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Abstract 
 
The term extractives defines chemical compounds of different classes that can 

be extracted from wood or bark by means of polar or non-polar solvents. 

Extractives are derived mostly from the metabolic processes of the tree, 

particularly the sapwood to heartwood transformation.  

The first objective of the research was to study the distribution of extractives 

within Sitka spruce trees at different heights in the trunk, as well as the 

distribution between bark, rootwood, knotwood, heartwood and sapwood. The 

second aim of the work was to learn about the influence of yield class, site 

elevation, North/East location and thinning on the extractives content and 

composition of Sitka spruce across Scotland. 

The samples were sawdust obtained in different ways from either discs, knots or 

roots sawn from Sitka spruce trees freshly cut in the forest, or collected during 

the coring of trees from 64 sites all around Scotland and northern England. 

The extraction was carried out on Soxhlet extractors using acetone as solvent. 

Two analytical techniques were used: gas chromatography and Fourier transform 

infrared spectroscopy. 

The results of the research showed that the extractive content and composition 

of Sitka spruce differed according to the type of wood studied with the largest 

amount detected in bark and the lowest in heartwood and sapwood. The last 

two types of wood were studied in more detail, showing that the difference in 

extractive content between heartwood and sapwood was consistent at all 

heights in the trunk. 

The chromatographic analysis of heartwood, sapwood, knotwood, rootwood and 

bark showed that their compositions differed slightly from published data on 

Norway spruce. 
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Across Scotland, the Sitka spruce extractive content was found to be low and 

stable, independent of forest management (yield class, thinning), site elevation 

and East or North location. However a slightly greater concentration of aromatic 

compounds relative to the aliphatic group was detected at sites in the West of 

Scotland. 

Wood extractives are a major problem in regard to the pulp and paper industry. 

A low and stable extractive content can be a positive factor in the quality of the 

Scottish Sitka spruce resource, avoiding significant technical and economic 

problems.
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Chapter 1-1 

Chapter 1: Introduction  

1.1 Definition of wood extractives 

1.1.1 What are extractives and how are they extracted? 

The term extractives defines chemical compounds of different classes that can 

be extracted from wood or bark by means of polar and non-polar solvents. 

Extractives can also be water-soluble compounds such as carbohydrates and 

their derivatives. This definition covers a large number of components belonging 

to different classes (Fengel and Wegener, 1984; Hillis, 1987 and Baeza and 

Freer, 2001). 

Following the above definition, extractives include a wide range of chemical 

compounds with different physical properties. As a result, the use of different 

solvents during extraction will extract different classes of extractives. 

According to the solvent used in the extraction step, extractives can be divided 

into two different classes: lipophilic and hydrophilic compounds. The lipophilic 

extractives comprise mainly resin acids, diterpenyl alcohols, fatty acids, sterols, 

steryl esters and triglycerides which are extracted with non polar organic 

solvents such as hexane, pentane, petroleum ether or dichloromethane (Ekman, 

1976; Ekman and Holmbom, 1989; Orsa and Holmbom, 1994; Willfor et al, 2003a; 

Willfor et al., 2003b; Willfor et al. 2004a and Willfor et al., 2006). 

The hydrophilic extractives such as lignans, oligolignans and phenolic compounds 

are better extracted with polar solvents as acetone, methanol or ethanol. 

Sometimes water is mixed with a polar solvent to facilitate the penetration of 

the solvent through the wood and allow the extraction of even more polar 

compounds, such as lignan glycosides or polyphenols (Ekman, 1976; Ekman and 

Holmbom, 1989; Orsa and Holmbom, 1994; Awika et al., 2003; Willfor et al, 

2003a; Willfor et al., 2003b; Willfor et al. 2004a and Willfor et al., 2006).

Kraft mill personnel, who are more interested in the impact of wood extractives 

on the pulping process, classify the extractives into saponifiable compounds that 

form soluble soaps under alkaline conditions, generally fatty acids, resin acids 
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and some steryl esters and glycerides; and unsaponifiable compounds which do 

not form soaps and have a tendency to precipitate and cause pitch problems, 

generally waxes, some steryl esters, diterpene alcohols and aldehydes, sterols, 

triterpene alcohols, fatty alcohols, etc… (Sithole, 1992). Pitch problems appear 

when wood resin precipitates during pulp and papermaking processes forming 

pitch deposits that affect both running properties and product quality (Blanco et 

al., 2005). Pitches are released from pulp into the process waters during the 

bleaching process. They can deposit in pulp and on different parts of the mill, or 

remain suspended in process waters and be discharged in the effluent (Gutierrez 

et al., 2001). 

1.1.2 The role of extractants 

1.1.2.1 How and why are they produced? 

Extractives can come from at least two different sources. The first is compounds 

directly involved in the metabolic processes of the tree, such as the sapwood to 

heartwood transformation (Taylor et al., 2002). The second source would be as 

an artefact from further modifications of metabolites (Rowe and Corner, 1979). 

Due to the fact that the extractives have an important role during heartwood 

formation, they are therefore present in greater amount in the heartwood than 

in the sapwood (Hillis, 1972; Hillis, 1987 and Taylor et al., 2006). 

1.1.2.2 What is their distribution within the tree? 

The chemical composition of extractives is not uniform across the tree (Hillis, 

1987). They are found in all morphological regions. But they can often be called 

“extraneous components” because they are mostly extraneous to the 

lignocellulose cell wall. They can be concentrated in resin canals and cell 

lumina, especially those of ray parenchyma cells (Kimland and Norin, 1972; 

Hillis, 1987; Gottlieb, 1990 and Obst, 1997). Extractives can be located in the 

capillaries in the cell walls, many compounds being small enough to diffuse into 

free space of this pore size. There is evidence from different studies that when 

the heartwood extractives are formed and the membranes containing them 

rupture, the smaller components may soak into the cell wall. So the cell wall 

extractives may be partly responsible for the differences in dimensional 
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stability, durability and strength that have been found between sapwood and 

heartwood. They may also have a direct influence on the ease of pulping by 

reacting with lignin (Kimland and Norin, 1972; Hillis, 1987; Gottlieb, 1990 and 

Obst, 1997). 

Ekeberg et al. (2006) studied variation in the lipophilic extractives across stems 

of Scots pine and differences in the north–south and east-west directions in the 

stem to see if the wind or any external attacks have an influence on the 

lipophilic extractives. The results in the north–south and east–west directions 

showed no significant differences. There was a trend towards higher amount of 

extractives in the south quadrant compared to the other directions but the 

number of observations in this experiment was too small for clear determination 

of these differences. 

Great variations occur also among species, from tree to tree and from season to 

season even in the same tissues. (Fengel and Wegener, 1984 and Baeza and 

Freer, 2001). Different species contain different total amounts of extractives. 

The total can vary from less than 1 per cent to more than one third of the dry 

weight (Fengel and Wegener, 1984, Obst, 1997 and Baeza and Freer, 2001). The 

proportion soluble in organic solvent is normally only a few percent in clear 

wood, but the concentration can be much higher in certain parts of the tree 

(Hillis 1972, Hillis 1987). It is generally higher in bark, heartwood, roots, branch 

bases and wound tissues (Obst, 1997). Heartwood contains extractives that can 

be used to define characteristics of the family, genus and even species (Hillis, 

1987).  

Generally, the extractive content varies from 1 to 10% for most European species 

and from 2 to 30% for tropical species (Baeza and Freer, 2001). The extractives 

content does not represent a large proportion of the mass of the wood in 

comparison with the cell wall polymers for example. However the identification 

of the extractives present allows the characterisation of each wood species 

chemically, just as the distribution of specific compounds provides the basis of 

chemotaxonomy of non-woody plants (Baeza and Freer, 2001). 
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1.1.3 What influences the content of extractants? 

Silvicultural treatment may tend to improve vigour and heartwood formation, 

but these changes were not demonstrated to have any effect on heartwood 

quality, and so on extractive content in heartwood (Bergstrom et al., 1999; 

Gartner et al., 1999; Taylor et al., 2002 and Bergstrom 2003). 

Possible factors influencing the amount of heartwood extractives have been 

summarised by Hillis (1968). He stated that the amount of heartwood extractives 

increased with the age of the tree and decreased with growth rate because of 

the repartition between heartwood and sapwood in the stem (Hillis et al. 1962 

and Wilkes, 1984). 

Philip et al. (1995), citing Scheffer and Cowling (1966) and Hafizoglu (1983) 

stated that the extractive content of wood is related to tree species, genetic 

differences between individual trees and different tree sizes. Taylor et al. 

(2006) who studied the extractives of Western red cedar did not find any 

relationship of growth rate and silvicultural treatments (thinning and soil 

fertilisation) with the wood extractives content (obtained after sequential 

extraction by toluene, ethanol and hot water). 

1.1.3.1 Genetic 

Due to the economic potential of extractives in some species (e.g. Maritime 

pine, Norway spruce and Eucalyptus globules) genetics and breeding have been 

investigated with a view to improve extractive production. For example, in a 

European project initiated in 2000 and entitled Genetic improvement of wood 

quality: increasing selection efficiency for different end uses (FAIR-CT97-3953). 

The genetic approach tended to improve extractive content more than 

silviculture, leading at the same time to more uniform durability of heartwood 

(Franklin et al., 1970 and Taylor et al., 2002). 

In Pinus sylvestris Fries et al. (2000) and Elfving et al. (2001) established that 

the concentration of heartwood extractives varied between trees, although the 

extractive concentration was not related the amount of heartwood. Studying 

several progeny of Pinus sylvestris, they concluded that the variation of wood 
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extractives content was mostly under genetic control. Nevertheless for some 

specific extractive compounds the genetic expression can be influenced by 

environmental conditions such as soil fertility and thus nutrient balance and 

availability (Fries et al., 2000). With the objective of modifying wood extractive 

content further research was recommended to understand the molecular-genetic 

connection (Fries et al., 2000). Genetic selection at a young age may become an 

option to facilitate the production of more decay resistant raw material for 

construction and carpentry, as well as the production of various useful 

substances or alternatively, production of wood that is better suited for pulp and 

paper processing, these phenomena being closely related to the wood extractive 

content. 

1.1.3.2 Wind 

Strong wind induces the production of compression wood in the trunks of 

conifers and tension wood in hardwood species. Compression wood and tension 

wood contain less heartwood extractives than normal wood. In compression 

wood this is accompanied by a reduction in polysaccharides and an increase in 

lignin content (Hillis, 1987; Blanchette et al., 1994 and Taylor et al., 2002) 

1.1.3.3 Pest and pathogen attacks 

Several studies report that the extractives play a role against some forms of 

attack by pathogenic organisms (such as fungi or viruses). However Philip et al. 

(1995), citing Sheffer and Cowling (1966), stated that the durability of Sitka 

spruce heartwood is dependent on its high C:N ratio (which can be as high as 

1250:1) and this rather than its extractive content may account for poor 

colonization in nature by micro-organisms. 

1.1.3.4 Age of the tree 

The extractive content seems to be related to the age of the tree, or more 

precisely related to the distance from the pith, the extractive content being 

smaller in the sapwood (Hillis, 1987; Krislow and Nault, 1988; Lasander, 1989; 

DeBell et al., 1999 and Taylor et al., 2002). 
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1.1.4 What are the human uses of extractives? 

Wood colour, fragrance and durability depend on extractives composition. 

Extractives can also interfere with pulping for papermaking, with the drying and 

adhesion of the wood, and with its hygroscopic and acoustic properties 

(Umezawa, 2001). A number of extractives have been associated with specific 

biological properties, for example antitumor, antibacterial and antioxidant 

properties ( Umezawa, 2001). Further details will be given for each class. 

1.2 Extractives classes 

1.2.1 Lignans, neolignans and related compounds 

1.2.1.1 Introduction 

Lignans and neolignans are phenylpropanoids, a group of compounds with two 

phenylpropane units linked by a covalent bond between the two propane side 

chains (Figure 1-1). If the linkage is C8-C8’ (β-β) the molecule is classed as a 

lignan, while any other C-C bond leads to its classification as a neolignan.  

 

Figure 1-1: Phenylpropane unit 

Lignans and neolignans are present in most plants including softwood and 

hardwood tree species and medicinal plants (MacRae and Towers, 1984; 

Umezawa, 2001 and Willfor et al., 2006). Norlignans are diphenyl pentane 

derivatives composed of a phenylpropane (C6-C3), and a phenylethane (C2-C6) 

unit connected via either C8-C7’, C8-C8’ or C9-C8’ (Umezawa, 2001). This class 
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is of particular interest for the process of heartwood coloration (Umezawa, 

2001) 

Lignans often occur as glycosides. Some of these compounds represent dimeric 

structures that are also present in lignin molecules (Figure 1-2) (Fengel and 

Wegener, 1984; Umezawa, 2001). The main difference between lignin and 

lignans is the optical activity of lignans, which might suggest a difference in the 

mechanism of their biological synthesis (Umezawa, 2001). 

 

Figure 1-2: Example of Lignin structure (www.palaeos.com) 

1.2.1.2 Presence in wood including Sitka spruce 

Heartwood of softwood species (gymnosperms) contains mainly lignans (Figure 

1-3) (Willfor et al., 2006). Heartwood contains a greater amount of lignans than 

sapwood (Obst, 1997). Many lignans that have been identified in the extract of 

Picea, Pinus, Larix, Abies and Tsuga species contain a tetrahydrofuran ring, such 

as pinoresinol, lariciresinol, matairesinol, conidendrin and liovil (Fengel and 

Wegener, 1984). Hydroxymatairesinol was the dominant lignan in Norway spruce 

and other major isomers were separated by several techniques (Mattinen et al., 

1998 and Willfor et al., 2006). 
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Figure 1-3: Structure of some common lignans in trees and other plants, and the two main 

mammalian lignans enterodiol and enterolactone (Willfor et al., 2006) 

Knots (i.e., branch bases inside tree stems) in Norway spruce trees contained 

much higher concentrations of lignans and oligolignans than the adjacent 

stemwood (6-24 % (w/w)) (Willfor et al., 2004a), with hydroxymatairesinol 

comprising 65-85 % of the lignans (Willfor et al., 2003a and Willfor et al., 

2003b).  

The lignans occur in free form (i.e. as aglycones) in knots and are easily 

extracted with polar solvents. Aside from the usual antioxidant and free radical 

scavenging properties, some lignans have specific activity against human 

diseases. Arctigenin for example is an effective antiretroviral agent, and inhibits 

the reproductive cycle of HIV. Consumption of the lignan 7-hydroxymatairesinol 

has been linked to lower incidences of breast cancer in women and prostate 

cancer in men. They provide a good opportunity to isolate sufficient amounts of 

softwood lignans for structural characterisation. 7-Hydroxymatairesinol was also 
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the predominant lignan in knots of Picea abies, P. glauca, P. koraiensis, P. 

mariana, and P. omorika, while liovil and secoisolariciresinol dominated in P. 

sitchensis (Sitka spruce) and P. pungens (Willfor et al., 2004a). 7-

Hydroxymatairesinol, as well as other lignans, could be extracted in large 

amounts from spruce knots at pulp and paper mills. Other potentially important 

lignans could be produced from 7-hydroxymatairesinol by semi synthesis (Willfor 

et al., 2004a). The variation in the amount of lignans was large among knots, 

both within a single tree and between trees (Willfor et al., 2003a and Willfor et 

al., 2003b). The amount of lignans in the knots was approximately constant in 

the radial direction from the pith into the outer branch, but decreased outwards 

along the branch, until they almost disappeared after 10-20 cm. The ratio of the 

2 epimers of hydroxymatairesinol differed between different knots and even 

within the knot. A novel spruce lignan, nortrachelogenin, or its enantiomer, 

wikstromol, was detected in knots from trees in northern Finland as opposed to 

samples from southern Finland (Willfor et al., 2003a and Willfor et al., 2003b). 

Some dilignans with four phenylpropanoid units were tentatively identified in 

the hydrophilic knotwood substances (Willfor et al., 2004b). 

In addition to the true (dimeric) lignans, knots also contained particularly large 

amounts of lignan-related oligomeric aromatic substances (2-6 % (w/w)). These 

included a complex mixture of lignan-like compounds, called oligolignans and 

consisting of three or four, even up to six phenyl propane units (Willfor et al., 

2004a). 

Oligolignans have been found in substantial amounts in Norway spruce and Scots 

pine knots. Both heartwood and sapwood also contained oligolignans in small 

amounts (Willfor et al., 2004b).  

The distribution of lignans in knots and a restricted area of the adjacent 

stemwood was studied in Picea abies. The distribution of lignans and some other 

extractives was determined in the radial direction within knots and into 

adjacent stemwood of a Norway spruce tree. The knots had an exceptionally 

high content of lignans (up to 15% w/w), compared to the stemwood (less than 

0.05% w/w). The content decreased clearly in the radial direction from the pith 

of the knot towards the stemwood. In branches the lignan content also 

decreased in the radial direction from the branch pith outwards. The lignan 
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content decreased sharply outwards in emerging branches and came down to the 

same levels as in the stemwood by 20cm outside the stem (Willfor et al., 2005c). 

1.2.1.3 Applications  

The ready availability of large amounts of lignans and oligolignans now permits 

research to assess their bioactivity and provide the basis for applications in 

medicine and nutrition or as natural antioxidants and antimicrobial agents in a 

variety of technical products (Umezawa, 2001).  

1.2.2 Flavonoids 

1.2.2.1 Introduction  

Flavonoids are diphenyl propane (C6-C3-C6) compounds, synthesised from C6-C3 

(phenylpropane) precursors (Figure 1-1) (Umezawa, 2001).  

The chalcones (Figure 1-4) are precursors for all the flavonoids (Umezawa, 

2001). 

 

Figure 1-4: Chalcone structure (http://pubchem.ncbi.nlm.nih.gov) 

The flavonoids are classified into flavanones, flavones, chalcones, 

dihydroflavonols (flavononols), flavonols, aurones, flavan-3-ols (catechins), 

flavan-3,4-diols (leucoanthocyanidins), anthocyanidins, isoflavonoids, and 

neoflavonoids (Figure 1-5). Flavonoids occur widely in the plant kingdom and are 
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present in foliage, bark, heartwood, sapwood, flowers, fruits, seeds and roots 

(Obst, 1997 and Umezawa, 2001). 

 

Figure 1-5: Structures of some commonly found flavonoids in trees and other plants 

(Umezawa, 2001) 

1.2.2.2 Presence in wood including Sitka spruce 

Flavonoids occur in foliage, bark, sapwood and heartwood of trees (Obst, 1997). 

Some flavonoids were identified in both wood and bark, e.g. Quercetin (Figure 

1-6) is one of the most common flavonoids isolated from the bark of conifers. 

Willfor et al., (2004a) studied extractives from 7 different commercial spruce 

species, of which Sitka spruce was one, and managed to identify up to 5 

different flavonoids in each species: Dihydrokaempferol, pentahydroxy-

flavanone, cathechin, pinocembrin and pinobanksin.  
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Figure 1-6: Quercetin structure (http://pubchem.ncbi.nlm.nih.gov) 

1.2.2.3 Applications 

Flavonoids have various biological activities (Pietta et al., 1998 and Umezawa, 

2001). They are involved in the flower pigmentation process and in antioxidant 

activities. They are also biosynthesised in response to external stresses e.g., 

ultraviolet light in Scots Pine (Jungblut et al., 1995 and Umezawa, 2001), 

microbial attack and physical injury. Flavonoids are involved, amongst other 

extractives, during the process of heartwood formation (Umezawa, 2001). The 

flavonoids are the best-understood group of plant secondary metabolites, 

especially in term of biosynthesis (Umezawa, 2001). 

1.2.3 Stilbenes 

1.2.3.1 Introduction  

Stilbenes are compounds based on the 1,2-diphenylethene structures. They have 

been grouped more recently with compounds having a C6-C2-C6 skeleton such as 

bibenzyls and phenanthrenes (Umezawa, 2001). They occur in the Pinaceae, 

Moraceae, Betulaceae, Leguminosae and other families. Stilbenes (Figure 1-7are 

synthesised from the CoA esters of cinnamic acids (Umezawa, 2001). 
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Figure 1-7: Examples of stilbenes (Umezawa, 2001). 

1.2.3.2 Presence in wood including Sitka spruce 

At least two stilbene glucosides have been identified in Sitka spruce: astringin 

(5,3’,4’-trihydroxystilbene-3-β-D-glucoside) (Figure 1-8) and isorhapontin (5,4’-

dihydroxy-3’-methoxystilbene-3-β-D-glucoside) (Figure 1-9). 

 

Figure 1-8: Astringin 

 

Figure 1-9: Isorhapontin 

In the bark and young stem tissue of Sitka spruce, the stilbene glucosides 

astringin and isorhapontin were identified as the main constitutive antifungal 

compounds (Woodward and Pearce, 1988; Underwood and Pearce, 1992 and 

Pearce, 1996). They are present in high concentration and are hydrolysed to the 

more active stilbene aglycones astrengenin and isorharpontigenin on fungal 
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infection (Woodward and Pearce, 1988; Underwood and Pearce, 1992 and 

Pearce, 1996). These metabolites were identified by HPLC in methanol extracts 

of the bark (Underwood and Pearce, 1991a; Underwood and Pearce, 1991b and 

Pearce, 1996). 

1.2.3.3 Applications 

Some stilbenes are formed as a response to external stresses such as fungal 

infection or ultraviolet light (Umezawa, 2001). It is also known that some 

stilbenes such as pinosylvin and pinosylvin monomethyl ether are inhibitors of 

sulphite pulp cooking (Umezawa, 2001).  

1.2.4  Isoprenoids 

Isoprenoids are compounds synthesised from isoprene (C5-H8) units (Figure 1-10). 

The isoprenoid group includes terpenoids, steroids and tropolones (Umezawa, 

2001). Isoprenoids represent the largest group of secondary metabolites in 

woody plants. 

 

Figure 1-10: Isoprene 

1.2.4.1 Terpenoids 

The terpenoids are built from a number of five carbon isoprene units (Fengel and 

Wegener, 1984). The terpenes are pure hydrocarbons, usually linked 

intramolecularly to form one or more rings whereas the terpenoids bear 

functional groups such as hydroxyl, carboxylic acids, carbonyl, etc… Terpenoids 

are divided into several classes depending on the number of isoprene (C5) units 

(Umezawa, 2001). They are mostly hydrophobic compounds and are usually 
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stored in plant resin ducts (Obst, 1997). Living cells within the phloem and the 

xylem in conifers can initiate the formation of chemical defences against insects 

or pathogens. The defence compounds synthesised are in most cases oleoresin 

terpenoids formed in the resin duct cells (Ralph et al., 2007).  

The biosynthesis of terpenoids depends on the previous existence of resin ducts 

and the accumulation of phenolics in phloem polyphenolic parenchyma cells may 

result from a reaction to external attack (Ralph et al., 2007 and Franceschi et 

al., 1998). 

The extractives of softwood contain all classes of terpenes from monoterpenes 

to tri- and tetraterpenes, except for seterterpenes, which are a very rare class.  

In hardwoods it is mainly higher terpenes that are present. Monoterpenes are 

found only in some tropical hardwoods. Monoterpenes can be divided into 

acyclic, monocyclic and bicyclic components. Terpenes of all types can be found 

in the volatile fraction of softwood isolated by steam distillation. The volatile 

wood oil consists mainly of monoterpenes. The steam distillation of softwoods 

provides turpentine, a traditional solvent and paint ingredient. α–Pinene (Figure 

1-11) and β–Pinene (Figure 1-12) are major components of turpentine (Umezawa, 

2001).  

 

Figure 1-11: αααα–Pinene structure 

 

Figure 1-12: ββββ–Pinene structure 

The monoterpenes (C10) and volatile sesquiterpenes (C15) contribute to the 

specific fragrances of different wood (Umezawa, 2001). The sesquiterpenes are 

the most abundant and diverse members of the terpenoid group (Umezawa, 

2001). 

The acidic diterpenes from conifer species are known as resin acids, and are 

represented by abietic, pimaric acids and others (Figure 1-13). 
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Further components of volatile softwood oils are compounds belonging to the 

sesquiterpene group:  

- Acyclic compounds: farnesene, nerolidol 

- Monocyclic: germacrene 

- Bicyclic: cadinene, cadinol and murolene 

- Longifolene, longipinene and longicyclene 

These components are present in pine and spruce species. 

1.2.4.1.1 Presence in wood including Sitka spruce 

In the pine family chemical defences involve constitutive and inducible 

terpenoid oleoresins (Ralph et al., 2007) that are formed and accumulated in 

special structures such as resin ducts, resin blisters and resin cells in stems, 

roots and needles. Terpenoids are inducible in response to insect or fungal 

attack (Ralph et al., 2007). 

Resin acids are often implicated in defence against insect pests and pathogens 

(Tomlin et al., 1996). In Sitka spruce, the resin acid composition has been linked 

to resistance to the white pine weevil, a pest of Sitka spruce on the Pacific coast 

of North America (Tomlin et al., 1996). They identified pimaric, isopimaric, 

levopimaric, palustric dehydroabietic, abietic and neoabietic acids in Sitka 

spruce by extracting branches with acetone (Tomlin et al., 1996).  

The diterpene acids, abietic, pimaric, communic and lambertianic acids are 

found in rosins (solid form of resin produced by heating fresh liquid resin to 

vaporize the volatile liquid terpene components) from gymnosperm wood (pine) 

(Bruce et al., 1998).  
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Figure 1-13: Example of diterpenes (Umezawa, 2001) 

1.2.4.1.2 Applications  

Many conifers accumulate large quantities of diterpene resin acids and 

monoterpenes in resin ducts as defences against fungal and pathogen attacks 

(Ralph et al., 2007). Some terpenoids such as the phytane diterpene plaunotol 

have anti-ulcer activities (Umezawa, 2001). Resin acids are also a by-product of 

the kraft pulping of wood, and when obtained from that source they are used as 

paper sizing agents, controlling absorption of water in paper (Obst, 1997). 

1.2.4.2 Steroids 

1.2.4.2.1 Introduction  

 
Steroids are cyclic triterpenes derived from the precursor squalene (Figure 

1-14), they are biosynthetized from squalene oxide (Obst, 1997); they are 

compounds with cyclo-pentano-per,hydro-phenanthrene skeleton (Figure 1-15). 

