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Abstract 
 

The Apc gene encodes the Adenomatous polyposis coli tumour suppressor protein, the 

germ line mutation of which characterizes Familial Adenomatous Polyposis (FAP), an 

autosomal syndrome characterized by multiple colorectal lesions. Inactivation of the 

Apc gene is recognized as a key early event in the development of colorectal cancers 

and leads to the deregulation of the Wnt pathway and the activation of TCF/LEF 

target genes. This project focuses on the proto-oncogene c-Myc as it is a key Wnt 

target gene which is activated following loss of Apc in vivo. This upregulation is 

noteworthy as c-Myc is implicated in stem cell survival, proliferation, apoptosis and 

tumourigenesis.  Previous studies have shown c-Myc dependency for both apoptosis 

and proliferation following activation of the Wnt pathway, however little is known 

about the role c-Myc plays in inducing apoptosis following DNA damage in vivo. To 

study this I have conditionally deleted c-Myc from the intestinal epithelium and 

examined the response of intestinal enterocytes following DNA damage. Remarkably, 

following DNA damage, c-Myc deficient enterocytes were unable to upregulate p53 

and induce apoptosis, which was mechanistically due to an upregulation of MDM2. 

Taken together, results from this study showed for the first time in vivo, a key role for 

c-Myc in inducing apoptosis following DNA damage through control of p53. 

 Previous studies from this lab have shown that within the intestinal epithelium, c-

Myc is absolutely required for the hyper-proliferative phenotype that is observed 

following loss of Apc. Therefore one of the key aims of this thesis is to look 

downstream of c-Myc in order to delineate how c-Myc induces and controls this 

proliferation. Given that one of the key postulated functions of c-Myc is the 
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transcriptional repression of p21, this thesis examines this hypothesis by investigating 

the significance of the upregulation of p21 following c-Myc deletion in Apc deficient 

intestinal enterocytes. To do this, I have generated triple knockout (TKO) intestines 

by intercrossing p21 knockout mice to mice where we can conditionally delete both 

Apc and c-Myc within the murine intestinal epithelium. Surprisingly, the levels of 

proliferation were the same between double knockout Apc Myc and TKO intestines, 

which had markedly less proliferation than Apc deficient intestines. However, unlike 

double knockout enterocytes, TKO intestinal enterocytes no longer moved up the 

crypt-villus axis and failed to generate villus. To examine which of these phenomena 

were key to tumourigenesis (differentiation or proliferation), we investigated whether 

TKO intestines could form intestinal adenomas and found that even in the absence of 

p21, c-Myc deficient cells were unable to form tumours. Taken together we have 

identified a novel role for p21 in driving differentiation following Apc and Myc 

deletion. This is consistent with the expression of p21 in the normal crypt at the crypt 

villus junction. Remarkably this function of p21 is independent of its key role as a 

cell cycle inhibitor. 

Moreover, this study also examined the importance of the upregulation of the Cyclin 

D/CDK4 complexes following Apc loss and their role in c-Myc dependent 

proliferation. Results from these studies showed that Cyclin D2 is required for 

efficient proliferation immediately following loss of Apc as well as for tumourigeneis 

in the Apc Min/+ mouse. Taken together, results from these studies showed that the 

upregulation of Cyclin D2 and CDK4 are c-Myc dependent and that the upregulation 

of these complexes are key for Wnt driven proliferation and tumourigenesis.   
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 Lastly, in this study I have examined whether Apc loss within the intestinal 

epithelium, where it is a bona fide tumour suppressor gene, can provoke senescence, 

and compared this to the ability of Apc gene deletion to trigger senescence in the 

renal epithelium, where it is not mutated in human cancer. This study showed that 

deletion of Apc within the renal epithelium invoked a p21 dependent senescence 

response, and Apc deficient renal epithelial cells were cleared and very rarely 

initiated tumourigenesis. However, combined Apc and p21 gene deletion rapidly 

initiated tumourigenesis, with all mice developing renal carcinoma by 2 months of 

age. In contrast to Apc deficient intestinal epithelium, this process was unaffected by 

loss of c-Myc. However within the intestinal epithelium, deletion of Apc did not 

invoke senescence, but lead to a highly proliferative, p21 independent response. 

Combined Apc and p21 gene loss had no impact on either the short term phenotypes 

of Apc loss or upon tumourigenesis. 

 Taken together these results show for the first time that Apc loss in vivo can invoke a 

senescence program but in a context dependent fashion. This implies escape from 

senescence is not a crucial pathway in colorectal cancers that are initiated by Apc 

loss, and goes to explain why renal carcinoma is not observed in FAP patients who 

are germline heterozygous for APC. Therefore the aims for this thesis are:  

 

• To investigate the role of c-Myc in inducing apoptosis within the intestinal crypt, 

and whether this is p21 dependent? 
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• To investigate the role of p21 in causing senescence of Apc deficient cells, and 

whether this is c-Myc dependent?  

 

 

• To determine the functional importance of repression of p21 by c-Myc in Apc 

deficient cells. 

 

 

•  To determine the significance of Cyclin D2 upregulation within Apc deficient 

cells. 
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1. Introduction to Colon Cancer 
 

1.1 Colon Cancer Epidemiology 
 

Colorectal cancer (CRC) is the second most common form of cancer in women after 

breast, and the third most common form of cancer in men, after lung and prostate cancer,  

with approximately 60% occurring in more westernised areas. CRC mostly affects older 

people, with more than 80% of cases occurring in people over 65 and 40% over the age 

of 80 (Cancer Research UK- http://info.cancerresearchuk.org/cancerstats ) . The incident 

rate of CRC in men and women under the age of 50 is similar; however the incidence of 

CRC becomes significantly higher in men after the age of 50. Worldwide, CRC cancer 

kills on average 500,000 people a year, and various studies have shown that CRC is more 

prevalent in more westernized areas such as the United Kingdom and the United States. 

Within Europe, mortality rates are the highest in Hungary and the Czech Republic, and 

the lowest worldwide in Africa and Asian countries [IARC. GLOBOCAN 2002. Cancer 

incidence, Mortality and Prevalence Worldwide (2002 estimates) 2005]. One exception is 

Japan, due to it recently adapting a more western diet (Marchand, 1999, Koyama and 

Kotake, 1997). 
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In 2007 in the UK, approximately 16,000 people died from CRC. Although the incident 

rate of CRC has remained relatively stable for the past ten years, mortality rates from 

CRC have been on the decline since the 1990’s (Figure 1.1.) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Age-standardized incidence and mortality rates by sex, colorectal cancer 
in Great Britan 
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Within the past 30 years, the 5 year survival rates for CRC have increased from 

approximately 20% to 50% in both males and females. This is due to a more highly 

effective screening process, as studies have shown that cases that are caught early have a 

highly significant increase in 5 year survival. For example, patients classified with Dukes 

stage A have a 93% chance of 5 year survival versus only 7% for those classified with 

Dukes stage D. [NICE. Improving Outcome in Colorectal Cancers: Manual update 2004 

(Figure 1.2  (Dukes, 1932, Sobin and Fleming, 1997)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Dukes stage classification of colorectal cancer 
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CRC can be regarded as an environmental disease, as a number of lifestyle choices are 

known to affect its onset. CRC is known to predominately affect areas that have adapted 

a ‘western’ diet and lifestyle. For example, a lack of exercise and increase in obesity has 

also been shown to increase the onset of this disease (Moghaddam et al., 2007). Similarly 

alcohol intake increases colorectal cancer risk (Cho et al., 2004). On the other hand, 

studies have shown a high uptake of dietary fibre decreases the risk of colon cancer 

(Bingham et al., 2005). Similarly so does a diet high in fruit and vegetables, vitamin D 

(Feskanich et al., 2004, Peters et al., 2001, Peters et al., 2004, Braun et al., 1995), B6 

(Wei et al., 2005) and folate (Sanjoaquin et al., 2005). Given these studies, one of the 

primary strategies for CRC prevention has been awareness of good dietary and lifestyle 

habits.  

Currently a national screening program called The Scottish Bowel Screening Program 

will encourage people aged 50-74 years to use the faecal occult blood testing (FOBT) 

kits, which in other randomized trials have been shown to reduce colorectal mortality by 

15% (Hardcastle et al., 1996, Kronborg et al., 1996, Mandel et al., 1993, Atkin, 1999) 
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1.1.1 Biology of the Intestinal Epithelium  
 

The intestinal tract can be described as a tube that is composed of three tissue layers. The 

outer layer consists of several sheets of innervated smooth muscle that executes 

peristalsis. The middle layer consists of stromal tissue, whilst the inner surface is termed 

the mucosa which consists of sheets of cuboidal epithelial cells and serves to absorb 

nutrients and compact stool (Sancho et al., 2004). The intestinal epithelium consists of 

numerous luminal protrusions, termed villi, and invaginations into the submucosa, termed 

crypts of Lierberkühn which increase its absorptive surface. In the case of the large 

intestine, the mucosa contains only crypts and villi are replaced with a flat surface 

epithelium (Sancho et al., 2004). 

The intestinal crypt contains columnar and paneth cells that occupy the base of the crypt. 

Paneth cells secrete antimicrobial peptides and enzymes such as cryptidins, defensins and 

lysozyme (Porter et al., 2002). Intestinal stem cells reside immediately above the paneth 

cells and give rise to daughter progenitor cells. Daughter progenitor cells cease 

proliferation at the crypt villus axis and differentiate into three distinct cell lineages that 

populate the villus. These include enterocytes, which secrete hyrdrolases and absorb 

nutrients; goblet cells which produce a protective mucous lining. Enteroendocrine cells 

secrete hormones including serotonine, substance P and secretin (Hocker and 

Wiedenmann, 1998)( Figure 1. 3) 
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   Figure 1.3: Architecture of the Intestinal Crypt 
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1.1.2 Cell Renewal of the Intestinal Epithelium 
 

In order to maintain the cellular intestinal crypt architecture, crypt progenitor cells divide 

every 12-16 hours, generating 200 cells per crypt every day [reviewed in (Sancho et al., 

2004)].  In order to maintain epithelial homeostasis, the epithelial sheet is in a continuous 

upward ‘escalator’ type  motion, whereby cells continually move up the crypt-villus axis 

and eventually shed off once they have reached the top of the villus (Heath, 1996). This 

process takes approximately 5 days. Proliferation in the intestine is not a cell autonomous 

feature, rather it is dictated by the crypt niche (Hermiston et al., 1996). Therefore, 

proliferative and differentiated compartments are maintained as cells transit up the crypt-

villus axis (Potten and Loeffler, 1990). 

Studies have gone on to define intestinal stem cells by four features. These include: 

retention of an undifferentiated phenotype, continuous production of all cell lineages, 

retention of self-maintenance capabilities throughout life, and the ability to regenerate 

upon injury (Sancho et al., 2004). Recent studies have identified leucin-rich repeat-

containing G-protein coupled receptor 5 (LGR5) as the first definitive marker of both 

colonic and intestinal stem cells (Barker et al., 2007). This was confirmed by studies that 

showed that LGR5 positive cells were capable of repopulating the entire crypt-villus axis 

will all the correct cell lineages following irradiation (Barker et al., 2007).  

 

 

 

 



20 

1.1.3 Using the Intestinal Crypt as a model system for examining apoptosis in vivo 
 

One of the most tractable systems for studying the DNA damage response in vivo is the 

intestinal crypt. This is due to the fact that the small intestine provides a well 

characterized system to study apoptosis (Potten et al., 1997). Four to six intestinal stem 

cells are proposed to reside at the base of the crypt, and have been found to be very 

susceptible to apoptosis; undergoing apoptosis following low levels of irradiation (1Gy) 

(Potten, 1998). Studies showed that once the original stem cell has been destroyed they 

can be replaced by an additional six clonogenic cells, following up to 9Gy irradiation. 

Following higher doses of irradiation, it is believed that up to 1/3 of the  crypt (16-24 

cells) can act as clonogenic cells (Roberts et al., 1995). Therefore this allows 

clonogenicity to be investigated in vivo, by the analysis of crypt survival, which can be 

related to the ability to induce apoptosis (Roberts and Potten, 1994).  

In this study, the tractability of this system in conjunction with our previous data showing 

that C-Myc deletion is not immediately deleterious to intestinal enterocytes, is used to 

determine whether C-Myc is important for signalling apoptosis in normal cells following 

DNA damage (discussed in Chapter 3).  
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1.1.4 Somatic and germline mutations in familial cancer 
 

CRC can be divided into two classes; sporadic and familial (hereditary) cancer, with 

sporadic cancers accounting for approximatley 80% (Houlston 1992). The remaining 

20% of familial cases are further divided into two categories based on the presence of 

polyposis; Familial Adenomatous Polyposis (FAP) and Hereditary Non-Polyposis 

Colorectal Cancer (HNPCC).  

 

1.1.5  FAP (Familial adenomatous polyposis)  
 

FAP is an autosomal dominant disease that affects approximately 1/7000 people and is 

characterized by the development of hundreds to thousands of colorectal adenomas, 

usually arising by the second decade in life (Kinzler and Vogelstein, 1996).  Due to the 

sheer volume of adenomas, inevitably one or several adenomas progress to carcinomas, 

with 100% of FAP patients developing colorectal cancer by the average age of forty 

(Sancho et al., 2004). FAP patients can also develop other intestinal lesions such as 

gastric fundic gland polyposis, duodenal adenomas, and gastric, pancreatic, bilary or 

distal small intestinal lesions. At much lower frequencies, FAP patients can also develop 

lesions out with the GI tract such as desmoids of the skin, retinal lesions, osteomas and 

brain tumours (Kinzler and Vogelstein, 1996). 

The first genetic elucidation of FAP was the discovery of an interstitial deletion of 

chromosome 5q in patients with polyposis (Herrera et al., 1986, Bodmer et al., 1987). 

Further evidence emerged suggesting that mutations within  the same gene may be 

responsible for both somatic and inherited forms of  colon cancer. These studies analyzed 
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sporadic colorectal carcinomas for loss of alleles on chromosome 5q, revealing that over 

20% had loss of one allele compared to neighboring normal tissue (Solomon et al., 1987). 

Comparing germline mutations in FAP patients and somatic mutations in sporadic 

colorectal tumours, the Adenomatous Polyposis Coli (APC) gene was identified and 

proven to cause FAP (Eldeiry et al., 1993, Groden et al., 1991, Nishisho et al., 1991).  In 

accordance with these findings, studies went on to show that the rate limiting step for 

tumour initiation  in both cases of sporadic and hereditary CRC, was the somatic 

mutation of the other wild type allele (Ichii et al., 1992, Levy et al., 1994, Luongo et al., 

1994). This was demonstrated in FAP patients and animal models with an analogous 

mutation of the murine homolog of Apc (Ichii et al., 1992, Levy et al., 1994, Luongo et 

al., 1994), as well as in human sporadic colorectal tumours (Solomon et al., 1987). 

Therefore illustrating that in order for cancer to develop, both copies of Apc must be lost; 

very much in accordance with Knudson’s ‘two hit’ model for tumour initiation (Knudson, 

1971, Knudson, 1986). 

Truncations of the Apc protein account for the majority of mutations observed in both 

FAP patients as well as sporadic adenomas and cancers. Apc mutations in colorectal 

neoplasia have been well characterized and are summarized in the table below (Table 1.4)  
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  Table 1.4: APC mutations in colorectal neoplasia 
 
 

 

 

 

 

 

 

 

Adapted from (Kinzler and Vogelstein., 1996) 

FAP Sporadic 
adenomas

Sporadic 
Cancers

Population incidence

APC mutation prevalence

1 in 7000

> 85%b  (germline
mutation)

1 in 2

> 80%c  (somatic 
mutation)

1 in 20

> 80%d  (somatic 
mutation)

Nature of Mutationsa

Truncating

Missense

96%e

4%e

89%f

11%f

98%g

2%g

a Based on APC mutations that could be precisely defined at the nucleotide level. For the purposes of this table, 
framshift, nonsense and splice site mutations were considered “truncating”
b Based on 62 kindreds (Powell et al., 1993)
c Based on analysis of 12 colorectal polyps (Jen et al., 1994)
d Based on analysis of 23 colorectal cancer cell lines (Smith et al., 1993)
e Based on 174 mutations( summarized in Nagase and Nakamura, 1993)
f Based on 19 mutations (Miyoshi et al., 1992; Powell et al., 1992)
g Based on 56 mutations (Miyoshi et al., 1992; Powell et al., 1992)

FAP Sporadic 
adenomas

Sporadic 
Cancers

Population incidence

APC mutation prevalence

1 in 7000

> 85%b  (germline
mutation)

1 in 2

> 80%c  (somatic 
mutation)

1 in 20

> 80%d  (somatic 
mutation)

Nature of Mutationsa

Truncating

Missense

96%e

4%e

89%f

11%f

98%g

2%g

a Based on APC mutations that could be precisely defined at the nucleotide level. For the purposes of this table, 
framshift, nonsense and splice site mutations were considered “truncating”
b Based on 62 kindreds (Powell et al., 1993)
c Based on analysis of 12 colorectal polyps (Jen et al., 1994)
d Based on analysis of 23 colorectal cancer cell lines (Smith et al., 1993)
e Based on 174 mutations( summarized in Nagase and Nakamura, 1993)
f Based on 19 mutations (Miyoshi et al., 1992; Powell et al., 1992)
g Based on 56 mutations (Miyoshi et al., 1992; Powell et al., 1992)
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1.1.6  Hereditary Nonpolyposis Colorectal Cancer (HNPCC) 
 

Hereditary Nonpolyposis Colorectal Cancer (HNPCC) is an autosomal - dominant cancer 

syndrome that accounts for approximately 5% of all colorectal cancers (de la Chapelle, 

2004). This syndrome not only predisposes to colorectal cancer, but also to a wide range 

of cancers that occur out with the intestinal tract. These include cancers that arise from 

the endometrial, gastric, ovarian, and urinary tract origins (Lynch and de la Chapelle, 

2003). Unlike FAP patients that present with disease usually in the second decade of life, 

the average age of onset of HNPCC is approximately 40-45 years of age. Patients are 

diagnosed with HNPCC if they conform to a set of criteria known as the “Amsterdam 

criteria”.  These criteria include; having a first degree relative with colorectal cancer, at 

least 2 successive affected generations, the exclusion of FAP and one or more of the 

cancers must have developed before the age of 50 (Vasen et al., 1992). Studies have now 

identified a group of genes, in which germline mutations are known to cause HNPCC. 

These are within mismatch repair (MMR) genes, MSH2, MLH1, MSH6 and PMS2, 

which are key componets of the mismatch repair system, which recognise the mismatch 

and recruit repair machinery to it (Bronner et al., 1994, Leach et al., 1993, Miyaki et al., 

1997, Nicolaides et al., 1994, Papadopoulos et al., 1994). Mismatch repair has a 

conserved fundamental role to correct mispairs produced by DNA during DNA 

replication (Modrich and Lahue, 1996). Because of these deficiencies in the DNA 

mismatch repair pathway, patients with HNPCC generate mutations at 2 to 3 orders of 

magnitudes higher than in normal cells, which is believed to account for the rapid 

progression to malignancy (Lynch and Smyrk, 1996). Mutations in MLH1 and MSH2 

account for approximately 90% of all mutations. As MMR genes are important in 
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repairing microsatellite instability, this explains why the hallmark of HNPCC tumours is 

microsatellite instability (Thibodeau et al., 1993).  Germline mutations in these genes 

have a 80% penetrance for colorectal cancer, 60% for endometrial cancers and less than 

20% for gasrtic, ovarian and urinary cancers (Lynch and de la Chapelle, 2003).  

 

1.1.7 The Min mouse 
 

The Apc Min+ (Multiple Intestinal Neoplasia) mouse was the first intestinal mouse model 

of carcinogenesis to phenotypically recapitulate FAP. The Apc Min+  mouse was generated 

using a random mutagenesis screen with the carcinogen ethylnitrosourea (ENU), which 

resulted in random germline mutagenesis (Moser et al., 1990). Following exposure to 

ENU, mice showed signs of anaemia and were moribund by 120 days. Upon dissection, 

multiple adenomas were observed in the small intestine, which occasionally  progressed 

to adenocarcinomas in older mice. Each mouse presented with on average 30 intestinal 

adenomas, hence the name Multiple Intestinal Neoplasia (Moser et al., 1990). The 

mutation was mapped to codon 850 of the murine homologue of the Apc protein, and was  

similar to those observed in FAP patients (Su et al., 1992). Similar to FAP patients this 

mutation  was characterized as a fully penetrate autosomal dominant disorder (Moser et 

al., 1990).  Despite similar germline mutations, FAP patients have predominately 

colorectal adenomas which routinely progress to invasive adenocarcinoms, in contrast to 

the small intestinal adenomas observed in the Apc Min+  mouse.  This is due to the fact that 

Apc Min+  mice  present with a  high tumour burden, and as a consequence mice need to be 

sacrificed before tumours are able to progress to adenocarcinomas.  
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Differences in phenotypes and colonic burden have been observed in FAP patients which 

harbor identical mutant APC alleles. These differences are thought to be due to 

differences in diet, environment and genetic modifiers or genetic backgrounds.  

Similar differences have been observed in the Apc Min+ mouse. However these 

discrepancies are attributed to genetic modifiers since diet, environment and genetic 

backgrounds are controlled within the laboratory setting. Genetic modifiers are genes that 

alter the disease severity by interacting either directly or indirectly with the primary 

genetic mutation causing the disease. For example the genetic background of Apc Min+  

mice has been shown to significantly affect tumour burden, as mice with C57BL/6J 

backgrounds develop significantly more tumours than those on the AKR background. 

Studies using linkage analysis demonstrated that a single locus on mouse chromosome 4 

was responsible for the majority of differences between strains, namely modifier of MIN 

(MOM1) (Dietrich et al., 1993). The MOM1 gene has been identified as the 

phospholipase A2 (Pla2g2a) gene, however as of yet, no associations between 

polymorphisms in this gene and human disease have been reported (Tomlinson et al., 

1996). 

 

A homozygous mutation for the Min allele results in embryonic lethality by day 6.5 dpc    

(days post coitum), as Apc Min/Min embryos are unable to maintain continued development 

of the primitive ectoderm of the early egg cylinder (Moser et al., 1995).   

Analysis of polyps from both mice (on a C57BL/6J background) and human FAP patients 

have shown all tumours acquire an additional somatic mutation in the other wild type 

copy of Apc (Luongo et al., 1994) (Levy et al., 1994, Albuquerque et al., 2002), 
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illustrating the importance of loss of Apc for tumour initiation. This notion is further 

observed as mice with different genetic backgrounds exhibit different frequencies of loss 

of heterozygosity (LOH). For example, Apc Min/+ mice on the AKR background showed 

only 63% LOH, compared to 100% LOH in Apc Min/+ mice on a C57BL/6J background, 

which may explain why Apc Min/+ mice on the AKR background develop significantly less 

tumours (Shoemaker et al., 1998). Therefore mouse models can serve as invaluable tools 

to investigate the effect of genetic modifiers in different tissues. 

 

1.1.8  Genetics of colorectal cancer initiation and progression 
 

Colon cancer is believed to arise from a combination of the activation of oncogenes and 

the inactivation of tumour suppressors. This confers a selective growth advantage to 

mutated cells leading to the formation of benign adenomas, and eventually upon the 

acquisition of further mutations, to invasive carcinomas (Foulds, 1958).  

As previously stated, germline mutations of the Apc gene cause FAP, and it has been 

discovered that mutations in Apc occur in the majority of all sporadic colorectal tumours 

(Miyoshi et al., 1992, Powell et al., 1992). Given the high frequency of  mutations  in the 

Apc gene, it has been proposed that Apc acts as a key ‘gatekeeper’ gene of colonic 

homeostasis, importantly controlling colonic epithelial cell proliferation. Therefore a 

mutation in this ‘gatekeeper’ gene results in uncontrolled cellular renewal and 

proliferation (Kinzler and Vogelstein, 1996).  

Although it is now widely accepted that mutations in Apc initiate the neoplastic process, 

it is also known that a sequential series of mutations are necessary for tumour 
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progression, specifically including Apc, KRAS, SMAD2/4 and TP53 (Figure 1.5). This is 

in accordance with the notion proposed by Hanahan and Weinberg, where each genetic 

change confers a selective advantage to cells, allowing them to aquire the six hallmarks 

of cancer, namely; self sufficiency in growth signal, insensitivity to anti-growth signals, 

evasion of apoptosis, limitless replicative potencial, sustained angiogenesis as well as 

tissue invasion and metastasis (Hanahan and Weinberg, 2000) 

 

 

 
 

 

 

 

 

 

 

 

   Figure 1.5: Genetic changes associated with colorectal tumourigenesis 
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Adapted from (Kinzler and Vogelstein., 1996) 

Apc mutations initiate the neoplastic process. FAP patients acquire a germline mutation in Apc 
and form displastic Aberrant Crypt foci (ACF). These continue to progress to adenomas and 
carcinomas  through the acquisition of the above mutations. In the case of K-Ras, activation of 
only one allele is required. Loss of both alleles are required for the tumour suppressors Smad 2, 
Smad4 (due to deletion of chromosome 18) and p53. Other genetic alterations occur in advanced 
colorectal cancers and may account for the differences in biological and clinical features 
between cases.
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Further studies have shown that the order of these mutations are as important as their 

combined accumulation. For example although p53 mutations occur in approximately  

80% of colorectal cancer (Baker et al., 1990), patients which solely harbour a germline 

mutation of p53 do not develop multiple adenomas, like FAP patients, and are even not at 

great risk to developing colorectal cancer (Garber et al., 1991). Similarly, a high 

frequency of KRAS mutations are observed throughout the progression of colonic 

tumourigenesis, however cells harbouring KRAS mutations have normal intracellular and 

intercellular organization, and display no predisposition to tumourigenesis (Jen et al., 

1994, Shpitz et al., 1996). Taken together, these studies show that although mutations in 

KRAS and p53 are required for effective tumour progression, on their own they are 

unable to initiate tumour formation in the absence of a mutation in APC. Taken together, 

these results highlight the importance of an initial mutation in the ‘gate-keeper’ gene 

APC  for the initiation of colorectal cancer tumourigenesis.  

 

1.2 Apc and it’s role in the canonical Wnt signalling  pathway 
 

The Wnt pathway is widely conserved throughout many species including C.elegans, 

Drosophila, Xenopus and mammalians. The Wnt pathway was originally discovered in 

Drosophila where the gene wingless (wg) was shown to control segment polarity during 

larval development (Nussleinvolhard and Wieschaus, 1980). Studies in mice, identified a 

gene called Wnt1 (originally named Int-1) as a proto-oncogene in breast tumours virally 

induced by the mouse mammary tumour virus (Nusse and Varmus, 1982). Further studies 

went on to show that wingless (wg) was a fly homologue of the mouse Wnt1 gene 
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(Rijsewijk et al., 1987). Hence the name Wnt, was coined from combination of wg, from 

the Drosophilia wingless gene and Int, the mouse homologue.  

It is widely accepted that the Wnt pathway controls many events during embryonic 

development, and regulates homeostatic self-renewal in a number of adult tissues. As a 

consequence, mutations in this pathway are associated with the onset of various cancers, 

due to the control the Wnt pathway has on various factors such as proliferation, 

morphology, motility and cell fate at the cellular level (Oving and Clevers, 2002, Polakis, 

2000). Wnt factors (ligands) are cell signalling glycoproteins which interact with a seven-

transmembrane Frizzled cell surface receptor, leading to Wnt pathway activation. Three 

different pathways are believed to be activated upon receptor activation and these include 

the Wnt/Ca2+ pathway, the noncanonical planar cell polarity pathway and the canonical 

pathway (Clevers, 2006).  

