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Abstract 

This thesis devises a novel methodology based on probability theory, suitable for the 

construction of term-weighting models of Information Retrieval. Our term-weighting 

functions are created within a general framework made up of three components. Each 

of the three components is built independently from the others. We obtain the term- 

weighting functions from the general model in a purely theoretic way instantiating each 

component with different probability distribution forms. 

The underpinning idea on which we are able to systematically construct the term- 

weighting models is based on the notion of divergence from randomness. The leading 

theme of the divergence-from-randomness approach is that the informative content of a 

term can be measured by examining how much the term-frequency distribution departs 

from a "benchmark" distribution, that is the distribution described by a random process. 

Following this idea, the first two components of the framework provide an explanation 

to the duality existing in Information Retrieval between the distributions of topic-terms 

in a small set of documents (the elite set of a topic) and in the rest of the collection. 

The third component deals with the term-frequency normalization and is able to compare 

term frequencies within documents of different lengths. As a consequence, different prob- 

ability distributions can be used in the framework of the divergence-from-randomness 

approach. Our experiments utilise some of them to show that the framework is sound 

and robust and generates different but highly effective Information Retrieval models. 

The thesis begins with investigating the nature of the statistical inference involved 

in Information Retrieval. We explore the estimation problem underlying the process of 

sampling. De Finetti's theorem is used to show how to convert the frequentist approach 

into Bayesian inference and we display and employ the derived estimation techniques in 

the context of Information Retrieval. 
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We initially pay a great attention to the construction of the basic sample spaces of 

Information Retrieval. The notion of single or multiple sampling from different popula- 

tions in the context of Information Retrieval is extensively discussed and used through- 

out the thesis. The language modelling approach and the standard probabilistic model 

are studied under the same foundational view and are experimentally compared to the 

divergence-from-randomness approach. 

In revisiting the main information retrieval models in the literature, we show that 

even language modelling approach can be exploited to assign term-frequency normaliza- 

tion to the models of divergence from randomness. 

We finally introduce a novel framework for the query expansion. This framework is 

based on the models of divergence-from-randomness and it can be applied to arbitrary 

models of IR, divergence-based, language modelling and probabilistic models included. 

We have done a very large number of experiments and results show that the frame- 

work generates highly effective Information Retrieval models. 
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Legenda 

Symbols and notations 

D a text collection 

t a term 

q a query 

d a document 

w(qld) the weight of the query q given the document d 

tfq the term-frequency of t in the query q 

tf the term-frequency of t in the document d 

E a sample of the collection 

Eq the elite set of the query, the set of topmost doc- 

uments satisfying the query q according to the 

weight w(ql_) 

Et the elite set of the term, the set of documents con- 

taining the term t 

N the number of documents in the collection D 

avgl the average length of a document in the collection 

1, Id the length of the document d 

F, Ft, FE the total number of tokens of tin the collection, in 

Et, and in an arbitrary subset E 

TotFrD, TotFr the total number of tokens in the collection D and 

in a subset E of D 

PD, PD (t) the relative frequency 
F 

of tin the collection TotFrD 

Pd, Pd(t) the relative frequency if of t in the document 
d 

n, nt the document-frequency, the cardinality of Et, n= 

nt =1Etl 
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Symbols and notations 

B(F, k, p) the binomial distribution of F trials with probabil- 

ity p of success and k successes 

ne the number of documents containing a term accord- 

ing to the binomial distribution, N. (1 - B(Ft, 0, p)) 

r, rt the number of relevant documents containing the 

term t 

R the number of relevant documents of a query 

µ the parameter of the Dirichlet priors 

a the parameter of the query expansion 

c the parameter of the term frequency normalization 

H2 

D the Divergence of two distributions 

X the X divergence of two distributions 

KL the Kullback-Leibler divergence of two distribu- 

tions 

Inf (t E), the informative content of the term in E 

In fE(t) 

Basic Divergence-based Models 

D the Divergence approximation of the binomial 

P the Poisson approximation of the binomial 

BE the Bose-Einstein distribution 

G the geometric approximation of the Bose-Einstein 

I (n) the Inverse Document Frequency model 

I (F) the Inverse Term Frequency model 
1(ne) the Inverse Expected Document Frequency model 

First Normalization Models 

L the Laplace normalization 

B the Bernoulli ratio normalization 
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Second Normalization: Term Frequency Normalization 

Hl the uniform distribution of term frequencies 

H2 the logarithmic normalization 

H3 the Dirichlet normalization 

Z the Zipfian normalization 

Normalized Models 

DL1 the divergence basic model D, normalized by 

Laplace normalization L and by term frequency 

normalization 111 

I(ne)BZ the Inverse Expected Document Frequency basic 

model, normalized by the Bernoulli ratio normal- 

ization B and by the Zipfian term frequency nor- 

malization Z 
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Chapter 1 

Theoretical Information Retrieval 

This dissertation devises a methodology based on probability theory, suitable for the 

construction of models of Information Retrieval (IR). The term information retrieval 

refers to a very practical problem. We imagine a user who wishes to retrieve all the most 

relevant documents from a text collection. A system of IR has the task of producing 

an ordered presentation of documents in decreasing weight of relevance in response to 

the user inquiry. The kernel of an IR system is thus the model, that is the theoretical 

component which leads to the determination of the document-ranking. In short, we 

can say that IR modelling finds solutions to the inductive problem of predicting the 

relevance of a document to a query. Although the notion of relevance remains a most 

difficult, subjective and controversial notion to be defined [21], we postpone this problem 

and start with the frequentist approach of the statistician. The statistical data for IR 

comes from observations on the distribution of word occurrences within documents and 

over the entire collection. In statistics observations from empirical data are explained 

by distributions for which an exact mathematical form exists. Once the hypothesis on 

the type of distribution is formulated and successfully tested, we are in the position to 

estimate the values of the inherent parameters of the distribution-form. Consequently, 

the first general problem which may be stated by a statistical approach to Information 

Retrieval is that of determining the distribution-form of the word-frequencies. 

Early works on IR focused on this problem [30,113,14,52,53,54,13], and the 

form distribution of the word frequencies was indeed found to be the 2-Poisson model 

by Harter [52]. The 2-Poisson model is a mixture [114] of two Poisson distributions. 

16 
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Its generalization, the mixture of N Poisson distributions, has been also studied more 

recently [110,76]. 

Although the solution to this statistics problem has been known since the 70's, the 

exact connection of this result to the fundamental inductive problem of modelling rele- 

vance remains an open problem of Information Retrieval. 

The source of the difficulty is that words distribute over a collection according to the 

meaning, so that an occurrence of a word attracts the occurrence of the same or different 

words with a probability value which changes significantly over the document-collection. 

Following the terminology of statistics, a document is a sample of an unknown population 

and large variations of term-frequency from one document to another may witness a 

change of the population from which we are sampling. Two arbitrary documents should 

be in principle considered samples belonging to different populations, because they are, 

in general, dealing with different subjects and topics, so terms in them appear rarely or 

frequently depending on their principal content. Instead, the most difficult question is 

when two documents can be regarded to be samples of the same population. 

In general we have to accept that the a priori probability of occurrence of a word in 

an arbitrary document is not the same as the probability of occurrence of a word in a 

given document, since every document reflects some unknown population and has always 

a specific topic treated at a greater level of detail. In principle, there are 21VI possible 

"topics" or "queries" qE 2V generated by a vocabulary V of cardinality IV IEach topic 

q possesses an "elite set' Eq, with Eq C 2D possibly empty, describing at a greater level 

of detail the content of that topic, and all documents of this elite set can be regarded 

by a first approximation as if we were sampling from the same population. It would be 

as we had a single large document instead of a set of documents. This is what happens 

when we look at the content of the documents returned by any search engine. In many 

cases, this elite set can be pooled forming almost an homogeneous and coherent piece of 

text. An elite set can be considered as a set of samples from the same population, that 

is the population relative to the submitted query. 

The notion of eliteness was first introduced by Harter [52, pages 68-74] to explain the 

2-Poisson model. According to Harter, the idea of eliteness is used to reflect the level of 

treatment of a word in a certain small set of documents compared with the rest of the 
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collection. The main characterization of the elite set of a topic, is that a word occurs to 

a relatively greater extent than in all other documents. Harter defines eliteness through 

a probabilistic estimate which is interpreted as the set of documents which a human 

indexer assesses to be elite with respect to a word. 

Once the notion of eliteness is ostensively characterized by a set of documents that are 

sharing a specific topic as principal subject of their content, as if we were sampling from 

the same population, we might find it difficult to distinguish eliteness from relevance. 

Unlike eliteness, which is implicitly defined by word-frequency distributions, relevance 

is a primitive concept, similarly to "Truth" in Logic, and it defines a binary relationship 

between queries and documents. The relevance relationship is defined by the user, by 

common sense or by experts and it holds or not for each query-document pair indepen- 

dently from the informative content contained in the rest of the collection. Therefore, 

relevance should be conceived as an external notion to the IR model. The treatment of 

relevance as an external feature of the system [27] is not, in general, accepted. For exam- 

ple, the standard probabilistic model [90,91,86] or the BM25 formula [87], which is one 

of the most used model of IR, has a user's relevance feedback mechanism incorporated 

into the model (see Section 5.2.2 in Chapter 5). 

Our position in this dissertation is that relevance mainly concerns the evaluation 

of effectiveness of IR systems and it is the user-based or user-perceived counterpart of 

eliteness. 

Beside the application of relevance to the evaluation task, the feedback on relevance 

received by the users or provided by the test collections can be processed as further 

observations. With user's feedback the relevance may come into the estimation problem 

with a set of unknown parameters. The estimation of such parameters with relevance 

data defines a parametric approach to IR modelling. 

In a parametric approach data are assumed to be incomplete since the knowledge 

on relevance is provided by only a small number of query samples. A frequently used 

estimation technique consists in determining the values of the unknown parameters, for 

example maximizing the measure of the retrieval performance with a set of test queries. 

This estimation methodology is called the Best Match parametric method. 

A "parameter-free" IR model instead does not possess parameters which need to be 
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learned from observations on relevance provided by the test queries. 

An example of a non-parametric model is the vector space model (see Section 5.1). 

An example of a parametric model is the BM25 formula. The vector space model 

was outperformed by the more recent model BM25, but language modelling is now an 

emerging proposal for IR modelling [82,60,70,132,133]. However, BM25 still remains 

the most popular model among the participants of TREC, the main Conference dedicated 

to the evaluation of IR systems [46,49,50,122,123,121]. 

1.1 The intention of this Thesis 

The main objective of this dissertation is the definition of a novel methodology suitable 

for theoretical derivation of models of Information Retrieval. 

Beside this, we aim at deriving parameter-free models of IR, where the term "parameter- 

free" refers to the absence of parameters whose estimation depends on relevance but not 

from the text collection only. 
Our second objective is to investigate the nature of the statistical inference involved 

in Information Retrieval. This investigation is not only of theoretical interest but of 

practical purpose. Our initial motivation to undertake a theoretical approach to IR was 

that only a well founded theory could have led to the construction of highly effective 

IR models. Our term-weighting functions are thus created within a general framework, 

that is a "super-model" or, borrowing the term from the terminology of Logic, a "second- 

order model" of IR. This framework is made up of three components. Each of the three 

components is built independently from the others. These term-weighting functions are 

thus derived in a purely theoretic way from the general model instantiating each com- 

ponent with different probability distribution forms. The first two components provide 

an explanation to the duality existing in IR between the distributions of terms in the 

elite and non-elite sets of documents with respect to given topics. The third component 

is the term-frequency normalization, that is a component which is able to compare fre- 

quencies within documents of different lengths. As a consequence of our approach, its 

second most important feature is that different probability distributions can be used in 

the framework. Our experiments utilise them to show that the framework is sound and 

robust and generates different but highly effective IR models. This theoretical framework 
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has been successfully tested in the TREC-10 (see Table 7.13 at page 159) Conference [3] 

producing the best performing run at the WEB track (see Table 1.2 at page 39). In 

Chapter 8 we show that our theory of query expansion based on the divergence from 

randomness has further improved results (see Table 8.4 at page 180). 

In summary, our theory devices the construction of a class of effective probability 

based retrieval models rather than a single retrieval model. 

The basic idea of divergence from randomness is also applied to generate a query 

expansion framework. The first component of basic models of IR is used to weight terms 

of a new formulation of the original query. This time, the other two components are not 

needed because query expansion is reduced to the problem of having a unique sample 

relatively to an unknown population. 

The first three components of our framework are briefly introduced in the following 

sections. 

1.2 The origins of the proposal 

Our proposal is strongly influenced by works on automatic indexing by Damerau, Book- 

stein, Swanson and Harter [30,14,53,54]. These early models for automatic indexing 

were based on the distinction of the words into two complementary classes. There is the 

class of the function words, which have only a syntactical or modal role in the text, and 

the class of specialty words, which are informative content words. The function word 

distribution is closely modelled by a Poisson process, whilst specialty word-frequencies 

deviate from a distribution of a Poisson form. The specialty words appear more densely 

in a few "elite" documents, whereas function words, which are included in a list of words 

called a stop list, are randomly distributed over the collection, as predicted by a Poisson 

distribution with a mean of A. 

According to these early linguistic models a testable hypothesis is that the informa- 

tive content of a word can be measured by examining how much the word-frequency 

distribution departs from a "benchmark" distribution, that is a distribution of non- 

informative words, in, for example, a Poisson distribution. This is the underpinning idea 

on which we are able to systematically construct the models of IR based on the divergence 

from randomness. 
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To exemplify our position we take our point of view from Stone and Bookstein [131 

[... ]a content bearing word is taken to be one whose appearance in a 

document does serve to distinguish it from other documents and which thus 

occurs nonrandomly. 

We assume that the more the word distribution does not fit the probabilistic model pre- 

dicting a random appearance of the word, the more informative is. 

Harter assumed that a specialty word follows a second Poisson distribution on the 

elite set, obviously with a mean frequency it greater than the mean frequency A in the 

rest of the collection. His model was able to assign `sensible' index terms and was tested 

using a very small data collection and a few randomly chosen specialty words. Srinivasan 

and Margulis [110,76] corroborated this finding on the N-Poisson distributions using a 

more robust experimentation. 

However, eliteness is a hidden variable since it cannot be known in advance, and the 

estimation of the mean it is thus problematic. 
Harter's work was designed for automatic indexing, which concerns the automatic 

assignment of keywords to documents, but his proposal was not so general as to be 

included in any effective retrieval function. 

In our work, we start again from the same viewpoint as these early works and de- 

velop the foundation in order to provide a well-founded theory for constructing models of 

Information Retrieval. We do not try to start from scratch, for we agree that, it is quite 

intuitive to believe that a good automatic indexing function, like that of Harter, can be 

exploited as a good term-weighting function. Indeed, the potential effectiveness of Har- 

ter's model for a direct exploitation of eliteness in retrieval was explored by Robertson, 

Van Rijsbergen, Porter, Williams and Walker [91,87] who plugged the Harter 2-Poisson 

model [53] into the standard probabilistic model of Robertson and Sparck Jones [90] 

(see Section 5.2). 

Robertson, Van Rijsbergen and Porter used notions of both eliteness and relevance. 

The evolution of the 2-Poisson model as designed by Robertson, Van Rijsbergen and 
Porter has motivated the birth of a family of term-weighting forms called BMs (BM for 

Best Match) [87] (see Section 5.2.2 of Chapter 5). The most successful formula of this 

family, the BM25, was introduced in 1994 [87]. 
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Although the 2-Poisson distribution may have inspired the BM25, the BM25 for- 

mula cannot quite be considered the retrieval counterpart of the 2-Poisson model, or 

more generally the natural evolution of a theory of eliteness for retrieval. 

First, the BM25 formula was not formally derived from the Poisson model but it 

was introduced as a limit and a simplified version of the Robertson, Van Rijsbergen and 

Porter model (see the discussion in Section 5.2.2). 

Second, the BM25 contains many parameters which need to be tuned from data 

on relevance. The rationale for their introduction is empirical and therefore the nature 

of these parameters is unknown and finding well-founded estimates for the parameters 

remains a problem. The solution is presented in Section 7.1, where we derive the un- 

expanded version of the BM25 formula from one of our models, the I(n)L2 model (see 

Section 7.1). Since I(n)L2 is a parameter-free model, we have also formally derived the 

empirical values of the unknown parameters of the BM25. It is surprising but satisfying 

to discover that the derived values for these parameters are very close to the default 

values of the BM25, which have been acquired by means of empirical data on relevance 

within the Best Match method. This result is also an evidence which corroborates our 

foundational theory. 

Third, our aim is to model the inference process involved in IR. From the theory of 

our framework, we can explain why the BM25 has been considered for many years one 

of the most effective matching functions for document retrieval. We however make clear 

that in a class of highly performing models, of which the BM25 is an instance, other 

models can very often perform better than the BM25. 

We may even generate a more effective version of the BM25 by using the third 

component of our framework. We show that, enlarging the magnitude of the document- 

length on which we compare the term-frequencies inside the third component of the 

framework, we derive more effective models of IR. This means that BM25 is incomplete. 

An improved version of the BM25 may be derived by the I(n)L2 model but with this 

different document-length (see the discussion in Section 6.2.1). 
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1.3 The generating term-weighting formula 

We show that the weight of a term occurring tf times in a document is a function of two 

probabilities Probl (t f ID) and Probe (t f (Et) which are related by the following relation: 

in = (1 - Probe (t fI Et)) " (- loge Probl (t fI D)) _ 

(1.1) -loge Probi (tf ID)1- Prob2(tf IEt) 

where D is the document-collection of size N and Et is the elite set of the term. The 

term-weight is thus a decreasing function of both probabilities Probl and Probe. In 

Relation 1.1 we assume that the elite set Et of t is more simply the set of all documents 

containing the term. Therefore from now on, the subscript t in elite set Et denotes the 

elite set of a term in our sense and not in Harter's sense. 

Definition 1 The elite set Et of a term t is the set of documents containing t. 

The term-weighting function w derived with the first two components is a function 

of four random variables, that is 

w= w(t f, Ft, nt, N) 

where Ft is the number of occurrences of the term in a collection of N documents, nt the 

cardinality of the elite set of the term and tf is the within-document term-frequency. 

1.4 The first component: informative content 

The distribution Probl is introduced with similar arguments to those used by Harter. 

We suppose that terms which convey little information, are randomly distributed on 

the whole set of documents. We provide different basic probabilistic models, with a 

probability distribution Probl, that defines the notion of randomness in the context of 

Information Retrieval. We propose to define as models of randomness all probabilistic 

processes which use random drawings from urn, models or random placement of coloured 

balls in urns. Instead of urns we have documents, and instead of different colours we have 

different terms, where one term t can occur with a multiplicity F in these set of urns as 

anyone of a number of related words or phrases which are called tokens of that term. We 

thus offer different processes as basic models of randomness. Among these processes, we 



Chapter 1. Theoretical Information Retrieval 24 

study the binomial distribution and its approximations, and the Bose-Einstein statistics 

and its approximations, and also the inverse document-frequency model and some of its 

variants. 

The component of the weight of Formula 1.1 

(1.2) In fl = -1og2 Probl 

is defined as the informative content Infl of the term in the document. The definition 

of informative content as defined in Relation 1.2, that is - loge Prob, has appeared 

in semantic information theory [18,10,11,62,63] but the idea was actually that of 

Popper [83] (see Chapter 4). Fano used the term self-information for it [36]. 

A function which is decreasing monotonic with respect to Probl and additive with 

respect to independent events is unique and is In f1 up to a multiplicative factor [23,124]. 

Since Probl is the probability of having by chance, according to the chosen model of 

randomness, tf occurrences of a term t in a document d, the smaller this probability, the 

less its tokens are distributed in conformity with the model of randomness, and therefore 

the higher the informative content of the term. For example, any tautology is the certain 

event but it is trivially informative. 

Determining the informative content of a term can be conceived as an inverse test of 

randomness, that is as a measure of the extent the term distribution in the document 

departs from the random one. A uniform distribution over the space of events defines 

the random distribution. Obviously the elementary events of the space may be defined 

differently leading to have different models of randomness for Information Retrieval. This 

explains why we pay a lot of attention at the beginning in Chapter 2 to giving a clear 

definition of what is meant by the space of events in IR, since once the event space is 

circumscribed and we have clarified what are the samples and the populations involved 

in our inductive problem half of our work will be almost done. 

