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Abstract

Netrino oscillation experiments discover that (left-handed) neutrinos have masses much

less than charged leptons and quarks in the Standard Model. One solution to the light

neutrino mass puzzle is the seesaw model where right-handed neutrinos are introduced

with large Majorana masses. The heavy Majorana right-handed neutrinos lead to lepton

number violation in the early universe. They decay into either leptons or anti-leptons

via Yukawa couplings. The CP asymmetries of these decays result in lepton number

asymmetry in the universe. The lepton number asymmetry can be converted into baryon

number asymmetry via the electroweak sphaleron process. This mechanism explains the

baryon asymmetry of universe problem and is called leptogenesis.

However, one finds that in order to generated enough baryon number in the universe,

the reheating temperature, which is required to be of order of the lightest right-handed

neutrino mass, has to be higher than ∼ 109 GeV. The high reheating temperature would

lead to the over-produced gravitinos in the universe, contrasting with the present obser-

vation. We investigate leptogenesis in the Exceptional Supersymmetric Standard Model.

We find that the extra Yukawa couplings would enhance the CP asymmetries of the RH

neutrino decay drastically. And the evolution of lepton/baryon asymmetries is described

by Boltzmann Equations. Numerical calculation of the Boltzmann Equations shows that a

correct amount of baryon number in the universe can be achieved when the lightest right-

handed neutrino mass is ∼ 107 GeV, and then the gravitino-over-production problem is

avoided.
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Chapter 1

Introduction

1.1 Overview

Neutrinos are particles which are generated in various sources. They can be generated

in the nuclear reaction in the core of the Sun and propagate together with the light to

the Earth. Also they can be generated in the upper layer of the Earth atmosphere, in

the nuclear power station and accelerators (human-made experiment), etc. They interact

with other particles with a fairly low rate, so even when billions of neutrinos pass through

a huge detector, we can only see a few signals produced by these neutrinos in one month.

In our daily life, although billions of neutrinos pass through our body, we can not be hurt

or even feel them.

Neutrinos are mysterious and we do not know too much about them. Initially, people

assume they are massless, like photons, which means they can propagate at the speed

of light. However, people found that there are three types of neutrinos. During the

propagation, from the source to the detector, neutrinos can change from one type to

another one. Precise measurement of the transition rate tells that this phenomenon can

be explained by neutrino masses, and it is called neutrino oscillation. Neutrino oscillations

and other experiments tell that neutrinos have masses much smaller than other elementary
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particles, e.g. electron. The smallness of neutrino masses indicates the physics beyond

our current knowledge, and one needs to explain how the neutrino masses are generated

in theory. One elegant mechanism is called the seesaw model with hypothetical heavy

particles. The neutrino mass term is an effective term generated via the heavy particles.

Whether the neutrinos are Majorana particles can be tested by experiments including

neutrinoless double beta decay where lepton number violation is induced by Majorana

mass terms of light neutrinos.

Another intriguing puzzle of the particle cosmology is the Baryon Asymmetry of Uni-

verse (BAU) problem, based on the fact that the universe contains baryons (matter)

rather than anti-baryons (anti-matter). In the canonical theory, there is no substantial

asymmetry of baryon and anti-baryon during the evolution of the Universe, therefore

one need a mechanism to explain how the matter asymmetry is generated. One elegant

mechanism is leptogenesis. In leptogenesis, one proposes heavy right-handed neutrinos,

which have not been discovered in experiments. The right-handed neutrinos can both

decay into leptons (electrons and two other types, which have the same properties but

different masses) and anti-particles of leptons, however rates of these two decay channels

can be different, which leads to an asymmetry of leptons. The asymmetry of leptons can

be converted into baryons, and therefore form the present matter in the Universe.

In the rest part of Chapter 1, we discuss the background of neutrino, the mass type of

neutrinos, the model of neutrino oscillation, the experiments of exact scale of neutrinos,

the seesaw model, the measurement of Baryon Asymmetry of the Universe, how the

electroweak sphaleron process happens, how to calculate the lepton to baryon transition

ratio, the framework of Leptogenesis and a brief discussion of Affleck-Dine mechanism

and Electroweak Baryogenesis.

In Chapter 2, we discuss the Exceptional Supersymmetric Standard Model and its

phenomenology. We present the Yukawa interactions of RH neutrino in this model. In

Chapter 3, we calculate the CP asymmetry of RH neutrino decay in Exceptional Su-

persymmetric Standard Model, illustrating that the CP asymmetry can be enhanced
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drastically with respect to the the CP asymmetry in the canonical scenario, by Yukawa

couplings of right-handed neutrino and exotic particles (exotic leptons, inert Higgses or

leptoquarks) in this model. In Chapter 4, we calculate the Boltzmann Equations for

Leptogenesis. We show that baryon number density can be generated in the Exceptional

Supersymmetric Standard Model with the first RH neutrino mass M1 ∼ 106GEV . And

in Chapter 5, we conclude and point out related research areas. We list some important

notation of the Standard Model in Appendix A. The ingredients of Minimal Supersym-

metric Model are present in Appendix B. The hypercharges of MSSM particles are list

in Appendix C. And Appendix D is devoted to the theory of Big Bang Nucleosynthe-

sis. We will mention cosmological thermal dynamics in Appendix E. In Appendix F, an

alternative method to the flavoured Boltzmann Equations for leptogenesis is presented.

Finally, in appendix G we present an analogy of the Boltzmann Equations to illustrate

how spectator processes play the role in leptogenesis.

1.2 Neutrinos

Electron neutrino νe was first postulated by Pauli in 1930 to explain the missing energy

and momentum in nucleon decays [1]. The electron neutrino was firstly detected by Cowan

and Reines in 1956 [2][3]. The second family neutrino νµ, associated with muon, and the

third family neutrino ντ , associated with tau were detected in 1962 and 1975 respectively

[4][5]. The number of neutrinos that interact with W and Z boson are lighter than Z boson

is proved to be 3 via the invisible decay width of Z1 [6]. Neutrinos were initially assumed

to be massless. The neutrinos interact electroweakly are assumed to be left-handed, and

no right-handed component is imposed to form mass terms. There was no experiment

evidence of neutrino mass until people find the phenomena of solar neutrino oscillation

and atmospheric neutrino oscillation.

Neutrino masses lead to neutrino oscillation and therefore answered the problem of

1We do not consider sterile neutrino(s), which do not participate in the weak interaction.
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missing electron neutrinos in the solar neutrino beam: electron neutrinos oscillate into

other flavours of neutrinos during the propagation from the Sun to the Earth. Atmospheric

and terrestrial neutrino experiments [7]-[18] tested other neutrino oscillation channels

oscillation, where three generations of neutrino have different masses and mix.

Today, there are still several unsolved/open problems of neutrino: what is the exact

scale of neutrino masses? Is the neutrino mass pattern a normal hierarchy or inverted

hierarchy? Is the neutrino mass Dirac or Majorana? What is the origin of the neutrino

mass? Is there an explanation of why neutrino mixing is different from the quark mixing?

1.2.1 Neutrino Masses and Mixings

Neutrinos are the only neutral fermions under gauge transformations of the SM, which

allows them to be identical to their antiparticles νi(h)
C = νi(h), where h is a given helicity.

In this case, we call neutrinos Majorana particles and we can write down the Majorana

mass term for neutrinos [19][20],

LMajorana = mν ν̄Lν
C
L + h.c. , (1.1)

where νCL = Cν̄TL is the charge conjugate of νL
2. Notice that νL is not the mass eigenstate

of the neutrino. We define νi ≡ νL+νCL , and it is easy to see that νCi = νi is the Majorana

masss eigenstate.

An important feature of the neutrino Majorana mass term is it leads to lepton number

violation. Due to this reason, Majorana neutrinos are preferred and widely assumed,

although Dirac neutrinos are not excluded. In this case, the mass term for neutrinos is

similar to that of quarks and charged leptons:

LDirac = mν ν̄LνR + h.c. , (1.2)

with νR the RH neutrino, which is not allowed to participate the SM interaction. If

neutrinos carry energy much higher than its mass, (solar and reactor neutrinos carry the

2The definition of charge conjugate can be found in Appendix (A)
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lowest energy ∼1 MeV) the left-hand to right-hand transition in a neutrino beam cannot

be observed.

A Majorana mass term for neutrinos is not allowed in the SM, because the term

1
M

(HL)(HL) is non-renormalizable whereas the Dirac mass term for neutrinos is permit-

ted if the RH neutrino is introduced. However, in either case, why neutrino masses are

so small needs to be explained.

1.2.2 Neutrino Oscillation

Neutrino oscillations are the first indication that neutrinos have non-zero masses. Also

neutrino oscillations are the most precise measurement of neutrino masses and mixings so

far. In this section, we review the model of neutrino oscillations, showing that this model

explains neutrino disappearance and appearance experiments3.

1.2.2.a Solar Neutrino Oscillation Experiments

In the 1960s, Ray Davis and John Bahcall began the Homestake [24] experiment to mea-

sure the electron neutrino flux from the sun. The electron neutrino νe is produced in

nuclear reaction around the core of the Sun. The energy the electron neutrinos carries is

∼ 1 − 10 MeV. The flux of νe can be calculated via the Standard Solar Model. In the

Homestake experiment, the electron neutrino induce the reaction νe +37 Cl → 37Ar + e.

One can separate 37Ar in the water tank and count their number by observing their later

decay. Therefore the electron neutrino flux can be measured indirectly. In the next 30

years, they found a defecit in electron neutrino number with respect to the description

in the Standard Solar Model: The detected electron neutrino number in the flux is only

∼ 1/3 of that predicted by the Standard Solar Model. This puzzle of missing electron

neutrinos is called the Solar Neutrino Problem (SNP). Several types of explanation have

3For more details of neutrino oscillation and other neutrino experiments, we refer readers to [21] [22]

and [23].
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been proposed, including neutrino decay, neutrino oscillations and modification of the

Standard Solar Model.

The result of Homestake was confirmed by the SNO [25], GALLEX [26], GNO [27] and

Super-Kamkiokande [28], which can measure separately νe and νµ,τ . It is the first solar

neutrino appearance experiment, which used heavy water instead of water in the detector.

The electron neutrino can break deuterons in the heavy water via charged current (CC)

process νe + d→ p+ p+ e. And all three flavours of neutrinos can scatter with deuterons

via neutral current (NC) process νe,µ,τ + d → νe,µ,τ + p + n. SNO finds the νe flux Φe

and the total neutrino flux Φe,µ,τ has the relation Φe/Φe,µ,τ < 1/2. This indicates during

the propagation, electron neutrino changes to muon neutrino and tau neutrino. And This

can be explained by neutrino oscillation enhanced by matter effects (electron neutrinos

scattering with electrons in the Sun).

In the neutrino oscillation model, the total neutrino flux is conserved. However, the

active neutrino might change into sterile neutrinos, which do not participate in the elec-

troweak interaction. The solar neutrino experiments measure the total neutrino flux and

have results in agreement with the one predicted by the Standard Solar Model. So the

change of active neutrinos to sterile neutrinos is negligible, and this provide the evidence

of neutrino flavour changing during the propagation.

1.2.2.b Atmospheric Neutrino Oscillation Experiments

Another neutrino experiment, Super-Kamiokande [7] measured the atmospheric neutrino

flux, which is produced by the collision of cosmic rays in the upper level of the Earth’s

atmosphere. A high energy cosmic ray (proton) hits a nuclei in the atmosphere, creating

pions4 via a QCD process (the ”colour” interaction described by SU(3)c, with guons as

4Pions are mesons with composition ud̄ (π+), dd̄ − uū (π0) and dū (π−).
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the exchange particles), which majorly decay into muons and muon neutrinos5

π− → µ− + ν̄µ , π+ → µ+ + νµ . (1.3)

The subsequent decay of muons results in equal numbers of electron neutrinos and muon

neutrinos (with energy > 100 MeV) in the flux:

µ− → e− ν̄e νµ , µ+ → e+ νe ν̄µ . (1.4)

Therefore one would derive that the total flux of νµ and νe are produced in proportion 2 :

1. Muons with energy above GeV collide with the atmosphere before decaying, resulting

that at higher energy, the νµ : νe ratio is larger than 2.

Super-Kamiokande measured the νµ + ν̄µ and νe + ν̄e flux as a function of energy

and the zenith angle. The atmospheric neutrinos scatter with nucleons in the water in

the cylindrical tank of Super-Kamiokande via CC interaction νℓ + N → ℓ + N ′, where

ℓ = e, µ, τ and N,N ′ are nucleons. The produced charged leptons ℓ yield Cerenkov rings,

which can be detected by the photomultipliers surrounding the water tank of Super-

Kamiokande. In the water tank, high energy leptons (Eℓ ≫ mN) produced by scatterings

roughly keep the direction of the incoming neutrino, so that we can know the direction of

neutrinos by measuring the direction of scattered leptons. The zenith angle is relevant to

the neutrino propagating distance. For the down-going neutrino beam, the propagating

length is about 15 km (the height of the atmosphere) whereas the up-going neutrinos

fly 13,000 km (the diameter of the Earth) from the other side of the Earth. The Super-

Kamiokande experiment found an asymmetry between the up-going and down-going νµ

flux and no significant asymmetry for νe. The asymmetry shows the disappearance of

νµ neutrino and indicates that there is a transition of muon neutrino flavour and the

transition rate depends on the flight length of neutrinos.

5Here, in contrast with charged leptons and quarks, the expressions of electron neutrino, muon neutrino

and tau neutrino all represent flavour eigenstates rather than mass eigenstates.
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1.2.2.c Terrestrial Neutrino Oscillation Experiments

Neutrinos accelerator experiments are important in the neutrino studies (e.g. K2K

[8], T2K [9], NOνA [10] MINOS [11]-[13] OPERA [14]), with a relatively high energy

(E ∼ 1−10 GeV) and relatively short travelling distance between the source and detector

(L ∼ O(100 m) − O(103 km)). As we will discuss in the next section, the transition

amplitude is measurable when ∆m2L/E ∼ 1, where ∆m2 is the square mass difference.

For accelerator neutrino oscillation experiments, the mass square difference corresponds

to the νµ ↔ νe flavour transition. Conventionally, high energy protons are used to hit

the target to produce mesons. The charged mesons are focused in the magnetic horns.

The decay of mesons (majorly pions and Kaons) produce the νµ neutrino beams. Hence

most accelerator neutrino experiments are dedicated to studies of νµ ↔ νe and νµ ↔
νµ transition. However, alternatively, in an improved method, neutrino beams are also

produced by decays of µ− or µ+. In this case the neutrino beam in the source consists of

νµ + ν̄e or ν̄µ + νe, allowing the research of ν̄µ ↔ ν̄e transition. If the accelerator neutrino

beam energy is high (e.g. MINOS, OPERA), we can detect the νµ ↔ ντ transition.

Another important type of neutrino source of is nuclear reactors (e.g. CHOOZ [15]-

[17] and KamLAND [18]). In fission reactions (usually in commercial power reactors),

neutrons are yielded via, for example 235
92 U + n → 94

40Zr + 140
58 Ce + 2n . Neutrons decay

to reach stable matter and generate anti-electron neutrinos ν̄e. Reactor neutrinos carry

low energy from beta decays (∼ 1 − 10 MeV). Both CHOOZ and KamLAND search for

the disappearance of anti-electron neutrinos (ν̄e → ν̄e). The neutrino travelling baselines

(distance from reactor to detector) are: ∼ 1 km for CHOOZ and 250 km for KamLAND.

The neutrino oscillation amplitudes are sensitive to ∆m2L/E, where ∆m2 is the mass

square difference, L is the oscillation baseline and E is the energy of the neutrino beam.

When ∆m2L/E ∼ 1, one can obtain the maximal corresponding transition rate.
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1.2.2.d Cosmic Neutrino

Another interesting neutrino source is the Ultra High Energy Cosmic Ray (UHECR) [29]

with energy ∼ 1020 eV. However, it is not clear how the UHECR neutrinos are produced

and how long the oscillation length is. One possibility is that the proton is accelerated

in some galactic or extra-galatic object, and the proton hits background photons via

p + γ3K → ∆∗ → N + π. And the decay of ultra energy π produce neutrinos. The

neutrinos propagate 10−1 − 104 Mpc from the source to the Earth, and we can detect

them in AMANDA [30]-[33], AUGER [34] and the coming ICECUBE [35]-[38] experiment.

Unfortunately, we are still far away from detecting the UHECR neutrino oscillation. But

we hope to see some interesting phenomena at ICECUBE.

We summarize the neutrino oscillation experiments briefly in Table 1.1. Different neu-

trino appearance/disappearance detection indicate neutrinos change their flavours during

their propagating, and the transition rates depend on the energy of the neutrino and the

length of the baseline (the distance from the neutrino source to the detector). A coherent

model is needed to explain all these phenomena.

Experiment Source neutrino Neutrino detected Energy Oscillation length

Solar νe νe,µ,τ < 50 MeV < 7 × 108 m

Atmospheric νe , ν̄e , νµ , ν̄µ νe,µ,τ , ν̄e,µ,τ ∼ 1 GeV 15 − 13, 000 km

Accelerator νe , ν̄e , νµ , ν̄µ νe,µ,τ , ν̄e,µ,τ ∼ 1 − 10 GeV ∼ 100 m − 1000 km

Reactor ν̄e ν̄e,µ,τ ∼ 1 MeV ∼ 100 m − 100 km

UHECR νe , ν̄e , νµ , ν̄µ νe,µ,τ , ν̄e,µ,τ ∼ 1012−22 eV > 1 Mpc

Table 1.1: A brief summary of neutrino oscillation experiments. Notice for solar neutrino, the oscillation

happens in the outer layer of the Sun.
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1.2.2.e The Oscillation Model

The neutrino oscillation is an analogy of the K0 − K̄0 oscillation [39]. K0 and K̄0 are

mesons with quark composition ds̄ and sd̄. They have an identical mass due to the

conservation of CPT (the combination of parity, charge conjugation and time reversal).

Leading order diagrams (box diagrams) of the weak interaction generate off-diagonal

elements in their mass matrix, resulting in a mixing of K0 and K̄0. Therefore the mass

eigenstates of the Kaon is a combination of K0 and K̄0 (K1 = 1√
2
(K0 + K̄0) and K2 =

1√
2
(K0 − K̄0)), which can be seen by diagonalising the K0, K̄0 mass matrix. As the K0

or K̄0 propagates, K0 can convert to K̄0 and vice versa.

In the SM, left-handed neutrinos only feel the weak force. Therefore neutrinos are

always generated (and detected) via weak interactions. The Lagrangian of the charged

current and W gauge boson is written as

LW = − g√
2

∑

α

(
ℓLαγ

λνLαW
−
λ + h.c.

)
, (1.5)

where α = e, µ, τ are the index for the charged lepton mass eigenstates, and neutrinos

are written in their flavour eigenstates να, associated with each corresponding charged

lepton. Therefore, neutrinos generated via weak interaction e.g. charged lepton decay or

leptonic nuclear process, are in their flavour eigenstates. If neutrinos are massless (or have

identical masses), one can not distinguish different mass eigenstates. Provided different

masses for three generation neutrinos are introduced, the flavour eigenstates of neutrinos

are in principle certain superpositions of mass eigenstates,

να =
∑

i

U∗
αi νi . (1.6)

Or we can invert Eq.(1.6), writing neutrino mass eigenstates as a combination of flavour

eigenstates

νi =
∑

α

Uiα να . (1.7)

The neutrino mixing matrix Uiα is called the PMNS (Pontecorvo Maki Nakagawa Sakata)
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[141] matrix and it is required to be unitary6.

Conventionally the PMNS matrix is parametrised in three rotation angles, similar to

CKM (Cabibbo-Kobayashi-Maskawa) matrix [41], and potential Majorana phases

V ν † = P R23U13R12P12 , (1.8)

where

P =




eiω1 0 0

0 eiω2 0

0 0 eiω3


 , R23 =




1 0 0

0 cν23 sν23

0 −sν23 cν23


 ,

U13 =




cν13 0 sν13 e
−iδν

0 1 0

−sν13 eiδ
ν

0 cν13


 , R12 =




cν12 sν12 0

−sν12 cν12 0

0 0 1


 ,

P12 =




eiβ1 0 0

0 eiβ2 0

0 0 1


 ,

(1.9)

and sνij = sin θνij, c
ν
ij = cos θνij. The phase matrix P in the right hand side of Eq. (1.8) may

always be removed by an additional charged lepton phase rotation. The PMNS neutrino

mixing matrix UPMNS [141] is a product of unitary matrices V E and V ν †, where V E is

associated with the diagonalisation of the charged lepton mass matrix. Since the charged

lepton mixing angles are expected to be small UPMNS ≈ V ν † in the first approximation.

One comment about the quark mixing: the quark generated in the electroweak in-

teraction is also a superposition of three mass eigenstates. However, quark oscillations

are not observed, since the superposition state loses its coherence in a extremely short

time/distance after the quark is produced, due to the heavy masses of quarks.[42]. In

contrast, the neutrino decoherence distance is a much larger scale because the masses of

neutrinos are 10 orders of magnitude smaller than quarks.

6Taking into account of the seesaw model, which will be discussed in Section (1.2.5), this matrix is

quasi-unitary, as a result of left-handed right-handed neutrino mixing. However, the violation of unitarity

is strongly suppressed by the RH neutrino mass.

11



The propagation of each neutrino mass eigenstate in vacuum can be described by the

equation for energy eigenstates:

i
∂

∂t
|νi〉 = Ei |νi〉 , (1.10)

a free particle solution of which is

|νi(t)〉 = e−iEit |νi(0)〉 , (1.11)

where |νi(0)〉 is the initial state of the neutrino. Due to the smallness of neutrino mass,

we have an approximation in the ultra-relativistic limit of E ≃ p≫ m,

Ei =
√
p2
i +m2

i ≃ pi +
m2
i

2 pi
. (1.12)

We can assume that pi = p ≃ E = Ei, due to the fact that different mass eigenstates

are produced coherently7. Since the generation and detection of neutrinos are always

associated with a charged lepton signal, (e.g. a scintillation detector observes neutrino by

the process νe + p → n + e−) we are interested in the transition probabilities of flavour

eigenstates associated with charged lepton mass eigenstates. Inserting Eq. (1.12) into Eq.

(1.11), the neutrino mass eigenstate after propagating over distance L (also called length

of baseline) becomes

|νi(t)〉 = e−iEte−im
2
iL/2E|νi(0)〉 . (1.13)

We notice that the factor e−iE(t−L) is a common factor for all mass eigenstates. Using the

mixing relation Eq.(1.6), the amplitude of finding neutrino flavour β in a coherent flavour

α neutrino beam is

Amp(να → νβ) = 〈νβ|να(t)〉 = e−iEt
∑

i

U∗
αie

−im2
iL/2EUβi . (1.14)

The transition probability of α to β is the modulus squared of amplitude

P(να → νβ) = |Amp (να → νβ)|2

= δαβ − 4
∑

i>j

Re(U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ijL/4E)

+ 2
∑

i>j

Im(U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ijL/4E) , (1.15)

7At the time of writting, the ’same energy, same momentum’ assumption is re-investigated in [43].
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where ∆m2
ij ≡ m2

i −m2
j is the mass square difference of two neutrinos. We can notice that

violation of unitarity would lead to non-conservation of total neutrino particle number in

the neutrino flux.

We also notice that one can not detect the mass hierarchies (the sign of ∆m2
ij) of

neutrino by measuring the oscillation possibilities in vacuum. However the transition

probability in Eq.(1.15) describe the neutrino oscillation in vacuum. Taking into account

matter effects [44], when neutrinos propagate in matter, only the electron flavour neutrino

scatters with the electrons in matter (in the Sun or the Earth) via the charged current

process, and all the three flavours interact with electrons and neutron/protons via neutral

current. The charged current process gives an extra potential term for the electon neu-

trino. Then the oscillation can be enhanced or suppressed by this extra term. Especially

when solar neutrinos propagate in the outer side of the sun, the matter effect of electrons

in the sun changes the transition rate of neutrinos drastically. This effect is called the

MSW [45] effect, which shows that δm2
12 < 0. The terrestrial neutrino experiments hope

to clarify the hierarchy of the neutrino via matter effect.

The parameters of neutrino oscillations are now well measured. Global fitting results

in [46] However, the separate masses for three neutrinos are still unknown. At least one

Parameter Best fit 2σ 3σ

∆m2
21 [10−5eV2] 7.6 7.3–8.1 7.1–8.3

|∆m2
23| [10−3eV2] 2.4 2.1–2.7 2.0–2.8

sin2 θ12 0.32 0.28–0.37 0.26–0.40

sin2 θ23 0.50 0.38–0.63 0.34–0.67

sin2 θ13 0.007 ≤ 0.033 ≤ 0.050

Table 1.2: Best-fit, 2σ and 3σ data for the three flavour neutrino oscillation parameters from global

data.

extra independent mass measurement is required to determine the masses of neutrinos.
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In the scenario of strong hierarchical neutrino masses, the second and third neutrino

mass can be expresses approximately by

m2 =
√
m2

1 + ∆m2
21 , m3 =

√
m2

1 + ∆m2
31 , (1.16)

for normal hierarchy, and

m1 ≈ m2 =
√

∆m2
23 , (1.17)

for inverted hierarchy. However, in order to know the exact neutrino mass pattern, we

need measure the absolute scale of neutrino mass.

1.2.3 Absolute Scale on Neutrino Masses

Neutrino oscillations only measure two mass squared differences. The absolute scales of

neutrino masses are not given by measuring the transition probabilities. We do not know

the hierarchy of neutrinos, whether the third generation is lighter (inverted hierarchy) or

heavier (normal hierarchy) than the first and second generation of neutrino. These two

possible patterns are illustrated in Fig. 1.1. To know the absolute scale of neutrino mass,

one looks into the non-oscillation experiments.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Log HmMIN @eVD L

-3

-2

-1

0

L
og
Hm
@e

V
D
L

m1

m2

m3

NH

QD

NORMAL HIERARCHY

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Log HmMIN @eVD L

-3

-2

-1

0

L
og
Hm
@e

V
D
L

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Log HmMIN @eVD L

-3

-2

-1

0

L
og
Hm
@e

V
D
L

m3

m1,m2

IH

QD

INVERTED HIERARCHY

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Log HmMIN @eVD L

-3

-2

-1

0

L
og
Hm
@e

V
D
L

Figure 1.1: Neutrino masses versus the lightest neutrino mass for normal hierarchy and inverted hierarchy.

Figure is taken from [56].

Neutrino masses can be measured via cosmological methods. The small perturba-

tions in the early universe, which possibly come from the quantum fluctuation evolve to

the large scale structure (LSS) of the present universe. After thermal decoupling, the
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neutrino becomes a free-streaming particle with a certain wavelength and wave-number,

which are functions of the neutrino mass. The masses of neutrinos change the tem-

perature anisotropy spectrum and matter power spectrum of the Cosmology Microwave

Background (CMB) Radiation. With Wilkinson Microwave Anisotropy Probe (WMAP)

CMB data together with Galaxy redshift surveys and Lyman-α forest data [47] [48], one

can arrive at the upper bounds of the neutrino abundance and the summation of neutrino

mass [49]

∑

i

mi < 0.61 eV (95%CL) . (1.18)

From this upper limit, one still can not tell the hierarchy of neutrino masses. However,

future experiments including PLANCK lensing and CMBpol lensing will provide a sensi-

tivity of 0.05 eV, sufficient to distinguish the pattern of neutrino masses.

