
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Tsang, Catherine (2004) Antioxidant activity, protective effects and 
absorption of polyphenolic compounds. PhD thesis. 
 
 
http://theses.gla.ac.uk/1560/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/1560/


Antioxidant Activity, Protective Effects 
and Absorption of Polyphenolic 

Compounds 

c 

r� 

P 
J 

'ý 
ýFRITAS `ý 

UNIVERSITY 
of 

GLASGOW 

Catherine Tsang 

BSc. (Hons); MSc. (Med. Sci. ) 
University of Glasgow 

A thesis submitted to the Faculty of Biomedical & Life Sciences, 
University of Glasgow for the degree of Doctor of Philosophy (Ph D) 



Catherine Tsang, 2004 

Abstract 

2 

There is a growing awareness of the potential health benefit of a diet rich in fruits 

and vegetables and nutritional guidelines indicate that an increase in the consumption of 

these foods may decrease the risk of developing coronary heart disease (CHD) and 

certain cancers. These properties may be ascribed to the presence of antioxidants and 

recent attention in this regard has focused on phenolic and polyphenolic compounds. 

These compounds are present in a wide variety of commonly consumed foods and 

beverages in the diet and red wines are an especially abundant source derived from 

grape seeds, skins and vine stems. The objectives of the studies presented in this thesis 

were to identify and quantify the major phenolic components of red wine and to assess 

the contribution of individual compounds to the total antioxidant activity. Further aims 

were to investigate the influence of a moderate and regular consumption of red wine on 

the antioxidant status and on indices of oxidative stress associated with CHD in healthy 

volunteers, and to investigate the absorption, metabolism, sequestration in body tissues 

and excretion of the monomeric and polymeric flavan-3-ols in rats following ingestion 

of a grape seed extract (GSE). 

Red wines were analysed for their phenolic content and antioxidant activity using a 

range of complementary techniques including HPLC-tandem mass spectrometry, 

preparative HPLC and HPLC with an on-line antioxidant detection system. HPLC-MS2 

revealed the presence of a number of flavonoids and phenolic compounds of which 19 

were identified, with gallic acid, the flavan-3-ols and anthocyanins being the most 

abundant. Preparative HPLC was used in an effort to isolate the antioxidant components 
in red wine and 60 aliquots were collected. Each wine fraction was analysed for total 

phenolics, catechins and anthocyanins, while antioxidant activity was determined by 

electron spin resonance spectroscopy (ESR). The preparative HPLC step did not 

completely separate the compounds in red wine, nonetheless increasing antioxidant 

activity was highly and significantly associated with total phenolics (r = 0.816, P< 

0.001) and total catechins (r = 0.591, P<0.01); but there was no correlation with total 

anthocyanins (r = 0.188, p=0.151). HPLC with an on-line antioxidant detection system 

was subsequently used to separate and identify red wine phenolics. The findings from 

this study indicate that gallic acid, (+)-catechin, (-)-epicatechin, and procyanidin dimers 
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B1 and B2 were the major in vitro antioxidants identified in red wine. Collectively the 

flavan-3-ols contributed > 50 % of the total antioxidant capacity of each wine, while 

gallic acid contributed between 23-44 %. The flavonols and anthocyanins were minor 

antioxidant components in red wines. By combining HPLC, MS2 and on-line 

assessment of antioxidant activity, the major phenolic compounds present in red wine 

were identified, together with their direct contribution to the total antioxidant activity. 

A randomised, controlled study was performed with 20 free-living healthy 

volunteers in an effort to determine the effects of a daily moderate consumption of red 

wine on the antioxidant status and indices of lipid peroxidation and oxidative stress 

associated with CHD. Subjects in the red wine group consumed 375 mL/d of an 

antioxidant-rich red wine for two weeks. The total concentrations of phenolics were 

measured and individual phenolics in the wine and plasma were analysed by HPLC- 

MS2. The antioxidant capacity of plasma was assessed with ESR and homocysteine and 

fasting plasma lipids were also determined. The production of conjugated dienes and 

thiobarbituric acid reactive substances (TBARS) were measured in copper oxidised low- 

density lipoprotein (LDL). Plasma total phenolic concentrations were highly and 

significantly increased by 4.4 µM GAE after 2-weeks of daily red wine consumption (P 

< 0.001) that was associated with a non-significant increase in the plasma antioxidant 

activity. Trace levels of four metabolites, namely (+)-catechin glucuronide, (-)- 

epicatechin glucuronide, methyl-catechin glucuronide and methyl-epicatechin 

glucuronide were detected in plasma of the red wine group. These flavan-3-ol 

metabolites were not detected in plasma of the control group. Moreover, the maximum 

concentration of conjugated dienes and TBARS in copper-oxidised LDL were 

significantly reduced (P < 0.05) and HDL cholesterol concentrations were significantly 

higher (P < 0.05) following red wine consumption. None of these parameters were 

observed in the control group. The findings from this investigation suggest that some 

phenolics appear to be directly absorbed into the bloodstream from the gastrointestinal 

(GI) tract following a daily moderate consumption of red wine, and are able to exert 

some protective effects such as raising HDL cholesterol concentrations and enhancing 

the resistance of LDL to withstand oxidative modification. 
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The absorption, metabolism and excretion of flavan-3-ols and procyanidins were 

investigated in rats following the ingestion of a single acute dose of a tannin-rich grape 

seed extract (GSE). The liver, kidney, brain and GI tract together with plasma, urine and 

faeces were collected at several time points up to 24 h after ingestion of the GSE and 

the flavan-3-ol contents were analysed by reversed phased HPLC with tandem mass 

spectrometry and diode array detection. In this study, small amounts of the GSE flavan- 

3-ols moved out of the stomach and into the duodenum/jejunum, and to a greater extent 

the ileum 1h after ingestion and in the caecum after 2h with relatively small amounts 

being detected in the colon after 3 h. The GI tract contained principally the parent GSE 

flavan-3-ols and procyanidins, however trace amounts of four metabolites, namely (+)- 

catechin glucuronide, (-)-epicatechin glucuronide, methyl-(+)-catechin glucuronide and 

methyl-(-)-epicatechin glucuronide, were detected in the duodenum/jejunum and ileum. 

In contrast to the GI tract, plasma contained exclusively flavan-3-ol metabolites in 

detectable quantities which reached a peak plasma concentration 3h after GSE 

ingestion; (+)-catechin glucuronide (36.0 ± 2.5 µmoles/L) and (-)-epicatechin 

glucuronide (34.4 ± 0.2 µmoles/L) and in small amounts methyl-(+)-catechin 

glucuronide (19 ± 0.3 µmoles/L) and methyl-(-)-epicatechin glucuronide (11.4 ± 0.7 µ 

moles/L). All four metabolites were also detected in the liver and kidneys. They were 

also detected in urine along with (+)-catechin sulphate, (-)-epicatechin sulphate, methyl- 

(+)-catechin sulphate and methyl-(-)-epicatechin sulphate. In addition, urine also 

contained in low amounts the procyanidin dimers B1, B2, B3 and B4 as well as the trimer 

C2 and an unknown GSE trimer. The levels of (+)-catechin and (-)-epicatechin 

metabolites excreted in urine relative to the quantity of the monomers ingested were 27 

and 36 %, respectively, after 24 h. The findings from this investigation indicate that 

monomeric together with smaller amounts of oligomeric and polymeric flavan-3-ols can 
be directly absorbed into the bloodstream. The monomers are metabolised forming 

glucuronidated, sulphated and methylated derivatives. Moreover, this study provides 
further, albeit indirect, evidence that the procyanidin oligomers in the GSE were not 
depolymerised in the GI tract releasing monomeric flavan-3-ols to any extent after 
ingestion. 
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Red wine (Vitis vinifera) provides a rich source of phenolic and polyphenolic 

compounds derived from grape seeds, skins and vine stems. Recent evidence has 

suggested that a moderate consumption of red wine may protect against the 

development of CHD. Phenolics act as potent antioxidants in vitro however the 

contribution of individual components in red wine, their protective effects in vivo and 

their absorption and metabolism have yet to be addressed. 

This study set out to achieve the following aims: 

1. To identify and quantify the major phenolic contributors to the in vitro antioxidant 

capacity of red wine. 

2. To investigate the influence of a moderate daily consumption of red wine on the 

antioxidant status and on indices of oxidative stress associated with CHD in healthy 

volunteers. 

3. To determine the absorption, metabolism, excretion and distribution of a grape seed 

extract rich in (+)-catechin and procyanidins in a rat model system. 



Catherine Tsang, 2004 

Chapter 1 Introduction 

1.1 Diet and Health 

14 

A diet rich in fruits and vegetables has long been recognised to protect against 

chronic diseases including cardiovascular disease (CHD and stroke) and certain cancers 
(WHO, 2003), and current dietary guidelines recommend a daily intake of at least 5 

portions (400 g). Although the protection afforded by fruits and vegetables can be partly 

explained by associated lifestyle factors including abstinence from smoking and 
increased physical activity (Lampe, 1999), specific dietary constituents are considered 

to be important to health. 

Phenolic and polyphenolic compounds are secondary metabolites widespread in the 

plant kingdom and form an integral part of the human diet with fruits, vegetables, tea 

and red wine providing an especially abundant source. During the past decade, interest 

has arisen in these compounds as there is some evidence to suggest that an increased 

consumption of phenolic rich foods/beverages may help prevent disease. Polyphenols 

are reducing agents and their potential health-related properties have been ascribed to 

their powerful antioxidant abilities, which may protect the body from damaging 

oxidation reactions, caused by `free radicals' (Kanner et al., 1994). 

1.2 Free radicals, Oxidative stress & chronic disease 

It is becoming increasingly evident that wide ranges of chronic diseases have 

oxidation events as a major component of their pathophysiology and has been 

implicated in the aetiology of a number of degenerative diseases including cancer, 

atherosclerosis and chronic inflammatory diseases (Beckman & Ames, 1998). Harman 

first proposed the `free radical theory of ageing', which stated that free radicals 

produced during metabolism and other biological reactions cause cumulative cell 
damage leading to ageing and eventual death (Harman, 1956). This theory has since 
been transformed into a more general premise which highlights that an over-production 

of reactive oxygen species (ROS) during normal metabolic processes, or a loss of the 
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protective mechanisms that reduce the ability to withstand oxidative challenge is 

intricately connected to ageing and lifespan (Beckman & Ames, 1998). 

1.2.1 Source of free radicals 

Free radicals are fundamental to any biochemical process and represent an essential part 

of aerobic life. They are characterised as having one or more unpaired electrons and are 
therefore capable of reacting with electron donors to equilibrate its charge (Rice-Evans, 

2001). Endogenously free radicals are generated as by-products through electron 

transport chains during normal aerobic metabolism (Halliwell, 1996), peroxisomes and 

the cytochrome P-450 system (Wiseman et al., 1997). They are essential for the 

regulation of normal metabolic processes and immune function including cell growth, 

energy production, phagaocytosis and the synthesis of nucleic acids, hormones and 

proteins. Free radicals are also generated exogenously through cigarette smoke, 

products of ionising UV radiation, environmental pollutants, lipid oxidation products in 

foods and excessive intakes of iron (Halliwell et al., 1992; Kubow, 1993) (Table 1.1). 

Free radicals can be classified into oxygen, nitrogen, carbon and sulphur based 

molecules and include hydroxyl radical (OH-), superoxide anion (02'-), singlet oxygen 

(102) and hydrogen peroxide (H202). The hydroxyl radical is the most reactive of the 

oxygen centred radicals and will react with the first available bio-molecule they 

encounter. Other free radicals include the 2 gaseous radicals nitric oxide (NO-) and 

nitrogen dioxide (NO2-), and the carbon centred radicals (R") of organic compounds; 

alkoxyl (RO") and peroxyl (ROO") formed during the peroxidation of lipids. While the 

sulphur based radicals (RS-) and (RS-SR'-) are involved in cellular function. 

Table 1.1 Endogenous and exogenous sources of free radicals. 

Source Mechanism 
Endogenous 
Mitochondrial electron transport Leakage of superoxide due to inefficient reduction of 

Transition metal ions 
Inflammation 
Enzymes e. g. Xanthine Oxidase 

oxygen 
Copper and iron facilitate hydroxyl radical formation 
Free radicals released by activated phagocytes 
Release superoxide during reperfusion of ischemic 
tissues 

Exogenous 
Drug metabolism Free radical intermediates created during metabolism 
Cigarette smoke Gas phase rich in free radicals 
Radiation X-rays, UV light 
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1.2.2 Free radical reactions in biological systems 

All of the major macromolecules found within the body are susceptible to oxidative 

modification by free radicals, including lipids, DNA and protein. Lipid peroxidation is 

probably the most extensively investigated free-radical induced process (Moore & 

Roberts, 1998). The lipid component of biological membranes is highly susceptible to 

oxidation and may undergo a rapid and destructive chain peroxidation process (Karten 

et al., 1988). Lipid peroxidation is initiated by free radical attack on a double bond 

associated with a PUFA resulting in the abstraction of a H+ atom from a methylene 
(CH2) group, the rate of which determines the rate of initiation. The OH- radical is 

particularly effective in initiating lipid peroxidation (Morrisey et al., 1994). The 

formation of the lipid radical is then accompanied by molecular re-arrangement that 

results in stabalisation of the unstable carbon radical into a conjugated diene. The 

conjugated diene reacts very quickly with molecular oxygen, and the peroxyl radical 

thus formed is a crucial intermediate. Peroxyl radicals can combine with each other or 

they can attack membrane proteins, however they are also capable of abstracting H+ 

from adjacent fatty acid side chains in membranes and so propagate the chain reaction 

of lipid peroxidation. Lipid hydroperoxides can undergo further oxidation via its 

interaction with transition metals including copper and iron, yielding a complex mixture 

of secondary degradation products including hydrocarbon gases (ethane and pentane) 

and aldehydes (malonaldehyde and 4-hydroxynonenal) (Fig. 1.1). Proteins and nucleic 

acids seem to be less susceptible than lipids to free radical attack, in that there seems to 

be less possibility in the formation of rapidly progressing chain reactions. Nonetheless, 

DNA can undergo a series of reactions with ROS leading to DNA strand breaks (double 

and single) and base modifications which may result in genetic mutations, cell death, 

damage to DNA repair enzymes and chromosomal re-arrangements (Halliwell & 

Arouma, 1991). Moreover, amino acyl constituents crucial for the function of proteins 

are especially vulnerable to radical damage. The consequences of such damage may be 

aggregation, cross-linking or protein degradation and fragmentation, depending on the 

nature of the protein component and the attacking free radical species involved leading 

to altered enzyme activity, membrane and cellular function (Wolff et al., 1986). 
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Figure 1.1 Basic reaction sequence of lipid peroxidation (Young & McEneny, 2001). 
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1.2.3 Antioxidant defence mechanisms 
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A number of antioxidant defence mechanisms and repair systems exist in the body to 

protect against the damage and reduce the adverse effects of free radicals (Table 1.2). 

This complex network involves mechanisms that reduce the initial formation of oxygen 

centred radicals of organic compounds (peroxyl and alkoxyl radicals); scavenge free 

radicals, break chain-reactions and repair systems for damage (Yu, 1994). Intracellular 

antioxidant enzymes include superoxide dismutase, which removes superoxide radicals 
by accelerating the formation of hydrogen peroxide; glutathione peroxidase, converts 
hydrogen peroxide to water, and catalase, which breaks down hydrogen peroxide 
(Morton et al., 2000). Non-enzymatic antioxidants act mainly as scavengers in oxidative 

chain reactions. They can be divided into lipid phase chain breaking antioxidants such 

as tocopherols and aqueous phase chain breaking antioxidants such as ascorbate. 
Several extracellular antioxidants such as proteins (transferrin, lactoferrin, albumin and 

caeruloplasmin) and urate prevent free radical reactions in the body by sequestering 

transition metals, thus reducing the occurrence of fenton-like reactions (Khan & Kasha, 

1994). 

Table 1.2 Enzymatic and non-enzymatic physiological antioxidants. 

Antioxidant Properties 
Enzymatic 
SOD removes 02-- by accelerating formation of H202. 
GSH removes H202 and organic hydroperoxide 
CAT removes H202 
Non-enzymatic 
vitamin C free radical scavenger; recycles vitamin E 
vitamin E major chain-breaking antioxidant in cell membrane 
glutathione multiple roles in cellular antioxidant defence 
uric acid scavenger of OH radicals 
a-lipoic acid recycles vitamin C; effective glutathione substitute 
carotenoids scavenger of ROS; singlet oxygen quencher 
bilirubin extracellular antioxidant 
ubiquinones reduced form are efficient antioxidants 
metal ions: e. g. transferrin chelate metals ions responsible for fenton reactions 
NO free radical scavenger; inhibitor of lipid peroxidation 

Adapted from Fang et al. (2002). SOD-superoxide dismutase; GSH-glutathione 
peroxidase; CAT-catalase; NO-nitric oxide; ROS-reactive oxygen species. 
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1.2.4 Antioxidant activity of polyphenols 

Although the body has a number of endogenous defences, antioxidants from dietary 

sources also have an important role to play in quenching free radicals and in preventing 
damage. In addition to the common dietary antioxidants; vitamins C and E, phenolics 

and polyphenolics are purported to act as potent antioxidants in biological systems in 

vitro. The protective effects have been ascribed to their capacity to transfer electrons to 
free radicals, chelate metal catalysts (Ferrali et al., 1997), activate antioxidant enzymes 
(Elliot et al., 1992) and inhibit oxidases (Cos et al., 1998). Scavenging free radicals can 

prevent the oxidation of biological matrices, and chelating metal ions such as copper 

and iron, can reduce the initiation of chain reactions in fatty acids present in LDL. 

Phenolics are also involved in the regeneratation of vitamin C and E when they 

accept/donate an unpaired electron or H+ from a free radical. The antioxidant activities 

of polyphenols are closely related to their structure and a number of important structural 
determinants have been identified. The common flavonoids, myricetin, quercetin, rutin 

and gallic acid have been shown to exert greater antioxidant capacities than the 

conventional antioxidant vitamin a-tocopherol. This is due to the number of hydroxyl 

groups which enable the compound to donate H+ and delocalise the resulting free 

electron. In general the greater the number of hydroxyl groups on a structure, the greater 

the antioxidant activity (Salah et al., 1995). Studies have shown that quercetin is a 

potent antioxidant due to the number and distribution of its hydroxyl groups (Rice- 

Evans et al., 1995), in addition to (+)-catechin (Teissedre et al., 1996). Particular 

combinations are found to offer greater activity. Bors et al. (1990) proposed the 

following structural determinants for effective radical scavenging properties of 
flavonoids: (1) The O-dihydroxy (catechol) structure in the B-ring. This is an obvious 

radical target site for all flavonoids with a saturated 2,3-double bond. (2) The 2,3-double 

bond in conjugation with a 4-oxo function, which is responsible for electron 

delocalisation from the B-ring. (3) The additional presence of both 3' and 5' hydroxyl 

groups for maximum radical scavenging potential and strong radical absorption. 

Moreover, the ability of flavonoids to donate electrons and stop chain reactions is 

attributed to the phenolic hydroxyls with activity increasing with the number of -OH 

groups in the A and B rings, particularly the 3', 4'-OH of the ring B and the meta 
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arrangement of -OH groups at the 5' and 7' positions of ring A are reported to further 

increase the antioxidant activity of a compound (Frankel, 1999). 

1.2.5 Methods to determine antioxidant activity 

A number of techniques have been developed to measure the activity of an antioxidant. 
Some techniques are based on a chemical reaction, while others make use of a 
biological response. Some of the most common methods used to assess the antioxidant 

capacity of phenolic rich foods and beverages are electron spin resonance (ESR), trolox 

equivalent antioxidant activity (TEAC), chemiluminescence, 2,2 azobis (2 

amionopropane) hydrochloride (AAPH) and 2,2-diphenyl-l-picrylhydrazyl radical 
(DPPH), while the ferric reducing antioxidant potential (FRAP) assay is most 

commonly used for the assessment of plasma antioxidant activity. 

1.2.5.1 Electron spin resonance spectroscopy 

ESR spectroscopy is unique in that it is only sensitive to transitions involving unpaired 

electrons, whereby the decay of radical resonance of either a water-soluble or organic- 

soluble radical is examined over time. This enables the kinetics and the stochiometry of 

the donation of the H+ from the antioxidant to the radical to be determined (Duthie, 

1999). Unlike many other antioxidant assays this method can be used with turbid or 

coloured samples such as red wine (Gardner et al., 1999). The application of this 

approach has been tested in parallel with the common FRAP assay in the analysis of red 

wines (Burns et al., 2000). Although two different methods were used to assess the 

antioxidant capacity the results obtained were highly correlated. 

1.2.5.2 TEAC - trolox equivalent antioxidant activity 

The TEAC assay is based on the oxidation-induced decolourisation of radical cation 

ABTS (2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonic acid), and determines the 

ability of hydrophilic H+ donating antioxidants to scavenge the ABTS+ radical 

compared with Trolox (a water soluble analogue of vitamin E) (Miller et al., 1993). The 

ABTS+ radical is not found naturally in the body and is strong compared with other 
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oxidising species. As the activity of an antioxidant compound depends on the free 

radical used this technique offers little information about the biological reactions of the 

antioxidants. This method overcomes some of the difficulties associated with other 
inhibition assays; although stringent control of reaction conditions and time is critical in 

obtaining reproducible results. This method gives a non-linear dose response, is 

insensitive to small changes in individual antioxidants when used in complex samples 

such as plasma, and antioxidant stoichiometric factors vary with test conditions 
(Schofield et al., 1996). 

1.2.5.3 AAPH method 

The ability of compounds to trap peroxyl radicals is assessed using the 2,2'-azobis(2- 

amidinopropane) dihydrochloride (AAPH) assay. A steady stream of peroxyl radicals is 

initiated by the addition of the azo compound. The decrease in absorbance/fluorescence 

of a reactive compound is quantified in the presence of a radical scavenger (Ghiselli et 

al., 1998). 

1.2.5.4 DPPH method 

The radical scavenging effect of 1,1 -diphenyl-2-picryl-hydrazyl (DPPH) involves the 

quenching of the absorbance of a compound due to the scavenging of radicals by an 

antioxidant. This method can be extended to examine the kinetics of the radical 

scavenging by following the reaction over time rather than just at a fixed time point. 

This method has been used to determine the antioxidant activity of wines and phenolic 

compounds (Fauconneau et al., 1997). 

1.2.5.5 Chemiluminescence 

The principal of this method is based on the oxidation of luminol by hydrogen peroxide 

in a reaction catalysed by horseradish peroxidase. Under normal circumstances this 

reaction produces low intensity light emission however in the presence of antioxidants 

light emission is diminished. The length of time of light quenching is related to the 
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amount of the antioxidant present. This approach has been used to determine the 

antioxidant capacity of plasma and phenolic compounds (Whitehead et al., 1992). 

1.2.5.6 FRAP assay 

The FRAP assay is simple, inexpensive and robust and provides an index of antioxidant 
activity (Benzie & Strain, 1996). It describes the ability of a compound to reduce Fe 3+ 

to Fee+. This reduction is accompanied by the formation of a blue colour in the presence 
of a ferric-tripyridyltriazine (Fe3+-TPTZ) complex. The dose-response is linear over a 

wide range, stoichiometric factors of antioxidants are constant in pure solution, aqueous 

mixtures and in complex mixtures such as plasma, and therefore is suitable for the 

analysis of a range of biological fluids and extracts of foods/beverages. FRAP values 

are similar to those obtained using other types of antioxidant techniques including 

chemiluminescence (Whitehead et al., 1992), TRAP (Lissi et al., 1995) and ESR, as 
described previously. 

1.3 Chemistry and Classification of Phenolics 

Plants synthesise a vast and diverse range of secondary metabolites, the majority 

of which do not appear to be involved in essential processes of plant physiology. Their 

production in plant tissues is influenced by a wide range of environmental factors in 

response to stress, including exposure to UV radiation, attack by fungi or bacteria and 

disease (Landry et al., 1995). As a consequence a number of physiological and 

ecological functions have been described in plants including plant defense, chemical 

signalling, protection against UV radiation, regulation of hormones, organogenesis, in 

addition to contributing to their colour and flavour (Vogt et al., 1994; Bravo, 1998). In 

humans they have been reported to exhibit a wide range of biological effects including 

anti-bacterial, anti-viral, anti-inflammatory and anti-allergic properties (Cook & 

Samman, 1996). Phenolics are characterised by having an aromatic ring bearing one or 

more hydroxyl (OH) substituents, and range from simple low molecular weight, single 

aromatic compounds to the large highly polymerised and complex tannins. They occur 

predominantly as conjugates with sugars, glucuronic or galacturonic acids, other 

phenols or, less frequently, to aromatic carbon atoms (Bravo, 1998). Modifications in 
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their basic structure such as oxidation, hydroxylation, glycosylation and methylation has 

led to a wide range of phenolic substances with over 8000 structures reported to date 

(Strack, 1997). Phenolics can be classified according to the number and arrangement of 
their carbon atoms and can be classified into two major groups, the flavonoids and the 

non-flavonoids. The majority of phenolics are synthesised from carbohydrates via the 

shikimate and phenylpropanoid pathways (Fig. 1.2). 

1.3.1 Flavonoids 

Flavonoids comprise one of the largest and most widely dispersed groups of 

secondary plant metabolites (Kuhnau, 1976) with over 6000 flavonoids indentified to 

date (Harbone & Williams, 2000). Flavonoids mainly exist in plants as glycosides, 

while aglycones (lacking sugar moieties) occur less frequently. Their common structure 

is that of diphenylpropanes which has 15 carbon atoms arranged in three rings (C6-C3- 

C6) consisting of two benzene rings (A & B), which are connected by an oxygen 

containing pyrane ring (C) (Figure 1.3). 
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Figure 1.3 Generic structures of the major flavonoids. 
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Flavonoids are formed from the combination of derivatives synthesized from 

phenylalanine (via the shikimic acid pathway) and acetic acid; the 'A' ring is formed 

from three acetate units (via the malonic acid pathway) and the 'B' ring with the 3- 

carbon bridge is constructed of a phenylpropane unit via the shikimic acid pathway. The 

first step involves the formation of phenylalanine from phenylpyruvate. Phenylalanine 

is transformed to trans-cinnamic acid, which is then hydrolyzed to p-coumaric acid (C- 

9). The C-9 acids condense with three C-2 (malonyl-coA) units to form a C-15 

chalcone. Subsequent ring closure and hydration give rise to such compounds as the 3- 

hydroxyflavonoids (catechins) and 3,4-diolflavonoids (flavonols) (Dixon & Steele, 

1999). The various classes of flavonoids differ in the level of oxidation and pattern of 

substitution of the C ring and as such are subdivided according to their chemical 

structures into six classes: flavanones, flavones, flavonols, isoflavonoids, anthocyanins, 

and flavan-3-ols. Flavonoids are present in most edible fruits and vegetables, and are 

found in a wide range of beverages including tea and red wine. The main dietary 

flavonoids and their sources are shown in Table 1.3. 

1.3.1.1 Flavonols 

Flavonols are mainly represented by myricetin, quercetin, kaempferol and isorhamnetin. 

Conjugation occurs most commonly at the 3-position of the C ring although 5,7,4', 3' 

and 5' substitutions also occur (Herrman, 1976). Flavonols are commonly found in a 

wide range of fruits, vegetables and beverages with the most common flavonol in the 

diet being quercetin. 

Quercetin is present in various fruits and vegetables, including tea and red wine but the 

highest concentrations are found in onions (Hertog et al., 1992). Quercetin is present in 

plants in many different glycosidic forms (Kühnau 1976) with quercetin-3-rutinoside, 

also called quercetin-3-rhamnoglucoside or rutin, being one of the most widespread 

forms. Other flavonols in the diet include kaempferol (broccoli), myricetin (berries) and 

isorhamnetin (onion). 
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1.3.1.2 Anthocyanidins 
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Anthocyanidins, an extended conjugation made up of the aglycone of the glycoside 

anthocyanins, are a group of water-soluble compounds responsible for most floral, fruit 

and leaf pigmentation in nature (Clifford, 2000a). The most common naturally 

occurring anthocyanins are 3-O-glycosides. Structurally anthocyanins consist of an 

anthocyanidin bound to one or more sugar moieties, and with a sugar always present at 
the C3 position and frequently on carbons 7,3' and 5'. They can also form conjugates 

with hydroxycinnamates and organic acids such as malic acid and acetic acid. 
Anthocyanins are responsible for the red, blue or violet colour of edible fruits including 

grapes, plums and berries, with levels increasing during fruit maturation (Peterson & 

Dwyer, 1998). The most common anthocyanidins include pelargonidin, cyanidin, 
delphinidin and malvidin (Ktihnau, 1976). 

1.3.1.3 Flavan-3-ols 

Flavan-3-ols range from the simple monomers (+)-catechin and its isomer (-)- 

epicatechin, to the oligomeric and polymeric proanthocyanidins, also known as 

condensed tannins. In addition to forming complexes with other flavan-3-ols, they are 

hydroxylated to form the gallocatechins, and also undergo esterification with gallic acid. 

Furthermore, methylation, prenylation and O-glycosylation reactions have all been 

reported (Porter, 1992). (+)-Catechin and (-)-epicatechin are found in various fruits and 

vegetables such as apples, pears, grapes and peaches (Arts et al., 2000a), with the 

highest concentrations of catechins found in tea and red wine (Arts et al., 2000b). 

1.3.1.4 Flavones 

Flavones are structurally similar to the flavonols, however they lack oxygenation at 

position C3. A variety of substitutions is possible providing a wide array of natural and 

synthetic compounds; these include hydroxylation, methylation, 0- and C-alkylation 

and 0 and C-glycosylation. Most flavones occur as 7-0-glycosides (Bohm, 1998). 
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Flavone distribution appears to be limited to only a few plant families, with the main 

flavones in the diet being apigenin and luteolin. They have been identified in celery 

(apigenin), sweet red pepper (luteolin), parsley and other herbs (Hertog et al., 1992). 