Sterols might occur as fatty acid esters or glycosides (Obst, 1997). 
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Figure 1-14: Squalene structure 

 

Figure 1-15: Cyclopentanoperhydrophenanthrene, the hydrocarbon skeleton of the steroids 

β-sitosterol (or sitosterol) (Figure 1-16) along with campesterol represent a large 

part of the steroid group in conifers (Obst, 1997 and Umezawa, 2001). The 

concentration of sitosterol is low in heartwood, but large amounts may be 

isolated from tall oil, a by-product of the Kraft pulping process. 

 

Figure 1-16: Examples of steroids (Umezawa, 2001). 

1.2.4.2.2 Presence in wood including Sitka spruce 

Sterols in wood occur mainly as esters. A study was done by Vikstrom et al. 

(2005) to compare the amount and composition of lipophilic extractives in six 

important wood species and in typical sulphate lye derived from these species in 
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Finland and the USA (Scots pine, Loblolly and Longleaf pine, Norway spruce, 

Siberian larch and Silver birch). Special emphasis was laid on the sterols. Sterols 

and triterpenyl alcohols were studied in common pulpwood and black liquor 

soaps. Isolation and analysis of the steryl esters confirmed the natural 

occurrence of sitostanol (3-β-, 5-α-stigmastan-3-ol) esters in wood (Vikstrom et 

al., 2005). In the sterol group, sitosterol and campesterol were the most 

abundant (Vikstrom et al., 2005). In general sterols have a low and consistent 

composition within the stem and knots of Norway spruce (Willfor et al., 2003b). 

1.2.4.2.3 Applications 

Some sterols have strong effects on the heart muscle and can be used as either 

therapeutic compounds or toxins (Obst, 1997). Sitosterol or sitostanol can be 

used as cholesterol-lowering components in food products, where a high ratio of 

sitosterol to campesterol is beneficial. This ratio was high in birch and pines but 

clearly lower in spruce and larch (Vikstrom et al., 2005). 

1.2.4.3 Tropolones 

Tropolones (Figure 1-17) are nonbenzenoid aromatic compounds having a seven-

membered enolone structure (Umezawa, 2001). They are composed of 10 or 15 

carbon atoms; they have been regarded as mevalonate origin, i.e., a subclass of 

isoprenoids (Umezawa, 2001). The tropolones are water soluble, colourless or 

pale yellow, and have a low molecular weight (Johansson et al., 2000). 

 

Figure 1-17: Tropolone 

1.2.5 Quinones 

Quinones are pigments and have several biological activities. For example 

juglone is a skin irritant, and is also known to be toxic towards other plants 

(Umezawa, 2001). Other quinones (e.g. tectoquinone and related compounds) 
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have anti-termite activities or mansonone and derivated compounds can cause 

allergies (Umezawa, 2001). 

1.2.6 Tannins 

1.2.6.1 Introduction  

Tannins are oligomeric and polymeric, water-soluble polyphenolic compounds. 

(Haslam, 1996 and Obst, 1997). Their molecular weight is between 500 and 4000 

g/Mol. They have the chemical capacity to precipitate some alkaloids, gelatine 

and other proteins out of solution, which has lead to the recognition of possible 

biological functions (Haslam, 1996). 

Tannins are present in stemwood, bark, bud, foliage tissues, roots and seeds 

from many plants (Obst, 1997 and Umezawa, 2001). Bark and heartwood are the 

parts of the tree where tannins are found in largest concentration (Obst, 1997 

and Umezawa, 2001). 

There are two categories of tannins: hydrolysable and condensed tannins. 

Hydrolysable tannins are esters of an aliphatic polyol and a phenolic acid, such 

as gallic or ellagic acid. Condensed tannins (proanthocyanidins) are oligomers 

and polymers of polyhydroxyflvan-3-ol units derived from flavonoids (Obst, 1997 

and Umezawa, 2001). Condensed tannins are the most common class and are 

involved in plant defence mechanisms. But like the hydrolysable tannins they are 

formed from phenolic units, and are therefore classified as polyphenols (Figure 

1-18) (Haslam, 1996; Obst, 1997 and Umezawa, 2001). 
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Figure 1-18: Hydrolysable and condensed tannins. (a): hydrolysable tannins           

(b): Phenolic acids which are components of (a) (c): condensed tannins. 

1.2.6.2 Presence in wood including Sitka spruce 

Tannins amongst other compounds were extracted from Norway spruce with 

ethanol after steam distillation (Ajuong and Birkinshaw, 2004). 

1.2.6.3 Application  

Tannins have antioxidant and radical-scavenging activities. They have also many 

biological and pharmacological activities (Haslam, 1996 and Umezawa, 2001). 

Tannins can be used as remedies for problems of the heart, circulatory system or 

digestive system. The consumption of beverages containing a lot of tannins, such 

as green tea or red wine, helps to reduce the risk of certain degenerative 

diseases (Haslam, 1996). The biological activity of tannins is dependent on the 

type of tannins and not all the tannin classes have the same properties (Haslam, 

1996). 
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1.2.7 Glycerides and waxes 

1.2.7.1 Introduction 

Glycerides are esters of glycerol with fatty acids. Triglycerides are the dominant 

group. Triglycerides are the cause of pitch problems in pulping of pine wood. 

Waxes are a mixture of aliphatic compounds including fatty acids, fatty alcohols, 

hydrocarbons and their derivatives (Umezawa, 2001). 

1.2.7.2 Presence in wood including Sitka spruce 

The main esterified and free fatty acids identified in Norway spruce were 

linolenic, pinolenic, palmitic and oleic acid (Ekman and Holmbom, 1989 and 

Willfor et al., 2003b). The esterified fatty acids are composed of di- and 

triglycerides, steryl esters and diterpenyl alcohol esters. The stemwood 

contained more esterified fatty acids than knotwood (Ekman and Holmbom, 1989 

and Willfor et al., 2003b). Fats and fatty acids are said to accumulate in woody 

tissues in order to provide food reserves (Obst, 1997). 

1.2.8 Monomeric aromatic compounds 

1.2.8.1 Introduction  

Wood metabolites also include phenylpropanoid monomers such as coniferin and 

syringin (Umezawa, 2001). Several phenylpropanoid monomers are compounds of 

essential oils (anethole, eugenol, safrole) and can be used as spices and in 

perfumes (Umezawa, 2001). 

Coumarins, another class of phenylpropanoids are also widely distributed in 

plants and wood, and can confer several biological activities (Umezawa, 2001) 
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1.3 Introduction to Sitka spruce (Picea sitchensis (Bong.) 
Carr.)  

 

Figure 1-19: Sitka spruce, Kershope Forest, Northumberland (UK) 

Sitka spruce (Picea sitchensis (Bong.) Carr.) is a conifer native to the west coast 

of North America, and is still present from south Alaska to north California. It is 

named after Sitka Island (also known as Baranof Island) in southeast Alaska. The 

species was discovered and named by Europeans in 1832 (Harris, 2003). 

Sitka spruce is widespread on the Northwest coast of North America. It needs 

humid conditions for growing, ideally a maritime climate with abundant 

moisture throughout the year, relatively mild winters and cool summers. The 

best development of Sitka spruce takes place on Queen Charlotte Island (Figure 

1-20) where growth rate is one of the highest in North America.  
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Figure 1-20: Map illustrating Queen Charlotte Island (http://maps.google.co.uk) 

Sitka spruce is valuable species for timber and pulp (Harris, 2003). Sitka spruce 

wood has a uniform texture with little odour and relatively few resin ducts. The 

sapwood is a light yellow colour merging gradually into heartwood light brown in 

colour (Miller, 2002 and Harris, 2003). 

In Great Britain, Sitka spruce has been planted extensively. It has been exploited 

in Great Britain because of its fast growth rate compared to other conifer 

species and its ability to develop at a wide variety of different sites (Brazier, 

1970). Although it has a lifespan of several hundred years in its homeland, in 

Great Britain it is normally harvested on a 30-50 year rotation. These young 

trees are suitable for construction purposes, but not for joinery. With long, 

strong fibers, Sitka spruce makes excellent pulp; it bleaches easily making it 

suitable for newspaper print or high-grade printing. In the sulphate process, 

Sitka spruce makes high-grade kraft wrapping papers and fibreboard. In 

mechanical process, it is used for several purposes such as newsprint, low-grade 

papers and absorbent material (Harris, 2003). 

About 89% of Sitka spruce in the United States grows in Alaska. The old growth 

natural forest trees, several hundred years old, are used for lumber, pulpwood, 

and more recently for sounding boards for high quality pianos, guitar faces, 
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ladders and components of experimental light aircraft (Anonymous, 2002 and 

Harris, 2003). 

Sitka spruce was used for several purposes by native North American Indian 

tribes (MacKinnon et al., 1994 and Anonymous, 2002): 

- The fleshy inner bark was eaten or dried into cakes. 

- The powdered inner bark was used a soup thickener and added to cereals 

in bread. 

- The roots were burnt over an open fire to remove the bark, then dried 

and used to make hats, ropes, and baskets to hold water. 

- Pitch from the tree was used as glue or as a protective varnish-like 

coating on wood. 

- Sitka spruce was used for several medicinal purposes as an antiseptic for 

lung complaints, sores and wounds; as a medicine for throat problems, 

coughs and colds and a palliative for gonorrhea, syphilis, internal swelling 

and toothache. The roots were used as a decoction in the treatment of 

diarrhoea. 

1.4 Current methods used to analyse wood extractives 

1.4.1 Extraction apparatus 

There are several extraction techniques available. They are based on the same 

principle: contact between the wood and a solvent in order to remove the 

extractives in solution. 

1.4.1.1 Soxhlet extraction 

This method is the classical method used for extraction and one of the oldest. 

The sample is placed inside a thimble made from filter paper, which is then 

loaded into the Soxhlet extractor. A wide-necked flask is fixed underneath the 

Soxhlet extractor. This flask contains the extraction solvent. On the top of the 
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extractor there is a condenser, which allows the hot solvent vapour to cool and 

trickle down onto the test material. 

The chamber containing the test material is slowly filled with warm solvent until 

it is almost full; then it is emptied by siphon action back down into the flask. 

This cycle may be allowed to repeat many times. During each cycle, a portion of 

the extractives dissolves in the solvent. However, once the extractives reach the 

solvent heating flask, being involatile they remain there and do not participate 

in the extraction cycle any further. This is the key advantage of this type of 

extraction; only clean warm solvent is used to extract the solid in the thimble. 

This increases the efficiency of the extraction when compared with simply 

heating up the sample in a flask with the solvent (Figure 1-21). 

 

Figure 1-21: Soxhlet apparatus 
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1.4.1.2 Soxtec extraction  

The Soxtec extraction units operate in three stages (Figure 1-22) (Sithole et al., 

1991): 

1. The sample in the thimble is immersed in the boiling solvent to begin 

extraction. This step solubilizes extractable matter from the sample. 

2. The thimble is raised from the solvent, and the sample is rinsed with 

condensed solvent dropping through the sample (similar to conventional 

Soxhlet extraction). 

3. The extract is concentrated by evaporation and the distilled solvent is 

collected for reuse or disposal. During evaporation, solvent is prevented 

from returning to the extraction cup by diversion into a collection tank. 

 

 
Figure 1-22: Soxtec extraction process (http://www.foss.dk) 

This method provides quantities of extractives that are well correlated with 

those obtained by Soxhlet extraction. However the Soxtec values tend to be 

lower from those obtained by Soxhlet extraction. The reason is that washing 

during the rinsing stage of the procedure tends to not to be 100% efficient. To 
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overcome this problem double extraction of samples is performed and the 

combined extracts from the double extraction lead to results that are very close 

to the Soxhlet extraction. The main advantage of the Soxtec extraction is that is 

less time consuming even with the double rinsing and the consumption of solvent 

is also lower than with the conventional Soxhlet method (Sithole et al., 1991). 

1.4.1.3 Accelerated solvent extraction  

Accelerated solvent extraction (ASE) uses elevated temperatures and pressures 

in enclosed vessels, allowing extraction with a small amount of solvent to be 

completed in a very short time. It is believed that hot pressurized solvents are 

able to solubilize the extractives more effectively and penetrate the sample 

better (Gan et al., 1999 and Willfor et al., 2006). Applications of ASE have been 

reported for the extraction of conifer extractives at high temperatures and 

pressure under inert nitrogen atmosphere (Willfor et al., 2003a; Willfor et al. 

2004b and Willfor et al., 2006). 

The advantages of this method is that it is very fast, can be automated, and has 

particular advantages for successive extraction, as it only uses small quantities 

of solvent compared to the more traditional Soxhlet method (Willfor et al., 

2006). 

1.4.1.4 Extraction apparatus fexIKA 

Another method, using the fexIKA apparatus, was compared to the Soxhlet 

extractor by Schwanninger et al. (2002).  

Figure 1-23 shows the four phases of the fexIKA extraction method described 

below (Schwanninger et al. 2002). 

- Phase 1: The material to be extracted is loaded into the extraction tube. 

The vessel is filled with solvent, a magnetic stirring rod is introduced and 

the extraction tube is mounted onto the basic vessel. The experimental 

conditions (temperature, number of cycles, filtration time) are controlled 

automatically. 

 



Annabelle Caron, 2010 
 

Chapter 1-29 

 

Figure 1-23: Illustration of the extraction cycle of the fexIKA extraction method 

- Phase 2: When the solvent boils the vapor penetrates the membrane 

filter. The material is extracted with condensed solvent and excess vapor 

is condensed on the bar-type cooling element. The subsequent continuous 

stream of solvent vapor serves to heat up and vigorously fluidize the 

extraction material/mixed solvent at boiling temperature. This fluidized 

bed technique makes extraction particularly effective. 

- Phase 3: Heating is switched off after several heating periods, the stirrer 

continues in operation and liquid coolant is directed through the 

cooling/heating block. This results in rapid cooling of the block, the lower 

vessel and its contents. 

- Phase 4: This cooling and condensation create a vacuum in the lower 

vessel and the resulting pressure differential with respect to the 

atmospheric pressure conveys the extractive solution through the filter 

into the lower vessel.  

This cycle may be repeated any number of times. With this extractor, the results 

for the total percentage of extractives obtained after extraction remain very 
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similar to the results obtained with the Soxhlet. The two major differences are 

in the volume of solvent consumed during the extraction, which is greater for 

the Soxhlet extractor, and also the need for more time to arrive at the same 

results with the Soxhlet extractor (Schwanninger et al., 2002). 

1.4.1.5 Supercritical fluid extraction (SFE) 

The principle of the SFE technique is based on the properties of supercritical 

fluids. A fluid in the supercritical state has penetration and transport properties 

approaching those of a gas but acts like a liquid when dissolving the analyte 

(Sithole, 1992) (Figure 1-24). Carbon dioxide is the solvent most commonly 

utilised for SFE extraction but organic solvents have also been used. 

The advantages are: a decrease in the extraction time, 10 to 60 minutes instead 

of hours or days for liquid extraction, low use of hazardous solvent and large 

rate of extractives analysable. At constant temperature, extraction at low 

pressure will remove the less polar analytes and extraction at high pressure will 

favour more polar and higher molecular mass analytes. So by changing the 

pressure different classes of extractives can be analysed in the same procedure. 

 
Figure 1-24: Supercritical fluid extraction process 

Many supercritical fluids are gases under ambient conditions, which means that 

the extraction stages can be directly coupled to a chromatographic technique. 

Another advantage is that many supercritical fluids are relatively inert, pure, 

non toxic and inexpensive. So the waste generated and the exposure of the 

laboratory personnel to hazardous solvent can be reduced or eliminated. 

Several research groups use SFE in the pulp and paper industry to extract resin 

and fatty acids (Lee, 1990). Demirbas (1991a and 1991b) found that SFE of 
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oriental spruce and oriental beech wood with acetone gave a gravimetric 

extractive content four times higher than soxhlet acetone extraction content for 

the same wood, with some differences depending on the extractive classes 

analysed, especially the resin acid class which is sensitive to high temperature. 

1.4.2 Analysis apparatus 

As several analysis techniques are available for the extract, the choice of the 

technique to be used often depends on the extractives studied. Until now 

chromatography has been the most common approach for analysing wood 

extractives after solvent extraction. Chromatography is based on the separation 

of compounds in an appropriate mobile phase, which can be either gaseous in 

gas chromatography (GC) or liquid in high performance liquid chromatography 

(HPLC). 

1.4.2.1 Gas chromatography (GC) 

Gas chromatography (GC) is based on the volatility of the compounds to be 

analysed. They are separated by retention on the stationary liquid phase while 

travelling in the mobile gaseous phase along the column. Ideally the retention 

time is unique and reproducible for each compound, enabling their 

identification. 

GC is widely used for the analysis of wood extracts. A number of protocols have 

been established and previous works can be used as a database allowing the 

identification of most of the extractive compounds (e.g. Sithole, 1992; Orsa and 

Holmbom, 1994; Charlet et al., 1997; Gutierrez et al., 1998; Delrio et al., 2004 

and Willfor et al., 2006). 

Several detectors are available with different detection principles. The most 

common is the flame ionisation detector (FID). The GC can also be coupled to a 

mass spectrometer (MS), which has the advantage of allowing the identification 

of the compounds within a mixture. When no authentic standard is available, a 

mass spectrometer coupled to the GC helps the identification of trace 

molecules. An electron capture detector (ECD) was used in Lee et al. (1990) to 
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study the chlorinated resin acids found in effluents from some pulp mills but is 

not appropriate for native extractives.  

The GC method is based on the volatility of the materials being separated. 

However extractives are composed of polar and less-polar compounds that are 

not all volatile because of their chemical structure. In some cases the 

temperature used inside the column oven can be raised to separate less volatile 

molecules. But there are limits to the temperature increase, as at very high 

temperature the compounds can be degraded or the column may break down, 

especially with polar columns that do not have good resistance to high 

temperature. 

Another drawback of GC is that several separation steps occur during the sample 

preparation, at the end of which not all components of the extract will 

necessarily remain for analysis. 

One such separation step takes place when the sample has to be dissolved in a 

solvent compatible with the GC column. Chloroform can be used, but it has 

moderately low polarity and will only dissolve lipophilic compounds (Gutierrez et 

al., 1998). The polar fraction (including some phenolic compounds) will not be 

injected and therefore will not be detected. Orsa and Holmbom (1994) extracted 

wood extractives from the paper-making process water with methyl tert.-butyl 

ether (MTBE) and injected the sample after dilution with 50% toluene 

(MTBE/toluene is comparable in polarity with chloroform) (Ekman and Holmbom, 

1989). 

Further limiting factors are due to the GC instrument. Several components of 

the instrument can limit the analysis. The GC column and the injection chamber 

of the GC are two components sensitive to contamination. Molecules that are 

soluble in the mobile phase but not volatile enough to pass through the GC can 

contaminate the injection chamber or the column. 

The column is chosen according to its polarity but more polar columns have less 

resistance to temperature. A compromise has to be found between polarity and 

temperature resistance. 
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In GC analysis the selectivity towards different classes of extractives analysed is 

due to their volatility and polarity. GC involves compromises with the 

fractionation during the sample preparation and therefore only a part of the 

extract present in wood is analysed. The sample preparation and the analysis are 

quite lengthy (up to 60min) (Rigol et al., 2003), which does not make GC analysis 

suitable for a large quantity of samples (Gierlinger et al., 2002). 

1.4.2.2 High pressure liquid chromatography (HPLC) 

HPLC uses a liquid as mobile phase and a monolayer coating on a porous solid as 

the stationary phase. Commonly a UV detector shows the retention times of the 

molecules. Retention times depend on the interactions between the stationary 

phase, the molecules being analyzed, and the solvents used. 

Previous HPLC work led to the identification of lignans and phenolic compounds 

in particular (e.g. Suckling et al., 1990; Eklund et al., 2004; Eklund et al., 2005 

and Willfor et al., 2006). 

Willfor et al. (2006) reviewed the use of both normal-phase and reverse-phase 

C18 bonded silica columns. In normal-phase HPLC the separation of analytes is 

based on retention on a polar stationary phase from a non-polar mobile phase, 

and works effectively for relatively polar analytes such as lignans and 

oligolignans. Reversed phase HPLC utilises a non-polar stationary phase and a 

moderately polar mobile phase mixed from water and a polar organic solvent. 

Hence polar compounds are eluted first while non-polar compounds are retained 

(Braithwaite and Smith, 1985). For separating extractives the common mobile 

phases used for both normal-phase and reversed-phase separations utilise acidic 

solvent components (because of the acidity of the phenolic compounds) with 

gradient elution (Willfor et al., 2006).  

UV detection (even at a single wavelength) may offer sufficient selectivity and 

sensitivity for the determination of lignans. High-pressure size exclusion 

chromatography, based on the hydrodynamic radii of the molecules, allows the 

identification of the molar mass distribution of the hydrophilic substances in the 

extract (Willfor et al., 2003b) But, like GC, HPLC can also be used in 
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combination with a mass spectrometer for a better identification of unknown 

individual compounds (Willfor et al., 2006).  

HPLC columns have a lower resolution than GC columns, which leads to 

difficulties in separating extractive components (particularly isomers that have 

similar analyte-column interactions) (Rigol et al., 2003). This may lead to 

overlapping peaks or even co elution that precludes identification of the 

compounds concerned. 

A mass spectrometer can be linked to the HPLC, which provides opportunities for 

identification of co-eluted material but a non-negligible portion of the 

extractives still remains non-analysed (McMartin et al., 2002 and Riggol et al., 

2003).  

Even if the HPLC method is less time consuming than the GC method, it still 

involves significant sample preparation time, and analysis time, which can vary 

from at least 15 to 60 minutes (Rigol et al., 2003). 

Despite the fact that the chromatographic analysis of wood extractives allows 

the identification and quantification of the majority of wood extracts, it was 

intended to develop a technique which is capable of giving information on the 

whole extract and which will be fast and suitable for a large number of samples. 

FTIR spectroscopy was identified as the method of choice.  

1.4.2.3 Solid phase extraction (SPE) 

SPE uses the affinity of solutes dissolved in the solvent extract (the mobile 

phase) for a solid through which the sample is passed (the stationary phase) to 

separate the extract into classes or into desired and undesired components. The 

chemistry of the stationary and mobile phases is similar to HPLC but the 

separations are semi-preparative on small disposable columns of large enough 

particle size to make high pressures unnecessary. 

SPE was used in the separation of lignans, as a purification step after hydrolysis 

of the solvent extract or to fractionate the oligomers. It was also used for 

separation of simple phenols and polyphenols. It was used for lignans and low to 

medium polarity compounds, usually in solvent systems containing methanol, to 
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separate lignans efficiently (Willfor et al., 2006). Gutierrez et al. (2004) used 

SPE to fractionate the extracts during wood lipid analysis. 

1.4.2.4 Thin-layer chromatography (TLC) 

TLC is mainly used for qualitative screening of a large number of extracts, and 

for monitoring isolation procedures as in Willfor et al. (2006). It involves a 

stationary phase consisting of a thin layer of adsorbent material, the most 

widely used phase being silica gel (Willfor et al., 2006) immobilized onto a flat, 

inert carrier sheet (Braithwaite and Smith, 1985). A liquid phase consisting of 

the solution to be separated is drawn up the plate by capillary action, separating 

the experimental mixture based on polarity (Braithwaite and Smith, 1985). TLC 

was used for the isolation and purification of small amounts of lignans and other 

polyphenols (Willfor et al., 2005b). 

1.4.2.5 Fourier transform infrared spectroscopy 

Fourier Transform Infrared Spectroscopy (FTIR) is an analytical technique used to 

identify organic materials, often but not always qualitatively. This technique 

measures the absorption of infrared light at various wavelengths by the material 

of interest. The infrared absorption bands correspond to vibrational modes 

characteristic of specific structural features of the adsorbing molecules.  

As a general rule, FTIR absorption bands in the frequency range 4000-1500cm-1 

can be assigned to functional groups (e.g. -OH, C=O, N-H, CH3, etc.).  The region 

between 1500-400 cm-1 is referred to as the fingerprint region. Absorption bands 

in this region are generally due to more complex vibrational modes associated 

with larger intramolecular structural features, and are relatively specific for 

each molecule. For FTNIR (near infrared) analysis the absorption bands that are 

overtones and combinations of FTIR bands and lie in the range 11000-4000cm-1. 

The FTIR technique will be further discussed in Chapter 3. 
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1.5 Aims and objectives 

A large part of the UK forested area is devoted to exotic conifer species grown in 

short rotations of 30-40 years and clear felled. Much the most important of the 

imported conifer species is Sitka spruce. These Sitka spruce forests are regarded 

with mixed feelings because of their uniformity and artificial, straight lined 

appearance. This makes them highly unpopular as visual features of landscape, 

and they have been blamed for soil degradation and the obliteration of rural 

communities. 

On the other hand they make a favourable contribution to the UK’s CO2 balance, 

being much more effective in this respect than either agricultural land or native 

woodland, and the timber that they produce meets all European Standards of 

forest stewardship. On balance the environmental value of UK Sitka forests is 

now considered to be negative and, as they are felled, they are being replaced 

with less uniform types of forest that include native species. This transformation 

will obviously take time. Over that next 20 years in the UK, very large amounts 

of Sitka spruce that are growing at the moment will be felled with production 

peaking around 2010. Low current prices for pulpwood and structural timber 

mean that any further income that can be derived from wood by-products will 

be very welcome. Extractives from European timbers have little commercial use 

today. The paper industry looks for low extractives levels in its raw materials 

because extractives represent unused biomass and may have to be removed from 

the waste stream to prevent pollution. In the past decade it has been realised 

that wood extractives of some kinds may represent an unexploited source of 

chemical or pharmaceutical raw materials. 

The objectives of the research described in this thesis are as follows: 

- Development and optimisation of a mass sampling method based on FTIR. 

- To study the distribution of extractives within Sitka spruce trees, at 

different heights in the trunk, as well as the distribution between 

heartwood, sapwood and knotwood. 
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- To elucidate the influence of yield class, elevation, north/east location 

and thinning on the extractives content and composition of Sitka spruce 

across Scotland. 

- To determine the extractive composition of Sitka spruce bark, rootwood, 

knotwood, heartwood and sapwood in detail by GC/MS. 