Terrestrial neutrino mass experiments include the Tritium β decay experiment, e.g. Mainz

neutrino experiment [50] and KATRIN [51], which measure the energy spectrum of

3H → 3He+e−+νe. The maximal energy of the electron is Q−mν , where Q = m3H−m3He.

Around the end-point the electron energy spectrum depends on the neutrino phase space

Eν pν . Assuming there is one generation of neutrino with mass mνe
, the electron energy

spectrum can be expressed as

dNe

dEe
= F (Ee)(Q− Ee)

√
(Q− Ee)2 −m2

νe
, (1.19)

where F (Ee) can be considered as a constant. When three generations of light neutri-

nos are taken into account, the electron neutrino is combination of three neutrino mass

eigentates, with masses mi, i = 1, 2, 3. And therefore the spectrum has the form

dNe

dEe
=
∑

i

|Uei|2F (Ee)(Q− Ee)
√

(Q− Ee)2 −m2
νi
. (1.20)

Comparing Eq.(1.19) and Eq.(1.20), we can see that the tritium β decay experiment is

sensitive to the single effective parameter [52]

mνe
=

√√√√
3∑

i=1

|Uei|2m2
i . (1.21)
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The recent tritium β decay experiments have sensitivity of ∼ 2 eV, which is not small

enough to distinguish the hierarchical and inverted hierarchical pattern.

Another important experiment is the neutrinoless double beta decay experiment. Most

promisingly, if there are left-handed (light) neutrino Majorana mass terms, neutrinoless

double beta decay (0νββ) [53] of a nucleus is allowed8. The neutrinoless double beta

decay ((Z,A) → (Z + 2, A) + 2e−) is a rare nuclear process (Fig. 1.2). The rate of

neutrinoless double beta decay depends on the nuclear matrix element [54] [55], which

can be calculated separately and the effective Majorana neutrino mass

|〈mee〉| =

∣∣∣∣∣

3∑

i=1

U2
eimi

∣∣∣∣∣ . (1.22)

One should notice that if the light neutrino mass is Dirac, the neutrinoless double beta

decay would not happen. Hence this experiment is critical to test if the neutrino masses

are Majorana.

e− e−

W W
νe

Nuclear Process

(Z,A) (Z + 2, A)

Figure 1.2: Feynman Diagram for neutrinoless double beta decay.

Since we know the element Ue3 of neutrino mixing matrix Uαi is small, but Ue2 and Ue1

are relatively large, the hierarchy of neutrino masses is crucial for the width of neutrinoless

double beta decay. According to Eq. (1.22), in order to have a relatively large value of

mee, neutrino masses must have an inverted hierarchy, where the third family of neutrino

8In supersymmetric models, neutralinos being Majorana particles also contribute to 0νββ in the case

of R parity violation.
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is the lightest one. On the other hand, if 〈mee〉 < 0.01 eV is measured, the inverted mass

hierarchy would be ruled out, as inverted hierarchy leads to |〈mee〉| ∼ ∆m13 ∼ ∆matm.

1.2.4 The Neutrino Mass and Mixing Pattern

The quark mixing (CKM matrix) and neutrino mixing (PMNS matrix) are quite different.

The mixing angles in the CKM matrix are relatively small, whereas two of the three

mixing angles in the PMNS matrix are measured to be large, leaving the third one θ13

small. Notice that the possibility of a zero mixing θ13 is not ruled out experimentally.

The values of mixing angles can be found in Table 1.2.

One finds an interesting approximation sin θ12 ≃
√

1/3, sin θ23 ≃
√

1/2 and sin θ13 ≃
0, and therefore we can write the PMNS matrix in an approximate scheme [57]

Utri−bi =




√
2
3

√
1
3

0

−
√

1
6

√
1
3

√
1
2√

1
6

−
√

1
3

√
1
2


 . (1.23)

The reason for large mixing of neutrinos is unknown. One interesting approach is to

introduce certain flavour symmetries with the seesaw model, which gives natural small

Majorana masses to neutrinos.

1.2.5 The Seesaw Model

The fact that the heaviest neutrino is six orders of magnitude lighter than the lightest

charged fermion, the electron, requires an explanation. However the answer might be the

physics at a scale higher than the scale of the SM. From the point of view of an effective

theory, light neutrino masses can be obtained via a dimension 5 operator, after integrating

out heavy particles or extra dimensions.

The canonical seesaw model includes RH neutrinos (at least 2 generations in order to
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obtain correct masses and mixing patterns for light neutrinos9, but naturally assumed to

be of 3 generations), which are not observed yet. The RH neutrino can be introduced

in Grand Unification Models, and they have to be neutral in the SM gauge, otherwise it

would lead to unwanted signal in colliders. They couple to left-handed lepton doublets via

Yukawa couplings and have Majorana mass MR much larger than the electroweak scale.

The Lagrangian for a RH neutrino Yukawa interaction reads

Lmass = hN̄ℓLH − 1

2
MRNRN

C
R + h.c. , (1.24)

where h is the Yukawa coupling and H is the Higgs field doublet in the SM. After the

electroweak symmetry breaking, the neutral component of Higgs field develops a vacuum

expectation value (vev) v, and therefore yields Dirac mass terms hvνN , to neutrinos.

Here we ignore the flavour index and write the mass term of ν and N in a form of matrix,

where N ≃ NR +NC
R ,

Lmass =
1

2
(ν N)


 0 hv

hv MR




 ν

N


 , (1.25)

The light neutrino mass appears in the 1-1 entry of the mass matrix after diagonalising

mν =
1

2

(
MR −

√
M2

R + 4(hv)2

)
. (1.26)

In the limit of MR ≫ v, the light neutrino mass is written as

mν = −(hv)2

MR

. (1.27)

We see that the light neutrino mass is inversely proportional to the RH neutrino Majorana

mass. If one sets Yukawa couplings to be of order 1, a RH neutrino mass O(1015) GeV

leads to a light neutrino mass mν ∼
√
δm2

atm ∼ 0.05 eV, the lower bound on the heaviest

left-handed neutrino mass.

Another limit is where the RH neutrino Majorana masses vanish MR = 0, which

means the masses we detect in neutrino oscillation are Dirac-type. In this scenario, light

9For the case of only one generation of RH neutrino, 3 light neutrino masses and 3 mixing angles can

be expressed by the 4 parameters – the RH neutrino mass and 3 Yukawa couplings. One finds that it

cannot match the oscillation data.
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neutrino masses still can be explained by several mechanisms, e.g. higher dimensional

theories [58].

In the Dirac neutrino seesaw model [59], the bare Yukawa couplings are forbidden

between LH neutrinos and RH neutrinos, and the LH neutrinos and RH neutrinos both

couple to a vector-like lepton, which is assumed to be heavy. Integrating out the heavy

field gives a strong suppression on the effective Yukawa coupling.

In extra dimensional models [60], the RH neutrinos live in the 5-dimensional bulk, and

SM particles live in a (3+1)-dimensional hyperplane. Integrating out the extra dimensions,

the effective 4-dimension Yukawa couplings are suppressed by a factor M∗/Mpl. And

therefore a small Dirac neutrino mass is obtained.

Nevertheless, a Majorana neutrino is more interesting, as it leads to several lepton

number violating processes e.g. neutrinoless double beta decay .

1.3 Baryogenesis and Leptogenesis

Light neutrino Majorana masses would lead to low energy lepton number violating phe-

nomenology, including neutrinoless double beta decay [53], whereas heavy RH neutrino

masses would have consequences at high energy, including lepton number violating pro-

cesses in LHC [61] and lepton number violating decays of RH neutrinos, which plays a

crucial role for Leptogenesis. For a review of Leptogenesis, we refer readers to [62] and

three Ph.D. theses [63][64][65].

In this section, we introduce three major mechanisms to generating net baryon number

in the present universe: Leptogenesis, Affleck-Dine Leptogenesis and electroweak Baryo-

genesis. We discuss major obstacles of each mechanism and possible ways to solve them.
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1.3.1 Measuring the Baryon Asymmetry of Universe

How can we know that the universe is made of matter rather than anti-matter or a mixture

of matter and anti-matter? Firstly, we can verify the earth is clearly matter. Secondly,

the sun radiates electrons rather than positrons from nuclear reactions, and therefore

we know the sun is made of matter too. Based on the fact that no electron-positron

annihilation is observed when the solar electron flux reaches other planets, we can make

sure the solar system is majorly made of matter. In fact, cosmic observation has verified

that the universe is made of matter at least at scale of 50-60 Mpc [66]. Hence, there is no

need to doubt the matter universe.

There are two independent methods to measure the net baryon abundance ηB ≡ nB/nγ

of the universe, where nB and nγ are the number density of baryon and photon respec-

tively. One is to measure the ratios of light elements produced by Big Bang Nucleosynthe-

sis. Another is to measure the spectrum of the Cosmic Microwave Background radiation.

1.3.1.a Big Bang Nucleosynthesis

According to the big bang theory of the universe, light elements (D, 3He, 4He, 7Li ...) are

produced when the universe cools to the binding energy of the nuclei T ∼ 1 MeV. Their

density evolution can be described by Boltzmann Equations

dni
d t

= −3H ni + Γi , (1.28)

where ni are the densities of light elements i = n, p,D · · · , H is the Hubble expansion rate

and Γi is the reaction rate relevant to each element. The nucleosynthesis interaction net-

work10 includes the processes generating primordial elements and intermediate elements.

Reaction rates are proportional to the number densities of initial state particles, which

could be light elements and photons. Therefore the ratios of light elements are sensitive

to the baryon number density and the photon density. In [67] [68], the ratio of 4He to

10A full set of interactions can be found in Appendix (D)

20



baryon Yp, the ratio of D to H YD, the mass fraction of 3He y3 and mass fraction yLi are

given by a fit around ηB ≃ 6 × 10−10

Yp ≃ 0.2485 ± 0.0006 + 0.0016(η10 − 6) , (1.29)

yD = 2.64(1 ± 0.03)

(
6

η10

)1.6

, (1.30)

y3 ≃ 3.1(1 ± 0.01) η−0.6
10 , (1.31)

yLi ≃ η2
10

8.5
, (1.32)

where η10 = 1010ηB is the rescaled baryon to photon ratio. Fig. 1.3 shows the primordial

abundance and mass fractions of several light elements as a function of η10. The red-

shaded band indicates a concordant value of baryon number

ηB = 5.7 ± 0.4 × 10−10 . (1.33)

1.3.1.b Cosmic Microwave Background

The most accurate measurement of baryon asymmetry nb/nγ so far is provided by the

Wilkinson Microwave Anisotropy Probe (WMAP), which detects tiny fluctuations in the

cosmic microwave background (CMB) radiation. The CMB photon comes from decoupling

from scattering with matter. When the temperature drops to ∼ 0.25 eV, the major

thermal scattering for photons is Thomson scattering

γ + e− ↔ e− + γ , (1.34)

with a reaction rate ΓTh = neσTh. ne is the electron number density and σTh is the

Thomson scattering cross section

σTh = 1.71 × 103 GeV−2 . (1.35)

When the Hubble parameter11 drops to H ∼ ΓTh, the scattering of photons deviates

from equilibrium and the photon becomes a free streaming particle. This is called the

11The definition and the expression of the Hubble parameter can be found in Appendix (E.1).
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Figure 1.3: The number densities of BBN products, as a function of baryon-photon ratio. Figure is taken

from [69]

last scattering and photon decoupling. One finds that photon decoupling happens at

T ≃ 0.26 eV, corresponding the present CMB temperature TCMB = 2.73K. One finds the

distribution of the temperature field is not homogeneous. Tiny angular distributions of

CMB anisotropies, which is assumed come from the quantum fluctuation during inflation

(exponential expansion of the Universe driven by the negative pressure of vacuum energy,

which happened before Nucleosynthesis), are observed by COBE [70]-[72] and WMAP

[49]. The distribution is described by

∆T (θ, φ)

Tmean

=
T (θ, φ) − Tmean

Tmean

, (1.36)
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and it can be expressed in spherical harmonics

∆T (θ, φ)

Tmean

=
∞∑

ℓ=1

ℓ∑

m=−ℓ
aℓmY

ℓ
m(θ, φ) . (1.37)

Here aℓm are the coefficents for spherical harmonics functions Y ℓ
m(θ , φ). The spectrum is

sensitive to some cosmological parameters, including decoupling time td (the time when

the Universe cools down to the moment the photons decoupled from electrons), matter

density Ωmh
2, baryonic matter density Ωbh

2 and energy density Ωh2 (Ω ≡ ρ/ρc, where

ρc = 3H2/8πGN .). Fig. 1.4 shows how the spectrum varies with different values of Ωbh
2.

The matter content in the Universe plays a role in the evolution of anisotropies of the

CMB spectrum. One uses Boltzmann Equations and Euler fuild equations to describe

the temperature perturbation, and find that this can determine the matter content of the

Universe. For the details of how Ωb effects the spectrum, we refer the reader to [73] and

[74]. How the variation of matter density changes the temperature angular spectrum is

illustrated in Fig. 1.4. One finds the baryon asymmetry [49]

ηB = 6.225 ± 0.17 × 10−10 . (1.38)

1.3.1.c Sakharov’s three conditions

In 1960’s, Sakharov proposed three conditions that are critical to explain the baryon

asymmetry of the universe [76].

(i) There must be a process violating baryon number.

(ii) There must be a process violating C and CP.

(iii) The process must be out-of-thermal equilibrium.

The first condition ensures that a net baryon number can be generated. The second

condition ensures that the process generating baryon number and the process generat-

ing anti-baryon number have different rates, and therefore a net baryon number can be
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Figure 1.4: Temperature angular spectrum with different Ωb varying near its central value. Figure is

taken from [75]

maintained. The third condition means the process can not be inverted. So the generated

baryon number would not be totally erased by the time reversed processes.

1.3.2 Sphaleron Process

One of the successes of the SM is a natural explanation of baryon and lepton num-

ber conservation law. However, baryon and lepton number violation exists via quantum

tunnelling between topologically different vacua (the instanton process) [77][78]. At low

temperature, the transition is strongly suppressed by a factor

e−(4π/αW ) ∼ 10−160 , (1.39)

where αW ≃ 1/29 in the electroweak theory.

The classical baryon current and lepton current

jµB =
1

Nc

∑

i,a

q̄ai γ
µqai , jµL =

∑

i

ℓ̄iγ
µℓi , (1.40)

24



where i and a are the flavour index and colour index respectively, are conserved due

to the B and L symmetry naturally induced by the Standard Model. However at high

temperatures, a nonperturbative topological transition becomes active. One can find that

both baryon number and lepton number are violated by the triangle anomaly

∂µj
µ
B =

3

8π2
Tr(FµνF̃

µν) , (1.41)

where Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] is the SU(2) gauge field strength. Similarly we find

the lepton current jµL satisfies

∂µj
µ
L =

3

8π2
Tr(FµνF̃

µν) . (1.42)

One can see the current jµB − jµL is conserved from Eq.(1.41) and Eq.(1.42)

∂µ(j
µ
B − jµL) = 0 . (1.43)

And jµB + jµL is violated:

∫
d4x∂µ(jµB + jµL) =

∫
d4x

3

4π2
Tr(FµνF̃

µν) . (1.44)

The RHS of Eq.(1.44) is the divergence of the topological current. We define

Tr(FµνF̃
µν) = ∂µK

µ , (1.45)

which could be non-zero. One introduces the Chern-Simons number when we integrate

K0 over space

nCS ≡ 1

16π2

∫
d3xK0 . (1.46)

Different vacua configurations have different Chern-Simons numbers nCS = 0, ±1, ±2 · · ·
but the same energy. And a change in the Chern-Simons number δnCS = 1 would lead

to an effective 12-fermion interaction

OB+L =
∏

i=1,2,3

(qLi
qLi
qLi
ℓLi

) , (1.47)
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This allows the ∆B = ∆L = ±3 process, like

uc + dc + cc ↔ d+ 2s+ 2b+ t+ νe + νµ + ντ , (1.48)

where all the components are left-handed. Notice that this process conserves color and hy-

per/electric charge. This means both B and L number can be generated via the sphaleron

process. And if leptons (baryons) are generated by some mechanism, the electroweak

sphaleron process can convert them into left anti-baryons (anti-leptons). However, the

electroweak sphaleron process always keep B + L number vanishing in the hot plasma,

so the number of leptons (baryons) and anti-baryons (anti-leptons) will be balanced, and

only a part of leptons will be transited into baryons. It is clear that in order to generated a

positive baryon number in the Universe via sphaleron process, we need to have a negative

lepton asymmetry.

Electroweak sphaleron process is exponetially suppressed at zero temperature, but at

temperature T ∼ Esph, where Esph is of order of the electroweak scale, one finds that the

tunnelling probability P ∝ e−
Esph

T . And when the temperature T ≫ Esph, the rate of

the process is proportional to T 4. So it is clear that when the temperature approaches

the electroweak scale, the transition between different vacua can be substantial, leading

to the violation of B, L and B + L numbers. We can compare Γsph with the Hubble

parameter at temperature T (When Γsph > H(T ), electroweak sphaleron process is in

thermal equilibrium), and find that the electroweak sphaleron process can be substantial

when [79]

100 GeV < T < 1012 GeV . (1.49)

The sphaleron process has two important consequences for Baryogenesis: (a) It generates

baryon number (Electroweak Baryogenesis) (b) It converts lepton number into baryon

number (Leptogenesis and Affleck-Dine mechanism).

26



E

nCS = 0 1 2 3−1

Esph

sphaleron

instanton

Figure 1.5: The transition between different vacua

1.3.2.a The rate of B-L Transition

At high temperature, the sphaleron processes have reaction densities much larger than the

Hubble expansion rate, which makes the relevant particles in equilibrium. In addition,

Yukawa interactions of leptons and quarks are also in thermal equilibrium at certain

temperatures. In this thesis, we will be working in the range of temperature where all

Yukawa interactions of leptons/quarks (also exotic particles in Beyond Standard Model)

are in equilibrium. The ratios of particle densities nX of species X, can be calculated via

chemical potentials µX via the equilibrium conditions of sphaleron processes and Yukawa

interactions.

At high temperature T ≪ m, the chemical potentials are related to number densities

of particles differently for bosons and fermions:

nX − nX̄ =
gXT

3

6
· µX/T + O

(
µ3

T 3

)
for fermions

nX − nX̄ =
gXT

3

6
· 2µX/T + O

(
µ3

T 3

)
for bosons (1.50)

In this section, we firstly consider the non-supersymmetric case. The ratio of particles

in equilibrium depends on the reactions involved. In a model with Nf flavours quark

and lepton, we need to know the relations of number densities of left-handed quark Q,

right-handed up and down type quark u and d, left-handed lepton ℓ, right-handed charged

27



lepton e, Higgs field H. They have chemical potentials µQ, µu, µd, µℓ, µe and µH respec-

tively, The relations comes from:

(a) The electroweak sphaleron process conserves B − L number:

3µQ + µℓ = 0 , (1.51)

where the factor 3 comes from the colour degrees of freedom of quarks.

(b) The QCD sphaleron process balances left-handed quarks and right-handed quarks

2µQ − µu − µd = 0 . (1.52)

(c) The total hypercharge in the plasma should be neutral

∑

flavour

(nQ + 2nu − nd − nl − ne) + nH = 0 , (1.53)

or in the form of chemical potentials:

∑

flavour

(µQ + 2µu − µd − µl − µe) + 2µH = 0 . (1.54)

The coefficient in front of µH comes from the difference of chemical potential for bosons

and fermions Eq.(1.50).

(d) The Yukawa couplings for quarks are in equilibrium12

µQ − µH − µd = 0, µQ + µH − µu = 0 . (1.55)

Notice that one of these two equations is redundant.

(e) When the temperature of the Univere drops to T ∼ 104−5 GeV, the Yukawa inter-

action rate ∼ h2
eT is comparable to the Univere expanding rate H, the electron Yukawa

interactions comes into equilibrium.

µl − µH − µe = 0 . (1.56)

12The Yukawa interactions come into equilibrium when the reaction rate Γ ∼ h2T is comparable with

the Hubble expansion rate H.
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One should notice that when the temperature is higher than 104−5 GeV, the chemical

potential for the RH electron is zero. And the relations of chemical potentials change

slightly. Using Eq.(1.51)-(1.56), the ratio of leptons and up-type quarks in the plasma

can be obtained

µu =
2Nf − 1

6Nf + 3
µl , (1.57)

We are interested in the ratio of nB to nB − nL

nB = C(nB − nL) , (1.58)

where C can be given by

C =
8Nf + 4

22Nf + 13
. (1.59)

In the SM, Nf = 3, one finds C = 28/79. The coefficient of C stands for that once one

unit of B − L number is generated in the plasma of the early universe, 28/79 of it will

stay in the form of baryon.

1.3.3 Leptogenesis

In this section, we introduce the canonical Leptogenesis mechanism from thermally pro-

duced RH neutrino decays [80]13. We will discuss the CP violation of RH neutrino decay

in the Standard Model with three additional generations of RH neutrinos. And we will

briefly introduce the form of Boltzmann Equations of lepton asymmetry. However, the

details of Leptogenesis can be found in Chapter 3 and (4).

1.3.3.a Lepton Asymmetric decay of RH neutrino

If RH neutrinos have large Majorana masses, lepton number violating processes likely

happen at the energy scale of their masses. These processes include decay, inverse decay

13For reviews, we refer the reader to [81] [82].
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and scattering. RH neutrino decay is the most intriguing process, since it is naturally

out-of-thermal equilibrium as the universe cools down. However, significant lepton asym-

metries can also be produced by scatterings [83].

The minimal necessary extension of the Standard Model should include three families

of gauge singlet RH neutrinos with Majorana masses. In addition, these RH neutrinos

should couple to the Standard Model lepton doublets and Higgs doublets via Yukawa

couplings. In the RH neutrino mass-eigenstate basis, the additional Lagrangian is

L = −1

2
MiN

c
iNi − hijHuLjN

c
i + h.c. . (1.60)

Due to the Majorana nature, the RH neutrinos can decay into leptons and Higgs also

anti-leptons and anti-Higgs through the Yukawa couplings. At tree level the decay width

reads

ΓtotNi
= Γ(Ni → Hu + ℓ) + Γ(Ni → H∗

u + ℓ̄) =
1

8π
(hh†)iiMi , (1.61)

Since the Yukawa couplings could be complex in principle, one could expect CP vio-

lation in this decay. The amount of CP violation can be defined as

εi,j ≡
ΓNi→ℓj+H − ΓNi→ℓ̄j+H∗

ΓNi→ℓj+H + ΓNi→ℓ̄j+H∗

, (1.62)

where the index i stands for the three generations of RH neutrinos, and j = e, µ, τ is

the lepton flavor index. In the case of strongly hierarchical RH neutrinos M1 ≪ M2,3,

only the lepton asymmetries from N1 decays need to be taken into account. This is

because N2,3, being heavier particles, decay earlier than N1 and the lepton asymmetries

produced by N2,3 would be washed out by N1 mediated scattering processes. However, in

some special case of Yukawa couplings, the lepton asymmetry produced by N2 decay may

exist in a certain direction (a combination of lepton flavours), which has small Yukawa

couplings, preventing the lepton asymmetries from being washed-out. This scenario is

called N2 Leptogenesis [84]. However, we do not consider this scenario in this thesis. This

first order CP asymmetry can be calculated from the interference terms of the tree level

diagram and one loop diagrams, in Fig. 1.6.

30



N1

L

Hu

Nk

L

Hu

N1

Hu

L

Nk

L

Hu

N1

L

Hu

(a)

(b)

(c)

Figure 1.6: RH neutrino decay at tree level (a) and one loop, given by the vertex correction (b) and the

self-energy correction (c).

In the framework of the Standard Model with right-handed neutrinos, it reads [85, 86]

[87]

ε1,i =
1

16π

1

[hh†]ii

∑

j 6=i
Im
{
[hh†]2ij

} [
fV

(
M2

j

M2
i

)
+ fS

(
M2

j

M2
i

)]
, (1.63)

where the functions from the vertex correction and the self-energy correction are given by

fV (x) =
√
x

[
1 − (1 + x) ln

(
1 + x

x

)]
and fS(x) =

√
x

1 − x
. (1.64)

In the limit M1 ≪M2,3, we have

ε1,j ≃ − 3

16π

Im
[
(hh†)2

1j

]

(hh†)11

M1

Mj

. (1.65)

Leptogenesis is indirectly dependent on light neutrino masses, because the Yukawa

couplings linking RH neutrinos to leptons and the RH neutrino mass both leed into

the light left-handed neutrino masses, which are known to be < 0.1 − 1 eV. An upper

bound on the CP asymmetry is derived [88]. Under this condition, to achieve successful

Leptogenesis, M1 > 109 GeV is required. This leads to an gravitino-over-production

problem, which will be discussed in Section (1.3.3.d). And, an extension to the canonical

picture is required.
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1.3.3.b Boltzmann Equations

In this section, we briefly review the Boltzmann Equations (BE) for the evolution of

the thermally produced lightest RH neutrino and the lepton asymmetry (in one flavour

approximation). The full details of the Boltzmann Equations will be given in Chapter 4.

Boltzmann Equations are a set of differential equations that describe the dynamical

evolution of RH neutrinos and lepton/baryon number. The third Sakharov condition

is reflected in the BEs: the processes of generating lepton number are out-of-thermal

equilibrium.

Possible particles involved in generating baryon number in the universe are RH neu-

trino, leptons (both left-handed and right-handed) and quarks, which are converted from

LH lepton by the electroweak sphaleron process. Since the electroweak sphaleron process

conserves B − L number, we write the coupled Boltzmann equations for RH neutrino

number and B − L number (in single flavour):

dYN1

dz
= − 1

sHz
(γD + γS)

(
YN1

Y eq
N1

− 1

)
, (1.66)

dYℓ
dz

= − 1

sHz

[
ε(γD + γS)

(
YN1

Y eq
N1

− 1

)
− γW,∆L=1

Yℓ
Y eq
ℓ

]
, (1.67)

where z ≡M1/T is a dimensionless parameter with T the temperature of the hot plasma

in the universe. γD, γS and γW are the reaction densities of decaying, scattering and

wash-out process respectively. H is the Hubble expansion rate. YN1
≡ nN1

/s is the

abundance of lightest RH neutrino, normalised by the entropy density of the Universe.

YB−L ≡ (nB − bL)/s is the abundance of B − L. Y eq
N1

and Y eq
B−L are the abundances in

equilibrium of N1 and B − L respectively. We have

Y eq
B−L = Y eq

Q = Y eq
ℓ ≃ 45

π4g∗
, Y eq

N1
≃ 45

2π4g∗
z2K2(z) . (1.68)

Here, K2(z) is the second modified Bessel function. The details of the Boltzmann Equa-

tions can be found in Chapter 4.

Fig. 1.7 shows a typical numerical solution of Boltzmann Equations, where the initial
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conditions are set to be YN1
(z ≪ 1) = Yℓ(z ≪ 1) = 0 at z ≪ 1. In this case, we assume all

the right-handed neutrinos are produced thermally (via scatterings and inverse decays)

after the inflation and reheating. Alternatively, the initial condition can be YN1
(z ≪

1) = Y eq
N1

or YN1
(z ≪ 1) = ∞ corresponding to the RH neutrinos are produced from the

inflaton decay in some certain inflation models. However, as we will discuss the initial

conditions in Section (4.3), the initial condition would not change the final B−L number

density about 1 to 2 orders of magnitude. In this thesis, we constraint ourselves to the

scenario of thermally produced RH neutrino after inflation.
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Figure 1.7: Evolution of YN1
abundance (the red line) and Y|B−L| asymmetry (the green line) for M1 =

1011 GeV , ε1 = 4.6 × 10−6 and K = 2.3

The reader may notice that there is a ’tail’ for the Y|B−L| line. The reason is the B−L
number shifts from negative to positive during the evolution. The result from numerical

calculation leads to the tail in the log-log plot.