 

1.2.1. The canonical Wnt signalling pathway  
 

The canonical Wnt pathway is a ligand dependent system whereby Wnt proteins bind to 

Frizzled and LRP family member receptors at the cell surface. This in turn activates 

Dishevelled family proteins and ultimately results in an increase in the amount of β-

catenin that reaches the nucleus (Reya and Clevers, 2005). Consequently β-catenin now 

complexes with T-cell Factor (TCF) resulting in the transcriptonal activation of Wnt 

target genes. In the presence of a Wnt ligand, Frizzled (Fz) proteins cooperate with a 

single pass transmembrane molecule called LRP6 to bind the ligand. Upon this binding, 

the scaffold protein Axin translocates to the membrane where it interacts with the 
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intracellular tail of LRP5.  This results in the disassociation of the destruction complex 

comprising Axin, GSK3β (glycogen synthase kinase) , CK1 (casein kinase), Apc, and β-

catenin [reviewed in (Reya and Clevers, 2005, Clevers, 2006)]. Also, by an unknown 

mechanism, the binding of Wnt to Frizzled results in the hyperphosphorylation of 

Dishevelled (Dsh), which inhibits the activity of  GSK3β making it  unable to 

phosphorylate β-catenin (Mao et al., 2001, Yanagawa et al., 1995).  As a result of being 

unphosphorylated, β-catenin is now not recognized by the F-box β-TRCP protein, a 

component of the E3 ubiquitin ligase and therefore is not degraded. Subsequently, β-

catenin is now free to translocate to the nucleus, where it binds to the N terminus of 

LEF/TCF (lymphoid enhancer factor/T cell factor), and activates transcription of a 

number of Wnt target genes (Behrens et al., 1996, Molenaar et al., 1996, vandeWetering 

et al., 1997, Polakis, 2000), including c-Myc (He et al., 1998), CD44 (Wielenga et al., 

1999),  TCF-1 (Roose et al., 1999), LEF-1 (Hovanes et al., 2001). (A full list of all Wnt 

target genes can be found at :    http://www.stanford.edu/~rnusse/pathways/targets.html)  

 

In the absence of a Wnt signal, CK1 and GSK3β phosphorylate β-catenin at a series of 

highly conserved Ser/Thr residues near the end terminus. Consequently, β-catenin is now 

recognized by the F-box β-TRCP protein, ubiquitinated and targeted for degradation via 

the proteosome (Aberle et al., 1997, Polakis, 2000). (Figure 1.6) 
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Figure 1.6: The Canonical Wnt signalling pathway 
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In the absence of  Wnt signalling (A), GSK3  in the Apc -β-catenin-axin complex is active and phosphorylates β-
catenin. Phosphorylation of β-catenin creates a recognition site for ubiquitin ligase and leads to its destruction by 
the proteasome. As β-catenin is now degraded, it is unable to translocate to the nucleus and act as a transcription 
factor; therefore Wnt target genes are not activated.

In the presence of the Wnt signal (B), the protein dishevelled (Dsh) inactivates GSK3 , and consequently GSK3  is 
unable to phosphorylate β-catenin. This results in a decrease in the amount of β-catenin targeted for degradation 
which increases the amount available to activate LEF/TCF transcription factors, and thereby activating a series of  
Wnt target genes.
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Amongst the vast array of target genes that are upregulated following Wnt activation,  the 

upregulation of the proto-oncogene c-Myc has been shown to be pivotal within the 

intestinal epithelium (van de Wetering et al., 2002, Sansom et al., 2007) (discussed in 

Chapter 3). Therefore during inappropriate Wnt signalling activation, caused by an Apc 

mutation, activation of key Wnt target genes such as c-Myc leads to an uncontrolled burst 

in proliferation. This once again, serves to highlight the important role that Apc plays as a 

key ‘gate keeper’ in controlling cell proliferation (Kinzler and Vogelstein, 1996).  

 

1.2.2 The structure of the Apc protein and its role in the β-catenin destruction 
complex 
 

The human APC gene encodes a large 312kda protein (Groden et al., 1991). However 

despite Apc mutations being identified in both germline mutations in FAP patients, as 

well as in sporadic colorectal tumours, the sequence of the Apc protein did not elude to 

any information about its intracellular function. It was only when β-catenin was shown to 

be a binding partner of Apc did the link between Apc and the canonical Wnt signalling 

pathway become clear (Su et al., 1993, Rubinfeld et al., 1993). The structure of the Apc 

protein is depicted in figure 1.7 
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Figure 1.7: Functional domains of the APC ( Adenomatous Polyposis Coli) and its 
binding partners 
 

 

 

 

 

 

 

Apc is a large protein of approximately 2800 amino acids (aa). There are three domains. 

The N-terminal consists of a series of armadillo repeats which  bind to the  regulatory 

unit of phosphatase 2a (PP2A), Apc-stimulated guanine nucleotide exchange factor for 

Rho family proteins (Asef) and Kap3 a linker proteins for kinesins. The Apc protein 

contains three 15 aa repeats and seven 20 aa repeats, both of which are known to bind β-

catenin (Su et al., 1993, Rubinfeld et al., 1993). In both cases of hereditary and sporadic 

cancers, mutations result in a protein that is truncated at its C-terminus, importantly 
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Schematic showing the structure and binding domains of the Apc protein:

Armadillo repeats bind to the regulatory unit of phosphatase 2a(PP2A), Apc-stimulated guanine nucleotide 
exchange factor for Rho family proteins (Asef) and Kap3 a linker proteins for kinesins. MRC denotes mutation 
cluster region. The 15 aa repeats and the 20 aa repeats are both involved in binding β-catenin. SAMP repeats are 
involved in binding axin and thought to be the most important repeat in the Apc molecule through the regulation 
of β-catenin. Apc binds to microtubules through its EB1 binding domain and therefore is believed to contribute to 
chromosomal instability.
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eliminating five or more of the seven 20-aa repeats as well as all the axin/conductin 

binding motifs, both of which are important for the binding and downregulation of β-

catenin. In FAP patients, the majority of mutations occur at the 5’ end of the Apc gene, 

however in sporadic tumours, the majority of mutations occur in what is known as the 

mutation cluster region (MCR), which is between codons 1285 and 1513 and disrupts its 

binding to axin (Ichii et al., 1993, Miyoshi et al., 1992). Previous studies have suggested 

that in FAP patients, that specific somatic mutation of the wild type allele are 

preferentially selected during tumour formation. These include mutations within the Apc 

gene that still allow for partial binding and downregulation of β-catenin, rather than 

mutations that have the β-catenin regulatory function completely inactivated. These 

studies have proposed a ‘just right signalling’ model, where the mutation needs to result 

in enough accumulation of β-catenin to activate Wnt target genes, but not enough to 

result in excessive levels which have been shown to result in programmed cell death 

(Fodde et al., 2001b). This notion was further investigated by Pollard et al. by generating 

a mouse model harbouring a truncating Apc mutation at codon 1322 (now referred to as 

Apc1322T). Mutation at this codon resulted in a truncated protein which contained one β-

catenin binding 20 Amino Acid Repeat (AAR) sequence. Tumourigenic studies were then 

performed comparing Apc1322T mice to ApcMin/+ mice, which carry no 20 AAR sequences. 

Results from this study showed that Apc1322T  mice developed adenomas much more 

rapidly, and adenomas were larger, more dysplastic and more numerous than those 

observed in ApcMin/+ mice. Moreover, adenomas from Apc1322T  mice displayed 

significantly lower levels of β-catenin than in ApcMin/+ mice. The authors from this study 

go on to suggest that high levels of β-catenin may be suboptimal for tumourigenesis, 
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possibly due to; inhibition of the expression of target messenger RNAs, unbalanced target 

expression, hyperactivation of specific negative feedback inhibition loops and effects on 

the noncanonical Wnt pathway (Pollard et al., 2009). Taken together these results 

illustrate that mutant Apc proteins that continue to harbor at least one 20AAR sequence, 

are able to maintain lower levels of nuclear β-catenin and consequently exert more severe 

tumourigenic effects.    

 

The C-terminal region of Apc binds to a wide variety of different proteins important for 

growth control and cycle progression, including EB1, hDLG, Bub1 and PTP-BL (Oving 

and Clevers, 2002). Previous studies have suggested a role for Apc in chromosomal 

instability due to its abilty to bind to the kinetochore protein Bub1 at its C-terminus 

(Kaplan et al., 2001). Similarly, the C-terminal region of Apc also binds to EB1, a 

protein, that in combination with Apc, mediates the attachment of microtubules to 

kinetochores  (Su et al., 1995, Tirnauer and Bierer, 2000). A role for Apc in chromosomal 

instability was further elucidated in a study involving ES cells, which showed that cells 

with mutant Apc proteins lacking the EB1 binding site resulted in the failure of 

mircotubules to properly connect to kinetochores, resulting in chromosomal 

missegregation (Fodde et al., 2001a). As mutations are in the MCR (mutation cluster 

region), all mutations that occur in CRC, as well as driving the activation of Wnt 

signalling will lack the carboxy-terminal domains that bind to DLG, EB1 and 

microtubules, creating N-terminal fragments. Given that all CRC mutations lack the C-

terminal domain of Apc, it is difficult to interpret if these functions of Apc are significant 

for its role as a tumour suppressor. This is due to the fact that all these mutations will also 
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have activated Wnt signalling. To test this hypothesis, Smits et al. created the Apc1638T 

mouse model which carried a targeted mutation at codon 1638 of the Apc gene. This 

resulted in a truncated Apc protein encompassing three of the seven 20 amino acid 

repeats and only one SAMP motif, but lacks all the carboxy-terminal domains thought to 

be associated with tumourigenesis. Unlike homozygous mutations for mouse Apc which 

result in early embryonic lethality, homozygosity for the Apc 1638 mutation was viable. 

However these animals were characterized by growth retardation. Most importantly 

however, Apc 1638T/1638T   animals that did survive to adulthood were tumour free. 

Through this study the SAMP motif was shown to be important for proper β-catenin 

signalling and regulation, as its targeted deletion results in a further reduction in the 

ability to properly control β-catenin/Tcf signalling. Therefore these results suggest that 

the C-terminal domain that associates with DLG, EB1 and microtubules is not critical for 

maintenance of homeostasis by Apc. Thus illustrating that while C-terminal domain 

functions of Apc are important for development,  it is Apc’s role in  β-catenin regulation  

that is crucial for normal embryonic development and tumour suppression (Smits et al., 

1999). 

 

Taken together, these studies have shown that the major tumour suppressive function of 

Apc in colorectal cancer is to control the levels of Wnt signalling. Therefore mutations 

that result in the truncation of Apc results in the stabilization of β-catenin and the 

activation of TCF/LEF target genes, and activation of the Wnt pathway. However these 

truncating mutations also result in abnormal chromosomal segregation, resulting in 
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genomic and chromosomal instability which may also drive tumour progression (Nathke, 

2006) 

 

1.3 Murine models of Colorectal Cancer 
 

Murine models of cancer have become invaluable tools to study the molecular pathways 

involved in the initiation and progression of tumourigenesis . Many genetically modified 

mouse strains have been generated in order to recapitulate the mutations that are observed 

in both familial and sporadic colorectal cancers. Given that mutations in Apc are 

responsible for the vast majority of tumours in both types of colorectal cancer, many 

mouse models have been engineered with different mutations in Apc which result in a 

different onset, severity and location of tumours. However despite these differences, the 

tumour histology amongst these different mutations are very similar. Table 1.8 contains a 

summary of various Apc genetically engineered mice.  
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Table 1.8: Summary of Apc genetically engineered mice (adapted from McCart et al. 
2008) 
 

GEM Mutation Polyp burden Histology/Pathology Reference

Apc Min/+
Truncating mutation 
at codon 850 (ENU 
induced)

~ 30 

100

Polypoid, papillary and sessile adenomas. Colonic 
polyps

Apc ▲716/+

Neomycin inserted 
into exon 15; protein 
truncated at codon
716

~ 300
Polypoid, papillary and sessile adenomas. 

No colonic ACF

Apc 1638N/+
Neomycin inserted in 
antisense orientation 
into exon 15; protein 
truncated at codon
1638

< 10
Polypoid and hyperplastic polyps. Moderate to 
highly differentiated adenocarcinoma with 
infiltration into mucosa and submucosa. Gastric 
lesions and a single liver metastasis. Desmoids, 
cutaneous cysts and spontaneous colonic ACF’s

Apc 1322T
Truncating 
mutation at codon
1322

~ 190 Majority of adenomas in first and second segment 
of intestine, More polyps, and larger polyps  than 
Apc Min/+

Apc ▲14
Frameshift 
mutation at codon
580

~ 65
Increase in colonic polyps, ACF and rectal 
prolapse. Tubular adenomas and invasive 
carcinomas in animals > 12 months. More severe 
than Apc Min/+

Apc 580/D
Frameshift 
mutation at  codon
580 following 
adenoviral derived 
cre exposure

~ 6 Adenomas predominantly near anus

Apc 580s/+ Frameshift mutation at 
codon 580 following 
AhCre mediated 
recombination

~ 100 Adenomas predominantly in small intestine

Moser et 
al. 1990

Oshima et al.
1995

Fodde et al. 
1994

Pollard et 
al. 2009

Colnot et al.
2004

Shiabta et al. 
1997

Sansom et al. 
2005

Apc 1638T

Same as above, however, 
insertion of Neomycin 
gene inserted in SAME 
transcriptional orientation 
as Apc –resulting in 
stable expression of 
182kD protein

0

Apc 1638T /1638T are tumour free
Smits et al. 
1999
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In all of these models, loss of the wild type allele of Apc is necessary to drive 

tumourigenesis. In the cases of the ApcMin/+, Apc ▲716 and Apc 1638N/+,  all three sets of 

genetically engineered mice develop histologically similar tumours, but a difference in  

tumour burden is observed between them, despite all being on the C57BL/6J background 

(Taketo, 2006). The Apc 1638N/+ mutant was believed to best recapitulate the FAP 

phenotype in terms of tumour progression. This was because this mutation resulted in a 

decrease in polyp burden (compared to Apcmin/+ and Apc ▲716 mice) within these mice, 

which allowed them to live longer and subsequently develop more advanced tumours 

(Fodde et al., 1994).  

 

Although these genetically engineered mice have provided a great insight into the 

development of colorectal cancer in vivo, it must be noted however that important 

discrepancies exist between these mouse models and actual human intestinal neoplasia. 

One of the most obvious differences is tumour location. In all Apc mutational mouse 

models tumour development predominantly occurs  in the small intestine, in contrast to 

human tumour development that arises predominantly in the colon. Another key 

discrepancy is that the Apc mouse models lack the key progressive features that are 

observed in human colorectal cancers, as tumours arising from these models are not 

invasive and most do not develop to adenocarcinomas. This can be due to environmental 

differences such as diet and genetics, which are controlled in a laboratory setting. 

Moreover, mouse models do not harbour the additional mutations in Smad4, KRAS or 

p53 that are observed in human tumour progression. This can also be explained by the 
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fact that they may reach a lethal tumour burden too quickly and need to be sacrificed 

before tumours can progress. (McCart et al., 2008). 

In addition, these models have not allowed us to elucidate the key pathways driving the 

earliest stages of intestinal transformation. Also, they have not been able to allow us to 

decipher the major transforming properties of an Apc mutation in intestinal 

tumourigenesis. For example, why Apc mutations are almost exclusively within gastro-

intestinal cancers.  

 

Therefore in order to understand how Apc acts as a ‘gatekeeper’ against colorectal 

cancer, it was important to address the role Apc plays in normal colon cells and the 

immediate consequences of Apc loss in vivo. Complete genetic inactivation of Apc in the 

mouse leads to embryonic lethality at day E6.5 (Moser et al., 1995). To overcome this 

problem, the bacterial Cre-lox system has been used to allow conditional deletion of 

genes in specific tissues of the mouse. The Cre-Lox system uses the Cre Recombinase 

gene (causes recombination), which encodes a site specific bacteriophage recombinase 

called Cre. This allows the Cre protein to recombine DNA that is flanked by specific 34 

base pair sites, called LoxP sites. Thus allowing genetic inactivation of your gene of 

interest by Cre-mediated excision. Intestinal inducible Cre can be driven using the  

Cyp1A1 (cytochrome p450 subfamily A1) promoter to deliver inducible Cre expression 

in the intestine (Ireland et al., 2004). The Cyp1A1 promoter is usually transcriptionally 

silent but is upregulated upon exposure to lipophilic xenobiotics, such as β-

napthoflavone. These in turn bind to a cytoplasmic Aryl Hydrocarbon receptor (hence 

term AHCre), allowing it to translocate to the nucleus where it complexes with other 
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factors to create a high affinity DNA binding protein. This transcriptional complex then 

binds to specific DNA recognition sequences present in the Cyp1A1 promoter and 

initiates transcription. Using the Cre-Lox based approach,  Sansom  et al. went on to  

cross AhCre+ mice to mice carrying a LoxP-flanked Apc (Apc 580s) and the Rosa 26 lacZ 

reporter allele (Shibata et al., 1997, Ireland et al., 2004, Sansom et al., 2004). The Rosa 

26 lacZ reporter allele is used to determine the efficiency of Cre activity, and as a result, 

transgenic animals conditionally express lacZ from the constitutively active ROSA26 

locus after Cre-mediated excision of a PGKneo cassette. This is quite an attractive system 

for in vivo studies as the Rosa 26 gene product is not required for cell viability, with 

knockout mice expressing no phenotype. Most importantly, the  Rosa 26 gene is 

ubiquitously expressed in embryogenesis and very widely expressed in adult 

tissue(Soriano, 1999) 

 

From these crosses, AhCre+Apc+/+ as well as AhCre+Apc fl/fl mice were generated and 

injected with four daily injections of β-napthoflavone (in order to induce recombination) 

at 8-10 weeks of age. This resulted in approximately 100% recombination in the intestine 

as scored through the Rosa26R allele. Induction of the transgene also results in 

recombination within the liver, and ‘leaky’ Cre expression, where no exposure to the 

inducer β-napthoflavone is needed, is observed within the renal epithelium (discussed in 

Chapter 4) (Ireland et al., 2004).  By the 5th day after induction,  AhCre+Apc fl/fl  mice 

were showing signs of illness and were killed. In contrast, AhCre+Apc+/+   showed no 

signs of illness (Sansom et al., 2004). 
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Histological examination revealed that AhCre+Apc fl/fl  mice displayed altered crypt-villus 

architecture, as a single crypt villus axis was no longer identifiable, with morphologically 

atypical ‘crypt-like’ cells now occupying the majority of the crypt villus axis (Sansom et 

al., 2004). Wholemount preparations of the intestine from AhCre+Apc fl/fl  mice stained 

for lacZ activity to report Cre mediated recombination  at the Rosa26R locus,  confirmed 

a direct overlay between the pattern of Apc loss and the pattern of histological change. 

Results went on to show that loss of Apc alters the normal pattern of differentiation, as 

Apc deficient cells no longer expressed villus cell markers such as alkaline phosphatase 

and Villin. Similarly goblet cells were lost in the absence of Apc and a re-distribution of 

paneth cells throughout the crypt-like area was observed. Moreover, inactivation of Apc 

was shown to completely abrogate migration along the crypt villus axis, and AhCre+Apc 

fl/fl  crypts displayed a 45% increase in the proliferation index, with proliferation now 

occurring independently of position (Sansom et al., 2004). 

 

Following these studies that showed that Apc deletion in vivo leads to a hyper 

proliferative, ‘crypt progenitor cell-like phenotype’, it was only natural that studies then 

went on to examine one of the best pro-proliferative Wnt target genes,  c-Myc.  

Studies from our lab then went on to show that conditional deletion of both Apc and c-

Myc within the intestinal epithelium in vivo rescued the phenotype of perturbed 

proliferation, migration, differentiation and apoptosis observed following loss of Apc 

(Sansom et al., 2004). Surprisingly however, despite the return of morphologically ‘wild 

type’ looking crypts in the double mutant mice, high levels of nuclear β-catenin were 

expressed throughout the crypt villus axis. Tissue expression array analysis from these 



44 

mice revealed that the majority of Wnt target genes were c-Myc dependent, arguing that 

the most important consequence of Apc loss and Wnt signalling was c-Myc activation 

(Sansom et al., 2007).   

 

1.4 The role of c-Myc in colorectal cancer 

 

1.4.1  An overview of Myc 
 

The proto-oncogene c-Myc encodes a transcription factor c-Myc, which is the cellular 

homologue to the avian myelocytomatosis retrovirus (Vennstrom et al., 1982). The c-

Myc gene was originally discovered in Burkitts lymphoma, and mapped to chromosome 

8q, due to the observation of many chromosomal translocations at this site. The c-Myc 

protein belongs to the Myc group of transcription factors also including N-Myc and L-

Myc genes. 

Deregulation of Myc is observed in a variety of human tumours, which is due to the fact 

that Myc is required for a number of key events. These include ability to drive 

unrestricted cellular proliferation (Eilers et al., 1991), inhibit differentiation (Freytag and 

Geddes, 1992) and drive apoptosis (Askew et al., 1991, Evan et al., 1992). Myc is also 

known to play a role in ribosome biosynthesis, protein synthesis, mitochondrial function, 

metabolism and angiogenesis (Dang et al., 2006). Studies have also suggested a key role 

for Myc in DNA replication (Dominguez-Sola et al., 2007). Because of this, Myc is 

known to activate and repress a vast number of genes. Although a long list of genes 

activated by c-Myc exist, the majority include those involved in cellular growth, protein 

synthesis and mitochondrial function. Conversely the majority of genes inactivated by c-
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Myc include those that would normally negatively regulate cell growth, metastasis and 

those that promote communication with cells external environment (O'Connell et al., 

2003). 

c-Myc is a basic helix–loop–helix zipper (bHLHZ) protein that forms a heterodimer with 

another bHLHZ, called Max. Once this heterodimer is formed, it is now able to recognize 

the hexameric DNA sequence CACGTG, known as E-boxes, and activate transcription of 

target genes. (Blackwood and Eisenman, 1991). Furthermore, studies have shown that c-

Myc needs to form a  heterodimer with Max in order to activate genes that contain Ebox 

binding sites (Amati et al., 1992).  Studies have also shown that Myc recruits a histone 

acetyltransferase (HAT) in order to mediate its transactivation function (McMahon et al., 

2000). 

However Myc has also been shown to transcriptionally  repress a number of target genes 

through the interaction with Miz-1. On its own, Miz-1 activates transcription on core 

promoters through the recruitment of the p300 histone acetyltransferase. However, the 

Myc-Max heterodimer is able to block this transcriptional activation by Miz-1, by 

disrupting its interaction with the p300 histone acetyltransferase, and through the  

recruitment of the DNA methyltransferase DNMT3a (Peukert et al., 1997).  

 

 

Of great interest to this study is how c-Myc is able to induce cell growth and 

proliferation, particularly following Wnt signalling activation.  c-Myc is known to induce 

G1- S phase progression through gene activation and repression. Of particular interest are 

the activation of CKD4/Cyclin D2 complexes and the repression of p21. In order to 
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mediate G1 to S phase progression, studies have shown that Myc/Max heterodimers 

induce Cyclin E/ CDK2 activity (Steiner et al., 1995). Similarly, studies have also shown 

that Myc is able to activate CDK4 and cyclin D2, which in turn results in sequestration of 

CDK inhibitor p27 (Bouchard et al., 1999). Further studies have gone on to show that 

Myc’s role in cell cycle progression involves the transcriptional repression of various 

growth arrest genes, such as p15 and p21 (Steiner et al., 1995, Seoane et al., 2002). 

Studies have shown that when Myc levels are high, Myc is recruited to the p21 promoter 

by Miz-1 and inhibits p21 activation (Seoane et al., 2002). Micro-array analysis has 

confirmed this,  implicating  p21 as one of the major targets of c-Myc repression (Gartel 

and Radhakrishnan, 2005). 

 

Given that c-Myc has been shown to be required for cellular and molecular changes that 

occur following Apc loss in the murine small intestine (Sansom et al., 2007), this thesis 

aims to investigate how c-Myc induces and controls proliferation following Apc loss in 

the murine small intestine in vivo.  To do this the following mechanisms will be 

examined: 

 

• The importance of the transcriptional repression of p21 by c-Myc through 

interaction with miz-1. 

• The importance of the upregulation of the CDK4/cyclin D2 complexes by c-

Myc 
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1.4.2 The role of Myc in apoptosis 
 

Studies have now established a strong role for Myc in cell growth and proliferation, 

however it is also widely accepted that the Myc oncogene is also a potent inducer of 

programmed cell death (Askew et al., 1991, Evan et al., 1992). Moreover, the apoptotic 

function of Myc continued to require binding of its partner Max (Amati et al., 1992).  

Evan and colleagues then went on to suggest that Myc’s opposing roles in proliferation 

and apoptosis, could be explained as a built- in ‘safety mechanism’, and that sensitization 

to apoptosis was a normal function of Myc (Evan et al., 1992). Moreover, it has been 

shown that the potent proliferative role of Myc is not unleashed unless apoptotic 

mechanisms are disabled. However if these mechanisms remain intact, Myc is able to 

increase sensitivity to DNA damage induced apoptosis (Arango et al., 2003). Studies 

have shown that Myc can potentiate apoptosis through both p53 dependent and 

independent mechanism (Sakamuro et al., 1995). The most extensively studied pathway 

for p53 dependent Myc induced apoptosis is the ARF-MDM2- p53 pathway. In this 

pathway, Myc activation leads to upregulation of the ARF tumour suppressor (a 

transcript from the alternative reading frame of the INK4a locus), which in turn inhibits 

Mdm2 function. Mdm2 is the most well known regulator of p53, as it binds and 

ubiquitinates p53, ultimately targeting it for proteosome degradation (Brooks and Gu, 

2003). When Mdm2 is inhibited, p53 is now free and able to transcribe a number of pro-

apoptotic genes such as Bax, Bim, Noxa, Puma and Fas (Benchimol, 2001). Similarly, 

Myc is postulated to effect the outcome of p53 activation following DNA damage, 

through its transcriptional repression of p21. Thus when Myc levels are low, activation of 

p53 leads to the induction of p21 and cell cycle arrest. In contrast, if Myc levels are high, 
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Myc is able to inhibit p21 through its interaction with Miz-1, thereby favoring the p53 

induced apoptotic pathway (Seoane et al., 2002). Myc’s induction of apoptosis in a p53 

independent fashion, appears to be regulated through Myc’s ability to regulate the 

balance between pro and anti-apoptotic BCL2 family members. Studies have shown that 

Myc is able to suppress anti-apoptotic BCL2 family members, such as BCL2 and BCL-

xL, but is able to upregulate proapoptotic proteins such as Bax and Bim (Meyer and 

Penn, 2008). Moreover, studies have shown that cytochrome C is a direct transcriptional 

target of Myc, resulting in the cleavage of downstream caspases (Juin et al., 1999).  

