
 
 
 
 
 
Nelson, D. James (1976) On the mechanics of discontinuous fibre 
reinforced composite materials (with particular reference to damping). 
PhD thesis. 
 
 
 
http://theses.gla.ac.uk/1520/
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/1520/


ON THE MECHANICS OF 

DISCONTINUOUS FIBRE REINFORCED CC14POSITE MATERIALS 

(WITH PARTICULAR REFERENCE TO DAMPING) 

D. James Nelson B. Sc. (Edinburgh) 

Department of Mechanical Engineering 

University of Glasgow 

A thesis submied to the University of Glasgow 
for the degree of Doctor of Philosophy 

September 1976 

y, I 



$U4MARY 

On the mechanics of discontinuous fibre composite materials 

(with particular reference to damping). 

Ph. D. "thesis by D. James Nelson B. Sc. (Edinburgh). 

To further the understanding of the behaviour of discontinuous 

fibre composite materials with particular reference to their damping 

properties, model materials were made from stub steel. rod of 0.4 mm 

diameter as fibres (set out in brickwork pattern) and a proprietary 

silicone rubber matrix, A good bond at the matrix/fibre interface 

was achieved by use of a special primer on the fibres while little or 

no bonding occurred if the primer were not. used, In some of the 

unbonded specimens., the fibre surfaces were etched which caused a 

significant change in properties relative to the unetched case.,, 

Current theory yields reasonable predictions of the Youngts 

modulus for the bonded specimens although non-linearity in the stress- 

strain characteristic of the silicone rubber makes exact prediction 

difficult. The unbonded specimens exhibited yield phenomena due to 

interfacial sliding and the etched specimens also, showed the unusual 

characteristic of returning to the zero. load and displacement, position 

even after gross sliding had occurred. An explanation for this 

behaviour was sought in modifications to the theory used_for the 

prediction of bonded specimen modulus. 

Tests were also conducted at low frequency (0,83 Hz) under 

imposed sinusoidal displacement conditions, Large hysteresis loops 

were produced in the case of the unbonded+specimens - the interfacial 

sliding increasing the energy lost per cycle'but reducing the stiffness. 



This combined effect led to large increases in specific damping 

capacity (the ratio of energy lost per cycle to maximum strain 
TTI 

energy in the cycle). It was also found that the specimen properties 

both bonded and unbonded were broadly dependent upon the amplitude 

of the hysteresis loops although stress history also played some 

part. The characterisation of these results was not found to be 

simple. 

The specimens which were in the form of rods were also tested 

as the spring/damper element in a one. degree of freedom system 

(resonance at x. 20 Hz). The results were treated in a quasi-linear 

fashion since the incidence of harmonics was generally low. The 

acceptability of this method seems dependent upon the fact that the 

material properties depend on the amplitude of vibration rather than 

the instantaneous value. Broadly speaking the vibration experiment 

results were in agreement with the 0.83 Hz tests although in the case 

of the unbonded specimens there was a rate effect which caused the 

specimens to be stiffer and have less damping at the higher deformation 

rates, 

It was concluded that the discontinuous reinforcement of a 

matrix material such that shear strain in the matrix is amplified 

can be an'important source of damping and stiffening. If there is 

little or no bonding at the matrix/fibre interface then the specific 

damping capacity developed by the composite can be very large indeed, 

but will be partly due to loss of stiffness. The basic lack of 

integrity inherent in an unbonded discontinuous fibre composite is 

sufficiently unattractive that it would seem best that a material 

developed for its damping/sound deadening properties should have a 

matrix which bonds well to the fibres and which has a dissipative 



capacity increasing greatly with increase in shear strain and/or 

-rate"' ''5 of deformation. 
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A NOTATION 

Names in brackets refer to particular authors who were the source of 

some of the symbols. 

fibre buckling amplitude (Rosen) 

amplitude of vibration 
QMM maximum amplitude (resonance) 

Qn maximum amplitude in a cycle of a decaying vibration 

Cc resonant amplitude 

ast amplitude at zero frequency for same excitation force 

magnitude 
AC cross-sectional area of composite 

of cross-sectional area of fibre 

A, resonance amplification factor 

C half inter-fibre spacing (Rosen) 

viscous damping constant 

C44 equivalent dashpot constant 

constant of integration Cý 
e em eh, AX 
l°` composite strain 

e 
m matrix strain 

MaK maximum matrix strain in cycle 

eMc critical. matrix strain 

ey matrix strain (Rosen) 

E E�, 
EC 

composite Young's modulus in fibre direction 
E 

CS 
local Youngts modulus during sliding 



Ef fibre Young is modulus 
EVA 

matrix Young's modulus 
E, 

SN strain-hardening modulus 

complex Yo ußgts modulus 

storage modulus E' 
loss modulus 

frequency 

i 
natural frequency 

n 
resonant frequency 

force at mean amplitude (unbonded specimens) 

amplitude of exciting force 

F. 
deviation from mean force at mean displacement (bonded 

specimens) 

F deviation from mean force at maximum displacement (bonded 

specimens) 

matrix shear modulus 

h fibre thickness (Rosen) 

coefficient of hysteretic damping 

h across flats dimension of fibre (Mileiko) 

h inter-fibre spacing (Miieiko) 

h^ (Cox) H 103'. 4 
f 

second moment of area 

k 
stiffness 

k 
mean stiffness (bonded specimens) mean _ kx 
stiffness at ýG 



'G . 
fibre length 

overlap length (Mileiko) 

rn mass 

p. interface pressure t 
P load, force 
Pc 

critical fibre load 

PFMGX 
maximum fibre load due to constant along fibre 

length 

radial co-ordinate 

fibre radius 
R 

radius of cylinder of matrix round fibre 

S standard deviation 

t time 

Ak displacement in matrix (Cox and Rosen) 

U fibre strain energy (Rosen) 

uM 
matrix strain energy (Rosen) 

q' displacement in matrix (Cox and Rosen) 

magnitude of velocity 

volume of matrix (Rosen) 

volume fraction of fibres 

{ZP displacement in matrix (Kelly) 

matrix strain energy in a cycle 

QW energy lost per cycle 

stork done by fibre load (Rosen) 



co-ordinate along fibre 

displacement in oscillatory tests 

XM maximum displacement in a cycle 

limit of sliding region 

X limit of sliding region (reverse direction) 

velocity 
x acceleration 
X peak displacement amplitude 

resonant displacement amplitude 
X0 

amplitude of vibration 
X displacement of driven mass (Adams) 

co-ordinate in matrix 

displacement in matrix 

mechanical impedance 

proportion of bonded interface, 

H 
---- (Cox) 

AfE 
matrix shear strain (Rosen) 

S 
logarithmic decrement 

Eo strain amplitude 

damping ratio 

loss factor 



p coefficient of interfacial friction 

1l relative displacement of fibres (Mileiko) 

matrix Poissonts ratio' 

composite stress 

composite stress due to Poissonts ratio effect 

direct fibre stress 

Cr direct fibre stress at fibre centre 

*, direct fibre stress at fibre centre on yielding 

matrix stress (Rosen) 

'i' interface shear stress 

critical interface shear stress 

Z'ýF sliding friction interface shear stress (pull-out 

test) 

Ir 
.p interface shear stress due to Poisson*s ratio effect 

ZUo) interface shear stress at fibre end 

Ton matrix shear stress 

Tý4 frictional interface shear stress at pull-out 

initiation 

'V matrix shear stress (Rosen) 

specific damping capacity 

iJ circular frequency 



CHAPTER ONE 

1. Introduction 

Damping is a general term referring to the dissipation of 

vibrational energy by any means. The word was apparently coined by 

Föppl in 1923 (von Heydekampf, 1931) and is a transliteration from 

the German "Dämpfung�. The sources of damping in an engineering 

structure can be many and varied, e. g. (Adams, 1972) friction in 

joints, acoustical damping, various damping mechanisms in the material 

of the structure, the effect of applied damping treatments and the 

addition to the structure of a viscous damper or shock absorber. 

The need for damping of a structure is usually quite simple 

and obvious. Frequently damping is required to minimise resonant 

amplitudes and thereby limit the possibility of high stresses which 

may lead to rapid fatigue and subsequent fracture. Some of the areas 

in which low damping is likely to create problems are given by 

Robertson and Yorgiadis, 1946 as in long transmission wires, 

aeroplane structures and propellers, turbine blades and engine 

crankshafts. The same authors also point out that high damping leads 

to heating of the material and is a disadvantage in problems 

concerning the whirling of shafts. Other damping requirements are 

of an environmental nature as in, for example, a road vehicle where 

the inclusion of shock absorbers in the suspension is a both adequate 

and simple solution to the problem. 

It is not always possible to provide external damping through 

the use of viscous dampers attached to a structure and with the 

advent of welded construction., which does not use bolted or rivetted 



2 
joints, the major source of damping may be the material of which the 

structure is made. This realisation along with a belief that 

damping might be closely and predictably associated with fatigue 

prompted many investigators from the 1920 s onwards to attempt to 

measure damping as an engineering property of materials. 

Primarily, these studies were intended to allow prediction of 

the damping inherent in a structure by summing the damping likely 

to occur in its component parts. Further to this, it was hoped that 

damping measurements might allow some assessment of a material 

particularly in relation to fatigue and consequently they were 

intended to be in the nature of an inspection procedure. A more 

recent suggested application of damping measurements as an inspection 

tool in the field of composite materials has been given by Adams et 

al. 1973. 

By and large from the engineering point_of view., it is 

probably only necessary to know whether materials have low or high 

damping. If the damping of the material of a structure is high, e. g. 

cast iron, then some reasonable damping of vibration may be expected. 

If on the other hand the damping is low, e. g. Duralumin, then some 

means of providing additional damping is likely to be* required. 

Low damping, however, may also be inherently desirable in, for 

instance, the construction of instruments where a hysteresis loss 

may militate against accuracy. 

The literature on damping is very extensive., if one includes 

in its the work of metallurgists who have largely performed 

experiments at strains so low that they are not of engineering 

interest - see., for example., Zener 1948 and Entwhistle 1962. These 



3 
studies were, of course, directed at testing various theories about 

the structure of metals and were, therefore, not intended for 

engineering use. 

Another area in the field of materials science which has 

yielded a. substantial literature, e. g. Ferry 1970, is the study of 

polymers in which measurements of material moduli and loss factors 

as influenced in particular by temperature and frequency are designed 

to test theories related to the structure of polymers. This type of 

work is likely to gain in engineering significance with the growing 

interest in and use of fibrous composite materials which as Adams 

et al. 1973 put it "offer the possibility of both high strength 

(from-the fibre) and high damping (from the matrix and from the 

matrix/fibre interface)". It must be pointed out, on the other hand, 

that gross interfacial sliding implies a significant loss in both 

strength and stiffness. 

As is now known, Adams and Bacon 1973b, the damping produced 

in a continuous fibre composite material is fairly low - the 

maximum figures quoted by Adams and Bacon being all less than 1% 

specific damping capacity. This had already been theoretically 

predicted by Hashin 1970 who showed that for the case of continuous 

aligned fibres in a viscoelastic matrix the damping of the composite 

will be small. 

The reason for this is that viscoelastic materials must 

undergo large deformations for any substantial energy dissipation 

to occur. Clearly in a composite material with aligned continuous 

high modulus fibres such as carbon fibres the stiffness in the fibre 

direction will be very great and the strain to failure consequently 



4 

small. The strain in the matrix will also be small. 

Accordingly the production of a composite material of high 

damping almost certainly requires the use of discontinuous fibres 

such that the load will be continuously alternating between fibres 

and matrix along the loaded length of the material. This will 

occasion very much greater shear deformations in the matrix and a 

loss of stiffness in the composite relative to the continuous fibre 

case. 

McLean and Read 1975, recognised that the shear strain 

amplification which occurs in a matrix reinforced by aligned dis- 

continuous fibres could be an important source of damping. They 

predicted that a material in the configuration of their model would 

produce damping about two orders of magnitude greater than that of 

the matrix material alone. This is quite possible but because the 

reinforcement increases the stiffness of the material by an equivalent 

factor, the ratio of energy lost to maximum strain energy in a 

cycle of vibration (the specific damping capacity) does not change, 

if the fibres are relatively rigid. 

The case of a material in which the matrix and fibre are not 

well bonded was also considered by McLean and Read. The analysis 

of such a system is complicated by the fact that sliding at the 

matrix fibre interface also occasions a loss in stiffness and,, 

implicitly., inefficient use of the reinforcement. It seems likely 

in consequence that discontinuous fibre composite materials 

fabricated for their damping properties may find more ready 

application as spring/damper units rather than as predominantly 

structural materials. 
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The present work which deals with discontinuous fibre reinforced 

material models which have either good or poor interfacial bonding 

is split into three sections. In the first section (Chapters 2- 6), 

the development of the material is described and its mechanics 

considered in detail using an extension of current theory. The 

second section (Chapter 7) deals with some slow strain cycle tests 

on the material and in the third section (Chapters 8- 11), the 

measurement of damping is reviewed and the results for some dynamic 

tests analysed and compared with the results from Chapter 7 and 

linear theory. 

In the twelfth and concluding chapter the entire work is 

reviewed and an attempt made to draw together its three different 

strands into a coherent whole or to show where necessary in which 

respects this is not really possible. Overall conclusions are also 

drawn in this chapter. 
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CHAPTER TWO 

2. Theoretical Background 

There have been a number of attempts to produce simple theories 

for load transfer between fibre and matrix some of which are reviewed 

by Holister and Thomas 1966. Although these theories are only concerned 

with an isolated fibre, consideration of them can still be instructive. 

Cox 1952, for example, considered a fibre of length 
I in a 

matrix under a general strain e... He defined the displacements u 

and lT at a point distance X from the end of the fibre as 

U= displacement if fibre is present 

= displacement of same point if fibre is absent 

The load transfer from matrix to fibre is then defined as 

äz=H(u-ýr) 2.1 

where 
P is the load in the fibre and Ha constant. The strain in 

the matrix is 

em = 
dy 

2.2 
dx 

and the strain in the fibre is 
du 

where 
dx 

du P 
..... = 2.3 

dx A5E 
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where 
A, 

= the cross-sectional area of the fibre and L= 
Ei 

- 
Er, 

is the difference between the fibre ( E4 ) and matrix (Em) Young's 

moduli. 

Differentiating 2.1 gives 

d2P 
= 

dU 
_ 

ciir 
2.4 

2H dx ý(x 
ä -x 

and substituting 2.2 and 2.3 into 2.4 leads to 

dtP _Pe2.5 d x2 
H Aj E "' 

which has general solution 

P =AE em +R sinhpx +Scosh ßx 2.6 

Nz 
where = 2.7 

(AjF 

Using the boundary conditions 
P=0 

at X=0 and X=t and a 

little additional manipulation gives 

COSh z-X P=E 
-E 

Ae- 
ý- 

2.8 C M) fýý cos 

The stress in the fibre is thus 

(E, 
_EMlemr' _ 

C0ý5 h (P 

Z-X11 
2.9 



Fn- 

The shear stress L at the fibre/matrix interface may be 

deduced from consideration of figure 1. whence 

dP dx=-Ct-ýdx'; 

2-m- dx 

Differentiating 2.8 and substituting in 2.10 gives 

2.10 

Z_- (E -E, � 
)A e, ß sink (2 -X) -r- 2.11 
2-tz`rcoshßil 

No explanation is given by Cox for the fora of the constant 
H but Kelly 1966 suggests the following. The composite is supposed 

to consist of a set of many parallel fibres of constant length 
£ 

and of circular cross-section radius . The '. r ea centre to 

centre separation of the fibres normal to their length is 2R 
. If 

'm(-") is the shear stress in the direction of the fibre axis on 

cylinders co-axial with the fibre then at the surface of the fibre 

fi=fi, LM( )=?. and 

dP =-Zir 2ý COX 

= N(u-v) 

N=-2 
2.12 
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Let . fT be the actual displacement in the matrix close to 

the fibre. Then at the fibre matrix interface assuming no interfacial 

slip tu = CL" It is assumed that at the sufficiently large distance 
R 

from the fibre central axis '='V. Considering the equilibrium 

of the matrix between I and 
R 

and neglecting any change in the direct 

stress across the element gives 

znti- t, � 
('r)= constant = 2TT/r2, 

And so the shear strain in the matrix is given by 

d-r ATM CTM 
where 

GM is the shear modulus of the matrix. Integrating from 

to R 

lo R 
G 9e 

m 

But QW_ 
IV- U so substituting in 2.12 gives 

(_J _2 
(t lý'º+, 2.13 

(ý lo R 9e ýý 
Non-dimensional plots of the fibre stress Oýý and the 

interface shear stress 'j! are shown in figures 2 and 3 using 

parameter values representative of the materials actually used. It 

will be noted that the shear stress distribution is very nearly 

linear and consequently the fibre stress distribution will be close 

to parabolic, 
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Another analysis, which may be adapted for elastic conditions, 

was presented by Mileiko 1970 as a model for creep. It is based on a 

rather ingenious model consisting of hexagonal cross-section fibres 

in a hexagonal array. This leads to consideration of diamond shaped 

elements (see figure 4). The incorporation of elastic rather than 

creep parameters in the model makes the analysis ccnsiderably simpler. 

Physically it is assumed that the resistance of the matrix to tensile 

stress is negligible - an assumption which implies that holes will 

open up in the matrix. 

The interface shear stress is assumed constant. Using the 

sane notation as before and that of figure 4 

I 
2.14 

where CI, ( is the stress at the fibre centre, and (for 

equal overlaps) = 
2. 

2 

From purely gecmetrical considerations, the sear stress in 

the matrix at position /Y (see figure 4) is 

h' 

and shear strain xl= ?i.!. ý. 
U 

ýýl 

, hr 
ý 

Cý 7 4,1 (h-I- For 
22 

2.15 

f 



The relative displacement of the fibres is thus 

ýr=2 -`ý hd 
'h P 

hlt 
(Z log� h GM 109, vf 2.16 

On the assumption of equal overlaps the strained composite will 

appear as in figure 4 and the longitudinal strain will be 

2J 
2.17 

T 
Letting the general load = 0j, 

ý3) 
\, 

remembering 
h 

and substituting 2.14 and 2.16 into 2.17 gives 

2 -1 (h'ýk) 1OVz2.19 

I GM 9e 
e- IT2 1 2.19 E-° 

C2 (h' +h 103,74- 
where 

Ec 
is the composite modulus in the fibre direction. 

Outwater 1956 recognised that for polymers the bond between 

fibre and matrix might well be poor or non-existent wnich leads under 

sufficiently high loading to interfacial slip. However, his subsequent 

analysis is based on the improbable assumption that the matrix does 

not deflect in shear. In fact, the shear deflection of the matrix is 

important since the shear strains in a matrix reinforced as in fig. 4 

will be very much erregter than in a piece of unreinforced matrix at 

the same overall strain. This effect is described as shear strain 

amplifications 
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All these analyses deal with composites in tension. It will 

beccme clear that some analysis of composites or more particularly 

fibres in compression is required to explain the phenomena involved 

in this study. One such analysis is that due to Rosen 1965 which is 

however, more succinctly explained by Jones 1975. 

It is supposed that when a composite is compressed that failure 

is due to fibre buckling. This in turn leads to the possibility of 

two modes of buckling failure - the extensional mode when the fibres 

buckle in anti-phase and the shear mode in which the fibres buckle 

in phase. These failure modes are shown in figure 5. The basic, 

model is a two dimensional one with plates 
h thick embedded in a 

matrix at s cing ZC 
. The plates, i. e. fibres, are very auch 

stiffer than the matrix. 

The method employed is an ener, "y one described by Timoshenko and 

Gere 1961. The load per fibre 
P 

is supposed to do work during the 

buckling deformation which is equated to the change in strain energy 

of the fibre and surrcunding matrix. The calculated buckling load 

will be an upper bound on the true buckling load. It is likely that 

a fibre in the actual composites used will only buckle in the 

fundamental half-wavelen th form so the analysis presented by Rosen has 

been simplified accordingly. Thus the buckling; displacement 

perpendicular to the fibre direction is taken to be 

2.20 'r=a Sin 
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In the transverse mode the strain in the 41 direction is 

assumed independent of 7 i. e. 

e= 2'u- 
't 2c 

2.21 

so that 6=E. 2.22 
4' MC 

The change in strain energy is assumed to be dominated by that 

due to the transverse stresses giving the change in strain energy of 

the matrix as 

A 
Vm= crý, e, V 2.23 

v 

LC 
ct 2.24 

From the analysis of Timoshenko and Gere the change in fibre 

strain energy is 

QV= Tr4E;. j Ia 2.25 
4 ý3 

Q 

and the work done by the force on the fibre is 

Aw= i2ä2.26 
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It is assumed that 

4W =0U_+AU, 2.27 
ýZ 2E2 c( 4L I 

or _4f 

Em #+ 
t4C12.28 Pz- 2c 41 

Equation 2.28 gives the upper bound on the critical buckling 

load for the extension mode. 

For the shear mode analysis the shear strains are presumed 

to be a function of the fibre direction co-ordinate alone 

_aaLk YxI öx öy 
2.29 

where 2I' is the displacement in the hf direction and U is 

the displacement in the X direction. 
a 
Since the transverse 

displacement is independent of the transverse co-ordinate ILS/ 

d tr _ 
d'i 2.30 

dx dx 
matrix fibre 

Since the shear strain is independent of i1ý 

u- 2c [u(c)- u cc] 2.31 
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This relationship is shown in figure 6 fron which it may also 

be deduced (ignoring fibre shear deformation) that 

uc. hdýr 2.32 dx f ib-te 

Thus 
ÖU_ 

t"1 
du 

2.33 

2C dx 
fibre 

and = (/+ h d'u 
2.34 YXy 

2c dx 

ýýbýe 

The change in strain energy of the matrix is this time 

dominated by shear 

ALJ=ýý7dV 2.35 

DUm (iý2c)22aZ 
2.36 

Hence, since the work done and the buckled fibre strain energy 

are given by the same expressions as before, 

rt 2= ý Z2 T4EI / PQ ý- CIQý `f'1 ý 2C Z7r 
ýf-'L 

x 
1 2.37 Pý2C7c(l+ rz E+ '7 1, 
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Contrary to the view expressed by Jones the second term on the 

right hand side of equation 2.37 is not necessarily negligible. The 

apparent imbalance in the units of the first terms on the right hand 

side of equation 2.28 and 2.37 is due to the composite being taken 

one unit thick. 
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CHAPTER TREE 

3. ?: ateria1 Development 

Most investigators although making composites by well-tried 

methods e. g. Adams and Bacon 197Th cannot be certain that there is 

a complete bond between the fibres and the matrix. It has been shown 

Adams et al 1973, that the type of fibre and surface treatment have 

measurable effects on damping and it is consequently assumed that the 

fibre-matrix interface is important. This being the case, a material 

was sought which could be made to bond or not bond as desired to 

fibrous materials. 

