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Abstract 

In addition to the primary effects normally associated with spinal cord injury (which 

can include a loss of volitional motor control and sensation), individuals who suffer one 

are also subject to many additional health complications which affect them throughout 
life. These secondary symptoms, which are fast becoming the leading cause of death 

in this population, occur because of a sedentary lifestyle. The technique of inducing 

paralysed muscle contraction through application of low-level electrical charges to in- 

tact motor nerves, known as functional electrical stimulation (FES), can be utilised in 

several different ways to return some measure of function to spinal cord injured indi- 

viduals. One particular application which has the potential to improve general health 

and fitness in this population through facilitating exercise is cycling. 

This modality (known as FES-cycling) is the common theme linking the two main re- 

search areas which this thesis describes. In the hope of more compact and user-friendly 

approaches to FES-cycling through the incorporation of modern sensor and computing 
technology, two new hip-angle-based strategies (both of which utilise a limb-mounted 

sensor) and a "traditional" crank-angle-based strategy have been developed and incor- 

porated into a PDA-based multi-functional FES system. Through both simulation and 
tricycle-based experiments, all three approaches have been shown to provide practical 

stimulation activation timing. 

The second research focus concerns the development of two FES-cycling systems which 

are suitable for a spinal cord injured child, and methods to facilitate the intended use 

of both devices. A standard child's tricycle has been modified with appropriate in- 

strumentation for FES-cycling and testing involving its target population was carried 

out at a US-based paediatric research hospital. These experiments culminated in the 
demonstration of FES-cycling by an untrained seven year old T4/T6 (motor complete) 

subject, and the evolution of the device into one which should be able to meet the 

specific needs of spinal cord injured children. 
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A second system with integrated motor has also been developed. As well as offering 

motor assistance, this device incorporates additional instrumentation to allow investi- 

gation into exercise and training capabilities. Experiments have been undertaken to 

validate this equipment and it is now ready for future pilot work involving paediatric 

subjects. 

The two research foci in this thesis represent what are, in our opinion. important 

routes that FES-cycling should take to progress into the home environment and also 

allow participation of a population who have potentially the most to gain from using it. 
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1 Introduction 

The contributions presented in thesis pertain to two separate themes, both of which are 
associated with the technique of functional electrical stimulation induced cycling for 

persons with a spinal cord injury. The first concerns a novel approach to stimulation 

control for cycling using a limb-mounted sensor and hand-held computer system. The 

second involves the development of FES-cycling methods and equipment for the child 

with a spinal cord injury. The thesis outline and contributions are as follows: 

1.1 Thesis Outline 

Chapter 2 

Background information on the topics of spinal cord injury and functional electrical 

stimulation (FES) are given here. In addition, the concept of functional electrical 

stimulation induced cycling (FES-cycling) is introduced, with a review and discussion 

of associated benefits which have been reported. 

Chapter 3 

The main literature review, presented here, encompasses a description of FES-cycling 

systems (and accompanying technology) developed to date, an introduction to paedi- 

atric spinal cord injury and the role of FES in this population thus far. In a discussion 

of these topics, arguments for the work reported in subsequent chapters are formed 

and presented. 

Chapter 4 

Investigations into utilising a limb-mounted sensor for control of stimulation activa- 
tion timing during FES-cycling (including all methodology, results. discussion and 

conclusions), and incorporation of these (and '`traditional") approaches into a new 

multi-functional PDA-based FES system are described here. 
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1.2 Thesis Contribution 

Chapter 5 

Chapter 5 describes the development of new FES-cycling methods and equipment for 

use within the paediatric spinal cord injured population. Details on a new tricycle- 
based design, its evolution and testing within the target population are presented and 
discussed. 

Chapter 6 

Following on from chapter 5, the development of a paediatric FES-cycling system 

with integrated motor is described here. Experiments designed to verify additional 
instrumentation and complete system operation are also discussed. 

Chapter 7 

The final chapter presents conclusions based on the thesis' contributions and provides 

suggestions for relevant future work. 

1.2 Thesis Contribution 

New Approaches to FES-cycling Stimulation Activation Control Using a 
Limb-mounted Sensor (Chapter 4) 

Two novel approaches which utilise a measured hip angle to govern muscle activation 
timing for FES-cycling stimulation control strategies have been developed. Both have 

been tested by employing simulated data, then verified using experimental data. 

Utilising a new PDA-based FES System for FES-cycling (Chapter 4) 

New hip-angle-based and "traditional" crank-angle-based FES-cycling strategies have 

been implemented into a multi-functional PDA-based FES system which is capable of 
both surface and implanted stimulation. We have shown that, providing there is accu- 

rate sensor measurement, practical stimulation activation patterns can be produced in 

realtime using each strategy. 
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1.3 Publications 

Development of a Tricycle-based FES-cycling System for the Child with a Spinal 

Cord Injury (Chapter 5) 

A standard child's tricycle has been modified with appropriate instrumentation and 

orthotic equipment for FES-cycling. Testing (carried out in collaboration with a US- 

based research hospital) involving 10 paediatric spinal cord injured subjects has been 

undertaken to evaluate the system's suitability for its target population. Assessment 

of participant comfort and safety whilst seated on the tricycle has resulted in further 

seating, orthotic and handlebar adaptations. These experiments have led to our con- 

clusion that a modular based approach with a standard device at its heart can offer a 
low-cost and aesthetically pleasing route to FES-based exercise and recreation in this 

population. 

Demonstration of FES-cycling by an Untrained Paediatric Spinal Cord Injured 
Subject (Chapter 5) 

An untrained seven year old T4/T6 (motor complete) subject has successfully achieved 

a significant period of unaided stationary FES-cycling using our tricycle-based system. 
In addition, experiments involving a total of three spinal cord injured children have 

provided the basis from which to develop appropriate methods for FES-cycling within 
this population. 

Development of a Motor-integrated FES-cycle Test Bed and Training Device for 

the Child with a Spinal Cord Injury (Chapter 6) 

A second, motorised, paediatric tricycle-based system has been developed. Including 

all FES instrumentation, orthotic and safety equipment present on the non-motorised 

system, this device has been further modified by way of a hub motor, torque sensor and 

appropriate interface equipment for full laptop-based analysis and control. In addition 
to providing assistance during training, this setup should provide a platform from 

which to develop motor-integrated mobile cycling strategies and undertake detailed 

investigations into the target population's exercise capabilities. 

1.3 Publications 

C. G. McRae and K. J. Hunt, "Development of methods and equipment for functional 

electrical stimulation induced cycling for use within the paediatric spinal cord injured 

population", in Proc. 4th Ann. Conf. IEEE EMBSS UKRI PG Biomedical Engineer- 

ing and Medical Physics. (Reading. UK). pp. 7-8, July 2005. 
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2 Background 

This chapter outlines background information in areas fundamental to the research 
delineated in this thesis. Spinal cord injury shall be discussed in section 2.1 followed 

by a basic description of mechanisms involved in the human nervous and muscular 

system in section 2.2. An introduction to functional electrical stimulation (FES) will 
be given in section 2.3 with the final topic of electrical stimulation induced cycling (or 

FES-cycling) and the efficacy of this technique as an exercise and rehabilitation tool 

introduced in section 2.4. 

2.1 Spinal Cord Injury 

I C4 Carrriral 
!y inut 

" Ine4k) 
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C8 Thoracic 
rilUty (Upper 

(quadnpfeg�z E beck) 

T8 
injury 

TA 
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Lumbar 

back. ) 
° 

L1 
r sn, {ury 

i7raplagr. ýi 

t . sacral 

Figure 2.1: The spinal cord and areas affected at various injury levels. (Adapted from 
http: //www. paraquad. asn. au/introduction/spinal/spinal. html) 

The effects of spinal cord injury (SCI) can be detrimental to both general health and 

quality of life with many serious primary symptoms as well as subsequent secondary 
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2.1 Spinal Cord Injury 

medical complications affecting the body. Annual Incidence in the UK is around ten to 

fifteen per million [1] compared with an estimated forty per million in the USA. This 

equates to approximately 40,000 and 230,000-250,000 people living with a spinal cord 
injury in each country respectively [2,3]. Nearly all SCIs result from some kind of blunt 

trauma and although there is evidence to suggest that the chief mechanism varies in 

paediatric and adolescent age groups [4] (this will be discussed further in the sequel). 

motor vehicle accidents account for the majority of injuries in the adult population. 
The second and third highest proportions tend to vary, but are usually related to falls, 

sport or violence. 

Although this population makes up only a small proportion of the total, social and 

economic costs are extremely high, thus warranting extensive research into rehabilita- 
tion. 

The severity and range of primary symptoms endured depend on the level of injury, as 
determined by the point on the spinal cord below which function and sensory informa- 

tion is impaired. This effect and the position of these points is illustrated in figure 2.1 

where each level is designated by the region in which it lies (cervical, thoracic, lumbar 

or sacral) and the spinal nerve number. Below the level of a lesion both afferent and 

efferent pathways (along with the information they carry) will be affected. The result 

can be a loss of volitional control over muscles and sensation of areas innervated below 

the lesion site, as the link between peripheral and central nervous system has been 

interrupted. Additionally, autonomic control of heart rate and blood pressure, along 

with regulation of bladder and bowel, may be disrupted. 

Over time, these symptoms are often followed by secondary health complications, which 

arise from the aforementioned effects and consequent sedentary lifestyle forced upon 
SCI persons. Following a spinal injury, circulation may be poor in the region distal to 

the lesion, making the skin prone to deterioration. This, in combination with insensi- 

tive skin, can result in pressure sores if the person sits or lies in one position for long 

periods of time. There is also a reduction in bone mineral density post-injury, with a 

possible one-third being lost in the first year [5], leading to an increased risk of fracture. 

Susceptibility to heart disease may also increase as atrophied muscles (otherwise used 

to stress the cardiovascular system) are not applied to their full potential [6]. 

The extent to which a person's sensory and motor control is affected is described as 
'complete" or "incomplete", where a complete injury corresponds to a total loss of 
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2.2 Mechanisms of the Nervous and Muscular Systems 

muscle control and sensation below the injury. The degree of impairment can be fur- 

ther defined through the American Spinal Injury Association' (ASIA) classification 

scale which uses a grading system from A to E (with A being the highest level of im- 

pairment). 

When considering the effects of a spinal cord injury, it is immensely important not to 

overlook the social consequences. As well as managing all the primary and secondary 
health effects, the day-to-day life of an SCI person is confounded with extra challenges 

such as the access, transferring and transportation involved in simple tasks whose ex- 

ecution would ordinarily be taken for granted. 

2.2 Mechanisms of the Nervous and Muscular Systems 

To fully understand how tasks are performed in able bodied individuals, and conse- 

quently how the control systems and actuators employed are affected by spinal cord 
injury, the basics of the mechanisms involved should be discussed. 

2.2.1 The Nervous System 

----CNS----- 

AFF ERENT 

BRAIN 

0 
0 
-j : EFFERELJT 

Z 

Cl) 

SKELETAL 
MUSCLE 

CARDIAC 
SYMPATHETIC MUSCLE, 

PARASYMPATHETIC 
SMOOTH 

10 MUSCLE, 
GLANDS 

SYMPATHETIC 
SMOOTH 
MUSCLE, 

PARASYMPATHETIC GLANDS, 

GI TRACT 

Figure 2.2: Divisions of the nervous system. CNS - central nervous system, PNS - 
peripheral nervous system, GI - gastrointestinal. 

lAnierican Spinal Injury Association, Atlanta, GA, USA. http: //wNvw. asia-spinalinjurv. org/ 
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2.2 Mechanisms of the Nervous and Muscular Systems 

Figure 2.2 illustrates the divisions of the nervous system. which can be divided into 

the central nervous system (CNS); consisting of of the brain and spinal cord, and the 

peripheral nervous system (PNS) [7]. Information is passed between the ENS and CNS 

via afferent and efferent pathways. The former carry action potentials to the CNS from 

sensory receptors while command information from the CNS to PNS is carried by the 

latter. The PNS can be subdivided into the somatic, autonomic and enteric divisions 

which are concerned with control of skeletal muscle, cardiac muscle, and the gastroin- 
testinal tract respectively. The autonomic and enteric divisions, which have further 

sympathetic and parasympathetic subdivisions, are also responsible for smooth muscle 

and glands. 

Voluntary motor control is achieved by action potentials being transmitted through ef- 
ferent pathways from the CNS to the somatic part of the PNS. These action potentials 

are propagated via motor neurones which innervate the relevant skeletal muscles. Feed- 

back for this process is obtained through somatic sensory receptors passing information 

to the CNS through afferent pathways. In conjunction with this, the autonomic divi- 

sion regulates involuntary systems using its receptors and neurones in a similar fashion. 

2.2.2 Muscle Contraction 

---------- ------------------------------ 

ACTION 

- - --- - - -- - -------- 

POTENTIALS NEUROMUSCULAR 
JUNCTION 

MUSCLE 
FIBRES 

MOTOR ' 
NEURONE 

ON 

i 
: --------- -------------- ----------- 

MOTOR UNIT 
- - --- - - -- - ------- 

SPINAL 
CORD 

Figure 2.3: Diagram illustrating a motor unit. 

The characteristics of muscle contractions largely depend on the motor units with 

which they are identified. Motor units (figure 2.3) consist of somatic motor neurones, 

their axons and the muscle fibres which they innervate [8]. There are three types of 
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2.2 Mechanisms of the Nervous and Muscular Svstems 

these units: slow, fast fatiguable and fast fatigue resistant. The individual properties 

of these, along with the proportion, dictate the behaviour of the muscle. 

Slow units (S) innervate a small (relative to other unit types) number of muscle fibres. 

These fibres are of small diameter and are associated with low force generation but 

high fatigue resistance. The neurones of these units are relatively small, with small 
diameter axons extending from them. Both conduction velocity (of an action poten- 
tial) and activation threshold for artificial stimulation (depolarisation beyond this will 

result in a contraction) are determined by the axon diameter with a larger diameter 

corresponding to a higher conduction velocity and lower threshold. 

Fast fatiguable units (FF), as the name suggests, are associated with low fatigue re- 

sistance and the generation of high forces. Their neurones will be larger, with high 

conduction velocity/low threshold (for artificial stimulation) axons which have synaptic 

connections with large numbers of fibres. The last type of unit, fast fatigue resistant 
(FR), has characteristics which lie in between the other two in that it is associated 

with relatively high contraction forces and fatigue resistance. They have medium sized 

neurones and axons which innervate a lower number of fibres than the fast fatiguable 

type. 

During volitional contractions, recruitment of motor units will generally follow a slow 
to fast-fatiguable (with FR units in between) order. This allows a gradual increase in 

contraction force. Stimulation of these units from the CNS may also be asynchronous. 

meaning a proportion of the units in one sub-group may be fired while the remaining 

recover. By selectively cycling through the recovered units in the sub-group, the effects 

of fatigue may be countered 

By employing a mixture of unit types within the same muscle, the fatigue resistance 
(of the whole muscle) may be increased while also enabling a wider range of actions to 

be carried out. Conversely, one type of unit may be predominant within the muscle if 

it is consistently used for a particular task. An example of this would be those muscles 

used for posture, where slow fatigue resistant units are more desirable, and thus make 

up a higher proportion of the total. 
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2.3 Functional Electrical Stimulation 

2.3 Functional Electrical Stimulation 

Functional Electrical Stimulation (FES) is a method for forcing muscle contraction 

through application of an electrical charge to intact peripheral or central motor nerves. 
Although it can be used for other purposes, including elimination of drop foot in stroke 

victims [9] and assistance for individuals affected by cerebral palsy [10], perhaps its 

most common use (and the main focus of this thesis) is in the restoration of function, 

and as a method of increasing general health and fitness in spinal cord injured persons. 
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(a) Voluntary muscle contraction. (b) Muscle contraction with FES. 

Figure 2.4: Muscle contraction through FES. 

As described earlier, voluntary muscle contraction (figure 2.4(a)) is achieved while ac- 
tion potentials propagate from the CNS to PNS. With spinal cord injury, a lesion in 

the spinal cord interrupts this traffic in either direction. Thus to achieve controlled 

muscle contraction, an external stimulus in the form of an electrical charge may be 

applied to the appropriate motor nerves (figure 2.4(b)). 

This charge may take the form of a unidirectional rectangular pulse, as shown in fig- 

ure 2.5. Stimulation intensity, and therefore strength of contraction/number of muscle 
fibres recruited, can be controlled by varying the pulse width, amplitude or frequency. 

By implementing some form of control over these pulses, strategies may be formed 

whereby paralysed muscles are contracted sequentially to perform a desired action. 
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Figure 2.5: Unidirectional electrical pulse. PW - pulsewidth. 

Delivery of electrical pulses to the nerve is carried out using three different methods: 
transcutaneously (where a charge is passed through the skin using surface electrodes), 

percutaneously (using electrode needles inserted close to the nerve) or implanted (where 

electrodes are surgically inserted either close to or around the nerve). Each have advan- 
tages and disadvantages depending on the application. Surface electrodes, for instance, 

are non-invasive, but are relatively inaccurate and use can result in the activation of 

unwanted muscles (those that might antagonise or counteract the desired motion). On 

the other hand, although much more accurate, implanted electrodes involve surgery 

and a risk of infection. 

For FES to be possible, the lower motor neurones which are to be stimulated must 
be intact. In other words, an action potential must still be able to propagate to the 

muscle along the nerve from the point of external stimulation. 

Bearing in mind the complex nature of the mechanisms involved in volitional control 

and the crude nature of FES, it is no surprise that muscle contractions initiated through 

artificial stimulation are relatively inefficient in terms of the strength of contraction and 

endurance. This is chiefly because of two reasons. Firstly, motor unit recruitment pat- 

tern differs from that described in section 2.2.2. The actual mechanisms involved are 
debatable but one idea, which has been widely suggested, is that the recruitment order 

under voluntary control is reversed during artificial stimulation conditions. More re- 

cently, however, this view has been contended with the suggestion that the process is in 

fact non-selective [11]. Secondly, unlike in voluntary control, where there is a measure 

of selection by the central nervous system as to the proportion of units being used at 

any given time, once a motor unit's threshold has been reached it will continue to fire 
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until the artificial stimulation is ceased. The effect of these factors on FES applications 

may vary with different stimulation application methods (i. e. implanted versus surface 

stimulation), but generally the result is a faster onset of fatigue. 

2.4 FES-Cycling - An Analysis of the Benefits 

One application of FES with the potential for use as both an exercise and recreational 

modality is cycling. As a well established method which has been around for over 
twenty years, many studies have been performed to investigate the effects and poten- 
tial benefits (health and social) it may bring to the spinal cord injured population. 
This section will attempt to summarise these findings in order to present the evidence 
for FES-cycling as a rehabilitative exercise training tool. A history of the technology 
involved, along with the state of the art, is discussed in chapter 3. 

Figure 2.6: General FES-cycling setup. 

Petrofsky et al. [12] developed what was probably the first FES-cycling system during 

the early eighties. Since then, several variations on the theme have been introduced, in- 

cluding both commercial ergometers (such as the ERGYS II2 and Stimmaster Galaxy') 

and systems capable of mobile cycling [13,14]. Although these devices differ in their 

design and capabilities, there are a few themes which are common to all. 

2Therapeutic Alliances Inc., USA. http: /www. inusclepower. com/ 
3Electrologic of America., Inc., USA. http: //ww-, w-. stiinmaster. com/ 
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Broadly, the system (figure 2.6) will be based around some form of ergometer or mod- 
ified cycle on which the rider is seated. Usually, the position of the pedals will be 

monitored in some way and this information may be used to dictate (through a control 
algorithm) which muscle contractions are required to enable a continuous pedal cycle. 
Control of the stimulation intensity (which depending on the system will either be 

automatic or via the rider) corresponds to a modulation of the charge being sent to 
the relevant muscle groups and consequently manipulation of pedal torque and cadence. 

Following implementation of these concepts in systems which allow spinal cord injured 

persons to cycle using their own muscles, many feasibility studies have been conducted 
to investigate the potential medical benefits (which could counteract the secondary 
health complications described in section 2.1) this modality could offer. 

In the majority of studies undertaken, the most commonly used muscle groups are the 

quadriceps, hamstrings and gluteal muscles, [15,16,17,18,19]. These are (certainly 

the quadriceps and hamstrings) the major force-producing muscles used during cycling. 
Importantly, they are also some of the largest muscles in the body, and thus are more 
likely to invoke a high cardiopulmonary response when contracted. The bulk of in- 

vestigations involving FES-cycling focus on these three muscle groups and, therefore, 

most of the data reflecting a change in size or strength are connected to them. 

In most cases the size, and isometric strength of the quadriceps and hamstrings have 

been shown to increase after a period of cycling. A significant increase in thigh girth 

was reported by Phillips et al. [15], Arnold et al. [16] and Sloan et al. [17] with the 

latter also showing an increase in cross-sectional area of the quadriceps using CT scan- 

ning techniques. In a separate eight week study, Hjeltnes et al. [18] describe combined, 

stimulated muscle cross-sectional area increases of 22%. 

Janssen et al. summarise this, in a review of the clinical efficacy of FES exercise train- 

ing [20], with their opinion that FES-cycling appears to reverse the disuse atrophy of 

paralysed muscle, or at least retard the rate of progression. In addition, both anecdotal 

and reported subjective evidence [21] by FES-cycling participants support this through 

claims of improvements in bulk and appearance. 
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Although in most setups only the muscle groups mentioned previously are stimulated 
during cycling, given the nature of surface FES (i. e. relatively inaccurate), other muscle 

groups, notably the calf, may be recruited indirectly through activation of non-targeted 

motor nerves. However, in cases where the size/bulk of calf muscles have been analysed 
[15,16], no significant increase has been found following an FES-cycling training pro- 
gramme. 

One of the biggest and most well documented benefits of FES-cycling is a raised level of 

cardiopulmonary fitness. Through inclusion of the body's largest muscle groups a high 

cardiac response can be invoked and following training central physiological adapt a- 
tions may occur which result in an enhanced capability to transport blood and oxygen 
to peripheral areas, in particular to those muscles being utilised. 