1.3.3.c The Davidson-Ibarra Bound

An intriguing part of Leptogenesis is that the lepton asymmetry εi,α is constrained mea-

surable light neutrino masses [88].

The total decay width of the first generation of RH neutrinos is proportional to mod-

ulus squared of the Yukawa couplings of the lightest RH neutrino, according to Eq.(1.61).
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We introduce a mass parameter

m̃1 = (hh†)11
〈H〉2
M1

, (1.69)

as above 〈H〉 = v is the vacuum expectation value of the Higgs field. The Yukawa

couplings in the seesaw model satisfy mν = hTM−1hv2, and we can write them in the

form

h =
1

v
D√

M RD√
M U † , (1.70)

whereD√
M ≡ diag(

√
M1,

√
M2,

√
M3 ) when we work in the basis of the RH neutrino mass

eigenstates, R is a orthogonal matrix, and U is the PMNS matrix. Inserting Eq.(1.70)

into Eq.(1.65), we have

ε1 = − 3

8π

M1

v2

∑
jm

2
j Im(R2

1j)∑
jmj|R1j|2

. (1.71)

Using the orthogonal condition
∑

j R
2
1j = 1, we can arrive at a upper limit of the CP

asymmetry

|ε1| ≤
3

8π

M1

v2
(m3 −m1) . (1.72)

The final baryon number YB needs to be calculated by Boltzmann Equations, which is

linked to the lepton asymmetry of RH neutrino decays by YB−L = ηeffε1, where ηeff .

10−(2−3) is the efficiency factor. Taking the vacuum expectation value of the Higgs field

v = 246 GeV and the observed baryon asymmetry nB ≃ 10−10, one finds a lower limit for

the RH neutrino mass, M1 & 108−9 GeV.

1.3.3.d The Gravitino-over-production Problem

In this section, we present the cosmological gravitino over production problem [89], show-

ing the result of the bound on the reheating temperature. This bound is important for

Leptogenesis where the RH neutrino is produced by thermal scattering. In this case, the

reheating temperature TR ≃M1 is required.
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The gravitino is the supersymmetric partner of the graviton in a supergravity theory.

The exact scale of the gravitino mass and its main decaying channel vary in different

scenarios. There are also several schemes of how supersymmetry is broken and how the

universe inflates. We briefly discuss the bounds from the gravitino in different scenarios.

For a early review of the gravitino in the Universe, see [90].

• In gravity mediated SUSY breaking models, gravitinos are unstable particles with

mass m3/2 ∼ O(100 GeV− 10 TeV) [91]. In this scenario, the gravitino decays after

Nucleosynthesis (tBBN ∼ 100 sec) with a lifetime [63]

τ3/2 ≃ 4 × 105
( m3/2

1 TeV

)
sec , (1.73)

unless the gravitino is relatively heavy: m3/2 ∼ 10TeV. The decay of gravitino

(Gravitinos majorly decay into photons and photinos g̃ → γγ̃ or neutrinos and

sneutrinos g̃ → νν̃) would dilute the abundance of light element (D, 3He, 4He, 7Li

...) produced in Nucleosynthesis. In Ref.([90]), the bounds on reheating temperature

is given by [62]

TR < 106 − 108GeV . (1.74)

• If gravitinos are stable, e.g. in the gauge mediated SUSY breaking model, we have

m3/2 < O(10) GeV. In this scenario gravitino is the lightest supersymmetric particle

(LSP), and therefore a candidate of dark matter (DM) particle [92]. The bound on

the reheating temperature comes from the density of the gravitino, which can not

exceed the density of DM. One can derive the bound on the reheating temperature

[62]

TR < O(107) GeV , (1.75)

for m3/2 > 100 keV.

In Leptogenesis, if the RH neutrinos are produced thermally, one requires M1 ≃ TR.

One can compare with the Davidson-Ibarra bound in the last section and find the condition
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for reheating temperature is not satisfied, so canonical Leptogenesis must be modified in

some way. Apart from inflation models, one interesting solution is resonant Leptogenesis

[93] [94] [95], where at least two of the three RH neutrino are mass degenerate. The

lepton asymmetry ε1 can be enhanced drastically even in the small mass case M1 ∼M2 ∼
107 GeV. However, one has to impose a mechanism to explain why the RH neutrino

masses are degenerate. In this thesis, we do not investigate this situation.

1.3.4 Affleck-Dine Leptogenesis

In the previous two sections, we have discussed the mechanism of baryon asymmetry

produced from the RH neutrino’s out-of-thermal equilibrium decay. However, this is not

the only scenario of Baryogenesis. An alternative mechanism is proposed by Affleck and

Dine [96] based on the framework of SUSY, neutrino masses in effective theories and

inflation.

In the supersymmetric model, quarks and leptons have supersymmetric scalar part-

ners, which also carry lepton and baryon number. These Supersymmetric particle/condensate

may exist in the early universe, but we should not worry about these particles being

present in our visible universe. The supersymmetric particles, which contains baryon

number and lepton number, decay into baryons and leptons in the SM via baryon num-

ber/lepton number conserved processes. So the baryon and lepton number is converted

without any loss.

In supersymmetric models some special combinations of scalars, lying along flat-

directions in the potential, can have arbitrarily large vacuum expectation value during

the inflation of the universe.

In the MSSM, the most interesting flat-direction for the Affleck-Dine mechanism is

the combination of scalar lepton field and Higgs field, which is defined as

φ2
i = L̃iHu , (1.76)
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where L̃i are the scalar lepton doublet fields with family index i = 1, 2, 3. The flat-

direction is lifted by higher order non-renormalizable operators in the superpotential

W =
λ2
i

2Meff

(LiHu)(LiHu) , (1.77)

where λi describe the spectrum of flavours and Meff is a heavy scale in an effective theory.

Notice that we work in the basis of left-handed neutrino mass eigenstates rather than

flavour eigenstates. Since this operator also gives left-handed neutrino masses, we can

rewrite it as

W =
mi

2 〈Hu〉2
(LiHu)(LiHu) , (1.78)

where 〈Hu〉 is the vev of up-type Higgs field. It is effective to just investigate one flat

direction. The reason is, as we will see, in the case of LiHu flat direction, the successful

baryon asymmetry is generated only in one flavour, which corresponds to the lightest left-

handed neutrino. We denote this previously flat direction as φ and therefore the potential

reads

V =
m2
i

4 〈Hu〉4
|φ|6 . (1.79)

In addition, the flat direction field obtains soft mass terms from supersymmetry breaking

δV = m2
φ|φ|2 +

m3/2

8Meff

(amφ
4 + h.c.) . (1.80)

Here mφ and m3/2 ≃ 1 TeVare SUSY breaking parameters. The flat direction field also

gains a Hubble mass term

δV = −cHH2
inf |φ|2 +

Hinf

8Meff

(
aHφ

4 + h.c.
)
, (1.81)

where Hinf is the Hubble parameter during the inflation, and cH ≃ |aH | ≃ 1.

The evolution of the scalar field is described by equation

∂2φ

∂t2
+ 3H

∂φ

∂t
+
∂Vtotal
∂φ∗ = 0 , (1.82)

where Vtotal is the summation of all possible potentials related to φ. And the number

density of scalar is

n = i

(
∂φ∗

∂t
φ− φ∗∂φ

∂t

)
. (1.83)
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The lepton number density is related to the scalar number density by nL = 1
2
n. If we

write the scalar field in the form of φ(t) = |φ(t)| e−i θ(t), the number density of scalar reads

nL = −|φ|2 ∂θ
∂t
, (1.84)

from which we can clearly see that the number of scalars depends on the angular momen-

tum of the flat-direction.

After inflation, the flat-direction field begins oscillating and it has the value

|φ| ≃
√
MeffH , (1.85)

The effective CP violation comes from the relative phase of am and aH and the evolution

of the lepton number can be described by the equation derived from Eq.(1.82) and (1.83)

ṅL + 3H nL =
m3/2

Meff

Im
(
amφ

4
)

+
H

2Meff

Im
(
aHφ

4
)
. (1.86)

According to the above equation, one can obtain the final net lepton number normalised

to the entropy density, which reads

nL
s

=
3TR
4MG

v2

6mνM2
pl

, (1.87)

where TR is the reheating temperature. Again the sphaleron process plays the role of

converting part of lepton number into baryon number, and one finds that the baryon

asymmetry nB/s ∼ 10−10 requires the corresponding neutrino mass to be mν ∼ 10−9 eV

for TR ∼ 106 GeV. This implies that the neutrino mass pattern should be a normal

hierarchy, which can be tested in neutrinoless double beta decay experiments.

The Affleck-Dine mechanism can naturally explain why the amount of baryonic matter

and dark matter in the universe are of the same order. This problem arises if baryonic

matter is generated by CP violating RH neutrino decay whereas the amount of dark

matter is decided by the decoupling of the dark matter particle. In the Affleck-Dine

mechanism, the scalar condensate develops into baryons and baryonic Q-balls (a type of

non-topological soliton). If baryonic Q-balls are unstable, they decay into baryons and

dark matter, whereas if they are stable, they play the role of dark matter. In either

situation, one can straightforwardly arrive at the conclusion of Ωb ∼ ΩDM.
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1.3.5 Electroweak Baryogenesis

The SM itself contains all three of Sakharov’s conditions: CP violation exists in the CKM

matrix and QCD process, electroweak sphaleron process violates B number, thermal

processes depart from equilibrium due to the expansion of the universe. In fact, net

baryon number is generated in the framework of the Standard Model, and this scenario

is called “Electroweak Baryogenesis” [97] [98].

Electroweak Baryogenesis happens when the temperature of the universe reaches ∼
246 GeV where the electroweak phase transition takes place. If the electroweak phase

transition is at first order, degenerate vacua, including regions with the broken phase and

regions where EW symmetry is conserved coexist in the universe. When the temperature

continues to drop, the regions with the broken phase expand. This process is called

“bubble nucleation”. When fermions pass the border of the unbroken phase region and

the broken phase region, baryon number is produced due to the sphaleron process and

the CP violation from the CKM matrix. To avoid the generated baryon number from

being washed out, one requires that the rate of the sphaleron process be smaller than the

Hubble parameter, the rate of expansion of the universe.

However, in the SM, Electroweak Baryogenesis is not sufficient. Numerically calcu-

lation finds that the generated baryon number from bubble nucleation is much smaller

than the observed baryon number in the universe. In addition, the electroweak phase

transition at first order requires the Higgs mass mH < 40 GeV. However the lower bound

of Higgs particle in SM from LEP is mH > 114 GeV.

The most compelling solution is supersymmetry, where extra CP violation sources are

provided and a first order phase transition is available. We do not discuss details of the

electroweak Baryogenesis here; for a review and recent development, we refer readers to

[99][100].
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Chapter 2

The Exceptional Supersymmetric

Standard Model

In this chapter, we present the motivation, theory background, and phenomenology of the

Exceptional Supersymmetric Standard Model (E6SSM) [102] [101] [113] [103], in which

we will discuss Leptogenesis in the next chapter. The feature of E6SSM includes the light

Higgs mass, gauge unification, neutrino mass and the signals from LHC.

2.1 Motivations of E6SSM

From the top-down point of view, the Exceptional Supersymmetry Standard Model is

inspired by E8 × E ′
8 string theory [104]. The gauge symmetry E8 breaks down into

its subgroup E6 by the compactification of extra dimensions, whereas E ′
8 represents the

hidden sector in charge of the spontaneous breaking of SuperGravity. The E6 in the

observable sector has subgroups including SO(10) and SU(5) which are commonly used

gauge groups for Grand Unification Theories (GUT) [105]. From the bottom-up point of

view, some problems in the MSSM need physics of larger gauge symmetries.
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2.1.1 The Down-up Approach: µ Problem and Domain Wall

Problem

In the simplest realisation of Supersymmetry, the Minimal Supersymmetric Standard

Model (MSSM), an extra up Higgs Hu distinguished from the down Higgs field Hd is

introduced, since the Supersymmetry forbids Hd to give mass to the down type quarks

and leptons. There is a bilinear term of the up Higgs and down Higgs, called µ term:

µĤuĤd. One could naively expect it to be zero or the Plank scale Mpl. However, if µ = 0

at some scale Q, the mixing between the two Higgs fields vanish, and leads to 〈Hd〉 = 0

below the scale of Q. In this case, no mass for down type quarks and charged leptons can

be generated via the Higgs mechanism. On the other hand, if µ is at Plank scale, it leads

to a contribution ∼ µ2 to the Higgs mass and the electroweak symmetry breaking can not

happen. Then, it is believed that there must be a mechanism as the source of the µ term.

In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [106] [107], the µ

arise automatically in the Giudice-Masiero mechanism [108], where the µ term comes from

the general couplings of broken supergravity. In this model, a singlet field S which couples

to the Higgs fields is proposed. The extra terms in the NMSSM superpotential reads

λŜ(ĤdĤu) + 1
3
κŜ3. The S field develops a vev and generates an effective µ term, when

the additional U(1)PQ global symmetry is broken into a discrete Z3 symmetry. However,

the different regions in the early universe may have different vacua, which are separated

by domain walls [109] formed by discrete symmetries. The domain walls would finally

evolve into large anisotropies in the Cosmic Microwave Background, which conflicts with

the observation of COBE and WMAP. To break the undesirable Z3 discrete symmetry,

one can introduce operators, which are suppressed by powers of the Plank scale. However,

these operators would lead to quadratically divergent tadpoles, and therefore destablize

the mass hierarchy once again.
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2.1.2 The Top-down Approach from SuperString Theory

The supergravity theory, which partially unifies SM interactions and the gravitational in-

teraction in the context of supersymmetry is a non-renormalisable theory. Therefore one

has to consider it as a low-energy effective theory. A ten-dimensional heterotic E8 × E ′
8

SuperString model [104] is a candidate of “beyond supergravity” theory. The strong in-

teraction is determined by the eleven-dimensional SUGRA (M-theory), where the string

scale is compatible with the unification scale MGUT . When the compactication of ex-

tra dimensions happens, the E8 may break into E6 or its subgroups which describe the

observable sector, whereas E ′
8 describes the sector which only couples to the E6 sector

via the gravitational force. Hence, E ′
8 plays the role of a hidden sector and leads to the

breakdown of supergravity. At low energy scales, the E ′
8 decouples from the visible sector

but the breaking of supersymmetry is transmitted to the visible sector.

2.2 The E6SSM

The low energy scale physics of the E6SSM is inspired by the E6 symmetry. The particle

content forms three families of the fundamental 27i representation of E6, where i is the

index for the family. At the string scale, the E6 group breaks into its subgroup SO(10)

E6 → SO(10) × U(1)ψ , (2.1)

and the SO(10) breaks via

SO(10) → SU(5) × U(1)χ . (2.2)

The SU(5) further breaks to SU(3)C × SU(2)W × U(1)Y × U(1)ψ × U(1)χ resulting in

SU(3)C×SU(2)W×U(1)Y ×U(1)ψ×U(1)χ, which is simply the SM gauge symmetry with

two extra U(1) gauges. One can write the two U(1) gauges in a form of linear combination

U(1)N = U(1)ψ sin θ × U(1)χ cos θ (2.3)
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Since the see-saw model which generates light neutrino mass is widely accepted, we need

the RH neutrinos to be neutral in a certain combination of U(1)ψ and U(1)χ. This

corresponds to θ = arctan
√

15. So the U(1)ψ × U(1)χ guage is reduced to U(1)N gauge.

The other combination of U(1)ψ and U(1)χ breaks at the higher scale, leading to non-

renormalizable terms, e.g. Eq.(2.10) which will be discussed later. In this case, the RH

neutrino can be arbitrarily heavy so that it can play a role in the seesaw model, where

particles as heavy as O(1015 GeV) is needed to suppress the LH neutrino masses in the

case of Yukawa coupling ∼ 1.

The three families of 27i representation of E6 break into SU(5) × U(1)N

27i →
(

10,
1√
40

)

i

+

(
5∗,

2√
40

)

i

+

(
5∗, − 3√

40

)

i

+

(
5,− 2√

40

)

i

+

(
1,

5√
40

)

i

+ (1, 0)i ,
(2.4)

where the second elements in each brackets are the charge of U(1)N .

(
10,

1√
40

)

i

+
(

5∗,
2√
40

)

i

contains left-handed quark and lepton doublets Qi and Li, the right-handed

quark and lepton singlet uci , d
c
i and eci of the SM and the last term, (1, 0)i represents the

RH neutrino N c
i .

The first term in the second line of Eq. (2.4),

(
1,

5√
40

)

i

represents another singlet

field Si which carries non-zero U(1)N charge and therefore survive to the electro-weak

scale. Two pairs of SU(2)W -doublets with three families (H1i and H2i) that are contained

in the third and forth term of Eq. (2.4)

(
5∗, − 3√

40

)

i

and

(
5,− 2√

40

)

i

behave as Higgs

doublets. The other components of the SU(5) multiplets form colour triplets of exotic

quarks Di and Di with electric charges −1/3 and +1/3 respectively. They carry a B −L

charge ±2/3. Therefore in phenomenologically viable E6 inspired models they can be

either diquarks, with 2/3 baryon number (model I) or leptoquarks with one lepton number

and −1/3 baryon number (model II). The breaking of U(1)N gauge leads to an extra Z ′

gauge boson at low energy scale. The phenomenology of a Z ′ gauge boson together with

exotic quarks of the LHC is discussed in [110]. In E6SSM, an extra pair of L4 and L̄4
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is introduced1, which exist in another 27 and 27 representation, to help unify the gauge

couplings. L4 and L̄4 behave like a forth generation of lepton in the Yukawa couplings as

they couples to ordinary leptons via Yukawa couplings. Furthermore, one should notice

that they are SU(2)W doublets and participate the electro-weak interaction at the low

energy scale.

The flavour changing neutral currents (e.g. b → s + γ, µ− → e− + e− + e+) and

proton decay (p→ π + e+) are strongly suppressed experimentally, which yields a strong

constraint on Grand Unification Models. To suppress these processes, a ZH
2 symmetry is

imposed to forbid the lepton and baryon number violating operators. Under this discrete

symmetry, all superfields are odd except the third generation of up-type and down-type

Higgs field H1,3, H2,3 together with a SM singlet field (S ≡ S3), which are even. The

first two generations of Higgs field are called “inert Higgs”, since they do not develop a

vacuum expectation value. The third generation of Higgs H1,3 ≡ Hu, H2,3 ≡ Hd are the

Higgs field of the MSSM, which give mass to quark and lepton fields after the breaking

of electro-weak symmetry. The singlet field S3 couples to the Higgs doublet via the term

λ332HuHdS, and the breaking of U(1)N results in a natural µ term in the MSSM at the

TeVscale.

The ZH
2 symmetry forbids non-diagonal flavour transitions in the Yukawa couplings,

but meanwhile induces charged stable particles, which is ruled out by experiments and

cosmological observation [112]. Therefore the ZH
2 symmetry can not be exact and has to

break at some scale. Since the operator leading to proton decay violates both L number

and B number, we only need to keep one of them conserved. After the breaking of ZH
2 ,

we can impose an exact ZL
2 discrete symmetry, under which all fields except leptons are

even (called Model I) or ZB
2 symmetry, under which lepton and exotic quark superfields

are odd whereas all other fields are even (called Model II). In the case where ZL
2 is exact,

the baryon number is conserved and the exotic quarks are diquarks (with baryon number

BD = −2/3 and BD̄ = 2/3). In the case where ZB
2 symmetry is unbroken, the exotic

1L4 is also denoted as H ′ and 4′ in some literature.
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quarks are leptoquarks (with baryon number BD = 1/3 and BD̄ = −1/3).

The renormalisable superpotential allowed by the SU(3) × SU(2) × U(1)Y × U(1)N

gauge symmetry can be written in the following form:

Wtotal = W0 +W1 +W2 +W
��E6
, (2.5)

The first term in Eq. (2.5) is the most general superpotential allowed by the E6 symmetry.

W1 and W2 are the superpotentials for models I and model II respectively. W0, W1 and

W2 are expressed as

W0 = λijkSi(H1jH2k) + κijkSi(DjDk) + hNijkN
c
i (H2jLk) + hUijku

c
i(H2jQk)+

+hDijkd
c
i(H1jQk) + hEijke

c
i(H1jLk) ,

W1 = gQijkDi(QjQk) + gqijkDid
c
ju
c
k ,

W2 = gNijkN
c
iDjd

c
k + gEijke

c
iDju

c
k + gDijk(QiLj)Dk .

(2.6)

Notice that we drop the colour index for the SM quarks and exotic quarks. There are

three colour degrees of freedom for one generation of leptoquark and 9 colour degrees of

freedom for one diquark.

The first three terms in the superpotential in Eq.(2.5) come from the 27 × 27 × 27

decomposition of the E6 fundamental representation. It possesses a global U(1) symmetry

that can be associated with B − L number conservation. This global symmetry has to

be broken explicitly, therefore the last term of the superpotential (2.5) violating B−L is

imposed:

W
��E6

=
1

2
MijN

c
iN

c
j +W ′

0 +W ′
1 +W ′

2 , (2.7)

where

W ′
0 = µ′

i(L4Li) + µ′
4(L4L4) + hijN

c
i (H2jL4) + hH

′

ij e
c
i(H1jL4) ,

W ′
1 =

σijk

3
N c
iN

c
jN

c
k + ΛkN

c
k + λijSi(H1jL4) + gNijN

c
i (L4Lj)

+gNi N
c
i (L4L4) + gUiju

c
i(L4Qj) + µij(H2iLj) + µi(H2iL4) + µijDid

c
j ,

W ′
2 = gH

′

ij (QiL4)Dj , i, j, k = 1, 2, 3 .

(2.8)
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Similarly, W ′
1 is associated with model I and W ′

2 is associated with model II.

In model II, the ZH
2 symmetry forbids W ′

1. We can summarise the superpotential for

E6SSM in model I and model II:

WESSM,I = W0 +W1 +
1

2
MijN

c
iN

c
j +W ′

0 ,

WESSM,II = W0 +W2 +
1

2
MijN

c
iN

c
j +W ′

0 +W ′
2. (2.9)

2.2.1 Bilinear Terms in E6SSM

We can rotate and redefine the representation of 27′, so that only one L4 interacts with L4.

In this case, the mixing between the SM leptons and L4 (the term µ′
i(L4Li), i = 1, 2, 3)

vanishes. Therefore only two bilinear terms in the superpotential are left. One is the

mass term for the RH neutrino 1
2
Mi,jN

c
iN

c
j , with masses of RH neutrinos set to be at the

intermediate scale. The other is the mass term for L4, µ
′L4L4, where µ′ has to be ∼ 1

TeV, in order to unify the gauge couplings.

In SUGRA models, µ′L4L4 can arise when the local supersymmetry breaks from an

extra term Z(L4L4)+h.c. in the Kähler potential (a potential K related to the metric by

hij = 2∂2K/∂φi∂φ̄j, with φi, φ̄j being the superfields [111]), where Z is a generic function

of φi and φ̄j. This mechanism is similar to that in NMSSM solving the µ problem.

However, the bilinear term of up-type Higgs and down-type Higgs are not allowed in

either superpotential and Kähler potential due to the E6 symmetry.

The RH neutrino mass terms can be induced from the non-renormalisation term of 27

and 27,
καβ

Mpl
(27α27β)

2. When N c and N
c
from the extra 27 and 27 representation develops

a vev along a flat-direction 〈N c
H〉 = 〈N c

H〉, the two U(1)φ and U(1)χ reduce to U(1)N .

The RH neutrino mass term is generated via the coupling of 27plet to ordinary 27plet

δW =
κij
Mpl

(27H27i)(27H27j) . (2.10)

The mass for RH neutrino therefore is Mij =
κij

Mpl
〈N c

H〉2. In order to generate light left-

handed neutrino masses at the 1eV scale, the U(1)φ and U(1)χ symmetry should break
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into U(1)N at an intermediate scale of order 1014 GeV, assuming the Yukawa couplings

∼ 1.

2.2.2 The Right-handed Neutrino Yukawa couplings in E6SSM

The RH neutrinos are neutral under the gauge transformation of SM and U(1)N , and

they couple to the exotic quarks after the breaking of the ZH
2 symmetry. The additional

superpotential corresponding to RH neutrinos reads:

∆W = ξαij(H2αLi)N
c
j + ξα4j(H2αL4)N

c
j + gNkijDkd

c
iN

c
j . (2.11)

Here α = 1, 2 are the family indices for inert Higgs and i, j, k = 1, 2, 3 are family indices

for RH neutrino, leptons, quarks and exotic quarks. The last term in this superpotential

exists only in Model II, where the exotic quarks are leptoquarks. This superpotential

has to be suppressed strongly and the major constraints are from the rare decay of muon

e.g. µ→ e−e+e− and K0 −K
0

mixing [39].