Popper [83] gave an alternative definition to the informative content: 

Inf =1- Probl 

With this in mind and looking at the fundamental Formula 1.1 we can see it as the 

product of two informative content functions, the first function Infl being related to the 
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whole document collection D and the second one In f2 to the elite set Et of the term: 

(1.3) w= Infl " Inf2 

The factor 1- Prob2 of Formula 1.1 is called the First Normalization of the informative 

content Infs. 

1.4.1 An exemplification of informative content: Bernoulli model of 
divergence from randomness 

We can illustrate the informative content defining just one of the models of randomness, 

that is the Bernoulli model of randomness, also called the Binomial model of randomness. 

The other models, which are fully introduced in Chapter 4 can be obtained with the same 

construction but varying the underlying sample space. 

We define Probl in the weighting function 1.1 by an example. Suppose that a lift is 

serving a building of 1024 floors and that 10 people take the lift at the basement floor 

independently of each other. Suppose that these 10 people have not arrived together. 

We assume that there is a uniform prior probability that a person gets off at a particular 

floor. The probability that any 4 people out of the 10 leave at any floor is 

B (1024,10,4) = 
10 

p4q 6=0.00000000019 
4 

1 1023 
where B is the binomial law, and p= 1024 and q= 1024 

The informative content function 1.2 is 

-1092 B (1024,10,4) = 32.29 

This toy problem is abstractly equivalent to the IR problem. It is sufficient to change 

the terminology by replacing "floor" with "document", "people" with "tokens of the 

same term", "leave" with "occur". The term independence assumption corresponds to 

the fact that people in the lift have not arrived together, or equivalently there is not a 

common cause which has brought any group of these people at the same time to take 

that lift. If F is the total number of tokens of an observed term t in a collection D of 

N documents, then we make the assumption that the tokens of a non-informative terms 

should distribute over the N documents according to the binomial law. 
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In the Bernoulli model of a document d we regard each token of a term as a trial of 

an experiment. A successful outcome for the term t is when t occurs in the document 

d. The a priori probability of success is the probability of retrieving the document d, 

which, in absence of knowledge, is obtained from a uniform distribution p=1 7V. 
Therefore the probability of tf occurrences in a document (successes) is given by 

Probe (t f) = Probe =B (N, F, t f) =F ptf qF-tf 

tf 
where p=I and q= 

Hence, the terms in a document with the highest probability Probl of occurrence as 

predicted by such models of randomness are "non-specialty" terms. Equivalently, the 

terms whose probability Probl of occurrence conforms most to the expected probability 

given by the basic models of randomness are non content bearing terms. Conversely, 

terms with the smallest expected probability Probl are those which provide the infor- 

mative content of the document. 

Figure 1.1 shows the informative content of the term "osteoporosis" within the doc- 

uments of the collection WT2g of TREC-8. The term occurs in 85 documents. Notice 

that the term-weights decrease very rapidly when the within-document term-frequency 

tf diminishes. 

1.5 The second component: apparent aftereffect of sam- 

pling 

Now, we introduce the role played by the probability denoted by Prob2 in the fundamen- 

tal Equation 1.1. The informative words are rare in the collections but, in compensation, 

when they occur their frequency is very high. More specifically, the 2-Poisson model cap- 

tures such a duality law. There is a statistical phenomenon called by statisticians an 

apparent aftereffect of sampling. It may happen that a sudden repetition of success of a 

rare event increases our expectation of a further success to almost certainty. Laplace's 

law of succession is one of the possible estimates of such an expectation. 

Similarly, the 2-Poisson model of IR can be explained by an aftereffect phenomenon. 
As already observed, all informative terms t occur to a relatively greater extent in a set 
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Figure 1.1: Informative content of the term "osteoporosis" with the Poisson approxima- 

tion (model P) of the Bernoulli model over TREC-8 collection. 

of a few "Elite" documents. If a very rare term becomes very frequent in a document 

then its informative content increases very rapidly as in Figure 1.1. 

Let us suppose we observe in a document of the elite set of an informative word ta 

term-frequency tf. We saw in the last section that observing the occurrence of the term t 

within a given document can be abstractly studied as a success in a sequence of Bernoulli 

trials. Once a document d is given we have seen in the example of last Section 1.4.1 that, 

under certain hypotheses, we get the binomial formula for the estimate of Probl. (see 

Section 2.1.3 and Section 2.2 of Chapter 2 for a formal treatment). 

However, we know that if we had observed a different document then also the pop- 

ulation would have possibly been different. Changing the population, the value of the 

term-frequency might well have had a different confidence interval for an accurate es- 

timate. This happens independently from the size of the sample (the length of the 

document). Although we had sampled the whole document, we do not have further ob- 

servations to decide whether we would have observed more occurrences of the term in the 

entire population of the elite set to which the document belongs. Obviously, if tf is large 

in the document then we take a small risk in deciding that the term tokens appeared 

0 
0 10 20 30 40 50 60 70 80 90 

rank of the document 
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non-randomly. Small risk corresponds to a high conditional probability p(tf +1 It f) of 
having a further token of the term in the document if its length were longer than the 

actual one. A very small risk corresponds to a high probability, that is p(tf +1 It f) - 1. 

In conclusion, the larger tf is, the closer the conditional probability p(tf + 1(t f) is 

to certainty. We define Probe W) = p(tf + 11 t f) and 1- Prob2 
, is the risk, of accepting 

the informative content as a weight of the term in the document. 

When monetary values are involved in decisions we know that in a fair game the risk 
1- Probe of betting on an event is proportional to the gain. 

Assuming that the informative content In fl (t f) of a term t in a document d 

is the monetary value involved in the decision of taking t as the descriptor of 

the document, the weight of the term in the document w turns out to be the 

part of the informative content In fl (t f) gained with the decision of taking 

the term t as a descriptor of the document. 

In the next section we show one possible way to compute the apparent aftereffect of 

sampling. 

1.5.1 An example of aftereffect model: Laplace's law of succession 

Once In fl has been computed by using a model of randomness, then the gain is computed 

with the conditional probability Prob2. We will see that the so-called Laplace's law of 

succession provides one interpretation of the required conditional probability. 

The law of succession (see Equation 3.20 at page 76) 

Probe (t f) = 
tf +A 

tf +A+B 

can be derived with a Bayesian approach (see Sections 3.3.2 and 3.3.5 of Chapter 3). See 

Feller's book [37, page 123] for a frequentist derivation of the succession law obtained 

with an urn model of Type II. Urns model of Type II will be discussed in Section 3.3. 
The relationship between frequentist and Bayesian approach expressed by De Finetti's 

theorem, is presented in Sections 3,3.1 and 3.2 of Chapter 3. 

Observing that 1- Prob2 =B oc 
1 

and setting A=B=0.5 we tf +A+B tf +A+B 
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obtain that the gain computed by Eq. (1.1) is the model PL: 

tf ß-1 
l092 

F 
It f4F-t f [model PL] 

tf 

In the example of the lift the gain is only 41 77- 1 10 of the informative content. 

Considering the example of the query on osteoporosis, the term-weighting function based 

on the gain instead of the informative content attenuates the decrease rate of the weights 

as can be observed in Figure 1.2. 
16 

14 

12 

10- 

8 
i6 

4 

2 

0 

0 10 20 30 40 60 60 70 80 90 

rink of the document 

Figure 1.2: Informative content gain (model PL) of the term "osteoporosis" over TREC- 

8 collection. 

1.6 The third component: term-frequency normalization 

So far, we have introduced two probabilities: the probability Probl of the term given 

by a model of randomness and the probability Prob2 measuring the proneness of the 

term to appear frequently in the elite set, that is the aftereffect in sampling the term 

in the elite set. However, our intuition says that the magnitude of tf also depends on 

the document length. On the contrary, all documents are equally likely to receive tokens 
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according to the urn models of randomness. Urns do not possess a predefined volume 

and all documents, whether long or short, are treated equally. 

Briefly, the normalized term-frequency is the estimate of the expected term frequency 

when the document is compared with a given length (typically the average document 

length). We have a bivariate distribution of the number of tokens of a term and the 

length of documents. Once this distribution is obtained, the normalized term-frequency 

tfn is used in Formula 1.1 instead of the non-normalized tf. We have called the process 

of substituting the normalized term-frequency for the actual term-frequency the second 

normalization of the informative content. 

Despite our intuition about the dependence between frequency and length, Harter 

couldn't find any general relationship between the term-frequency and the document 

length. Harter asserts that [52, page 23] 

We assume that there is no relationship between the length of a document 

d and the number of tokens of the term t in d. In particular, we assume 

that there is no tendency for long documents to contain more tokens of t 

than short documents. A reasonable alternative hypothesis suggests itself 

that the probability of a document's receiving a token to be taken to be 

proportional to its length. 

We have run a similar experiment with a larger collection and we have arrived to 

a different conclusion. A positive correlation exists, and a detailed discussion about 

this dependence can be found in Chapter 6. We have also tested Harter's suggestion 

(see Hypothesis H1 on page 127) comparing it with three other hypotheses using the 

Bayesian method against several test collections. The second hypothesis, that we have 

called H2, assumes that the relative term-frequency is not constant, as in H1, but de- 

creasing with respect to the text length. H1 approximates H2 for large lengths (see 

Formula 6.7 on page 127). The third hypothesis, called H3, for term-frequency nor- 

malization uses the Dirichlet priors. This last hypothesis is a direct application of the 

language modelling. The probabilities of terms assigned by any language model can be 

applied to our framework as length normalization component (see Sections 5.5 and 6.4). 

In this dissertation we have used the most simple and effective language model, that is 

that based on Dirichlet's priors. 
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The fourth and final hypothesis, called Z for Zipf, comes from the Pareto-Feller-Zipf's 

law relating the frequency of a term in the collection, and its rank in decreasing order of 

magnitude of the frequency (see Sections 2.5 and 6.3). 

The Pareto-Feller-Zipf's law establishes a relation between a given term-frequency 

and the length of the text. The problem is that the rank-frequency relation only holds 

when the size of the text is very large. We adopted some extra assumptions in order to 

apply Zipf's law to single documents. 

For TREC-8 the comparison among three different models, that is the Bernoulli 

model only (P), the gain function of the Bernoulli model (PL) and the gain function 

of the Bernoulli model under the term-frequency normalization H2 (PL2) is shown in 

Table 1.1. 

Using the query "osteoporosis", the plot of PL2 against document rank of term- 

weighting is less steep than for the plots of P and PL of Figures 1.1 and 1.2, as shown 

in Figure 1.3. 

A comparison with all other models, BM25 included, is shown in Table 7.10 on 

page 158. 
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Figure 1.3: Score distribution using the term-frequency normalization component (model 

PL2) over the TREC-8 collection. 
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Models MAP MAP010 Pr®5 Pr®10 Pr®20 Pr®R Re1Ret 

PL2 0.2477 0.3587 0.4880 0.4580 0.3970 0.2967 2866 

PL 0.2037 0.2619 0.4160 0.3620 0.3260 0.2566 2645 

P 0.0527 0.0537 0.1040 0.1100 0.0960 0.0863 1446 
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Table 1.1: Comparison among the basic model (P), the gain (PL), and the term- 

frequency normalization model (PL2) with the TREC-8 data. The evaluation measures 

are defined in Appendix B. 1. 

1.7 The probabilistic framework 

Our probabilistic framework builds the weighting formulae in three sequential steps: 

1. First, a probability Probl is used to define a measure of informative content Infl 

in Equation 1.2. We introduce five basic models which measure Infs. Two ba- 

sic models are approximated by two formulae each, and thus we provide seven 

weighting formulae: I (F) (for Inverse term Frequency), I (n) (for Inverse docu- 

ment frequency where n is the document-frequency), I(ne) (for Inverse expected 

document-frequency where ne is the document-frequency which is expected ac- 

cording to a Poisson), two approximations for the binomial distribution, D (for 

divergence) and P (for Poisson), and two approximations for the Bose-Einstein 

statistics, C (for geometric) and BE (for Bose-Einstein). 

2. Then, the first normalization computes the information gain when accepting the 

term in the observed document as a good document descriptor. We introduce two 

(first) normalization formulae: L and B. The first formula derives from Laplace's 

law of succession and takes into account only the statistics of the observed docu- 

ment d. The second formula B is obtained by a ratio of two Bernoulli processes 

and takes into account the elite set E of a term. 

3. Finally, we resize the term frequency in the light of the length of the document. 

We test four hypotheses: 

H1- Assuming we can represent the term-frequency within a document as a density 
function, we can take this to be a uniform distribution, that is the density function 

of the term-frequency is constant. The Hl hypothesis is a variant of the verbosity 

principle of Robertson [87]. 



Chapter 1. Theoretical Information Retrieval 33 

H2 - The density function of the term-frequency is inversely proportional to the 

length. 

H3 - Dirichlet's priors produce an expected probability for the relative term- 

frequency which is given by Equation 6.30 as introduced at page 137 in Section 6.4. 

Z- Zipf's term-frequency normalization. 

1.8 The naming of models 

Models are represented by a sequence a, ßy where a is one of the notations of the basic 

models, Q is one of the two first normalization factors, and ry is either 1,23 or Z 

according the second normalization H1, H2, H3 or Z. For example, PB1 is the Poisson 

model P with the normalization factor B of 4.23 with the uniform substitution tfn for 

tf according to hypothesis H1, whilst BEL2 is the Bose-Einstein model BE in 2.33 with 

the first normalization factor L of 4.19 with the uniform substitution tfn for tf according 

to hypothesis H2. A summary showing all possible combinations is in Table 1.2. 

1.9 The component of query expansion 

In Chapter 8 we will use the same basic model of randomness used to define Inh 1 to 

expand also the original query. In principle, the query expansion problem is less difficult 

than the term-weighting problem. 
Once a first ranking is produced by the query-document matching function, the top 

documents in the list are most probable members of the elite set of the query. The 

actual probability depends on the initial precision of the system. A set of the first few 

retrieved documents may be taken to be a sample of the elite set of the query. Thus 

we may pool the content of these document into a unique document-sample to be used 

in a second ranking. We do not need to normalize the frequencies in each document 

and the informative content Intl can be used directly to extract a term-weight in the 

elite set. The terms with the highest score can be added to the original query with a 

query-weight proportional to the Infl weight. From experiments we saw that for short 

queries like those submitted to the WEB search engines made up of at most three or four 

terms, only 3 documents and up to 10 new terms added to the query are sufficient to 
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BASIC MODELS 

34 

P Poisson approximation of the binomial model Formula 4.7 

D Approximation of the binomial model with the divergence Formula 4.8 

C Geometric as limiting form of Bose-Einstein Formula 4.10 

BE Limiting form of Bose-Einstein Formula 4.11 

I(ne) Mixture of Poisson and inverse document-frequency Formula 4.15 

I (n) Inverse document-frequency Formula 4.13 

I (F) Approximation of I (ne) Formula 4.16 

FIRST NORMALIZATION 

L Laplace's law of succession Formula 4.18 

B Ratio of two Bernoulli processes Formula 4.22 

SECOND (LENGTH) NORMALIZATION 

H1 Uniform distribution of the term-frequency Formula 6.9 

H2 The term-frequency density is inversely related to the length Formula 6.10 

H3 The term-frequency normalization is provided by Dirichlet's priors Formula 6.31 

Z The term-frequency normalization is provided by a Zipfian relation Formula 6.29 

Table 1.2: Models are made up of three components. For example BEB2 uses the limiting 

form BE of Bose-Einstein Formula 2.33, normalized by the incremental rate B of the 

Bernoulli process of Formula 4.22. The within-document term-frequency is normalized 

under hypothesis H2 of Formula 6.10 
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enhance significantly the performance in the second pass ranking. In the same chapter 

we will test 6 different basic formulae to perform query expansions, among these the 

Bose-Einstein statistics and the Bernoulli model. They perform similarly. 

The Bernoulli model of a document is this time different from that presented in 

Section 1.4.1. Unlike the Bernoulli model of a document presented in Section 1.4.1, where 

the trials were only all tokens of a term occurring in the entire collection, we regard each 

term in a document as a trial of an experiment. Then the whole text becomes a sequence 

of trials. We then observe a specific term t. A successful outcome for the term t is 

when t occurs in the document. Unlike the Bernoulli model of a document presented in 

Section 1.4.1, where the a priori probability of a success is the probability of retrieving 

the document, the a priori probability of a success here is the relative frequency of the 

term in the collection. 

1.10 Experimental work 

Since the three components of a model are independent, we have 7x2x4= 56 basic 

models. We have also compared our models with the most effective models currently 

available in literature, that is the BM25 and the language models. If we also consider the 

query expansion component the number of combination are 56 x6= 336. Considering 

that we have now available several big text collections (TREC ones), we could have 

reported at least 4,000 runs. However, empirical science is made of trials and errors and 

we have continuously trialled experiments testing different hypotheses with improving 

fortune and using ever more effective variants of our models which for the sake of space 

are not reported. Therefore, with the explosion of all possible combinations we do not 

claim to have tested our framework extensively and exhaustively, though we have done 

a massive number of experiments. Nevertheless, we offer a consistent number of tables 

together and a discussion about our achievement. 

1.11 Outline of the Thesis 

Chapter 2 begins with the construction of the sample spaces for IR. This introductory 

chapter describes the probabilistic distributions and their limiting forms which are used 
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in many parts of the dissertation. 
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Chapter 3 explores the estimation problem underlying the process of sampling. De 

Finetti's theorem is used to show how to convert the frequentist approach into Bayesian 

inference and the derived estimation techniques are explored in the context of IR. 

Without a doubt, the problem of sampling from different populations is a central 

one in IR and therefore is treated extensively in this dissertation, for example in Sec- 

tions 2.1 and 2.1.1,2.1.2,2.1.3 of Chapter 2, in many parts of Chapter 3, for example 

Sections 3,3.1,3.2,3.3,3.3.1,3.3.2,3.3.5 and 3.3.6. In the light of sampling from differ- 

ent populations we revisit a recent IR modelling approach, the language modelling (see 

Chapter 3 and Section 5.4). 

Chapter 4 introduces the notions of informative content and information gain of a 
term in a document. These two notions are related and constitute the first two com- 

ponents of our models. Examples of models relatively to each component are displayed 

and these are direct applications of the distributions studied in Chapters 2 and 3. 

Chapter 5 revisits the main IR models in the literature in the light of preceding 

chapters. We show that even language modelling approach can be exploited to assign 

term-frequency normalization to the models of divergence from randomness. For this 

reason this chapter precedes the term-frequency normalization fully developed in Chap- 

ter 6. 

In Chapter 7 we merge the three components and introduce the full models of ran- 

domness. 

Chapter 8 introduces a novel framework for the query expansion. This framework is 

based on the models of divergence from randomness and it can be applied to arbitrary 

models of IR, divergence-based, language modelling and probabilistic models included. 

Experiments are diluted along with all chapters, but results are summarized in the 

final Chapter 9 together with a discussion about open problems and new research direc- 

tions. 



Chapter 2 

Probability distributions for 

divergence based models of IR 

This chapter introduces the appropriate statistical and mathematical tools to formalize 

several problems that we have encountered in Information Retrieval. They arise in 

connection with the following situations. 

1. In the first chapter we have introduced the Bernoulli model of IR, in which a 

document was conceived as an experiment. A document is treated as a sample over 

a population. The outcome of an experiment is either the occurrence (success) or 

not (failure) of a specific term within the document. A document collection D can 

be thus conceived as a collection of samples over different populations. 

What, on these data from multiple sampling, will be the probability that a given 

word occur in an arbitrary document? What is the probability that a given word 

frequency is observed in a given document? 

2. Taking a different point of view of the same problem: a term distributes F oc- 

currences over a set of documents. What is the probability of having a particular 

within-document frequency configuration over the entire collection? What is the 

probability of observing a term-frequency tf within an arbitrary document? The 

basic spaces formalizing these problems will be deployed to define the basic models 

of Information Retrieval. 

Similarly, let E be a subset of the collection D. What is the probability of observ- 

37 



Chapter 2. Probability distributions for divergence based models of IR 38 

ing a term-frequency FE within the subset E? The basic spaces formalizing this 

problem will be employed to define the models for query expansion in Information 

Retrieval. 

3. We have a collection of documents of different lengths ld. Our intuition says that 

the term-frequency is related to the length of the document. What is the corre- 

lation, if any, between the within-document term-frequency tf and the length of 

a document? Any possible answer can be used to normalize the term-frequencies 

with respect to a standard document length within the basic models of Information 

Retrieval. 