It was found that "Silcoset 100" a proprietary silicone rubber 

produced by ICI and used for such purposes as encapsulation of 

delicate electronic equipment, satisfied this requirement. A good 

bond could be effected if the surface were cleaned and primed with a 

special primer sup7, lied by ICI. In fact ICI claim that the bond 

would be stronger than the "Silcoset" itself (ICI 1972). If the 

primer were not used little if any bonding occurred. 

Alt:: ou,; r, the curing a&ent causes cross linking of the polymer 

chains in the basic material, "Silcoset" still exhibits some visco- 

elasticity so the production of a composite with damping in the matrix 

can also be effected with this material. "Silcoset" cannot be 

re. Farded as .a practical composite material component but because it 

was relatively easy to wort: with, and was capable of producinu- the 

effects desired, it was decided to persevere with it. A fairly full 

description of the properties and uses of "Silcoset" is given in ICI 

1972. 
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It had originally been hoped to use carbon or glass fibres in 

the experimental programme and early experiments were carried out 

with glass fibres largely because this material is relatively cheap. 

Apart from the problem of voids the greatestdifficulty experienced 

was in obtaining satisfactory penetration of'the matrix into the glass 

fibre tows. There were two reasons for this, the first being that 

silicone rubber is more viscous than, for example, epoxy resins and 

the second that when the fibres were primed, which must be done at 

least half an hour before applying the matrix to allow the primer to 

dry, the fibres tended to become stuck together. Attempts to tease 

them apart again were larc: ely unsuccessful. This led to a very uneven 

distribution of the reinforcement. There was also a tendency for the 

primed tows to twist which riade fibre alignment difficult. 

The silicone rubber used is basically a soft material of low 

modulus and it was found that it was not possible to clamp it or the 

composite specimens because the matrix tended to extrude from the 

clamps. Attempts were made to provide a surface sufficiently hard 

for clamping by paring away the ends of the specimen and encapsulating 

them in "Araldite" epoxy resin adhesive but this did not prove very 

satisfactory. 

In view of the problems associated with the production of 

specimens which would be sufficiently close to what was desired using 

glass fibres, it was decided that it would probably be more useful 

to make the material conforx more directly to the model. Experimentation 

with glass fibre was therefore abandoned. In order to have control 

over what ha-, pened during the manufacturing process, it seemed easier 
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to use fibres of such a size that they could be readily manipulated. 

Stub steel rods of 0.4mm diameter filled this requirement and all 

subsequent work was carried out using these. Although such material 

does not conform to the normal conception of fibres, this description 

will be retained for it. 

This decision to change the material altered the nature of the 

problem completely. First attempts to make steel/"Silcoset" composites 

were made using 150mm lengths of fibre held in a square array by 

plastic netting of small ¬auge. The problem here was, that the fibres 

were not readily kept in alignment. In any case this approach did not 

seem likely to solve the problem and it in turn was abandoned. 

Use was now made of another property of "Silcoset" - that it 

will bond to previously cured "Silcoset" while curing. A piece of 

steel plate was grooved on a shaping machine and some steel fibres laid 

in the grooves. Some of the silicone rubber was poured on top and 

once this had cured it proved possible to lift this lamina of matrix 

material bringing with it the array of steel fibres whether primed or 

unprimed, since they were sufficiently embedded in the matrix to 

remain in position. Thus an array of fibres set out on the steel 

plate could be transferred to the matrix. This suggested a method of 

preparing specimens in which the phase geometry could be fairly closely 

controlled. 

A mould consisting principally of a steel plate leOmm long 

by 150mm broad was made. The central 100mm by 1501wn section was 

grooved at a spacing of about 0.94mm - the grooves running in the 

direction of the 100mm length, the remaining 25mm at either end of 
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the grooves being machined away in a step of about lmm. (see figure. 7). 

An array of steel fibres overlapping in a "brickwork" pattern was set 

out in the grooves with longer fibres at the ends so that they overhung 

the step in the plate. Since the matrix does not bond directly to steel, 

these overhung fibres had to be primed along their full length in 

every case and as will be seen, eventually formed the part of the 

specimen to be gripped. The rest of the fibres could be primed or 

unprimed as desired. An example of a typical array is also shown in 

figure 7. 

Once the fibre array had been set out with the overhung. fibres 

supported by thin strips of "Plasticene", a quantity of matrix which 

had been degassed was carefully poured on to the array so as not to 

disturb it. The lid of the mould was then put on and the composite 

left to cure in air. After curing, by removing the lamina produced 

carefully from the mould and cutting-it into 6mm wide strips, the 

basic units from which the composite was. made were ready. 

The primer was cleaned from the fibres protruding from the 

ends of these strips. By using several of the strips and some 

additional "Silcoset", a rod specimen approximately 100mm long by 

6.25mn square could be built up in an open ended mould like that 

shown in figure 8. Once the matrix had cured a specimen of 150mm 

overall length was obtained - the central 100mm section containing the 

desired fibre array set in the matrix and the remaining 25mm at either 

end containing only fibres. The specimen ends were completed by 

y. _ encapsulating these fibres in "Araldite" epoxy resin adhesive which 

is, of course, much harder than "Silcoset". The specimens were now 

ready for testing. Specimens could also be made incorporating only 

the end fibres for gripping. This allowed the properties of the 

matrix alone to be. tested. 
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During the development process, it was found that cleaning the 

fibres in trichloroethylene did not seem to allow proper application 

of the primer althou, 3h this later proved to be erroneous. However, 

at this stage some of the fibres were not only cleaned but etched in 

very dilute nitric acid. It was later shown that etched unprimed 

fibres as opposed to unetched unprimed fibres had a marked effect on 

the characteristics of the composite. For this reason three different 

types of specimen were made viz, with the fibres primed to effect a 

good bond and with the fibres unprimed both etched and unetcrhed to 

investigate the interface effects. 

To aid in the investigation of the interface characteristics 

pull-out specimens consisting of 50mm lon& cylinders of matrix with 

one fibre running up the centre of the cylinder were made. These 

specimens 'were moulded in cylindrical brass tubing with end caps which 

had small central holes. The holes were initially plugE; ed up with 

"Plasticene" to locate the fibre and prevent spillage of the matrix. 

Two holes were drilled at either end of the brass mould with centres 

on the same generator - one larger hole for injecting the matrix 

material and the other smaller hole to let air escape. Once the 

rubber had set the end caps were removed. 
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4. Pull-out Tests 

C}IAPTER FOUR 

Pull-out tests are intended to establish the properties of 

the interface between the fibre and matrix. It is assumed that the 
4 

stresses created by the shrinkage of a polymer on to the fibre create 

a friction shear stress when an attempt is made to pull the fibre 

out. For the matrix material used, ICI 1972 give the linear shrinkage 

as 0.2% which allied to the low modulus of the material would produce 

very little effect. 

In fact, shrinkage stress does not seem to be a factor in the 

present study. The pull-out test results, however, highlight the 

difference between etched and unetched interfaces. It is presumed 

that the lack of qutitative agreement between the pull-out specimens 

and the composite specimens is due to the significant difference in 

stress states in the two cases. 

4.1 Method 

An Instron tensile testing machine was used to test the 

pull-out specimens. To perform the pull-out tests a truncated 

female cone was passed over the fibre, the fibre was then passed 

through the hole in the crosshead of the Instron and the end of it 

gripped in the machine jaws. The cone was required because the 

hole in the Instron crosshead was larger than the specimen diameter 

and it was deemed desirable to leave the end of the cylinder of 

matrix as a free surface. The arrangement is shown schematically 

in figure 9. 
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The pull-out test could be carried out by using downward 

motion of the Instron crosshead. Since the r:, trix, the brass 

cylinder and the cone constituted part of the load, the load cell of 

the machine had to be zeroed before the specimen was put in position, 
A 

4.2 "Results 

of cyIrndee Several different diametersAwere used in making the pull- 

out specimens but there did not seem to be any correlation between 

this and the load at the start of pull-out. Consequently all the 

results were treated together regardless of the cylinder diameter. 

The assumption behind the making of pull-out specimens of different 

diameter was that there might be different amounts of shrinkage 

depending upon the specimen size. It seems, however, that "Silcoset" 

does not shrink much on curing as previously suggested. 

The major difference between the etched and unetclied pull- 

out tests was the shape of the load-displacement plot produced. 

Figure 10 shows the difference at its most obvious. It would be 

misleading, however, to suf, gest that all pull-out tests showed such 

a marked difference. Figure 11 shows unetched and etched specimens 

whose c:: aracteristics were much more similar. It would also be 

misleading to suggest that etched fibres were in all cases capable of 

sustaining hig: er loads before pull-out began than unetched ones. 

Indeed in both cases there were instances in which the cylinder and 

cone slid off the fibre under their own weight. This was possibly due 

to lack of cleanliness of the fibre or rough handling of the specimen 

before test. 

y 
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However although there was a wide spread in the loads to the 

initiation of pull-out, the average for the etched fibres was more than 

one and a half times the average for the unetched77.87N compared to 

4.82N. The range of loads to initiate pull out was quite wide being 

= from 1.47N to 22.1N in the case of the etched fibres and 0.78N to 

11.4N for the unetched. 

Clearly since there was such a wide variation in the results 

of the pull-out tests there was likely to be a fairly wide variation 

in the results from the composite specimens although this variation 

would be reduced by the fact that the presence of many fibres in the 

composite specimens has an averaging effect. 

Another area in which the pull-out test can provide some 

insight is the magnitude of the frictional shear stress. If it is 

assumed that the friction shear stress, TF is constant along the 

length of the fibre once sliding has started, the incremental load 

dP over fibre length, dX 
will be 

dP =-2«fi2; Fdx 

OT dPIc'rc 4.1 dx f tf 

OT TF dP 
4.2 zýi dx. 

where 
P 

is the slope of the load displacement curve of the pull dx 
out test as the fibre end is pulled through the cylinder. 

Y 

.ý)ýr 
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The variation in interfacial shear stress during sliding is, 

perhaps not surprisingly, quite wide in the unetched specimens. 'F 

varies from - 0.037 N/mm2 to -- 0.068 N/mm2 with an average of 

-0.054 it/m, 2.10 

The etched specimens which do not exhibit the same characteristics 

as the unetched ones as already noted show much lower values of 

frictional shear stress round ab,. ut -0.016 N/mm2. 

To summarise then, the etched specimens show a higher 

resistance to the initiation of pull-out than the unetched ones but 

a lower resistance once pull-out has begun. 

One other type of pull out test was carried out. Specimens 

with double lengths of fibre were made so that they could be pulled 

in either direction. This was done because it was thought that the 

interface might have directional properties. 

Figure 12 summarises the results of one of these tests in 

terms of load to start pull-out. It will be noted that the load to 

initiate sliding drops to about one third of its initial value after 

several reversals and does not appear to depend much on direction. 

Figure 13 shows two sample charts of initiation of pull-out, one in 

each direction. There is obviously not much difference between them. 

The load to initiate pull-out is given by integrating equation 

4.1 such that 

P=-2i20 4.3 
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where 7'Po is the frictional shear stress at the initiation of 

pull-out. The average and range of values of 2"ýO are tabulated 

below 
Table 1 
10 

Average Range 

ý'po Etched -0.125 -0.023 to -0.351 
N/m 

m2 Unetched -0.077 -0.012 to -0.181 
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CHAPTER FIVE 

5. Matrix and Composite Srecimen Tests 

5.1 Method 

The "Silcoset" and composite specimens were tested by a typical 

tensile test procedure. No evidence of slipping in the grips was 

noticed for the low loads which are required to test these materials. 

To obtain hysteresis loops an Instron G-51-15Tß strain gauge extensometer 

of 25mm gauge length was attached to the central 25rM of the specimen. 

This extensometer allows for elongations of up to 100iß. For some 

tests a similar extensometer G-51-11M allowing only 10%ý elongation 

was also used. It was necessary to support the weight of the 

extensometer by means of a counterweight over a pulley to avoid any 

bending load on the specimen. 

The extensoxeter was plugged into the strain gauge amplifier 

section of the machine via a D69-57 socket which reverses the motion 

of the chart drive so that the elongation occusd on the X positive 

axis of the chart for load along the 41 positive axis. The chart 

was calibrated using Coventry Gauge matrix blocks and the load cell 

was calibrated using: the calibration weights supplied by Instron. 

5.2 Results 

As can be seen from. fiGure 14 the silicone rubber does show 

some hysteresis particularly at hi[; h strains. The load-displacement 

relationship is also quite clearly non-linear. Fracture in these 

specimens occurred at the ends of the fibres used as part of the grips- 

presumably because these constitute stress raisers. It is apparent 

from figure 14 that the modulus of the matrix is very low. 

*See 
Addenda after Figure 89. 
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: 'he mean Young's modulus of the matrix is plotted against 

maximum strain in the cycle in figure 15, data coming from the load 

displacement charts exampled in figure 14. There does not seem to be 

any particular trend so the average value of 3.17 N/mm2 was used in 

calculations. 

It is hardly surprising after examination of the difference 

between etched and unetched fibres in the pull-out test results that 

there should also be a marked difference in the characteristics of 

the etched and unetched composite specimens. This initial difference 

is best illustrated by reference to figure 16 which shows typical 

examples of the first tests on etched and unetched specimens. In the 

case of the etched specimen there was a very clear yielding at a load 

of about 78.5N, the load then dropping to 45.6N before recovery began. 

In contrast the unetcned specimen showed a distinct yield point at 

about 25.011 but there was only a small load drop as the strain was 

increased beyond this point. In several of the unetched specimens 

there is no drop at all. 

Clearly there is likely to be some spread in the results for 

the yield points as is illustrated in the following table. 

Table 2 

Yield Load (N) Average Minimumm Maximum Average Load Lo. of 
drop after Specimens 
yield 

Etched 69.6 53.9 85.3 29.6 7 

Unetched 18.6 8.6 30.4 0.6 12 

See Addenda after Figure 89. 
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The proportionate variation is very much less than in the 

pull-out tests as might be expected because of the averaging effect 

already mentioned. 

After yielding1the modulus of the composite was very much 

reduced. If the strain wef¢ increased, then, in the case of the etched 

specimens further yielding occurred while., in the case of the unetched 

specimens., the load increased steadily. When the direction of straining 

was reversed the load and strain returned to zero in the case of the 

etched specimens but in the case of the unetched specimens, a permanent 

set was usually left. 

On reloading after the initial yielding cycle all the unto nded 

specimens showed a distinct breakaway in the load-strain curve. However, 

on average the breakaway point occurred at a lower load in the etched 

specimens than the unetched as the table below shows. 

Table 3 

Standard 
Breakaway Load (N) Average Minimum ; Maximum Deviation 

Etched 14.2 9.8 23.1 2.2 

Unetched 20.4 11.8 27.5 4.5 

It is noticeable that the breakaway loads on subsequent 

testing of the unetched specimens were very close to the original 

yield loads and on average in excess of them. On the otherhand the 

breakaway loads in the etched specimens are very much less than the 

yield loads - being only about 2Ojo of them on average. This is 

perhaps predictable from the pull-out tests in which the load drop 

once the initial bond was broken was generally very much less for. 

the unetched specimens compared to the etched ones. 
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In both etched and unetched specimens after the breakaway 

point there is, in general, a curved portion in the load-displacement 

relationship followed by a portion which is usually close to linear. 

Analysis of these linear portions shows that the stiffness of the 

composite at this stage is generally somewhat greater than that of the 

silicone rubber alone. Typical loops are shown in figure 17. 

In the case of the early loops from etched specimens, the 

strain-hardening modulus of the specimen may be very much greater 

than the modulus of the matrix. It is supposed that this is due to the 

fact that not all the interfaces have broken1a supposition confirmed 

by the fact that additional yielding may occur on subsequent cycles. 

The unetched specimens exhibit a strain-hardening modulus much closer 

to that of the matrix but here again any additional stiffness may be 

due to residual bonding. 

Clearly the whole shape of the hysteresis loop will be 

critically dependent upon the breakaway load and the subsequent slope 

of the load displacement curve. The first part of the cycle might 

reasonably be approximated by a bilinear spring model with a friction 

element such as that shown with its load-displacement curve in 

figure 18. However, there is a distinct departure from this simple 

bilinear behaviour on the unloading part of the cycle. 

On unloading, the modulus of the composite is initially 

similar to the modulus on loading up to the breakaway point, There 

is then what may be described as a reverse breakaway point which 

occurs after a load drop which is generally greater than the original 

breakaway load in the cycle but less than twiccas large. The load drop 
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to the reverse breakaway point will be designated the reverse break- 

away load. The expectation in a simple bilinear model would be that 

the reverse breakaway load would be twice the original breakaway 

load. Figure 19 shows the reverse breakaway load against breakaway 

load in the same cycle for both etched and unetched specimens. It is 

clear from this figure that there is a difference between etched and 

unetched specimens in this respect. 

The behaviour of the etched specimens is particularly 

interesting. Although the reverse breakaway loads were up to three 

times the breakaway load in the cycle, the loops consistently closed 

at zero load and displacement. The likely reasons for this behaviour 

and the connection between it and the behaviour of the unetched specimens 

will be discussed later. 

Some primed fibre, i. e. bonded, specimens were also tested 

and these exhibited sorre hysteresis at small strains. It must be 

remembered that small composite strains imply much larger shear 

strains in the matrix. The bonded specimens also exhibited non- 

linear stiffness which is almost certainly due to the non-linear 

nature of the matrix load-displacement relationship. A typical 

result for a primed specimen is shown in figure 20. 
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CHAPTER SIX 

6. Interpretation of Results 

6.1 Bonded fibre specimens 

The volume fraction of fibres ( Vi) in the composites under 

consideration is about 7.5io. It is assumed that this is a sufficiently 

dilute concentration for the theory of Cox to apply. The fact that the 

matrix exhibits non-linear stiffness presents an additional problem 

since H defined in equation 2.13 will not be constant. As noted 

/previously an average value of the matrix Young's modulus = 3.17 : Jnra 2 

has been used in calculations. It is also assumed that the matrix is 

incompressible i. e. that the matrix shear modulus 
G- 

= =1.06 N/mn 
3m 

The value of H depends upon loge 
R 

which may be interpreted 
f 

more generally as lo e 
Vý This implies an assumption of an 

averaze value for the fibre centre to centre spacing 2R. In this 

instance we have loge VjZ 1.295 implying R=0.73mm, 5.14 

I/rnm2and ýj=1.394x102min. 

According to Kelly 1966, the Young's modulus of the composite 

using Cox's theory will be 

Ec =EAU (I - tai +E, � 
(I -vI) 6.1 2 

rn with tan} 2=ý 
0.1725 

,=0.075,210 
000 Nmi I 

Ec = 160"4- N/mm2 

An alternative interpretation of the results may be made 

using the theory of Hileiko with olast. c parameters. &-: uation 2.19 
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gives the composite modulus as 

E_' ýz I 6.2 
+ 9eý/ý Z 

For the purposes of the composite under consideration we 

already have Zofe Vi 2.295, 'L = 25mm and 
Gm 

= 1.06 N/mm2. 

h= 2-fij = 0.4ýun and estimate 
h from As an approximation we can take 

n 

VC 
6.3 

h+h 

With V, = 0.075 this gives 
hýý= 1.06mm and hence 

Eý 
= 120.0 N/mni2. 

In both the Cox and Mileiko analyses, the modulus is very 

heavily dependent on the inter-fibre spacing. The justification for 

taking a mean is that although the inter-fibre spacing is known in 

one direction (the pitch of the grooves in the-, plate mould) the array 

is basically rectangular and the pitch in the orthogonal directions 

may differ. Using an average figure based on the volume fraction 

seems a reasonable compromise. If anything this procedure under- 

estimates the Young's modulus of the composite, since the stiffness 

measured experimentally on primed fibre specimens was of the order of 

200 iv'/ n2 
., 

a result which tends to favour the Cox analysis. Probably 

the more reasonable conclusion is that taking the volume fraction 

based average fibre spacing has a more severeeffect on the Mileiko 

analysis. 
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6.2 The yield point in unbonded specimens 

As is clear from figures 16 and 20 the unprined specimens 

both etched and unetched have very different characteristics from the 

primed specimens. The difference arises due to slippage at the matrix 

fibre interface which gives rise in the first instance to yield. This 

is very much more marked in the etched than the unetched specimens as 

might be expected (at least qualitatively) from the pull-out test 

results already discussed. 

It might be supposed that this yielding would occur when the 

shear stress at the matrix/fibre-interface exceeded some critical 

value, Unfortunately the critical value cannot be quantified 

exactly because) as is evident from the pull-out tests, friction and 

yielding at the interface can vary very significantly from one inter- 

face to another. It is possible, however, to look at average properties. 

The average yield load for an etched specimen is 69.6N. Since 

(considering the cross sections through the fibre centres and 

reuiemberiný the brickwork layout) there are essentially twelve fibres 

supporting this load at their centres (X= 
2), 

the stress at the 

fibre centre at yield (f e is 

/ 6 
týý= 

4- 6 ni 
mm2 

On Cox's theory this implies a certain maximum interface shear 

stress at X0 
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Equation 2.11 may be rewritten as 

''i _ 
G0" Z 

sink 
0- 

(El 2E loge -r COShß 
At X =O 

Tire) /'396 x'O-3tanf 

(E4 - Em) eMO. 
Z4.1 x 10-3 

while from equation 2.9 at X=z 

(ý 
_E 

)e cosh z 
0.0150 

0161 

For the Cox theory to fit the average yield point data a 

6.4 

maximum shear stress -0.740 N/m. 2 
would be necessary. This 

must be compared with an average of - 0.133 N/mm for the interface 2 

shear stress at the start of pull-out in the etched specimens. It 

is, indeed, more than twice as great as the maximum shear stress 

recorded at pull-out initiation which is the equivalent of yield. 

The I-iileiko theory assumes a constant shear stress (equation 

2.14). In the present case the interface shear stress will be 

21 6.5 

0.368 N/r, n2 
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This is closer to but still higher than the results from 

pull-out tests. It seems likely that pull-out tests do not adequately 

reflect the stress state in the composite. It might be noted, however, 

that the equivalent calculations for the unetched composite yield 

Zý = 12.3 N/m2, Ti 
(off = -0.198 N/mý2 (Cox) and TI = -0.098 

N/mm2 (Mileiko). The average value of interface shear stress at yield 

from the pull-out tests was -0.077 Id/mm2. 

Yielding in the etched specimens may be explained with 

reference to the pull-out test results. It may be supposed that the 

interface shear stress builds up round a particular fibre until the 

yielding shear stress for that interface is reached. The interface is 

now ready to break but will not do so if there is another route by 

which load can be transferred. Yielding will occur when the interfaces 

at a particular cross-section cannot sustain any further load increase. 

Since, as is evidenced by the pull-out test results, the load cannot 

be sustained by the interface once sliding has begun, there must be 

a substantial load drop until equilibrium is restored between the 

total external load and the sum of the individual fibre loads. The 

external load can now increase again but the stiffness is very much 

reduced because some of the interfaces have slipped. As figure 21 

shows, further yielding may take place in the same or a subsequent 

loop. 

6.3 Breakaway behaviour in unbonded specimens using a modification 

of Cox's Theory. 