1.3.1.5 Flavanones 

Flavanones are mainly represented by taxifolin, naringenin and hesperitin. Flavanones 

are characterized by the absence of the C2-C3 double bond and the presence of a chiral 

center at C2. The flavanone structure is highly reactive and they have been reported to 

undergo hydroxylation, glycosylation and O-methylation reactions. The main dietary 

source of flavonones is citrus fruit and the most commonly consumed is hesperitin from 

oranges (Rousseff et al., 1987). Naringenin is found in tomatoes and tomato-based 

products. Fresh tomatoes, especially tomato skin, also contain naringenin chalcone, 

which is converted to naringenin during processing to tomato ketchup (Krause & 

Galensa, 1992). 

1.3.1.6 Isoflavanones 

Isoflavonoids are characterised by having the B ring attached at the C3 of the 

phenylchromane structure. Isoflavonoids are derived from the biosynthetic pathway and 

can be converted into a wide range of different isoflavonoids including isoflavones, 

isoflavanones and isoflavonols (Harbone, 1993). Isoflavones are mainly represented by 

daidzen and genistein. The main dietary source is soybeans and soy products, with soy 

containing -1 mg of genistein and daidzen per gram of dry bean and much lower 

concentrations are present in other legumes (Mazur, 1998; Liggins et al., 2000). These 

compounds have received much attention due to their putative role in the prevention of 

breast cancer and osteoporosis (Tapiero et al., 2002). 
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Table 1.3 The main dietary sources of flavonoids 
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Flavonoid' Food source Content of aglycone 
(mg/kg) 

Flavonol 
Quercetin-3,4'-glucoside 
Quercetin-3-rhamnoglucoside (rutin) 

Quercetin-3 -galacto side 
Myricetin 
Kaempferol 
Flavone 
Luteolin-7-apiosylglucoside 
Apigenin 
Flavanone 
Hesperitin-7-rhamnoglucoside (hesperidin) 
Naringenin-7-rhamnoglucoside (naringin) 

onion 
black tea 

blackcurrant 
apple 

green beans 
kale 

sweet red pepper 
celery 

orange 
grapefruit 

280-4901 
10-252 

443 
21-721 

301 
210-4701 

15-391 
15-601 

116-2014 
68-3024 

Flavan-3-ols 
(+)-catechin 
(-)-epicatechin 
procyanidins 
Anthocyanins 
Cyanidin-3 -glucoside 
Cyanidin-3 -rutinoside 
Delphinidin-3-glucoside 
Delphinidin-3 -rutino side 
Isoflavanones 

apple; red wine 
apple; red wine 

chocolate; red wine 

blackcurrant 

4-165; 16-536 
67-1035; 9-426 

165; 229 

7607 

5907 

Genistein-7-glycoside soy beans 4808 
Daidzein-7-glycoside 3308 
Adapted from: ' Hollman & Arts (2000); ` Hertog et al. (1993); ' Häkkinnen et al. 
(1999); 4 Mouley et al. (1994); 5 Arts et al. (2000a); 6 Arts et al. (2000b); 7 Nyman & 
Kumpalainen (2001); 8 Mazur et al. (1998); 9 Hammerstone et al. (2000). 
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1.3.2 Non-flavonoids 

The main non-flavonoids found in the diet are the C6-Ci hydroxybenzoates, C6-C3 

hydroxycinnamates and polyphenolic C6-C2-C6 stilbenes. Phenolic acids exist primarily 

as conjugates and are rarely found in their acidic forms, often found bound to alcohols, 

sugars, polysaccharides, or organic acids through ester bonds. 

1.3.2.1 Hydroxybenzoates 

Hydroxybenzoates also referred to as phenolic acids include benzoic acid and 
derivatives including salicyclic acid. Gallic acid is the major hydroxybenzoate and is 

synthesised from phenylalanine via 3-dehydroshikimic acid. It is converted to ellagic 

acid and a range of gallotannins, with the formation of hydrolysable tannins (polymers 

of gallic and ellagic acids). Black tea and red wine provide rich dietary sources of gallic 

acid (Dunfresne & Fransworth, 2001; Soleas et al. 1997). 

1.3.2.2 Hydroxycinnamates 

Hydroxycinnamic acids: p-coumaric, ferulic, sinapic, caffeic acids and their derivatives 

are the most important subclass of phenolic acids. Cinnamic acid is produced by the 

deamination of the amino acid phenylalanine by ammonia lyase (PAL), with p- 
Coumaric acid being produced by hydroxylation of cinnamic acid. In addition to being 

found in their free form hydroxycinnamates are also found esterified to sugars, organic 

acids and choline (Strack, 1997). Caffeic acid occurs in foods mainly as an ester with 

quinic acid or chlorogenic acid (5-caffeoylquinic acid). Coffee is a major dietary source 

of chlorogenic acid in the diet with dietary intakes estimated at 0.5-1 g/day (Clifford, 

2000b). 

1.3.2.3 Stilbenes 

The stilbene family has a C6-C2-C6 structure and are known to be phytoalexins, a class 

of antibiotic compounds produced as a part of a plant's defense system against disease. 

Trans-resveratrol (trans-3,5,4'-trihydroxystilbene) is synthesised by condensation of 4- 
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coumaroyl CoA with three units of malonyl CoA, each of which donates two carbon 

atoms, in a reaction catalysed by stilbene synthase. Resveratrol exists as two isomers; 

cis and trans with trans-resveratrol-3-O-glucoside commonly found in various families 

of plant tissues such as eucalyptus, spruce, and lily. Grapes, peanuts and their products 

are considered the most important dietary sources of the resveratrol, with levels of 0.02- 

1.79 gg/g and 0.6-8 gg/mL reported in peanuts and red wine (Sanders et al., 2000). 

1.4 Dietary Sources & Levels of Intake 

Dietary intake values for phenolic and polyphenolic compounds is limited and 

often difficult to interpret largely due to the limited food composition data available. 
There are also large differences in the phenolic content of foods depending on variety, 

storage conditions, methods of preparation and degree of ripeness (Crozier et al., 1997). 

Differences in dietary habits and food preferences further complicate dietary intake 

estimations for example it is estimated that phenolic acids account for approximately 

one third of total phenol intake and flavonoids account for two thirds. Coffee is a major 
dietary source of chlorogenic acid and intakes have been estimated to be around 0.5-1 

g/day (Clifford, 2000b), therefore heavy coffee drinkers will likely consume more 

phenolic acids than flavonoids. Conversely, tea drinkers may have a much greater intake 

of flavonoids since the average flavonoid intake from tea alone in the UK has been 

estimated to be 430 mg/d. This is based on a population average consumption of 3.3 

cups of tea per day (Wiseman et al., 2001). In Japan, isoflavone intake is estimated to be 

around 30-40 mg/day (Kimira et al., 1998), considerably higher than those in western 

populations (Kirk et al., 1999). The bioavailability of certain flavonoids differs greatly 

depending on the food source. Hollman et al. (1997) reported that the absorption of 

quercetin from onions is four-fold greater than from apples or tea. The limited food 

composition data available to date do not take these factors into account and therefore 

their use may introduce significant measurement error in dietary studies. However, there 

is now an increasing number of comprehensive databases providing information on the 

flavonoid content for a wide range of foods/beverages in a range of populations 

including the USA (www. nal. usda. gov/fnic/foodcomp) and The Netherlands (Hollman 

& Arts, 2000). 
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1.4.1 Flavonols and Flavones 
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Kuhrau, (1976) estimated total flavonoid intake at over 1000 mg per day (expressed as 

glycosides) in the USA, consisting mainly of the flavonols, flavanones and flavones. 

However, the analytical methods used at the time were not standardised or specific and 

the validity of the data remains questionable. HPLC methods were developed and 

validated for the analysis of three major flavonols (quercetin, myricetin and 
kaempferol), and two flavones (apigenin and luteolin) in commonly consumed fruits, 

vegetables and beverages in The Netherlands (Hertog et al., 1992). The findings from 

this study were used to calculate the intake of flavonols and flavones in over 4000 free- 

living adults in the Dutch National Food Consumption Survey. The average intake of 
flavonols and flavones was estimated to be 23 mg/day, with quercetin contributing 16 

%; kaempferol, 3.9 mg/day; myricetin, 1.4 mg/day and flavones contributing only 7% 

(Hertog et al., 1993). In this population tea provided the major dietary source of 
flavonol intake (48 %), followed by onions (29 %) and apples (7 %). 

Consistent results have been reported in the USA with overall intake of flavonoids 

estimated at 20 mg/day (Rimm et al., 1996a), and in the UK total intake of flavonoids 

(quercetin, kaempferol, apigenin and luteolin) was estimated to be 30 mg/day, with 

quercetin contributing 64 % of the total intake (Wearne, 2000). In the Seven Countries 

Study Hertog et al. (1995) calculated flavonol intakes and reported that tea was the 

predominant source of quercetin in The Netherlands and Japan, and wine was the major 

source in Italy. Onions and apples contributed most in the US, Finland, Greece and 

former Yugoslavia. Similar findings have been reported by Sampson et al. (2002), 

whereby onions, tea and apples provided the major dietary sources of flavonoid intake 

in the USA. It is important to note that the reported dietary flavonoid intakes and food 

sources are largely based on the content of three flavonols (quercetin, myricetin and 

kaempferol) and two flavones (apigenin and luteolin) therefore total flavonoid intakes 

and content of foods can be assumed to be greater than those reported (Table 1.4). 
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1.4.2 Flavan-3-ols 

Information on the dietary intakes of total flavan-3-ols has been reported in a national 

survey of 6200 Dutch males and females aged 1-97 years (Arts et al., 2000a). Average 

intake was estimated to be 50 mg/day with tea providing a major dietary source in all 

age groups, followed by chocolate, apples and pears. Similar estimates have been 

reported in a previous study with levels of intake at 20-50 mg/day (Dragsted et al., 

1997). However, data on the dietary sources and levels of intakes of individual flavan-3- 

ols is less well documented. De Pascual-Teresa et al. (2000a) quantified individual 

flavan-3-ols in a range of foods and beverages, with chocolate, tea and red wine 

providing the major dietary sources. (-)-Epicatechin, (+)-catechin and procyanidin B2 

were the most abundant flavan-3-ols identified in these foods. Similar findings were 

documented by Carando and Teissedre, (1999) whereby catechins (as the sum of 

monomers, procyanidin dimers and trimers) were the most abundant in red wine (56 

mg/100 mL) and green tea (42 mg/100 mL). Ruidavets et al. (2000) created a catechin 

food composition table giving information on the total catechin average supplied by 100 

g of food. Green tea (169 mg); strawberries (56 mg); red wine (25 mg) and apricots (20 

mg) provided the richest food sources. The proanthocyanidin content of grape, apple, 

hawthorn, elderberry, chokeberry, sour cherry and blackcurrant has been reported to be 

between 0.3 and 0.9 g/kg (Wilska-Jeszka, 1996). 

1.5.3 Anthocyanins 

Anthocyanins are present in red fruits and berries as well as red wines and the intake of 

anthocyanins may exceed 200 mg/day (Kuhnau, 1979). The content in fruits varies 

considerably between 0.25 to 700 mg/100 g fresh weight, with some berries containing 

in excess of 100 mg per 100 g (McGhie et al., 2003). Blackcurrants contain delphinidin 

conjugates (1150-2500 mg/kg), raspberries and redcurrants contain cyanidin conjugates 

(100-600 mg/kg and 177 mg/kg respectively) and pelargonidin conjugates are found in 

strawberries (150-350 mg/kg) (Clifford, 2000a; Maatta et al., 2001). Levels in red wines 

have been reported to be around 12 mg/ 100 mL (Timberlake, 1998). 
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Table 1.4 Reported dietary sources and intakes of flavonols and flavones 

Country Dietary intake (mg/d) Main dietary sources 
Denmark 26 tea, onions, apples 
Finland 0-41 fruit, vegetables, apples, onions 
Greece 15 fruits and vegetables 
Italy 23-35 red wine, fruits and vegetables, soups 
Japan 17-68; green tea 
The Netherlands 23-33 tea, onions, apples 
United States 20 onions, black tea 
Adapted from Aherne & O'Brien, (2002). 

1.5 Epidemiology and Flavonoids 

1.5.1 Flavonoids and Cardiovascular disease 

Several epidemiological studies have investigated the association between 

flavonoid intake and CHD. Flavonoid consumption has been linked to a lower risk of 

heart disease in some, but not all, studies. In the Zutphen Elderly Study (Hertog et al., 

1993) the flavonoid (flavonol and flavone) intake of 805 Dutch men aged 65-84 years 

was assessed and a significant inverse association between dietary flavonoid intake and 

mortality from CHD was reported. An inverse but weaker association with the incidence 

of myocardial infarction was further reported. Those in the highest tertile of flavonoid 

intake had a risk of heart disease that was about 58 % lower than that of counterparts in 

the lowest tertile of intake. Those in the lowest tertile consumed 19 mg or less of 

flavonoids per day, whereas those in the highest tertile consumed approximately 30 mg 

per day or more. The 10-year follow up of the Zutphen Elderly Study reported a clear- 

dose response relationship between flavonol intake and CHD mortality (Hertog et al., 

1997). In a prospective study of 34,492 postmenopausal women in Iowa total flavonoid 

intake was associated with a decreased risk (RR=0.62) in the group with the highest 

flavonoid intake (Yochum et al., 1999). Mortality from CHD was weakly associated 

with flavonol and flavone intake in a Finnish population with those in the highest 

quartile of flavonoid intake having a risk of mortality that was about 27 % (for women) 

and 33 % (for men) lower than that of those in the lowest quartile (Knekt et al., 1996). 

In a recent study Knekt et al. (2002) examined the flavonoid intake of 10 054 men and 
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women and found that a high dietary intake of quercetin was associated with a reduced 

mortality from ischaemic heart disease. In contrast the protective effect of flavonoids 

could not be confirmed in other studies. For Welsh men, flavonol intake did not predict 

a lower rate of ischemic heart disease; on the contrary disease outcome was higher in all 

quartiles of high flavonol intake (Hertog et al., 1997). For U. S. male health 

professionals, data did not support a strong link between flavonol and flavone intake 

and mortality was found only in men with a previous history of CHD (nimm et al., 

1996a). In a recent prospective study Sesso et al. (2003) reported that flavonoid intake 

was not strongly associated with a reduced risk of CVD, and there was no evidence of 

any effect from individual flavonols or flavones. Similarly, there was no evidence for a 

protective effect from any food source although there was an inverse but non-significant 

association with broccoli, tea and apple consumption. A recent study by Arts et al. 

(2001) investigated the association of (+)-catechin intake and incidence of and mortality 

from ischemic heart disease and stroke using data from The Zutphen Elderly Study. 

While the authors concluded that catechin intake, mainly from tea, apples and 

chocolate, reduced the incidence of heart disease there was no association between 

catechin intake and stroke. 

1.5.2 Flavonoids and cancer 

Observational evidence for a protective effect of flavonoids against cancer remains 

contradictory. Analysis of the data from the Seven Countries Study failed to detect an 

association between intake of flavonoids (flavonols and flavones) and mortality from 

total cancer, lung cancer, stomach cancer and colon cancer (Hertog et al. 1995) or with 

the incidence of all-case cancer in the Zutphen Elderly Study (Hertog et al. 1994). 

Consistent findings were reported in a large cohort study of 120 850 Dutch men and 

women between intake of flavonols and flavones with stomach, lung or colon cancer 

(Goldbohm et al. 1995). Conversely, in a cohort study of nearly 10 000 Finnish men and 

women an inverse relationship was observed between dietary flavonol intake and the 

development of all-case cancer, particularly against lung cancer (Knekt el al., 1997). 

Similar findings were reported in a case-control study by Garcia-Closas et al. (1998), 

whereby the flavonols quercetin and kaempferol were found to be the most protective 

against the incidence of gastric cancer. In a recent case-control study Peterson et al. 
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(2003) reported an inverse relationship between consumption of vegetables and 

incidence of breast cancer. Moreover, they reported a highly significant inverse 

association of flavone intake with breast cancer, whereas this association became non 

significant with flavanones, flavan-3-ols, flavonols, anthocyanidins or isoflavones. 

1.6 Grape and wine phenolics 

Red wine is a product of the natural fermentation of grape juice/must and is 

produced from a variety of different grape cultivars including Cabernet Sauvignon, 

Merlot, Pinot Noir, Rondinella, Sangiovese, Grenache, Tempranillo and Carignan. The 

commercial production of wine is a long and rigorous process leading from the initial 

crushing or pressing of the grape to the final bottling of the finished wine. The methods 

used for red wine vinification are highly variable depending on the country, region, 

winery, winemaker and vintage. Generally, once the grapes are harvested they are de- 

stemmed and pressed and the juices (must) together with the crushed grapes are 

fermented for - 5-10 days at 25 °C. Phenolics contained within the skins, seeds and 

flesh of black grapes are extracted during the process of vinification and with prolonged 

extraction the fermented must can contain up to 40 % of the phenolics originally present 

in the grape. Once alcoholic fermentation is complete the solids are removed and the 

young wine is subjected to malolactic fermentation. This secondary fermentation 

process is responsible for the conversion of the strong malic acid found in wine to the 

weaker lactic acid. This softens the acidity of the wine and adds to its complexity and 

stability. The wine is then matured in stainless steel vats or in the case of higher quality 

wines in oak barrels for varying periods of time prior to filtration and bottling (Soleas et 

al., 1997). 

The production of white wine is slightly different from the processes used during the 

making of red wine. White wine is produced from both black and white grape varieties 

and is subject to limited maceration and slight juice oxidation prior to fermentation. 

Solids are removed and the clarified juice is fermented for 5 days at 16 °C. The resultant 

must which is low in phenolics, due to the gentle maceration of the grapes and the early 

removal of the seeds and skin, then undergo malolactic fermentation prior to maturation, 
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filtration and bottling. Red wines therefore contain large amounts of phenolic 

compounds derived from the skin, seeds and flesh of black grapes. Phenolics are of 

particular importance to the characteristics and the quality of red wine, influencing the 

appearance, taste, aroma, mouth-feel and anti-microbial properties (Soleas et al., 1997). 

1.6.1 Phenolic composition of red wine 

Red wine is a rich and concentrated source of phenolic compounds containing grape, 

yeast and even oak derived products (German and Walzem, 2000). However, the major 

compounds are grape derived; from the seeds, flesh and skins of black grapes 
(Singleton, 1982). Wines are extremely heterogenous in terms of their colour, flavour, 

appearance, taste and composition as a consequence of the differences in viticulture and 

vinification methods (Table 1.5). Vineyard factors such as grape variety, quality, and 
level of maturity, climate, geographical origin and disease pressure affect the phenolic 

compounds which accumulate in the grape. During vinification the length of skin 

contact, temperature and presence of seeds, vine stems and enzymes have all been 

reported to influence the extraction of phenolics into the fermenting juice (McDonald et 

al., 1998; Price et al., 1995; Kovac et al., 1992). The most common phenolics present in 

significant quantities include free and conjugated flavonols, hydroxycinnamates, gallic 

acid, ellagitannins, stilbenes, flavan-3-ols, free and polymeric anthocyanins (Fig. 1.4). 
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Table 1.5 Range of concentrations of phenolics in red wines 

Phenolics Range (mg/L) 

Total flavonols 5-55 

Total stilbenes 1-18 

Gallic acid 8-71 

Total hydroxycinnamates 66-124 

(+)-Catechin and (-)-epicatechin 8-60 

Free and polymeric anthocyanins 41-150 

Total phenolics 824-4059 

Adapted by Burns et al. (2000). 
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Figure 1.4 Structure of the major phenolics present in red wine 
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The major flavonols detected in grapes and wine are quercetin and myricetin, and to a 
lesser extent kaempferol and isorhamnetin. In black grapes flavonols are exclusively 
found in the skin predominantly as sugar conjugates which aids their solubility, 
transport and storage within the tissue. In contrast to grapes, up to 50 % of the flavonols 

in red wine can be found in the free form as a consequence of vinification which acts to 
liberate the aglycone. In grapes and wine they occur as 0- glucosides and glucuonides, 
typically bound to glucose or rhamnose (McDonald et al., 1998). 

1.6.1.2 Flavan-3-ols 

(+)-Catechin and (-)-epicatechin are located in the seeds of grapes, and to a lesser 

degree in the skins of black grapes. Lower levels of epigallocatechin (ECG), epicatechin 

gallate (ECG) and epigallocatechin gallate (EGCG) are found in grapes, which decrease 

further during ripening and wine maturation (Singleton, 1982). Polymerization of (+)- 

catechin and (-)-epicatechin and their gallate esters produce oligomers and polymers 

called proanthocyanidins (often referred to as procyanidins or condensed tannins), high 

molecular weight polymers of flavan-3-ol units linked by C-C bonds. 

Until recently the complete characterisation of procyanidins in grapes and wine was 
impossible due to the difficulty in analysing high molecular weight compounds and the 

lack of commercially available standards. Grape seed contains high amounts of 

procyanidins. Dimeric procyanidins are the simplest and most common in grapes, and 

they have 4-8 linked monomers. B 1, B2, B3 and B4 are the most common procyanidin 

dimers. These are followed by the less common 4-6 linked isomers such as B5, B6, B7 

and B8 (Sun et al., 1998). Young red wines contain (+)-catechin, (-)-epicatechin and 

oligomeric procyanidins composed mainly of soluble dimers, trimers and tetramers. 

However, during wine maturation the levels of these compounds decrease and there is a 

concomitant increase in higher oligomers which are less soluble (Haslam, 1998). 
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Anthocyanins are responsible for the red-purple tones of grapes and their corresponding 

wines. They are not found in white wine due to a synthetic blockage in the shikimate 

pathway and also due to the removal of the skins during the process of white wine 

making (Soleas et al., 1997). They are found exclusively in the skins of black grapes 

and are efficiently extracted into the wine during maceration. The term anthocyanidin 

refers to the aglycone structures such as malvidin. Anthocyanins may be acylated on the 

sugar moiety with aromatic and aliphatic acids. The 3-O-glucosides of malvidin, 

peonidin, petunidin, petunidin and delphinidin are the most abundant anthocyanins in V. 

Vinifera and red wines (Bums et al., 2000; Baldi et al., 1995). During storage and 

ageing of red wine anthocyanins react with procyanidins to produce complex pigments 

which may precipitate. This is evident by the colour change in a wine from the original 

sharp bright blue-red tone to red-orange giving the wine a deeper hue. 

1.6.1.4 Non-flavonoids 

The primary non-flavonoids in wines are derivatives of hydroxycinnamic and 

hydroxybenzoic acids, especially gallic acid and its ellagic acid dimer and stilbenes 

(Soleas et al., 1997). They are structurally simpler and are stored primarily in cell 

vacuoles of grape cells and are easily extracted on crushing. Gallic acid is present in the 

flesh of black and white grapes and their respective wines; however they found in much 

higher levels in red wines and may be 5-10-fold higher (Frankel et al., 1995). 

Substantial amounts of caffeic acid are converted to caftaric acid and lower levels of 

coutaric acid, fertaric acid also accumulate in the skin and flesh of black and white 

grapes. In wine the stilbene, trans-resveratrol (3,5,4 -trihydroxystilbene) is found in the 

free form and also as the conjugate trans-resveratrol-3-0-ß-glucoside (also known as 

polydatin or piceid). Piceid is known to play a role in disease resistance acting as a 

phytoalexin in grapes where is accumulates in the skin in response to fungal infection. 

The presence of the cis isomer of both free and conjugated resveratrol has also been 

reported in red wine. However, the levels of trans-resveratrol in red wine are found in 

much lower concentrations compared with other phenolics (Soleas et al., 1997). 
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Since ancient times wine has closely been associated with diet particularly in 

Mediterranean countries, and is thought to contribute to the good health of the 
Mediterranean population (Willett, 1994). The association between a moderate and 

regular consumption of red wine in the protection against CHD has been well publicised 
(Puddley & Croft, 1999) an association popularised as the "French paradox' (Renaud 

and de Logeril, 1992). The paradox describes the seemingly low mortality rates in 

certain populations of France despite high levels of associated risk factors; serum 

cholesterol, systolic blood pressure, dietary saturated fat intakes and prevalent smoking 

rates. Red wines do not contain significant amounts of vitamins or selenium however 

provides an especially abundant and palatable source of polyphenols and one 

explanation for this anomaly is that the Mediterranean diet typically found in France, 

along with the regular consumption of red wine offered a form of protection. 

1.7.1 The French paradox 

A high dietary intake of saturated fat is a well known risk factor for CHD (St. Leger et 

al., 1979). In most countries the level of dietary saturated fat is positively associated 

with mortality from CHD, however in some regions of France this relationship is less 

obvious (Renaud and de logeril, 1992). Evidence from the Monica program, one of the 

world's largest CHD surveillance systems, confirmed that death rates from CHD were 

much lower in France, particularly in Toulouse, than in any other industrialised country 

(WHO, 1989). In fact the incidence of CHD in France was found to be the lowest in a 

study of several countries, second to Japan where the intake of dietary saturated fat is 

exceptionally low (Criqui and Ringel, 1994). This finding is paradoxical since saturated 

fat intake in France represents 14-15 % of energy intake, higher than the recommended 

10 % of total energy. St. Leger et al. (1979) observed that among all countries France 

had the highest per capita intake of wine and the lowest rate of heart disease. This 

observation was further supported by data from the US that showed a negative 

correlation between death from acute myocardial infarction and wine consumption 

across all states (Werth, 1980). In a prospective study in men from Eastern France 

Renaud et al. (1998) observed that a moderate intake of alcohol, mostly in the form of 
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wine, was negatively associated with CHD mortality in those consuming two or more 
glasses of wine per day. Similarly, in a large-scale Danish prospective study intake of 
beer or spirits was not associated with a reduction in the risk of mortality from CHD, 
but rather a moderate consumption of red wine was most beneficial (Groenbaek et al., 
1995). It is well established that a moderate consumption of alcohol (-10-30 g/day) is 

associated with a reduced risk of CHD and overall total mortality (Rimm et al., 1991; 
Klatsky et al., 1992). Many studies have observed a U- or J-shaped correlation between 

alcohol consumption and risk of death from all cause mortality, with those consuming a 

moderate intake (1-2 drinks per day) having a lower incidence than abstainers and 
heavy drinkers (Marmont et al., 1981; Doll et al., 1994). The protective effect of 

alcohol has been shown to be independent of sex, age, ethnicity, smoking habits and 

physical activity (Kittner et al., 1983). However, red wine is thought to provide 

additional health benefits beyond those of alchol alone (Rosenberg et al., 1981; Rimm 

et al., 1996b). Polyphenols in red wine act as antioxidants and can reduce the free- 

radical mediated oxidation of LDL and the resulting atherogenicity (Furham et al., 
1995; Teissedre et al., 1996; Nigidkar et al., 1998), inhibit platelet aggregation (Pace- 

Asiak et al., 1995) and endothelium-dependent relaxation of blood vessels, mediated by 

the NO-cGMP pathway (Fitzpatrick et al., 1993). 

1.7.2 Red wine and HDL cholesterol 

The cardio-protective effects of alcohol have largely been attributed to its ability to raise 

the concentration of HDL cholesterol, a well defined negative risk factor for CHD 

(Gaziano et al., 1999). This lipoprotein is central to the removal of excess cholesterol 

from the peripheral cells to the liver for excretion via reverse cholesterol transport. 

Although there is conflicting evidence some studies have reported that red wine can 

increase the concentration of HDL cholesterol and apolipoprotein Al, an important anti- 

atherogenic factor. Lavy et al. (1994) reported a significant increase in plasma HDL 

cholesterol concentrations following the consumption of 400 mL of red wine in human 

subjects. These effects were not observed following the consumption of white wine. In a 

recent clinical trial the effects of red wine and alcohol alone were assessed for their 

ability to increase HDL cholesterol concentrations. Serum HDL cholesterol significantly 
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increased following alcohol and red wine intake, as well as raising apolipoprotein Al 

concentrations (Estruch, 2000). 

To determine the possible beneficial effects of alcohol and non-alcoholic components of 

red wine Senault et al. (2000) compared the effect of red wine, de-alcoholised red wine 

and alcohol consumption on HDL cholesterol concentrations in humans. De-alcoholised 

red wine had no effect while red wine increased the serum levels of HDL cholesterol 

and apolipoprotein Al. Alcohol also increased apolipoprotein Al, however total 

cholesterol and triacylglyercides, which are known to be atherogenic, were also raised 

with alcohol alone. The authors concluded that the increase in HDL cholesterol with red 

wine consumption may have been due to the antioxidant properties which may protect 
lipoproteins against the pro-oxidant effects of alcohol. 

1.7.3 Red wine and Platelet aggregation 

Platelets contribute to the development of CHD through a number of mechanisms 

including alterations in platelet function, coagulation and fibrinolysis, resulting in 

atherosclerotic plaques or plugs which ultimately result in thrombus formation and 

vessel occlusion. An inhibitory effect of alcohol on platelet aggregation was first 

reported by Haut et al. (1974), and since then a number of in vivo and in vitro studies 

have shown an inverse association between platelet aggregation and alcohol 

consumption. 

Hendriks et al. (1994) investigated the effect of moderate alcohol consumption on the 

fibrinolytic factors involved in clot formation. An increase in the level of tissue 

plasminogen activator (tPA), a clot dissolving enzyme, was observed. Other studies 

have shown that alcohol consumption inhibits thromboxane A2 production; a factor 

formed in platelets via the cyclo-oxygenase (COX) pathway and is a powerful pro- 

aggregatory agent favouring platelet aggregation (Seignuer et al., 1990; Pace Asciak et 

al., 1996). 

A number of animal studies have demonstrated the ability of grape and red wine derived 

phenolic compounds to inhibit platelet aggregation (Osman et al., 1998). Demrow et al. 

(1995) investigated the effect of red wine, white wine and grape juice on platelet 
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activity and thrombus formation in an in vivo dog model. Red wine and grape juice was 

effective anti-platelet and anti-thrombic compounds when administered intravenously 

(1.6 mg/mL, 13 % alcohol in 200 mL saline) and intragastrically (4 mL/kg) indicating 

that the active compounds are absorbed and transported to the bloodstream. 

Administration of white wine had no effect suggesting that specific compounds in grape 
juice and red wine containe anti-thrombotic and platelet inhibitors in addition to 

ethanol. 