4. Let X be the random variable counting the number of words which have a frequency 

F in the collection. What is the distribution of X varying F? How this number is 

related to the sample space size and the population of the experiment? How does 

the value X=F affects the observation of a term-frequency tf in a document as 

described in situation 3? 

5. How can we model the fact that the terms which are rare events in the collection 

are the most informative and they become even more informative when they appear 

very densely in a few documents? 

In order to find answers to all these questions we need to define the probability spaces 
that we will use (see Section 2.1). Then, we introduce the basic model of randomness for 

IR, that is the binomial model. We derive some computational forms, the limiting forms, 

necessary for an effective implementation in the Information Retrieval systems. These 

simplified versions of the binomial law will be central in many application contexts of 

Information Retrieval (see Sections 2.2,2.2.1,2.2.2,2.2.3 and 2.2.4). The second part of 

question in 2 can be also answered using the hypergeometric distribution. 

Using the terminology of statistics, when balls are drawn from one or more urns, 

while the binomial distribution assumes replacement in the hypergeometric model the 

extracted balls are not replaced into the urn. In practice, the hypergeometric distribu- 

tion does not differ much from the binomial distribution when the sample size is very 
large. However, Information Retrieval deals with very small probabilities and thus the 

performance of the two models can be significantly different. 
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The hypergeometric distribution is useful to support the query expansion process 

and is the outcome of the compounding of the binomial with the Beta distribution (see 

Sections 2.3,8.6 and 2.6.1). This specific compounding is introduced in connection with 

the language model and a particular term-frequency normalization of question 3. 

Another alternative model to the binomial distribution is based on Bose-Einstein 

statistics. The Bose-Einstein model is introduced in Sections 2.4,2.4.1 and 2.4.2. In 

Bose-Einstein statistics the balls of the same colour are indistinguishable, so that many 

possible arrangements become indistinguishable. 

Finally, the fat-tailed distributions are introduced (see Section 2.5). These distribu- 

tions occur when we try to classify the alternative outcomes of a sample space by their 

frequencies as stated by the question in 3. The most famous fat-tailed distribution in 

Information Retrieval is the Zipf distribution 2.5.1. 

2.1 The probability space in Information Retrieval 

Renyi, in his book on probability theory [85], recommends giving great attention to the 

construction of probability spaces, although in many applications of probability theory 

the probability space is implicitly assumed. In Information Retrieval we talk mainly 

of frequencies of terms in a collection of documents and therefore following Renyi's 

suggestion, our first intention is to provide a clear definition of these entities, that is the 

terms and the documents, within a probability space. Information Retrieval deals with 

discrete probability spaces. The first notion which is defined in a probability space is 

the outcome of an experiment. An outcome lies into a set of mutually exclusive results. 

We call this set the basic space or the sample space 11 of the probability space. 

The algebra of events A of the probability space is made up of all subsets EC 11. The 

probability distribution P is defined on the algebra of events A. The algebra of events is 

interpreted as the set of all observable events. 
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2.1.1 The sample space V of the terms 

Cooper and Maxon [22] developed a theory of indexing which they called Utility-Theoretic 

Indexing because it was based on utility theory. In their approach index terms are as- 

signed to documents in such a way as to reflect the utility (or value) that the documents 

are expected to provide to users. Although Cooper and Maxon use utilities and not 

probabilities, they observe that in both Probabilistic and Utility-Theoretic Indexing the 

fundamental conceptual construct is the event space Q. They say: 

Utility-Theoretic Indexing is related to (and if random draws are imagined 

to be made from it, can in fact be interpreted as) an "event space" in the 

statistician's sense. 

We can define several basic spaces SZ for Information Retrieval. One basic space SZ of 

Information Retrieval is the set V of of terms t. This set is called the vocabulary of the 

document collection. Since f=V is the set of all mutually exclusive events, SZ can also 

be the certain event with probability 

P(V)=1: P(t)=1 
tEV 

The probability distribution P assigns thus probabilities to all sets of terms of the vo- 

cabulary. 

We would try to use this sample space directly if all probabilities P(t) were known 

in advance. Unfortunately, the basic problem of IR is to find an estimate for P(t). 

Estimates are computed on the basis of sampling and the experimental text collection 

furnishes the samples needed for the estimation. The main question is how we formally 

treat two arbitrary but heterogenous pieces of texts, for example the text of this chapter 

as one and an article from a sport newspaper as the other. Can they be considered as 

two different samples over two different populations or according to the most reductive 

assumption as a single sample over the same population? Indeed, the full range of 

different perspectives can be useful and can be successfully exploited to define query- 

document matching functions. The next Sections and Chapter 3 develop this idea. 
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2.1.2 Sampling with a document 

Another fundamental notion which needs be defined in Information Retrieval is how we 

conceive a document or a collection of documents in terms of our probability space. The 

relationship of the document with the experiments is made by the way in which the 

sample space is chosen. 

The term experiment, or trial, is used here with a technical meaning rather than a 

general common sense. Thus, we can say that a document is an experiment and we 

mean that the document is a sequence of outcomes tEV, or more simply a sample of 

a population. Similarly, we may talk of the event of observing a number Xt =tf of 

occurrences 'of a given word t in a sequence of experiments. In order to formally discuss 

this event space, however we should introduce the product of the probability spaces 

associated with the experiments of the sequence, but this formalism is unnecessarly 

pedantic. An easier way to introduce our sample space is to associate a point event with 

each possible configuration of the outcomes. The one-to-one correspondence defines the 

sample space as 

cz = Vtd 

where ld is the number of trials of the experiment (in this case, the length of a docu- 

ment). We can suppose that each outcome does or does not depend on the outcomes of 

the previous experiments. If the experiments are designed so that an outcome is condi- 

tioning the next outcomes then the probability space is not invariant over the sequence 

of trials and thus the (projection of the) probability distribution on V is different at 

each trial. To establish the simpler case when the probability space is invariant, in Infor- 

mation Retrieval, the term independence assumption is often made. Then, all possible 

configurations of (1 = Vid are considered equiprobable. In the case of equiprobable con- 

figurations, together with the assumption that the experiments are independent, we can 

consider each document aa Bernoulli process. The probability spaces of the product are 

invariant and the probability of a given sequence is the product of the probabilities at 

each trial. Therefore, if p= P(t) is the prior probability that the outcome is t and the 
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number of experiments is Id we obtain that the probability of Xt =tf is equal to: 

(2.1) P(Xt = tf 1 p) = 
ld 

ptfgId-tf 
tf 

which is the sum of the probabilities of all possible configurations having tf outcomes t 

out of ld. P(Xt =tf 1p) is a probability distribution because 

FP(Xt=t. flp)=(p+4)id=1 
tEV 

More generally, the probability distribution is the multinomial (see Equation B. 11 in the 

Appendix) 

(2.2) P({tft}tEVI {Pt}tEV) = 
Id 

p/, ... pvV 
to 

.. 
tfv 

which holds in the case that we estimate the probability of an arbitrary configuration 

satisfying the condition 

(2.3) to+... +tfv=ld 

Turning back to the binary case, that is when only a term is observed, if we estimate 

the probability p of occurrence, when p is unknown, then the Bayes' theorem is used: 

If ei,... , e� are mutually exclusive events of the basic space SZ and YE {ei,. .., e�}, 

then 

P(YIX) _ 
P(Y)P(X I Y) 

P(e1)P(X I eti) 

In our case: 

P(plXt = tf) = �P(P)P(Xt 
= tfIP) 

P(e: )P(Xt = tf le. ) 
i=i 

remembering el, ... , e, a are all mutually exclusive events of the basic space; 

P(PI Xt =t f) a P(p)P(Xt = tf 1p) 

The component P(X I Y) = P(Xt =tf 1p) is the likelihood of the posterior probability 

P(YIX). Details and discussions about the application of Bayes' theorem to the esti- 

mation problem in IR are all in Chapter 5. We will see that the likelihood is maximized 

when p is the expected frequency 
if L. 

For this reason this expected frequency is also 
d 
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called the maximum likelihood. We will see also that the priors P(ei) do not have much 

influence on the value of the posterior probability P(pIXt =t f) when the sample size, 

i. e. the number of trials Id, is large. The estimation problem becomes critical when the 

sample size is small. In this situation, subjectivity arises in the possible choice of the 

prior form. The subjectivism in assigning priors is somehow paradoxical, because the 

term prior derives from the use in logic to denote the a priori statements which are inde- 

pendent of experience and thus they are logically true and objective. As it was observed 

by Jeffreys this term has been used in so many other senses that the only disambiguation 

would be to abandon it [66]. However we continue to use the term while understanding 

that its meaning is slippery. 

With the choice of the prior distribution, the maximization of the likelihood may 

greatly diverge from the maximization of the a posteriori probability. De Finetti's The- 

orem is used to explain that the estimation problem with the Bayesian approach can be 

seen as an alteration of the "frequentist" underlying model (see Chapter 5). Instead of 

drawing balls from a single urn with independent trials and a constant probability of suc- 

cess one can use a model with several urns, one for each trial, and with an arbitrary (not 

uniform) probability distribution of success. The subjectivism of the Bayesian approach 

then consists in deciding the most suitable initial distribution for the set of outcomes. 

2.1.3 Multiple sampling: placement of terms in a document collection 

We here abandon the hypothesis of having a single sample, as an homogenous piece of 

text as was assumed in the last Section 2.1.2, and we are going to consider that we have 

several samples, for example a collection D of documents. The situation of having a 

collection of N documents is abstractly equivalent to the scheme of placing a certain 

number TotFrD of V coloured types of balls in a collection of N cells. 

For each term tEVa possible configuration of ball placement satisfies the equation 

(2.4) tu +... +tfN=Ft 

and the condition 

(2.5) F1 +... + Fv = TotFrD 

where Ft is the number of balls of the same colour t to be distributed in the N cells. 
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We have thus implicitly changed the basic space. The outcome of our experiment will 

be the documents d in which the ball will be placed. Again we will have many possible 

configurations consistent with the number of coloured balls. 

The number of solutions of Equation 2.4 is again the multinomial distribution (see 

Equation B. 11 in the Appendix), under the hypotheses that all configurations are equiprob- 

able and exchangeable: 

ffF n' (2.6) M(Ft, 
itfi}I=1,..., N, lPi}i=1,..., N) - 

tft 
Pi -AN 

1... tfN 

where the priors pi is the prior probability that the document d; contains the given 

term t. In absence of further evidence, such as the document length 1, we may assume 

pi, that is p=N. Similarly, the number of solutions of the uniform distribution for 
1 

Equation 2.5 is the multinomial distribution 

(2.7) M(TotFrD, {F=}i=l,..., v, {Pý}ý=1,..., N) = 
TotFrj 

pF1 ... pVv 
F1... Fv 

where the priors p is the prior probability of having in a collection a term-frequency F. 

As we observe in Section 2.5 the priors may follow, for example, the Feller-Pareto law or 

a uniform distribution with pi=V. 

It is easy to reduce the multinomial case to the binary case for sake of simple im- 

plementation. It can be done by assuming that the only two outcomes are the success 

or failure of observing the term t in a given document or in the collection. For the 

multinomial 2.6 the reduction is: 

= ptf{ 4Ft -tfi (2.8) B(Ft, t. fs, p) 
Ft 

tfi 

We can further assume that all configurations which are equal under exchanges are also 

indistinguishable, that is all sequences which are equal under permutations must be 

counted as the same event. With that assumption we obtain the so called Bose-Einstein 

statistics (see Section 2.4). The basic sample spaces for Information Retrieval have now 

been introduced, and we can thus proceed to look at the main probability distributions 

which will be used to define the models for retrieval and query expansion. 
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2.2 Binomial distribution: limiting forms 

We saw that the term independence assumption in Information Retrieval regards a doc- 

ument as a Bernoulli process. For example, we saw that in the binary sample case, a 

document is made up of a set of independent trials with a constant probability p of 

success, which is the probability that we encounter a specific term in a given position 

of the text. Indeed, Bernoulli trials are repeated and independent trials with only two 

possible outcomes, having constant probabilities p (success) and q (failure). Similarly, 

in the multiple binary sampling we derive a binomial distribution. Thus, we encounter 

the binomial distribution for both single and multiple sampling. Let us now treat the 

binomial case independently from the specific type of sampling. We would like to find 

useful approximations of the binomial for practical reasons. 

Since the outcomes of a Bernoulli process are exclusive events, the probabilities satisfy 

the condition: 

p+q=1 

The probability of having k successes out of F Bernoulli trials is given by the combina- 

torial formula 2.8 that is 

=pkq 
F-k B(F, k, p) 

F 

k 

B(F, k, p) is a probability distribution because 

F 
1=(p+q)"=>B(F, k, p) 

k=0 

We use the binomial B(F, k, p) extensively in the implementation of our retrieval 

models and query expansion models. Therefore a workable approximation of B(F, k, p) is 

necessary. The next Sections display several limiting forms of the binomial distributions. 

2.2.1 The Poisson distribution 

Assuming that the probability p decreases towards 0 when F increases, but A=p"F is 

constant, or moderate, an approximation of Equation 2.8 is the Poisson distribution 

e-, \, \k (2.9) B(F, k, p) k! 
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The value A is both the mean and the variance of the distribution. Further approxi- 

mation may be obtained through the Stirling formula, which approximates the factorial 

number as follows [37]: 

(2.10) k! = 2ir " kl'+o. se-t f 

A refinement of Equation 2.10 is 

(2.11) 27r . kk+0.5e-t fe(12"k+1)-1 

For example, Feller [37] shows that the approximation error for 100! with equation 2.10 

is "only" 0.08%. 

e-XXk (2.12) B(F, k, p) 27r - kk+0.5e-ke(12"k+l)-1 

The probability in expression 2.12 does not find a direct implementation, but it is 

used as argument of the logarithmic function, that is: 

(2.13) -loge B(F, k, p) Nk loge z+ (A+ 
12 -k) " 1092 e+0.5 1092(27r k) 

We will see that -1og2 B is conceived as the amount of information content related to 

the term t, when F and tf are interpreted as the frequencies of the term in the collection 

and in the document respectively. The notion of information content is introduced in 

Section 4.2. 

2.2.2 The divergence D 

The fundamental Formula 2.8 of the binomial distribution can be equivalently expressed 

using the information theoretic divergence D [85], which is defined as: 

(2.14) D(q5, p) _0" loge + (1 - 0) " loge 
(1- P) 

D(¢, p) is called the divergence of 0 from p. With the divergence Formula 2.8 becomes 

(2.15) B (F, k, p) = 
2-F"D(O, p) ý1 

+O 
(F/ 

/ (27r " k(1 - 0))2 

where k is the number of successes, out of F Bernoulli trials, p is the constant probability 

of success in each trial, 0=F, 0 (7, ) is the error of the approximation. 
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To obtain the new approximation of Formula 2.8 of the binomial distribution Renyi 

applied Stirling's formula. The version of Equation 2.15 with the logarithmic is: 

(2.16) -1og2 B(F, k, p) N F. [D(O, p) + 0.5log2 (2rr "O" (1- 0))] 

The error of the approximation with the logarithm is still 0 
(i), 

because 

(1+0 G= 07 1092 

This equality is obtained using the MacLaurin series (Taylor series expanded about 0) 

of 1092 (1 + x). 

2.2.3 Kullback-Leibler divergence 

Let us assume the approximation of 2.15 of the binomial distribution with the information 

theoretic divergence of 0 from p, where 0 from p are defined as in Section 2.2.2. Without 

loss of generality we may also assume that p<0 in Formula 2.16. Indeed, we can 

show that in the application of the binomial distribution to both term-weighting and 

query expansion, the definition of p and 0 will satisfy the relation p<0. Under the 

assumption of p<0, the contribution (1 - 0) loge () in the divergence D(O, p) is 

negative. Also, both p an 0 are very small and thus loge (J), 
which can be easily 

shown to be approximately p-0, is also close to 0. Therefore, it is straightforward 

to derive a further approximation of the Bernoulli process by means of the so-called 

asymmetric Kullback-Leibler divergence KL(O, p): 

(2.17) KL(o, p) = 0'1092 p 

The approximation of the binomial with the logarithm is 

(2.18) - loge B(F, k, p) -F. [KL(b, p) + 0.51og2 (2ir " o. (1- 0))] 

The error of the divergence approximation is the same as in the previous section. 

2.2.4 The X divergence 

Now, we further approximate Formula ( 2.16). First, let us introduce the function 

x 
9(x) = x. In 

p 
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with 0<x, p<1. 

Thus, 

g(p) = O, 9 (x) =1+ In p, 911(x) _1 

The Taylor series of g(x) is: 

9(x) = 9l (p) (x - p) -F 
121 (x - p)2 -I- 0«X - p)3) 

_ (x-p)+ 2p(x-p)2+O((x-p)3) 

Using the notation pl = p, p2 = q, 01 =0 and 02 =1-0, we can easily derive: 

E 
9(0i) = Ei=1,2(Oi 

- pi)+ Ei=1,2 
2pi 

(ci 
- piý2 + O((argi=1,2 max(q5i - pi) 

i=1,2 

Since 

(c'i 
- pi) _ Ei=1,2 Oi - 

Ei=1,2 iii =0 

i=1,2 

and 

101-P113=102-P213=10-p13 

we derive: 

(2.19) 9(ýi) =1 
(Oi . pi)' + O(Ibi - Pil3) 

i=1ý2 
2 

i=1ý2 pi 

Therefore, the divergence D can be approximated as: 

D(O, p) = log2e " 9(oi) 
i=i, 2 

log2e 2 

2 
i=1 ý2 

A 

(2.20) = 
1o2 2e (oi - i)2 + °(Ioi - Pi43) 

48 

The function X2(c5, p) = 
(0' - p02 is called the X2 divergence of 0 and p. The ap- 

i=1,2 p: 

proximation of the binomial is easily derived from Equation 2.16 by substituting D(0, p) 

for the right hand side of Equation 2.20: 

(2.21) -1og2 B(F, k, P) -F- 
[1o22eX(0, 

P) + 0.51og2 (2ir .O" (1 - 0)), 
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2.3 The hypergeometric distribution 

The hypergeometric distribution plays an important role in sampling. One application 

of the hypergeometric distribution is shown in Section 8.6 and concerns the definition of 

a new model for query expansion. The hypergeometric distribution can be applied to the 

following problem of sampling. There is a population D of TotFrD tokens and a number 

F of tokens are of the same term t. A sample E of D is chosen at random. In the query 

expansion process E will be instead a set of relevant or pseudo-relevant documents, that 

is a set of documents retrieved after a first retrieval pass. In the chosen sample E we 

then observe a number FE of tokens of the same term t. The hypergeometric distribution 

defines the probability P(FEID, E) of observing exactly FE tokens in the sample. The 

number of ways we can choose the tokens of the term t in the sample is 

F 

FE 

The number of possible ways of combining the remaining tokens in the sample is instead: 

TotFrD -F 
TotFrE - FE 

The total number of possible ways of combining all tokens is: 

TotFrD 

TotFrE 

Then the probability of having the sample E is thus the ratio: 

(2.22) P(FEID, E) = 

F TotFrD -F 
FE TotFrE - FE 

TotFrD 

TotFrE 

The last relation can be rewritten by swapping TotFrE and F: 

TotFrE TotFrD - TotFrE 

FE F- FE 
P(FEID, E) = 

TotFrD 

F 
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A limit theorem for the hypergeometric distribution (see [37, page 59]) is: 

TotFrE (PD F'E ) FE (_ TotFrE - FE 1 TotFrEFE 
< 

FE TotFrD qD TotFrD 
) 

TotFrE r TotFrE TotFrE 
(2.23) < P(FEI D, E) < pD qD 

tFrE-FE 
l) 

FE 
1- 

Twhere 

PD is the frequency 
F 

of the term in the collection. Therefore, the binomial TOtFrD 
distribution B(TotFrE, FE, pD) of Formula 2.8 can be taken as a limiting form of the 

hypergeometric distribution when the population TotFrD is very large and the size of 

the sample is very small, that is 
TotFrE 
TotFrD 

0. Indeed the binomial is used directly to 
rD 

obtain weighting scores in the expanded queries in Chapter 8. 

2.4 Bose-Einstein statistics 

In this Section we assume that we randomly place F balls into N recipients. The action 

of allocating a ball into an urn is the reverse operation of extracting a ball from an urn. 