The breakaway behavicur exhibited in the hysteresis loops of 

fib. 17 may be explained starting from the theory of Cox and proceeding 

as follows 

See Addenda after Figure 89, 
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We suppose a rigid fibre in a compliant matrix and that the 

load transfer relationship is given by 

TX = N(u-z) 6.6 

where 
P 

is load in the fibre 

X is the co-ordinate along the fibre 

is the displacement at X in the matrix in the presence 

of a fibre 

Z is the displacement at X in the matrix in the absence 

of a fibre 

H is a constant 

This is, of course, simply Cox's approach and if there is no 

sliding then the rigid fibre gives U= 0 

For' no'- sliding 

LP 
d=-Hz 

Differentiating 6.7 

1H 

X2 d 

since 
dz 

mdx 

Integrating 6.8 

6.7 

6. ß 

dP= _Ne x+A a-x m 
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dP 

`O at x= 
4 

. 
'. -He,, ,L 

+A 

dx z 

. '. A=H f He, 2 

. '. 
dP=Nem( x ý. 

4\) 

6.9 

In the region of sliding it is assumed that there can be no 
in 

increase in the interface shear stress so 
dp=0 

and differentiating 
dx 

6.6 

du=d7 
ýe dx dx 

whence Z- ems, x+C 

Say X=x is the limit of the sliding region where Z=0 and the 
f 

constant of integration, C=- e,, x 

6.10 

We-also have from equation 2.10 that 

d-P --2 dX fi 

We can assume that there is some critical ' =--'rG which 

when exceeded allows sliding to occur. 

Combining this with equation 6.9 gives 

H eý, --X+ 2 6.11 
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We use X because for equation 6.11 to apply there must be 

a sliding region. Further there is a minimum value of e 

say, for XI to exist. This is found by putting XI= 0 in equation 

6.11 giving 

= 
ý{«IZ-c 6.12 emG _" ýý 

If there is no sliding then equation 6.9 applies and 

t 
P=Ne, 

� 
ý x+ ii-) dx 

0 
_t6.13 P Hem8 

There will be somo critical load (" at the strain eM, 

for which the interface or parts of it are on the verge of sliding 

l. e" 

Pc = He., 6.14 8 

or e=U 'ý 6.15 
me (( j1 

Eouatirg this with the value fro:: equation 6.12 gives 

P= I z((7"'? 
ý 

6.16 
zý2 
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Z'((Tj 

'c 2 is the load at the fibre centre if a constant 

interface shear stress, - Tic is assumed over the fibre half length 

0< X<2. Calling this force 
PF 

max 
i. e. the maximum 

friction load in the fibre 

P =2«x: 6.17 FinaX fif tc 2 

6.18 

The load at the fibre centre when there is sliding over 

Q< ýC < and no sliding <X< is 
2 

x1 

)ý -T, -. dx+ He, (--x+ ý)ax 2r( ? io x" 

XI) -- 
From equation 6.11- 

x' -- -- 
2rß 6.19 

Hence 

(2ll'/ 
[ -f, 

i. 
Pt1) 2ý I'"'ý,., 

z 
ý` 6.20 

Using equation 6.14 and 6.17 in 6.20 gives 

Pt=P Fax 

emC 
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and finally using equation 6.18 gives 

e^'ý 6 ý . 21 
l 
Pe 

inax 
ýý 

2e 

Equation 6.21 applies when em >_ emc. When em 4 ems,, 

then equation 6.13 applies. 
8 

Equations 6.13 and 6.21 may now be used with a number of further 

modifications to fit the hysteresis loops. 

Clearly as em becomes large 
PIS 

tends to Finax 

which as can be seen from equation 6.17 depends solely on the value of 

Tic for a given fibre length and radius. A typical value of the 

composite stress, at breakaway is 0.13 Pl/mm2. We consider all 

this load to be borne by the fibres so that the total load on the 

fibres is Cf AC 
= 17.2 N where At is composite cross-sectional area 

Hence load per fibre 

Pmnx ... _ 
17.2 

1.433 N 
12 

From this critical shear stress ' may be calculated 

i? - ' Fm nx l" ý ý? ý, i 

0.091 N/m 2 
n 
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This gives a value for 

42 

eM of 

eP 
G 

4r( 'r 

= 0.00176 

Equations 6.13 and 6.21 are plotted using these numbers in 

figure 22. Also plotted in figure 22 is a portion from a 

typical hysteresis loop for an etched specimen. The reason for the 

great discrepancy between the portions of the curves after breakaway is 

that the matrix is not taken into account in equation 6.21. 

After the breakaway point the matrix is loaded directly 

without the load also passing through the fibres. It would be expected 
i that the matrix modulus would account for a significant portion of the 

strain-hardening part of the loop. If no other effect were operating, 

the strain-hardening modulus would be Em (i-- I=2.93 , t/mm2" 

T: As has been superimposed on the Cox analysis in figure 23. 

Figure 23 shows that the addition of the effect of the matrix 

still does not account for the strain-hardening modulus. There are 

at least two possible explanations for this. One is that, as already 

noted, not all the interfaces will be broken by the first yielding 

and hence some of the fibres are still capable of contributing to the 

composite stiffness. Me other is that there may be a Foisscn's ratio 

effect which by increasin-; the interface shear stress as the longitudinal 

strain is increased allows further load transfer to the fibres to occur 

even during sliding. These propositions are examined in the next 

section, 
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6.4 Strain-hardening modulus 

Measured strain-hardening moduli well in excess of the matrix 

modulus indicate that not all the interfaces have slipped. A rough 

estimate of the proportion of interfaces at which slip has occurred 

may be obtained from consideration of the strain-hardening moduli. 

Suppose in length 
£ 

there is a proportion of interfaces O( which 

is still bonded - that is a proportion O( still has the bonded 

composite modulus, 
E. 

- while the proportion (I --(X) in series with 

it has the modulus of the matrix, 
E., then the strain-hardening modulus 

E 
5ýi will be. 

e+ ra} 6.22 
SH Ec E ý, 

and Df 
E6 

--- 
Em 

6.23 
Ec- E, 

� 
ESN 

This means' for example, that evenwhen the strain-hardening 

modulus is only lOjo greater than the matrix modulus, there may still 

be about 9 of the total interfaces unbroken. Equation 6.23 formally 

constitutes the upper bound on the proportion of unslipped interfaces. 

The lower bound is obtained by considerinj a cross section in which 

proportion OC of the bonds are unbroken and the proportion (I- OC) 

in parallel with it are broken bonds. This leads to 

E514 c( 
E. 

+ (1- off) 
E, 6.24 
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and Q( .- 

ES 

Ec - Et, 

In this case 
Es" 

= 1, IE, 
-gives D(= 0.2jß. It seems 

6.25 

reasonable to suggest that oC is likely to have a value closer to the 

upper bound than the lower bound on the grounds that the initial 

yielding is likely to take place across a particular complete cros-s- 

section. It is also likely that the above analysis has more relevance 

to the etched specimens than the unetched as will become clear in t .,, e 

discussion of the unloading part of the cycle. 

From consideration of the curves in figure 23, an additional 

strain-hardening modulus of about 1.15 N/mm2 is required to bring the 

modified Cox analysis plus matrix into line with the experimental 

result. This makes the bounds on OC from equations 6.23 and 6.25 

0.7ý; < 0C Z 28.7io. The effect of increasing the strain-hardening 

modulus is shown in figure 24. 

The space occupied by a fibre may be considered as a hole in, 

the matrix. If the matrix is strained in the direction of the fibre 

then clue to Poisson's ratio effects the hole will decrease in radius. 

This is, of course, not possible due to the presence of the fibre so 

the situation is analogous to a shrink fit. It is supposrdthat the 

shrink fit analysis presented by, for example, Durelli and Riley* 1965 

may be superimposed on the existing stress state. From consideration 

of this analysis it may be concluded that for a rigid cylindrical 

inclusion in an incompressible mgtr x, the longitudinal strain of the 
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matrix e. and the interface pressure 
ýL, 

are related by 

el II il ý-U, � 
) -+- I -- V., 2 -E T12- )) ýc 

where Poisson's ratio .2 

6.26 

Using 
R=3.65 

and 
Em 

= 3.17 N/mm2 as before it is found 
fi 

that 

pt 
= 0.953 em 6.27 

Also 6.28 

where is the coefficient of friction between fibre and matrix 

and 'rP is the interface shear stress due to the Poisson effect. 

So 'P =0 . 953p em 6.29 

The usual method for establishing ti: e coefficient of friction 

between rubber and steel is not applicable here. It is possible, 

however, to obtain an estimate for /LC and by considering 

the curves in figure 23 and that the additional composite stress due 

to the Poisson's ratio effect <TCp is given by 

(ý - 6.30 
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Considering, for example, the situation at a strain of 

em = 0.136, the composite stress in the sample is 0.981 N2 

while the modified Cox analysis gives 0.426 N/mm2 as the fibre 

contribution to the composite stress. The difference is thus 0.555 

Ir'/mm2 of which 0.399 Tz/mm2 comes from the matrix so it is assumed 

that (at most) 0.156 IT/. nm 
2 

comes from the Poisson effect. 

Say (Y 
= 0.156 N/mm2 

.o IPr ".. P 

= 0.0166 N/rnm2 

From equation 6.29 

. 
L_ T`P 

o. 953em 
0.128 

and from equation 6.27 

bL 
= 0.953 em = 0.13 Id/mm2 

The additional effect of the foregoing; supposition is shown 
14 

in figure 24 which is, of course, through choice of numbers identical 

for the presumed Poisson effect and the residual bonding effect. In 

fact, it is likely that there will be a combination of factors involved 

and some of the strain-hardenin; modulus will arise from each of these 

effects and possibly other effects which have not been considered like 

local variations in friction. 
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6.5 Breakaway behaviour of unbonded specimens using a modification of 

Mileiko's theory. 

Another possible explanation of breakaway behaviour may be deduced 

from the theory of Mileiko. In the etched specimens when the interfaces 

had once been broken, it was clear that there was a greater readiness 

to slide at the interfaces on subsequent loading. However, for the 

breakaway not to be abrupt it might be concluded that sliding started 

to occur at the interfaces at different strains. This suggested that 

a statistical model incorporating a distribution of strains and implicitly 

of critical shear stresses at which the interfaces start to slide was 

likely to describe the observed material behaviour. 

Before any sliding occurs it is assumed that the composite has 

a modulus as calculated in section 6.1. After sliding has occurred it 

is assumed that the strain-hardening modulus of the comrosite is 

reduced to the modulus of'the matrix and the contribution of, say 

the residual bonding effect discussed in section 6.4. It may be 

noted that if all the interfaces slipped at the same strain; then the 

model would be reduced to the simple bilinear one illustrated in 

figare 18. 

Let (ec) be the distribution of strains at which sliding 

occurs . For a piece of composite at strain e, 
c 

the Youngs=rodulus 

ECS will be 

e 

=E E (e )de +E fCe) de 6.31 SN CS , ý , , a e C 

where is is the Young's modulus when sli 
ýSý 

ding is taking place, 
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is the strain-hardening modulus and 
E 

is the composite Young's 

modulus when there is no sliding. 

For a Gaussian distribution 

C __ 
i__ (e 6.32 (ed) - exý z s2 

where is the mean strain at which sliding occurs, is 

strain and s is the standard deviation. 

The cumulative distribution is 

er- 
Fej= 

e jf(e)de 
0 

6.33 

which is tabulated for the normalised Gaussian distribution . Thus 

since 

eý= d 

Ecs= I,. Re, 6.34 + E, (I- Re, 

Returning to the analysis given in chapter 2 and combining 

equations 2.16 and 2.17 gives- 

2z ! 
-ý 165, v-, z 

ec 
6.35 

G�, ý. 

Making appropriate substitutions gives 

;=0.039 7 ý 
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This equation may be regarded as the average condition, so 

eý = 0.0 39 
In this case to maintain a parallel with the modified Cox 

analysis let `Z"t = c, 
0.091 N/mri?. Thus 

eý= 0.00356 
The standard deviation is not a known quantity but the effect 

that standard deviation has will be on the slope of the curve - that 

is the sharpness of the breakaway. Arbitrarily the standard deviation 

has been taken as two thirds of the mean and the result plotted in 

figure 25 along with a portion of a sample experimental result. 

The relationship used is 

Q =ýSQ = ILSe, 6.36 

where L CS has been evaluated at the mean of the interval Se-,, 
which 

was taken, again arbitrarily, as half of the standard deviation, 

6.6 The Modified Cox Analysis Applied to the Unloading Part of the 

Cycle. 

If the unbended material could be characterised by a classic 

bilinear hysteresis model (illustrated in figure 18) then the reverse 

breakaway would occur at a load equal to the maximum load in the cycle 

less twice the breakaway load. In fact the characteristic reverse 

breakaway load observed varies between one to 
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three times the breakaway load - the unetched specimens being nearer 

the former and the etched ones the latter (see figure 19). It is 

clear that something rather more complicated than a simple bilinear 

hysteresis model governs the behaviour. 

One possible explanation is provided by the modified Cox 

analysis which can be applied (further extended) to the unloading 

situation. Figure 26 shows the non-dimensional interface shear stress 

distribution and the fibre stress distribution predicted by Cox on 

the loading part of the cycle at the onset of sliding. The assumed 

distributions when sliding is well developed are shown in figure 27. 

By superposing the Cox definition of load transfer on the 

ccnstarrt siear stress of figure 27, the interface shear stress 

expressions for unloading become 

for Q<xý 
2 

-2T(- 7 =27 -rl 2zic. e- 

and for z<x< 

- -ci He(, -i', - = -27v ff tic, -ý- 2 

in which _ "G m `''müu 

where etx is the maxirsuna strain. in the cycle 

When e =-e mc and usin equation 6.12,6.37 and 6.38 become 

v. =- -2 Ti-,: x (o<x4) 

6.37 

6.38 

6.39 

6.40 
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and -. 
x , (I ) (I < 2 

The corresponding fibre stress expressions are 

-2( x2 

=, 

ý- -) «( x 

(o<x<f) 

(f<x<) 

6.41 

6.42 

6.43 

The distributions of equations 6.40 to 6.43 are plotted non- 

dimensionally in fib-are 28. 

A further reduction in the strain to e=-22, yields the 

fibre stress distributions of figure 29. The relevant equations are 

,c -' 'ý. 1 . -' 
x (o<x<f) 4 6.44 

6.45 

and 

</I)6.47 

The distribution described by equations 6.46 and 6.47 is 

interestin in that each half of the fibre is in compression but the 

direct stress at the fibre centre is zero. A further reduction in 
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strain is required (e <-2 2mc) before any compressive stress is 

transmitted across the fibre centre. Also since the critical shear 

stress has again been reached at the fibre ends sliding will now 

occur there. 

Figure 30 shows the stress distributions at e --- 
2eci. 

e. 

an intermediate point between those of figures 28 and 29. It will be 

noted that although the fibre ends are subject to compressive stresses 

the fibre centre is still in tension. 

For e e-- 2 eMý, as already noted, sliding will occur at the 

fibre ends over a length say, X,, 
. Equation 6.37 may be amended 

by analogy wits: equation 6.11 to give 

+ Pe 
--X? '( 6.48 f cc f cc 2, 

such that- 
4- F(/r; 'eis X 

.. Z+ rr6.49 
r'1 

The load at the fibre centre becomes 

p2ý ýrý x' 6.50 

which on substituting 6.49 and using 6.12 and 6.17 gives 

pl, P 6.51 FmAx e 
It will be noted that this Lives correctly 

P11 
ý=0 for e 

._ --2emc 
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The lead at the fibre centre which-will be compressive may 

now be calculated and added to the tensile load in the matrix to give 

the net load in the composite. The resulting' composite stress is 

illustrated in figure 31 which is essentially a continizition of figure 

24. 

Clearly if there is a Poisson's ratio effect then sliding will 

not occur quite so soon as predicted since the interface shear stress 

at the maximum load point will be greater than the critical shear 

stress at which sliding first occurred. Accordingly a greater 

reduction in strain than that predicted above will be required to 

. each the sliding point on the unloading part of the cycle. In any 

case, however, the agreement between the experimental and theoretical 

results is not good on the last part of the unloading curve. 

Thereis some evidence to suggest that the criterion for reverse 

sliding pTeyented aböve it-, correct - that is sliding occurs when the 

critical shear stress is reached at the fibre ends as predicted by 

the extension of the Cox analysis. By tak. "king the maximum strain in a 

cycle and multiplying by the average matrix Young's modulus and the 

area of the matrix an estimate of the load carried directly by the 

matrix was obtained. Subtracting. this from the maximum load in the 

cycle gave an estimate of the maximum load carried by the fibres. 

According to the extension of the Cox analysis (above) the reverse 

breakaway load should be equal to or greater than the load in the 

fibres. As figure 32 shows, this is indeed generally the case for 

both etched and unetched specimens. 
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It is clear that sliding in the reverse direction does not 

follow the path suggested by the theoretical analysis. It is not 

difficult to see why the stress distribution predicted by the extended 

Cox analysis may break down near 

the stresses indicated in figure 

is no direct stress at X=2 

Due to the regularity of the phaý 

the reverse breakaway point. Consider 

29 at X2 and X=-. There 
4 

and a compressive stress at z 

se geometry of the composite no load 

at the fibre centres implies that all the. load at that cross-section 

iscarried by the matrix which is, of course, in tension. At X 

the load in the fibre is compressive which requires for equilibrium 

that the tensile load in the matrix be greater at this cross-section 

than it is at the cross-section containing the fibre centres. It is 

supposed that this state of affairs cannot be sustained and that 

there is localised action which allows the fibre to shed its compressive 

load while the matrix sheds some of its tensile load. 

6.7 The riileiko Theory and the Possibility of Buckling on Unloading 

As has just been noted, a stage in the cycle is reached at 

which all the fibres with slipped interfaces are in compression. This 

raised the possibility that the sliding in the reverse direction might 

be the result of high shear stresses caused by fibre buckling. The 

reason why this idea inky be plausibly linked to the Mileiko theory 

is explained below. 
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In section 6.5, it was suggested that a Nileiko model of a 

discontinuous fibre composite incorporating a statistical distribution 

of sliding strains could be used to interpret the experimental results. 

This approach is more descriptive than explanatory. In particular, 

it would be necessary to provide some criterion derived from the 

mechanics of the composite to account for the reverse breakaway 

behaviour. It seemed possible that such a criterion might be deduced 

from the analysis of compressive failure of composites presented in 

section 2. 

The main difficulty arising is that this analysis deals with 

uniaxially loaded continuous fibre composites - the model being a 

plate one and hence only two dimensional. It is thus not iimnediately 

obvious what substitutions may sensibly be made in the buckling load 

formulae (eauations 2.28 and 2.37). It would appear that almost 

any. reasoiable values of the. parameters in the extension mode 

equation 2.28, give rise to answers that are at least two orders of 

magnitude too large when compared with the experimental results. 

One way of viewin the composite is shown in figure 33. This 

retains the correct volume fraction, Vý = 0.075 while also 

incorporating the correct flexural rigidity of the fibre which is the 

controlling influence. Substituting in 2.37 with 
C7'_ 

M 1.06 N/mm2, 

C 0.64 mm, 
ý= 

25 mm, 
Ei= 210,000 N/mm2,1 = 0.00126 mm4 

2 
.. 2 

and interpreting + as (I-- V) gives 
2c 

5.77 -N 
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This is the upper bound on the critical buckling load for 

one fibre assumed loaded axially at its ends. So the critical 

buckling load for the composite as a whole would be at most 70 IN. 

This is still an order of magnitude too large. 

It is perhaps not surprising that the analysis is inadequate 

since it is based on a model in which the fibres are loaded up 

independently of the matrix and in turn the matrix, which is loaded 

by the fibres, is controlled by their stiffness. In contrast, the 

load transfer to the fibres in the composite under investigation must 

be through the matrix. Further, at the point of interest the matrix is 

still in tension and accordingly its flexüal stiffness will have been 

increased. 

This being the case, if there is any tendency to buckle on the 

part of the fibres, then it is likely that the action of the matrix 

in opposing' the attempted buckling defornation of the fibre will give 

rise to an increase in the interface shear stresses and a consequent 

reduction in the net tensile load in the composite. This mechanism 

would lead to interface sliding fairly rapidly but it seems likely 

that the interface shear stress would have to be so high to initiate 

buckling that sliding would probably occur first in any case. 

Although the Meiko analysis may be used to describe the 

initial breakaway behaviour, unless there is some mechanism involved 

which has not been considered, it does not seem likely that the 

Niieiko assumption of constant interface shear stress for a given, 

strain is valid. The alternative proposition would have to be that 

for sonne unexplained reason the critical : hear stress in the 
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unloading direction must be substantially lower than in the loading 

direction. This is not substantiated by the reverse pull-out tests 

although the mechanics involved will be somewhat different. 

6.8 Other Features of the Results 

The existence of unbroken bonds, as suggested in section 6.4 

goes some way to accounting for the difference between the etched and 

unetched specimen loops. The etched specimen loops show in general 

higher strain-hardening moduli implying that in traversing the cycle 

those fibres which have intact interfaces will always be in tension 

and the stress distributions described in section45 are not relevant 

to-them. It seems likely that the rather anomalous behaviour of the 

etched specimens in which there can be an increase in load while the 

strain is reducing (vide fi`ure 21) is due to local interactions 

between the fibres in tension and those in compression. 

In the unetched specimens it is supposed that the mechanism 

suggested above for etched fibres is inoperative for the lack of 

bonded interfaces. The typical characteristic of the unetched 

specimens is that they tend to show a permanent set which is caused 

by the compressive load induced in the fibres balancing the tensile 

load in the matrix. It was noted in a series of tests on the 

unetched specimens thr't the breakaway load increased with increase 

in permanent set. This is not surprising since before tensile load 

can be applied to the fibres in the succeeding cycle, the compressive 

lo-d associated with the peri. anent set must be removed from them. 
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As can be seen from figure 17, the composites exhibited some 

load recovery and, if the test were stopped at the maximum point in 

the cycle, stress relaxation. This is due to the properties of the 

matrix and has for the present been ignored as a relatively small 

effect. 

Another interesting feature 'of the results is the relationship 

between the shapes of a matrix only hysteresis loop and that from a 

primed specimen. Examples of these are shown in firme 34. 
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CHAPTER SEVEN 

7. Hysteresis in the'Discontinuous Fibre Composite Specimens 

In the preceding chapters the mechanics of discontinuous 

fibre composites with and without interfacial slip have been 

considered and it is clear from the results quoted that there was 

considerable hysteresis loss during loading and unloading at very 

low strain rates, In the present chapter this hysteresis loss is 

quantified and results of some slow cycle tests on the various 

composite specimens are reported and compared with each other. 

7.1 Hysteresis in low strain rate tests 

Samples of the hysteresis loops obtained at low strain rates 

are shown in figure 17. The strain rate used for these tests was 

about 0.07%/s, so a complete cycle might take several minutes. It 

is clear that the hysteresis in a cycle is considerable but energy 

lost at such low rates of strain does not necessarily indicate a 

capacity for damping vibrations or absorbing shocks. 