Increases in relevant outcomes such as heart rate and oxygen uptake, both over the 

course of a session and following extended training programmes, have been described 

by many investigators, [22,16,23,24,25,26,27]. Post-training peak oxygen uptake 

gains of 70% [18] and values as high as 1.77L/min [28] have been reported. However, 

the investigation which yielded a 70% increase involved a high intensity programme 
(7 sessions a week for 8 weeks) with eight tetraplegic subjects and final values of ap- 

proximately 1.2L/min. The author attributes the massive gains in peak uptake to the 

intensity of training and low initial endurance capacity of the leg muscles. Indeed, 

the high level of injury in this particular subject population (C5-C7) and consequent 
low initial peak values of oxygen uptake (approximately 0.6L/min) reflect this. Stud- 

ies involving both tetraplegic and paraplegic subjects have yielded more modest gains. 
Hooker et al. [23] describe peak oxygen uptake gains of 23% in theirs. In a much longer 

training programme involving both tetraplegic and paraplegic subjects, Mohr et al. [25] 

report an almost 20% increase in maximal values. 

Janssen et al. [20] put the magnitudes of oxygen uptake seen during FES-cycling 

(around 1-2.0L/min) into perspective by remarking how these levels are akin to an 

able-bodied person walking or jogging. When compared with cycling under volitional 

control, cardiopulmonary responses seen during FES-cycling highlight an associated 

inefficiency. In a programme involving twenty able-bodied and twenty SCI subjects, 

Glaser et al. [29] showed that oxygen uptake for a given power output is significantly 

higher for FES-cycling than for able-bodied cycling. Also, a smaller (with 6 subjects 

in each group) investigation into cardiovascular responses during FES-cycling by Ray- 

mond et al. [26] showed a higher cardiac output for a given oxygen uptake (at equivalent 
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power outputs) being displayed by SCI subjects when compared with able-bodied cy- 

clists. 

The influence of FES-cycling on the bone mineral density (BMD) of participants has 

been examined by several groups, producing mixed results. A study by BeDell et al. [30] 

where 12 SCI subjects cycled over a period of approximately 34 weeks (2 sessions per 
week) showed that BMD, measured at locations in the hip and thigh did not increase 

significantly. A further period of cycling undertaken by a portion of the subjects also 
failed to yield any significant increase, although a positive trend was found in measure- 
ments taken at the lumbar spine. 

Conversely, in a long-term study undertaken by Mohr et al. [25] where 10 (T4-C6 

complete) subjects cycled three times a week for 12 months (achieving a mean power 
output of approximately lOW), followed by one session a week for the following 6 

months, BMD of the lumbar spine did not change significantly. However, analysis of 
the proximal tibia following the initial 12-month period showed a significant 10% in- 

crease. Encouragingly, Bloomfield et al. [31] also showed an increase (in this case, the 
distal femur) of 17.8% from baseline data by subjects who cycled above a level of 18 
Watts for at least 3 months of a9 month training programme. Also, in a case study 
involving a partial lesion subject, Perkins et al. [14] report bone density increases of 
44% in the subject's more paralysed limb. 

More recently, Chen et al. [32] carried out an investigation, involving 15 SCI males, 
into the effects on BMD after 6 months of FES-cycling training (5 days a week with a 

minimal resistance load) followed by a further 6 month period without. Their results 

show an 11% and almost 13% increase in BID in the distal femur and proximal tibia 

respectively at the end of the first 6 months, then interestingly a return to levels close 
to baseline following the second, FES-cycle free, 6 month period. 

In all of the above-mentioned investigations, the subjects were at least 2 years post- 
injury. A study by Eser et al. [33] set out to examine the effect of a cycling intervention 

on bone in recently injured patients. With a high level of participation including 38 

subjects (19 FES and 19 control) who were between 4 and 8 weeks post-injury, bone 

density data collected from the tibial diaphysis before and following the programme 
(which involved a mean participation of 2.3 sessions per week for an average of 6 months 

whilst achieving a mean power output of approximately 12.7NV) showed no significant 

attenuation of bone density loss. 
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Accounts of FES-cycling's effect on spasticity in the modern literature are limited and 

are generally based on the subject's perspective. A questionnaire carried out by Sipski 

et al. [21], which gives an insight into patient perception, shows 77W of the para- 

plegic contingent who responded felt an improvement in their spasticity. However, it 

is notable that over half of the tetraplegics (who made up the majority of the total 

responding population) felt no difference. In a study designed to evaluate the efficacy 

and safety of FES-included cycling, Arnold et al. [16] report a marked reduction in un- 
controlled spasticity following the programme for all participants. Also, even though 
the intensity of spasms increased through augmented muscle strength. the subjects felt 

the frequency and duration were reduced. 

In terms of the modality's functional performance as both an exercise and recreational 
tool, the two factors probably of most interest are the achievable workrate and how 

long a practical level can be sustained. Power outputs achievable through FES-cycling 

at present are generally a maximum of around 30-36 watts [31] while typical gains in 

capability range between 0 and 30 watts over a6 week to 6 month period [20]. 

Power output variations, for a given level of oxygen uptake, between volitional and 
FES-cycling are considerable. In a study by Raymond et al. [26], the highest level 

achieved by a spinal cord injured individual is approximately 21% of that reached by 

the able-bodied subjects. An interesting paper by Kjaer et al. [34], where responses to 

electrically induced cycling in 8 able-bodied individuals with complete epidural anaes- 
thesia (L3-L4) are studied, further emphasises this point with the workrate produced 
by the FES-cyclists being approximately one third of their impaired counterparts for 

a given oxygen uptake. 

Regardless of maximum rates achievable, the ability to sustain a useful level is probably 

of more interest for recreation purposes. Using systems which have been designed as 

mobile devices [14,13], complete lesion subjects have cycled up to 3km outdoors, while 
training sessions of up to 1 hour have been reported. However, as described in section 
2.3, fatigue is still one of the biggest enemies of FES' ability to induce a target force from 

a muscle, thus endurance during cycling suffers from this. Workrate can be extremely 

variable over the course of a session (even with a constant stimulation intensity and 

oxygen uptake) with subjects being unable to maintain a set level. Theisen et al. [27] 

describe this behaviour over a 40 minute session in a study designed to investigate 

power output during prolonged cycling. 
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2.5 Discussion 

Spinal cord injury is a severe condition which afflicts a significant number of people. 
The immediate and long term effects drastically alter quality of life for those who 

experience it while also posing a very serious threat to their health. With medical ad- 

vancements extending the life expectancy of this population to near normal, the issues 

of rehabilitation and addressing secondary health problems (which arise as a result of 

a sedentary lifestyle) have become increasing prominent. 

Considering the physiological mechanisms involved in what is effectively a new popu- 
lation are, as yet, not fully understood, functional electrical stimulation has succeeded 

relatively well in its mission to attenuate various neurological impairments. Although 

it has been implemented in systems designed to return function, its biggest role in the 

spinal cord injured population has increasingly become the promotion of health bene- 

fits through exercise. Its capacity to be both a training and recreational method to this 

end has rendered cycling one of the most popular applications of FES. In addition, the 

large number of well established stationary and mobile systems available mean there 

is much evidence to support this position. 

On the whole, FES-cycling appears to increase bulk in those muscle groups stimulated. 
While systems which recruit additional or alternative muscle groups do exist [35,36,37], 

the majority of reported size increases concern those muscles which commercially avail- 

able devices tend to employ (the quadriceps, hamstrings and gluteal muscles). 

Significant increases in cardiopulmonary responses over time have been shown, indi- 

cating a training effect. Even though levels reported are quite low when compared to 

voluntary exercise, from the perspective of a sedentary population this could be quite 
beneficial [20] 

. 
Moreover, the ability for FES-cycling to induce high (compared with 

volitional cycling) responses at low workrates is important when there is a desire to 

avoid large forces being generated during exercise. Given the osteoporotic nature of 
the lower limbs belonging to SCI persons, this is extremely relevant. 

Influence on bone mineral density has been contested by investigators, however one 

possible explanation for this may lie in the variation of measurement and training 

approaches used. Reported significant increases in BID appear to be, for the most 

part, in areas around the knee joint and with subjects whose BID had stabilised 

prior to beginning the stltdy. Intensity and frequency of sessions performed during a 
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cycling program appear to have the most impact on these site-specific increases. Re- 

ported significant improvements have involved either a high power output (over 18\V 

approximately twice a week) or larger frequency of sessions at a lower power output 
(approximately lOW). There is also evidence to suggest this must be sustained to avoid 
a subsequent reduction. 

As well as these three main outcomes, additional benefits such as a reduced incidence 

of pressure sores and improvement in spasticity and range of motion might be possible. 
Positive psychological effects from using this modality (in particular recreationally) 

may also occur. A majority verdict of improved perceived self-image and appearance 

reported by long-term users in a questionnaire designed to evaluate these factors [21] 

indicates this. 

Performance capabilities reported indicate a maximum attainable power output of 

around 36 watts (higher values have been claimed [38], however in this instance the 

methodology used to reach them is not clear) and sustainable levels sufficient to pro- 

pel a tricycle substantial distances. That said, the main limiting factor in improving 

on these achievements would seem to be the alternative, often inefficient, mechanisms 
involved in FES muscle contraction, chiefly the resulting fatigue. Thus, increasing 

endurance (at a range of workrates) is of particular importance if FES-cycling is to 

improve its performance (and hopefully health benefits for those who utilise it) as an 

exercise modality and further establish itself as a practical method for recreation. 

In addition, it should ultimately be available to as many people as possible, particularly 
those who stand to benefit the most from using it. Until now, the target population 

of most FES applications has consisted mainly of adults, with the needs of spinal cord 
injured children receiving less attention. The reasons for this, along with the state of 
the art of FES-cycling technology shall be discussed in the sequel. 
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In the previous chapter, the concept of FES-cycling was introduced, while the evidence 
showing its potential as a rehabilitation, mobility and exercise tool within the spinal 

cord injured population was given. Leading on from this, the following chapter will 
focus on the background and reasoning for the main contributions in this thesis. In 
Section 3.1, the design of, and technology involved in FES-cycling systems during the 
last 23 years will be reviewed. Section 3.2 will introduce the topic of paediatric spinal 
cord injury, as well as delineating some of the unique issues involved and the role FES 
has played in this population. Finally, a discussion on these topics in section 3.4 will 
form the argument for the main contributions in this thesis; the implementation of a 

new sensor and multi-functional FES device in an FES-cycling system and the devel- 

opment of two novel FES-cycling systems for the spinal cord injured child. 

3.1 FES-cycling -A Review of Design and Technology 

As discussed previously, FES-cycling is an established technique used to promote health 

and fitness in the spinal cord injured population. Since the inception of this method 

over two decades ago, several different configurations and variations on the basic themes 
have been developed. This section will review the designs and technology incorporated 

into FES-cycling systems up to this point, giving the background necessary to argue 
the case for the introduction of a smaller control and sensor arrangement, as well as 
those design considerations which may be transferable to a system suitable for children. 

3.1.1 System Design and Function 

All FES-cycling systems can broadly be categorised into two main types which describe 

their layout: stationary ergometers and mobile devices. In addition, some may have 

an arm-cranking function (hybrids) or a motor to give assistance. Table 3.1 shows the 

configuration of selected systems over the past twenty three years. 
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Year 83 84 -- 89 93 98 01 04 -- 05 - 
Source [12] [39] [40] E [35] [41] [42] [14] [43] [44] [45] BR 
Ergo ���� ��� 

Mobile ��� ��� 

Hybrid � �� 
Motor ��� ���� 

Table 3.1: Configuration of selected FES-cycling systems. Ergo - stationary ergometer, 
E- REGYS/ERGYS and StimmasterTMOrion, B- Berkel bike'. R- RTI 
RT300-S. 

Studies carried out by Petrofsky et al. [12,39] in the early eighties describe what 

are probably the first cycle systems to utilise FES. Both are based on standard de- 

vices which are then modified with sensor, orthotic and stimulation equipment. In the 

case of [39], a standard stationary ergometer was altered through the addition of a 

continuous-turn potentiometer linked to the crank shaft and pedal replacements with 
VelcroTMfoot inserts (which enabled the rider's feet to be fixed). The other system 
developed by Petrofsky et al. around this time [12] is a tricycle based system capable 

of locomotion. Like its stationary counterpart, a potentiometer is linked to the crank 

shaft. Additionally, a second potentiometer connected to one of the brake levers al- 
lows the rider control over stimulation intensity. Chosen for its stability, low cost and 

available storage space (for stimulation control equipment), this tricycle was further 

modified using a high-back replacement seat (with waist and shoulder straps) more 

suited for paraplegic and tetraplegic riders. 

These early prototypes were followed by the introduction of the REGYS system, which 

signalled the dawn of commercially available leg-cycling ergometers. A stationary de- 

sign which incorporated the now proven FES-cycle technology, REGYS and its suc- 

cessors, ERGYS I and II, were used in several of the studies discussed in the previous 

chapter. In addition to this, a second, similar system, developed by Electrologic of 
America, called the Stimmaster" Orion (predecessor to the more recent Galaxy) was 

also introduced. 

Some of the shortcomings of the earlier mobile system (instability during turns and a 
lack of assistance) were addressed by Petrofsky and Smith several years later with a 

second mobile device [46]. A two-person arrangement (side by side) offered superior 

1BerkelBike BV, Nijmegen, Netherlands. http: /wwNw-. berkelbike. nl/ 
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stability. while a second, able-bodied rider could offer assistance following fatigue. Un- 

wanted adduction or abduction of the legs was restrained using stabiliser bars, that 
followed movement of the knees, and toe straps on the pedals. 

A few years earlier, Pons et al. [35] developed a four-wheel system called the Para- 

cycle. This device was also capable of locomotion and included several advancements 
from Petrofsky's designs. A more recumbent seat-back position was chosen to offer 
further stability while ankle braces on the pedals would restrict movement of the legs 

to one plane. Perhaps the most notable inclusion is that of a motor to drive the ped- 

als, thus enabling passive exercise and assistance during stimulation-induced cycling. 
Instrumentation on this device included a potentiometer, to control the motor speed, 

a separate lever for stimulation control and braking, and optical shaft encoder to mea- 

sure crank position (chosen for its reliability). 

During the nineties, Gföhler et al. [42] introduced a tricycle system which also included 

an auxiliary motor. Rider position was upright, so several features were implemented 

to ensure stability while cornering and easy transfer. A specially designed rear axle, in 

the form of an articulated parallelogram, allowed inclination of the rear wheels. Also, a 
hydraulic saddle (which could incline), capable of easy height adjustment by the rider. 

allowed for independent transfer from a wheelchair. Around this time, another mobile 
design based around a standard wheelchair was introduced by Angeli et al. [47]. This 

system incorporates a quick-release attachment which contains a third wheel along with 
the equipment necessary for FES. As with previous devices, ankle braces, a crank-shaft 

position-reading sensor and motor are present. A coupler between each pedal and crank 

arm was added, resulting in a new cycling path which could improve efficiency through 

an optimised transfer of power from the legs. 

In addition to "traditional type" cycling devices, a number of leg propelled wheelchair 

systems (which incorporate FES technology) also exist. Glaser et al. [48] modified a 

standard wheelchair with a ratchet drive system which incorporated two reciprocating 
footplates coupled to the wheels. Thus, forward motion could be achieved with the 

rider's feet attached to the footplates and raising the lower leg through contraction of 

the quadriceps only (with gravity lowering the leg). The wheelchair-based approach 

was developed further by Stein et al. [49] who utilised both knee flexion and extension 
for forward driving torque through a two-way clutch gearbox (on Glaser's design only 
knee extension contributed to this). 
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Until this point, prototype systems were mostly restricted to laboratory use while those 

commercially available were expensive, generally only certified to be used in the USA 

and limited to stationary cycling. In an effort to move FES-cycling into the home, 

with the hope of increased and more frequent use, Perkins et al. [14] describe the de- 

velopment of a modified recumbent tricycle for this purpose. The standard tricycle 

(chosen for its stability and low seating pressure) was altered by means of a 7-bit shaft 

encoder on the crank shaft, ankle/foot orthoses, throttle potentiometer for stimulation 
intensity control and compact stimulator (with internal cycling control software, which 

could be started and stopped from handlebar switches). Furthermore, as well as hav- 

ing mobile capabilities, the tricycle could be easily connected to a standard resistance 
trainer, thus converting it into an indoor stationary ergometer. 

In an investigation into the design of motor-assistance control strategies for both exer- 

cise testing and approaches to recreational mobile cycling, Hunt et al. [43] developed 

the tricycle-based system even further. The two major additions were in the form of 

an auxiliary motor (positioned behind the seat and connected to both the drive wheel 

and pedals) and torque sensor (mounted on the crank shaft). In this configuration, 

control of the stimulator (and therefore, leg power) and motor were carried out via 

a laptop computer that contained software designed to distribute the contribution of 
both to the total power output at the pedals, such that the reference level (set by the 

throttle potentiometer) of a desired variable (eg. cadence) could be maintained. 

In a separate study, with the design objective of creating a system capable of cycling 

over a large range of cadences, Fornusek et al. [45] utilised a commercially available 

ergometer which contained an in-built motor and was designed specifically for low 

intensity, passive cycling by SCI persons. The only major mechanical modification in- 

volved attaching a chair with passive leg braces (the standard ergometer was designed 

to allow a wheelchair to roll up to it). With data from the original system's crank shaft 

and motor readily available, the stationary FES system was completed with laptop- 

controlled stimulator hardware. 

The effort to move FES-cycling into the home was explored further by Chen et al. [44]. 

who describe the development of an inexpensive hybrid system with a design criterion 

and process based on interaction and feedback with both therapists and users. The 

system is based around an ergometer. which includes a shaft encoder. leg braces, hvs- 

teresis brake, and can be operated from the users wheelchair. Stimulation was again 

computer-controlled. However, in this case the technology is miniaturised somewhat 
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with the use of a pocket personal computer. A hand crank coupled to the leg-cycling 

pedals enabled assistance and/or independent upper- body voluntary exercise. 

More recently, two new commercially available systems have been introduced. The first 

is a tricycle device called the Berkel bike [50]. Based around a wheelchair, this hybrid 

design is capable of both arm and leg cycling and may be used for mobile cycling. US- 

based company Restorative Therapies' have developed an FES stationary ergometer 

called the RT300-S. This device is based upon a Medica Thera Vital3 motorised (for 

passive cycling only) ergometer which has been modified with a six channel stimulator 

and touch screen interface unit. Interestingly, the system is available in both adult and 

paediatric versions. 

3.1.2 Stimulation Technology and Control Approaches 

Intensity Reference 

Position 
Data 

Figure 3.1: Simplified diagram illustrating stimulation control in FES-cycling. 

The basic principles of FES-cycling control can be represented by the most basic, 

open-loop (from the rider's perspective) case as depicted in figure 3.1. In this setup, 

the status of the lower limbs/crank-shaft geometry is monitored in some way and fed 

into a control algorithm. This position data is compared with reference parameters (es- 

sentially a predefined pattern of stimulation activation times dependent on the position 

of the lower-limbs) in order to calculate which muscle group requires to be contracted 

2Restora. tive Therapies Inc, Baltimore, USA. http: //www. restorative-therapies. com/ 
3NIedica Medizintechnik GmbH, Hochdorf, Germany. http: //www. medica-medizin. de/ 
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to continue the cycle. The generation of a new stimulation pattern is completed with 

a user-defined intensity level set to obtain a desired muscle-contraction strength (and 

hence torque at the pedals) . 

Although most of these basics hold true for all systems, approaches to data acquisi- 
tion, stimulation intensity control, stimulation application and the origin of reference 

parameters may differ. 

As motion is restricted by the pedals (and ankle orthoses) during cycling and is also 

symmetrical, the geometry of both lower-limbs may be defined by one angle (usually 

that of the crank) which, when measured, gives the position data required for control of 

stimulation. Typically, this has been achieved through the use of either a continuous- 
turn potentiometer [12,39,46] or optical shaft encoder [35,41,14] coupled to the crank 

shaft. In addition to the position of the crank, its rotational velocity is sometimes also 

recorded (or derived from the angle) [14,42] and used as an extra timing parameter 
to allow for a fixed time delay (created by action potential propagation velocities and 
the mechanical speed of muscles) between stimulation and muscle contraction. 

o° 

2 90 

Figure 3.2: Example of a reference stimulation pattern. 8- Crank Position, QR - 
quadriceps right. QL - quadriceps left, HR - hamstrings right, HL - ham- 

strings left, GR - gluteal right, GL - gluteal left. 

Reference timing parameters (that constitute what is essentially a "static" stimula- 

tion pattern, such as that shown in figure 3.2) have been generated in several different 

ways, primarily due to the varying bio-mechanical layouts of each system. Many studies 

have based them on surface electromyography (EMG) measurements frone the muscles 

of able-bodied cyclists [35.46,41], although Polls et al. [35] note that the final sequence 

used for FES-cycling correlated poorly with that determined using able-bodied EWIG 
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measurements. Other approaches have included indentification through modelling the 

rider-trike system [51,52], and simply monitoring the crank angles through which a 
positive torque is produced for each muscle group [53,43]. 

Aside from contracting the appropriate muscle group at the correct time, an FES- 

cycling system's ability to obtain or maintain a desired power output or cadence de- 

pends, in part, on the control of stimulation intensity. In the setup illustrated in 
figure 3.1, this is set by the rider. This open-loop (from the point of view of the 

rider) approach has been adopted by many systems (mostly mobile-capable) where a 
reference intensity is set from either a throttle potentiometer [12,46,42,14,13,43]. 

lever [35] or computer based paddle buttons [39]. 

In stationary, commercially available systems and those orientated around develop 

ment or exercise testing, direct control of the stimulation intensity is taken away from 

the rider and governed internally. In this scenario, the stimulation control algorithm 
is usually designed to maintain a target cadence (typically 50rpm) and will therefore 

modulate intensity appropriately to achieve this. 

The ERGYS II and StimmasterTMGalaxy systems appear to implement a strategy 

whereby intensity is ramped up to a maximum over time in order to counter fatigue 

and maintain a target of 50rpm. When this can no longer be held and the cadence drops 

below 35rpm, stimulation is terminated [45]. Chen et al. [54] designed a proportional 

plus integral plus derivative (PID) controller for FES-induced free-swing movement of 
the lower leg, then subsequently applied it to their cycling system for cadence control. 
This approach was succeeded later by the introduction of a model-free, fuzzy logic 

controller to improve cycling smoothness [55]. 