There is evidence that specific phenolics exert anti-thrombotic properties in vitro. Russo 

et al. (2000) reported a significant anti-aggregatory effect with de-alcoholised red wine 
fraction rich in procyanidins, (+)-catechin and anthocyanins. No activity was associated 

with other phenolic constituents. Additional studies have shown trans-resveratrol to be a 

strong inhibitor of the COX pathway in reducing thromboxane A2 production (Pace- 

Asciak et al., 1995), and consumption of grape juice enriched with trans-resveratrol 

decreased thrombin induced platelet aggregation in human subjects (Pace-Asciak et al., 
1996). However, other studies have not shown the same effect following consumption 

of de-alcoholised red wine in human subjects (Lavy et al., 1994; Pellegrini et al., 1996; 

Rein et al., 2000). 

1.7.4 Red wine and Vasorelaxation 

The vascular endothelium forms a barrier between the vascular smooth muscle and the 

flow of blood and controls the contraction and relaxation of the vascular muscle by 

responding to vaso-active stimuli, blood flow and stress (Stoclet et al., 1997). The 

inability of blood vessels to contract and relax efficiently has been implicated in the 

development of atherosclerosis. 

A number of studies have investigated the vasodilatory activity of red wine, grape juice 

and grape skin extract (Fitzpatrick et al., 1993; 1995; Andriambelosen et al., 1998). In 

the presence of three red wines, pre-contracted rat aortic rings were relaxed by 86,89 

and 53 %, compared with 0 and 20 % for the two white wines analysed (Fitzpatrick et 

al., 1993). The skin extracts resulted in relaxations of 100 and 96 % for red and white 

grapes respectively. Red wine and grape juice exhibited endothelium-dependent 
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relaxation of blood vessels via enhanced generation and/or increased biological activity 

of NO leading to increased levels of cGMP. Ethanol at concentrations comparable to a 

typical wine showed no relaxation capacity. Diebolt et al. (2001) demonstrated a 

reduction in blood pressure in normal and hypertensive rats following the administration 

of red wine. While consumption of purple grape juice improved endothelium dependent 

flow mediated vasodilation in coronary artery patients with impaired endothelial 
function (Stein et al., 1999). 

The identification of the active compounds in grape skins and red wines remains under 

investigation. However, Andriambelosen et al. (1998) investigated the ability of wine 

fractions to relax pre-contracted aorta. Fractions containing oligomeric tannins and 

anthocyanins exhibited similar vasodilation activity as the original wine extract, 

however the anthocyanin containing fraction was more potent than the oligomeric 

tannin fraction. Similarly, a correlation between the anthocyanin content of red wines 

with vasodilation effect was reported by Burns et al. (2000). Further studies have shown 

that monomeric catechins and gallic acid have no effect on vasodilation, but 

anthocyanins and procyanidins enriched wine fractions were the most active. The 

threshold for relaxation by procyanidin oligomers was between 0.5 and 4 µg/mL 

(Fitzpatrick et al., 2000), with much higher concentrations > 0.1 mg/L required for 

anthocyanins (Andriambelosen et al., 1998). 

Besides NO, red wine has also been shown to have an effect on the formation of other 

mediators of vascular tone including prostacyclin (Derek et al., 1997). In addition the 

synthesis of a potent vasoconstrictor, endothelin-1 has recently been shown to be 

reduced by red wine in bovine aortic endothelial cells. The decreased synthesis of 

endothelin-1 was associated with the inhibition of tyrosine kinase family of 

phosphorylating enzymes. This effect was associated with the phenolic content of red 

wine (Corder et al., 2001). 

1.8 Role of oxidised LDL in atherosclerosis 

The exact chemical nature of the pathogenesis of atherosclerosis remains unknown 

however oxidative modification of LDL, a major cholesterol carrying lipoprotein in 
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human plasma, has been implicated as a key factor in its development (Steinberg et al., 
1989). Endothelial cell damage is the initial event leading to atherosclerosis and 
increases the permeability of the blood vessel allowing LDL to pass into the intima 
layer where they become internalised and begin to accumulate in the vessel cell wall 
(Fig. 1.5). At this stage LDL is oxidised through peroxidation by free radicals. The 

oxidatively modified LDL no longer binds to the native LDL receptor but to a scavenger 
receptor of macrophages (which bind toxic or foreign particles) and is accumulated 
internally. This leads to the production of cytokines which stimulate the indlux of 
monocytes into the intima leading to further uptake of oxidised LDL. The monocytes 
gradually become lipid laden and transform into foam cells. These cells build up leading 

to the formation of a fatty streak and to vascular occlusion Oxidised LDL have other 

attributes conductive to atheromatous changes including blocking of reverse cholesterol 
transport uptake by HDL and chemotactic properties promoting the adhesion of platelets 
to the superficial endothelium (Witzum, 1994). 

1.8.1 In vitro studies on the inhibition of LDL 

The inhibition of LDL oxidation by wines, grape juice and grapes have been 

demonstrated in vitro and have been attributed to their total phenolic content. Red and 

white wines have been reported to inhibit LDL oxidation in vitro (Frankel et al., 1993, 

1995; Kanner et al., 1994; Teissedre et al., 1996). An investigation of 20 Californian 

wines, standardised to 10 µM GAE found that red wines inhibited LDL oxidation by 

between 37 and 65 % compared with between 27 and 46 % with white wines (Frankel et 

al., 1995). The correlation between the antioxidant activity of the wines with LDL 

oxidation was further investigated. Gallic acid (r=0.92, p<0.001), (+)-catechin (r=0.76. 

p<0.001), myricetin (r=0.70, p<0.001) and quercetin (r=0.08, p<0.001) were all found 

to be highly correlated with the prevention of LDL oxidation. Moreover, Teissedre et al. 
(1996) demonstrated that a wine fraction containing (+)-catechin, (-)-epicatechin and 

procyandin dimers and trimers, specifically B2, B8 and C1, were the most active in 

inhibiting LDL oxidation by 70.6 % by determining hexane, a specific volatile oxidation 

product of n-6 PUFA lipids (Frankel et al., 1992). 
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In a recent study Serafini et al. (2000) failed to show any protective effects from white 

wine. In this study the ability of red wine, alcohol free red wine and white wine to 
inhibit LDL oxidation was investigated. The presence of a high concentration of red 
wine in the medium protected LDL from oxidation in a dose-dependent manner (0.3, 
0.5,0.7 µl) and was the most efficient in protecting against oxidation. The ability of 
grapes and grape juices to inhibit LDL oxidation has also been reported. Meyer et al. 
(1997) investigated the ability of V. Vinifera grapes to inhibit LDL oxidation. At a 

concentration of 10 pM GAE grapes were able to inhibit LDL oxidation by between 22 

and 60 %, compared with 62 and 91 % at concentrations of 20 pM GAE. The inhibition 

of oxidation by grapes was strongly correlated with levels of total phenols (r=0.89, 

p<0.01) and also with anthocyanins (r=0.56, p<0.05) and flavonols (r=0.56, p<0.05). 
Similar results were obtained by Frankel et al. (1998) whereby commercial grape juice 

(10 µM GAE) were able to inhibit LDL oxidation by between 62 and 75 %. 

1.8.2 In vivo studies on the inhibition of LDL 

Although in vitro studies have consistently shown that wine phenolics have significant 

abilities to inhibit LDL oxidation, ex vivo and in vivo studies have produced contrasting 

results to date. This suggests that there are other determining factors in vivo which may 
limit their ability to produce protective effects, for example nutrient interactions and gut 

microflora may limit the bioavailability of phenolics. Furhman et al. (1995) investigated 

the effect of red and white wine consumption on the susceptibility of LDL to oxidative 

modification in human subjects following the consumption of 400 mL/ day of wine for 

2 weeks. Red wine consumption decreased LDL lipid peroxidation in response to 

copper induced oxidation by 46 %, 72 % and 54 % as determined by TBARS, lipid 

peroxides and conjugated dienes. In contrast, white wine consumption resulted in an 

increase in the propensity of LDL to undergo oxidation. The pro-oxidant effect of white 

wine may be due to the combination of alcohol and the absence of protective 

polyphenols. 

The effect of alcohol was eliminated in a later study by de Rijke et al. (1996). In this 

study the alcohol content of red and white wine was reduced, however no effect on the 

oxidizability of LDL was observed after consumption of either red or white wine. It was 
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speculated that the removal of alcohol might have impeded the absorption of the 

phenolic compounds. Interactions between phenolics and other nutrients contained in 

beverages such as red wine can lead to the formation of insoluble complexes such as 

protein-tannin interactions that can affect the bioavailability. Reducing the alcohol 

content of wine has been shown to produce a linear increase in protein-tannin 
interactions and a decrease in the antioxidant capacity (Serafini et al., 1997). 

Nigdikar et al. (1998) investigated the effect of consuming different forms of 

polyphenols on the inhibition of LDL oxidation. Subjects consumed either red wine, a 

capsule of powdered red wine phenolics, the same extract dissolved in either white wine 

or an alcoholic drink, for two weeks. After this period the levels of phenolics in plasma 
increased by 38 % for red wine, and 27 and 28 % for white wine containing the extract, 

and the extract respectively. The lag time for copper-induced LDL oxidation increased 

by 17.8 min after red wine; 14.2 min after the capsule and 11.7 min after the white wine 

and the extract. The results from this study are in agreement with a previous study in 

which subjects consumed 400-500 mL red wine daily for 2 weeks (Kondo et al., 1994). 

Moreover, the effect of consuming a red grape juice concentrate on the oxidizability of 

LDL was demonstrated in a study by Day et al. (1997). 7 subjects consumed 125 mL of 

red grape juice concentrate for 7 days. An increase in the serum total antioxidant 

capacity from 441 to 478 µmol/L was observed 1h after consumption and LDL showed 

an increased resistance to oxidation by UV light. 

The protective effects of consuming red wine with a high fat meal was demonstrated in 

a recent study by Natella et al. (2001). Six subjects consumed a high fat meal with 

either 400 mL of red wine or an isocaloric hydroalcoholic solution. Following red wine 

consumption an increase in the antioxidant capacity of the plasma was observed and 

LDL obtained after the meal was more resistant to lipid peroxidation than fasting LDL. 

The findings from this study suggest that phenolic antioxidants in red wine protect LDL 

from the susceptibility of oxidative modification and might offer a plausible mechanism 

for the French paradox. 



Catherine Tsang, 2004 49 

o Antioxidants 
O Vitamin E 

Carotenolds 
Polyphenols LDL 

(transport) t (m 
Antioxidants 

MATRIX LDL (Proteoglycans) 
(retention) OOF 

(modifications) LOL Receptor 
, Jr I 

LDL 

Scavenger 

Monocyte 

ifferentiation) 
itiöxýdants 

(GSH) 
- 

Macrophage 
CE 

f5 

Foam Cell 

uc-sm 

SMC 

Figure 1.5 Macrophage-mediated oxidation and aggregation of LDL and foam cell 
formation. NADPH-Ox: NADPH oxidase; LPO: lipoxygenase; GSH: reduced 
glutathione; CE: cholesteryl ester; UC-SM: unesterified cholesterol-sphyngomyelin. 
Adapted from Avriam & Fuhrman, (1998). 
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1.9 Biomarkers of lipid peroxidation 
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Lipid peroxidation is a complex process resulting in a number of potential products 

which can be measured as indicators of free-radical mediated degradation of lipids. 

Therefore a wide range of markers can be used for their evaluation. Peroxidation of 

lipids can be assessed either by determination of the concentrations of primary 

peroxidation products or secondary degradation products in body fluids or on the 

susceptibility of lipids to oxidation induced ex vivo either by transition metals or by the 

generation of free radicals (Fig. 1.6). 

PUFA 

L" 

LOO- 

0 

0 
CD 

Figure 1.6 The products and pathways relating to lipid peroxidation. PUFA- 

polyunsaturated fatty acids; L--lipid radical; LOO"-peroxyl radical; LO"-alkoxyl radical; 
LOOH-lipid hydroperoxides; CD-conjugated dienes; MDA-malonaldehyde; HNE-4- 
hydroxynonenal. Adapted from Dotan et al. (2004). 
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1.9.1 TBARS 
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The TBARS method is the most common for determining plasma lipid peroxidation. 
Malonaldehyde (MDA) is generated as a degradation product from peroxidised lipids, 

and as a side product of enzymatic metabolism of thromboxanes and prostaglandins 
(McMillan et al., 1978), and is the major TBARS formed primarily by the 
decomposition of peroxides of fatty acids with 3 or more double bonds (Esterbauer et 

al., 1990). The basis of the TBA method is the reaction of MDA with TBA at low pH 

and high temperatures to form a coloured complex (MDA-TBA complex) which can be 

quantified based on intensity of fluorescence between 532-535 nm. A major 
disadvantage of this method is that it is non-specific and other compounds (other 

aldehydes, carbohydrates, amino acids, bile pigments) can react with TBA to form 

complexes. However, despite its limitations this method remains an accepted and 

widely used procedure (Draper et al., 1993). 

1.9.2 Conjugated dienes 

Conjugated diene structures with a double-single-double bond (-C=C-C=C-) 

arrangement absorb UV light in the wavelength range 230-235 nm, and therefore can be 

measured spectrophotometrically. Conjugated diene measurement is a successful 

method used to study peroxidation of isolated lipoprotein fractions and gives an 

estimate of the susceptibility of the lipoprotein to oxidation (Esterbauer et al., 1989) 

It is based on the continuous monitoring of the change in absorbance at 234 nm due to 

the formation of conjugated dienes in LDL which have been initiated by metal ions such 

as copper (Kleinveld et al., 1992) or AAPH. Two consecutive phases can be determined 

by the kinetic profile. The lag phase occurs from the initation of oxidation until 

conjugated dienes begin to accumulate. The length of the lag phase is directly 

proportional to the concentration of antioxidants. As the reaction proceeds antioxidants 

are consumed linearly with time and the rate completing reaction slows down. As a 

result, the propagation phase, the period during which conjugated dienes accumulate, 
increases until a maximum rate of the uninhibited autoxidation is reached for steady 

state conditions (Fig. 1.7). 
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Figure 1.7 Kinetic profile of conjugated diene formation 

1.9.3 Measurement of exhaled alkanes 
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Volatile hydrocarbons mainly ethane and pentane have been used and validated as a 

measure of lipid peroxidation in vitro and in vivo studies (Frank et al., 1980). n-3 PUFA 

oxidation has been shown to result in an increase in ethane excretion while n- 4,6 and 7 

PUFA oxidation yield increased excretion of propane, pentane and hexane. Significant 

background levels resulting from hydrocarbon contamination of inhaled air are a major 

limitation of this technique (Springfield et al., 1994). 

1.9.4 F2-Isoprostanes 

The discovery of the isoprostanes as products of lipid peroxidation has been a major 

advance in the ability to assess lipid peroxidation in vivo (Lawson et al., 1999). 

Isoprostanes are a complex family of compounds produced from arachidonic acid via a 

free-radical catalyzed mechanism. In vitro generation of auto-oxidation products 

derived from PUFA was described more than 30 years ago. However, the first 

demonstration that these compounds were produced in humans was shown by Morrow 

et al. (1990), whereby prostaglandin-F2-like compounds, termed F2-isoprostanes, were 

generated by free-radical-induced peroxidation of arachidonic acid. Quantification of 
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F2-isoprostanes is used as a reliable marker of lipid peroxidation in vivo (Roberts & 

Morrow, 2000), and several methods are currently used including GC-MS with 

negative-ion chemical ionization using a deuterium-labeled F2-isoprostane as an 
internal standard (Tsikas, 1998). These methods are highly sensitive and specific but 

their cost and technology limit their routine use. Several immunoassays have been 

developed to measure the levels of F2-isoprostanes including enzyme immunoassays 

(EIA) and radio immunoassays (RIA). One problem with these methods is cross- 

reactivity of related compounds to the antibodies, however most of the antibodies used 

commercially have been tested with other major isoprostanes and their metabolites and 

their degree of cross-reactivity is low (Basu et al., 1998). 8-iso-prostaglandin F2a (8-iso 

PGF2a) is one of the major F2 isoprostanes formed in vivo and have been shown to be 

present in increased amounts in human atherosclerotic lesions. Plasma, serum or urinary 
levels have been shown to be increased in subjects with hypercholesterolemia, liver 

cirrhosis and diabetes mellitus (Morrow et al., 1995) and in smokers (Reilly et al., 
1996). 

1.10 Absorption and metabolism of polyphenols 

The fate of ingested polyphenols in the digestive tract, including the absorption 

and metabolism, remains largely unknown. Research in this area has produced 

conflicting results; however current knowledge in this regard is briefly summarized 

below and illustrated in Fig. 1.8. 

Ingested polyphenols enter the digestive system primarily in the form of glycosides 

(although some aglycones may be present). The glycosides may then be de-conjugated 

by the action of non-specific ß-glucosidases, present in the food itself or on the surface 

of the muscosal cells (Aherne & O'Brien, 2002). Both aglycones and glycosides have 

been reported to be absorbed, however conjugates are more hydrophilic than the 

aglycones and the removal of the hydrophilic moiety appears to be important for the 

passive diffusion across the intestinal mucosa (Scalbert & Williamson, 2000). It has 

been suggested that the intestinal sodium glucose transporter might be involved in 

carrying phenolic glucosides through the intestinal cell wall. However, this has not been 

proven in vivo (Aherne & O'Brien, 2002). 



Catherine Tsang, 2004 54 

Polyphenols undergo extensive metabolism, mainly involving conjugation reactions 
including O-methylation and/or conjugation with glucuronides and/or sulphates, during 

their passage through the enterocytes (Kuhrau, 1976). Certain transporter proteins in the 

enterocytes may actively transfer the glycoisides back into the intestinal lumen. 

Absorbed polyphenols are bound to albumin and transported in the circulation to reach 

the liver via the portal vein (Manach et al., 1996). In the liver, they are metabolized or 

secreted into the bile (Aherne & O'Brien, 2002). Although the liver seems to be the 

main organ involved in the metabolism of polyphenols there is evidence of metabolism 

occurring in the intestinal mucosa and kidney. Administration of 2g of (+)-catechin in 

rats resulted in free catechin in the plasma after 30 min, while a low dose of 2 mg/kg 

resulted in the formation of conjugated metabolites. The results from this study suggest 

that the intestine is an important site for the metabolism of polyphenols, with the liver 

playing a secondary role to further modify the conjugated phenolic (Piskula et al., 

1998). 

Un-absorbed or re-excreted polyphenols reach the large intestine where they may 

undergo metabolism to more simple compounds by the colonic microflora and the 

degradation products (e. g. phenolic acids in the case of flavonoid metabolism) may be 

absorbed by passive diffusion. The polar, and therefore water soluble, polyphenol 

glucuronides and sulfate that escaped biliary excretion and enterohepatic circulation are 

eliminated from the body by urinary excretion 
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Dietary polyphenols 
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Figure 1.8 Possible routes for consumed polyphenols in humans. Adapted from 
Scalbert & Williamson, (2002). 
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1.10.1 Factors affecting bioavailability of phenolics 

The rate and extent of intestinal absorption and metabolism of phenolics are influenced 

by a number of factors including their chemical structure, molecular weight, 
glycosylation and esterification. 

1.10.1.1 Molecular weight 

High molecular weight compounds including tea theaflavins (M=568) and 

proanthocyanidins (M=577+) are unlikely to be absorbed in the GI tract (Donovan et al., 
2002; Lee et al., 1995). However, Deprez et al. (2001) reported that procyanidin dimers 

and trimers were absorbed through a cell monolayer derived from the human intestinal 

cell line Caco-2, and dimer B2 has been detected in human plasma following 

consumption of a flavan-3-ol rich cocoa (Holt et al., 2002). 

1.10.1.2 Glycosylation 

Certain classes of polyphenols (flavonols, isoflavones, flavones, anthocyanins) are 

usually glycosylated in plants and this influences their chemical, physical and biological 

properties. The partition co-efficients measure the relative affinity of a compound for 

aqueous and organic phases and are important in determining whether a compound will 

passively diffuse across a biological membrane and how they might partition in a cell. 

The flavonol quercetin has a partition co-efficient of 1.2 ± 0.1 however quercetin-3-O- 

rhamnoglucoside has a value that is considerably lower (0.37 + 0.1) showing greater 

hydrophilicity (Brown et al., 1998). 

1.10.1.3 Esterification 

Ester linked substitutions have marked effects on absorption and subsequent 

bioavailability. Hydroxycinnamates such as caffeic acid are commonly esterified to 

sugars, organic acids and lipids. It has been reported that caffeic acid is better absorbed 

than chlorogenic acid; it's ester with quinic acid. Olthof et al. (2001) reported 95 % of 

intestinal absorption for caffeic compared with only 35 % for chlorogenic acid in 
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ileostomy subjects. Similarly, in an isolated rat intestine model absorption of caffeic 

acid was higher (0.695 nmol) than its quinic ester (0.115 nmol) (Spencer et al., 1999). 

1.10.2 Absorption of flavonols 

There is now a considerable body of evidence supporting the view that the flavonol 

conjugates are preferentially absorbed, and that the nature of the conjuation may be 

important. Hollman et al. (1995) investigated the absorption of quercetin in ileostomy 

subjects following the consumption of an onion test meal or capsules containing 

quercetin or quercetin rutinoside. 52 % of quercetin glucosides, 24 % quercetin and 17 

% quercetin rutinoside were absorbed. Although the authors demonstrated the 

absorption of quercetin they emphasized the importance of glycosylation as a means of 

enhancing absorption and considered quercetin glucosides to be the predominant form 

of the flavonol in human plasma. 

Consistent findings were observed by Graefe et al. (2001), whereby quercetin 

glucuronides were found in the plasma of human subjects reaching a peak plasma 

concentration at 0.7 h after the ingestion of an onion supplement containing 100 mg of 

quercetin, and following the consumption of red wine (Crozier et al., 2000). It has been 

proposed that flavonol glucosides, such as quercetin-4'-glucoside could be absorbed 

intact into the small intestine using the sodium-dependent glucose transporter (SGLT1) 

(Hollman et al., 1995). However, studies with human intestinal Caco-2 cell monolayers 

have shown that quercetin-4'-glucoside and quercetin-3,4'-diglucoside were not 

absorbed despite the operation of SGLT1 which was demonstrated by the active 

transport of glucose (Walgen et al., 1998). 
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1.10.3 Absorption of flavan-3-ols 

Generally, flavan-3-ols are found in plasma methylated and/or conjugated to sulphate or 

glucuronic acid. Recent work by Okushio et al. (1999) reported that both the 0- 

methylated and glucuronidated conjugates were detected in rat urine following oral 

administration of (-)-epicatechin. Moreover, epicatechin-5-O-ß-glucuronide and 

catechin-5-O-ß-glucuronide have been detected in plasma, bile and urine of rats 
following oral administration of (-)-epicatechin and (+)-catechin respectively (Harada et 

al., 1999). 

In humans, 3-O-methylcatechin, sulphated and glucuronidated metabolites have been 

detected in plasma following consumption of either red wine or de-alcoholised red wine 

(Donovan et al., 1999). Maximum levels of 50-170 nmol/L of total (+)-catechin 

metabolites were detected 1h after consumption. Although free (+)-catechin and 3-0- 

methylcatechin were detected, they were comparatively lower than those of (+)-catechin 

sulphate and/or glucuronide conjugates. More recently, Bell et al. (2000) investigated 

the absorption of (+)-catechin in human subjects following the consumption of red 

wine. Free and conjugated forms attained peak plasma concentrations at 60 min with 7.9 

% of the administered dose being absorbed. 

Low urinary recoveries of (+)-catechin were reported by Golberg et al. (2003b). Twelve 

healthy volunteers were randomly assigned to consume 25 mg/kg of (+)-catechin in 3 

different matrices including white wine, grape juice and vegetable juice. Only 1.2-3 % 

of the dose of (+)-catechin administered was excreted in the urine over 24 h. To explain 

the low absorption of (+)-catechin the authors concluded that some re-absorption of (+)- 

catechin in the renal tubules might have occurred, and there is some evidence that (+)- 

catechin may be preferentially excreted in the bile (Das et al., 1971). Piskula & Terao 

(1998) proposed that the mechanism of flavan-3-ol metabolism involved 

glucuronidation in the small intestine as the first detoxification step followed by 0- 

methylation in the liver and kidney. Kuhnle et al. (2000) demonstrated in an isolated 

intestinal model that (-)-epicatechin and (+)-catechin are extensively 0-methylated 

during transfer across the jejunum. The major metabolites transferred across the 

intestinal epithelium of the jejunum are glucuronidated and 0-methylated metabolites of 
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the parent flavanol. Up to 30% of compounds detected in the jejunal serosal fluid were 
O-methylated and an additional 20% were O-methylated and glucuronidated. Current 

knowledge on the absorption and metabolism of the oligomeric and polymeric flavan-3- 

ols, or procyanidins in humans and animals is limited and contradictory. 

Nonetheless, dimer B2 has been detected in human plasma following ingestion of a 

cocoa supplement, with concentrations reaching a maximum of 41 nmol/L by 2h (Holt 

et al., 2002). Moreover, Baba et al. (2002) reported on a study with rats on the 

absorption of dimer B2.50mg/Kg of a cocoa powder was fed to rats and analysis by 

HPLC-MS confirmed the presence of B2 (0.5 µM), epicatechin (0.2 µM) and 3'-O- 

methyl-epicatechin (0.15 µM) 30 min post-ingestion of the cocoa in plasma. B2 (83 

nmol/L), epicatechin (free 12.5 nmol/L or conjugated 29.6 nmol/L) and 3'-O-methyl- 

epicatechin (free 12.8 nmol/L or conjugated 13.9 nmol/L) were also detected in the 

urine within 18 h. 

1.10.4 Absorption of anthocyanins 

One of the first studies to provide evidence for the uptake of anthocyanins in humans in 

vivo was reported by Paganga & Rice-Evans (1997). HPLC analysis confirmed the 

identification of anthocyanins in plasma in their glycosylated form. Following the 

consumption of 300 mL of red wine containing -218 mg of anthocyanins, 1.5-5.1 % of 

the anthocyanins were recovered in the urine within 12 h (Lapidot et al., 1998). Two of 

the identified compounds were unchanged, whereas other compounds appeared to have 

undergone molecular modifications. More recently, Miyazawa et al. (1999) investigated 

the absorption and metabolism of anthocyanins in human subjects following the 

ingestion of elderberry and black currant juice concentrates. Subjects ingested 2.7 mg of 

cyanidin-3-glucoside and 0.25 mg of cyanidin 2,5-diglycoside/kg of body weight. Only 

intact anthocyanins were detected in plasma. After 1h plasma levels of cyanidin-3- 

glucoside reached 13 µg/L with only trace levels of cyanidin-2,5-diglycoside detected. 

Anthocyanins have also been detected in plasma in very low concentrations 0.5-1 h after 

consumption, falling to near baseline levels within 6-8 h (Cao et al., 2001). 
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In a recent study, Wu et al. (2002) demonstrated that methylation of the 3'-hydroxyl 

group in addition to glucuronidation of anthocyanins is possible. Cyandin-3-O- 

glucoside and cyanidin-3-sambubioside were detected in the urine of elderly women 
following the ingestion of an elderberry extract. Four metabolites (peonidin-3- 

glucoside, peonidin-3-sambuboside, peonidin monoglucuronide and cyanidin-3-O- 

glucoside monoglucuronide) were further detected in the urine, however were present in 

much lower levels. Similarly, Felgines et al. (2003) reported the presence of 

pelargonidin glucuronides, a pelargonidin sulphate and the aglycone pelargonidin 
following the consumption of strawberries in human subjects. However, the levels of 

anthocyanins recovered are exceptionally low, with 0.1 %, or less, of the ingested dose 

being detected in the urine (McGhie et al., 2003). 

1.10.5 Absorption of non-flavonoids 

1.10. S. 1 Gallic acid 

The absorption and metabolism of gallic acid has been widely investigated in a number 

of animal studies (Booth et al., 1959; Glick et al., 1981; Murdiati et al., 1992). 

Conjugation, 4-0 methylation, decarboxylation and dehydroxylation reactions have 

been reported with 4-0-methylgallic acid, resorcinol glucuronide and 2-0 

methypyrogallol being the major urinary metabolites found in animals. Following the 

administration of 50 mg gallic acid in humans, 4-0-methylgallic acid and gallic acid 

were detected in the urine and plasma by HPLC-UV detection with recoveries for both 

reaching > 90 %. No further metabolites were detected in either plasma or urine despite 

a thorough search (Shahrzad and Bitsch, 1998). Similar findings were reported by Adu- 

Amsha Caccetta et al. (2000) whereby 4-0-methylgallic acid was detected in the urine 

following red wine consumption in human subjects. Additional metabolites have been 

identified in humans following prolonged consumption of black tea (Hodgson et al., 

2000), with 4-0-methylgallic acid, 3-0-methylgallic acid and 3,4-0-dimethylgallic acid 

being detected in urine. However, it is remains unknown whether these metabolites are 

derived from gallic acid alone, as there is some evidence to suggest that gallate esters 

may contribute, together with breakdown products of the flavonoids (Zhu et al., 1992). 



Catherine Tsang, 2004 

1.10.5.2 Hydroxycinnamates 
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Caffeic, p-coumaric and ferulic acid have been detected in human urine following a 
high intake of fruit (Bourne & Rice-Evans, 1998), and there is evidence that caffeic acid 
is absorbed in the small intestine (Olthof et al., 2001). Ferulic acid, isoferulic acid, 

caffeic acid and vanillic acid have been detected in urine after administration of Ig of 

caffeic acid (Jacobson et al., 1983). The mechanism of absorption of 
hydroxycinnamates remains uncertain although it is thought to involve the sodium 
dicarboxylate co-transporter (SDCT 1) (Clifford et al., 2000b). 

1.10.5.3 Trans-resveratrol 

Trans-resveratrol has been detected intact in plasma after the administration of red wine 

(Bertelli et al., 1996) and pure trans-resveratrol (Juan et al., 1999) to rats. Moreover, 

free, glucuronidated and sulphated conjugates of trans-resveratrol were detected in 

human plasma and urine following administration of 25 mg/kg, with 16-17 % of the 

dose excreted in the urine by 24 h (Goldberg et al., 2003b). Kuhnle et al. (2000) 

demonstrated the absorption and metabolism of trans-resveratrol using an isolated rat 

small intestine model. Trans-resveratrol was metabolised to its glucuronide conjugate. 

However, only small amounts of resveratrol were absorbed across the enterocytes of the 

jejunum and ileum unmetabolised. The major compound detected on the serosal side 

was the glucuronide conjugate of resveratrol (96.5 %±4.6 of the amount absorbed) 

indicating the susceptibility of resveratrol to glucuronidation during transfer across the 

rat jejunum. 