Recent studies in Drosophila have shown that cells which have high  levels of Myc can 

outgrow and induce apoptosis in neighbouring cells (de la Cova et al., 2004). This may 

play a key role in the clonal expansion of neoplastic cells. Such a form of cell-cell 

competition may serve to explain the phenomenon known as field ‘cancerisation’, 

whereby a clone of neoplastic cells out grow and replace normal cells. Such dysplastic 

fields are often observed in colorectal neoplasia. Given that Myc is overexpressed in 70% 

of colorectal cancers, studies have suggested that the inhibition of apoptosis in wild type 

cells may prove effective in limited apoptotic transformation induced by Myc, and 

therefore result in a decrease in tumour growth (Secombe et al., 2004, Donaldson and 

Duronio, 2004).   
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1.4.3 Deleting c-Myc from the intestinal epithelium in vivo 
 

Deletion of c-Myc by gene targeting in mice causes mid-gestation lethality . To overcome 

this problem, the bacterial Cre-lox system has been used to allow conditional deletion of 

genes in specific tissues of the mouse . Conditional deletion of c-Myc was achieved by 

crossing mice which express the AhCre-recombinase, to mice with a loxP-flanked c-Myc 

allele. Cre+ Mycfl/fl mice were generated, and conditional deletion of the c-Myc allele was 

obtained by inducing Cre-recombination with intraperitoneal injections of β-

naphthoflavone. To generate 100% recombination, mice were given three injections in a 

single day, which induces Cre activity within the crypts of the small intestine, including  

the stem cells (Muncan et al., 2006b). The effect of in vivo deletion of c-Myc from the 

intestinal epithelium has been of much debate. Studies performed by Muncan et al. 

showed that deletion of c-Myc from the intestinal epithelium, resulted in a reduction in 

size and in proliferation of c-Myc deficient enterocytes compared to wildtype. It was 

suggested the absence of c-Myc resulted in reduced levels of its target gene 

nucleophosim; a key regulator of cell growth and ribosome biosynthesis. Moreover 

deletion of c-Myc within these mice resulted in the repopulation of c-Myc deficient 

enterocytes with wild type ones over the longer term, resembling the phenomenon of 

‘cell-cell’ competition, observed in Drosophila (Muncan et al., 2006b). However other 

studies performed by Bettess et al. showed c-Myc to be essential for intestinal crypt 

formation but not for intestinal homeostasis (Bettess et al., 2005). The suggested 

difference in outcomes between these two models is thought to be the method of 

transgene recombination used and genetic background. For example, Mucan et al. 

performed studies using the AhCre transgene as described above, whereas Bettess et al. 
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used the VillinCreER transgene to delete c-Myc. Regardless of different outcomes, these 

studies illustrated the key point that deletion of c-Myc from the intestinal epithelium 

results in mice that are viable, and allows for short term retention of c-Myc deficient 

enterocytes.  

As a result, one of the key aims of this study is to use AhCre+ Mycfl/fl mice in order to 

examine the interaction between c-Myc and p21.    

 

1.4.4 The role of c-Myc as a critical mediator of the ‘crypt progenitor’ phenotype 
 
Studies from this lab have showed that c-Myc is required for all the immediate 

phenotypic changes that are observed following loss of Apc in vivo. Crossing AhCre+ 

Apcfl/fl mice to AhCre+ Mycfl/fl mice, to generate double mutant AhCre+ Apcfl/fl Mycfl/fl 

mice, we have shown that double mutant intestinal enterocytes are able to proliferate, 

migrate and differentiate like wild type cells (Sansom et al., 2007). These studies 

confirmed complete gene loss of both Apc and c-Myc, illustrating these effects were not 

due to repopulation of wild type cells. Surprisingly however, high levels are nuclear β-

catenin were continued to be observed in double mutant cells, demonstrating that in the 

absence of c-Myc, nuclear β-catenin is insufficient to drive the Apc ‘crypt progenitor’ 

phenotype (Sansom et al., 2007).  

Following these key findings, various studies have been aimed at identifying the effects 

of Apc loss and the requirement of c-Myc, with many studies showing that effects are cell 

context specific. For example, studies have shown that overexpression of c-Myc in 

pancreatic islets leads to a large induction of proliferation and apoptosis (Pelengaris et al., 

2002). Therefore one would predict that targeted Apc gene deletion, and hence c-Myc 
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activation, using a pancreatic specific Cre would produce similar effects. However this 

was not the case. When Apc was deleted within the islets of the pancreas through the use 

of a pancreatic specific Cre (Pax6-Cre), no phenotype was observed, despite efficient 

gene deletion (Strom et al., 2007). This lack of phenotype was due to a complete failure 

of upregulation of Wnt/TCF target genes, such as c-Myc. However, using the pancreatic 

and duodenal homeobox to drive recombination throughout the entire pancreas, Apc gene 

deletion lead to pancreatomegaly due to the hyperproliferation of acinar cells but did not 

lead to tumourigenesis (Strom et al., 2007). Moreover, similar to the intestine, 

inactivation of c-Myc and Apc completely rescued this phenotype. Taken together these 

results highlight the importance of cellular context.  

However in not all cell contexts is Wnt-mediated hyperplasia c-Myc dependent. This can 

be observed in the liver where loss of Apc leads to hepatomegally, however the loss of c-

Myc is unable to rescue this phenotype (Sansom et al., 2007).  Therefore, studies have 

gone on to examine whether the simple overexpression of c-Myc within the intestinal 

epithelium is sufficient to recapitulate those observed following activation of the Wnt/β-

catenin pathway. Studies from Finch et al. have used mice which have a transgenically 

targeted expression of the reversibly switchable form of Myc, termed MycERTAM , to 

determine if acute activation of Myc is able to mimic the ‘crypt progenitor’ phenotype 

observed following Apc loss (Finch et al., 2009).  Results from these studies showed that 

direct activation of c-Myc within the intestinal epithelium did result in phenotypic 

changes that overlapped those observed following acute loss of Apc, but were not 

identical. As observed following loss of Apc, c-Myc activation induces an increase in 

proliferation and apoptosis as well as a loss of the goblet cell lineage (Finch et al., 2009). 
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Following Apc loss, paneth cells are redistributed, however c-Myc activation results in 

the complete ablation of paneth cell, presumably through in situ dedifferentiation. 

However the most important distinction observed was the robust activation of the 

ARF/p53 pathway within MycERTAM  mice, which is not normally observed following 

indirect c-Myc activation via deregulated Wnt signalling (Sansom et al., 2004). The 

authors of this study suggest that it is the levels of c-Myc expression that account for 

these discrepancies. Results showed that MycERTAM  mRNA was expressed 40-fold 

higher than endogenous c-Myc mRNA and 5 fold higher than those levels observed 

following loss of Apc. It is postulated that these levels are high enough in MycERTAM  

mice to allow activation of the ARF/p53 pathway, resulting in high levels of apoptosis 

and tumour suppression. However in the case of direct c-Myc activation following 

aberrant Wnt activation, c-Myc levels are not high enough to activate the ARF/p53 

pathway, but instead are able to repress p21. The ability of c-Myc to repress p21 in this 

context, may serve to explain why p53 activation is unable to significantly affect the 

hyperproliferation that is observed following loss of Apc (Reed et al., 2008). This notion 

was furthered investigated by studies performed by Murphy et al. which used the Rosa26 

promoter to drive low-level deregulated expression of the switchable form of Myc, 

MycERT2, in target tissues (Murphy et al., 2008b). Results showed that acute activation of 

Myc lead to an induction of ectopic proliferation in many tissues. However this low level 

of Myc induction was not sufficient to activate the ARF/p53 pathway. These results show 

that although c-Myc is required, c-Myc independent Wnt/β-catenin functions exist that 

may be critical for intestinal tumourigenesis (Finch et al., 2009). Taken together these 

results show that following degregulated Wnt signalling, c-Myc is  specifically 
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upregulated only to levels which are high enough to lock crypt stem and progenitor cells 

in a proliferative and undifferentiated state, but are crucially not high enough to induce 

the ARF/p53 pathway, which would result in tumour suppression.  
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1.5  The cell cycle 
 

Deregulation of the cell cycle in human cancer has been well documented in a vast array  

of studies over the past two decades. Some of the key hallmarks of cancer are 

uncontrolled proliferation, due to constitutive mitogenic signalling and defective anti-

mitogenic signalling, genomic and chromosomal instability; all of which  can be 

attributed to the misregulation of  Cyclin Dependent Kinases (CDKs) 

CDK’s are regulated by a group of regulatory subunits known as cyclins, and therefore 

require binding of these cyclins to be active. In order to regulate the cell cycle,  cyclins 

are synthesized and destroyed at the correct times in order to activate their appropriate 

kinase [reviewed in (Malumbres and Barbacid, 2009)] 

Initial studies investigating the control of the cell cycle were performed in yeasts which 

found that regulation of the cell cycle was through a single CDK, known as Cdc28 in 

Saccharomyces cerevisiae and Cdc2 in Saccharomyces Pombe (Russell and Nurse, 

1986), and was shown to bind to a number of different cyclins throughout the cell cycle. 

In human cells however, the number of CDKs and cyclins are significantly more 

(Malumbres and Barbacid, 2005). However despite this increase, there is only a subset of 

CDKs and cyclins that complex together to drive the cell cycle. These include : CDK2, 

CDK4, CDK6, CDK1 and ten cyclins belonging to four different classes; A, B, D, E. 

The cell cycle is comprised of two main stages; interphase and M(mitosis) phase. 

Interphase encompasses G1, S and G2 phases. In G1 (Gap 1) cells increase in size and 

produce a significant amount of RNA and protein. In S (synthesis) phase, DNA 

replication occurs. In G2 (Gap 2) phase the cell continues to grow and produces more 

proteins and the production of microtubules is now observed. In M phase, cell growth and 
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protein production stop, and the division into two daughter cells is now observed. In 

human cells, interphase lasts anywhere between 12-24 hours, whilst mitosis is much 

shorter, which a duration of only 1-2 hours. Cells that exit mitosis either go on to 

proliferate and enter the cell cycle again in G1, or enter what is know as a resting or 

quiescent  state, known as G0.  Cells that are non-proliferative may stay in this state for 

long periods of time, such is observed in terminally differentiated cells; example neuronal 

cells.  

   As mentioned above, there are key CDK/Cyclin complexes are responsible for certain 

stages of progression throughout the cell cycle (Figure 1.9)   
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  Figure 1.9: The cell cycle (adapted from Mumbres et al. 2009) 
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During G1, D-type cyclins (cyclin D1, D2 and D3) sense initial mitogenic signals and 

bind preferentially to CDK4 and CDK6. The binding of these cyclins results in the 

activation of CDK4 and CDK6, which in turn leads to the partial inactivation of RB 

proteins; RB1 (known as p107) and RB2 (known as p130). Under normal conditions, RB 

serves as a transcriptional repressor through its interaction with various transcription 

factors such as E2F, histone deacetylases and chromatin remodelling complexes 

(Cobrinik, 2005). Importantly, one of the main repressional targets of the Rb/E2F 

complex are the E cyclins, which bind to and activate CDK2. Active CDK2/Cyclin E 

complexes are now able to further phosphorylate Rb proteins, leading to their complete 

inactivation. (Harbour et al., 1999, Lundberg and Weinberg, 1998). This inactivation is 

key to G1 progression, as active CDK2/Cyclin E complexes are believed to be required to 

drive effective G1-S transition (Vandenheuvel and Harlow, 1993). CDK2 is then 

activated by cyclin A2 in order to drive the progression through G2. At the end of G2, 

CDK1 is believed to be activated by cyclin A, and this complex now initiates mitosis. A-

type Cyclins are then degraded and subsequently B-type Cyclins are able to bind to  

CDK1. An active CDK1/cyclin B complex is believed to be necessary  to drive cells 

through mitosis [ reviewed in (Malumbres and Barbacid, 2009)]. 
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1.5.1 Evaluation of the CDK/Cyclin D complexes in vivo 
 

The ‘classical’ model of the mammalian cell cycle dictates that specific CDKs are 

responsible for certain stages of progression of the cell cycle.  However recent animal 

models with germline deletions of various CDKs have shown this not to be the case [ 

reviewed in (Santamaria and Ortega, 2006)]. Germline deletions of interphase CDK2, 

CDK4 and CDK6 have shown redundancy for cell cycle progression in the majority of 

murine cells, as mice with germline deletions for any one of these CDKs remain viable. 

However, deletions of these CDKs result in developmental defects of specific cell types, 

which in turn can result in a reduced life span. (Table 1.10)  
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Table 1.10: Major phenotypes of gene targeted or spontaneous mutant mice lacking 
one or more CDK (adapted from Santamaria et al. 2009) 
 

 

Targeted gene Functional 
effect

Life span Major phenotype Reference

CDK4 knockout
Pancreatic beta cell proliferation 
impaired: diabetes.

Anterior pituitary cell proliferation 
impaired, particularly

lactotrophs.

Leydig cell numbers reduced.

Defective spermatogenesis.

CDK6

Hypoplastic thymus and spleen.

Reduced erythrocyte and 
megakaryocyte numbers.

Reduced body size only in females.

CDK2 Spermatocytes die in pachytene.

Oocytes die in diplotene.

100% esterility in males and females.

Strain dependent reduced body size.

Viable. 
Normal life 
span.

Addition of individual knock-out 
phenotypes.

Viable. Reduced

life span due to 
diabetes

knockout

Viable. 

Normal life span

knockout Viable. 

Normal life span

CDK4 & 
CDK6

Double 
knockout

Embryonic 
lethality at

E14.5-E18.5

Defective fetal hematopoiesis.

Severe anemia.

CDK2 & 
CDK6

Double 
knockout

Rane et 
al. 1999

Malumbres

et al. 2004

Ortega

et al. 2003;

Berthet et al.

2003

Malumbres

et al. 2004

Malumbres

et al. 2004
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2003

Malumbres

et al. 2004

Malumbres

et al. 2004
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For example, mice with targeted gene deletion of CDK4 are viable but have a reduced 

life span due to an impairment in pancreatic beta cell proliferation, which results in the 

onset of diabetes (Rane et al., 1999). Similarly, knockouts of CDK6 and CDK2 result in 

mice that are viable, however these mice have a normal life span due to only minor 

defects  observed in the erythroid lineage in CDK6 mice (Malumbres et al., 2004), whilst 

deletion of CDK2 results in defective meiotic division of male and female germline cells 

(Ortega et al., 2003, Berthet et al., 2003).  

Further studies have gone on to show that the lack of any major cell cycle defects cannot 

just simply be attributed to the compensation of the CDKs. For example the combined 

knockout of CDK4 and CDK6 results in embryonic lethality at day E14.5-18.5 which is 

attributed to defective fetal hematopoiesis, resulting in severe anaemia (Malumbres et al., 

2004). Surprisingly however, no major defects in entry to or cell cycle progression are 

observed in any other cell lineage other than the haematopoietic lineage. Moreover, mice 

with combined knockouts of CDK2 and CDK6 were completely viable and reached 

adulthood. The only defects observed were those seen in the single knockout strains 

(Malumbres et al., 2004). 

More recent studies have shown that in vivo of deletion of CDK2, CDK4 and CDK6 

results in mice that are able to undergo organogenesis but die by mid gestation due to 

hematopoietic defects (Santamaria et al., 2007). Results from the same lab also went on 

to show that CDK1 is sufficient to drive the mammalian cell cycle, as within these triple 

knockout mice, CDK1 was sufficient to bind to all cyclins, resulting in the 

phosphorylation of Rb, and subsequent transcription of E2F target genes. Moreover,  

mice that were homozygous for a CDK1 mutant allele resulted in embryonic lethality due 
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to impaired cell division in very early development, illustrating the essential role of 

CDK1, and the inability of all other CDKs to compensate for its loss (Santamaria et al., 

2007).  Therefore these findings suggest that although CDK1 may be the only CDK that 

is completely required to drive the cell cycle, the presence of additional CDKs may have 

evolved in mammalian cells as a higher regulatory mechanism for a variety of specific 

cell types. 

 

In vivo studies have also examined the effect of the D-type cyclins (D1, D2, D3) on cell 

cycle progression through gene targeting (Table 1.11).Similarly to CDK2/4/6 deletion, 

deletion of individual D-type cyclins results in the cell type specific developmental 

defects. Although the expression of D-type cyclins throughout embryonic development is 

tissue specific, it is widely accepted that there is co-expression of the three cyclins in a 

number of tissues, and therefore redundancy may explain the failure to observe 

embryonic development (Santamaria and Ortega, 2006). Knockouts of cyclin D1, D2 or 

D3 all result in viable mice, with cell type specific defects. Deletion of cyclin D1 results 

in defects in eye and mammary gland development (Fantl et al., 1995), whilst deletion of 

cyclin D2 results in defective pancreatic beta cell proliferation (Sicinski et al., 1996b), 

similar to that observed in CDK4 knockout mice. Deletion of cyclin D3 results in a 

hypoplastic thymus (Sicinska et al., 2003). Consistent with the hypothesis of genetic 

redundancy of cyclin D proteins, in vivo deletion of a single D-type cyclin often results in 

the upregulation of the other two D-type cyclins. The exact mechanism for this 

compensation appears to be embryonic tissue specific. For example in some cases altered 

translation is observed with an increase in mRNA of the given cyclin, by various post-
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translational mechanisms (Ciemerych et al., 2002). The exact mechanism of 

compensation is unknown, however studies have shown that during embryogenesis, 

cellular proliferation is reliant on the ‘net’ cyclin D activity, with all D-type cyclins being 

interchangable for proliferation in most cell types. Tissue specific defects occur in double 

knockout mice, when specific transcription factors are unable to upregulate the remaining 

cyclin, when normally expression of that cyclin in that particular tissue is either absent, or 

expressed at much lower levels. For example combined cyclin D1 and cyclin D2 

knockout mice are viable but die within the first three weeks of birth due to reduced body 

size and hypoplastic cerebellum.  Combined knockouts of all three D-type cyclins have 

resulted in embryonic lethality at day E16.5 due to megaloblastic anemia and defective 

fetal hematopoiesis (Kozar et al., 2004), similar to those defects observed in 

CDK4/CDK6 knockout mice (Malumbres et al., 2004) 

Studies examining the ‘overlap’ between D-type cyclins have found that in the case of 

cyclin D1 deletion,  knock in replacement with cyclin D2 is insufficient to rescue all the 

phenotypes observed in cyclin D1 null mice (Carthon et al., 2005). Taken together these 

results illustrates that although there is co-expression and redundancy of D-type cyclins 

during embryonic development, small functional differences and expression patterns 

between D-type cyclins exist which may serve to provide additional regulation of 

proliferation of specific cell types.  
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Table 1.11 : Major phenotypes of gene targeted or spontaneous mutant mice lacking 

one or more D-type Cyclin (adapted from Santamaria et al. 2006) 

Targeted gene Functional 
effect

Life span Major phenotype Reference

Cyclin D1 knockout
Neurological abnormalities.

Impaired mammary epithelial 
proliferation during pregnancy.

Retinal hypoplasia.

Reduced body size.

Cyclin D2

Impaired pancreatic beta cell 
proliferation.

Impaired granulosa cell proliferation 
in response to FSH.

Female sterility.

Hypoplastic testes, decreased sperm 
counts.

Impaired proliferation of B-
lymphocytes.

Impaired cerebellar cell development.Cyclin D3

Hypoplastic thymus.

Embryonic 
lethality at

E16.5

Megaloblastic anemia.

Defective fetal hematopoiesis.

Viable

knockout

Viable

knockout Viable. 

Normal life span

Cyclin D1 & D2 Double 
knockout

Viable.

Die in the first 
three weeks

Hypoplastic cerebellum.

Reduced body size

Cyclin D1, 
D2, D3

Triple

knockout

Fantl et al. 
1995;

Sicinski et 
al. 1995

Antanasoski
et al. 2001

Ciemerych
et al. 2005

Sicinski et 
al. 1996;

Georgia et 
al. 2004

Huard et al. 
1999

Solvason et 
al. 2000

Kowalczyk
et al. 2004

Sicinska et 
al. 2003;

Ciemerych
et al. 2002

Kozar et al. 
2004
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effect
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Impaired granulosa cell proliferation 
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Hypoplastic testes, decreased sperm 
counts.

Impaired proliferation of B-
lymphocytes.

Impaired cerebellar cell development.Cyclin D3

Hypoplastic thymus.

Embryonic 
lethality at

E16.5

Megaloblastic anemia.

Defective fetal hematopoiesis.

Viable

knockout

Viable

knockout Viable. 

Normal life span

Cyclin D1 & D2 Double 
knockout

Viable.

Die in the first 
three weeks

Hypoplastic cerebellum.

Reduced body size

Cyclin D1, 
D2, D3

Triple

knockout

Fantl et al. 
1995;

Sicinski et 
al. 1995

Antanasoski
et al. 2001

Ciemerych
et al. 2005

Sicinski et 
al. 1996;

Georgia et 
al. 2004

Huard et al. 
1999

Solvason et 
al. 2000

Kowalczyk
et al. 2004

Sicinska et 
al. 2003;

Ciemerych
et al. 2002

Kozar et al. 
2004
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1.5.2 The role of Cyclin D1 and Cyclin D2 following activation of Wnt signalling 
 

Previous studies have shown that CyclinD/CDK4/6 complexes may act as key 

modulators of c-Myc dependent proliferation, due to the fact that CDK4, Cyclin D1 and 

Cyclin D2 have been proposed as direct c-Myc target genes (Haas et al., 1997). Although 

Cyclin D1 has been proposed as a canonical Wnt target gene, studies from our lab have 

confirmed that Cyclin D1 is not immediately upregulated in the murine small intestine 

following loss of Apc (Sansom et al., 2005b). Furthermore, genetic deletion of Cyclin D1 

did not impact any of the immediate phenotypes observed following Apc loss, and most 

importantly did not effect proliferation. However, Cyclin D1 was observed to be 

upregulated at later stages following Apc loss and was shown to be required for efficient 

adenoma formation (Sansom et al., 2005b). Studies from our lab have gone on to show 

that Cyclin D2 is immediately upregulated following Apc loss (Sansom et al., 2004). This 

may be explained by the fact that Cyclin D2 levels are most highly expressed in the base 

of the crypt, coinciding with high areas of Wnt signalling, arguing that Cyclin D2 

expression is driven by Wnt signalling (Yang et al., 2006). Given that the induction of 

proliferation following Apc loss is c-Myc dependent, this thesis aims to investigate the 

importance of the upregulation of cyclin D2 following Apc loss, as well as the 

dependence of Apc deficient cells on CyclinD/CDK4/6 complexes.  
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1.5.3 CDK’s and CDK inhibitors in cancer 
 

Given that one of the key hallmarks of cancer is uncontrolled cellular proliferation it is 

not suprising that studies have found pRb, the major regulator of entry into the cell cycle, 

to be one of the most frequent targets of genetic alterations in tumours. Given that CDK2, 

CDK4 and CDK6  control the G0 to S transition, they have been the main focus of CDK 

drug targeted inhibition (Malumbres and Barbacid, 2001). Therefore due to the important 

regulatory role  that CDKs play in controlling the cell cycle, CDKs are often upregulated 

in cancer, resulting in the unscheduled cellular division of either stem or possibly 

progenitor cells (Malumbres and Barbacid, 2009). Both CDK4 and CDK6 are 

overexpressed in wide range of tumours, including sarcoma, glioma, breast tumours, 

lymphoma and melanoma. Studies have shown that D-type cyclins are frequently 

deregulated in tumours, resulting in hyperactivation of CDK4 and CDK6.  CDK6 has 

been shown be preferentially hyperactivated in mesenchymal tumours such as leukaemia 

and sarcomas. Whereas CDK4 tends to be upregulated in epithelial tumours. [reviewed in 

(Malumbres and Barbacid, 2009)]. Targeting CDKs for cancer therapy relies on the 

notion that cancer cells, due to their highly proliferative nature are more dependent on 

CDK/Cyclin complexes than most normal cells that are in a quiescent, non proliferative 

state (Santamaria and Ortega, 2006). However this principle has not held up in clinical 

trials of initial CDK inhibitors such as flavopiridol and UCN-01, which target CDK 1,2,4 

and 6 (Shapiro, 2006).  The most plausible reason for their failure is the fact that these 

inhibitors were not targeted to tumours which were dependent on CDKS.  Various in vivo 
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studies have shown that the tumour dependence on a certain CDK, is reliant not only on 

the oncogenic mutation that drives tumour development but also on the tissue specificity 

of the tumour. This can be observed in mouse tumour models that have shown that 

deletion of cyclin D1 (and therefore CDK4/CDK6 activity) prevents breast cancer when 

driven by Erbb2 and Hras oncogenes, but not in the case of those that are driven by Wnt1 

or Myc driven pathways (Yu et al., 2001). However in a model of Myc induced skin 

tumourigenesis, inhibition of CDK4 proved to be effective (Miliani de Marval et al., 

2004). Therefore these results suggest that each tumour type dependent on its mutational 

and tissue origins may require inhibition of a specfic CDK to effectively inhibit cell 

growth.  

Although mouse models with germline or conditional deletion of various CDK’s exist, 

these models do not accurately mirror pharmacological inhibition. This is due to the fact 

that pharmacological inhibition results invariably in incomplete inhibition of the 

designated target and usually is accompanied by off target effects. It has therefore been 

suggested that knock in mutations that express dead CDKs or non-activating cyclins be 

used in order to better predict the consequences of in vivo targeting as well as off target 

effects (Malumbres and Barbacid, 2009).  
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1.6 Regulators of the cell cycle 
 

In order to regulate the cell cycle, two families of CDK inhibitors exist. These include the 

INK4 proteins, namely INK4a, INK4b, INK4c and INK4d, and the Cip and Kip family 

which are composed of p21Waf/CIP1, p27 and p57 (Sherr and Roberts, 1999).  

Ink4a proteins inhibit CDK4 and CDK6 complexes by competing with D-type cyclins for 

binding. In contrast, Cip and Kip family members bind to active CDK/cyclin complexes, 

resulting in inactive trimeric complexes. Besides binding to CDK4 and CDK6, Cip/Kip 

inhibitors are also known to inhibit complexes between CDK2/cyclin A, CDK2/cyclin E, 

CDK1/cyclin A and CDK1/cyclin E [reviewed in (Malumbres and Barbacid, 2005)].  In 

order to investigate the effects of these CDK inhibitors in vivo, mouse models harbouring 

germline mutations for these inhibitors have been made. Mice which harbour knockout 

mutations in p15INK4b, p16INK4a,  p18INK4c  and p19INK4d  are viable, however mice with 

deletions in p15INK4b, p16INK4a and   p18INK4c  have an increased risk of tumourigenesis  

(Krimpenfort et al., 2001, Sharpless et al., 2001, Franklin et al., 1998, Zindy et al., 2001, 

Bai et al., 2003). However p19INK4d  mice display no susceptibility to tumourigenesis, 

they exhibit only minor defects such as testicular atrophy and progressive hearing loss 

(Zindy et al., 2000, Chen et al., 2003). 

Mutations in INK4 genes, including p15INK4b, p16INK4a or p18INK4c  have been found in a 

wide variety of human cancers, including melanoma and pancreatic cancers.  These 

mutations include either gene deletion, promoter methylation or point mutations (Ruas 

and Peters, 1998).  

Unlike INK4a genes, mutations in the Cip/Kip family of CDK inhibitors are much more 

rare. p21Waf1/Cip1 and p57Kip2 are rarely found altered in human cancer, however reduced 
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levels of p27kip1 are associated with poor prognosis in a wide range of cancers, including 

those of breast, prostate and gastric carcinomas (Lloyd et al., 1999). Similarly, p21 levels 

are downregulated in human colon tumours, and is linked to decreased survival rates. p21 

deficiency  also decreases the number of mature goblet cells, which is significant as the 

loss of this lineage and mucin secretion is characteristic of early, preneoplastic aberrant 

crypt foci in patients who are at risk for developing colon cancer (Zirbes et al., 2000).  