- To compare the two analytical techniques used, GC/MS and FTIR 

spectroscopy.
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Chapter 2: General methods  

2.1 Moisture content 

In order to determine the gravimetric extractive content in wood material, the 

moisture content of every sample needed to be measured before each 

extraction. This made it possible to calculate the same weight of dry wood for 

every sample, and the equivalent of 3.5g of dried wood was extracted on each 

occasion, as recommend by Philip et al. (1995). 

According to the literature (Baeza and Freer, 2001), there are several ways to 

determine the moisture content of a wood sample (oven-dry method, electrical 

moisture detector, moisture determination by solvent distillation, by Karl Fisher 

method or by nuclear magnetic resonance). The most common one is the oven-

drying method. About 2g of fresh sawdust is oven-dried at 105°C +/- 3°C until 

the weight does not change by more than 0.02g following a 1h heating period. 

The disadvantage is the loss of some of the volatile compounds, which then 

introduces an error in the determination of the quantity of water evaporated 

during drying. 

The quantity of sample used for the determination of the moisture content was 

revised for each type of sample, because the material sampled was available in 

different quantity. As the Kershope experiment provided more than 100g of 

fresh sawdust, 5g of wet wood were used. But the average sample quantity 

available from the Benchmarking experiment represented only 15g of fresh 

wood, so only 1g of sawdust was used. 

The amount of water in wood can be expressed in two different ways: 

The moisture content MC is expressed as a percentage of the wet weight: 

% MC = (Wet weight– OD weight)/ (Wet weight) *100

The wet weight basis is generally used in the pulp and paper industry and when 

wood is used as fuel. 
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Alternatively the moisture content MC* is defined as the weight of water 

expressed as a percentage of the moisture-free or oven-dry (OD) weight of 

wood: 

% MC* = (Wet weight– OD weight)/ (OD weight) *100 

Because the denominator is dry weight, the moisture content calculated in this 

way can exceed 100%. This method of calculating moisture content is generally 

accepted as standard for wood-based materials such as lumber, plywood, 

particleboard, and fibreboard (Baeza and Freer, 2001). 

Consequently the determination of the moisture content as the percentage of 

the oven dried weight has been preferred for the purpose of this study. 

2.2 Soxhlet extraction 

2.2.1 Solvent study 

The extractives are mostly detected in rays and they can also form coatings on 

the cell wall and on the pits, or they can penetrate the cell wall itself (Hillis, 

1972 and Taylor et al., 2002). These different locations inside the tree are one 

reason why one extraction solvent cannot extract all the extractives at once, 

and why the use of several solvents of different polarity can increase the total 

removal of extractives. 

Standard methods exist for Soxhlet extraction to determine the extractives 

content of softwoods (for example: TAPPI Standard Method T-204 cm-97, SCAN 

(Scandinavian pulp, paper and board) SCAN-CM 49:03: Content of acetone-

soluble matter methods, SCAN-CM 67:03: Content of extractable lipophilic 

matter or ASTM (American Society for Testing and Materials) method) (Baeza and 

Freer, 2001 and Nelson and Birkett, 2004). These authors emphasise the fact 

that one solvent does not remove all the extractives from the sample and that 

different solvent mixtures extract different combinations of extractives. They 

recommend using a mixture of ethanol and benzene, which provides the most 

complete removal of extractives. But due to the highly carcinogenic properties 

of benzene, the use of this solvent was avoided. A preliminary study comparing 
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different solvents was performed in order to choose the most suitable solvent for 

this study of Sitka spruce (Table 2-1). 

All the solvents used were of HPLC grades. They were chosen according to their 

relative polarity, because this factor has an influence on the compounds 

extracted (chapter 1). 

For this study the material was bulk sawdust from a frozen log of Sitka spruce 

grown in the Kershope forest. The equivalent of 3.5g of dried wood was 

extracted for 9 hours with the different solvents. 

Solvent Relative polarity 
Percentage of dried wood of extractives 

obtained after extraction 
Pentane 0.009 0.49 
Hexane 0.009 0.62 
Toluene 0.099 0.63 
Ethyl acetate 0.228 1.27 
Acetone 0.355 1.86 
Isopropanol 0.546 1.52 
Ethanol 0.654 2.17 
Water 1.000 1.50 

Table 2-1: Organic solvents tested for the extraction stage, during 9h, with their relative 

polarity (Reichardt, 1988)  and the total percentage of extractives obtained. 

This study showed that ethanol and acetone were the solvents that removed the 

largest proportion of extractives after 9 hours. 

Nevertheless, we have some reluctance to use the ethanol solvent as it might 

extract higher molecular weight compounds, i.e. short polymers such as 

oligosaccharides/polysaccharides (Nelson and Birkett, 2004). 

2.2.2 Influence of the extraction time 

The time of extraction has an influence on the amount of extractives collected. 

Another series of extractions with ethanol and acetone was performed to 

optimise the extraction time. For this study the material was also bulk sawdust 

from a frozen log of Sitka spruce grown in the Kershope forest. 
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Three extractions for 3 hours, 6 hours and 9 hours were carried out. Figure 2-1 

shows the evolution of the percentage of extractives removed by acetone and by 

ethanol. 

 

Figure 2-1: Comparison between acetone and ethanol for different extraction times 

In this experiment we could see that ethanol removed more extractives than 

acetone in 3 hours of extraction and that the quantity extracted by ethanol 

remained stable. For acetone we estimated that full extraction is achieved after 

9 hours. 

2.2.3 Finalised extraction protocol 

The technique used for the extraction was the Soxhlet method. The protocol 

used was based on the equivalent of 3.5g of dried sawdust. During the 

experiment the moisture content of each sample was measured before 

extraction and the quantity of wet wood to analyse was deduced. 

The calculated amount of wet wood was weighed out and added to the thimble, 

which was placed in a soxhlet extractor. 

Before the experiment the glassware (soxhlet round-bottom flasks) was cleaned, 

oven-dried and weighed in order to determine the weight of extractives. 
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The sawdust was extracted with an excess of HPLC grade acetone (Fisher 

Scientific). After nine hours of extraction, the samples (extractives in acetone 

solution) were cooled to room temperature. The acetone volume was then 

adjusted to 200mL.  

Once the sample was extracted, the solvent was evaporated with a rotary 

evaporator in order to remove the excess of the solvent. The temperature of the 

water bath was controlled at 34°C. The 200mL extract were divided into two 

100mL aliquots. Half of the acetone extract (100ml) was evaporated to dryness 

to enable the determination of the weight of the extractive content in the 

sample (gravimetric analysis). The other half was concentrated to the desired 

volume for spectroscopic analysis. 

2.3 Determination of total extractive content 

The gravimetric determination of the extractives content in dried wood was 

based on the weight present in half of the volume of the sample extracted. 

The calculation is based on expressing the moisture content as a percentage of 

the oven dried weight. The weight of the extractives obtained after evaporation 

of the solvent, was multiplied by two (because only half of the volume of the 

sample was used for this step). This weight was then divided by the weight of 

the dried wood. The dried weight of the wood was obtained by correcting the 

weight of the wet sample for the moisture content. The percentage of 

extractives in the dried wood is the ratio of the weight of the extractives to the 

dried weight of the wood (Table 2-2). 

Weight 
of milled 

wood 
(g) 

Moisture 
content (%) 

Weight of dried 
wood 
(g) 

Weight 
of the 
round 

flask (g) 

Weight 
of the 
round 
flask + 
extract 

(g) 

Weight of 
extractives 

(g) 

% Extractives 
for dry wood 

F 
E 

Calculated 
G=F*(1/(1+E/100)) H I J=I-H K=(2*J)/G*100 

Example 
5.3095 

 
50.62 3.5251 54.8242 54.8607 0.0365 2.0708 

Table 2-2: Sample calculations 
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2.4 Statistical analyses 

Three kinds of statistical analysis were used to analyse the experimental data:  

1. Two-way analysis of variance (ANOVA), which makes it possible to study 

two main effects and their interaction: 

o For example for the Kershope experiment: Type of wood 

(heartwood/sapwood), and the height of the sample (between 0 to 

12 meters) and also the interaction between these. 

2. One way analysis of variance for the sapwood between 0 to 18 meters in 

order to study the effect of the height on sapwood composition.  

The ANOVA analysis yielded a p-value which, when compared to the threshold of 

5% adopted here, allows the identification of significant differences between the 

values studied. The p-value is the probability of obtaining a result at least as 

extreme as the one that was actually observed, given that the null hypothesis is 

true, here “there is no significant differences between the samples”. If the p-

value is below the threshold of 5%, differences within the wood data are 

considered significant (Sterne and Smith, 2001).  

3. Residual maximum likelihood with Wald test (REML) analysis provides a 

least significant difference (L.S.D) value, which compared to the 

difference between the mean values calculated makes it possible to 

determine if there is a significant difference between the means 

calculated and to find where the differences come from. 

o For example, the benchmarking experiment is based on the study 

of 5 factors (Yield class, thinning, elevation, north and east 

location) with two levels each. The experimental means for each 

level of each factor were calculated, and compared to the least 

significant difference in order to detect any influence of the 

factors on the results. 

The REML and ANOVA analyses are generally interchangeable here, as the data 

are usually balanced. The REML analysis has been preferred because it makes it 
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possible to calculate a variance component that would be observed after 

removing all the other sources of noise. The REML analysis was implemented 

within the statistical software package GenStat. 

2.5 Heartwood/sapwood distribution method 

During the research for a previous thesis by McLean (2008) scanned colour 

images of Sitka spruce discs were collected with the aim of measuring 

compression wood content. These images were re-analysed to measure the 

proportion of heartwood to sapwood. The discs were from Sitka spruce trees of 

Queen Charlotte Island provenance grown in Kershope forest, Northumberland 

(NY473 477, Latitude 55° 05’N, Longitude 2° 50’W, 190m elevation). The images 

were obtained after scanning the discs collected at different heights in the trunk 

(McLean, 2008). In total 7 discs from 4 trees of the same family were analysed. 

For each disc the mean radii of the heartwood and of the disc itself were 

measured, based on the colour difference between heartwood and sapwood as 

illustrated (Figure 2-2). Then the areas of heartwood and sapwood were 

calculated (the sapwood area being the disc area minus the heartwood area). 

From the radii and areas, ratios between heartwood and sapwood were 

established as functions of the sample height in the trunk in order to follow the 

distribution of heartwood and sapwood with height. 

 

Figure 2-2: Image of disc from Sitka spruce 
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Chapter 3: Development of a mass sampling 

technique based on FTIR 

3.1 Introduction 

FTIR spectroscopy has been used for wood extractives analysis by Ajuong and 

Breese (1998), Ajuong and Birkinshaw (2004) and Ajuong and Redington (2004), 

who have studied respectively Pai wood, bog and modern oak, spruce and larch 

wood extractives.  

We tried to optimise the sampling technique in terms of preparation time and 

sample amount. We wished to achieve a cheap, fast and reliable system to 

analyse the wood extractives without any separation step before bringing them 

to the FTIR, so several approaches involving different types of sample holders 

were tested. 

One approach is to obtain spectra from the solid wood itself and to use the 

“difference” spectra between the non-extracted wood and extracted wood. The 

difference spectra represent the extractives (Nault and Manville, 1992). 

Alternatively, the liquid extractives have been analysed by applying the organic 

extract to a sodium chloride disc or incorporating hydrophilic extracts into 

potassium bromide (KBr) discs, by Ajuong and Breese (1998), Ajuong and 

Birkinshaw (2004) and Ajuong and Redington (2004). 

Fourier Transform Infrared Spectroscopy (FTIR) is sensitive to the nature of 

bonding within a molecule. FTIR detects functional groups and characterizes 

covalent bonding information. 

FTIR spectroscopy includes two modes of analyses: transmission and reflectance 

mode. In transmission mode, the infrared beam passes through the sample. In 

reflection mode, the signal passes through the sample, then is reflected and 

redirected to the detector. In diffuse reflectance and ATR (Attenuated Total 

Reflectance) the reflection occurs within the sample, while in specular 

reflectance a thin layer of sample overlies a polished reflective surface.  
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In transmission mode, 3 systems were tested with 2 different supports. The first 

support was the KBr disc. This method is considered as the reference FTIR 

method for several reasons (Hauser and Oelichmann, 1988). First, the infrared 

beam is much wider (3 mm) than the one used in the microscopy technique (50 

µm), and covers a larger analysed area. Secondly, the KBr disc method allows 

the extract to be distributed evenly throughout the disc. The amount of sample 

incorporated in the disc can be kept constant from one KBr disc to another and 

the amount of sample in the infrared beam is then also constant, allowing a 

quantitative approach. 

The second support was the barium fluoride (BaF2) window. BaF2 is an infrared 

transparent material. The BaF2 windows were tested unmodified and as part of a 

multilayer system. These trials were carried out in order to make the link with 

work already done in this domain (Ajuong and Breese, 1998). 

In reflectance mode, two major techniques were tested: ATR (Attenuated Total 

Reflectance) spectroscopy and specular reflectance microscopy techniques using 

different supports. The support for the extract has to be flat and to have good 

reflectance properties. Special physical and chemical properties are also needed 

in order to maintain the sample droplet confined reproducibly on the reflective 

surface to improve the data collection. 

We studied FTIR spectroscopy in order to find a fast and cheap reliable method 

to identify wood extractives. 

3.2 Materials and methods 

3.2.1 Wood samples 

The wood sample used to develop the FTIR technique was sawdust originating 

from a Sitka spruce trunk from Kershope forest (Northumberland - NY473 477, 

Latitude 55° 05’N, Longitude 2° 50’W, 190m elevation). The sawdust (the 

equivalent of 3.5g of dried wood) was extracted for 9 hours with either acetone 

or ethanol solvent (HPLC grade from Fisher Scientific) and then the volume was 

concentrated to one tenth of the volume (so from 100ml to 10ml) with the 
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rotary evaporator. In most of the tests both solvents were analysed, as they both 

appeared suitable for the subsequent research.  

3.2.2 Fourier Transform Infrared spectroscopy (FTIR) analysis 

The samples were analysed on a Nicolet Nexus Fourier Transform infrared 

Spectrometer (FTIR) spectrometer equipped with a Nicolet Continuum 

microscope attachment, with a liquid-nitrogen-cooled MCT detector. The 

spectroscopy was in specular reflectance mode with the sample dried onto a 

polished aluminium plate. Five spectra were measured for each acetone extract. 

An appropriate background spectrum was collected and automatically subtracted 

by the Omnic software. Each spectrum represents an average of 128 scans at the 

resolution of 4cm-1.  

A few droplets of concentrated acetone extract were placed (usually 3 times 1µL 

on the same spot) on the polished aluminium plate and allowed to dry at room 

temperature. The sample formed a stain on the plate representing the 

extractives to be analysed (Figure 3-1). 

 

Figure 3-1: FTIR sample preparation 
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All the spectra were then processed in the same way in Microsoft Excel software 

as described in the following paragraphs. 

3.2.3 Data collection from the FTIR experiments 

The spectra were collected with the FTIR microscope operating in specular 

reflectance mode. They were collected in absorbance (or more accurately, 

reflectance) using the Nicolet Omnic software package.  

The data were then transferred as .CSV files into Microsoft Excel, where the 

data were baseline-corrected using a linear algorithm connecting 7 different 

wavelengths (3690, 3040, 2740, 1810, 1545, 1480 and 840 cm-1) in the spectra. 

The total area of the baseline corrected spectra was normalised to one to enable 

the comparison between the spectra when required. 

Wavelengths that are characteristic of certain functional groups were chosen 

(Table 3-1), and the area of the peaks was calculated. 

Wavelengths  
Functional group 

identified 

3400cm-1 OH stretching mode Hydroxyl function 

2930cm-1 and 2850cm-1 CH and CH2 stretching modes Methylene and methyl groups 

1698cm-1 
COOR carbonyl stretching 
mode 

Carboxylic function in ester 
group 

1510cm-1 Ring deformation mode Aromatic compounds 

Table 3-1: Wavelengths of functional groups of extractives 

3.3 Results 

3.3.1 Transmission mode 

There are several ways to prepare the sample for the analysis in transmission 

mode. The first consists of preparing a disc with KBr; the properties of this 

material allow the signal to pass through the sample. 
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The second way to prepare the sample is to apply it to a barium fluoride 

window. In this case, the liquid extract is dropped on the window, then is 

allowed to dry and the residue is detected with the microscope. 

3.3.1.1 Potassium bromide discs  

3.3.1.1.1 Introduction 

The chemical properties of potassium bromide (KBr) allow the formation of KBr 

disc using finely powdered dried KBr under very high pressure. The disc formed 

is transparent to visible and infrared radiation. These characteristics meet the 

constraint to do transmission measurement of the samples, when the sample was 

previously added to KBr powder (Smith, 1996) and pressed into a disc.  

Ajuong and Birkinshaw (2004) and Ajuong and Redington (2004) analysed 

respectively the water-soluble extractives content of bog and modern Oak wood 

and the acetylated extractives of Sitka spruce and Larch, using the same method 

as Ajuong and Breese (1998) who analysed the water-soluble extractives of Pai 

wood in KBr discs. They mixed 5mg of dry, powdered extract with 0.5g of dry, 

powdered KBr after sequential toluene and toluene/ethanol extraction. The KBr 

disc method can also be used for solid wood provided that it has first been very 

finely powdered. Sun and Sun (2003) also analysed directly dried and powdered 

methyl tert-butyl ether extract of straw mixed with KBr. Owen and Thomas 

(1989) used the KBr disc method to study the holocellulose/lignin ratio and the 

lignin type present in 24 different woods. 

3.3.1.1.2 Experimental 

To form a perfectly transparent disc, the extract was mixed with KBr powder 

and pressed to form a 12 mm disc of controlled dimensions. Therefore the 

quantity of extract in the beam is known. The KBr powder mixed with the 

sample must be completely dry before going into the press. This was a necessary 

precaution to eliminate the absorption band due to the water in the spectrum 

and to avoid any recombination of the water with extractive compounds (esters 

for example). As the samples were in solution, a drying step was added. The 

volume needed was up to 50µL, which took a few minutes to evaporate at room 

temperature. Acetone and ethanol liquid extracts were tested using KBr discs.  
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3.3.1.1.3 Results 

The spectra obtained were baseline corrected and normalised by the total area 

(Figure 3-2).  

 

Figure 3-2: Spectra, normalised and baseline corrected, of acetone and ethanol extracts 

from Sitka spruce analysed by FTIR spectroscopy using KBr discs 

The assignment of the FTIR spectra is based on: general references about FTIR 

band assignment (Pecsok and Shields 1968; Williams and Fleming, 1989 and Lin-

Vien et al., 1991), previous work studying either wood, cellulose or lignin 

(Holgrem et al., 1999; Silva et al., 1999; Schwanniger et al., 2004 and Pan, 

2007) and comparing wood extractives from several species (Ajuong and Breese, 

1998; Nuopponen et al., 2003; Sun and Sun, 2003; Ajuong and Birkinshaw, 2004 

and Ajuong and Redington, 2004). 

The first peak around 3400cm-1, represents the stretching vibration of hydrogen-

bonded OH groups (Williams and Fleming, 1989), characteristic of 

intermolecularly bonded hydroxylated extractives (Ajuong and Breese, 1998; 

Ajuong and Birkinshaw, 2004 and Ajuong and Redington, 2004) as can be found in 

sterols, glycerides, in some polysaccharides or in water in moist samples (Sun 

and Sun, 2003). 
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At 2930 and 2850cm-1 there are two very strong peaks characteristic of the 

symmetric and antisymmetric C-H stretching vibrations of CH2 (methylene) 

groups (Lin-Vien et al., 1991). The C-H stretching vibrations of other saturated 

and unsaturated hydrocarbons and methyl groups are found between the CH2 

stretching peaks. 

The bands at 1730 cm-1 are the C=O stretching vibrations produced by the ester 

carbonyl (Williams and Fleming, 1989 and Holmgren et al., 1999). These peaks 

appear when the lipophilic fraction of extractive is studied; they may come from 

fat, wax compounds or in esterified resin acids (Holmgren et al., 1999; 

Nuopponen et al., 2003 and Sun and Sun, 2003). This band may shift to 1698cm-1 

in presence of free carboxylic acid carbonyl groups in wood extractives 

(Holmgren et al., 1999 and Nuopponen et al., 2003). 

The peak around 1600cm-1 can be assigned to either C=C stretching at lower than 

usual frequency, but with increased intensity because of conjugation with a 

carbonyl group; or an aromatic ring deformation mode (Ajuong and Breese, 

1998). In our case, the hypothesis of the aromatic rings is less probable because 

of the strong absorption at 1510cm-1 from lignin and associated compounds 

(Schwanniger et al., 2004). 

The strong peak at 1510cm-1 is assigned to the deformation vibration within 

benzene rings (Williams and Fleming, 1989 and Lin-Vien et al., 1991). This peak 

is characteristic of aromatic compounds in wood and wood extractives (Silva et 

al., 1999 and Schwanniger et al., 2004). 

At lower frequencies than this the vibrational modes become progressively more 

complex, with the participation of more than two atoms so that any band in this 

part of the spectrum cannot necessarily be assigned to a single functional group. 

The C-H bending mode appears at 1460cm-1 and a symmetrical deformation of C-

H3 at 1380cm-1. These bands are related to the two previous bands at 2930 and 

2850cm-1 (Ajuong and Redington, 2004). 

The strong band at 1270cm-1 originates from the C-O stretching vibrations of 

softwood resin acids (Williams and Fleming, 1989 and Nuopponen et al., 2003). 
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The 1155cm-1 peak is produced by C-O-C asymmetric valence vibrations as in 

carbohydrates (Schwanniger et al., 2004). 

3.3.1.1.4 Discussion 

The spectra of the acetone and ethanol extracts both contained the same peaks 

at the same frequencies. The main distinction that could be identified was at 

around 1730 and 1710 cm-1, where the acetone extract showed two 

distinguishable peaks but the ethanol extract showed a flat broad peak. It was 

also noticeable that the broad O-H stretching band was of lower intensity in the 

acetone than the ethanol spectrum. This difference could be due to greater 

extraction or subsequent absorption of water by ethanol.  

Good spectra were obtained for both samples. These two spectra will be taken 

as reference to compare with other sampling systems, as the KBr disc method 

has already been widely used in FTIR (Hauser and Oelichmann, 1988). 

3.3.1.2 Barium fluoride window  

3.3.1.2.1 Introduction 

Barium fluoride (BaF2) windows are used in infrared spectroscopy in transmission 

mode. This material is transparent to infrared light. BaF2 has non-hygroscopic 

properties, unlike KBr and NaCl (Wetzel, 2002).  

McCann et al. (1992) studied plant cell walls by FTIR. They deposited a 

suspension of finely ground cell walls or a solution of polymers to form a thin 

layer on top of a BaF2 window. Areas with little depth of material were selected 

in the microscope and spectra recorded from these.  

3.3.1.2.2 Experimental 

The barium fluoride windows used (13 mm diameter x 2 mm thick) were 

purchased from Spectroscopy Central Ltd. Acetone and ethanol extracts were 

analysed using BaF2 windows.  

A solvent extract droplet of several microlitres volume was deposited on the 

BaF2 window and the solvent evaporated at room temperature. A light stain 

remained on the window and represented the extractives (Figure 3-3). The 
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microscope was then focused on the stain and the spectrum collected. This part 

of the procedure is not easy to carry out because the detection of the stain 

remained difficult (Figure 3-4). The utilisation of pigments was not possible, as 

these would produce infrared spectra too. 

 

Figure 3-3: Sketch of acetone extract of Sitka 

spruce on Barium fluoride window 

 

 

Figure 3-4: Light micrograph of acetone 

extract of Sitka spruce on Barium fluoride 

window 

3.3.1.2.3 Results 

Once the stain had been located, spectra were collected from several regions of 

the stain. The spectra from the middle of the stain had less intensity than that 

obtained on the border. That lead us to think that the sample does not dry 

uniformly and the extractives are more concentrated at the border than in the 

middle of the stain.  

A comparison was made between the KBr disc procedure and the barium fluoride 

window (Figure 3-5). 
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Figure 3-5: Spectra, normalised and baseline corrected, of acetone extracts from Sitka 

spruce analysed by FTIR spectroscopy using KBr discs and Barium fluoride window 

Comparing the spectra obtained by both methods, KBr disc and BaF2 window, 

(after the baseline correction and the normalisation of the area to 1), all the 

peaks previously detected with the KBr disc were also present with the BaF2 

window procedure. The difference is a more pronounced distinction between the 

pairs of peaks at 1730 and 1710cm-1 and at 1155 and 1125cm-1. The signal to 

noise ratio was greater for the BaF2 window than for the KBr disc technique. 

The ethanol extract was also tested on BaF2 windows. It was evident that the 

drying of the sample on the window was different. While the acetone droplet 

remained approximately circular, the ethanol extract spread over a bigger area 

with irregular borders, and the formation of micro-droplets containing very high 

concentrations of extractives (Figure 3-6).  
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Figure 3-6: Sketch of ethanol extract of Sitka spruce on Barium fluoride window 

As the ethanol extract did not dry uniformly, the collection of representative 

spectra was not easy and we could not be sure that all the classes of extractives 

would be equally represented in these micro-droplets (the size of the micro-

droplets was too small to give a good repeatability of the spectrum with all the 

samples). 

3.3.1.2.4 Discussion 

The BaF2 window gave good spectra from the acetone extract. The major 

drawback was the difficulty locating the sample on the window. The sample had 

to be as concentrated as possible to be detected, which involved a longer 

duration for the evaporation step and a risk of overheating the sample and losing 

volatile compounds. 

3.3.1.3 Barium fluoride window system 1  

3.3.1.3.1 Introduction 

It was difficult to keep the extract droplet confined on the Barium fluoride 

window and to prevent possible fractionation of the sample according to 

‘chromatographic’ phenomena. In order to solve this problem, we tried to build 

a sample holder, which would retain the droplet in a restricted area.  

3.3.1.3.2 Experimental 

Two systems based on the same principle were constructed. The first was built 

using a polyethylene sealing layer (Figure 3-7). The polyethylene was contained 

between two layers of aluminium, the bottom layer being the original sample 

holder with the barium fluoride window; the second layer was screwed to the 
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first layer to seal the system. The problem with system 1 was that it was not 

watertight enough to keep the droplet on the barium fluoride window and the 

extract diffused into the gap between the polyethylene and the aluminium 

sample holder. 