Therefore, the allocation process can be easily reversed and transformed into a sequence 

of ball extractions from the urns. So the model of allocating balls into urns and that of 

extracting balls from urns possess the same mathematical properties. However, in order 

to introduce Bose-Einstein statistics it is easier thinking of allocating balls into the urns 

rather than extracting them. Once the random allocation of balls is completed, this 

event is completely described by its occupancy numbers: k1,. .., kN where ki stands for 

the frequency of the balls in the i-th recipient. 

Bose-Einstein statistics assumes that the balls of the same colour are all indistin- 

guishable so that all possible arrangements generating the same ordered sequence of 

occupancy numbers become equivalent. Hence, with Bose-Einstein statistics we do not 

have a Bernoulli process of independent trials with a constant probability of success p. 

The main difference of the Bose-Einstein statistics with the binomial is the assump- 

tion that all balls are indistinguishable. 

The Bose-Einstein statistics computes the probability of obtaining the frequency k in 

a recipient by counting the possible combinations consistent with the occupancy numbers 
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in the rest of the recipients, conditioned to all possible combinations consistent with the 

occupancy numbers of all recipients. More precisely, a possible configuration of the 

occupancy problem satisfies the equation [37] 

(2.24) kl+... +kN=F 

The number sl of solutions of Equation 2.24 corresponds to all possible combina- 

tions consistent with the occupancy problem. This number sl is given by the binomial 

coefficient: 

N+F-1 
_ 

(N+F-1)! 
(2.25) si =F= (N - 1)! F! 

Similarly, let k be the ball frequency in the i-th bin. A random allocation of the remain- 

ing F-k tokens in the rest of the collection of N-1 bins is described by the same 

Equation 2.24 but with N-1 bins instead of N ones: 

(2.26) kl+... +k; -l+k; +l+... +kN=F-k 

As before, the number s2 of solutions of Equation 2.26 is: 

N-1+(F-k)-1 
_ 

(N+F-k-2)! 
(2.27) S2 - (N - (F -F-k( )"( )" 

Finally, the probability P(k) that an arbitrary bin contains exactly k occurrences of the 

ball t is the ratio 
S2. That is: 
sl 

N-F-k-2 

(2.28) P(k) _F-k 
(N +F-k- 2)! F! (N - 1)! 

N+F-1 
1 (F-k)! (N-2)! (N+F-1)! 

F 

Equation 2.28 is a cumbersome formula and some approximations are needed for the 

implementation. These approximations will be displayed in Section 2.4.1 and 2.4.2. 

2.4.1 The geometric distribution approximation 

After simplification, Equation 2.28 reduces to 

F 
P(k) 

(N(+ Fkk 
1)1) 

" .. 

F(N 

+ Fl) 1) 
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Both numerator and denominator of Equation 2.29 are made up of a product of k+ 

1 terms. We can divide both numerator and denominator by the product Nk+l and 

distribute it over the terms: 

(2.29) P(k) - 

(7-kN1I"... 
"N"I1 NI ý 

Fk+1 
+-1 

N) 
('-N)"""" 

In IR we may in general assume that N»k. With this assumption 

ý 0, and -p N0 -N- 
k-i 

for all i with i=0, 
... , k. 

We obtain a limiting form of Equation 2.29 

FF 

P(k) NN"... 
' N 

(1+N)"... "(1+N) 
CN/k 

(2.30) =F k+1 

C1+ ) 
1Fk 

_N 17 1+W 

Let A=N be the mean of the frequency of the ball t in all bins. The probability that 

a ball occurs k times in a bin is 

(2.31) P(k) - 
(1A) (A)k1 

+x 

The right hand side of Equation 2.31 is known as the geometric distribution with prob- 

ability p=1 1+A* 

2.4.2 Second approximation of the Bose-Einstein statistics 

The second useful approximation of the Bose-Einstein statistics is generated by the 

Stirling formula. We will exploit a logarithmic function of Formula 2.28, therefore it is 

more convenient and easier to rewrite the Bose-Einstein statistics as follows: 

-1092P(k)= loge 
(N +F-k- 2)! F! (N - 1) 

(F-k)! (N+F-1)! 
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loge (N -1) - loge (e) + 

(2.32) +f (N +F-1, N+F-k- 2) -f (F, F-k) 

where 

f (n, m) _ (m + 0.5) " 1092 (m) + (n - m) " 1092 n 

2.5 Fat-tailed distributions 

Fat-tailed (or heavy-tailed) distributions are encountered in many different linguistic, 

sociological, biological and economic phenomena. Examples of the phenomena fitted by 

the fat-tailed distributions are classification of terms by frequencies, cities by popula- 

tion, biological genera by numbers of species, scientists by number of published papers, 

income by size, files by size [29,55]. Among fat-tailed distributions there are the family 

of Pareto's distributions [7], which were originally introduced to model income distri- 

butions, Champernowne's lognormal distribution [20], the Waring distribution [58], the 

Yule distribution [102], the generalized inverse Gaussian distribution [101,100]. 

As first applications of fat-tailed distributions in linguistics, we should mention the 

early works of Estoup, Willis and Zipf [35,125,134]. They introduced an empirical 

relationship between the frequency and the rank of the terms which are used in ordinary 

discourse. Such an empirical law is commonly known as Zipf's law. Zipf's law says that 

if we rank terms in the decreasing ordering of their relative frequencies and plot the 

logarithmic values of these relative frequencies p against the logarithmic values of the 

term position in the ranking, then we approximately get a linear relation: 

- log pNa" log(rank) 

The information content -logp of the terms is thus highest for terms lower in the 

ranking' and is proportional to the log of the rank. The slope a provides a measure of 

richness of the vocabulary. If the vocabulary is poor then a goes to 0 and the information 

content -log p (or, if we prefer Mandelbrot's terminology [74], the cost for the signal 

transmission) of all terms becomes a constant. 

For example, the TREC 10 collection [56,9] containing about 1,692,000 documents, 

has a vocabulary V of about 3,097,466 stemmed terms occurring T otFrD = 666,447,515 

'The terms which are highly rare are also put in the stop list. 
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times in the whole collection. Classifying the terms by their frequencies, we can count 

about 8,826 categories. The last category, that is the class of terms occurring only once 

in the collection, contains about 1,420,000 terms. After the position ro - 29 = 512 (that 

is with values of x greater than loge ro =9 in Figure 2.5) the curve is approximately 

linear with a=1.36 and it can be approximated by the relation: 

1092 Ft N -1.365.1og2 (rank) + 29.31 

of Figure 2.5, where 1092 TotFrD = 29.31. 
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Figure 2.1: Relation between the logarithms of term rank and term-frequency in TREC- 

10 collection. 

Similarly for the TREC-8 collection we get the Relation of Figure 2.5 

loge Ft - -1.399 '1092(rank) + 27.14 

The Zipf's law can be also regarded as a Pareto distribution, because the Zipf distri- 

bution is the discrete version of the Pareto distribution. An alternative frequency term 

distribution law was created by Champernowne who used the lognormal distribution, 
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Figure 2.2: Relation between the logarithms of term rank and term-frequency in TREC-8 

collection. 

that is the normal distribution of the logarithmic values of the random variable. The use 

of Champernowne's distribution was rejected by Mandelbrot [74] in favour of Simon's 

proposal [102] which endeavored to use the Yule distribution, a generalization of the Zipf 

distribution, as a unified model to derive many fat-tailed distributions. He applied the 

Yule distribution, see Equation B. 10 to the term distribution in prose sample. 

As we see, there is a plethora of fat-tailed distributions and it would be impossible 

to give them a unifying definition or provide a unifying methodology able to derive all 

possible fat-tailed distributions. Indeed, the most general unifying proposal was made 

by Feller [381 with its family of Feller-Pareto distributions, which are introduced in 

Section 2.5.1. 

Notwithstanding the impossibility of fully characterizing fat-tailed distributions, we 

may follow Arnold's hint [7]. We have already encountered a number of distributions and 

we discovered that for example the Bose-Einstein statistics and also the hypergeometric 
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distribution do not differ very much from the binomial distribution when the sample is 

very large. Indeed, all distributions which obey the law of large numbers may be reduced 

to the normal distribution and thus they do not lack the existence of their moments. 

In other words, mean, variance and higher order moments exist and are all finite. In 

contrast, fat-tailed distributions having a heavy tail cannot be reduced to the normal 

distribution and they lack some of their moments (for example the Zipf distribution does 

not even possess a finite mean). It is the lack of finite moments which makes fat in some 

sense their tail. 

2.5.1 Feller-Pareto distributions 

We will see that the two most used versions of the Pareto distributions, the classical 

and standard Pareto distributions, can be derived from Feller-Pareto's family. More 

precisely, they are examples of the generalized Pareto distributions which all belong to 

the family of distributions, that is, a generalized Pareto distribution can be seen as a 

linear combination of a power of the inverse of the Beta distribution [7] which is the 

general form of the Feller-Pareto's representation for fat-tailed distributions. 

Definition 2 Let U= Y-1-1 be a random variable where Y has the Beta distribution 

with parameters a>0 and ß>0. U is said to have a Feller-Pareto distribution. 

With the Feller-Pareto distributions we are able to introduce the generalized, the 

classical and the standard Pareto distributions. The standard Pareto distribution is the 

continuous analogue of the standard discrete Zipf distribution. 

By definition the Feller-Pareto probability density function derives from the Beta 

distribution B. 6[see Appendix B. 1] by substituting (1 + U)-1 for Y, that is 

. 
fy (y, «, /3) = r(a )r(Q) ya-1(1- y)ß-i 

1= lY=(1+Uý- 
r(« + ß) 11u ß-' -dY fu(u, «, Q) = r(a)r(Q) 

(U-+ 
i) 

ýu+1ý 
dU 

r(«+ Q) 1 Q_1 (u Q-1 l 
(u + 1)-2 = r(a)r(T) 

(u+il 

\u+l) 
r(« +, ß) 

(u + 1)-(a+ß) , uß-1 (2.33) _ 
r(a)r(ß) 

with u>0 
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Equation 2.33 follows from 
dÜ 

= -(U-F1)-2, U being a decreasing function with respect 

to Y. 

The generalized Pareto distribution 

The generalized Pareto distribution of a random variable W is obtained from a linear 

combination of a power of U, where U is the Feller-Pareto distribution with probability 
density function of Equation 2.33, as follows: , 

(2.34) µ+ iU'r 

If W=µ+ all'' then 

u= (W_1L)ý 

The probability distribution P(w) of the random variable W is thus given by the 

probability of the event W>w that is: 

(2.35) P(W > w) = P(U > 
()) 

with w>p 

Deriving U= 
(1' -µI ry with respect to W we get: 

dU W-uYi 
dW ya( a- 

From this derivative and Equation 2.33, we easily obtain the probability density function 

of the generalized Pareto distribution: 

r «+ ((w-t, ry 
-(a+a) 

fw(w) = r(a)r (, o) \o)+1 

(w µ\ ýý /w µ\ y-1 

/\ 

-(-+ß) 
_ 

((w_Ii\ýi) (w_u) r(« +, 0) 
r(«)r(Q)7o J 

(2.36) with w>µ 
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The classical Pareto distribution 

The classical Pareto distribution is obtained from the generalized Pareto distribution 

W(o, a, 1, a, 1), that is with: 

µ=candy=ß=1 

The classical Pareto distribution has the probability density function 

fw(w) = 
rF( 

)a) 
(a 1-ice+l) 

with w>v 

(w)_(+l) 
(2.37) _ with w> Q 

The classical Pareto distribution is then 

P(W>x)= %xa rw1 

01 
dw=1- 

(x1 

Jo 0/ 
The discrete analogue of the classical Pareto distribution: Zipf's law 

Suppose that the random variable X takes the discrete values 0,1,2.... or 1,2.... and 

that X has a fat-tailed distribution. Consider a sample made up of n observations. 

Suppose that there are V possible outcomes and that their frequency is such that p(r + 

1) = P(X = r+1) < p(r) = P(X = r). According to [7] Zipf distributions are discretized 

Pareto distributions. The discrete analogous of Formula 2.36 is defined as: 

(2.38) P(X > r) =1+ 
(r_ro)) 

r> ro 

For ry =a=a=1 and ro =0 we obtain the standard Zipf distribution: 

(2.39) P(X > r) = (1 + r)-1 r>0 

Note that 

(2.40) P(X = r) = P(X > r) - P(X >r+ 1) = r-1 (1 + r)-1 

For y=1 we obtain the Zipf distributions which are the discrete analogues of the classical 

Pareto distributions: 

(2.41) P(X>r)= I1+r- 
v 

ro)-c' 
r>ro 
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The standard Pareto distribution 

The standard Pareto distribution of a random variable Z is obtained from the generalized 

Pareto distribution W(0,1,1,1,1). Its probability density function is: 

(2.42) fz(z) = (1 + z)-2 with z>0 

2.6 Mixing and compounding distributions 

Many distributions can be constructed from different distributions by a process defined as 

compounding. We are using here the terminology of [67]. Let X have the the probability 

distribution P(XIY) and Y is another random variable which instead has probability 

distribution Prob(Y). Then the compounding of P with Prob is 

XIc" Y)dProb(Y) (2.43) C(X) = f"00 P( 

where c is a constant. 
Let P; be a set of probability distributions and ft a set of values such that 

Efi=1 
i 

then the the mixture of the probability distributions Pi is 

(2.44) fiPi 

2.6.1 Compounding the binomial with the Beta distribution 

In Section 3.3.5 of Chapter 5 we compound the binomial with the Beta distribution and 

therefore we show here, as an example, how to compound the binomial distribution of 

Equation 2.8 with the Beta distribution of Equation B. 6 assuming that the prior p is the 

parameter Y in the compounding Relation 2.43. 

P(X=klp)= Pk 4 F-k 
k 

(2.45) Prob(p) = 
r(a + Q) 

pa-lqß-l r(a)r(Q) 



Chapter 2. Probability distributions for divergence based models of IR 60 

Note that if Y=p then dProb(p) = Prob(p)dp. Hence, the compounding is 

C(X = k) =1F pkgF_k 
r(« + Q) 

pa-14Q-ldp 
Jo k r(a)r(Q) 

which reduces to 

F r(a + Q) ý1 k+a-1 F-k+ß-ld ý(X =)-k r(a)r(Q) Jo pqp 

That is 

F r(a+Q) r(k+«)r(F- k+Q) (2.4s) C(X = k) = k r(a)r(Q) r(F +a+ Q) 
We already know that C(X = k) is a probability distribution for De Finetti theorem 

(see Theorem 5). However, it is of some utility to prove it directly. In order to show 

that 2.46 is a probability distribution we must verify that EO C(X = k) is equal to 1. 

Let x be any real number and r be a positive integer. Let denote the real 
r 

X 

number 
x. (x - 1)... (x - r+ 1) 

r! 
If a>0 then [37, Problem 20 of Chapter II] 

-a r(a + r) 

r 
(-) 

r! I'(a) 

where r is the Gamma function of Equation B. 1 in Appendix B. 1. Relation 2.46 can 

be rewritten as a generalized form of the hypergeometric distribution, see Relation 2.22, 

with binomials containing negative real numbers: 

F -k (2.47) C(X = k) = 

(-1)F 
( -(a + ß) 

F 

From [37, Problem 9 of Chapter II] 

F 
-C, -, ß 

k F-k F 



Chapter 2. Probability distributions for divergence based models of IR 61 

F 
which proves that C(X = k) =1 

k=O 

2.7 Summary and Conclusions 

We have presented different probability spaces of IR: the Bernoulli model and its limiting 

forms, the hypergeometric distribution, Bose-Einstein statistics and its limiting forms, 

the compound of the binomial distribution with the beta distribution, and the fat-tailed 

distributions. The components of the models of divergence from randomness are based 

on these distributions. 



Chapter 3 

The estimation problem in IR 

The parameter estimation in Information Retrieval was first stated by Van Rijsbergen 

relatively to the probabilistic term-weighting model [118]. The interdependencies be- 

tween parameter estimation and the properties of probabilistic models are also studied 

in [42]. Van Rijsbergen extended the Robertson and Sparck Jones weighting formula to 

a linear discriminant function and to a non-linear discriminant function when the terms 

are not assumed independent. These discriminant functions involve several parameters 

which need to be estimated from a small sample of relevant documents as well as from 

the whole collection of documents. Van Rijsbergen anticipated and recommended the 

use of the relevant statistical theory needed to address the estimation problem for Infor- 

mation Retrieval. We fully discuss and apply that proposal. We find that the content 

of Good's book [44] gives an excellent combination of historical discussion and technical 

details for a fruitful application of the estimation rules to the problem in Information 

Retrieval. We have developed an understanding that Information Retrieval can be ab- 

stractly redefined by suitable models drawing balls from or distributing balls into urns. 

De Finetti's Theorem and Bayes' rule are the central relationships in this abstract read- 

ing. Their applications allow us to introduce some "subjectivism" or "arbitrariness" in 

the parameter estimation problem. Fortunately, Information Retrieval is an empirical 

science and evaluation of the newly built term-weighting models can tell us how well the 

different methods perform in terms of precision measures. 

An alternative approach to the parameter estimation is followed by Steinhaus [112]. 

Steinhaus minimises the loss function (p' - p)2 where p' is the estimate and p is the 

62 
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unknown probability of the event. This approach will be considered in Section 3.3.4 

3.1 Sampling from different populations 

We can imagine sampling as the experiment of drawing balls of several colours from dif- 

ferent urns. If the ball selection uses a single urn then we would have a single population. 

We call the experiment of drawing from a single urn as a sampling of Type I (we use 

the terminology of Good [44]). We may use a "super"-population of urns, each of them 

having a distribution of Type I, and we may then choose one urn and perform sampling 

from this urn, obtaining a second type (Type II) distribution. Thus we can define in- 

finitely many types (Type III, Type IV etc. ) of sampling by iterating this construction 

indefinitely. The probability estimation becomes more and more complex as long as the 

type complexity of the sampling increases. 

3.2 Type I sampling 

Frequentist approach deals mainly with binary sampling of Type I. We have a single 

urn and after randomly selecting a ball we observe its colour and we replace it into the 

urn. If the ball is of the given colour then we have a success, otherwise a failure. For 

each ball colour t we have an expected frequency value, the mean frequency At, which is 

the number of successes r divided by the total number of successes and failures in the 

sampling, e. g. the size n=r+s of the sample. We assume that every sequence having 

r successes and s failures is equiprobable. We also assume that the sequence having r 

successes and s failures is the outcome of repetitive drawings. Each trial is assumed to be 

independent from previous ones. Such sequences are called permutable or exchangeable. 

If the prior p is known, then the probability of having a sequence with r successes 

and s failures is 

(3.1) Prob(r, sip, d) = p''(1 - p)s 

The probability of having a permutable sequence with r successes and s failures can be 
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obtain by multiplying Equation 3.1 by the binomial coefficient: 

(3.2) r+s 
)Pr(1_P)a 

r 

The symbol d in 3.1 is to recall that the values r, s and p depend on the "document 

model" d. This notation may be used to denote other possible random variables which 

are observable in the given document regarded as empirical data. We may also extend 

Relation 3.1 considering the statistics relative to the entire collection C, and in this case 

we may use the notation Prob(r, sip,. .., 
d, C). 

If the a priori probability of drawing t is known and is equal to p, and the size of the 

sample tends towards very large, then the mean T+9 converges to p. This comes from 

the theorem of large numbers: 

Theorem 3 (Theorem of Large Numbers) Assume that the event A has probability 

p. Let us carry out a sequence of identical independent experiments. Then in the first n 

experiments the frequency r of successes is stochastically convergent to p, that is for all 

s>0 

(3.3) lim Prob(jr-p"nl>n"s)=0 

However, if the a priori probability p is unknown or the size of the sample is small, 

then the estimation of the probability p cannot be set simply to the mean value )ºt of 

the sample. In these cases, priors are parameters and Bayes' theorem can be used to 

solve the problem of a Type I probability estimation. According to Bayes' theorem, the 

probability of having p as prior is: 

Prob(pir, s, d) = 
Prob(r, sip, d) " Prob(pld) 

Prob(r, s1d) 

(3.4) _ 
pr(1 - p)'" Prob(pld) 

Prob(r, s1d) 

where the denominator is 

I 

ob(r, s1p, d) " Prob(pld)dp Prob(r, std) = 
fo Pr 

=J1 pr(1- p)' " Prob(p! d)dp 

(3.5) = 
j'pr(l_p)s. 

dprob(ptd) 
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and the priors satisfy the condition: 

(3.6) fo 1 
Prob(pid)dp =1 

he probability of Equation 3.5 can be regarded as the compounding probability of the T 

binomial with the Beta distribution that has been studied in Section 2.6.1 of Chapter 2. 