 

1.6.1  The role of p21 in the cell cycle 
 

p21 waf/cip  was originally discovered as a key target of the p53 tumour suppressor gene 

following DNA damage. Induction of p21 by p53 induced cell cycle arrest by a block in  

G1 (Deng et al., 1995). Studies have also shown that p21 can be induced in a p53 

independent fashion, such as through oxidative stress, cytokines, tumour viruses and 

anticancer agents [reviewed(Abbas and Dutta, 2009)]. In order to inhibit cell cycle 

progression, p21 binds to CDK2/cyclin E complexes in G1, which inhibits the 

phosphorylation of Rb by CDK2, further inhibiting the transcription of E2F target genes, 

and ultimately inhibiting the progression from G1 to S phase. p21 also inhibits the 

progression through S phase by binding to and inhibiting CDK2/Cyclin A and 

CDK1/cyclin A complexes. Moreover, p21 inhibits progession through G2 phase and into 

M phase by inhibiting CDK1/Cyclin B complexes. 

P21 also directly inhibits DNA synthesis by binding directly to PCNA (Proliferative Cell 

Nuclear Antigen), which inhibits binding of DNA polymerase δ as well as other proteins 

involved in DNA synthesis (Abbas and Dutta, 2009).  
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p21 has also been shown to suppress cell cycle progression through mechanisms that are 

CDK and PCNA independent. p21 has been shown to bind and directly inhibit the 

transcription activity of various transcription factors such as E2F-1 (Devgan et al., 2005), 

Stat3 (Coqueret and Gascan, 2000) and Myc; which can in turn disrupt the binding of p21 

to PCNA and alleviate p21’s inhibition of DNA synthesis (Kitaura et al., 2000).  

 

1.6.2 The role of p21 in apoptosis 
 

Studies have shown that p21 is also implicated in protection from p53-dependent and 

independent apoptosis (Weiss, 2003, Gartel and Radhakrishnan, 2005). 

In response to DNA damage, the cell undergoes repair or dies by apoptosis.  If the cell is 

to be repaired, p53 induces p21 and it is postulated that p21 is the crucial survival factor. 

Therefore the increase in p21 that is seen in some cancers may give these cells a survival 

advantage, by placing cells on a repair pathway instead of an apoptotic one. This anti-

apoptotic effect of p21 makes it an attractive target for cancer therapy as attenuation of 

p21 in malignant cells may subvert the normal repair process induced by DNA damaging 

agents (chemotherapeutic drugs) and thus make such drugs more effective (Weiss, 2003). 

Therefore it appears that p21 has two roles; 1) in regulating cell cycle transit as a 

universal inhibitor of cyclin dependent kinases and 2) in preventing apoptosis of DNA 

damaged cells via a p53 induced repair pathway. 

It is thought that this switch between cell survival  and cell cycle inhibition might occur 

through the localization of p21.When p21 is cytoplasmically located, it is able to bind and 

inhibit a number of key pro-apoptotic genes such as procaspase 8, caspase 3 and caspase 
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10. Moreover p21 can directly bind to and inhibit Myc and E2F-1 which inhibits the 

transcriptional activation of various pro-apoptotic genes (Dotto, 2000).   

 

1.6.3  The role of p21 in senescence 
 

Cellular senescence is defined as the terminal growth arrest of cells, which is 

accompanied by changes in cellular adhesion,  morphology and gene expression 

(Campisi, 1997). Two forms of senescence are believed to exist; replicative and 

accelerated senescence. Replicative senescence is referred to as the ‘classical’ form of 

senescence, where senescence is induce by the shortening of telomeres (DePinho, 2000), 

whereas accelerated senescence occurs in response to DNA damage (Dileonardo et al., 

1994) or the activation of the Ras oncogene (Serrano et al., 1997). A role for p21 in 

permanent growth arrest and replicative senescence was first identified in studies in 

human fibroblasts which showed a knockout for p21 in these cells dramatically increased 

their lifespan (Brown et al., 1997). Studies have now shown a link between p21 and 

senesence in tumour cells, as  overexpression of p21 was shown to be  sufficient to drive 

tumour cells into senescence (Fang et al., 1999). Moreover, studies have shown that p21 

is key in the induction of senescence following treatment with anti-cancer agents (Chang 

et al., 1999). It has now become clear that in order to induce a state of permenant growth 

arrest and senescence, p53, p21 and p16 need to be activated. In the response to telomere 

shortening, or DNA damage, p53 becomes activated and subsequently induces p21. 

However studies have observed that the expression of p21 in senescence is transient, and 

suggests that p21 is only expressed in the early stages of cell cycle arrest, but is not 
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involved in the long term maintenance of this state. However studies have shown that 

following the upregulation of p21, p16 also becomes upregulated, and  it is the 

upregulation of p16 that maintains the state of permanent growth arrest (Alcorta et al., 

1996, Roninson, 2002). 

 

1.6.4 The effect of p21 deletion in vivo and it’s role in cancer  
 

In order to investigate the role of p21 in tumour formation in vivo, mouse models which 

harbour knockout mutations for p21 have been studied. Despite the numerous studies 

which have shown key roles for p21 in cell cycle regulation, apoptosis, differentiation 

and senescence, p21 knockout mice are viable and furthermore were tumour free up to 

seven months of age (Deng et al., 1995). However studies showed that p21 knockout 

mice spontaneously developed tumours by 16 months of age, with the majority of 

tumours consisting of haematopoietic and endothelial origin, with a small percentage 

consisting of epithelial origins (Martin-Caballero et al., 2001). In accordance with these 

findings, previous studies have also shown that deletion of p21 results in an increase in 

tumourigenesis following irradiation (Jackson et al., 2003).  Deletion of p21 has been 

shown to increase tumourigenesis in Apc 1638 N/+ mice (Yang et al., 2001a) , and has also 

been shown to be essential for the mitotic arrest and inhibition of Apc-initiated tumour 

formation by sulindac in Apc 1638 N/+ mice (Yang et al., 2001b).  

In order to further understand the role of p21 in p53 dependent cell cycle control in vivo, 

Barboza et al. utilized a mouse model harboring the point mutation p53R172P (referred to 

as Trp53515c/515c), which is unable to induce apoptosis but retains it’s ability to regulate 
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the cell cycle, through the induction of p21 (Barboza et al., 2006).  Trp53515c/515c mice 

were then crossed to p21-/- , to determine the role of p21 in tumour formation. Results 

from these studies showed that lymphomas and sarcomas that arouse in Trp53515c/515c p21-

/-  mice displayed aneuploidy and chromosomal aberrations that were absent from 

Trp53515c/515c mice (Barboza et al., 2006). Taken together, these studies show that  p21 is 

key for delaying tumour onset by preservation of chromosomal instability. 

 

In contrast to these results, some studies have suggested an oncogenic role for p21. For 

example, p21 deficiency reduced tumour formation in radiation induced ATM deficient 

and wild type mice (Wang et al., 1997, Martin-Caballero et al., 2001) 

A small set of p21 mutations have been observed in human cancers such as Burkitt’s 

lymphoma (Bhatia et al., 1995), prostate (Gao et al., 1995), melanoma (Vidal et al., 1995) 

and breast cancers (Balbin et al., 1996). However, in comparisons to p53 and p16 

mutations which are frequently mutated in a wide range of cancer, the mutation rate for 

p21 in human cancer is very rare (Shiohara et al., 1997).  

Many large studies have been conducted, examining the expression pattern of p21 in 

human cancers. Although one would predict that loss of p21 would result in greater 

tumourgenicity and reduced survival, this was not always the case. In small-cell lung, 

colorectal, cervical and head and neck cancers, a decrease in p21 expression did in fact 

correlate with tumour progression and poor prognosis. In the majority of these cases, this 

correlation was strongest when p53 expression was also lost.  However, studies also 

showed that in some cases of prostate, ovarian, cervical, breast, esophageal squamous cell 

carcinomas as well as in brain tumours, increased expression of p21 correlated with 
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tumour progression and poor prognosis. Moreover, some studies found p21 to have no 

prognostic value [reviewed in (Roninson, 2002)]. Taken together these studies suggest 

that the role of p21 in tumourigenesis may be highly tissue specific, and it may therefore 

act as a tumour suppressor or promoter.   
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1.7 Thesis aims 
 

Previous studies from this lab have shown that c-Myc is essential for the proliferation that 

occurs following Apc loss. In this thesis I will address how important Myc’s repression 

of p21 is for the phenotypes following Apc loss. I will also examine the importance of the 

CDK4/Cyclin D2 complexes for c-Myc dependent proliferation. Moreover, these studies 

led me to address how important p21 is in initiating senescence of Apc deficient cells in 

vivo. Therefore the aims for this thesis are:  

 

• To investigate the role of c-Myc in inducing apoptosis within the intestinal crypt, 

and whether this is p21 dependent? 

 

• To investigate the role of p21 in causing senescence of Apc deficient cells, and 

whether this is c-Myc dependent?  

 

 

• To determine the functional importance of repression of p21 by c-Myc in Apc 

deficient cells. 

 

 

•  To determine the significance of Cyclin D2 upregulation within Apc deficient 

cells. 
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2.0 Material and Methods 

 

2.1 Generation of Mice colonies 
 

All Experiments were performed under the UK Home Office guidelines. All mice were 

maintained under non-barrier conditions and given a standard diet (Harlan) and water ad 

libitum.   

The alleles used for this thesis were as follows: c-Mycfl (Baena et al., 2005), AhCre, 

Apc580S (Ireland et al., 2004),(Sansom et al., 2004), p21-/- (Brugarolas et al., 1995), Lgr5-

EGFP-IRES-creERT2  (Barker et al., 2007), Apc Min/+ (Moser et al., 1990), p16-/- (Serrano, 

1997), Cyclin D2-/- (Sicinski et al., 1996a) 

 

2.1.1 Mouse experiments for Chapter 3 
 
For Cre induction, AhCre+ c-Myc++ and AhCre+ c-Mycfl/fl were given 3 injections 

intraperitoneally (IP) of 80mg/kg β-napthoflavone (Sigma, #N3633) in a single day, 

which yields nearly 100% constitutive recombination in the murine small intestine 

(Muncan et al., 2006b).  

Mice were then exposed to DNA damaging agents (gamma irradiation or cisplatin 

treatment) 4 days after gene loss. Previous experiments have shown that using this 

protocol, no significant induction of apoptosis is seen in induced (AhCre+ c-Myc++) 

versus uninduced AhCre+ c-Myc++ or induced wild type (mice not carrying the AhCre 

transgene) at day 4 after induction (Muncan et al., 2006b). 
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2.1.2 Mouse experiments for Chapter 4 
 

To address the effect of p21 and Apc deletion within the renal epithelium AhCre+, Apcfl/fl  

mice were bred to p21-/- mice to generate AhCre+ Apcfl/fl  p21-/- mice. As previously 

described, in the absence of the inducer β-napthoflavone, sporadic Cre mediated 

recombination occurs in the renal epithelium in the S and Comma shaped bodies (Sansom 

et al., 2005a). Cohorts containing AhCre+ Apcfl/fl,  AhCre+ Apcfl/fl  p21+/-  and AhCre+ 

Apcfl/fl  p21-/-  mice (n>15 for each genotype) were aged , and examined three times a 

week for signs of renal disease or failure. These included blood in the urine, hunching, 

and swollen kidneys; which was investigated through scruffing the mouse and gently 

feeling for an enlarged kidney, which was indicative of a tumour.   

 

In order to address the effect of p21 and Apc deletion within the intestinal epithelium, 

AhCre+ Apcfl/fl  p21-/-  mice were given 3 injections (IP) of 80mg/kg β-napthoflavone  in a 

single day, which yields nearly constitutive recombination in the murine small intestine. 

Analysis of all intestinal phenotypes were examined at day 4 post induction.  

 

For tumourigenic studies, cohorts containing AhCre+ Apcfl/+ , AhCre+ Apcfl+  p21+/-   and 

AhCre+Apcfl/+  p21-/-  (n> 15 for each genotype) mice were induced at 6 weeks of age 

with 3 injections (IP) of 80mg/kg β-napthoflavone and left until developing signs of 

intestinal illness; rapid weight loss, anaemia, hunching and blood in faeces. 

In order to address the effect of INK4A deletion on an intestinal tumourigenic model, Apc 

Min/+ mice were crossed to INK4A -/- mice. Cohorts containing Apc Min/+ INK4A +/+, Apc 
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Min/+ INK4A +/-, Apc Min/+ INK4A -/- mice (n>15 for each genotype) were aged until 

developing signs of intestinal illness (as described above). 

Lgr5-EGFP-IRES-creERT2 Apcfl/fl mice were generated by breeding AhCre+ Apc fl/fl    and 

the Lgr5-EGFP-IRES-creERT2 mice as previously described (Barker et al., 2009). To 

induce recombination of Apc within the LGR5 stem cell, mice 6 weeks of age were 

induced with a single (IP) injection of tamoxifen (Sigma # T5648-1G) 10mgml-1 in 

sunflower oil and left until showing signs of intestinal illness.  

To generate non-stem cell intestinal adenomas, AhCre+ Apc fl/fl   mice were orally gavaged 

with 1mgkg-1 β-napthoflavone in corn oil and left until showing signs of intestinal illness 

(Barker et al., 2009) 

 

2.1.3 Mouse experiments for Chapter 5 
 

In order to address the effect of combined Apc, c-Myc and p21 loss within the intestinal 

epithelium, AhCre+ Apcfl/fl Myc fl/fl  mice were crossed to p21-/- mice. AhCre+ Apcfl/fl Myc 

fl/fl p21-/- mice were given 3 injections (IP) of 80mg/kg β-napthoflavone in a single day, 

which yields nearly constitutive recombination in the murine small intestine. Analyses of 

all intestinal phenotypes were examined at day four post induction.  

 

For tumourigenic studies, cohorts containing AhCre+Apcfl/+ , AhCre+ Apcfl+ Myc fl/fl p21-/-  

(n>15 for each genotype) mice were induced at 6 weeks of age with 3 injections of 

80mg/kg β-napthoflavone (IP) and left until developing signs of intestinal illness; rapid 

weight loss, anaemia, hunching and blood in faeces. 
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2.1.4 Mouse experiments for Chapter 6 
 

In order to address the importance of Cyclin D2 upregulation following loss of Apc 

within the intestinal epithelium, AhCre+ Apcfl/fl  mice were crossed to Cyclin D2 -/- mice. 

AhCre+ Apcfl/fl Cyclin D2 -/- mice were given 3 injections (IP) of 80mg/kg β-

napthoflavone in a single day, which yields nearly constitutive recombination in the 

murine small intestine. Analyses of all intestinal phenotypes were examined at day four 

post induction.  

 

In order to address the effect of Cyclin D2 deletion on an intestinal tumourigenic model, 

Apc Min/+ mice were crossed to Cyclin D2 -/- . Cohorts containing Apc Min/+ Cyclin D2+/+ 

Apc Min/+ Cyclin D2 +/-, Apc Min/+ Cyclin D2 -/- (n>15 for each genotype) were aged until 

developing signs of intestinal illness; rapid weight loss, anaemia, hunching and blood in 

faeces. A second cohort containing the same set of mice were culled at a timepoint of 110 

days in order to address the onset of tumourigenesis.   

 

2.2 Tissue isolation.  
 

For the analysis of kidney tumourigenic cohorts, at the appropriate time, mice were 

culled and both kidneys (including cystic tumours) were removed and fixed in 4% 

formalin, overnight at 4oC for no more than 24 hours before processing and were then 

paraffin embedded. For Senescence associated β-galactosidase staining, kidney or 

intestinal tissues were placed on a cork disk and covered in OCT before being submerged 

into liquid nitrogen. For the analysis of intestinal phenotypes at four days post induction; 
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the small intestine was removed and flushed with water. Intestines were dissected as 

follows: The proximal 7cm was mounted ‘en face’ and fixed overnight in methacarn 

(methanol, chloroform and acetic acid; 4:2:1) and paraffin embedded. The following 5cm 

was divided into 1cm lengths, bundled using surgical tape and then fixed in 4% 

formaldehyde at 4oC for no more than 24 hours before processing. The remainder was 

fixed in methacarn and then paraffin embedded.  

For tumourigenic studies, the entire intestine and colon was removed and flushed with 

water. Both intestine and colon were mounted ‘en face’ and fixed overnight in methacarn. 

Lesions were then scored macroscopically.  Intestine were then wound into a “swiss” roll 

which were subsequently embedded in paraffin, sectioned at 10μM and stained with 

haematoxylin and eosin prior to microscopic analysis.  

 

2.3 Genotyping of mice 

 

2.3.1 DNA Extraction from tails 
 

DNA was extracted from tails using the PUREGENE DNA EXTRACTION kit.  Tails 

were lysed overnight in 500μl of cell lysis solution (Puregene) and 10μl of proteinase K 

(20mg/ml, Sigma), shaken at 37ºC.   Tails were left to cool at room temperature, 200μl of 

protein preciptation solution (Puregene) was added to each tube. These were vortexed 

and centrifuged at top speed for 5 minutes in a microfuge. 

The supernatant was removed into a clean tube containing 500μl of isopropanol, vortexed 

and centrifuged at top speed for 5 minutes.   The supernatant was poured and off and the 
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DNA pellet was left to dry overnight.  DNA was resuspended in 500μl DNA hydration 

solution (Puregene). 

 

2.3.2. Genotyping of Mice via PCR 
 

All genotyping of mice was done by genomic PCR (Polymerase Chain Reaction) from 

DNA extracted from tails (2.3.1). All PCR reactions were done in 50μl volumes using 

2.5μl of the tail DNA preparation.  

 

 

 

Apc flox  PCR Protocol 
PCR mix 
       μl 

5x Colorless GoTaq Flexi Buffer*  10 
MgCl2 (25mM)    5 
dNTPs  (10mM)    0.4 
Primer  (100μM)    0.2 (of each) 
Go Taq*      0.2 
H2O to final volume of 47.5 μl 
 

Add 2.5μl gDNA. 
*GoTaq Flexi DNA Polymerase from Promega.  
 
Primers 
APC P3 = GTT  CTG TAT CAT GGA AAG ATA GGT GGT C 
APC P4 = CAC TCA AAA CGC TTT TGA GGG TTG 
 
PCR Program: 95°C, 3min (95°C, 30s; 60°C, 30s; 72°C 1min) 30 72°C, 5min. 4°C, hold. 
 
Run PCR products on a 2% gel. 
Bands FLOX = 314bp 

WT = 226bp  
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c-Myc flox  PCR Protocol 
PCR mix 
       μl 

5x Colorless GoTaq Flexi Buffer*  10 
MgCl2 (25mM)    5 
dNTPs  (10mM)    0.4 
Primer  (100μM)    0.2 (of each) 
Go Taq*      0.2 
H2O to final volume of 47.5 μl 
 

Add 2.5μl gDNA. 
*GoTaq Flexi DNA Polymerase from Promega.  
 
Primers (5' to 3') 
MYC FL A = CCG ACC GGG TCC GAG TCC CTA TT 
MYC FL S = GCC CCT GAA TTG CTA GGA AGA CTG  
 
PCR Program: 94°C, 3min (94°C, 1min; 60°C, 1min; 72°C, 1min) 30 cycles 
72°C, 10min. 15°C, hold. 
 
Run PCR products on a 2% gel. 
 
Bands  
FLOX = ~500bp 
WT = ~400bp 
HET = 500p and 400bp (+ sometimes a non-specific band c600bp) 
 

 
 

 
Cre LacZ PCR Protocol (Go Taq) 

PCR mix 
       μl 

5x Colorless GoTaq Flexi Buffer*  10 
MgCl2 (25mM)    5 
dNTPs  (10mM)    0.4 
Primer  (100μM)    0.2 (of each) 
Go Taq*      0.2 
H2O to final volume of 47.5 μl 
 

Add 2.5μl gDNA. 
*GoTaq Flexi DNA Polymerase from Promega.  
 
Primers 
CRE A  = TGA CCG TAC ACC AAA ATT TG 
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CRE B = ATT GCC CCT GTT TCA CTA TC 
LACZ A = CTG GCG TTA CCC AAC TTA AT 
LACZ B = ATA ACT GCC GTC ACT CCA AC 
 
PCR Program: 95°C, 3min (95°C, 30s; 55°C, 30s; 72°C 1min) 30 
72°C, 5min. 15°C, hold. 
 
Bands CRE = ~1000bp 

LacZ = ~500bp 
 
 

 
 
 
 

Cyclin D2 PCR Protocol (Split PCR) 
PCR Mix 

    μl 
Buffer   5 
MgCl2 (50mM) 2.5 
dNTPs  (10mM) 0.4 
Primer  (100μM) 0.1 (of each) 
Platinum Taq  0.2 
H2O to final volume of  47.5 

Add 2.5μl gDNA. 
Note: Is a split PCR  
WT Reaction use D2-D & N2 
Null Reaction use D2-D & D2-G  
 
Primers 
D2-D = GCTGGCCTCCAATTCTAATC 
N2 = CTAGTGAGACGTGCTACTTC 
D2-D = GCTGGCCTCCAATTCTAATC 
D2-G = CCAGATTTCAGCTGCTTCTG 
 
 
PCR Program: 94°C, 3min (94°C, 1min; 60°C, 1min; 72°C 1min) 36 

72°C, 7min. 15°C, hold. 
 
Run products on a 2% gel 
Bands WT = 400bp  

NULL = 250 bp 
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MIN PCR Protocol 
PCR MIX 

    μl 
Buffer   5 
MgCl2 (50mM) 2.5 
dNTPs  (10mM) 0.4 
Primer  (100μM) 0.1 (of each) 
Pic Taq   0.4 
H2O to final volume of  47.5 

 
Add 2.5μl gDNA. 
Primers 
MIN1 = TCT CGT TCT GAG AAA GAC AGA AGC T 
MIN2 = TGA TAC TTC TTC CAA AGC TTT GGC TAT 
 
PCR Program: 94°C, 2min (94°C, 1min; 60°C, 1min; 72°C, 1min) 30 cycles 
72°C, 10min. 
 
Digest 20μl of PCR product. Add 1.5µl Hind III, 2.5µl buffer.  
Incubate for 12h 37°C. 15°C on hold. 
Run digest products on a 4% gel 
Bands WT = 111bp 
  MIN = 123bp  
 

 
P16 PCR Protocol 

PCR mix 
       μl 

5x Colorless GoTaq Flexi Buffer*  10 
MgCl2 (25mM)    5 
dNTPs  (10mM)    0.4 
P16 WT F  (100μM)    0.2  
P16 WT R  (100μM)    0.2  
P16 Null neo  (100μM)   0.2  
P16 Null R1  (100μM)   0.2  
Go Taq*      0.2 
H2O      31.1 
 

Add 2.5μl gDNA. 
*GoTaq Flexi DNA Polymerase from Promega.  
 
Primers (5' to 3') 
P16 WT F = ATG ATG ATG GGC AAC GTT C 
P16 WT R = CAA ATA TCG CAC GAT GTC 
P16 Null neo = CTA TCA GGA CAT AGC GTT GG   
P16 Null R1 = AGT GAG AGT TTG GGG  ACA GAG 
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PCR Program: : 94°C, 3min (94°C, 1min; 60°C, 1min; 72°C 1min) 30; 72°C, 10min. 
15°C, hold. 
 
Run PCR products on a 2% gel. 
 
Bands  
WT = 236bp 
NULL = 723bp 

 
 
 
 
 
 
 

LacZ PCR Protocol 
PCR MIX 

    μl 
Buffer   5 
MgCl2 (50mM) 2.5 
dNTPs  (10mM) 0.4 
Primer  (100μM) 0.1 (of each) 
Platinum Taq  0.2 
H2O to final volume of  47.5 

 
Add 2.5μl gDNA. 
Primers 
LACZ A = CTG GCG TTA CCC AAC TTA AT 
LACZ B = ATA ACT GCC GTC ACT CCA AC 
 
PCR Program: 95°C, 3min (95°C, 30s; 55°C, 30s; 72°C 1min) 30 
72°C, 5min. 15°C, hold. 
 
Bands LacZ = ~500bp 
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2.3.3 Summary of PCR reactions 
 

PCR Primer Sequences 

(5' to 3') 

PCR Program Expected 

Products 

APC  

Flox 

APC P3 = GTT  CTG TAT CAT GGA AAG ATA GGT GGT C 

APC P4 = CAC TCA AAA CGC TTT TGA GGG TTG ATT C 

 

95°C, 3min (95°C, 

30s; 60°C, 30s; 72°C 

1min) 30 72°C, 5min. 

4°C, hold. 

FLOX = 

314bp 

WT = 

226bp 

 

cMYC 

Flox 

MYC FL A = CCG ACC GGG TCC GAG TCC CTA TT 

MYC FL S = GCC CCT GAA TTG CTA GGA AGA CTG 

94°C, 3min (94°C, 

1min; 60°C, 1min; 

72°C, 1min) 30 

72°C, 10min. 15°C, 

hold 

FLOX = 

~500bp 

WT= 

~400bp 

Cyclin D2 

(Split 

PCR) 

D2-D = GCTGGCCTCCAATTCTAATC 

N2 = CTAGTGAGACGTGCTACTTC 

94°C, 3min (94°C, 

1min; 60°C, 1min; 

72°C 1min) 36 

72°C, 7min. 15°C, 

hold. 

NULL = 

400bp 

 

 D2-D = GCTGGCCTCCAATTCTAATC 

D2-G = CCAGATTTCAGCTGCTTCTG 

 

94°C, 3min (94°C, 

1min; 60°C, 1min; 

72°C 1min) 36 

72°C, 7min. 15°C, 

hold. 

WT = 

250bp 
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Cre PCR CRE A  = TGA CCG TAC ACC AAA ATT TG 

CRE B = ATT GCC CCT GTT TCA CTA TC 

 

95°C, 3min (95°C, 

30s; 55°C, 30s; 72°C 

1min) 30 

72°C, 5min. 15°C, 

hold. 

 

CRE = 

~1000bp 

 

Lacz 

PCR 

LACZ A = CTG GCG TTA CCC AAC TTA AT 

LACZ B = ATA ACT GCC GTC ACT CCA AC 

 

95°C, 3min (95°C, 

30s; 55°C, 30s; 72°C 

1min) 30.. 

72°C, 5min. 15°C, 

hold. 

 

  

LacZ = 

~500bp 

 

P16 PCR P16 WT F = ATG ATG ATG GGC AAC GTT C 

P16 WT R = CAA ATA TCG CAC GAT GTC 

P16 Null neo = CTA TCA GGA CAT AGC GTT GG   

P16 Null R1 = AGT GAG AGT TTG GGG  ACA GAG 

 

94°C, 3min (94°C, 

1min; 60°C, 1min; 

72°C 1min) 30; 72°C, 

10min. 15°C, hold. 

 

WT = 

236bp 

NULL = 

723bp 

 

P21 Null 

(Split 

PCR) 

 

P21 F = TCT TGT GTT TCA GCC ACA GGC  

P21 R = TGT CAG GCT GGT CTG CCT CC  

(WT PCR) 

95ºC, 2min (95ºC, 

30s; 59ºC, 30s; 72ºC, 

1min) 35  

72ºC, 3min. 4ºC hold. 

WT = 

430bp  

 

 P21-5. =  ATT TTC CAG GGA TCT GAC TC 3’ 

R1N-1A =  CCA GAC TGC CTT GGG AAA AGC 3’ 

(P21 interrupted PCR) 

95ºC, 2min (95ºC, 

30s; 59ºC, 30s; 72ºC, 

1min) 35  

72ºC, 3min. 4ºC hold. 