2.3 Neutrino Masses

In section (1.2.5), we discussed the canonical scenario of the seesaw model, where only the

RH neutrinos contribute to the masses of light neutrinos. However, from the theoretical

point of view, exotic particles/physics beside RH neutrinos may also contribute to the

mass of light neutrinos. In some models, there may be multiple sources of light neutrino

masses. In this section, we firstly review the type II and type III seesaw model, and then

present the neutrino mass from E6SSM, showing the contribution from the exotic lepton

L4.
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2.3.1 Type II Seesaw Model

In the classical seesaw model (Type I), the masses of left-handed neutrino come from

integrating out the RH neutrinos with heavy Majorana masses. However, in some Grand

Unification models, that is not the only source of light neutrino mass. One possible sce-

nario is SU(2)L triplet Higgs superfields ∆̂ and
¯̂
∆ with hypercharge 1 and -1 respectively,

representing the triplets as matrices [119]

∆̂ =


 ∆̂+ ∆̂++

∆̂0 −∆̂+


 ,

¯̂
∆ =




¯̂
∆+ ¯̂

∆++

¯̂
∆0 − ¯̂

∆+


 . (2.12)

The triplet couples to lepton fields via

L =
1

2

(
Y +

∆

)
fg
L̂Tf i σ2 ∆̂ L̂g , (2.13)

where Y +
∆ is the coupling constant and f, g are the family indices for the lepton doublets

and σ2 is the second Pauli matrix. The scalar potential for ∆ reads

V = M∆λuH
T
u iσ2∆

∗Hu +M2
∆Tr(∆∗∆) + h.c. (2.14)

After electro-weak symmetry breaking, the neutral component of ∆̂, ∆̂0 develops a vev

v∆ ≃ λu v
2
u

M∆

. (2.15)

Giving a contribution to the light neutrino mass

mII = Y∆ v∆ . (2.16)

The total mass of light neutrino then reads

mν = mII +mI = Y∆ v∆ − v2
u YνM

−1
N Y T

ν , (2.17)

where mI = v2
u YνM

−1
N Y T

ν is the contribution from the type I seesaw, where the heavy RH

neutrinos with mass MN are integrated out.
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2.3.2 Type III Seesaw Model

In some grand unification theories, for example, the left-right symmetric model based on

SU(3)C × SU(2)L × SU(2)R × U(1)B−L gauge symmetry, a fermion triplet with three

families is introduced. The left and right handed components are

ρL =
1

2


 ρ0

L

√
2ρ+

L√
2ρ−L −ρ0

L


 , ρR =

1

2


 ρ0

R

√
2ρ+

R√
2ρ−R −ρ0

R


 , (2.18)

respectively [120][121][122]. The left and right handed Higgs field belong to the SU(2)L

and SU(2)R, and they are

HL =


 φ+

L

φ0
L + i A0

L√
2


 HR =


 φ+

R

φ0
R + i G0

R√
2


 (2.19)

The corresponding Lagrangian is

LIIIν = Ll + Y5

(
lTL C iσ2 ρLHL + lTR C iσ2ρRHR

)

+ MρTr
(
ρTL C ρL + ρTR C ρR

)
+ h.c. (2.20)

The left-handed Higgs HL and right handed Higgs HR acquire vevs vL and vR respectively

when SU(2)L and SU(2)R are broken spontaneously. The C is the charge conjugate

defined in Appendix (A). The resulting mass matrix in the basis of left-handed neutrino,

RH neutrino, fermion triplet
(
(νC)R, νR, ρ

0
R

)
can be written as

M III
ν =




0 MD
ν 0

(MD
ν )T 0 −Y5vR

2
√

2

0 −Y T
5 vR

2
√

2
Mρ


 . (2.21)

In the limit of Mρ ≫ Y5vR/2
√

2 ≫MD
ν one finds the mass for the light neutrino

M(νC)R
= MD

ν M−1
νR

(
MD

ν

)T
, (2.22)

where MνR
is the effective mass for the RH neutrino,

MνR
=
v2
R

8
Y5 (Mρ)

−1 Y T
5 . (2.23)

In type III seesaw models, the light neutrino mass is proportional to the fermion triplet

mass Mρ. Thus is also called the double seesaw model. Note that the fermioin triplet

mass Mρ can be ∼ 1 TeV, so it can be interesting for LHC.
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2.3.3 Neutrino Masses from the E6SSM

To consider the light neutrino mass in the E6SSM, one has to take into account all particles

with which the left-handed neutrinos have bilinear terms below electro-weak scale. As

discussed in the last section, we have to consider the neutral component of the exotic

lepton doublets L4 and L4 and the RH neutrinos N . The bilinear term µ′
i(L4Li) mixes

the left-handed neutrino with exotic lepton L4. Here, we drop the family index and re-

denote it as µ′′(L4Li). Also the Yukawa coupling between left-handed neutrino, exotic

lepton L4 and RH neutrino hN4j(HuL4)N
c
j and hNij (HuLi)N

c
j turns into a mixing term

after the electro-weak symmetry breaking. The mixing between left-handed neutrinos

and right-handed neutrinos is of order v = 246 GeV provided the corresponding Yukawa

couplings are of order unity. In addition, there are bilinear mass terms for L4, µ
′(L4L4),

where µ′ ∼ 1 TeV and heavy Majorana mass terms for RH neutrinos MijN
c
iN

c
j with

Mij ∼ 1015 GeV.

Then the mass matrix in the basis of (ν, L4, L̄4N) reads

M =




0 0 µ′′ v′

0 0 µ′
4 vT

µ′′T µ′
4 0 0

v′T v 0 M



. (2.24)

Note that there are three families of ν and N , but only one family for the exotic lepton

L4. Therefore µ′′ and v are 3 × 1 column vectors, v′ and M are 3 × 3 matrices, and µ′
4 is

just a number.

In the E6SSM, M is at an intermediate scale to the Plank scale; µ′
4, the Dirac mass for

L4 should be at TeV scale; v and v′ come from the breaking of electro-weak symmetry,

so we have v ∼ v′ ∼ O (100 GeV). We may therefore assume v , µ′′ , µ′
4 ≪M . In addition,

the mixing between light neutrinos and L4 has to be small. This constraint comes from

the requirement that violation of unitarity of the PMNS matrix small, which otherwise

would lead to unwanted consequences including lepton flavour violating processes at low

energy. Hence we assume µ′′ ≪ µ′
4. By diagonalising this matrix we can derive the
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effective mass for the light neutrino, ignoring the flavour structure

mν ≃
v′2

M

(
1 +

v

v′
µ′′

µ′
4

+

(
v

v′
µ′′

µ′
4

)2
)
. (2.25)

From the effective light neutrino mass given above, we find the first order contribution is

identical to that of the type I seesaw, where only the RH neutrino is added. The second

and third terms depend on the mixing of the exotic lepton and the SM leptons µ′′, which

is small. And therefore the contribution from L4 is negligible.

2.4 Light Higgs Mass in the E6SSM

One of the important consequences of the E6SSM is the light Higgs mass, which plays an

important role in Supersymmetric theories. In E6SSM, all extra contribution to the light-

est CP-even Higgs mass at tree-level comes from extra U(1)N D term. The approximate

upper-bound reads

m2
h1

.
λ2

2
v2 sin2 2β + M2

Z cos2 2β +

(
MZ

2

)2

(1 +
1

4
cos 2β)2 , (2.26)

where λ is the Higgs coupling constant. The second term is the usual upper bound as that

in the MSSM, while the first term is a combination from the effective µ-term, analogous

to that found in the Next-to-Minimal Supersymmetric Standard Model. The last term

is the extra U(1)N D term, particular to the E6SSM. One finds that the upper bound of

the lightest Higgs mass is around 140 GeV at tanβ ∼ 1− 2, in comparison to the upper

bound in the MSSM and NMSSM of 120 GeV and 130 GeV respectively.

One loop and two loop upper bounds are calculated in [101]. The upper bound of the

lightest Higgs mass in the leading approxiamation is given by

m2
h1 .

λ2

2
v2 sin2 2β + M2

Z cos2 2β +
M2

Z

4

(
1 +

1

4
cos 2β

)2

+ ∆t
11 + ∆D

11 , (2.27)

where ∆t
11 and ∆D

11 are one-loop corrections from the top-quark and D-quark supermulti-

plets. When m2
Di

= m2
D̄i

= M2
S, the contribution from the D-quark reads

∆D
11 =

∑

i=1,2,3

3λ2κ2
i v

2

32π2
sin2 β ln

[
mD1,i

mD2,i

Q2

]
, (2.28)
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With this correction, the upper bound for lightest Higgs mass can be 155 GeV when

tan β ∼ 1 − 2.

2.5 Signals of E6SSM on Colliders

The existence of an extra U(1) symmetry leads to a Z ′ gauge boson in the E6SSM. At

tree level, the mass for Z ′ boson is determined by the vev of the singlet field S, so is

constrained only by fine turning arguments to be of order the electroweak scale. However,

collider experiments gives stringent constraints on the Z ′ mass and Z − Z ′ mixing. The

major constraint comes from pp̄ → Z ′ → ℓ+ℓ− at Tevatron [114], which gives a lower

bound on the Z ′ mass of 500-600 GeV, and Z −Z ′ mixing . (2− 3)× 10−3 [115]. In Ref.

[116], an upper bound of Z − Z ′ mixing sin θZZ′ can be ∼ 10−2. For exotic quarks, the

Tevatron, HERA and LEP exclude leptoquarks with mass < 290 GeV [117] whereas CDF

and D0 exclude diquark with mass < 420 GeV [118].

In the E6SSM, exotic squarks and non-Higgs (inert Higgs) masses are generated via

SUSY breaking and therefore they are expected to be heavy (at the SUSY breaking

scale). Exotic fermions, including exotic quarks and non-Higgsinos (the super-partner of

non-Higgs) have masses associated with Yukawa couplings, hence they may be relatively

lighter. So, we are interested in the signals of exotic fermions at colliders, which are

expected to be lighter than Z ′. We assume further that the mixing of Z − Z ′ is smaller

than the upper bound given in [116] in order to reduce the contribution to observables in

the SM.

The presence of the Z ′ leads to a resonance in the differential distribution of lepton

pair ℓ+ℓ− production at the LHC. For exotic quarks, in the case of Z2
H symmetry is broken,

the decay of exotic quarks are observable:

D → t+ b̃ D → b+ t̃ diquark ,

D → t+ τ̃ D → τ + t̃ D → b+ ν̃τ D → ντ + b̃ leptoquark . (2.29)
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In addition, exotic quarks can enhance the cross section of pp → tt̄bb̄ + X and pp →
bb̄bb̄ + X. Non-Higgsinos decays similar to Higgsino: they decay majorly into the third

generation of quarks and squarks or leptons and sleptons.

H̃0 → t+ t̃ , H̃0 → t+ t̃ , H̃0 → b+ b̃ , H̃0 → b+ b̃ ,

H̃0 → τ + τ̃ , H̃0 → τ + τ̃ , H̃− → b+ t̃ , H̃− → t+ b̃ ,

H̃− → τ + ν̃τ , H̃− → ντ + τ̃ . (2.30)

Moreover, the non-Higgsinos also enhance the cross section of the production of QQ̄Q′Q̄′

and QQ̄τ+τ−, where Q is a heavy quark. This would lead to an excess in the b, t and

exotic D quark pair production cross section at LHC.

Figure 2.1: Differential cross section at the LHC for pair production of b-, t- and exotic D-quarks, for

µDi = µHi = 300 GeVand MZ′ = 1.5 TeV. Figure is taken from [101].
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Chapter 3

The Lepton Asymmetries in E6SSM

In the E6SSM, exotic particles couple to the RH neutrino via Yukawa couplings. They can

play the role of final states of the RH neutrino decays and contribute the CP asymmetry of

RH neutrino decay via one-loop Feynman diagrams. As discussed in Chapter 1, we need

to extend the canonical model to avoid the Davidson-Ibarra bound. Previous work in this

field includes: e.g. Leptogenesis with an additional Higgs triplet [123], Leptogenesis in

NMSSM [124], Leptogenesis in an E6 model [125], Leptogenesis in the right-handed sector

[126], Leptogenesis with a fourth generation lepton [127], post-sphaleron Baryogenesis

[128] and Leptogenesis from triplet Higgs [129] [130] [131], soft leptogenesis [132], resonant

leptogenesis [133] and leptogenesis with additional particle [134].

In this chapter, we calculate the flavoured CP asymmetries of the lightest RH neutrino

decay in three scenarios of the E6SSM, (a) the case of unbroken ZH
2 symmetry, (b) model

I with broken ZH
2 (a) model II with broken ZH

2 symmetry. The dependence of CP asym-

metries on exotic Yukawa couplings are illustrated in linear and countour plots. We find

that the CP asymmmetries can be enhancecd drastically if the exotic Yukawa couplings

are relatively large.
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3.1 Flavoured Lepton Asymmetries

In Chapter 1, the decay asymmetry of RH neutrinos was written as a summation over all

flavours ε. However, to calculate the final baryon asymmetry more precisely, one should

consider “flavoured lepton asymmetries” [135] of RH neutrino decays for two reasons. The

first is the Yukawa interaction may be in equilibrium for some flavours whereas not in

equilibrium for other flavours. This results in left-handed lepton doublets with different

flavours may not have equal number density, and therefore the reaction densities for wash-

out processes vary for different flavours. The second is when scatterings as wash-out

processes are taken into account, the reaction densities for scatterings are also different.

However, in Section (4.5), we will discuss the scenario where the soft SUSY breaking mass

terms may lead to the flavour transition between leptons and quarks in equilibrium. In

this case, Boltzmann Equations with the total lepton asymmetry are used.

3.2 CP asymmetries for Model I

In this section, we discuss the CP asymmetries of RH neutrino decays in Model I, where an

additional inert Higgs fields and the “forth generation” lepton are involved. We calculate

the flavoured lepton asymmetries of RH neutrino decays and show the lepton asymmetries

can be enhanced drastically.

The terms related to RH neutrino decay can be found in Eqs. (2.8) and (2.11). We

summarise it as

WN = hNkxj(H
u
kLx)N

c
j , (3.1)

where hNkxj is the Yukawa couplings for RH neutrinos. The family indices run over x =

1, 2, 3, 4 and k, i, j = 1, 2, 3, with x = 4 corresponding to the exotic lepton L4.

The CP asymmetry can be defined as

ε1, ℓk ≡ ΓN1ℓk − ΓN1ℓ̄k∑
m

(
ΓN1ℓm + ΓN1ℓ̄m

) . (3.2)
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where ΓN1ℓk and ΓN1ℓ̄k are respectively the partial decaying widths of N1 → Lk + H1,3

and N1 → Lk + H∗
1,3 with k,m = 1, 2, 3. At tree level, we have ΓN1ℓk = ΓN1ℓ̄k for all

flavours and the lepton asymmetries are zero. Small CP asymmetries arise at one-loop if

the Yukawa couplings are complex with CP phases.

In supersymmetric models, RH neutrinos are allowed to decay into sleptons L̃k and

Higgsino H̃u, therefore the decay width of RH neutrinos is doubled due to the extra

channel sharing the same Yukawa coupling. When considering the CP asymmetries in

supersymmetric models, one should treat sleptons in the final state in the same way as

leptons, as the sleptons are unstable particles, which decay into leptons and gauginos at

a later stage. The corresponding flavour CP asymmetries are defined as:

ε1, eℓk
=

ΓN1
eℓk
− ΓN1

eℓ∗
k∑

m

(
ΓN1

eℓm
+ ΓN1

eℓ∗m

) . (3.3)

In addition, Supersymmetry leads to an extra source of lepton asymmetries: the scalar

partner of the RH neutrino, the RH sneutrino Ñ1. Sneutrinos decay into lepton and

Higgsino and into slepton and Higgs. The CP asymmetries for the RH sneutrino decay

are also defined as the lepton number produced per Ñ1 decay:

εe1, ℓk
=

Γ eN∗

1 ℓk
− Γ eN1ℓ̄k

∑
m

(
Γ eN∗

1 ℓm
+ Γ eN1ℓ̄m

) , εe1, eℓk
=

Γ eN1
eℓk
− Γ eN∗

1
eℓ∗
k∑

m

(
Γ eN1

eℓm
+ Γ eN∗

1
eℓ∗m

) . (3.4)

In SUSY models one finds the relation between CP asymmetries of RH neutrino decays

and RH sneutrino decays:

ε1, ℓk = ε1, eℓk
= εe1, ℓk

= εe1, eℓk
. (3.5)

In the Exceptional SUSY model, extra particles are introduced, which result in the

new channels of the decays of RH (s)neutrino. Effectively, we consider them as extra

flavours and the definitions of CP asymmetries of RH neutrino decay is intact. In the

E6SSM Model I, only inert Higgs superfield and the exotic lepton superfield L4 are allowed

to have non-zero Yukawa couplings to the RH neutrino superfields (see Eq. (2.8)). At the

scale of temperature of Leptogenesis (T ∼ MN1
), the extra inert Higgs remains massless
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and the “fourth family” of the vector like lepton has a mass of order of TeV, which is much

smaller than RH (s)neutrino masses. Then, the decay of RH (s)neutrino into inert Higgs

and L4 is allowed. The complete set of decay channels of the RH (s)neutrino includes

N1 → Lx +Hu
k , N1 → L̃x + H̃u

k , Ñ1 → L̄x + H̃
u

k , Ñ1 → L̃x +Hu
k . (3.6)

The family index x = 1, 2, 3, 4, where 4 stands for the exotic lepton. The decay width of

N1 and Ñ1 are determined by the Yukawa couplings hNkx1 and the mass of the lightest RH

neutrino N1. Supersymmetry implies that

ΓkN1ℓx
+ ΓkN1ℓ̄x

= Γk
N1

eℓx
+ Γk

N1
eℓ∗x

= ΓkeN∗

1 ℓx
= ΓkeN1ℓ̄x

= ΓkeN1
eℓx

= ΓkeN∗

1
eℓ∗x

=
|hNkx1|2

8π
M1 , (3.7)

where the superscript k = 3 represents either “active” Higgs or Higgsino and k = 1, 2

stands for inert Higgs or Higgsino in the final state. We work in a framework where the

charged lepton Yukawa matrix and mass matrix of the RH neutrinos are both diagonal.

We also make the assumption of supersymmetry breaking at the TeVscale, which is negli-

gibly small compared with M1, and therefore all soft SUSY breaking terms can be safely

neglected in the calculation of decaying rates and CP asymmetries. Also when the Lep-

togenesis occurs, SUSY is exact and therefore there is no supersymmetric contribution

to the RH sneutrino mass. The lightest RH neutrino mass is equal to the lightest RH

sneutrino mass.

Each decay channel (3.2) corresponds to a CP asymmetry that contributes to the

generation of lepton/baryon asymmetry. In the E6SSM Model I, the CP asymmetries

(3.2) of the decays of the lightest RH neutrino can be generalised as

εk1, f =
ΓkN1f

− Γk
N1f̄∑

m, f ′

(
ΓmN1f ′

+ Γm
N1f̄ ′

) , (3.8)

where f and f ′ could be either ℓx or ℓ̃x while f̄ and f̄ ′ are the corresponding anti-particle

fields ℓ̄x or ℓ̃∗x. Here, ε3
1, ℓn

and ε3
1, eℓn

(n = 1, 2, 3) are flavour CP asymmetries that stem

from the decays of the lightest RH neutrino into (s)leptons and (the neutral component

of) the Hu (Higgsino H̃u), while ε3
1, ℓ4

, ε3
1, eℓ4

, ε1
1, f and ε2

1, f are extra CP asymmetries result

from N1 decays into exotic lepton L4 and inert Higgs. The denominators of Eq. (3.8) is
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the total decay widths of the lightest RH neutrino. For εk1, ℓx the total width includes all

partial widths ofN1 decays into final state involving SM leptons and fermionic components

of L4. The expressions for εk
1, eℓx

contain in the denominator a sum of partial decay widths

of N1 over all possible decay modes that have either slepton or scalar components of L4

in the final state. The CP asymmetries caused by the decays of the lightest RH sneutrino

εk
e1, f

can be defined similarly to the neutrino ones. In this case the RH neutrino field in

Eqs. (3.8) ought to be replaced by either Ñ1 or Ñ∗
1 .
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Figure 3.1: Diagrams that give contribution to the CP asymmetries in the E6SSM Model I, including the

presence of two extra inert Higgs doublets, and the fourth family lepton doublet.

As in the SM and MSSM, the CP asymmetries of the E6SSM Model I stem from the

interference between the tree-level amplitudes of the lightest RH neutrino decays and one-

loop corrections to them, including self-energy and vertex diagrams. The corresponding

tree-level and one-loop diagrams are shown in Fig. 3.1 - 3.2. The calculation to one-loop
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yields

εk1, ℓx = εk
1, eℓx

= εk
e1, ℓx

= εk
e1, eℓx

=
1

4πA1

∑
j=2,3 Im

{
Ajh

N∗
kx1h

N
kxjf

S

(
M2

j

M2
1

)

+
∑

m, y h
N∗
my1h

N
mxjh

N
kyjh

N∗
kx1 f

V

(
M2

j

M2
1

)}
,

(3.9)

where,

Aj =
∑

m,y

(
hN∗
my1h

N
myj +

M1

Mj

hNmy1h
N∗
myj

)
,

fS(z) =
2
√
z

1 − z
, fV (z) = −√

z ln

(
1 + z

z

)
,

with k,m = 1, 2, 3 and x, y = 1, 2, 3, 4. In the right-hand side of Eq. (3.9), the terms in

the first line are induced by the self-energy diagrams while terms in the second line come

from vertex corrections. It is worth to notice here that the coefficients in front of fS(x)

and fV (x) are not the same, in contrast to the realisations of Leptogenesis in the SM and

MSSM. It means that in general vertex and self-energy contributions to ε1, f and εe1, f are

not related to each other in the considered model. This is a common feature of the models

in which right-handed Majorana neutrinos interact with a few lepton doublets and with

doublets that have quantum numbers of Higgs fields.
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Nj
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Figure 3.2: Extra one–loop diagrams involving internal leptoquarks D that contribute to the CP asym-

metries associated with the decays N1 → Lx + Hu
k in the E6SSM Model II.

Since inert Higgs and inert Higgsino fields do not carry lepton number, they are

not variables in the Boltzmann Equation, which describe the evolution of lepton/baryon
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number densities in the universe. It is useful to define the overall CP asymmetries which

are associated with each flavour, i.e.

εtot1, f =
∑

k

εk1, f , εtote1, f
=
∑

k

εke1, f . (3.10)

These overall decay asymmetries represent the total net lepton number produced from

one unit RH neutrino decay, irrespective of which Higgs field the corresponding lepton is

associated with. The CP asymmetries (3.9) can then be rewritten in a compact form

εtot1, f = εtote1, f
=

1

8π(TrΠ1)

∑

j=2,3

Im

{
AjΠ

j
fff

S

(
M2

j

M2
1

)
+ (Πj)2

fff
V

(
M2

j

M2
1

)}
, (3.11)

where

Πj
ℓyℓx

= Πj

ℓ̃y ℓ̃x
=
∑

m

hN∗
my1h

N
mxj , (3.12)

are three 4 × 4 matrices and Aj = Tr Πj +
M1

Mj

Tr Πj∗ . Eqs. (3.11)-(3.12) indicate that

despite a large number of new couplings appearing due to the breakdown of the Z2
H

symmetry, only some combinations contribute to the generation of lepton asymmetries.

The parametrisation of the overall flavour CP asymmetries presented above can be used

in any model in which the lightest right-handed neutrino can decay into lepton multiplets

and SU(2)W doublets that have quantum numbers of Higgs fields.

In the case of unbroken ZH
2 symmetry, the analytic expressions for the decay asym-

metries (3.9) and (3.11) are simplified dramatically. In particular, CP asymmetries ε1
1, f

and ε2
1, f which are associated with the decays of N1 into either the scalar or fermion com-

ponents of inert Higgs superfields H2α vanish. The analytical expressions for the other

decay asymmetries reduce to

ε3
1, ℓx = ε3

1, eℓx
= ε3

e1, ℓx
= ε3

e1, eℓx
=

1

8π

∑
j=2,3 Im

[
hN∗

3x1B1jh
N
3xj

]

∑
y |hN3y1|2

, (3.13)

where

B1j =
∑

y

{
hN∗

3y1h
N
3yjg

(
M2

j

M2
1

)
+
M1

Mj

hN3y1h
N∗
3yjf

S

(
M2

j

M2
1

)}
, (3.14)
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and

g(z) = fV (z) + fS(z) =
√
z

[
2

1 − z
− ln

(
1 + z

z

)]
, (3.15)

where x and y vary from 1 to 4. If the second lightest and heaviest right-handed neutrinos

are significantly heavier than the lightest one, i.e. M2, M3 ≫ M1, the formulae for the

CP asymmetries (3.13) are simplified even further

ε3
1, ℓx

≃ − 3

8π

∑
j=2,3

Im

[
(hN†hN)1jh

N∗
3x1h

N
3xj

]

(hN†hN)11

M1

Mj

,
(3.16)

where (hN†hN)1j =
∑

y h
N∗
3y1h

N
3yj. From Eq. (3.13-3.15) one can see that in this case the

self-energy contribution to the flavour CP asymmetries is twice as large as the vertex

contribution.

The analytic expressions for the CP asymmetries (3.13)-(3.16) are very similar to the

MSSM ones. Moreover in the limit hN34j → 0 the extra CP asymmetries induced by the

decays

N1 → L4 +Hu, N1 → L̃4 + H̃u, Ñ1 → L̄4 + H̃u, Ñ1 → L̃4 +Hu, (3.17)

vanish and the MSSM results for the flavoured lepton decay asymmetries are reproduced.

However if hN34j have non-zero values, the generation of lepton asymmetry in the MSSM

and E6SSM with unbroken ZH
2 can be entirely different due to the presence of superfields

L4 in the E6SSM. Indeed, since hN34j can be of the order of, or even larger than, the

Yukawa couplings of the ordinary lepton superfields to the Higgs doublet Hu, the decay

rates and CP asymmetries associated with the decays (3.17) can be substantially larger

than other decay rates and asymmetries. The fermion and scalar components of the

supermultiplet L4 being produced in the decays of the lightest right-handed neutrino and

sneutrino sequentially decay either to the leptons or to the sleptons, changing the induced

lepton number asymmetries.
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3.2.1 CP asymmetries for the Model II

In the E6SSM Model II there are, in addition to the states in Model I, exotic leptoquarks

which carry baryon and lepton numbers simultaneously. In this case quark-lepton cou-

plings of Di and Di in the superpotential do not violate either baryon or lepton U(1)

global symmetries so that these interactions are allowed from the phenomenological point

of view. On the other hand these couplings violate ZH
2 symmetry and therefore the

corresponding interactions should be rather weak.

The non-zero complex Yukawa couplings of the leptoquarks to the right-handed Ma-

jorana neutrinos (see Eq.(2.8)) give rise to extra contributions to the CP asymmetries

which correspond to different lepton flavours. These contributions come from the one-

loop self-energy diagrams shown in Fig. 3.3 that contain virtual (possibly exotic) quarks

and squarks. Since Yukawa couplings of the leptoquarks do not induce any one-loop ver-

tex corrections to the amplitude of the decay of the lightest right-handed neutrino, lepton

decay asymmetries can be described by Eqs. (3.8) in which A2 and A3 should be replaced

by Ã2 and Ã3 where

Ãj = Aj +
3

2

∑

m,n

(
gN∗
mn1g

N
mnj +

M1

Mj

gNmn1g
N∗
mnj

)
. (3.18)

At the same time, the interactions of Di and Di with N1 and quark superfields give

rise to the new channels of the lightest right-handed neutrino and sneutrino decays

N1 → Dk + d̃ci, N1 → D̃k + dci , Ñ1 → Dk + di, Ñ1 → D̃k + d̃ci, (3.19)

whereDk and D̃k are fermion and scalar components of leptoquark superfields while di and

d̃i are right-handed down type quarks and their superpartners. When the supersymmetry

breaking scale lies considerably lower than the lightest right-handed neutrino mass M1,

the corresponding partial decay widths are determined by the ZH
2 symmetry violating

Yukawa couplings gNki1 only, i.e.

ΓiN1Dk
+ Γi

N1D̄k
= Γi

N1
eDk

+ Γi
N1

eD∗

k

= Γi
eN∗

1Dk
= Γi

eN1D̄k

= Γi
eN1

eDk
= Γi

eN∗

1
eD∗

k

=
3|gNki1|2

16π
M1 .

(3.20)
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New channels of the decays of the lightest right-handed neutrino (or sneutrino) con-

tribute to the generation of lepton asymmetry via the sequential decay of leptoquarks

and their superpartners at low energies. Due to the lepton number conservation, each

Dk and D̃k produce a lepton in the final state whereas the decay of their antiparticles

leads to the appearance of an anti-lepton. As a consequence one can calculate lepton CP

asymmetries associated with each additional channel of the lightest right-handed neutrino

(or sneutrino) decay (3.19). We define the CP asymmetries caused by the decays of N1

into the exotic quarks (squarks) as follows

εi1, qk =
ΓiN1qk

− ΓiN1q̄k∑
j,m

(
ΓjN1qm

+ ΓjN1q̄m

) . (3.21)

In Eq. (3.21) qk can be either leptoquark fermion fieldsDk or their scalar superpartners D̃k

whereas q̄k represents charge conjugate states Dk or D̃∗
k. The superscripts i and j indicate

the generation number of the down type quark or its superpartner in the final state. In

the denominator of Eq. (3.21) we sum over possible partial widths of the decays of N1

either into exotic quark and right-handed down type squark if εi1, qk = εi1, Dk
or into exotic

squark and ordinary d-quark if εi1, qk = εi
1, eDk

. The CP asymmetries εi
e1, qk

which originate

from the decays of the lightest right-handed sneutrino into the exotic quark (squark) can

be defined in a similar way replacing N1 in Eq. (3.21) by either Ñ1 or Ñ∗
1 . It is worth

noticing that here we treat the CP asymmetries for the right-handed neutrino (sneutrino)

decays to leptons and leptoquarks separately. In other words we do not combine together

all possible partial widths of the decays of N1 into exotic quarks (squark) and leptons

(sleptons) in the denominator of Eq. (3.21) because leptoquarks and lepton fields carry

different quantum numbers.