The estimation of the unknown prior p as given in Relation 3.4 depends on the priors of 

Relation 3.6. Chernoff's bounds tell us that, when the sample is very large, the priors 

are less and less important in providing an estimate for p. 

Theorem 4 (Chernoff Bounds) Assume the same situation as Theorem 3.3. Then, 

for all0<E<1 

(3.7) Prob (Ir -p" nj > Epn) <- 2e-E2r"/3 

In this case this estimate is closer and closer to the maximum likelihood At. Therefore, 

the Bayesian approach would not give a very different estimate from that if we had 

assumed a frequentist approach or, equivalently, a Type I distribution. 

3.3 Type II sampling: De Finetti's Theorem 

If we observe carefully the mathematical form of relation 3.5, then we may assert that 

Bayes' Theorem has made it possible to transform a Type I sampling into a Type II 

distribution. Indeed, we may read the application of Bayes' theorem as if we were 

sampling balls from several urns where the probability of having a frequency p has the 

initial distribution function Prob(pld). More precisely, this is the content of De Finetti's 

theorem: 

Theorem 5 (De Finetti) A sample generated by a permutable random binary sequence 

can always be regarded as a binomial sampling in which the a priori probability p (Type 

I probability) has a Type II prior distribution function Prob(p1d). 

In mathematical formalism De Finetti's Theorem can be regarded as the compounding 

of the binomial distribution with the distribution provided by the priors as introduced 

in Section 2.6 of Chapter 2. As already observed, if the sample is very large, then the 

priors Prob(pid) become less important and the process reduces to a Type I probability 
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distribution. In [57] there is a simple proof of this theorem which provides also an 

extension of the theorem to the case that the prior distribution is defined on a finite set. 

3.3.1 Estimation of the probability with the posterior probability 

Bayes' theorem provides a posterior probability of p over the empirical data compounding 

two probability distributions of p, the likelihood and the prior distribution. We still have 

to solve the problems of choosing the best estimate for p. One way is to derive the most 

probable value of p, that is the value for p that maximizes the posterior probability. 

A second way is to consider the expected value of p, that is the mean of p over the 

posterior distribution. In other words, we can choose either the value for p that satisfies 

the equation 
dProb(pjr, s, d) 

_0 (3.8) 
dp 

or the expectation E(p) of the random variable p with respect to the posterior probability 

distribution 

E(p) = 
ý1 

p" Prob(pjr, s, d)dp =f1p" Prob(r, sip, d)Prob(pld)dp 

These two approaches produce different results as it can be easily verified when the prior 

distribution is uniform. In such a case the solution of Equation 3.8 also maximises the 

likelihood Prob(r, sip, d) and therefore coincides with the maximum likelihood 
rrs 

(see 

Section 3.3.3), whilst the expectation E(p) of p establishes the so-called Laplace's Law 

of Succession (see Section 3.3.2). 

3.3.2 Bayes-Laplace estimation 

Let us suppose that in the Bayes' relation the Type II distribution function of p is 

uniform, that is 

Prob(pid) =c 

where c is a constant. 

Equation B. 7 (see Appendix) and Equation 3.4 give the Laplace's Law of Succession. 

To derive it we observe that: 

E(p) =1p" Prob(r, sip, d) " Prob(pld)dp 
Prob(r, sid) Jo 
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C %1 
pr+i 1- p' dp 

Prob(r, sI d) Jo 
() 

_c 
r(r + 2)r(s + 1) 

Prob(r, s1d) r(r+s+3) 

(3.9) 
_cr+1! 

s! 
Prob(r, std)r+s+2! 

Similarly, exploiting Equation B. 7 again: 

Prob(r, std) = fo Prob(r, slp, d) " Prob(pld)dp = 

=c 
0 

'(1-p)'. dp= 
l 

JO 
r! s! (3.10) Cr+s+1! 

Both Equations 3.9 and 3.10 imply Laplace's Law of succession: 

(3.11) E(P) = 
r+1 

r _{.. s+2 

3.3.3 Maximum likelihood estimation 

67 

An alternative method to Bayes-Laplace is the maximum likelihood method. Relation 3.4 

can be regarded as 

(3.12) Posterior Probability oc Prior Probability " Likelihood 

If the prior probability function Prob(p1d) is assumed uniform, then: 

(3.13) Posterior Probability oc Likelihood 

To obtain the posterior probability of p, the likelihood function Prob(r, sip, d) is max- 
imized. The maximum likelihood estimate *+a is given by the solution of the first 

derivative of the likelihood: 

(3.14) 
pProb(r, 

sip, d) =Pr-'(l -p)a-1(r - (r + s)p) 

T+a is the value for which the likelihood is maximised, that is when 
d 

Prob(r, s1p, d) = 0. 
p 

An algorithm for computing maximum likelihood estimates, the so-called EM algo- 

rithm, from incomplete data is presented by Dempster, Laird and Rubin in 1977 [32,79]. 

In situations where data are complete the maximum likelihood estimate is easy to com- 

pute. When data are incomplete some unknown parameters can be introduced to make 
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the data complete. The EM algorithm is an iterative computation of the maximum like- 

lihood made into two steps. In the E-step the expectation of the unknown parameters 

O is computed. The M-step finds the estimates of the parameters which maximize this 

expectation. An application of the EM algorithm to the computation of the probability 

mixture parameter of the language model can be found in [59]. 

3.3.4 Estimation with the loss function 

We apply the methodology used by Steinhaus [112] to the problem of estimation. Suppose 

we have a binary sample where the probability of success is p. As stated in De Finetti's 

theorem, see Section 3.3, suppose we also have a prior probability distribution for p. The 

loss function I (x, r) is (p - x)2 where x is our estimate and p is the unknown probability 

p. Thus starting from Bayes' rule 3.5 with r+s trials the loss function is: 

1(x, r) _ 
01 

Prob(r, sip, d) " Prob(pid) (p - x)2dp 

(3.15) =J1 pr(1 - p)3(p - x)2 " dProb(pid) 

It is easy to observe that 

I (x, r) = E(p2 - 2xp + x2) 

= E(p2)-2xE(p)+x2 

Therefore I (x, r) is minimised when 

dI(x, r) 
_ dx =Oax=E(p) 

Thus, minimising the loss function turns to be equivalent to the decision of choosing as 

an estimate the expected value E(p) of p as defined in Section 3.3.1. 

3.3.5 Small binary samples 

If the sample is not significantly large, then results obtained from Theorem 5 depend 

heavily on the priors and thus its use needs an estimation of the priors Prob(pld). In 

such a case the maximum likelihood At for the Type I distribution in Relation 3.1 is 

not very relevant. Although it may be considered for its limiting property provided 
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by the theorem of large numbers as less subjective estimate of the priors than other 

possible estimates. More generally the Type II distribution function can be given by a 

law similar to 3.1, that is by means of the Beta distribution B. 7 of Appendix B. 1 instead 

of the uniform distribution, with parameters A and B instead of r and s. 

(3.16) Prob(pI d) 
pA-1 (1 - p)B-1 

- fö pA-1(1- p)B-ldp 

Since 

(3.17) J'A_1(1- 
p)B-ldp = 

P(A)+(B) 

where r is the Gamma function (see equation B. 1 in the Appendix), then 

(3.18) Prob(pjd) = I'(A)I'(ß))A-1(1- p)B-l . dp 

The distribution 3.18 is the Beta distribution with parameters A and B. The a pos- 

teriori probability distribution which turns out from this Type II distribution, after 

conditionalizing on Prob(t1d), takes the same form of Relation 3.18, that is: 

(3.19) Prob(plt, d) = 
I'(A +B+r+ s) 

p,, +A-1(1 - p)r+B-ldp T(A+r)P(B+r) 

With a similar derivation to Equation 3.11 and similarly to the derivation used in com- 

pounding the binomial with the Beta distribution in the example of Section 2.6 of Chap- 

ter 2, the expectation of p is Bayes-Laplace 

(3.20) E(p) 
- 

r+A 
r+s+A+B 

3.3.6 Multinomial selection and Dirichlet's priors 

In this section we assume we have several urns containing balls of different colours 

(terms). In each urn (document) we extract 1 balls (tokens) and for each colour ti 

we observe tf successes. Thus, each document is regarded as a small sample from an 

unknown population. This time we observe different terms and thus we need to gener- 

alize from the binary sampling of the previous section. The generalization of the Beta 

distribution, the Dirichlet distribution, is used to assign the priors in the multinomial 

case. Priors of a Dirichlet distribution have a set of parameters A1, 
..., 

A,, > 0, one for 
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each colour t;. 

r(A) Al-1 An-1 (3.21) P(Pl, ... , Pn, Al, 
... , 

An) = IF(Al) ... I'(An)'l ... pn 

n 
A=EAi 

i=1 
n 

1 
=1 pi 
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The mean of p; is 
Ä', 

the variance is 
A'2ý ý A+ 

lt)) 
Obviously if all parameters are equal, 

then the Dirichlet distribution is uniform. If there are only two parameters, Al and A2, 

then the Dirichlet distribution is that of Section 3.3.5 obtained with the Beta distribution 

of Formula B. 6 over Al and A2. 



Chapter 4 

Models of IR based on divergence 

from randomness 

This Chapter defines the basic Information Retrieval models under the following alter- 

native assumptions: 

1. A document d is a sample and a document collection is a set of samples over 

different unknown populations. Our experiment thus consists in drawing balls 

from a set of urns. In other words, the occurrence of a word t at the k-th place in 

a document d is abstractly equivalent to the observation of a ball of colour t at the 

k-th trial of the experiment relative to the sample d. 

2. An alternative view, but identical in mathematical properties, is having a bag of 

balls of different colours which need to be placed into different bins or cells (the 

documents). An experiment thus consists in placing TotFrD balls of different 

colours t into N different cells. Each cell has the property of "attracting" the balls 

of colour t with different probability pt. 

The use of one of the two types of models depends on the problem we need to 

formalize. The ball extraction type is more useful to formalise the apparent aftereffect 

in sampling (see Section 4.6) as well as to define the class of hypergeometric distributions 

(see Sections 2.3,8.6 and 2.6.1), while the occupancy type is suitable, as we have seen 

in Section 2.4, to describe the Bose-Einstein statistics. 

71 
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In the second part of the chapter the basic Information Retrieval models are nor- 

malized. We observed in the introductory Chapter (see discussion on page 31), the 

nonnormalized score distribution of the informative content against document rank de- 

creases very rapidly (see Figure 1.1 on page 32). In fact, Manmatha, Rath and Feng [75] 

observe that, in general, the score distributions produced by good retrieval models are 

initially exponential and after follow a normal distribution (see Figure 1.3 on page 36). 

We have seen that the informative content is additive, so that when the query is made 

up of two or more terms the informative content of their conjunction is the sum of the 

single informative content-weights. The informative content, in general, assumes very 

large values. For example, with the query "What is a prime factor? ", while the highest 

value of the informative content of the term prime is 854.0 obtained with a document 

dl, the highest value of the term factor is 2419.9 obtained with a different document d2. 

The two terms of the query co-occur only in dl but not in d2. Notwithstanding the addi- 

tivity property, if we had used the informative content as document score we would have 

obtained the document d2 as first retrieved document, but d2 is not relevant because it 

does not contain the term prime. Therefore the informative content-weight does not 

work well under the term independence assumption since the slope of the informative 

content is initially very steep. 

The role of the first normalization of the informative content is to resize suitably the 

informative content of a term by using only a small part of it. The part which is left as 

term-weight is proportional to the risk we take in choosing the term as a descriptor of 

the document. Risk and gain are related by the standard law of utility theory, that is 

gain 
= risk 

gain + loss 

In the previous example, the relevant document dl positions rightly at the first place 

with the gain-weight. The way we compute the risk and the gain is described in Section 

4.6. Before that, we introduce the notion of informative content of a term. 

4.1 Basic Models 

One of the most influential ideas on our our thoughts when we proposed the models of IR 

based on divergence from randomness is the notion of empirical or informative content 
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of a theory which comes from the book "The logic of Scientific discovery" written by 

Karl Popper in 1934 [83]. Popper proposed to regard the informative content of a theory 

as its testability. Theories may have degrees of testability. Some theories may have more 

potential falsifiers than other theories, and the theories with higher degree of falsifiability 

are also less likely to be true. For this reason Popper calls the logical probability of a 

theory the proportion of the complementary set of all falsifiers of the theory. In other 

words, the logical probability pt of a statement t is complementary to its degree of 

falsifiability In f (t). Popper gives other names to the notion of informative content, 

such as the degree of confirmation or the degree of corroboration. He thus proposed the 

following mathematical relationship between logical probability and informative content 

(4.1) Inf(t)=1-pt 

The logical reasoning adopted for falsifying theories is the modus tolleres: 

If the theory holds, then the consequent; but the consequent is not; therefore 

the theory is falsified. 

Kemeny, Good and Hamblin 1 independently suggested the definition of the degree of 

confirmation as 
(4.2) In f (t) _ -1og2 pt 

Shannon [98,99] in his Mathematical Theory of Communication also used the logarithmic 

measure for measuring the information contained in a message. Base 2 for the log 

corresponds to the choice of the binary digit as the unit of information. Shannon's Theory 

of Communication and Popper's ideas on the nature of information have influenced a 

number of philosophers and scientists [18,10,11,33,62,61,63] who coined the term, 

Semantic Information Theory, to denote the studies in Logic and Philosophy on the 

usage of the term information, 

in the sense in which it is used of whatever it is that meaningful sentences and 

other comparable combinations of symbols convey to one who understands 

them. [63] 
'Popper cites Hamblin's unpublished thesis Language and the Theory of Information of 1955 and 

Good's report on Popper's paper in Mathematical Review, 17, page 367. 
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Conventional information theory is not concerned with the semantic aspects of communi- 

cation which are irrelevant to the engineering problem of signal transmission. Semantic 

Information Theory investigates the axiomatization of logical principles for assigning 

probabilities to sentences, and it studies the relationship between informative content 

and probability. 

Willis and Solomonoff [124,108] use Equation (4.2) as a measure of the amount of 

information carried by an event and Goldman [43] develops information theory starting 

from Equation (4.2). 

A second influence on our work is the notion of randomness as it is conceived in the 

notion of Kolmogorov complexity [71]. Kolmogorov complexity provides a definition of a 

random (finite or infinite) sequence. Regular sequences can be easily compressed, while 

random sequences do not possess shorter descriptions. The key theorem of Kolmogorov 

complexity is the existence of a universal Turing machine U which computes all and 

only all partial recursive prefix functions. A prefix function is able to encode arbitrary 

sequences of natural integers using prefix-codes. An example of prefix code is the S-code 

used for example to compress inverted files of Information Retrieval[126]. We saw that 

in a Bernoulli process if the number of trials increases indefinitely, then the maximum 

likelihood approaches the prior probability of success. For short sequences the priors 

are too conclusive that we cannot perform an "objective" or "justified" probabilistic 

inference. In case that we have small empirical data Solomonoff[106,107] proposed to 

assign a universal prior probability p which satisfies the following Coding Theorem 

(4.3) - loge p(x) = -loge 
E 2-1(P)=K(x) 

U(P)=x 

The equality holds up to an additive constant. 
2-K(") is the probability of having a prefix of complexity K(x), that is the length 

1(p) of the minimal prefix string p such that the string x is the output of the universal 

prefix machine U on p. 

The probability 2-K(x) thus represents the cost of encoding the string x by the short- 

est program p; EU(P)=x 2-40 can be reduced to the computation of the probability of 

this representative up to some constant which does not depend on the string x. Ran- 

dom sequences thus have a large algorithmic complexity K(x) and, complementarily, a 
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smaller prior probability p(x). 

Thus the Coding Theorem states a powerful and theoretically appealing fact. In- 

ductive inference can be solved using the algorithmic complexity K. For example in 

our framework, we may assign in principle the universal prior probability distribution to 

our Bernoulli trials. In practice, we have to specify an encoding language to represent 

our problem, which should be chosen to be as "optimal" as possible in relation to its 

compressibility power, and then we try to compute the encoding cost according to the 

chosen representation language. 

We may define, for example, the probability relative to the encoding cost of a bi- 

nary Bernoulli process of l trials, to be the number of possible consistent configurations 

out of all configurations (as defined by Equation 2.3 or Equation 2.4). Therefore, the 

most informative sequences are those with the highest encoding cost, that is those se- 

quences with the smallest binomial probability B(l, t f, p) (as defined by Equation 2.1 

or Equation 2.8). 

Now, we saw that B(l, t f, p) is maximised when p is the maximum likelihood 4. This 

is equivalent to the fact that the divergence D of 4 from p, as defined by Equation 2.14 

of Section 2.2.2, is minimised. In case that B(l, t f, p) is minimised, we observe that 

the frequencies in the sample diverge from those we would get by choosing a sample at 

random. In other words, the successful trials do not occur in the number predicted by 

the Bernoulli distribution. 

We here mean by "random" that the trials of the sample follow a Bernoulli process. 

This notion of randomness differs from the notion of randomness given in algorithmic 

complexity theory, which is similar to Popper's notion of objective disorder or irregularity. 

In our case, by contrast a random selection of the sample brings about the regularity in 

the frequencies anticipated by the priors. 

Nevertheless, the way we compute the informative content is the same, that is 

- loge pt 

where the probability pt is given by different probabilistic models of the sample space. 
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4.2 The informative content In fl in the basic probabilistic 

models 

In this section we assume that for each pair of a term and document, the following four 

random variables are given: 

1. the total number of term tokens TotFrD in the collection D; 

2. the term-frequency Ft in the collection; 

3. the cardinality N of the collection; 

4. the term-frequency tf in the document d; 

Let Probl be a probability distribution over the sample space, and let X be the random 

variable counting the occurrences of the term in the documents. With Probl (t fI Ft, TotFrD, N) 

we denote the probability that X=tf with respect to the empirical data. 

Definition 6 The informative content of a term t in a document d is 

In fl (t f IFt, TotFrD, N) =- log Probl (t fI Ft, TotFrD, N) 

In the rest of this chapter the shorter expressions In fl (t f) and Prob1(t f) will denote 

Infl (t fI Ft, TotFrD, N) and Probl (t f IFt, TotFrD, N). 

Our objective is the definition of the sample space over this population together with 
the assignment of a suitable probability distribution Probl. 

4.3 The basic binomial model 

We make the assumption that the Ft tokens of a non-informative word t distribute over 

N documents according to the binomial law. The situation is abstractly equivalent to 

having a sequence of F trials with N possible outcomes, the documents, at each trial. 

The prior probability of having a given document as outcome is 

_1 PN 
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We are now interested to determine the probability of observing tf occurrences of t in a 

document rather than the probability of the given configuration 

tfi+... +tfN=Ft 

which we have already encountered in Section 2.1.3 (see Equation 2.4). The probability 

of observing tf occurrences in an arbitrary document out of F Bernoulli trials is thus 

given by Equation 2.8, that is 

(4.4)Prob1(t f) =B (N, F, t f) =F pt f qF-t f where p=N and q= 
NN -1 

tf 

The maximum likelihood frequency of the term in the collection is 

(4.5) ýN 

while the expectation E(p) of p is 
F+2 

(see the Bayes-Laplace relation 3.11) 

Equation 4.4 was used by Harter to define his 2-Poisson model[52]. 

We saw in Section 2.1.3 that the configuration problem can also be seen as a scheme 

for placing a number TotFrD of V terms in a collection of N documents. For each term 

tEVa possible configuration of term placements satisfies Condition 2.4 and all terms 

satisfy the further condition (see Equation 2.5) 

F1 +... + Fv = TotFrD 

So, the probability of a possible configuration that is consistent with the empirical data 

is the product of two multinomial distributions (see Equation 2.6 and 2.7), each deriving 

from the conditions 2.4 and 2.5. 

The informative content of t in a document d is thus given by 

(4.6) Infl(tf) _ -loge 
F 

ptf q F-tf with p= 
1 

N 
tf 

The reader may notice that the document-frequency n (the number of different docu- 

ments containing the term) is not used in this model. 
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4.3.1 The model P 

The informative content 4.6 can be approximated using the Poisson distribution. We 

may use this approximation when the mean p"F of the Poisson distribution, which is the 

maximum likelihood A of 4.5, is small or moderate in magnitude. Therefore, we assume 

that the number F of occurrences of the term is smaller than the number N of documents 

in the collection. The informative content is that defined by the estimate 2.13. This 

formula generates the basic probabilistic model P. The acronym P stands for Poisson. 