As discussed in the previous chapter, muscle fatigue is one of the largest problems 
facing FES-cycling. The resulting low (when compared to able-bodied persons) capa- 
bility for endurance (as well as a possible, impractical muscle force production during 

the early stages of training) limits both the practical nature of mobile systems and 

precise function of exercise test-beds. To compensate, a few devices designed for those 

purposes include an auxiliary motor [40,35,42,45,43]. 

In addition to cadence control, the objective here may alternatively be to maintain a 
target power output with the contribution from motor and stimulated muscle being 

varied according to level of fatigue. In most cases, torque at the pedals is monitored 
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in some way (usually with appropriate sensors mounted on the pedals or crank shaft) 

and fed back into the stimulation control algorithm along with position and velocity 
data. 

Source Stimulation Application Muscle Groups/Nerves Employed 
[48] Surface Q 
[12] Surface Q, G 
[39] Surface Q, I 

[40,41,49,44] Surface Q, H 
[35] Surface Q, G, Gas 

[46,42,13,45] Surface Q, H, G 
ERGYS II Surface Q, H, G 

StimmasterT1'Galaxy Surface Q, H, G 
Berkel Bike Surface Q, H, G 

RTI RT300-S Surface Q, H, G 
[47] Surface Q, H, G, Per 

[36,14] Surface Q, H, G, Ta, Gas 
[531 Implanted Roots - L2, L3, L4, L5, S1, S2 

Table 3.2: Stimulation application approaches and muscle groups/nerves employed by 

selected systems. Q- quadriceps, H- hamstrings. G- gluteus maximus. I- 
iliacus, Ta - tibialis anterior, Gas - gastrocnemius, Per - peroneal nerve. 

Table 3.2 shows the stimulation application technique and muscle groups/nerves em- 

ployed by various systems. In nearly all reported studies, stimulation is applied tran- 

scutaneously using adhesive electrodes. Usually, two electrodes (active and passive) 

are assigned to each muscle group, however some studies such as Petrofsky et al. [39] 

include a second active electrode in order to alternate stimulation across the muscle in 

the hope of improving fatigue characteristics. 

Although incurring the disadvantages discussed in section 1.3, the benefits of increased 

accuracy and substantially decreased time for donning and doffing of equipment mean 

stimulation through use of implanted electrodes is an exciting option for FES-cycling. 

In a case study reported by Perkins et al. [53], a complete T9 lesion subject was able to 

propel a tricycle for up to 1.2km at a time through use of an implanted anterior spinal 

nerve root stimulator. In this system, stimulation commands are transmitted to an R. F. 

coupled, multiplexed receiver located in the right costal margin of the subject. From 

there, subcutaneous wires lead to intradural cuff electrodes attached to the nerve roots. 

25 



3.2 Paediatric Spinal Cord Injury 

3.2 Paediatric Spinal Cord Injury 

Although only making up a small percentage of the total spinal cord injured popu- 
lation, when compared to adults the paediatric contingent represent a group that is 

unique, not only anatomically, but also in terms of the required approaches to care and 

rehabilitation. This section shall review some of the pertinent background information 

concerning this population and the specific needs involved in their care and rehabilita- 
tion. 

3.2.1 Demographics and Etiology 

Spinal cord injury in the general paediatric population is, thankfully. a rare event (al- 

though some researchers note that the reported low frequency may be due in part to a 
high mortality rate in this group [4,56]). Data on incidence is varied, not always age- 
group specific, based on admittance to the author's particular institution and mainly 
from US sources. In general though, approximately 3-5% of total annual SCI cases 

will be children under the age of fifteen with a further 15-17% younger than twenty 

years old [57,2]. Males tend to make up a larger proportion of the total and this trend 
becomes more pronounced as age increases [57,4]. 

Several authors report that, as with adults, motor vehicle accidents are responsible for 

perhaps the largest proportion of injuries [58,57,2]. However, when the distribution 

of causes across different age groups is analysed, the more prevalent injury mechanisms 

vary. For example, in toddlers and school age children, falls are one of the main causes 

while sports-related trauma tends to make up the biggest proportion in adolescents. 

The majority (as high as 80%) of spinal injuries (across all ages) in this population 

occur in the cervical region [4,59,60], a fact that is even more pronounced in the 

younger age groups [56]. Data on the distribution of injury levels in children who go 

on to suffer some form of motor or sensory depravation suggests, however. that this 

trend does not apply to those with paraplegia and tetraplegia. Both Triolo et al. [58] 

and Vogel et al. [57] found that while the youngest children (infants and toddlers) still 

suffered the majority of the highest cervical-level lesions (C1-3), and are also most 
likely to be complete, thoracic and lumbar lesions were significantly more prominent 
in those children between one and ten years old while lower cervical cord injuries were 

more prevalent in older children (above age ten). Data reported by Cirak et al. [4] indi- 

cate that cervical level injures account for the majority across all age groups. However. 

26 



3.2 Paediatric Spinal Cord Injury 

the proportion of the sample studied with a neurological deficit (as oppose to vertebral 
injury alone) is unclear. 

The disparity of predisposition to certain injury levels and injury mechanisms across 
different age groups may be attributed, in part. to the unique anatomical make up of a 

child and how this changes during growth. Factors such as a disproportionate head to 

body ratio and under-developed muscles in the neck are the main contributing factor 

to the high cervical-level injury incidence in the youngest age groups [4,59,60]. In ad- 
dition, an under-developed skeletal structure which has an increased cartilage to bone 

ratio in the spine means that children are more susceptible to spinal injury in general. 
A disproportionately large head in pre-school children, which results in a higher centre 

of gravity, coupled with relatively poor coordination may explain why this age group 
is more prone to falls. On the other hand, it is the behavioural characteristics of ado- 
lescents that most likely account for the high proportion of sports related injuries in 

their sub-group. 

3.2.2 Medical Issues 

There are several anatomical and biomechanical features that are either unique to, 

or are more pronounced in, the paediatric spinal cord injured population and lead to 

additional or confounded problems in comparison to their adult counterparts. Many of 
the medical issues encountered arise because a child may be skeletally immature at the 

time of injury. This means that as they grow (without use of the affected limbs), the 

natural development of what is now a substantially weakened frame will itself create 

problems. 

As discussed in the previous chapter, there is a significant reduction in bone mineral 
density in the limbs of adults who suffer a spinal cord injury and this is no different for 

children. There is little data on this subject pertaining to the paediatric population but 

in one study by Nloynahan et al. [61], where bone mineral density was compared in 51 

children at areas around the hip, losses in those greater than one year post-injury were 

comparable to data reported for adults (approximately 35-45/0). However, although 

the percentage of reduction may be similar to adults, because their bones are often 

not fully developed at the time of injury (and do not develop properly in the time 

following), there is an increased risk of bone fracture [62,63]. 
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Another common problem is hip joint instability, to which this population are more 

susceptible, due to the more cartilaginous nature of their joints. Spasticity of the mus- 

cles around the hip joint can aid in the formation contractures (a usually permanent 
shortening of the muscle, it is another ailment to which this group is predisposed) and 
ultimately, over time, dislocation. Even without the presence of spasticity, dislocation 

of the hip often occurs as the lack of muscle force impairs joint development. Incidence 

appears to be predominately in those with thoracic level injuries. Based on a review 
of 72 patients, Miller et al. [64] found that the latter were twice as likely to develop 
hip instabilities than those with cervical or lumbar level injuries. 

Skeletal immaturity at the time of injury can also greatly increase the risk of spinal 
deformities, chiefly scoliosis, throughout growth. Other than issues concerning the frac- 

ture or surgery induced problems, the main catalyst is a lack of muscle force combined 

with growth forces [651. 

3.2.3 Care and Rehabilitation 

Special consideration should be given to the rehabilitation process of a child/ adolescent 

as the approach must differ from that of the adult [66]. As the child grows cognitively, 

emotionally and socially, the approach must be modified appropriately with each per- 

son in the rehabilitation team aware of the special needs at every level of development. 

Yarkony et al. [67] suggest that the fact that children learn through play means that 

including play in the rehabilitation process will be more productive than a regimented 

exercise programme alone. Participation in sport, in this population in particular, is 

important. Johnson et al. [68] state that children of all abilities should be exposed to 

as many different types of sport as possible and that the physical wellbeing and sense 

of accomplishment from this can help alleviate the depression that accompanies spinal 

cord injury. 

As mentioned, spinal cord injured children have a high risk of developing spinal defor- 

mities and muscle contractures. This can interfere greatly with seating systems and 

orthoses. In an evaluation of wheelchairs and seating systems, Gonzalez et al. [69] note 

that all seating systems must support any deformity in such a way that any further 

deterioration is minimised. They also describe seat belts and/or harnesses. in com- 
bination with a head rest. as being important additions in combatting the effects of 

spasms and poor trunk control. 

28 



3.3 FES in the Paediatric Spinal Cord Injured Population 

From experience of using FES in this population, Smith et al. [70] explain that the 

presence of contractures, deformities and poor bone mineral density can compromise 
the safety of a subject while using a rehabilitation system, therefore careful evaluation 
must take place. Where older children, particularly adolescents. are concerned. appear- 
ance is a high priority so any equipment or system used as part of the rehabilitation 
process should take this into account. 

3.3 FES in the Paediatric Spinal Cord Injured 

Population 

Research dedicated solely to the rehabilitation of spinal cord injured children, partic- 
ularly that which includes FES, is comparatively rare. As discussed, this population 
makes up a small portion of people who have what is already a relatively uncommon 
condition. This, coupled with the unique medical issues and associated complications 
within this group, means that the vast majority of resources are channelled into fully 
developed children and adults [71]. 

To date, almost all FES-orientated studies in this population have focussed on return- 
ing function, rather than on exercise. As a result, development and use of devices 
for activities such as hand grasping, standing or ambulating has been most promi- 
nent. Several investigations have reported successful implementation of such FES 

systems (using surface, percutaneous and implanted simulation technology) for chil- 
dren [72,63,73,70,74,75], though mostly in older age groups. In a study which 
describes an approach to stimulate, directly, the denervated muscles of children who 

suffer from flaccid paralysis (caused by a range of diseases), Eichhorn et al. [40] demon- 

strated FES-cycling in one child, who had a lesion of the spinal cord. 

Data on health benefits, although scarce, appears to follow the trends seen in the adult 

population. In a two-year study where the quadriceps of four subjects (aged between 

three and twelve) were stimulated initially for training and ultimately standing, Popovic 

et al. [72] found an increase in trabecular bone density of the tibia of 6.6/( (although 

were not able to conclude if stimulation was soley responsible). along with gains in 

mass, strength and fatigue resistance of the quadriceps. Betz et al. [63] found that 

subjects who participated in 6-month FES standing or walking programmes, which 
included monitoring of bone densities around the hip and femur, showed a site-specific 
increase in bone density of the distal femur. 
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Robinson et al. [76] investigated and compared maximal physiological responses of arm 
cranking exercise. FES of the lower limbs and a combination of the two. Participants 

were aged fifteen to seventeen years with injury levels between T5 and T7. In this 

study, stimulation of the quadriceps and gluteal muscle groups provided a large car- 
diopulmonary stress, when compared to rest, but less than arm cranking alone. The 
hybrid system which involved both types of exercise showed the highest physiological 
responses. 

3.4 Discussion 

FES-cycling has given rise to a succession of systems that encompass a range of ap- 
proaches to design and stimulation control. Although, clearly, there is still a require- 
ment to improve aspects such as efficiency, there is also scope for the inclusion of more 
modern sensor and control technology in an effort to reduce bulk and increase accu- 
racy. In addition, the health and recreational benefits that cycling offers are, arguably, 
even more pertinent to the spinal cord injured child. Thus, it would seem logical to 
investigate the transfer of this technology to the younger population. 

3.4.1 FES-cycling: Moving out of the Laboratory 

Broadly speaking, FES-cycle systems tend to be designed for either research devel- 

opment, or training/recreation. In the case of the latter, design goals shift towards 

practicality and ease of use, therefore with a view to moving this technique out of the 
laboratory and into both the clinical and home setting, those issues should take priority. 

When considering the layout of FES-cycle systems, those capable of being both sta- 
tionary and mobile devices appear to offer the most benefits. Although commercial 

systems such as the ERGYS II seem to be fairly reliable and easy to use, they do not 

offer the attraction of outdoor cycling, are rather bulky and are still very expensive. 
Those capable of locomotion highlight separate issues, of course. Stability must be en- 

sured at all times and although approaches that maintain an upright rider position have 

been successful [42], the necessary mechanical adjustments made a significant weight 
increase. A more supine, and lower to the ground, position for the rider also offers 
increased stability, therefore modification of standard recumbent tricycles [46.14.13] 

provides a low-cost option in achieving this. Utilising standard devices in an FES 

system has other advantages. too. The final device will look more akin to one which 
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an able-bodied person would use., possibly making it more appealing. A wider range 
of replacement parts, standard cycle trainers and sensor equipment can also be easily 
connected to it. 

Assistance in some form is clearly needed during the early stages of training and to 

allow recreational FES-cycling to be practical. The inclusion of an auxiliar`- motor and 
its required control is the logical option, and most popular, but necessitates further 
instrumentation and increased weight. Inclusion of arm cranking, such as in hybrids. 
is an attractive alternative but does not offer the same accuracy as a motor and relies 
on the subject having sufficient energy to propel the device with their upper limbs 
(something that is not an option for those with tetraplegia). 

Control of stimulation has evolved from using desktop computers [39] to devices that 

contain both stimulator and control software [14]. Intensity modulation is governed 
automatically in some systems. Although this approach is suitable for stationary er- 
gometry (and does simplify operation for the user), on a mobile device, control over 
what will ultimately be forward velocity must remain with the rider. Moreover, it may 
be desirable to always (with the exception of exercise testing, where a higher precision 
is needed) give control of stimulation intensity to the rider. It is, perhaps, arguable 
that in relinquishing this to software, the rider could become decreasingly motivated as 
they become a less active participant in what should, at least partly, be a recreational 

activity. 

In the short term at least, surface stimulation appears to be the best way to apply 

stimulation for this modality. Although it requires time-consuming donning/doffing 

of electrodes and cables, it still allows an effective and non-invasive route. Cycling 

using implanted electrodes has been successfully demonstrated, and does allow for a 
"neater". potentially more efficient system. However, it also requires surgery and thus 

may be an unattractive option for many potential users. 

Optical shaft encoders have traditionally been used for pedal position measurement 
because of their accuracy and durability. However, as limb motion is restricted by the 

pedals during cycling, any angle within the lower-limb/pedal geometry may be used 

as the reference position data required for stimulation control. Measurement. and use. 

of limb position could offer an alternative source that would allow for a reduction in 

tricycle instrumentation and thus be a step closer to a self-contained system which 

could be transferred to any cycle device. Moveover. analysis of the literature indicates 
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that such an approach has not been attempted thus far in FES-cycling control. In ad- 
dition, the inclusion of modern and small computational devices, like palm-tops. could 
further miniaturise equipment needed and increase ease of use through improved user 
interfaces. 

In an effort to research these possibilities, we propose an investigation into using both a 
limb-mounted sensor and new multi-functional, PDA-based FES system to implement 
FES-cycling. This work will be described in chapter 4. 

3.4.2 Child Proof? 

Paediatric spinal cord injury is a relatively rare event. A lowered motivation for re- 

search in light of the size and variation of this population, along with difficulties in 

seeking ethical approval, mean that both the condition itself, and rehabilitation of 
those affected, has received comparatively little attention. Although it is unfortunate 
(bearing in mind the circumstances of this population) that the impetus for more fo- 

cused research in this area should be, in part, financially driven, modern life expectancy 

of an injured child is near-normal and thus the cost of care and rehabilitation during 

this time comes into question. Thus, with the advent of new exercise and assistive 
techniques (such as FES) which have been shown to improve the health of adults, a 

concerted effort is now being placed on transferring these technologies to children. 

Until now, FES in this population has been used almost exclusively for standing, am- 
bulation and hand-grasping. There is one reported exception to this [40], however 

little information is presented on the subject or subsequent effects. Also, a new pae- 
diatric FES-cycling ergometer has recently become available (Restorative Therapies' 

RT300-S), but as yet there are no published data concerning its use. Given that the 

health-promoting and recreational attributes of cycling, in addition to its smooth dy- 

namic nature, appear to suit the particular needs of spinal cord injured children very 

well, this application may, potentially, have the most to offer them. 

The health gains to be had from taking part in an exercise programme are clear. How- 

ever, persuading children (especially the youngest) to commit. both initially and in 

the long term, is not straightforward, as long-term welfare and health are not in the 

forefront of their minds. Instead, play and engaging in social activities are often a 

much higher priority. Indeed, some adults who sustained their injury while children 

have expressed dissatisfaction with the lack of opportunities for social activity when 
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growing up [77]. Thus, the recreational aspects of cycling may encourage increased 

participation. 

Cycling could also offer promise to those with substantially weak bones (and who there- 
fore are at the highest risk of fracture), who, as a result, may have been precluded from 

other FES research programmes. With the smooth, repetitive motion (and compara- 
tively low force generation) involved, motor assisted systems might offer a lower-risk 

technique for building bone mineral density. 

When choosing the design criteria for a child-orientated FES-cycling system, the pre- 

viously discussed specific needs of the child who has a spinal cord injury must be taken 
into account. It should be safe, flexible, simple to use, allow for anatomical deforma- 

tions such as contractures and scoliosis, while still being aesthetically attractive. The 

equipment involved in many systems originally designed for adults are bulky and not 

cosmetically pleasing from the child's perspective (something that has been speculated 

on, by those who have enrolled children in FES-research programmes [58]. as being a 

major factor in the reluctance to participate). Moreover, it is particularly desirable 

for the system to resemble, more closely, those used for exercise and activity by able- 
bodied peers, thus enhancing the psychological benefits. 

Although extra challenges must be faced in order to address the unique issues pre- 

sented by this population, the range and success of FES-cycling approaches in adults 

suggest that this technology can, and should, be applied to children. To this end, we 

propose the development of FES-cycle systems which can be used within the paediatric 

spinal cord injured population for both stationary and mobile cycling. This work will 
be described in chapters 5 and 6. 
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4 Implementation of FES-cycling 
Using a Multi-functional FES 
System and Limb-mounted Sensors 

In this chapter, we describe the development of FES-cycling stimulation control strate- 

gies which employ new approaches for obtaining crank position data (used as a stimula- 
tion activation reference) using a limb-mounted sensor. These strategies, in addition to 

a "traditional" approach which employs a shaft encoder, have been implemented into 

a new PDA-based, multi-functional, FES-system which can be used for either surface 

or implanted stimulation. The work is divided into three main stages: 

(i) Testing and validation of the limb mounted sensor pack (section 4.2). 

(ii) The creation and testing of an angle-conversion algorithm (section 4.3). 

(iii) Incorporation of this algorithm and an FES-cycling strategy within the PDA- 

controller (section 4.4). 

Before this, a description of the new equipment that will be utilised is given in sec- 

tion 4.1 in order to explain its layout and capabilities. Conclusions drawn from this 

chapter's findings are given in section 4.5. 

4.1 The Neopraxis Multi-functional FES System 

The implementation of a new multi-functional FES system into an existing FES-cycle 

setup has been investigated. For background purposes, the following section will de- 

scribe the layout, capabilities and use of this system in international research up to 

this point. 

: 31 



4.1 The Neopraxis iIulti-functional FES System 

4.1.1 Overview 

A small, portable FES system has been developed by Neopraxis Pty Ltdl. It contains a 
palm top controller called the navigator, which can implement FES strategies through 

either an eight channel surface stimulator, called the Exostim, or a 22 channel im- 

planted stimulator. The system also contains small limb-mounted sensor packs, which 
can measure orientation and acceleration data. 

r 

(a) Navigator 

Figure 4.1: The Neopraxis Navigator and sensor pack. 

The Navigator (155mm x 85mm x 40mm), shown in figure 4.1(a), is a small, portable 
device which consists of a hand-held PC that has been modified with a custom-designed 

compact flash (CF) card to provide a serial peripheral interface (SPI) to the remaining 

components of the entire system. Internal software, called "Clinix", allows user-friendly 

access through the Navigator's touch screen to a range of pre-designed stimulation 

strategies (muscle strengthening, standing etc. ) that may be implemented using either 

of the stimulators. In addition, a clinician or researcher may assign different stimu- 
lation parameters (frequency, pulsewidth and amplitude limits) to individual muscles 

groups or nerves and create simple strategies. More complicated sequences can be in- 

corporated through use of a tiiatlab/Simulink2 interface, which allows Simulink models 

to be compiled and downloaded into Clinix. 

'Formerly a subsidiary of Cochlear Ltd, Lane Cove, Australia. http: //wivw. cochlear. com/. Neo- 

praxis Pty Ltd ceased operation in 2003. 
2The i\Iath`Vorks Inc., http//wtivw. mathworks. com/ 
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4.1 The Neopraxis Multi-functional FES System 

Orientation and acceleration data for use in closed-loop control strategies are obtained 
from small limb-mounted sensor packs (65mm x 34mm x 12mm). These devices (Fig- 

ure 4.1(b)), which consist of two two-dimensional accelerometers, a miniature rate 
gyroscope and a micro controller, are powered from, and communicate with, the nav- 
igator through its CF card [78]. Multiple sensor packs may be used concurrently. 
with information from each (and therefore feedback from several different limbs) being 

monitored in realtime by the Navigator. An additional feature is the inclusion of three 

analogue inputs that allow acquisition of data from external hardware, such as switches. 

4.1.2 Surface Stimulation 

Communication 
Ports 

30mm %k 

60mm 

Stimulation 
Ports 

Figure 4.2: The Exostim surface stimulator. 

Surface stimulation is carried out using an eight channel, belt-worn device (weighing 

approximately 500g) called the Exostim (Figure 4.2). Like the sensor packs, commu- 

nication with the navigator is carried out via the CF card. However, as the card has 

only three SPI ports, the Exostim also acts as a thoroughfare for sensor pack data 

(using additional ports located on its side) when feedback from multiple limbs is re- 

quired [79]. Stimulation parameter ranges are shown in table 4.1. When using this 

device, frequency and charge pulsewidth remain constant while intensity is governed 
by modulation of the amplitude between threshold (the minimum level that produces a 

visible or palpable response) and saturation (the level above which no increase in force 

is achieved) current levels. All values are set for individual channels using the navigator. 
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Stimrzulator Amplitude Frequency Pulsewidth 

Exostim 
FES-24B 

0- 216mA 
250pA - 8mA 

17 - 100Hz 
0- 14400Hz 

25 - 500its 
25 - 600µs 

Table 4.1: Stimulation parameter ranges for the Exostim and FES-24B stimulators. 