NULL = 

150bp  

 

Min PCR MIN1 = TCT CGT TCT GAG AAA GAC AGA AGC T 

MIN2 = TGA TAC TTC TTC CAA AGC TTT GGC TAT 

94°C, 2min (94°C, 

1min; 60°C, 1min; 

WT = 

111bp
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 72°C, 1min) 30 cycles 

72°C, 10min. 

 

 

MIN = 

123bp 

 

2.3.4 Controls for PCR experiments   
 
For all PCR reactions, a negative control was used. This included a sample which 

contained PCR mix but with water in the place of mouse tail DNA. This was used to 

ensure that there was no genomic contamination. Secondly, in some cases a positive 

control was used, where the DNA from a mouse known to carry the mutation/deletion in 

question was used along side the tested samples. 

 

2.4 Wholemount Method for assaying recombination through LacZ expression  
 
For assaying LacZ expression, the whole gut was removed and flushed with ice-cold 

PBS. Following which, the gut was flushed with ice-cold X-gal fixative (2% 

formaldehyde, 0.1% gluteraldehyde in PBS). The whole gut was then cut into 4 sections 

and pinned out ‘en face’ onto a wax plate. Once gut sections were pinned out they were 

fixed with X-gal fixative for 1 hour. They were then washed once with PBS and 

incubated in DTT demulcifying solution for 30 minutes ( 50ml/plate: 5 ml glycerol, 5ml 

0.1 M Tris pH 8.2, 10mls 100% ethanol, 30 ml saline [ 0.9% NaCl], 170mg DTT. Plate 

was then washed 2x with PBS and incubated overnight with gentle agitation in X-gal 

stain: 200μl solution A (5% X-gal in DMF) in 50ml solution B (0.1g MgCl2, 0.48g K-

ferricyanide, 0.64 K-ferrocyanide in 500ml PBS). The following day examined presence 

or absence of blue/green colour. Wash plate with PBS and fix in 10% formalin.  



89 

 

2.5 DNA Damage inducing agents 
 

For assessing whether c-Myc deficiency affects the DNA damage response following 

gamma irradiation ‘wild type’ AhCre+ c-Myc++ and c-Myc deficient AhCre+ c-Mycfl/fl 

mice were irradiated with 14 Gy irradiation using a Cs137 source delivered at a dose rate 

of 0.423 Gy/min. Mice were then harvested at 30 mins, 1, 2, 3, 6, 12, 24 and 48 hour 

timepoints following the irradiation. At least 3 mice were used for each timepoint. For 

cisplatin treatment, mice were given a single IP injection of 10mg/kg Cisplatin and 

harvested 6 hours later (Purchased from David Bull Laboratories and distributed by 

Faulding Pharmaceuticals). 

 

2.5.1 Nutlin Treatment 
 

For assessing whether MDM2 upregulation abrogated apoptosis following c-Myc 

deletion, ‘wild type’ AhCre+ c-Myc++ and c-Myc deficient AhCre+ C-Mycfl/fl mice were 

gavaged with either 200µl of vehicle or 200 mg/kg of Nutlin-3a (synthesized at the 

Roche Research Center, Nutley, NJ) twice a day as previously described (Tovar et al., 

2006). On day 4 post Cre induction, mice were given a single application of Nutlin and 

irradiated with 14Gy and harvested 6 hours following the irradiation. 
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2.5.2 Assaying apoptosis, mitosis and crypt size  in vivo. 
 
At each indicated time point following either induction of β-napthoflavone and or 

following DNA damage, a minimum of three animals were killed and the small intestine 

was removed, flushed with water and fixed overnight in methacarn. Samples were wound 

into ‘swiss rolls’ and stored in 70% ethanol prior to staining. 

 

Haematoxylin and Eosin (H&E) stained sections were made and apoptosis was scored 

through the use of the Highly Optimised Microscopic Environment (HOME) microscope 

(Clarke et al., 1994).  

 

Apoptosis was identified through its morphological appearance. Apoptosis is 

recognisable in the intestine through the appearance of smooth membrane bound 

apoptotic bodies.  Cells shrink to produce a halo around the apoptotic bodies with clear 

chromatin condensation within the nuclei.  The nuclei also stains a much redder colour 

(see Kerr et al., 1972, Wyllie et al., 1980). Apoptosis was independently confirmed by 

immunohistochemical staining with an antibody against active caspase 3.  

 

Crypt size was scored from H&E stained sections by counting the total number of cells 

contained within one crypt. For each analysis, 25 full crypts were scored from at least 3 

mice of each genotype. Similarly, mitosis was scored from H&E stained sections by 

counting the total number of mitotic cells per crypt. Mitotic cells were identified 

morphologically to be undergoing division. Once again, for each analysis, 25 full crypts 

were scored from at least 3 mice of each genotype. 
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2.5.3 Assaying proliferation and migration in vivo  
 

In order to examine levels of proliferation, mice were injected with 250µl of 

bromodeoxyuridine (BrdU) (Amersham) two hours prior to being sacrificed. Similarly, in 

order to score migration, mice were injected with BrdU 24 hours prior to being sacrificed.  

Immunohistochemical staining for BrdU was then performed using an anti-BrdU 

antibody. At least 3 mice were used for each genotype and timepoint. To examine levels 

of proliferation, following a two hour BrdU pulse chase, position and total number of 

BrdU positive cells per crypt were counted. To examine migration levels, following a 24 

hour BrdU pulse chase, the position of total BrdU positive cells were scored and 

compared to those at 2 hours by plotting their cumulative frequency. 

 

To quantify levels of proliferation between adenomas from Apc Min/+ and Apc Min/+ Cyclin 

D2 -/- mice, 3 mice of each genotype were injected with BrdU two hours prior to be 

sacrificed. BrdU immunohistochemistry was then performed on paraffin embedded 

intestinal sections of these mice. For each mouse, 3 different adenomas were identified, 

and for each adenoma, the total number of BrdU positive cells per 500 tumour cells was 

counted and scored as a percentage. The average between these 3 adenomas was taken as 

the final percentage of BrdU positive cells per 500 tumour cells for that mouse.  
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2.6 Immunohistochemistry 

  

2.6.1 Immunohistochemistry on frozen sections: 
 

Immunohistochemistry for Senescence associated β-galactosidase: 

Frozen sections of either kidney or intestinal gut parcels were cut into 3μM sections on 

Poly-L-lysine slides (Sigma). Sections were then thawed at room temperature for 30 

minutes. The senescence β-galactosidase staining kit from Cell Signalling (# 9860) was 

used for this IHC. Slides were then fixed with 1x fixative solution from the kit for 10 

minutes at room temperature. Slides were then washed 2x in dH20. A 1x staining solution 

from the kit was then prepared and the pH was adjusted to 5.5. Slides were incubated 

with the staining solution overnight at 37oC. A small piece of parafilm was applied to 

each slide to ensure that the staining solution did not evaporate. The following day, 

excess staining solution was removed from the slides and the slides were counter stained 

with nuclear fast red (Sigma # N8002) for 5 minutes. Slides were then washed in dH20 

for 5 minutes. Slides were mounted using DPX (TCS biosciences # HC8610) mounting 

medium.  

  

2.6.2 Immunohistochemistry on paraffin sections: 
 

For all immunohistochemistry on paraffin sections, except for β-catenin, antigen retrieval 

was performed with citrate buffer either in the microwave or in the water bath (detailed 

protocols below)  
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Microwave antigen retrieval: 

Make up the following solutions: 

Solution A:  

10.5g of citric acid 

500 mls dH20 

Solution B:  

29.4g  SodiumCitrate 

1 litre dH20 

To make up a 1.5L solution: Mix : 27mls of solution A + 123mls of solution B and 

complete to 1.5L with dH20 and adjust to pH 6.0. Add 1.5 L solution to pressure cooker 

and microwave for 20 minutes or until solution is boiling. Add slides and microwave 

until pressure is optimized. Continue to boil for another 3-4 minutes. 

Remove pressure cooker and place into a sink filled with cold water. Remove lid and 

allow slides to cool in solution for 20 minutes. 

 

Water Bath antigen retrieval: 

Dilute Citrate Buffer (Labvision) 1/10 in distilled water and place 50ml of diluted citrate 

buffer solution into a glass coplin jar. Immerse coplin jar into a water bath and preheat to 

99.9oC . Immerse slides into preheated solution and boil for 20 minutes. Remove coplin 

jar from water bath and allow to cool for 30 minutes at room temperature in the solution. 
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2.6.3 Immunohistochemistry for p21:  
 
The staining was done on paraffin embedded, ‘quick fixed’ (for less than 24hrs) formalin 

fixed sections. 3μM sections of tissue were cut onto Poly-L-lysine slides (Sigma).  

Sectioned were dewaxed by placing into xylene for 20 minutes.  They were rehydrated 

through graded ethanol solutions (absolute alcohol, 70 % ethanol) and then into water. 

Antigen retrieval was performed as per the microwave method. Slides were washed 2-3x 

5 minutes in PBS. Blocked slides for 30 minutes with 5% goat serum in PBS. Wash 2-3x 

5 minutes with PBS. Incubate slides with Santa Cruz anti-p21 (M-19) (rabbit polyclonal) 

diluted 1/500 in 5% goat serum /PBS for 1 hour at room temperature. Wash 2-3x 5 

minutes with PBS. Block again for 10 minutes with 5% goat serum in PBS Incubate 

slides 30 min with biotinylated secondary antibody from rabbit ABC kit (Vector 

Laboratories). Washed slides 2-3x 5 minutes with PBS. Incubated slides with ABC 

solution for 30 minutes; 2 drops of solution A + 2 drops of solution B in 5 ml 5% goat 

serum/ PBS. (Leave for 30 minutes to warm up). Mix DAB reagents in the ratio 1ml 

substrate buffer to 1 drops chromogen. Apply to slides and incubated for 5-10 minutes. 

Washed slides 2-3x 5 minutes with PBS. Transferred  slides to dH2O. Counterstain slides 

in Haematoxylin for approximately 60 seconds. Wash in running tap water for 5 minutes. 

Dehydrate slides by washing in increasing concentrations of alcohols (1x 5minute wash 

in 70% alcohol,  2x 5minute washes in 100% alcohol). Slides were then placed in xylene 

for 2x 10 minute washes. Slides were then mounted using DPX mounting medium.  
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2.6.4 Immunohistochemistry for p16: 
 
Immunohistochemistry was performed as in 2.6.3. Exceptions: Slides were incubated 

with primary antibody to p16 ( Santa Cruz M-156) 1/25 in 5% goat serum PBS for 1 hour 

at room temperature. Slides were then incubated for 30 minutes with biotinylated 

secondary antibody from rabbit ABC kit (Vector Laboratories).  

 

2.6.5  Immunohistochemistry for p19: 
 
Immunohistochemistry was performed as in 2.6.3. Exceptions: Antigen retrieval was 

performed as per the water bath method. Slides were incubated with primary antibody 

p19/ARF 1/300 (Upstate) in 5% goat serum PBS overnight at 40C. Slides were then 

incubated for 30 minutes with biotinylated secondary antibody from rabbit ABC kit 

(Vector Laboratories).  

 

2.6.6 Immunohistochemistry for Caspase 3: 
 
Immunohistochemistry was performed as in 2.6.5. Exceptions: Antigen retrieval was 

performed as per water bath method. Slides were incubated with primary antibody anti- 

active caspase 3 (rabbit polyclonal; AF835, R&D systems) 1/750 in 5% goat serum PBS 

overnight at 40C. Slides were then incubated for 30 minutes with biotinylated secondary 

antibody from mouse ABC kit (Vector Laboratories).  
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2.6.7 Immunohistochemistry for у-H2ax: 
 
Immunohistochemistry was performed as in 2.6.3. Exceptions: Slides were incubated 

with primary antibody γ-H2ax 1/300 (Upstate) in 5% goat serum PBS for one hour at 

room temperature. Slides were then incubated for 30 minutes with biotinylated secondary 

antibody from mouse ABC kit (Vector Laboratories).  

 

2.6.8  Immunohistochemistry for p-ATM: 
 
Immunohistochemistry was performed as in 2.6.3. Exceptions: Slides were incubated 

with primary antibody P-ATM (1/500 pS1981 ROCKLAND 200-301-500) in 5% goat 

serum PBS for one hour at room temperature. Slides were then incubated for 30 minutes 

with biotinylated secondary antibody  from mouse ABC kit (Vector Laboratories).  

 

2.6.9: Immunohistochemistry for P-Chk-1: 
 
Immunohistochemistry was performed as in 2.6.3. Exceptions: Antigen retrieval was 

performed as per the water bath method. Slides were incubated with primary antibody P- 

Chk1 (1:100 Phospho Chk-1 ser 345 Cell Signalling) in 5% goat serum PBS for one hour 

at room temperature. Slides were then incubated for 30 minutes with biotinylated 

secondary antibody from rabbit ABC kit (Vector Laboratories).  

 

2.6.10: β-Catenin immunohistochemistry: 
 
Slides were cut and rehydrated as in 2.6.3. Slides were blocked for 30-45 minutes in the 

following block; 1 litre stock = 4.16g citric acid, 10.76g DiSodium Hydrogen Phosphate 
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2 hydrate, 1g NaAz; add fresh H2O2 to 1.5%. For antigen retrieval, slides were boiled in a 

water bath for 50 minutes in Tris EDTA; 1 litre stock = 242g Tris, 18.6g EDTA.  For 

working solution, dilute 30ml stock in 1500ml DDW, adjust pH to 8.0 with HCl (3-4 

pasteur pipettes). Slides were allowed to cool for 1 hour. Slides were then blocked for 30 

minutes in 1% BSA in PBS. Slides were then incubated with β-catenin antibody (mouse 

monoclonal; C19220, Transduction Laboratories) 1/50 in 1%BSA/PBS for 2 hours at 

room temperature. Washed slides 3x in PBS. Incubate slides with HRP-labelled polymer 

from Mouse Envision+ system (Dako systems) for 1 hour at room temperature. Washed 

slides 3x in PBS. Slides were then developed with DAB, rehydrated and mounted as 

2.6.3. 

 

2.6.11 c-Myc Immunohistochemistry:  
 
Slides were cut and rehydrated as in 2.6.3. Antigen retrieval was performed as per the 

water bath method for 50 minutes. Slides were allow to cool for 30 minutes at room 

temperature in solution. Slides were then rinsed in dH20. For prevention of endogenous 

staining, slides were blocked for 15 minutes in 1.5% H2O2 solution in PBS. Slides were 

then rinsed in water and then in PBS. Slides were blocked for 30 minutes in 5% goat 

serum in TBST. Slides were then rinsed 3x in TBST. Slides were incubated with primary 

antibody rabbit anti-c-Myc (Santa Cruz N-262. Lot # C1309) 1:200 in Tris Buffered 

Saline+ 1% Tween (TBST)/5% goat serum for 48 hours at 4oC. Slides were then washed 

3x 10 minutes in TBST, and incubated with secondary PowerVision poly HRP-anti-rabbit 

IgG for 2 hour at room temperature.  



98 

Washed slides  3x 10 minutes TBST. Slides were then developed with DAB, rehydrated 

and mounted as in 2.6.3. 

 

2.6.12  BRDU Immunohistochemisty:  
 
Slides were cut and rehydrated as in 2.6.3. Antigen retrieval was performed as per the 

water bath method for 20 minutes. Slides were allowed to cool for 30 minutes at room 

temperature in solution. Slides were then rinsed in dH2O. For prevention of endogenous 

staining, slides were blocked for 15 minutes in 1.5% H2O2 solution in dH2O. Slides were 

then blocked for 30 minutes in 1%BSA in PBS. Slides were then incubated with a 1/500 

dilution of mouse anti-BRDU [Becton, Dickinson and Company (BD) :cat N 347 580] 

diluted in PBS/1%BSA overnight at 40C. Slides were then washed 3x in PBS and 

incubated with secondary polymer HRP-conjugated Envision+ (Mouse Envision+ system 

Dako Systems) for 1 hour at room temperature. Slides were then washed 3x 5 minutes in 

PBS. Slides were then developed with DAB, rehydrated and mounted as in 2.6.3. 

 

2.6.13  P53 Immunohistochemistry:  
 
Slides were cut and rehydrated as in 2.6.3. For epitope retrieval slides were steamed for 

40-45 minutes in 10 mM sodium citrate (pH 6.0). Cooled slides slowly at room 

temperature for 20-30 minutes. Slides were then incubated in methanol/ H2O2 (180 mL 

methanol /20 mL 30% H2O2) for 20 min at room temperature. Rinse profusely with 

dH2O. Slides were rinsed in PBS three times. Slides were then blocked for 30 minutes at 

room temperature in normal serum from VECTASTAIN kit (4 drops serum/10 mL 1X 
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PBS-0.1% Tween-20). Slides were then incubated with primary antibody diluted in 

blocking solution and incubated for 1-2 hours at room temperature (anti-p53 (CM5 from 

Vector laboratories) at 1:200 dilution). Slides were then washed 3x in PBS, and incubated 

with secondary antibody from Vectastain Universal kit (1 drop/10 mL blocking solution) 

at room temperature for 30 minutes. 

Slides were washed 3x in PBS. Incubated slides with ABC solution for 30 minutes; 2 

drops of solution A + 2 drops of solution B in 5 ml 5% goat serum/ PBS. Washed slides 

3x in PBS. Slides were then developed with DAB, rehydrated and mounted as in 2.6.3. 

 

2.6.14  MCM2 Immunohistochemistry: 
 
Slides were cut and rehydrated as in 2.6.3. Antigen retrieval was performed as per the 

microwave method. Slides were then blocked in 10% H202 made with dH20 for 10 

minutes at room temperature. Slides were then washed with PBS 3X 5 minutes. Slides 

were then blocked in 5% goat serum PBS for 30 minutes. Incubated slides with MCM2 

(Cell Signalling # 4007) rabbit polyclonal antibody at 1/200 with  5% goat serum PBS. 

Incubated overnight at 4oC. Washed slides with PBS 3x 5 minutes. Slides were then 

incubated with secondary polymer HRP-conjugated Envision+ (Rabbit Envision+ system 

Dako Systems) for 1 hour at room temperature. Slides were then washed 3x 5 minutes in 

PBS. Slides were then developed with DAB, rehydrated and mounted as in 2.6.3. 

 
 
 



100 

 

2.6.15 MDM2 Immunohistochemistry: 
 
IHC was performed as in MCM2 staining. Exceptions: Antigen retrieval was as per the 

water bath method. Incubate with primary antibody: (Lab Vision MDM2 smp14 ms- 291-

p1) at 1/200 with 20% rabbit serum in PBS for 1hr at room temperature. Wash slides with 

PBS 3x 5 minutes. Slides were then incubated with secondary polymer HRP-conjugated 

Envision+ (Mouse Envision+ system Dako Systems) for 1 hour at room temperature. 

Slides were then washed 3x 5 minutes in PBS. Slides were then developed with DAB, 

rehydrated and mounted as in 2.6.3. 

 

2.6.16 Ki-67 Immunohistochemistry: 
 
IHC was performed as per MCM2 IHC. Incubate with primary antibody: LabVision (now 

Thermo; RM-9106) 1/250 in 5% goat serum PBS for 1 hour at room temperature. Wash 

slides with PBS 3x 5 minutes. Slides were then incubated with secondary polymer HRP-

conjugated Envision+ (Rabbit Envision+ system Dako Systems) for 1 hour at room 

temperature. Slides were then washed 3x 5 minutes in PBS. Slides were then developed 

with DAB, rehydrated and mounted as in 2.6.3. 

 

2.6.17 Control for Immunhistochemistry 
 
For all immunohistochemical stains performed both positive and negative controls were 

used. Positive controls included samples that were known to have high expression of that 

particular  protein. For example, when performing immunohistochemistry for β-catenin, a 
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section of mouse intestine that was homozygous for Apc, which displays high levels of 

nuclear β-catenin throughout the crypt was used. Negative controls included samples of 

tissue from mice that were known (through genotyping) to have a complete genetic 

deletion for that particular gene. For example when staining for p16, c-Myc and p21, 

control samples from genetically knockout (p16, p21) and c-Myc (floxed) mice were 

used along side tested samples.   

 

2.7 Epithelial extractions  
 
In order to obtain a population of cells enriched for epithelial cells, an epithelial 

extraction protocol based on that of Bjerknes & Cheng (Bjerknes and Cheng, 1981) was 

performed on freshly harvested intestine. Briefly, a 10cm section of small intestine was 

flushed well with water before being tied off at one end and everted over a 4mm glass 

rod. Vibration was then applied to the glass rod, and the intestine placed in 10mM EDTA 

in Hanks’ Balanced Salt Solution (HBSS; Gibco) at 37°C for 15min. The intestine was 

then moved into a clean tube of 10mM EDTA/HBSS and incubated in the same fashion 

for a further 15min. Centrifugation (2700 x g, 4°C, for 15 minutes) yielded a pellet 

containing predominantly epithelial cells. 

 

2.8 Protein extraction from epithelial extracts 
 
Protein was extracted from intestinal epithelial extracted samples by standard methods 

using lysis buffer (20mM Tris-Hcl pH8.0, 2mM EDTA [pH8.0], 0.5% [v/v] NP-40) 

containing protease inhibitors (Complete Mini Protease inhibitor tablets, Roche) and 
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phosphatase inhibitors (25mM sodium β-glycerophosphate, 100mM sodium fluoride, 

20nM Calyculin A, 10mM sodium pyrophosphate). 

 

 

2.8.1 Determination of protein concentration 
 
For estimation of protein concentration a microscale variant of Bradford’s dye of binding 

method was used (Bradford 1976). 5-10μl of protein sample was added to 1ml of 

Bradford reagent (BioRad), mixed and allowed to stand for 10 minutes before 

measurement of A595.  In each case absorbance measurements were performed against 

blanks containing an equal volume of the Bradford reagent. 

 

These absorbance measurements were then correlated with freshly generated calibration 

curve (0-25μg of bovine serum albumin in 1ml of bovine serum albumin in 1ml Bradford 

Reagent) to estimate the protein concentration of the unknown sample. 

 

2.8.2 Western Analysis 
 
For Western analysis, proteins were run on a 10% denaturing polyacrylamide gel.  

Protein samples were equalised with RIPA buffer so that all samples were 20μg and of 

equal volume (20μl). They were then boiled for 5 minutes in 4 x Loading Buffer 

containing β-mercaptoethanol, quenched on ice, centrifuged and loaded onto the gel. Gels 

were run for 2 hours at 125V in running buffer or until the protein markers (Gibco) had 

separated.   
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Gels were then blotted on PDVF membrane (Millipore) in transfer buffer overnight at 15 

mA. Prior to transfer PDVF membrane was soaked in methanol (Fisher) for 30 minutes. 

After transfer, blots were blocked in TBS/0.1% Tween/10% Marvel (TTM) for one hour.  

Primary antibodies and conditions used to probe blots were rabbit anti-MDM2 (1:1000; 

R&D systems AF1244) and mouse anti-β-actin (1:5000; Sigma). Appropriate HRP-

conjugated secondary anti-rabbit or anti-mouse antibodies were used (Amersham 

Biosciences). 

Blots were then washed in TBS and visualised using ECL plus (Amersham) on ECL film 

(Amersham).  To confirm equal loading after blotting, blots were then stained with Ponso 

Red (Sigma). 

  

 

Reagents 

 

15% Loading Gel 10% loading Gel 10% Stacking Gel 

3.33ml DDW 

11.69ml 30% acrylamide 

(1:29) 

9.37ml 1M Tris HCL pH 8.8 

250μl of 10% SDS (Fisher)  

72μl of 25% APS (Fisher) 

13.2μl of Temed (Sigma) 

6.65ml DDW 

8.35ml 30% acrylamide 

(1:29) 

9.37ml 1M Tris HCL pH 8.8 

250μl of 10% SDS  

72μl of 25% APS 

13.2μl of Temed 

3.57ml DDW 

1.70ml 30% acrylamide 

(1:29) 

0.62ml 1M Tris HCL pH6.8 

50μl of 10% SDS  

33μl of 25% APS 

3.6μl of Temed 
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4x Loading Buffer 

200mM Tris HCl pH 6.8 

400mm Dithiothreitol (DTT) 

8% SDS 

0.4% Bromophenol blue 

40% Glycerol 

 

10x Running Buffer: For 1 L 

30.2g Tris 

188g Glycine (Fisher) 

 

 

Transfer Buffer For 1L: 

800ml DDW 

200ml methanol 

2.9g Tris 

14.5g Glycine 

 

2.9  Quantitative PCR 
 
Reverse transcription was performed using the SuperscriptII reverse transcriptase kit 

(Invitrogen) and Random hexamers (Invitrogen) as per the manufacturer’s instructions. 

qRT-PCR was performed in order to assess the expression of p19ARF from c-Myc 

deficient intestinal enterocytes, as well as to assess the expression of Cyclin D2 and 
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CDK4 from both AhCre+Apcfl/fl and AhCre+Apcfl/fl Myc fl/fl  from intestinal enterocytes. 

DyNAmo HS (hot-start) SYBR green supermix (Finnzymes, GRI) was added to 

appropriate cDNA samples and primers. Samples were loaded onto a white one-piece 

thin-wall 96-well PCR plate (BIOplastics) and the PTC-200 Peltier thermal cycler and 

Chromo4 continuous fluorescence detector (both MJ Research) were used in conjunction 

with Opticon Monitor analysis software (Version 2.03, MJ Research) to calibrate and run 

the reaction.  

 

Primers used for ARF were:  

F – CTGGACCAGGTGATGATGA 

R – ACCAGCGTGTCCAGGA 

 

 

Primers used for Cyclin D2: 

F- CTACCGACTTCAAGTTTGCC 

R- GCTTTGAGACAATCCACATCAG 

 

 

Primers used for CDK4 : 

 

F- AATGTTGTACGGCTGATGGA 

R- AGAAACTGACGCATTAGATCCT  
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Chapter 3: C-Myc is essential for p53 induced apoptosis in response to 
DNA damage in vivo 

 

 

 

 

 

 

 

 

 

 

 

 



107 

3.0 Introduction 
 

One of the best known functions of the c-Myc protein is its ability to drive apoptosis in 

numerous cellular contexts (Askew et al., 1991, Evan et al., 1992, Hoffman and 

Liebermann, 2008). Of the studies performed, most have concentrated on the ability of c-

Myc overexpression to drive apoptosis, unless accompanied by other mutations such as 

p53 loss (Hermeking and Eick, 1994). The suppression of apoptosis is thought to be a key 

factor in driving tumourigenesis in vivo, for example overexpression of c-Myc in the 

pancreatic islets alone does not induce tumourigenesis unless apoptosis is blocked e.g. by 

p53 loss, BCL-XL overexpression or ARF knockout (Pelengaris et al., 2002, Finch et al., 

2009). The studies examining combined c-Myc overexpression and p53 loss have 

implicated p53 is directly downstream of c-Myc, but whether this is through direct 

transcriptional control or indirect (e.g. through c-Myc induction of the DNA damage 

response) is still controversial (Hermeking and Eick, 1994). The most cited model linking 

c-Myc overexpression to the p53 pathway is via transcription induction of ARF by c-

Myc, which in turn inhibits MDM2 (a key negative regulator of p53) (Eischen et al., 

1999, Braig et al., 2005). Indeed recent studies overexpressing c-Myc from the Rosa 26 

locus showed that c-Myc induced apoptosis only in the colon. This was due to the high 

expression of the Rosa26 locus and hence overexpression of c-Myc within the colon 

compared to other tissues led to the induction of ARF and apoptosis. Genetic deletion of 

ARF rescued this c-Myc induced apoptosis (Murphy et al., 2008b).  