In summary, although there is some evidence indicating potential health benefits of 

dietary polyphenols, information concerning their bioavailability remains undetermined. 

This is largely due to a lack of data concerning flavonoid composition in food and the 

inconsistent use of current methodologies. The work presented in this thesis 

circumvents these problems by providing a quantitative analysis of grape and wine 
derived phenolics and their subsequent metabolites in biological samples. 
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Chapter 2 Materials and Methods 

2.1 Chemicals 
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(+)-Catechin, (-)-epicatechin and (-)-epicatechin-3-O-gallate were obtained from 

AABB Chemicals (Southampton, UK). Quercetin, gallic acid and epigallocatechin were 

obtained from Sigma (Poole, Dorset, UK). Malvidin-3-O-glucoside was purchased from 

Extrasynthase (Lyon, France). The grape seed extract used in this study was produced 
by Partoeno (Bordeaux, France). Standards of the procyandin dimers B 1, B2, B3 and B4 

were generously provided by Dr Pierre-Louis Teissedre from the Faculty of Pharmacy, 

University of Montpellier 1, France. These were obtained from a grape seed extract 

using procedures described by Teissedre et al. (1995). Methanol (HPLC grade), ethanol 

and acetonitrile (HPLC grade) were purchased from Rathburn Chemicals (Walkerburn, 

Peebleshire, UK). Formic acid, trifluoroacetic acid (TFA), citric acid, 1,1,3,3-tetra- 

ethoxypropane (TEP) and Folin-Ciocalteau's phenol reagent were supplied by Sigma. 

Disodium carbonate (Na2CO3), butylated hydroxytoluene; di-sodium hydrogen ortho- 

phosphate and sodium dihydrogen orthophosphate dihydrate were obtained from BDH 

Chemicals Ltd (Poole, UK). Concentrated hydrochloric acid, acetic acid (glacial), 

disodium hydrogen phosphate (Na2HPO4) and sodium hydroxide (NaOH) were obtained 

from Fisher Scientific (Loughborough, Leicestershire, UK). All other chemicals and 

reagents were obtained from Sigma-Aldrich (Poole, Dorset, UK) unless otherwise 

stated. 

2.2 Wines 

2.2.1 Details of bottled wines analysed 

All bottled wines were supplied by Safeway Stores plc. Details of origin and 

varietal composition are summarised in Table 2.1. Wines were selected to represent a 

variety of wines produced from various grape cultivars, geographical regions and those 

most commonly consumed. Aliquots of wine were removed from the bottle for analysis 

and the remaining wine stored under nitrogen and re-corked. Unless otherwise stated 

wine was untreated prior to analysis. 
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2.3 Colorimetric methods 

2.3.1 Determination of total phenolics 
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The method of Singleton and Rossi (1965) was used to determine the total phenolic 

content of wine. This method determines phenols and oxidized substances by producing 

a blue colour from reducing yellow heteropoly phosphomolibdate-tungstate anions. In 

brief, 200 µL of a 1: 5 dilution of sample was added to 10 mL of a 1: 10 diluted Folin and 
Ciocalteu reagent and 1.8 mL of distilled water. After 5 min 7.0 mL of a Na2CO3 

solution (115 g L-) was added and the reaction mixture was left at room temperature for 

2 h. The absorbance of the solution was read at 765 nm against water blank on a Cecil 

3000 series spectrophotometer (Cecil Instruments Ltd, Cambridge, UK). The optical 
density (O. D. ) was compared to a standard curve prepared with 50 to 500 mg"L gallic 

acid and results are expressed as gallic acid equivalents (GAE). 

Total phenolics in plasma were also estimated with Folin-Ciocalteu reagent using a 

modification of the method of Swain and Hillis (1959). This method avoids interference 

from proteins in biological samples (Serafini et al 1998). In brief, 500 µL of sample was 

added to 1 mL of 1.0 M HC1, and vigorously vortexed for 60 s. Following incubation at 

37°C for 60 min, 1.0 mL of a 2.0 mol/L NaOH in 75 % methanol was added, and the 

resulting mixture vortexed for 3 min. 1.0 mL of 10 % (v/v) phosphoric acid was added 

and the sample was centrifuged at 1500 xg 10 min. The supernatant was removed and 

kept on ice in the dark and the pellet was extracted again by adding 1.0 mL of a solution 

1: 1 (v/v) acetone: water and centrifuged for 10 min at 2700 x g. The two supernatants 

were combined and filtered through a 0.45 µm filter (Millipore, Tyne and Wear, UK), 

and 200 µL of sample were assayed for total phenolics with Folin-Ciocalteau as 

described above and expressed as µM GAE. 

2.3.2 Colorimetric analysis of anthocyanins 

The anthocyanin content of red wines was estimated using a pH shift method adapted 

from Ribereau-Gayon and Stonestreet (1965). Two test tubes were set up each 

containing 140 µL of wine and 140 µL 0.1 % concentrated HCl in 95 % ethanol. 1.5 mL 

of 2% concentrated HCl (pH 0.6) was added to one tube and 1.5 mL of pH 3.5 buffer 
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(300 mL 0.2 M Na2HPO4 and 700 mL 0.1M citric acid, adjusted to pH 3.5 with 0.1 M 

citric acid) to the other. Absorbance was read at 700 nm to allow for the correction of 
haze and then at 520 nm for anthocyanin determination. Anthocyanins were quantified 

as malvidin-3-glucoside equivalents, the major anthocyanin in red wine, using the 

extinction co-efficient 28000. At < pH 1 anthocyanins are found entirely in their red 
flavylium form allowing determination of the total anthocyanins. At pH 3.5 the 
flavylium form of the anthocyanin is primarily in equilibrium with the colourless 

carbinol, therefore absorbance is due to polymeric anthocyanins or interfering brown 

substances. The difference in absorbance between pH <1 and pH 3.5 is due to the free 

anthocyanin content. 

2.3.3 Determination of total catechins 

Total catechins were determined in wine fractions spectrophotometrically with 4- 

dimethylaminocinnamaldehyde (DMACA) as described by Kivitis et al. (1997). 

Samples were diluted 10-fold with 12.5 % ethanol prior to the addition of 3 mL of 6 

mM DMACA (dimethylaminocinnamaldehyde) in a methanol/perchloric acid/water mix 
(8: 1: 1, v/v). A scan of absorbance between 500 nm and 750 nm was determined 6 min 

after the initiation of the reaction. Peak area was related to a standard curve obtained 

with (+)-catechin standard. Due to the interference from anthocyanins, the 604-684 nm 

region of the scan was used for catechin quantification. 
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Table 2.1 Details of red wines analysed for total phenolic content and antioxidant 
capacity. 

Wine Year Origin Grape variety 

1. Claret non-vintage 
2. Beaune 
3. Beaujolais 
4. Cotes du Rhone 
5. Vin de pays de L'Ardeche 
6. Etienne Barret Crozes 
Hermitage 
7. Minervois 
8. Corbieres 
9. Chianti Classico 
10. Valpolicella 
11. Aged in Oak Valdepenas 
Reserva 
12. Castillo de Sierra Rioja 
13. Young Vatted Tempranillo 
14. Bairrada 
15. Young Vatted Merlot 
16. Vin de Pays L'Ardeche Rose 
17. Australian Red 
18. Australian Oaked Cabernet 
Sauvignon 
19. Young Vatted Pinotage 
20. Cinsault 
21. Cabernet Sauvignon 
22. Caballo de Plata 
23. Cabernet Sauvignon 
24. Argentinian Shiraz 
25. Inti Malbec 
26. Chilean Dry Red 
27. Chilean Cabernet Merlot 

28. Chilean Cabernet Sauvignon 
29. Granverano Carmenere 
30. Pinot Noir Estancia 
31. Young Vatted Cabernet 

2000 Bordeaux, France Cabernet Sauvignon 
2000 France Pinot Noir 
2001 Beaujolais, France Gamy 
2001 Rhone, France Carignon, Cinsault 
2000 Ardeche, France Syrah, Grenache 
2001 France Syrah 

2000 Aude, France Carignon 
2001 France Corbieres 
1999 Tuscany, Italy Chianti 
2000 Veneto, Italy Valpolicella 
1996 Valdepenas, Spain Cencibel 

1998 Rioja, Spain Rioja 
2000 Spain Tempranillo 
1999 Portugal unknown 
2001 Bulgaria Merlot 
2001 Ardeche, France Grenache, Syrah 
2001 Australia Cabernet Sauvignon 
2000 Australia Cabernet Sauvignon 

2000 South Africa Pinotage 
2001 South Africa Cinsault 
2000 South Africa Cabernet Sauvignon 
2000 Argentina Bonarda-Barbera 
2001 Argentina Cabernet Sauvignon 
2001 Argentina Shiraz 
2001 Argentina Malbec 
2001 Chile Cabernet Sauvignon 
2001 Chile Cabernet Sauvignon, 

Merlot 
2001 Chile Cabernet Sauvignon 
2001 Chile Carmanere 
2000 California Pinot Noir 
2000 Bulgaria Cabernet Sauvignon 

Sauvignon 
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2.3.4 Determination of the antioxidant power using ferric reducing 
ability of plasma 

The FRAP assay described by Benzie and Strain (1996) was used to estimate the 

antioxidant power of wine samples. This method measures the ability of a solution to 

reduce a ferric-2,4,6-tri-2-pyridyl-s-triazine (TPTZ) complex (Fe3+ TPTZ) to the ferrous 

form Fee+, producing an intense blue colour with absorption at 593 nm. The reaction is 

non-specific and any half life reaction, which has a less positive redox potential, under 

reaction conditions, than the Fei+/ Fee+-TPTZ half-life reaction will drive the Fei+- 

TPTZ reduction. In the FRAP assay excess Fe3+ is used and the rate limiting factor of 
the Fee+-TPTZ, and hence the colour formation, is the reducing ability of the sample. 
The absorbance at 593 nm was measured 4 min after the addition of the FRAP reagent 
(acetate buffer, pH 3.6; FeCl3, TPTZ in 40 mM HCl) to the reaction mixture (0.025 % 

solution). The absorbance change of the aliquot diluted 1: 40 in distilled water was due 

to the combined reductive activity of all the reacting antioxidants present within the 

sample. Optical density was compared to a standard curve prepared with 0-1.0 mM 
ferrous sulphate (FeSO4) and results are expressed as the mean concentration of Fe 
2+ produced / mM. 

2.3.5 ABTS+ determination of antioxidants 

The antioxidant capacity of rat plasma was measured at the Unit of Nutrition, 

University of Montpellier II, France using a commercial kit (Randox Laboratories Ltd, 

Crumlin, UK). This method measures the ability of ABTS (2,2V-azino-di-(3- 

ethylbenzothiazoline sulfonate) to produce the radical cation ABTS+ when incubated 

with peroxidase and hydrogen peroxide, producing a relatively stable blue-green color 

with absorption at 600 nm. Antioxidants present in plasma suppress the production of 

ABTS+ to a degree proportional to their concentration. Trolox (1 mmol/L) was used as a 

standard and the plasma antioxidant power is expressed as Trolox equivalents (Miller et 

al., 1993). 
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2.3.6 Protein estimation 
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An estimation of the protein concentration of dialysed LDL was carried out according to 

the method of Markwell et al. (1981). To each tube, 100 µL of a 1: 10 dilution of LDL, 
300 µL of distilled water and 2 mL of Biruet's reagent (100 mL Na2CO3 in 0.1 M 
NaOH; 1: 1 ratio of Folin-Ciocalteau reagent; 1 mL NaK tartrate; 1 mL CuSO4; 1 mL 
SDS [sodium dodecyl sulfate]) was added. Samples were mixed and left to stand at 

room temperature for 10 min. Two hundred µL of Folin-Ciocalteau reagent was added 
to each tube, vortexed and left to stand at room temperature for 30 min. A standard 

curve was prepared with 0 to 50 µg L bovine serum albumin and samples were adjusted 
to a protein concentration of 50 µg LDL protein/mL and 1 µM EDTA in quartz cuvettes 

and the optical density was read at 750 nm. 

2.3.7 Thiobarbituric reactive substances 

Malondialdehyde is one of many aldehyde compounds produced by lipid peroxidation, 

and is the most commonly measured index of oxidative stress in human studies. A 

commonly used method for the assessment of oxidative stress is the TBARS assay, 

which aims to quantify the amount of malondialdehyde (MDA) formed as a result of 
lipid peroxidation. This assay involves reacting samples with 2-thiobarbituric acid 
(TBA) under high temperatures (90-100°C) and acidic conditions. TBA reacts with 

malondialdehyde to produce a stable adduct that can be quantified 

spectrophotometrically. LDL that was oxidised for measurement of conjugated dienes 

was subsequently used for the measurement of TBARS (Buege & Aust, 1978). 

Following 3h oxidation, the reaction was stopped by addition of 200 µM EDTA and 40 

µM butylated hydroxytoluene (BHT) and the samples were stored at 4°C for a 

maximum of 7 d. TBARS were determined by adding 1 mL TCA-TBA-HCL reagent (15 

% trichloroacetic acid: 0.375 % thiobarbituric acid: 25 mol HCL) to a 0.8 ml aliquot of 

the LDL solution (oxidised as above), mixing the sample, and heating it in boiling water 

at 100 °C for 15 min. After placing the tubes in a bath of cold water for 5 min samples 

were centrifuged at 2000 rpm for 10 min and absorbance was measured at 535 nm. 

Quantification of TBARS was performed by comparison with a standard curve of 

malonaldehyde equivalents generated by acid catalysed hydrolysis of 1,1,3,3 -tetra- 

ethyoxypropane (TEP). 
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2.4 Spectral assays 

2.4.1 Electron spin resonance 
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The ability of phenolics to reduce free radicals in the aqueous phase was 

estimated by electron spin resonance spectroscopy (ESR) as described by Gardner et al. 
(1998). This method is based on the ability of antioxidants in a sample to donate a 
hydrogen atom or electron to the synthetic free radical potassium nitro-disulphonate 
(Fremy's salt). A 300 µL aliquot of plasma was added to 2.7 mL phosphate buffered 

saline (PBS) and mixed with an equal volume of 50 µM of Fremy's radical in 

ethanol/water (12: 88, v/v). After 20 min following completion of the reaction the ESR 

spectra of the low field resonance of the Fremy's radical was obtained. Signal intensity 

was obtained by double integration and the concentration was calculated by comparison 

with a control reaction using ethanol/water (12: 88, v/v) without sample. Spectra were 

obtained at 21°C on a Bruker ECS 106 spectrophotometer equipped with a TM110 

mode cavity operating at 9.5 GHz (x-band frequency). The microwave power and 

modulation amplitude was set at 2 mW and 0.01 mT. 

2.4.2 Conjugated dienes assay 

LDL was isolated from plasma by density gradient ultra-centrifugation at 35,000 rpm 
for 15 h at 15°C according to the method of Griffin et al. (1990). The LDL fraction was 

removed and samples were dialysed at 4°C against 40 L of PBS containing 10 µM Nat 

EDTA (pH 7.4) for 42 h while shaking gently in a microdialysis unit (GibcoBRL, Life 

Technologies Ltd, Paisley, UK). The protein concentration of dialysed LDL was 

adjusted to a concentration of 50 µg LDL protein/mL and 1 µM EDTA in quartz 

cuvettes. Oxidation of LDL was initiated by addition of CuSO4 (10 µL, 3.75 mM) added 

to 2.5 mL of LDL solution (50 µg protein/mL) to give a final concentration of 15 µM 

CuS04 (Kleinveld et al., 1992). Absorbance was measured at 234 nm, every 2 min at 

30°C. Maximal oxidation rate (nmol/mg LDL protein/min), maximal diene 

concentration (nmol/mg LDL protein) and lag phase (min) were estimated using exact 

co-ordinates provided by the kinetics software application (Beckman DU 600). 
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2.5 High performance liquid chromatography analyses 

2.5.1 Measurement of carotenoids, retinol & tocopherols 

The levels of six carotenoids (lutein/zeaxanthin, ß-cryptoxanthin, all trans- 
lycopene, a-carotene and all trans 0-carotene), retinol and a- and y-tocopherol were 

measured in plasma by reversed phase HPLC with UV and fluorimetric detection 

according to the method of Hess et al. (1991). Two hundred µL plasma was added to 

200 µL water and 400 µL ethanol and mixed for 10 s. To this 700 µL hexane and 100 

µL echinone were added, mixed and centrifuged for 5 min. The hexane layer was 

reduced to dryness and dissolved in 200 µL of 1,4 dioxan; ethanol: acetonitrile (1: 1: 3, 

v/v). After shaking for 5-10 min, 150 µL of sample was injected onto a5 µm 
Ultrasphere ODS, 25 cm x 4.6 mm (i. d. ) column (Beckman Instruments Ltd, High 

Wycombe, Bucks, UK) and eluted at a flow rate of 1.3 mL/min. The detector 

wavelengths were changed during the run as follows: absorbance: 0-11.5 min at 450 

nm; 11.6-18.0 min at 470 nm and 18.0-30 min at 450 nm. For fluorescence detection: 0- 

5.5 min at 330/470 nm (excitation/emission); 5.6-20.0 min at 298/328 nm and 20.1-30 

min at 349/480 nm. The elution order and retention times of the compounds were as 

follows: retinol (tR = 2.7 min); ß-cyrptoxanthin (tR= 6.0 min); y-tocopherol (tR= 6.4 

min); a-tocopherol (tR = 7.2 min); lycopene (tR = 8.9 min); a-carotene (tR = 14.9 min); 0- 

carotene (tR = 15.8 min) and lutein/zeaxanthan (tR = 16.8 min). The HPLC system 

comprised of a Waters 470 scanning fluorescence detector, a 600E system controller 

and a 486 tuneable absorbance detector (Waters Chromatography, Millford, MA, USA). 

The system was run using Millenium version 2.1 software. Extraction efficiency was 

determined by use of an echinone internal standard and quantified by reference to five 

point calibration curves. 

2.5.2 Determination of ascorbic acid 

Ascorbic acid (tR = 5.3 min) was determined from 0.6 mL plasma and measured by ion- 

pair reversed phase HPLC with UV detection (Ross, 1994). After vortex mixing for 5 

min samples were centrifuged (9000 x g, 4°C, 10 min) and the clear supernatant was 

injected onto a5 µm Nucleosil ODS, 25 cm x 4.6 mm (i. d. ) column (Jones 



Catherine Tsang, 2004 71 

Chromatography, Henygoed, Mid Glamorgan, UK) with a Supelco C 18 guard cartridge 
(Anachem, Beds, UK) at a flow rate of 0.6 mL/min monitored at 263 nm. The HPLC 

system comprised of two Gilson 305 pumps and a 20 µL loop volume automated 

sampler module connected to a Gilson 116 UV detector (Anachem, Beds, UK). The 

mobile phase comprised 25 mM myristyltrimethyl ammonium bromide, 0.05 M sodium 
hydroxide, 0.06 M acetic acid and 7.5 % acetonitrile adjusted to pH 5.5. Peak 
identification and purity was confirmed using ascorbate oxidase. 

2.5.3 On-line analysis of antioxidants: ABTS+ decolourisation assay 

The antioxidant activity of wine was determined using the ABTS+ on-line 
decolourisation assay based on the methods of Dapkevicius et al. (2001) and Koleva et 

al. (2001). On-line assessment allows complex mixtures to be separated by HPLC and 
the antioxidant contribution of individual components can be evaluated. The 

instrumental set-up is illustrated in Figure 2.1. A2 mM ABTS+ stock solution 

containing 3.5 mM potassium persulfate was prepared and incubated at room 

temperature in darkness overnight. ABTS+ reagent was preparted by diluting the stock 

solution 8-fold in phosphate buffer at pH 8. Twenty µL of a 1: 5 dilution of wine was 
injected into a HPLC system comprising a LC pump, a PDA detector and a UV-VIS 

detector (Surveyor HPLC, Thermo Finnigan). Separation was carried out using a 250 x 
4.6 mm i. d. 4 µm Synergi RP-Max column (Phenomenex, Macclesfield, UK) 

maintained at 40°C and eluted at a flow rate of 1 mL/min with a 60 min gradient at 4-25 

% acetonitrile and 0.1 % formic acid. Following separation of the compounds, the 

eluent was mixed with the ABTS+ reagent at a flow rate of 0.5 mL/min supplied by a 

Shimadzu LC-10 AP VP liquid chromatography pump. A Shimadzu GT-1543 vaccum 

degasser was used to remove any oxygen in the reagent prior to mixing. After mixing 

through a3mx0.25 mm i. d. loop, the absorbance was measured by a UV detector at 

720 nm (Nemphlar Bioscience, Lanark, UK). Data were analysed using Thermofinnigan 

ChromquestTM software version 4.0. 
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Figure 2.1 Instrument set-up for the HPLC analysis of radical scavenging 
compounds using an on-line reaction with ABTS+. 

2.5.4 Plasma homocysteine concentrations 

Homocysteine concentrations were measured in plasma using a DS30 homocysteine 

assay kit and a DS30 analyser (Drew Scientific Ltd, Barrow-in-Furness, Cumbria, UK) 

according to the method of Duthie et al. (2002). Following addition of internal standard 

(2-mercaptoethylamine) the disulphide bonds in the sample are reduced using tris (2- 

carboxyethyl) phosphine hydrochloride. Protein is precipitated from the solution and the 

thiol groups in the supernatant are derivitised with a fluorescent specific dye. The 

derivatives are separated and detected by their fluorescence (kexcitation = 385 nm, Remission 

= 515 nm). Quantitative evaluation of the homocysteine concentration was achieved by 

comparison with a two-point calibration. 
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2.5.5 Preparative HPLC fractionation of wine 
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A Chilean Cabernet Sauvignon (wine 28) was fractionated using preparative HPLC as 
described previously by Mullen et al. (2002a). 

2.5.5.1 Sample preparation 

Alcohol was removed from 100 mL wine by rotary evaporation. The de-alcoholised 

wine was then loaded onto a 160.0 x 44 mm i. d. column packed with Diaion® Ion 

Exhange resin (Supelco, PA, USA). The column was washed with 10% methanol in 

0.1 % aqueous TFA which removed the sugars, after which the retained phenolics were 

eluted with four column volumes of methanol. The methanol was removed by rotary 

evaporation in vacuo and the residue resuspended in 5% ACN in 0.5 % TFA, to a final 

volume of 100 mL. 

2.5.5.2 Fractionation of wine 

Wine was analysed using a preparative HPLC system. The system comprised a Hewlett 

Packard 85B gradient controller (CA, USA), two LC-1OA pumps (Anachem, Luton, 

UK), a CTO-6A column oven set at 40°C, Rheodyne preparative injector model 3725 

with a 10 mL injection loop (HPLC technology, Herts, UK), a 150 x 20 mm i. d., 5 µm 

ODS-H optimal® column (Capital HPLC, Broxburn, UK) and linked to a Dynamax UV 

absorbance detector monitoring at k 520 nm and 371 nm (Rainin Instrument Co. Inc., 

MA, USA). Fractions were collected using a Gilson FC 203 fraction collector (WI, 

USA). Data was collected and processed via a Reeve Analytical (Glasgow, UK) 2700 

data handling system. Ten mL of wine 28 was analysed using a 40 min gradient of 5 to 

30 % ACN in 0.5 % TFA (with a5 min hold at 30 %) eluted at a flow rate of 10 

mL/min. Sixty fractions were collected 3 minutes after the injection of the wine 

collecting 7.5 mL/min of eluent. 
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2.6 HPLC-tandem mass spectrometry analysis 
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HPLC-tandem mass spectrometry (MS-MS) was the major analytical device 

used for the identification of phenolic compounds in wine and biological samples. 
Samples were analysed on a Surveyor HPLC system comprising a HPLC pump, diode 

array absorbance detector, scanning from 250 to 700 nm and an autosampler, cooled to 
4°C (Thermo Finnigan, San Jose, USA). Separation was carried out using a 250 x 4.6 

mm i. d. 4 µm Synergi RP-Max column (Phenomenex, Macclesfield, UK) eluted at a 
flow rate of 1 mL/min, with the column oven maintained at 40°C. After passing through 

the flow cell of the diode array detector the column eluate was split and 0.3 mL was 
directed to a LCQ Deca XP ion trap mass spectrometer fitted with an electrospray 
interface as illustrated in Figure 2.2 (Thermo Finnigan, San Jose, USA). Analysis was 

carried out using both negative and positive ion mode for the detection of phenolic 

compounds in wine and biological samples. 

Various gradients and conditions were used to detect phenolic compounds in wine and 
biological samples (Table 2.2). Full scan mode was used for the accurate determination 

of the parent ion and data-dependant MS2 mode used to obtain fragmentation data. In 

this analysis the spectrum of ions is first scanned from m/z (mass to charge ratio) 100 to 

2000 amu. The most significant ion in the scan is then collected in the ion trap, 

fragmented and the spectrum of the fragments recorded. The mass spectral information 

was used to identify the compounds. The m/z ratio of the molecular ion and the 

fragmentation pattern from these give unique fingerprints for each compound. Selective 

reaction monitoring was used where compounds could not be identified using the full 

scan mode. Selective reaction monitoring mode provides an extremely selective method 

for detecting target compounds. During chromatography the SRM mode removes all 

signals except from the characteristic process, MS 1 is set to transmit a precursor ion that 

is specific to the target compound and MS2 is set to transmit a product ion of that 

precursor. 
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Figure 2.2 LCQ DECA XP ion trap mass specvtrometer 

75 

Table 2.2 Gradient conditions and MS techniques used for the analysis of wine 
and biological fluids. 
Sample Gradient Ion mode Inj. Vol. SRM 

(mL) 

wine 5-40 % acetonitrile in 1% formic +/- 100 no 
acid over 60 minutes 

wine fractions 4-25 % acetonitrile in 1% formic +1- 100 no 
acid over 60 minutes 

plasma 5 to 40 % acetonitrile in 0.1 %- 100 yes 
formic acid over 60 minutes 

urine 5 to 20 % acetonitrile in 0.1% - 100 yes 
formic acid over 60 minutes 

rat tissues 5 to 40 % acetonitrile in 0.1% - 100 yes 
formic acid over 60 minutes 

+: positive ion, -: negative ion, SRM: selective reaction monitoring 
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2.7 Analysis of phenolics in biological tissue 

2.7.1 Extraction of phenolics from plasma 

76 

Proteins in plasma were precipitated according to a modified method of Day et 

al. (2002). In brief 1.5 mL of acetonitrile was added to 0.5 mL plasma. Samples were 

vortexed for 30 s every 2 min over a 10 min period, before centrifugation at 4000 rpm 
for 20 min. The supernatant was removed and the pellet was further extracted with 1.5 

mL methanol and the process was repeated as described above. The two supernatants 

were mixed and dried in a centrifugal vaccum concentrator at 38°C and resuspended in 

500 µL of 10 % methanol in 1% aqueous formic acid. The sample was centrifuged at 
25000 g for 10 min and analysed by HPLC-MS-MS. 

2.7.2 Extraction of phenolics from rat tissues 

Liver, kidney, brain, stomach, duodenum/jejunum, ileum, caecum, colon and faeces 

were extracted according to the method of Mullen et al. (2002b). In brief 4g of liver, 

kidney and brain, and 2.5 g of gastrointestinal tract organs were extracted by continuous 

shaking with 15 mL of 50 % methanol in 50 % 0.1 M phosphate buffer (pH 7) 

containing 20 mM sodium diethyldithiocarbamate. After 30 min, the mixture was 

centrifuged at 4000 rpm for 20 min. The methanolic supernatant was decanted and the 

pellet re-extracted a further two times. The three methanolic supernatants were 

combined and the methanol was removed in vacuo. The remaining aqueous phase was 

adjusted to pH 3.0 and partitioned three times with an equal volume of ethyl acetate. 

The ethyl acetate extracts were combined and reduced to dryness in vacuo prior to 

HPLC-MS analysis. Residual ethyl acetate was removed from the aqueous phase prior 

to loading onto a pre-conditioned 2g Sep-Pak C18 cartridge. Methanol was used to 

remove polar compounds, and the extract was dried in vacuo and subsequently analysed 

by HPLC-MS-MS. 
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2.8 Measurement of fasting plasma lipids 
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Fasting plasma lipids including total cholesterol, high-density lipoprotein (HDL) 

cholesterol, LDL cholesterol and triacylglycerol (TAG) concentrations were determined 

by the Routine Lipids Laboratory, Department of Pathological Biochemistry, Glasgow 

Royal Infirmary using an automated Hitatchi 197 multichannel analyser (Roche 

Diagnostics, Lewes, East Sussex, UK). Total cholesterol and TAG concentrations were 
determined using enzymatic in vitro colorimetric assays. HDL cholesterol 

concentrations were determined using an enzymatic in vitro colorimetric assay after 

precipitation of apo-B containing lipoproteins with heparin/0.092 M MnC12 and LDL 

cholesterol concentrations were calculated using the Friedewald formula (Friedewald et 

al., 1972). 

2.9 Statistics 

Data are presented as mean values ± standard error of mean (SEM), n=3. Each 

sample was analysed in triplicate and calibrated against relevant standards where 

appropriate. Multivariate correlation analysis of experimental data was performed 

according to Pearson's Correlation (Chapter 3). Calculations quantified the relationship 
between two sets of experimental variables. The correlation coefficient r, quantified the 

direction and magnitude of the correlation and ranged from -1 to +1. Independent 2- 

sample paired t-tests were used to assess differences between groups and an unpaired t- 

test was used to assess differences within groups (Chapter 4). A one-way ANOVA was 

used to determine the differences in plasma antioxidant capacity between each time 

interval (Chapter 5). Values at P<0.05 were considered statistically significant. ns = not 

significant, *P<0.05, **P<0.01, ***P<0.001, as compared to relevant control. Analysis 

was carried out using Minitab software version 12 (Minitab Inc., Addison-Wesley 

Publishing Co., Reading, MA, USA). 
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Chapter 3 Identification of the major phenolics in red 
wine 

3.1 Introduction 

Phenolic compounds are important components of red wine contributing to the 

organoleptic and sensory properties, preservation and ageing of wine (Robichaud & 

Noble, 1990; Soleas, 1997). Phenolic compounds are largely derived from the skins of 

grapes, particularly the epidermal cells, and seeds, with their concentration being very 
low in the pulp. Red wine provides an excellent source of various classes of phenolic 

compounds and may contain between 1000-4000 mg L-1 (Bravo et al., 1998). Although 

structurally diverse, phenolics fall into one of two major classes - the flavonoids and the 

non-flavonoids. Flavonoids include the flavonols quercetin, myricetin, kaempferol and 

Isorhamnetin, existing as aglycones and sugar conjugates; the flavan-3-ols (+)-catechin 

and (-)-epicatechin; and the anthocyanins, pigments responsible for the colour of red 

wines. Collectively flavonoid levels are 20-fold higher in red wines than in white wine 

(Soleas & Goldberg, 1999). The non-flavonoids comprise the hydroxybenzoates, 

including gallic acid and the hydroxycinnamates, encompassing p-coumaric acid, 

caffeic acid and caftaric acid. The concentration and composition of phenolics in wine 

depends on a range of factors including grape variety and vintage (Landrault et al., 

2001), variations in climate and vinification practices (Goldberg et al., 1998; Price et 

al., 1995), and the ageing process (Shahidi & Naczk, 1995). As a result the phenolic 

content and antioxidant capacity of red wine is highly variable. 