 

Figure 3-7: Sketch of system 1 where a polyethylene layer is intended to maintain the 

droplet confined on the barium fluoride window.    

A second system was established using a polished silicon wafer instead of 

polyethylene as sealing but the result was the same; the system was not 

watertight enough to contain the extract droplet.  

During all the trial, particular care was taken to only use sealing material that 

could not be affected by the solvent or interact with the extractives. 

3.3.1.3.3 Discussion 

With the BaF2 window method, all the peaks previously analysed with the KBr 

disc method were detected. The major disadvantage was the difficulty in placing 

the sample onto the BaF2 window and locating the residue under the 

microscope. The shape of the residue depended on the solvent used for the 

extraction. As the results obtained using barium fluoride windows were not very 

promising, we decided to investigate the other modes available in FTIR. 

3.3.2 Reflectance mode  

In specular reflectance mode the infrared beam travels through the sample and 

is reflected by the surface of the sample holder.  

There are three types of reflectance mode used in infrared spectroscopy and 

microscopy: ATR, diffuse reflectance and specular reflectance. These differ in 

the angle of reflectance formed after reflection (Figure 3-8). If the angle of 
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incidence equals the angle of reflectance, this constitutes specular reflectance. 

For specular reflectance the sample holder must be optically mirror-smooth at 

the wavelength of midrange infrared radiation (1-10 µm). If the incidence angle 

is fixed but the reflectance angle varies from 0 to 360 degrees, we have diffuse 

reflectance, which occurs on rough surfaces (Smith, 1996). The objective of the 

FTIR microscope that we used works in specular reflectance. 

 

Figure 3-8: Examples of specular and diffuse reflectance 

The key issue in this mode is the reflectiveness of the sample holder. The 

physical properties of the surface are also important because the aim of the 

study is to use a small volume of sample during the analysis, so the 

concentration of the sample has to be suitable to collect representative spectra.  

The ATR technique is used in infrared spectroscopy to measure IR spectra at 

surfaces. This technique makes it possible to directly analyse samples in the 

solid or liquid state. The technique uses the internal reflection properties of a 

crystal to generate a standing wave of radiation, called an evanescent wave 

(Figure 3-9). The sample when pressed against the crystal will modify the optic 

properties of the interface and will absorb infrared radiation. The evanescent 

wave intensity will be attenuated by the sample, and the result will be given by 

the difference between the original and modified signals. The key is to have 

good contact between the crystal and the sample (Smith, 1996). 
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Figure 3-9: Sketch of ATR principle 

3.3.2.1 Attenuated Total Reflectance (ATR) with aluminium foil  

3.3.2.1.1 Introduction 

Spectra were obtained on ATR and a Bio-Rad FTS40 FTIR spectrometer. All 

spectra were obtained at a resolution of 8 cm−1, with 256 co-added 

interferograms. 

3.3.2.1.2 Experimental 

To analyse samples by ATR spectroscopy, the liquid extract was dropped onto 

aluminium foil and allowed to dry. The dried sample on the aluminium foil was 

pressed onto the ATR crystal. The quantity needed was around 5µL. 

3.3.2.1.3 Results 

Acetone and ethanol extracts at the same concentration were tested by the ATR 

method on aluminium foil and analysed again in KBr discs (Figure 3-10 and Figure 

3-11). 
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Figure 3-10: Spectra, normalised and baseline corrected, of acetone extracts from Sitka 

spruce analysed by FTIR spectroscopy using KBr discs and ATR on aluminium foil 

The acetone sample analysed with ATR gave spectra showing a lot of noise. 

There was an unexpected negative signal around 1300cm-1. Around 1700cm-1, the 

shape of the peak was different probably due also to the signal/noise ratio, and 

in the fingerprint region the signals appeared to have slightly different 

intensities compared to KBr. 
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Figure 3-11: Spectra, normalised and baseline corrected, of ethanol extracts from Sitka 

spruce analysed by FTIR spectroscopy using KBr discs and ATR with aluminium foil 

For the ethanol sample, the ATR spectrum again had more noise than the KBr 

disc spectrum. The differences between the two methods (KBr discs and ATR) for 

the ethanol extract are: 

- At around 1700cm-1, the peaks were more distinct for the KBr method.  

- Also around 1230cm-1, the two peaks were more distinct for the KBr 

method. 

But these differences are probably due to the signal to noise ratio and that the 

method was more difficult to carry out compared to the KBr disc method, 

because good contact between crystal and sample was needed and this was 

difficult to achieve. 

3.3.2.1.4 Discussion 

The preparation of the sample for the ATR method was faster because only a 

few microlitres are needed while the volume of sample to prepare a KBr disc is 

close to one millilitre. But the drawback of the ATR method was the difficulty of 

putting a second droplet at the same place as the first one. It was necessary to 
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be careful that the extract stayed concentrated at the same place and did not 

expand too much as the surface which will be analysed cannot be not expanded. 

Also the aluminium foil is smooth and it was essential not to crease it, to avoid 

too much noise in the background. With the ATR method, the signal obtained 

was noisier than with the KBr disc method and the method is also not 

‘quantifiable’ because it is not know how much sample the spectrum is derived 

from. 

3.3.2.2 Aluminium foil with FTIR microscopy 

The results obtained after the ATR method were not as conclusive as expected. 

The investigation was continued further in the reflectance mode, using 

microscopy techniques. 

3.3.2.2.1 Experimental 

Aluminium foil was used as the sample holder and was taped onto a flat surface 

with double-sided tape. The droplets of the acetone or ethanol extract were 

dropped directly onto the aluminium foil and allowed to dry. 

This technique provided a cheap and fast system to analyse the sample. However 

the background was quite dark on looking through the microscope, so we were 

not very confident that good spectra would be obtained (Figure 3-12 and Figure 

3-13). 

 

Figure 3-12: Aluminium foil holder with 

ethanol extract for FTIR microscopy on the 

border of the sample droplet. 

 

Figure 3-13: Aluminium foil holder with 

ethanol sample for FTIR microscopy in the 

middle of the sample droplet. 

Ethanol and acetone extracts were analysed on aluminium foil. As the 

background was dark under the microscope, more than 3µL was necessary to 

obtain sufficient amount of sample for a spectrum. 
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3.3.2.2.2 Results 

Despite the fact that the background was dark and showed some black spots, it 

was possible to obtain good quality spectra (Figure 3-14).  

 

Figure 3-14: Spectra of acetone and ethanol extracts on aluminium foil analysed by FTIR 

microscopy 

Some differences were evident between the ethanol and acetone extracts. The 

peak at 1700cm-1 in the ethanol extract was not detected in the acetone 

extract. It may have been present but at a very low intensity. The peak at 

1230cm-1 was also detected in the ethanol extract but was not as intense in the 

acetone extract. These peaks were present in the spectra from the acetone and 

ethanol extracts measured as KBr discs (Figure 3-2). 

3.3.2.2.3 Discussion 

The way in which the droplets dried differed between the acetone and ethanol 

samples. Acetone droplets dried more uniformly than ethanol droplets leaving a 

circular residue on the aluminium foil. The extractives from the ethanol extract 

were located at the borders and good spectra were obtained from that region.  

The drawback of the method is the difficulty of placing a second droplet of 

sample at the same place as the first, so as to avoid the sample spreading over a 
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larger area. It was preferred to repeat the deposition of smaller quantities so 

that the sampling area stayed relatively small and the concentration of 

extractives was sufficient for detection of minor components, especially for the 

ethanol extract. 

The fact that the acetone and ethanol extract did not give the same result, in 

terms of spectra quality, might be due to difficulties in sample preparation. 

3.3.2.3  Gold mirror system  

3.3.2.3.1 Experimental 

A gold mirror supplied by the Thermo Nicolet Company was tested using acetone 

extract. 

The surface was reflective but had a golden colour. Despite the reflective 

surface the yellowish colour made the background dark, which was not good for 

our purpose because the detection of the sample on the sample holder was even 

more difficult (Figure 3-15). A few droplets of acetone extract were dropped 

onto the gold surface. 

 

Figure 3-15: Acetone extract on gold mirror under the microscope 

3.3.2.3.2 Results 

We choose to compare the spectra obtained with the gold mirror sample holder 

against the reference technique, the KBr disc method (Figure 3-16). 
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Figure 3-16: Spectra, normalised and baseline corrected, of acetone extract on gold sample 

holder analysed by FTIR microscopy and analysed by Kbr disc 

It can be seen that around 1700cm-1 the spectra from the gold mirror and the 

KBr disc differ with a lot of overlapping for the golden mirror. A difference is 

also visible around 1120cm-1, where despite the baseline correction; detection of 

the peak is not easy. 

3.3.2.3.3 Discussion 

The quality of the spectra obtained with the gold mirror sample holder was not 

as good as was obtained with the KBr disc method. The signals did not show the 

same resolution. There was a lot of overlap around an important area of the 

spectrum, which would be a problem later when quantification is being 

established. 

The sample preparation was not very easy due to the fragility of the sample 

holder, which was easily scratched during the cleaning step, so we have chosen 

to continue the investigation on the reflectance mode with sample holders of 

other materials to find a more suitable technique. 
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3.3.2.4 Silicon plate system  

3.3.2.4.1 Introduction 

On a low surface energy material, a droplet has a smaller area in contact with 

the material than with a high surface energy. In that case after the droplet 

evaporates, the concentration of the sample should be higher within the area of 

the deposit. 

3.3.2.4.2 Experimental 

A Silicon wafer (100 plan cristallin, p-doped (boron), resistivity 1-50), purchased 

from University Wafer Inc., was tested as sample holder in order to provide a 

lower surface energy and thus confine the liquid sample in a restricted area. 

3.3.2.4.3 Results 

For the acetone sample, the dried droplet was not as uniform as with other 

techniques (Figure 3-17 and Figure 3-18), and the deposit was less circular. The 

solution left a white stain when it dried. The results obtained on the silicon 

plate did not agree with the original expectation of a droplet as spherical as 

possible with a minimum of contact with the surface. 

 

Figure 3-17: Sketch of dried acetone extract 

on silicon sample holder 

 

Figure 3-18: Picture of dried acetone extract 

on silicon sample holder 

The silicon method allowed the detection of all the compounds already detected 

by the KBr disc method (Figure 3-19). The only difference was that at around 

1700cm-1, there was a clearer distinction between the closely spaced peaks than 

with the KBr disc method. 
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Figure 3-19: Spectra, normalised and baseline corrected, of acetone extract on silicon 

sample holder and on KBr disc 

No results were acquired with the ethanol sample due to the adsorption and 

spreading of the ethanol solvent on the silicon surface (Figure 3-20 and Figure 

3-21) (Mizukami et al., 2002). 

 

Figure 3-20: Sketch of dried ethanol extract 

on silicon sample holder 

 

Figure 3-21: Picture of dried ethanol 

extract on silicon sample holder 

3.3.2.4.4 Discussion 

This sample holder seemed to be the most reflective system tested until that 

point. However the spectra obtained showed some noise and was not 

appreciably better than the spectra obtained with the gold mirror plate. 
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Unfortunately the silicon surface reacted with the ethanol so we were unable to 

obtain any spectrum from the ethanol extract. 

This material was also the most expensive of the materials tested and was too 

expensive to use a new sample holder for each experiment. 

3.3.2.5 Non-polished aluminium plate  

3.3.2.5.1 Introduction 

A holder made from raw aluminium strip was considered, as this material is 

quite reflective and very cheap. 

Goodacre et al. (1998) used milled wells in sandblasted aluminium plates to 

analyse microbial systems. They chose this technique because it made it possible 

to analyse a large number of sample (> 100) in one dataset collection. This was 

why we decided to try to use strip aluminium, as the aim of the study was to 

speed the analysis process due to the large number of samples to by analysed. 

3.3.2.5.2 Experiment 

The sample holders were cut to 75 mm length from 25mm x 2mm raw aluminium 

strip (B&Q Ltd).  

3.3.2.5.3 Results 

When the unpolished aluminium holder was examined under the microscope, the 

background was very dark and the surface was very uneven (Figure 3-22). It was 

not easy to find the sample on the holder. It seemed likely that the spectra were 

influenced by the roughness of the surface. 

 

Figure 3-22: Background of aluminium sample holder for FTIR microscope 
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3.3.2.5.4 Discussion 

It was decided that the surface needed to be altered in order to make it more 

uniform and more reflective. 

3.3.2.6 Polished aluminium plate 

3.3.2.6.1 Experimental 

To obtain better reflectance, the aluminium plate was polished to a bright finish 

with few flaws. Steel wool and Brasso metal polish (by Reckitt Benckisser Ltd) 

were used. This treatment gave the desired result, an optically smooth mirror 

surface (Figure 3-23). The same concept was used by Thomas et al. (2000) who 

used a sand-blasted aluminium plate with FTIR to study follicular fluids from 

antral follicles. 

 

Figure 3-23: Background of polished aluminium sample holder for FTIR microscope 

We were concerned that the metal polish liquid would interfere with the 

sample. Background spectra of the polished and non-polished aluminium holder 

were therefore compared, and no difference was evident between the two 

surfaces. When samples were applied there was no noticeable interaction 

between the sample and the sample holder. 

The next concern was the way in which the sample droplet would dry on this 

surface. The acetone sample dried uniformly, remaining circular with no 

spreading into the microscopic scratches still present, while the ethanol sample 

spread somewhat and dried heterogeneously (Figure 3-24). 
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Figure 3-24: Sketch of the acetone and ethanol samples dried on a polished aluminium plate 

3.3.2.6.2 Results  

The acetone extract was analysed on a polished aluminium plate. 

The polished aluminium plate sample holder gave a good result for the analysis 

of the Sitka spruce extractives, comparable with the KBr disc method (Figure 

3-25). 

 

Figure 3-25: Spectra of acetone extract analysed by FTIR microscopy on polished aluminium 

plate and by the KBr disc method 

All the peaks detected with the KBr disc method were present in the spectra 

from the polished aluminium plate method. There was also better definition of 

the peak at 1700cm-1. 

With the ethanol extract, the liquid did not dry in the same way as the acetone 

extract but spread rapidly, making it more difficult to find an area in which the 

extractives were concentrated. 
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3.3.2.6.3 Discussion 

The background was now more reflective than with the aluminium foil and the 

non-polished plate. Acetone droplets dried very well and remained circular. Most 

of the extractives were present at the border. However ethanol droplets spread 

out very quickly: the area to be analysed was wide and a greater volume of 

sample was needed to obtain a good spectrum, which made the analysis difficult 

and less repeatable. 

The system was best suited to the acetone extracts, because it was very 

reflective and gave well-resolved spectra of good intensity. In term of sample 

preparation, several microlitres of sample were enough (around 3 times 1 µL 

droplet), which reduced the sample preparation prior to analysis. The time 

saving was significant in comparison with the preparation of KBr disc as the 

volume of sample needed for KBr discs was much greater (around 50µL) and the 

solvent had to be completely evaporated without absorption of moisture. 

On the polished aluminium plate, if the sample was deposited carefully it stayed 

confined in a restricted area and so a small volume of sample is enough to obtain 

good and reproducible spectra. 30 sample droplets (3 times 1µL sample) can be 

analysed on a single aluminium plate. 

The spectra obtained with the polished aluminium plate were equivalent to 

those obtained with KBr disc (the reference method), and some of the peaks 

were better resolved on the polished aluminium plate. 

3.3.2.7 SU-8 and polished aluminium plate system 

3.3.2.7.1 Introduction 

In order to improve and facilitate the concentration of the sample on a 

restricted area, we attempted to add a second layer onto the polished 

aluminium plate; this second layer had different physico-chemical properties 

intended to retain the sample on the open aluminium space. 

3.3.2.7.2 Experimental 

The product SU-8 2002 (Microchem) is a chemically and thermally stable epoxy 

based photoresist. A 2 microns layer of SU-8 was spin coated and patterned by 
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photolithography on to a polished aluminium plate by Dr Francois Caron. The 

pattern was a 2mm diameter circular hole in the SU-8. 

The SU-8 has a lower surface tension than the aluminium plate leading to the 

confinement of the droplet on the 2mm aluminium spot (Figure 3-26). 

 

Figure 3-26: schema of SU8 and aluminium sample holder 

3.3.2.7.3 Results 

Acetone and ethanol extracts were tested. 

The droplet of acetone extract remained confined on the open area of 

aluminium. Two microlitres of sample were needed to obtain a good spectrum 

(Figure 3-27).  

 

Figure 3-27: Spectrum of acetone extract on SU8 and aluminium sample holder and KBr disc 
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As the sample holder background is the polished aluminium plate, we obtained 

similar spectra to the 3.3.2.6 polished aluminium plate paragraph. All the peaks 

previously detected with the KBr disc method were also detected with the 

polished aluminium plate, and there was also better definition of the peaks 

around 1700cm-1. 

The ethanol sample was also analysed, but the solvent being more polar 

expanded outside the analysis area, so it was not possible to use this system to 

confine the sample within a designated area. 

3.3.2.7.4 Discussion 

This system was effective because it allowed us to confine a very small droplet 

of sample in the area intended. 

But the system was very expensive because of the need to pattern the layer of 

SU-8 in a clean room environment. Despite the advantage of the well-defined 

sample area, equivalent results could be obtained when the liquid sample was 

deposited carefully on the polished, uncoated aluminium plate. The SU-8 coating 

method would be worth considering if the method were to be developed into a 

microarray format with spectra from large numbers of samples being recorded in 

parallel. 

3.3.2.8 Systems with wells  

3.3.2.8.1 Introduction  

Another potential way to concentrate the extractives into the analysis area is to 

drill a hole into the polished aluminium surface. This way the droplet would stay 

inside and it might be possible to collect the extractives on the bottom of the 

hole. 

However as the analysis was undertaken in specular reflectance mode, the 

bottom of the well would have to be flat and have a good reflectance. Several 

shapes were considered (Figure 3-28, Figure 3-29 and Figure 3-30). These 

systems were very difficult to build because of the need for a reflecting flat 

bottom. 
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The first well shape was the simplest (Figure 3-28), a deep narrow hole with a 

flat bottom. This shape was suitable but the drilling operation led to a lack of 

reflection from the bottom surface. Also the convergent light beam from the 

microscope did not illuminate the whole bottom surface. 

 

Figure 3-28: Well shape 1 

 

Figure 3-29: Well shape 2 

 

Figure 3-30: Well shape 3 

To reduce the lighting problem we tried a V shape close to the bottom (Figure 

3-29), but again it was difficult to get the bottom aluminium surface reflective 

enough to obtain quality spectra. 

Then we tried to enlarge the hole in order to get more light inside (Figure 3-30), 

but the problem was that the deposition of extractives stopped randomly on the 

sloping border or at the bottom. 

As the first structure had a square elevation, some other concepts with a round 

bottom were considered. Unfortunatly they were not capable of being 

constructed, at least with the materials available. Further work would have 

been needed to find a appropriate watertight, reflective material but we 

estimated that it was not necessary to pursue this line of study. 

In order to find a better way to retain the droplet of sample confined in a 

restricted area, systems constructed with multiple layers were tested. The 

polished aluminium plate sample holder was good in reflectance so we 

attempted to add a second layer of aluminium to restrict the area where the 

droplet might expand. The possibility to dismantle multilayer system would 

allow the reflective surface to be cleaned and re-polished readily. But the 

limited space available below the objective lens of the FTIR microscope 

restricted the maximum thickness of the whole assembly to about 7 mm. 
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3.3.2.8.2 Two-aluminium plates system  

3.3.2.8.2.1 Experimental  

The first system is composed of two layers of aluminium held together with two 

sets of screws (Figure 3-31). 

 

Figure 3-31: Sketch of the double-aluminium plate sample holder 

3.3.2.8.2.2 Results 

A small volume of acetone extract was dropped inside the well. Despite the fact 

that the top aluminium plate was screwed down as tightly as possible, the 

system was not sealed and it was not possible to get the sample to stay inside 

the required area. 

3.3.2.8.2.3 Discussion 

As the system is not solvent-tight, a sealing layer is necessary between the two 

layers of aluminium.  

3.3.2.8.3 Two aluminium plates and one polyethylene plate  

3.3.2.8.3.1 Introduction 

The second system was also based on polished aluminium plates, but this time a 

third layer will be added to improve the sealing of the system.  

3.3.2.8.3.2 Experimental 

Special care was taken to use a sealing material that would not have any 

interaction with the solvent or the sample (Figure 3-32). 
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Figure 3-32: Sketch of sample holder constructed from two aluminium plates and one 

polyethylene plate  

This system was tested with two different well diameters. The first one was 

1.5mm diameter; this size was too small and did not allow the divergent 

reflected light to pass through the hole (Figure 3-33). 

 

Figure 3-33: Image of acetone extract 

As the depth of the well was increased (by adding a second layer of sealing 

material), the diameter of the hole had to be larger to allow the light to 

penetrate through the hole. 

The second diameter tested was 2.5mm. This permitted the light to pass through 

the hole but the system was still not watertight enough to contain a small 

quantity of solvent on the area required. 

3.3.2.8.3.3 Results  

We did not succeed in constructing a multilayer system, solvent-tight enough to 

contain 2 or 3µL of acetone in the restricted area. 

3.4 Conclusion on FTIR spectroscopy methods 

The KBr disc method in transmission mode remains the reference method; it is 

the only method tested that allowed a possible quantification of the extractive 

classes by having a uniform volume of extract in each KBr disc.  
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However transmission mode does not seem the most appropriate method for the 

analysis of large numbers, as the KBr discs are very fragile and need a longer 

sample preparation time compared to the other methods tested. 

Acetone is a better solvent to work with than ethanol, since the latter interacts 

more strongly with several of the sample supports tested. For example, the 

ethanol extract spreads irregularly when it dries on a BaF2 window (transmission 

mode) and does not permit a representative spectrum to be obtained. 

The construction of a system (in reflectance and in transmission modes) to retain 

the sample droplet confined in a restricted area was not successful. However 

this line of research was not pursued, as a single-layer system performed well 

enough. 

The ATR method on aluminium foil allowed the identification of all the peaks 

already detected with the KBr disc method, but the disadvantage was the 

difficulty of depositing the sample on the aluminium foil and maintaining the 

aluminium foil free of creasing to minimise the background noise. 

In reflectance mode coupled with microscopy, the results obtained with several 

sample holders were close to the results obtained with the KBr disc, the main 

differences being due to the sample deposition step. With aluminium foil and 

the non-polished aluminium plate, the reflected intensity was low and the 

background showed a lot of noise due to the irregularity of the surfaces. The 

gold mirror system was too sensitive to sample preparation and gave a lot of 

overlap in the spectra. The silicon plate interacted with the ethanol solvent, and 

was too expensive. 

After running these comparisons, it appeared that the polished-aluminium plate 

system was the most suitable for the purpose of the study. It allows easy and 

fast deposition of the sample on the plate. The spectra obtained match every 

peak detected by the KBr disc method. The system is cheap and easy to 

construct. The way to deposit the sample using several small applications of 

solvent was simple and efficient and allowed some concentration of the sample. 

With the addition of the SU-8 epoxy coating it performed even better with the 

acetone extract but the added cost was not worth it, as the system is meant to 

be disposable and it did not work with ethanol as the solvent. 
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3.5 Validation of the technique chosen  

Further tests were run in order to confirm the reliability of the polished 

aluminium plate system.  

Spectra were taken in different places within the dried droplet (Figure 3-34). It 

appeared that the spectra obtained in the middle of the droplet were 

comparable but had a lower intensity than the spectra taken at the border of 

the dried droplet. The measurements were therefore always taken at the border 

of the dried extract droplet. 

 

Figure 3-34: FTIR spectra from different place in acetone extract droplet 

In order to confirm that there is no separation of extractive compounds during 

the drying of the droplet, peak areas centred on 3 selected wavelengths (2930-

2840cm-1, 1698cm-1 and 1510cm-1) were measured. The same wavelengths will be 

used later in the study for the quantification. Two ratios were calculated from 

the area values for the measurement taken at the border and in the middle of 

the droplet and also for the KBr disk analysis. The results are presented in Table 

3-2. 
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KBr disc method 

Border of the 
droplet 

Middle of the 
droplet 

Ratio 1 0.47 0.50 0.24 
Ratio 2 0.14 0.22 0.10 
    
Ratio 1: Area of 1698cm-1 peak/ Area 2930-2840cm-1 peak 
Ratio 2: Area of 1510cm-1 peak/ Area 2930-2840cm-1 peak 

Table 3-2: Ratio from FTIR analysis of acetone extract by three different analysis methods 

There was a large difference in ratio 1 for the spectra obtained from the middle 

of the droplet. Higher values of both ratios were found from the spectra 

obtained from the border of the droplet, where most of the mass of the extract 

was concentrated. It would appear that the hydrocarbon extractives represented 

by the 2930-2840cm-1 peak have less tendency to move out to the border during 

the drying of the droplet. It was considered better to measure the sample at the 

border, as the results were more comparable to what was found in the KBr disc 

and the extract was so sparse in the middle of the droplet that it was difficult to 

obtain spectra there. 

The samples were analysed several times, in order to establish the repeatability 

of the measurements. The results obtained are quite repeatable. The Figure 

3-35 shows six different measurements of three different samples of acetone 

extract on polished aluminium plate. 
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Figure 3-35: 6 different measurements of the same acetone extract on polished aluminium 

plate analysed by FTIR microscopy 

If we look at the finger print region in more detail we obtain the following 

spectra (Figure 3-36). 

 

Figure 3-36: Finger print region of the FTIR spectra of the Figure 3-35 
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In the fingerprint, we remark a small difference in intensity between the 

samples, but all the peaks are detected. The variation between the spectra in 

the fingerprint region is mostly due to the difficulty of obtaining accurate 

baseline correction right across the spectrum. But there is least difficulty in 

getting good baseline correction close to the frequencies of the peaks that were 

used for quantification presented later. 

3.6 Finalised method for FTIR analyses 

The sample holder is an aluminium plate (size: 750 x 250 mm) purchased in B&Q. 