In the tree level approximation, the CP asymmetries which are associated with the new

decay modes of N1 and Ñ1 (3.19) vanish. The non-zero values of εi1, qk are induced after the

inclusion of one-loop vertex and self-energy corrections to the decay amplitudes of N1 and

Ñ1 if some of the Yukawa couplings of the right-handed Majorana neutrinos to leptons

and quarks are complex. The tree-level and one-loop diagrams that contribute to the

decay asymmetries (3.21) are presented in Fig. 3.3. The interference of the corresponding
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tree-level decay amplitude with the one-loop corrections yields

εi1, Dk
= εi

1, eDk
= εi

e1, Dk
= εi

e1, eDk
=

1

8πA0

∑
j=2,3 Im

{
Ãjg

N
kijg

N∗
ki1f

S

(
M2

j

M2
1

)

+
∑

m,n g
N∗
mn1g

N
mijg

N
knjg

N∗
ki1f

V

(
M2

j

M2
1

)}
,

(3.22)

where A0 =
∑

k, i g
N
ki1g

N∗
ki1 . As before, supersymmetry ensures that the CP asymmetries

originating from the decays of the lightest right-handed neutrino and sneutrino are equal.

As in the case of the lepton decay asymmetries (3.13) the terms in the right-hand side of

Eqs. (3.22) involving Ãj stem from the self-energy diagrams while all other terms represent

vertex corrections. Again the coefficients in front of fS(x) and fV (x) are not equal unlike

the simplest realisations of Fukugita-Yanagida mechanism [80]. From Eq. (3.22) it follows

that the decay asymmetries induced by the additional decay modes (3.19) depend not

only on the Yukawa couplings of exotic quarks and squarks to the right-handed neutrino

but also on the couplings of the right-handed neutrino to leptons and sleptons. Extra CP

asymmetries (3.22) tend to zero when the ZH
2 symmetry violating Yukawa couplings gNkij

vanish.

We can also define the overall decay asymmetries which are associated with each

generation of exotic quarks, i.e.

εtot1, qk
=
∑

i

εi1, qk , εtote1, qk
=
∑

i

εie1, qk . (3.23)

The overall decay asymmetries that stem from the decays of the lightest right-handed

neutrino and sneutrino can be presented in the following form

εtot1, f =
1

8π(TrΠ1)

∑
j=2,3 Im

{
ÃjΠ

j
fff

S

(
M2

j

M2
1

)
+ (Πj)2

fff
V

(
M2

j

M2
1

)}
,

εtot1, k =
1

8π(TrΩ1)

∑
j=2,3 Im

{
ÃjΩ

j
kkf

S

(
M2

j

M2
1

)
+ (Ωj)2

kkf
V

(
M2

j

M2
1

)}
,

Ãj = TrΠj +
M1

Mj

TrΠj∗ +
3

2

(
TrΩj +

M1

Mj

TrΩj∗
)
,

(3.24)

where we set εtot1, Dk
= εtot

1, eDk
= εtot

e1, Dk
= εtot

e1, eDk
= εtot1, k, Ωj

ki =
∑

m g
N∗
km1g

N
imj while Πj

mn are

given by Eqs. (3.12). Compact parametrisation of the overall CP asymmetries (3.24)

allows elimination of a number of parameters on which total lepton asymmetry does not

depend.
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3.3 Numerical Results and Discussions

We now consider the impact of new particles and interactions appearing in the E6SSM

on the numerical values of the lepton CP asymmetries originating from the decays of

the lightest right-handed neutrino and sneutrino. These decay asymmetries depend on all

Yukawa couplings of neutrino superfields. Since the purpose of our studies here is to reveal

the impact of extra couplings on the CP asymmetries we shall fix the Yukawa couplings of

the lightest right-handed neutrino and sneutrino to lepton and Higgs superfields so that

the observed pattern of neutrino masses and mixing angles is reproduced.

Here, as an example, we concentrate on the see-saw models [136] with sequential dom-

inance (SD) of right-handed neutrinos [137]-[139] which lead to the appropriate neutrino

spectrum in a technically natural way, i.e. small perturbations in the high energy in-

put parameters do not change substantially the neutrino mass splittings at low energies.

This means that small neutrino mass splittings are preserved in the presence of radiative

corrections1.

3.3.1 Constrained Sequential Dominance

To review how sequential dominance works we begin by writing the right-handed neutrino

Majorana mass matrix in a diagonal basis as

MRR =




M1 0 0

0 M2 0

0 0 M3


 (3.25)

1In general the radiative corrections in see-saw models may be sufficient to destroy (or create) the

cancellations necessary to achieve the desired mass hierarchy [140].
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and the matrix of Yukawa couplings of the right-handed neutrino to lepton and Higgs

fields hNij in terms of (1, 3) column vectors Ai, Bi and Ci as

hNij = (A B C) =




d a a′

e b b′

f c c′


 . (3.26)

In sequential dominance, we assume

AiAj
M1

≫ BiBj

M2

≫ CiCj
M3

, (3.27)

which is supported by the strong hierarchy in RH neutrino masses M1 ≪ M2 ≪ M3.

In addition, we assume that |d| ≪ |e| ∼ |f |. The breakdown of electroweak symmetry

induces Majorana mass terms for the left-handed neutrinos via the Yukawa interactions

of the neutrino with the Higgs fields. After the integrating out the right-handed neutrinos

we get

Lνmass =
(νTi Ai)(A

T
j νj)

M1

v2
2 +

(νTi Bi)(B
T
j νj)

M2

v2
2 +

(νTi Ci)(C
T
j νj)

M3

v2
2 , (3.28)

where v2 is a VEV of the Higgs doublet Hu. We can see that the dominant contribution to

the neutrino masses is the first term of Eq.(3.27). The 3×3 mass matrix of the left-handed

neutrino induced by Lνmass can be diagonalised by means of a unitary transformation, the

PMNS matrix in Eq. 1.8. The CHOOZ experiment sets a stringent constraint on the

value of θ13 . 0.2 [16]. We will assume that θ13 ≪ 1.

The sequential dominance implies that the first term in Eq. (3.28) gives a dominant

contribution to the mass matrix of the left-handed neutrino, the second term is sub-

dominant whereas the contribution of the last term in Eq. (3.28) is negligible [137]-[139].

This structure of the mass terms guarantees that the mass of the heaviest light neutrino

m3 is much larger than the mass of the second lightest one. If the heaviest left-handed neu-

trino is denoted ν3 then sequential dominance results in the physical neutrino eigenstate

ν3 ≃ d νe + e νµ + f ντ with the mass [138]

|m3| ≃ (|d|2 + |e|2 + |f |2)v2
2/M1 . (3.29)
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m3 is associated with the atmospheric neutrino mass
√

∆m2
atm. Two other orthogonal

combinations of neutrinos remain massless in the leading approximation. The requirement

of a small angle θν13 implies that |d| ≪ |e|, |f |. Then the atmospheric angle θ23 is given by

[138]

tan θ23 ≈ tan θν23 ≈
|e|
|f | ≈

1√
2
. (3.30)

Although the leading approximation allows us to get an appropriate description of

atmospheric neutrino data, we need to go beyond it to account for the data of other

neutrino experiments. The contribution of the sub-leading right-handed neutrino does

not substantially change the mass of the heaviest left-handed neutrino state (3.29) and

atmospheric angle (3.30). However it gives rise to non-zero second lightest neutrino mass.

The sub-leading contributions to the left-handed neutrino mass matrix also induce mixing

between the heaviest and other left-handed neutrino states. The neutrino mass matrix

can be reduced to the block diagonal form by means of unitary transformations U13 if

θν13 ≈ ei(φ̃+φa−φe)
|a|(e∗b+ f ∗c)

(|e|2 + |f |2)3/2

M1

M2

+ ei(φ̃+φd−φe)
|d|√

|e|2 + |f |2
, (3.31)

where φx are the phases of Yukawa couplings, i.e. x = |x|eiφx . The relative phase φe− φf

is chosen so that the angle θν23 is real. The phase φ̃ is fixed by the requirement that the

angle θ13 is real and positive. When d = 0 we get

φ̃ = φe − φa − ζ , ζ = arg(e∗b+ f ∗c) . (3.32)

It is worth to notice here that the angle θν13 is automatically small in the considered

approximation.

Finally, the left-handed neutrino mass matrix can be completely diagonalised by the

R12 rotation. Then the second lightest left-handed neutrino gets mass [138]

|m2| ≃
|a|2v2

2

M2 sin2 θν12
, (3.33)

while the solar angle is given by [138]

tan θ12 ≈ tan θν12 ≃
a

b cos θ23 − cei(φe−φf ) sin θ23

=
|a|

|b|c23 cosφ′
b − |c|s23 cosφ′

c

,

φ′
b = φb − φa − φ̃− δ , φ′

c = φc − φa + φe − φf − φ̃− δ .

(3.34)
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Once again the phases can be chosen so that tan θν12 is real and positive. This can be

achieved if phases φ′
b and φ′

c satisfy the condition

|b|c23 sinφ′
b ≈ |c|s23 sinφ′

c . (3.35)

Note that in contrast with θν13 the solar angle (3.34) is completely determined by the sub-

leading couplings due to a natural cancellation of the leading contributions. Therefore this

angle should be relatively large. The lightest left-handed neutrino state remains massless

in the considered approximation. Its mass is generated by the sub-sub-leading couplings

of the heaviest right-handed neutrino, i.e.

|m1| ≃ O

( |C|2v2
2

M3

)
. (3.36)

Thus sequential dominance results in a full neutrino mass hierarchy m1 ≪ m2 ≪ m3.

Because SD does not require any fine tuning the contribution of radiative corrections to

the neutrino masses and mixing angles is expected to be quite small, at the level of a few

per cent [142].

Current neutrino oscillation data point strongly to a specific form for the lepton mixing

matrix with effective bi-maximal mixing of νµ and ντ at the atmospheric scale and effective

trimaximal mixing for νe, νµ and ντ at solar scale (tri-bimaximal mixing [143]). In the

tri-bimaximal mixing scenario the PMNS matrix takes a form in Eq.(1.23). Comparing

matrix (1.23) with the general parametrisation of the neutrino mixing matrix (1.8) one can

easily establish that tri-bimaximal mixing scenario corresponds to θ13 = 0, sin θ12 = 1/
√

3

and θ23 = π/4. Within the framework of sequential dominance the vanishing of the mixing

angle θ13 can be naturally achieved when

d ≃ 0 , e∗b+ f ∗c = (A†B) ≃ 0 . (3.37)

Since in this case the bimaximal mixing between νµ and ντ implies that |e| = |f | the

conditions (3.37) constrain the Yukawa couplings of the second lightest right-handed neu-

trino. In particular, from Eq. (3.37) it follows that |b| = |c|. Taking into account that

tri-bimaximal mixing also requires sin θ12 = 1/
√

3 one can show that within the sequen-

tial dominance the Yukawa couplings of the lightest and second lightest right-handed
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neutrinos which correspond to the tri-bimaximal mixing scenario can be always chosen so

that

d ≃ 0 , f = −e = |A|eiφA , a = b = c = |B|eiφB . (3.38)

This is so-called constrained sequential dominance (CSD) [144]. Note that CSD does not

constrain the Yukawa couplings of the heaviest right-handed neutrino a′, b′ and c′ because

they only give sub-sub-dominant contribution to the neutrino mass matrix. Additional

issues concerning the Leptogenesis in the neutrino models based on the seesaw mechanism

and sequential right-handed neutrino dominance were discussed in [139], [145].

3.3.2 Results of numerical analysis

3.3.2.a E6SSM with unbroken Z2
H symmetry

With the assumption of the constrained sequential dominance we calculate the values of

the decay asymmetries in the E6SSM. According to CSD one can ignore the contribu-

tion of the heaviest right-handed neutrino so that the analytical expressions for the CP

asymmetries derived in Section 3 are considerably simplified. We start our analysis from

the E6SSM with exact Z2
H symmetry. In this case there is only one extra CP asymme-

try associated with the decay of the lightest right-handed neutrino into scalar (fermion)

components of the fourth lepton doublet superfield L4 and Higgsinos (Higgs bosons). Sub-

stituting the pattern of Yukawa couplings that corresponds to the constrained sequential

dominance into Eqs. (3.16) and neglecting the contribution of the heaviest right-handed

neutrino to the CP asymmetries we get

ε3
1, L4

≃ 3

8π

|hNHu
3 L4N1

|2|hNHu
3 L4N2

|2 sinφL

2|A|2 + |hNHu
3 L4N1

|2
M1

M2

, ε3
1, e = 0 ,

ε3
1, τ ≃ −ε3

1, µ ≃ 3

8π

|hNHu
3 L4N1

||hNHu
3 L4N2

||A||B| sinφµτ
2|A|2 + |hNHu

3 L4N1
|2

M1

M2

,

φµτ = φ41 + φA − φ42 − φB , φL = 2(φ41 − φ42) ,

(3.39)

where hNHu
3 L4N1

≡ hN341 = hN41, h
N
Hu

3 L4N2
≡ hN342 = hN42, h

N
Hu

3 L4N1
= |hNHu

3 L4N1
|eiφ41 and

hNHu
3 L4N2

= |hNHu
3 L4N2

|eiφ42 . Note that in the limit when hNHu
3 L4N1

and hNHu
3 L4N2

go to zero all
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CP asymmetries vanish. This is not an accident. When Yukawa couplings hNHu
3 L4N1

and

hNHu
3 L4N2

tend to zero the interactions of the right-handed neutrinos with the Higgs and

lepton superfields are exactly the same as in the MSSM. At the same time the conditions

(3.37) which result in the natural realisation of the tri-bimaximal mixing scenario in the

framework of sequential dominance ensure the vanishing of all decay asymmetries within

the SM and the MSSM. Thus the induced values of the lepton decay asymmetries (3.39)

are entirely caused by the new particles and interactions appearing in the E6SSM.

The CP asymmetries (3.39) also vanish when all Yukawa couplings are real, i.e. CP

invariance in the lepton sector is preserved. The decay asymmetries ε3
1, L4

and ε3
1, τ = −ε3

1, µ

attain their maximum absolute values when sinφL and sinφµτ are equal to ±1 respectively.

The maximum absolute values of the CP asymmetries (3.39) are given by

|ε3
1, L4

| ≃ 3

8π

|hNHu
3 L4N1

|2|hNHu
3 L4N2

|2

2|A|2 + |hNHu
3 L4N1

|2
M1

M2

,

|ε3
1, τ | = |ε3

1, µ| ≃
3

8π

|hNHu
3 L4N1

||hNHu
3 L4N2

||A||B|
2|A|2 + |hNHu

3 L4N1
|2

M1

M2

.

(3.40)

The dependence of the maximum values of |ε3
1, L4

| and |ε3
1, τ | = |ε3

1, µ| on the absolute

values of the additional Yukawa couplings |hNHu
3 L4N1

| and |hNHu
3 L4N2

| is examined in Fig.

3.4, where we fix (M2/M1) = 10. To avoid problems related with the overproduction

of gravitinos we assume that the mass of the lightest right-handed neutrino is relatively

small M1 ≃ 107 GeV. We also set v2 = v ≃ 246 GeV that corresponds to large values

of tanβ and choose parameters |A| and |B| so that the observed neutrino mass-squared

differences are reproduced (see, for example, [46]). Here we have taken |A| = 2.0 × 10−5

and |B| = 3.8 × 10−5. In Figs. 3.4a and 3.4b the dependence of the maximum value

of |ε3
1, τ | = |ε3

1, µ| on |hNHu
3 L4N1

| and |hNHu
3 L4N2

| is studied whereas in Figs. 3.4c and 3.4d

we plot the maximum value of |ε3
1, L4

| as a function of new Yukawa couplings. From

Eqs.(3.40) and Figs. 3.4a and 3.4c it follows that both maximum absolute values of the

CP asymmetries (3.40) grow monotonically with increasing of |hNHu
3 L4N2

|. The dependence

of |ε3
1, L4

| and |ε3
1, τ | = |ε3

1, µ| on |hNHu
3 L4N1

| is more complicated. At small values of |hNHu
3 L4N1

|
these decay asymmetries are small and increase when |hNHu

3 L4N1
| becomes larger. However

if |hNHu
3 L4N1

| is much larger than |A| the maximum absolute values of |ε3
1, τ | = |ε3

1, µ| are
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inversely proportional to |hNHu
3 L4N1

| and therefore diminish with increasing |hNHu
3 L4N1

| (See

Fig. 3.4b). In contrast, the dependence on |hNHu
3 L4N1

| in |ε3
1, L4

| cancels between numerator

and denominator making the dependence flat (See Fig. 3.4d). The CP asymmetries

|ε3
1, τ | = |ε3

1, µ| attain their maximal possible value at |hNHu
3 L4N1

| ≃
√

2|A|. Thus we establish

the following theoretical restrictions on the values of decay asymmetries

|ε3
1, L4

| .
3M1

8πM2

|hNHu
3 L4N2

|2 , |ε3
1, τ | = |ε3

1, µ| .
3
√

2M1

32πM2

|hNHu
3 L4N2

||B| . (3.41)

One can easily see that the theoretical upper bounds on the absolute values of the CP

asymmetries (3.41) are determined by the Yukawa couplings of the second lightest right-

handed neutrino and do not depend on the Yukawa couplings of the lightest right-handed

neutrino. In general the maximal absolute values of decay asymmetries diminish when

the couplings |hNHu
3 L4N1

| and |hNHu
3 L4N2

| decrease (see Fig. 3.5).

There is also another general tendency that should be mentioned here.

When M1 ≪ 1013 − 1014 GeV the absolute value of the CP asymmetry associated with

the decay N1 → L4 +Hu tends to be considerably larger than lepton decay asymmetries

ε3
1, µ and ε3

1, τ (see Figs. 3.4-3.5). This happens because lower masses of the right-handed

neutrinos require smaller values of the Yukawa couplings of the Higgs doublet Hu to

leptons. Otherwise the observed neutrino mass-squared differences can not be reproduced

within the framework of sequential dominance. From Eqs. (3.29) and (3.33) it follows

that |A| ∝
√
M1|m3|/v2 while |B| ∝

√
M2|m2|/v2. Thus for a fixed ratio M1/M2 the

maximal possible values of the decay asymmetries |ε3
1, µ| and |ε3

1, τ | (3.41) diminishes as
√
M1 when M1 decreases. In fact, the decrease of lepton CP asymmetries with the mass

of the lightest right-handed neutrino is a common feature of most see-saw models. This

results in the lower bound on the lightest right-handed neutrino mass: M1 & 109 GeV

[146]. At the same time the results of our analysis presented in Figs. 3.5 demonstrate

that within the E6SSM with unbroken ZH
2 it is possible to generate an appreciable value

of the CP asymmetry |ε3
1, L4

| = 10−6 − 10−4 even for M1 = 107 GeV. This can be achieved

if the Yukawa couplings of the fourth lepton doublet L4 to the Higgs fields Hu vary from

0.01 to 0.1. At low energies the induced lepton asymmetry is transferred to the ordinary
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lepton asymmetries via the decays of heavy L4 and L̃4 into leptons (sleptons) and Higgs

fields Hd (Higgsinos H̃d).

3.3.2.b E6SSM Model I

In the case of the E6SSM Model I two generations of inert-Higgs superfields Hu
α (α =

1, 2) contribute to ε1, ℓx through loop diagrams and give rise to a set of extra decay

asymmetries εα1, ℓx defined by Eq. (3.8). Because the Yukawa couplings of Hu
α to the

quarks and leptons of the first two generation are expected to be rather small in order

to avoid non-diagonal flavour transitions we assume that inert Higgs fields couple to the

third generation fermions only. To simplify our analysis further we also assume that only

one inert Higgs doublet Hu
2 has non-zero couplings with the doublet of leptons of the

third generation and right-handed neutrinos. Then the analytic expression (3.13) for the

overall CP asymmetries reduces to

εtot1, µ ≃ 1

4π

|hNHu
2 L3N1

||hNHu
2 L3N2

||A||B| sinφµ
2|A|2 + |hNHu

2 L3N1
|2

M1

M2

, εtot1, e = 0 ,

εtot1, τ ≃

(
4|hNHu

2 L3N1
||hNHu

2 L3N2
||A||B| sinφµ + 3|hNHu

2 L3N1
|2|hNHu

2 L3N2
|2 sinφτ

)

8π(2|A|2 + |hNHu
2 L3N1

|2)
M1

M2

,

φµ = φ231 + φA − φ232 − φB , φτ = 2(φ231 − φ232) ,

(3.42)

where hNHu
2 L3N1

≡ hN231, hNHu
2 L3N2

≡ hN232, hNHu
2 L3N1

= |hNHu
2 L3N1

|eiφ231 and

hNHu
2 L3N2

= |hNHu
2 L3N2

|eiφ232 . Here, to clarify the contribution of the inert-Higgs doublet, we

set all Yukawa couplings of L4 to the right-handed neutrinos to be zero.

As before the overall CP asymmetries (3.42) vanish in the MSSM limit of the E6SSM

when hNHu
2 L3N1

and hNHu
2 L3N2

go to zero. The decay asymmetries (3.42) also tend to zero if

CP invariance is preserved in the lepton sector, i.e. phases of all Yukawa couplings vanish.

Once again εtot1, µ and εtot1, τ reach their maximum absolute values when sinφµ and sinφτ are

equal to ±1. The corresponding maximum absolute values of the overall CP asymmetries
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(3.42) can be written as

|εtot1, µ| ≃ 1

4π

|hNHu
2 L3N1

||hNHu
2 L3N2

||A||B|
2|A|2 + |hNHu

2 L3N1
|2

M1

M2

,

|εtot1, τ | ≃

(
4|hNHu

2 L3N1
||hNHu

2 L3N2
||A||B| + 3|hNHu

2 L3N1
|2|hNHu

2 L3N2
|2
)

8π (2|A|2 + |hNHu
2 L3N1

|2)
M1

M2

.

(3.43)

In Figs. 3.6-3.7 we present the results of our numerical analysis of the decay asym-

metries in the E6SSM Model I. The dependence of the maximum values of |εtot1, µ| and

|εtot1, τ | on |hNHu
2 L3N1

| and |hNHu
2 L3N2

| is studied in Fig. 3.6. As before we set (M2/M1) = 10,

M1 ≃ 106 GeV, v2 ≃ v ≃ 246 GeV and adjust parameters |A| and |B| to reproduce the

observed neutrino mass-squared differences. In Figs. 3.6a and 3.6b we plot the maxi-

mum value of |εtot1, µ| as a function of |hNHu
2 L3N1

| and |hNHu
2 L3N2

| while the dependence of the

maximum value of |εtot1, τ | on these new Yukawa couplings is explored in Figs. 3.6c and

3.6d. From Eq. (3.43) one can see that at very small values of new Yukawa couplings

(|hNHu
2 L3N1

|, |hNHu
2 L3N2

| ≪ |A| and |B|) the maximum absolute values of the overall CP

asymmetry are proportional to |hNHu
2 L3N1

| · |hNHu
2 L3N2

|. At so small values of |hNHu
2 L3N1

| and

|hNHu
2 L3N2

| the maximum absolute value of the overall CP asymmetry associated with the

decay of N1 into τ -lepton is twice as large as the maximum value of |εtot1, µ|. The maximum

values of |εtot1, µ| and |εtot1, τ | rise with increasing of |hNHu
2 L3N2

| (see Fig. 3.6a and 3.6c). When

|hNHu
2 L3N2

| ≫ |A|, |B| the value of |εtot1, τ | tends to be much larger than |εtot1, µ|.

At small values of |hNHu
2 L3N1

| the maximum absolute values of both decay asymmetries

also grow with increasing of |hNHu
2 L3N1

| independently of |hNHu
2 L3N2

| (see Fig. 3.7b and

3.7d). But |εtot1, µ| attains its maximum possible value at |hNHu
2 L3N1

| =
√

2|A| whereas |εtot1, τ |
approach its upper bound at large values of |hNHu

2 L3N1
| ≫ |A|, |B|. When |hNHu

2 L3N1
| is

significantly larger than |A| and |B| the maximum value of |εt1, µ| is inversely proportional

to |hNHu
2 L3N1

| while |εtot1, τ | is almost independent of |hNHu
2 L3N1

|. In the considered case the

73



theoretical upper bounds on |εtot1, µ| and |εtot1, τ | are given by

|εtot1, τ | .
M1

8πM2

|hNHu
2 L3N2

|2
[
3 +

4x

12 +
√

8x+ 9

]
, x =

|B|2
|hNHu

2 L3N2
|2 ,

|εtot1, µ| .

√
2M1

16πM2

|hNHu
2 L3N2

||B| .
(3.44)

As before the theoretical restrictions on the absolute values of CP asymmetries (3.44) are

set by the Yukawa couplings of the second lightest right-handed neutrino and independent

of the Yukawa couplings of the lightest right-handed neutrino. Because for a fixed ratio

M1/M2 the values of |A| and |B| ∝
√
M1 the maximum possible value of |εtot1, µ| decreases

when M1 becomes smaller while the theoretical upper bound on |εtot1, τ | does not change

much. As a consequence |εtot1, τ | tends to dominate over |εtot1, µ| at low masses of the lightest

right-handed neutrino M1 ≪ 1013 − 1014 GeV (see Figs. 3.6-3.7). Since the maximum

possible value of |εtot1, τ | is determined mainly by |hNHu
2 L3N2

|, which is not constrained by the

neutrino oscillation data, an appreciable CP asymmetry within the E6SSM Model I can

be induced even when M1 is relatively low. Fig. 3.7 demonstrates that for M1 ≃ 106 GeV

the decay asymmetry |εtot1, τ | = 10−6 − 10−4 can be generated if |hNHu
2 L3N2

| varies from 0.01

to 0.1.

3.3.2.c E6SSM Model II

Within the E6SSM Model II the lightest right-handed neutrino may decay into the lepto-

quarks (squarks) and down-type squarks (down-type quarks). New decay modes of the

lightest right-handed neutrino lead to the set of extra CP asymmetries εi1, Dk
(3.21) which

appear in addition to those arising in the E6SSM Model I. Leptoquarks also give a substan-

tial contribution to εk1, ℓx , through loop diagrams if the corresponding Yukawa couplings

gNkij are large enough. By construction the exotic quarks and squarks in the E6SSM couple

predominantly to the the quark and lepton superfields of the third generation. Therefore

in our analysis we neglect the Yukawa couplings of the exotic quarks and squarks to the

first and second generation particles. Moreover for simplicity we assume that only the

third generation exotic quarks and squarks have appreciable couplings to the bosons and
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fermions of the third generation and the Yukawa couplings of L4 and Hu
α to the right-

handed neutrinos vanish. In this approximation for the maximum absolute values of the

CP asymmetries |ε3
1, τ | = |ε3

1, µ| and |ε3
1, D3

| one obtains

|ε3
1, τ | = |ε3

1, µ| ≃
3|B|M1

16π|A|M2

|gND3d3N1
||gND3d3N2

| , |ε3
1, D3

| ≃ 3M1

2πM2

|gND3d3N2
|2 , (3.45)

where gND3d3N1
≡ gN331 and gND3d3N2

= gN332. All other decay asymmetries vanish in the

considered approximation. As before the maximum absolute values of the CP asymmetries

(3.45) tend to zero if gND3d3N1
→ 0 and gND3d3N2

→ 0. However in contrast with the scenarios

considered before the absolute values of the CP asymmetries |ε3
1, µ| and |ε3

1, τ | do not change

when the lightest right-handed neutrino mass varies while M1/M2 remains intact. Indeed,

according to the Eqs. (3.29) and (3.33) the ratio |A|/|B| is proportional to
√
M1/M2. As

a result the explicit dependence of the lepton decay asymmetries on the right-handed

neutrino mass scale in Eq. (3.45) is partially cancelled. The maximum absolute values of

the CP asymmetries (3.45) are determined by |gND3d3N1
| and |gND3d3N2

|.