Recently much effort has been expended on the analysis of red wine, particularly the 

relationship between the phenolic content and antioxidant activity. The antioxidant 

activity of red wines have been associated with their total phenolic content (Minussi et 

al., 2002; Fogliano et al., 1999; Sato et al., 1996), yet the contribution of individual 

phenolic compounds to the total antioxidant activity has been little studied. Results to 

date have been inconsistent with studies reporting associations between the antioxidant 

properties of red wines with the levels of flavan-3-ols (Teissedre et al., 1996; Simonetti 

et al., 1997), anthocyanins (Ghiselli et al., 1998; Pellegrini et al., 2000) and tannic acid 

(Larrauri et al., 1999). 
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The existing methods for the separation and identification of phenolic compounds in 

wine have been largely based on standard HPLC techniques with absorbance (Burns et 

al., 2000) and fluorimetric (Rodriguez-Delgado et al., 2002) detection. Among other 
detection systems used, mass spectrometry has proved to be effective and of 

considerable value. The technique of fractionation has been employed in an attempt to 

separate phenolic compounds in foods and beverages using both solid phase and liquid- 

liquid extraction. Previous studies have demonstrated that red wine phenolics have been 

separated using small-scale liquid-liquid extraction (C18 Sep-Pak cartridge) methods 
(Ghiselli et al., 1998; Oszmianski et al., 1998; Sun et al., 1998). However one of the 

major disadvantages with this method is the lack of selectivity due to the differences in 

polarity between different phenolics within a group. Therefore, the accurate 
identification of single phenolic compounds in complex mixtures, such as red wine, is 

not straight forward. Recently large-scale preparative HPLC has been used for the 

separation of phenolic compounds in raspberries (Mullen et al., 2002a) and tea (McGinn 

et al., 2001). This facilitated the identification of sanguin-H6 as the major antioxidant in 

raspberries, while in green tea ECGC was the main antioxidant component. 

This chapter reports on a study in which the major phenolic contributors to the 

antioxidant capacity of red wines were investigated. Thirty-one red wines were analysed 

using several complimentary techniques to determine their phenolic content and 

antioxidant activity. HPLC with diode array detection and tandem mass spectrometry 

was used to identify the phenolic composition of the wines. Antioxidant activity was 

determined in the FRAP and ESR-derived antioxidant assays. Preparative HPLC and an 

on-line ABTS+ antioxidant assay were carried out to identify specific compounds in 

wine possessing antioxidant activity. 
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3.2 Phenolic content and antioxidant activity of wines 
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Thirty one red wines were analysed for their phenolic content and antioxidant 

capacity. Samples were selected to represent a variety of wines produced from various 

grape cultivars and geographical regions. Details of vintage, origin and varietal 

composition of each wine are detailed in Chapter 2 (Table 2.1). The total phenolic 

content of each wine was determined in the Folin-Ciocalteu colorimetric assay 
(Singleton and Rossi, 1965). Total, free and polymeric anthocyanins were measured in 

the colorimetric method of Ribereau-Gayon and Stonestreet (1965), and the FRAP- 

derived antioxidant assay of Benzie and Strain (1996) was used to estimate the 

antioxidant capacity of each wine. The results obtained are presented in Table 3.1. 

3.2.1 Determination of total phenolics 

There were almost four-fold differences in the concentrations of total phenolics 

observed in the different wines analysed. Total phenolic content varied from 587 to 

2827 mg L' gallic acid equivalents (GAE). These figures are comparable with values 

obtained for red wines by other investigators (Burns et al., 2000; Frankel et al., 1995; 

Sato et al., 1996). In the current study phenolic-rich wines included a 2000 Young 

Vatted Spanish Tempranillo (wine 13), a 2000 South African Cabernet Sauvignon (wine 

21), a 2001 Young Vatted Bulgarian Merlot (wine 15) and a 2000 Young Vatted 

Bulgarian Cabernet Sauvignon (wine 31). Lowest concentrations were detected in wine 

3, a 2001 Beaujolais, and a 2001 Vin de pays L'Ardeche (wine 16) with values of 1389 

and 587 mg UI obtained, respectively. 

3.2.2 Determination of anthocyanins 

Polymeric anthocyanins were present in all wines in larger amounts than free 

anthocyanins. The highest total anthocyanin concentrations, 212.1 and 202 mg L"1 

malvidin-3-glucoside equivalents, were detected in wine 6, a 2001 French Syrah and 

wine 15, a Young Vatted Bulgarian Merlot, respectively (Table 3.2). The lowest levels, 

28 and 43.3 mg L"1 malvidin-3-glucoside equivalents, were observed in wine 16, a 2001 

Vin de pays L'Ardeche and wine 9, a 1999 Chianti Classico, respectively. 
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3.2.3 Measurement of reducing ability 
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The ability of each wine to reduce a Fe(" -2,4,6-Tri-(2-pyr-idyl)-s-triazine (iron 

chloride-TPTZ) complex to Fe(" -TPTZ (iron-sulphate TPTZ) was assessed in the 

FRAP-derived antioxidant assay and values ranging from 6.3 to 29.4 mM Fe(") were 

obtained. Wine 3, a French Beaujolais and Vin de pays L'Ardeche (wine 16) showed 

the lowest activities, while a Spanish Young Vatted Tempranillo (wine 13) and a South 

African Cabernet Sauvignon (wine 21) were ranked first and second, respectively. The 

relationship between phenolic content with reducing ability in the FRAP-derived 

antioxidant assay of each wine was analysed using Pearson's correlations. FRAP- 

derived antioxidant activity was highly and significantly correlated with total phenolic 

concentration (r=0.972, P<0.001) and moderately correlated with total anthocyanin 

content (r=0.434, P<0.05) and polymeric pigment content (r2=0.594; P<0.001). 
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Table 3.1 Phenolic composition and antioxidant capacity of red wines. 

wine TP a PR TA' PP FA e 

1. Claret non-vintage 2245 f 30 22 ±0 138 ±6 66 ±0 72 ±7 
2. Beaune 2458 f 36 23 ±1 61 ±7 27 ±5 34 ±1 
3. Beaujolais 1389±7 12±0 72±4 46±4 27±1 
4. Cotes du Rhone 2034 ± 24 18 ±0 89 ±2 64 ±8 25 ±0 
5. Vin de pays de L'Ardeche 1983 f 11 20 ±1 101 ±2 85 ± 10 16 ±0 
6. Etienne Barret Crozes Hermitage 2004 f 13 18 ±0 212 ±6 66 ±3 146 ±3 
7. Minervois 2038 ± 32 19 ±0 123 ± 10 73 ±1 50 ±9 
8. Corbieres 2352 t 25 23 ±1 144 ±0 108 ±2 36 ±0 
9. Chianti Classico 2424 t 23 24 ±1 43 ± 34 57 ±5 n. d 
10. Valpolicella 1762 ± 38 18 ±1 97 ±6 50 ±8 47 ±0 
11. Aged in Oak Valdepenas Reserva 2202 ± 69 23 ±0 93 ±4 71 ±1 22 ±3 
12. Castillo de Sierra Rioja 1537 ± 42 16 ±0 81 ±1 46 ±6 35 ±0 
13. Young Vatted Tempranillo 2827 ± 26 29 ±1 118 ±0 77 ±2 41 ±0 
14. Bairrada 2032±40 20±0 83 ±4 38±4 45 ±0 
15. Young Vatted Merlot 2729 ± 69 29 ±0 202 ±1 105 ±1 97 ±0 
16. Vin de Pays L'Ardeche Rose 587 ± 10 6±0 28 ±1 10 ±5 18 ±0 
17. Australian Red 1819 ± 15 19 ±1 86 ±1 61 ±5 25 ±0 
18. Australian Oaked Cab. Sauv. 1811 ± 10 18 ±0 113 ±2 55 ±0 59 ±2 
19. Young Vatted Pinotage 2578 ± 30 27 ±1 127 ±6 83 ±6 43 ±1 
20. Cinsault 1611 ± 13 16±1 81±1 41±5 40±0 
21. Cabernet Sauvignon 2776 ±8 28 ±1 139 ±3 83 ±2 57 ±1 
22. Caballo de Plata 1666 f 32 16 ±0 72 ±6 52 ±6 21 ±0 
23. Cabernet Sauvignon 2048 f 36 21 ±0 112 ±1 61 ±2 51 ±0 
24. Argentinian Shiraz 1784 ± 39 19 ±0 109 ±3 65 ±6 44 ±0 
25. Inti Malbec 2133 f 12 22 ±0 156 ±4 61 ±1 95 ±3 
26. Chilean Dry Red 1801 ± 16 18 ±0 132 ±0 95 ±7 37 ±0 
27. Chilean Cabernet Merlot 1965 ± 13 20 ±0 140 ±0 82 ±0 58 ±0 
28. Chilean Cab. Sauv. 2246 ± 26 23 ±0 152 ±1 92 ±9 61 ±0 
29. Granverano Carmenere 2115 ± 11 22 ±1 172 ±0 94 ±2 78 ±0 
30. Pinot Noir Estancia 2282 ± 23 24 ±1 97 ±1 44 ±5 53 ±0 
31. Young Vatted Cab. Sauv. 2597 ± 131 23 ±3 159 ±4 105 ±9 53 ±0 

a TP-total phenolics expressed as gallic acid equivalents (mg L-1); b PR-ferric reducing 
power (FRAP) expressed as concentration of Fe (II) produced (mM); " d'e TA-total 
anthocyanins; PP-polymeric pigments and FA-free anthocyanins. Results are expressed 
as malvidin-3-glucoside equivalents (mg L-1) ± standard error, where n=3., n. d. not 
detected. 
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3.3 HPLC-tandem mass spectrometry analysis of wines 
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The levels of individual phenolics were determined by HPLC-tandem mass 

spectrometry (MS-MS) and diode array detection. A selection of the wines exhibiting 

high and low phenolic contents and antioxidant activities were analysed including a 
2000 Young Vatted Bulgarian Cabernet Sauvignon (wine 31), a 2000 Young Vatted 

Spanish Tempranillo (wine 13), a 2001 Young Vatted Bulgarian Merlot (wine 15), a 
2001 Chilean Cabernet Sauvignon (wine 28) and wine 3, a 2001 French Beaujolais. 

Samples were analysed on a Surveyor HPLC system using a 60 min, 5-40 % gradient of 

acetonitrile in 1% aqueous formic acid. The column eluate being directed first to a 

diode array absorbance monitor and then to a mass spectrometer with an electrospray 
interface operating in full scan MS/MS mode. Samples were analysed in both positive 

and negative ionization mode. In total 19 phenolic compounds were identified in each 

wine based on MS/MS data and Xmax" The results are summarised below and presented 

in Table 3.2. 

Peak 1 (tR = 5.3 min, Xmax = 265 nm) had a [M-H]- at m/z 169 with MS2 yielding 

a charged fragment ion at m/z 125. The mass spectrometric data and co-chromatography 

with an authentic standard confirmed that this compound is gallic acid. 

Peak 2 (tR = 6.9 min, X,,, ax = 265 nm) had a [M-H]- at m/z 865 with MS2 yielding 

two charged fragment ions at m/z 577 and 289. Based on the mass spectral data this 

compound is a procyanidin trimer and its elution prior to dimer B1 (Santos-Buelga et 

al., 1995) indicates that it is likely to be the trimer procyanidin C2, a known component 

of red wine (De Pascual-Teresa et al., 2000b). 

Peak 3 (tR = 13.4 min, %max = 280 nm) had a [M-H]" at m/z 577, with MS2 

producing three major charged fragment ions at m/z 425,407 and 289. Based on the 

mass spectral data this compound is a procyanidin dimer. Co-chromatography with a 

standard indicated the dimer was procyanidin B 1, a known component of red wine (De 

Pascual-Teresa et al., 2000b). 

Peak 4 (tR = 14.3 min, Xmax = 515 nm) had a [M-H]+ at m/z 465 which 

fragmented with MS2 to produce a delphinidin-like ion at m/z 303 with the [M-H]+-162, 

corresponding to loss of a glucose moiety. This peak is, therefore, the anthocyanin 

delphinidin-3-glucoside, previously identified in red wine by Bums et al. (2002). 
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Peak 5 (tR = 15.4 min, Amax = 280 nm) had a [M-H]- at m/z 289, yielding two 

charged ions at m/z 245 and 205. This mass spectrum and co-chromatography with an 

authentic standard established that peak 4 is the flavan-3-ol (+)-catechin. 

Peak 6 (tR = 17.8 min, X.,, = 515 nm) had a [M-H]+ at m/z 479 which on MS2 

yielded a fragment ion at m/z 317 which corresponds with petunidin ([M-H]+-162, 

cleavage of a glucosyl unit) indicating the presence of petunidin-3-glucoside which has 

previously been detected in red wines (Burns et al., 2002). 

Peak 7 (tR = 18.3 min, a,,,, ax = 280 nm) had a [M-H]- at m/z 577 with MS2 

yielding three charged fragment ions at m/z 425,405 and 289. Based on the mass 

spectral data this peak is a procyanidin dimer and co-chromatography with a reference 

compound revealed that it is procyanidin B2, previously detected in red wine by De 

Pascual-Teresa et al. (2000b). 

Peak 8 (tR = 19.8 min, Amax = 280 nm) had a [M-H]- at m/z 289, which on MS2 

yielding ions at m/z 245,205 and 179. Co-chromatography with an authentic standard 

confirmed the identification of peak 7 as (-)-epicatechin. 

Peak 9 (tR = 20 min, ? max = 510 nm) had a [M-H]+ at m/z 463 which on MS2 

exhibited a 162 amu loss, corresponding to cleavage of a glucosyl unit, producing a 

fragment ion at m/z 301 which corresponds to peonidin. This is in keeping with the 

presence of peonidin-3-O-glucoside, a known component of red wine (Burns et al., 

2002). 

Peak 10 (tR = 21 min, Xmax = 515 nm) had a [M-H]+ at m/z 493, MS2 produced a 

fragment ion at m/z 331 ([M-H]+-162, loss of a glucosyl unit). This peak was confirmed 

as malvidin-3-O-glucoside by reference to an authentic standard. 

Peak 11 (tR = 21.7 min, Xma. = 280 nm) had a [M-H]- at m/z 865 with MS2 

yielding two charged fragment ions at m/z 577 and 289. Based on the mass spectral data 

this compound is a procyanidin trimer and its elution after (-)-epicatechin (Santos- 

Buelga et al., 1995) indicates that it is procyanidin C1, a known component of red wine 

(Sanchez-Moreno et al., 2003). 

Peak 12 (tR = 25 min, Xmax = 510 nm) had a [M-H]+ at m/z 517 with MS2 

yielding a charged fragment ion at m/z 355. Although a reference compound is not 

available, the elution order of this peak after malvidin-3-glucoside and the mass spectral 

data indicate that it may be vitisin B which has been detected in red wines by Morata et 

al. (2003) and is the adduct resulting from the reaction between malvidin-3-glucoside 

and acetaldehyde. 
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Peak 13 (tR = 25 min, Xmax = 370 nm) had a [M-H]- at m/z 479 with MS2 yielding 

a fragment ion at m/z 317, (162 amu loss, cleavage of a glucosyl unit) which 

corresponds with myricetin indicating that this compound is a myricetin glucoside. 

Peak 14 (tR = 29.1 min, ? max = 515 nm) had a [M-H]+ at m/z 533 which on MS2 

yielded a charged fragment ion at m/z 331 ([M-H]+-204, loss of an acetylglucosyl unit). 
On the basis of the MS2 spectra and the elution order of anthocyanins, this peak is 

identified as malvidin-3-acetylglucoside previously detected in red wines (Burns et al., 

2002). 

Peak 15 (tR = 29.6 min, ? max = 350 nm) had a [M-H]" at m/z 471, MS2 yielded a 

fragment ion at m/z 301 ([M-H]--176, cleavage of a glucuronyl group). On the basis of 

the MS2 spectral data and co-chromatography with an authentic standard this peak is 

identified as quercetin-3-glucuronide. 

Peak 16 (tR = 34.4 min, Xax = 350 nm) had a [M-H]- at m/z 317 which 

corresponds with the flavonol aglycone myricetin. Co-chromatography with an 

authentic standard confirmed the presence of myricetin. 

Peak 17 (tR = 35.2 min, k ax = 525 nm) had a [M-H]+ at m/z 639 fragmentation 

by MS2 yielded a charged fragment ion at m/z 331 ([M-H]+-308, loss of a p- 

coumaroylgluco side group). Based on the absorbance and mass spectral data and the 

elution profile of this compound it is likely to be the anthocyanin malvidin-3-(p- 

coumaroyl)-glucoside (Bums et al., 2002). 

Peak 18 (tR = 43.5 min, , max = 370 nm) had a [M-H]- at m/z 301 and the identity 

of this peak was confirmed as the flavonol aglycone quercetin by co-chromatography. 

Peak 19 (tR = 51 min, Xmax = 370 nm) had a [M-H]- at m/z 285 which indicates 

the presence of kaempferol and this identification was confirmed by co-chromatography 

with an authentic standard. 
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3.4 Levels of phenolics in selected wines 

88 

The levels of 19 phenolic and polyphenolic compounds were measured by 

HPLC-MS-MS and the results obtained are summarised below and presented in Table 

3.3. There was a wide variation in the levels of phenolics in each wine; however gallic 

acid, the flavan-3-ols and the anthocyanins were the most abundant compounds. 

The levels of gallic acid varied almost 4-fold from 69 mg L-1 in a French Beaujolais 

(wine 3) to 282 mg L-I in wine 31, a Young Vatted Bulgarian Cabernet Sauvignon. (+)- 

Catechin, (-)-epicatechin and procyanidin dimers B1 and B2 were identified by LC-MS, 

with total flavan-3-ols ranging from 145 mg L"1 to 260 mg L-1 in wine 15, a Young 

Vatted Bulgarian Merlot and a Spanish Tempranillo, respectively. (+)-Catechin was 
invariably present in larger amounts than (-)-epicatechin in all wines analysed. The 

highest concentration was found in wines 31 and 13 contributing 22 % and 17 % of the 

total flavan-3-ols, respectively. 

Seven anthocyanins (two of them acylated) were identified in red wines: malvidin-3- 

glucoside, delphinidin-3-glucoside, petunidin-3 -gluco side, peonidin-3-glucoside, 

malvidin-3-acetyl-glucoside, malvidin-3-(p-coumaroyl) glucoside and vitisin B. Total 

anthocyanins ranged from 80 mg L-1 to 477 mg L-1 in wine 3 and 28, respectively. 

Malvidin-3-glucoside constituted the main anthocyanin in wines and levels varied 

almost 8-fold from 43 mg L-1 in wine 3, a French Beaujolais to 305 mg L-1 in wine 28, a 

Chilean Cabernet Sauvignon. 

Flavonols were minor components in the wines compared with other classes of 

phenolics identified, with quercetin, myricetin, kaempferol and conjugates of quercetin 

and myricetin detected. Total flavonols ranged from 4 to 17.3 mg L-1 in wine 3, a 

French Beaujolais and and a Spanish Tempranillo (wine 13), respectively. 
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3.5 Identification of the major antioxidants in red wine 

90 

Two techniques were employed to identify the major phenolic compounds in 

wine contributing to the in vitro antioxidant activity; an on-line ABTS+ antioxidant 

assay and preparative HPLC as detailed in Chapter 2 (section 2.5.3 and 2.5.5, 

respectively). Although the technique of preparative HPLC has been successful for the 

separation of compounds in tea and raspberries, it did not allow for the complete 

separation of compounds in red wine. Nevertheless, the results indicated a significant 

correlation between the total catechin content of wine fractions with ESR-derived 

antioxidant activity. On-line analysis of individual compounds in red wine was 

measured in the ABTS+ antioxidant assay. This method allowed the complete separation 

of compounds in wine, while at the same time, measured their antioxidant activity. 

3.5.1 Preparative HPLC 

Ten mL of a Chilean Cabernet Sauvignon (wine 28) was injected on a preparative 

HPLC system comprising two HPLC pumps, a UV absorbance detector, monitoring at 

520 and 371 nm, and a preparative injector with a 10 mL injection loop. Separation was 

carried out using a 40 min gradient of 5 to 30 % ACN in 0.5 % TFA (with a5 min hold 

at 30 %) on a 150 x 20 mm i. d. 5 µm ODS-H column eluted at a flow rate of 10 

mL/min, with the column oven maintained at 40°C. Sixty fractions were collected 3 min 

after the injection of the wine collecting 7.5 mL/min of eluent. Each fraction was 

measured for total phenolic content, anthocyanin content and antioxidant activity in the 

ESR-derived antioxidant assay. Selected fractions exhibiting high phenolic contents and 

antioxidant abilities were further analysed for their total catechin content, and HPLC- 

MS was used to identify their phenolic composition. 
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3.5.1.2 Total phenolics and ESR-derived antioxidant activity 

91 

The total phenolic content of each fraction was determined using the Folin-Ciocalteu 

method and the ability of the sixty wine fractions to reduce Fremy's salt free radical in 

the ESR-based antioxidant assay was assessed and results are illustrated in Figure 3.1. 

Fraction 13 contained the highest total phenolic content with 78.3 mg L-1 GAE 

obtained, while fractions 12 and 20 were ranked second and third with concentrations of 
67 and 62.3 mg L-1 GAE obtained, respectively. The greatest antioxidant activity was 

observed in fraction 20 with 11.4 x 1021 radicals reduced L"1, while fractions 18 and 19 

were ranked second and third with antioxidant activities of 11.1 x 1021 and 11.0 x 1021 

obtained, respectively. The total phenolic content of the wine fractions were highly and 

significantly associated with ESR-derived antioxidant activity (r=0.816, P<0.001) 

using Pearson's correlations. 

3.5.1.3 Determination of total anthocyanins 

The total anthocyanin content of each wine fraction was determined using a pH shift 

method as described in Chapter 2 (section 2.3.2) and results are illustrated in Figure 3.2. 

Fraction 31 contained the highest concentration of total anthocyanins with 52 mg UI 

malvidin-3-glucoside equivalents obtained, followed by fraction 42 with a concentration 

of 20.1 mg L-1 malvidin-3-glucoside equivalents obtained. The relationship between 

total anthocyanin content with ESR-derived antioxidant activity of each fraction was 

assessed using Pearson's correlations. There was no correlation between the total 

anthocyanin content of wine fractions with antioxidant activity (r=0.188, p=0.151). 
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3.5.1.4 Total catechin content of selected fractions 

Selected fractions were analysed for their total catechin content using a colorimetric 

method by Kivitis et al., (1997) as detailed in Chapter 2 (section 2.3.3). Results are 
illustrated in Figure 3.3. Seventeen fractions were analysed, incorporating fractions 

exhibiting high and low phenolic contents and antioxidant abilities. Fraction 5 contained 
the highest concentration with 75.1 mg L-1 total catechin obtained, while the lowest 

concentration was observed in fraction 31 with a value of 1.5 mg L-1 total catechin. The 

total catechin content of selected fractions was highly and significantly associated with 
ESR-derived antioxidant activity (r2 = 0.591, P<0.01) when analysed using Pearson's 

correlations. 

3.5.1.5 HPLC-MS analysis of selected wine fractions 

Analysis of the individual fractions were analysed by LC-MS/MS. Separation was 

carried out using a 250 x 4.6 mm i. d. 4 µm RP-Max column (eluted at a flow rate of 1 

mL/min). A 5-40 % gradient over 60 min of 1% formic acid and acetonitrile was used 

for the complete separation of all compounds. After passing through the flow cell of the 

diode array detector the column eluate was split and 0.3 mL was directed to a LCQ 

Deca XP ion trap mass spectrometer fitted with an electrospray interface Analysis was 

carried out in full scan mode from 100-2000 amu using the positive ion mode when 

analysing anthocyanins and with negative ionisation for all other compounds. LC- 

MS/MS established the presence of gallic acid (tR=5.84 min, , max 280 nm) and 

procyanidin trimer (tR=8.52 min, , max 277 nm) in fractions 4 and 5. Two further 

compounds were detected in these fractions but could not be identified. Fractions 13-20 

contained procyanidin dimer B1 (tR=10.8 min, , max 285 nm); (+)-catechin (tR=15.5 

min, 2, max 280 nm); (-)-epicatechin (tR=20.5 min, , max 280 nm) and procyandin B2 

(tR=19.6 min, , max 280 nm), consistent with the data obtained by colorimetric analysis 

of total catechins. Fractions 26-31 contained anthocyanins, consistent with the data 

obtained by colorimetric analysis, with petunidin-3-glucoside (tR=16.92 min, , max 519 

nm) and malvidin-3-glucoside (tR=25.98 min, , max 525 nm) identified in Fraction 31. 
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3.5.2 ABTS+ on-line decolourisation assay 
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The antioxidant activity of individual components in the 5 selected wines was 
determined using the ABTS+ on-line decolourisation assay based on the methods of 
Dapkevicius et al. (2001) and Koleva et al. (2001) described in Chapter 2 (section 

2.5.3). In brief, a2 mM ABTS+ stock solution containing 3.5 mM potassium persulfate 

was prepared and incubated at room temperature in darkness overnight. ABTS+ reagent 

was preparted by diluting the stock solution 8-fold in phosphate buffer at pH 8. Twenty 

µL of a 1: 5 dilution of wine was injected into a HPLC system comprising a LC pump, a 
PDA detector and a UV-VIS detector. Separation was carried out using a 250 x 4.6 mm 
i. d. 4 µm RP-Max column maintained at 40°C and eluted at a flow rate of 1 mL/min 

with a 60 min gradient at 4-25 % acetonitrile and 0.1 % formic acid. Following 

separation of the compounds, the eluent was mixed with the ABTS+ reagent at a flow 

rate of 0.5 mL/min supplied by a Shimadzu LC-10 AP VP liquid chromatography 

pump. A Shimadzu GT-1543 vaccum degasser was used to remove any oxygen in the 

reagent prior to mixing. After mixing through a3mx0.25 mm i. d. loop, the absorbance 

was measured by a UV detector at 720 nm. The results obtained are presented in Table 

3.4 and shown in Figures 3.4-3.8. 

The major antioxidants detected in each wine had an absorbance maximum at 280 nm, 

with 9 peaks being identified. Antioxidant activity was clearly associated with the 

presence of gallic acid and the flavan-3-ols. Gallic acid was identified as a major 

antioxidant component of red wine with values ranging from 103 mg L-1 to 269.2 mg U 

1 Trolox equivalents in a French Beaujoalis (wine 3) and a Young Vatted Bulgarian 

Cabernet Sauvignon (wine 31), respectively. The flavan-3-ols were also identified as 

major antioxidants in red wines with (+)-catechin and (-)-epicatechin being the most 

abundant in all wines analysed. Values ranging from 67 to 130.4 mg L-1 Trolox 

equivalents were obtained for wine 3 and wine 31, respectively. Procyanidin dimer B1 

ranged from 32.4 mg L-1 in wine 15 to 128.3 mg L-1 Trolox equivalents in wine 3, 

contributing 6% and 29 % of the total antioxidant activity, respectively. The Chilean 

Cabernet Sauvignon (wine 28) exhibited the highest activity for dimer B2, while wine 

15 had the lowest activity, with values ranging from 8.0 to 52 mg L-1 Trolox 

equivalents. 
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Figure 3.3 Total (+)-catechin content of selected wine fractions. Results are 
expressed as mg L-1 (+)-catechin equivalents ± standard error, where n=3. 
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Figure 3.4 On-line ABTS+ analysis of a Bulgarian Cabernet Sauvignon (wine 31), 
showing UV absorbance at 280 nm (A) and 720 nm (B). 
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Figure 3.5 On-line ABTS+ analysis of a French Beaujolais (wine 3), showing UV 
absorbance at 280 nm (A) and 720 nm (B). 
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Figure 3.6 On-line ABTS+ analysis of a Bulgarian Merlot (wine 15), showing UV 
absorbance at 280 nm (A) and 720 nm (B). 
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Figure 3.7 On-line ABTS+ analysis of a Spanish tempranillo (wine 13), showing UV 

absorbance at 280 nm (A) and 720 nm (B). 
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Figure 3.8 On-line ABTS+ analysis of a Chilean Cabernet Sauvignon (wine 28), 
showing UV absorbance at 280 nm (A) and 720 nm (B). 
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3.6 Discussion 
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In recent years there has been a great interest in the antioxidant properties of red 

wine emanating from a wealth of epidemiological evidence indicating that a moderate 

consumption is associated with a reduced mortality from cardiovascular disease. It has 

been suggested that the antioxidant properties of red wine may be linked, to some 

extent, with particular classes of flavonoids. In the present study a highly significant 

association was observed between total phenolic content and the reducing ability in the 
FRAP derived antioxidant assay and is comparable with the findings from previous 

studies (Arnous et al., 2001; Sanchez-Moreno et al., 1999a). Although all wines showed 

activity, those produced from Cabernet Sauvignon, Merlot and Tempranillo grape 

varieties exhibited the highest phenolic contents and activities, whereas at the other end 

of the scale the low phenolic content of wine produced by Gamy grapes was 

characterized by a markedly lower antioxidant capacity. Differences in the techniques 

used during wine production further contribute to the large variations in the levels of 

phenolics. Extensive skin extraction by rotary extraction facilitates the release of more 

phenolics than traditional methods such as carbonic maceration, which have been 

described for the Young Vatted Bulgarian Cabernet Sauvignon and Beaujolais, 

respectively (Burns et al., 2000). 