  

Much less well studied is the importance of c-Myc in signalling apoptosis following 

DNA damage. Thus far no study has examined this in vivo, though in vitro studies have 
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suggested it may be of vital importance. There are 3 lines of evidence for this; first (and 

most importantly) Seoane et al (Seoane et al., 2002) have shown that in colorectal cancer 

cell lines depletion of c-Myc reduces apoptosis as a consequence of altering  the balance 

of downstream effectors of p53 signalling. Thus, in the absence of c-Myc, there are 

increased levels of the anti-apoptotic cell cycle arrest protein p21 (a target of p53 which 

is also transcriptional repressed by c-Myc in a complex with Miz), and reduced levels of 

pro-apoptotic genes such as bax, resulting in cell arrest rather than apoptosis. Secondly, 

numerous transcriptional c-Myc targets (either activated or repressed by C-Myc) such as 

bax, gadd45a and onzin have been shown to be crucial for DNA damage signalling in 

vitro (Mitchell et al., 2000, Barsyte-Lovejoy et al., 2004, Rogulski et al., 2005). Thirdly, 

c-Myc has been shown to augment apoptosis in fibroblasts following gamma irradiation 

(Maclean et al., 2003). 

 

One of the most tractable systems for studying the DNA damage response in vivo is the 

intestinal crypt. Previously, numerous cytotoxic agents such as cisplatin, ionizing 

radiation and NMNU have been shown to induce apoptosis with a peak induction 

normally 6-12 hours following DNA damage (Sansom et al., 2003, Sansom and Clarke, 

2000). This early wave of apoptosis is completely dependent on the nuclear accumulation 

of p53. The tractability of this system in conjunction with the our previous data showing 

that c-Myc deletion is not immediately deleterious to intestinal enterocytes makes this an 

ideal system to determine whether c-Myc is important for signalling apoptosis in normal 

cells following DNA damage (Muncan et al., 2006a). Importantly neither of the two 

studies which conditionally deleted c-Myc from the normal intestine saw any changes in 
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the physiological levels of apoptosis, which could have possibly confounded any analysis 

(Muncan et al., 2006a, Bettess et al., 2005). Both studies showed that c-Myc deficient 

enterocytes could proliferate, however our study showed that both the level of 

proliferation and cell size was reduced compared to wild type intestinal enterocytes.   

 

In this study we show that c-Myc is essential for the induction of apoptosis within the 

intestinal crypt due to the inability of c-Myc deficient cells to upregulate p53. 

Mechanistically this was associated with high levels of MDM2 in Myc deficient cells and 

treatment with the MDM2 inhibitor nutlin restored the upregulation of p53 and induced 

apoptosis. 

 

3.1 Results  
 

3.1.1: c-Myc deficient crypts do not undergo apoptosis following treatment with 
DNA damaging agents 
 

We first examined whether c-Myc deletion could alter the DNA damage response to 

ionizing radiation. To induce Cre mediated gene deletion, AhCre+ c-Mycfl/fl mice and 

control AhCre+ c-Myc+/+ mice were given 3 injections ip of 80mg/kg β-napthoflavone 

within a single day. This protocol leads to near constitutive levels of c-Myc deletion from 

the intestinal epithelium 4 days following Cre induction (Muncan et al., 2006a) (Figure 

3.1 b). At this stage, no Cre recombinase expression can be detected (gene loss remains 

as the deletion event occurs within the stem cell population) (Ireland et al., 2004). 

AhCre+ c-Mycfl/fl mice and control AhCre+ c-Myc+/+ mice were then exposed to 14Gy of 
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gamma irradiation and the induction of apoptosis was scored 6 hours following the 

irradiation. 

 

Analysis of H&E stained sections of the small intestine of wild type mice clearly showed 

a significant induction of apoptosis following 14Gy gamma irradiation (Figure 3.2a-b), 

compared to their un-irradiated littermates as has been previously reported. However, the 

number of apoptotic figures was significantly reduced in c-Myc deficient mice given the 

same dose of irradiation (Figure 3.2 b, Mann-Whitney U test, p= 0.001, n=6).  
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Figure 3.1: Efficient c-Myc deletion 4 days following Cre induction. 
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To confirm the scoring of apoptosis on H&E sections, immunohistochemistry was 

performed against cleaved (‘active’) Caspase 3 (Marshman et al., 2001) and once again 

the number of caspase 3 positive cells was significantly lower in irradiated c-Myc 

deficient mice when compared to wild type mice given the same dose of gamma 

irradiation (14Gy) (Figure 3.2 c-d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 

Figure 3.2: c-Myc deficient crypts do not undergo apoptosis following treatment with 

14Gy irradiation.  
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To extend this analysis beyond a single timepoint, we next scored apoptosis at a series of  

different times following gamma irradiation and found significantly lower levels of 

apoptosis at all timepoints subsequent to 2 hours in c-Myc deficient intestinal crypts 

(Figure 3.3 a). 

 

The resistance of apoptosis of c-Myc deficient enterocytes was not restricted to high 

doses of γ irradiation, as apoptosis following either a lower dose of irradiation (5Gy) or 

cisplatin treatment was also found to be c-Myc dependent (Figure 3.3 b-c). This failure to 

undergo apoptosis was not simply because c-Myc deficient cells were not cycling,  as we 

and others have previously shown that c-Myc deficient intestinal enterocytes can undergo 

proliferation (Muncan et al., 2006a).  
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Figure 3.3: c-Myc deficient crypts do not undergo apoptosis following treatment 
damaging agents.  
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3.1.2  c-Myc deficient enterocytes do not upregulate p53 
  

The phenotype of c-Myc deficiency paralleled the well established phenotype of p53 

deficiency in the intestine, namely a strong suppression of the immediate wave of 

apoptosis (Sansom and Clarke, 2000, Sansom and Clarke, 2002, Clarke et al., 1994) . 

Taking this information with previous data suggesting direct links between c-Myc and 

p53, we investigated the kinetics of p53 induction in the murine small intestine (Hoffman 

and Liebermann, 2008). Figure 3.4a-c shows that p53 levels rise sharply in intestinal 

crypts following gamma irradiation, but in c-Myc deficient mice this upregulation does 

not occur. Therefore this provided a ready mechanism for the abrogated apoptosis.  

 

An alternative mechanism for failed apoptosis is that deletion of c-Myc causes a 

derepression of p21 which could also block apoptosis in this system (Peukert et al., 1997, 

Seoane et al., 2002). We and others have previously shown that c-Myc deficiency alone 

is not sufficient to trigger p21 upregulation in the intestine, however following combined 

Apc and c-Myc deletion a clear induction of p21 was observed (Muncan et al., 2006a, 

Sansom et al., 2007, Wilkins and Sansom, 2008). Following irradiation (despite the failed 

p53 activation) p21 was still upregulated in c-Myc deficient intestinal enterocytes (Figure 

3.4d-f). To determine whether the lack of transcriptional repression of p21 by c-Myc was 

sufficient to block apoptosis we intercrossed p21 knockout mice to mice carrying the Ah 

Cre transgene and loxp flanked C-Myc alleles to generate AhCre+ c-Mycfl/fl p21-/- mice. 

Cre was induced in these mice as described above, and these mice were irradiated four 

days after Cre induction and apoptosis was scored 6 hours following 14Gy irradiation. As 

expected, p21 was no longer upregulated in the intestinal crypts of these mice following 
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irradiation and importantly they displayed the same lack of apoptosis in response to 

irradiation as the single c-Myc deficient intestinal crypts (Figure 3.4g). Therefore this 

demonstrates that the induction of p21 was not responsible for the block of apoptosis and 

that the failed p53 upregulation was the most likely cause of our phenotype. 

. 
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Figure 3.4: c-Myc deletion prevents p53 accumulation after DNA damage. 
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3.1.3 c-Myc deficient enterocytes sense the DNA Damage Stimuli 
  

From the literature there are numerous potential mechanisms which could explain the 

failure to see increased levels of p53 protein in c-Myc deficient enterocytes. These 

include: failure to detect DNA damage, reduced p53 protein stability, reduced 

transcription or translation of p53 mRNA (Hoffman and Liebermann, 2008). Therefore 

we decided to test a number of these potential mechanisms. 

 

First, we investigated if DNA damage recognition was functioning in the c-Myc deficient 

intestinal enterocytes, and examined whether there was efficient activation of the DNA 

damage sensing proteins γH2AX and ATM. This is particularly important in terms of 

ATM as it has previously been suggested that ATM is required for c-Myc to activate p53 

(Pusapati et al., 2006). γH2AX becomes phosphorylated by ATM at the sites of double 

strand breaks in DNA, and is essential for their recognition and repair (Paull et al., 2000). 

We performed immunohistochemistry using an antibody which specifically recognises 

the activated, phosphorylated form of γH2AX to determine if this mechanism of DNA 

damage response was still intact in c-Myc deficient mice. In wild type mice, the level of 

P-γH2AX is dramatically increased 30 minutes after irradiation and this level decreases 6 

hours later as DNA damage is repaired. This activation of γH2AX following either γ-

irradiation or cisplatin was also observed in c-Myc deficient intestinal enterocytes (Figure 

3.5 a-h).  

 

 

 



120 

 

Figure 3.5: c-Myc deficient enterocytes are able to sense DNA damag 
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We also used an antibody specific to the activated, phosphorylated form of ATM. ATM 

is a regulator of cellular response to DNA damage, and is autophosphorylated and 

associates with other proteins such as p53, MDM2 and Chk2 to arrest cell cycle at G1. In 

common with the γH2AX results, p-ATM and Chk1 are still activated in response to 

DNA damage in wild type and c-Myc deficient mice (Figure 3.6a-t). Taken together these 

results demonstrate that the DNA damage response is still intact in c-Myc deficient 

enterocytes, and suggests that the mechanism behind the failure to induce apoptosis in 

response to DNA damage is through the control of p53 levels (either at the RNA or 

protein level). 
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Figure 3.6: p-ATM and Chk-1 is still activated in response to DNA damage in wild type 

and c-Myc deficient mice.  
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3.1.4 MDM2 upregulation and P19ARF and nucleolin downregulation in c-Myc 
deficient enterocytes. 
 

Given the number of studies in the literature that link Myc to control of p53 stability, we 

next investigated the ARF-MDM2-P53 pathway (Eischen et al., 1999, Braig et al., 2005). 

One of the key regulators of p53 protein stability is the MDM2 E3 ubiquitin ligase. Loss 

of MDM2 in vivo leads to embryonic death due to the activation of high levels of p53 

which can be rescued by co-deletion of p53 (Montes de Oca Luna et al., 1995, Jones et 

al., 1995). First we examined the levels of MDM2 following c-Myc deletion by 

immunoblotting and immunohistochemistry and found a marked upregulation of MDM2 

in c-Myc deficient cells (Figure 3.7 a-e).  
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Figure 3.7: c-Myc deletion causes an accumulation of MDM2 
To test if this was functionally important for blocking apoptosis in the c-Myc deficient 

mice we employed the MDM2 antagonist, Nutlin-3a. Nutlin is a selective small-molecule 

inhibitor of the p53-MDM2 interaction that releases p53 from MDM2 control, leading to 

accumulation of the tumour suppressor protein and activation of the p53 pathway (Tovar 

et al., 2006, Vassilev, 2007). Treatment of cancer cells with wild type p53 induces cell 

arrest and apoptosis in vitro and suppressed the growth of human tumour xenografts in 

nude mice (Vassilev et al., 2004, Tovar et al., 2006). 

c-Myc deficient mice were treated with Nutlin twice daily on days 1-3 post Cre induction 

and a final time 3 hours prior to 14Gy irradiation on day 4. This methodology was 

employed as it has been shown previously that Nutlin can knockdown MDM2 for 

approximately 12 hours in vivo and a number of doses are required for full functional 

inhibition (Tovar et al., 2006). Apoptosis was scored in wild type and c-Myc deficient 

mice 6 hours following irradiation and a restoration of the apoptotic response was 

observed in c-Myc deficient mice treated with Nutlin though not vehicle (Figure 3.8a). 

Most importantly, this restoration of the apoptotic response correlated with the induction 

of p53 in the c-Myc deficient mice treated with Nutlin (Figure 3.8d). Consistent with 

previous reports, Nutlin treatment had no obvious impact on proliferation or apoptosis of 

wild type intestinal enterocytes (either alone or treated with 14Gy) (Vassilev et al., 2004). 

Unirradiated c-Myc deficient intestines showed increased levels of p21 and small but 

significant decrease in proliferation though no changes in apoptosis. Consistent with 

other reports, no gross changes in p53 levels could be observed which could reflect either 

transient low level p53 activation or that p53 levels were below our threshold of 

detection. 
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Figure 3.8: Treatment of c-Myc deficient mice with Nutlin restores apoptosis and p53 

respons 
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A number of potential pathways affecting MDM2 stability could be affected by c-Myc 

deletion. Recent studies have implicated the c-Myc transcriptional target gene nucleolin 

in regulation of p53 stability in two opposing manners. Saxena et al (2006) (Saxena et al., 

2006) showed that nucleolin inhibits MDM2 by multiple mechanisms including direct 

binding and reduction of protein levels, and thus is a positive regulator of p53 stability. 

Contrastingly, Takagi et al (2005) (Takagi et al., 2005) showed that nucleolin can bind to 

the 5’ UTR of p53 causing degradation of the p53 message. To determine if nucleolin 

was a c-Myc target in the intestine we performed immunhistochemistry, which clearly 

shows that nucleolin levels were much lower in intestines of c-Myc deficient mice 

(Figure 3.9a-d). Thus this could be responsible for the altered levels of MDM2 seen in c-

Myc deficient intestines. Moreover, we have also previously shown that nucleophosmin 

levels are also downregulated following c-Myc deletion (Muncan et al., 2006a) and 

nucleophosmin has also been shown to regulate p53 levels (both positively and 

negatively) (Colombo et al., 2002).  
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Figure 3.9 : c-Myc deficient enterocytes are unable to upregulate nucleolin 
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Additionally, given the recent studies linking Myc to ARF expression in the intestinal 

epithelium (Murphy et al., 2008b) we also investigated whether levels of ARF were 

changed following Myc deletion in the intestine. Immunohistochemistry for p19ARF 

showed a reduction in p19ARF levels following 14Gy irradiation in c-Myc deficient mice 

(Figure 3.10a-b). Similarly, qRT-PCR showed that following c-Myc deletion there was a 

clear downregulation of ARF in response to irradiation (Figure 3.10c). Therefore this data 

also suggest that the failure to upregulate ARF in Myc deficient intestinal enterocytes 

following gamma irradiation could also be contributing to the failure of the intestinal 

enterocytes to undergo apoptosis. 
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igure 3.10 : Following 14Gy irradiation, c-Myc deficient enterocytes are unable to 

upregulate p19ARF  
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3.2 Discussion: 
 

In this study we have examined the role of c-Myc induced apoptosis following DNA 

damage in vivo. To do this we utilized Cre Loxp technology to conditionally delete c-

Myc from the murine intestinal epithelium (Muncan et al., 2006b). Following exposure to 

DNA damage, c-Mycfl/fl mice displayed a dramatic decrease in apoptotic levels, which 

was due to an inability to upregulate p53. In this study we confirm that following DNA 

damage, c-Mycfl/fl mice are unable to undergo apoptosis due to a strong upregulation of 

MDM2, as well as an inability to regulate ARF, resulting in the ablation of p53 levels. 

This was mechanistically confirmed by treatment with the MDM2 antagonist Nutlin3a, 

which restored apoptosis and p53 levels following DNA damage in c-Mycfl/fl mice.  

It is tempting to speculate that the levels of c-Myc allow cells to be permissive for 

apoptosis in vivo. For example, differentiated villus enterocytes which do not express c-

Myc do not induce p53 or undergo DNA damage induced apoptosis following gamma 

irradiation (despite showing the activation of the γH2AX). Likewise epithelial tissues that 

do not undergo DNA damage induced apoptosis such as the liver or the pancreas also fail 

to upregulate p53 and have very low levels of c-Myc. In vivo studies have shown that it is 

the threshold of Myc expression that determines its biological output. For example, 

studies by Murphy et al. have used the Rosa26 promoter to drive low-level deregulated 

expression of the switchable form of Myc, MycERT2, in target tissues. Results showed that 

acute activation of Myc lead to an induction of ectopic proliferation in many tissues, 

including endocrine and exocrine pancreas, liver, kidney epithelium, lung, skin, and 

lymphoid organs (Murphy et al., 2008a). However, within the colon, higher levels of Myc 

expression resulted in activation of the ARF/p53 pathways, and induced apoptosis. This 
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phenotype was rescued by ARF deletion.  In vivo studies from Finch et al. used the 

switchable form of Myc, MycERtam under control of the villin promoter (a regulatory 

element active in all epithelial lineages) to drive high levels of deregulated Myc 

expression within the intestinal epithelium. In contrast to the previous study, induction of 

Myc within these mice lead to acute activation of the ARF/p53 pathway and a significant 

increase in apoptosis. Taken together, these two studies show that an important threshold 

of Myc expression exists whereby low levels of Myc induce proliferation, whilst higher 

levels of Myc expression need to be obtained in order to induce an apoptotic program, 

such as activation of the ARF/p53 pathway.  

In summary we have shown for the first time in an in vivo setting that endogenous c-Myc 

is absolutely required for induction of p53 dependent apoptosis through an MDM2 

dependent pathway.   
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Chapter 4: p21 loss blocks senescence following Apc loss and provokes 
tumourigenesis in the renal but not the intestinal epithelium 
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4.0 Introduction 
 

The Apc tumour suppressor is mutated in approximately 80% of colorectal cancers 

(CRC) where it is thought to be the key initiating event (Kinzler and Vogelstein, 1996). 

The major tumour suppressor function of Apc gene is thought to be as a negative 

regulator of Wnt Signalling.  

 Outwith colorectal cancer, mutations in the Apc gene are much more rare, however Wnt 

pathway activation is observed in cancers such asHepatocellular Carcinoma (HCC) 

through β-catenin activating mutations or loss of negative regulators such as Axin or 

Axin2 (Satoh et al., 2000, Giles et al., 2003). Similarly activating or stabilizing mutations 

in β-catenin have been observed in several cancers including melanoma, ovarian 

carcinomas, childhood hepatoblastomas and medulloblastomas, desmoid tumours as well 

as non-ductal solid pancreatic tumours (Giles et al., 2003). However in these cancers 

activating mutations of the Wnt pathways are not thought to be the intitating event. 

Recently a role for Wnt signalling in renal carcinoma has been proposed as the key renal 

tumour suppressor protein (Von Hippel-Lindau) VHL, acts through JADE, an E3 

ubiquitin ligase to target β-catenin for degradation (Zhou et al., 2005). Therefore,  a 

mutation in VHL results in the stabilization and activation of the oncogenic β-catenin 

pathway (Behrens, 2008). This link between these 2 pathways helps to explain why FAP 

(Familial Adenomatous Polyposis) patients, with a germline mutation of Apc rarely 

present with renal cell carcinoma, but mice with a renal specific deletion of Apc develop 

cancer similar to those with VHL mutations (Sansom et al., 2005a). Moreover the  
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promoter of the Apc gene is hypermethylated in up to 30% of renal carcinomas (Dulaimi 

et al., 2004), suggesting Apc loss/reduction may play an important role in the progression 

of renal carcinoma. Proof of principle experiments in the mouse using tissue specific 

deletion of Apc have suggested that Apc loss can predispose to renal carcinoma but Apc 

gene loss alone is a very poor initiating event (Sansom et al., 2005a). Indeed using the Ah 

Cre transgene which yields sporadic constitutive Cre expression within all cell lineages 

of the kidney, only 1/3 of mice develop renal carcinoma, despite showing the presence of 

small premalignant lesions from 2 months of age (Sansom et al., 2005a). In contrast 

deletion of Apc within the intestinal epithelium rapidly leads to a marked ‘crypt-

progenitor cell-like’ phenotype (Sansom et al., 2004) and moreover, deletion of Apc 

within the LGR5+ stem cell zones leads to adenoma formation in as little as 2 weeks 

(Barker et al., 2009).  

 

Over the past few years there has been a great interest in the role of senescence as a bona 

fide tumour suppression mechanism in vivo. Of particular note is oncogene induced 

senescence, where activation of oncogene leads to senescence often in association with a 

DNA damage response and the expression of β-galactosidase, hence Senescence 

Associated β-galactosidase (SAβgal) (Collado et al., 2005) (Collado and Serrano, 2006).  

The evidence to support this has come from both humans and mice (Collado et al., 2005, 

Chen et al., 2005). Staining of pre-malignant lesions such as benign nevi, adenomas of 

the lung and PANINs have shown the expression of SAβgal and cell cycle arrest proteins  

such as p16 and p21, which are key components of senescence in vitro. Conditional 

activation of oncogenes such as BRAF or KRAS in mice  has led to the formation of  
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premalignant lesions which have been associated with markers of senescence that either 

fail to progress or rarely progress (Dhomen et al., 2009), (Dankort et al., 2007). However 

controversy remains in the literature over whether these premalignant lesion really 

exhibit a permenant irreversible growth arrest and indeed other studies have shown 

proliferation in equivalent premalignant lesions of the lung (Tan et al., 2001).  This raises 

the question of whether these lesions are truely senescent or more comparable to a 

reversible growth arrest. 

 

There is very little evidence linking activated Wnt signalling to driving a senescence 

programme in vivo. This is despite the fact that Apc loss drives adenoma formation, and 

tumours from patients are often thought to progress over years rather than months. Most 

tissue culture and in vivo studies have instead shown that Wnt signalling is either required 

for or cooperates with other mutations to overcome senescence (Delmas et al., 2007). 

However in lymphoid cells β-catenin activation has been shown to drive senescence ex 

vivo, suggesting that the Wnt pathway has the capacity to cause senescence albeit not in a 

physiological setting (Xu et al., 2008). 

 

In this study, we show that Apc loss drives a context dependent senescence response. 

Within the kidney, Apc loss triggers a p21 dependent senescence programme, abrogation 

of which rampantly drives renal carcinoma. Within the intestine, Apc loss drives a p21 

independent proliferative response hence leading to rapid tumourigenesis. 
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4.1 Results  
 

4.1.1 Apc loss leads to senescence in the renal epithelium 
 

Our previous studies investigating Apc loss in the renal epithelium using the AHCRE to 

drive constitutive Cre expression within the kidney have suggested that Apc loss is a very 

poor  tumour initiating event (Sansom et al., 2005a). To investigate the  mechanism 

underpinning this, we investigated the long term fate of Apc deficient cells within the 

kidney . To do this we intercrossed AHCRE transgenic mice to mice carrying 

conditionally inactivatable ‘floxed’ Apc580s alleles (AhCre Apcfl/fl) and the Z/EG GFP 

Cre reporter transgene. Unlike AhCre Apc+/+ Z/EG+ (Novak et al., 2000) mice, which 

showed GFP expression throughout the kidney both on wholemount examination and 

through immunohistochemical  (IHC) staining for GFP,  AhCre Apcfl/fl Z/EG+ showed 

very low or no GFP expression via wholemount examination (Figure 4.1 a) and only a 

small number of cells that expressed GFP by IHC staining on sections (data not shown). 

This small number of GFP positive cells correlated to the small number of cells which 

showed nuclear β-catenin (as a marker of Apc loss) and the very low levels present of the 

Apc recombined allele in the kidneys of  AhCre Apcfl/fl Z/EG+ mice (Figure 4.1b). This 

data suggested that most of the cells where Apc was being deleted were being lost from 

the kidney. Histological examination for apoptotic cells and IHC staining for cleaved 

caspase 3 failed to reveal any evidence for apoptosis, suggesting cells were not being 

cleared by apoptosis (Data not shown).  
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Figure 4.1: Apc deletion within the renal epithelium leads to rapid deletion of recombined 

cells. 
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The cells that remained following Apc loss fell into two classifications either single cells 

that were scattered throughout the kidney and those that had formed small premalignant 

lesions. Given these lesions rarely progress to cancer we next sought to investigate if Apc 

loss was inducing senescence within these lesions. Currently a number of OIS (oncogene 

induced senescent) markers have been proposed (Collado and Serrano, 2006), though 

these are thought to have tissue specific expression so a definite set of markers that work 

robustly in all tissues are still lacking. Therefore we tested a number of these markers and 

found upregulation of p21, p16 and Saβgal in AhCre Apcfl/fl kidneys. p21 (Figure 4.2 d-f) 

and p16 (Figure 4.2 g-i) showed upregulation in occasional normal looking renal 

epithelium nuclei (but only ever in AhCre Apcfl/fl, which had nuclear β-catenin in 

coincident section) (Figure 4.2 a-c) and in small premalignant lesions. Saβgal was also 

present in the pre-malignant renal lesions (Figure 4.2 j). Importantly the rare tumours that 

formed lost the expression of Saβgal (Figure  4.2 k) and p21/p16 (data not shown). 
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Figure 4.2: Deletion of Apc within the renal epithelium leads to an upregulation of 

senescent markers 
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Given the lack of markers that are exclusive to senescence the most definitive read out 

should be a strong reduction/total ablation of proliferation within the premalignant 

lesions. To test this we performed IHC staining for 2 independent markers of 

proliferation, first the cell cycle antigen Ki-67, second the replication licensing factor 

MCM2. Staining of premalignant lesions show little if any expression of these 

proliferative markers, with staining being restricted to surrounding stromal or immune 

cells (Figure 4.3 c,f). Figure 4.4 shows back to back staining in a cluster of premalignant 

cells, showing a coinciding upregulation  for β-catenin (Figure 4.4 a) and p21 (Figure 4.4 

b), however a marked absence of proliferative markers Ki-67 (Figure 4.4 c) and MCM2 

(Figure 4.4 d). Importantly, a strong increase in proliferation can now be seen in the few 

Apc deficient premalignant lesions that grow out to become larger renal carcinomas 

(Figure 4.4 e). Taken together this data strongly suggests that Wnt pathway activation is 

leading to senescence within the renal epithelium.  
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Figure 4.3: Apc deficient lesions are not proliferative 
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Figure 4.4 Renal carcinomas that grow out from Apc deficient cells become highly 

proliferative 
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4.1.2  p21 loss robustly cooperates with Apc deletion to cause renal carcinoma 
 

To test the functional significance of the upregulation of OIS markers, we intercrossed 

AhCre Apcfl/fl mice to p21 knockout mice and aged until mice developed renal carcinoma. 

