes lost during the 

crossover process. At best mutation can help move a chromosome away from local 

optima by injecting new genes into the population of chromosomes. With a small 

pre-specified probability, mutation randomly alters each component of each 

structure. When used sparingly with reproduction and crossover, it is an insurance 

policy against Premature loss of important information. 
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7 Stopping criteria 

9 Stop after finding a known maximum (or minimum) (based on some 

specification) or after finding a better solution than an existing/known one. 

* Stop after a certain period of time. Ofter, stop after a given number of 

generations have been evolved, e. g, 100 generations. 

* Stop when there is no improvement in the maximum (or minimum) value in the 

generation or when the average is close to the maximum (or minimum). 

3.2.3 Advantages of Genetic Algorithms 

Compared with natural evolution, the emulated process is more efficient, controllable 

and yet more flexible for artificial optimisation. All these methods are probabilistic in 

nature and exhibit global search capability, thus making them attractive for almost all 

areas of human activity. Genetic Algorithms accommodate all the facts of soft 

computing and other attractive features, namely, 

I Overcoming all drawbacks of conventional optimisation techniques; 

2 Domain constraints, performance measures with dynamics and the number of 

independent and co-dependent elements; 

3 Robustness; 

4 Possible non-linear interactions between various elements; 

5 Incomplete, uncertain and imprecise of information; 

6 Adaptive capabilities; 

7 Providing multiple optimal solutions; and 

8 Inherent parallelism. 
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