Further., the maximum strains in the cycles are large being 

from about 2f to 20,,. It is unlikely in most vibrating systems that 

such large strains would occur without some considerable danger of 

fracture of other components. It will also be noted that the tests 

reported did not involve any compressive loading of the specimens. 

This was intentional since even a very low compressive load produced 

gross buckling of the specimen. 

One of the most widely used measta°es of hysteresis or damping 

in vibrating systems is specific damping capacity which is 

defined as the ratio of the energy lost in a cycle 
(AW) to the 

A- 

I 
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maximum strain energy in the cycle 
(w) in the case of a system 

Alternativel in the case of a oscillating about a zero mean. yý 

system oscillating about a non-zero mean 
W is taken to be the change 

in strain energy between the mean position and the maximum amplitude 

of vibration. Since the tests presently under discussion were non- 

oscillatory, the use of the term specific damping capacity is really 

meaningless but for the sake of describing the results, the definition 

may be borrowed and this ratio is plotted in figure 35 against 

maximum strain in the cycle in the case of the etched specimens and 

cumulative maximum strain in the case of unetched specimens. The 

reason for this is the unetched specimens usually exhibited a 

permanent set. It will be noted that there is not much difference 

between the etched and unetched specimen results although the 

unetched specimens show a slightly decreasing trend with increasing 

strain. 

The equivalent plot for a bonded specimen is shown in figure 

36. It will be observed that the ratio is smaller than for the 

unbonded specimens but also the maximum strains in each cycle are 

much closer to what is practically feasible in a vibrating system. 

7.2 Low-frequency sinusoidal testing 

An extensive literature exists on the sinusoidal straining of 

polymers and rubbers e. g. Ferry 1970, Payne and Scott 1.960. For 

many of the methods described the authors have constructed their 

own apparatus much of which seems to be designed for the deformation 

of shear or compression specimens. The essence of nearly all the 

methods is that force and displacement be measured either explicitly 

a 

I 

or in the form of a hysteresis loop. 



61 

Modern equipment allows the recording of hysteresis loops at 

low frequency and constant amplitude without much difficulty. The 

machine used for the tests described here was an hydraulically 

driven Instron TT-KM tensile tester with facilities for load or 

displacement control of the crosshead, The hydraulic pump imposes 

limitations on the combinations of frequency and amplitude which may 

be used. The tests were conducted at 50 cycles/min. or 0.83 Hz. 

Displacement control of the crosshead was achieved through the use 

of a strain gauge extensometer attached to two steel rods which were 

fixed to the crosshead and base using magnetic blocks. 

The standard pen recorder which employs paper motion for one 

axis is incapable of responding with sufficient speed at the highest 

rates which the machine can achieve. For this reason a Bryans 

Southern Instruments 26000 X-Y plotter was substituted for it. 

This proved very satisfactory. 

The use of crosshead control means that any deformation due to 

lack of rigidity ins for instance, the load cell would reduce the 

apparent modulus of the specimen. In fact,, the load cell has a 

stiffness between one and two orders of magnitude greater than that 

of the specimens so it is necessary to make an allowance for this in 

presenting the results. 

Equally, any source of energy loss in the system will tend 

to increase the area of the hysteresis loop and thereby cause an 

overestimate of the damping in the specimen. The fact that the 

specimens must necessarily be tested with a preload (because of the 

low resistance to buckling) reduces some of the problems of backlash 

but obviously will not eliminate all extraneous losses. By testing 
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a steel rod of stiffness very much greater than the composite 

specimens estimates of the system stiffness and energy loss per cycle 

were obtained. The energy lost as represented by hysteresis loops 

turned out to be almost insignificantly small. The correction curves 

used for the bonded specimens are shown in figure 37. 

The different natures of the bonded and unbonded specimens 

required slightly different experimental treatment. The bonded 

specimens were tested with a mean load of about 50 N while the 

unbonded specimens were tested with a mean displacement of 7.5 mm. 

7.3 Results of low-frequency testing 

The results for the bonded and unbonded specimens are quite 

distinct in nature and will be considered separately before being 

compared. 

(a) The bonded specimens 

Even at low amplitudes the loops obtained from the bonded 

specimens exhibit a lack of symmetry (see figure 38). This is seen 

even further developed in figure 39 in which it will be noted that 

the co-ordinates of the point indicating the mean of force and 

displacement lie outside the hysteresis loop. This has important 

consequences for the average stiffness of the hysteresis loop which 

are discussed below. 

It was also observed that the mean force changed with change 

in the amplitude of oscillation. This variation is shown in figure 

40. The non-linear non-elliptical nature of the hysteresis loop as 

exampled in figure 39 indicates implicitly distortion of the force 

a 

signal from the basic sinusoidal form of the input. The change in 
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the mean force level is another of the consequences of this. A sample 

of the force output aril-some calculated points for a true sine wave 

are shown in figure 41 in which the particular nature of the 

distortion may be seen. 

The energy lost per cycle. was established by measuring the 

areas of the hysteresis loops with a planimeter. Results obtained 

at amplitudes of less than 0.1 mm (rms) must be treated with caution 

since the area to be measured becomes comparable with the thickness 

of the pen line tracing the loop. At higher amplitudes the error 

should not be more than 5% and falls to less than 1% for the largest 

loops. A typical plot of energy lost per cycle versus the root mean 

square amplitude of oscillation is shown in figure 42. The energy 

lost per cycle clearly increases with the amplitude of the oscillation 

and a log log plot shows the variation to be approximately to the 

power 1.7. 

It iss as has already been noted, a common practice to quote 

specific damping capacity as the measure of damping since this takes 

into account the strain energy involved in the vibration. In the 

present case the evident variation in the stiffness of the specimen 

during any given cycle means that the term must be redefined -- most 

plausibly in terms of an average stiffness. In estimating this average 

stiffness for the whole cycle it was clear that the line 0-A 

in figure 43 was likely to constitute an over-estimate, so a method 

was sought which would give a more reasonable estimate of the average 

stiffness of the cycle. 

Using the mean force and displacement point as the origin of 

co-ýordinates, it is possible to approximate the mean line though 

the hysteresis loop by a Lagrange polynomial 
P(X), which is force 
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as a function of displacement. The stiffness at any point is, then 

approximately ý"ý' 

d P(X) 7.1 ý'x 
dx 

and the average stiffness is 

kI -- 
[Px]) 7.2 MUM 2 ýý a' 2 xm "ýjwý 

where X., is the maximum displacement in the cycle. 

Using a five node approximation with the notation indicated 

in figure 43,, 
k 

mean 
turns out to be 

7.3 
mean Xm 

It thus transpires that the mean stiffness is necessarily 

given by the slope of the line QA, no matter what the order of the 

polynomial. Other methods of averaging such as taking a mean strain 

energy also lead to the same conclusion. 

'A 
all the stiffnesses for this type of specimen Accordingly 

were calculated on the basis of equation 7.3 and then corrected 

for machine stiffness from figure 37. It should be noted that 

correcting for stiffness implies that the oscillatory amplitude of 

the specimen was less than that recorded in the loops. A si.. mple 

linear allowance was made for this reducing the peak: amplitude by 

the ratio of the stiffness as calculated to the corrected stiffness. 

An example of the results thus obtained is shown in figure 44. 
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Initially the stiffness falls with increasing amplitude but there is 

a turning point at about, - 0.25. run (rms) and the stiffness increases 

again because the hysteresis loops become even more concave about 

the origin at the higher force end of the loop. This feature is a 

reflection of the nature of the static load-displacement loop. 

It should be noted that the points plotted in figure 44 are 

not representative of the specimen in general but are only relevant 

to oscillations in which there is a mean load of about 50 N. For 

example increasing the mean load to about 62.5 N increases the stiffness 

by from 12 to 25/ depending on amplitude. There is no corresponding 

change in the energy lost per cycle which remains similar to that 

lost at the lower mean load for the same oscillatory amplitude. 

Specific dapping capacity may be calculated using the stiffness 

already derived. The strain energy is taken to be (z kmean xm 

in which both k and X. have been corrected for machine stiffness, 
mcar, 

The result is plotted in figure 45. As will also be noted from the 

figure a higher mean load causes a drop in specific damping 

capacity which is entirely due to the increase in stiffness already 

mentioned. This perhaps highlights the weakness of quoting specific 

daxiping capacity in isolation in that although it takes into account 

the stiffness of the material., the actual value of the stiffness must 

be given independently. in other words., a high specific damping 

capacity may be of little use if the material stiffness is not of 

engineering interest. 

(b) The unbonded specimens 

The hysteresis loops from the unbonded specimens both etched 

and unetched. give the appearance of being almost elliptical 
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(figure 46). As the amplitude is increased, however., the shape of 

the loops changes as i, ndicated by figure 47. This change is due to 

the onset of gross sliding at the matrix/fibre interfaces. The loops 

increase markedly in area because of this sliding as the amplitude 

is further increased (figure 48). The sliding occasions a loss in 

stiffness which is plotted against the root mean square amplitude 

of oscillation in figure 49. In this case there is no need for a 

complicated definition of stiffness since the decreasing force leg 

of the loop is nearly an exact reversal of the force increasing 

portion. This is shown in figure 50 for a sample etched specimen 

loop. The stiffness of the specimen at any particular amplitude is 

therefore taken to be the slope of the diagonal of the rectangle 

defined by the maxima and minima of force and displacement in the loop 

and modified suitably to take into account machine stiffness. 

Sliding or the possibility of sliding also has a marked effect 

on the mean force about which the loops are described. As indicated 

previously an overall displacement of 7.5 mm was first imposed on 

the specimens. in all cases such a displacement would take the 

specimens well into the sliding region of the static loops like those 

in figure 17 since a strain of greater than l(Yjo is implied. The 

superposition of a sinusoidal motion on the static displacement causes 

a fall in the mean force. The reason is that the stiffness on un- 

loading from a particular point is very rauch higher than the stiffness 

if the load is increased from that point, when low amplitude cyclic 

motion is begun, the mean force position changes immediately to a 

lower value such that the higher force end of the loop does not cross 

the force-d. ispiacemcnt curve of the static loop. Indeed, the mean 

force may well fall by an amount greater than that required to fulfil 

i 
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this condition. The change in mean force against rms amplitude of 

oscillation during progressive cycling at 0.83 Hz is shown in figure 

51 for an etched and an unetched specimen. 

in both cases the amplitude of oscillation was increased until 

the lower part of the loop almost. crossed the zero load line and in 

both cases., it will be noted, the mean force remained virtually un- 

changed when the amplitude of oscillation was reduced again. This is 

a contributing factor to the nature of the result shown in figure 49 

in which the stiffness of the unbonded specimens (particularly the 

etched one) is different., when the amplitude was being reduced., 

from the values when the amplitude was being increased, 

Since there is no countervailing reason for the mean load to 

increase while the amplitude is reduced, reducing the amplitude has 

the effect of altering the shapes of the loops compared with when 

the amplitude was increasing. The effect is shown in figure 52 for 

an etched specimen for which the loop becomes significantly longer 

and thinner as the amplitude is reduced than when it was being 

increased. The effect on the unetched specimens is less marked but 

the loops do increase slightly in slope and become smaller in area. 

If the experiment is repeated immediately., i, e, if the amplitude 

of oscillation is increased again, it is clear that different circ- 

umstances are involved compared with the first loading sequence 

since significant mean load changes have already occurred. It was 

found that on repeating the experiment the mean load retraced the 

path of the initial amplitude reduced mean load (figure 51) when the 

amplitude was increased again. A further slight fall in mean load 

occurred when the amplitude was reduced. 
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The stiffness results showed features similar to those already 

described for the first amplitude increased/decreased sequence but 

the variation especially for an etched specimen was much smaller. 

In particular the amplitude increased results on the second-loading 

sequence were very close to the amplitude reduced results of the 

first loading sequence. This implies that the amplitude reduced portions 

of the results presented are more representative of steady state 

material properties than the initial loading results, 

From. the foregoing it is clear that the effect of loading 

history is very important in these specimens. Different results will 

be obtained depending on how large the initial mean displacement is 

made. It is expected, however, that the results would all be of a 

similar nature except in the case where the initial mean displace- 

ment is so small that gross sliding at the interfaces does not occur 

and the loops remain small and nearly elliptical. 

It is interesting to note that very similar stiffness results 

can be obtained from quite differently shaped loops. This is 

particularly clear in figures47 and 48. The difference between the 

etched and unetched specimens of similar stiffness shows up more 

clearly in the measurement of energy loss per cycle which is shown 

in figure 53. When the amplitude'is being increased., the energy lost 

per cycle in the etched specimens is up to twice as much as that lost 

in the unetched ones for the same amplitude of oscillation. When 

the amplitude is reduced the difference becomes less obvious due to 

the effect already noted in figure 52. 

Calculating specific damping capacity for these specimens 

highlights the effects just discussed. When the amplitude is being 
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increased there is an increase in energy lost per cycle and a decrease 

in stiffness. This implies a very rapid rise in specific damping 

capacity. When the amplitude is being reduced the rate of decrease 

in the area of the loop and the rate of increase of its stiffness 

are higher than the corresponding rates when the amplitude was 

increased. This conversely implies a very rapid reduction in specific 

damping capacity. The net result is specific damping capacity curves 

in the form of loops which are shown in figure 54. 

For the bonded specimens., it was found that there was 

significant distortion of the force response to the sinusoidal 

displacement input, In the case of the unbonded specimens the 

distortion (which must be present since the loops are not elliptical) 

cannot be distinguished by the naked eye. 

The results recorded so far are for specimens in which it is 

believed that there is a complete bond at the matrix/fibre interface 

or no bond at all. It was not intended that the third possibility of 

an incomplete bond between fibre and matrix be discussed. However., 

figure 55 shows a sample hysteresis loop from a specimen which was 

intended to be bonded but which does not seem to have been completely 

successful in manufacture. In comparisons in the ensuing discussion, 

results from this specimen will be shown, to demonstrate their 

intermediate nature between bonded and unbonded specimens. 

7,4 Discussion of results 

The illustrative results have all been plotted against dis- 

placement without relating this to strain. As indicated, the mean 

displacement of 7.5 mm represents a mean strain of about 11% so the 
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maximum amplitude of oscillation of about 0.5 mm peak represents<l% 

strain. The relatio nsh±p of these results to the static results 

reported in Chapter 5 and exampled in figure 17 may be deduced. 

The oscillatory loops are, in fact, only a fairly small fraction of 

the size of the static loops. It should also be noted that the 

imposition of an oscillatory motion on the etched specimens has some 

effect on the interfacial properties. This is evidenced by the fact 

that after sinusoidal straining the etched specimens produce static 

hysteresis loops more closely resembling the unetched loop in 

figure 17 than the etched loop in the same figure. 

However, these slow sinusoidal tests clearly indicate that a 

significant difference still exists between the properties of the 

etched and unetched specimens -a difference which has already been 

demonstrated by figures 47 and 48. Equally clearly, the etched and 

unetched unbonded specimens are very significantly different from 

the bonded specimens. Since all three different types of specimen 

are of a non-linear nature, characterisation of their properties is 

not a simple procedure. The following discussion is intended only 

as an introduction to that task. 

In much of the literature on rubber, attempts are made to 

analyse results on the basis of a Voigt or Kelvin element which 

implies that the material under test is composed of a linear stiffness 

element and a viscous damping element in parallel. This implies 

that the experimental results should consist of a series of ellipses 

with an axis of a particular slope such that the area of the 

ellipse gives the energy lost in a cycle and the slope of its axis 

the materia stiffness. In practice,, the hysteresis loops are not 

elliptical and the slope of the axis of the loops is not a constant. 
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This is also true of the materials presently under discussion. 

The use of linear analysis involves calculation of an 

equivalent dashpot constant Ceq for the hysteresis loops on the 
2 

basis that the equivalent ellipse would have area Cal WX 

where W is the frequency of the 'oscillation and 
X its amplitude. 

The unetched specimen results seem most suited to this approach 

since they appear to be nearly elliptical. Figure 56 implies that 

even if the loops are elliptical., the way in which they increase in 

size is not governed by a simple linear law. Since it has already 

been established that the stiffness of the specimens is not 

constant with amplitude this observation is not unexpected. 

It is clear that this kind of approach must be treated with 

caution. For example, the result of calculating Ce, for a bonded 

specimen is also shown in figure 56 and the variation is very much 

less than for the unbonded specimens although the bonded specimen 

hysteresis loops look very much less like ellipses than the unbonded 

ones. It could., of course., be argued that the bonded specimen loops 

are basically elliptical but are distorted by the nature of the 

specimen stiffness. 

Some simple comparison with linearity for each loop seems to 

be desirable. One plausible possibility for this is to calculate 

the area of the ellipse which has the same principal axis dimensions 

as the experimental loop and to compare this area with the actual 

area of the hysteresis loop as measured with the planimeter. The 

necessary measurements are the force, F at the mean amplitude and 

the amplitude of the loop., X. The area of the relevant ellipse is then 

dW = << FX7.4 

A 
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There would of course be little point in this procedure if the loops 

did not look plausibly elliptical, 

For the unetched specimens., the calculated areas are at most 

1$1o greater than the measured areas while for the etched specimens, 

the difference is as much as 24%. In both types of specimen., the 

difference shows a fairly marked dependency on the amplitude of 

the loops. This is due to the way in which the width of the loop 

changes at the mean displacement position with change in loop 

amplitude, 

If the bonded and intermediate specimen loops are indeed 

distorted ellipses then the equivalent calculation may be carried 

out for them also. To obtain some comparison among the specimens, 

the percentage differences have been averaged for sample specimens 

and are tabulated below. 

Table 4 

Type of specimen Mean 
dWcalculated 

-QWmeasured Standard 

, &W measured deviation 

Unbonded etched 15.2 8.0 

Unbonded unetched 6.0 4.5 

Bonded 1.0 5.8 

Intermediate 3.6 2.3 

Zero mean percentage difference and standard deviation would 

imply a material whose damping was close to linear although not 

necessarily viscous. The bonded specimen has the lowest mean but 

quite a large standard deviation while the intermediate specimen 

has a slightly higher mean but a-low standard deviation. In both 

p 
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cases the deviation from linearity may be traced to lack of symmetry 

on either side of the an position., i. e. the loops are slightly 

wider on the higher force side of the mean displacement. 

As has been implied the unbonded unetched loops which looked 

nearly elliptical must deviate quite significantly from that form. 

Just as the unetched specimen loops appeared plausibly elliptical, 

so the etched loops looked as though they might be modelled by a 

bilinear hysteresis loop (figure 18). This proposition was 

investigated using the largest loop from one of the etched specimens 

as the basis. Clearly some criteria are required for the comparison. 

The most obvious are (a) the same stiffness (slope of the diagonal) 

(b) the same energy loss per cycle (area of the parallelogram) and 

(c) the same amplitude of oscillation. 

Use of the diagonal of the experimental loop defines (a) and 

(c) so for the same damping it is only necessary to take half the 

area of the experimental loop and equate it to the area of the 

triangle which has the loop diagonal as base. There iss of course, 

an infinite number of triangles having the same base and height and 

hence giving the same area. Some additional criteria are required. 

Two such criteria are that the slope of neither leg may be negative 

which means that the maximum slope of the stiffer leg is infinite 

and the minimum slope of the other leg is zero. This reduces 

substantially the number of possibilities for the position of the 

third vertex of the triangle. There is a further implication to 

choice of stiffness for the stiffer leg in that this stiffness allied 

to the locus of the height of the triangle defines the*loop collapse 

amplitude of oscillation,. i. e, the amplitude at which the less stiff 

leg disappears altogether. 

I 
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It may be noted here that any plausible mechanical arrangement 

to produce a bilinear hysteresis loop must describe steady state 

oscillations about a constant mean load. This means that matching 

the initial loading loops to a bilinear model is not likely to be 

possible since there are significant changes in the mean load. It 

was found, however, that even in the case of results from a second 

loading sequence in which the mean load changes only marginally, it 

was impossible to match up the stiffnesses at lower amplitudes 

while retaining the same energy loss per cycle at the higher 

amplitudes. Conversely, if the damping is kept the same at the 

higher amplitudes the stiffness at lower amplitudes is too great. 

This occurs because although the experimental results look as though 

they might be approximated by straight lines, it transpires that the 

slope of the less stiff leg changes from one loop to another. It 

was accordingly concluded that attempting to characterise the etched 

specimen hysteresis loops by a bilinear model was neither readily 

possible nore likely to be productive. 

It is possible to characterise the bonded specimen results 

empirically since the properties do not vary too much as a function 

of stress history. The characterisation of the unbonded specimens 

cannot readily be achieved empirically because there are so many 

factors including interface properties which must be taken into 

account. Some direct comparison of the results is still useful. 

Figure 57 shows the stiffnesses of a bonded specimen., the 

intermediate specimen and an unetched specimen which is the less 

stiff of the two types of wibonded specimen. The intermediate 

specimen shows a clear loss in stiffness with respect to the bonded 
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specimen although the general character of the bonded result is 

retained. The results obtained from this specimen when the 

amplitude is increased and reduced again are very close to each other 

over the whole range of amplitude. Generally., the stiffness falls 

slightly as the amplitude is reduced compared to the amplitude 

increasing results. There is no tendency on the part of the bonded or 

intermediate specimens to show the figure of eight pattern which is 

a feature of the unbonded specimens. The reason for this is the 

difference in the nature of the change in mean force which is due in 

turn to the bonded or unbonded state of the interface. 

An etched unbonded specimen has been chosen for the comparison 

of the energy lost per cycle with a bonded and the intermediate 

specimen in figure 58, The close relation between the intermediate 

and bonded specimen results again suggests that the intermediate 

specimen is essentially bonded in character (as indeed it should be). 

Figure 59 shows the comparative relationship among the same three 

specimens of specific damping capacity and in some ways highlights 

the limitations of this parameter as a measure of damping. The 

apparent superiority of the etched unbonded specimen as a spring 

damper conceals the fact that the stiffness of this specimen is very 

much less than the other two and a very large initial displacement 

is required to achieve the behaviour illustrated. 

There are a number of other features of the results which 

require comment. One is that there is no simple relationship 

between loss of stiffness and increase in damping in the unbonded 

specimens. The nature of the relationship between specific damping 

capacity and displacement testifies to this, A 'related feature is 

that there is no clear point at which sliding begins. This is 

a, 
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perhaps not surprising since considerable sliding has already 

occurred in reaching trie-mean position and the change in mean force 

once oscillation is begun indicates that there is some internal 

rearrangement of the load distribution accommodated presumably by 

sliding. The particular non-linear nature of the matrix stiffness 

would in any case be likely to obscure the existence of an explicit 

incipient sliding strain amplitude, 

It iss nonetheless, instructive to consider the energy lost 

through friction in the unbonded composites. McLean and Read 1975 

deduced the energy lost per cycle per fibre as (using the notation 
pt 

of Chapter 6) 2T 'C,,. eM Lý where is the fibre radius., 'tic, the 

friction shear stress at the interface during sliding., em. is the 

overall matrix strain and 
I is the length of the fibre. This 

conclusion was also reached by McMeeking 1972 but. consideration of 

the experimental results presented here shows that the energy loss 

per cycle is not as predicted linear with strain, 

The formulation above implies that there is complete sliding 

at the interface at all strains. As has already been shown, this 

is not the case even when there is virtually no bond between the 

fibre and the matrix. A modification may be made to the calculation 

by introducing X the distance along the fibre over which sliding 

is taking place. This distance was derived theoretically (equation 

6.19) in relation to the quasi-static loops and may be used here to 

give a better estimate of'the energy lost per cycle. 