Previous studies looking at the effect of p21 deletion have shown that  p21 knockout 

mice have a weak predisposition to tumourigenesis, with an average onset of tumour 

development of 16 months, with the majority of tumours consisting of sarcomas, 

lymphomas and tumours of the vascular and endothelial origins (Martin-Caballero et al., 

2001). Similar studies have gone on to show that p21 null mice are more susceptible to 

irradiation induced tumourigenesis (Jackson et al., 2003), and that p21 deletion increases 

tumour formation in Apc 1638 +/- mice when placed on a western diet of high fat and 

phosphates and low calcium and vitamin D (Yang et al., 2001a). Previous studies have 

also shown that in an Apc 1638+/- model of intestinal tumourigenesis, p21 was essential 

for the mitotic arrest as well as the inhibition of Apc-initiated tumour formation by 

sulindac (Yang et al., 2001b). In all of  the three studies mentioned above, loss of one 

copy of p21 was sufficient to accelerate tumourigenesis or inhibit sulindac efficacy 

(Jackson et al., 2003) (Yang et al., 2001a) (Yang et al., 2001b). However this may due to 

the fact that p21 knockout mice have not been intercrossed to models where p21 is 

upregulated in premalignant lesions. Remarkably within the renal epithelium the impact 

of p21 was marked. All AhCre Apcfl/fl  p21-/- mice rapidly developed signs of renal 

tumourigenesis (hunching, swelling, anaemia due to blood in the urine) and  all had to be 

sacrificed by 100 days of age (median death 63 days Figure 4.5 a). Histological 

examination of these kidneys from these mice show the development of renal carcinoma 

in all mice (often multiple foci) (Figure 4.5 b). No control AhCre Apcfl/fl  mice showed 
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signs of renal tumourigenesis until 180 days, and indeed by 1 year of age only 8% (2 out 

of 24 mice) had developed renal tumours.  Renal carcinomas from AhCre Apcfl/fl  p21-/-  

mice did not express Saβgal (Figure 4.5 c), p16 (Figure 4.5 d) or as expected p21 (Figure 

4.5e), showing that p21 loss is sufficient to overcome the senescence block induced by 

Apc loss. Importantly, these carcinomas continued to express high levels of β-catenin 

(Figure 4.5f), showing the retention of Apc deficient cells. Immunohistochemistry for Ki-

67 (Figure 4.5g) and MCM2 (Figure 4.5h) show strong upregulation of both of these 

proliferation markers, illustrating that deletion of p21 now renders these carcinomas 

highly proliferative. Given the rampant acceleration of tumourigenesis by p21 

nullizygosity we also assessed whether haploinsufficiency for p21 could accelerate 

tumourigenesis. Remarkably haploinsufficiency for p21, resulted in a rapid acceleration 

of tumourigenesis in AhCre Apcfl/fl p21+/-  compared to AhCre Apcfl/fl p21+/+ (median age 

of death 109 days Figure 4.5a).  To further confirm that escape from a senescene like 

program was occuring we also aged a small cohort of AhCre Apcfl/fl  INK4A-/-  mice. Once 

again all of these developed renal carcinoma by 6 months of age (n=10)(data not shown). 

Thus this data provides definitive functional evidence that p21 acts as a key block to 

tumour progression in the kidney in the absence of Apc.  
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Figure 4.5:  p21 loss following Apc deletion leads to rapid onset of renal tumourigenesis 
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4.1.3 Apc loss does not lead to senescence within the intestine, even within slowly 
progressing lesions 
 

These data suggest that the reason why Apc loss is not an initating tumour suppressor in 

the kidney  is due to the induction of senescence. Implicit in this hypothesis is that Apc 

loss in the intestine should not induce senescence. We therefore investigated this by 

examining whether Apc loss within the intestinal epithelium provoke senescence. First, 

we conditionally deleted Apc within the intestinal epithelium by injecting AhCre Apcfl/fl 

mice with 3 injections of β-napthoflavone in a single day. This induces nearly 100 

percent recombination within the small intestinal crypt. This regime produces a marked 

crypt-progenitor cell like  phenotype within 4 days of Apc gene deletion(Sansom et al., 

2004). Our previous studies have shown that a small subset of cells following Apc loss 

upregulated p21 at the leading edge of the phenotype (Figure 4.6b) (Sansom et al., 2007). 

To test whether this might be a senescent population of cells we stained for SAβ-gal  and 

found no evidence of positivity (Figure 4.6c). Likewise no upregulation of p16 was 

observed (Figure 4.6f). Next we stained for the proliferation markers MCM2 and  Ki-67 

and found that every Apc deficient cell in the small intestine was MCM2 (Figure 4.6g) 

and  Ki-67 (Figure 4.6i) positive, highlighting that there is no senescence following Apc 

loss in the intestine (albeit over the short term). This fits with our previous studies 

showing increased MCM2 staining and BrdU incorporation following Apc loss (Sansom 

et al., 2004). 
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Figure 4.6: Deletion of Apc does not induce senescence within the intestinal 

epithelium 
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To confirm that there was not a functional role that p21 was playing we induced AhCre 

Apcfl/fl p21-/- mice at 6 weeks of age with 3 injections of β-napthoflavone to yield near 

constitutive inducible intestinal recombination and investigated the phenotype of doubly 

mutant Apc p21 knockout intestines.  Confirming the lack of any senescence or arrest at 

the early stages of Apc loss,  Apc p21 double knockout intestines were indistinguishable 

to single Apc knockout intestines, in terms of proliferation, crypt size, apoptotic or 

mitotic levels ( Figure 4.7 a-d).  
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Figure 4.7: Deletion of p21 does not affect the Apc intestinal phenotype 
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As the Apc mutation occurs in 80% of colorectal cancer as the initiating event and there 

has been some evidence to suggest benign adenomas may exhibit some features of 

senescence we next investigated whether adenomas that are formed following Apc loss 

show signs of senescence. To do this we examined oncogene induced senescence (OIS) 

in small lesions and adenomas generated from 3 different  models of Apc loss , first the 

ApcMin/+ mouse, second adenomas formed through stem cell deletion of Apc and thirdly 

single crypt lesions from the non stem cell deletion of Apc. Our previous studies have 

shown that when Apc is deleted outwith the stem cell zone  this leads to protracted 

tumourigenesis and although adenomas can form, most lesions remain small lesions and 

do not progress (over a 200-300 day period)(Barker et al., 2009). In all three scenarios we 

failed to see upregulation of p16, Saβgal, though p21 was expressed within the adenomas 

of the ApcMin/+ mouse (Figure 4.8a-d). To examine the proliferative capacity of the 

lesions and the adenomas we stained for Ki-67 and  MCM2  ( Figure 4.8g-h, k-l). Once 

again both lesions and adenomas exhibited high levels of staining showing that Apc loss 

within the intestinal epithelium does not provoke senescence within the intestinal 

epithelium. Therefore even in our protracted models we again fail to see senescence in 

the premalignant lesions. The major difference we see between the small lesions and 

adenomas is levels of apoptosis, within the small lesions both proliferation and apoptosis 

is high whilst in adenomas levels of apoptosis are low; consistent with the notion that 

apoptotic escape is important for colorectal cancer progression. 
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Figure 4.8: Apc deletion does not induce OIS within the intestine 
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Finally as p21 was expressed in a subset of cells within the adenoma we tested whether  

p21 functionally modulated Apc mediated tumourigenesis in the intestine. Thus 20 

AhCre+ Apcfl/+ p21+/+ and  AhCre+ Apcfl/+ p21-/-   were induced at weaning with β-

napthoflavone and aged until they developed intestinal tumourigenesis as scored by 

hunching, paling of feet and weight loss. No significant differences was seen in either age 

of death, tumour burden or progression in the  AhCre+ Apcfl/+ p21-/-  compared to the  

AhCre+ Apcfl/+ p21+/+ (Figure 4.9 a-c Mann-Whitney U test , (b) p=0.3118, (c) p=0.1346).  

To further test if sensescence was playing a role in the intestinal epithelium we also 

examined whether INK4A deficiency could accelerate intestinal tumourigenesis. Given 

the relatively longevity of AhCre+Apcfl/+ mice this made this experiment difficult as 

INK4A-/- mice develop spontaneous tumourigenesis from 200 days of age. Therefore we 

crossed INK4A-/- mice to the ApcMin/+ model of tumourigenesis,  where mice develop 

intestinal adenomas more rapidly (by 100 days). Once again no difference in time to 

intestinal ill health or tumour burden was observed between ApcMin/+ INK4A+/+ or 

ApcMin/+ INK4A-/- animals (Figure 4.9 d-f, Mann-Whitney U test, (e) p= 0.7405, (f) = 

0.1601).  
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Figure 4.9 :Deletion of p21 or Ink4a does not affect intestinal tumourigenesis 
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4.1.4 Tissue specific C-Myc suppression of p21 
 

Within the intestinal epithelium, we have previously shown that loss of c-Myc strongly 

suppresses the phenotypes of Apc loss (Sansom et al., 2007). One of the key functions of 

c-Myc is to repress p21 through its interaction with MIZ1 and we have previously shown 

p21 is markedly derepressed when Apc and c-Myc are co-deleted within the intestinal 

epithelium. However in the renal epithelium we observed a clear induction of p21 

coincidentally with the accumulation of β-catenin and thus argues in this context c-Myc 

expression was not sufficient to repress p21.  In other tissues such as the skin, the 

repression of p21 by c-Myc is crucial for tumourigenesis phenotype (Oskarsson et al., 

2006). Given increased c-Myc is not sufficient to repress p21 within the kidney following 

Apc loss this suggested tumourigenesis in Apc p21 double knockout may proceed in a c-

Myc independent fashion. To test this we generated triple knockout Apc Myc p21( 

AhCre+ Apcfl/fl Mycfl/fl p21-/- ) mice and assessed renal tumour formation in these mice. As 

can be seen in Figure 4.10 a, renal tumourigenesis still proceeded rapidly in these mice 

(equivalent to the double Apc p21 knockout mice) despite the absence of c-Myc. Apc 

Myc p21 renal tumours are histologically identical to Apc p21 mice (Figure 4.10b). 

Similary, Apc Myc p21 tumours display a continued lack of Saβgal (Figure 4.10 c), 

whilst continuing to express high levels of β-catenin (Figure 4.10 d) and Ki-67 (Figure 

4.10g). Immunohistochemical staining for c-Myc shows complete ablation of protein in 

Apc Myc p21 tumours (Figure 4.10e) and a high upregulation in Apc p21 tumours( 

Figure 4.10f). As like the renal carcinomas from the Apc p21 mice, Apc Myc p21 

tumours are highly proliferative as seen through MCM2 IHC (Figure 4.10h). This is 

again in complete contrast to Apc deficient intestinal epithelium which absolutely 
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requires the correct levels of c-Myc for the phenotypes of Apc loss and tumour formation 

(Sansom et al., 2007).  
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Figure 4.10: c-Myc deletion does not affect onset of tumour development 
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4.2 Discussion: 
 

Taken together our data shows that Apc loss within the renal epithelium provokes a 

strong disadvantage with cells upregulating p21 and undergoing senescence. It should be 

noted that it is hard to exclude from all the in vivo studies that this may reflect a long 

growth arrest as proving a cell will never proliferate is impossible using current 

methodologies. Given recent data on the immune clearance of senescent cells, it is 

tempting to speculate that the reduction/loss of the majority of Apc deficient cells within 

the kidney is due to this process. Given this is a stochastic process, it is difficult to 

delineate whether this is truely the case or instead reflects a selective disadvantage to the 

Apc deficient cells in development, causing the kidney to be composed of mainly ‘wild 

type unrecombined’ cells. Future studies to investigate different immunocompromised 

strains to the Apc deficient mice will delineate these two hypotheses. These results 

therefore serve to explain why Apc mutations are not initiating events in the kidney.  It 

also highlights the reason why FAP patients and ApcMin/+ mice do not develop renal 

carcinoma as loss of Apc alone would lead to a senescence and selective disadvantage. 

Instead this data predicts strong cooperation of the Wnt pathway in renal carcinogenesis 

once a driver mutation has occured that will block the senescence pathway. To this end 

we have previously shown that KRAS activation in the kidney cooperates with Apc loss 

to drive renal carcinoma (Sansom et al., 2006). Given the recent data that VHL protein 

loss may increase Wnt signalling and Apc is methylated in renal carcinoma, this may be 

relevant to human carcinogenesis (Zhou et al., 2005, Dulaimi et al., 2004) 
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Whilst in the intestine Apc loss drives a strong proliferative (and apoptotic) program. 

Consistent with this, CRC appears to be one of the few cancers where the INK4A locus is 

not deleted and indeed high levels of p16 correlate with a bad prognosis and the 

neighbouring gene MTAP (which is often co-deleted with the INK4A locus) is 

overexpressed (Wassermann et al., 2009, Bataille et al., 2004). Taken together this data 

shows completely different cooperating oncogene and tumour suppressor mutations 

between the intestine and the kidney. This functional data again reinforces the notion that 

Wnt signalling deregulation following Apc loss is sufficient to drive a proliferative fate in 

the intestine and thus mutations key for tumour progression in other tissues to allow from 

an escape from a growth/senescence are not required within the intestinal epithelium. 

This is particularly relevant for INK4A loss as this is mutated at very high levels in 

pancreatic cancer and melanoma, both which have been associated with senescent 

premalignant lesions. In addition, studies from this lab have shown that p21 gene 

knockout strongly cooperates with KRASG12D to drive pancreatic cancer in the mouse and 

is downregulated in approximately 40% of human pancreatic ductal adenocarcinoma 

(Morton et al submitted). 

 

This study thus provides crucial insights into the context specific outcome of Wnt 

signalling and raises questions on how important senescence is as a barrier to 

tumourigenesis in CRC.  Several studies have seen SAβgal postive cells  in colorectal 

cancer patients and the DNA damage response activated. More recent data argued that the 

inflammatory mediators required for senescence like IL-6 were constraining proliferation 

of premalignant intestinal lesions (Becker et al., 2005),(Grivennikov et al., 2009).  One 
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potential explanation could be is that other oncogenic/tumour suppressor mutations could 

have initiated these lesions and driven senescence, for example, BRAF or KRAS. 

However so far  Krasv12 and KrasD12 , LKB1 and PTEN  mutation have all been 

investigated in the murine intestinal epithelial and none induce senescence, indeed most 

induce proliferation (Sansom et al., 2006, Marsh et al., 2008, Shorning et al., 2009). 

Therefore the only remaining oncogenic driver of colorectal cancer not studied so far that 

could induce senescence is BRAFV600E  and studies to elucidate whether the impact of this 

mutation in vivo will be of great interest. 
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Chapter 5: The upregulation of p21 following c-Myc deletion drives 
differentiation but does not block proliferation of Apc deficient 

intestinal enterocytes 
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5.0 Introduction 
 

The c-Myc proto oncogene has been postulated to play a key role in colorectal cancer 

where Wnt signalling is activated. It has been shown to be overexpressed in 70% of 

colorectal tumours (Arango et al., 2003) and is a direct Wnt target gene. Moreover c-Myc 

overexpression has been shown to restore proliferation to colorectal cancer cells where β-

catenin has been deleted and most importantly genetic deletion of c-Myc rescues the 

phenotypes of Apc loss in the murine intestinal epithelium (Sansom et al., 2007). c-Myc 

is thought to function as an oncogene predominantly through its role as a transcription 

factor where it has been shown to both transcriptionally activate and repress genes. 

Following Apc loss, genetic deletion of c-Myc significantly reduces the expression of the 

majority of the Wnt target genes but also causes a significant increase in the levels of 

cyclin dependent kinase inhibitor p21 (Sansom et al., 2007). It is now important to 

delineate the key transcriptional targets of c-Myc that are crucial for the phenotypes of 

Apc deficiency in vivo. 

 

The precise mechanism of how c-Myc transcriptionally represses p21 is relatively well 

understood as  Myc is recruited to the p21 promoter by Miz-1 and inhibits p21 activation 

(Seoane et al., 2002). Micro-array analysis has confirmed this, implicating p21 as one of 

the major targets of Myc repression (Gartel and Radhakrishnan, 2005). In normal 

intestinal epithelium, c-Myc deletion does not cause p21 derepression suggesting that this 

pathway is more important following either an oncogenic event or following stress 

(Muncan et al., 2006b). Consistent with this, a marked upregulation of p21 was observed 

in double knockout Apc c-Myc intestinal enterocytes. A similar phenomenon was 
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observed within the skin where c-Myc deletion had no or only a mild effect on skin 

homeostasis and the response to TPA. However c-Myc was essential for tumourigenesis 

induced by DMBA/TPA treatment and in this instance the repression of p21 was the 

essential c-Myc target as tumourigenesis was restored in double knockout c-Myc p21 

keratinocytes (Oskarsson et al., 2006). 

 

p21 WAF1/CIP1  is a cyclin dependent kinase (CDK) inhibitor that belongs to the cip/kip 

family of CDK inhibitors, and whose main function is to inhibit cyclin/cdk 2 complexes 

and inhibit cell cycle progression (Gartel and Radhakrishnan, 2005). In vivo studies have 

shown that p21 null mice are viable but develop spontaneous tumours at 16 months of 

age (Martin-Caballero et al., 2001). In  accordance with these findings, previous studies 

have also shown that deletion of p21 results in an increase in tumourigenesis following 

irradiation (Jackson et al., 2003). Deletion of p21 has been shown to increase 

tumourigenesis in Apc 1638 +/- mice (Yang et al., 2001a) , and has also been shown  to be 

essential for the mitotic arrest and inhibition of Apc-initiated tumour formation by 

sulindac in Apc 1638 +/- mice (Yang et al., 2001b). Expression of p21 is down regulated 

in human colon tumours, linking defective expression of p21 with shorter survival rates 

for patients with colorectal cancer (Zirbes et al., 2000). P21 deficiency also decreases the 

number of mature goblet cells, which is significant as the loss of this lineage and mucin 

secretion is characteristic of early, preneoplastic aberrant crypt foci in patients who are at 

risk for developing colon cancer (Zirbes et al., 2000). 
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In this study, we have investigated whether the upregulation of p21 is crucial for the crypt 

progenitor cell like phenotype of Apc deficiency. Surprisingly loss of p21 did not restore 

proliferation to double knockout Apc Myc deficient intestinal enterocytes, though it 

repressed the ability of double knockout intestinal enterocytes to migrate up the crypt-

villus axis and to form villi. 
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5.1 Results 
 

5.1.1 P21 deletion does not restore the Apc crypt progenitor cell phenotype to 
doubly mutant Apc c-Myc enterocytes 
 

Previous studies have shown that deletion of Apc in vivo leads to a crypt progenitor 

phenotype, characterized by hyperproliferation and perturbed migration and 

differentiation (Sansom et al., 2004).  To investigate the pattern of p21 localisation, we 

performed IHC for p21 on wild type, Apc, and Apc Myc deficient intestinal enterocytes. 

In wild type crypts weak p21 staining is observed in cells at the top of the crypt as they 

differentiate into villus (Figure 5.1a). Following Apc loss,  p21 is upregulated more 

strongly  but again only in a small subset of Apc deficient cells. The p21 positive cells are 

in the top 1/3 of Apc deficient crypts  in cells which often have an increased size (Figure 

5.1b).  It is possible these cells had originally exited the crypt before Apc loss [it takes 3 

days to see nuclear β-catenin within the intestinal crypt presumably due to the time 

required to induce Cre recombinase expression and turn over the Apc protein (Sansom et 

al., 2004)]. However within double knockout Apc Myc deficient intestinal enterocytes 

high p21 expression is now observed through out the crypts (Figure 5.1c). Previous in 

vivo studies have shown that deletion of c-Myc alone is not sufficient to upregulate p21 

(Muncan et al., 2006b). Our staining here is consistent with these previous studies. Given 

these findings and that p21 was now upregulated in almost every crypt cell of doubly 

mutant Apc Myc mice, we hypothesized that the repression of p21 by c-Myc might be 

key to the Apc ‘hyper- proliferative’ phenotype. In order to examine this we generated 

Cre+ Apc fl/fl Myc fl/fl p21-/- mice. To do this we used Cre loxP technology as previously 
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described and crossed Cre+ Apc fl/fl Myc fl/fl mice to p21-/-  mice (Ireland et al., 2004, 

Sansom et al., 2007).  Mice were injected intraperitoneally with 3 injections of the 

inducer β-napthoflavone within one day, which yields nearly 100% recombination within 

the small intestine, and mice were examined at day 4 post injection. 

 

Figure 5.2 (c-d) shows no gross morphological changes between Cre+ Apc fl/fl  Myc fl/fl  

and Cre+ Apc fl/fl  Myc fl/fl  p21 -/- mice. Cre+ Apc fl/fl  Myc fl/fl  p21 -/- mice  continue to 

display  small crypts like those of  wild type and Cre+ Apc fl/fl  Myc fl/fl   mice and do not 

resemble  those of Cre+ Apc fl/fl  mice. This illustrates that deletion of p21 does not result 

in the reversion to the morphological appearance of the crypt progenitor phenotype. In 

order to determine if Cre+ Apc fl/fl Myc fl/fl p21 -/- mice continued to express high levels of 

Wnt signalling, we performed immunohistochemical staining for nuclear β-catenin. 

Importantly, Figure 5.2e shows a continued upregulation of β-catenin in the crypts of 

these mice, whilst immunhistochemistry for c-Myc (Figure 5.2f) shows complete protein 

loss.  
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Figure 5.1: p21 is expressed in the crypts of Cre+ Apc fl/fl  Myc fl/fl  mice 
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Figure 5.2: p21 deletion following combined c-Myc and Apc loss does not result in 

any gross morphological changes 
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To examine the levels of proliferation more carefully, we investigated  BrdU (5-bromo-2-

deoxyuridine) incorporation in TKO mice, 2 hour prior to euthanasia. Results showed an 

increase in the number of BrdU positive cells per crypt in Cre+ Apc fl/fl Myc fl/fl p21 -/- mice 

compared to Cre+ Apc fl/fl Myc fl/fl mice (Figure 5.3a, Mann-Whitney U test, p=0.04). 

Compensating for this increase in proliferation was an increase in apoptotic levels, as 

scored through H&E analysis (Figure 5.3b), resulting in a crypt size (total cells per crypt) 

similar to those of  Cre+ Apc fl/fl  Myc fl/fl  mice (Figure 5.3c, Mann-Whitney U test p< 

0.04). Histological analysis revealed no significance in the number of mitotic figures 

between double knockout and TKO mice (Figure 5.3d, Mann–Whitney U test; P>0.04).  

To investigate if this increased apoptosis and BrdU incorporation resulted in similar 

levels of proliferation over the longer term, we next pulsed mice with BrdU for 24 hours.. 

However at 24 hours, no differences in proliferation levels were observed between Cre+ 

Apc fl/fl  Myc fl/fl  and Cre+ Apc fl/fl Myc fl/fl p21 -/- mice (Figure 5.4, Mann-Whitney U test; 

p= 1.00).  
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Figure 5.3: Apc Myc p21 mice exhibit higher levels of proliferation and apoptosis 

resulting in similar crypt sizes to Apc Myc mice 
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Figure 5.4: Cre+ Apc fl/+ Myc fl/fl  p21-/-  mice do not display an increase in 

proliferation at 24 hours  
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In addition to examining proliferation, BrdU pulsing also allow levels of enterocytes 

movement up the crypt villus axis to be assessed. This is because BrdU is only 

bioavailable for 1 hour and thus after incorporation cells will divide and move up the 

crypt-villus axis. Therefore we next scored the capacity of triple mutant cells to migrate 

along the crypt villus axis by comparing the position of BrdU positive cells at 2 and 24 

hours after exposure. No difference in position of BrdU positivity was observed between 

Apc Myc  and TKO mice at 2 hours following BrdU injection (Figure 5.5a).  However at 

24 hours a clear difference was observed with enterocytes from, Cre+ Apc fl/fl Myc fl/fl p21 -

/- showing a significant lower labeling position than Apc Myc enterocytes, consistent with 

a lack of any movement. (Figure 5.5b). This finding was confirmed through β-catenin 

IHC which shows that in Cre+ Apc fl/fl Myc fl/fl mice, expression of nuclear β-catenin 

extends from the crypt all the way up the crypt villus axis, however in Cre+ Apc fl/fl Myc 

fl/fl p21 -/- mice, expression of nuclear β-catenin is limited to the crypt region only (Figure 

5.5c-d). Furthermore, mice were intercrossed to the Rosa 26R LacZ reporter strain to 

confirm if recombined cells were no longer moving up the crypt villus axis. Staining for 

β-galactosidase showed that in TKO intestines, only the crypts were positive, with white 

villi composed of non-recombined ‘white cells’ (Figure 5.6a-b). However Apc Myc  

intestines showed positive lacZ expression extending from the crypt up along the villus 

axis (Figure 5.6c-d). These results demonstrate that in triple mutant mice, p21 loss 

prevents the movement and subsequent differentiation of cells into villus.  
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Figure 5.5: Apc Myc p21 mice exhibit a migrational defect seen at 24 hours post 

BrdU injection 
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Figure 5.6: Staining for the Rosa26 LacZ reporter gene shows a migrational defect 

of recombined cells in Apc Myc p21 mice 
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Previous in vivo studies have shown that deletion of c-Myc within the intestinal crypts 

stops polyp formation (Muncan et al., 2006b). Indeed there is a clear haploinsufficiency 

phenotype for c-Myc as Myc heterozygotes are also strongly resistant to tumourigenesis 

caused by Apc loss (Athineos et al. 2009 submitted). Given the fact that TKO cells was 

now retained in the crypt, we wanted to investigate whether this would be sufficient to 

restore tumourigenesis in the absence of c-Myc. To do this we induced Cre+Apcfl/+,, Cre+ 

Apc fl/+ Myc fl/fl p21-/- mice at 6 weeks of age and aged mice until they showed signs of 

intestinal disease (paling of feet, weight loss of over 20%, hunching). Adenomas in this 

model are formed following  the loss of  the remaining Apc allele and show high nuclear 

levels of β-catenin and c-Myc.  Consistent with our previous studies Cre+ Apc fl/+ mice 

developed multiple intestinal adenomas (Figure 5.7a average age of death 220 days). In 

contrast , Cre+ Apc fl/+ Myc fl/fl p21-/- mice survived past 400 days (Figure 5.7 a average 

age of death 391 days).These Cre+ Apc fl/+ Myc fl/fl  p21-/-  mice  exhibited a strong 

reduction in total tumour number as the average tumour number was 37  Cre+ Apc fl/+ 

mice, compared to an average tumour number of 5 in Cre+ Apc fl/+ Myc fl/fl  p21-/-  mice 

(Figure 5.7 b). Most importantly, immunohistochemical analysis of these mice revealed 

that the few  tumours that formed in the Cre+ Apc fl/+ Myc fl/fl p21-/- mice all stained were 

c-Myc proficient (Figure 5.8e). As expected all of the tumours exhibited high levels of 

nuclear β-catenin (Figure 5.8d). These results clearly illustrate that despite the absence of 

p21, adenomas cannot form in the absence of c-Myc.  
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Figure 5.7: Deletion of p21 does not allow double mutant Apc Myc mutant cells to form 

Figure 5.8: Tumours from Cre+ Apc fl/+ Myc fl/fl p21-/-  mice are c-Myc proficient 
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5.2 Discussion 
 
Previous studies have shown that c-Myc is required for both the phenotypes of acute Apc 

loss and intestinal tumourigenesis. One of the hallmarks of Apc loss in vivo is a marked 

hyperproliferation which is strongly suppressed by c-Myc deletion (Sansom et al., 2007). 

Given the upregulation of p21 in these cells and previous studies suggesting that p21 

repression by c-Myc is an essential tumour promoting function of c-Myc, we 

hypothesised TKO intestines would resemble single Apc deficient intestines. However  

here  we show that p21 deficiency does not restore hyperproliferation to Apc Myc doubly 

knockout mice. Therefore this suggests that rather than transcription repression of cell 

cycle inhibitors, it is rather the transcriptional activation of cell cycle activators that drive 

the proliferation following Apc loss. Consistent with this hypothesis I have previously 

shown that  both CDK4 and Cyclin D2 are upregulated following Apc deletion in the 

murine small intestine (Chapter 6). Indeed more recently we and others have shown that 

c-Myc heterozygosity suppresses intestinal tumourigenesis in Apc heterozygous mice and 

reduces hyperproliferation following Apc deletion (Athineos et al. 2009 submitted) 

Interestingly in these mice although there was a clear reduction in a number of the genes 

transcriptionally activated following Apc loss, there was not a clear upregulation of p21. 