Infl(tf) =tf"loge +(A+121tf-tfI"logee+0.5"loge(2ir"tf) [model P] 

(4.7) with A=N and F«N 

4.3.2 The model D 

We have approximated the binomial distribution using the information theoretic diver- 

gence D and Stirling's formula in Section 2.2.2. 

From Equations 2.15 and 2.14 we derive the basic probabilistic model D. The acronym 

D stands for Divergence of the mean 0= tf from 1 
p F 

(4.8) In fl(t f) =F. (D(q, p) + 0.51og2 (2ir " q5 . (1 - q))) [model D] 

with qS =F and p=N 

We will see that the models P and D do not produce different experimental results, so 

they are experimentally indistinguishable. 

4.4 The basic Bose-Einstein model 

In Section 2.4 we have seen that the Bose-Einstein statistics differs from the binomial 

distribution because all configurations satisfying Equation 2.4 are indistinguishable. The 

informative content Infl derives from the probability in Equation 2.28 

(4.9) Infl(tf)=-loge 
(N +F- tf - 2)! F! (N - 1)! 

(F-tf)! (N-2)! (N+F-1)! 

4.4.1 The model G 

In Section 2.4.1 we have approximated Equation 2.28 with the geometric distribution. 
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From Equation 2.31 we derive the basic probabilistic model G 

(4.10) Infi(tf) =1og2(1+A)+tf"loge(1+1) [model G] 

with A=N and F«N 

The symbol G stands for the geometric distribution. This approximation was obtained 

with N large, that is with F«N. 

4.4.2 The model BE 

The second approximation of the Bose-Einstein statistics comes from a direct application 

of the Stirling formula (see Equation 2.33): 

Infl(tf)=-1092(N-1)-log2(e)+f (N+F-1, N+F-k-2)- f (FF-k) 

(4.11) f (n, m) = (m + 0.5) " loge 
(Mn) 

+ (n - m) " logen and FKN[ model BE] 

We will see that the models C and BE do not produce different experimental results, 

so they in practice coincide. 

4.5 The tf-idf model 

Let us choose a different sample space from binomial and Bose-Einstein statistics. We 

assign to each possible term-frequency tf in a document d the probability ptf q of the 

geometric distribution, where p is the prior probability that t occurs in the document. 

In fact the probability 

00 00 1- lim ptf +1 
Probt (tf > 0) =Eq- ptf =q"pZ ptf =q"p1p= 

tf=1 tf=o 

Therefore, the tf-idf probabilistic model is a generalization of the model G defined in 

Section 4.4.1. The tf-idf model coincides with G in the case that the prior p is set equal 

tol+awith. ý=N. 

An alternative way to assign the prior p exploits the document-frequency nt, that is 

the number of documents of the collection containing the term t. The probability p is the 

relative document-frequency N. Substituting these priors in the geometric distribution 
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we obtain 

N N 
infl(tf) =1092 N-nt+tf "logeN 

Since in general nt « N, we can assume NNN- nt that is 

N 
infi(tf) = tf ' 1082 n 

We saw that if the prior is given by the Bayes-Laplace estimate then 

N+2 
infl(tf) =tf "log2nt+1 

We also saw that, if the prior is assumed to be of the beta form with parameters A and 

B, see Equation 3.20, then the Bayes rule generates 

(4.12) infl(tf) = tf "log2 
N+A+B 

nt+A 

4.5.1 The model I (n) 

From Equation 4.12 we can generate a class of models by varying the parameters A 

and B. In the INQUERY Information retrieval system [2] the parameter values A and 

B are set to 0.5. In the absence of evidence, that is when the collection is empty with 

N= nt = 0, for A=B=0.5 the a posteriori probability p has the maximum uncertainty 

value 0.5. We also set the values of A and B to 0.5. The basic probabilistic model I (n) 

is thus defined as 

(4.13) in fl (t f) =tf" loge 
N+1 

[model I(n)] 
nt+0.5 

The symbol I(n) stands for "model with the Inverse of the document-frequency n". 

4.5.2 The model I(ne) 

As in the previous section, we derive the equation- similar to that 4.12 using the prior 

p= 
ne +A 

where ne is the number of expected documents containing the term 
N+A+B' 

according to the binomial law 2.8. 

It is easy to compute this estimate from the binomial 2.8. 

(4.14) ne= N. (1-B(Ft, O, p))=N"(1-qFt) 
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A new basic probabilistic model I(ne) is thus defined 

(4.15) in fl (t f) =tf" loge 
N+1 [model I (ne)] 

n, + 0.5 

The name I (ne) stands for "model with the Inverse of the expected document-frequency 

ne" 

4.5.3 The model I(F) 

Note that 1- B(N, F, 0) N1- e'Ä by the Poisson approximation of the binomial, 

and that 1- e-Ä ti 7V with an error of order O((R)2). Using this approximation and 

assuming that R is small, another basic probabilistic model I (F) is thus derived from 

the model I (ne) (see Formula 4.15) 

(4.16) in fl (t f) =tf" loge 
N+1 [model I (F)] 

F+0.5 

The name I (F) stands for "model with the Inverse of the term-frequency F". A gener- 

alization of the I (F) was given by Kwok [68] with the ICTF Weights (ICTF stands for 

the Inverse Collection Term Frequency Weights), in the context of the standard proba- 

bilistic model using relevance feedback information [90]. Kwok reported that the ICTF 

performed much better than Salton's inverse document-frequency model[94]. We show 

that in our experiments I (F) and I (ne) behave similarly and irrespective to the other 

normalization components. 

4.6 First normalization of the informative content 

Starting with this section we resume the systematic exposition of the second component 

of the retrieval models introduced in Chapter 1. 

We have abstractly reproduced the Information Retrieval process as we had coloured 

balls to place in or extract from urns. If sampling is with replacement, then the popula- 

tion is not changed and the probability of extracting the same ball in a successive trial 

is invariant. The conditional probability of having a sequence, for example, of {red, red} 

when the first trial is red is the same as the prior probability of having {red}. 

In a Bernoulli process the "holding time" between the appearance of two balls of the 

same colour does not depend on how long the ball has not appeared in the past. This 
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situation is described by a process with a complete lack of memory, that is past outcomes 

do not modify the expectation of the event. 

A different situation is when we are searching for tokens of a term and after a long 

unsuccessful search we find a few of then in a portion of a document. It is quite likely that 

we have finally reached a document for which we can expect an increased rate of success 

in continuing our search. The more occurrences we find the higher is our expectation. 

We assume that this expectation is measured by Probe (t f) in Formula 1.1. The 

probability Probe(tf) has been called by statisticians an apparent aftereffect of future 

sampling [37, pp118-1251. 

The intuition underlying the aftereffect in IR is that the greater the term-frequency 

tf of a term in a document, the more the term is contributing to discriminating that 

document. 

There are several models for modelling the aftereffect, one of these is the law of 

succession of Laplace [44] discussed in Section 3.3.2. Simulating aftereffect with our urn 

model consists in replace the extracted ball with other balls of the same or different 

colour. A second possibility is to use different urns having a prior probability of being 

selected, but once the urn has been selected the balls continue to be drawn from the 

chosen urn. 

Feller[37, page 119] pictures the urn models of aftereffect as the results of a super- 
human game of chance. If at each trial the chance of a rare event, like the occurrence 

of an accident, remains constant in time as expected then the population of the urn 

continues to be the same. But we may assume that an occurrence of that rare event 

has an aftereffect in the fact that it increases rapidly the chance to occur soon again. 

The more the rare event is observed at regular time intervals the more the chance of 

new occurrences of this event increases. In other words, the probability of the event in 

the successive interval of time is conditioned by its frequency tf in previous intervals of 

time. 

Turning back to the IR context, if tf is large then the probability that the term may 

select a relevant document is high. The fact that tf is large depends also on the length of 

the document. Moreover, relevant documents may have different lengths and we cannot 

predict the length of a relevant document. Therefore we assume for the moment that the 
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length of a relevant document is of arbitrary and large in size. In Section 6.2 we show 

how to normalize the actual document length l to a standard length. When enlarging the 

actual size of a relevant document to an arbitrary large size, the chance of encountering 

a new token of the observed term increases in accordance with the size tf of already 

observed tokens. 

We thus assume that the probability that the observed term contributes to the selec- 

tion of a relevant document is high, if the probability of encountering one more token of 

the same term in a relevant document is similarly high. We reason that a high expecta- 

tion of encountering one more occurrence will be due to some underlying semantic cause 

and will not be simply random. The probability of a further success in encountering a 

term is thus a conditional probability which approaches 1 as tf increases and becomes 

large. On the other hand, if successes were brought about by pure chance, then the 

conditional probability would tend to approach 0 as tf increases and becomes large. We 

need however, a method to estimate our conditional probability. 

We assume that the probability Probe (t f) is related only to the "elite set" of the 

term, which is defined to be the set Et of all documents containing the term. We 

also assume that the probability Probe (t f) in Formula 1.1 is obtained by a conditional 

probability p(tf + 11 t f, d) of having one more occurrence of t in the document d and that 

p(tf +1 It f, d) is obtained from an aftereffect model. 

This probability is computed in the next two Sections. 

4.6.1 The first normalization L 

The first model of Prob2 (t f) is given by Laplace's law of succession. The law of succession 
in this context is used when we have no "advance knowledge" of how many tokens of a 

term should occur in a relevant document of arbitrary large size. The Laplace model of 

aftereffect is explained by Feller [37]. Feller shows that the probability p(tf +1 It f, d) is 

close tot +2 and does not depend on the document length. 

Laplace's law of succession is thus obtained by assuming that: 

i) the probability Probe (t f) modelling the aftereffect in the elite set in Formula 1.1 

is given by the conditional probability of having one more token of the term in the 

document, that is passing from tf observed occurrences to tf+1, and 
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ii) the length of a document is very large. 

A Bayesian derivation of Laplace's law of succession was given in Section 3.3.5 with 

Formula 3.20 at page 3.20. According to this formula we would have 

(4.17) Probe (t f) = 
tf +A 

tf +A+B 

Similarly, if tf>1 then Probe (t f) can be given by the conditional probability of having 

tf occurrences assuming that tf-1 have been observed. If A=B=0.5 we get the 

following Equation 

(4.18) Probe (t f) = 
tf + 0.5 
tf +1 

Equations 1.1 and 4.18 give the normalization L: 

weight(t, d) =tf. }. A+B . Inf1(tf) 

(4.19) a tf 
+1 

"Infl(tf) 

The constant B=0.5 is ignored being independent from the term and thus not influential 

to the ranking. In our experiments, which we do not report here for sake of space, the 

parameters A=B=0.5 of Relation 4.17 performs better than other values, therefore 

we refer to the Formula 4.19 as First Normalization L of the informative content. 

4.6.2 The first normalization B 

The second model of Prob2(t f) is slightly more complex than that given by Relation 4.18. 

The conditional probability of Laplace's law directly computes the aftereffect on 

future sampling. The hypothesis about aftereffect is that any newly encountered token 

of a term in a document is not obtained by accident. If we admit that randomness is 

not the cause of encountering new tokens then the probability of encountering a new 

token must increase (or decrease) with respect to the probability which is expected by 

randomness. Hence, the aftereffect on the future sampling is obtained by a process in 

which the probability of obtaining a newly encountered token is inversely related to that 

which would be obtained by accident. 

In other words, the aftereffect of sampling from the elite set yields a distribution 

which departs from one of the "ideal" schemes of randomness we described before. There- 

fore, we can model the aftereffect process by Bernoulli. 
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However, a sequence of Bernoulli trials is a process characterized by a complete lack 

of memory (lack of aftereffect). 
It is known that previous successes or failures do not influence successive outcomes. 

The lack of memory does not allow us to use Bernoulli trials, as for example in the ideal 

urn model defined by Laplace, since the conditional probability p(tf + 11 t f, d) would be 

constant for all tf. 

To obtain the estimate Prob2 with Bernoulli trials we use the following urn model. 
We add a new token of the term to the collection, having thus F+1 tokens instead of 

F. We then compute the probability B (F + 1, tf+1,1 I that this new token falls into 
\ n/ 

the observed document, thus having a within-document term-frequency tf+1 instead 

tf. 
The probability BIF+1, tf+1,1) is thus that of obtaining by accident one more 

n 
token of the term t in the document d out of all n documents in which t occurs when a 

new token is added to the elite set. 

The comparison 

B(F+1, tf+1, 
n) 

B (F, 
tf,! 

) 

of the new probability B 
(F 

+ 1, tf+1,1 I to the previous one B 
(F, 

t f, 
1I 

tells us 
/ n/ 

whether the probability of encountering a new occurrence is increased or diminished by 

sampling from our urn model. 

Therefore, we may talk in this case of an incremental rate 
BB 

of term-occurrence 

in the elite set rather than of probability Prob2 of term-occurrence in the elite set. 

We suppose that the incremental rate of occurrence is 

ýB B1F, tf, 
1)-B(F+1, 

tf+1,1) 
-B 

(F+ 1, tf+1,! 
) 

(4.20)B \/ 
B (F, 

tf, 
1) 

B 
\F, 

tf, 
1) 

If the ratio of two Bernoulli processes 

B(F+1, tf+1,1 
(4.21) 

B 
\F'tf' / n 
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is smaller than 1, then the probability of having received at random the newly added 

token increases. 

Since the binomial decreases very rapidly at increasing values of the term-frequency, 

the larger the tf the less accidental one more occurrence of the term is. Therefore, 

accepting the term as a descriptor of a potentially relevant document is less risky. Equa- 

tion 4.21 is a ratio of two binomials as given by Equation 4.4 (but using the elite set 

with p=n instead of p= R): 

OB BýF+1, tf+1, 
n) 

- (4.22) B= 1- \ 
B 

\F'tf' n/ 
F+1 

1 
n"(tf+1) 

The equations 1.1 and 4.22 give 

1 
a F+i, t f+i, n F+1 

(4.23) weight(t, d) _\ "Infl(tf) = 
n" (tf +1) 

Infl(tf) 
B 

ýFtf, 

n/ 

4.7 Relating the aftereffect probability Prob2 to In fl 

In this section we set out a formal derivation of Formula 1.1, which describes the rela- 

tionship between the elite set and the statistics of the whole collection, which involves 

showing how the probabilities Prob2 and Probl are combined. The use of the gain as 

term-weighting is completely new, as well as its relation to the apparent aftereffect of 

sampling. We stress that also the idea of using Infl for defining basic Information Re- 

trieval models is original, although we saw that the standard tf-idf term-weighting can 

be interpreted as informative content (see the model I(n)). 

Let us assume that a term t belongs to a query q. We assume that if the term t 

also occurs in a document then we accept it as a descriptor for a potentially relevant 

document (relevant to the query q). A gain and a loss are thus achieved by accepting the 

query term t as a descriptor of a potentially relevant document. The gain is the amount 

of information we will get if the document turns out to be actually relevant. The gain 

is thus a fraction of Inf 1(t f) . What remains of Inf 1(t f) is the loss, and the loss is 

produced in the case that the document turns out not to be relevant. This translates 
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into the equation: 

(4.24) gain + loss = In f 1(t f) 

We weight the term by computing only the expected gain, namely 

weight(t, d) = gain 

87 

The conditional probability Probe (t f) of occurrence of the term t is related to the odds 

in the standard way (the higher its probability the smaller the gain): 

(4.25) Prob tf) _ 
loss 

2 gain + loss 

From Equation 4.25 the loss is 

(4.26) loss = Prob2(tf) " Infl(tf) 

For scoring documents we use only the gain, which from 4.24 and 4.26 is 

weight (t, d) = gain =Inf 1(t f) - loss 

(4.27) = (1-Prob2(tf))"Infl(tf) 

Example 1 As an example, let us consider the term "progress" which occurs 22,789 

times in a collection containing 567,529 documents. Let us use the Poisson model P 

for computing the amount of information In fl and use Laplace's law of succession to 

compute the loss and the gain of accepting the term as a descriptor for a potentially 

relevant document. We distinguish two cases: the term frequency in the document is 

equal to 0 or not. In the second case suppose tf= 11 as an example. We construct the 

following contingency table: 

Accept (t f= 11) Not accept (t f= 0) 

d is relevant gain, = 6.9390 losso = 0.04015 

d is not relevant loss, = 69.3904 gain =0 

Infl = 76.3295 Info = 0.04015 

First we compute the amount of information Infl = 76.3295 as given by the formula 

2.9 with tf= 11 and 1- Probe (t f) =1- i° = 0.0909 from 4.18, then gain, is obtained 

by multiplying these two values. Similarly, loss, = 0.9090 - 76.3295 = 69.3904. 
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When tf=0 we reject the term, that is the term is considered not to be a descriptor 

of a potentially relevant document, so by rejecting the term we have a gain when the term 

"progress" is not important for predicting the relevance of the document. According to 

Laplace's law of succession the gain is 0, while the loss is very small. 

4.8 First Normalized Models of Divergence from Random- 

ness 

The first normalization factor of Inh 1(t f) of Equation 4.19 is denoted by L (for Laplace), 

while the normalization of Equation 4.23 is denoted by B (for Binomial). First Normal- 

ized Models of IR are obtained from the basic models 

-P of Equation 4.7 on page 86; 

-D of Equation 4.8 on page 86; 

-C of Equation 4.10 on page 87; 

- BE of Equation 4.11 on page 87; 

- I(n) of Equation 4.13 on page 88; 

- I(ne) of Equation 4.15 on page 89; 

- I(F) of Equation 4.16 on page 89 

applying the first normalization 

-L of Equation 4.19 on page 92 or 

-B of Equation 4.23 on page 94. 

For the sake of completeness we here list the 14 first normalized models of divergence 

from randomness which we test in this dissertation. 

4.8.1 Model PL 

w (t f) = 
(ti 

" loge 
A+ 

fa+1- tf " loge e+0.5 1092 (27r tf) 
tf+ 1 12tf 

ý[ 
model PL] 

(4.28) with A=N and F«N 



Chapter 4. Models of IR based on divergence from randomness 89 

4.8.2 Model PB 

F+1 tf 1\ 
W (t f) =n (t f+ 1) 

(tf. b0g2 A+ 
(A+ 

12 tf _ti) " loge e+0.5 " loge (21r "t f) I[ model PB] 

(4.29) with A=N and F«N 

4.8.3 Model DL 

(4.30) w(tf) =tf11 (F. (D(c, p) + 0.51og2 (27 " q5 " (1- c)))) [model DL] 

with 0=F, D as in Equation 2.14 and p=N 

4.8.4 Model DB 

(4.31)u(t f) = 
n. (t f+ 1) 

(F " (D(q5, p) + 0.51092 (27r "" (1- ý)))) (model DB] 

with 0=F, D as in Equation 2.14 and p=1 

4.8.5 Model GL 

1 (4.32) w(tf) =tf+1 
(F 

" 
(log2 (1 + A) +tf" loge (1 

+ [model GL] 

with A=N and F«N 

4.8.6 Model GB 

[ model GB] (4.33) w(tf) =n" (t f+ 1) 
(loge (1 + A) +tf" loge (l +W 

with A=N and F«N 

4.8.7 Model BEL 

w(tf)= tf+l 
(-log2(N-1)-1og2(e)+f (N+F-1, N+F-k-2)- f (FF-k)) 

(4.34) with f as in Relation 4.11 and F«N[ model BEL] 
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4.8.8 Model BEB 

w(tf)= 
n 

ýtf+l) 
(-1og2(N-1)-log2(e)+f (N+F-1, N+F-k-2)- f (FF-k)) 

(4.35) with f as in Relation 4.11 and F«N[ model BEB] 

4.8.9 Model I(n)L 

(4.36) w (t f) =t if +1 
(t f" loge 

nt 

+N0.5) [model I(n)L] 

4.8.10 Model I(n)B 

(4.37) w(t f) =F+1 
(tf 

" loge 
N+ 1) [model I (n)L] 

n"(tf+1) nt+0.5 

4.8.11 The model I(ne)L 

(4.38) w(t f) =tf+1 
(ti 

" loge 
ne 

+N 
015) [model I (ne) L] 

where ne is as in equation 4.14. 

4.8.12 The model I(ne)B 

(4.39) w(t f) =n. tf + 1) 
(tf 

" loge 
nN+ 015) 

[model I (ne)B] 

where ne is as in equation 4.14. 