4.1.3 Implanted Stimulation 
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Figure 4.3: Location of the FES-24B stimulator and its electrodes. (Adapted from 
http: //www. ifess. org/cdrom_target/ViennaOI/Posters/Davis. htm) 

The navigator and sensor packs can also be connected to a 22-channel implanted stim- 

ulator, called the FES-24B, forming the "Praxis" system. The stimulator. which is 

based on the Nucleus 22 cochlear implant [80], is placed in the lower right intercostal 

margin and connected to electrodes via subcutaneous, stretchable. conducting leads 

(figure 4.3). Communication between the navigator and the stimulator is achieved by 
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4.1 The Neopraxis Multi-functional FES System 

an RF-linked antenna which holds on to the skin because of a magnet in the stimu- 
lator. Two techniques for implanted stimulation are demonstrated with this system: 
peripheral nerve stimulation and direct nerve root stimulation. 

18 channels are designated for lower-limb muscle contraction. The individual nerves or 
branches (and the corresponding muscle contracted) to which each channel is assigned 
are shown in Table 4.2. The electrodes themselves are either "Flexi-CufF' electrodes. 
which encircle the nerve, or platinum button electrodes, which are sutured to adjacent 
connective tissue [81]. 

Channel/ Nerve Innervation Muscle Action 
Electrode Level Contracted 

1,10 Obturator L2, L3, L4, L5, S1 Adductor Adducts and 
Sciatic magnus extends thigh 

at hip 
2,11 Sciatic L5, S1, S2, S3 Biceps Extends thigh 

femoris at hip 
3,12 Inferior Gluteal L4, L5, S1, S2 Gluteus Extends and 

maximus laterally rotates 
thigh at hip 

4,13 Lumbar Plexus L2, L314 Psoas Flexes thigh 
at hip 

5,14 Femoral L2, L3, L4 Vastus Extends leg 
lateralis at knee 

6,15 Femoral L2, L3, L4 Vastus Extends leg 

medialis knee 

7,16 Super Gluteal L4, L5, S 1 Gluteus Abducts thigh 
medius at hip 

8,17 Peroneal L4, L5, S1 Tibialis Dorsiflexes foot 

anterior 
9,18 Tibial L5, S1 Gastrocnemius Plantarflexes foot 

and flexes leg 

at knee 

Table 4.2: Position of implanted electrodes for lower limb movement. 

Three further channels are connected to linear para-radicular electrodes, which are 
inserted into the external sacral foramina for bladder control, and sexual function in 

males. This eliminates the need for a posterior sacral rhizotomy, which «-as one of 

38 



4.2 Sensor Pack Testing and Validation 

the goals of the Praxis system. A posterior sacral rhizotomy (which involves a sacral 
laminectomy) is carried out when fitting cuff electrodes to the anterior sacral roots 
for use with existing bladder stimulation systems. The drawback to this procedure 
is that it prevents future reflex erections in males. The final channel (connected to 

an epidural, spinal-cord-stimulating electrode) is assigned for modulation of spastic 
bladder and bowel reflexes. In addition to the 22 stimulation channels. the front and 
back of the stimulator case act as two return channels. Like the Exostim, charge pulse 

amplitude is modulated to control stimulation intensity and individual parameters are 

set using the navigator. Ranges for these parameters are shown in table 4.1. 

4.2 Sensor Pack Testing and Validation 

Initial experience with the sensor pack indicated the existence of a drift in orientation 
data. Therefore, before using it within an FES-cycle setup, experiments were carried 

out to test and validate the signals. The following details this work. 

4.2.1 Methods 

Aims and Objectives 

The aim is to investigate further a possible drift in orientation data, recorded by the 

sensor pack, that was found previously. To achieve this, orientation, velocity and raw 

voltage signals would be recorded under both static and dynamic conditions, similar 

to those found in cycling, while any observed drift in the data would be quantified. 

Static 

Experiments were set up as as shown in figure 4.4. The sensor pack was attached to 

a wooden rod which can be held in position by a clutch system. A potentiometer was 

placed on a second pole and directly coupled to the rod so that an equivalent voltage 

could be used for position comparison. The rod was placed at five different angles: 

0°, 45°, 90°. 135° and 180° (an inclinometer was used to confirm both these and the 

equivalent potentiometer voltage). 
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4.2 Sensor Pack Testing and Validation 

Potentiometer 

45 

00 - 

90 Navigator 
'' Sensor 

Pack , -135 

a EV -----------180 

Clutch 

_. ____ý 
System 

Power Voltage 
Supply Modifier 

A 

Figure 4.4: Experimental setup. Rod is rotated around point A and held in place with 
the clutch system. 

At each position, three experiments were conducted in which the purpose was for the 

rod and sensor pack to remain static over a period of four minutes. A Matlab sequence 

which samples (at a rate of 20Hz) and logs information from the sensor pack during 

this period was created, compiled and downloaded for use on the navigator. Four 

variables were recorded directly from the sensor pack (Table 4.3). The potentiometer 

output voltage was converted to be within the limits of the sensor pack's analogue 
input by a custom voltage modifier, supplied to the sensor pack and recorded as "Ana 

logue input 1 voltage". All data were uploaded from the navigator and analysed offline. 

Variable Source 

Time (s) Sensor pack 
Sagittal angle (deg) Sensor pack 

Sagittal velocity (deg/s) Sensor pack 
Gyroscope voltage (V) Sensor pack 

Analogue input, 1 voltage (V) Potentiometer 

Table 4.3: Variables recorded for sensor pack validation experiments. 
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4.2 Sensor Pack Testing and Validation 

Dynamic 

Further experiments were carried out to investigate the drift under dynamic condi- 
tions. The setup was the same as for the static experiments. However, here the rod 

was oscillated over a range of approximately 12°. Experiments were carried out using 
both a constant and varying oscillation frequency. 

4.2.2 Results 

Static 

Sagittal angle, velocity and the raw voltage output from the sensor pack are plotted 
in figure 4.5. Each subplot shows data logged over a period of four minutes from three 

consecutive experiments carried out at a rod position of 45°. In each case, there is a, 

clear drift in the measured variable during the first 50 to 100 seconds, corresponding 
to approximately 0.9 - 2°, 2-6.6°/s and 8- 24mV respectively. This behaviour was 
displayed at every measured rod position, in all experiments, and with drift ranges 

consistent with those shown above found in each case. The average drift, found over 

all 15 experiments, is shown in table 4.4. 
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Figure 4.5: Sagittal angle, sagittal velocity and gyroscope voltage during three experi- 
ments at a rod position of 45°. 
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4.2 Sensor Pack Testing and Validation 

Variable Average Drift 

Sagittal angle (deg) 1.281 + 0.57 
Sagittal velocity (deg/s) 4.408 + 2.58 
Gyroscope voltage (V) 0.02 + 0.024 

Table 4.4: Average drift (+ standard deviation) in recorded data over 15 static exper- 
iments. 

For comparison, sagittal angle data from the sensor pack are plotted against the equiv- 

alent potentiometer angle (obtained from its output voltage) at a rod position of 89° 

(figure 4.6). A similar drift to that displayed in figure 4.5 can be seen in the sensor 

pack data whilst the potentiometer angle remains almost constant throughout. 
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Figure 4.6: Sensor pack sagittal angle versus equivalent potentiometer angle at 89°. 

Dynamic 

Angle data from both potentiometer and sensor pack during the variable oscillation 

experiment are shown in figure 4.7. A drift in the sensor pack data is apparent over 

both the whole period, and sections with a constant oscillation frequency. The latter 

was verified in the constant, frequency experiments. Moreover, the amplitude of the 

sensor pack angle data appears to vary with the oscillation frequency. This is high- 

lighted in figure 4.8, where the sensor pack error (with respect to the potentiometer 

angle) appears to closely follow the frequency behaviour. 
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Figure 4.7: Sensor pack sagittal angle versus equivalent potentiometer angle during 

variable oscillation frequency experiment. 
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Figure 4.8: Rod oscillation frequency and sensor pack sagittal angle error during vari- 
able oscillation frequency experiment. 
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4.2 Sensor Pack Testing and Validation 

4.2.3 Discussion 

Experiments were carried out which were designed to test the performance of the sen- 
sor pack. Orientation data were observed under both static and dynamic conditions 
with any error quantified. It should be noted that the manufacturer of the sensor pack 
ceased operation around the time of these experiments so it was not possible to obtain 
replacement parts or further assistance. 

In a recent study, carried out by those who designed the device, Simcox et al. [78] detail 

the control algorithm used to estimate orientation by the sensor pack and investigate 
its performance using a 3D motion analysis system. To estimate sagittal angle. the 

sagittal velocity (obtained from the gyroscope) is integrated, then compared with the 

accelerometer signals and passed through a nonlinear filter in order to remove any drift 
(caused by integration of small errors and noise in the gyroscope). Our static experi- 
ments showed a drift in orientation data over the first 50 to 100 seconds in all data sets. 
After this time period, however, the estimated angle does remain relatively constant 
with a reasonably small offset. Moreover, the magnitude of the error (1.281 + 0.57') 

appears to be within acceptable limits illustrated by similar sensors. Luinge et al. [82], 

who adopt a similar sensor fusion approach in their device, showed a maximum error 
of approximately 1.5° over a period of 140s. 

During the dynamic experiments, however, this error not only increased significantly 
(up to 3.69°, at an oscillation frequency of 0.289Hz) but did so in conjunction with the 

oscillation frequency of the rod. Orientation data shown by Simcox et al. [78] during sit 
to stand and walking experiments show a fairly close correlation between a sensor pack 

and 3D analysis system. However, our findings may not be comparable as the dynamic 

behaviour of the their experiments is different to ours and data are only shown over 
the first three to four seconds. 

Although the static performance of the sensor pack, shown in these experiments. is 

impressive (considering its size and weight), the dynamic behaviour observed has con- 

sequences for its planned use as a source of orientation data for cycling. The sinusoidal 
behaviour of the oscillating rod resembles that of the thigh during recumbent cycling, 
therefore the fact that the sensor pack's estimated angle moves outwith the geometrical 

constraints, displayed by the potentiometer (figure 4.7). means control which incorpo- 

rates this device must somehow compensate. 
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4.3 Angle Conversion 

4.3 Angle Conversion 

Following testing of the sensor pack, an approach was decided upon which would make 
use of the orientation data in such a way that crank position could be calculated di- 

rectly from limb position, therefore allowing existing stimulation timing patterns to be 

used. For this, a conversion algorithm would be created that converted a measured 
hip angle to an estimated crank angle whilst taking into consideration the drift issues 
found in section 4.2. 

4.3.1 Methods 

Aims and Objectives 

Intensity Reference 
Throttle 

Stimulation 
Pattern 

Hip Angle 

Sensor Pack 

Estimated Crank Angle I Conversion 

Figure 4.9: Schematic showing incorporation of sensor pack into FES-cycling system. 

The aim is to incorporate the limb-mounted sensor pack into an existing FES-cycling 

strategy (as shown in figure 4.9) by using a measured hip orientation to calculate an 

estimated crank angle. There are three stages involved in this. 

(i) Creation of an algorithm which converts a hip angle to corresponding crank angle. 

(ii) Validation of the algorithm through simulation. 

(iii) Validation of the algorithm using real data. 
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4.3 Angle Conversion 

Geometric Approach 

Two approaches were used to estimate crank position based on the angle of a subject's 
hip to the horizontal. The first is carried out using the geometric relationship shown 
below [51]. 

Knee 

Hip 

Figure 4.10: Hip to crank centre geometric relationship. 

Ankle 

If a, b, c and d are the thigh length, lower leg length, crank arm length and length from 

hip joint to crank centre (baseline) respectively (figure 4.10), e (the distance from knee 

joint to crank centre) can be calculated from the hip angle (a) as follows: 

e= a2 + d2 - 2ad cos a (4.1) 

Using e and assuming the feet are fixed to the pedals, 81 and 82 can then be calculated 

and added together to obtain a crank angle (Bc) via the following relationships: 

7d2 + e2 - a2 
01 = cos' -2de (4.2) 

(e2 + C2_b2 
82 = cos-i 2be 

(4.3) 
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4.3 Angle Conversion 

eC=e1+e2 (4.4) 

An algorithm, which incorporates this relationship, was created using Mlatlab. Bio- 

mechanical measurements, a, b, c and d (which will vary with different subjects and 
trikes) are measured beforehand and defined as constants within the algorithm. The 

sampled hip angle (a) is the input variable and estimated crank angle (&c) the output. 

Conversion Issues 
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Figure 4.11: Comparison of measured hip angle over time versus theoretical maximum 

and minimum hip angles. 

As the experiments described in section 4.2 showed, orientation data calculated by 

the sensor pack are subject to significant drift during oscillatory conditions. Also, in 

reality, the distance between hip joint and crank centre may not be constant during a 

period of cycling, as the rider moves in the seat. The effect of these issues is illustrated 

in figure 4.11, which shows a hip angle over time, as recorded by the sensor pack, for 

an individual cycling on a recumbent tricycle. The two horizontal lines correspond to 

the maximum and minimum hip angles based on the individual's initial bio-mechanical 

measurements (a = 0.57m, b=0.57m, c=0.135m and d=0.77m). and calculated 

using the following equations: 
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4.3 Angle Conversion 

- a2+d2-(b+c)z 
amax = cos1 tad 

(4.5) 

a2 + d2 - (b - c)2 
Amin = COS-1 

tad 
(4.6) 

As can be seen, the measured hip angle moves significantly outwith the initial theoreti- 

cal constraints. To combat this behaviour, the geometric conversion algorithm limits a 

measured hip angle signal within the initial, calculated, maximum and minimum values 
(possible because of the repetitive and constrained nature of cycling). This operation 
is carried out by scaling the data (based on the initial constraints) on a cycle-t, o-cycle 
basis. 

Heuristic Approach 
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Figure 4.12: Crank angle, 8c, versus the corresponding hip angle, a (upper plot). 
Scaled hip angle, a', and inverse sine versus crank angle (lower plot). 

is the phase shift between O and sin-'(oz'). 

The second approach involves manipulation of the hip angle in its sinusoidal form to 

obtain a crank position using the following relationships (represented graphically in 

figure 4.12) : 
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4.3 Angle Conversion 

ia- 
-av 

CL' _ 
Amax - aav 

6c = sin-'(a') +w 

(-1.; 

(4.8) 

Here, a is a measured hip angle over a period of time (aa,, and am, a, x are the mean and 
maximum values respectively), and a' is this value scaled between one and minus one. 
then the corresponding crank angle (9c) may be expressed as the inverse sine of a' plus 
an undetermined phase shift (). 

Equations (4.7) and (4.8) were implemented in a second algorithm. One notable factor 

when using this approach is that it purely involves manipulation of the output hip 

angle and no bio-mechanical measurements are required. 

Procedure 

As a first step, both algorithms were validated through simulation. A single degree 

of freedom model of the rider/tricycle system [83], which gives a hip and correspond- 
ing crank angle for a simulated period of cycling was used. By correlating initial 

bio-mechanical parameters with those used to determine the behaviour of the model, 

simulated hip angle data were converted into an estimated crank angle using both algo- 

rithms and compared with that produced by the rider/tricycle model. Simulations and 

subsequent crank angle calculations were carried out for cycling cadences of 10 - 80rpm. 

with intervals of 5rpm. Additional data were also gathered at cadences used during 

collection of real data for comparison purposes. The time step used for all simulations 

was 0.05s, thus correlating with the sample rate utilised in obtaining real data. 

The second stage was to test both conversion algorithms using real data recorded from 

the sensor pack during cycling. Experiments were carried out using a standard recum- 
bent tricycle3, modified for FES-cycling as described in [43]. The rider was seated as 

shown in figure 4.13, with the sensor pack attached to their right thigh. To measure 

crank position, the tricycle's shaft encoder output voltage was recorded using one of 

the sensor pack's analogue inputs. 

'Inspired Cycle Engineering Ltd., Falmouth, UK. http: //www. ice. hpv. co. uk/ 
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4.3 Angle Conversion 

Figure 4.13: Angle conversion algorithm validation - experimental setup. 

A matlab sequence was created and downloaded onto the Navigator which would record 
sagittal (hip) angle and convert the shaft encoder's output voltage into crank position. 
Data were recorded at a sample rate of 20Hz over three sessions. During each, and 
following a static period to allow any initial orientation drift to settle, the rider cycled 
for up to a minute at selected cadences of approximately 24rpm, 31rpm, 43rpm, 55rpm 

and 70rpm. Data were subsequently analysed offline, using both algorithms to compare 
the measured and estimated crank angles. 

4.3.2 Results 

Simulated Data 

A comparison of estimated crank angle (Ocest), using the geometric approach, versus 

actual (0c0ct) crank angle at a simulated cycling cadence of 50rpm is shown in fig- 

ure 4.14. Here the estimated angle is calculated based on a simulated hip angle and 
the corresponding initial bio-mechanical parameters the rider/tricycle model uses to 

calculate it (a = 0.43m, b=0.53m, c=0. lm and d=0.76m). A delay of exactly 0.05s 

between 9c, 5 and Oc0ct was found during all simulation experiments. This is equivalent 
to one sample at 20Hz and occurs because the algorithm uses a data point one sample 

previous to the current during its calculations. 
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Figure 4.14: Simulated crank angle, Ocact, produced by rider/tricycle model [83] at a 
cadence of 50rpm, versus estimated crank angle, 9cest, as calculated using 
the geometric algorithm. 
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Figure 4.15: Simulated crank angle versus estimated crank angle, as calculated using 
the heuristic algorithm at 50rpm (upper plot). Relationship between av- 
erage phase shift ( 

sum) and cycling cadence across all simulations and 
using heuristic algorithm (lower plot). sd - standard deviation. 
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4.3 Angle Conversion 

In the upper plot, figure 4.15 shows the estimated crank angle calculated by the heuris- 

tic algorithm over the same period and using the same data set as in figure 4.14. The 

phase shift, (+ standard deviation) between Oca, ct and Ocest was calculated for all 
simulations and the relationship with cycling cadence is shown in the bottom plot. 

Experimental Data 
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Figure 4.16: Measured crank angle, Oca, ct, at a cadence of approximately 43rpm, versus 
estimated crank angle, Ocest, as calculated using the geometric algorithm. 

In figure 4.16, the estimated crank angle (Ocest), calculated from a sensor-pack-measured 
hip angle by the geometric algorithm, is plotted against the corresponding crank angle 

obtained from the tricycle's shaft encoder. The cycling cadence during this experiment 

was approximately 43rpm. A delay of 0.121 + 0.031s is evident between the measured 

and estimated crank angle. Similar behaviour was found in data sets acquired and cal- 

culated from each experiment. Average delays (± standard deviation) for each cadence 

are given in table 4.5. Figure 4.17 shows portions of estimated crank angle data, with 
the respective delay removed, against their measured counterparts at approximately 
43 and 55rpm. 
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4.3 Angle Conversion 

Cadence (rpm) 11 Dmean (S) 

Table 4.5: Average delay (± standard deviation) between estimated (Ocest) and actual 
(Bcact) crank angles using geometric algorithm during selected cadences. 
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Figure 4.17: Measured crank angle at - 43rpm (upper plot) and N 55rpm (lower plot) 
versus estimated crank, following delay correction and using geometric 
algorithm. 

Cadence (rprn) 'mean (S) 

- 24 -0.195+0.028 
-31 -0.126 + 0.025 

- 43 -0.064 + 0.029 

- 55 -0.068 + 0.027 

- 70 -0.095 + 0.058 

Table 4.6: Average values (± standard deviation) of Ocest phase shift. u. using heuristic 

algorithm during selected cadences. 

- 24 0.095 + 0.028 

ý31 0.09+0.032 

- 43 0.121 + 0.031 

- 55 0.102 + 0.078 

N 70 0.043 + 0.118 
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4.3 Angle Conversion 

Applying the heuristic algorithm to data recorded during each experiment yielded the 

average phase shifts (/mean) shown in table 4.6. Phase shift corrected crank angles, 

plotted against the corresponding measured crank position, are shown in figure 4.18. 
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Figure 4.18: Measured crank angle at - 43rpm (upper plot) and - 55rpm (lower 

plot) versus estimated crank angle minus average phase shift (mean) using 
heuristic algorithm. 

Although values of mean found using the heuristic approach do not quite fit those 

shown during simulation (figure 4.15), if it is assumed that the delay found between 

Bca, ct and Hcest in data calculated using the geometric algorithm is caused by some form 

of measurement error, in combination with the delay found during simulation, then: 

= real - (Dreal - Ts) (4.9) 

Where '0. e. I is the calculated phase shift using the heuristic approach and Dreat is the 

estimated crank angle delay using the geometric approach. Ts is one time step. 

To compare experimental values of ' against those simulated, mean values of Yreal 

and Dreat, as shown in tables 4.6 and 4.5 respectively, were used in equation (4.9) to 

calculate the true phase shift calculated from experimental data. This value, Vexp, is 

plotted for all experiments against cadence in figure 4.19. T$ is 0.05s (to correlate with 

the 20Hz sample rate used during experiments). 
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Figure 4.19: Comparison of measured ( 
exp) and simulated (/sim) phase shift found 

using heuristic approach over selected cadences. sd - standard deviation. 

4.3.3 Discussion 

For incorporation of a limb mounted sensor into an FES-cycle strategy, two algorithms 
which convert a hip angle into crank position, using different approaches, have been 

created. Each has been tested using both simulated and experimental data. 

The estimated crank angle obtained using the geometric algorithm appeared to be 

very accurate throughout all simulated cycling cadences. An expected delay of one 
time step, that remained constant throughout, was found when comparing relevant 
data sets. When using measured data, the length of delay between actual and esti- 

mated crank angles increased beyond one sample and varied with each experiment. 
When the expected delay is removed in each data set, the final estimated angle is al- 

ways within two samples of the actual. 