This data therefore suggest that targeting the proproliferative targets of Wnt/Myc 

signalling might have some efficacy for chemoprevention following Apc gene deletion. 

 

Moreover these data suggest that suppressing proliferation might be more important for 

chemoprevention strategies than trying to reestablish migration/differentiation to Apc 

deficient cells. In this study, we show that p21 deficiency perturbed the movement of Apc 
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c-Myc deficient cells and the differentiation of these cells into villus, however these cells 

were still unable to initate tumourigenesis in vivo. 

The data presented here once again highlights the need to functionally study 

tumourigenesis in the correct cellular context in vivo. Previous studies have shown the 

central function of c-Myc in skin carcinogenesis induced by DMBA/TPA is to repress 

p21 as Myc p21 double knockout keratinocytes form tumours (Oskarsson et al., 2006). 

Given the strong in vitro evidence suggesting p21 repression was key in colorectal cancer 

cells (van de Wetering et al., 2002) and the marked upregulation of p21 in double Apc c-

Myc deficient cells (Sansom et al., 2007), these studies all clearly predicted that p21 

repression would be a very important requirement. A similar scenario in the liver 

following Apc loss has also been observed, where despite the fact that c-Myc is 

upregulated,  c-Myc deficiency has no impact on the phenotypes of Apc loss (Sansom et 

al., 2007). Indeed in our study we present here, although p21 had no impact on the 

phenotypes of Apc loss in the intestine, AhCre+ Apcfl/fl p21-/- and AhCre+Apcfl/fl  Mycfl/fl 

p21-/-  mice rapidly developed renal carcinoma due to expression of the AhCre in the 

kidney. Thus in this instance, Apc loss induced p21 which was crucial to prevent 

tumourigenesis  and this could occur in the absence of the c-Myc protein (Chapter 4). 

 

Although p21 deficiency was unable to restore tumourigenesis, it was enough to suppress 

differentiation and epithelial cell migration. At present it is difficult to uncouple these 

two processes, the movement of epithelial cells up the crypt villus axis could be 

dependent on them differentiating into villus.  However, it is clear that p21 is required for 
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this process and it is one of the clearest examples in vivo of a cell cycle independent 

phenotypes of p21.   

 

Previous in vivo studies have shown that p21 nullizygosity leads to an increase in tumour 

susceptibility with  a tumour onset of 16 months, with the majority of tumours arising 

from hematopoietic, endothelial, and epithelial origins (Martin-Caballero et al., 2001). 

Studies have also demonstrated a direct correlation between p21 expression and increased  

survival rates in colorectal cancer patients (Zirbes et al., 2000) and a strong association 

between a lack or reduction in expression of p21 and metastasis and associated death 

(Bukholm and Nesland, 2000).  These results may seem at odds with these findings 

presented here and elsewhere where p21 deficiency makes little differences to the 

phenotypes of Apc loss or tumourigenesis in Apc heterozygous mice [ reviewed in 

Chapter 4, Athineos et al. 2009 submitted). However our studies are examining the 

function of p21 at the earliest stages of the carcinogenesis process (transformation and 

adenoma formation) and thus p21 could have later roles in suppressing metastasis. Future 

work examining p21 deficiency in more aggressive models of colorectal cancer should 

allow this to be delineated. 

 

Taken together, our results show that the central function of c-Myc is not to 

transcriptionally repress p21 following Apc loss. However we have elucidated for the 

first time that p21 can drive differentiation/migration in these cells and this is likely to be 

independent of its role as a cycle cell inhibitor. Further studies to examine the importance 
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of other c-Myc target genes following Apc loss is therefore critical to delineate novel 

targets for colorectal cancer therapy. 
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Chapter 6: Cyclin D2 is upregulated immediately following Apc loss and 
is required for efficient intestinal tumourigenesis 
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6.0 Introduction 
 

Previous studies have shown that acute loss of the Apc gene within the murine intestinal 

epithelium in vivo leads to a ‘crypt progenitor cell-like’ phenotype (Sansom et al., 2004, 

Andreu et al., 2005). Here there is a marked increased proliferation of intestinal 

enterocytes with reduced intestinal differentiation and migration. Coincident with the 

onset of this ‘crypt-progenitor cell like phenotype’ is the accumulation of nuclear β-

catenin and the transcription of Wnt target genes such as c-Myc and CD44. The 

upregulation of c-Myc following Apc loss is critical to all the phenotypes observed, with 

double Apc c-Myc knockout intestines now proliferating to equivalent levels as wild type 

intestines (Sansom et al., 2007). 

Previous studies have shown that CyclinD/CDK4/6 complexes may be essential 

downstream mediators of c-Myc dependent proliferation (Grandori and Eisenman, 1997). 

Consistent with this hypothesis, depending on cellular context CDK4, Cyclin D1 and 

Cyclin D2 have all been proposed to be potential transcriptional targets of c-Myc (Haas et 

al., 1997). Therefore these studies suggested that Apc deficient cells may be dependent 

on high levels of Cyclin D/CDK4-6 complexes. Even more pertinently Cyclin D1 has 

been proposed to be a canonical Wnt target gene and thus would provide a ready 

mechanism to elevate Cyclin D1 levels following Apc loss. However we have previously 

shown that Cyclin D1 is not upregulated immediately following Apc loss in the murine 

intestine and genetic deletion of Cyclin D1 makes no impact the immediate phenotype 

(including levels of proliferation) following Apc loss. Cyclin D1 is however upregulated 
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at later stages following Apc loss and is required for efficient adenoma formation 

(Sansom et al., 2005b). 

In this study we focus on the role of Cyclin D2 following Apc loss in promoting 

proliferation and tumour formation in the intestinal epithelium. Cyclin D2 is normally 

expressed at the base of the intestinal crypt, where there are the highest levels of Wnt 

signalling  (Yang et al., 2006). Studies have shown that Cyclin D2 is overexpressed in 

53% of colon tumours and that over expression of Cyclin D2 may be  related to a higher 

TMN stage of tumour (Mermelshtein et al., 2005). Mechanistically it has been suggested 

that Cyclin D2 is a direct c-Myc target gene, implying that Cyclin D2 levels should be 

deregulated following Apc loss.  In this study we show that Cyclin D2 is rapidly 

deregulated following Apc loss where it plays a functional role to promote proliferation 

and tumourigenesis. 
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6.1 Results 

6.1.1 Deletion of Apc leads to an upregulation of Cyclin D2 
 

First we wished to assess whether Cyclin D2 was upregulated following Apc loss in vivo. 

We have previously deleted Apc in the intestinal epithelium using Cre-lox technology. 

Here mice carrying an inducible knockout Apc allele Apc580S (from here on referred to as 

Apcfl) are intercrossed to mice carrying the AhCre transgene which yields near 

constitutive inducible Cre recombinase expression within the intestinal epithelium 

following exposure to β-napthoflavone.  Fours days following Cre induction these mice 

develop a robust phenotype, crypts become hyperplastic and β-catenin accumulates 

within the nucleus. Our previous microarray analysis  suggested that Cyclin D2 is 

immediately upregulated following Apc loss in vivo (Sansom et al., 2004). To confirm 

this we performed QRT-PCR and ISH on wild type and Apc deficient intestine 4 days 

following Apc gene deletion. In both cases a clear upregulation of Cyclin D2 mRNA was 

observed suggesting that Cyclin D2 is transcriptionally activated (Figure 6.1a,b). To 

investigate proteins levels we performed immunohistochemistry and immunoblotting for 

Cyclin D2 and found it to be clearly deregulated in both cases (Figure 6.2 c-d, g). Indeed 

IHC analysis showed high Cyclin D2 in every cell with nuclear β-catenin in the Apc 

deficient intestines, which is in contrast to Cyclin D1 which only marks a few cells at this 

stage (Figure 6.2f). In addition to Cyclin D2 upregulation,  previous microarray analysis 

also suggested that CDK4 was upregulated. This was confirmed by QRT-PCR , which 

shows a significant upregulation in CDK4 levels following Apc loss (Figure 6.2h)  
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Figure 6.1: Cyclin D2 is upregulated immediately following loss of Apc 
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Figure 6.2: Cyclin D2 and CDK4 are upregulated immediately following loss of Apc 
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As Cyclin D2 has previously been shown to be transcriptionally activated by one of the 

key Wnt targets genes c-Myc, we next investigated whether the overexpression of Cyclin 

D2 required the presence of c-Myc. Therefore we examined levels of Cyclin D2 four 

days following combined Apc and c-Myc deficiency (Sansom et al., 2007). Fitting with 

the fact that c-Myc deletion rescues the proliferation following Apc loss, Cyclin D2 

levels were significantly reduced in AhCre+ Apc fl/fl C-Mycfl/fl mice. Analysis by QRT-

PCR showed significant reduction in Cyclin D2 mRNA levels between AhCre+ Apc fl/fl 

mice and AhCre+ Apc fl/fl C-Mycfl/fl mice (Figure 6.3b). Furthermore, QRT-PCR showed 

significant reduction in CDK4 mRNA levels between AhCre+ Apc fl/fl mice and AhCre+ 

Apc fl/fl C-Mycfl/fl mice (Figure 6.3b). These results therefore indicate that following Wnt 

activation within the intestine, the upregulation of Cyclin D2 and CDK4 are C-Myc 

dependent, arguing that the upregulation of CDK4/Cyclin D2 complexes act as key c-

Myc targets in driving proliferation following loss of Apc.  
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Figure 6.3:The upregulation of Cyclin D2 and CDK4 following loss of Apc are c-

Myc dependent 
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6.1.2 Cyclin D2 deficiency reduces crypt size and proliferation in Apc deficient 
intestinal crypts. 

We next wanted to test the functional importance of Cyclin D2 upregulation following 

Apc loss and assess if Cyclin D2 is required for the hyperproliferation we observe. In 

order to investigate this, we intercrossed Cyclin D2-/-  mice to AhCre+ Apcfl/fl mice, and 

analysed the intestinal phenotype 4 days following Apc deletion. Although Cyclin D2 

deficiency had no impact on crypt size in mice that are wild type for Apc (AhCre+ Apc+/+ 

Cyclin D2-/-) (Figure 6.4a, Mann-Whitney U test, p=1.00), Cyclin D2 deficiency 

significantly reduced the crypt size of  AhCre+ Apcfl/fl CyclinD2-/- mice when compared to  

AhCre+ Apcfl/fl CyclinD2+/+ mice (Figure 6.4b, Mann- Whitney U test, p=0.01). To 

investigate whether this was due to less proliferation, we next examined BrdU 

incorporation and found that AhCre+ Apcfl/fl CyclinD2-/- mice had significantly reduced 

proliferation compared to AhCre+ Apcfl/fl CyclinD2+/+ mice (Figure 6.5, Mann-Whitney U 

test, p=0.04). Once again, no impact was seen in Cyclin D2 knockout mice (AhCre+ 

Apc+/+  CyclinD2-/-) (Mann-Whitney U test, Figure 6.5, p=0.1914). We also examined the 

other phenotypes associated with loss of Apc, namely increased apoptosis, and found no 

differences between AhCre+ Apcfl/fl  and AhCre+ Apcfl/fl CyclinD2-/-  mice (Data not 

shown). Cyclin D2 deficiency also did not affect β-catenin accumulation or localisation 

following Apc loss, highlighting that Cyclin D2 is downstream of Wnt signalling (Figure 

6.6c) 
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Figure 6.4: Deletion of Cyclin D2 following loss of Apc significantly reduces crypt 

size 
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Figure 6.5: Deletion of Cyclin D2 following loss of Apc significantly reduces 

proliferation 
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Figure 6.6: Cyclin D2 is downstream of Wnt activation 
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6.1.3 Cyclin D2 deficiency leads to a dramatic reduction of tumour burden and 
increased survival within the Apc Min/+   mouse 
 

Given the reduced crypt size and proliferation observed in AhCre+ Apcfl/fl CyclinD2-/- 

mice, we next wished to assess if this was functionally relevant for tumour formation. 

This was especially interesting given Cyclin D2 deficiency was only affecting 

proliferation following Apc loss and would allow us to evaluate if reducing only one of 

the multitude of phenotypes could modify tumourigenesis. To investigate the effect of 

Cyclin D2 on tumour formation and survival, we  crossed Cyclin D2 -/- mice to the 

ApcMin/+ mouse. Two studies were performed. First, in order to determine the effect of 

Cyclin D2 on survival, a cohort containing ApcMin/+ (n=29), ApcMin/+ Cyclin D2 +/- (n=26) 

and ApcMin/+ Cyclin D2-/- ( n=21) were aged until showing signs of intestinal illness. This 

included paling feet, starry coats and hunching. Figure 6.7a shows that deletion of Cyclin 

D2 significantly increased the survival of these ApcMin/+ Cyclin D2-/-  when compared to 

ApcMin/+ Cyclin D2+/+ mice (Log rank test, p<0.001). Heterozygous deletion of Cyclin D2 

did not significantly affect survival in these mice (Log rank test, p=0.2516). At death, 

tumour burden of  ApcMin/+ Cyclin D2-/-  mice (Figure 6.7b, Mann- Whitney U test, p= 

0.08) as well as average tumour size (Figure 6.7c, Mann-Whitney U test, p= 0.0894),  

was similar to those in ApcMin/+ Cyclin D2+/+  mice, confirming that mice were being 

euthanized at the same stage of disease. 
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Figure 6.7:Deletion of Cyclin D2 significantly prolongs survival of Apc Min/+ mice 
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 To ensure mice had increased lifespan due to delayed tumourignesis we aged a second 

cohort which were euthanized  at a timepoint of 110 days to examine levels of 

tumourigenesis (ApcMin/+ n=30, ApcMin/+ Cyclin D2 +/-  n=30, ApcMin/+ Cyclin D2 -/- n=23). 

Once again,  ApcMin/+ Cyclin D2 -/-  displayed a significant reduction in both total tumour 

burden ( Figure 6.8a, Mann-Whitney  U test, p‹ 0.0001), as well as average tumour size 

(Figure 6.8b, Mann- Whitney U test, p< 0.0001). As in the ageing cohort, heterozygous 

deletion of Cyclin D2 did not affect total tumour burden (Figure 6.8a, Mann-Whitney  U 

test, p= 0.2451) or average tumour size ( Figure 6.8b, Mann-Whitney, p=0.1452) 
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Figure 6.8: Deletion of Cyclin D2 significantly decreases tumour burden and 

average tumour size in Apc Min/+ mice 
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 Figure 6.9 shows immunohistochemical staining for β-catenin, showing strong nuclear 

staining within the polyps of both ApcMin/+ (Figure 6.9a) and ApcMin/+ Cyclin D2-/- (Figure 

6.9b) mice. Importantly, immunohistochemical staining for Cyclin D2 shows a complete 

ablation of protein from both the colonic epithelium and polyps from ApcMin/+ Cyclin D2-/-

mice (Figure 6.9 c). Moreover, Figure 6.10 shows BrdU IHC in polyps from both sets of 

mice. Polyps from ApcMin/+ Cyclin D2-/-  mice are significantly less proliferative than 

ApcMin/+ mice as scored through  total number of BrdU positive cells per 500 tumour cells 

( Figure 6.10, Mann-Whitney U test, p= 0.04). 

Taken together, these results show that Cyclin D2 is key for intestinal tumourigenesis 

following activation of the Wnt pathway. Therefore deletion of Cyclin D2 results in a 

significant increase in survival in the Apc Min/+ mouse model, which is due to a reduction 

in the ability of Apc deficient cells to proliferate.  
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Figure 6.9: Adenomas from Apc Min/+ Cyclin D2 -/- mice continue to display high 

levels of β-catenin 
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Figure 6. 10: Adenomas from Apc Min/+ Cyclin D2 -/-  mice are significantly less 

proliferative than those from Apc Min/+ mice  
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6.2 Discussion 
 

In this study we have shown that Cyclin D2 is required for efficient proliferation and 

tumourigenesis following Apc loss. This finding is particular pertinent to human 

colorectal cancer as previous studies have shown that overexpression of Cyclin D2 has 

been reported to be the most considerable aberration among G1-phase regulators in 

human colonic polyps (Bartkova et al., 2001). Moreover, a positive relation has also been 

reported between overexpression of Cyclin D2 and higher TNM stage of tumour, 

suggesting that overexpression of Cyclin D2 correlates to a high metastatic degree of 

tumour (Mermelshtein et al., 2005). 

There has been much debate over the role of Cyclin D1 as a Wnt target gene in colorectal 

cancer. Our previous studies have shown that Cyclin D1 is not immediately upregulated 

following Apc loss in the murine intestinal epithelium and our data shown here suggests 

Cyclin D2 is more important at these earliest stages of intestinal neoplasia. However, it 

has been clearly shown that Cyclin D1 is upregulated in adenomas of ApcMin/+ mouse and 

Cyclin D1 deficiency can suppress tumourigenesis (Sansom et al., 2005b). Thus our 

finding that Cyclin D2 loss can also suppress tumourigenesis is even more impressive, as 

there are still high levels of Cyclin D1 within these adenomas which cannot completely 

compensate for the lack of Cyclin D2. This is in contrast to normal intestinal epithelium 

which shows no defect in proliferation in the absence of Cyclin D2, highlighting that Apc 

deficient intestinal enterocytes are somewhat dependent on high Cyclin D2 levels. 

Previous in vivo studies have generated mice which express knockout deletions of Cyclin 

D1 and Cyclin D2 [reviewed in (Santamaria and Ortega, 2006)]. In both cases, mice are 
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completely viable with observable defects only in specific cell types. For example, 

deletion of Cyclin D1 results in neurological abnormalities as well as defects in 

mammary cell proliferation during pregnancy (Fantl et al., 1995, Sicinski et al., 1995). 

Whilst, Cyclin D2 deletion majorly effect pancreatic beta cell, granulosa cell and B-

lymphocytes proliferation (Georgia and Bhushan, 2004, Sicinski et al., 1996b). Given the 

key role that these D-type Cyclins play in controlling the cell cycle, these relatively 

minor defects in specific cell type proliferation can be attributed to the compensatory 

effect of D-type Cyclins. For example, combined deletion of Cyclin D1 and D2 results in 

death in the first three weeks of life due to hypoplastic cerebellum (Santamaria and 

Ortega, 2006). It is therefore tempting to speculate that Apc deficient epithelium would 

be unable to proliferate in the absence of both Cyclin D1 and Cyclin D2. However, due to 

the reduced survival of double Cyclin D1/D2 knockouts, studies examining the combined 

effects of Apc, Cyclin D1 and Cyclin D2 would need to be done in utero, and may prove 

difficult.   

Apc deletion within the intestinal epithelium, leads to a ‘crypt progenitor cell like 

phenotype’ of hyperproliferation, failed differentiation and failed migration. In this study, 

we show that reduction of just one of these phenotypes, hyperproliferation can strongly 

suppress tumourigenesis. This raises the possibility that other strategies such as inhibiting 

CDK4/6 (which we have shown is upregulated following Apc loss) may also suppress 

tumourigenesis and unlike Cyclin D2 there are small molecule kinase inhibitors to these 

molecules currently under preclinical development and in Phase 1 trials. Pyridopyrmidine 

(PD -0332991 from Phizer), which selectively inhibits CDK4 and CDK6, is currently in 

phase 1 clinical trials for mantle cell lymphoma and phase 2-3 clinical trials for multiple 
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myeloma and hormone receptor-positive advanced breast cancer. Of interest to this study, 

Pyridopyrmidine (PD -0332991) was shown to cause regression in mice with a human 

colon carcinoma xenograft. However despite these finding Pyridopyrmidine (PD -

0332991) has not yet begun clinical trial testing for colon cancer [reviewed in (Lapenna 

and Giordano, 2009)]. Our previous studies have shown that c-Myc deletion rescues all 

the phenotypes following Apc loss and thus blocks tumour formation and indeed 

heterozygosity for c-Myc also strongly suppresses tumourigenesis. Although this makes 

c-Myc an excellent target, given the difficulty in targeting a transcription factor such as c-

Myc, it may be a more efficacious strategy to inhibit in combination a number of 

pathways downstream of Apc loss where drugs are already available.  It is interesting to 

note in this study that expression of Cyclin D2 and CDK4 following Apc loss were c-

Myc dependent, illustrating that the upregulation of these Cyclin D2/CDK4 complexes is 

key for c-Myc dependent proliferation following Apc loss.  

Taken together, these results indicate the important proliferative role that 

CyclinD/CDK4-6 complexes plays following Wnt activation that drive tumour formation. 

Moreover, raises the possibility that inhibition of Cyclin D/CDK4-6 may be useful in 

those individuals with high risk of colorectal cancer. 
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Chapter 7: Summary 
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This section gives a brief overview of the main conclusions of this thesis. 

 

One of the key aims of this thesis was to examine the role of c-Myc in signalling 

apoptosis following DNA damage in vivo. To study this I have conditionally deleted c-

Myc from the adult murine intestine and investigated the apoptotic response of intestinal 

enterocytes. Remarkably, c-Myc deletion completely abrogated the immediate wave of 

apoptosis following both ionizing irradiation and cisplatin, recapitulating the phenotype 

of p53 deficiency in the intestine. Consistent with this finding, c-Myc deficient intestinal 

enterocytes did not upregulate p53. Mechanistically this was linked to an upregulation of 

the E3 Ubiquitin ligase MDM2, which targets p53 for degradation in c-Myc deficient 

intestinal enterocytes. This was confirmed with treatment of c-Myc deficient intestinal 

enterocytes with the MDM2 inhibitor Nutlin, which restored p53 function and apoptosis. 

 

Therefore, I have elucidated for the first time in vivo an essential role for endogenous c-

Myc in signalling DNA damage induced apoptosis through the control of the p53 tumour 

suppressor protein.  
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Secondly, another aim of this thesis was to examine the underlying tissue specific nature 

of Apc gene deletion in cancer. To do this I investigated the consequences of Apc gene 

deletion within the renal epithelium.   

I have shown that Apc gene loss within the renal epithelium leads to an upregulation of 

the senesence markers p21, p16 and senescence associated beta-galactosidase. Apc 

deficient cells are cleared and very rarely initiate tumourigenesis. However combined 

Apc and p21 gene deletion rapidly initiated tumourigenesis with all mice developing renal 

carcinoma by 2 months of age. I have also shown that in the context of the renal 

epithelium, following Apc loss, c-Myc is unable to repress p21, and therefore renal 

tumourigenesis in Apc p21 double knockout mice proceeds in a c-Myc independent 

fashion. 

 

In contrast, I have shown that  Apc loss within the intestinal epithelium only induces p21 

in a small subset of cells. All Apc deficient cells in the intestinal epithelium were Ki-67 

positive and no evidence of senescence was observed. Combined Apc and p21 loss had 

no impact on either the short term phenotypes of Apc loss or tumourigenesis. 

 

Taken together these results show that for the first time that Apc loss in vivo can invoke a 

senescence program but in a context dependent fashion. This implies escape from 

senescence is not  a crucial pathway to overcome in colorectal cancers that are initated by 

Apc loss. This study also provides the first genetic evidence that p21 can act as potent 

tumour suppressor in vivo downstream of a senescence pathway. This finding is in 

accordance with other data from this lab which has shown that p21 gene knockout 
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strongly cooperates with KrasG12D to drive pancreatic cancer in the mouse, and p21 

expression is downregulated in approximately 40% of human pancreatic ductal 

adenocarcinoma (Morton et al submitted). 

 

Thirdly, in order to  determine the functional importance of repression of p21 by c-Myc 

in Apc deficient cells, I have generated triple knockout AhCre+Apcfl/fl Mycfl/fl p21-/- mice. 

Results from these experiments showed that intestinal crypts from Apc Myc p21 mice 

were morphologically identical to those of double mutant AhCre+Apcfl/fl Mycfl/fl mice, 

with levels of proliferation remaining unchanged between both sets of mice. Importantly, 

intestines from triple knockout mice displayed significantly lower levels of proliferation 

compared to those of AhCre+Apcfl/fl mice. However intestinal enterocytes from triple 

knockout mice were unable to move up the crypt villus axis and differentiate into villus. I 

have also shown in a tumourigenic study that despite p21 deletion, triple knockout mice 

are unable to form tumours in the absence of c-Myc. Taken together these results 

illustrate for the first time in vivo that following combined Apc and c-Myc loss, p21 is 

able to drive differentiation, and remarkably this function is independent of its role as a 

cell cycle inhibitor. Furthermore, these studies show that the repression of p21 by c-Myc 

is not essential for the enhanced proliferation that is observed immediately following Wnt 

activation in the intestine, nor is this repression key for tumourigenic progression.  
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Lastly, in this study I investigated the expression and functional relevance of Cyclin D2 

upregulation following Apc loss in the intestinal epithelium.  I have shown that Cyclin 

D2 and CDK4 are upregulated immediately following Apc loss and knockout of Cyclin 

D2 reduced enterocyte proliferation and crypt size within Apc deficient intestinal 

epithelium. Importantly however, Cyclin D2 deficiency did not affect proliferation of 

normal enterocytes.  Moreover, Cyclin D2 deficiency dramatically reduced tumour 

growth and development in ApcMin/+ mice.  Therefore, I have shown that Cyclin D2 is 

required for efficient proliferation and tumourigenesis following Apc loss, which is 

mechanistically due to the direct upregulation of Cyclin D2 by c-Myc. Taken together, 

these studies suggest that the inhibition of Cyclin D/CDK4/6 complexes may prove 

effective treatment for patients with high risk of colon cancer. 

 

In conclusion, the key aim of this thesis was to investigate the downstream mechanisms 

by which c-Myc induces and controls proliferation following loss of Apc. Taken together 

results from this study have elucidated that the repression of p21 by c-Myc is not 

essential for the tumour promoting function of c-Myc following loss of Apc. Given that 

Cyclin D2 and CDK4 are immediately unregulated following loss of Apc, this suggests 

that rather than transcription repression of cell cycle inhibitors, it is rather the 

transcriptional activation of cell cycle activators that drive the proliferation following 

Apc loss. Given the broad reach of Myc as a transcription factor, actual drug targeting of 

Myc in vivo, may prove to be very difficult. Therefore, it would be more effective to 

target downstream effectors of Myc such as Cyclin D/CDK4-6 complexes, especially 

given the fact that CDK 4-6 inhibitors are already in clinical trials for treatment against 
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other cancers such as lymphoma, myeloma and breast cancer.  It would be of great 

interest to examine the effect of such CDK 4-6 inhibitors in the ApcMin/+ model of 

tumourigenesis. 

Lastly, the other key aim of this thesis was to question the role of colorectal cancer in 

senescence. In this study, I have shown that Apc loss within the renal epithelium is 

strongly disadvantageous, with cells upregulating p21 and undergoing senescence. This 

provides a clear rationale to explain why Apc mutations are not intiating oncogenic 

events in the kidney. In the intestine, where Apc loss drives carcinogenesis, Apc mutation 

drives a strong proliferative program. Therefore, this study yields crucial insights into the 

context specific outcome of Wnt signalling and suggests that senescence is not a key 

barrier to tumourigenesis in CRC that has been initiated with an APC mutation. Given 

that other oncogenic drivers of senescence such as  Krasv12 , KrasD12 , LKB1 and PTEN 

have all been shown to induce proliferation rather than senescence within the intestinal 

epithelium, it would be of great interest to investigate the outcome of BRAFV600e  

mutations, as it is the last remaining oncogenic driver of colorectal cancer possible of 

inducing senescence.  
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