/ 

4.8.13 Model I(F)L 

(4.40) w(t f) =tf+11 
(tf 

" loge 
F+ 5) 

[model I(F)L] 

4.8.14 Model I(F)B 

1 (4.41) w(tf) = n. f+1) 
(tf 

" loge 
F+ 5) 

[model I(F)B] 



Chapter 5 

Related IR models 

Before we develop the last component of the probabilistic Information Retrieval models 

based on divergence from randomness, it is useful and important to examine the existing 

models for Information Retrieval, that have influenced our work. By models we include 

both weighting functions for document retrieval and term-indexing. A complete and 

detailed presentation of the probabilistic models can be found in [41,24]. Therefore, we 

here do not try to survey all of them but to introduce and discuss the most important 

aspects of them to make a tight comparison with our work and we try and we take a 

technical view of them as close as possible to that used in our investigation. 

In particular the language modelling, described in Sections 5.4 and 5.5, are also 

applied to the models of divergence from randomness in Chapter 6. 

5.1 The vector space model of IR 

The vector space model is a class of models rather than a single model. Many models can 

be traced back to that implemented by the well known, the SMART system[93,96], one 

of the first experimental systems of Information Retrieval. The basic matching function 

between the document d and the query q is obtained by considering both queries and 

documents as vectors d, qE RV and computing the similarity of documents and queries 

with the cosine function of the corresponding vectors. RV is the product space of the 

vocabulary V. The cosine is the inner product normalized by the norms of the vectors: 

(5.1) sim(q, d) = 
(d, q) 

II lI 

91 
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The term-weights making up the document vector d= (w1, W2, .... wv) define a variant 

of the vector space model. The simplest term-weighting function is [96, see Chapter 3] 

the Inverse Document Frequency Weight 

(5.2) Wk = tf 
(log2 n+1 

t 

where 
it is the relative document frequency of the k-th term t, that is the ratio of the 

number nt of documents in which the term occurs and the number N of documents in 

the collection, and lidII = wý is the norm. 

VF_ tkEd 
When the within-document term-frequencies tf, relative to the terms of the query, 

are all the same in two or more documents, the longest document receives the smallest 

similarity score, since its norm lid II is larger. In the vector space model there is thus 

an implicit normalization of the term-frequency with respect to the document length. 

This problem in Information Retrieval is called length normalization. For many years 

the length normalization performed by the similarity induced by the cosine function in 

the vector space model has been considered very robust. But, on the other hand, the 

cosine normalization requires the computation of the norm of the documents which can 

be heavy in implementation. A retrieval model in order to be a genuine alternative to the 

vector space model must use a different method from the cosine function for normalizing 

the term-frequency tf. For example, it could consider the document length ld as an 

explicit random variable of the probability space. This is what the BM25 formula does: 

the BM25 abandons the normalization provided by the cosine for the inclusion of the 

document length in the weighting formula. We discuss more extensively the length 

normalization problem in Chapter 6. 

5.2 The standard probabilistic model of IR 

Information Retrieval models, vector space model included, are based on probability 

theory [90,51,119,91,40,127,117,115,25,128,82], but the meaning of the term 

"probabilistic" pertains to the explicit usage of relevance as an element rel of the algebra 

of events. In other words, a probabilistic model ranks documents satisfying the so called 

"Probability Ranking Principle" (PRP) [89]. The PRP asserts that documents should 

be ranked according to the decreasing ordering established by the probability of relevance 
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p(rel, d1q) with respect to a given query q. Bayes' theorem relates the a posteriori 

probability p(rel, d1q) with the likelihood (also called the a priori probability) p(q, d1rel) 

and the priors p(rel), p(t). 

First, term independence assumption simplifies the computation of the likelihood 

p(q, dlrel) = fJ p(t, dlrel) 
tEq 

where 

p(t, d1rel) - 
p(tlrel) if tEd 

0 otherwise 

Then, Bayes' theorem is 

(5.3) p(rel, d1t) = 
p(t, d1rel) " p(rel) 

p(t) 

In the binary independence indexing model of Maron-Kuhns and Fuhr [78,40] Bayes's 

theorem is applied with a different reading, that is 

(5.4) prel l t, d) = 
p(t1 rel, d) " p(rel 1d) 

p(tl d) 
All terms in the observed document d of Equation 5.4 are regarded as items of evidence 

in Bayes' rule. This is equivalent to assuming that we are mainly sampling from a 

single document, like the sampling in the language model shown in Chapter 3. As a 

consequence the prior p(rell d) should be assigned considering the document d as an 

item of evidence, whilst Equation 5.3 provides a prior probability to relevance which is 

not conditioned by the observed document. This view is actually implemented by the 

standard probabilistic model. Notwithstanding this discrepancy, it comes out indeed that 

the results are practically the same for both formalizations and we may equally draw 

the same final weighting formula. For the above considerations, we prefer to assume 

Formula 5.3 as generating formula of the standard probabilistic model. 

In the Croft and Harper model [27] the prior p(t) can be regarded as an approximation 

of the probability of occurrence of the term t in only non-relevant documents p(tlrel). 

This assumption leads to the relation 

p(rel, d1t) - 
p(t, djrel) p(rel) 

p(tI Tel) 
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Since p(rel) is a constant and observing that the Boolean event "t, d" in Equation 5.3 

stands for tEd, then we derive the posterior probability distribution of relevance: 

(5.5) p(rel, dl q) aH 
p(tirel) 

tEgnd p(tlrel) 

The Robertson Sparck-Jones[90] model uses instead the cross product ratio: 

(5.6) p(rel, d1q) oc r, p(tlrel) "p jjrel) 

tEgnd p(tjrel) " p(tlrel) 

If the probabilities involved in relation 5.6 are estimated by using the counting measure 

over the set of documents and if R, r and n respectively denote the cardinalities of the 

set of relevant documents, the set of relevant documents in which the term t occurs and 

the set of documents in which the term t occurs, then we obtain (see the contingency 

Table 5.1): 

Table 5.1: The contingency table in the probabilistic model. 
tt 

rel r R-r 

n-r N-n-R+r 

R 

rel N-R 

n N-n N 

(5.7) p(rel, dlq) oc II r" (N-R-n+r) 

tEgnd 
(n - r) " (R - r) 

We can transform this probability into an additive weighting formula using the mono- 
tonic function log: 

(5.8) p(rel, d1q) oc E log r" 
(N -R-n+ r) 

tEgnd 
(n 

- r) " 
(R 

- r) 

In the circumstances that one or more components of the cross product ratio becomes 

null, a smoothing constant, for example 0.5, is added to each component of the cross 

product 

(5.9) p(rel, d1q) oc 1: log 
(r+0.5) " (N- R- n+r+0.5) 

tEgnd 
(n -r+0.5) " (R -r+0.5) 

Therefore, when no knowledge on relevance is available, that is when R=r=0, the 

probability of relevance becomes proportional to: 

(5.10) p(rel, d1q) oc log 
(N -n+0.5) 

tEgnd 
(n + 0.5) 
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The term-frequency within the document or the query is not yet taken into account 

in the Robertson-Sparck Jones model. Regardless of the number tf of occurrences of the 

term in the document this model assigns the same weight to every document containing 

the term. The 2-Poisson model of Harter suggests a way of extending the Relation 5.9 

and including the statistics about the observed document[52,53,54]. We show how to 

modify the model in Section 5.2.2 but first we introduce the 2-Poisson model. 

5.2.1 The 2-Poisson model 

The 2-Poisson model is a probabilistic model of keyword indexing. It cannot be regarded 

directly as a retrieval model. The purpose of Harter's work is to identify the keywords 

likely to be informative for an arbitrary document. Such words are called specialty words 

by Harter in contraposition to the other ones, the non-specialty ones, which instead are 

considered to occur in documents at random. The origin of the 2-Poisson model can 

be traced back to Maxon, Damerau, Edmundson and Wyllys[73,77,34,30]. In these 

works it is observed that the divergence between the rare usage of a word across the 

document collection and the contrasting relative within-document frequency constitutes 

a revealing indication of the informative status of a word. Damerau suggests selecting 

the high status words by making the assumption that the Poisson distribution describes 

these frequencies. If the probability results in a very small value, then the word is marked 

as an index term. Obviously, not all words always fall either into one class or into the 

other. But none the less, many word tokens occur randomly in many documents while 

they occur more densely and nonrandomly in a few documents. This set of documents is 

the Elite set of the term, and is the set of documents which extensively connects with the 

concept or the semantics related to the term. The Elite set E attracts the tokens with 

an expected rate AE. Tokens fall randomly into the other class with a lower rate Ay. 

The final probability of occurrence of the term in a document is given by the mixture of 

these two Poisson distributions [67]: 

ýE tf e-aE, \tf (5.11) prob(tf) = a. 
et 

fýE 
+ (1-a) "tf! 

Y 
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The probability of a term t to appear tf times in a document d belonging to the Elite 

set E is given by the conditional probability 

prob(X =tf, dE EI t f) = 
prob(X =tf, dE E) 

prob(t f) 

e-aE \tf 
a tf! 

a 
e-, 

\E, \ E+ 

(1 
- a) . 

e-SEA 

tf! tf! 
That is 

(5.12) prob(tf, dE EIt f) = 
1 

1 
-f 

Q e(, 
\E-AE) 

()tf 

where ß=1aa and a= AE =0 in the case that the word belongs to the non-specialty 

class. The conditional probability of Equation 5.12 is used by Harter to generate a 

ranking of the most informative words. However, the 2-Poisson model requires the 

estimation of 3 parameters for each word of the vocabulary, and this is a real drawback 

for the direct practical application of his model to term selection or term-weighting 

problems. 

A last remark concerns the N-Poisson model, the generalization of the 2-Poisson 

model. Any probability distribution on (0, oo) can be defined as a mixing distribution 

of Poissons [84]. Therefore, it is true that each word distributes following a N-Poisson 

distribution for some N. N-Poisson models thus have a practical application only when 

N assumes a very small value, such as in the case of the 2-Poisson model or the 3-Poisson 

model. 

In the next section we see how as much as possible was taken from the 2-Poisson 

model to solve the term-weighting problem. 

5.2.2 The BM25 matching function 

Interestingly, eliteness is a hidden variable of the 2-Poisson model. This is reflected in 

the fact that three parameters a, AE and AE need to be estimated in Equation 5.11. The 

matter becomes more complicated, if we want to exploit the 2-Poisson indexing model 

to enhance the probabilistic use of relevance in the retrieval model. The combination 
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of Equation 5.6 of the probabilistic model with Equation 5.11 of the 2-Poisson model 

needs reasonable approximations for making the mixture a workable retrieval model. 

If we simplify the relationship among terms which compound the given query assum- 
ing that the terms are stochastically independent, then the combination of the notion 

of eliteness with that of relevance generates the Robertson, van Rijsbergen and Porter 

Equation[91]: 

(5.13) e -AE + (1 - pi)ýEtf e-AE)(p2e-AE + (1 - p2)e-aE) 
. 13) w= In 

(p2, ºEtf e_, \E + (1- p2)\Etf e-'\E)(pie-AE + (1 - pi)e-'\ ) 

where 

pi = prob(d E EIrel) and p2 = prob(d E Eirel) 

Equation 5.13 is equivalent to 

"- tf AE-A- -aE+'\- (pi 
+ (1 - pi) 

(). ) 
eE 

(pee E+ (1 - P2)) 
(5.14) w =In %\- tf i1E-, \- -aE+, \r (p2 

+ (1 - P2) 
(? E) eE pie E+ (1 - pi)ý 

Let 

w(tf) =InC(tf)+1n Co 

be the Equation 5.14 where Co is the ratio of the two components of the cross product 

not containing the variable tf. The first derivative with respect to the variable tf is 

aE-i1- A- tf a 

w(p2-Pi)"e 
Ct (j) 

"Iný 
) 

(. f) 

Note that In ()<0 because Ay < AE in the 2-Poisson model. Therefore w is a 

monotonically increasing function under the hypothesis that p2 < pl, which obviously 

holds since the size of the elite set of a term is assumed to be small in Harter's model. 

The limiting form of Equation 5.14 for tf -+ oo is 

Pl 
(p2e \E+' + (1 - p2)ý 

p2 
(ple-, \E+a- + (1 - pi)) 

Since e--\E+-\E ti 0, this limit is very close to 

(5.15) Pi (1 - P2) 
P2 (1 - P1) 
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Without loss of generality, since the weighting function is monotonic with respect to 

the within-document term-frequency tf, when we rank documents according to the 

weight 5.14 we may assume that the topmost documents of the ranking have their tf 

value higher than that of the documents lower in the ranking. Hence, the limiting 

form 5.15 can be taken as the actual score of the topmost documents. 

Robertson and Walker [87] define as an approximation of Equation 5.15 the product 

tf p(tjrel)p(tjrel) (5.16) w=tf+K 
p(tjrel)p(ijrel) 

Indeed, both Equations 5.14 and 5.16 have Formula 5.15 as limit for large tf. Varying 

the parameter K and using Relation 5.9 we obtain the so-called BM weighting formulae 

(BM stands for Best Match): 

w= 
tf 

In 
(r+0.5)"(N-R-n+r+0.5) 

[BM's family] 
k+tf (n-r+0.5) " (R-r+0.5) 

The BM25 matching function is: 

(5.17 
(k1 + 1)t f (k3+1) " tfq 

1092 
(r + 0.5) " (N -R-n+r+0.5) [BM25] 

tEq 
(K + tf) (lc3+tfq) (n -r+0.5) " (R-r+0.5) 

The unexpanded BM25 matching function, that is when R=r=0, is: 

(5.18) ý (k1+1)tf (k3 + 1) "tfg 1092 
N-n+0.5 

t 
(K + tf) (k3 + tfq) n+0.5 

where 

i) K is k1((1- b) + b(a4j))" 

ii) kl and b are set by default to 1.2 and 0.75 respectively, k3 to 1000 [88]. 

By using these default parameters, the unexpanded baseline BM25 ranking function, 

that is the BM25 applied in the absence of information about relevance, is: 

(5.19) 2.2 "if 1001 " tfq 1092 
N-n+0.5 

[BM25 - unexp] 
tEq 0.3+0.9. 

�9 
+ tf 1000 + tfq n+0.5 
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5.3 Inference Network Retrieval 

99 

Turtle and Croft [116] introduced the use of inference networks to support document 

retrieval. The Bayesian inference network model is at the basis of the INQUERY sys- 

tem [28]. Information retrieval is viewed as an inference or evidential reasoning process 

in which the probability of one or more queries is computed with documents as items 

of "evidence". Bayesian inference networks are used to specify the dependence between 

queries and documents as a mechanism for propagating and inferring the probabilistic 

relationship between the query and the document. 

The query Q in an Inference Network Retrieval is deemed as a Boolean propositional 
formula. It is known that any Boolean formula can be equivalently expressed in the 

disjunctive normal form, which is a disjunction of conjunctions Ci (the constituents) of 

atomic or negation of atomic formulas (terms) tk. Formally 

Q=Vci iEI 

Let us apply the theorem of complete or total probability. For a set of mutually 

exclusive events C;, with iEI, which is also a covering of the event Q, the probability 

of the event Q is: 

(5.20) P(Q) => P(QI Ci) " P(Ci) 
iEI 

As an example, Q can be the conjunction C of terms as defined in the standard vector 

space model, in the circumstances that I has only one element. P(QjC, ) may range in the 

unit interval [0,1] and its value can be given by the user during the query formulation. 

The crucial point in the inference network model is how assigning the prior probability 
P(C; ). At this aim, we can iterate the theorem of complete probability but using the 

set D of documents as basic space. In order to have D as event space, the documents 

must be mutually exclusive events. Two arbitrary documents may be indeed regarded 

to be atomic and thus mutually exclusive events, in symbol d fl d=0. In fact if we 

interpret the logical conjunction of two arbitrary documents as their juxtaposition, then 

the result of this fusion does not, in general, generate a sensible and consistent text. 

Therefore 

(5.21) P(CC) _> P(Cs1 d3) . P(d3) 
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We substitute the last formula in ( 5.20): 

(5.22) P(Q) =Z P(QI Ci) . (Z P(CiI ds) . P(d3)) 
iEI j 

that is 

(5.23) P(Q)=E 
(P(QIc) 

" P(CCIdj)) " P(d1) 

With a different computation, we obtain a second relation for P(Q) using the Theorem 

of complete probability: 

(5.24) P(Q) _ P(QI dß) . P(dd) 

By equations ( 5.23) and ( 5.24) we derive: 

(5.25) > P(QI dj) . P(dj) =E> P(QI Ci) . P(C 4dj) . P(dj) 
jj iEI 

and therefore: 

(5.26) P(2I dj) . P(dj) E P(QI C1) . P(CjI dj) . P(dj) 
jj {EI 

To obtain the probability of a constituent C, we suppose the probabilistic term inde- 

pendence. Actually, the term independence assumption is extended to the negation of 

terms: 

(5.27) P(Cildi) _H P(tkldi) * II P(''tkldi) 
kEK kOK 

provided that Ci =A tk AA -'tk, -'tk meaning that tk does not occur in C; and 
kEK kOK 

P(-, tkldj) =1- P(tkldi). 

Turtle and Croft use the following formula for assigning the posterior probability 

P(tk! dd) 

(5.28) P(tk ldj) =y+a" idfn(tk) "tf n(tk, dj) 

(5.29) P(-ltkldj) = S(1- idfn(tk) " tfn(tk, dj)) 

where idfn(tk) is the normalized inverse document frequency 

log 
N 

ntk idfn(t k)- logN 
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7+S=1 

and the normalized term-frequency of a term in a document is 

tf n(tk , di) - 
tf(tk , di) 

a gdED max tf (tk, d) 
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Beyond the idea of combining evidence from multiple sources, inference networks first 

introduced the use of a nonzero default probability for term-weights. The same feature 

holds in language modelling as we see in the next sections. 

5.4 The language model 

The language modelling approach was first proposed by Ponte and Croft [82]. The 

general idea underpinning language modelling in IR is that documents and queries are 

sequences of words and that the document retrieval score is computed by the probability 

of producing the query from the document regarded as evidence. More precisely, a 

document d which is relevant to a query q constitutes a plausible evidence which, among 

many other pieces of evidence (documents), maximizes the conditional probability p(gjd). 

The document is treated as "a model" which should be estimated by the available 
data, namely the statistics within the document and the statistics of the whole collection. 

When estimating the "document model" from data, the model may over-fit the 

data, that is it may model the possible word sequences which can be extracted in the 

document, but may not fit other word sequences. Thus, if for example a term does 

not appear from the document, it will be assigned a zero probability, and similarly all 

sequences containing this term will have a zero probability, and the absence of the term 

is particularly likely if the text length of the document is very short. A perfect model 

for a document would compute unity probability to the document itself (considered as 

word sequence) and zero probability to all other word sequences. For example, such 

a perfect model would give zero probability to all word sequences that do not contain 

words belonging to the vocabulary of the observed document. 

In order to overcome the problem of assigning zero probabilities to terms not be- 

longing to the observed document, smoothing probabilities can be used. Smoothing is a 

method to avoid over-fitting the data, and in Bayesian statistics it is connected with the 

assignment of the so-called prior distribution. In the Bayesian views it is assumed that 
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there is some true, but unknown, distribution of probabilities over the events. These 

probabilities are called the priors, or the a priori probability distribution, and they are 

regarded as parameters to be estimated from the a posteriori probabilities. Beside the 

non-empirical probabilities of the priors, the available empirical data provide the most 

likely probability estimates for the events. Bayes' method supplies a way of combin- 

ing the two distributions and calculating a posterior or inferred estimate for the events. 

When, empirical data are large in number an accurate value for the priors is not nec- 

essary. However, when the empirical data are not significantly large in number, then 

Bayes' method requires values for the priors, and sometimes they have to be provided 

from a subjective starting position. We choose an initial distribution and then we replace 

it when a better one is determined. 