Using this parameter and the same argument as McLean and Read 

for the reduced sliding length, the energy lost per cycle per fibre 
2 

is given by Ö'f fi'ý. 
ý 

2 X. There is an additional uncertainty in 
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this calculation since the strain in the matrix is not known 

precisely because of end effects near the bonded fibres which form 

part of the grips. However, using the value of 'C = 0.091 N/mm2 

as used in Chapter 6} and taking the effective length of the specimen 

as 66.7 mm, the energy loss per cycle has been calculated and is 

shown in figure 60, The experimental points for an etched specimen 

are also shown in this figure, It is not intended to imply that 

this calculation is in any way exact. it does seem, however, that 

the introduction of the notion of progressive sliding yields 

approximately the correct form for the energy loss although it must 

be remembered that the energy lost in the matrix has not been taken 

into account and would make the prediction slightly larger. 
0 

There is one final feature of the results of considerable 

importance and that is the relationship between the bonded composite 

specimens and specimens made from the matrix only. In simple linear 

viscoelastic theory, the storage and loss moduli of the composite 

should be greater than those of the matrix alone by the same factor - 

the magnitude of which would depend on the nature and disposition of 

the reinforcement, This being the case, the specific damping 

capacities for the bonded specimen and matrix only specimen should 

be the same (if the fibres are considered to be rigid). 

In the present case as figure 61 indicates there is a difference 

between the composite and matrix only specific damping capacities 

of about 2-3 times. At least part of this may be accounted for by 

the none linear nature of the matrix material which, as previously 

noted' has a very marked effect on the properties of the composite. 

This is evidenced by the fact that there is a great difference in 

the factor by which the energy loss per cycle and stiffness change 
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such that although therevts a fairly constant stiffness 

amplification by a factor of about 30., the amplification of energy 

loss per cycle varies by a factor of between 50 and 80. 

p 
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CHAPTER EIGHT 

8. Measures of and Methods of Measuring Damping 

Some of the measures of and methods of measuring damping have 

already been mentioned in the last chapter. The following chapters 

relate to dynamic test methods in general and., in particular., the. 

testing of the discontinuous fibre composite specimens as part of a 

one degree of freedom system. The bulk of the present chapter is 

concerned with reviewing the relevant literature on damping. By way 

of introduction the linear measures of damping and their relationship 

to each other are first considered. 

8.1 Measures of damping 

Plunkett 1959 lists some of the measures of damping. Those 

relevant to the present work are 

(a) logarithmic decrement 

(b) amplification factor 

(c) complex modulus and loss factor 

(d) bandwidth 

to which may be added 

(e) specific damping capacity. 

All these various measures of damping may be converted one 

between the other although there are some limitations on the 

accuracy of the process. 

(a) Logarithmic decrement., 6 
may be defined as 

tn. ̀n 
n*1 

in other words as the natural logarithm of the ratio of the maximum 

amplitude of a cycle of a freely decaying oscillation to the maximwn 
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amplitude in the succeeding cycle. Ideally logarithmic decrement 

measurements should be confined to linear systems., i. e. ones in which 

energy lost per cycle is proportional to the square of the 

amplitude or the dissipative force is proportional to velocity 

(viscous damping). In these cases the value of 
6 

obtained is 

constant regardless of the initial amplitude. 

(b) Amplification factor Ar is defined as 

A_a fes 
a,, t 

where Qres is the resonant amplitude of a system for a given applied 

sinusoidal force and Qst is the amplitude at zero frequency for the 

same force amplitude. Again, for A,,, to be constant, the damping in 

the system must be linear. 

(c) The Complex Modulus representation of damping assumes that 

material moduli, e. g. Young's modulus may be represented by a 

complex number E* =E+t E" where E is the storage modulus and 

E. is the loss modulus. 

This may be represented as 

E*= E(i+f 
Hence rl E=E 

and r1 = ý, = loss factor 

This representation is only suitable for the description of 

the steady state response to a forced sinusoidal input. 

(d) Bandwidth is based upon the difference in the two frequencies 

at which the amplitude is the same when the exciting force is the 

same (Plunkett 1959). It may be shown for a viscously damped system 

in which 
ýý ýý 

amßx 2 
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that 

2-Af Cý 2- 
,- 0ý M CL 

where 
ý is the damping ratio, 

Af is the difference in frequencies 

at which the amplitude is a, f is the resonant frequency of the 
n 

system., and R 
Max is the maximum amplitude. 

The most commonly used criterion is amaX =qr2'1 Q. such that 

f� 3 d8 
(e) Probably the most universally useful measure of damping is 

specific damping capacity i defined as 

w 
where LW is the energy lost per cycle and W is the maximum strain 

energy stored during the cycle. 

Although specific damping capacity may be inferred from, for 

example, decay measurements, to be of-maximum practical value,, 

specimens should ideally be resonating in direct tension-compression. 

8.2. Relationships between the measures of damping 

The relationships are probably best illustrated with reference 

to specific damping capacity as defined above, viz. 

Aw 
w 

(a) Logarithmic decrement 

Let 
s= 

, 
ýn rü +Aa 

`aJ 

---- 
Jr + 

Aa Aa ýt 

(Ctý Ct aa...... 
0. to first order 

a 
If the stored energy is proportional to the square of the 
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amplitude., i. e, 

W=k (a +ßa)2 
then the energy dissipated in one cycle 

1ý ýr =k (a+ Aar-117 k a2 
=k (za Aa + (Aa)2) 

=z ka &a 
" . ýf, _ 

Aw_ aka Ag 2 da ," ZS .. Iw "- a 
(b) Amplification factor 

For a resonant system of one degree of freedom with viscous 

damping., the resonant amplitude 
F/k 

aces 

where 
F is the exciting force amplitude, 

k is the spring stiffness., 

is the damping ratio and Qst = 
F/k 

, Therefore, 

_ares_ 
For the same system 

adecaying 
freely., it can be shown(Myklestad 

1950 that 
S==z7 

li, =2 QTZ for small 
C ý) 

so ^-ý 
s 

zTt 
A, ~ 

ný 
N 2rt 

or Ar 
(c) Complex modulus 

The energy lost per unit volume per cycle in a material with 

complex modulus 
E= E4IE 

undergoing forced sinusoidal 

oscillations of strain amplitude Co is 

eo 'r Eire. q E' 
and the maximum strain energy is 

2ý" 
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Therefore, E 

(d) Bandwidth Q 
2ý 

33 db 

Tt 
(In 

3db 
f 

Qý'`r 
=2r Thus 2 S= z =4 Zit L1 

w 'ý Ar 3d$ . 

8.3. Methods of measuring damping 

There have been many investigators of material damping in the 

past and they have used a wide variety of methods of which some have 

proved considerably more popular than others. 

Some of the methods are listed below. 

(a) Static tests 

(b) Temperature methods 

(c) Free decay in (i) torsion (ii) bending 

(d) Rotating-bending tests 

(e) Banthddth measurements 

(f) Energy input in (i) torsion (ii) bending (iii) direct tension- 

compression 

(g) Resonance amplification factor measurements 

(h) Complex modulus 

Many of the methods overlap in some way in the sense that the 

testing system used is capable of producing results which can be 

analysed in different ways to give the damping in more than one of 

the measures of damping described in section 8.2. 
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(a) Static tests 

In principle the simplest way to obtain the energy lost in a 

cycle of strain is to perform a static test. Hopkinson and Williams 

191Z tried this in direct tension-compression but could only obtain 

an estimate of the width of the hysteresis loop at zero stress with 

the crude equipment at their disposal. 

To obtain more easily measureable deflections, Rowett 1913 

used thin-walled torque tubes and was able to plot a hysteresis loop 

from his measurements in torsion, Although the use of thin-walled 

tubes is an improvement on solid torsion specimens, the stress is 

not constant across the sections under test, 

About twenty years after Rowett, Dorey 1932 tested solid 

torsion specimens in an apparatus which he admitted to be similar to 

Rowettts. in the discussion of Dorey., Lewis raised the objection to 

the tests that the specimens being solid had a large variation of 

stress in them from zero at the centre to a maximum at the outside. 

He also suggested a method of correlating. results from solid 

specimens with those from tubular specimens but this idea does not 

seem to have been pursued. In defence of Doreyts method, it might 

be said that his tests were explicitly on crankshaft steels and from 

the practical point of view, a solid torsional specimen more nearly 

approximates to part ofa crankshaft than a tubular one. 

As has already been seen, it is currently possible to, measure 

the area of a hysteresis loop for a high damping material using a 

standard modern tensile testing machine. 

(b) Temperature methods 

Hopkinson and Williams 1912 seem to have been the first to 
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try to utilise the increase in temperature which occurs due to the 

dissipation of mechanical energy as a measure of damping. Their 

apparatus was originally constructed for fatigue testing (Hopkinson 

1911) and consisted of a specimen supporting a large mass in a one 

degree of freedom arrangement which was caused to resonate. by a 

magnetic driving system, The temperature measurements were made at 

the centre and ends of the specimen and the system calibrated to 

give the energy loss by a method which is less than clear. 

Other investigators most notably in Germany used fatigue 

testing machines for the measurement of damping. Von Heydekampf 

1931, reviewing methods of measuring damping, describes them as the 

starting up test in which the temperature rise in unit time is 

measured and the energy converted into heat deduced, and the 

equilibrium temperature method in which the damping energy is found 

from the steady state temperature of the specimen and the slope of 

the cooling curve when the machine is switched off. 

Much more recently Adams and Percival 1969 have conducted 

experiments, based on an idea similar to that of Hopkinson and 

Williams, in which a free-free bar specimen was set into longitudinal 

resonance by a magnetostrictive transducer and the temperature 

measured at various points along its length. The advantage of the 

system is that energy losses at various stress levels may be 

inferred simultaneously from one test but due to the nature of the 

driving system only one (rather high) frequency could be used, 

Robertson and Yorgiadis 1946 criticised methods employing the 

measurement of temperature on the ground that damping varies with i 

temperature. If this is a valid cause for objection then any method 
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which employs a resonant specimen is likely to be unsuitable because 

it will involve a temperature rise in the specimen whether this 

is measured or not. 

(c) Measurements of freely decaying vibrations 

(i) In torsion 

The apparent ease-with which a system may be constructed to 

measure the free decay of torsional oscillations made this method of 

measuring damping popular for a considerable time. All that seemed 

to be necessary was a frame (latterly freely suspended), clamps for 

the specimen., an inertia bar., some means of holding and releasing 

this bar at preset positions and a method of recording the sub- 

sequent decay. 

Rowett 1913 extended his static investigation by employing 

such a system and concluded inter alia that the damping of his steel 

specimens was independent of frequency, A widely used apparatus for 

measurements of this type was the Föppl Pertz machine which was 

advocated by Föppl 1936 for its simplicity. The original Föppl Pertz 

instrument used a pen on wax paper recording system which Contractor 

and Thompson 1940 abandoned in favour of an optical system since 

they found that the friction of the pen on the paper caused 

significant losses. They also made other modifications designed to 

reduce the losses inherent in the machine. 

Hatfield, Stanfield and Rotherham 1942 used a proprietary 

machine - the Cambridge Instruments Torsional Damping Recorder - 

but found it unsatisfactory and so designed their own apparatus which 

was basically an inverted Föppl-Pertz arrangement. They expanded 

their measurements in a second paper, Hatfield., Rotherham and Harvey 
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1944 but only to the extent of answering criticisms of their original 

experimental programme and apparently no improvement to the design 

of their apparatus was sought. Both these papers contain extensive 

bibliographies on damping studies of all sorts prior to this time. 

Using very large torsional compound pendulum specimens and 

very low stresses., Fro=mcr and Murray 1944 measured damping at 

vanishing oscillatory amplitudes and produced results which indicated 

very tauch smaller values of damping at low stresses than had been 

indicated at much higher stresses using apparatus of the Föppl Pertz 

type. 

This possibly anomalous situation was investigated by Cotten, 

Entwhistlc and Thompson 1948 in a classic study. - Quite apart from 

criticisms of free decay measurements such as that of Robertson and 

Yorgiadis 1946 that at high rates of decay, the decrement cannot be 

associated with any specific stress or strain amplitude or of Russell 

in his discussion of Contractor and Thompson 1940 that the stress 

distribution in solid torsional specimens precludes the damping being 

associated with any particular stress level, Cottell, Entwhistle 

and Thompson concluded that the design of machines of the Föppl- 

Pertz type was open to serious criticism. By successive improvement 

to the design of a Föpp1-Portz instrument, these investigators reduced 

the apparent specific damping capacity of the same specimen by between 

two and three orders of magnitude. This seems to have marked the 

end of experimentation with the Föppl-Pertz machine. 

However, some time later, Cochardt 1954,1955 performed some 

experiments in free decay in torsion. His specimens were wires in 

which were induced static mean stresses by hanging weights on the 
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specimens as well as an inertia bar. To prevent lateral motion, the 

end of the rod carrying the weights was dipped in an oil bath but no 

mention is made of what effect this arrangement may have had on the 

results. 

(ii) In bending 

Freely decaying steel cantilever beams were used by Ockleston 

1938 to stuffy damping in flexure. This fixed-free arrangement is 

criticised by Adams and Bacon 1973a on the grounds that a complex 

stress field is induced at the fixed end and there is necessarily 

a high force and moment transfer there also. Adams and Bacon also 
c 

criticise Shabtach and Fehr 1944 for their tuning fork specimens 
A 

which these authors defend on the ground that their specific interest 

was in steaa turbine blades which are,, like the tines of a tuning 

fork, at least approximately cantilevers. 

Person and La: an 1956 adapted what had been a rotating 

cantilever arra gmcnt to perform free decay tests in bending on. 

hollow tubular specimens to which were applied a static mean stress 

using a lever arm and weight. In this arrangement it was necessary 

to provide a steady bar to keep the vibrating system in one plane. 

Using more conventional rectangular solid section specimens, 

1Iagel and Clark 1957 employed a fixed-fixed beam arrangement in 

which the specimen ends were in massive suspended blocks. This set- 

up allows a static tension to be applied by lowering one block below 

the level of the other. A lot of the experimental details in this 

system, however, are not made clear. 

Perhaps the first reported damping measurements on composite 
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materials were made by Schultz and Tsai 1968 who employed double 

cantilever specimens clamped to the table of an electrodynamic shaker. 

The system was caused to resonate and then the free decay of the 

system found with the shaker switched off. Adams and Bacon 1973a 

criticised this system extensively starting with the fact that the 

shaker itself will act as a damper. There are also problems with 

the mode shape of the beams unless the central mass is very much 

greater than the bean mass and, of course., if this is the case, the 

driving point amplitude is likely to be low. However, Schultz and 

Tsai were sufficiently confident in their results to conclude that 

their specimens were anisotropic linear viscoelastic. 

Dudek 1970 used the proprietary Brüe1 and Kjaer type 3930 

Complex Modulus apparatus to measure damping during the free decay 

of the cantilever beam specimens which are required by this 

equipment. lie concluded that it was necessary to employ Timoshenko 

beam theory in data reduction since the shear term excluded from 

ßernouilli-£uler theory becomes significant for a composite material. 

The same criticisms apply to this apparatus as were levelled at that 

of Ocklcston. 

0 
To test free-free composite material beam specimens., Wright 

1972 sought to reduce any possible interference with his specimens 

by exciting them using air coupling and measuring the decay with an 

optical device. Apart from the fact that only low stress levels 

can be achieved due to the inefficiency of the air coupling, the work 

of Adams and Bacon 1973b suggests that aerodynamic damping is likely 

to be significant. Of necessity Wrightts apparatus cannot be 

operated in vacuo. 
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(d) Rotating-bending tests 

'alien an overhung rod supported by bearings and loaded at its 

end is caused to rotate, the deflection is not only downwards due to 

the load but also lateral due entirely, it is claimed to "internal 

friction" in the material of the rod (Kimball and Lovell 1926). 

Mason 1923 seems to have been the first to propose this arrangement - 

the loading he suggested being a couple. Kimball and Lovell claim 

to have thought of the idea independently of Mason and indeed their 

work probably had more influence since they proposed a coefficient 

of internal friction which was alleged to be constant and concluded 

that damping energy was proportional to the square of stress. The 

most curious part of their work seems to have been the arrangement 

w1iich held the rod end steady while readings were taken. Since this 

device was in essence a damper, knowledge of the effect it had on the 

results would be intriguing but is not disclosed since its removal 

would presumably preclude the gathering of any data at all. 

La: an and Vu 1951 revived the use of rotating cantilevers for 

the measurement of damping. Their specimens were slightly tapered 

tubes and the loading, produced by a weight on a moment arm, could 

be varied by altering the orientation of the apparatus in the 

gravitational field. Again. it was necessary to introduce a damper 

to take readings due to excessive whip of the loading arm. 

(e) Bandwidth measurements in flexure 

In general bandwidth measurements do not seem to be a very 

popular way of measuring damping. Gcmant 1940 deduced the damping 

properties of some soft materials by testing steel tubes filled with 

the material of interest and inferring the results from bandwidth 
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measurement on an apparatus similar to that of Förster and Köster 

1939. The arrangement involves having the specimen suspended in 

loops of wire situated very close to the nodes and exciting the 

specimen in flexure down one suspension wire while picking up the 

response at the other. Necessarily the stresses induced in the 

specimen are very small. 

Schultz and Tsai 1968 also took bandwidth measurements at the 

3dB points for the higher modes of their double cantilver beams and 

relied entirely on bandwidth measurements in some additional 

cxpcrimcnts rcported in Schultz and Tsai 1969. 

(f) Energy input methods 

Ideally damping measurements are best made at maintained 

stress levels thus obviating at least one of the objections to decay 

and bandwidth methods. The most usual way of achieving this is to 

employ a resonant system of which the specimen is usually only a 

part. However, results from resonant systems either in torsion or 

in bending are still open to the objection that the stress is not 

constantly distributed throughout the specimen. The measurement of 

energy input at resonance has been attempted in torsional, flexural 

and direct tension-compression resonant systems. 

(i) Torsional 

Canfield 1928 tested tubular specimens in torsion with a 

magnetic system driving an inertia bar. He did not seem very 

confident in his results which, perhaps not surprisingly, differed 

in form from those of Kimball and Lovell 1926. 

A vcry painstaking approach to the problem was taken by 
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iianstock and flurray 1946 who concluded that lithe experience obtained 

throughout this investigation demonstrates that methods of measuring 

damping capacity based on the vibration of a composite system of which 

the specimen forms only a part are fundamentally unsound - the joints 

in such a system being the sources of considerable dissipation of 

energy. For this reason they chose a compound torsional pendulum 

specimen suspended from a steel wire and excited electromagnetically. 

Their pessimism on the subject of the removal of extraneous losses in 

composite testing systems is probably largely due to the fact that 

some of the aluminium alloys which they tested have exceedingly low 

damping capacities as has been confirmed by other investigators, e. g. 

Cottell, Entuhistle and Thompson 1948. 

Sumner and Entxhistlc 1958 although admitting to some 

influence from 11anstock and Murray used what was essentially a 

resonant rppl-Pert: apparatus while Adams et al. 1969 returned to 

the simple inertia bar arrangement with a dummy Duralumin specimen 

to prevent bending. In fact, Adams et al. 1973, Adams and Bacon 

1973b and Adams and Short 1973 have used this latter apparatus 

extensively - partly to develop non-destructive tests for composite 

nsterials. However, not all the experimental details have been made 

clear. 

NO Flexural 

Canfield 1928 could also induce bending resonances in his 

sratem by the si=p1c expedient of turning the driving system through 

900 so that the force produced acted in the plane of the specimen. 

Ada=3 ct al. 1969 also used a flexural apparatus for testing 

CC Iposito tuterials in %iüich a beam was driven in its fundamental 
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free-free mode by a coil-magnet pair - the beam being supported on. 

polyurethane knife edges. This apparatus was improved by Adams and 

Bacon 1973a - mainly by changing the supports to threads and 

changing the displacement measuring system - and used by them Adams 

and Bacon 1973b and by Adams and Short 1973 for investigations into 

the dynamic properties of composite materials. 

(iii) Direct tension-compression 

In principle, the best method of measuring damping is in 

direct tension-compression resonance with an arrangement such that 

the stress in the specimen is constant along its length. This allows 

variation in damping with stress to be measured directly as long as 

extraneous losses are sufficiently small. 

Robertson and Yorgiadis 1946 tried this with equipment 

developed by Lazan 1943. The arrangement consisted of a specimen 

mounted between two large masses which rested on polished rollers on 

hardened steel rails. Essentially., the system had one degree of 

freedom and was driven by an electric motor with eccentric weights. 

The authors admit that their results were obtained only within 5 or 

10. degrees of resonance which is probably not a sufficiently 

accurate criterion., particularly for materials with low damping. 

Adams and Fox 1972 revived this basic system but with many 

modifications. The masses they used were supported on air bearings 

which have extremely low friction and the specimens were connected 

to the masses by an interference fit which could be ingeniously 

released by oil pressure. The system was driven by a standard 

electrodynamic shaker which was modified only to the extent of 

introducing a beryllium-copper spider for lateral constraint in 
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place of the standard "Tufnoll' piece. The apparatus was intended for the 

measurement of high damping cast iron specimens which could not be 

tested using, for example, the apparatus described by Adams and 

Percival 1969 because of the non-linear stress-strain characteristic 

of cast iron. 

(g) Resonance amplification factor 

As pointed out previously many of the systems described can 

be used to provide damping data in more than one form. Lazan 1943 

used the same apparatus as Robertson and Yorgiadis 1946 to report 

damping data in terms of resonance amplification factor. He also 

used a machine of his own invention called the hypocyclic oscillator 

to drive specimens in torsion, bending and direct-tension compression. 

By suspending this driving device from the specimen and altering the 

orientation of the eccentric weights that provided the force., it was 

possible to produce resonance in the mode desired. These tests were 

also reported in terms of resonance amplification factor. 

(h) Complex modulus 

Measurements of complex modulus are commonly made in the field 

of viscoelasticity. An example of such experiments is the work of 

Norris and Young 1970 who drove their specimens in longitudinal 

resonance and deduced the material properties from the outputs of 

accelerometers at either end of the specimen. 

McConnell 1969 proposed a one degree of freedom system for the 

testing of viscoelastic materials but Ruzicka criticised the system 

in the discussion of the paper on the grounds that a Kelvin element 

model for the specimen was too simplistic and accordingly the 

proposal would be unlikely to work as the author had envisaged. 