The plate is polished using fine steel wool wads followed by Brasso metal polish 

(by Reckitt Benckisser Ltd), the excess is removed with paper and the plate is 

rinsed with acetone before the analysis. Then the extract is applied in three 

droplets of one microlitre using a 10 microlitres gas chromatography syringe, 

letting the extract evaporate at room temperature between droplets. The FTIR 

spectra are then collected in reflectance mode at 5 points at the border of the 

dried droplet and normalised and baseline corrected as required. 

3.7 Data processing from the FTIR experiments 

FTIR spectroscopy in reflectance mode does not allow an absolute quantification 

of the functional groups detected. With the technique making use of acetone 

droplets deposited on a polished aluminium plate, quantification was not 

possible because of the irregular nature of the dried deposits. It was not 

practicable to measure the absolute quantity of extractives in each droplet. 

However, relative quantities of different species within each sample could be 

assessed. 

The area of each peak (Table 3-1) of interest was calculated. The peaks 

representing methylene and methyl groups were chosen as common denominator 

as they were present in all samples and appeared to be the most stable in terms 

of intensity. The peak at 3400cm-1, which represents the hydroxyl function was 

set aside because it intensity was too dependent on the relative humidity of the 

room atmosphere. 
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The ratio named (COOR/CH) between the carboxylic peak at 1698cm-1 and the 

combined C-H stretching peaks at 2930cm-1 and 2850cm-1 represents the proportion 

of esters to the aliphatic fraction. 

The ratio named (Ring/CH) between the aromatic ring vibration at 1510cm-1 and 

the C-H stretching peak at 2930cm-1 and 2850cm-1 represents the proportion of 

aromatic compounds relative to the aliphatic fraction. 
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Chapter 4: Height study 

4.1 Introduction and aims 

Originally the aim of the Kershope Experiment was a “sawmilling” study, which 

assessed the benefit of selective breeding for timber quality and wood 

mechanical properties. We had access to this knowledge from the tree progeny 

trial and a good quality of timber to study the variation in extractive content 

within a tree, in heartwood, sapwood and knot wood at different heights on the 

stem. The data lead to conclusions on the distribution of extractives within the 

tree. 

The aim of the work was to study the distribution of extractives within the tree, 

which means at different heights in the trunk, as well as the distribution 

between heartwood, sapwood and knotwood.  

A gravimetric analysis was performed to determine the total extractive content, 

which was further analysed by FTIR spectroscopy in order to identify differences 

in the composition of the extracts between the samples. 

For the heartwood and the sapwood it was possible to select samples from 

several heights of the trunk, making it possible to determine the distribution of 

the extractives within the trunk. In addition, FTIR spectroscopy provided the 

distribution of the extractive classes identified. 

Then a comparison between heartwood, sapwood and knotwood was made to 

study the composition and distribution of extractives between these different 

types of wood. 

4.2 Methods and procedures 

Ekeberg et al. (2006) examined the influence of the particle size of the wood on 

the extraction results. They recommended using sawdust, because it is the best 

compromise to obtain the largest yield of extractives (pinosylvin, pinosylvin 

monomethyl ether, resin acids and free fatty acids) compared to solid wood or 

small particles. 
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Sawdust also allows a better penetration of the solvent, which will lead to a 

better extraction of the desired material, therefore it was decided to analyse 

extractives from sawdust (i.e. particles that pass through a 4mm sieve) in this 

and the following experiments. 

4.2.1 Wood samples from the Kershope forest 

The Kershope experiment was based on sawdust obtained from discs sawn from 

Sitka spruce trunks freshly cut in the forest. The discs were drilled parallel to 

the grain using a wood bit to produce sawdust. This experiment made it possible 

to study the distribution of extractives within a tree, i.e. the differences 

between heartwood, sapwood and knotwood extractive composition as well as 

the variation in heartwood and sapwood extractives at different heights within 

the trunk. 

 

Figure 4-1: Tree sampled from Kershope 

forest (UK) 

 

Figure 4-2: Felled tree without branches 

Three trees were chosen from one experimental area in Kershope forest, 

Northumberland (NY473 477, Latitude 55° 05’N, Longitude 2° 50’W, 190m 

elevation) (Figure 4-1 and Figure 4-2). This area was part of a field experiment 

that has been monitored and the genetic background of the trees is well known 
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(Mochan et al., 2008). The experiment was a progeny by plot size trial planted in 

1968 and reaching harvesting maturity in 2004. The trees were Sitka spruce 

(Picea sitchensis (Bong.) Carr.) of a range of provenances from Oregon to Queen 

Charlotte Island (details about Sitka spruce can be found in chapter 1). 

The trees were chosen to be as straight as possible, avoiding any fungus 

infection or visible defects as these factors could have an impact on the 

extractive content. Shaun Mochan and Dr. Paul McLean cut the trees specifically 

for this study. 

Three trees were sampled and discs of 20cm thickness were collected every 

three meters from the base of the trunk to about 18m (Figure 4-3). Above 18 

meters the trunk was too thin (i.e. diameter less than 7cm) for sampling. After 

the collection of the discs in the forest, the samples were brought back to the 

lab to be processed.  

 

Figure 4-3: Tree sampling description 

This allowed us to work on freshly cut (green) wood, that had never been dried, 

which is the best way to avoid the loss of volatile compounds and to avoid any 

kind of chemical reaction between the extractive compounds. In order to 
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maintain this fresh condition, the samples were kept in a cold room at about 

4°C, in plastic bags to avoid drying out, until further processing. 

 

Figure 4-4: Illustration of the location of heartwood and sapwood in Sitka spruce 

Within each disc, heartwood and sapwood were distinguished by eye (Figure 

4-4). Sawdust of the two wood types was produced separately by drilling into the 

flat face of the disc using an electric drill fitted with a 10 mm flat woodworking 

bit. The sawdust comprised a representative sample of each type of wood at the 

corresponding height in the tree.  

To resume: The samples come from 3 trees, 5 discs coming from different 

heights, from either heartwood or sapwood, with 3 replicates per sample. We 

had in total 90 samples to analyse. 

Sampling of knotwood was different. Originally it was planned to collect 

individual whorls, (a whorl is an arrangement of several knots radiating at a 

certain height of the trunk), at different heights up the trees. Unfortunately the 

material collected from one whorl was not sufficient to generate enough sample 

material. Therefore the knotwood of each tree was pooled resulting in one 

knotwood sample for each tree. The “drilling method” was inappropriate for the 

knotwood, as the material was harder and too small. However the knots could be 

isolated by splitting them out of the discs. They were subsequently ground in ten 

second runs using an IKA Labortechnik A10 water-cooled grinder until the 
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particles passed through a 4mm sieve. In order to avoid any impact on wood 

composition by the increase of temperature during milling, particular care was 

taken to not overheat the sample during the milling. Furthermore the same 

protocol was always used in order to reduce errors inducing during the sample 

preparation (Schwanninger et al., 2004). 

Once the samples were in the form of sawdust they were kept in airtight glass 

jars in a cold room at 4°C until they could be extracted. 

4.2.2  Extractives analysis 

The samples were extracted with acetone for 9 hours. They were concentrated 

to be analysed by FTIR in reflectance mode on polished aluminium plates. The 

general method is described in chapter 2 and chapter 3. 

The samples were taken from five discs cut at different heights from each of 

three trees. Within each disc three replicate samples were cut from each wood 

type, heartwood and sapwood. A total of 90 samples were analysed (3 trees x 5 

discs x 2 wood types x 3 replicates).   

4.2.3 Statistical analysis 

The extractive results were analysed using REML analysis (Patterson and 

Thompson, 1971) in the statistical software Genstat (Payne et al., 2008). The 

analysis model considered height, wood type and the height x wood type 

interaction as the fixed effects to be tested by sequentially adding these terms 

to the model. The variation between each level of the nested strata tree, disc, 

wood type and replicate were included as random effects, for which variance 

components were estimated.  

In the analysis model heights are compared across all wood types and wood 

types are compared across all heights. Furthermore, the height x wood type 

interaction allows comparison between heights for each wood type and vice 

versa.  

It is recognised that the use of simple, unweighted averages in these cases 

ignores the different quantities of heartwood and sapwood in each disc and the 
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variation in their ratio with height. This approach was considered to be more 

appropriate when the aim was to examine the extractives in heartwood and 

sapwood as the end result of two different physiological processes. Weighted 

averages would have been more appropriate had the aim been, for example, to 

determine whether height affected extractives content of logs for pulping where 

heartwood and sapwood are mixed. Preliminary examination of the data showed 

that any effect of height was smaller when weighted averages were used. 

4.3 Results  

4.3.1 Comparison between heartwood and sapwood at different 

heights  

4.3.1.1 Gravimetric analysis  

The Figure 4-5 represents the distribution of extractives as a function of height 

for heartwood and sapwood. Each of the three trees is shown separately. 

  
 

 
 

Figure 4-5: Percentage of extractives in heartwood and sapwood depending of the height of 

the sample in the trunk for each tree. 

Figure 1-5 shows the extractives content of the heartwood was consistently 

greater than that of sapwood, with some variation from tree to tree in the 

effect of height. In the REML variance components analysis, the fixed effects of 
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height and wood type were tested by sequentially adding terms to the fixed 

model (Table 4-1). 

 
Sequentially adding terms to fixed model 

 
Fixed term 

 
F P 

Height  3.44 0.064 

Wood type 340.5 <0.001 

Height x wood type 0.62 0.656 

Table 4-1: Tests for fixed effects in REML analysis for gravimetric extractives content. 

The REML analysis confirms that the difference in gravimetric extractives 

content between heartwood and sapwood is significant and the absence of a 

significant height x wood type interaction term shows that the relationship 

between the two wood types does not change significantly with height. This is 

visually evident in the plot of differences (heartwood – sapwood) in Figure 4-5 

which shows no evident pattern with height. The REML analysis gave a LSD (SL = 

0.05) of 0.1759 for the heartwood/sapwood averages at different heights. The 

average value at the base of the trees exceeds that at some of the intermediate 

heights by more than this LSD (Table 4-2) but, in the absence of a significant 

effect of height in Table 4-1, this cannot be regarded as significant. The mean 

percentages of extractives in dry heartwood and sapwood depending on height 

are summarised in Table 4-2. 

 Mean percentages of extractives in dry wood 
Height of the 

sample in the trunk 
(in meter) 

Heartwood Sapwood 

0 1.6775 1.1163 
3 1.5420 0.8558 
6 1.4336 0.8595 
9 1.5012 0.8386 
12 1.5401 0.8583 
15  0.9019 
18  0.9673 

Table 4-2: Means of extractives (% of dry mass) in Sitka spruce for heartwood and sapwood 

depending on the height of the sample 
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4.3.1.1.1 Discussion on gravimetric analysis 

From the gravimetric analysis, it was concluded that Sitka spruce heartwood 

from the Kershope experiment contained more extractives than sapwood and 

that the difference was consistent for all heights in the trunk. Elevated 

extractives levels in heartwood have been noted and discussed in many other 

species (Fengel and Wegener, 1984; Hillis, 1987 and Baeza and Freer, 2001). 

There was considerable variation between the three trees in the pattern with 

height, especially in the extent to which the extractives content rose at the base 

of the trunk where other data such as microfibril angle (McLean, 2008) suggest 

an influence of rootwood. The variance in the data is dominated by tree to tree 

variation and with hindsight, more replicate trees would have been desirable. 

From the point of view of the paper industry, where extractives lead to 

processing problems and heartwood and sapwood are not separated, this 

experiment does not suggest that problems would arise from the use of the 

upper part of the trunk when the lower part is converted to sawn timber. The 

extractives content throughout was much lower than in alternative species such 

as Scots pine. 

4.3.1.2 FTIR analysis 

According to the method described in Chapter 3.7, spectral areas at chosen 

wavelengths were calculated. Figure 4-6 illustrates the FTIR spectra of 

heartwood and sapwood samples from the same tree at the same height. The 

wavelengths chosen are characteristic of vibrational modes dominated by 

stretching vibrations of specific structural features of the extractive molecules. 

The first area calculated is between 2930 and 2850 cm-1, corresponding to the 

CH and CH2 stretching modes of methylene and methyl groups. At 1698cm-1 is 

the carbonyl stretching mode from the carboxylic function COOR in ester groups, 

and at 1510cm-1 the benzene ring deformation mode of aromatic compounds. 
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Figure 4-6: FTIR spectra baseline corrected of sapwood and heartwood acetone extracts 

from the same Sitka spruce tree at the equal height 

A fully quantitative study leading to absolute mass of extractives classes was not 

possible using FTIR in reflectance mode because the mass of sample in the beam 

could not be controlled, and because any structural feature may be present in a 

range of molecules differing in molecular mass. Instead the ratio between the 

peak areas corresponding to methylene and methyl groups and the peak areas 

corresponding to the two other functional groups identified, namely the 

carboxylic function and benzene rings, were calculated. These ratios were used 

to study the variation in extractive composition in heartwood and sapwood 

depending on the height of the sample within the trunk. 

For each type of wood at every height, 5 spectra were taken, then the peak area 

ratios were calculated and the results were statistically tested by ANOVA and 

REML analyses. The statistical analyses were performed for each ratio 

separately. 

4.3.1.2.1 Ratio (COOR/CH) 

For each height and each type of wood, 3 replicates per sample were analysed, 

and from each replicate 5 spectra were taken, so 15 values were obtained for 

each of the 9 samples. Figure 4-7 shows the variation in the ratio (COOR/CH) 

depending on the height of the sample for heartwood and sapwood.  
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Figure 4-7: Ratio (COOR/CH) from FTIR in heartwood and sapwood acetone extracts 

depending of the height of the sample for each tree 

Figure 4-7 shows that the ratio (COOH/CH) does not differ markedly between 

heartwood and sapwood nor with height.  

The ANOVA analysis and the differences between the mean ratios for each height 

for the heartwood and sapwood were calculated and compared to the 

corresponding least significant difference (as explained previously for the 

gravimetric analysis). The results are summarised in Table 4-3 and Table 4-4. 

 
Sequentially adding terms to fixed model 

 
Fixed term 

 
F P 

Height  0.31 0.862 

Wood type 0.53 0.483 

Height x wood 
type 

3.40 0.053 

Table 4-3: Tests for fixed effects in REML analysis for Ratio (COOR/CH). 
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 Mean of the (COOR/CH) ratio 
Height of the 

sample in the trunk 
(in meter) 

Heartwood Sapwood 

0 0.3445 0.3719 
3 0.3499 0.4561 
6 0.3678 0.4230 
9 0.4265 0.3326 
12 0.3759 0.3490 
15  0.3817 
18  0.3247 

Table 4-4: Means of the ratio (COOR/CH) in Sitka spruce in heartwood and sapwood 

depending on the height of the sample 

According the p-values obtained after the ANOVA analysis (Table 4-3), neither 

the type of wood or the height of the samples lead to a significant difference 

between the (COOR/CH) ratio values. 

Even though the p-value describing the interaction between the wood type and  

height is close to the 5% threshold, the interaction is not statistically significant 

and we cannot conclude that the interaction between the type of wood and the 

sample heights has an impact on the (COOR/CH) ratio. 

4.3.1.2.2 Ratio (Ring/CH) 

The same statistical analyses were performed for the ratio (Ring/CH). 

Figure 4-8 shows a trend where the heartwood and sapwood sample 

compositions differ. 
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Figure 4-8: Ratio (Ring/CH) from FTIR in heartwood and sapwood acetone extracts depending 

of the height of the sample for each tree 

The analysis of variance was performed on ratios at different heights, separately 

for the heartwood and the sapwood. The calculated differences between ratios 

were compared to the corresponding least significant different values. The 

results are summarised Table 4-6 and Table 4-6. 

 
Sequentially adding terms to fixed model 

 
Fixed term 

 
F P 

Height  2.19 0.111 

Wood type 43.75 <0.001 

Height x wood 
type 

1.89 0.157 

Table 4-5: Tests for fixed effects in REML analysis for Ratio (Ring/CH). 
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 Mean of the (Ring/CH) ratio 
Height of the 

sample in the trunk 
(in meter) 

Heartwood Sapwood 

0 0.2728 0.1753 
3 0.3699 0.2511 
6 0.3268 0.2559 
9 0.3746 0.1781 
12 0.4210 0.1970 
15  0.2350 
18  0.1578 

Table 4-6: Means of the ratio (Ring/CH) in Sitka spruce in heartwood and sapwood acetone 

extracts depending on the height of the sample 

If we look at the overall comparison between heartwood and sapwood excluding 

the influence of the height, Table 4-5 shows a p-value smaller than the 5% 

threshold, so clear differences in the (Ring/CH) ratio values between heartwood 

and sapwood are inferred. The (Ring/CH) ratio is greater in heartwood than in 

sapwood. 

This difference of composition is confirmed by the REML analysis. Comparing 

heartwood with sapwood at each height with respect to the ratio (Ring/CH), it 

may be noted that four values out of five are greater than the Least significant 

difference (LSD= 0.0710 for SL=0.05). Heartwood and sapwood thus differ 

significantly in composition at 0, 3, 9 and 12 meters. 

4.3.1.2.3 Conclusions from the FTIR analysis 

For the (COOR/CH) ratio, the statistical analysis does not reveal any significant 

differences between the ratio values, which means that the proportion of esters 

within the aliphatic fraction stays constant with height and no difference is 

evident between heartwood and sapwood. 

The (Ring/CH) ratio represents the proportion of aromatic compounds relative to 

the aliphatic fraction. There are differences between heartwood and sapwood. 

The (Ring/CH) ratio is bigger in the heartwood than in the sapwood, which 

means that the heartwood contains a greater amount of aromatic compounds 

relative to the aliphatic fraction. Thus the tendency for heartwood to contain 

more extractives is particularly evident for the aromatic extractives fraction. 
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The composition of aromatic compounds should be further investigated because 

the phenolics are often related to the compounds provided antioxidant 

properties as in other species (in Norway spruce for example) (Umezawa, 2001). 

4.3.2 Comparison between heartwood, sapwood and knotwood 

As previously mentioned it was not possible to analyse the knotwood extractives 

as a function of height. However one sample per tree was collected and the 

total extractive content and the FTIR ratios were calculated. The results were 

compared to the averages for the heartwood and sapwood samples from the 

Kershope experiment. The results are summarised in Table 4-7. 

The total extractive content for the knotwood is about ten times larger than the 

extractive content of heartwood and sapwood. 

 Mean extractive 
content in dry 
wood (in %) 

Mean (COOR/CH) 
ratio 

Mean (Ring/CH) 
ratio 

Heartwood 1.54 0.37 0.35 
Sapwood 0.91 0.39 0.21 
Knotwood 10.68 0.03 0.40 

Table 4-7: Results from the heartwood, sapwood and knotwood comparison 

The (COOR/CH) ratio illustrates the relative composition of esters within the 

aliphatic group. The knotwood ratio is about ten times smaller than the 

heartwood and sapwood ratios.  

The (Ring/CH) ratio represents the proportion of aromatic to aliphatic groups. A 

statistical analysis was performed on the (Ring/CH) ratios, a REML with variation 

between heights as a random effect and the fixed effect being the comparison 

of the wood source (heartwood versus sapwood versus knotwood). The least 

significant difference calculated is 0.08. It transpires that the knotwood 

(Ring/CH) ratio is greater than in the heartwood and sapwood samples, but the 

difference is significant only for the sapwood sample. The heartwood ratio is 

also significantly higher than the sapwood ratio. 

The knotwood has a much higher extractive content than the heartwood and 

sapwood samples, but contains very little ester based on the (COOR/CH) ratios. 
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Relative to the aliphatic groups, knotwood has a significantly higher proportion 

of aromatic extractives than sapwood. 

4.3.3 Heartwood/sapwood distribution results 

From the disc images measured (method described in chapter 2.5), the 

heartwood/sapwood ratios were calculated in terms of radius and of cross-

sectional area. The results are presented in Figure 4-9 and Figure 4-10. 

 

Figure 4-9: Ratio of the heartwood/sapwood areas from Sitka spruce from Kershope forest 
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Figure 4-10: Ratio of the heartwood/sapwood radii from Sitka spruce from Kershope forest 

From Figure 4-9 and Figure 4-10, it is evident that the heartwood/sapwood ratio, 

expressed as either radius or area, generally decreases upwards within the tree. 

This trend is reversed where the trunk expands into the roots. 

4.4 Discussion 

It was established that the total extractive content differed between heartwood 

and sapwood. In the height study, it was confirmed that this difference was 

consistent throughout the range of heights examined in the trunk. 

Philip, (1995) found in Scots pine and Sitka spruce that the distribution of 

extractives varied with height and across the diameter of the tree with a larger 

concentration of extractives at the boundary between heartwood and sapwood. 

The variation may be caused by natural oxidation, biological detoxification of 

heartwood extractives or continued polymerisation of extractive material 

(Philip, 1995). 

From the FTIR analysis in reflectance mode, two ratios were calculated, 

representing the relative ester content within the aliphatic compounds 
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((COOR/CH) ratio) and the aromatic compounds relative to the aliphatic 

compounds ((Ring/CH) ratio). 

In the overall comparison between heartwood and sapwood samples, relative to 

the aliphatic fraction no difference was observed in ester content but the 

aromatic content was significantly higher in heartwood. Previously the 

gravimetric study demonstrated greater total extractives content in heartwood 

than in sapwood. The experiment as a whole shows that the elevated total 

extractive content of heartwood is due principally to aromatic compounds. 

The ‘aliphatic’ class of organic compounds includes all compounds composed of 

carbon and hydrogen that are not aromatic compounds (Anonymous, 2000). The 

functional definition for our experiments is slightly different in that all C-H 

bonds contributed to the ‘aliphatic’ content of the extractives whatever the 

nature of the rest of the molecule of which the CH, CH2 or CH3 groups formed a 

part. With this definition the aliphatic compounds comprise the largest chemical 

class present in the extractives. 

If we made the assumption that the majority of extractives come from the 

aliphatic compounds, we can calculate a relative amount of aromatic and esters 

at any location within the tree by multiplying the total content of extractives by 

respectively the (Ring/CH) ratio and the (COOR/CH) ratio established through 

the FTIR analyses. The results are presented in Figure 4-11 and Figure 4-12. 
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Figure 4-11: The relative amount of aromatic compounds for the heartwood and sapwood 

sample for the different heights 

 

Figure 4-12: The relative amount of ester compounds for the heartwood and sapwood sample 

for the different heights 

Heartwood formation involves the formation of extractives (Philip, 1995; 

Scheffer and Cowling, 1996), but the significance of this process for the 

distribution of extractives between heartwood and sapwood remains unclear 

(Andrews and Siccana, 1995). The distribution of extractives between heartwood 

and sapwood does not change when the tree is felled (Philip, 1995). 
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The data in Figure 4-11 and Figure 4-12, are consistent with the idea that the 

aromatic compounds are generated during heartwood formation and contribute 

to the difference in extractive content between the heartwood and the sapwood 

in Sitka spruce. 

 

 



Annabelle Caron, 2010 
 

Chapter 5-121 

Chapter 5: Benchmarking  

5.1 Introduction and aims 

This section deals with the ‘Benchmarking’ experiment undertaken by Edinburgh 

Napier University. The aim of this benchmarking study was to learn about the 

influence of yield class, elevation, North/East location and thinning on the 

extractives content and composition of Sitka spruce across Scotland. This 

experiment was part of a wider study on the effect of environment and forest 

management on selected mechanical wood properties of Sitka spruce. The study 

provided the benefit of a wide geographical sample area and detailed knowledge 

of the trees studied. 

The aim of the benchmarking study was to learn about the influence of yield 

class, elevation, North/East location and thinning on the extractives content and 

composition of Sitka spruce across Scotland. 

5.2 Methods and procedures 

5.2.1 Wood samples from the Benchmarking experiment 

The benchmarking experiment is a national study of the influence of forest 

management and geographical criteria on physical properties of Sitka spruce 

timber. For this study, sawdust was collected during the coring of trees from 64 

sites all around Scotland and northern England (Figure 5-1). 
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Figure 5-1: Location of the sites of the Benchmarking experiment 

The benchmarking experiment is part of a wider study on the effect of 

environment and management on selected wood properties of Sitka spruce 

(collaboration between Edinburgh Napier University, Forest Research and the 

University of Glasgow, Moore et al., in review).  

The trial was designed according to the following criteria: 

- 2 Yield classes (<14, >14) 

- 2 silvicultural regimes (with or without thinning) 

- 2 elevation classes (<280m, >280m) 

- 2 initial spacing classes (<2500 tree/ha, >2500 tree/ha – this is 2*2m 

spacing) 

- 2 latitude classes (<600km, >600km north from OS grid datum) 

- 2 longitude classes (<300km, >300km east from OS grid datum) 
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The OS grid datum reference being NS 900 000 (equivalent to Longitude 

3°43.9’W and Latitude 55°16.9’N). 

The experiment is based on a fractional factorial design 26-1 with 2 replicates 

from a study of 64 sites with 10 trees per site (640 samples). The number of 

samples was reduced to 96 by taking a sub sample of 6 trees per site and 

excluding the spacing factor (which we presumed was a factor having a minor 

effect on our study) (Shupe et al., 1997 and Taylor et al., 2006) as well as one 

replicate. These 96 samples are representative of the Sitka spruce trees 

currently growing at sites across Scotland and northern England. 

Each factor in the design had 2 levels. It was decided to look at 16 combinations 

(recovering up to the two-way interactions). For each combination 6 trees from 

1, 2 or 3 sites were sampled. 

The sampling included trees between 35 to 45 years old, with a stem 

straightness score (Macdonald et al., 2002) between 2 and 4 and breast height 

diameter more than 20cm in order to provide enough material for extraction. 

Wood material for isolation of extractives is not normally obtained from a coring 

operation. However coring with a hollow drill bit yields a substantial amount of 

sawdust from the wood surrounding each core. 

We were aware of the fact that the temperature of the wood would increase 

during the sampling, which might influence the extractives. But each sample was 

taken according to the same protocol and any changes in the extractives would 

be similar in each sample. Therefore a comparison between the site factors is 

still valid. And it is acceptable because the benchmarking study offered the 

possibility to analyse the extractives coming from 32 sites located across 

Scotland and northern England. Without this opportunity it would not have been 

feasible to collect as many samples covering most of the Scottish geographical 

conditions. 

Within this experiment, it was not possible to distinguish heartwood and 

sapwood because each core was taken from bark to bark in a North-South 

direction across the trunk. Therefore the samples were a mixture of heartwood 

and sapwood. 