The phase shift between actual and estimated crank angle using the heuristic approach 
demonstrated a non-linear relationship with cadence during simulation. When using 

real data, the calculated phase shift (following removal of the unpredicted delay that 

was found using the geometric algorithm) correlates quite closely with this relationship 
(figure 4.19), more so at higher cadences. 
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4.4 Integration Into an Existing FES-cycle System 

Using real data, the behaviour of the estimated crank angle in both approaches is 

quite smooth at low cadences. However, as the speed increased, it appeared to be 

more erratic (slightly more so using the geometric algorithm), with occasional lags in 

position estimation happening mid cycle. Upon inspection, this behaviour appears to 

originate from noise in the raw sensor data at maximum and minimum hip angles. The 
heuristic algorithm also produced rather undesirable behaviour during static periods. 
When cycling was not taking place, noise from the sagittal angle data was converted 
into erroneous crank positions. 

The origin of the unpredicted delay found using the geometric algorithm is unclear. 
However, given that it did not occur during simulation it would appear to be from 

some form of measurement error using the sensor pack. 

4.4 Integration Into an Existing FES-cycle System 

With two possible approaches which utilise a limb mounted sensor within an FES- 

cycling stimulation strategy now available, the final stage of this investigation was to 
incorporate stimulation control strategies within the navigator which could use either 
a traditional position reference (such as a sampled crank angle), or limb position. 

4.4.1 Methods 

Aims and Objectives 

The aim is to integrate FES-cycling stimulation control strategies within the Neopraxis 

FES system which incorporate a new hip-to-crank angle conversion algorithm (to em- 

ploy the limb mounted sensor pack), are capable of utilising existing control interface 

hardware and may be implemented using both surface and implanted stimulation on 

a tricycle-based system. As a first step, the conversion algorithms (described in sec- 
tion 4.3 and thus far used offline) had to be converted into matlab sequences which 

could run on the navigator and calculate an estimated crank angle in realtime. 

Next, an existing FES-cycling control strategy, which usually runs from a laptop, would 
be modified to run on the navigator and implement one of the two approaches illus- 

trated in figure 4.20. The first. depicted by the outer loop, involves using the tricycle 

system's shaft encoder and throttle as control references while the second, shown in 
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4.4 Integration Into an Existing FES-cycle System 

the inner loop, incorporates one of the new conversion algorithms to replace the shaft 

encoder with the sensor pack as a source of position information. 

8C(actual) 

Figure 4.20: Schematic showing approaches for incorporation of Neopraxis surface FES- 
system into an FES-cycling setup. Oc - sampled crank angle. 

Realtime Conversion Models 

Although both the geometric and heuristic conversion approaches had been shown to 

work relatively well offline, to work as part of a stimulation control strategy they must 
be capable of running in realtime. To investigate the feasibility of this, both algorithms 

were converted into simulink models whose inputs were sagittal angle and shaft encoder 

voltage that are converted into estimated and actual crank angle outputs. Both mod- 

els were tested initially on a PC using simulated data at 30,50 and 70rpm to validate 
the estimated crank angle and confirm expected delays/phase shifts incurred during 

iteration (Dexpected = 0. ls and expected = 0.05s for the geometric and heuristic models 

respectively). 

Next, the models were compiled, downloaded to the Navigator and experiments run- 

ning the models in realtime were carried out at approximately the three cadences 

mentioned above. An exception to this was the third geometric model experiment 

which was carried out at approximately 79rpm due to difficulties in maintaining a de- 

sired cadence. All data were analysed offline with average values of D and calculated. 
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Cycling Strategy Using Shaft Encoder 

The first strategy to be adapted for use on the navigator was one that would follow ex- 
isting FES-cycling approaches and use a directly measured crank position as its timing 

reference. This would test the feasibility of running such software on the new PDA- 
based system before employing the conversion algorithm. 

A schematic illustrating the operation of the stimulation control strategies used is 

shown in figure 4.21. Based on the method described by Hunt et al. [43], muscle 
activation timing and intensity are calculated using a sampled crank angle, throttle 

position and derived cycling cadence. 
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Figure 4.21: Schematic illustrating operation of stimulation control strategies used on 
Navigator. Oc - crank angle, Oc¬St - estimated crank angle, Oc - crank 
angular velocity, a- hip angle, Tpos - throttle position. 

The highlighted portion of the activation sequence shows how timing is calculated. As 

discussed in the previous chapter, to determine which muscle requires to be stimulated 

at any given point, the position of the crank is monitored and compared with a static 

stimulation pattern. As the dynamics of the muscle contraction involve a delay between 

stimulation onset and production of maximum force, an additional velocity modifying 

term must be included. If the delay is assumed to be constant (approximately 150111s), 

then this term may be multiplied by the cadence to calculate a compensatory angle 

range. A new stimulation timing arc can then be produced by removing this range 
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from the static values. Throttle position (between closed and fully open) is directly 

proportional to the level of stimulation intensity. On the Navigator, this is taken as a 

Percentage between threshold and saturation current. 

Input Variables Output Variables 
Shaft encoder voltage (V) Stimulation level (%) - Q, H, G 

Throttle voltage (V) Stimulation timing (s) - Q, H. G 
Activation arc (deg) - Q, H, G 

Sampled crank angle (deg) 
Cadence (rpm) 

Throttle level(%) 

Table 4.7: Variables logged in shaft-encoder-sourced strategy. Q- quadriceps, H- 
hamstrings, G- gluteal muscles. 

The strategy was converted into a Simulink model which could be compiled as a se- 

quence suitable for use on the Navigator. Shaft encoder and throttle position signals 

were obtained using the sensor pack analogue inputs while all outputs, that would be 

sent to the stimulator, were logged. All variables logged during tests at approximately 
28 and 40rpm are shown in table 4.7. As there would be no stimulation during these 

experiments and the focus was on correct muscle activation times, the stimulation out- 

put channel (only one was was included in the model) and velocity modifier variable 

were set to zero. 

Cycling Strategy Using Conversion Algorithm 

The second strategy incorporated into the Navigator utilised the two conversion mod- 

els described in section 4.4.1. This would test the feasibility of producing accurate 

stimulation patterns based on a hip angle source. Two models were created with the 

same stimulation control approach described above, but which also employed either 

the geometic or heuristic angle conversion model to produce an estimated crank angle 

as an input. 

To ensure that delays and phase shifts found using the conversion algorithms would 
not result in incorrect muscle activation timing, the resulting error would have to be 

compensated for within the models. As mentioned, a velocity modifier variable is intro- 

duced to compensate for muscle contraction latency. Thus, adding the expected delay 
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or phase shift caused though using the conversion algorithm to this variable should 
result in correct muscle activation timing. Tests were carried out at approximately 30 

and 50rpm where all variables shown in table 4.7 were logged and, additionally, the 
measured sagittal angle and calculated estimated crank angle were also recorded. A 

no stimulation was carried out, the output stimulation channel was yet to zero and 
the velocity modifier variable consisted solely of the values of D or found during the 
conversion model experiments. 

Procedure 

Experiments were run in the same way as described in section 4.3, with a rider cycling 
on a modified recumbent trike. All sequences were tested with the rider cycling at ra 
desired cadence and the sensor pack attached to their right thigh. Shaft encoder and 
throttle voltages were recorded from a 10-bit optical encoder (located on the crank 
shaft) and throttle potentiometer (located on the handlebars), respectively. A supply 
voltage of approximately 2.5V was chosen for both to adhere to the sensor pack's ana- 
logue input limit of 2.8V. 

During testing of the stimulation strategies, all stimulation channels included in the 

model were set to zero (with the Exostim still connected to ensure the sequences 
performed correctly whilst the Navigator was communicating with it). However, the 
throttle was still turned during each cycling period, to simulate stimulation, and all 
output variables were recorded. In all models, the sampling rate was set at 20Hz. 

4.4.2 Results 

Realtime Conversion Models 

Figure 4.22 shows estimated (9cest), versus actual (0ca, 
ct) crank angle when running 

both conversion models on a PC at a cycling cadence of 50rpm and using simulated 
data created by the rider/tricycle model [83] employed in section 4.3. In all results 

using the geometric model and simulated data, a constant delay of 0.1s was found 

between actual and estimated crank position. The heuristic model showed phase shifts 
that followed the cadence/phase shift relationship found in section 4.3.2 exactly. plus 
0.05s throughout all experiments using simulated data. 
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Figure 4.22: Estimated versus simulated actual crank angle at 50rpm using geometric 
(upper plot), and heuristic model (lower plot). Calculated on PC using 
simulated data. 
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Figure 4.23: Estimated versus measured actual crank angle at - 50rpm using geometric 
(upper plot), and heuristic model (lower plot). Calculated in realtime on 
the Navigator using measured data. 
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Estimated and measured crank position data collected at approximately 50rpm in real 
time on the Navigator and using both the geometric and heuristic models is shown in 

figure 4.23. Values for the average delay (Dmean), found using the geometric model. 

and average phase shift (mean), found using the heuristic model, for all experiments 

are shown in table 4.8. 

Cadence (rpm) Dmean (S) 
mean 

(S) 

- 33 0.202 + 0.017 -0.023 + 0.0253 
- 50 0.208 + 0.051 0+0.024 

- 70 - -0.01 + 0.026 
- 79 0.099 + 0.052 - 

Table 4.8: Average values (± standard deviation) of Bcest delay (Dinar? ) using geometric 
model and Ocest phase shift (, 0) using heuristic model during experiments. 

Cycling Strategy Using Shaft Encoder 
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Figure 4.24: Actual crank angle, Oca, ct, 
(upper plot) versus activation tunes for each 

muscle group (lower plot) at - 40rpm using cycling strategy with shaft 
encoder as position source (zero point - right leg forward). QR - quadriceps 
right, HR - hamstrings right, GR - gluteal right, QL - quadriceps left. HL 

- hamstrings left, GL - gluteal left. 
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Stimulation activation timing for six muscle groups over the course of one crank rev- 

olution at approximately 40rpm is shown in figure 4.24. Throttle input voltages and 

resulting stimulation intensity (in terms of maximum current) for the left quadriceps 
at the same cadence, over a period of 155s are shown in figure 4.25. 
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Figure 4.25: Input throttle voltage versus percentage of maximum stimulation intensity 
for the left quadriceps (QL) muscle group during a period of cycling at 
N 40rpm using cycling strategy with shaft encoder as position source. 

These data are taken from information logged in realtime, on the Navigator, using the 

first cycling strategy (utilising the tricycle's shaft encoder as a position source and 
throttle as intensity reference). The values of activation timing and stimulation in- 

tensity for each muscle group define the final stimulation pattern that is sent to the 

Exostim stimulator. The zero point (that where the crank angle is zero) of the shaft 

encoder used is at a position where the crank arms are parallel with the ground with 

the right foot to the front. 

Cycling Strategy Using Conversion Algorithm 

Stimulation activation tinning for six muscle groups over the course of one crank rev- 

olution at approximately 30rpm and using the cycling model which incorporates the 

geometric algorithm is shown in figure 4.26. The same variables recored when using 

Throttle input 
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the heuristic approach model are plotted in figure 4.27. The crank angle plotted in 

both figures is a measured value, recorded for comparison, and the zero point of the 
shaft encoder is where the crank arms are parallel with the ground with the left foot to 
the front. Values for the average delay (Dmean), found using the geometric-algorithm- 
based model and average phase shift (V)mean), found using the heuristic-algorithm-based 

model, for all experiments are shown in table 4.9. 
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Figure 4.26: Actual crank angle, Oct, t(upper plot) versus activation times for each 
muscle group (lower plot) at N 30rpm using geometric cycling strategy 
with sensor pack as position source (zero point - left leg forward). QR - 
quadriceps right, HR - hamstrings right, GR - gluteal right, QL - quadri- 
ceps left, HL - hamstrings left, GL - gluteal left. 

Cadence (rpm) Dmean (S) 'mean (s) 

-30 0.212 + 0.049 -0.026 + 0.025 

-50 0.208 + 0.019 -0.004 + 0.02 

Table 4.9: Average values (+ standard deviation) of Oc,, t delay, Dmean, using geometric 
cycling strategy and BceSt phase shift, 0, using heuristic cycling strategy 
during experiments. 
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Figure 4.27: Actual crank angle, Bca, ct, 
(upper plot) versus activation times for each 

muscle group (lower plot) at ' 30rpm using heuristic cycling strategy 
with sensor pack as position source (zero point - left leg forward). QR - 
quadriceps right, HR - hamstrings right, GR - gluteal right, QL - quadri- 
ceps left, HL - hamstrings left, GL - gluteal left. 
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Figure 4.28: Phase angle diagram showing average stimulation activation arcs (+ stan- 
dard deviation) for left and right quadriceps over one cycling session, at 
30rpm and 50rpm, using each approach (zero point - left leg forward). 0- 
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encoder-sourced approach (+ 180°), GEO - geometric sensor-pack-sourced 
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deviation. 
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Figure 4.28 shows average left and right quadriceps stimulation activation arcs (with 

standard deviation) over the course of a cycling session for all three approaches and 
at two different cadences. Expected/static arcs are shown in purple and all measured 
data are referenced against a crank position which was obtained using the tricycle shaft 
encoder. For comparison purposes, arcs for the shaft encoder sourced approach (shown 

in blue) are 180° out of phase because data were gathered using a "right leg forward- 

zero point. 

4.4.3 Discussion 

Implementing an existing PDA-based FES-cycling strategy which employs a shaft en- 
coder to measure position information yielded encouraging results. Muscle activation 
times and stimulation intensities, that together constitute the final stimulation pattern 
to be sent to the stimulator, activated correctly. As illustrated in figure 4.28, the ac- 
tivation arcs for the quadriceps coincided closely with static ranges during the course 
of a cycling session and showed this approach to be the most accurate of the three 
investigated. All other muscle groups displayed similar results. Standard distribution 

did increase slightly with higher cadence (figure 4.28(b)), but from a practical point of 

view probably not enough to be detrimental to a smooth cycling motion. A constant 

sampling rate means that as pedalling speed increases there are less instantaneous 

crank positions measured during one cycle. Thus, activation timing error will increase 

with cadence, and the effect will be more significant at lower frequencies. However, 

this behaviour is also present in established systems where a sampling rate of 20Hz 

(the value used during all our experiments) has been used successfully and. therefore, 

shouldn't significantly affect cycling performance. A higher accuracy could of course 
be achieved by increasing the sampling rate. However, there are some issues with the 

current setup which might preclude this. 

The maximum sample rate available when using a matlab sequence on the Navigator 

in combination with the Exostim is limited by the complexity of the model, number of 
inputs and stimulator channels used. During experiments, only one stimulation out- 

put channel was activated. When more were added, it was found that the maximum 

number that could be utilised with this model and still have both a sampling rate and 

stimulation frequency of 20Hz was four. Supporting documentation reports an tipper 
limit of 200Hz divided by the number inputs plus the number of Exostim channels 

employed and this would suggest that model complexity was the limiting factor. How- 

ever, further investigation showed that use of analogue input signals as opposed to only 
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sensor signal inputs also had a detrimental effect, therefore using the shaft encoder and 
throttle voltages in this model probably also contributed. 

The two angle conversion models that were created to function in realtime appear to 

work correctly. Estimated crank angles produced (on a PC) using simulated data in 

the geometric model showed the expected delay of O. ls during all cadences. Processing 

the same data with the heuristic model produced an estimated crank angle delay which 
was almost exactly 0.05s (the value of the expected delay produced by the model) plus 
the expected phase shift, obtained from the cadence/phase shift relationship found in 

section 4.3, at each cadence. When both models were downloaded onto the Navigator 

and used, as seen previously when using real data, an unexpected delay (in addition 
to values of D and found through simulation) was seen between estimated and mea- 

sured data. 

This measurement error appeared to vary across cadences and interestingly the values 

of Dmean and tmean at - 33 and - 50rpm in table 4.8 are almost identical to those found 

during testing of the cycling strategies which incorporated angle conversion. However. 

all those data sets were obtained on the same day. Experiments carried out on different 

days (at similar cadences using the same equipment), as well as those described in sec- 

tion 4.3 yielded different values. Although there did appear to be a trend for the error 

to reduce at higher cadences on all occasions, and one suggestion for a difference in 

values might be the influence of environmental factors such as temperature on the sen- 

sors, the volume of data is not sufficient to draw a significant conclusion as to its origin. 

Both cycling strategy models using a leg-mounted sensor and conversion algorithm 

showed practical (although not ideal) stimulation activation times when using velocity 

modifying variables which were based on values of D and ,V shown in table 4.8. Posi- 

tion errors can be seen when the two approaches are compared with the static pattern 

at 30rpm (figure 4.28(a)). However, it may be possible to reduce these by fine tuning 

the velocity modifier. Although the average activation position was more accurate at 

50rpm, standard deviation did increase. Rather than being caused by delays in esti- 

mated crank angle (which were reasonably constant - table 4.9), this behaviour is more 
likely related to sensor pack measurement noise which, in turn, results in an erroneous 

crank position at that particular time. Thus, even though our results did not show anv 

significant deviation from the static pattern (one that might be detrimental to cycling 

motion) when using either of the angle conversion approaches, should there be one. 

the resulting individual activation time error will not be carried through to subsequent 

6. 



4.5 Conclusions 

muscles. Moveover, although a particular estimated crank position may be incorrect 

when compared with the actual pedal position. stimulation activation depends on the 

estimated angle only and, therefore, no antagonistic muscle co-contraction will take 

place. 

As with the shaft encoder based strategy, experiments were carried out with only one 

stimulation output channel included. Upon further testing though, and unlike the 

other model, those incorporating a conversion algorithm operated successfully with 
six output channels at a sampling rate and stimulation frequency of 20Hz. This was 
only achieved, however, using sagittal angle as the only input and setting stimulation 
intensities to a constant value, therefore it would seem that use of the analogue inputs 

is the main limiting factor and not model complexity. 

4.5 Conclusions 

Investigations into using a new PDA-based FES-system, capable of both surface and 
implanted stimulation, for FES-cycling and the feasibility of using a limb mounted 

sensor as a position information source in this modality have been performed. We have 

shown that, in principle, a limb-mounted sensor may be used in an approach where 
the crank position required by a stimulation control algorithm is estimated relatively 

accurately based on a measured hip angle. Moreover, this approach, assuming there 

is accurate sensor measurement, can be built into an FES-cycling stimulation control 

strategy and produces a practical stimulation pattern. In addition, a "traditional" 

stimulation control approach, where the shaft encoder is used as a position source, can 

also be implemented using the PDA-based system and yield accurate output patterns. 

Even though testing of the sensor pack signals showed a significant drift and amplitude 

error under oscillatory conditions, results from the angle conversion algorithms using 

simulated data show that, given the repetitive and predictable motion involved in cy- 

cling, this can be compensated for effectively. Although the approach of scaling the 

data within predefined constraints does incur a delay (through using preceding data 

points to find new maximum and minimum values), because it is constant., it may be 

compensated for during stimulation activation control. The unexpected delay found 

when using the sensor pack is a different matter, however. This measurement error 

varied between 0.04s and 0.11s across all experiments. Put in perspective. at 50rpm. 

this would result in a significant delay of approximately 30° and, consequently. proba- 

ble antagonistic muscle contraction. Although the exact origin is unclear. the presence 
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of the error has significant implications in achieving accurate muscle activation timing 

when using this setup. Thus, further investigation is required to ensure higher accu- 
racy. The fact that the error changed when using the same setup on different days 

might suggest the influence of environmental factors (such as temperature or pressure) 
on sensor pack measurement. As the error appeared to always be at least one sample 
in length (at 20Hz), it may be possible to reduce its effect by increasing the velocity 
modifying variable to compensate. Furthermore, as it would seem to be originating 
during measurement, further tests should be carried out using a different sensor, such 
as the Xsens MT9-B4 

Both angle conversion approaches appeared to work both offline and on the Navigator. 

using data in realtime. The geometric approach requires knowledge of anthropomet- 
ric measurements beforehand and displayed lags in estimated crank angle at higher 

cadences. Conversely, the heuristic approach does not require prior knowledge of an- 
thropometric variables, involves less iteration and did appear to produce a smoother 
estimated angle. In addition, although the phase shift varied non-linearly with cadence, 
it would seem that the resulting relationship found through simulation can be used to 

predict a fairly accurate phase shift when using real data. Performance of the heuris- 

tic approach when the sensor pack is stationary, however. is potentially problematic. 
During these periods, noise from the sagittal angle data is converted into erroneous 

crank positions (behaviour that is not replicated using the geometric approach) and 

ultimately significantly incorrect muscle activation timing. While this does not happen 

under dynamic conditions, the implications for muscle activation testing (where each 

muscle is stimulated during their respective static timing arc while the legs are station- 

ary) prior to a typical FES-cycling session could be severe. To combat this, options 
for practical use of the heuristic approach could include filtering of the hip angle signal 

or using the velocity and acceleration data, available from the sensor pack, to indicate 

when the legs are stationary. 

Implementation of a cycling strategy within the navigator that uses a shaft encoder 

and throttle potentiometer voltage as inputs was successful when using a maximum 

of four stimulation channel outputs and sampling rate/stimulation frequency of 20Hz. 

Although this obviously limits the number of employable muscle groups to two per leg. 

FES-cycling under these conditions has been demonstrated by several authors [12,41, 

44]. Moreover, according to support documentation, the influence of the number of 

Exostim channels used by the model on correct operation is not replicated when using 

4Xsens Technologies BV, Enschede, The Netherlands. http: //iw-«--, t-. xsens. com/ 
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the FES-24B stimulator. Thus, application of this strategy using more channels may 
be possible when using the implanted stimulator. 

The strategies which include angle conversion algorithms showed practical stimulation 

activation timing. However, for the reasons discussed above, this is dependent on ac- 

curate prediction of measurement error. Successful operation was carried out with six 

output stimulation channels. However, this involved omitting the use of analogue in- 

puts. To include the required throttle input, the strategy could either be implemented 

using four channels, to employ an external potentiometer voltage, or a simple slider 
bar on the PDA display can be used to set stimulation intensity. 