This system is discussed further in the. following chapter. 
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CHAPTER NINE 

9. Dynamic Tests 

9,1 General considerations 

It will be clear from the foregoing review that dynamic tests 

to establish the mechanical properties of materials are both many 

and varied. When considering which method was most suitable for the 

testing of the particular composite developed in this study., it was 

obvious that some methods might be discounted immediately. For 

instance, temperature measuring methods were inappropriate due to the 

inhomogeneous nature of the material, Quasi-static tests although 

employed here for other purposes., as has already been reported, are 

not necessarily suited to the prediction of the dynamic characteristics 

of a material. 

Another important feature to be considered is the nature of 

the deformation undergone by the specimen, Quite apart from 

considerations of variation of stress in the specimen, torsion, for 

instance, is not an appropriate means of testing these materials 

since the shear strain amplification desired will not occur. It is 

interesting to note that Adams et al 1969 and Adams and Bacon 1973b 

report consistently higher specific damping capacities in torsion 

than in bending for continuous fibre composites. This is quite 

reasonable since the shear modulus in the longitudinal direction will 

be relatively small for these materials and much higher shear strains 

will be obtained in torsion than in bending when testing continuous 

fibre specimens. 

Perhaps the major consideration in devising a testing system 
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was the desire to keep the composite specimens in tension. The 

reason for this was that it was early established when experimenting 

with glass fibre composites that local buckling of the composite 

could occur if the material were compressed due to the lack of 

restraint provided by the compliant matrix. So, although some shear 

strain amplification should occur in bending specimens, it was felt 

that it would be preferrable to try to confine the loading to the 

longitudinal' direction which., apart from being the mode in which the 

greatest shear strain amplification occurs, is also the mode which 

should be most easily related to static tests. This is particularly 

important in view of the non-linear nature of the materials. 

The problem of compression remains. However., since the loads 

required for quite sizeable deformations of the specimen are small, 

it is relatively easy to add a mass to the specimen so that the 

configuration is that of a single degree of freedom system. Overall 

compression of the specimen may then be avoided if the amplitude of 

vibration is suitably limited. 

Damping tests are frequently carried out at resonance -- this 

certainly being the case for many of the tests described in section 

8.3. The major disadvantage is that the range of test frequencies 

available will usually be fairly limited. The advantages are that 

at resonance vibration amplitudes are relatively large and in. 

principle at least the only input is that required to overcome dampir 

energy losses in the test material. 

The definition of resonance can itself be a problem. Adams 

and Fox 1972, for instance, presuppose that there is nearly enough 

a 900 phase difference between force and displacement at displacement 
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resonance and that the damping energy will be TF X1, 

where F is the 

amplitude of the force input and 4 the displacement of the driven 

mass in their system. Resonance is defined as occurring at the 

maximum displacement amplitude for a given driving force. The 

results quoted in the paper show a maximum specific damping capacity 

of 2$ö which is very roughly equivalent to a damping ratio., 

of 0.02 which amply justifies the initial supposition. 

Adams and Bacon 1973a state that flat displacement resonance, 

providing the damping is not large, the exciting force and the 

resulting displacement are 900 out of phase" and then proceed to use 

the same formula as the one quoted above for damping energy although 

in this case the displacement is of the centre point of a beam (the 

tests being in flexure). It is implicit in their work that the, 

damping under consideration is of a hysteretic nature. They also 

state that "for non hysteretic materials, the phase angle is slightly 

less than 900 but providing the damping is not large (i. e. greater 

than 50% specific damping capacity) the error involved is negligible". 

Jacobsen 1930 suggested the criterion of equal work 

dissipated per cycle to derive equivalent dashpot "constants" for 

analysis of systems in which the damping mechanism is not viscous and 

Sperry 1964 has applied this method in a survey of theoretical 

rheological models. It seems to be reasonable to conclude from these 

analyses that provided the damping is small, the dissipative 

mechanism may be disregarded and the assumption made that the dis- 

placement resonance will nearly enough coincide with the velocity 

and acceleration resonances so that the damping energy per cycle may 

be taken as lt FX 
where F is the amplitude of the exciting force and 
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X the resonant displacement amplitude. 

An even greater problem in defining resonance arises when the 

damping is not small. In the case of a simple one degree of freedom 

system with viscous damping., it is well known that if the damping 

factor is sufficiently large then thefl'equencies at which the 

maximum amplitudes of displacement velocity and acceleration occur 

become quite distinct. Zn this case, the maximum energy dissipation 

occurs when the phase angle between force and displacement is 900 

and there is a maximum in velocity. Establishing either the 900 phase 

difference or the velocity maximum is sufficient to define resonance 

for damping measurements. 

However, simple viscously damped one degree of freedom systems 

do not occur often in practice and Ruzicka in the discussion of McConnell 

1969 is critical of the suggestion in that paper that a 90° phase 

shift between force and displacement be used as the criterion of 

resonance. Bert 1973 describes a Kelvin element as a first 

approximation to the behaviour of a viscoelastic solid and McConnell 

is essentially using this type of element as the model of his 

supposed test material. Ruzickats criticism is that it is not a very 

good model for a viscoelastic material if there is any significant 

degree of damping - his major objection being that if a model with 

more than the two elements of the simple one proposed is used the 

phase angle is no longer 900 at resonance. 

In practical terms., McConnellts criterion of a 900 phase 

difference between force and acceleration, would be, unlikely to be 

realised directly since there will almost certainly be a phase 

shift through the pre-amplifiers usually required with impedance 



99 
heads. This means that the criterion for resonance would not be 

simply established even if the model were an accurate one, 

Once it was resolved that a one degree of freedom system 

represented the best arrangement for trying to establish the dynamic 

properties of the composites., there remained the problem of an appropriate 

means of extracting relevant data. When the system had been set up 

and some initial attempts made to measure resonance curves, it 

became clear from the results particularly for the unbonded 

specimens that, it would be difficult if not impossible to know which 

if any of the measures of damping listed in the last chapter would 

be suitable for describing the damping in the system. 

In spite of the fact that the composites seemed to be 

significantly non-linear., it was decided'to try to obtain mechanical 

impedance (ratio of force to velocity) data for the system, The 

reason for choosing mechanical impedance measurements was that 

potentially a large amount of information about the system under' 

test is provided at each point on the resonance curve. The way in 

which this was achieved is described in the following sections. 

9; 2, The Apparatus 

The rig in which the vibration tests were carried out is 

illustrated in figure 62 and consisted principally of a massive 

rectangular steel frame manufactured from hollow 200 x 100 mm 

section which was subsequently filled with concrete. The frame stood 

upright on welded steel feet mounted on rubber pads. The internal 

dimensions of the rectangle were 610 x 305 mm, with a plate welded 

across the 305 mm dimension of the frame to provide the backing for 

the upper grip on the specimen. 
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Hixson 1961 points out that in mechanical impedance tests 

the vibrator should be suspended independently from the structure 

under test. A Ling Dynamic Systems series 400 vibrator was bolted 

to a piece of concrete-filled rectangular, steel section and using 

two support blocks this arrangement was made to form a bridge over 

the lower bar of the rectangular frame. The support blocks were 

also mounted on rubber sheeting such that the driving arrangement 

had a fundamental resonance'at about 150 Hz - well in excess of 

any of the test frequencies, The driving arrangement was also well 

isolated from the main frame. 

Force was measured using a Brüel and Kjaer (Band K) type 8200 

force transducer screwed directly into the vibrator table via a short 

grub screw. A cylindrical mass was then screwed on top of the force 

transducer. This mass had a plate welded to its top side in which a 

number of holes had been drilled and tapped 5/16"t diameter BSF on a 

73 mm P. C. D. The other'part of the mass consisted of a plate with 

four slots on the same P. C. D. as the holes and of width sufficient to 

allow clearance for 5/1611 diameter screws. A block, which formed 

the backing for the lower specimen clamp,, was welded on to the top 

plate. It was necessary to have the mass split in this way since 

the connection to the force gauge was a screwed one and some means 

of allowing the mass to load the specimen was required, 

The difficulty experienced with gripping the specimens at all 

has been described in chapter 3. It was recognised from the review 

of the literature of damping that any simple method of gripping the 

specimen was likely to be a source of considerable energy dissipation. 

However., the friction grips used in the slow cycle tests did not 

produce a very large loss in relation to the energy lost in the 
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specimen itself. If the specimens had had an extremely low damping 

capacity this would not have been the case. 

Since the specimen ends could not be machined in any way there 

was little alternative to the use of some sort of friction grips. 

After some experimentation, these were constructed as indicated in 

figure 63. Two small blocks for lateral location were screwed on to 

the backing plate by means of four 2BA screws such that the specimen 

could be entered between-them, The clamping force was provided by 

two OBA screws which were screwed through a bridge piece straddling 

the lateral location blocks and which bore on a small clamping block. 

This block was serrated so that it would bite into the epoxy resin 

which formed the specimen grips. The bridge piece was secured to the 

back plate by four OBA screws. In order to ensure that the mass 

preloaded the specimens small spacer blocks were introduced between 

the two parts of the mass while the'clamps were being tightened. 

Lock nuts, were provided on the clamping screws to ensure that they 

did not work loose during the experiment. Finally the two parts of 

the mass were drawn together, by tightening the 516" set screws. At 

various times two different sizes of mass were used in the experimental 

system - one just greater than 3 kg and one just less than 5 kg. 

The vibrator under the mass was driven by aB and K type 1017 

beat frequency oscillator (BFO) through a Henclec type MU 442 power 

amplifier which had been selected for its good sinusoidal performance 

at low frequencies. It is desirable to maintain a constant force 

input into a system on which mechanical impedance tests are being 

conducted. For this reason, the force signal was fed into the input 

of the BFO compressor (feedback) circuit via aB and K type 2628 low 

frequency charge amplifier. This had the effect of keeping the 
I 
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system force input very nearly constant (usually within 5% total 

range). 

AB and K type 4334 accelerometer was screwed on to the 

clamping backing block on the mass. It was assumed that for the low 

test frequencies involved, there would be no appreciable deformation 

in the mass between one end and the other. Although mechanical 

impedance is defined as the ratio of force to velocity the motion 

was measured as acceleration because the integrating networks of 

the B and K type 2625 vibration pick-up pre-amplifier through which 

the acceleration signal was passed attenuate the signal very 

appreciably. There was an additional reason for wishing to keep the 

motion signal as large as possible which is explained below. 

Apart from measuring a signal proportional to the force and 

one proportional to the motion, it was necessary to obtain the phase 

angle between the two. A Solartron JM 1600A transfer function 

analyser with associated JX 1606 mechanical reference synchroniser 

was used for this purpose. This combined instrument accepts a 

periodic signal as a reference to which other signals may be related. 

The force signal was fed in as the reference and the acceleration as 

the signal to be compared with it. One limitation of the mechanical 

reference synchroniser is that it requires a signal of at least one 

volt to operate so it was necessary to pass the pre-amplified 

acceleration signal through aB and K type 2409 electronic 

voltmeter which is also an amplifier in order to'obtain signals of 

sufficient magnitude. This last procedure has the additional 

advantage of removing the 13 volt DC bias from the pre-amplifier 

output. Although the ßF0 provides reasonably accurate increments 

of frequency its design is such that it is sensitive to temperature 
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changes. Set frequencies were found to alter by as much as 1 Hz as 

the instrument warmed up. Even after a warm-up period of two hours 

there was still a tendency for the set frequency to drift. This 

meant that a frequency counter was required for accurate frequency 

measurement and a Racal type SA 520 digital frequency meter was used 

for this purpose at the power amplifier output. 

See Addenda after Figure 89. 

A schematic view of the apparatus is shown in figure 64. 

9.3 Measurements 

Clearly in any system which appears to be non-linear care 

must be exercised in obtaining and interpreting data. One of the 

most likely areas in which inaccuracy may arise is that many non- 

linear systems tend to generate harmonics of the excitation frequency. 

It has also been noted already that some difficulty had been 

experienced in obtaining a power amplifier which would operate in 

the frequency range desired without significant signal distortion 

occurring. It therefore seemed important to make some study of 

the harmonic content of the signals to be measured. 

Although the basic measuring system yields data on the funda- 

mentals of force and acceleration, the mechanical reference 

synchroniser has the additional facility of allowing the measurement 

of their harmonics. The apparatus was checked for harmonic content 

of the signals over the relevant frequency range using initially a 

small mass screwed on top of the force gauge as the system loading 

the vibrator and thereby providing a force feedback signal. The 

power amplifier output under these circumstances showed a maximum 

2nd harmonic of 3.3% of the fundamental and typically figures for 

the 2nd to 4th harmonics of between 1 and 2%. When an unbonded 
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specimen loaded by a mass was introduced as the system, there was 

no significant alteration in the harmonic content of the power 

amplifier output. 

Readings of force and acceleration were also taken with the 

vibrator loaded by a mass only and again the largest harmonic 

content was found to be a second harmonic less than 4% of the 

fundamental. Introducing a bonded specimen and mass did not 

significantly increase the harmonic content of the force and 

acceleration signals although at frequencies near resonance of the 

system the 2nd harmonic of the acceleration signal was in fact 

doubled but the resulting figure was still < 5% of the fundamental. 

When it is recalled that an acceleration at twice the fundamental 

frequency implies a displacement of one quarter the fundamental 

displacement for the same magnitude of acceleration signal, it seems 

reasonable to conclude that the harmonic content of the signals, 

whether introduced by the system under test or extraneously., will 

not seriously detract from an assumption of point for point linearity 

in analysing the results. 

The basic measurements made were the fundamental root mean 

square voltages representing force and acceleration. The reference 

sensitivity of the accelerometer was 56 mV/g but rather than check 

this directly it seemed much more useful to calibrate the acceleration 

signal using the measuring system for the actual experiment. To this 

end the accelerometer was screwed to the vibrating table of aB and 

K type 4292 calibrator using aB and K type 2606 measuring amplifier 

as the power source for the calibrator and the resulting acceleration 

signal at 80 Hz was passed through the pre-amplifier and amplifier/ 

voltmeter to the transfer function analyser, lg (peak) was established 
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by observing the distortion of the acceleration trace on an oscillo- 

scope when the ball in the calibrator just began to rattle. This 

seemed to be a fairly sensitive and repeatable point so the manu- 

facturer's statement that calibration accuracy better than 107 can 

be achieved seems unduly pessimistic - the variation in the result 

from this procedure being at most' 1L 

Displacement resonance curves were calculated on the 

assumption that the motion was near enough sinusoidal i. e. by 

dividing the acceleration by the square of frequency. Since the 

typical variation in the frequency readings is ± 0.25% the overall 

error in this procedure should not be greater than ± 1.5%. Since 

the material under test is only a model rather than a practical 

material., it was not considered essential to try to achieve the 

highest standards of accuracy but obviously it is still necessary to 

have a reasonable estimate of the accuracy of the measurements. 

The force gauge is calibrated by the manufacturer such that 

its sensitivity in picoCoulombs - per Newton may be dialled up on the 

Type 2628 charge amplifier. The output of this instrument on the 

range used in the experiments was 1 volt per Newton. This magnitude 

of signal was, as has been noted, essential as an input to the' 

mechanical reference synchoniser which effectively set the minimum 

exciting force for the system at 1 N. The upper limit on the 

excitation was set by the output characteristics of the type 2628 at 

about 7N (rms) since at forces greater than this amplifier overload 

occurred. Use of the next range on the instrument required employ- 

ment of a minimum excitation force Of 10 N (rms) which was higher 

than was necessary or desirable. 
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Checking the calibration of the force gauge is neither simple 

nor really necessary since it is the overall performance of the force 

gauge, accelerometer and frequency meter in measuring mechanical 

impedance that is required. An estimate of this could be obtained by 

the-same method as. for the harmonics - loading the vibrator with a 

mass of known size and taking readings of force and acceleration over 
*J. I 

the experimental frequency range. The mean value obtained for the 

mass size was within 1% of the value by weighing and the overall 

variation was about 61o. Taking into account errors in frequency 

measurement, the magnitude of mechanical impedance should not be in 

error by more than ± 3.5%. 

2` 
The other important measurement to be made was that of phase. 

It transpired that the phase measurement obtained was heavily 

distorted from what might be expected. The amount of distortion could 

be checked with the same arrangement used for estimating errors in the 

magnitude of impedance just described. The force and acceleration for 

a mass alone should be in phase but were found to be apparently in 

anti-phase - the distortion being around 1700, varying by usually 20 or 

30 over the frequency range and increasing with frequency. According 

to B and K. the phase distortion in the force transducer and pre- 

amplifier is small so most of the distortion must come from the 
*X 

accelerometer and its pre-amplifier. Applying'a phase distortion 

correction as obtained above to the phase difference readings in the 

experimental results has in any case the effect of correcting for both 

errors. It has been supposed from the near sinusoidal nature of the 

results that the velocity lags the acceleration by 90°. 

The accuracy of the transfer function analyser phase measure- 

See Addenda after Figure 89 

N 
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ment is given as ±'l0 minutes of are at full scale amplitude down to 

± lo at 0.1 full scale amplitude. In general the readings were 

repeatable within 20 minutes of arc but at lower amplitudes the 

variation was certainly greater. Less credence has been placed on 

these results which were more important as part of the resonance 

curve than for mechanical impedance data. Additionally the phase 

distortion correction will introduce a further error of up to 30 

minutes of arc so it is likely that even at the higher amplitudes., 

the phase measurement will still only be within about ± 10. This., 

of course, has a significant but varying effect on the calculation 

when the mechanical impedance data are split into real and imaginary 

parts. ' 

9.4 Sample results and their analysis. 

The repeatability of the resonance curve results was checked 

using a bonded specimen which is less stress history sensitive than 

the unbonded specimens. There was no significant difference between 

two separate runs nor was there any significant difference in the 

results obtained from measuring the resonance curve in the frequency 

increasing and decreasing directions. Figure 65 shows a typical 

resonance curve for a bonded specimen and also one for an unbonded 

specimen. It is clear, and not unexpected, that the differences 

between the bonded and unbonded specimens are also reflected in the 

results of this experiment. 

Before proceeding to the method of analysis., it is important 

to give some consideration to what it implies. Timoshenko et. al. 

1974 treat the case of a prismatic bar made from a homogeneous 

isotropic material loaded by a mass at one end, If the mass is 
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sufficiently large with respect to the mass of the bar, it is shown 

that for longitudinal vibration, the static axial stiffness of the 

bar may be taken as the spring constant of the system which thereby 

reduces to one with a single degree of freedom. A further 

consequence of this is that the strain in the bar is constant over 

its length. Neither of these conditions can be fulfilled in the 

case of specimens which exhibit stiffness characteristics which have 

some dependence on the rate of deformation, but it is implicitly 

supposed in what follows that even in these non-homogeneous aniso- 

tropic specimens, the dynamic strain is sufficiently uniform that the 

overall stiffness and damping of the specimen are directly represent- 

ative of the material properties. 

The other conditions which appertain to the homogeneous 

isotropic case -» that plane sections remain plane and that particles 

in every cross section move only in the axial direction of the bar4- 

are not fulfilled in the present case either but at least the length 

of the longitudinal waves in the composite will be much greater than 

the lateral dimensions of the bar. 

In classical linear theory a forced viscously damped one 

degree of freedom system is governed by the equation 

rnx+6ctkx= Feýwt 91 

whereto is the mass, C the viscous damping constant, k the spring 

stiffness, X the displacement, F the exciting force and W the 

exciting frequency. Translated into mechanical impedance terms this 

equation becomes 

- Z - -- - - i cý(rn- 9.2 nt w 

See Addenda after Figure19. 
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where 'j'is the amplitude of velocity. 

If the results taken from a one degree of freedom system by 

splitting the mechanical impedance into real and imaginary parts do 

not produce a constant real part then it may be concluded that the 

damping is not linearly viscous or the system is non-linear or is 

composed of more than the two elements (spring and damper) supposed 

in the simple analysis. 

Comparing the material impedance (having removed the effect of the 

mass) with the forms of impedance curves given by Hixson 1961 indicated 

that the material is non-linear rather than a more complicated 

arrangement of linear elements. This being the case, the results 

were analysed on the basis that the mechanical impedance for each 

measured point could be split into real and imaginary parts and 

that the real part would reasonably describe the dissipative element 

while the imaginary part could (once the impedance of the mass had 

been subtracted from it) yield a significant representation of the 

specimen stiffness. This, of course, ignores the other possibility 

that the specimen is composed of more than two non-linear elements. 

However, as the analysis of the results in the following chapters 

shows, the assumption made does not seem to be an unreasonable one. 

The analysis is essentially then one which assumes linearity 

point for point on the resonance curve - an assumption partly justified 

by the low incidence of harmonics in the measured signals. The 

real part of the impedance is not., however., a constant and does not 

depend on velocity so it is convenient to change the notation in 

equation 9.2 to 

9.3 Ww 
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where h is the coefficient of hysteretic damping. 

This is not a rigorous alteration even in linear theory but 

rather a device used to indicate that the damping is displacement 

rather than velocity dependent. Bishop 1955 gives the basic hysteretic 

damping theory and some of the difficulties are discussed in Scanlan 

and Mendelson 1963. In linear theory h would be a constant but in the 

present non-linear case, it is variable with amplitude. In fact, the 

real part of impedance is not an important quantity in itself but may 

be used to estimate the damping energy lost per cycle (QW) through 

the equation 

Aw = tr h )Z 9.4 

where )( is the peak displacement amplitude of the vibration for the 

given frequency. 

Samples of the calculated stiffnesses taken from the same 

results as the resonance curves of figure 65 are shown in figure 66. 

Estimates of the likely error in deriving the stiffness show that 

the result should be within 0.5 - 1% of the true value. Accordingly 

the fact that the unbonded specimen stiffness results show a 

variation of up to nearly 3% probably indicates a material character- 

istic rather than an experimental error. Similarly samples of. the 

energy lost per cycle results are shown in figure 67. In this case, 

the accumulation of possible error could produce a total range of 

6- 15% round the true figure so as with the stiffness results, the 

variations in the energy lost per cycle results for the unbonded 

specimen are taken to be at least in part characteristic of the 

material. These points will be discussed in greater detail in the 

following chapters. 



It will have been noted that no mention has been made of the 

energy lost in the vibrating system other than that lost in the 

specimen. It was recognised that this energy loss would be quite 

substantial and some means of estimating it was sought. Since the 

method used involves reference to the results from the bonded 

specimens, discussion of it may conveniently be left until the next 

chapter. 
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CHAPTER TEN 

10. Bonded Specimen Results 

Since the bonded and unbonded specimen results are quite 

distinct, they will be discussed separately. In this chapter., the 

bonded specimen results are dealt with from the point of view of both 

analysis and synthesis. Firstly, however, the energy lost in the 

system must be considered. 