Annabelle Caron, 2010 
 

Chapter 5-124 

The experimental protocol of the benchmarking experiment made it necessary 

to collect the cores at breast height, normally defined as 1.3m (4.3 feet) above 

the forest floor on the uphill side of the tree. Breast height is traditionally the 

height on a tree where measurements are taken to determine parameters like 

growth and volume yield providing uniformity across the range of samples 

collected. 

The orientation of the coring axis was predefined as North-South. It is common 

to use one direction (e.g. North facing) when making measurements for 

comparing treatments between trees (McLean, 2008). In general the East 

quadrant should be avoided; the trend in Scotland to have wind coming from 

Southwest leads to the formation of compression wood on the East side of the 

trunk which modifies most of the timber characteristics (McLean, 2008). 

The cores were obtained by Leena Vihermaa and Gregory Searles using a Trecor™ 

wood corer attached to a hand-held, motor-driven drill. The sawdust was 

carefully collected from the coring operation on 6 trees with a diameter larger 

than 20cm to ensure that each coring operation provided enough material to 

constitute a sample. 

The sawdust from the coring operation contained small amounts of foreign 

material (bark, needles, insects etc…) (Figure 5-2). Contaminants were removed 

using a pair of tweezers. Due to the irregular size of the sawdust particles, a 

grinding step was necessary to homogenise the sample. An IKA Labortechnik A10 

water-cooled grinder was used, with several runs of ten seconds to avoid high 

temperatures until the particles passed through a 4mm sieve (Figure 5-3). 
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Figure 5-2: Sawdust as collected by coring 

 

Figure 5-3: Sawdust ready to be extracted 

As the sampling extended over several months, and in order to standardize the 

conditions for sample preservation, as soon as the sawdust was brought back 

from the forest to the lab it was kept frozen (-18°C) until processing and 

extraction. 

An analysis of variance, completed with a residual maximum likelihood (REML) 

analysis was performed on the data in order to determine if there were 

significant differences between the two levels chosen for each criterion tested. 

The data set is comprised of 16 combinations with 6 trees per combination. The 

16 combinations are studying the variation of the 5 factors. 

5.2.2 Sample analysis 

The sawdust samples were extracted with acetone during 9 hours (as described 

in chapter 2). The samples were then analysed by FTIR on reflectance mode on 

polished aluminium plate and the data were collected and analysed as explained 

in chapter 3. 

5.3 Results 

5.3.1 Gravimetric results 

Figure 5-4 represents the boxplot of the extractive content in acetone extract 

for the 16 combinations. The boxplot, as explained in 
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Figure 5-5 allows the representation of the range of the data collected. 

Representation of the extractive content for the 16 site combinations  

 

Combination 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
% of 

extractives 
2.0 1.8 1.9 1.9 2.0 2.0 2.0 1.8 2.0 1.8 2.0 1.9 1.7 2.0 1.8 1.6 

Yield class -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 
Elevation -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 
East -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 
North -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 
Thinning -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 
 

 -1 1  

Yield class <14 >14 
Elevation <280m >280m 
East <300km >300km east from OS Grid datum 
North <600km >600km north from OS Grid datum 
Thinning Without With 

 Figure 5-4: Extractives content in Sitka spruce originating from 16 different site conditions 

 

Figure 5-5: Box plot explanation (Anonymous, 1993) 

The mean percentages of extractives in dry wood were calculated for both levels 

of every factor. The differences between these values were compared to the 

least significant difference (L.S.D) obtained after the REML analysis. The results 

are summarised in Table 5-1. 
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Criterion 
Means of extractive content 

for each level for each 
factor tested 

Least 
significant 
difference 

(L.S.D) 

Yield class < 14 > 14  

 1.957 1.895 0.199 

Elevation < 280 m > 280 m  

 1.947 1.905 0.199 

East < 300 km > 300 km  

 1.926 1.927 0.199 

North < 600 km > 600 km  

 1.945 1.906 0.199 

Thinning With Without  

 1.916 1.937 0.199 

Table 5-1: Mean percentage of extractives in dry wood for each level of every factor studied 

The differences between the means for each factor were calculated and 

compared to the L.S.D value to detect any significant differences between the 

samples. 

All the values calculated are smaller than the least significant differences, which 

means that there is no significant difference in total extractives content 

between the 2 levels of each factor. 

5.3.2 FTIR analysis 

For each tree extract, 5 FTIR spectra were taken and baseline corrected as 

mentioned in Chapter 3.7 to represent the average composition of the sample 

(example Figure 5-6). 
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Figure 5-6: Example of a FTIR spectra represented acetone extract of tree 9 from the site 63 

of the benchmarking experiment 

Six trees, and thus 30 spectra, represent each of the 16 combinations. Figure 5-7 

is an example of the FTIR spectra from the first combination with the peaks used 

to calculate the ratios highlighted. 

 

Figure 5-7: FTIR spectra represented combination 1 (with 3 trees coming from the site 63 

and 3 trees coming from the site 85) with highlighted peak used for the ratio calculation 
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Ratios between the representative wavelengths chosen were calculated and 

analysed in order to determine if there was any variation in composition 

depending on the criteria tested. 

Two ratios (ratio (COOR/CH) and ratio (Ring/CH)) were calculated and analysed 

by analysis of variance and REML. 
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5.3.2.1 Ratio COOR/CH 

 

Figure 5-8:Ratio (COOR/CH) boxplot for the 16 combinations 

Figure 5-8 is a boxplot of the distribution of ratio (COOR/CH) for the 16 

combinations tested. It allows us to look at the distribution of the (COOR/CH) 

ratio for the 16 combinations. We can see that the distribution of the value is 

not uniform and that the spread of the data depends on the combination 

studied. The variance of data being large, the square roots of the data were 

calculated and this transformation was used to complete the analysis. 

Criterion 
Square root of means of the 
(COOR/CH) ratio for each 

level for each factor tested 

Least 
significant 
difference 

(L.S.D) 

Yield class < 14 > 14  

 0.4905 0.4901 0.041 

Elevation < 280 m > 280 m  

 0.5035 0.4762 0.041 

East < 300 km > 300 km  

 0.5032 0.4765 0.041 

North < 600 km > 600 km  

 0.4810 0.5002 0.041 

Thinning With Without  

 0.5098 0.4720 0.041 

Table 5-2: Means of (COOR/CH) ratio values in dry wood extracts for each level of every 

factor studied 
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Analysis of variance and REML analysis were done on the square root ratio 

(COOR/CH) values. A mean representative of each level of the factors studied 

was calculated. The data are summarised in Table 5-2. 

If we compare the differences between the square roots of the ratios and the 

least significant difference (Table 5-2), they are all less than the L.S.D. No 

differences were found between the 2 levels of each factor for the ratio 

(COOR/CH), which means that the geographical factors (North and East location, 

elevation) and the silvicultural factors tested (thinning of the forest, yield class) 

did not significantly influence the relative amounts of ester and hydrocarbon 

structures in extractives in Sitka spruce in Scotland. 

5.3.2.2 Ratio Ring/CH 

The same analyses were performed for the second ratio (Ring/CH). Figure 5-9 

illustrates the distribution of the (Ring/CH) ratio for the 16 combinations. 

 

Figure 5-9: Box plot of the (Ring/CH) ratio of the 16 combinations studied 

As for the (COOR/CH) ratio, the square roots of the value were calculated in 

order to reduce the variance in the data to complete the statistical analysis. 
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Criterion 
Square root of means of 

(Ring/CH) ratio for each level 
for each factor tested 

Least 
significant 
difference 

(L.S.D) 

Yield class < 14 > 14  

 0.3829 0.3998 0.044 

Elevation < 280 m > 280 m  

 0.3936 0.3884 0.044 

East < 300 km > 300 km  

 0.4140 0.3667 0.044 

North < 600 km > 600 km  

 0.3920 0.3901 0.044 

Thinning With Without  

 0.4059 0.3772 0.044 

Table 5-3: Means (Ring/CH) ratios in spectra from dry wood for each level of every factor 

studied 

Table 5-3 includes the results obtained after REML analysis. The differences 

between the mean values for the 2 levels for each factor were compared to the 

least significant difference value. No factors seem to have an influence on the 

ratio (Ring/CH). The factors tested do not influence the relative proportions of 

phenolic and aliphatic compounds in Sitka spruce in Scotland. 

5.3.3 Conclusion  

The total extractive content in Sitka spruce in dried wood across Scotland was 

shown to be low and stable. Neither the management of the forest (yield class, 

thinning) nor the East or North location, nor the elevation had a significant 

impact on the extractives content across the wide range of Scottish sites 

examined. Looking at the observed data on Figure 5-4, it may be remarked that 

the lack of significant effects within the experiment was not due to excessive 

variability within replicates. The stability of extractives content across Scotland 

(represented by the samples of 16 combinations) appeared to be genuine. 

The study of the (COOR/CH) ratio reflects the ester composition within the 

aliphatic fraction and the (Ring/CH) ratios provides information about the 

composition of aromatic compounds relative to the aliphatic fraction that 

account for most of the extractive mass. It appears that none of the criteria 

studied has an influence on the relative extractive composition. 
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5.4 Discussion 

It appeared that the total extractives content of extractives in Sitka spruce 

stayed stable across Scotland and did not seem to depend on the geographical 

and silvicultural factors set up for this experiment, as no significant differences 

were found in total extractive content between the factors tested. It should be 

noted that the trees at any one site are genetically heterogeneous and that 

random or genetic differences in growth rate may be amplified through 

dominance relationships with adjacent trees.  

Reports of similar studies are sparse, and none were located on spruces. Phelps 

et al. (1983) explored the influence of soil composition in heartwood colour 

(related to the presence of some extractives) in black walnut. They came to the 

conclusion that there were significant differences in heartwood colour within-

site, but within-tree variations were also observed. The variation between sites 

was considered less important than the within-site variation. 

Ellagitannin extractives from young clones of European Oak grown at two sites 

with contrasting soil composition were studied by Mosedale et al. (1996). They 

emphasize the high degree of variation in heartwood ellagitannins found 

between individual trees, even when grown under very constant conditions 

(Mosedale et al., 1996). Their results show that these properties are under 

strong genetic control. 

Spacing, thinning, regeneration method and site quality were also tested by 

Bjorklund (1999) on Pinus heartwood extractives. Much variation was found 

between individual trees and between stands, poorly correlated to site, stand 

and tree variables  

Kim et al. (1989) worked on chemical variation in lodgepole pine timber with 

latitude (between 40o to 60o north latitude divided into nine sampling zones at 

2.5o intervals), elevation (3 altitude grades not given) and diameter class. 

Lodgepole pine is one of the most abundant forest resources in the Northwest 

United States and Canada. Kim et al. (1989) found only small, non-significant 

chemical variations in extractive content (after ethanol-toluene extraction) 

despite a large number of samples (279 trees). The variation observed had no 

impact in the utilisation of lodgepole pine in the timber industry.  
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We can conclude that as no significant variation in Sitka spruce extractive 

content was found despite the consistent sampling protocol (same height in the 

tree, same orientation in the trunk), the geographical or silvicultural criteria 

tested could not have affected Sitka spruce extractives.  

However as previously mentioned heartwood contains more extractives than 

sapwood. As the ratio between the heartwood and sapwood area (presented in 

chapter 3) varies more sharply with height than the variation with height in 

either heartwood or sapwood extractive content, it can be deduced that the 

total extractive content will decrease with the increasing height of the trunk. 

Therefore when the extractive content was measured during the Benchmarking 

experiment from only one height (breast height), the results constitute an 

overestimate of the real extractive content present in the tree. 

Further work would be needed to estimate the variation in the volume of 

heartwood and sapwood along the trunk as well as the variation in total 

extractive content in the same tree. This would show whether variation in 

extractive content develops in the same way as the distribution of heartwood 

and sapwood volume. 
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Chapter 6: Study of the five components  

6.1 Introduction and aims 

In this part, several other samples coming from different parts of the tree were 

analysed by a wider range of methods. In particular, gas chromatography added 

details of the individual identification of extractives and also direct 

quantification of some compounds. These analyses allow the comparison 

between the results obtained by FTIR spectroscopy and gas chromatography. 

The chromatographic study was carried out in collaboration with the author in 

the laboratory of Dr José C. del Río at the Instituto de Recursos Naturales 

Agrobiologia de Sevilla (IRNAS), during a short term scientific mission financed 

by the European Cooperation in the field of Scientific and Technical Research 

(COST) action E41: “Analytical tools with applications for wood and pulping 

chemistry”. 

There were two aims in this study. The first was the measurement of the 

extractive composition of five samples (bark, rootwood, knotwood, heartwood 

and sapwood) of Sitka spruce by GC/MS. 

The second aim of the study was to establish a comparison between the two 

analytical techniques used, GC/MS and FTIR spectroscopy. It was suspected that 

due to the chemical nature of the extractives, the multiple separation steps 

involved in the GC/MS protocol and the nature of the GC technique itself some 

extractives might be non-analysed or lost, whereas the direct analysis of the 

acetone extract by FTIR spectroscopy should measure the totality of extractives 

collected after acetone extraction. The GC/MS analysis allows the identification 

of each compound individually, whereas the FTIR only detects vibrational modes 

of specific functional groups or larger structural features, which are then 

assigned to extractive classes. This made it possible, in approximate terms, to 

quantify the extractive fraction actually analysed by GC/MS, making the 

assumption that the FTIR spectra were derived from all components of the 

extract. The GC/MS and FTIR analyses were both carried out on one extract of 

each type of tissue. So the comparison of the two analytical techniques is direct 

but the comparison of the five kinds of wood is only valid for the samples 
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analysed and constitutes a preliminary study. A larger number of samples of 

each material would be needed to confirm the FTIR semi-quantitative analysis 

and extend the results to Sitka spruce in general. 

6.2 Methods and procedures 

6.2.1 Wood samples 

The comparative study was done on several types of Sitka spruce samples grown 

at a range of British locations: heartwood and sapwood coming from the grounds 

of the Forestry Commission Northern Research Station, Penicuik, Lothian; 

knotwood from Kershope forest, Northumbria; roots and bark from the forest of 

Ae, Galloway. Collection of these samples from different locations was 

unfortunately necessary due to time constraints on fieldwork when arrangements 

were being made for the COST collaboration (for the gas chromatography study) 

that made the analysis possible. 

Rectangular segments (4 by 10 cm) of bark were peeled from the tree using a 

knife. Several pieces of roots from an uprooted tree were collected. The 

material was processed in the lab by cutting it into smaller pieces and 

subsequent milling using an IKA Labortechnik A10 water-cooled grinder, with 

several runs of ten seconds until the particles passed through a 4mm sieve. 

The heartwood, sapwood and knotwood samples were processed as in Chapter 4. 

The samples were kept in a freezer at –20oC until further processing. 

The samples were first extracted with acetone for 9h, then the extract was 

concentrated to around 1/10 of the initial extract volume to be analysed by FTIR 

spectroscopy. One part of each acetone sample was evaporated to dryness and 

re-diluted into chloroform to be analysed by gas chromatography and gas 

chromatography coupled with mass spectroscopy. 

6.2.2 Gas Chromatography (GC) method 

The acetone extracts were dried and redissolved in chloroform. This separated 

the compounds into two fractions according to their polarity. 
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The acetone extracts contained both polar and non-polar compounds. The non-

polar lipophilic fraction in the chloroform fraction was analysed by GC. The 

polar fraction, insoluble in chloroform, was not analysed by GC. 

Before injection into the GC the sample was filtered through glass wool in order 

to remove insoluble material and washed with excess of chloroform. The 

purified sample was dried and redissolved in chloroform to standardise the 

amount injected in the GC. 

The GC analyses of the extracts were performed using a Hewlett-Packard HP-

5890 GC (Hewlett-Packard, Hoofddorp, Netherlands) with a short fused-silica 

capillary column (DB-5HT; 5m x 0.25mm i.d., 0.1µm film thickness) from J&W 

Scientific (Folsom, CA, USA). The temperature program started at 100ºC with a 1 

min hold and then was raised to the final temperature of 350ºC at 150ºC/min 

were it was held for 3 min. The injector (split-splitless) and detector (flame 

ionization detector, FID) temperatures were set at 300oC and 350ºC, 

respectively. The carrier gas was helium at a rate of 2 mL/min and the injection 

was performed in splitless mode. Peaks were quantified by GC/FID peak area. 

The GC/MS analysis was performed using a Varian Saturn 2000 gas 

chromatograph (Varian, Walnut Creek, CA, USA) equipped with a fused-silica 

capillary column (DB-5HT, J&W; 12mx0.25mm i.d., 0.1 mm film thickness) and 

an ion trap detector. The oven was heated from 120ºC (1 min) to 380ºC at 

10ºC/min and held for 5 min. The transfer line was kept at 300ºC. The injector 

was temperature programmed from 120ºC (0.1 min) to 380ºC at a rate of 

200ºC/min and held until the end of the analysis. Helium was used as carrier gas 

at a rate of 2 mL/min. Samples were silylated using with Bis(trimethylsilyl) 

trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS) with pyridine and 

heated for 1 hour at 70oC to produce the appropriate derivatives (Rencoret et 

al., 2007). 

6.2.3 FTIR Data collection method 

FTIR spectroscopy records spectral contributions from all extractives. Not all of 

the signals of the individual extractive compounds are sufficiently well resolved 

within the spectrum to be measurable. Furthermore FTIR spectroscopy does not 
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allow direct quantification of individual compounds in the same way as 

chromatographic analysis. A correlation between the classes of extractives 

identified with GC/MS and the extractive groups identified by FTIR spectroscopy 

needed to be established. No precedent for this approach was found in the 

literature on extractives. 

To allow the comparison between GC and FTIR spectroscopy, relative FTIR 

response factors for each functional group in a small number of standard 

compounds were measured. The following two approximations were assumed: 

- Each FTIR band used is derived from a vibrational mode associated 

exclusively with one functional group.  

- The intensity of each vibrational band is unaffected by the environment 

of the molecule.  

The first approximation is reasonable for vibrational modes used to quantify the 

aliphatic and the aromatic groups. Because hydrocarbon chains comprise a large 

part of the molecules compared to the other functional groups, the C-H 

stretching vibrations of CH2 and CH3 groups represent a considerable proportion 

of the mass of the entire molecule. Because of the large imbalance in mass 

between carbons and hydrogen atoms, the C-H stretching modes are not strongly 

coupled to vibrations elsewhere in the molecule (although there is a strong 

coupling between the stretching vibrations of the two C-H bonds in a CH2 group). 

For the aromatic ring vibration, although the 1510cm-1 peak chosen belongs to 

the fingerprint region of the FTIR spectrum, this peak is very specific for the 

aromatic molecules and has been used previously for the quantification of lignin 

(Owen and Pawlak, 1989; Machado et al., 1996 and Silva et al., 1999).  

The second assumption is more doubtful as the intensity of ester carbonyl 

stretching modes is known to be affected by hydrogen bonding. More precisely, 

hydrogen bonding leads to simultaneous changes in frequency and intensity. 

Smith and Hartley (1983) state that the C=O peak (at 1695cm-1) is at lower 

frequency than usual (1717-1730cm-1) for the ester C=O stretching mode of 

ferulates due to hydrogen bonding. This matches the band position already 

known for the esters of resin acids. Holgrem et al. (1999) and Nuopponen et al. 

(2003) state that the band at 1697cm-1 is characteristic of the resin acids of the 
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resin canals in Norway spruce. In this study the carboxylic C=O stretching band 

was always located around 1697cm-1 and no peaks were detected in the usual 

1717-1730cm-1 region. The lack of significant variation in frequency suggests that 

the intensity of this band is also relatively constant.  

Standard compounds were analysed by transmission FTIR spectroscopy using KBr 

discs. The technique was more time consuming but allowed quantification 

(absorbance units per mg of standard in each 12 mm KBr disc) whereas only 

relative data can be obtained by reflectance method. Each of the standards 

contains a functional group characteristic of an extractive class (Table 6-1). 

Wavelength 
Extractive 

class 
Standard molecule 

Response factor  
(FTIR area of functional 

group (a.u.) /mg of 
functional group/ KBr disc) 

3037-2780 cm-1 Aliphatic group 

Abietic acid * *  

48.1 

1800-1622 cm-1 Carboxyl group 

Ferulic acid ** **  

 

160.3 

1544-1485 cm-1 Phenolic group Ferulic acid **  33.0 

Table 6-1: Standard molecules used for the determination of the response factor for the FTIR 

analysis 

6.2.4 FTIR data processing for the comparative study 

A response factor was calculated from the absorbance integrated across each 

wavelength band for each standard spectrum. The response factors allowed the 

correlation between the absorbance for each functional group, deduced from 

the FTIR spectrum, and the relative mass of the functional group within the 

molecule. The response factor was used later to quantify functional groups in 

the acetone extracts. 

The acetone extracts were also analysed by FTIR spectroscopy using KBr pellets. 

The spectra were baseline corrected and areas assigned to vibrational modes 

associated with specific functional groups (aliphatic, carboxylic and phenolic 
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groups) were calculated as explained above. Each area was then corrected by 

the relevant response factor, the volume incorporated in the KBr pellet, the 

volume of the acetone extract and the weight of dry wood. These corrections 

allowed the calculation of the content of each functional group in the 

extractives from the corresponding mass of dry wood. 

6.2.5 GC and GC/MS data processing  

Retention times and mass spectra were used to identify extractive compounds in 

gas chromatography coupled with mass spectrometry. Reference mass spectra 

were derived from the NIST library as well as a previous thesis (Ekman, 1980b) 

and publications on the subject (Ekman and Sjoholm, 1979; Ekman, 1980a; 

Bannwart et al., 1989; Meagher et al., 1999; Willfor et al., 2003b; Willfor et al., 

2003c; DelRio et al., 2004; Willfor et al., 2004a; Willfor et al., 2004b; and 

Willfor et al., 2005c and Rencoret et al., 2007). Additionally standard compounds 

were used when it was possible. The peak area of each component in the total ion 

current chromatograms was measured using MS Spectrometry Workstation 

Version 6.9. The molecules identified were grouped by classes of extractives 

(Ekman, 1980b): 

- Fatty acids 

- Resin acids 

- Lignans and sterols 

- Steroid ketones 

- Esters 

- Triglycerides 

The peak areas (A) for all compounds within each class of extracts were added 

(S), and the sum represents the total abundance of the extractive group (Class 1) 

(example Table 6-2). 
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Standard compounds were used in order to calculate a response factor for each 

group of extractives. 

The concentration of each extractive class was determined by the product of the 

combined peak area (S) of the extractives in the class corrected by the response 

factor and the dilution factor. 

The weight of the extractives belonging to the class in question was then divided 

by the dried weight of wood in order to obtain the percentage of the extractive 

class in dried wood. 

Extractive classes Compounds 
GC/MS  

Peak area 
Sum of area 

Class 1 

X A S= A + B + C 

Y B 

Z C 

Example:  
 
For the resin acid group 
 
 (Sapwood sample) 
 

Pimaric acid 38459427 

 

368573645 

Isopimaric acid 67046000 

Dehydroabietic acid 172836218 

Abietic acid 90232000 

Table 6-2: Example of presentation of GC/MS data 
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6.3 Results 

6.3.1 Gravimetric results 

The percentage of extractives in the dry mass determined for each sample is 

illustrated in Figure 6-1. 

 

Figure 6-1: Extractive content in different tissues of Sitka spruce (in % of dried mass) 

The bark contained the largest total amount of extractives. Knotwood and the 

rootwood samples contained about one-third of the amount of extractives 

detected in the bark. Heartwood and sapwood were the parts of the tree where 

the total extractive content was lowest. 

The heartwood and sapwood extractives contents were similar to those found in 

the Kershope experiment, while the root and bark samples proved to differ so 

radically in extractives content that the influence of the different sample site 

locations is unlikely to be important, given the low level of variation from site to 

site found in the benchmarking experiment (Chapter 5). 
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6.3.2 Fourier transformed infrared spectroscopy (FTIR) 

The 5 samples were analysed by FTIR spectroscopy with KBr discs. As explained 

in chapter 3, ratios between selected peak areas were calculated in order to 

obtain information on the quantity of esters and aromatic compounds relative to 

the aliphatic compounds, which account for the largest part of the extractives. 

The results are summarised in Figure 6-2. 

 

Figure 6-2: FTIR ratios of the five samples 

Figure 6-2 illustrates the ratios between the intensities of the peaks, obtained 

for each of the samples after FTIR analyses. The (COOR/CH) and the (Ring/CH) 

ratios illustrate respectively the content of esters and aromatic compounds 

relative to the aliphatic fraction.  

For the five samples, the global variation of the (COOR/CH) ratio was small (less 

than a factor of two) compared to what was observed for the (Ring/CH) ratio. 

The (Ring/CH) ratio was considerably higher in heartwood than in sapwood, 

knotwood or root wood, and higher still by a factor of two in bark. The total 

extractives content was much higher in the bark than in the other four samples 

(Figure 6-1). The higher (Ring/CH) ratio implies that the bark had a much higher 

content of phenolics. 
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6.3.3 Gas chromatography analysis 

6.3.3.1 Qualitative analysis 

Four different types of wood (knotwood, heartwood, sapwood, roots) and one 

bark sample were analysed by GC and GC/MS. 

 
Peak 
number Knotwood 

Roots 
wood Heartwood Sapwood Bark 

α-linolenic acid  1  S    

palmitic acid 2   X X  
levopimaric acid 3 X  X  X 
pimaric acid 4 S S S S S 
isopimaric acid 5 X/S S S S S 
dehydroabietic acid 6 X/S X/S X/S X/S X/S 
abietic acid 7 X/S S X/S X/S X/S 
eicosanoic acid 8  S    
palustric acid 9   X X  
stigmast-5-en-3 oleate 10     X 
α-tocopherol (Vit E) 11     X 
campesterol 12  X X X X/S 
isolariciresinol 13 S  S   
seicosalariciresinol 14 S S S S  
divanillytetrahydrofuran 15  S    
matairesinol 16 S X/S X X  
lariciresinol 17 S  S S  
nortrachelogenin 18 X     
β-sitosterol 19 X X/S X/S X/S X/S 
pinoresinol 20 S  S S  
7-hydroxymatairesinol 21 X  X X  
stigmast-3,5-dien-7-one 22   X X  
stigmastone-3,6-dione 23  X X X  
7-oxositosterol 24   X X  
cis eicosanyl ferulate 25   X X  
trans eicosanyl ferulate 26   X X X 
cis docosanyl ferulate 27   X X X 
trans docosanyl ferulate 28   X X X 
cis tetracosanyl ferulate 29   X X X 
trans tetracosanyl ferulate 30   X X X 
β-sitosterol acetate 31   X X  
campesterol ester 32  X X X X 
sitosterol ester 33  X X X X 
triglycerides 34   X X X 
 
X = compounds identified by GC MS without silylation 
S = compounds identified by GC MS with silylation 
X/S = compounds identified by GC MS without silylation AND with silylation 

Table 6-3: Compounds identified in Sitka spruce extracts 
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At least 34 compounds from different classes were identified in the samples 

(Table 6-3), though some of the peaks could not be identified. 