As discussed in the literature review, making FES-cycling and its benefits available to 

as many potential users as possible will require a concerted effort to adapt the tech- 

nology for practical home use. In our opinion, the work reported in this chapter is 

a significant contribution to this effort. The two new angle conversion strategies for 

stimulation control eliminate the need for a fixed angle encoder and, therefore, have 

the potential for implementation on non-modified cycles. Moreover, when embedded in 

a convenient PDA device which can be used for a range of additional FES-applications, 

the strategies could make FES-cycling more accessible. 
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5 FES-cycling for the Child with a 
Spinal Cord injury - Development of 
a Tricycle-Based System 

We describe the development of methods and equipment for FES-cycling that are suit- 

able for use within the paediatric spinal cord population for both stationary and mobile 

cycling. A further contribution is the demonstration of stationary FES-cycling with a 

motor complete, paraplegic child on this device. Section 5.1 outlines aims and objec- 
tives involved, while an overview of the methods used for all testing involving spinal 

cord injured subjects is given in section 5.2. A description of the new tricycle-based sys- 
tem and design evaluation is given in section 5.3. Testing of this device (at a US-based 

paediatric spinal cord injury research hospital and involving 10 subjects) to investigate 

the feasibility of FES-cycling within its target population is described in section 5.4. 

Finally, conclusions drawn are given in section 5.5. 

5.1 Aims and Objectives 

With respect to the arguments formed in the literature review, we propose the devel- 

opment of an FES-cycle system which is suitable for use within the paediatric spinal 

cord injured population for both exercise and recreation. The development, which will 

consider the specific needs of this group, can be defined through the following objec- 

tives: 

(i) Modify a standard child's tricycle to be suitable for use by both paraplegic and 

tetraplegic paediatric SCI subjects. 

(ii) Modify a standard child's tricycle with equipment necessary for both stationary 

and mobile FES-cycling. 
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(iii) Evaluate the suitability of the system for spinal cord injured subjects through 

seating sessions. 

(iv) Assess the feasibility of both stationary and mobile paediatric FES-cycling through 
testing within the target population. 

5.2 Experimental Methods - Overview 

To carry out objectives (iii) and (iv), experiments involving spinal cord injured subjects 

were split into two stages. Each will be described in more detail later but, broadly, an 
initial seating session was undertaken with all subjects (n=10) to assess their comfort, 

safety and capacity to attempt FES-cycling using the system. Following this, if all of 
these outcomes were deemed satisfactory, then an electrical stimulation induced cycling 

session was attempted. 

All experiments were undertaken at Shriners Hospital for Children in Philadelphia, 

USA. This centre specialises in paediatric spinal cord injuries and carries out leading 

research in the investigation and development of applications for functional electrical 

stimulation in the upper and lower extremities within this population. Thus, their 

experience in these areas, in addition to having access to a large number of potential 

subjects, meant this was the ideal location to test the new system. Testing was un- 
dertaken over a period of eight months at times when subjects were based in-house. 

at the hospital. In addition to the system operator, a physiotherapist (familiar with 

the subject's medical history) and family members were present during all experiments. 

In all, ten subjects were recruited initially, three of which went on to attempt FES- 

cycling. The work reported here was a collaboration between the University of Glasgow 

and Shriners Hospital for Children, Philadelphia. It also formed part of a separate FES- 

cycling study being carried out at this hospital (Shriners Hospitals for Children, grant 

#8540). All relevant ethical approval for this work was reviewed and granted by a 

university affiliated institutional review board (Temple University, Philadelphia). 
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5.3 System Design 
The following section describes the development of a new FES-cycle system suitable 
for use by the spinal cord injured child, including a description of the initial design 

and its evolution, based on consultation with experts from appropriate disciplines and 
testing within the target population. 

5.3.1 Device Description 

Tricycle 

Following on from the arguments presented in chapter 3, a tricycle-based system has 
been developed in an attempt to provide a practical, while still aesthetically pleasing, 
solution which is capable of both stationary and mobile use. 

Figure 5.1: Modified child's tricycle. 

Table 5.1: Unmodified tricycle specifications. 

The device consists, primarily, of a. child's tricycle' which is modified with the necessary 
instrumentation and safety equipment (figure 5.1) [84]. The standard tricycle (specifi- 

cations are given in table 5.1) is a small, light-weight design with a low centre of gravity. 

'KNIX Karts, UK. http: //wxi-ii. knlxkarts. co. uk 

Dimensions 
(cm) 

Weight 
(kg) 

Ground clearance 
(cm) 

Wheel diameters 
(cm) 

146 x 68 x 55 16 7.6 1 1 Rear - 50, Front - 28 
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making it extremely stable. Originally designed for ages 8- 14 years. there is 10cin and 
15cm of longitudinal adjustment available (via quick-release clamps) on the seat and 
boom respectively. Gears are adjusted through a seven-speed indexed twist grip on 
the handle bars. Hand guards located between these and the wheels, in addition to a 
chain guard which encompasses the front sprocket, protect the rider from moving parts. 

Orthotic and safety equipment 

, lrý 

Figure 5.2: Ankle orthoses. 

,, 

I 

To ensure the system is suitable for spinal cord injured subjects, several additional 

adaptations have been made. A set of ankle orthoses (figure 5.2), which allow the sub- 
ject's feet to be secured to the pedals and restrict movement to one plane, are attached 
to 12.5cm crank arms (both made to specification by Hasomed GmbH2). Each weighs 

approximately 1.6kg and has dimensions of 22.5cm x 7.5cm x 25cm. The padded calf 

support can be adjusted vertically, raising the overall height a further 7.5cm, and may 
be rotated to fit the natural position of the rider's leg (particularly useful if contrac- 
tures are present). The foot, calf and ankle are secured in place by adjustable straps 

and foam padding. 

Although the tricycle is extremely stable, potential subjects may have poor trunk con- 
t, rol and therefore require additional security (especially for mobile cycling). To ensure 

this, a waistcoat /harness system3 which wraps round the rider's waist can be fixed to 

the seat back. 

2Hasonied GmbH, Magdeburg, Germany. http: //wwýw". hasomed. de/ 
'James Lecket' Design, Dunmurry, Northern Ireland. http: //www. leckey. com/ 
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5.3 System Design 

Instrumentation and Stimulation equipment 

To adapt the tricycle for FES, it is instrumented with a 10-bit optical shaft encoder. 
throttle-potentiometer and interface box (all provided to specification by Hasomed 
GmbH). 

. ý, ? y-_ 

Figure 5.3: Throttle potentiometer and shaft encoder. 

The shaft encoder (figure 5.3(a)) is attached to the axle of a standard square-taper 
bottom bracket for position measurement. The unmodified tricycle contains a one- 

piece BMX crank. Prior to fitting the encoder, this was removed and replaced with a 
bottom bracket of suitable length using a BMX cup adaptor. The throttle, attached 
to the right hand grip (figure 5.3(b)), is equipped with a spring system which returns 
it to the zero position when not being held, and an LED which indicates the presence 

of a supply voltage. A switch on the side sets the throttle output to the last value 

measured before activation, and thus allows the user to maintain a desired stimulation 
intensity without continually twisting the hand grip. 

The supply voltage for both throttle and shaft encoder (as well as digital to analogue 

conversions for the latter) is provided by a rechargeable battery within the interface 

box. This box, located to the rear of the tricycle (figure 5.4) and attached to the frame 

with adjustable brackets, provides the stimulator with shaft encoder and throttle signals 

through an eight-pin connector. 
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5.3 System Design 

Stimulation is carried out using one of two eight-channel devices (the Hasomed RehaS- 

tim, figure 5.4, or Stanmore stimulator [85]) which can either be controlled externally. 
by a laptop/PC, or implement an internal cycling algorithm. Approaches to stimula- 
tion control (similar to those described in the previous chapter and [43]) which include 

velocity modification and adjustment of intensity through pulsewidth modulation are 
adopted by both devices. For placement on the tricycle, either device can be attached 
via a KLICKfix4 mounting system, located on the frame. This setup of FES hardware 

allows for an independent system which is ready for mobile cycling. 

Figure 5.4: The RehaStim stimulator and interface box. 

Training apparatus 

For indoor/stationary cycling, the tricycle may be mounted on a standard cycle trainer' 

which can provide a load (specified by the user) to the rear wheel using an electron- 
ically controlled brake. As this device is designed for a minimum wheel diameter of 
61cm, a custom height adaptor (figure 5.5) was constructed to raise the brake device 

to a level where it could come in contact with the rear wheel. To level the tricycle, the 

front tyres are placed in raised wheel guides. 

In addition, the cycle trainer can be connected to a laptop/PC with virtual reality 

software (also provided by Tacx) which controls the load in such a way as to emulate 

terrain produced by an on-screen animation. 

4Rixen and Kaul GnibH, Solingen, Germany. http: //www. klickfix. de/ 
5'Ta. cx, «'assenaar, Netherlands. http: //www. tacx. com/ 
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ko 

Figure 5.5: Cycle trainer with custom height adapter. 

5.3.2 Design Evaluation and Evolution 

Larger seat and 
safety belt 

Figure 5.6: Paediatric FES-cycle system following new design adaptations. 

Following initial development, the new system was subjected to a series of experiments 
involving its target population. In addition to investigating the feasibility of FES- 

cycling (which will be described in section 5.3), they also involved seating sessions to 
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assess the system's suitability for spinal cord injured children. Through consultation 
with subjects, their parents and physiotherapists (who specialise in paediatric spinal 
cord injury) during the tests, several issues concerning the system were identified. re- 
sulting in the adaptations shown in figure 5.6. The points raised and a description of 
the necessary modifications are given here. 

Seating Session Methods 

A total of ten spinal cord injured subjects (anthropometric data for all are shown in 
table 5.2) undertook seating sessions, where they could sit on the tricycle without 
stimulation, to evaluate their comfort, safety and capacity for performing FES-cycling. 
Essentially this involved transferring the subject on to the tricycle (an operation per- 
formed by family members and physiotherapist) and then examining different arrange- 
ments of seat, orthoses and padding in order to find the best layout that would guar- 
antee a free, safe cycling motion while also ensuring their comfort and security. 

Subject Age Height 
(cm) 

Weight 
(kg) 

Leg length - R/L 
(cm) 

Thigh circumference - R/L 
(cm) 

A 7 119 27.5 56.5/57 38.2/37.3 
B 12 144.5 29.1 72/70.7 32.8/32 

C* 8 122.5 26.8 58.8/58.6 36.4/37.1 

D 13 171.4 70.2 87.6/88.2 56.2/56.1 
E 8 134.7 37 68.6/68.3 43/42.1 
F 12 161.3 72.6 79.7/80.1 56.7/55.5 
G 11 146 45 71.8/72.1 49.4/49.9 
H 12 161.5 54.8 84.6/85.4 54.8/53.4 
I 11 156 49.1 77/77.1 48.5/49 
J 12 167 75.4 89.4/89.6 60.3/57 

Table 5.2: Anthropometric data for all subjects who attempted a seating session on the 
new system. * Subject C was the only participant who undertook testing 
with the new seat and handlebars. R- right, L- left. 

Of those recruited initially, seven (subjects D-J) were excluded from further testing 
because they were deemed too large to use the system safely in its initial configuration. 

The remaining three completed seating sessions and went on to attempt FES-cycling. 
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Experimental Issues 

Throughout testing, an aspect of the initial design that affected riders the most was 
the position and orientation of the hand grips. Part of a one-piece steering arm/handle 
bar, they sit low down and at a slight angle towards the front of the tricycle. Although 

the rider's feet and ankles are secured at the pedals, their thighs may still point very 
slightly away from the centre (owing to the paralysed nature and/or deformation of 
the lower limb) and in the case of some subjects, this was sufficient to raise the danger 

of potential contact with the handgrips during cycling. The nature of this problem. 
in combination with the width of the original seat, meant that the trunk and thigh 
diameters of subjects D-J were too large for safe positioning on the tricycle. Thus. even 
though their leg lengths were satisfactory, these subjects were excluded from further 

testing. 

For smaller subjects, who required the shortest distance between seat and pedals, the 

orientation of the handlebar caused further difficulties as the ankle orthoses' calf sup- 
ports came into contact with the brake levers (although this particular issue could be 

resolved easily by rotating the levers outward). 

For those that could be seated safely on the tricycle, the original seat worked satis- 
factorily. However, one issue arose with subjects who had higher level injuries (and 

therefore poor trunk control) where the seat-base length (15cm) proved to be too small, 

affecting their ability to remain upright. Although the harness could provide adequate 

security, the setup was still not ideal from the point of view of rider comfort. The seat 
back consists of a padded arch attached to the base, and whilst initial observations did 

not suggest any problems from using this, it was felt that the because the rider's back 

is supported at the edges only, the localised pressure could be detrimental to long-term 

skin health. 

Although the ankle orthoses offered good versatility in positioning the subjects' legs 

for maximum comfort and, in most cases, the calf support could be rotated inward to 

prevent significant thigh abduction, difficulties were found with those who had partic- 

ularly thin lower legs. The depth of the calf support, and position of the strap insert 

holes (figure 5.7(a)) is such that securing the lower leg became difficult. With those 

subjects who needed the shortest seat-to-pedal distance, this problem was confounded. 
In order to avoid contact with the seat, the calf support had to be lowered further 

towards the ankle (and thus to an area where the leg has a smaller circumference). as 

shown in figure 5.7(b). 
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(a) (b) 

Figure 5.7: Plan view of ankle orthoses with calf support (a), and subject demonstrat- 
ing security issues (b). 

New Modifications 

As suspected from analysis of the literature, the biggest influence on successful oper- 

ation of the new system was the large variance in anthropometric measurements and 

orientations shown by subjects. This further highlights the need for maximum ad- 
justability of the tricycle's component parts. In addition, initial experience suggested 
the system may benefit from a more modular approach, where a range of easily inter- 

changeable parts are employed for those components that the rider is in direct contact 

with (such as the seat or ankle orthoses). 

Although the original design of the tricycle contributed to some of the issues (i. e. 
because it is low cost and simple with a minimum of adjustable components), its com- 

patibility with standard bicycle parts made further adaptation easier. 

To address concerns about the original seat, a new, larger version was introduced. A 

standard seat from an adult tricycle (provided by the same company which manufac- 

ture the child's version) was adapted for use on the new paediatric FES-cycle system 
(figure 5.6). In addition to having a larger base and back area, this seat (dimensions, 

35cm x 20cm x 45cm) allows a more supine position for the rider with a seat-back angle 
15° lower than the original. Moreover, the back has a nylon mesh cover across it (thus 
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pressure is distributed evenly) and a padded head restraint. To attach the new seat 
to the tricycle frame, a custom nylon spacer was inserted into the existing front quick- 

release bracket, while the rear is stabilised with a custom strut (which has adjustable 
brackets at both ends to ensure longitudinal seat movement, and quick removal is still 

possible) linking the head restraint and central frame. Other adaptations for comfort 
include additional foam padding inserted in the base and head restraint arch. 

As described previously, the tricycle's original steering arm/handlebar arrangement 

caused difficulties, and in addition, the wider base of the new seat meant steering 

would be compromised. To address these issues, a new custom-made one-piece steer- 
ing arm/handle bar, shown in figure 5.8(a), was manufactured with hand grips that 

sit higher than on the original and are not angled forward. In addition, the whole arm 
(which is held in position with an adjustable clamp) may be pivoted forward or back 

to best suit rider position, while during transfer they can be laid completely flat. 

4,4 
Calf support 

Foot insert 

(b) Medica orthoses. 

Figure 5.8: New, pivoting, steering arm (a), and alternative orthoses (b). 

To increase the range of options available for securing the rider's lower limbs, a second 

pair of ankle orthoses6 can be attached to the system. The alternative design (fig- 

ure 5.8(b)) includes different sized foot inserts, which can be rotated to locate the foot 

in its normal resting position. The calf support is connected via an adjustable boom 

with ball joints at either end and can be applied to either the front or the back of the 

leg, allowing for substantial flexibility in adjustments. In addition, a common crank 

arm connecting bolt, means these orthoses can be easily interchanged with the original 

61\, Iedica Medizintechnik GmbH, Hochdorf, Germany. http: //www. medica-medizin. de/ 
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ones. It should be noted, however, that they are slightly heavier than the Hasomed 

versions, designed for an ergometer with which the user cycles from their wheelchair, 
and are weighted for this position. 

5.4 Proof of Concept 

To assess the new systems's feasibility for FES-cycling, those subjects who successfully 
completed a seating session undertook further experiments. The methods involved, 

results found and discussion of the findings are presented in this section. 

5.4.1 Methods 

Subjects 

Subject 11 Age Sex Level of injury 
A7 Female T4/T6 (Complete) 
B 12 Male C7 (Complete) 
C8 Male C8/T1 (Complete) 

Table 5.3: Details for recruited subjects, who undertook FES-cycling experiments, at 
time of testing. 

Three subjects participated in the experiments. Selected data concerning them are 

given in table 5.3. All subjects were untrained at time of testing, but had prior, lim- 

ited experience of lower-limb electrical stimulation through familiarisation sessions and 

using a separate, stationary, FES-cycle device (the Restorative Therapies RT-300-S7). 

A description of this system is given in the review of FES-cycling design and technology 

presented in chapter 3. 

Stimulation Parameters and Control 

The Stanmore stimulator was used during experiments. Initial stimulation parame- 

ters, which were chosen to agree with the values each participant used when cycling 

on the RT- 300-S device, are shown in table 5.4. Stimulation control w eis performed 

'Restorative Therapies Inc, Baltimore, USA, http: //-, vNrw. restoraitive-therapies. com/ 
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using either a laptop or the stimulator's stand-alone cycling algorithm. Intensity level 
(set using the throttle and controlled by the system operator at all times) and cycling 
cadence were monitored through an on-screen display while all data concerning stim- 
ulation activation and tricycle instrumentation were recorded for offline analysis. 

Subject Current -Q Current -H Current -G Max PW Frequency 
(mA) (mA) (mA) (µs) (Hz) 

A 120 120 100 150 33 
B 80 80 60 150 33 
C 90 90 0 150 33 

Table 5.4: Initial stimulation parameters used during experiments for all subjects. Q- 

quadriceps, H- hamstrings, G- gluteal muscles. 

Static stimulation angles (i. e., the pedal position arcs which result in a positive driving 

torque at rest) used for each muscle group during all experiments are shown in ta- 

ble 5.5. The zero-point is taken as left leg forward with the crank arms horizontal. 

Muscle group Start Stop 
Quadriceps - right 55° 155° 
Quadriceps - left 234° 335° 

Hamstrings - right 188° 265° 
Hamstrings - left 80 850 

Gluteal - right 90° 180° 
Gluteal - left 270° 360° 

Table 5.5: Static stimulation angles used during experiments for all subjects. 

Procedure 

Initially, a seating session was undertaken (as described in section 5.3) to find the op- 

timum system configuration for safe and free cycling motion. Final apparatus arrange- 

ments used for each subject during experiments are shown in table 5.6. For all exper- 

iments involving electrical stimulation, blood pressure and heart rate were monitored 

throughout so that any dysreflexic behaviour (upon which stimulation would be ter- 

minated) exhibited by the subject might be indicated. 
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Subject Seat Orthoses Safety belt 
A Original Hasomed (with 25mm foam insert) No 
B Original Medica 'No 
C New/larger Medica Yes 

Table 5.6: Final seating/orthoses arrangements for each subject who undertook FES 
cycling experiments. 

Upon finding an appropriate system layout, sessions were carried out in which FES- 

cycling was attempted. Prior to transfer, surface electrodes (two for each muscle 
group/channel) were placed on appropriate skin locations for stimulation of the quadri- 
ceps, hamstrings and gluteal muscles then connected to colour-coded wires, which link 

to the stimulator. Once seated on the tricycle, a brief passive cycling test was carried 

out (turning the cranks by hand) to ensure a good range of motion, following which 

suitable muscle contraction and timing was assessed by initiating stimulation (while 

the legs were static) at pedal positions corresponding to the relevant static angle arcs 

shown in table 5.5. 

With the tricycle placed on a trainer and no load applied, pedals were turned by hand 

initially while stimulation intensity was gradually ramped up to a point where the 

torque produced by the subject's muscles was sufficient to cycle independently at a 
target cadence (approximately 50rpm). Stimulation was increased to compensate for 

fatigue until the predefined maximum pulsewidth (table 5.4) was reached and the target 

cadence could not be maintained. At this point the cycling attempt was terminated. 

Following a period of rest, subsequent attempts were made observing the same protocol 

each time. 

5.4.2 Results 

Full seating sessions were completed by three of the initial ten recruited subjects who 

went on to attempt FES-cycling following the procedure described above. The final 

seating arrangement and results from each subject's cycling attempts are as follows: 
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Subject A 

During the seating session, the front boom and seat had to be placed as close together 

as possible. In addition, a 25mm foam insert was placed in the bottom of the orthoses 
to reduce pedal-to-seat distance further, and ensure no hyper-extension of the knee 
joint was possible whilst pedalling. Also, a pillow was placed behind the subject to 

evenly distribute pressure on the back and allow them to sit further forward on the seat. 
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Figure 5.9: Stimulation intensity (upper plot) and cycling cadence (lower plot) achieved 
by subject A during first attempt. 

Figure 5.9 shows stimulation intensity (pulsewidth) and cycling cadence during the 
first attempt. Unaided pedalling was achieved for approximately 70 seconds, with a 

maximum cadence of 60rpm. When the maximum pulsewidth of 150ps was reached 

and cadence began to lower, suggesting the onset of fatigue, the attempt was ceased 

and followed by a period of rest. To counter the apparent fatigue, during the second 

attempt, maximum pulsewidth was raised to 200ps. As can be seen in figure 5.10, 

three short periods of pedalling (unaided) were accomplished with maximum intensity 

being reached each time. The total pedalling time amounted to approximately one 

minute on this attempt, with a maximum cadence of 60rpm seen again. Due to time 

constraints, only one session was undertaken. 

85 



5.4 Proof of Concept 

200 

150 

100 

50 

C1_, n 

80 

60 

40 

20 

0 

-20 

ý0 50 100 150 200 250 

0 50 100 150 200 250 

Time (s) 

Figure 5.10: Stimulation intensity (upper plot) and cycling cadence (lower plot) 
achieved by subject A during second attempt. 

Subject B 

No significant adjustment was required during subject B's (figure 5.11) seating session. 
Medica orthoses were chosen as they provided better ankle security in this instance. 

Figure 5.11: Subject B on paediatric FES-cycle system. 

Several cycling attempts were made over the course of two separate sessions using the 

stimulation parameters shown in table 5.4. On every occasion. when the pulsewidth 

was increased to a particular level (around 112/is), the subject felt discomfort and 

exhibited lower-limb spasms, at which point stimulation was reduced (figure 5.12). 