The dependence of the maximum values of |ε3
1, τ | = |ε3

1, µ| and |ε3
1, D3

| on the Yukawa

couplings gND3d3N1
and gND3d3N2

is examined in Fig. 3.8. Once again we fix (M2/M1) = 10,

v2 ≃ 246 GeV and choose |A| and |B| so that the phenomenologically acceptable pat-

tern of the neutrino mass spectrum is reproduced. From Eq. (3.45) and Fig. 3.9 one

can see that the decay asymmetries |ε3
1, τ | = |ε3

1, µ| and |ε3
1, D3

| rise monotonically with

increasing of |gND3d3N2
|. The maximum absolute values of the lepton CP asymmetries also

grow when |gND3d3N1
| increases. At the same time |ε3

1, D3
| does not depend on |gND3d3N1

|.
When |gND3d3N2

| ≫ |gND3d3N1
| the decay asymmetry |ε3

1, D3
| tends to be considerably larger

than lepton decay asymmetries. At low energies the induced lepton asymmetry in the

exotic quark sector is converted into the ordinary lepton asymmetries via the decays

of leptoquarks into leptons (sleptons) and ordinary quarks (squarks). In the oppo-

site limit |gND3d3N2
| ≪ |gND3d3N1

| lepton decay asymmetries dominate over |ε3
1, D3

|. If

|gND3d3N1
| ∼ |gND3d3N2

| these CP asymmetries are comparable. From Fig. 3.9 one can

see that appreciable values of the decay asymmetries ε3
1, µ, ε

3
1, τ and ε3

1, D3
∼ 10−6 − 10−4

can be induced if |gND3d3N1
|, |gND3d3N2

| & 0.01 − 0.1.
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Figure 3.3: Tree-level and one-loop diagrams that give contribution to the CP asymmetries associated

with the decays N1 → Dk + di involving final state leptoquarks D in the E6SSM Model II.
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Figure 3.4: Maximal absolute values of (a)-(b) |ε3
1, µ| = |ε3

1, τ | and (c)-(d) |ε3
1, L4

| in the E6SSM with

unbroken Z2
H symmetry versus |hN

Hu
3

L4N1
| and |hN

Hu
3

L4N2
| for M1 = 106 GeV, M2 = 10 · M1. The solid,

dash-dotted and dashed lines in figures (a) and (c) represent the maximal absolute values of the decay

asymmetries for |hN
Hu

3
L4N1

| = 0.1, 10−3 and 10−5 while solid, dash-dotted and dashed lines in figures (b)

and (d) correspond to |hN
Hu

3
L4N2

| = 0.1, 10−3 and 10−5 respectively.
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Figure 3.5: Logarithm (base 10) of the maximal values of |ε3
1, µ| = |ε3

1, τ | (a, c) and |ε3
1, L4

| (b, d) in the

E6SSM with unbroken Z2
H symmetry versus log |hN

Hu
3

L4N1
| and log |hN

Hu
3

L4N2
| for M1 = 106 GeV (a, b),

M1 = 1013 GeV (c, d), and M2 = 10M1. The solid contour lines show steps of 2 in the logarithm (base

10) of the asymmetries.
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Figure 3.6: Maximal absolute values of (a)-(b) |εtot
1, µ| and (c)-(d) |εtot

1, τ | in the E6SSM Model I versus

|hN
Hu

2
L3N2

| and |hN
Hu

2
L3N1

| for M1 = 106 GeV and M2 = 10 · M1. All couplings |hN
Hu

k
L4Nj

| are set to zero.

The solid, dash-dotted and dashed lines in figures (a) and (c) represent the maximal absolute values of

the decay asymmetries for |hN
Hu

2
L3N1

| = 0.1, 10−3 and 10−5 while solid, dash-dotted and dashed lines in

figures (b) and (d) correspond to |hN
Hu

2
L3N2

| = 0.1, 10−3 and 10−5 respectively.

79



-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
 0
 2

lo
g 

|h
N H

u 2l
3N

2|

lo
g 

|ε
to

t
1,

µ|
-5 -4 -3 -2 -1  0

log |hN
Hu

2l3N1
|

-5

-4

-3

-2

-1

 0

 1

lo
g 

|h
N H

u 2l
3N

2|

lo
g 

|ε
to

t
1,

µ|

-6

-8

-10

-12

-14

-16

log |hN
Hu

2l3N1
|

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
 0
 2

lo
g 

|h
N H

u 2l
3N

2|

lo
g 

|ε
to

t
1,

τ|

-5 -4 -3 -2 -1  0
log |hN

Hu
2l3N1

|

-5

-4

-3

-2

-1

 0

 1

lo
g 

|h
N H

u 2l
3N

2|

lo
g 

|ε
to

t
1,

τ|

0

-2

-4

-6

-8

-10

log |hN
Hu

2l3N1
|

(a) (b)

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
 0
 2

lo
g 

|h
N H

u 2l
3N

2|

lo
g 

|ε
to

t
1,

µ|

-5 -4 -3 -2 -1  0
log |hN

Hu
2l3N1

|

-5

-4

-3

-2

-1

 0

 1

lo
g 

|h
N H

u 2l
3N

2|

lo
g 

|ε
to

t
1,

µ|

-4

-6

-8

-10

-12

log |hN
Hu

2l3N1
|

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
 0
 2

lo
g 

|h
N H

u 2l
3N

2|

lo
g 

|ε
to

t
1,

τ|
-5 -4 -3 -2 -1  0

log |hN
Hu

2l3N1
|

-5

-4

-3

-2

-1

 0

 1

lo
g 

|h
N H

u 2l
3N

2|

lo
g 

|ε
to

t
1,

τ|

-2

-4

-6

-8

-10

0

log |hN
Hu

2l3N1
|

(c) (d)

Figure 3.7: Logarithm (base 10) of the maximal values of |εtot
1, µ| (a, c) and |εtot

1, τ | (b, d) in the E6SSM

Model I versus log |hN
Hu

2
L3N2

| and log |hN
Hu

2
L3N1

| for M1 = 106 GeV (a, b), M1 = 1013 GeV (c, d), and

M2 = 10M1. All couplings |hN
Hu

k
L4Nj

| are set to zero. The solid contour lines show steps of 2 in the

logarithm (base 10) of the asymmetries.
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Figure 3.8: Maximal absolute values of the CP asymmetries in the E6SSM Model II as a function of (a)

|gN
D3d3N2

| and (b) |gN
D3d3N1

| for M1 = 106 GeV and M2 = 10 ·M1. All couplings |hN
Hu

k
L4Nj

| and |hN
Hu

αLxNj
|

(α = 1, 2) are set to zero. The solid, dashed and dotted lines in figure (a) represent |ε3
1, µ| = |ε3

1, τ |
computed for |gN

D3d3N1
| = 0.1, 10−3 and 10−5 while the dash-dotted line corresponds to |ε3

1, D3
|. The solid

and dashed lines in figure (b) show the dependence of |ε3
1, µ| = |ε3

1, τ | on |gN
D3d3N1

| for |gN
D3d3N2

| = 0.1

and 10−5 while the dash-dotted and dotted lines correspond to |ε3
1, D3

| calculated for |gN
D3d3N2

| = 0.1 and

10−5 respectively.
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Figure 3.9: Logarithm (base 10) of the maximal values of |ε3
1, µ| = |ε3

1, τ | (a) and |ε3
1, D3

| (b) in the E6SSM

Model II versus log |gN
D3d3N2

| and log |gN
D3d3N1

| for M2 = 10M1 (fixing the ratio M1/M2 these asymmetries

become independent of M1). All couplings |hN
Hu

k
L4Nj

| and |hN
Hu

αLxNj
| (α = 1, 2) are set to zero. The solid

contour lines show steps of 2 in the logarithm (base 10) of the asymmetries.
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Chapter 4

The Evolution of Lepton/Baryon

Asymmetries

Lepton asymmetries discussed in the last chapter describe how much net lepton is pro-

duced per RH neutrino decay. To ensure that the produced leptons remain in the present

universe, the process of RH neutrino decay should happen out-of-thermal equilibrium.

To calculate the number densities of lepton/baryon in the present universe, one have to

solve the Boltzmann Equations, involving all relevant processes. These processes include:

the RH neutrino decays/inverse decays, lepton number changing scatterings, sphaleron

processes, and Yukawa interactions. The rates of these processes are functions of the

temperature of the universe at that time, particle number densities and the rate of the

corresponding interaction at zero temperature. We do not consider Quantum Boltzmann

Equations, where correlation functions are used instead of particle number density [147]-

[152]. Also we do not consider the case where the decays and inverse decays can not

thermalise the heavy (s)neutrino distribution function [153].

We will begin with unflavoured Boltzmann Equations in the non-supersymmetric case,

where the sum of lepton asymmetries is used and analyse the rate of corresponding pro-

cesses. Then, to get a quantitatively accurate result, we consider full flavoured Boltzmann
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Equations in two approaches. In the first approach, the asymmetries of each lepton flavour

are considered as separate variables. The reason to distinguish lepton flavours is that the

wash-out terms, which are functions of number density of each lepton are different for

each flavour. One introduces the flavour transition matrix to describe the Yukawa inter-

actions and sphaleron processes. In the second approach, the number density relations of

corresponding particles are calculated, and the Boltzmann Equations are used to describe

the evolution of the total B − L number instead of three individual left-handed lepton

flavours.

We will extend the Boltzmann Equations to the context of supersymmetry and the

E6SSM with the second approach. We discuss the case (a) E6SSM with conserved ZH
2

symmetry (with only the L4 and L̄4 added), (b) E6SSM model I (with the inert Higgs

added) and (c) E6SSM model II (with leptoquarks added). We then show that the right

amount of baryon number can be achieved in both of these cases by numerical calculation.

4.1 The Set-up of Boltzmann Equations

In this section, we discuss the basic ingredients of the Boltzmann Equations for Lep-

togenesis. Boltzmann Equations are widely used in particle cosmology to calculate the

abundance of light elements from nucleosynthesis, the density of dark matter and the

generation of lepton/baryon number in Leptogenesis. The Boltzmann Equations are a

set of differential equations, the right hand side of which are the rates of increasing or

decreasing the corresponding component of the relative processes.

To analyse the evolution of leptons, one should take into account all the particles which

participate in the interactions changing lepton/baryon number density. These particles

include leptons, quarks (both left-handed and right-handed), Higgs, RH neutrino and

their super-partners in SUSY. The number densities of quark fields are determined by the

“spectator processes” [154], which are much faster than the processes of generating and

washing out lepton number, and the ratios of quark and Higgs to lepton number densities
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are fixed in certain ranges of temperature thanks to the corresponding chemical potentials

in equilibrium. For this reason, we can write the Boltzmann Equations using the lepton

number density and the number density of the lightest RH neutrino field, and the final

baryon number can be converted via the relation of B and L. (In the second approach

of flavoured scenarios, we introduce another variable, the inactive B−L number density,

which will be discussed in Appendix (F)).

In this thesis, we only consider the case of strong hierarchical RH neutrino masses,

where the second and third generation of RH neutrino decay earlier than the first gener-

ation of RH neutrino due to their large masses. We assume that the lepton asymmetry

produced from the second and the third RH neutrino decay is erased by the later processes

involving the lightest RH neutrino. For the details of N2 in leptogenesis where the lepton

asymmetry produced by N2 is also considered, we refer the reader to [84].

It is convenient to use the dimensionless parameter z to describe processes happening

at the scale of T ∼ M1. Using the Hubble expansion rate H in radiation dominated

universe Eq.(E.5) and the relation of cosmic time t to H, t = 1/H, clearly we have

dz

dt
= −M1

T 2

dT

dt
= zH(z) =

H1

z
, (4.1)

where H1 is the Hubble expansion rate at temperature T = M1.

In addition, the Boltzmann Equations can be simplified if we use the particle abun-

dance (particle number density normalized by the entropy density):

yx ≡ nx/s, (4.2)

where nx is the particle density in the co-moving volume with the considered particle x

and s is entropy density1. In this case, the effect of expanding of the universe is embedded

in yx, since both nx and s are in the co-moving volume, scaled as 1/T 3.

The reactions play the crucial role of generating lepton number. As an example, let

us firstly consider a particle x. To calculate the change of number density of x, one needs

1The expression of entropy s in the radiation dominated universe is given in Eq. (E.21)
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to take into account the reactions with x in the initial states as well as in the final states.

Clearly, the reactions with x in the initial states decrease the number density of x whereas

the reaction with x in the final states increase the number density of x

dyx
dz

= − 1

sHz

∑

a,i,j···

[
yxya · · ·
yeq
x y

eq
a · · · γ(x+ a+ · · · → i+ j + · · · )

− yiyj · · ·
yeq
i y

eq
j · · · γ(i+ j + · · · → x+ a+ · · · )

]
, (4.3)

where yeq ≡ neq/s is the abundance of particle x in equilibrium, with neq calculated in

Appendix (E.2):

neq
i (T ) =

gi T m
2
i

2π2
K2

(
mi

T

)
, (4.4)

for massive particles with mass mi, and

neq
i (T ) =

gi T
3

π2
, (4.5)

for massless particles, with gi the internal degrees of freedom of the particle and K2(x)

the second modified Bessel function.

In leptogenesis, we are interested in massless leptons (and quarks/Higgs) and massive

RH neutrinos. Inserting Eq.(4.4) and Eq.(4.5) into Eq.(E.18), we can arrive at the abun-

dances of leptons and RH neutrino in equilibrium Eq.(1.68). Note that the total number

of degrees of freedom of the plasma in the framework of the Standard Model is given by

gSM
∗ = 106.75 and gMSSM

∗ = 228.75 in the MSSM.

Here γ is the reaction density in equilibrium, which can be calculated from a general

equation

γ(x+ a+ . . .→ i+ j + . . .)

=

∫
dΠXf

eq
X dΠaf

eq
a . . . |M(x+ a+ . . .→ i+ j + . . .)|2δ̃ dΠidΠj , (4.6)

where δ̃ ≡ (2π)4 δ4 (Pi − Pf ) , M(x+ a+ . . . → i+ j + . . .) is the matrix element of the

process x+ a+ . . .→ i+ j + . . . and Π is the phase space. In the leptogenesis era, all the

lepton number changing interaction rates are in equilibrium, so we have

γ(x+ a+ · · · → i+ j + · · · ) = γ(i+ j + · · · → x+ a+ · · · ) . (4.7)
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These lepton number changing interactions are induced by the Majorana mass terms

of the RH neutrinos, and they include2

N1 → ℓ+Hu , N1 → ℓ̄+H∗
u ,

N1 +Q3 → ℓ+ t , ℓ+ t→ N1 +Q3 , N1 + t̄→ ℓ+ Q̄3 , ℓ+ Q̄3 → N1 + t̄ ,

N1 + Q̄3 → ℓ̄+ t̄ , ℓ̄+ t̄→ N1 + Q̄3 , N1 + t→ ℓ̄+Q3 , ℓ̄+Q3 → N1 + t ,

N1 + ℓ→ t̄+Q3 , N1 + ℓ̄→ t+ Q̄3 , t̄+Q3 → N1 + ℓ , t+ Q̄3 → N1 + ℓ̄ ,

ℓ+H∗
u → ℓ̄+Hu , ℓ̄+Hu → ℓ+H∗

u , (4.8)

where the first line is the decays (with reaction rate γD). The second and third line are the

t-channel scatterings (with reaction rate γSt
). The fourth line is the s-channel scatterings

(with reaction rate γSs
). The last line represents both t-channel and s-channel ∆L = ±2

scatterings (reaction rate γNt
and γNs

).

For Leptogenesis, the net abundance of leptons (as well as quarks and Higgs) and the

abundance of the lightest RH neutrino play the crucial role3. For Dirac type particles x,

we introduce the net particle abundance:

Yx ≡ yx − yx̄ . (4.9)

On the other hand, for Majorana particles we cannot distinguish particle from its anti-

particle. To unify the notation, we use YN1
= yN1

, the abundance of RH neutrinos. For

the number density (both Dirac particles and Majorana particles) in equilibrium, we still

have yeq
x = Y eq

x .

4.1.1 The Decay terms and Inverse Decay term

The RH neutrino decays can change the abundance of the RH neutrino and left-handed

leptons. According to Eq.(1.62) and Eq.(4.7), we can write down the reaction rates for

2Due to the large Yukawa coupling of the top quark, it is safe to neglect other quark Yukawa interac-

tions.
3We will show how quark asymmetry and Higgs asymmetry also play an important role.
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N1 ↔ ℓ + Hu and N1 ↔ ℓ̄ + H∗
u (with reaction rates γN1ℓ = γℓN1

and γN1ℓ̄ = γℓ̄N1

respectively)

γ(N1 → ℓ+ φ∗) = γ(ℓ+ φ∗ → N1) =
1

2
(1 + ε)γD ,

γ(N1 → ℓ̄+ φ) = γ(ℓ̄+ φ→ N1) =
1

2
(1 − ε)γD , (4.10)

where γD ≡ γ(N1 → ℓ + φ∗) + γ(N1 → ℓ̄ + φ) is the reaction rate of total decay of N1.

Using Eq.(4.3), the decay terms for N1 and net ℓ are

ΓN1

D = − 1

sHz

[
YN1

Y eq
N

(
γN1ℓ + γN1ℓ̄

)
− yℓyHu

yeq
ℓ y

eq
Hu

γℓN1
− yℓ̄yH∗

u

yeq

ℓ̄
yeq
H∗

u

γℓ̄N1

]
, (4.11)

ΓℓD = − 1

sHz

[
YN1

Y eq
N

(
γN1ℓ − γN1ℓ̄

)
− yℓyHu

yeq
ℓ y

eq
Hu

γℓN1
+

yℓ̄yH∗

u

yeq

ℓ̄
yeq
H∗

u

γℓ̄N1

]
. (4.12)

Notice that we have yx ≃ yeq
x for all massless particles. Using Eq.(4.9) and Eq.(4.10),

we can simplify the term for net lepton asymmetry Yℓ , keeping the terms of order Yℓ,

YHu
and ǫ. Then Eq. (4.11) and (4.12) turn into

ΓN1

D = − 1

sHz

(
YN1

Y eq
N

− 1

)
γD , (4.13)

ΓℓD =
1

sHz

[
ǫ

(
YN1

Y eq
N1

− 1

)
− 1

2

(
Yℓ
Y eq
ℓ

+
YHu

Y eq
Hu

)]
γD . (4.14)

One may notice that the lepton asymmetry is generated when the lightest RH neutrino

is “out-of-thermal equilibrium” (YN1
6= Y eq

N1
). Since Y eq

N1
drops as the temperature T of

the universe drops, the out-of-thermal equilibrium can be satisfied when the Universe is

cooling down.

The reaction density for a decay x → i + j + · · · can be calculated via Eq.(4.6). For

the RH neutrino decay it is given by

γD = γ(N1 → ℓ+Hu) = neq
N1

K1(z)

K2(z)
Γ , (4.15)

where Γ is the decay width in the rest frame (at zero temperature).
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Figure 4.1: The ∆L = ±1 scatterings which change N1 abundance and wash out lepton asymmetry.

4.1.2 ∆L = 1 Scatterings as Washing Out Process

The ∆L = ±1 processes include 2 to 2 scattering with a RH neutrino, a left-handed

lepton, an up-type quark and a down-type quark as the external lines, and a Higgs field

in the propagator. We include t-channel scattering and its charge conjugate process (the

second and third line of Eq.(4.8)) and s-channel scatterings (the fourth line in Eq.(4.8)).

We neglect three-body decay and 2 to 3 scatterings, as they are strongly suppressed by the

phase space integration. In principle the ∆L = ±1 scattering can generate lepton number

at one loop. Calculation finds that the CP violation is the same as the RH neutrino.

However, we do not discuss the lepton asymmetry generated by scattering in this thesis.

On the other hand, more importantly, the ∆L = ±1 processes wash out the lepton

asymmetries produced by RH neutrino decay. At tree level, the scattering has the same

reaction density as its charge conjugate scattering. The only difference is the abundance

of the initial state yℓ and yℓ. Using Eq.(4.3), we can write down the contribution of

∆L = ±1 scattering to the lightest RH neutrino, ΓN1

S and the contribution to the lepton

asymmetry ΓℓSt
, ΓℓSs

(t-channel and s-channel, respectively):

ΓN1

S = − 1

sHz

(
YN1

Y eq
N

− 1

)
(2γSs + 4γSt) , (4.16)

ΓℓSt
=

1

sHz

[
2
Yℓ
Y eq
ℓ

+

(
Yt
Y eq
t

− YQ3

Y eq
Q3

)(
YN1

Y eq
N1

+ 1

)]
γSt , (4.17)

ΓℓSs
=

1

sHz

(
YN1

Y eq
N1

Yℓ
Y eq
ℓ

+
Yt
Y eq
t

− YQ3

Y eq
Q3

)
γSs . (4.18)

The reaction density for a two body scattering can be calculated from Eq.(4.6). The
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integration reads:

γeq(x+ a→ i+ j + · · · ) =
T

64π4

∫ ∞

(mx+ma)2
ds

√
sK1

(√
s

T

)
σ̂(s) , (4.19)

where s is the integral parameter standing for the squared centre of mass energy and σ̂(s)

is the reduced cross section defined by

σ̂(s) =
2λ(u,m2

x,m
2
a)

s
σ(s) , (4.20)

with the kinematic function

λ(s,m2
x,m

2
a) ≡ [s− (mx +ma)

2] [s− (mx −ma)
2] , (4.21)

and σ(s), the rest frame cross section.

4.1.3 ∆L = 2 Scatterings as Washing Out Process

Li Hu

H∗
u Lj

N1,2,3

Li Hu

Lj Hu

N1,2,3

Li Lj

Hu Hu

N1,2,3

Figure 4.2: The ∆L = ±2 scatterings which change N1 abundance and wash out lepton asymmetry.

The ∆L = 2 processes include 2 to 2 scattering with a RH neutrino in the propagator.

Lepton number is violated in this process due to the Majorana nature of the RH neutrino.

The ∆L = ±2 scattering wash out the lepton asymmetry, similar to ∆L = ±1 processes,

however it does not change the number density of the RH neutrino N1. The contribution

to lepton asymmetry reads:

ΓℓNt+Ns
=

1

sHz
· 2
(
Yℓ
Y eq
ℓ

+
YHu

Y eq
Hu

)
(γNs + γNt) , (4.22)

where the factor 2 represents this process changes lepton number by 2 units. The reaction

rates γNs+γNt can be calculated similarly as the method in last subsection. In this thesis,

we use the result presented in [155][156].
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In canonical Leptogenesis, when the lightest RH neutrino is heavier than ∼ 105GeV,

due to the smallness of RH neutrino Yukawa couplings, the ∆L = ±2 scatterings are neg-

ligible. However, they become prominent when exotic Yukawa couplings are introduced.

Moreover, for ∆L = 2 scattering process with the heavy RH neutrinos in the propa-

gator, the lightest RH neutrino can be on-shell. So the on-shell part is double counted

with the decaying term and inversed decaying term. We have to substract the on-shell

part of the scattering. Generally, for a 2 ↔ 2 scattering ℓα +Hu ↔ ℓβ +H∗
u, the on-shell

part can be expressed as

γαβ
(os) = γαN1

BN1

β , (4.23)

where BN1

β is the branching ratio of decay N1 → ℓβ + Hu. The expressions of reaction

density of ∆L = ±2 scattering can be found in [155].

4.2 Boltzmann Equations in the Non-supersymmetric

and Supersymmetric Case

In this section, we discuss the Boltzmann Equations in the SM plus RH neutrinos and

MSSM plus RH neutrinos. Firstly, in the case without “spectator” process (the process

converting left-handed leptons into other components with non-vanishing B−L number),

we can arrive at Boltzmann Equations for leptogenesis in MSSM+RHN by adding all the

lepton number changing processes together 4:

dYN1

dz
= ΓN1

D + ΓN1

S , (4.24)

dYℓ
dz

= ΓℓD − ΓℓSt
− ΓℓSs

− ΓℓNt+Ns
. (4.25)

These Boltzmann Equations are used as an approximation, one can arrive at the final

lepton asymmetry within one order of magnitude. After wash-out processes become neg-

4This Equation is given in [160], but the inverse decay term is missed.
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ligible (when z ∼ 10), one can use the lepton number - baryon number relation, Eq.(1.58)

to estimate the final baryon number.

Now we can extend the Boltzmann Equations into the framework of Supersymmetry.

In Supersymmetry, the super-partners of leptons, quarks, RH neutrinos and Higgses (slep-

tons, squarks, RH sneutrinos and Higgsinos respectively) also enter the thermal plasma

of the Universe. RH sneutrino decays also produce lepton asymmetries; RH (s)neutrinos

decay into sleptons; Sleptons and squarks also contain B − L number; Sleptons squarks

and Higgsinos plays the role of washing-out, therefore we need to take them into account

in the Boltzmann Equations. However the abundances of particles and sparticles have a

simple algebraic relation. In the hot plasma of the early universe, chemical potentials of

particles in equilibrium are kept in certain ratios by the relevant interactions. The ratios

can be calculated by the equilibrium conditions of respective interactions5. And the num-

ber density of particle (specie x) is related to its chemical potential (See Eq.(1.50)). We

notice that there is a difference of factor 2 between bosons and fermions. In Supersymme-

try, the fermion-gaugino-sfermion interactions in equilibrium result in that the chemical

potential of a fermion is the same as its superpartner, µx = µx̃ (Gauginos being Majorana

particle have zero chemical potential). Therefore we can define the total number density

and abundance of particle species x as:

n̂x ≡ nx + nx̃ , Ŷx ≡ Yx + Yx̃ . (4.26)

We will find it is very convenient to work in Ŷ as particles and super-particles have similar

behavior in leptogenesis. Also one notices that in this notation, we do not need to worry

about the factor 2 between fermion fields and boson fields. Under this notation, the

Boltzmann Equations turn into

dŶN1

dz
= ΓN̂1

D + ΓN̂1

S ≡ ΓN̂1

D+S , (4.27)

dŶℓ
dz

= Γℓ̂D − Γℓ̂St
− Γℓ̂Ss

− Γℓ̂Nt+Ns
. (4.28)

5The details of the calculation will be given in Section (4.5).
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And the terms are

ΓN̂1

D+S = − 2

sHz

(
ŶN1

Ŷ eq
N

− 1

)
(γD + 2γSs + 4γSt) , (4.29)

Γℓ̂D =
2

sHz

[
ǫ

(
ŶN1

Ŷ eq
N1

− 1

)
− 1

2

(
Ŷℓ

Ŷ eq
ℓ

+
ŶHu

Ŷ eq
Hu

)]
γD , (4.30)

Γℓ̂St
=

2

sHz

[
2
Ŷℓ

Ŷ eq
ℓ

+

(
Ŷt

Ŷ eq
t

− ŶQ3

Ŷ eq
Q3

)(
ŶN1

Ŷ eq
N1

+ 1

)]
γSt , (4.31)

Γℓ̂Ss
=

2

sHz

(
ŶN1

Ŷ eq
N1

Ŷℓ

Ŷ eq
ℓ

+
Ŷt

Ŷ eq
t

− ŶQ3

Ŷ eq
Q3

)
γSs , (4.32)

Γℓ̂Nt+Ns
=

2

sHz
· 2
(
Ŷℓ

Ŷ eq
ℓ

+
ŶHu

Ŷ eq
Hu

)
(γNs + γNt) . (4.33)

Compared with Eq.(4.16)-(4.22), one finds that additional SUSY interactions result in a

factor 2 for each term. But notice that the reaction rate γD , γSs · · · are still the same as

the ones in the non-supersymmetric case. In Eq.(4.29) and (4.29), we have used Y eq
N1

= Y eq

Ñ1
,

as N1 and Ñ1 have approximately the same mass before SUSY breaking.