Gallic acid, the flavan-3-ols and the anthocyanins were the most abundant phenolics 
identified in red wines. Although the flavonols have been extensively investigated 

recent studies have shown that they are not the major antioxidants present in red wine 
(Gardner et al., 1999). In the present study free and conjugated flavonols were detected 

in the wines but their concentration was comparatively much lower than any other class 

of phenolic identified. Comparable findings have been documented with levels of 

quercetin ranging from 0.5-5.3 mg L-1 (Soleas et al., 1997), while values of 0.8 and 1.1 

mg L-1 were obtained for myricetin and kaempferol in red wine, respectively 

(Rodriguez-Delgado et al., 2002). The flavonols had little impact on the antioxidant 

capacity. 
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Total anthocyanin content of each wine was moderately associated with FRAP-derived 

antioxidant activity (P < 0.05), however no correlation was observed between the 

anthocyanin content of wine fractions with ESR-derived antioxidant activity. 
Anthocyanins have been shown to exhibit antioxidant properties in a number of in vitro 

systems (Rice-Evans et al., 1995; Wang et al., 1997), however other studies have 

indicated that they are not the major antioxidants in red wine (Frankel et al., 1995; 

Burns et al., 2000). The determination of anthocyanins by spectrophotometry has been 

known to provide an inaccurate estimation of the total monomeric anthocyanins 
(Somers and Evans, 1977). This was further demonstrated by Bakker et al. (1986), who 

reported the large differences observed in total anthocyanin content with 

spectrophotometry and HPLC analysis. The weak association between antioxidant 

activity and total anthocyanin content may also be due to the fact that total anthocyanin 

values also represent polymeric and other types of pigments in wine which may not 

possess any antioxidant activity. Arnous et al. (2002) reported that the correlation 
between coloured anthocyanins, or polymeric pigments, with antioxidant activity was 
higher compared with total anthocyanin content, suggesting that the ionization state of 

anthocyanins may be important with respect to their antiradical activity. In the present 

study a similar pattern was observed in that there was a higher correlation between 

polymeric anthocyanin content and FRAP-derived antioxidant activity (r2=0.594; P< 

0.001) than with total anthocyanin content (r2=0.434; P<0.01). This is supported by 

the fact that pseudo-base and quinoidal-base of malvidin-3-glucoside, generated at pH 

4.0 and 7.0, respectively show different antioxidant behaviours (Lapidot et al., 1999). In 

the present study the anthocyanins in red wine exhibited modest antioxidant activity, 

however previous studies have shown that they may act via different mechanisms. 

There is evidence that anthocyanins derived from red wine induce vasorelaxation 

mediated via the release of nitric oxide (Andriambeloson et al., 1998) and protect the 

integrity of capillaries against free radical damage in animals (Cao et al., 1999). 

Additional work demonstrated that delphinidin, but not malvidin or cyanidin, was able 

to elicit endothelium dependent vasorelaxation in vascular tissue (Fitzpatrick et al., 

1993). 
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McGinn et al. (2000) showed an inverse relationship between vasodilatory and 

antioxidant activity of grape extracts, indicating that the higher the antioxidant activity 

of the extracts, the less active they were as vasodilators. The authors further reported 

that the compounds responsible for inducing antioxidant activity were distinct from 

those exhibiting vasodilator activities. 

Further studies have reported a strong correlation between the total flavan-3-ol content 

of red wine with the antioxidant activity (Simonetti et al., 1997; Burns et al., 2000). In 

this study the total catechin content of selected wine fractions separated by preparative 

HPLC was highly and significantly associated with ESR-derived antioxidant activity (P 

< 0.01). Monomeric and oligomeric flavanols; (+)-catechin, (-)-epicatechin, procyanidin 

dimers BI and B2, were major antioxidant components of red wine, while trimers and 

tetramers exhibited a moderate antioxidant activity. Low molecular weight flavan-3-ols, 

especially the monomers and dimers have been found to exert greater antioxidant 

activities than high molecular weight compounds. (+)-Catechin, (-)-epicatechin, 

procyanidin dimers B1, B2, B3, B4 and procyanidin trimers C1 and C2 inhibit LDL 

oxidation in vitro (Teissedre et al., 1996) more efficiently than high molecular weight 

polymers such as hexamers (Lotito et al., 2000). Collectively the flavan-3-ols 

contributed > 50 % of the total antioxidant capacity of each wine, with the greatest 

activity observed in the Young Vatted Bulgarian Cabernet Sauvignon. Gallic acid was 

also a major antioxidant component of red wine contributing between 23-44 % of the 

total antioxidant capacity in a French Beaujolais and a Bulgarian Cabernet Sauvignon, 

respectively. Shahidi & Naczk, (1995) similarly reported the presence of gallic acid as a 

major phenolic component of red wine, followed by (+)-catechin and (-)-epicatechin. A 

high concentration of gallic acid would be expected in red wine since this phenolic acid 

is principally formed by the hydrolysis of flavonoid gallate esters, which are largely 

absent in white wines, due to the lack of skin extraction (Frankel et al., 1995). Previous 

studies have shown a high association between total antioxidant activity and gallic acid 

content of red wine (Minussi et al., 2003; Burns et al., 2000; Soleas et al., 1997), while 

Sanchez-Moreno et al. (1999b) observed that gallic acid exhibited the greatest free- 

radical scavenging activity in wine and grape juice. Similarly, Bohm, (2000) 

demonstrated that gallic acid exerted the strongest antioxidant activity in TEAC, TRAP 

and LDL oxidation assays. 
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There is some evidence to suggest that flavan-3-ols and gallic acid are bio-available in 

the human body. Monomeric and dimeric flavan-3-ols are absorbed into the 

bloodstream following the ingestion of red wine (Bell et al., 2000) and cocoa (Holt et 

al., 2002), and gallic acid and its metabolite 4-O-methylgallic acid have been detected 

in human plasma and urine following oral administration of 50 mg of gallic acid and 
black tea (Shahrzad & Bitsch, 1998; Shahrzad et al., 2001). 

3.7 Conclusion 

The antioxidant properties of red wines appear to be governed by the total 

phenolic content, specifically gallic acid and monomeric and dimeric flavan-3-ols; (+)- 

catechin, (-)-epicatechin and procyanidin dimers B1 and B2, while the anthocyanins and 
flavonols had little impact on the antioxidant capacity of red wine. The findings from 

this study highlight the importance of these compounds as potent antioxidants in vitro, 
however further information regarding their bioavailability and protective effects in vivo 

is warranted. 
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Chapter 4 The influence of moderate 
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red wine 
consumption on antioxidant status and indices of 
oxidative stress associated with coronary heart disease 
in healthy volunteers 

4.1 Introduction 

There is much public, media and scientific interest in the possibility that red wine 

may be protective against CHD. Mounting evidence suggests that moderate red wine 

consumption is inversely associated with CHD, an association popularised as the 

`French Paradox' (Renaud & de Logeril, 1993). The paradox describes the seemingly 
low mortality rates in certain populations of France despite high levels of associated risk 
factors; serum cholesterol, systolic blood pressure, dietary fat intakes and low 

consumption of fruits and vegetables. It is speculated that this paradox is associated 

with the widespread consumption of red wine (Criqui & Ringel, 1994). Although there 

is evidence to suggest that light to moderate intake of alcohol is beneficial to health 

(Albert et al. 1999), it has been shown that red wine provides additional health benefits 

beyond those of alcohol alone (Rimm et al.,. 1996, Burns et al., 2001 a). 

The putative cardio-protective effects of red wine have been largely attributed to the 

abundance of phenolic compounds. Plant-derived phenolics are widely distributed in 

nature and are present in varying amounts in commonly consumed fruits, vegetables and 
beverages. Red wine provides an especially rich source of these compounds which 

originate from grape seeds, skins and vine stems (Singleton, 1982). The levels of 

phenolic acids, major catechins and anthocyanins in red wines vary in concentration 

depending on different grape varieties and vintages (Landrault et al., 2001), together 

with variations in climate and vinification practices (Goldberg et al., 1998, Burns et al., 

2001 b). Generally red wines contain between 1000 and 4000 mg/L of phenolics, the 

majority of which are derived from anthocyanins and proanthocyanidins (Burns et al., 

2000). Although the exact mechanisms of protection conferred by red wine are 

unknown, there is evidence that phenolic compounds act as antioxidants by protecting 

the body from damaging oxidation reactions caused by `free radicals' (Kanner et al., 
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1994). There is further evidence that they may inhibit oxidative modification of LDL 

based on their ability to increase the resistance of isolated LDL to copper oxidation in 

vitro (Frankel et al., 1995). Several studies have demonstrated that many dietary 

phenolics protect against the oxidative modification of LDL in vitro (Vinson & Hontz, 

1995; Teissedre et al., 1996). Despite increasing evidence for the in vitro effectiveness 

of phenolics, there remains a dearth of information regarding their efficacy in vivo and 

this may be due, in part, to a lack of knowledge of their bioavailability in humans. The 

results from wine trials to date have shown conflicting results with some showing a 

protective effect following red wine intake (Serafini et al., 1998; Natella et al., 2001), 

while others have not demonstrated such an effect (van Golde et al., 1999). 

This chapter reports on the results of an intervention study in which the influence of red 

wine consumption on the antioxidant status and on indices of oxidative stress associated 

with CHD was investigated in healthy human volunteers. The total concentration of 

phenolics and individual phenolics in the wine and plasma were analysed in the Folin- 

Ciocalteu assay and by HPLC-tandem mass spectrometry. The antioxidant capacity of 

plasma was measured with ESR while homocysteine, fasting plasma lipids and the 

production of conjugated dienes and TBARS in copper oxidised LDL were further 

determined. 
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4.2 Study design 

A randomised, controlled study was performed with 20 free-living healthy male 

and female volunteers. Subjects were non-smokers aged between 23-50 and taking no 

medications or vitamin supplements. There were no statistically significant differences 

observed in mean age (years); height (m); weight (kg); or body mass index (kg/m2), in 

the red wine and control group, respectively (Table 4.1). The study protocol was 

approved by the Research Ethics Committee, Glasgow Royal Infirmary, United 

Kingdom. Written informed consent was obtained from each volunteer. Subjects were 

randomised into two groups; red wine and control. Subjects in the red wine group were 

asked to consume 375 ml red wine (Safeway, 1999 Bulgarian Young Vatted Cabernet 

Sauvignon, 12 % alcohol) each day for 2 weeks. Fasting blood samples obtained at 

weekly intervals were collected into EDTA and lithium heparin tubes. Plasma was 
immediately separated by low speed centrifugation (2500 xg for 10 min at 4°C) and 

stored at -80°C prior to analysis. For vitamin C analysis 0.6 mL plasma was mixed with 

an equal volume of 10 % (w/v) meta-phosphoric acid and snap frozen in liquid nitrogen 

and stored at -80°C prior to analysis. 

4.2.1 Dietary Assessment 

Volunteers were required to avoid all alcohol and foods/beverages rich in polyphenols, 

and to limit fruit and vegetable intake over the study period. A record of food and 

beverage intake was monitored over the study period and this information was used to 

assess compliance to the dietary instructions given. Subjects were asked to keep a 

record of their food and beverage intake for 3 days (one of which was at the weekend) 

and oral and written instructions were given on keeping the diet records and they were 

supplied with diaries and portion size photographs to aid with quantification (Appendix 

I). Data collected was analysed using a dietary analysis software package, Diet 5TM for 

windows (Robert Gordon University, Aberdeen, UK). 
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4.3 Phenolic composition of wine 

112 

The red wine used in this study was a Bulgarian Young Vatted Cabernet 

Sauvignon and analysis by HPLC-MS-MS and diode array detection revealed the 

presence of a number of flavonoids and phenolic compounds of which 19 were 
identified. The results obtained are illustrated in Figure 4.1 and are summarised below 

and in Table 4.2. 

Peak 1 (tp. = 5.3 min, ? max = 265 nm) had a [M-H]" at m/z 169 with MS2 yielding 

a charged fragment ion at m/z 125. The mass spectrometric data and co-chromatography 

with an authentic standard confirmed that this compound is gallic acid. 
Peak 2 (tR = 6.9 min, k.,, ax = 265 nm) had a [M-H]- at m/z 865 with MS2 yielding 

two charged fragment ions at m/z 577 and 289. Based on the mass spectral data this 

compound is a procyanidin trimer and its elution prior to dimer B1 (Santos-Buelga et al., 
1995) indicates that it is likely to be the trimer procyanidin C2, a known component of 

red wine (De Pascual-Teresa et al., 2000b). 

Peak 3 (tR = 13.4 min, %max = 280 nm) had a [M-H]- at m/z 577, with MS2 

producing three major charged fragment ions at m/z 425,407 and 289. Based on the 

mass spectral data this compound is a procyanidin dimer. Co-chromatography with a 

standard indicated the dimer was procyanidin B1, a known component of red wine (De 

Pascual-Teresa et al., 2000b). 

Peak 4 (tR = 14.3 min, , max = 515 nm) had a [M-H]+ at m/z 465 which 

fragmented with MS2 to produce a delphinidin-like ion at m/z 303 with the [M-H]+-162, 

corresponding to loss of a glucose moiety. This peak is, therefore, the anthocyanin 

delphinidin-3-glucoside, previously identified in red wine by Burns et al. (2002). 

Peak 5 (tR = 15.4 min, Xma, t = 280 nm) had a [M-H]- at m/z 289, yielding two 

charged ions at m/z 245 and 205. This mass spectrum and co-chromatography with an 

authentic standard established that peak 4 is the flavan-3-ol (+)-catechin. 

Peak 6 (tR = 17.8 min, X,,, ax = 515 nm) had a [M-H]+ at m/z 479 which on MS2 

yielded a fragment ion at m/z 317 which corresponds with petunidin ([M-H]+-162, 

cleavage of a glucosyl unit) indicating the presence of petunidin-3-glucoside which has 

previously been detected in red wines (Burns et al., 2002). 
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Peak 7 (tR = 18.3 min, ? �ax = 280 nm) had a [M-H]- at m/z 577 with MS2 

yielding three charged fragment ions at nn/z 425,405 and 289. Based on the mass 

spectral data this peak is a procyanidin dimer and co-chromatography with a reference 

compound revealed that it is procyanidin B2, previously detected in red wine by De 

Pascual-Teresa et al. (2000b). 

Peak 8 (tR = 19.8 min, ? max = 280 nm) had a [M-H]- at m/z 289, which on MS2 

yielding ions at m/z 245,205 and 179. Co-chromatography with an authentic standard 

confirmed the identification of peak 7 as (-)-epicatechin. 

Peak 9 (tR = 20 min, Xmax = 510 nm) had a [M-H]+ at m/z 463 which on MS2 

exhibited a 162 amu loss, corresponding to cleavage of a glucosyl unit, producing a 
fragment ion at m/z 301 which corresponds to peonidin. This is in keeping with the 

presence of peonidin-3-O-glucoside, a known component of red wine (Burns et al., 
2002). 

Peak 10 (tR = 21 min, X,,, a, t = 515 nm) had a [M-H]+ at m/z 493, MS2 produced a 

fragment ion at m/z 331 ([M-H]+-162, loss of a glucosyl unit). This peak was confirmed 

as malvidin-3-O-glucoside by reference to an authentic standard. 
Peak 11 (tR = 21.7 min, %max = 280 nm) had a [M-H]- at m/z 865 with MS2 

yielding two charged fragment ions at m/z 577 and 289. Based on the mass spectral data 

this compound is a procyanidin trimer and its elution after (-)-epicatechin (Santos- 

Buelga et al., 1995) indicates that it is procyanidin C1, a known component of red wine 
(Sanchez-Moreno et al., 2003). 

Peak 12 (tR = 25 min, X, max = 510 nm) had a [M-H]+ at m/z 517 with MS2 

yielding a charged fragment ion at m/z 355. Although a reference compound is not 

available, the elution order of this peak after malvidin-3-glucoside and the mass spectral 

data indicate that it may be vitisin B which has been detected in red wines by Morata et 

al. (2003) and is the adduct resulting from the reaction between malvidin-3-glucoside 

and acetaldehyde. 

Peak 13 (tR = 25 min, Xmax = 370 nm) had a [M-H]- at m/z 479 with MS2 yielding 

a fragment ion at m/z 317, (162 amu loss, cleavage of a glucosyl unit) which 

corresponds with myricetin indicating that this compound is a myricetin glucoside. 

Peak 14 (tR = 29.1 min, kmax = 515 nm) had a [M-H]+ at m/z 533 which on MS2 

yielded a charged fragment ion at m/z 331 ([M-H]+-204, loss of an acetylglucosyl unit). 

On the basis of the MS2 spectra and the elution order of anthocyanins, this peak is 
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identified as malvidin-3-acetylglucoside previously detected in red wines (Burns et al., 
2002). 

Peak 15 (tR = 29.6 min, /�max = 350 nm) had a [M-H]- at m/z 471, MS2 yielded a 
fragment ion at m/z 301 ([M-H]--176, cleavage of a glucuronyl group). On the basis of 

the MS2 spectral data and co-chromatography with an authentic standard this peak is 

identified as quercetin-3-glucuronide. 

Peak 16 (tR = 34.4 min, ? max = 350 nm) had a [M-H]- at m/z 317 which 

corresponds with the flavonol aglycone myricetin. Co-chromatography with an 

authentic standard confirmed the presence of myricetin. 
Peak 17 (tR = 35.2 min, ? max = 525 nm) had a [M-H]+ at m/z 639 fragmentation 

by MS2 yielded a charged fragment ion at m/z 331 ([M-H]+-308, loss of a p- 

coumaroylglucoside group). Based on the absorbance and mass spectral data and the 

elution profile of this compound it is likely to be the anthocyanin malvidin-3-(p- 

coumaroyl)-glucoside (Burns et al., 2002). 

Peak 18 (tR = 43.5 min, X,,, a, t = 370 nm) had a [M-H]- at m/z 301 and the identity 

of this peak was confirmed as the flavonol aglycone quercetin by co-chromatography. 
Peak 19 (tR = 51 min, ? max = 370 nm) had a [M-H]- at m/z 285 which indicates 

the presence of kaempferol and this identification was confirmed by co-chromatography 

with an authentic standard. 
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Figure 4.1 Gradient HPLC chromatogram of phenolics identified in the Bulgarian 

Young Vatted Cabernet Sauvignon with diode array detector operating at [A] 280 nm; 

[B] 520 nm and [C] 365 nm for the detection of flavan-3-ols; anthocyanins and 

flavonols, respectively. (For MS-MS data and identification and quantification of peaks 

1-19, see Table 4.2). 
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4.4 Plasma content and activity 

117 

Total phenolics in plasma were estimated with Folin Ciocalteu reagent using a 

modification of the method of Swain and Hillis, (1959) which avoids interference from 

proteins in biological samples (Serafini et al., 1998) as described previously in Chapter 

2 (section 2.3.1). Two separate HPLC methods were used to determine the plasma 
levels of six carotenoids (lutein/zeaxanthin, ß-cryptoxanthin, all trans-lycopene, a- 

carotene and all trans ß-carotene), retinol, a- and y-tocopherol and ascorbic acid (see 

sections 2.5.1 and 2.5.2). Antioxidant capacity of plasma was measured in the ESR- 

derived antioxidant assay and HPLC-MS-MS in the selective reaction monitoring mode 
(SRM) was used to identify plasma metabolites. Results obtained are shown in Tables 

4.3 and 4.4. 

4.4.1 Total phenolic concentration 

Twelve healthy volunteers consumed 375 mL of the red wine on a daily basis for two 

weeks and the amounts of the individual flavonoids and phenolics ingested per day are 

presented in Table 4.2. The main individual component was gallic acid at 59.6 mg per 
day while 28.4 mg of anthocyanins, 8.4 mg of flavonols and 72 mg of monomeric 
flavan-3-ols and proanthocyanidins were consumed each day. Consumption of red wine 

was associated with a small but significant 4.4 µM GAE increase (unpaired t-test) in 

plasma total phenolics which was associated with a7% increase in plasma antioxidant 

capacity which failed to achieve statistical significance (Table 4.3). Total phenolic 

levels were increased highly significantly (P=0.000) from 12.4 µM GAE at baseline to 

16.6 pM GAE following 2-weeks of daily red wine consumption in the red wine group. 

No change in plasma total phenolic concentration was observed in the control group. 
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4.4.2 Plasma levels of carotenoids, tocopherols, retinol & ascorbic 

acid 

The levels of six carotenoids (lutein/zeaxanthin, ß-cryptoxanthin, all trans-lycopene, a- 

carotene and all trans ß-carotene), retinol and a- and y-tocopherol in plasma were 

measured by reversed phase HPLC with absorbance and fluorimetric detection 

according to the method of Hess et al. (1991). The analysis was conducted under the 

auspices of the US National Institute of Standards Quality Assurance Scheme for fat- 

soluble vitamins and full details of the method are described in Chapter 2 (section 2.5.1) 

and in Duthie (1999). Ascorbic acid content was determined from 0.6 mL plasma and 

measured by reversed phase HPLC using an ion-pairing reagent with UV detection 

(Ross, 1994). Analysis was conducted under the US National Institute of Standards 

Quality Assurance Scheme for Vitamin C analysis in biological fluids and the method is 

described in detail in Chapter 2 (section 2.5.2) and in Duthie (1999). The plasma levels 

of carotenoids, tocopherols, retinol and ascorbic acid obtained are in agreement with 

previous studies (Mezzano et al., 2001; Higgins et al., 2001), however there were no 

significant changes in the plasma concentrations of a-and y-tocopherols, retinol and 

ascorbic acid following red wine consumption. Similarly no differences were observed 

between the groups in plasma concentrations of the individual carotenoids and data have 

therefore been presented as total carotenoids in Table 4.3. 

4.4.3 ESR-derived antioxidant activity 

Antioxidant capacity of plasma was measured in the ESR-derived antioxidant assay as 

described by Gardner et al. (1998). This method is based on the ability of antioxidants 

in plasma to donate a hydrogen atom or electron to the synthetic free radical potassium 

nitro-disulphonate (Fremy's salt). A 300 µL aliquot of plasma was added to 2.7 mL PBS 

and mixed with an equal volume of 50 µM of Fremy's radical in ethanol/water (12: 88, 

v/v). After 20 min following completion of the reaction the ESR spectra of the low field 

resonance of the Fremy's radical was obtained. Signal intensity was obtained by double 

integration and the concentration was calculated by comparison with a control reaction 

using ethanol/water (12: 88, v/v) without sample. 
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Values obtained ranged from 37.4% and 41 % radicals reduced/L at baseline and after 
2-weeks of wine consumption, respectively. However, the results obtained did not reach 

statistical significance (p=0.303). 

4.4.4 HPLC-MS detection of metabolites in plasma 

One hundred µL of plasma was extracted according to a modified method of Day et al. 
(1999) as described previously in Chapter 2 (section 2.7.1). HPLC-MS-MS in the SRM 

mode detected trace amounts of flavan-3-ol glucuronides of (+)-catechin and (-)- 

epicatechin in plasma of subjects in the red wine group post intervention (Table 4.4). 

Peaks M-1 (tR = 16.6 min, , max = 280 nm) and M-2 (tR = 23 min, , max = 280 nm) 
both had a [M-H]- at m/z 465 which yielded MS2 fragments (M-176, loss of a 

glucuronyl unit) corresponding to (+)-catechin/(-)-epicatechin at m/z 289 and 245. The 

[M-H]--176 loss is in keeping with the cleavage of a glucuronyl unit. The MS 

fragmentation pattern, together with the HPLC elution order, indicates that the earlier 

eluting M-1 peak is a (+)-catechin glucuronide while M-2 is an (-)-epicatechin 

glucuronide. 

Peak M-3 (tR = 21.6 min, Xmax = 280 nm) and M-4 (tR = 27.1 min, X, max = 280 

nm) also had similar mass spectra with a [M-H]" at m/z 479 which on loss of 176 amu 
(loss of a glucuronyl unit) yielded a MS2 ion at m/z 303. These fragments are 14 amu 
higher than the equivalent ions in the spectra of M-1 and M-2, indicating the presence of 

methylated flavan-3-ol glucuronides. M-3 is therefore probably a methyl-catechin 

glucuronide and the later eluting M-4 a methyl-epicatechin glucuronide (Table 4.4). 

Without reference compounds it was not possible to determine the positions on the 

flavan-3-ol skeleton of the methyl and glucuronic acid substituents. The most likely 

candidates for M-2 and M-4 are (-)-epicatechin-3'-O-glucuronide and 4'-O-methyl-(-)- 

epicatechin-3'-O-glucuronide which have been identified as the main metabolites in 

human plasma after ingestion of (-)-epicatechin. Other methylated and glucuronide 

conjugates of (-)-epicatechin were, however, also present, albeit in smaller amounts 

(Natsume et al., 2003). None of the four flavan-3-ol metabolites were detected in the 

plasma of subjects from the control group. 
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4.5 Measurement of indices of oxidative stress 

122 

Oxidative modification of LDL is a lipid perioxidation process and this study 
focused on measuring lipid hydroperoxides such as TBARS and conjugated dienes in 

copper oxidised LDL. Fasting plasma lipids including triacylglycerols (TAG), total 

cholesterol, LDL and HDL cholesterol were measured in fasting plasma and circulatory 
levels of homocysteine were also determined. Results obtained are shown in Table 4.5 

and Table 4.6. 

4.5.1 Production of lipid hydroperoxides 

LDL samples were adjusted to a concentration of 50 . tg LDL protein/mL and 1 µM 
EDTA in quartz cuvettes and oxidation was initiated by addition of 15 MM CuSO4 

according to the method of Kleinveld et al. (1992). Absorbance of the samples was 

measured at 234 nm, every 2 min at 30 °C. Maximal concentration of conjugated dienes 

(nmol/mg LDL protein), rate of production of conjugated dienes (nmol/mg LDL 

protein/min) and lag time (min) were estimated using exact co-ordinates provided by the 

kinetics software application. 

LDL that was oxidized for measurement of conjugated dienes was subsequently used 

for the measurement of TBARS, based on the method of Buege and Aust (1978). 

Following 3h oxidation, the reaction was stopped by addition of 200 µM EDTA and 40 

µM butylated hydroxytoluene and the samples were stored at 4°C for a maximum of 7 

d. TBARS were determined by adding 1.6 mL TCA-TBA-HCL reagent (15 % 

trichloroacetic acid: 0.375 % thiobarbituric acid: 0.25 mol HCL) to a 0.8 mL aliquot of 

the LDL solution (oxidized as above), mixing the sample, and heating it at 100°C for 15 

min. After placing the tubes in a bath of cold water for 5 min, samples were centrifuged 

for 10 min at 2000rpm. Absorbance was measured at 535 nm and quantification of 

TBARS was performed by comparison with a standard curve of malonaldehyde 

equivalents generated by acid catalysed hydrolysis of 1,1,3,3, -tetraethoxypropane. 
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The maximum concentration of conjugated dienes produced in copper-oxidised LDL 

was reduced significantly (paired t-test) (P=0.026) from 854 nmol/mg LDL protein at 

baseline to 715 nmol/mg LDL protein following wine consumption in the red wine 

group (Table 4.5). Similarly, the TBARS concentration (nmoles/mg LDL protein) in 

copper-oxidised LDL was reduced significantly (paired t-test) (P=0.050) from 69 

nmol/mg LDL protein to 50 nmol/mg LDL protein in the red wine group (Table 4.5). 

There were no significant changes observed in conjugated dienes or TBARS in the 

control group. 

4.5.2 Fasting plasma lipids 

Fasting plasma lipids including total cholesterol, HDL, LDL and triacylglycerol (TAG) 

concentrations were determined using standard procedures as described previously in 

Chapter 2 (section 2.8). LDL cholesterol concentrations were calculated using the 

Friedewald formula (Friedewald et al., 1972). There was a significant increase (paired t- 

test) in the level of HDL cholesterol (P=0.020) after 2-weeks of wine consumption in 

the red wine group, while no changes were observed in the control group. Values 

ranging from 0.92 to 2.21 mmol L-1 were obtained for subjects in the red wine group 

with an average value of 1.5 mmol L-1. No significant change was observed in other 

fasting lipids in either group (Table 4.6). 

4.5.3 Homocysteine concentrations 

Homocysteine concentrations were determined in plasma as described in detail in 

Chapter 2 (section 2.5.4). All subjects were within the normal range for plasma 

homocysteine levels (Range: < 15.9 µmol L-) (Manilow, 1994). Values ranging from 

4.9 to 11.6 µmol L-1 were obtained for subjects within the red wine group, with an 

average value of 7.8 µmol L-1. In the control group values ranging from 7.3 to 13.1 

µmol L-' were obtained with an average value of 9.8 µmol L"1. There appeared to be a 

reduction in the level of homocysteine in the red wine group compared with the control 

group, however did not reach statistical significance (p=0.082) (Table 4.6). 
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4.6 Discussion 

126 

There is a growing awareness of the potential health benefit of diets rich in fruits 

and vegetables and nutritional guidelines indicate that an increase in the consumption of 
foods rich in antioxidant nutrients may decrease the risk of CHD and certain cancers 
(The Scottish Office, 1993). Epidemiological studies have reported a reduction in the 

incidence of CHD with moderate daily red wine consumption, an anomaly referred to as 

the `French Paradox'. This effect has been ascribed to the low molecular weight 

phenolics in many plant based foods which can act as antioxidants because their 

extensive conjugated n-electron systems allow ready donation of electrons or hydrogen 

atoms from the hydroxyl moieties to free radicals (Scott, 1997). 