α-linolenic acid was only detected in the rootwood silylated extract (Figure 6-8). 

No fatty acids were identified in the other samples (from Figure 6-3 to Figure 

6-12). However, according to Ekman (1980b) (who used sequential extraction 

with petroleum ether and then acetone/water mixture 95:5 v/v and GC analyses 

with glass capillary columns (SE-30 or BDS) and packed glass column (1% XE-60)) 

several fatty acids were found in the heartwood and sapwood extracts of Norway 

spruce. It is possible that Soxhlet extraction with pure acetone is not the most 

suitable method to extract this class of compounds or that the quantity present 

in Sitka spruce was below the detection limit. 

The composition of the resin acids family was quite similar for all five tissues. 

Although not all of the resin acid compounds were identified by the GC/MS 

analysis on non-silylated samples, silylation confirmed the results (from Figure 

6-3 to Figure 6-12). 

Only 2 out of 4 sterols present in Norway spruce (Ekman, 1980b) were identified 

in Sitka spruce extracts: sitosterol and campesterol. Campesterol was not found 

in knotwood (Figure 6-3 and Figure 6-4). 

No diterpene alcohols and diterpene aldehydes were identified by the methods 

used (described in chapter 3) for this experiment. The presence of several 

diterpene alcohols and diterpene aldehydes has been reported in Norway spruce 

wood (Ekman, 1980b). 

The composition of the lignan fraction varied among the 5 samples (Table 6-3). 

The presence of the lignans was confirmed after silylation (Figure 6-4, Figure 

6-6, Figure 6-8, Figure 6-10 and Figure 6-12). All the lignans identified in Sitka 

spruce knotwood, heartwood and sapwood are in accordance with literature on 

Norway spruce extractives (Willfor et al., 2003b). Root wood contained different 

types of lignans (Figure 6-8). It was not possible to identify any of the lignans in 

the bark. The chromatogram appeared to show some form of grease 

contamination with several distinct repeated peaks of the sample (Figure 6-6) 

and the amount of sample was not sufficient to perform another analysis. 
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A group of esters of ferulic acid with fatty alcohols were identified in bark, 

sapwood and heartwood (Figure 6-5, Figure 6-9 and Figure 6-11). In the samples 

as analysed the feruloyl moiety was present in both cis and trans conformations. 

But these interconvert photochemically in free ferulate and ester ferulate 

solution when exposed to daylight. UV irradiation causes –trans to -cis 

isomerisation of hydroxycinnamic acids (Smith and Hartley, 1983). Only the 

even-numbered fatty alcohols (from C20 to C24) were identified in the samples 

(DelRio et al., 2004). These molecules were described by Ekman and Sjoholm 

(1979) in Norway spruce. 

 

Figure 6-3: GC/MS chromatogram from knotwood sample 

 

Figure 6-4: GC/MS chromatogram of silylated knotwood 
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Figure 6-5: GC/MS chromatogram from bark sample 

 

Figure 6-6: GC/MS chromatogram of silylated bark 

 

Figure 6-7: GC/MS chromatogram from rootwood sample 
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Figure 6-8: GC/MS chromatogram of silylated rootwood 

 

Figure 6-9: GC/MS chromatogram from sapwood sample 

 

Figure 6-10: GC/MS chromatogram of silylated sapwood 
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Figure 6-11: GC/MS chromatogram from heartwood sample 

 

Figure 6-12: GC/MS chromatogram of silylated heartwood 
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6.3.3.2 Quantitative study 

Quantification by classes was established, adding together the weight of 

individual compounds identified by GC-MS within each class for the 5 samples. 

Content each class in 
dried mass (%) 

Heartwood Sapwood Knotwood Roots Bark 

Sterols 0.02% 0.01% NI* 0.01% 0.01% 
Resin acids 0.22% 0.31% 0.43% 0.11% 0.07% 
Lignans and phenolic 
compounds 

0.09% 0.02% 0.04% 0.01% NI* 

Esters 0.25% 0.23% NI* 0.07% 0.07% 
TOTAL 0.58% 0.57% 0.47% 0.18% 0.14% 
* NI: non identified      
Content of extractives 
in dried mass (%) from 

the gravimetric analysis 
1.48% 1.33% 9.04% 11.53% 28.31% 

Table 6-4: Summary by extractive classes identified by gas chromatography 

From the 34 compounds identified by the GC/MS analysis in Table 6-3, the 

percentage of each class of extractives in dried material was calculated (Table 

6-4). The heartwood sample contained the largest relative amount of sterols. 

The largest relative amounts of the resin acid compounds were identified in 

knotwood, sapwood and heartwood. Lignans and phenolic compounds were 

found in greatest relative concentration in heartwood. Sapwood and heartwood 

contain more esters, relative to the total extractives identified, than root and 

bark samples. 

6.3.3.3 Comparison between gas chromatography and FTIR 

spectroscopy 

Following the calculation method presented in chapter 3, the absolute content 

of identifiable functional groups in extracts of dry wood was established by FTIR 

in transmission mode with the extracts incorporated into KBr discs. The results 

are shown in Table 6-5. 

The advantage of the transmission mode using KBr discs was that the volume to 

the concentrated extract and thus the mass of extractives mixed in the disc is 

known. This lead to semi-quantification, as a full calibration is not possible with 
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FTIR, which detects vibrational modes that vary in intensity from one individual 

compound to another. 

Content of 
functional group in 

dried mass (%) 
Heartwood Sapwood Knotwood Rootwood Bark 

Aliphatic group 1.65% 1.27% 9.84% 8.68% 8.36% 
Carboxylic group 0.18% 0.13% 1.50% 1.05% 1.54% 
Aromatic group 1.02% 0.33% 1.02% 0.72% 5.14% 
TOTAL 2.85% 1.73% 12.36% 10.45% 15.04% 
      

Content of total 
extractives in dried 
mass (%) from the 

gravimetric analysis 

1.48% 1.33% 9.04% 11.53% 28.31% 

Table 6-5: Content of each functional group in dry wood calculated from the KBr FTIR 

analysis 

Bearing in mind that we had to make several assumptions to complete the 

calculation (Chapter 6.2.3), the accuracy of the results is not expected to be 

100%.  

We can see that for the heartwood, sapwood, knot and the root samples the 

FTIR analysis allows the identification of most of the acetone extract, with a 

majority of the extractives coming from the aliphatic group. A higher aliphatic 

content is found in root, knot and bark samples. 

The quantification established with FTIR seems to over-estimate the total 

extractive content slightly except for bark. This might come from the fact that 

the drying procedures differed between the gravimetric analysis and the FTIR 

KBr disc analysis (with rotary evaporator with a water bath at 34oC for the 

gravimetric analysis and under room temperature for the KBr disc analysis).  

The other possibility is that a part of the aliphatic compounds could represent a 

fraction of the ester class. Based on the chromatographic analysis, the esters 

identified represent 15% of the extract in heartwood and about 0.2% of the bark 

sample, which could contribute somewhat to the over-estimation especially for 

heartwood and sapwood samples. 

Alternatively if the standards chosen were not fully representative of the 

extractives measured, the response factor of the aliphatic compounds present in 
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the heartwood and sapwood samples could differ from the response factor used 

for FTIR calibration, leading to an overestimation of the aliphatic fraction. 

For the bark sample, we recovered half of the gravimetric content of 

extractives. The aliphatic fraction recovered represents the same percentage of 

the dry mass as in knotwood and rootwood. The bark sample contained the 

greatest relative amount of phenolic group. The largest relative amount of 

carboxylic groups was found in knotwood and bark samples.  

These results obtained by the KBr FTIR technique (Table 6-5) may be compared 

to the distribution of extractives classes analysed by GC/MS (Table 6-4). We will 

compare the aromatic to the lignans and phenolic compounds and the 

carboxylate group to the resin acid and ester groups. 

First, for the GC/MS, the fraction of the extract identified from the bark and 

rootwood samples are quite low. To explain that, from the high content of 

aliphatic chains and carboxylic functions, it may be suggested that these 

samples contain some resin or triglyceride molecules that cannot be detected by 

GC/MS. 

We then look at phenolics and lignans identified with GC/MS and compare them 

with the aromatic groups detected by KBr FTIR. In GC/MS, most of the lignans 

and phenolic compounds are detected in the heartwood sample. With the FTIR 

the largest amount is detected in the bark sample and in this sample the lignans 

and phenolics identified by GC/MS do not account for all the aromatic 

compounds detected by FTIR. This might be due to the molecular mass of some 

compounds being too great to permit sufficient volatility for these molecules to 

pass through the GC/MS column. 

Finally we will look at the carboxylic group (FTIR) and compare it to the resin 

acid and ester classes (GC/MS). The calculation for the KBr FTIR analysis is based 

on the formula mass of the functional group, and not on the molecular mass of 

the entire molecule as in GC/MS. This explained the lower percentage found in 

the FTIR analysis. But we can remark that most of the esters and resin acids 

compounds are found in heartwood and sapwood by GC/MS. A high content of 

carboxylic ester functions detected by FTIR is associated with low recoveries of 

total mass and aliphatics by GC/MS in the knot and bark samples.  
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Two FTIR spectra of standard molecules (abietic acid and methyl palmitate) are 

presented in Figure 6-13 and Figure 6-14. 

 

Figure 6-13: FTIR spectra of abietic acid with KBr disc 

 

Figure 6-14: FTIR spectra of methyl palmitate with KBr disc 

Abietic acid (C20H30O2) and methyl palmitate (C17H34O2) are close in composition, 

but their structures differ with a ring formation for the abietic acid and a long 

aliphatic chain in methyl palmitate. These differences are represented in the 

FTIR spectra in the 3050-2800cm-1 area characteristic of the C-H stretching 

region, with one broad peak with a shoulder for the ring formation and nearly 
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two separate peaks for the aliphatic structure. The shape of the FTIR spectra in 

that area will provide information about the nature of the aliphatic compounds 

that will be detected in the Sitka spruce extractives. If the aliphatic peak is 

present as one broad peak the presence of resin acids and their polymers will be 

expected. If the aliphatic fraction comes as two separated peaks triglycerides or 

fatty acids will be probable. 

The FTIR spectra of the five samples analysed by KBr discs are shown in Figure 

6-15, and the detailed spectra are Figure 6-16 to Figure 6-17. 

 

Figure 6-15: FTIR spectra in transmission mode for the 5 samples 
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Figure 6-16: FTIR spectra of knotwood and 

sapwood between 3100 and 2800cm-1 

 

Figure 6-17: FTIR spectra of heartwood, 

rootwood and bark between 3100 and 

2800cm-1 

It appears that in the rootwood FTIR spectrum, the peaks between 3100-2800cm-

1 are clearly separated, so it seems to contain more triglycerides or fatty acids 

type of aliphatic group. From the knotwood and bark sample, they should 

contain resin acids and their polymers. For the heartwood and sapwood, the 

peaks obtained are intermediate, so a mixture of triglycerides and resin acids is 

expected. 

Also the 1000-1200 cm-1 region of the bark and rootwood spectra suggests the 

presence of some carbohydrate (Figure 6-18). 

 

Figure 6-18: FTIR spectra of the five samples between 1300 and 800cm-1 
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6.3.4 Conclusion 

The aim of this chapter was to study the differences in extractives content 

between bark, rootwood, knotwood, heartwood and sapwood samples, and then 

compare the GC/MS and the FTIR methods to study the extractive content. 

In the five samples analysed, major differences in extractive composition were 

found. Bark was the sample that contained the greatest amount of extractives, 

with about ten times the extractive content found in heartwood or sapwood. 

From the FTIR, it was apparent that the (COOR/CH) ratio, related to the ester 

compound composition within the aliphatic fraction, remained rather constant. 

For the (Ring/CH) ratio, associated with the content of aromatic compounds 

relative to the aliphatics, the variation between the samples was greater. 

However the variation in total extractive content between the five samples was 

very much more than the variation between heartwood and sapwood samples 

observed in the Kershope experiment. 

Based on the GC/MS analysis, the composition of the resin acid fraction was 

comparable for the five samples analysed. Differences were observed in lignan 

composition, with a large number of lignans detected in the knotwood and none 

detected in the bark sample. The data obtained here confimed that, as observed 

in the Chapter 4, heartwood had a relatively greater aromatic extractive content 

than sapwood and this difference was attributable largely to the lignans and 

other phenolic compounds. A relatively large content of ferulic esters in 

heartwood and sapwood samples and some in the bark were found. 

The last part of the study was focused on the comparison of the GC/MS and FTIR 

using KBr disc methods. Although a comparison of individual compounds was not 

possible with FTIR, semi-quantification was established in order to compare the 

classes of extractives detected with both methods. Despite some over-

estimation obtained by the FTIR analysis, it was still possible to obtain a 

recovery closer to the total extractive content than was achieved by GC/MS 

analysis. 
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6.4 Discussion 

6.4.1 Distribution of extractive content within the tree 

6.4.1.1 Heartwood and sapwood 

The heartwood and sapwood of the trunk were the parts of the tree where the 

total extractive content in dry wood was the lowest, with even less extractives 

in sapwood (1.3%) than in heartwood (1.5%) on a dried wood basis. 

Ekman (1980b) extracted Norway spruce with petroleum ether and found 1% of 

extractives in sapwood and 0.8% in heartwood in dried wood. The petroleum 

ether solvent only allows the extraction of the lipophilic part of the extractives. 

This explains the lower extractive content found by Ekman (1980b) in Norway 

spruce compared to what was found here in Sitka spruce heartwood and 

sapwood. Acetone solvent removes both hydrophilic and lipophilic compounds. 

Heartwood represents the inner layers of wood in the growing tree, which no 

longer contain living cells and where the reserve materials (e.g. starch) have 

been removed or transformed into heartwood extractives (Taylor et al., 2002). 

Sapwood is defined as the part of the tree containing living cells. The role of the 

sapwood is to transport water from the root to the crown, and act as a water 

and energy reserve material for the tree. Sapwood is also the location of living 

cells that can respond to exterior attack or physical injuries (Hillis, 1987 and 

Taylor et al., 2002). 

The process of heartwood formation in conifers includes two major biological 

phenomena in the tissue: death of the parenchyma and extractive formation 

(Taylor et al., 2002). Some physical changes inside the wood also take place. 

The moisture content decreases at the heartwood/sapwood boundary, the stored 

starch in sapwood disappears in heartwood and the cell wall becomes lignified 

(Hillis et al., 1962 and Bergstrom et al., 1999). The heartwood becomes 

impregnated with extractives. The extractives are formed close to the 

heartwood/sapwood boundary by using local available compounds (such as 

carbohydrates) and material translocated from the phloem and sapwood (Hillis 

et al., 1962; Hillis, 1987; Bergstrom et al., 1999 and Taylor et al., 2002). 



Annabelle Caron, 2010 
 

Chapter 6-139 

The main physical differences between heartwood and sapwood are reviewed by 

Taylor et al. (2002). Heartwood has a darker colour, a lower permeability and 

greater decay resistance than the sapwood. These differences are related to the 

higher extractive content of the heartwood. 

Although extractives contribute to the natural durability of wood, the 

importance of physical barriers versus the role of extractives is poorly 

understood (Taylor et al., 2002). 

Obst (1997) summarised the evidence that heartwood contains more extractives 

than sapwood in conifers, which is in accordance with the results obtained for 

Sitka spruce. 

6.4.1.2 Knotwood 

Knotwood comprises the traces left by the formation of both live and dead 

branches on the main stem. When a branch moves, it generates tension and 

formation of free radicals at the branch base (Pietarinen et al., 2006). Also an 

open wound is formed when a branch is broken close to the stem, leaving the 

knot susceptible to attack by fungi. Therefore the biosynthesis of compounds 

with fungicidal and bactericidal properties is needed (Pietarinen et al., 2006).  

Sitka spruce knotwood was found to contain about 9% of total extractives in dry 

wood, which is a very large amount compared to the Sitka spruce heartwood and 

sapwood samples.  

6.4.1.3 Rootwood 

The spruce root has been little studied, only in relation to fungal attack (e.g. 

sensitivity of roots to blue stain fungi (Evensen et al., 2000) or root rot fungi 

(Lindberg et al., 1992; Pan and Lundgren, 1995 and Evensen et al., 2000). 

From the gravimetric analysis, it was shown that the rootwood sample had the 

second largest extractives content, with about one third of the bark extractive 

content, but ten times more than the heartwood and sapwood extractive 

content. 
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6.4.1.4 Bark 

The bark constitutes a barrier between the tree and the exterior environment. 

As extractives are active in defence against exterior attack, a higher 

concentration of extractives within the bark was expected (Ralph et al., 2007).  

According to the gravimetric analysis, the bark sample contained the largest 

total amount of extractive content with about 28% of extractives in dry wood. 

6.4.2 Comparison of extractive classes according to position in 

the tree 

A quantification of extractive classes was attempted by summing the individual 

components identified in the GC/MS analysis of the samples. The results are 

summarized in Table 6-4. 

If we compare the extractive content identified by GC/MS and the gravimetric 

extractive content in the dry mass, there is a large difference between them. 

Particularly in knotwood, roots and bark the fraction identified by GC/MS is 

much too small to be representative of the entire extractive composition. 

Ekman et al. (1979a) analysed heartwood and sapwood from a 26 year old 

Norway spruce by methods described in Ekman (1979b). The method consisted of 

a sequential extraction with petroleum ether followed by acetone/water 

mixture (9:1 v/v). The analyses were carried out by GC packed glass column (1% 

XE-60) and glass capillary columns coated with 1,4-butanediol succinate (BDS) 

with FID detector. The comparison of the results is presented in Table 6-6. 

In order to make the comparison easier the Sitka spruce results are repeated in 

this and subsequent tables, along with the Norway spruce data obtained by other 

teams. 
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 Sitka spruce  
(From Table 6-4) 

Norway spruce  
(Ekman et al., 1979a) 

 Heartwood Sapwood Heartwood Sapwood 
Content of 
extractives in dried 
mass (%) from the 
gravimetric analysis 

1.48% 1.33% 2.33% 2.42% 

Fatty acids   0.25% 0.52% 
Resin acids 0.23% 0.31% 0.12% 0.16% 
Diterpene alcohols   0.02% 0.03% 
Esters  0.25% 0.23%   
Sterols and 
triterpenes alcohols 

0.02% 0.01% 0.11% 0.11% 

Total extractive 
analysed by GC/MS 

0.50% 0.55% 0.50% 0.82% 

     
Percentage of 
extractives analysed 
by GC/MS from the 
gravimetric content 

33.78% 41.35% 21.65% 33.87% 

Table 6-6: Comparison of the extractives analysed by GC/MS for Sitka spruce and Norway 

spruce (Ekman et al., 1979a) 

The percentage of extractives analysed by GC/MS was somewhat higher for the 

Sitka spruce samples. A large part of the extractive analysed by GC/MS in 

Norway spruce comes from the quantity of fatty acids, none of which were 

detected in Sitka spruce.  

The differences between the two measurements of extractives content may 

come from the differences in method. Petroleum ether is a less polar solvent 

than acetone and will allow a better extraction of the non-polar compounds such 

as triglycerides. Ekman (1979b) then used methylation by diazomethane to 

detect the free fatty acids and saponification by KOH solution in 90% ethanol to 

identify the esters of fatty acids. Fatty acids from triglycerides account for a 

large part of the difference in total extractives between Sitka and Norway 

spruce (for both heartwood and sapwood). The differences between the 

heartwood and sapwood composition will be explained in the next paragraph 

6.4.2.1.  

The ferulic acid esters were identified in Sitka spruce but not in Norway spruce 

and their quantity was not negligible within the total amount of compounds 

analysed by GC/MS.  
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Nevertheless we remark that even with the method used by Ekman et al. (1979a) 

in Norway spruce, between 60 to 70% of the compounds extracted are not 

analysed by GC/MS. 

Willfor et al. (2003b) analysed Norway spruce at different ages. The lignans and 

phenolic compounds were extracted by acetone/water (95:5 v/v) and analysed 

by high performance size exclusion chromatography (HPSEC), and the lipophilic 

compounds were extracted by hexane and analysed by GC/MS (with an HP1 

column). The extractive content in dried wood analysed by GC/MS for the 

heartwood, sapwood and knotwood is summarised in Table 6-7 and represents 

between 0.50 to 1.65% of the dried wood for the heartwood and sapwood in 

Norway spruce samples. Extractive content analysed by GC/MS is probably lower 

than the gravimetric content of extract that they might have obtained just after 

the solvent extraction, if we refer to the amount of gravimetric extractives in 

Norway spruce found by Ekman et al. (1979a) in Table 6-6.  

 
Total extractive content in dried 

wood analysed by GC/MS 
Age of the tree Heartwood Sapwood Knotwood 

66 0.39% 0.98% 14.92% 
71 0.50% 0.87% 15.66% 
64 0.62% 0.78% 12.39% 
17 X 1.11% X 
17 X 1.12% X 
150 0.66% 1.52% 17.42% 
134 0.80% 1.65% 22.16% 

X states for no sample 

Table 6-7: Total extractive content in dried wood analysed by GC/MS in Norway spruce by 

Willfor et al. (2003b) 

However the quantity of extractives identified by GC/MS by Willfor et al. 

(2003b) appears to be greater than what was recovered in the present Sitka 

spruce experiment or by Ekman et al. (1979a) in Norway spruce. It is due 

principally to the use of HPSEC which recovers a large fraction of phenolic 

compounds, as will be mentioned in paragraph 6.4.1.2. 

A comparison between the gravimetric results and the extractive content 

analysed by GC/MS and HPSEC would be useful but unfortunately Willfor et al. 

(2003b) do not state their gravimetric results. 
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6.4.2.1 Heartwood and sapwood 

If we look at the distribution of Sitka spruce extractive classes within the 

fraction analysed by GC/MS (Table 6-4), the heartwood extractives contained 

more lignans and phenolic compounds than the sapwood extractives. The 

heartwood and sapwood extracts contained a greater percentage of sterols and 

esters, relative to the mass of extractives recovered, than the knotwood, 

rootwood and bark samples. Heartwood and sapwood had the second largest 

percentage of resin acids. 

A large percentage of lignans and aromatic compounds was expected in the 

heartwood sample in Sitka spruce. Heartwood formation involves the formation 

of several classes of extractives: terpenoids, tropolones, flavonoids, stilbenes 

and other aromatic compounds (Philip, 1995; Scheffer and Cowling, 1966). 

Lignans and phenolic compounds have several biological activities such as 

antifungal and antioxidant properties (Hon 2001; MacRae and Towers, 1984; 

Clark et al., 1981; Goettlieb 1990). Previous work (Obst, 1997) showed that 

heartwood contains more extractives than the sapwood and has higher 

resistance to decay or attack by other organisms. 

Sapwood was found to contain more lipophilic extractives than heartwood by 

Bertaud and Holmbom (2004) who analysed acetone micro-extraction products 

from milled Norway spruce sawdust by GC, after silylation, on a DB1-Column 

(capillary column coated with cross-linked dimethyl polysiloxane) between 80oC 

to 340oC (Orsa and Holmbom, 1994). The higher lipophilic extractive content in 

sapwood is due to the fact that triglycerides, as well as steryl esters, occur in 

the living parenchyma cells. When heartwood is formed the parenchyma cells 

die and the triglycerides are hydrolysed (Bertaud and Holmbom, 2004).  

The distribution of sterols and resin acids found in Sitka spruce was consistent 

with the Norway spruce lipophilic extractives. But looking at the detailed 

composition, the major difference is a higher content of triglycerides in sapwood 

(Table 6-8) but the GC/MS analysis technique chosen for our study only allowed 

the quantification of the most volatile triglycerides in very small quantities from 

Sitka spruce. The difference between Bertaud and Holmbom (2004) work and the 

present Sitka spruce study was the analysis method. They used a DB1 non-polar 
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column, which is more resistant to higher temperature. The higher temperature 

used in their method will allow the detection of larger molecules as 

triglycerides, but with a less good separation of the more volatile compounds. 

 Sitka spruce 
(From Table 6-4) 

Norway spruce 
(Bertaud and Holmbom, 2004) 

Content each class 
in dried mass (%) 

Heartwood Sapwood Heartwood Sapwood 

Free fatty acids     0.11% 0.06% 
Sterols 0.02% 0.01% 0.02% 0.01% 
Steryl esters     0.11% 0.14% 
Esters  0.25% 0.23%   
Triglycerides     0.07% 0.45% 
Resin acids 0.23% 0.31% 0.19% 0.22% 
TOTAL 0.50% 0.55% 0.51% 0.88% 

Table 6-8: Lipophilic extractives in the different samples determined by extraction and 

GC/MS for Sitka spruce (this study) and for Norway spruce by Bertaud and Holmbom (2004) 

Willfor et al. (2003b) also analysed heartwood and sapwood of Norway spruce. 

The lignans and phenolic compounds were extracted by acetone/water (95:5 

v/v) and analysed by HPSEC, and the lipophilic compounds were extracted by 

hexane, alkaline hydrolysed, silylated and analysed by GC/MS (on an HP1 

column). The results are shown in Table 6-9 and Table 6-10, alongside the Sitka 

spruce results repeated from Table 6-4. 

The samples are not fully comparable as the age of the tree influences the 

extractives composition (Fengel, 1970). Even within the same age range the 

variation between trees was substantial as shown for the lignan composition of 

Norway spruce (lignans for samples HW1, HW2 and HW3 in Table 6-9). 