4.3 Initial Conditions

To solve the Boltzmann Equations, we need the initial conditions for RH neutrinos and

leptons. We discuss the effect of initial conditions for MSSM+RHN Boltzmann Equations.

In the scenario of thermal Leptogenesis, the RH neutrinos are singlets which only interact

with other particles via Yukawa couplings. Hence they are produced by inverse decay6.

In this case, the initial number density for RH neutrino when T ≫ TLeptogenesis ∼ M1 is

zero. However, model-dependent modifications of thermal Leptogenesis are considered,

which dramatically change the initial condition of the Boltzmann Equations.

In the “equilibrium” scenario, one assumes the RH neutrinos also participate in other

interactions beside the Yukawa interaction. Therefore the number density of RH neutri-

6∆L = 2 scattering ℓ + ℓ → N1 + N1 also generates RH neutrino, but negligible provided the Yukawa

couplings are much smaller than unity.
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nos is brought into equilibrium (YN1
(zini) = Y eq

N1
) before Leptogenesis happens. In the

“dominant” scenario, the RH neutrinos may be generated by the decay of heavier parti-

cles (e.g. the inflaton) [157]. In this case, the initial number density of RH neutrinos

can be much larger than Y eq
N1

. In all these scenarios, one assumes that the initial lepton

asymmetry is zero, and the mechanism which generates RH neutrinos does not alter the

lepton asymmetries of the RH neutrino decay and the Boltzmann Equations.

In Fig. 4.3, we illustrate the evolution of RH neutrino density and lepton asymmetry

with different initial conditions. We find that the initial condition is most important in

the weak-wash out scenario. We find that the sign of Yℓ does not change in plot (b) and

plot (c) because we always have YN1
≥ Y eq

N1
for the era of Leptogenesis.

4.4 A Brief Review of the Approach of Transition

Matrix Aαβ

In this section, we briefly review the approach of the leptogenesis Boltzmann Equations

with a transition matrix7 [158]. In this approach a flavoured B−L number ∆α ≡ B−Lα

where α is the flavour index for left-handed leptons, is introduced. The abundances of

the left-handed leptons Yℓα is related to the Y∆β
via a transition matrix Aαβ by Yℓα =

∑
β AαβY∆β

.

To obtain the matrix Aαβ, one should firstly express Y∆α
in terms of Yℓβ , using the equi-

librium conditions Eq.(1.51)-(1.56). This can be written as Y∆β
=
∑

β BαβYℓα . Clearly,

we have Aαβ = B−1
αβ . The elements of the transition matrix vary when the universe tem-

perature changes. In MSSM, when the temperature T . 109 GeV, the A matrix is given

7It is also called “conversion matrix” in some literature.
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by [145]

AMSSM =




−93/110 6/55 6/55

3/40 −19/30 1/30

3/40 1/30 −19/30


 . (4.34)

When three flavours of leptons are taken into account, there are a set of four Boltzmann

Equations, one for the lightest RH neutrino and the othre three for ∆α. Since only the left-

handed leptons participate in the wash-out processes, one can use the transition matrix to

convert Y∆α
into Yℓα . In the case where the contribution of quarks and Higgs in wash-out

processes and ∆L = ±2 scattering are ignored, the Boltzmann Equations are

dŶN1

dz
= − 2

sHz

(
ŶN1

Ŷ eq
N

− 1

)
(γD + 2γSs + 4γSt) , (4.35)

dŶ∆α

dz
= − 2

sHz

{
ǫ1,α

(
ŶN1

Ŷ eq
N1

− 1

)
γD +

(
γαSs

+ γαSt

)
Aαβ

Ŷ∆β

Ŷ eq
∆

}
. (4.36)

Here, ǫ1,α are the flavoured lepton asymmetries of the RH neutrino decay and γαSs
, γαSt

are the ∆L = ±1 scattering rate for flavour α. And we have Ŷ eq
∆ ≡ Ŷ eq

ℓ . However, if one

outputs Yℓα when z varies, we find that they are not kept in certain ratios, as required by

the equilibrium conditions.

4.5 “Uni-flavoured” Boltzmann Equations

In this section, we investigate the role of spectator processes in leptogenesis where three

generations of leptons and quarks are considered. We find that three left-handed compo-

nents of leptons are guaranteed to have an equal abundance due to spectator processes.

And one can calculated the total B −L number in the universe instead of three separate

left-handed leptons, ℓα. This method is presented briefly in Ref. [159]. And in the mean-

time, the we approach the flavoured Boltzmann Equations by a more tedious method

(presented in Appendix F), but we agree with the result in [159].
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When the spectator processes are active, the left-handed leptons are converted into

right-handed leptons via Yukawa interactions and into left-handed quarks via electroweak

sphaleron process. Also the left-handed quarks can be converted into right-handed quarks

via Yukawa interactions. However, the total B−L number is conserved, and distributed in

different components with certain ratios. Moreover, the abundances of Higgs fields are also

related to the quark/lepton abundances due to Yukawa interactions in equilibrium. In this

section, we calculate the relations of number densities of relevant particles in leptogenesis.

We are interested in leptogenesis at low energy scale, 102 GeV < T < 109 GeV. In this

temperature range, the QCD sphaleron processes, which effectively convert left-handed

quarks (both up type and down type) into right-handed quarks and electroweak sphaleron

which converts left-handed leptons to left-handed quarks are in equilibrium. In addition,

Yukawa interactions for all the three generations of quarks and leptons are in equilibrium.

Due to the gauge transformation, all the particles in the same multiplet of SU(3)C ×
SU(2)W × U(1)Y have the same chemical potential and all gauge fields have vanishing

chemical potentials µW = µZ = µB = µg = 0. So we can use ℓi to denote both eLi and νLi ,

where i is the generation index and qi, ui, di can represent all color states of left-handed

quark (uLi and dLi ), right-handed u-type quarks and right-handed d-type quarks. And

as discussed in Chapter 1, the non-perturbative electroweak sphaleron process conserves

B−L. Since the generation indices for B and L are not certainly related in the electroweak

sphaleron process, the transitions of any generation of L to B are allowed. In addition, in

Ref. [159], supersymmetric off-diagonal soft breaking terms lead to the mixing of scalar

leptons, resulting in chemical potentials of different generations of leptons and quarks

being equal. So we can have the relation µQi
= µQ, µℓi = µℓ

8.

In the temperature range, since all the Yukawa interactions are in equilibrium, mak-

ing the left-handed and right-handed components in a certain ratio, we can deduce the

chemical potential relations for right-handed u-type and d-type quarks: µu = µc = µt and

µd = µs = µb. Similarly in the lepton sector, e, µ and τ Yukawa couplings in equilibrium

8Since all the three left-handed leptons have the same chemical potential is guaranteed, we call this

approach “Uni-flavoured” Boltzmann Equations.
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results in µe = µµ = µτ . In addition, the Higgs field Hu and Hd have the same value of

chemical potential but opposite signs due to the mixing term W = µHuHd:

µHu
= −µHd

. (4.37)

Therefore, we need to deal with six chemical potentials for Q, u, d, ℓ, µ and Hu/Hd

fields. The relations of them are from the following constraints

• The Yukawa interactions in equilibrium (Q↔ u+Hu, Q↔ d+Hd and ℓ↔ e+Hd)

gives9

µQ − µu + µHu
= 0 , (4.38)

µQ − µd + µHd
= 0 , (4.39)

µℓ − µe + µHd
= 0 . (4.40)

As discussed in Section 1.3.2.a, the electron Yukawa interaction is not in equilibrium

until T ∼ 104−5 GeV. When T > 104−5 GeV, the right-handed electron can not be

generated effectively and its chemical potential should be 0. This would lead to a

small change in the chemical potential relations [159].

• The electroweak sphaleron process erase left-handed B + L, which guarantees the

total B −L number in the plasma vanishes (See. Eq.(1.51)). One may see that the

electroweak sphaleron process, 12-fermion interaction10 doesn’t conserve fermion

number.

• All the spectator processes, including electroweak sphaleron, conserve hyper-charge.

Thus, the hypercharge neutrality is required in the thermal plasma, which gives11

3 (µQ + 2µu − µd − µℓ − µe) + µHu
− µHd

= 0 . (4.41)

Notice there is a colour factor 3 for both LH and RH quarks and a factor of 2 for

the doublets of Q, ℓ and Hu too.

9Similar to the non-supersymmetric case, Eq.(1.55) and (1.56).
10See section (1.3.2).
11Similar to Eq.(1.54) in the SM.
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Hence, we have 5 equations and 6 variables and we can express all these chemical

potentials in term of µℓ:

µQ = −µℓ
3

; µHu
=

4µℓ
7

; µu =
5µℓ
21

; µd = −19µℓ
21

; µe =
3µℓ
7
. (4.42)

Conventionally, ones work with variable total B−L number in the Boltzmann Equations.

Therefore the B − L number in the SM+N, defined by

n̂MSSM+N
B−L ≡ Nf × (n̂Q × 1

3
× 2 × 3 + n̂u ×

1

3
× 3 + n̂d ×

1

3
× 3 − n̂ℓ × 2 − n̂e) , (4.43)

can be re-expressed by n̂ℓ. Here Nf is the family number. And the factor 1/3 inside the

bracket stands for one quark with 1/3 B−L number and factor 3 and 2 inside the bracket

are the color factor and SU(2)W factor respectively. Inserting Eq.(4.42) into Eq.(4.43),

we can arrive at

n̂B−L = −79

21
Nf n̂ℓ . (4.44)

Therefore all the components in equilibrium in the thermal plasma of the Universe can

be expressed by nB−L, which we will use in the Boltzmann Equations, using Eq.(1.50),

(4.26), (4.42) and (4.44):

n̂Q =
7

79

1

Nf

n̂B−L , n̂u = − 5

79

1

Nf

n̂B−L , n̂d =
19

79

1

Nf

n̂B−L ,

n̂e = − 9

79

1

Nf

n̂B−L , n̂Hu
= −12

79

1

Nf

n̂B−L . (4.45)

Now we can rewrite the terms in the Boltzmann Equations, using Eq.(4.44) and (4.45).

Thus Eq.(4.31)-(4.33) turn into

Γℓ̂St = − 2

sHz

1

Nf

(
12

79

ŶN1

Ŷ eq
N1

+
54

79

)
ŶB−L

Ŷ eq
B−L

γSt , (4.46)

Γℓ̂Ss = − 2

sHz

1

Nf

(
21

79

ŶN1

Ŷ eq
N1

+
12

79

)
ŶB−L

Ŷ eq
B−L

γSs , (4.47)

Γℓ̂Nt+Ns
= − 2

sHz

1

Nf

66

79

ŶB−L

Ŷ eq
B−L

(γNs + γNt) , (4.48)

where we have used the Ŷ eq
ℓ = Ŷ eq

Hu
= Ŷ eq

B−L, as both ℓ and Hu are massless particles in

the leptogenesis era (T ≫ EEW, where EEW is the energy scale of electroweak symmetry
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breaking). Boltzmann Equation terms in Eq.(4.29) and (4.30) hold, as they only contains

ŶN1
. Thus, Eq.(4.27) and Eq.(4.28) becomes solvable.

To sum up, the Boltzmann Equations for MSSM+RHN are

dŶN1

dz
= − 2

sHz

(
ŶN1

Ŷ eq
N

− 1

)
(γD + 2γSs + 4γSt) , (4.49)

dŶB−L
dz

= − 2

sHz

{
ǫtot

(
ŶN1

Ŷ eq
N1

− 1

)
γD +

1

Nf

[(
12

79

ŶN1

Ŷ eq
N1

+
54

79

)
γSt

+

(
21

79

ŶN1

Ŷ eq
N1

+
12

79

)
γSs +

66

79
(γNs + γNt)

]
ŶB−L

Ŷ eq
B−L

}
. (4.50)

Notice that the ǫtot in Eq.(4.50) is the total (sum over all lepton flavours) CP asymmetry

of the RH neutrino decay. We do not do the numerical calculation in this case, as we are

more interested in leptogenesis in E6SSM.

4.6 The Boltzmann Equations in the E6SSM

Now the Boltzmann Equations in the canonical scenario are set, we can move on to the

case of E6SSM. We investigate the case where ZH
2 symmetry is conserved in section (4.6.1),

the case of inert Higgs (Model I) in section (4.6.2) and the case of leptoquark (Model II)

in section (4.6.3).

4.6.1 The case of L4 only (ZH
2 symmetry conserved)

In E6SSM, the additional lepton doublet L4 and L̄4 participates the EW interaction. In

order to know how L4 and L̄4 behave in the Boltzmann Equation, we need to know if

they can be in equilibrium with other components (e.g. Q, u, d, e, ℓ and Hu,d).

Due to the super-potential term λHdL4e, the Yukawa interaction L4+Hd ↔ e happens

in the hot plasma of the early Universe. If we assume there is no strong suppression of

this Yukawa interaction, it would be in equilibrium as the same as the SM LH leptons ℓ.
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So, we have the relation of chemical potential of L4, Hd and e, similar to Eq.(4.40):

µL4
− µe + µHd

= 0 . (4.51)

We can simply compare ordinary lepton Yukawa interaction condition, Eq.(4.40) with

Eq.(4.51), and derive that the chemical potential for L4

µL4
= µℓ. (4.52)

In addition, due to the bilinear term µ′L4L̄4 in the super-potential, we can immediately

write down the relation between the chemical potential of L4 and L̄4
12:

µL4
= −µL̄4

. (4.53)

And we can calculate the chemical potential relations with L4 and L̄4 now. First of all,

Eq.(4.38-4.40) still hold. And since both L4 and L̄4 participate in electroweak sphaleron

process, Eq.(1.51)13, the condition for a vanishing B − L number turns into

3µQ + µℓ + µL4
− µL̄4

= 0 . (4.54)

The interactions of L4 and L4 conserve hyper charge. Thus the total hyper-charge van-

ishes, and we have

3 (µQ + 2µu − µd − µℓ − µe) − µL4
+ µL̄4

+ µHu
− µHd

= 0 . (4.55)

Here we have used the fact that L4 carries hyper-charge −1 and L̄4 carries hyper-charge

1. Using Eq.(4.38)-(4.40) and Eq.(4.52)-(4.55), we can arrive at the chemical potential

relations of these particles:

µQ = −µℓ; µHu
= µℓ; µu = 0; µd = −2µℓ; µe = 0; µL4

= µℓ; µL̄4
= −µℓ.(4.56)

12This is similar to the situation of Hu and Hd.
13Since particles in the sphaleron processes carry certain U(1)N charges, one finds that the conserva-

tion of U(1)N charge might forbid the electroweak sphaleron process. In this situation, the electroweak

sphaleron process can only happen when the U(1)N symmetry breaks. This might require writing Boltz-

mann Equations in a flavour independent way. And the B to L transition happens in a window between

the U(1)N breaking scale and the electroweak scale. Alternatively, higher gauge symmetry in the E6SSM

may also result in some B + L number breaking operator, allowing the L to B transition. The details

will be discussed in a work in progress.
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The the total B − L with L4 and L̄4 is

n̂E6SSM
B−L ≡ Nf × (n̂Q × 1

3
× 2 × 3 + n̂u ×

1

3
× 3 + n̂d ×

1

3
× 3 − n̂ℓ × 2 − n̂e) − n̂L4

+ n̂L̄4

= −20 n̂ℓ , (4.57)

where we use the ordinary family number Nf = 3. And we can write down the number

densities of relevant particles in terms of n̂B−L:

n̂Q =
1

20
n̂B−L , n̂u = 0 , n̂d =

1

10
n̂B−L ,

n̂e = 0 , n̂L4
= − 1

20
n̂B−L , n̂L̄4

=
1

20
n̂B−L , n̂Hu

= − 1

20
n̂B−L . (4.58)

As the ∆L = ±2 scatterings play a much more important role than ∆L = ±1 scat-

terings, we neglect the terms of γSs
, and γSt

. The Boltzmann Equations in E6SSM, ZH
2

symmetry conserved case turns into

dŶN1

dz
= − 2

sHz

(
ŶN1

Ŷ eq
N

− 1

)
(γD + 2γSs + 4γSt) , (4.59)

dŶB−L
dz

= − 2

sHz

{
ǫtot

(
ŶN1

Ŷ eq
N1

− 1

)
γD +

1

10

(
γL4

Ns + γL4

Nt

) ŶB−L

Ŷ eq
B−L

}
. (4.60)

Here, γL4

Ns and γL4

Nt is the scattering rate of L4 + Hu ↔ L̄4 + H∗
u. We neglect scatterings

with ordinary lepton number due to their small Yukawa couplings. In addition, one should

notice that the total degrees of freedom in this case is gESSM∗ = 232.5 due to the additional

L4. An example of the evolution of B − L number is illustrated in Fig. (4.4). We can

read that the final ŶB−L number 7.7 × 10−10. And in this case, From Eq.(4.56), (4.57)

and (4.58), we can see that n̂B = 3
5
n̂B−L. Then an approximatly correct baryon number

can be generated.

4.6.2 The case of inert Higgs

In this subsection, we discuss the case with additional inert Higgs H2. Since we turn

off the Yukawa couplings of L4 and L4, they do not appear in the thermal plasma of
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the universe. For B − L number, we only need to consider three generations of quarks

and leptons (both left-handed and right-handed). The number density relations of these

particles, togeter with “active Higgs” in MSSM+RHN, Eq.(4.44)-(4.45) still hold.

Concerning the extra inert Higgs field, H2 only participates in N1 decay and scatter-

ings. We can calculate the asymmetry of H2 via Boltzmann Equations. The reason is

the “inert Higgs number” can only be changed by RH neutrino decay and lepton number

changing scatterings. Therefore, the net number density of H2 have to be considered as

a separate variable in the Boltzmann Equations. For B −L number, inert Higgs appears

in the washing-out terms of B − L number.

Also, due to the large (lepton)-(inert Higgs)-(RH neutrino) Yukawa couplings, the

major contribution of washing-out terms is the ∆L = ±2 scatterings ℓ + H2 ↔ ℓ̄ + H∗
2 .

We notice that this process washes both B − L number and H2 number by 2 units. The

contribution is

ΓH2

Nt+Ns
= − 2

sHz

(
Ŷℓ

Ŷ eq
ℓ

+
ŶH2

Ŷ eq
H2

)
(
γH2

Ns + γH2

Nt

)
(4.61)

where γH2

Ns and γH2

Nt are the s-channel and t-channel reaction rate for ℓ + H2 ↔ ℓ̄ + H∗
2

respectively. Then, the Boltzmann Equations for B − L number and inert Higgs are

dŶN1

dz
= − 2

sHz

(
ŶN1

Ŷ eq
N

− 1

)
(γD + 2γSs + 4γSt) , (4.62)

dŶB−L
dz

= − 2

sHz

{
ǫtot

(
ŶN1

Ŷ eq
N1

− 1

)
γD +

(
Ŷℓ

Ŷ eq
ℓ

+
ŶH2

Ŷ eq
H2

)
(
γH2

Ns + γH2

Nt

)
}
, (4.63)

dŶH2

dz
= − 2

sHz

{
ǫH2

1,τ

(
ŶN1

Ŷ eq
N1

− 1

)
γD +

(
Ŷℓ

Ŷ eq
ℓ

+
ŶH2

Ŷ eq
H2

)
(
γH2

Ns + γH2

Nt

)
}
. (4.64)

where ǫtot is the total CP asymmetry, including H2 in the final state and

ǫH2

1,τ ≡
Γ(N1 → τ +H2) − Γ(N1 → τ̄ +H∗

2 )

Γ(N1 → everthing)
(4.65)

is the decaying asymmetry with only H2 in the final state14.

14Actually, taking ǫtot ≃ ǫH2

1,τ , we can arrive at ŶB−L = ŶH2
.
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Fig. 4.5 shows a successful leptogenesis in this scenario. We notice the final YB−L =

2.7 × 10−10. And in this case baryon number and B − L number are kept in a ratio

n̂B = 84
79
n̂B−L

15.

4.6.3 The case of exotic quark (leptoquark)

In the case of leptoquarks D and D involved, the RH neutrino decays into quark fields

and leptoquark fields, N1 → d̃D. Notice that d̃∗ has −1/3 baryon number and D has 1/3

unit of baryon number and 1 unit of lepton number (D has −1/3 baryon number and

−1 lepton number, but it does not appear in the final state of the RH neutrino decay),

therefore −1 unit of B − L number is in the final states of this decay channel, which will

enter the thermal plasma.

Since we are interested in the ∆L = ±2 scatterings, ℓ +Hu → ℓ̄ +H∗
u, and D + d̃ →

Dc + d̃∗, which play the role of washing out process, we need to know the particle density

relations of relevant particles to the B−L number. And we need to calculate the chemical

potentials again. First of all, we notice that both D and D are singlets of SU(2)W .

Therefore they cannot participate in the electroweak sphaleron process. However, due

to the coupling gEijke
c
iDju

c
k in the E6SSM super-potential, the baryon number and lepton

number can be released to ordinary (s)quark and (s)lepton via scattering e + ũ ↔ D,

which allows us to write down the relation of chemical potentials of e, u and D, µe, µu

and µD:

µe + µu = µD , (4.66)

unless the couling constants gEijk are strongly suppressed. Similarly, for D, the coupling

gDijk(QiLj)D̄k results in the scattering Q̄ + ℓ̄ ↔ D̄ in equilibrium. And this can be used

to calculate the chemical potential of D via

−µQ − µℓ = µD̄ . (4.67)

15This can be calculated from Eq.(4.44) and (4.45).
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Notice that both Eq.(4.66) and Eq.(4.67) are valid for all three generations of D and D.

And we can derive that the chemical potentials for different generations of D and D are

equal respectively.

The relations of ordinary lepton and quark Yukawa interaction, Eq.(4.38)-Eq.(4.40)

still hold. Moreover, since D and D do not participate in the electroweak sphaleron

process, the relation of left-handed B−L number vanishes, Eq.(1.51) also holds. Finally,

the relation of the total hyper-charge vanishes, Eq.(4.41) need to be rewritten, adding D

and D:

3 (µQ + 2µu − µd − µℓ − µe − µD + µD̄) + µHu
− µHd

= 0 . (4.68)

Here, we have used the hyper-charge of -1/3 for D and 1/3 for D, and summed over

three colors of D and D. So the algebraic relations can be calculated from Eq.(4.38)-

(1.51),(4.66),(4.67) and Eq.(4.68). The result is given by

µQ = −1

3
ℓ , µHu

=
6

7
µℓ , µu =

11

21
µℓ , µd = −25

21
µℓ ,

µe =
1

7
µℓ , µD =

2

3
µℓ , µD̄ = −2

3
µℓ . (4.69)

In this case, the total B − L number includes the three generations of leptoquarks (D

carries −2/3 B − L number and D carries 2/3 B − L number.):

n̂ESSM,II
B−L = Nf ×

(
n̂Q × 1

3
× 2 × 3 + n̂u ×

1

3
× 3 + n̂d ×

1

3
× 3

+ n̂D ×
(
−2

3

)
× 3 + n̂D̄ × 2

3
× 3 + n̂ℓ × (−1) × 2 + n̂e × (−1)

)

= −129

7
n̂ℓ . (4.70)

where we also take Nf = 3. Therefore the ∆L = ±2 scattering q̃∗ +D ↔ q̃ +Dc has the

reaction rates γDNs (s-channel) and γDNt (t-channel) and reaction density:

ΓDNt+Ns
+ ΓDNt+Ns

=
2

sHz
· 2 ·

(
− Ŷd

Ŷ eq
d

+
ŶD

Ŷ eq
D

)(
γDNs + γDNt

)

=
2

sHz
· 26

129
· ŶB−L

Ŷ eq
B−L

·
(
γDNs + γDNt

)
. (4.71)
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The Boltzmann Equations for leptogenesis with leptoqaurks are

dŶN1

dz
= − 2

sHz

(
ŶN1

Ŷ eq
N

− 1

)
(γD + 2γSs + 4γSt) , (4.72)

dŶB−L
dz

= − 2

sHz

{
ǫtot

(
ŶN1

Ŷ eq
N1

− 1

)
γD +

26

129
· ŶB−L

Ŷ eq
B−L

·
(
γDNs + γDNt

)
}
. (4.73)

Notice that the total CP asymmetry of RH neutrino decay is defined as

ǫtot ≡
∑

α(ΓN1→ℓα − ΓN1→ℓ̄α) + (ΓN1→D − ΓN1→D̄)

ΓN1→everything

. (4.74)

Since the color factor of the exotic quark, we have to modify the total degrees of freedom

of the plasma gESSM,II
∗ = 240 due to the additional L4. An example of the evolution of

B−L number in E6SSM model II is illustrated in Fig. 4.6. The final B−L number reads

4.3× 10−8. Also we can calculate that the ratio of B and B − L is n̂B = 11
89
n̂B−L. Hence,

a successful leptogenesis is also achieved in this scenario.

In conclusion, although the Boltzmann Equations are slightly different, correct amounts

of baron asymmetry can be achieved in all these three cases when the lightest RH neutrino

mass ∼ 107 GeV. Therefore we can bring down the reheating temperature and avoid the

gravitino-over-production problem.
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Figure 4.3: The evolution of YN1
and |Yℓ| in a toy model (one flavour and only the inverse decay as the

washing-out process), with different initial conditions: (a) YN1
= 0; (b) YN1

= Y eq

N1
; (c) YN1

= 10Y eq

N1
.