In the present study, moderate daily consumption of red wine for 2-weeks significantly 

increased plasma total phenolic concentrations (Table 4.3) by only 4.4 µM GAE which 

was also associated with a non-significant increase in antioxidant capacity. This is in 

contrast to several studies which have measured total phenols and plasma antioxidant 

activity at various time intervals up to 24 h following the consumption of red wine 

(Maxwell et al., 1994; Whitehead et al., 1995; Day et al., 1997; Duthie et al., 1998; 

Serafini et al., 1998). However, in such studies the increases in the plasma phenolics 

and antioxidant capacity decrease within 4h after wine ingestion. In the present 

investigation, blood samples for the measurement of antioxidant capacity were taken in 

the morning about 10-12 h after the consumption of red wine the previous evening 

which may indicate that the majority of the phenolics had cleared from the blood. This 

suggests that regular intake over 2 weeks does not lead to sustained increase in total 

phenols in the circulation. In the present study, there was a significant increase in the 

concentration of HDL cholesterol (P <_ 0.05) in the red wine group post-intervention 

(Table 4.6). HDL cholesterol concentrations are inversely associated with risk of CHD 

(Marques-Vidal et al., 1995). This is due to the role of these lipoproteins in carrying 

cholesterol from peripheral cells to the liver, where it is degraded and repackaged, a 

process known as 'reverse cholesterol transport' (Eisenberg, 1984). It is well 

documented that alcohol increases the concentration of HDL cholesterol (Gaziano et al., 

1993) and there is some evidence to suggest that red wine phenolics may provide a 

protective effect. Lavy et al. (1994) reported an increase in HDL cholesterol 
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concentrations following 2-weeks of daily moderate red wine consumption in healthy 

volunteers. These effects were not observed following consumption of white wine 
indicating that red wine phenolics may influence HDL cholesterol. In the present study 

while the changes in the concentration of HDL cholesterol were statistically significant, 

the change is small and unlikely to be of clinical significance. There were no significant 
differences (unpaired t-tests) in the lag-phase or in any of the other indices of LDL 

oxidation between the red wine and control groups, post-intervention (Table 4.5). 

However, within the red wine group (paired t-test); there was a significant reduction in 

the maximum concentration of conjugated dienes (P < 0.05) and TBARS (P < 0.05) 

post-supplementation. While the lag phase was not significantly increased in the red 

wine group, there was an increase in 8 of the 12 subjects. Our finding of a significant 

reduction in the concentration of conjugated dienes and TBARS without a statistically 

significant increase in the lag phase could lead one to suspect that there had been 

changes in LDL particle fatty acid composition. However, while we did not directly 

measure the LDL fatty acid composition, analysis using a computerised version of the 

food composition tables (Holland et al., 1991) of the subjects' daily diet records for the 

period of the trial revealed no significant changes in the quantity or in the quality of 

dietary fat intake. It is very unlikely, therefore, that the fat composition of the LDL 

particle was altered in the case of 8 of the 12 subjects and the 4 who responded 

differently were not distinct in this respect. Thus, while there was not a statistically 

significant reduction in susceptibility of LDL to oxidation compared with the control 

group, changes within the red wine supplemented group appear to show some protection 

against LDL oxidation. This is mostly likely to be due to the small but statistically 

significant increase in the plasma concentration of phenolics, which can bind to LDL 

and offer protection against LDL oxidation. It is likely that the difference in response 

was simply due to person to person variation in response to the red wine intervention, as 

individuals may respond differently to supplementation as has been suggested by 

Howard et al. (2002). Furthermore, the 4 subjects who did not show an increase in the 

lag-phase did not respond differently in their plasma phenolic concentrations, TBARS 

or the maximum concentration and the rate of conjugated dienes, leading us to the 

conclusion that compliance to the intervention was met. Two previous studies (Furhman 

et al., 1995; Nigdikar et al., 1998) have shown a reduction in LDL oxidation using 

similar red wine doses (375 mL/d and 400 mL/d, respectively) and intervention periods 
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(2 weeks) as the current study. However, there may be a number of possible reasons to 

explain this apparent discrepancy. The phenolic composition of the wine used in wine 
trials is important with regard to their effect on LDL oxidation (Howard et al., 2002). In 

the present study a Young Vatted Bulgarian Cabernet Sauvignon was used and the 
intake of (mg/d) phenolic compounds from the 375 mL serving of red wine was 165 

mg/d, with the majority of the phenolics derived from anthocyanins, gallic acid and total 
flavan-3-ols (Table 4.2). The overall levels of phenolics in the wines used in the studies 
of Nigdikar et al. (1998) and Fuhrman et al. (1995) were somewhat higher than in the 

present study, for example the amount of red wine phenolics ingested in the study of 
Nigdikar et al. (1998) was 248 mg/d in a 375 mL serving. This difference in dose may 
explain why we observed no statistically significant effect on LDL oxidation. A further 

consideration is that in the studies of Nigdikar et al. (1998) and Fuhrman et al. (1995) 

the LDL oxidation assays were carried out on fresh plasma samples. In this 
investigation EDTA-treated plasma was stored at -80°C for several weeks prior to being 

assayed. Our experience (Higgins et al., 2001), along with that of Esterbauer et al. 
(1993) and Kleinveld et al. (1992) is that this does not adversely affect the reliability of 
the oxidation assay. Another difference between the present investigation and the 

studies of Nigdikar et al. (1998) and Fuhrman et al. (1995) is that in both these studies 

the volunteers were male, while both male and female volunteers participated in our 

study. This could have increased the inter-individual variability in the response to the 

red wine intervention making it more difficult to see a statistically significant difference 

in the lag phase between the intervention and control groups. However, we did not find 

any differences in any of the parameters measured between male and female volunteers. 

A power calculation was carried out post-hoc to determine whether the number of 

subjects used in this study was adequate to see a statistically significant difference in the 

lag phase. The sample size was calculated based on a two-sample t-test 

(wedstaff@stat. ucla. edu). The number of volunteers required to see a difference was 

calculated to be n=16. Thus the number of subjects used in the present study was 

slightly less than the number required to see a difference at 5% significance level and 

80 % power. Although there was a trend towards a reduction in the plasma 

concentration of homocysteine in the red wine group the results were not statistically 

significant (Table 4.6). Elevated circulating levels of homocysteine are associated with 

an increased risk of cardiovascular disease (Refsum et al., 1998) and are affected by 



Catherine Tsang 129 

diet, mainly due to inadequate intakes of folate and vitamin B 12. There is evidence that 

a light to moderate consumption of alcohol is associated with lower fasting plasma 

concentrations of homocysteine, and this has previously been reported for beer (van der 

Gaag et al., 2002) and red wine (Dixon et al., 2002). Although beer contains folate and 

vitamin B6, red wine contains negligible amounts of vitamin B6, and it is unlikely that 

these micronutrients alone can explain the beneficial effect. Glucuronides of (+)- 

catechin and (-)-epicatechin and their methylated analogues were identified in plasma 
from the red wine group post-intervention (Table 4.4). However, the amounts present 

could not be quantified and are clearly not sufficient to make a significant contribution 

to the increased levels of phenolics detected in plasma after red wine consumption 

(Table 4.3). The presence of the flavan-3-ol metabolites is, however, in line with the 

findings of a previous study in which following consumption of a single serving of 120 

ml of red wine by human volunteers, (+)-catechin was detected in plasma after 

treatment with ß-glucuronidase and arylsulphatase (Bell et al., 2000). Although the red 

wine used in the present study contained a substantial amount of anthocyanins, 

particularly malvidin-3-glucoside (Table 4.2), no anthocyanins were detected in plasma 

despite a thorough search using HLC-MS-MS. This is in keeping with the findings of 

other human studies where reported urinary recoveries of anthocyanins after 

consumption of red wine or anthocyanin-rich produce, typically range from 0.05 to 0.11 

% of intake (Frank et al., 2003; McGhie et al., 2003). Similarly, very low plasma 

anthocyanin concentrations have been reported in humans (Cao & Prior, 1999) and 

frequently the levels are below the limits of detection (Felgines et al., 2002; Wu et al., 

2002). It is unclear at this juncture whether anthocyanins enter the circulatory system in 

trace amounts or whether they are absorbed in more substantial quantities and rapidly 

removed from the bloodstream. Likewise, although the red wine contained a high level 

of gallic acid, despite a thorough search no gallic acid or metabolites of gallic acid were 

detected in the plasma of volunteers who consumed red wine. 
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4.7 Conclusion 
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In summary, a moderate consumption, over a two week period, of a red wine, rich 
in gallic acid, flavan-3-ols and anthocyanins, significantly increased the concentration 

of total phenolics in plasma of human volunteers. This small increase may be due to the 

trace levels of glucuronide and methylated metabolites of flavan-3-ol monomers that 

were detected in plasma post red wine consumption. There were significant reductions 

in conjugated dienes and TBARS and a significant and modest increase in HDL 

cholesterol in the red wine supplemented group. The findings from this study support 

the protective effects of red wine reported from previous epidemiological studies and 

current medical opinion that moderate daily intake of red wine may reduce the risk of 

developing CHD. 
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Chapter 5 The absorption, metabolism and excretion 
of flavan-3-ols and procyanidins following the ingestion 
of a tannin-rich grape seed extract by rats 

5.1 Introduction 

Flavan-3-ols are a complex subclass of flavonoids encompassing the simple 

monomers (+)-catechin and its isomer (-)-epicatechin, and the oligomeric and polymeric 

procyanidins, commonly known as condensed tannins (Figure 5.1). The procyanidins 

are formed from the condensation of monomeric units, between 2-5 units for oligomers 

and over 5 units for polymers. Procyanidins differ in their position and configuration of 
their monomeric linkages, with the dimers B 1, B2, B3 and B4 being detected most 
frequently. Besides forming complexes with other flavan-3-ols, the monomeric flavan- 

3-ols are hydroxylated to form the gallocatechins, and also undergo esterification with 

gallic acid (Crozier, 2003). 

Flavan-3-ols are widely dispersed in the human diet and are one of the most abundant 
dietary flavonoids with red wine, tea, berries, apples and chocolate providing the richest 
food sources (Sanoner et al., 1999; Foo et al., 2000; Auger et al., 2004; Del Rio et al., 

2004). Although there are no accurate estimates of flavan-3-ol intake levels, it has been 

speculated that consumption ranges between 0.1-0.5 g/d, (De Pascual-Teresa et al., 

2000a; Scalbert & Williamson, 2000). The data of Arts et al. (2001 a) imply that flavan- 

3-ols may be one of the more effective groups of dietary phenolics in reducing the risk 

of coronary heart disease. In keeping with this possibility (+)-catechin and procyanidins 

have been shown reduce platelet aggregation (Ruf et al., 1995) and to act as powerful 

inhibitors of low-density lipoprotein (LDL) oxidation in vitro (Teissedre et al., 1996; 

Steinberg et al., 2003) and ex vivo (Kondo et al., 1996), events believed to play a 

crucial role in the preventing the onset of atherogenesis (Steinberg et al., 1989). It has 

also been demonstrated that consumption of a procyanidin-rich grape seed extract 

(GSE) reduces the incidence of cataracts in the eyes of hereditary cataractous (ICR/f) 

rats (Yamakoshi et al., 2002). (+)-Catechin and (-)-epicatechin are absorbed in humans 

and animals appearing in plasma and urine primarily as glucuronidated, methylated and 

sulphated metabolites following the ingestion of chocolate (Baba et al., 2001; Wang et 
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al. 2000; Rein et al., 2000), black and green tea (Warden et al., 2001; Yang et al., 1998; 

Piskula and Terao 1998) and red wine (Bell et al., 2000; Donovan et al., 1999). There 

is, never-the-less, conflicting evidence on the absorption and metabolism of the 

oligomeric and polymeric flavan-3-ols in humans and animals. Koga et al. (1999) 

observed the presence of (+) catechin and (-)-epicatechin and an absence of dimers in 

the plasma of rats following ingestion of a GSE. Extending this study, Donovan et al. 
(2002) fed rats a GSE, (+)-catechin and procyanidin B3 meals. While conjugated 

metabolites of (+)-catechin were detected in plasma and urine after both the (+)-catechin 

and GSE meals there was no evidence of absorption for the procyanidins. However, in 

another study (-)-epicatechin and (+)-catechin and trace amounts of procyanidin dimer 

B2 were detected in sulphatase- and ß-glucuronidase-treated human plasma collected 30 

min after ingestion of a cocoa beverage rich in flavan-3-ol monomers and procyanidins 
(Holt et al., 2002). In keeping with this report, it has been shown that after oral 

administration of B2 to rats, the dimer is absorbed and excreted in urine with a portion 

of the procyanidin being converted to (-)-epicatechin, which undergoes post-ingestion 

conjugation and methylation (Baba et al., 2002). 

This chapter reports on a comprehensive study of the absorption, excretion and 

sequestration in body tissues of (+)-catechin, (-)-epicatechin, their metabolites and 

procyanidin dimers and a trimer following the oral intake of a GSE by rats. Liver, 

kidney, brain and GI tract, together with plasma, urine and faeces were collected at 

several time points up to 24 h post-ingestion of the extract. Samples were extracted and 

analysed by HPLC-tandem mass spectrometry for the identification of flavan-3-ols and 

metabolites. 
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5.2 Animal and sample preparation 

135 

Sprague-Dawley male rats (n = 24), weighing 250 g±5g, were housed in 

metabolic cages allowing the collection of 24 h urine and faecal samples. Rats were 
deprived of food for 16 h before being fed by gavage a GSE containing monomers, 

oligomers and polymers of flavan-3-ols (1 g/kg body weight) dissolved in water (1 g 
GSE per 6 ml). Three animals were terminally anaesthetised with pentobarbital 0,1,2, 

3,4,6,12 and 24 h after administration of the GSE. Blood was removed by cardiac 

puncture with heparin moistened syringes and plasma was obtained by centrifugation at 
2000 g for 10 min at 4°C. Liver, kidney, brain, stomach, duodenum/jejunum, ileum, 

caecum, colon, urine and faeces were collected at each time point. All samples were 
immediately frozen in liquid N2 and stored at -80°C prior to analysis. All animals were 

maintained and handled according to the guidelines of the Committee on Animal Care 

and use at the University of Montpellier, France. 

5.3 HPLC with diode 
spectrometry 

array detection & tandem mass 

All samples were analysed on a Surveyor HPLC system comprising of a HPLC 

pump, diode array detector scanning from 250 to 700 nm, and an autosampler set at 4°C 

as previously described previously in Chapter 2 (section 2.6). Separation was carried out 

using a 250 x 4.6 mm i. d. 4 µm Synergi RP-Max column (Phenomenex, Macclesfield, 

UK) eluted at a flow rate of 1 mL/min. A mobile phase consisting of a 5-40 % gradient 

over 60 min of 1% formic acid and acetonitrile was used for the analysis of all samples 

except urine for which a 5-20 %, 60 min gradient was utilised. After passing through the 

flow cell of the diode array detector the column eluate was split and 0.3 mL was 

directed to a LCQ Deca XP ion trap mass spectrometer fitted with an electrospray 

interface (Thermo Finnigan, San Jose, USA). Analysis was carried out in negative ion 

mode operating in full scan mode from 100-2000 amu. Selective reaction monitoring 

(SRM) was used where compounds could not be identified using the full scan mode. 

With enhanced specificity and significantly reduced chemical noise this method was 

particularly useful for the identification and quantification of trace levels of 

procyanidins in urine. The conditions used were as outlined above except that the mass 
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spectrometer was in selected reaction monitoring mode. When screening for the 

presence of dimers the parent ion was m/z 577, collison energy 35 % and product ions 

were scanned from m/z 220-577. In the case of trimers, the parent ion was m/z 865 and 
product ions were scanned from m/z 350-865. 

5.4 Identification of grape seed phenolics 

In total 13 phenolic compounds were identified in the GSE by HPLC-MS-MS. 

The data obtained are illustrated in Figure 5.2 and summarized below and in Table 5.2. 
Where reference compounds were not available identifications were facilitated by 

previous analyses of flavan 3-ols in grapes seeds and GSE (Table 5.1). 

Peak 1 (tR = 6.2 min, , max = 280 nm) had a [M-H]- at m/z 865 with MS2 

yielding two major fragment ions at m/z 695 and 577. Based on the mass spectral data. 

this compound is a procyanidin trimer. Its elution prior to procyanidin dimer B3 (peak 2) 

(Santos-Buelga et al., 1995) indicates that it is probably C2, a known component of 

grape seeds (Romeyer et al., 1986). 

Peak 2 (tR = 12.1 min, ?, max = 280 nm) had a [M-H]- at m/z 577 with MS2 

yielding three fragment ions at m/z 425,407 and 289. This mass spectrum and co 

chromatography with an authentic standard established that peak 2 is procyanidin dimer 

B1, which has previously been detected in grape seeds (Ricardo da Silva et al., 1991). 

Peak 3 (tR = 13 min, 2, max = 280 nm) also had a [M-H]- at m/z 577 which 

fragmented to produce MS2 ions at m/z 425,407 and 289. Its elution prior to (+)- 

catechin (Sun et al., 1999) and co-chromatography with an authentic standard 

demonstrates that peak 3 is procyanidin dimer B3. 

Peak 4 (tR = 14.3 min, , max = 280 nm) had a [M-H]- at m/z 289 and MS2 

produced fragment ions at m/z 245 and 205. This mass spectrum and co chromatography 

with an authentic standard identifies peak 4 as (+)-catechin. 

Peak 5 (tR = 15 min, , max = 280 nm) produced a [M-H]- at m/z 1153 which on 

MS2 yielded ions at m/z 865 and 577. Although a reference compound was not 

available, the elution of this peak close to (+)-catechin and the mass spectral data 
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indicate that it may be a non-galloylated procyanidin tetramer, the presence of which 
has previously reported in a GSE. 

Peak 6 (tR = 15.5 min, , max = 280 nm) had a [M-H]- at m/z 865 with MS2 

producing three fragment ions at m/z 695,577 and 407. Based on the mass spectral data, 

this compound is a procyanidin trimer. Its elution between (+)-catechin (peak 4) and the 

dimer B4 (peak 7) indicates that it may be epicatechin-(4ß-8)-epic atechin-(4ß-8)- 

catechin previously identified in a GSE by Santos-Buelga et al. (1995). 

Peak 7 (tR = 16.2 min, , max = 280 nm) had a [M-H]- at m/z 577 which on MS2 

yielded three ions at m/z 425,407 and 289. This mass spectrum and co-chromatography 

with an authentic standard identifies peak 7 as procyanidin dimer B4, a known 

component of grape seeds (De Pascual-Teresa et al., 2000b). 

Peak 8 (tR = 17 min, , max = 280 nm) produced a [M-H]- at m/z 577 which 

produced MS2 fragments at m/z 425,407 and 289. The mass spectral data indicated the 

presence of a procyanidin dimer and co-chromatography with an authentic standard 
identified it as the B2 dimer. 

Peak 9 (tR = 18.8 min, 2, max = 280 nm) had a [M-H]- at m/z 289 which on MS2 

yielded two ions at m/z 245 and 205. This mass spectrum and co-chromatography with 

an authentic standard established that peak 9 is (-)-epicatechin. 

Peak 10 (tR = 20.7 min, , max = 280 nm) produced a [M-H]- at m/z 865, which 

yielded MS2 fragments at m/z 695,577 and 407. Based on the mass spectral data this 

compound is procyanidin trimer. 

Peak 11 (tR = 21.3 min, , max = 275 nm) had a [M-H]- at m/z 1153, and MS2 

yielded ions at m/z 865 and 577. This is in keeping with peak 11 being a procyanidin 

tetramer. 

Peak 12 (tR = 22.2 min, , max = 275 nm) had a [M-H]- at m/z 729, with MS2 

ions at m/z 577,407 and 289. These ions are similar to those observed with the 

procyanidin dimers in peaks 8 and 9 with the m/z 577 fragment resulting from a 154 

amu loss from the [M-H]- which is indicative of the cleavage of a gallate unit. On the 

basis of the MS2 spectrum, this compound is, therefore, a gallated procyanidin dimer. 

Although a reference compound was not available, the elution order of this peak after (- 

)-epicatechin (peak 9) and a procyanidin trimer (peak 10) along with the mass spectral 

data indicate that it is either B1-3-O-gallate or B2-3'-O-gallate both of which have been 

detected in grape seeds (Santos-Buelga et al., 1995). 
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Peak 13 (tR = 27.2 min, , max = 275 nm) had a [M-H]- at m/z 441 with MS2 

producing a fragment at m/z 289. This mass spectrum and co-chromatography with an 

authentic standard established that peak 3 is (-)-epicatechin-3-O-gallate. The levels of 
the 13 flavan-3-ols that were ingested when each rat was fed the GSE are presented in 

Table 5.2 together with the summarised analytical data. On a per kg body weight basis 

each rat ingested 23.2 mg of (+)-catechin, 14.4 mg of (-)-epicatechin, 28.4 mg of 

procyanidin dimers, 5.2 mg of trimers and 2.8 mg of tetramers. In addition, each rat also 
ingested a substantial but undetermined quantity of high molecular weight polymeric 

procyanidins whose presence in the GSE is evident from the increasing baseline and the 
broad unresolved band of components that elute across the HPLC-A280 chromatogram 
illustrated in Figure 5.2. 

Table 5.1 Flavan-3-ols isolated from grape seeds. 

Peak order Compound 
1 Catechin-(4a-8)-catechin-(4a-8)-catechin (C2) 
2 Catechin-(4a-8)-catechin (B3) 
3 Epicatechin-(4ß-8)-catechin (B1) 
4 (+)-Catechin 
5 Epicatechin-(4 f 3-8)-epicatechin-(4ß-8)-catechin 
6 Catechin-(4a-8)-epicatechin (B4) 
7 Catechin-(4a-8)-catechin-(4a-8)-epicatechin 
8 Epicatechin-(4ß-6)-epicatechin-(4ß-8)-catechin 
9 Catechin-(4a, 6)-catechin (B6) 
10 Epicatechin-(4ß-6)-epicatechin-(4ß-8)-epicatechin 
11 Epicatechin-(4p-8)-epicatechin (B2) 
12 Epicatechin-(4p-8)-epicatechin-3-O-gallate-(4ß-8)-catechin 
13 Epicatechin-3-O-gallate-(40-8)-epicatechin (B2-3-O-gallate) 
14 (-)-Epicatechin 
15 Catechin-(4a-6)- epicatechin-3-O-gallate (B4-3'-O-gallate) 
16 Epicatechin-(4ß-8)-epicatechin-(4ß-6)-catechin 
17 Epicatechin-3-O-gallate-(4ß-8)-catechin (B1-3-O-gallate) 
18 Epicatechin-(4ß-8)-epicatechin-3-0-gal late (B2-3'-O-gallate) 
19 Epicatechin-(40-6)-catechin (B7) 
20 Epicatechin-(4ß-8)-epicatechin-(4ß-8)-epicatechin (Cl) 
21 Epicatechin-(4ß-8)-epicatechin-(4p-8)-epicatechin-(4ß-8)-epicatechin 
22 (-)-Epicatechin-3 -0-gal late 
23 Epicatechin-3-0-gallate-(4f3-6)- catechin (B7-3-O-gallate) 
24 Epicatechin-3-O-gallate-(4ß-8)-epicatechin-3-O-gallate (B2-3,3'-O-digallate) 
25 Epicatechin-(4ß-8)-epicatechin-(4ß-8)-epicatechin-3-O-gallate 
26 Epicatechin-(4ß-8)- epicatechin-3-O-gallate-(4ß-8)-epicatechin-3-O-gallate 
27 Epicatechin-(4p-6)-epicatechin (B5) 

Adapted from Santos-Buelga et al. (1995). 
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5.5 Identification of flavan-3-ol metabolites in body tissues 
and fluids 

To reduce the sample weight to manageable proportions for HPLC analysis and 

obtain cleaner mass spectra, samples from three individual rats were combined and 

extracted according to the method of Mullen et al. (2002b) described in detail in 

Chapter 2 (section 2.7.2). The total weight of each organ and the amount of each organ 

used in the extraction method are summarised in Appendix II. Proteins in 1 mL volumes 

of plasma were precipitated and phenolics extracted as described in detail in Chapter 2 

(section 2.7.1) and in Mullen et al. (2002b). Using a 5-40 % acetonitrile gradient HPLC 

with MS-MS in the full scan mode four flavan-3-ol metabolites were detected in the GI 

tract, plasma, liver, and kidneys. The results of these analyses are summarized below 

and in Table 5.3. 

Peak M-1 (tR = 11.6 min, , max = 280 nm) and M-2 (tR = 14.5 min, , max = 280 

nm) both had a [M-H]- at m/z 465 which yielded MS2 fragments at m/z 289 and 245 

corresponding to (+)-catechin/(-)-epic atechin. The [M-H]-176 loss is in keeping with 

the cleavage of a glucuronyl unit. The MS fragmentation pattern, together with the 

HPLC elution order, indicates that the earlier eluting M-1 peak is a (+)-catechin 

glucuronide while M-2 is an (-)-epicatechin glucuronide. 

Peak M-3 (tR = 17.7 min, , max = 280 nm) and M-4 (tR = 20.7 min, , max = 280 

nm) also had identical mass spectra with a [M-H]- at m/z 479 which on loss of 176 amu 

(cleavage of a glucuronyl unit) yielded a MS2 ion at m/z 303. These fragments are 14 

amu higher than the equivalent ions in the spectra of M-1 and M-2, indicating the 

presence of methylated flavan-3-ol glucuronides. M-3 is therefore probably a methyl- 

catechin glucuronide and the later eluting M-4 a methyl-epicatechin glucuronide. 

Without reference compounds it was not possible to determine the positions on the 

flavan-3-ol skeleton of the methyl and glucuronic acid substituents. The most likely 

candidates for M-2 and M-4 are (-)-epicatechin-7-O glucuronide and 3'-O-methyl-(-)- 

epicatechin- 7-O-glucuronide which have been identified in rat plasma and urine after 

ingestion of (-)-epicatechin (Natsume et al., 2003). (+) Catechin is converted to 3'-O- 

methyl-(+)-catechin in rats (Nakamura and Tonogai, 2003), so M-3 may be a 3'-O- 

methyl-(+)-catechin glucuronide. However, no (+)-catechin glucuronides have been 
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structurally elucidated so it is not possible to speculate on the position of the 

glucuronide moiety in M-1 and M-3. 

Urine contained impurities that interfered with the analyses when HPLC was carried out 

with a 5-40 % gradient of acetonitrile. This was overcome with the use of a 5-20 % 

gradient which enhanced resolution and revealed the presence of the four previously 
detected metabolites (M-1, M-2, M-3 and M-4 at retention times of 14.1,19.0,26.0 and 
30.2 min, respectively) together with four additional urinary metabolites, U-1, U-2, U-3 

and U-4, which were not present in other samples (Table 5.3). 

Peak U-1 (tR = 24.6 min, 2, max = 280 nm) and U-2 (tR = 27.9 min, , max = 280 

nm) both had a [M-H]- at m/z 369 yielding a MS2 ion at m/z 289. The [M-H]-80 loss is 

in keeping with the cleavage of a SO3 unit. The MS fragmentation pattern, together with 
the HPLC elution order, indicates that the earlier eluting U-1 peak is a (+)-catechin 

sulphate while U-2 is an (-)-epicatechin sulphate. 

Peaks U-3 (tR = 29.2 min, , max = 280 nm) and U-4 (tR = 38.1, min, , max = 

280 nm) had a [M-H]- at m/z 383 which on loss of 80 amu (cleavage of a S03 unit) 

yielded a MS2 ion at m/z 303. These fragments are 14 amu higher than the equivalent 

ions in the spectra of U-1 and U-2, indicating the presence of methylated flavan-3-ol 

glucuronides. Based on the fact that 3'-O-methylation of flavan-3-ols predominates in 

rats U-3 is therefore probably a 3'-O methyl-(+)-catechin sulphate and the later eluting 

U-4, a 3'-O-methyl-(-)-epicatechin sulphate. This is the first direct evidence for the 

occurrence of sulphated flavan-3-ol metabolites in rats and as yet the position of the 

sulphate moiety remained undetermined. 
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5.5.1 Plasma flavan-3-ol metabolites 

144 

(+)-Catechin glucuronide (M-1), (-)-epicatechin glucuronide (M-2), methyl-(+)-catechin 

glucuronide (M-3) and methyl-(-)-epicatechin glucuronide (M-4) were detected in 

plasma (Table 5.3). This is shown in the HPLC traces in Figure 5.3 which illustrate data 

obtained with plasma collected 4h after GSE ingestion. The A280 nm trace contains a 

number of impurities in addition to the four flavan-3-ol metabolites and it is evident that 

M-3 is a shoulder on a contaminant peak. None-the-less full scan MS2 spectra, as 

summarized in Table 5.3, were obtained for all four metabolites which were quantified 
by using the enhanced selectivity obtained by monitoring the response at m/z 465 for M- 

1 and M-2 and m/z 479 for M-3 and M-4 (Figure 5.3). Unmetabolised (+)-catechin and 
(-)-epicatechin were not present in the plasma samples in detectable quantities and 

neither were procyanidin dimers, trimers and tetramers. The plasma pharmacokinetic 

profiles based on HPLC-MS-SRM analyses are illustrated in Figure 5.4a. Three h after 

GSE ingestion (+)-catechin glucuronide and (-)-epicatechin glucuronide attained peak 

plasma concentration of 10.3 ± 0.7 and 9.9 ± 0.1 pg/ml, respectively which corresponds 

to 36.0 ± 2.5 and 34.4 ± 0.2 µmoles/L. The glucuronide derivatives of methyl-(+)- 

catechin and methyl-(-)-epicatechin also peaked after 3h at 5.5 ± 0.1 and 3.3 ± 0.2 

pg/ml, 14 respectively. There was a ca. 20 % reduction in the concentrations of all four 

plasma flavan-3-ol metabolites at 4h after which the levels declined more rapidly 

(Fig. 5.4a). Assuming ca. 12 ml of plasma per rat, the peak plasma concentrations of the 

two (+)-catechin metabolites corresponds to ca. 3% of the (+)-catechin ingested and the 

(-)-epicatechin metabolites equate with ca. 4% of intake. 