Although there was a significant contribution by the stimulated muscles to the total 
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torque at the pedals below this threshold, it was not sufficient to turn the legs unaided 
at any point. 
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Figure 5.12: Example of stimulation intensity (upper plot) and cycling cadence (lower 
plot) achieved by subject B during second session. 

Subject C 

Figure 5.13: Subject C on paediatric FES-cycle system. 

The full range of modifications, described in section 5.2, were available during experi- 

ments carried out with subject C and tested during the seating session. A combination 

of the larger seat and Medica orthoses proved to offer superior comfort and range of 

motion (while also reducing setup time during the actual cycling session). when com- 

pared to the original versions, and were therefore chosen (figure 5.13). In addition. the 
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subject had difficulty remaining still during testing, therefore, a waist safety belt was 
included to ensure balance would be maintained. 
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Figure 5.14: Example of stimulation intensity (upper plot) and cycling cadence (lower 

plot) achieved by subject C during the second session. 

One cycling session was carried out, during which the quadriceps and hamstrings were 

stimulated. The gluteal muscles were omitted because on this occasion electrodes were 

applied while the subject was seated on the trike. During this session, several brief 

periods of unaided pedalling were achieved (an example is shown in figure 5.14). How- 

ever, a significant bout could not be accomplished because spasms in the subject's right 
leg were intermittently affecting free cycling motion. 

5.5 Discussion 

Experiments involving paediatric spinal cord injured subjects were carried out to in- 

vestigate the feasibility of FES-cycling within this population and the performance of 

a new system designed for that purpose. Of the three subjects who successfully com- 

pleted seating sessions, one pedalled unaided for a significant period of time (over two 

minutes during two separate attempts) while the tricycle was placed on a stationary 

trainer. 
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All subjects were untrained at time of testing and had very limited experience with 
electrical stimulation of their lower-limbs. This may account, in part, for the rela- 
tively short lengths of unaided, stimulation-induced, cycling seen and the observed 
intolerance to high intensity stimulation, shown by one of the participants. A com- 
plete explanation for the latter issue, however, is probably more complex, with likely 
influences from both individual experimental setup and subject physiology. 

Current levels (and therefore maximum stimulation intensity available) for both subject 
B and C were significantly lower than those set for subject A, who cycled successfully 

without assistance. These initial settings (in conjunction with the other stimulation 

parameters) were chosen to replicate maximum intensity values employed previously 

using a separate stimulator device with differing output waveform characteristics from 

the one used in these experiments and, therefore, may not reflect the optimum levels on 

our system. Irrespective of this, however, neither subject B or C was able to sustain (or 

even reach in the case of the former) maximum levels, while those that were attained 

were not sufficient to propel their legs independently for a significant period of time. 

In the case of subject C, the influence of spasms, which did not appear to be triggered 
by the level of stimulation intensity and are of unclear origin, caused the session to 

be ended. Due to time constraints, only one session could be carried out, and as no 

other problems were apparent, a more successful attempt may have been possible at 

a later time. In addition, only the quadriceps and hamstrings were stimulated during 

the session, and therefore, the full range of muscle groups were not employed. Cycling 

attempts involving subject B were made over two different days. In each case a thresh- 

old stimulation level was reached which caused significant discomfort and eventually a 

rise in blood pressure. The reason for this is unclear, and perhaps more familiarisation 

time would have helped. However, the injury levels of both subjects B and C (C7 and 
C8/T1 respectively) are high enough that the influence of any dysreflexic behaviour 

(in reaction to the stimulation) cannot be precluded. 

Aside from investigating the efficacy of this system as a suitable FES-cycling device for 

spinal cord injured children, the testing also provided essential information required for 

the development of appropriate FES-cycling methods within this population. More- 

over, necessary data were obtained which would lead to adaptation of the initial design 

criteria and, subsequently, the modifications described in section 5.3.2. 

89 



5.6 Conclusions 

A separate seating session prior to attempting cycling was required for all subjects 
in order to find the optimal configuration of equipment for providing most security 

and good cycling motion. A necessity during these experiments, because it formed an 
important part of development, this process involved patience (over a relatively long 

period of time from a young child's point of view) on the subject's part while adjust- 

ments were made. Ideally this should be done as fast as possible and notably. with 

subject C (the only one to use the fully modified setup described in section 5.3.2). a 

satisfactory setup was found very quickly. The latter subject was the only one to use 

a safety belt during experiments. However, the omission of this for previous subjects 

was only because several people were close by at all times to ensure stability. Thus, 

for general use, it would be advisable to use a security belt at all times. 

Overall, the system performed well during cycling experiments. All subjects appeared 
happy and comfortable on it, found the trike-based design appealing, and expressed 

a large desire to attempt mobile cycling (all providing sufficient motivation to hold 

interest during setup time! ). Subject A required the shortest hip joint to crank centre 
distance, and therefore probably represents the lower limit of size (see table 5.3) for an 
individual who can safely use the system. 

Seven of the initially recruited ten subjects were unable to fit securely on the system 
in its original configuration. This was chiefly because their trunk and thighs were too 

large to fit safely between the handlebars and/or free cycling motion was not achievable. 
However, where analysis was possible, seat to pedal distance was seen to be satisfac- 

tory. Thus, although further testing involving these subjects would be required, the 

modifications made to seat and steering arm should allow them to use the tricycle 

safely in the future. 

5.6 Conclusions 
A new tricycle-based paediatric FES-cycling system. which is capable of both station- 

ary and mobile use, has been developed. Initial testing within the target population 

indicates that the device is suitable for spinal cord injured children and could offer a 

low-cost appealing option for both exercise and recreation. 

Using the system, a two minute bout of successful electrical stimulation induced cycling 

was carried out by a T4/T6 (complete) subject, who was untrained at time of testing. 
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Although this is a very short period, the attempts were the first by any subject on this 

system and, had time allowed it, there is nothing to suggest further. more extensive 
cycling sessions would not have been possible. Although attempts with subsequent 
subjects did not prove to be as successful, the major influencing factors appeared to 
be health related. Moreover, maximum stimulation intensity levels, reached by them. 

were significantly lower than subject A's (less than half when compared with the sec- 
ond attempt) suggesting more familiaration time using our stimulator, to potentially 
gain a higher tolerance, might have been beneficial. 

Whilst FES-cycling has been demonstrated, the limited extent of this is probably symp- 
tomatic of the specific issues (unique to the paediatric spinal cord injured population) 
highlighted during the literature analysis, and, thus, the development of a system which 

could meet those challenges, and methods for implementation using it, is perhaps the 

more significant contribution. 

Based on feedback from those involved in testing, the device proved very popular and 

provided high motivation to take part in experiments. With the FES-technology and 
instrumentation employed already having been proven on adult systems and adaptation 
to a child's version fairly straightforward, the mechanical aspect of the development 

process presented the most challenges. Here, the major finding was that a modular 

approach, where a range of seating and orthotic equipment can be quickly and easily in- 

terchanged, appears to offer the highest degree of flexibility and, therefore, most chance 

of successful operation in a population who have such a large variance in anatomical 

characteristics. 

In this respect, the trike-based design has been shown to be advantageous. Having a 

standard mechanical device at the heart of it means the system can be easily updated 

using a vast range of bicycle parts. It is noted, however, that there is a limit to this 

in connection to compatible child-size versions (hence the reason that our system re- 

quired a few custom-made components which would allow us to tap into training and 

seating equipment originally designed for adult cycles). From the financial point of 

view, basing the system around an existing, and already proven, device is also advan- 

tageous. There is possibly a danger of an FES-cycle system becoming an exclusive 

thing, where purchase and maintenance costs make ownership untenable for some po- 

tential subjects. Although the FES and instrumentation equipment will always be 

specialised, if the majority of the system's mechanical parts are cheap, have a proven 

reliability and are easily maintained, then the overall costs should be lowered. The 
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latter point is of course not a new observation in assessing the performance of this type 

of system. However, together with the fact that (unlike many commercial systems) it 

closely resembles that which an able-bodied person might use, it is one which is partic- 
ularly relevant to children (and something highlighted by those involved in our testing). 

Thus far, only unloaded stationary cycling has been attempted. In this setup the rider 
is essentially working only against the combined weight of their legs, pedal/orthoses 
arrangement and rear wheel. There is not sufficient data to be definitive, and the 

performance of subject A does suggest she may have been able to propel the cycle on 
a flat surface very briefly, but based on our findings (i. e. that only brief, unloaded, cy- 
cling has been demonstrated), it appears that practical mobile cycling with untrained 
paediatric SCI subjects is not possible using the current set up. 

However, as the system itself is ready and capable of this modality, and our experiments 

showed that a subject may be secured adequately, providing the rider has undergone 

a sufficient muscle training period and learned how to use the throttle safely, mobile 

cycling should be feasible. 

For those potential users who are untrained (and/or fatigue quickly) and to aid progress 
during stimulation familiarisation, some form of controlled pedalling assistance, that 

could be reduced over time, is desirable, and probably a necessity (at least initially) 

for practical mobile cycling in this population. In addition, when attempting to quan- 
tify the effects of training, the ability to passively turn the legs and then augment 
the total torque at the pedals with stimulation-induced muscle contraction allows for 

a larger measurable range of potential power output with which to perform standard 

exercise tests. This technique (as demonstrated by Hunt et al. [43]) has been shown 
to be particularly useful when dealing with a population who exhibit vastly reduced 

workrates when compared with their able bodied peers, an issue which is, again, even 

more pronounced in children. 

In an attempt to address these points by providing an initial training facility, as well 

as both an exercise and mobile cycling test bed, a second, separate system with an 

auxiliary motor and further instrumentation, has been developed. A description of 

this will be given in the sequel. 
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6 FES-cycling for the Child with a 
Spinal Cord Injury - Development of 
a Motorised Test Bed 

The main contribution presented in this chapter is the development of a paediatric 
FES-cycle system which may be used as a test bed for investigation into exercise char- 
acteristics and facilitate the development of control methods for mobile FES-cycling 

and initial training in the paediatric spinal cord injured population. The aims and 
objectives for achieving this are set out in section 6.1. A detailed description of the 

system is given in section 6.2, while experiments carried out to verify sensor and system- 
integration operation are reported in 6.3. Finally, a discussion of the device, and its 

place in the targeted research climate, along with conclusions drawn are given in sec- 
tions 6.4 and 6.5, respectively. 

6.1 Aims and Objectives 

The findings presented in the previous chapter indicate that untrained children who 

attempt FES-cycling may require pedalling assistance in the initial stages of stationary 

cycling and certainly for significant mobile bouts. However, as previously mentioned, 
these results are based on limited data and experiments which were influenced by health 

issues. The latter issue may, of course, be characteristic of this population but either 

way, it is clear further data concerning their FES-cycling capabilities are required. 
Moreover, analysis of the relevant literature suggests there is a general lack of under- 

standing of exercise capacity in this population, thus a fully controllable (in teriiis of 

cadence and power output) FES-cycling system with sensors capable of quantifying 

some of the unknown capabilities could perhaps assist in providing further knowledge. 

93 



6.2 System Design 

We propose the development of a new motorised paediatric FES-cycle test bed which 
may be used to perform detailed investigations into the training and exercise capabili- 
ties of spinal cord injured children. The device should provide an adequate environment 
in which appropriate control strategies for both exercise testing and mobile cycling may 
be developed, while also doubling as a training facility for individuals who require mo- 
tor assistance. These goals are addressed through the following objectives: 

(i) Modify a standard child's tricycle to be suitable for use by a paediatric SCI subject 
and with equipment necessary for FES-cycling. 

(ii) Modify the paediatric FES-cycle system with an auxiliary motor and suitable in- 

strumentation for power measurement. 

(iii) Develop interface equipment for motor and sensor apparatus so laptop-based mon- 
itoring and control is possible. 

(iv) Carry out experiments to validate additional instrumentation and associated data 

acquisition processes. 

6.2 System Design 

The following section will delineate a new FES-cycling testbed which is suitable for 

spinal cord injured children. Detailed descriptions of major parts are given, along with 

an explanation of the various operational layouts possible. 

6.2.1 Overview 

The system is based on the non-motorised version described in the previous chapter, 

and thus incorporates the same FES-technology and safety/security equipment. with 

the necessary modifications. Broadly, a hub motor located in the rear wheel and di- 

rectly coupled to the front chainset may be employed to drive the pedals/legs. Motor 

speed is controlled using either a throttle potentiometer (similar to that used for stim- 

ulation) or laptop while power comes from a 24V battery/controller pack. A torque 

sensor, attached to the crank shaft, allows for force measurement at the pedals, which 
(together with pedalling cadence) can subsequently be used to calculate power output. 
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6.2 System Design 

' ý, - - 

Manual contro" 
interface 

Hub 
motor 

Torque sensor 

(a) Experimental. (b) Training/mobile. 

Figure 6.1: Operational layouts of motorised paediatric FES-cycling system. 

Two operational layouts are possible with the device and are illustrated in figures 6.1(a) 

and 6.1(b). For testing and development, control of stimulation and motor speed is 

taken away from the rider and can be implemented through either a manual (open- 

loop) or automatic (closed-loop) approach. In the former case, an operator has control 

over both throttles and can use a combination of displays from the torque sensor, cycle 
trainer and laptop software (figure 6.2). For automatic control, motor speed, and/or 

stimulation intensity may be passed to the laptop. In addition to this experimental 

setup, both throttles can be attached to the handlebars and the battery/controller pack 

placed on a supporting frame at the tricycle rear so mobile cycling is possible. 

y 

Stimu ation Motor 
throttle throttle 

Torque sensor 
display + Cycle trainer 
controller display + 

controller 

Figure 6.2: Control interface for open-loop/manual operation. 
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6.2 System Design 

6.2.2 Motor 

A 200W DC hub motor' (specifications given in table 6.1) was chosen to provide auxil- 
iary power to the device because of its compactness and reliability. Part of the tricycle's 

rear wheel, it is spoked directly into the rim and clamped to the rear fork via a con- 
necting arm (figure 6.3(a)). 

(a) Left hand view showing co niect- (b) Right hand view showing fixed co- 
ing arm/clamp, battery pack and car- and derailleur. 
rier. 

Figure 6.3: Hub motor and attachments. 

Part Dimensions Weight Power rating Voltage 
(cm) (kg) (W) (V) 

Motor Diameter - 17.6 2.76 200 (continuous) 24 
Width - 8.8 400 (peak) 

Battery pack/ 42 x 14 x7 5 - 24 

controller 

Table 6.1: The Heinzmann hub motor system - specifications. 

Normally a standard freewheel cassette is attached to the axle. However, as we wish 

to drive the pedals using the motor and the hub is significantly wider than that on a 

standard wheel, a single speed, fixed gear setup was adopted (figure 6.3(b)). To achieve 

this, a single sprocket was fixed to a second cog (which acts as a spacer) using grub 

screws round its perimeter, then both were attached to the side of the hub using a 

suitable adhesive (an approach used because of the difficulties involved in drilling or 

'Heinzma. nn GmbH, Schönau, Germany. http: //www. heinzmann. de/ 
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6.2 System Design 

welding the stainless steel motor case) Finally, to ensure that chain tension is suffi- 
cient, a custom derailleur which is fixed in one position but can also be adjusted for 
different front boom lengths, was attached to the right rear fork. 

The rechargeable battery cells (nickel-cadmium) and power control electronics are lo- 

cated in a plastic case mounted on a custom made carrier above the rear wheel and 

attached to the axle. The battery case also contains a master on/off power switch and 

sockets with which to connect the motor, charger and throttle. Klotor speed is adjusted 

proportionally by the motor controller based on the voltage read from an accompany- 
ing thumb throttle potentiometer, similar to the twist version used for stimulation 
intensity control. It too may be mounted on a handlebar and has a switch on the side. 
However, in this case it is simply used as an on/off selector for the motor. 

6.2.3 Torque Sensor 

To calculate power output at the pedals, the original chainset is replaced with a torque 

sensor (SRM professional version') which is mounted on the crank shaft, as shown in 

figure 6.4. Broadly, the sensor system (specifications are shown in table 6.2) consists 

of two main components: a sensor/chainset arrangement and display/controller. The 

instrumented chainset, which contains strain gauges, measures torque applied to the 

crank arm and the velocity at which it turns. The latter information is obtained using 

a reed switch located on the trike frame. Data are transmitted to (and recorded on) a 
display and control unit, which may be mounted on the handle bar. 

Figure 6.4: Torque sensor with custom-made crank arm. 

2Schoberer Rad Messtechnik, Königskamp, Germany. http: //www. srm. de/ 
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6.2 System Design 

Sensor type 11 Operating range Accuracy 

Torque - four strain gauges Power: 0- 4800W 
(wheatstone bridge configuration) +2.5/0 

Cadence - contact reed switch Cadence: 20 - 255rpm 

Table 6.2: SRM torque sensor - specifications. 

The sensor was originally designed for adult bicycles and thus the supplied crank arms 
(165mm) were too long for our system. To rectify this, a custom 125mm version was 

manufactured and attached to the chainset, while a standard arm of equal length was 
located on the other side. This was the only modification required to fit the sensor to 

the tricycle. However, a full calibration of both it, and the associated data acquisition 

apparatus was performed. Details of these experiments are given in section 6.3. 

6.2.4 Data Acquisition and Control 

Motor 
system 

Stimulation Timing 
channel parameters 

commands 

RS232 Laptop 

DAQ v 
Card 

Motor reference voltage 

mulator 

Interface box 

Frequency I 
to Voltage 

MT 

Tº SRM 

ST SE 

Trike Electronics 
Box 

F 

Figure 6.5: Schematic showing interface box function in the motorised tricycle system. 
MT - motor throttle, ST - stimulation throttle, SE - shaft encoder. SR\I 

- SRM torque sensor, 'r - torque, V- voltage, F- frequency, DAQ - data 

acquisition. 
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6.2 System Design 

A schematic illustrating the setup for open and closed loop control of both stimulation 

and motor speed, in addition to all interface equipment used, is shown in figure 6.5. 

A custom-made interface box links the system's sensors and control throttles to the 

laptop, stimulator and motor. Shaft encoder and stimulation throttle data can either 
be sent to the stimulator directly (then used by its internal cycling algorithm) or to 

the laptop using a switch on the box. In the latter case, individual channel stimulation 

commands from the laptop-based cycling algorithm are sent to the stimulator via an 
RS232 serial connection. 

A frequency proportional to the torque generated at the crank can be obtained from 

the SRM controller/display unit (called the "power control") in realtime, and is passed 
through a frequency-to-voltage converter, located within the interface box. Both this 

voltage and those representing crank and stimulation throttle position are sent by the 

laptop using a data acquisition card (National Instruments USB-60093). Finally, for 

control of the motor, the throttle signal passes through the interface box where a second 

switch may be used to choose between it and an output voltage from the laptop/DAQ 

card as the input to the motor system. 

System/laptop 
interface box 

Figure 6.6: Laptop and system interface equipment. 

All signals that pass in and out of the DAQ card can be utilised or set within Matlab 

Simulink. Thus, through using this setup, an environment is created whereby methods 

3National Instruments Corporation, Austin, TX, USA. http: //www. ni. com/ 
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6.2 System Design 

for controlling motor and stimulation can be developed. In addition, control, via the 
throttles, can be passed to the rider or operator using the switches located on the 
interface box. Thus, the change from manual to automatic control is straightforward. 

6.2.5 Power Measurement 

It has been shown that through accurate control of cadence and power output FES- 

cycling can be used to facilitate exercise testing within the adult spinal cord injured 

population [43]. Considering the comparatively low power outputs reported in this 
group, such testing is made possible by lowering the workrate baseline and, thus. in- 

creasing the functional range for exercise using FES-cycling. 

When the pedals are driven by the motor with no stimulation applied (and therefore 

no work input from the legs), a resistive torque caused by factors such as joint stiffness 
and friction in the mechanical system will result in an observed negative power level, 
based on the torque measured at the crank. As stimulation is initiated and raised to a 
level sufficient to overcome this resistance, the power output will rise to OW. Beyond 

this, the legs will begin to contribute to the mechanical work done against the load. 

It is this "negative workrate" region which enables the baseline for exercise testing 

to be lowered. The resulting increase in functional range could also be beneficial for 

training of those with severe muscle atrophy (or who have difficulty in tolerating ad- 

equate levels of stimulation) and thus allow a larger number of potential candidates, 

who are untrained, to use the system. Therefore, based on initial testing described in 

the previous chapter, it would appear to be a particularly desirable capability for a 

paediatric FES-cycle system. Moreover, the ability to quantify performance within this 

range could facilitate the measurement of small improvements in training outcomes, 

such as strength, that previously would not have been possible. 

To achieve these goals it is imperative that our system can provide precise torque and 

cadence measurements (the product of which will give power output) in realtime. Ca- 

dence may be accurately derived from crank position and is already used for control of 

stimulation (as shown in the previous chapter). Acquiring instantaneous torque data 

for realtime software-based control requires a series of custom hardware and software 

components. In order to test these, the sensor system has been fully calibrated and 

verified through experiments which will be discussed in the following section. 
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6.3 Torque Sensor Calibration 

6.3 Torque Sensor Calibration 

A series of experiments has been undertaken to calibrate and verify the torque mea- 
surement setup. The procedure undertaken and results found are given here. 

6.3.1 Methods 

Aims and Objectives 

F Frequency to v 
--)I- voltage DAQ 

I 
convertor Card 

.: - U_; " ýý Laptop 
SRM 

computer/display 
SRM sensor unit 

T 

Figure 6.7: Torque measurement setup. T- torque, F- frequency, V- voltage. 

Figure 6.7 illustrates the process involved in acquiring realtime torque data. As de- 

scribed previously, a frequency which is linearly related to the torque generated at 
the pedals (based on a predetermined slope) can be obtained from the SRM "power 

control" unit. This frequency is converted into a voltage between zero and five using 

a custom-made converter. The range used and minimum value read into this con- 

verter can be tuned, but it is designed to read between approximately 100 and 600Hz. 

This gives a functional torque range of roughly 6 to 26Nm, or a power range of -31 
to 135W (which encompasses reported performance of spinal cord injured individuals 

comfortably). The voltage output is sampled by a DAQ card and processed by control 

software on the laptop. At this point, the process is reversed to obtain the frequency, 

corresponding torque and power. 