In these plots, the red/solid lines represent the evolution of YN1
. The greeen/dash lines are Y eq

N1
. The

blue/dot lines stand for Y|ℓ|.
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Figure 4.4: The evolution of N1 (the red/solid line) and B − L (the blue/dash line) number in E6SSM,

ZH
2 symmetry conserved case, for M1 = 107 GeV, hN

Hu
3

L4N1
= 10−5, hN

Hu
3

L4N2
= 0.1.
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Figure 4.5: The evolution of N1 (the red/solid line) and B − L (the blue/dash line) number in E6SSM,

model I, for M1 = 107 GeV, hN
Hu

2
L3N1

= 10−5, hN
Hu

2
L3N2

= 0.1.
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Figure 4.6: The evolution of N1 (the red/solid line) and B − L (the blue/dash line) number in E6SSM,

model II, for M1 = 107 GeV, gN
D3d3N1

= 10−5, gN
D3d3N2

= 0.2.
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Chapter 5

Conclusion and Outlook

Neutrinos are particles in the SM that only participate in the electroweak interaction. In

the SM, they are described as massless particles. However, when neutrinos are produced in

coherent sources (the electroweak interactions), they oscillate between the three families

due to their mass differences and the mixing. The neutrino mass squared differences

and three mixing angles are well measured by solar, atmospheric and terrestrial neutrino

oscillation experiments, whereas the exact scale or the pattern of neutrino masses is still

unclear. Neutrinoless double beta decay is the most promising experiment to measure the

neutrino mass spectrum. They have masses at least six orders of magnitude lighter than

the electron. The lightness of neutrinos indicates that neutrino masses may come from

physics at scale much higher than the electroweak scale ∼ 100 GeV.

A intriguing mechanism of light neutrino masses is the seesaw model, one explains the

lightness of LH neutrino by introducing heavy Majorana RH neutrinos to the SM. The

RH neutrinos couple to the left-handed neutrinos via Yukawa couplings. The Yukawa

couplings turn into Dirac mass terms. By diagonalising the mass matrix of LH neutrinos

and RH neutrinos, one can obtain the effective light LH neutrino masses, which are

inversely proportional to the RH neutrino Majorana masses. One also notice that the

Majorana nature of neutrinos results in lepton number violation.
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The luminous matter of the universe consists of baryon, the ratio of which is well

measured from light element abundances and CMB temperature anisotropy. The WMAP

data reads the baryon to photon ratio ηB = 6.225±0.17×10−10. One need to explain why

it is the baryons generated rather than anti-baryons, the so called BAU puzzle. There are

three main mechanisms: (a) Leptogenesis, in which lepton number is produced from RH

neutrino CP violating decay, and sphaleron processes convert lepton number into baryon

number; (b) the Electroweak Baryogenesis, where net baryon number is generated via

electroweak phase transition; (c) the Affleck-Dine mechanism, where leptons are produced

from scalar dynamics in the early universe, and converted into baryon number via EW

sphaleron process.

In the present thesis, we concentrated on Leptogenesis from RH neutrino decay. The

RH neutrino, being a Majorana particle, decays into leptons and anti-leptons via Yukawa

couplings. The CP asymmetry arises due to the interference of the loop diagrams and

tree-level diagrams, which leads to a small difference of leptons and anti-leptons in the

final state per RH neutrino decay. Assuming strong hierarchical RH neutrino masses,

M1 ≪ M2 ≪ M3, the CP asymmetry is a function of the lightest RH neutrino mass and

Yukawa couplings. Since in the seesaw model, the light neutrino masses can be expressed

in terms of masses of RH neutrino and Yukawa couplings, the CP asymmetry of RH

neutrino decay is constrained by the masses of light neutrino. The so-called Davidson-

Ibarra bound on CP asymmetry |ε1| ≤ 3
8π

M1

v2
(m3 −m1) requires the mass of the lightest

RH neutrino M1 & 108−9 GeV in the case of efficiency factor ηeff = 10−(2−3) to generate

the correct baryon-entropy ratio. However, in the super-gravity theories, the temperature

of Leptogenesis T ∼M1 & 108−9 GeV results in a large abundance of gravitinos generated

at the reheating era, which might be a catastrophe, since the decay of gravitino can dilute

the light elements from BBN. One viable solution is Leptogenesis in the E6SSM model.

The E6SSM model is based on E6 symmetry from string theory, and at low energy

scale, it has an effective extra U(1)N symmetry under which the RH neutrinos are neutral.

An exotic lepton, behaving as a fourth generation of lepton is introduced in this model
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to unify the gauge couplings. And a ZH
2 symmetry is imposed to forbid FCNC processes,

and the breaking of ZH
2 symmetry leads to some interesting phenomena, including the

two families of inert Higgs and exotic quarks. These exotic quarks could be leptoquarks or

diquarks. The exotic lepton L4 contributes to the light neutrino masses due to its mixing

with the RH neutrino.

In E6SSM, the RH neutrinos couple to the SM lepton and the exotic lepton via the

Yukawa coupling, when the ZH
2 symmetry is conserved. In the case of broken ZH

2 sym-

metry, the RH neutrino can couples to the inert Higgs and the leptoquark. These extra

Yukawa couplings contribute to the lepton asymmetry of RH neutrino decay. We analysis

three different cases: (a) the case of ZH
2 symmetry conserved (b) model I, the inert Higgs

is included (c) model II, the leptoquark is included. We found in all the three cases, the

lepton asymmetries can be enhanced drastically with respect to the CP asymmetries in the

framework of MSSM plus RH neutrinos in the region of low RH neutrino mass/reheating

temperature T ∼ 106−7 GeV.

We considered the evolution of lepton/baryon number densities in the E6SSM through

solving the Boltzmann Equations for Leptogenesis. We start from the flavour independent

Boltzmann Equations, where the sphaleron processes are assumed to be not active. The

evolution of lepton number densities has been analysed for the cases of L4 and inert

Higgses. In these cases, the ∆L = 2 scatterings are more important than ∆L = 1

scatterings thanks to the large exotic Yukawa couplings. The numerical results have

showed that a correct baryon abundance can be achieved in either case despite the wash

out processes being strong.

We studied the effect of flavour in Boltzmann Equations. We took into account the

electroweak sphaleron processes, the QCD sphaleron processes and Yukawa interactions

in equilibrium. The ratios of elements, including left-handed and right-handed compo-

nents of quarks and leptons, Higgs fields are calculated through the relations of chemical

potentials of corresponding particles in equilibrium. In the canonical approach, different

flavours of B − Lα and left-handed lepton components Lβ are connected by a transi-
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tion matrix Aαβ. The transition matrix describes the abundance of B − Lα converted

by sphaleron processes and Yukawa interactions per left-handed lepton generated by RH

neutrino decay. In this thesis, we proposed an alternative approach to the flavoured Boltz-

mann Equations. Based on that only the left-handed components of lepton doublets are

active in the processes of RH neutrino decay, ∆L = ±1, ∆L = ±2 scattering, we distin-

guish the non-left-handed leptons and consider it as an extra quantity in the Boltzmann

Equations. In addition, extra spectator processes terms are introduced in the Boltzmann

Equations for left-handed leptons ℓα and the non-left-handed components. The spectator

terms obey (a) being much faster than RH neutrino decay/inverse decay and scattering (b)

conserving B−L number in the plasma (c) making corresponding components in certain

ratios calculated from chemical potential relations. We take a different approach where

we consider all relevant particle number densities are in certain ratios due to the spectator

processes. Then we can calculate total B − L number in the Boltzmann Equations. We

investigate the evolution of lepton/baryon number density within this approach. And

we found that a successful leptogenesis can happen at low energy scale T ∼ 106−7 GeV.

We concentrate on three different scenarios: (a) E6SSM with unbroken ZH
2 symmetry

(exotic lepton L4 and L4), (b) E6SSM Model I (with inert Higgs fields) and (c) E6SSM

Model II (with exotic leptoquarks). We find that when the exotic Yukawa couplings are

relatively large, the CP asymmetries of RH neutrino decay can be ∼ 10−6, so that enough

lepton/baryon asymmetry can be generated in the hot plasma in the universe. So we can

avoid the problem of gravitino-over-production.

There are still many unsolved problems and potential problems of neutrinos and baryon

asymmetry universe. On the side of experiments, we need to measure the exact scale of

neutrino mass, more accurate value of the mixing angles, the CP phase of PMNS matrix,

and hopefully, the properties of exotic quarks, inert Higgs and RH neutrino. On the side

of theory, there are still unsolved problems for neutrino and leptogenesis.

(i) What is the reason of tri-bi-maximal mixing for neutrinos? What leads to the

hierarchy of fermion masses? Family symmetry of some unknown mechanism?

112



(ii) Which mechanism contributes most to the baryon number at present universe? Is

there any way to disprove any of them?

(iii) When does leptogenesis happen? Or what is the exact scale of RH neutrino mass?

Is gravitino a serious problem in leptogenesis?

(iv) What is the CP phase in the Yukawa couplings of RH neutrino? Is it enough to

generate lepton asymmetry for leptogenesis?

(v) How is leptogenesis linked to Dark Matter, considering the fact that Ωb ∼ ΩDM?

More straightforwardly, in Affleck-Dine mechanism, the requirement of enough lep-

ton/baryon number be generated restricts the lightest left-handed neutrino mass. How-

ever, the spectator processes are not taken into account in the previous study of the

Affleck-Dine mechanism. It would be interesting to investigate the restriction of light

neutrino masses when the “flavoured Affleck-Dine” mechanism is considered.
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Appendix A

The Spinors in the Standard Model

The Dirac Equation can be split into

(/p−m)u(i)(p) = 0 (/p+m) v(i)(p) = 0 , (A.1)

where i = 1, 2, denoting the spin up and spin down states. In the Weyl representation,

where

γ0 =


 0 12

12 0


 , γi =


 0 σi

−σi 0


 , γ5 =


−12 0

0 12


 . (A.2)

the spinor u(p) and v(p) can be expressed as

us(p) =



√

E + ~p · ~σ ξs

√
E − ~p · ~σ ξs


 , vs(p) =



√

E + ~p · ~σ ηs

−
√

E − ~p · ~σ ηs


 . (A.3)

Here, ξ and η are two components spinors. ξ1 = (1, 0)T and ξ2 = (0, 1)T

Weyl chiral spinors are projection of left-handed operator and right-handed operator:

PL, ψL = ψL and PR ψR = ψR . (A.4)

The projection operators are given by:

PL =
1

2
(1 − γ5) , PR =

1

2
(1 + γ5). (A.5)
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The charge conjugate of spinor is defined as

ψC = Cψ
T
, (A.6)

with the charge conjugation matrix C ≡ γ0γ2. ψC has the opposite chirality to ψ.
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Appendix B

Supersymmetry and Beyond

B.1 The Standard Model and Need for New Physics

The Standard Model, based on a U(1)Y × SU(2)w × SU(3)c gauge symmetry describes

phenomenon of particle physics below O (100 GeV). It has 19 parameters: three gauge

couplings, nine masses for quarks (up and down type) and charged leptons, three quark

mixing angles and one CP phase for this mixing, a QCD CP phase, a Higgs coupling and

the Higgs mass. It is a triumph of physics since it is tested precisely in a quite large

range, including QED, (for example the magnetic moment of electron), QCD and weak

processes. However itself suffers some potential problems.

First of all, as mentioned in the previous chapter, the neutrino masses, possibly to-

gether with RH neutrino(s) need to be introduced in the Lagrangian. In the QCD part,

the strong CP phase θQCD is strongly suppressed for some unknown reason so that there

is no observable CP violation in the strong interaction. On the cosmology side, the Dark

Matter (DM), which is neutral and quite stable can not be a SM particle, which indicates

that the content of the SM particle need to be extended. In addition, it seems the 19

parameters in the SM is too many. Certain mechanism is needed to reduce the number

of parameters.
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The SM itself, has a unstable electro-weak scale, suffering from the hierarchy problem

due to the loop correction gives a large mass to Higgs particle.

Supersymmetry (SUSY) is the most promising candidate of TeV scale physics, which

tend to solve parts of the problems in the SM. In SUSY, particles have their own Super-

symmetric partner. So the number of particle is doubled. the large Higgs mass correction

is cancelled by additional loop diagram involved supersymmetric particles. Supersym-

metry also changes the renormalization group equations, making three gauge couplings

unified at one point. The simplest version of Supersymmetry is a model with only SM

particles and their Supersymmetric partners, called

The 2-component Weyl spinor Q and its conjugate Q̄ obey relations

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 , {Qα, Q̄β̇} = 2σµ
αβ̇
Pµ , [Qα, Pµ] = 0 . (B.1)

where α , β , α̇ , β̇ = 1, 2 and Pµ is the translation generator.

Two fermionic coordinator θ and θ̄, which behave like two-component spinors. They

are anti-commutators:

{θ, θ} = {θ, θ̄} = {θ̄, θ̄} = 0 , (B.2)

And the finite SUSY transformation reads

exp
[
i
(
θθ + θ̄θ̄ − xµP

µ
)]
. (B.3)

The superfields Φi can be understood as functions of fermionic coordinator θ, θ̄ and

space-time coordinator xµ. The superpotential

f(Φi) =
∑

i

kiΦi +
1

2

∑

i,j

mijΦiΦj +
1

3

∑

i,j,k

gijkΦiΦjΦk . (B.4)

The superpotential can lead to Lagrangian

L =
∑

i

(
FiF

∗
i + |∂µφ|2 − iψ̄iσµ∂

µψi
)

(B.5)

+

[
∑

j

∂f(φi)

∂φj
Fj −

1

2

∑

j,k

∂2f(φi)

∂φj∂φk
ψjψk + h.c.

]
, (B.6)
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where the auxiliary field

Fj = −
[
∂f(φi)

∂φj

]
. (B.7)

Supersymmetry may lead to large lepton number violation and baryon number violation

at low energy scale, and therefore a discrete symmetry R-parity is imposed in SUSY to

forbid lepton number/baryon number violating operators:

PR = (−1)3 (B−L)+2 s (B.8)

where s is the spin of the particle. The particles in the SM have R-parity of 1 and the

SUSY particles have R-parity of -1. Without R-parity violation, a production of a single

SUSY particle is forbidden, and the lightest -1 R-parity particle is stable, hence playing

a role of the Dark Matter particle.
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Appendix C

Hyper Charges of the SM and

MSSM Particles

The electric charge Q, isospin operator I3 and Hyper-charge Y obey the relation:

Q = I3 +
1

2
Y , (C.1)

The electric charge, weak isospin and Hyper charge can be found in table (C.1). Notice

that fermions from different generations have the same quantum numbers.

In the context of MSSM, the hyper charges of the SUSY particles are the same as

their super-partners. In addition, the down-type Higgs Hd and up-type Higgs Hu have

hyper-charge YHu
= −YHd

.
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Particle Electric Charge Weak Isospin Hyper Charge

eL -1 -1/2 -1

eR -1 0 -2

νLe 0 1/2 -1

uL 2/3 1/2 1/3

uR 2/3 0 4/3

dL -1/3 -1/2 1/3

dR -1/3 0 -2/3

H+ 1 1/2 1

H0 0 -1/2 1

W+ 1 1 0

W− -1 -1 0

Z0 0 0 0

B 0 0 0

Table C.1: The electric charge, weak isospin and Hyper charge of particles in the SM.
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Appendix D

The Big Bang Nucleosynthesis

Reactions

Before the nucleosynthesis, when the temperature T ≥ 1 MeV, protons and neutrons

participate in weak interaction and they convert into each other via

p + e− ↔ n + νe , p + ν̄e ↔ n + e+ . (D.1)

These two reactions are in chemical equilibrium, and therefore the ratio of neutron to

proton density can be calculated according to Boltzmann distribution

nn
np

= exp

(
−mn −mp

T

)
. (D.2)

Processes (D.1) are frozen when the Hubble parameter H = Γweak. One can calculates

that this happens when the temperature drops to 0.8 MeV. The ratio of neutron to proton

is fixed as nn/np = 1/7.

Meanwhile, proton and neutron combine into Deuterium:

p + n ↔ D + γ , (D.3)

The binding energy for Deuterium BD = 2.2 MeV. When the temperature drops to 0.06

MeV, a certain amount of Deuterium (the same order of baryon) is yielded. The major
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processes at this time are

2D + p → 3He + γ , (D.4)

2D + 2D → 3He + n , (D.5)

2D + 2D → 3T + p , (D.6)

which yield 3T1 and 3He. The sequence processes include

3He + n → 3T + p , (D.7)

3T + 2D → 3He + n , (D.8)

3He + 2D → 4He + p . (D.9)

At this stage, the major nucleus produced by BBN is 4He. 2D, 3T and 3He are intermediate

products, which has number density 3 to 4 orders of magnitude smaller than 4He. When

enough 4He is accumulated, the reactions yielding heavier nuclei begins

4He + 3T → 7Li + γ , (D.10)

4He + 4He → 7Be + γ . (D.11)

7Be can convert to 7Li via

7Be + e− → 7Li + νe . (D.12)

Part of 7Li collapse with proton and generate 4He

7Li + p → 4He + 4He . (D.13)

Considering all these processes together, one finds the final number density of 7Li is 7 to 8

orders of magnitude smaller than 4He. The network of BBN reaction chain is illustrated

in Fig. D.1 When the temperature of the universe drops to ∼0.01 MeV(108 K), the

Nucleosynthesis finishes and all light elements abundances are “locked”.

13T is unstable. It will decay into 3He after BBN.
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Figure D.1: The network of primary nucleosynthesis reactions.
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Appendix E

Cosmology Thermodynamics

Here, we present some rudimentary thermodynamics of the early universe, showing that

the particle physics phenomenology plays an important role in cosmology.

E.1 The expansion of the Universe

The expansion of the universe is described by a factor a(t), which is defined as l(t) = l0ȧ(t)

and Hubble parameter

H =
ȧ

a
. (E.1)

The Friedman function of the dynamics of the expanding universe is given by

ä

a
= −4

3
π G(ρb + 3pb) +

Λ

3
, (E.2)

where ρb and pb are the density and pressure of the matter in the universe, G = 1
M2

pl

is

the Newton’s constant and Λ is the cosmological constant.

Integrating Eq.(E.2), one finds the cosmological equation

H2 =

(
ȧ

a

)2

=
8

3
πGρb ±

1

a2R2
+

Λ

3
. (E.3)
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In the above equation, we use the special Einstein-de Sitter limit, where pb ≪ ρb. R and

the plus minus sign describe the curvature of the universe. In the radiation dominanted

universe, the energy density is a function of particle DoF g∗ and temperature T

ρb = g∗
π2

30
T 4 , (E.4)

In the radiation dominated universe, we can further neglect the curvature term and cos-

mological constant term and therefore the Hubble parameter can be expressed as

H =

√
4π3g∗

45

T 2

Mpl

. (E.5)

E.2 Number density of particles

In the plasma of the hot universe, the number of microstates with energy density ε is

given by

∆gǫ =
gV

2π2

∫ ǫ+∆ǫ

ǫ

|p|2 d|p| ≃ gV

2π2

√
ǫ2 −m2 ǫ∆ǫ , (E.6)

where p is the momentum of the particle V is the volume and g is the internal degrees of

freedom of the particle. It is convenient to work in the unit volume where V = 1. Bosons

in the plasma satisfy the Bose-Einstein distribution:

nǫ =
1

e
ǫ−µ

T − 1
, (E.7)

whereas Fermi-Dirac distribution for fermions:

nǫ =
1

e
ǫ−µ

T + 1
. (E.8)

In the above two equations, µ is the chemical potential of the corresponding particle.

Integrating the energy density, one can find the number density of each particle as a

function of temperature T , mass m and the chemical potential µ:

n =
∑

ǫ

nǫ∆gǫ =
g

2π2

∫ ∞

m

√
ǫ2 −m2

e(ǫ−µ)/T ∓ 1
ǫ dǫ , (E.9)
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where the minus sign is for bosons and plus sign is for fermions. The density of particles

in equilibrium satisfies

neq
i (T ) =

gi
(2π)3

∫
d3 pi f

eq
i , (E.10)

where f eq
i (Ei, T ) = e−Ei/T . The integral reads

neq
i (T ) =

gi T m
2
i

2π2
K2(

mi

T
) , (E.11)

for massive particle with mass mi. And

neq
i (T ) =

gi T
3

π2
, (E.12)

for massless particles. It is important to calculate the excess of number density of particle

and antiparticle in the limit of ultra-high temperature µ≪ T and massless particlem = 0.

For bosons, we have

nb − nb̄ ≃
gT 3

3

µb
T
, (E.13)

whereas for fermions

nf − nf̄ ≃
gT 3

6

µb
T
. (E.14)

E.3 The Entropy of Particles

The energy density of bosons and fermions in the hot plasma in the universe can be

calculated from integration

ρ = g

∫
ǫ nǫ d

3p , (E.15)

where nǫ, the distribution function in Eq.(E.7) and Eq.(E.8) need to be treated differently

for bosons and fermions. Then the energy density is a function of temperature and particle

degree of freedom, for bosons, it reads

ρb ≃
π2

30
g T 4 , (E.16)
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and for fermions, then we have

ρf ≃
7π2

240
g T 4 , (E.17)

From the point of view of total entropy of the plasma, see Eq.(E.4), total degrees of

freedom of a mixture of bosons and fermions can be effectively expressed as

g∗ =
∑

m≪T

gb +
7

8

∑

m≪T

gf , (E.18)

We can see that for bosons and fermions which have the same internal degrees of freedom,

the entropies satisfy

sf =
7

8
sb , (E.19)

The entropy of the universe is defined as

s ≡ ρ+ p

T
(E.20)

In the radiation dominated universe, we have relation p = 1
3
ρ, using Eq.(E.4) the total

entropy density can be easily expressed as

s = g∗
2π2

45
T 3 . (E.21)
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Appendix F

An Alternative Method to the

Flavoured Boltzmann Equations

The Boltzmann Equations in Chapter 4 discribe the evolution of lepton/quarks in an

elegant way. In the meantime, an alternative method is derived and used by the authors

to solve the evolution of B − L number in the early Universe. Although this method is

much more tedious, we think it is still useful to present this method in this thesis. One

can expect that when the spectator processes are considered in other situation (e.g. the

Affleck-Dine mechanism, mentioned in Chapter 4, the method in Chapter 4 may be not

working.

Firt of all, we use the number density relations of the relevent components of leptoge-

nesis (Eq. 4.42)

µQ = −µℓ
3

; µφ =
4µℓ
7

; µu =
5µℓ
21

; µd = −19µℓ
21

; µe =
3µℓ
7
, (F.1)

because only the left-handed leptons are active in generating L−B number, we distinguish

left-handed leptons from non left-handed lepton L−Bs (labelled with Υ = (L− ℓ)−B).

The ratio of left-handed lepton ℓi to Υ,

cΥ =
e− 6Q− 3u− 3 d

2 ℓ
. (F.2)
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In the temperature range 102 GeV- 109 GeV, inserting Eq.(4.42) into Eq.(F.2), we can

have cΥ = 31/14.

Since the role of spectator processes is to keep lepton flavours and baryon flavours

in the ratio, one can consider them effectively as processes with arbitrarily large rate.

The fast processes keeping Ŷℓα , (α = 1, 2, 3) and ŶΥ in a ratio of cΥ correspond to a term

Θ
∑

β 6=α(cΥŶΥ + Ŷℓβ − Nf Ŷℓα) and Θ
∑

β(Ŷℓβ − Nf cΥ ŶΥ) in the Boltzmann Equation

of Ŷℓα , where Θ is a positive number, which makes the last term much larger than the

previous terms. Notice that the Θ terms cancel each other so that total L−B is conserved.

dŶN1

dz
= − 2

sHz

(
ŶN1

Ŷ eq
N

− 1

)
(γD + 2γSs + 4γSt) , (F.3)

dŶℓα
dz

= − 2

sHz

{
ǫ1,α

(
ŶN1

Ŷ eq
N1

− 1

)
γD +

(
γαSs

+ γαSt

) Ŷℓβ
Ŷ eq
ℓ

}

+Θ
∑

β 6=α
(cΥŶΥ + Ŷℓα −Nf Ŷℓα) , (F.4)

dŶΥ

dz
= Θ

∑

β

(Ŷℓβ −Nf cΥ ŶΥ) . (F.5)

These equations can be solved numerically, and the value of Θ is empirically set to ensure

the ratio of Ŷℓ and ŶΥ and a reasonable computer time.

To illustrate the result of the uni-flavour Boltzmann Equations, we take the scenario

of Consequential Dominance in Section 3.3.1. We take the right-handed neutrino masses

M1,2,3 = 109, 1010, 1011 GeV, and the maximal CP asymmetry of right-handed neutrino

decay can be calculated

ε1,β = 4.6 × 10−6 , ε1,e = 0 , (F.6)

where β = µ, τ .

Here we have taken the assumption of thermally produced right-handed neutrino, in

which YX = 0 X = N1, when z ≪ 1. The evolution of Ŷℓ and ŶΥ is showed in Figure F.1.

We can clearly see that the Ŷℓ and ŶΥ are kept in a ratio during the leptogenesis era. The

final L − B number abundance reads ŶL−B = 1.25 × 10−9, and the total L − B number

for flavour independent Boltzmann Equations is ŶL−B = 2.17 × 10−9.

129



 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 0.01  0.1  1  10  100

Y
X

z

Figure F.1: The evolution of N1 abundance (the solid line) left-handed lepton asymmetries Yℓα
(the

dash line) and Υ total abundance (dot-dash line), for M1 = 108 GeV.
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Appendix G

An illustration of flavours in

Boltzmann Equations

In this appendix, we illustrate a visible model to explain how flavours play the role in

leptogenesis Boltzmann Equations.

We image there are three tanks (Fig. G.1). On the top of each tank, there is one tap,

filling water into these three separate tanks. And there is a small hole in the bottom of

each tank, from which the water flows out. The incoming water flow depends on the taps,

and the outgoing water flow is proportional to the volume/height of water in each tank.

(The more water in the tank, the more pressure on the hole.)

If we want to calculate how much water in these tanks at time t (assuming in the begin-

ning all these three tanks are empty), the situation is like calculating flavour-independent

lepton asymmetries from the RH neutrino decay:

• The incoming water flow of each tank stands for the rate of generating lepton asym-

metries from the RH neutrino decay.

• The outgoing water flow of each tank is propotional to the volume/height of wa-

ter in respective tank stands for the washing-out rates of lepton asymmetries are
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Figure G.1: An illustration of a generating-erasing system with three independent variables.

propotional to number densities of respective (left-handed) leptons.

And this is the flavour independent case, where we assume the sphaleron processes are

still not active, and the B − L number is conserved in three left-handed leptons only.

Now, let’s investigate the flavoured case. When we take into account the ’spectator

process’, (including sphaleron processes and Yukawa interactions), these water tanks need

to be modified. Notice that the ’spectator process’ converts left-handed leptons to right-

handed leptons, left-handed quarks and right-handed quarks, conserving B − L number.

The asymmetries of all these components, together with Higgs fields, go into equilibrium.

So, we can image a situation where these three tanks are connected by pipes. And an

additional tank is also connected to them, but there is no hole in the bottom of it. The

pipes between these tanks are large enough so that the water levels are always even (Fig.

G.2).

So, in leptogenesis, the spectator processes play the role of these pipes - converting

left-handed leptons into each other and inactive components (quarks and right-handed

leptons), keeping them in certain ratios. We can image that the water in the additional

tank is the inactive components - there is no hole in the bottom to “wash it out”.
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Figure G.2: An illustration of a generating-erasing system with communicating (spectator process).

To calculate how much water in these tanks, we only need to consider one variable -

the volume of water in all these tanks together. Similarly, in leptogenesis, we can only

consider the total B − L number in the Boltzmann Equations, and left-handed lepton

number in each flavour can be algebraically expressed by B − L number.

As for the case of E6SSM, with L4 only, we can image there is another additional tank

with a hole in the bottom (Fig. G.3). This tank represents L4. The calculation in this

scenario is very straightforward. And for the case of inert Higgs and leptoquark, we still

can have water-tank models to describe them.

Figure G.3: An illustration of a generating-erasing system with communicating (spectator process) and

an additional variable.
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