5.5.2 Plasma antioxidant capacity 

The antioxidant capacity of plasma was measured in the ABTS+ antioxidant assay 

(Miller et al., 1993) as described previously in Chapter 2 (section 2.3.5). The 

antioxidant capacity of the plasma increased significantly (P < 0.05) from baseline 0.88 

± 0.0 to 0.97 ± 0.0 (10.4 %) and 1.06 ± 0.0 (21.5 %) mmol/L trolox equivalents at 2 and 

4h post ingestion of the GSE, respectively. Results are illustrated in Figure 5.4b. 
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Figure 5.3 Reversed phase HPLC analysis, with diode array and full scan MS2 

detection, of the flavan-3-ol metabolites (+)-catechin glucuronide (M-1), (-)-epicatechin 

glucuronide (M-2), methyl-(+)-catechin glucuronide (M-3), methyl-(-)-epicatechin 

glucuronide (M-4) in rat plasma collected 4h after the ingestion of a GSE grape seed 

extract. Extract analysed using a 60 min 5-40 % gradient of acetonitrile in 1% aqueous 

formic acid with detection at (A) 280 nm, (B) m/z 465 and (C) m/z 479. (For MS2 data, 

see Table 5.3). 
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Figure 5.4 (A) Pharmacokinetic profile of flavan-3-ol metabolites detected in rat 
plasma collected over a 0-24 h period after the ingestion of a GSE. Results are 
expressed as pg (+)-catechin equivalents/ml ± standard error, where n=3 (triplicate 

analysis of same sample). In all instances standard error bars are smaller than symbols. 
(B) Plasma antioxidant capacity expressed as mmol/L trolox equivalents ± standard 
error, where n=3 (triplicate analysis of same sample). 
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5.5.3 Urinary flavan-3-ol metabolites 

147 

A total of eight flavan-3-ol metabolites, methyl-glucuronides, sulphates and methyl- 

sulphates of the monomers (+)-catechin and (-)-epicatechin, whose LC-MS-MS 

identifications are outlined in Table 5.3, were detected in urine. HPLC data obtained 

with a 0-24 h urine sample are illustrated in Figure 5.5. The A280 nm trace contained 

numerous impurities (Fig. 5.5A) so the flavan-3-ol metabolites were quantified by MS 

with m/z 383 being used to detect and quantify the methyl derivatives of (+)-catechin 

sulphate (M-3) and (-)-epicatechin sulphate (M-4) (Fig. 5.5B) while m/z 369 was used to 

monitor (+)-catechin sulphate (U-1) and (-)-epicatechin sulphate (U-2) and as illustrated 

in Figure 5.5 m/z 383 for their methyl derivatives (U-3 and U-4). The flavan-3-ol 

glucuronide and methyl-glucuronide metabolites, M-1 to M-4 were analysed at m/z 465 

and m/z 479 as outlined previously with the plasma samples. Information on the 

cumulative excretion of the eight metabolites over 0-2,0-4 and 0-24 h time periods is 

presented in Table 5.4. The levels of (+)-catechin and (-)-epicatechin metabolites 

excreted, relative to the quantity of the monomers ingested were 1 and 2% respectively 

after 2 h, 13 % after 4h and 27 and 36 % after 24 h. No (+)-catechin and (-)-epicatechin 

were detected in the urine samples. HPLC-MS-MS in the SRM mode was used to 

analyse urine collected up to 4h after ingestion of the GSE and procyanidin dimers B 1, 
B2, B3 and B4 as well as the trimer C2 and the unknown trimer (that was peak 10 in the 

GSE) were identified (Fig. 5.6). Also analysis at m/z 865 revealed the presence of the 

trimer C1 an additional later eluting trimer that was also present in the ingested GSE. All 

these procyanidins were detected in low µg amounts (Table 5.5) which is much less 

than the levels of the urinary metabolites of (+)-catechin and (-)-epicatechin that were 

excreted in the first 4h after ingestion of the GSE (Table 5.4). 
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Figure 5.5 Reversed phase HPLC analysis, with diode array and full scan MS2 

detection, of methyl-(+)-catechin sulphate (U-3) and methyl-(-)-epicatechin sulphate 

(M-4) in rat urine collected 4h after the ingestion of a GSE. Extract analysed using a 60 

min 5-20 % gradient of acetonitrile in 1% aqueous formic acid with detection at (A) 

280 nm, (B) m/z 383. (For MS2 data, see Table 5.3). 
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Table 5.4 Cumulative Excretion of Flavan-3-ol Metabolites in Rat Urine 0-2,0-4 and 

0-24 After Oral Ingestion of a Grape Seed Extract. 

Peak Metabolite 0-2 h 0-4 h 0-24 h 

M-1 (+)-catechin glucuronide 40 ± 0.2 324 + 8.2 814 ± 49 

M-2 (-)-epicatechin glucuronide 11 ± 2.2 201 ± 1.0 635 ± 23 

M-3 methyl-(+)-catechin glucuronide 66 ± 7.7 332 ± 9.0 534 + 25 

M-4 methyl-(+)-epicatechin glucuronide 6.3 + 0.2 193 + 0.7 391 ± 48 

U-1 (+)-catechin sulphate 2.5 ± 0.1 27 ± 0.4 78 f 6.1 

U-2 (-)-epicatechin sulphate n. d. 39 ± 0.2 139 f 13 

U-3 methyl-(+)-catechin sulphate 2.3 + 0.2 45 ± 11 120 ± 1.1 

U-4 methyl-(-)-epicatechin sulphate 1.4 ± 0.1 29 + 1.4 152 ± 1.3 

Results are expressed as µg excreted per rat ± standard error, where. n=3. 
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Figure 5.6 Reversed phase HPLC analysis, with diode array and MS2 detection in the 

selected reaction monitoring mode, of procyanidin dimers (A) and trimers (B) in rat 

urine collected 4h after the ingestion of a GSE grape seed extract. Extract analysed 

using a 60 min 5-40 % gradient of acetonitrile in 1% aqueous formic acid with detection 

at (A) m/z 577 (B) m/z 865. 
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Table 5.5 Cumultive Excretion of Procyanidin Dimers in Rat Urine 0-4 h After Oral 

Ingestion of a Grape Seed Extract. 

Procyanidin Amount 

DimerBl 7.5±0.3 

DimerB2 4.2±0.2 

DimerB3 6.4±0.1 

Dimer B4 3.0 ± 0.4 

Trimer Cl 13.0 ± 0.1 

Unknown trimer 5.1 f 0.4 

151 

Results are expressed as µg excreted per rat ± standard error, where. n=3. 
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5.5.4 Flavan-3-ols and metabolites in the GI tract 

152 

The levels of flavan-3-ols and their metabolites that were detected in the various 

sections of the GI tract are presented in Table 5.6. Although the amounts fluctuated 

somewhat from time point to time point, presumably because of rat-to-rat variations and 

variable recoveries, which, precludes a detailed analysis of the data, certain trends are 

none-the-less apparent. One hour after GSE supplementation (+)-catechin, (-)- 

epicatechin and other flavan-3-ols were found the GI tract, the highest quantities were 

present in the stomach with low levels in the duodenum/jeunum and ileum. Trace 

quantities of metabolites, detected in the duodenum/jejunum and ileum 1h after the 

ingestion of the GSE, were identified as glucuronides of the monomers (+)-catechin and 

(-)-epicatechin and their methylated analogs. The amounts present in these organs at 2h 

corresponded to only 1.2 % and 2 %, respectively, of the (-)-epicatechin and (+)- 

catechin in the ingested GSE. Small amounts of flavan-3-ol metabolites were present in 

the duodenum/jejunum and ileum up to 6h after ingestion after which they were not 

detected. No metabolites were detected in the stomach, caecum and colon at any time 

point throughout the 24 h collection period although relatively small quantities of 

unmetabolised flavan-3-ols, including the B1, B2, B3 and B4 dimers, were present up to 

12 h after ingestion of the GSE. All the GSE flavan-3-ols were eliminated from the GI 

tract 24 h after ingestion. 
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5.5.5 Analysis of flavan-3-ol metabolites in the the liver, kidneys 
and brain 

HPLC-MS-MS analyses, as described above, identified glucuronidated and methylated 

metabolites of (-)-epicatechin and (+)-catechin in liver extracts collected 1 and 4h after 
ingestion of the GSE. The methylated conjugates were the major metabolites (Table 

5.7). None of the metabolites were present in subsequent liver samples collected 6,12 

and 24 after ingestion. The levels of metabolites detected in the kidney were low 

reaching a maximum by 4h post-ingestion with 134 and 28 µg per total catechin and 

epicatechin ingested, respectively. In the liver, a number of compounds were present 
from 1h after the grape seed extract. In the present study no metabolites could be 

detected in the brain using either full scan MS or SRM for glucuronides, methyl 

glucuronides or sulphates at any time point following ingestion of the GSE. 

5.5.6 Metabolites identified in the faeces 

HPLC-MS-MS with SRM detected trace non-quantifiable amounts of (+)-catechin 

glucuronide, (-)-epicatechin glucuronide and their methyl derivatives in the occasional 
faecal sample collected over a 24 h period after GSE ingestion. They were, however, 

not detected in the majority of samples that were analysed. 
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Table 5.7 Levels of flavan-3-ol metabolites in liver and kidney of rats over a 24 h 

period after the ingestion of a GSE. 

Organ Time (h) CGIcUA ECGIcUA McCG1acUA McECG1cUA 
Liver 1 4.3±01 2.5±2.0 57± 1.3 21± 0.1 

2 n. a. n. a. n. a. n. a 
3 n. a. n. a. n. a. n. a 
4 2.3±0.1 1.3± 1.0 45± 10 20±0.9 
6 n. d. n. d. n. d. n. d. 
12 n. d. n. d. n. d. n. d. 
24 n. d. n. d. n. d. n. d. 

Kidney 1 n. d. n. d. n. d. n. d. 
2 7.6 ± 0.1 4.1 ± 0.2 87 ± 0.1 9.1 ± 0.3 
3 2.7 ± 0.2 1.2 ± 0.3 8.4 ± 0.4 2.7 ± 0.4 
4 3.1±0.2 2.1±0 131±1.0 26.3±2.5 
6 2.7±0.6 2.3±0.1 58±0.3 8.2±0.3 
12 n. d. n. d. n. d. n. d. 
24 n. d. n. d. n. d. n. d. 

Results are expressed a µg per organ ± standard error, where n=3. CG1cUA-(+) 

catechin glucurnide; ECG1cUA-(-)-epicatechin glucuronide: McCG1cUA-methyl 

catechin glucuronide: McECG1cUA-methyl-epicatechin glucurnide; n. a. -not analysed; 

n. d. - not detected. 
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In the present study rats were fed a single acute dose of a flavan-3-ol rich USE. The 

mean amounts fed to each rat by gavage were 5.8 mg of (+)-catechin, 3.6 mg of (-)- 

epicatechin, 4.3 mg of procyanidin dimers, 1.3 mg of trimers and 0.7 mg of tetramers 

(Table 5.2). This dose is equivalent to ca. 700 mg GSE based on a 19/kg body weight 
basis for a 70 kg human. In terms of obtaining this amount in the diet, three glasses of 
the red wine used in this study (Chapter 4) would provide ca. 600-700 mg of grape 
derived polyphenols. This amount is unlikely to be consumed in a typical diet and other 
dietary sources are likely to provide additional sources. In addition, the GSE contained 

a substantial, but undetermined, quantity of high molecular weight polymeric 

procyanidins. Relatively high levels of the various components in the GSE remained in 

the stomach for 6 h, declined by 12 h and had disappeared after 24 h. Small amounts of 
GSE phenolics appeared in the duodenum/jejunum and to a greater extent the ileum 

after 1h and in both instances had disappeared by 12 h. The phenolics were detected in 

the caecum 2h after ingestion and only trace amounts remained after 12 h. Smaller 

amounts were found in the colon 3-12 h after gavage. The vast majority of compounds 
detected in the GI tract were the original GSE flavan-3-ols with only trace levels of four 

metabolites occurring in the duodenum/jejunum and ileum. The data presented in Table 

5.6 do not show either a sizable increase in either (+)-catechin or (-)-epicatchin or a 

concomitant decrease in the relative amounts of dimers which supports the view that 

oligomeric proanthocyanidins are not depolymerised into monomeric flavan-3-ols to 

any extent, if at all, during passage through the stomach and GI tract (Donovan et al., 

2002; Rios et al., 2002; Nakamura and Tonogai, 2003). HPLC retention data and MS2 

fragmentation patterns indicated that the trace levels of flavan-3-ol metabolites 

appearing in the GI tract were a (+)-catechin glucuronide and a methyl-(+)-catechin 

glucuronide together with the corresponding (-)-epicatechin derivatives which in view 

of earlier studies with rats (Natsume et al., 2003) were tentatively identified as (-)- 

epicatechin-7-O-glucuronide and 3'-O-methyl-(-)-epicatechin-7-O-glucuronide (Table 

5.3). The fate of the GSE flavan-3-ols in the GI tract of rats is, therefore, very different 

to that of quercetin-4'-glucoside which undergoes very rapid conversion to a mixture of 

glucuronide, methyl and sulphated metabolites with only 25 % of the parent glycoside 

remaining after one hour (Mullen et al., 2002b). In marked contrast to the GI tract 



Catherine Tsang 157 

where the parent GSE flavan-3-ols were the major components, the circulatory system 

contained only the four previously mentioned flavan-3-ol metabolites in detectable 

quantities. Three hours after ingestion a peak plasma concentration of ca. 35 µmole/L 

was attained with the (+)-catechin and (-)-epicatechin glucuronides with their 

methylated derivatives present at 2-3 fold lower levels (Figure 5.4). The peak plasma 

concentrations of the two (+)-catechin metabolites corresponds to ca. 3% of the (+)- 

catechin ingested and the (-)-epicatechin metabolites equate with ca. 4% of intake. 

There was a statistically significant increase in the plasma antioxidant capacity at 2 and 
4h post-ingestion of the GSE (Fig. 5.4b). However, this increase did not coincide with 
the peak plasma concentration of metabolites at 3 h. A previous study with rats has 

shown an increase in the plasma antioxidant capacity following ingestion of (-)- 

epicatechin and quercetin. The major circulatory compounds in the plasma were 

conjugated derivatives indicating that they may play a role in the antioxidant defences 

of plasma (Terao, 1999). The apparent discrepancy observed in the present study may 

simply have been due to inter-individual differences between each rat. The levels of the 

metabolites in the bloodstream were far greater than the amounts present in GI tract. 

This is in keeping with the methylation and glucuronidation of (+)-catechin and (-)- 

epicatechin occurring on the luminal side of the endoplasmic reticulum of the small 
intestine during transport into the blood stream (Kuhnle et al., 2000; Donovan et al., 

2001). The small quantities of metabolites in the GI tract could be due to either low 

level efflux back into the lumen of the intestine or enterohepatic recirculation via the 

bile. Trace levels of the methylated and glucuronidated flavon-3-ol metabolites were 

also detected in liver and kidney extracts (Table 5.3) but they were excreted in much 

higher amounts in urine along with four sulphated metabolites, namely (+)-catechin 

sulphate, that were not present in either the GI tract, the liver and kidneys or the 

circulatory system. In contrast to other studies, no free (+)-catechin or (-)-epicatechin 

were detected outside the GI tract, although trace quantities of the procyandin B1, B29 

B3 and B4 dimers and the C2 trimer were detected in urine (Figure 5.6, Table 5.5). The 

levels of (+)-catechin and (-)-epicatechin metabolites excreted relative to the quantity of 

the monomers ingested were 27 and 36 %, respectively, after 24 h. This is similar to the 

37 % urinary excretion reported to occur after feeding (-)-epicatechin to rats (Donovan 

et al., 2002). This provides further, albeit indirect, evidence that the procyanidin 

oligomers in the GSE were not depolymerised to monomers to any extent after 
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ingestion. If this had occurred the level of recovery of the monomeric metabolites in 

urine is likely to have been substantially higher than the 37 % obtained by Donovan et 

al. (2002) after feeding rats with (-)-epicatechin. The ca. 30 % recovery of the ingested 

(+)-catechin and (-)-epicatechin as metabolites in urine is well in excess of comparable 
figures of ca. 2-3 % and 0.1 % that are typically obtained with flavonols and 

anthocyanins, respectively (Prior et al., 2003). However, this still leaves 70 % of the 
ingested monomer unaccounted for and although seemingly not absorbed to any extent, 

only miniscule small amounts of the procyanidins in the GSE reach the colon (Table 

5.6) and are excreted in faeces. The most likely fate of these compounds is that they are 

converted to low molecular weight phenolic acids (Deprez et al., 2000; Gonthier et al., 
2003a) most notably 3-hydroxyphenylpropionic acid (Ward et al., 2004). These 

compounds were not analysed in the current study. They have a low extinction co- 

efficient and a , max below 250 nm and as a result are not readily detected with a diode 

array detector and, in addition, they do not ionize readily when subjected to MS with an 

electrospray interface. Although HPLC-MS with an electrospray interface has been 

used to analyse phenolic acid (Gonthier et al., 2003b) the method lacks the sensitivity it 

exhibits with many flavonoids so quantitative analyses has to be based on selected 

reaction monitoring rather than full scan MS (Gonthier et al., 2003c). The method of 

choice of many investigators when analyzing putative phenolic acid catabolites is gas 

chromatography-mass spectrometry with electron impact ionization (Rechner et al., 
2002; Olthof et al., 2003). Moreover, despite a thorough search by HPLC-MS-MS no 

metabolites could be identified in the brain in either full scan or SRM. El Mohsen et al. 

(2002) reported the presence of (-)-epicatechin glucuronide and 3-0-methyl epicatechin 

glucuronide in rat brain extracts following the ingestion of (-)-epicatechin. In this study 

rats were fed by gavage a dose of 100 mg/per kg body weight, which is ca. 20 mg (-)- 

epicatechin ingested per rat. This is vastly higher (ca. 5-fold) than the dose of 3.6 mg (- 

)-epicatechin ingested by each rat in the present study, and therefore it is likely that the 

reason we failed to detect any such metabolites in the brain was simply due to the 

differences in the dose supplemented. 
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5.7 Conclusion 

In summary, the present investigation indicates that flavan-3-ol monomers, 

oligomers and polymers can be directly absorbed into the bloodstream while the 

monomers are metabolised into glucuronidated and methylated conjugates, which may 

contribute to an increase in the antioxidant capacity of plasma. This study provides 
further, albeit indirect, evidence that the procyanidin oligomers in the GSE were not 
depolymerised to monomers to any extent after ingestion. Their cardioprotective effects 

stem from the ability to inhibit lipid peroxidation, chelate redox-active metals, and 

attenuate other processes involving reactive oxygen species. Further investigation of the 

metabolism of these phytochemicals is justified to extend structure-activity relationships 

to preventive and therapeutic nutritional strategies. 
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The research presented in this thesis has reported on a series of investigations 

undertaken in an effort to determine the antioxidant activity, protective effects and 

absorption of phenolic and polyphenolic compounds in red wine. This work has 

identified and quantified the major antioxidant phenolics in red wine and has shown that 

some of these phenolics, namely the flavan-3-ols are bioavailable in humans following a 

moderate and regular consumption of red wine which may contribute to some of the 

protective effects observed. (+)-Catechin, (-)-epicatechin, procyanidin dimers (B i, B29 

B3 and B4) and trimers (C2 and an unknown trimer) are directly absorbed into the 

bloodstream from the GI tract in rats. Conjugated derivatives of the monomers are 

present in detectable amounts in the plasma, urine, liver and kidney and to a lesser 

extent in the proximal small intestine. The oligomers do not appear to be depolymerised 

in the GI tract releasing monomers however their metabolic fate remains undetermined. 

6.1 Identification of the major antioxidants in red wine 

In the present investigation red wines were analysed for their phenolic content and 

antioxidant activity. The combination of three different techniques HPLC, MS2 and 

HPLC with on-line detection of antioxidant activity enabled the identification of the 

major phenolics in red wines together with their individual contribution to the total 

antioxidant activity (Chapter 3). Extensive research has focused on the identification of 

the active components in red wine; however the isolation of these compounds has been 

met with little success as existing techniques have been unable to fully separate and 

isolate single phenolic compounds in such complex mixtures. Many studies have 

focused on separating phenolics in red wine using solid phase and liquid-liquid 

extraction procedures. However, this approach lacks specificity due to the differences in 

polarity between different phenolics within a group and as such previous studies have 

reported inconsistent findings. Large-scale preparative HPLC was initially used to 

separate wine into 60 aliquots, although it did now allow for the complete separation of 

red wine components the results indicate that increasing antioxidant activity was highly 

and significantly correlated with increasing total phenolic and catechin content of each 
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wine fraction. Recently sensitive and reliable on-line methods of analysing radical 

scavenging activity have been developed (Dapkevicius et al., 2001, Koleva et al., 2001). 

Such methods require a stable model free radical system such as 2,2-azinobis (3- 

ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS) with radical scavenging 

activity assessed in comparison to the water-soluble synthetic vitamin E derivative 

Trolox. On-line assessment of antioxidant activity allows complex mixtures to be 

separated by HPLC and the antioxidant contribution of individual components can be 

evaluated. In summary the present study has demonstrated for the first time the 

identification and quantification of the major phenolic contributors to the total 

antioxidant activity in red wine. Red wine is a rich source of antioxidants and gallic 

acid, (+)-catechin, (-)-epicatechin and procyanidin dimers B1 and B2 contributed to the 

antioxidant potential. The findings, however, should be taken within the context of this 

study and are not representative of red wines in general as variations in grape type, 

vintage and vinification methods are known to influence the levels of phenolics. 

6.2 Protective effects of red wine 

In this study daily moderate consumption of an antioxidant rich red wine for 2- 

weeks in healthy volunteers was associated with a small but significant increase in the 

plasma total phenolic concentration. Trace levels of flavan-3-ol metabolites, mainly 

glucuronides and methyl glucuronides of (+)-catechin and (-)-epicatechin were detected 

in the plasma of the red wine group indicating that these phenolics are absorbed from 

the GI tract (Chapter 4). The flavan-3-ols; (+)-catechin, (-)-epicatechin, procyanidin 

dimers 131 and B2 were identified as the major in vitro antioxidants in this red wine 

(Chapter 3). The findings from the present study confirm and extend previous reports 

that some phenolic compounds in red wine are absorbed and metabolised in the human 

body. These metabolites may contribute to protective effects such as raising HDL 

cholesterol concentrations and enhancing the resistance of LDL to withstand oxidative 

modification. It is possible that other phenolics and/or metabolites were present in the 

plasma that were undetected or may have been present in levels which were below the 

limits of detection. The possible health effects of red wine are therefore likely to be due 
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to the cumulative effects of phenolic compounds (Serafini et al., 1998) and alcohol 

working in synergy (Duthie et al., 1998). 

6.3 Absorption, metabolism & excretion of flavan-3-ols in 
rats 

In the present investigation glucuronidated, methylated and sulphated metabolites 

of (+)-catechin and (-)-epicatechin were exclusively detected in the plasma and urine, 

with only trace amounts of metabolites occurring in the duodenum/jejunum and ileum 

of rats following the ingestion of a GSE. (-)-Epicatechin has been shown to be modified 

on absorption during transfer across the small intestine (Kuhnle et al., 2000). UDP- 

glucuronosyl transferase has been found in the mucosa of the upper half of the small 
intestine, caecum and upper half of the large intestine (Piskula & Terao, 1998) 

confirming that conjugation of flavan-3-ols can take place in the intestine. The fate of 
GSE flavan-3-ols in the GI tract are in contrast with the findings of Mullen et al. (2002), 

whereby quercetin-4'-glucoside was very rapidly converted to a mixture of glucuronide, 

methyl and sulphated metabolites with only 25 % of the parent glycoside remaining 

after one hour. Methylation and glucuronidation of (+)-catechin and (-)-epicatechin 

occurs on the luminal side of the endoplasmic reticulum of the small intestine during 

transport into the blood stream (Donovan et al., 2001). Therefore the small quantities of 

metabolites in the GI tract in the present study indicate either low level efflux back into 

the lumen of the intestine or enterohepatic recirculation via the bile. Trace quantities of 

the procyandin B 1, B2, B3 and B4 dimers and the C2 trimer were detected in urine 

suggesting that these compounds have limited bioavailability. The levels of (+)-catechin 

and (-)-epicatechin metabolites, excreted relative to the quantity of the monomers 

ingested, were 27 and 36 %, respectively after 24 h in agreement with Donovan et al. 

(2002). This provides further, albeit indirect, evidence that the procyanidin oligomers in 

the GSE were not depolymerised to monomeric flavan-3-ols to any extent, if at all, 

during passage through the stomach and GI tract. 
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Research into the alleged health benefits of phenolic and polyphenolic compounds 

continues to have considerable potential however many questions remain to be 

answered. Extending the work in this thesis ileostomy studies would provide valuable 
information on the absorption and/or modification of phenolics occurring in the small 
intestine following red wine consumption. This information could then be related to the 

levels of phenolics detected in plasma and urine giving an indication of the extent of 

metabolism and sequestration within the human body. The fate of compounds escaping 
digestion in the stomach and small intestine is little understood and future work should 
investigate the role of colonic bacteria in this regard. Incubation of red wine phenolics 

with human faecal samples and subsequent analysis of the metabolites by LC-MS2 

would provide further insight into the nature of these compounds. Moreover, the 

biological importance of the conjugated derivatives and microbial metabolites of 

polyphenols should be evaluated and future in vitro studies should focus on the activity 

of these compounds instead of the parent compound. 

Finally, any health benefit arising from red wine must be considered within the 

context of the adverse effects of excessive alcohol consumption, and should not be 

actively promoted. A balanced diet rich in fruits and vegetables and low in saturated fat 

is recommended for good health supplemented by moderate consumption of red wine, 

green tea and dark chocolate, according to taste. 
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Appendices 
Appendix I: 

Information Sheet (Chapter 4) 

Title of study: 

204 

The effect of red wine consumption on the susceptibility of plasma and low-density 
lipoprotein (LDL) to oxidative modification in healthy volunteers. 

You are being invited to take part in a research study. Before you decide it is important 
for you to understand why the research is being done and what it will involve. Please 
take time to read this information very carefully and discuss with friends and family if 
you wish. Ask us if there is anything that is not clear or if you would like more 
information. Take time to decide whether or not you wish to take part. If you decide to 
take part in this research study, you should understand enough about the risks and 
benefits to make an informed judgement. This process is known as informed consent. 
Once you understand about the study, you will be asked to sign a consent form if you 
wish to participate. 

What is the purpose of this study? 

A number of large studies have shown that a moderate alcohol intake may be protective 

against the death from coronary heart disease (CHD). There is evidence that red wine 

can offer a greater protection than white wine, beer or spirits. The protective effects 

have been attributed to substances known as phenolic compounds contained in red wine. 

It is believed that compounds in red wine act as antioxidants. Antioxidants protect the 

body from damaging oxidation reactions caused by `free radicals'. The oxidation of 

low-density lipoproteins (a protein which carries cholesterol in the blood) is one such 

damaging reaction. When LDL becomes oxidised or damaged by `free radicals' it can 

result in a series of steps that are believed to be involved in the development of 

atherosclerosis which can lead to CHD. Phenolic compounds in red wine are mainly 

from grapes and, in particular, the skins and seeds which are removed during the 

procedure to make white wine. There are large variations in the phenolic contents of 
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different wines depending on the grape, variety, climatic conditions in which the grapes 
are grown and the wine-making techniques. 

The purpose of this study is to find out if the consumption of red wines that have been 
shown to be rich in antioxidant phenolic compounds can influence indicators of 
oxidation in the blood. 

What will it involve? 

You will be involved in the study for approximately 4 weeks and we hope to start the 
study in June 2001. Prior to starting the study we will ask you to complete a 
questionnaire called a food frequency questionnaire so we can assess your usual intake 

of antioxidant rich foods such as fruits, vegetables, tea and wine. During the study you 
will be asked to follow your usual eating habits but to avoid phenolic rich 
foods/beverages and all alcohol. You will be required to give fasting blood samples 
before and after the wine-drinking period. You will also be required to fast overnight 
before giving blood. This means not having anything to eat or drink from about 8 pm 
the evening before. The blood samples will be taken by a qualified nurse in the 

morning. 

Can you tell me more about the wine? 

Moderate intake of wine has been shown in a number of large studies to be protective 

against CHD. In fact, a consumption of a moderate amount of wine is recommended as 

part of a healthy, balanced diet. In this study, volunteers will be asked to drink 2-3 

glasses of red wine every day for two weeks. The wine used in this study will be 

commercially available. 

What are the benefits in taking part in this study? 

CHD is a major cause of death in Scotland. Diet is believed to play an important role in 

the development of this disease. This study aims to increase understanding of the 

manner in which dietary constituents affects our overall dietary intake in relation to 

heart disease risk. The findings of the study will be published in the scientific and 

medical literature so that understanding of the ways in which diet can influence the risk 

of CHD can be increased. 
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Are there any risks involved? 
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Taking blood samples can cause minor bruising. Very rarely it may cause inflammation 

of the vein and possible infection. A qualified and experienced nurse will be employed 
to take the blood samples and they will make every effort to avoid this happening. 

Drinking 2-3 glasses of wine will cause drowsiness and may impair your judgement and 
therefore, you should not drive, cycle or operate mechanical instruments afterwards. To 

take part in this study, it is important that you are healthy and not suffering from any 
illnesses such as CHD, cancer or diabetes or not taking any medication (other than the 

contraceptive pill). As alcohol consumption is not recommended for pregnant women, 

you should not take part in the study if you are pregnant. Other exclusion criteria for the 

study are: taking antioxidant/nutrition supplements and excessive alcohol consumption 

which means drinking more than 21 unites of alcohol per week for men and drinking 

more than 14 units for women (1 unit=half pint beer, small glass of wine/sherry, one 

pub measure of spirits). 

How inconvenient will the study be to me? 

Giving blood samples may be inconvenient to you. You will be required to come to the 

Department of Human Nutrition on two occasions to give a blood sample. You will also 

be required to fast overnight before giving blood. This means not having anything to eat 

or drink from about 8 pm the evening before. The blood sample will be taken by a 

qualified nurse in the morning. 

Confidentiality 

Although information will be stored by computer, each subject will be entered as a 

number rather than by name and will not be identifiable. This is in accordance with the 

data protection act. 
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Do I have to take part in this study? 
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Your decision to take part in this study is entirely voluntary. You may leave the study at 

any time. If you have any questions about the study you may contact Dr Siobhan 

Higgins, University Department of Human Nutrition, University of Glasgow, Yorkhill 

NHS Trust Hospital on: (0141) 201 0768. 



Catherine Tsang 

Statement of Informed Consent 
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The effect of red wine consumption on the susceptibility of plasma and low-density 
lipoprotein to (LDL) oxidative modification in healthy volunteers. 

I, (Name) ...................................................................................... 
Of (Address) .................................................................................. 

agree to take part in this research project described above. 

Dr/Mr/Mrs/Miss/Ms ........................................... has explained to me what I have 

to do, how it might affect me and the purpose of the research project. 

Signature of subject: ......................................... 
Date:............................ 

Signature of witness: ........................................ 
Date:........................... 
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