Nevertheless the lignan composition detected in Sitka spruce at 35 years old is 

within the range of lignan contents detected in Norway spruce at around 70 

years old. The ‘lignan’ class for Sitka spruce includes all the lignans and phenolic 

compounds identified. The amount of resin acids is comparable between Sitka 

spruce and Norway spruce. The quantity of sterol compounds is smaller, as in 

Sitka only two sterols were identified against four in Norway spruce (Ekman, 

1980b). In Sitka spruce, a large range of ferulic esters was also quantified that 

Willfor et al. (2003b) do not mention. 
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Age of 
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HW1 
66 

0.00% 0.04% 0.09% 0.01% 0.08% 0.17%  0.39% 

HW2 
71 

0.03% 0.01% 0.25% 0.01% 0.08% 0.12%  0.50% 

HW3 
64 

0.19% 0.01% 0.20% 0.01% 0.07% 0.14%  0.62% 

HW6 
150 

0.25% 0.02% 0.17% 0.01% 0.08% 0.13%  0.66% 

HW7 
134 

0.12% 0.04% 0.22% 0.02% 0.12% 0.28%  0.80% 

Table 6-9: Heartwood extractives analysed by GC/MS in Sitka spruce and in Norway spruce by 

Willfor et al. (2003b) 

 
Age of 

the 
tree 

Lignans Oligolignans 
Resin 
acids 

Diterpenyl 
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SW1 
66 

0.06% 0.03% 0.09% 0.03% 0.10% 0.67%  0.98% 

SW2 
71 

0.01% 0.02% 0.22% 0.03% 0.08% 0.51%  0.87% 

SW3 
64 

0.01% 0.04% 0.16% 0.03% 0.08% 0.46%  0.78% 

SW4 
17 

0.03% 0.04% 0.20% 0.01% 0.08% 0.75%  1.11% 

SW5 
17 

0.06% 0.04% 0.23% 0.01% 0.15% 0.63%  1.12% 

SW6 
150 

0.02% 0.09% 0.17% 0.02% 0.13% 1.09%  1.52% 

SW7 
134 

0.06% 0.09% 0.22% 0.09% 0.14% 1.05%  1.65% 

Table 6-10: Sapwood extractives analysed by GC/MS in Sitka spruce and in Norway spruce by 

Willfor et al. (2003b) 

For the sapwood, the quantity of lignans detected in Sitka spruce was small 

compared to the lignan content detected in Norway spruce, with again a large 

variability in the lignan class between trees of the same age. A greater amount 

of resin acids was detected in the Sitka spruce extractives sample from sapwood. 
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The resin acid class is where the difference with the heartwood sample is the 

largest with only 0.23% detected in heartwood against 0.31% in sapwood. Fatty 

acids detected after hydrolysis and derivatisation by Willfor et al (2003b) are 

likely to be derived from the triglycerides measured directly by Ekman (1980a) 

These Sitka spruce results are in accordance with the previous work of Bertaud 

and Holmbom (2004) in Norway spruce discussed earlier in this paragraph. 

6.4.2.2 Knotwood 

The knotwood extractives analysed in Sitka spruce by GC/MS are compared to 

the Norway spruce extractives identified by GC/MS or HPSEC. Knotwood samples 

were analysed by Willfor et al. (2003b) at different heights. The average 

extractive content has been calculated to enable the comparison, and the 

results are summarised in Table 6-11. 
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KW1 
66 

11.75% 2.85% 0.02% 0.01% 0.10% 0.19% 14.92% 

KW2 
71 

11.88% 2.75% 0.69% 0.03% 0.12% 0.19% 15.66% 

KW3 
64 

8.72% 2.38% 1.02% 0.03% 0.08% 0.15% 12.39% 

KW6 
150 

13.85% 3.25% 0.05% 0.01% 0.09% 0.18% 17.42% 

KW7 
134 

17.15% 4.55% 0.18% 0.02% 0.10% 0.16% 22.16% 

Table 6-11: Knotwood extractives analysed by GC/MS and HPSEC in Sitka spruce and in 

Norway spruce by Willfor et al. (2003b) 

Only two extractive classes were detected in Sitka spruce knotwood by GC/MS, 

the lignans and the resin acids. In Norway spruce, much more variation was 

found in resin acids in knotwood than in heartwood and sapwood samples. The 

resin acid content found in Sitka spruce is within the range of values found in 

Norway spruce. We can remark that the knotwood sample from Sitka spruce 

yielded a greater amount of resin acid than the Sitka spruce heartwood or 

sapwood samples. 
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In Sitka spruce samples, the knotwood lignan content measured was higher than 

in sapwood, but smaller than heartwood.  

As previously mentioned, in Norway spruce the lignans and oligolignans were 

detected by HPSEC by Willfor et al. (2003b). The amount of lignans detected in 

Norway spruce knotwood (between 8 to 17%) was much larger than the 

quantities detected in heartwood and sapwood of Norway spruce (Table 6-11), 

and much larger than was detected in this study of Sitka spruce by GC/MS. 

Indeed Willfor et al. (2003b) detected more lignans in the HPSEC study of most 

of their Norway spruce knotwood samples than the total extractives content of 

Sitka spruce knotwood. Some of the individual lignans detected by Willfor et al. 

(2003b) were not on the list that was detected in Sitka spruce samples because 

either their molecular weight was too high to be detected with our method or 

their quantities were below the detection threshold.  

However no gravimetric content for Norway spruce knotwood extractives is given 

by Willfor et al. (2003b) so it is not possible to ascertain whether their recovery 

was complete. 

Sitka and Norway spruce are quite similar physiologically, but it is their 

taxonomic relatedness that is more likely to determine how much similarity can 

be expected in their extractives Nkongolo (1999) studied the genomic 

relationships among 10 taxa of Picea spp. including Sitka spruce and Norway 

spruce by random amplified polymorphic DNA (RAPD) and cytological analyses. 

Figure 6-19 illustrates the dendrogram of genetic relationships linking the ten 

spruce species. 
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Figure 6-19: Dendrogram of genetic relationships between the ten spruce species based on 

the Jaccard similarity matrix from Nkongolo (1999) 

The dendrogram shows the genetic relationships between spruce species based 

on RAPD distance. Sitka spruce (P. sitchensis) was found to be in the middle of 

the two principal clusters, and is not particularly closely related to Norway 

spruce (P. abies). 

6.4.2.3 Rootwood  

The root sample was the only sample where α-linolenic acid, from the fatty acid 

class identified by GC/MS in Sitka spruce study. The resin acid composition was 

the same in rootwood as in the other samples, but fewer lignans were identified 

compared to the heartwood, sapwood or knotwood samples (Table 6-4). 

There is little published information on the extractives of spruce rootwood. Most 

of it relates to stilbenes and their role during the defence mechanism against 

exterior attacks. Stilbenes were not detected as major components in the 

present study.  

Woodward and Pearce (1988) studied the role of stilbenes in resistance of Sitka 

spruce saplings to entry of fungal pathogens. They found that the rootwood was 

particularly rich in glucoside stilbenes with the two major constituents being the 

glucosides astringin and rhaponticin. The stilbenes were suggested to be 
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involved during the defence response against fungi attack through formation of 

structural barriers formed from stilbene aglycones, among other polyphenols, 

following the synthesis of β-glucosidase enzyme (Woodward and Pearce, 1988; 

Lindberg et al., 1992). Other resin extractive compounds such as terpenes, resin 

acids and fatty acids were suggested as being involved during the rootwood 

response to fungal attacks of a 9 year old trees (Woodward and Pearce, 1988 and 

Pearce, 1996).  

No evidence of such high levels of stilbenes in mature Sitka spruce roots were 

found, therefore this defence mechanism must be restricted to very young trees  

In general, however, such an active mechanism against external attack might 

justify the high extractive content in rootwood of Sitka spruce that was found in 

this study. 

6.4.2.4 Bark 

The Sitka spruce bark sample shows the greatest amount of total extractive 

content (28.3% in Table 6-4) in dry bark. Within this total only 0.5% of the 

extractives were analysed by GC/MS. The quantity of compounds detected by 

GC/MS in the bark was similar to the quantity detected in rootwood. Some 

sterols and esters, very few resin acids and none of the lignans were identified.  

Pietarinen et al. (2006) sequentially extracted bark of Norway spruce first with 

hexane to remove the lipophilic compounds and then with acetone/water (95:5 

v/v) mixture to extract the hydrophilic fraction. They found that the gravimetric 

yield of the hydrophilic extract from Norway spruce was 12% of the dried bark, 

which corresponds to about the half of the total extractive content detected in 

Sitka spruce (lipophilic and hydrophilic extractives together). Unfortunately 

Pietarinen et al. (2006) do not mention the gravimetric yield of the lipophilic 

extractives nor did they quantify individual compounds in the hydrophilic 

fraction of bark extractives. 

The gravimetric content of resin material and polyphenols in Norway spruce bark 

seedlings was established by Wainhouse et al. (2004). They state that the spruce 

bark was rich in polyphenols (about 13.6% in the dry mass after extraction with 
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50% aqueous ethanol (v/v) mixture) close to the 12% of hydrophilic fraction 

found by Pietarinen et al. (2006).  

Wainhouse et al. (2004) detected 1.9% of resin material in dry mass after 

pentane extraction. They referred to the method used by Wainhouse et al. 

(1998) who considered as resin material all the material weight extracted from 

needle resin ducts by pentane, which should be close to the weight of what we 

previously called the lipophilic fraction. 

If we combine the results obtained by Wainhouse et al. (2004) we should get an 

estimation of the total extractive content of the Norway spruce bark, i.e. 15.5%. 

That extractive content represents half of the gravimetric extractive content 

measured in the mature bark from Sitka spruce (28.3% in dry mass in Table 6-4) 

The bark composition of Norway spruce was analysed by Lindberg et al. (1992) in 

relation to the resistance of bark to fungal attack. They used ethanol extraction 

followed by solvent partition (with petroleum ether and water mixture and with 

methanol) and GC analysis (SE-30 column, 220oC). Their results are presented in 

Table 6-12 beside the relevant Sitka spruce results. 

 Resin acid Analysis 
Sitka spruce 

Bark of 35 years 
old 

(From Table 6-4) 

0.07% of dry 
bark 

- Extracted in acetone 
- Evaporated to dryness 
- Chloroform fraction analysed by GC/MS 

Norway spruce 
Bark of 4 years 

old seedling 
(Lindberg et al., 

1992) 

0.19% of 
fresh bark 

- Extracted 5 min in ethanol, 
- Evaporated to dryness  
- Partition in petroleum ether and water  
- Petroleum ether fraction analysed by 

GC/MS with fused silica capillary column 
at 220oC 

 Stilbene 
glucosides 

Analysis 

Norway spruce 
Bark of 4 years 

old  
(Lindberg et al., 

1992) 

25.1% of 
fresh bark 

- Evaporation and redilution in methanol 
of the aqueous fraction,  

- Analysed by HPLC, C18 column 

Table 6-12: Resin acids content of bark of Sitka spruce and Norway spruce analysed by 

Lindberg et al. (1992) 

The results presented by Lindberg et al. (1992) were presented as the weight of 

extract in fresh material. Therefore Lindberg et al.’s (1992) results should be 
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corrected upwards by an indefinite factor. But the comparison will still be 

difficult as the Norway spruce samples are young seedlings (4 years old) compare 

to the mature Sitka spruce (35 years old). 

6.4.3 Comparison between GC/MS and FTIR spectroscopy 

Using the results in Table 6-4 showing the amount of extractives analysed by 

GC/MS compared to the total gravimetric amount of Sitka spruce extractives, we 

can conclude that the entire extracted fraction was not analysed by GC/MS. 

Comparison with the results of Ekman et al (1979a) showed that triglycerides 

were a group of extractives present, particularly in sapwood, but not identified 

in this study, while Willfor et al’s (2003b) HPSEC method gave much larger 

recoveries of lignans, especially from knotwood, than were possible by GC/MS. It 

was not clear whether these were the only extractive fractions under-

represented in the GC/MS data. The data from the FTIR spectroscopy of the 

same samples illuminate this question. 

Table 6-13 summarises the FTIR results obtained in transmission mode from Sitka 

spruce extract. The semi-quantification of each functional group was possible 

through previous establishment of response factors using standard molecules. 

The results in Table 6-13 represent the equivalent of standard functional group 

in dry mass. 

On average the total extractive content predicted using a single calibration 

standard for each functional group was in the same range as the gravimetric 

measurements, although the heartwood and sapwood totals were overestimated 

and the bark total underestimated by FTIR spectroscopy. 

The FTIR results (Table 6-13) indicated that in Sitka spruce samples, aliphatics 

predominated, followed by aromatics in the bark sample. The GC/MS data 

(Table 6-4) showed that a wide variety of linear and cyclic, saturated and 

unsaturated hydrocarbons were present in the aliphatic fraction. These would 

undoubtedly give different spectra in the C-H stretching region from that used 

for semi-quantitative estimation. Using a single standard was therefore a 

considerable approximation but sufficient agreement was obtained to allow the 
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different types of wood and positions in the tree to be compared with one 

another. 

Content each functional 

group in dried mass (%) 
Standard 
molecule 

Heartwood Sapwood  Knotwood Rootwood Bark 

Aliphatic group 
 

 
Abietic acid 

 

1.65% 1.27% 9.84% 8.68% 8.36% 

Carboxylic group 

 
Ferulic acid 

 

0.18% 0.13% 1.50% 1.05% 1.54% 

Aromatic group 

 
Ferulic acid 

 

1.02% 0.33% 1.02% 0.72% 5.14% 

TOTAL  2.85% 1.73% 12.36% 10.45% 15.04% 
       

Content of extractives 
in dried mass (%) from 

the gravimetric analysis 

 

1.48% 1.33% 9.04% 11.53% 28.31% 

Table 6-13: Content of each functional group in dry wood calculated from the KBr FTIR 

analysis in Sitka spruce 

6.4.3.1 Heartwood and sapwood 

The results from heartwood and sapwood FTIR analyses are similar in terms of 

amount of aliphatic and carboxylic compound detected (Table 6-13), but differ 

for the aromatic group with 0.33% of aromatic in sapwood against 1.02% in 

heartwood. The results for the aromatic groups are in accordance with GC/MS 

analysis (as cited in paragraph 6.4.2.1) as more lignans are expected in 

heartwood compared to sapwood.  

Compare to knotwood, rootwood and bark samples the amount of aliphatic and 

carboxylic groups are about ten times smaller in heartwood and sapwood 
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samples (Table 6-13). The combination of aliphatic and carboxylic groups is 

found in resin acids, or triglyceride molecules, consequently these compounds 

are expected to be in lower quantity in heartwood and sapwood. Referring to 

the FTIR peaks between 3000-2800cm-1 (chapter 4), heartwood and sapwood 

seem to contain both classes.  

The detailed GC/MS data from this study are a better guide to the composition 

of the heartwood and sapwood lipophilic extractives because they account for a 

much larger proportion of the total mass than in knotwood, rootwood and bark. 

 
Resin acids content in dried wood analysed by GC/MS 

Age of the 
tree 

Heartwood Sapwood Knotwood 

Sitka spruce 
(From Table 6-4) 

35 0.23% 0.31% 0.43% 

Norway spruce 
a (Ekman et al. 

(1979a) 
b (Willfor et al., 

2003b) 

26a
 0.12% 0.16%  

66b 0.09% 0.09% 0.02% 
71b 0.25% 0.22% 0.69% 
64b 0.20% 0.16% 1.02% 
150b 0.17% 0.17% 0.05% 
134b 0.22% 0.22% 0.18% 

Table 6-14: Resin acid content in dried wood of Sitka spruce and Norway spruce (Willfor et 

al., 2003b and Ekman et al., 1979a) 

Ekman et al. (1979a) and Willfor et al. (2003b) referring to Ekman (1979b), state 

that in Norway spruce sapwood should contain more resin acids than heartwood 

and that knotwood contains less resin acids than stemwood (Table 6-14). The 

Sitka spruce heartwood, sapwood and knotwood samples do not seem to follow 

this trend. It appears that knotwood contained the most resin acids and sapwood 

least. 

6.4.3.2 Knotwood 

For the knotwood sample, a large part of the mass of extract is accounted for in 

the FTIR spectra by aliphatic (9.8%) and carboxylic compounds (1.5%). A high 

representation of both groups (aliphatic and carboxylic) and the shape of the 

FTIR peaks between 3000-2800cm-1 (chapter 4.3.3.3) might be related to a high 

resin acid content in knotwood sample. Polymerisation of these resin acids 

would account for the much smaller recovery by GC/MS. 
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The amount of aromatic groups analysed in knotwood by FTIR is similar to that in 

the heartwood sample (1.02% in Table 6-13). Consequently we cannot expect a 

large difference in the content of lignan and aromatic compounds between 

knotwood and heartwood, as was found in Norway spruce knotwood by Willfor et 

al. (2003b). 

The qualitative GC/MS analyses of knotwood and heartwood did not show a lot of 

differences in the compounds detected. But the amount of lignans recovered by 

GC/MS from heartwood (0.09% in Table 6-4) was double the amount detected in 

knotwood (0.04% in Table 6-4). Some lignans present in Sitka spruce knotwood 

were probably not detectable by GC/MS because of their molecular weight being 

too great to permit sufficient volatility for these molecules to pass through the 

GC/MS column. 

6.4.3.3 Bark 

From the FTIR analysis, the bark sample was where the largest amount of 

aromatic substances was detected, about 5%. In the GC/MS chromatogram from 

bark no lignans or phenolic compounds were identified. Because the FTIR 

spectrum allowed the detection of a large content of aromatic groups, we 

suspect the presence of aromatic substances of higher molecular mass than 

would be detected by GC/MS. These could be oligolignans. A large percentage of 

oligolignans in the Sitka spruce bark sample would be consistent with what has 

been found by HPSEC in bark from Norway spruce by Pietarinen et al. (2006) and 

Wainhouse et al. (2004).  

The presence of more resin acids or triglycerides than could be analysed by 

GC/MS is suspected in Sitka spruce bark, because of the large representation of 

aliphatic and carboxylic compounds. A closer look at the FTIR spectra presented 

in chapter 4.3.3.3, and particularly at the 3000-2800cm-1 area help to confirm 

the presence of resin acids or polymers of resin acids.  
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Chapter 7: Conclusions 

7.1 General conclusions 

The extractives content and composition differed between Sitka spruce 

heartwood, sapwood, knotwood, rootwood and bark samples. The bark 

contained the largest amount of extractives while the heartwood and sapwood 

were the parts of the tree where the extractive content was the lowest. 

Heartwood and sapwood samples from the Kershope experiment were studied in 

more detail. It was found that more extractives were contained in heartwood 

than in sapwood and that the difference was consistent at all heights in the 

trunk. The FTIR analysis showed that the relative quantity of aromatic 

compounds in heartwood tended to increase with height, while there was a more 

uniform distribution in sapwood. The relative ester content did not vary with 

height for either type of wood. 

The total extractive content in Sitka spruce in dried wood across Scotland was 

shown to be low and stable with rather constant proportions of carboxylic and 

aromatic compounds. Neither the management of the forest (yield class, 

thinning) nor the East or North location, nor the elevation had a significant 

impact on the extractives content across the wide range of Scottish sites 

examined. 

The range of individual compounds identified in Sitka spruce by GC/MS was 

similar to, but slightly narrower than, what has previously been reported for 

Norway spruce. Only half as many sterols were recovered from Sitka spruce. No 

diterpene alcohols and diterpene aldehydes were found in the Sitka samples. 

However the lignans detected and a group of ferulic esters were similar in Sitka 

spruce and Norway spruce. 

The gravimetric total and ester content of extractives in Sitka spruce increment 

cores was stable across Scotland and did not seem to depend on yield class, site 

elevation, North/East location or thinning. Geography did not seem to have an 

influence on the aromatic composition. Because heartwood is over-represented 

in increment cores and has higher extractive levels, these data slightly 
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overestimate the mean extractives content of the clear wood in the whole 

trunk, which is predicted to decrease with height in parallel with the decreasing 

proportion of heartwood. 

A low and stable extractive content can be a positive factor in the quality of the 

Scottish Sitka spruce resource for the pulp and paper industry, where wood 

extractives interfere with the process and cause significant technical and 

economic problems.  

7.2 Application of extractives 

7.2.1 In biolomedical industry 

Lignans have a large range of biological properties such as: antitumor, 

antimitotic, antioxidant, antiviral activities, fungal growth inhibition, fish 

toxicity, insect antifeedant and muscle relaxant activities and juvenile hormone 

functions (Clark et al., 1981; MacRae and Towers, 1984; Goettlieb 1990 and 

Umezawa, 2001). 

Flavonoids have antioxidant, anti-inflammatory, antihistamic and antiviral 

properties (Obst, 1997). 

Some terpenoids such as the phytane diterpene plaunotol have anti-ulcer 

activities (Umezawa, 2001). Resin acids are also a by-product of the kraft 

pulping of wood, and when obtained from that source they are used as paper 

sizing agents, controlling absorption of water in paper (Obst, 1997). 

Some sterols have strong effects on the heart muscle and can be used as either 

therapeutic compounds or toxins (Obst, 1997). Sitosterol or sitostanol can be 

used as cholesterol-lowering components in food products, where a high ratio of 

sitosterol to campesterol is beneficial. This ratio was high in birch and pines but 

clearly lower in spruce and larch (Vikstrom et al., 2005). 
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7.2.2 In pulp and paper industry 

Wood extractives can cause problems especially in the pulp and paper industry. 

The lipophilic fraction of the wood extractives, coming from the resin canals and 

ray parenchyma cells, is composed of low molecular mass resins and fatty acids 

and higher molecular mass waxes, sterol esters and triglycerides (Gutierrez et 

al., 1998). These can be can be released and form colloidal ‘pitch’ during the 

pulp and paper making process. Pitch particles may initially be small in size and 

then coalesce into larger droplets, which deposit on the surface of the fibers or 

the equipment, or remain suspended in the washing water to be discharged in 

the effluent (Gutierrez et al., 2001). Pitch may deposit alone or with other 

compounds such as inorganic salts, defoamers and coating binders derived from 

the pulp and papermaking process (Gutierrez and Del Rio, 2005) 

Conventional approaches used to reduce wood extractives interaction during the 

process are debarking or seasoning logs, but these measures are often not 

sufficient to eliminate pitch problems (Gutierrez et al., 1998). Other precautions 

such as conventional filtration, membrane filtration with or without reverse 

osmosis, flotation, biological treatments, precipitation or evaporation have been 

introduced into the process. Their sequence will depend on the identification of 

the streams to be treated and the characterisation of contaminants in each 

stream of the water system (Gutierrez et al., 2001). The ability of different 

wood-inhabiting fungi to degrade lipophilic compounds using enzymes are 

already being exploited in commercial products for wood and pulp depitching in 

order to degrade the lipophilic extractives before the pulp and pulping process 

(Fischer and Messner, 1992; Farrell et al., 1993 and Gutierrez et al., 1998). 

However these methods are specific to certain wood species under specific 

pulping conditions. 

Pitch problems cause significant technical and economic problems for pulp and 

paper manufacturers regardless of the pulping and bleaching procedures used, 

and have a detrimental impact on the environment (Chen et al., 1994). The 

pitch problems result in a low quality final product and problems in mill 

operations with significant economic losses. 
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7.2.3 Other outlets 

While the lipophilic extractive fraction is not wanted in the pulp and paper 

industry, wood extractives can be still be valuable compounds for other 

purposes.  

The bark constitutes a large quantity of available material, as approximately 10 

to 15% of each log consists of bark. It imperative that bark is no longer 

considered as waste material. Conifer bark is a valuable product in its own right, 

with a profitable market in the horticultural industry. Roffael et al (2000) 

studied the possibility of using bark extract as an adhesive or binder in 

particleboards and medium density fibreboards. The preparation of extract-

based adhesives is based on the reaction between the phenolic extractives and 

formaldehyde. Despite the fact that the content of extractives, particularly 

water-soluble extractives in spruce is low, their amount can be increased by 

higher temperature extraction. Roffael et al. (2000) found that water soluble 

extractives from spruce bark can substituted at up to 20% for Quebracho 

extracts, widely used as particleboard binders and at up to 60% in binders for 

medium density fibreboard without impairing the physical-mechanical properties 

of the board. 

Bark has been studied for its bioactive chemicals to add value to its use as an 

energy resource (Kahkonen et al., 1999 and Pietarinen et al., 2006). Pietarinen 

et al. (2006) deduced that bark extract of Norway spruce had the strongest 

antioxidant potential of several species (such as Abies, lasiocarpa, Pinus 

banksiana, Populus tremula), although it contained a large amount of stilbenes 

and stilbene glycosides with the potential to inhibit the antioxidant properties. 

Knotwood is of little value in the manufacturing of pulp and paper industry. The 

knots have a negative effect on pulping processes and pulp quality. It is better 

that they are separated out before the pulping process and in that case they are 

normally burnt. But the knotwood of Norway spruce constitutes also a very 

valuable raw material for the extraction of lignans, stilbenes, flavonoids, and 

other phenolic substances that could be utilised as natural antioxidants in 

various technical applications and as an active ingredient in health promoting 

food and pharmaceuticals (Willfor et al. 2004a). Two patents related to the use 
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of knotwood are known: The “use of knotwood extract” by Willfor et al., 2005a 

and the “method for isolating phenolic substances or juvabiones from wood 

comprising knotwood” by Holmbom et al., 2002. 

The high content and distinctive composition of extractives in Sitka spruce roots 

was a novel finding in this research. New harvesting methods make root biomass 

readily available, currently as fuel. Root extractives are worth investigating for 

technical applications. There is evidence that the influence of roots on wood 

composition extends further up into the stem in Sitka spruce than in other 

conifer species. The possibility of higher and more variable extractive content in 

the lowest metre of the stem is worth investigating, since it might influence how 

stems are divided for pulpwood production. 

7.3 Recommendations for future work 

Further work would be needed to estimate the variation in the volume of 

heartwood and sapwood along the trunk as well as the variation in total 

extractive content in the same tree. This would show whether variation in 

extractive content develops in the same way as the distribution of heartwood 

and sapwood volume. 

Further tests would be needed also to continue the comparison between the 

chromatographic and spectroscopic methods. 
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