Several variables are involved in the entire process. Thus, the aim of the following 

experiments was to calibrate these parameters and validate the approach through the 

following objectives: 

(i) Calibrate the slope value used for the frequency to torque transformation. 
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6.3 Torque Sensor Calibration 

(ii) Determine absolute values for frequency to voltage parameters. 

(iii) Verify sensor and software accuracy using known weights. 

Torque/ Frequency Slope Calibration 

The slope value used to convert the sensor's measured frequency to a corresponding 
torque can be found using the following expression: 

slope = 
Fp - ZOPM 

(6.1) 

Here, Fp is the peak frequency value given as the crank arm passes through the hori- 

zontal, ZOPM is the zero offset frequency measurement (the frequency value when no 
torque is applied to the crank), M is a known mass, g is the gravitational field strength 
(taken as 9.81) and r is the length of the crank arm. 

(Mxgxr) 

Figure 6.8: SRXI sensor with weight hanging from pedal. 

A known mass (measured using a Mecmesin digital force gauge4, model BFG200N) 

was hung from the right, then left crank arm (figure 6.8) three times to obtain values 

of Fp. This peak value was found by rotating the rear wheel to pass the crank arm 
through the horizontal repeatedly. On each occasion the ZOPM value was recorded 
before applying the weight. The observed data were used in equation (6.1) to obtain a 

41\Iecmesin limited, Slinfold, UK. http: //www. mecmesin. com/ 

102 



6.3 Torque Sensor Calibration 

slope for both the right and left side, with the mean of the two giving the final value. 

This process was repeated on three different days to allow for changing environmental 

conditions (such as temperature). 

Determination of Frequency to Voltage Parameters 

On the laptop, the voltage signal (V) from the frequency-to-voltage converter is nor- 
malised between zero and one volt then used with the now determined slope and ZOPMI 

values in the following expression to calculate torque (T): 

T= 
(V xFr)+Fo - ZOPiI 

(6.2) 
slope 

Fr and FO are the frequency range and minimum value used by the converter. Although 

they were designed to be approximately 500 and 100Hz respectively, absolute values 

were determined to give a more accurate torque measurement. 

To do this, peak values of V were recorded as the crank arm was passed through the 
horizontal, first with no torque applied and then with a known mass hanging from the 

crank arm (giving the variables Vl and VO). As the corresponding torque with no load 

applied (TO) is zero and 'r1 =Mxgxr, equation (6.2) may be rearranged to give: 

Fo = ZOPM - (Vo x Fr) (6.3) 

and, 

F= 
(Tl x slope) (6.4) F, 

(Vi -V0) 

Thus, using equations (6.3) and (6.4), values for FO and Fr could be determined. 
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6.3 Torque Sensor Calibration 

Validation of Sensor and Software 

To verify the sensor measurement and data acquisition process, all parameters were 
used to calculate the torque applied when hanging three known masses (table 6.3) from 

the right and left crank arms. 

Mass Expected torque 
(kg) (Nm) 

2.007 Tl = 2.46 
5.007 T2=6.14 

10.01 T3=12.27 

Table 6.3: Masses used and torques expected (T1 -T3) for sensor validation experiment. 

Each mass was measured using the digital force gauge mentioned previously, then mul- 
tiplied by g and r (r = 12.5cm) to obtain Tl - 'r3. Just as during the determination of 
frequency to voltage parameters, peak sensor-measured torque values were recorded as 

each pedal was passed through the horizontal (crank arm/pedal to the front) while a 

weight was hanging from it. 

Verification of Complete System Operation 

As a final step, tests were undertaken to ensure the complete system integration func- 

tioned correctly. All possible layouts (as depicted in figure 6.5) were checked including 

observing and recording all sensor data, controlling the motor from both throttle and 

laptop, and initiating stimulation (while observing activation timing) during cycling 

with dummy loads. 

6.3.2 Results 

Torque/ Frequency Slope Calibration 

The slope calibration procedure described above was carried out using a mass of 5.007kg 

attached to a crank arm 12.5cm long. ZOPM and FF values found during all three tests 

are shown in tables 6.4 to 6.6. 
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6.3 Torque Sensor Calibration 

Measurement 

Measurement Right ZOPM 
(Hz) 

1 193 
2 193 
3 193 

Right ZOPM 
(Hz) 

Left ZOPM 
(Hz) 

Right Fp Left Fp 
(Hz) (Hz) 

1 194 194 287 291 
2 194 194 290 291 
3 194 194 288 291 

Table 6.4: ZOPM and Fp values from test one. Temperature: 24°C. 

Left ZOPM 
(Hz) 

193 
193 
193 

Right Fp Left Fp 
(Hz) (Hz) 

289 290 
289 291 
289 292 

Table 6.5: ZOPM and Fp values from test two. Temperature: 22.5°C. 

Measurement Right ZOPM Left ZOPM Right Fp Left Fp 
(Hz) (Hz) (Hz) (Hz) 

1 194 194 290 292 
2 194 194 290 293 
3 194 194 290 293 

Table 6.6: ZOPM and Fp values from test three. Temperature: 23°C. 

The final slope value used for subsequent experiments was calculated as: 

slope = 15.8Hz/Nm 

Left, right and mean values for all experiments, as well as the percentage variation 
from both the factory setting (17.4Hz/Nm) and previous test., as calculated using ex- 

pression 6.1 are given in table 6.7. SRM state that a percentage variation in slope 

value of more than 5% between tests is significant and that if the change is below this 

value an average should be taken. Although all values found during our experiments 

were significantly different than the factory specified, the mean did not vary more than 

5% between tests. Thus, the average of the three means was chosen as the final slope 

(15.8Hz/Nm). 
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6.3 Torque Sensor Calibration 

test Right Slope Left Slope Mean Variation from Variation from 
(Hz/Nm) (Hz/Nm) (Hz/Nm) factory specified previous test 

1 15.37 15.8 15.59 -10% - 
2 15.64 15.97 15.8 -9.2% +1.359 
3 15.8 16.24 16.02 -7.93% +1.39X. 

Table 6.7: Slope values and percentage variation for all tests. Factory specified slope: 
17.4. 

Determination of Frequency to Voltage Parameters 

Torque Voltage 
(Nm) (V) 

Unloaded pedal 'ro: 0 VO: 0.182 
Loaded pedal TI: 6.138 V1: 0.369 

Table 6.8: Torques and corresponding peak voltages used for frequency-to-voltage pa- 
rameter determination. 

Peak voltages, VO and V1, were found by applying torques To andTl and passing the 

crank arm through the horizontal position (table 6.8). These values were then used in 

equations (6.3) and (6.4) to obtain: 

Fo=98.61Hz 

Fr = 518.6Hz 

Validation of Sensor and Software 

The experimentally found values of slope, FO and Fr were inserted into a simulink 

model, which is based on equation (6.2). Torque values were then calculated from the 

input voltage and current value of ZOPM (194Hz) while three known weights were 
hung from the crank arm. 
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Figure 6.9: Expected/calculated (T1 - T3) and measured (Tsrý, ) torque with weight hang- 

ing from left crank arm. 

Figures 6.9 and 6.10 show measured torque, Tsr, n, using the model as the pedals are 

passed through the horizontal repeatedly with each weight (represented by the ex- 

pected torques, Tl - 'r3i described in section 6.3.1) hanging from them. In all cases, the 

observed peak torque matched the expected value closely. 
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Figure 6.10: Expected/calculated (Ti - T3) and measured ('rsr�n) torque with weight 
hanging from right crank arm. 
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6.3 Torque Sensor Calibration 

Verification of Complete System Operation 

Experiments to verify the complete system operation were carried out as described in 

section 6.3.1. All sensors, motor, stimulation equipment and control layouts were ob- 
served to function correctly. Figure 6.11 shows measured torque and calculated power 
at a cadence of approximately 50rpm during a period of passive cycling (driven by the 

motor over the first 10 seconds) and subsequent active period. The negative workrate 
area discussed earlier, and possible using this system, can be seen during the passive 
period. 

30 

20 

10 

0 

_in 

v 

0 

0 5 10 15 20 25 30 35 40 

6 

05 10 15 20 25 30 35 40 

Time (s) 
Figure 6.11: Calculated power (upper plot) and measured torque (lower plot) during a 

period of motor-driven passive cycling (first 10 seconds) and subsequent 
active cycling. 

Figure 6.12 shows power, cadence and control signal data obtained during an experi- 

ment which incorporated a separately developed cadence controller. During this test. 

the rider's legs were driven by the laptop-controlled motor. The motor control signal 

represents the percentage of maximum voltage (where maximum voltage would corre- 

spond to the motor throttle being turned fully under manual control) sent to the motor 

system by the laptop. 
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Figure 6.12: Calculated power (upper plot), measured cadence (middle plot) and con- 
trol signal (expressed as a percentage between zero and maximum voltage) 
sent from laptop to motor system (lower plot), during a period of motor- 
driven passive cycling. MC - motor system control signal. 

6.4 Discussion 

In addition to the prospect of developing methods for motor-assisted mobile cycling, 
there are three main reasons for the inclusion of a controllable motor and force mea- 
scaring instrumentation in this system: 

- As indicated by initial testing within this population, potential subjects may require 
familiarisation time to reach sufficient levels of stimulation intensity. Motor assistance 
during this initial exposure, which can be reduced as stimulation toleration increases, 

could allow for a smooth transition period. 

- With the system described in chapter 5, subjects must have sufficient muscle 

strength to overcome the mechanical impedance associated with the rider/tricycle sys- 
tem to achieve cycling at all. As many of this system's potential users will have not 

only severely atrophied, but also underdeveloped musculature, they may well be un- 

able to meet this criterion. Therefore, in the initial stages of training such individuals, 

assistance would be a necessity. 
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6.4 Discussion 

- Through use of an auxiliary motor and suitable control strategies to govern power 
output and cadence, FES-cycling has been used previously to facilitate standard car- 
diopulmonary exercise testing in the adult spinal cord injured population. Therefore, 

replicating these approaches on a device suitable for paraplegic and tetraplegic children 
could give greater insight into their exercise capabilities. 

In all cases, accurate measurement of both torque and cadence is required for control 
purposes or simply to quantify what could be very small effects of training. The ap- 
proach of deriving cadence from a sampled crank position, used by our system, has 
been successfully employed for accurate stimulation control in many devices and gives 
accurate data on pedalling speed within a control-strategy-software development envi- 
ronment. We have demonstrated through the experiments in section 6.3 that accurate 
values of torque may also be measured and processed to obtain power output in real- 
time. Thus, together with the ability to control auxiliary motor speed (and therefore 

amount of pedalling assistance) through providing a reference voltage from the DAQ 

card, laptop-based closed-loop power and cadence control strategies can be created 
and implemented. In addition, this control can also be applied manually as use of the 
interface box allows for a flexible layout whereby motor speed and stimulation intensity 

are easily passed to the throttles. 

As the device incorporates all the security and orthotic modifications described in 

chapter 5, it should be suitable for a spinal cord injured child to use. Rider safety is 

obviously of the utmost importance. Therefore, the relative power output of the motor 
(which is driving the legs) comes into question when considering the particularly high 

lower-limb bone fracture risk, generally seen in the target population. For this reason, 

maximum voltages (which are proportional to motor speed) sent to the motor system 

under laptop control will be carefully limited both within software environments and 
through the use of an external voltage converter. The latter device is currently under 
development and is specified for a voltage range limit which is approximately 40'/(,, of 

maximum. Although this value will be adjustable, levels used for motor-driven pas- 

sive cycling at 50rpm during verification experiments (as illustrated in figure 6.12) were 

within this range. Thus, a 40% maximum should be both practical and safe for children. 

Where younger children are concerned, it would be advisable to ensure motor and stim- 

ulation throttles are not under their control, but stop buttons for both devices are still 

easily within reach (the inclusion of a second "emergency stop" button for this purpose 

is also planned). This point also highlights some of the practicalities of mobile cycling 
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under manual control. Although both throttles, motor controller/battery and stimu- 
lator may be mounted on the tricycle easily, the prospect of governing two throttles 

whilst also steering presents difficulty. One option for the system in this configuration 

could be for the motor to be used only as an aid to overcome initial inertia or when the 
legs have fatigued. However, as the addition of the motor system substantially increases 

the weight of the tricycle (and consequently the mechanical work that the rider must 
do to propel themselves), automatic cadence control strategies which distribute work 
between the legs and motor using only one throttle may have the best chance of success. 

6.5 Conclusions 
A new motorised FES-cycle system for spinal cord injured children has been developed. 

The device is designed to provide a platform from which further development of suitable 
FES-cycling methods, for training and mobile cycling, within this population may be 

undertaken. It also provides an opportunity to develop and carry out suitable control 

strategies for standard cardiopulmonary exercise testing (such as a constant load or in- 

cremental approaches). Moreover, when compared with our non-motorised system the 

additional instrumentation and increased range of functional workrate available should 

allow the FES-cycling/exercise capabilities of paraplegic and tetraplegic children to be 

quantified in greater detail. 

We have demonstrated that accurate instantaneous torque data can be obtained and 

processed in a software environment that already contains necessary pedalling cadence 
information (the product of these two variables giving power output) and from which 

realtime control of motor speed and stimulation may be exercised. Although the next 

step will be to develop appropriate strategies which utilise these variables in a closed- 

loop manner (for optimum accuracy), the flexibility of the system's setup allows simple 

manual control to be employed and, thus, it is ready to be used by its target population. 

The tricycle can currently be set up for mobile use under manual control. However. the 

practicalities of this (especially with younger children) mean that the system probably 

has more to offer as a development tool for future mobile control strategies rather than 

for recreation at this time. 

As a practical stationary training ergometer, the motorised system should be seen not 

only as an evolution of the non-motorised version, but also as a second option that 
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could offer an introductory or transitional period of FES-cycling to those who require 

pedalling assistance or stimulation familiarisation time. Thus, even though there will 

undoubtedly be subject-specific hurdles to overcome (because of the highly variable na- 
ture of the population), we surmise that between the two systems there will be enough 
flexibility to allow a substantial increase in the participation of paediatric spinal cord 
individuals. 
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7 Conclusions and Recommendations 
for Future Work 

The technique of utilising controlled artificial electrical stimulation pulses to induce 

cycling has been used now for over two decades. During that time, several systems 
have been developed and numerous studies undertaken which have demonstrated this 
modality as a method with the potential to increase fitness and improve health in indi- 

viduals with a spinal cord injury. Moreover, its ability to be used for recreation makes 
it an attractive tool for achieving these goals. 

Although the work reported in this thesis is split into two different research foci (us- 
ing a limb-mounted sensor and PDA-based system for FES-cycling, and developing 
FES-cycling methods and equipment for the paediatric SCI population), in our opin- 
ion, both represent paths that the common theme (FES-cycling) must undertake for 
it to progress as a practical rehabilitation and exercise technique available to as many 
potential beneficiaries as possible. 

7.1 FES-cycling - Moving Forward 

With FES-cycling still being primarily laboratory-based, a move to employ modern 

sensor and computing technology (which is significantly more compact, and perhaps 

more user friendly) would seem an important step to advancing its progression into the 

clinical environment and toward practical home use. 

Our investigations into using a multi-functional PDA-based FES system and limb- 

mounted sensor for FES cycling (chapter 4) have yielded two novel contributions: 

(i) Two new stimulation activation control strategies which utilise a limb-mounted 

sensor have been developed. Through manipulating hip angle data which are mea- 

sured using a limb-mounted sensor, we have shown that a corresponding crank position 
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(which can subsequently be used as a reference for stimulation activation timing) can 
be estimated relatively accurately by two different approaches. Both techniques have 
been tested through simulation, then verified using experimentally found data offline. 
and finally, incorporated into models which calculate crank position in realtime on the 
PDA-based system. 

(ii) The new angle conversion approaches have been incorporated into FES-cycling 

control strategies which can be run in realtime on the PDA-based system. In addition. 

a third strategy employing a "traditional" approach (whereby crank position is mea- 

sured directly) has also been developed and integrated into the same device. All three 
techniques have been shown to produce practical stimulation activation times when 
implemented on a recumbent tricycle. 

As described in section 4.5, further work involving alternative sensors is required to 
fully establish the origin of an observed measurement error and either compensate for 

or eliminate this to increase both angle conversion algorithms' accuracy. Providing 

there is accurate sensor measurement, however, we have shown that practical stimula- 
tion activation times can be achieved based on an estimated crank position. Moreover, 

the system's range of capabilities means that all three strategies could be implemented 

using either surface or implanted stimulation (although further testing with dummy 

loads is required to ensure the sample rate issues previously discussed do not impede 

successful operation). Also, if the two hip-angle-based approaches were further mod- 
ified with some form of on-screen stimulation intensity control (as mentioned in the 

relevant discussion section) then there would be no need to instrument the tricycle. 

A possible disadvantage to this setup is that there is more body-worn equipment than 

used with existing approaches. However, the fact that the FES-device in question can 

be used for a whole range of applications (and, thus, cycling may not necessarily be 

the main reason an individual owns one) means donning and doffing may not be such 

a big issue for those who use it, particularly those who have an implanted stimulator. 

The idea of miniaturising and consolidating FES technologies is one possible direction 

which could help the progression of FES-cycling as a practical technique. However, in 

terms of increasing the potential benefits from using it, progress in the areas of stimu- 

lation pulse behaviour and delivery is equally consequential. 

Although reported benefits of FES-cycling in the adult spinal cord injured popula- 

tion are significant and encouraging, it is still evident that relatively small training 
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returns accompany large efforts on behalf of the rider. It could be speculated that 
the most influential limiting factors are the delivery methods and nature of artificial 
stimulation pulses. Surface stimulation, although non-invasive, is still a rather crude 
approach where charge is passed over a relatively large area and high number of motor 
units, some of which (when activated) could induce antagonistic muscle contraction. 
Implanted stimulation may offer more accuracy but delivery of pulses using either 
method is still vastly inferior to the fatigue-retarding abilities of the central and pe- 
ripheral nervous systems under volitional control. 

Recent work involving the investigation of stimulation pulse trains has shown that 

utilising variable frequency train (or VFT) techniques may offer a way of reducing the 

rapid fatigue seen during FES applications. In a study by Janssen et al. [86], one of 
these techniques was implemented in new FES-cycling stimulation patterns and com- 

pared with a standard constant frequency train . 
Results were inconclusive as to the 

effectiveness of this new pattern on cycling performance. However, in a more recent 

study by Scott et al. [87] implementation of another VFT approach, during repeated 
isometric contraction of the quadriceps, yielded a 14% improvement (in terms of the 

number of times a target force was reached) when compared with standard constant 
frequency techniques. Thus, there may be scope for improving the performance FES- 

cycling using such techniques in the future. 

7.2 FES-cycling in the Paediatric Spinal Cord Injured 

Population 

It is unfortunate that, in general, FES technologies have not been employed in the 

paediatric spinal cord injured population as prolifically as with adults and teenagers. 

Our opinion, however, is that even though the challenges to be faced are bigger. chil- 

dren have potentially the most to gain from such technology. in particular FES-cycling. 

Thanks to modern medical interventions, children who sustain spinal injuries will live 

a near-normal lifespan. However, this also means that they will be subject to all the 

primary and secondary health complications discussed in chapters 2 and 3 the longest. 

Thus, when considering the subsequent social and economic costs involved. undertak- 

ing a modality such as FES-cycling with a view to maintaining or improving health 

throughout life could be extremely beneficial. Moreover. the recreational qualities of 
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cycling mean it is ideally suited to a population for whom availability of and partici- 
pation in social activities is somewhat limited. 

Given that a potential candidate may still be growing and developing, it could be 
speculated that the regenerative processes involved during this time might assist in 
improving upon the training returns seen in adults during an FES-cycling interven- 
tion. Even if training benefits can only be replicated, such improvements may be more 
consequential to the child with a spinal cord injury given that the health complications 
seen in this population are often more severe than in adults. 

Through investigations into the development of methods and equipment for FES- 

cycling within the paediatric spinal cord injured population, the following novel con- 
tributions have been made: 

(i) A tricycle-based FES-cycle system which incorporates a range of seating and or- 
thotic/safety equipment for increased flexibility has been developed (through testing 

with 10 paediatric spinal cord injured subjects) to be suitable for use by a child with 
a spinal cord injury (chapter 5). 

(ii) FES-induced pedalling has been demonstrated on our system by a seven year old 
untrained T4/T6 (motor complete) subject. In addition, methods for safely undertak- 
ing stationary FES-cycling sessions within the paediatric SCI population have been 

developed (chapter 5). 

(iii) A second, motor-integrated, paediatric FES-cycle device has been developed to 

allow a greater number of potential subjects to take part, in addition to providing a 
test bed for future investigations (chapter 6). 

Although only one subject has cycled for a significant period of time using our non- 

motorised system, the experience gained with others provided data which were vital 

to the development of what, we hope, is now a "child proof" device. Moreover. the 

experiments undertaken supplied us in part with impetus for the motorised svsteni de- 

velopment. In addition to allowing a larger proportion of the population to undertake 

FES-cycling through providing controlled assistance, it is hoped this second device can 

be used to quantify and gather information concerning this population's exercise and 

training capabilities. To this end, planned future work will include pilot testing of the 

motorised system with paediatric SCI subjects to verify safe and correct operation. 
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When comparing our system with other approaches (including those presently avail- 

able for use by children), it is our opinion that a tricycle-based one which revolves 

around a standard device is an extremely attractive option for its target population. 
Although not without its limitations (the need for transfer for example), it is hoped the 

combination of low-cost, pleasing aesthetics and the potential for mobile recreational 

cycling will encourage more children to participate in future FES-cycling interventions. 

Incorporation of FES-cycling into the rehabilitation process following a spinal cord 
injury is a major goal. Although placement within the clinical environment is un- 
doubtedly an important part of this, the wishes of those who undertake it are crucial 
to success and "in the clinic" is not necessarily where they wish to be. This is espe- 

cially true for children. Moreover, reported evidence on health benefits suggests that 

training intensity levels must be sustained in order to maintain gains. If this is the 

case, then the recreational qualities of FES-cycling could offer the necessary motiva- 
tion. However, for this to be achieved, the technology and methods involved must be 

straightforward and robust enough. Thus, it is probably most important that future 

FES-cycling development is aimed at improving practicality with a view to home use. 
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