10.1 Energy losses in the experimental system 

In many instances, e. g. Adams and Fox 1972, Duralumin has been 

used in experimental systems to estimate the background damping 

present. (Duralumin is used because-it has been found to possess an 

extremely low specific damping capacity. ) This procedure is quite 

satisfactory in circumstances in which the actual experiment is to 

be carried out on materials with stiffnesses similar to Duralumin 

since the energy lost in the system may then be estimated at similar 

frequencies and displacement amplitudes. In the present case, however, 

any aluminium alloy specimen of the appropriate stiffness would be 

required to be about lmm2 in cross-sectional area. In spite of this, 

attempts were made to use aluminium specimens of this sort but the 

small lateral dimensions caused these specimens to be either extremely 

fragile or so prone to bending that it was impossible to work with 

them. 

Another plausible possibility for estimating the system 

damping was to use a steel coil spring which, it was thought, *wo uld 

be more readily made of a suitable stiffness than an aluminium bar 

specimen and also have fairly low damping. In fact, it proved very 
I 
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difficult to make a spring of the correct order of stiffness and fit 

it into the rig. One of the main problems was non linearity of the 

spring stiffness. When a spring of an appropriate stiffness had 

been obtained, it was set up in the system loaded by a mass. It was 

found that a relatively small input caused the system to resonate 

violently but there was also gross distortion of the input waveform. 

The smallness of the input in any case created measurement problems 

because the feedback signal to the oscillator compressor circuit was 

not large enough for the proper operation of that instrument and the 

force signal was not sufficiently large to be measured using the 

transfer function analyser. This made the extraction of any relevant 

data from the spring/mass system virtually impossible. 

Before proper tests had been conducted, it seemed possible 

that the matrix and consequently the bonded specimens would have 

relatively small damping and indeed the first bonded specimens were 

made with this possibility in view. It transpired., as has already" 

been seen., that the bonded specimens have quite' substantial damping 

but it was also found in the type of test reported in Chapter 7 that 

the properties of the bonded specimen were insensitive to change of 

rate - both the stiffness and damping being very similar for 

frequencies an order of magnitude apart (0.83 Hz and 0.083 Hz). 

It has therefore been assumed for the purposes of estimating 

the energy losses extraneous to the specimen that the damping in the 

bonded specimens is rate insensitive and that the"damping as reported 

in Chapter 7 is more nearly representative of the specimen damping 

than that calculated from the one degree of freedom system'"' 

experiment. Since the static test loops for the specimens are also 
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very similar in shape and width to the loops at 0.083 and 0.83 Hz, 

this does not seem an unreasonable extrapolation, Results typical of 

the one degree of freedom system and the 0.83 Hz tests are shown in 

figure 68. The difference between the lines drawn through the 

experimental points is taken to be a reasonable estimate of the energy 

lost per cycle in the rest of the system, 

10.2 Stiffness results from vibration experiment 

An example of the stiffness results from a bonded specimen has 

already been given in the last chapter. - A number of the experimental 

points were omitted from the graph because on the scale used the 

points lie so close together that plotting them all contributes little 

to clarity. In replotting these results on a larger scale in figure 
M 

, 
69, only the envelope which contains all the points from the vibration 

. 
test and in which the points are fairly evenly distributed, has been 

I. 
shown. An approximate. mean line is drawn through the results which 

will be used in the subsequent synthesis of, resonance curves. Also 

shown in figure 69 are some, typical results from the 0.83 Hz tests 

reported in Chapter 7. 

Since these two methods of estimating the stiffness are 

completely independent., the close agreement between the results lends 

support to the simple quasi linear analysis of the one degree of 

freedom test results.,, Such disparity as does exist between the two 

sets of results may readily be accounted for in terms of differences 

between the two test methods and-subsequent treatment of the results. 

in particular., a specimen underwent many more cycles of oscillation 

in the course of the one degree of freedom system test than in a 

test at 0.83 Hz. This probably had some effect on the evidence of 
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stress history dependency of the results although this characteristic 

of the specimens is still shown in the 3,5% spread of the results 

from the vibration test. 

The nature of the averaging (since the stiffness results 

constitute an average stiffness over the whole cycle) is also likely 

to have some effect. In contrast to the assumption about the 
f 

damping., it is assumed that the stiffness results provided by the 

vibration experiment give a sufficiently reliable estimate of the 

specimen stiffness about a mean load of ti 50 N. 

10.3 Synthesis of a better estimate of the resonance curves for 
bonded specimens 

The existence of non-linear characteristics in the specimens 

makes the analytical description of the experimental results more 
. 

difficult than in the linear case. The difficulty is not eased by 

the fact that the stiffness and damping are necessarily plotted 

against loop amplitude rather than the analytically more desirable 

instantaneous value of displacement. 

Non-linear damping (which is not so great as to affect 

seriously the sinusoidal nature of the result) with linear stiffness 

is in some ways more tractable than non-linear stiffness with 

linear damping since resonant frequencies are not affected in the 

former case, In the case of constant stiffness and small non-linear 

damping, the establishment of the resonant frequency of a one degree 

of freedom system for one input implies knowledge of. the resonant 

frequency for all other inputs. 'It is upon this fact that the 

approach proposed'by Jacobsen 1930-is founded. This involves an 
i 

attempt to linearise the damping in terms of equivalent damping 
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coefficients based on a criterion of equal energy dissipated at 

resonance in the actual and linearised systems. However, when the 

stiffness is non-linear and the mean stiffness is dependent upon the 
I 

vibration amplitude., the amount and nature of damping in the system 

can have an important effect on the resonant frequency and therefore 

such an approach will be inadequate. 
p 

Since the stiffness and damping are both non-linear in the 

present case it seems unlikely that a simple linearised formulation 

i. e. constant values of stiffness and damping will adequately 

describe the specimen characteristics. The requirement is for a means 

of constructing resonance curves from the information contained in, 
º, 

for example, figures 68 and 69. This may be done by a method which is 

essentially an inversion of the analysis procedure. Cooper 1959 

described this method which involves plotting curves of force, F 

against frequency fora constant displacement amplitude, 
X. Adopting 

the notation of, the last chapter for hysteretic (frequencyR independent) 

damping., ' the force equation from Cooperts paper (in which there is an 
I 

error) is 

z F=Xh (+(k--mw) Y 10.1 
It must be remembered that h 

and 
k 

are not constant but depend on the 

amplitude X and it must be emphasised again that the plot of 

stiffness against amplitude in figure 69 is only applicable to the 

situation where the mean load is of the order of 50 N. Any significant 

change in the mean load will have a marked effect upon the mean' 

stiffness which will be reduced for a smaller load and increased for 

a larger. one (assuming the same displacement amplitude). 

Before demonstrating the use of the method., the curves of 
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figure 68 may be converted into h 

values by assuming-that the energy 

lost per cycle results derive from, ellipses as implied by equation 

9.4 so that 

h 
., 

4 
10.2 

ýX? - 
The result of this procedure is shown in figure 70. 

The method may now be demonstrated and is perhaps best 

illustrated by reconstructing the resonance curves as measured before 

proceeding to estimate what the resonance curves would look like if 

there were no extraneous damping. Using the il values for the 

vibration test result from figure 70 and the mean stiffness values 

from figure 69, equation 10.1 yields calculated force curves of 

constant displacement amplitude. Some typical curves are shown in 

figure 71. Fis really the driving force amplitude so any line 

parallel to the frequency axis constitutes a constant amplitude 

force input and the resulting resonance curve may be deduced from the 

intercepts of such a line and the calculated -curves, A comparison 

of two resonance curves measured directly and some points deduced 

from the above procedure is shown in figure 72. The calculated points 

and the curves are not, of-course, independent and if the stiffness, 

and damping results all lay on single lines then all the points 

would lie on the resonance curves., Figure 72 is presented to show. 

that taking average values of stiffness and damping (at any given 

displacement amplitude) yields a reasonable approximation to measured 

resonance curves for particular force amplitudes, By, implication, 

the method will give reasonable predictions of resonance, curves at 

any other force amplitude less than the greatest amplitude used in 

the experiment.. 

Since the driving force in the experiment is not exactly 
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constant, the particular value chosen for the reconstruction of a 

resonance curve is-to some extent arbitrary. As figure 72 shows., 

the variation is not so great that use of the mean force gives a 

misleading result. The overestimate or underestimate of the resonant 

amplitudes is due to the fact that the mean force was greater or less 
it 

than the actual force at resonance. 

Having established that Cooperis method gives a reasonable 

estimate of the measured resonance curves, attention may be turned 

to what effect there is on the result when the damping figures from the 

0.83 Hz test (figures 68 and 70) are used in place of the values 

deduced from the vibration experiment. It is intuitively obvious 

that lowering the damping estimate for the same stiffnesses will 
i 

have the effect of reducing the minima of the curves of figure 71. 

As seen in figure 73 this in turn has the effect of reducing the 

width of the resonance peak and producing the same resonant amplitude 

with a smaller exciting force. It is apparent, however, that the 

nature of the resonance is not too seriously masked by the extraneous 

damping. 

10.4 Comparison of the. estimated non-linear results with linearity 

One obvious way of comparing the non-linear result with 

linearity is to note that in the linear system equivalent of figure 

71 all the curves would have a minimum at the same(resonant) 
k 

frequency. Additionally curves calculated for. equal increments of 

displacement would be equispaced along the resonant frequency line. 

This is not, however, a very helpful comparison since-itis not 

usual practice to plot curves of constant displacement to represent 

the characteristics of a one degree of freedom system. 
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A more readily comprehensible comparison is shown in figure 

74 in which the estimated non-linear resonance curve is compared 

with 'a linear resonance curve calculated for a system having the 

same mass., driving force, resonant-frequency and amplitude as in the 

non-linear case, The damping was chosen to be hysteretic although 

calculations supposing viscous damping show that there is very little 

difference between the viscous and hysteretic results in the narrow 

frequency range under consideration. The quantities used in 

calculating the linear curve were stiffness, 
k= 77530 N/m and 

hysteretic damping constant, 
h= 4640 N/m. 

With reference to the 1.8 N (rms) 
1 

driving force curves., the 

fact that the linear system shows higher amplitudes than the non- 

linear system on the low frequency side'of resonance in spite of 

having lower damping is due to the greater stiffness at low 

amplitudes in the non-linear case. On the high frequency side of 

resonance the results 
1 
are more nearly coincident due in part to the 

increasing importance of the mass in determining the amplitude. The 

increasing stiffness of the bonded specimen as-the amplitude falls 

eventually causes the non-=linear system'displacement to be greater 

than that of the linear system - i. e. the non-linear stiffness has 

the opposite effect to what it'had on the 1ow`frequency side. 

Also shown in figure 74 are the resonance curves for the same 

linear and non-linear systems at a driving force of 1N (rms). The 

disparity between the two systems is much'more'evident since the 

increased stiffness at lower displacements in the non-linear 

system causes the resonant frequency to increase. The damping also 

increases with reduction in amplitude so that the resonant amplitude 

is significantly reduced in comparison with the linear prediction. 
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If the comparison of linear and non-linear systems had been carried 

out on the criterion of matching a linear system toi for example, 

the resonant peak of the 1N (rms) non-linear curve then the linear 

predictions for higher driving forces would give too low a resonant 

amplitude at too high a frequency. 

Another characteristic which yields important information 
N 

about a resonant system is 
1 
the phase angle between force and dis- 

placement. Figure 75 shows the phase angles for the linear and non- 

linear systems. A linear system has a unique phase angle/frequency 

relationship independent of the driving force whereas the non-linear 

system has a different phase angle/frequency relationship for each 

resonance curve. The phase angles for the linear system and the non- 

linear system at 1.8 N (rms) driving force seem to be in reasonable 

agreement over much of the range but the difference at other driving 

forces of the non-linear system is quite marked. This is not simply 

due to the change in resonant frequency because the difference is 

still notable when the frequencies are normalised by dividing by the 

resonant frequency. The lack of agreement is even more obvious if 

the comparison is made with phase angles from the second linear system 

based on the 1N (rms) resonance mentioned above. As will be seen 

below, however., it transpires that the 1N (rms) peak represents an 

extreme condition. 

Finally., in figure 76 is plotted the estimated specific damping 

capacity for a typical bonded specimen. 

form 

zrh 
k 

For each point this has the 

10.3 

Also shown are the specific damping capacities for the linear systems 
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which it will be noted intersect the non-linear curve at the 1N (rms) 

and 1.8 N (rms) driving force resonant amplitudes - the source of their 

derivation. It will also be noted that the specimen specific damping 

capacity has a maximum at the 1N (rms) peak. 
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CHAPTER IILEVEI4 

11. The UnbondedSpecimen Results 

The treatment of the results of the unbonded specimens is very 

similar to that of the bonded specimens_presented in the last 

chapter. The distinction between the etched and-unetched specimens 

became'less clear in the results of the one degree of freedom system 

tests,, although the etched specimens remained somewhat stiffer than the 

unetched. This fact occasioned the manufacture and use of the smaller 

(3 kg) mass when testing the unetched specimens so that the resonant 

frequencies were raised above the frequency region in which gross 

electrical distortion of the signals might occur. In this chapter 

some results from the unbond. ed specimens are presented and compared 

with the results from the 0.83 Hz tests., an approximate solution to 

the bilinear hysteresis one degree of freedom system problem., and 

linear theory. 

11.1 Experimental results 

As might be expected from the variation in the results for the 

unbonded specimens from the 0.83 Hz tests, there is also a considerable 

spread in the results from the one degree of freedom system. tests. 

The variation recorded is greater than would be expected as the result 

of experimental error alone and is probably due to stress history 

effects., It seems likely in this instance,, however, that the mean 

position of oscillation will change rather than. the mean load as in 

the case of the earlier tests. 

Typical envelopes of the stiffness and energy loss per cycle, 

results are shown in figures 77 and 78. Also shown in these figures 

are examples of the individual results taken from particular resonance 
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curves. It is clear from the examples shown and the overall shape of 

the envelopes that the results from each resonance test are distinct. 

In the case of the bonded specimens, due to the even spread of the 

results., the mean line through the envelope described them well enough 

to allow the successful application of Cooper's method of reconstructing 

the resonance curves. In the present case in order to be able to 

reconstruct the resonance curves with reasonable accuracy a ttbe$t 
1q 

line's passing through the results taken from'the points close " to 

resonance of the various resonance curves must be used. As will 

become evident., the results from the different resonance curves are 

not so'disparate that a reasonable approximation to the_original 

resonance curves cannot be reconstructed using single line represent- 

ations of the results such as those indicated in figures 77 and 78. 

The stiffnesses as calculated from the experiment may vary by 

up to 121 total range about the best line as defined above while the 

energy loss per cycle has a total variation of as much as 35% about 

the best line at the intermediate amplitudes. In spite of, these 

variations, as indicated above, the resonance curves may be recon- 

structed using Cooper's method as in the case of the bonded specimens. 

An example of this is given in figure 79. 

Because the correction for extraneous energy loss is much smaller 

relative to the damping in. the unbonded specimens it does not have, so 

much effect on the resonance curves as in the bonded specimen case. 

Indeed the spread of the energy lost per cycle results is greater 

than the estimated extraneous energy lost per cycle. The correction 

for the extraneous energy loss has the greatest effect in the middle 

of the range of amplitudes at which the tests were conducted. 

Figures 80 and 81 show comparisons of a typical worst case. In 
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figure 80, the measured resonance curve, points for the reconstructed 

curve, and for the reconstructed curve with extraneous energy loss 

correction are shown, while figure 81 shows the phase angle for the 

same three cases. It will be noted that there is not a great 

difference between the measured results and the two sets of recon- 

structed results. It is proposed therefore to use the results as 

measured and as calculated from the best line in the experimental 

results as being reasonably representative of the properties of the 

specimen under the given experimental conditions. , 

11,2 Comparison of vibration and 0.83 Hz test results 

As might be expected from what is already known about the 

bonded and unbonded specimens from the 0.83 Hz test, the relationship 

between the one degree of freedom system and 0.83 Hz test results for 

the unbonded specimens is quite different from that for the bonded 

specimens. It will be recalled that for the bonded specimens, the 

stiffness results from the two tests were very similar butýthat the 

energy lost per cycle results from the 0.83 Hz tests were less than 

those from the vibration test and that the former were taken to be 

representative of the specimen properties. 

In the case of the unbonded specimens, the damping as measured 

in the vibration experiment was less than the damping in the 0.83 Hz 

test in spite of the extraneous energy loss in the vibrating system. 
I 

Additionally, the stiffness was increased by a factor of up to 50%. 

These effects are shown in figures 82 and 83. 

It is not difficult to see the reason for these effects once 

it-is known that the critical interface shear stress increases with 

increase in the rate of deformation. Referring again to the bilinear 
0 
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hysteresis loop in figure 18, it is clearly possible that if the load 

to initiate sliding, 
P- 

, (and by analogy the critical interface shear- 

stress) is increased, then for the same loop amplitude, the area of 

the loop may decrease while the mean stiffness will increase. This 

effect of increased critical interface shear stress in relation to 

energy lost per cycle may also be illustrated by performing_a 

calculation similar to that in Chapter 7. Figure 84 shows the effect 

of, doubling the critical interface shear stress by comparison with the 

original calculation. Again, no great rigour is claimed for this 

argument but the qualitative effect is clear. 

The rate sensitivity of the critical-interface shear stress 

in the unbonded'speciraens could be one of-the, reasons for the range 

of'stiffnesses at any one amplitude exhibited in the experimental 

results. Clearly there is an order of magnitude (of velocity) effect 

indicated by figures 82 and 83 but there may also be effects due-to 

the changes in velocity for a"given displacement within the frequency 

range of the experiment. This would be likely, to be a small effect 

but could contribute to the spread of the results. 

11.3 Comparison of etched specimen results with a bilinear 
one degree of freedom system 

tere 

Although it has already-been'observed in Chapter 7 that the 

bilinear hysteresis model is not a very good one for the etched 

specimens, it is still instructive to compare the experimental 

results with results from an analysis of the bilinear hysteresis one 

degree of freedom system. This type of system has received quite 

extensive treatment, - see for example, Iwan 1965 who shows that an 

exact solution to the problem is little different from an approximate 

analysis developed by Caughey 1960. Caugheyts work is based on the 
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work of Kryloff and Bogoliuboff which is also known as the method 

of slowly varying parameters. 

In spite of the fact that calculations based on the solution 

due to Caughey will yield slightly high resonant amplitudes at 

resonant frequencies which are too low (Iwan 1965), the comparison 

has been based on the Caughey analysis because in the limits the 

Caughey and Iwan analyses make an identical prediction about the 

nature of the bilinear hysteresis one degree of freedom system 

response which is seriously at odds with the experimental observation. 

Some criteria for a comparison are again required but in this 

instance due to the implicit nature of the relationships involved, 

it is not an entirely simple matter to satisfy even approximate 

criteria of equivalence. An attempt was made to match as closely as 

possible the 1N (rms) (nominal) driving force resonance curves for an 

etched specimen and a bilinear hysteretic system loaded by the same 

mass and excited by the same force. The stiffnesses of the legs of 

the bilinear hysteresis system were chosen so the same resonant 

amplitude was achieved at (almost) the same frequency as the 

experimental result. The implicit nature of the relationships makes 

it difficult to assess what'effect changing the parameters will have 

so the result shown in figure 85 was actually achieved by trial and 

error. 

Also shown in the figure are the results for the same systems 

at twice the original driving force. Obviously these results diverge 

very significantly. This divergence increases with increase in the 

excitation force and in fact., both the Iwan and Caughey analyses predict 

that at less than 4N (rms) driving force this particular bilinear 
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hysteretic system will+go into an unbounded resonance. The 

experimental result for an excitation ofý5N (rms) is also shown in 

figure 85 and this indicates that far from allowing an unbounded 

resonance to occur, the damping in the etched specimens continues to 

increase with the amplitude of vibration and to limit severely the 

resonant amplitudes for each increment of excitation. 

11.4 Comparison with linear system 

In spite of the fact that it is implicit in the foregoing that 

linear modelling of the system will be unsatisfactory, it is still 

relevant to establish in what respects the characteristics of the 

unbonded specimens differ from those of a linear system. Again., the 

comparison presented here is with a hysteretically damped linear 

system in which the same resonant amplitude at the same resonant 

frequency is used as the criterion of equivalence. 

Since the unbonded specimens uniformly exhibit softening 

resonances in which the damping increases markedly with the excitation, 

if the specimens are modelled linearly at low excitations then the 

linear predictions for the higher excitations yield amplitudes which 

are much too large and at too high a frequency. Ifs conversely, the 

specimens are modelled linearly at higher excitations the predictions t 
for the lower excitations are too low in amplitude at too low a 

frequency. This latter effect is shown in figures 86 and 87. 
1 

As for the bonded specimens, the reason for the nature of part 

of the difference between the linear system and the specimens is that 

the stiffness of the specimens falls with, increase in amplitude of 

vibration, The decrease in stiffness is greater than for the bonded 
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specimens and is due more to the mechanics of the composite than the 

nature of the mechanical properties of the matrix. In contrast to 

the bonded specimens., the damping in the unbonded specimens increases 

greatly with amplitude - approximately to the power 3. This has., of 

course, the effect of curtailing the resonant peaks which can be 

difficult to discern at the higher excitations. The increase in 

damping coupled with the decline in stiffness as the amplitude 

increases causes a great increase in specific damping capacity as 

shown in figure 88. This figure has been drawn from the best line 

results. 
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CHAPTER TWELVE 

12. Summary and Conclusions 

In this concluding chapter,, an attempt is made to place the 

work in its wider context before proceeding to the summary and 

conclusions. 

12.1 The wider context 

The basis of engineering analysis (and more importantly 

synthesis) usually incorporates a range of assumptions included among 

which iss that material properties are either known or predictable 

over the required range of operating conditions. For reasonably 

homogeneous metals such as steel, the determination of Young's 

modulus implies a capacity to carry out the'very large range of 

engineering calculations for which this property is the only one 

required. It is particularly important and a great computational 

convenience that the Yourigts modulus of metals is broadly speaking 

rate insensitive so that predictions may be made about dynamic 

behaviour of structures from a single static determination of the 

material property. 

It will already be clear that the properties of the composite 

materials under consideration are amplitude dependent and rate 

sensitive e. g. figures 82 and 83. it iss therefore, of more than 

usual importance to determine whether there are any simplifying 

assumptions which can be made to assist in the prediction of dynamic 

response from a static test. In this respect there seems to be more 

promise in the results from the bonded specimens than from the 

unbonded. 
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Although there are some stress history effects, it is fairly 

clear particularly in the case of the bonded specimens that the 

variation during the vibration tests is not sufficiently great for 
i 

stress history to be considered a predominant influence. However, 

the existence of these effects in addition to 
1 

the non-linearity in 

stiffness raises the, question of how, accurate it is possible to be 

in predicting the resonant frequencies and amplitudes. Since the 

stiffness of the bonded specimens seems to reduce to a limiting value, 

linear predictions for higher amplitudes will not be much in error. 

A greater difficulty arises with the smaller excitations which are, 

however,, less important (figure 74). 

In the case of the unbonded specimens., it was not intended 

that the study should involve any consideration of fatigue but it is 

likely to be an important aspect of any material which incorporates 

friction elements that there will be wear between the sliding 

surfaces which in this case will lead to loss of stiffness and 

possibly 
.a 

greater tendency to fracture. The lower limiting 

frequency will depend upon the properties of the matrix. It is not 

clear what may happen to the damping after a very large number of 

cycles but it seems likely that the degradation of the material will 

lead to. a long flat resonance curve at low frequency. If this is the 

case then caution must be exercised concerning the prediction of long 

term dynamic behaviour from relatively short term results. 

Another problem concerning the prediction of dynamic behaviour 

is that of generality. There are variations between specimens of 

any one type even if the overall characteristics for the type are 

similar. However= statistically speaking the specimens under 

discussion do not contain very many fibres and it is quite possible 
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that the large number of fibres present in a more practical material 

would reduce the variation rather than increase it. A more 

significant limitation to generality in composite materials with a 

non-linear matrix is the importance of the initial loading or dis- 

placement in determining the average stiffness of the material. The 

quality and nature of the fibre surface treatment whether with the 

intent of obtaining bonds or not is also likely to be very important. 

One of the important uses of engineering calculations is the 

prediction of the behaviour of a system when it is subjected to some 

loading other than those which have been tested experimentally. As 

has already been noted., it is most convenient if predictions can be 

made from the results of a static test. In the present case this is 

not really, possible as is explained below. 

It has already been reported in Chapter 10 that there seems 

to be some relationship between the static results and the results 

at 0.83 Hz for the bonded specimen - at least as far as the overall 

shape of the loops is concerned. It has also been seen that the 
i 

stiffnesses calculated from the 0.83 Hz test and one degree of 

freedom system test are in broad agreement (figure 69). The question 

arises as to whether it is possible to make reasonable predictions 

concerning the one degree of freedom test results using information 

derived from a single static loop. 

An attempt was made to estimate the stiffness from a static 

loop at various supposed vibration amplitudes using the mean load 

applied by the mass in the one degree of freedom test as the mean 
t 

point. The result of this procedure is shown in figure 89. It is 

clear that any calculation based on these figures with say typical 
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damping figures from the 0.83 Hz test would yield resonance curves 

at frequencies 'near, P-those found experimentally but 'of a different 

shape. 

The discrepancy found between the static results and the 0.83 Hz or 

one degree of freedom system test results seems to be typical of 

rubbers. For example, the effect noted here is also described by 

Payne and Scott 1960 with reference to filled rubbers. 

The same type of effect is also shown by the unbonded 

specimens although at least in part, for different reasons. It has 

already been noted that the rate of loading has an effect on the 

stiffness of the unbonded specimens because of'the increase in the 

critical interface shear stress with rate of loading. ' It would 

therefore be expected that cycling at the higher rates would yield 

greater stiffnesses than a static test. The difference in this case 

is so great (factor of two) that it is not possible to-make useful 

predictions. Even the 0.83 Hz tests would not provide a very good 

estimate of the vibration test results because the stiffness is too 

low and the damping too high (figures 82 and 83). Where possible it 

is usually considered desirable to formulate an analytical inter- 

pretation of experimental results. If this can be derived from the 

fundamental parameters in an experiment then a substantial advance 

may be made. In the present case this is not readily possible because, 

for examples the relationship between the behaviour of the interface 

and the overall properties of the specimens when the amplitude of 

oscillation is changed is not sufficiently well understood. 

In vibration studies, the '' analytical treatment of'non- 
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linearity is frequently confined to the relatively simple cases such 

as the cubic non-linearity in restoring force of Duffing Is equation. 

In these cases, the spring stiffness is assumed to depend on the 

instantaneous value of displacement which is an inadequate description 

for the composite specimens. The composite material properties must 

be defined in terms of the amplitude of displacement rather than the 

. instantaneous value. This also seems-to be a common feature of 

filled rubbers (Gehman 1957). 

Gehuran also states that, "However, at any one amplitude, under 

conditions such as shear for which the stress-strain curve is linear, 

the response to a sinusoidal driving force-is sinusoidal without any 

evidence of harmonic content such as would be expected if non- 

linearity is present. The non-linearity only becomes evident when 

the amplitude is changed. It causes, distortion of the resonance curve. " 

Although the first of these statements is rather too sweeping in the 

context of the present work, these observations are, broadly speaking 

supported by the evidence from the silicone, rubber composites used 

whether with bonded or unbonded interfaces. 

It would appear to be the case that when a material has 

properties which are dependent upon the amplitude of oscillation, at 

least under the conditions of the one degree of freedom system test, 

there will be no significant distortion of a sinusoidal input. 

Unlike the case of the cubic restoring force spring, it seems to be 

possible for a resonance curve from the one degree of freedom system 

test to be comprised of points each of which could be supposed to 

derive from a different linear system., The relationship between one 

point and another on the-resonance curve is not readily predictable 

in other than the empirical sense. This is particularly so for the 
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unbonded composites since'the relationship' depends on detailed 

changes'in interfacial behaviour, It seems possible that the small 

distortion evident in the results will increase with amplitude. 

However., to allow the use of larger amplitudes a larger mass would 

be required which would in turn reduce the resonant frequency and 

thus create other experimental difficulties. It is not readily 

possible to state under. what conditions it remains plausible to 

treat these non-linear results in a quasi-linear fashion, This 

point will be considered further later. 

The treatment of the experimental results has shown that 

synthesis of resonance curves is possible using a graphical method. 

The same effect may be achieved by means of an empirical method in 

which it is necessary to describe the results by polynomials and 

calculate the frequencies at which particular amplitudes occur for a 

given excitation. Stiffness, k (X0), and damping, h (X0), are taken 

to be functions of X0 
, the amplitude of vibration. The equation 

of motion approximately describing the system is 

m+ CkCXýý+ý h CXoýýx =- F eýwý 12.1 
Equation 12.1 is presumed (nearly enough) to have the solution 

tot x° Xo e which on substitution and after appropriate manipulation 

gives 

ýk 
(xo) .ýFzý ý' 

Wz_ --- -h X2 (xo) 2. xo m 
Resonance occurs when 

'-' FX 12. 
, 

XO) 
` `o 3 

and the resonant frequency, is given by 

,.. _. oIX 12.4 
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in which 

k (X0) 
has been evaluated for the maximum value of 

Xo 

found from equation 12.3. 

There are no particular advantages in" this formulation 

compared with the graphical presentation used in the preceding 

chapters. The resonant amplitude and frequency may be obtained fairly 

rapidly for a given input. However, this is only possible once 

appropriate and sufficiently accurate polynomials have been fitted to 

the results. The calculation of even a single resonance curve 

involves considerable computational effort which depends on the 

powers of the polynomials used. 

Non-linearity in vibration is often associated with jump 

phenomena. This is not surprising when., for example, the rapid 

changes in mean restoring force implied by a cubic variation with 

amplitude are considered. The range of instability of such systems 

is much reduced by increasing damping which has the effect of raising 

the level of excitation required for the onset of instability. The 

only non-linear jump phenomena noted in the present work occurred when 

an overall compression was applied to a specimen in the one degree of 

freedom test. This resulted in a lateral instability of the specimen 

due to the very low flexural stiffness of the composites. 

It is interesting to note, however., the possible implications 

of predicting the response of a system which has not been tested 

experimentally. If the specific damping capacity reduces with 

amplitude as is the case here for the bonded specimens, then it does 

not require much additional non-linearity in stiffness for the force 

curves of constant displacement amplitude (figure 71) to coalesce - 

as indeed they-do in Cooper 1959 , This implies the existence of a 

jump phenomenon. There is a wide variety of combinations of stiff- 
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ness and damping for which this might happen. The question arises 

(although it is not intended to pursue it here) as to whether, this 

would be a valid prediction. It may be the case that a system in 
ti 

which a jump almost occurs is the limiting case which may be treated 
I 

in the quasi-linear fashion. 

All the tests were intentionally conducted at fairly low 

frequencies which most readily allow higher displacement amplitudes 

at limited values of acceleration. This has been more than justified 

by the primary dependency on the amplitude of vibration of the 

properties of the composites tested. It is important, however, to 

consider the effects likely to be found in practical materials. One 

of the greatest differences is that a practical material would require 

to be very much stiffer than those used in the experiments. An 

estimate of the ratio of the Young's modulus of the composite to the 

Young's modulus of the matrix is found from equation 6.2 as 

t 
12, 

_5 Em 6 lo9e ýz 
(assuming E. 

=30, ). The factors which increase this ratio ' are' 

increasing the length of the fibres,,, reducing the fibre centre to 

centre spacing., (h'+ h") 
or increasing the volume fraction of 

fibres, V (although these last two are not completely independent). 

Clearly it should be possible to obtain a bonded fibre composite. 

material with a practical Young's modulus by suitable selection of 

the properties and disposition of its components - the limiting factor 

being the shear strength of the interface or of the matrix itself. 

It may be reiterated here that the shear properties of the matrix 

and matrix/fibre interface are almost certain to be the dominant 

factors in these composites. 
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The interrelation between stiffness and damping in a dis- 

continuous fibre composite is rather complex. Some of the more 

important aspects for both bonded and unbonded types are discussed 

below, In the case of the bonded type., assuming that the stress 

levels are such that problems of interface or matrix failure (or for 

that matter fibre failure) may be ignored, increasing the volume 

fraction of fibres has the effect of producing a stiffer composite 

because the shear strain amplification is increased. For the same 

cycle of stress., the overall strains produced will be reduced and 

the shear strain energy of the composite (essentially, the matrix) 

will fall. In the simplest case in which the specific damping, 

capacity of the matrix is assumed constant with. shear strain. and 

that of the-fibres negligible, the specific damping capacity per 

unit volume of matrix will not change but the specific damping 

capacity of the composite will be reduced because-there is-now less 

matrix per unit volume. It may seem in this respect that something 

has been lost rather than gained by the introduction of additional 

reinforcement to, the matrix but the important comparison to be made 

is not so much with other combinations of the same matrix and fibres- 

but with alternative-materials having the same stiffness. 

It should be possible in a practical case in which the relevant 

parameters are known to optimise the amount of damping and stiffness 

for a particular application. It is most unlikely that a practical 

material would have the regular layout of the Mileiko model so such 

calculations would be rather speculative until some experimental 

experience has been gained with a more practical material. If an 

unbonded discontinuous fibre composite material of high volume 

fraction is considered., the extended Cox theory (Chapter 6) would 
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predict that sliding would occur at very low strains because of the 

great shear strain amplification rapidly creating the required 

critical interface shear stress. It should be noted, however, that 

predictions for high volume fraction composites derived from Coxts 

theory must be treated with caution since the theory was originally 

developed for an isolated fibre. The close proximity of the fibres 

in practical composites is likely to have a significant influence on 

the local stress distribution. 

In the static experiments it has been seen that when an 

increasing strain was imposed on the etched unbonded composites., 
%. 1 

significant yielding occurred (figure 16). Ultimate fracture of the 

unbonded composites always occurred at a cross-section containing the 

fibre centres and ends because the matrix which was at high strain 

could no longer sustain the increasing direct load upon it. In the 

experimental case, the critical shear stress at the interface was 

very low because very little if any lateral shrinkage on curing- of 

the matrix took place. Ifs however, the matrix shrank on to the 

fibres creating a high critical interface shear stress., sliding at the 

interface might precipitate immediate fracture of the composite through 

tensile failure of the matrix. Against this-it may be said that it 

would be unlikely for a practical material to have the completely 

regular layout of the model which seems to contribute to this type 

of failure. 

It may be emphasised again that in general the damping 

provided by the matrix and sliding at the interface are 'Competing 

sources. If interface sliding occurs' then this precludes any 

significant increase in the matrix shear strain and occasions a loss 

in stiffness relative to the bonded case. The full utilisation of 

interfacial slip as a source of damping probably demands relatively 
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high amplitudes and an application in which loss of stiffness does 

not have serious consequences. Shock absorption may be the most 

likely application of this type of material., Application for the 

bonded composites might, be found in the construction of sound 
ti 

deadening panels for use in the audio frequency range in which 

amplitudes (despite shear strain amplification)are likely to be low 

For the best use of the bonded composites., a matrix with damping 
defornccWav% COU 

properties which increase rapidly with shear or. 'z, Aseems 

desirable. 

12.2 Summary 

After introducing the subject (Chapter 1)., there is a general 

review of some of the theory (Chapter 2) which forms the background 

to later chapters of the study. The development of the uni- 

directional discontinuous fibre composite material models on which 

the experiments were conducted is described in Chapter 3. A model 

material was chosen because working with continuous glass fibres 

was not found to be easy and it was thought that control of the 

disposition of discontinuous reinforcement would have been extremely 

difficult. The specimens were accordingly manufactured from stub 

steel rod and a proprietary silicone rubber since the phase geometry 

could be readily controlled although volume fractions were low. It 
I 

proved exceedingly difficult to grip these specimens because of the 

softness of the matrix material so an epoxy resin adhesive was 

eventually used for the gripping area. Some of the specimens had 

bonded fibre/matrix interfaces while others were not bonded and some 

of the unbonded specimens had etched fibres while others did not. 

Unbonded fibre pull-out specimens were also made and tested 
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(Chapter 4). The diameter of the cylinder of matrix from which the 

fibre was pulled did not seem to make much difference to the results 

and the pull-out tests were most valuable for pointing up 

qualitatively the different nature of the interface due to etched 

and unetched fibre surfaces. 

The composite specimens of Chapter 3 were tested at low strain 

rates using a typical tensile test procedure (Chapter 5). The bonded 

specimens exhibited non-linear properties which reflected those of 
t 

the matrix (figure 34) while the unbonded specimens exhibited 

yielding behaviour due to interfacial sliding - the etched specimens 

also showing a large load drop on initial loading beyond yield (figure 

16). On unloading the unetched specimens tended to show a permanent 

set while the etched specimens exhibited the unusual characteristic 

for a system containing friction of returning to the zero load and 

displacement point when the load was removed (figure 17). 

The phenomena related to these tests are discussed in 

considerable detail in Chapter 6 and a possible explanation for the 

behaviour, developed as an extension of current theory, is presented. 

Particular attention was paid to the distribution of shear stress at 

the interface and direct stress in the fibre (figures 26 -- 30). 

The specimens were also tested using imposed slow (0.83 Hz) 

sinusoidal displacement cycles (Chapter 7). The tests demonstrated 

that at these low strain rates.. the bonded composite stiffness 

decreased with increase in displacement amplitude while the energy 

lost per cycle increased at less than the linear (power 2) rate. 
I 

In the unbonded composites, the stiffness also declined with increase 

in amplitude but the damping increased with amplitude approximately 
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to the power 3 and was thus shown to be at variance with simple 

theoretical predictions for the unbonded case. 

Some typical linear measures of damping and a wide variety of 

methods of measuring damping are reviewed in Chapter 8, Chapter 9 

is concerned with the particular difficulties involved in testing for 

the mechanical properties of the discontinuous fibre composites. 

The one degree of freedom system chosen to perform these tests is 

described and some sample results. given. The bonded specimen 
t 

results are considered in greater detail in Chapter-10 and seen to 

be similar to the results of Chapter 7, In Chapter 11 the results 

from the vibration tests for the unbonded specimens are presented 

and seen to differ from the results in Chapter 7 due to a rate effect. 
iiºr 

12.3 Conclusions 

There is a fairly large number of conclusions which may be 

drawn. These will be dealt with broadly speaking in the order in 

which they have arisen in the text. 

The first conclusions arrived at concerned the manufacture 

of discontinuous fibre 
1 composite materials. As was indicated in 

Chapter 3, great difficulty was experienced in working with continuous 

carbon or glass fibres which led to the use of-the model material for 

the experimental programme. Although no local expertise in the man- 

ufacture of discontinuous fibre 'composites was available and although 

it is recognised that various types of discontinuous fibre 

composites are manufactured commercially, it seems likely that it 

will not be a simple task to manufacture a genuinely fibrous composite 

material with the geometry desirable for utilising shear strain 
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amplification to its maximum advantage. It should still be possible 

to manufacture a material in which there is significant shear strain., 

amplification. In any case as was noted previously the optimisation 

of the shear strain amplification may be undesirable through the 

increased possibility of fracture. 

If a discontinuous fibre composite material is to be used 

structurally, then it is even more important to obtain adequate bonding 

k 
at the interface than in continuous fibre. composites where the matrix 

is principally a binding rather than load carrying agent. Should a 
I 

uni-directional discontinuous fibre reinforced composite prove 

inadequate structurally (where joining will also be a problem) it 

would still be worthwhile to consider the material in the role of a 
I 

surface treatment. 

Pull-out tests, it has already been noted, did not provide 

very much useful quantitive information. The important qualitative 

difference between the, etched and unetched interfaces which aided in 

the interpretation of the static composite test results was., however., 

well illustrated by these tests. 

One of the most important conclusions from the static tests is 

the great influence exercised by the fibre treatment on specimens 

which were otherwise identical. Yield behaviour (both initial and 

secondary), breakaway on subsequent loading, and reverse breakaway on 

unloading were all affected to a large extent by the. fibre surface 

being etched or unetched. 

The results of the experiments on the unbonded'discontinuous 

fibre composites were not readily predictable - in particular the 

initial behaviour of the etched specimens which returned to the zero 
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load and displacement position even after gross interfacial sliding 

had occurred. It was, however, possible to offer some explanation 

of the observed behaviour through an extension of the theory of Cox 
IIi 

1952 for an isolated fibre. Use of a model based on the work of 

Mileiko 1970 with elastic parameters was less successful in 

interpreting the behaviour of the unbonded composites. It may be 

mentioned in passing that the objection to Mileikots model, raised 

by McLean 1972, that holes will open up in the matrix seems invalid 

since pulling a sample of a bonded discontinuous fibre lamina in the 
i 

longitudinal fibre direction showed that the matrix readily broke 

away from the fibre ends (forming holes). It may also be noted here 

that fracture always occurred in the unbonded specimens at the cross- 

section containing the fibre centres and ends. 

Both Cox and Mileiko models gave reasonable., if slightly lcx, r, 

predictions of composite modulus for the bonded specimens. A more 

rigorous examination of the plausibility of these theories would be 

provided by testing a discontinuous fibre composite in which the 

matrix, was linear elastic. 

The static tests also yielded the conclusion that stress 

history was important since the unetched specimens, exhibited a 

permanent set. It may be noted here that., in this instance, permanent- 

set is something of a relative term since it was possible to restore 

the specimens to their original length by hand. It was not possible. 

to do this by machine because of the low buckling loads for these 

specimens and., of course, it was not possible to tell what residual 

stresses might be left once the operation had been performed. 

The results in Chapter 7 indicated that the difference between 
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the etched and unetched specimens was not a passing phenomenon 

although it was noted that once the etched specimens had been 

subjected to an oscillatory type of-test they-also showed permanent 

set on unloading during a subsequent static test. There is also for 

both types of unbonded specimen a clear rate effect which caused 

hysteresis loops at 0.83 Hz to show greater stiffness than those 

from static tests. The bonded specimens showed much less rate 

sensitivity but the oscillatory nature of the loading had an 

important influence at small amplitudes. 

Under imposed sinusoidal displacement conditions, both bonded 

and unbonded specimens exhibited changes, in the mean load. In the 

case of the unbonded specimens this was due to internal changes in 

equilibrium allowed by sliding while in the case-of the bonded;, 

specimens it-was due to non-linearity of the-matrix, 

It has been shown that the materials tested were not readily 

modelled by linear elements and that the simplest prediction of 

frictional energy lost per cycle (McLean and Read 1975 and Md1eeking 

1972) was inaccurate. An estimate using the simple theory of 

Chapter 6 gave a remarkably good prediction. 

The accurate measurement of the damping properties of materials 

is extremely difficult. In this instance the production of useful 

results depended entirely upon the fact that the damping in the 

specimens under test was quite high, The low incidence of harmonics 

in the results led to the conclusion that quasi-linear analysis of the 

mechanical impedance results obtained was reasonable. 

The results fron the one degree of freedom system test 

added to the evidence that the bonded specimens were relatively rate 

insensitive. It was concluded that the stiffness results from the 
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one degree of freedom test and the damping results from the 0.83 Hz 

test gave the best representation of the properties of the bonded 

specimens. It was possible to synthesise resonance curves by a 

procedure which is essentially an inversion of the analysis of the 

results. 

The unbonded specimens showed further evidence of rate 

effects in the one degree of freedom system test results such that 

the stiffness was greater and the damping less than in the 0.83 Hz 

test. It was concluded that the extraneous damping was not 

sufficiently great that it masked the real nature of the resonance 

curves. The unbonded specimens were no easier to model as part of 

the one degree of freedom system than they had been in the 0.83 lIz 

test, It was concluded that this was because the behaviour of the 

specimens was to an important extent dependent upon detailed changes 

at the matrix/fibre interface, Again with these specimens empirical 

construction of resonance curves was possible. It may be concluded 

finally that the discontinuous reinforcement of a matrix material 

such that shear strain in the matrix is amplified can be an, 

important source of damping and stiffening, If there is little or 

no bonding at the matrix/fibre interface then the specific damping. 

capacity developed by the composite can be very large indeed but 

will be partly due to loss of stiffness. The basic lack of integrity 

inherent in an unbonded discontinuous fibre composite is sufficiently 

unattractive (both theoretically and practically) that it would seem 

best that a material developed for its damping/sound deadening 

properties should have a matrix which bonds well to the fibres and 

which has a dissipative capacity increasing greatly with increase in 

shear strain and/or ' rate-' _ ,, of deformation. 
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Addenda 

p. 27 Matrix Young' s modulus 
maximum load in cycle/specimen area (_ 

maximum strain in cycle 

p. 28 The term "tyielding't has here been applied to describe the 
phenomenon of bond failure. 

p. 36 Figure 16 shows further yielding in the same loop. Figure 
21 shows yielding in a loop subsequent to that which showed 
initial bond failure (e. g. figure 16). 

p. 103 The resonant frequencies in the experiments were pre- 
dominantly influenced by the stiffness of the specimens and 
the size of the mass used. Since it was desired to have 
large displacement amplitudes the mass sizes were chosen 
(3.05 and 4.885 Kg) so that the resonant frequencies were 
kept low at around 20 Hz. All the measurements were made 
in the range 14 - 30 Hz although the apparatus could have 
been used at slightly higher (but not lower) frequencies. 

p. 106 1. It was assumed that the calibration of the accelerometer 
in the experimental frequency range was the same as at the 
calibration frequency (80 Hz). The measurement of the 
harmonics in the apparatus and the inferred calibration of 
the force transducer were carried out in the experimental 
frequency range (14 - 30 Hz). 

2. It was assumed that., since the non linearity of the 
specimens was not great., the variation in phase angle in 
any one cycle would not be great. Such'averaging as may 
have occurred was carried out by the transfer function 
analyser over 100 cycles. 

3. It is probable that the o 
1700 phase distortion is madeo 

up from a phase shift of 180 and actual distortion of 10 , 

p. 108 The particles do not move only in the axial direction of 
the bar due to Poissonts ratio effects. 
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