5.4.1 Ponte and Croft's model 

The first example of the language modelling approach to IR is the model created by 

Ponte and Croft[82]. The language model offers a uniform approach to both indexing 

and weighting schemes, while in the standard probabilistic approach these processes use 

two different models [109]. In language modelling the term "model" has acquired a 

twofold nature: it can be interpreted as "a probabilistic model" for the empirical data, 

and can also be used as a "retrieval model'. Unlike the 2-Poisson model defining the 

BM25 formula, in which the probability of relevance is a hidden variable, the Ponte and 

Croft model starts from the "raw" maximum likelihood of terms in the given document 

as the "model" of the language: 

(5.30) p(tjd) = Pd(t) = 
ld 

and 
(5.31) p(qld) = fl p(t1d) 

tEq 
The probability of the terms not occurring in the document are then computed by using 

a default value, that is the raw term-frequency in the collection: 

(5.32) p(tl d) = PD = 
Ft 

TotFrD 

In order to ensure the fundamental condition E p(tI d) =1 summing up the probabilities 
tEV 

of Equations 5.30 and 5.32, a normalization factor is needed. We then assume that the 
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sum of the two probabilities holds up to a normalization factor. 

While the language model based on the Dirichlet Priors directly combines these two 

probabilities (see next Sections and particularly Section 3.3.6), Ponte and Croft try to 

make the probability of Equation 5.30 more robust mixing it with a different proba- 

bility established with a larger estimation, that is considering the set Et of documents 

containing the term t: 
(5.33) p(tld) =1> P(tld) 

nt dEEt 

The mixing is obtained by introducing a risk probability function R which is the geo- 

metric distribution 2.4.1: 

Jt, d 
tf 

(5.34) Rt, d x-1+ ft, d + ft, d 

where 

ft, d = p(td) X ld. 

and then: 

p(4ld) 
pd(t)(l Rt d) x p(tld) ,d if tf >0 

PD otherwise 

The purpose of using the risk function is to enable a choice of probability close to either 

the value of the maximum likelihood or to the mean frequency of the term, according 

to the size of the relative term-frequency. If the term-frequency in the document is high 

then the risk is minimal and the probability of the term can be reduced to its maximum 

likelihood pd(t). If tf is small, then the maximum likelihood estimate is less reliable, 

and in this case, the risk function is high, and the probability of the term reduces mainly 

to the mean frequency in the set Et of documents containing the term t. Similarly, if 

the length of the document is very large then the maximum likelihood estimate is more 

reliable, the risk function accordingly becomes small, and the probability of the term 

reduces back to the maximum likelihood in the document. Finally, if the term does not 

occur in the document then the probability of the term is chosen to be the maximum 

likelihood pD in the collection D. 
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5.5 Language model: Dirichlet's prior for IR 

In this section we resume the situation of Section 3.3.6, in which we have several urns 

containing balls of different colours (terms) and in each urn (document) we extract l balls 

(tokens). We have derived the fundamental Formula 3.21 assuming Dirichlet's priors: 

ý, � 
r(A) Ai-1 A�-1 1ý1N1, ... , Pn, Al,..., An) = r(Al) ... r(An) pl ... fin 

n 
A=EAti 

i=1 
n 

1pi=1 

i=1 

The Formula 3.21 is maximized according to Bayesian statistics when p; is equal to the 

mean 
Ä` 

. Let us denote the mean by Ai. 

Example 2 Let D be a collection of documents containing FreqTotColl tokens over the 

vocabulary V. Let us count the frequencies Ft; of each term in the collection. Since the 

sample of documents is significative large, instead of assigning priors with the Dirichlet 

distribution, we may use the multinomial distribution as defined in Formula B. 11 of the 

Appendix. We instantiate the distribution B. 11 with the following parameters: 

(5.35) ni=Ft; 

The parameter n is the sum FreqTotColl of all tokens in the collection FreqTotColl. 

The expected relative frequency is Aj = 
Ft' 

FregTotCol! 

Example 3 Let us count the frequency t fi of terms in the document d. We instantiate 

the Formula 3.21 again, giving this time a term the a priori probability IVI 
1 

of occurring 

in a document, where IVI is the total number of terms in the collection. 

(5.36) A; =tf; +1 

The parameter A is the sum of the length Id of the document and IVI. The expected 

relative frequency for all other terms ti is: 

(5.37) tu +1 
Id + IVI 
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To answer a query Q= {tl, 
... , tk} we assume that terms are independent: 

k 

p(Ql d) = p(ti7... , 
tk) 

i=1 

(5.38) _ 
tfi+1 

ý 
ý=1 ld + IVI 
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Experiment 7 [Dirichlet priors]The run on TREC-10 with the retrieval function 5.38 

yields an average precision of 0.1262. 

Example 4 Let us count the frequency t fi of terms in the document d. We instantiate 

the Formula 3.21 with the following parameters: 

(5.39) A; = tf; +µ 
Ft; 

FregTotColl 

The parameter A is the sum of the length Id of the document and the parameter µ. The 

expected relative frequency for all other terms t; is: 

tfs + it " 
Ft' 

(5.40) A_ = 
FregTotColl 

ld+µ 

Dirichiet priors created by the formula 5.39 are used by Lafferty and Zhai to define 

their language model [70,133]. To answer a query Q= {t1, ... , tk} it is assumed that 

terms axe independent: 

k 
p(QId) =p(ts,..., tk) = fl )% 

Ft; 
k 

(ti+ + it FreqTotColl (5.41) = 11 ld + It t=i 

We can express Relation 5.41 in additive form applying the monotonic logistic function, 

but before we divide p(Qld) by the value rjk 1µ' Fregc tColl' 
that does not affect the 

ranking because it is independent of the document. 

p(Qjd) oc log FlL 1 Ai 
_ t: 112L, 

FregTotColl 
k FregTotColl "tf; (5.42) _E log -1) -k" log(ld + µ) 

i=1 pFti 
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Experiment 8 [Dirichlet] In [132] it is reported that the best match with the Dirichlet 

priors gives an average precision 0.2560 for TREC-8 (short queries) with µ= 800. We ran 

the same experiment and found the best match for mu = 400 with an average precision 

of 0.2541 in comparison to the precision 0.2600 of our I(ne)B2. For long queries of 

TREC-8 it is reported in [132] that the best match has an average precision of 0.2600 

with p= 2000 (in comparison to an average precision 0.2841 of our I(ne)B2). However, 

our experiment with Dirichlet's priors gave a lower average precision (0.1914). We can 

get the mean average precision to rise to 0.2661 by including the frequency tf q= of the 

term in the query into the weighting formula: 

FrejotColl "tf; )_ (5.43) p(Q I d) atfq; " log +1Jtfq; " log(ld + µ) 
tiFti s=1 

In general, the Dirichlet model gives a good performance with short queries. For com- 

parisons between the BM25 and the Dirichlet priors see Tables 7.10,7.11 and 7.12. 

The best performing values are in bold. Dirichlet priors implemented from Formula 5.43 

is denoted by the model LM(y = ... 
) with µ chosen as the best performing value for the 

MAP (Mean Average Precision) for each of the TREC-8, TREC-9 and TREC-10 data. 

5.6 Language model: mixtures of probability distributions 

In Example 2 we have associated a probabilistic model to a single document. It may 

be possible to combine r possible models of the collection D with a mixture of these 

probability models. We can even combine the single document models with the model of 

the collection as explained in Example 2. For each model we thus associate a weight pi to 

its probability function and we mixture them with a linear combination of all probability 

functions p(pl, ... , p,,, A1, 
..., 

Ad). If the weights sum up to 1 then the resulting function 

is also a probability density function: 

r 
(5.44) p(P1, ... , Pn) =E µd ' P(P1, ... , pn, Ai, 

... , 
An) 

d=1 
N 

(5.45) L µd =1 
d=1 

The main problem of estimating the weights of the mixture remains. However, since the 

expectation of the frequency for each term i is a linear operator on the density functions 
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and the density function of the mixture is a linear combination of density functions then 

the mean of each p; is the linear combination of the means: 

r 
(5.46) A= µd " Aa 

d=1 

For example, combining two multinomials, the first defined by a document d while the 

second by the collection D (see example 2), we obtain the following probability for the 

term i: 

(5.47) A+ : -- Pd " 
tf 
1+ 

(1 - µd) ' 
Ft 

FregTotColl 

This relation was introduced by Hiemstra in [60]. 

k 
P(Q) = P(ti) ... 'tk) 

t=ý 
k (1-ld F't, (5.48) 

l+ 
(1- µd) FregTotColl 

) 

k Ft; ý Pd t f; " FregTotColl 
(5.49) _ (1- µd) FreqTotColl 1i 

(1 
+ (1- µd) l" Ft; 

) 

The parameter µd can be set to a constant µ, that is we assume that lid is independent 

of both the document and the term. The first product in Formula 5.48 is therefore a 

common factor of the score of each document and then: 

µt ft " FregTotColl k 
(5.50) p(Q) oc 

ý1 
+/ 

i_1 
(1- µ) 1" Ft; 

Experiment 9 [Mixture] We ran an experiment with TREC-10 data using the pa- 

rameter Pd = 0.15 as suggested by Hiemstra for the TREC-8 collection and we obtained 

the average precision of 0.1201[59]. Varying the parameter µd we obtained the best 

match with µd = 0.75 and average precision 0.1465 for TREC-10 data. It is easier to 

implement the logistic version of Formula 5.50, because the terms which belong to the 

query but not to the document do not contribute to the following sum: 

kµ tfi " FreqTotColl 
(5.51) p(Q) a loge 

(1 
+ 1 Ft; 
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Term-frequency normalization 

In this chapter we study the probability distribution P(tf, 1) of two random variables 

over the elite set Et, which is called a bivariate discrete distribution [67], where tf is the 

within-document term-frequency and Id the length of the document d. An observation 

from sampling from a bivariate population consists of a pair of measurements. For 

a bivariate distribution the correlation coefficient is a useful function to measure the 

degree to which the two variables vary together. If the bivariate distribution is normal 

then sampling shows a linear relationship between the two variables [31]. 

The correlation coefficient is the covariance of the normalized variables of tf and Id, 

that is 
(tf-tf a -i E 

atf O"1 

where E is the expectation, tf= 
Ft 

is the mean term-frequency in the elite set of the 
nt 

term, I is the average length in the elite set, v12 and Qf are the variance of the length 

and the variance of the term-frequency in the elite set respectively. 

The value -1 <v<1 indicates the degree of the linear dependence between the 

two random variables. When v=0 the correlation coefficient indicates that the two 

random variables are independent. When tf=a" ld +b for some a, b [31], the correlation 

coefficient is -1 or 1. For this reason the value v provides a measure of the extent to 

which the two variables are linearly related. 

Harter was not in a position to draw a general relationship between tf and Id, because 

the correlation coefficient gave ambiguous results. His experiment however dealt with a 

108 
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sample of highly informative terms from a small text collection of technical abstracts. 

The interval of confidence values for the correlation coefficient was around v=0 for 

some words, positive or negative for others. 

Harter concluded that the relationship between term-frequency and length in a doc- 

ument is not obvious. 

We ran a similar experiment with the TREC collection w2Tg of 2GB using as sample 

of terms the set of all terms of the queries of TREC-7 and TREC-8, and with the TREC 

collection WT10g of 10GB using as sample of terms the set of terms of the queries of 

TREC-10. An excerpt of the results are shown in Table 6.1. 

We used Fisher's method [39] to derive the confidence interval of the correlation 

coefficient. Fisher's method consists in deriving the confidence interval of the transform 

Z=0.51n1+v 

which is normally distributed with mean 

and standard deviation 

0.51n1+v 
1-v 

1 

n-3 

regardless the value of v. 
The size of the set of documents from which we get the correlation factor is in general 

very large with the exception of a few cases, such as the stemmed word "postmenopaus" 

as shown in Table 6.1 . 
Our findings do not coincide with Harter's conclusions. A positive correlation can 

be established between term-frequency and words. Although the value of the correlation 

coefficient is relatively small, small values of the correlation factor are regarded very 

meaningful in large samples [111]. In our sample terms appear in many thousand of 

documents so that the samples can be considered very large. The situation is different 

when a small value of the correlation coefficient is observed using very small samples. 

In such cases, we can hardly conclude something, since the results should be considered 

neither meaningful nor statistically significant [111]. It is worth noticing that the most 

frequent terms in the collection, which are the terms with the largest test samples, are 

mainly those which possess the greatest correlation coefficient (see Table 6.2). 
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Query Term nt Confidence interval of v (95%) 
351 explor 10012 0.266 0.266 
351 falkland 400 -0.057 -0.047 
351 petroleum 8245 0.289 0.289 
352 british 42153 0.132 0.132 
352 chunnel 33 0.034 0.157 
352 impact 29197 0.340 0.340 
353 antarctica 207 0.051 0.070 
353 explor 10012 0.266 0.266 
354 journalist 10395 0.166 0.166 
354 risk 29230 0.294 0.294 
355 ocean 6343 0.723 0.723 
355 remot 5049 0.439 0.439 
355 sens 21424 0.338 0.338 
356 britain 24919 0.106 0.106 
356 estrogen 61 -0.079 -0.013 
356 postmenopaus 7 -0.389 0.319 
357 disput 17882 0.122 0.122 
357 territori 21765 0.378 0.378 
357 water 31578 0.330 0.330 
358 alcohol 5049 0.042 0.042 
358 blood 8010 0.205 0.205 
358 fatal 3888 0.298 0.298 
359 fund 66160 0.517 0.517 
359 mutual 12482 0.212 0.212 
359 predictor 98 -0.096 -0.056 
360 benefit 41067 0.249 0.249 
360 drug 20757 0.126 0.126 
360 legal 35355 0.280 0.280 
361 cloth 9704 0.093 0.093 
361 sweatshop 93 0.374 0.410 
362 human 26099 0.286 0.286 
362 smuggl 2996 0.069 0.071 

Table 6.1: The Correlation coefficient between length and term-frequency with terms of 

the first 12 queries of TREC -7 
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Term nt v Term nt v Term ni v 
ocean 6343 0.72 treatment 15587 0.24 mainstream 2757 0.06 
equip 33896 0.63 sick 3660 0.22 rain 5166 0.06 

us 46905 0.61 mutual 12482 0.21 dismantl 3438 0.05 
organ 57608 0.55 blood 8010 0.21 mental 5974 0.05 
fund 66160 0.52 hydrogen 817 0.20 nativ 6199 0.05 
insur 24625 0.46 medic 17632 0.18 prize 5217 0.05 

radioact 2286 0.44 europ 54138 0.18 alcohol 5049 0.04 
remot 5049 0.44 price 78637 0.18 merci 1553 0.04 

oceanograph 128 0.43 food 27841 0.17 nino 153 0.03 
transport 31436 0.41 journalist 10395 0.17 winner 9711 0.03 

disast 7073 0.40 children 23549 0.16 piraci 406 0.03 
sweatshop 93 0.39 court 39586 0.16 orphan 614 0.03 
territori 21765 0.38 hybrid 1063 0.15 syndrom 1221 0.02 

el 12194 0.37 illeg 12194 0.15 rabi 128 0.01 
wast 13262 0.36 home 60333 0.14 euro 4017 0.01 

technolog 33280 0.35 smoke 5407 0.14 holist 118 0.00 
build 65160 0.35 british 42153 0.13 vitro 268 0.00 
world 101523 0.35 robot 790 0.13 cigar 503 -0.01 

impact 29197 0.34 cyanid 223 0.13 bulimia 25 -0.02 
sens 21424 0.34 medicin 6338 0.13 nobel 1035 -0.02 

enhanc 12777 0.34 drug 20757 0.13 postmenopaus 7 -0.04 
automobil 4760 0.34 disput 17882 0.12 estrogen 61 -0.05 

water 31578 0.33 opposi 24231 0.12 falkland 400 -0.05 
law 58831 0.32 amazon 512 0.12 predictor 98 -0.08 

export 27950 0.31 casino 1171 0.11 anorexia 41 -0.09 
altern 23917 0.31 space 17734 0.11 nervosa 11 -0.31 

commerci 38903 0.31 britain 24919 0.11 
fatal 3888 0.30 encryp 84 0.10 

energi 26336 0.30 ill 11023 0.10 
soil 4482 0.30 teach 7261 0.10 
risk 29230 0.29 chunnel 33 0.10 

petroleum 8245 0.29 recal 12474 0.10 
human 26099 0.29 cloth 9704 0.09 
transfer 22539 0.28 tourism 4245 0.09 

legal 35355 0.28 tunnel 3152 0.09 
fuel 15183 0.27 car 30309 0.09 

american 53460 0.27 obes 191 0.09 
forest 6656 0.27 disabl 5152 0.09 
explor 10012 0.27 kill 25557 0.08 
fertil 2636 0.26 school 36008 0.07 

health 32856 0.25 smuggl 2996 0.07 
benefit 41067 0.25 moon 1612 0.07 
vessel 5424 0.25 arsen 1789 0.06 

station 25565 0.25 antarctica 207 0.06 1 1 -J 
Table 6.2: Terms of TREC -7 in decreasing ordering of term-frequency-document length 

correlation. 



Chapter 6. Term frequency normalization 112 

On the other hand, for very rare terms independence or negative correlation can be 

observed. We thus agree with Harter that highly technical terms, such as specific terms 

from chemistry, may tend to occur independently from the length of the document. 

We have found an average correlation of 0.186 for the queries of TREC-7,0.147 for 

the queries of TREC-8 and 0.146 for the queries of TREC-10. 

In conclusion, our findings enforce our intuition that term-frequency normalization 

is an important component of the retrieval model. If we had not found a positive cor- 

relation between length and term-frequencies we would have found difficult to motivate 

our normalization functions. 

Indeed a term-frequency normalization function substitutes the actual term-frequency 

tf for the new term-frequency value tfn computed on the basis of the document length. 

A positive correlation factor means that the longer the document is, the bigger the 

term-frequency is. 

After this discussion, we are now in position to formulate the problem of the Term- 

Frequency Normalization. It is the process of predicting the number tfn of occurrences 

a term would have in a document if this document were of a standard length Al. Once 

the law is determined, in practice, we will substitute tfn for each occurrence of tf in our 

model generating Formula 1.1. 

When a new term-frequency normalization function is defined, a new value of the 

correlation coefficient is established 

v_E 
tfn - tfn l- avgl 

_E 
tfn"l avgl"tfn 

Qt fn at Qt fn " Ql Qt fn " Q1 

It is natural to test first the linear dependence assumption. It is easy to instantiate 

the parameters a and b in such a case. From 

>tf =Ft=a">ld+b"N 
dd 

linearity is when a= TotFtrEtand 
b=0, which holds when terms are distributed 

uniformly over their elite set, and we observed from our experiment that this is likely to 

happen when elite sets are large. 

A linear correlation can also be assumed to hold among different pieces of an homo- 

geneous text. For example, we can split any document into a number of fragments of 
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different length. The existence of a linear correlation becomes equivalent to the assump- 

tion of a uniform distribution of the frequencies within single documents. 

H1 The distribution of a term is uniform in the document (see a further development 

of this Hypothesis H1 on page 127). 

However, it is a matter of fact that the term-frequency normalization based on a log- 

arithmic relationship between term-frequency and length provides a better performance 

than the uniform distribution Hl in all our experimental results. 

H2 The relative term-frequency 
tl 

within the document is a decreasing function of the 

length 1 (see a further development of this Hypothesis H2 on page 127). 

Another issue is the connection of the variation of document length to the relevance. 

This problem is called the length normalization problem. We already observed in Sec- 

tion 5.1 that the cosine matching function of the vector space model produces an implicit 

document length normalization. The emphasis of some works [104,103,97] has been on 

the advantage that long documents have to be retrieved in the vector space model over 

the short ones. The term-frequency normalization, or the length normalization, has been 

thus thought as the empirical problem of penalizing the term-weights in long documents. 

According to Singhal, Buckley and Mitra [103,105] however the cosine normalization 

of the vector space model penalizes too much long documents. This conclusion was 

drawn by comparing the retrieval curve to the relevance curve against document length. 

The comparison shows that the relevance curve was above the retrieval curve for long 

documents, but it was below for short documents. These experiments indicate that the 

length of retrieved documents is related to the relevance. According to Singhal, Buckley 

and Mitra a good score function should retrieve documents of different lengths, but their 

chance of being retrieved should be also similar to their likelihood of relevance. But the 

drawback of a relevance-based term-frequency normalization would be the introduction 

of unknown parameters to be estimated with the relevance data. In addition, relevance 

depends on the type of retrieval task and task requirements can modify the typical length 

of the document. For example, short documents should be preferred to long ones in topic 

distillation, whose task is to select the pages containing the main WEB resources on a 

topic. 
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The Mandelbrot-Paretian-Zipf law is the third proposal explored and studied in this 

dissertation (see Section 6.3) and, the term-frequency normalization based on language 

model is the last proposal. We have chosen Dirichlet's priors as representative of the 

class of language models (see Section 6.4), but any other language model could have 

been equally used. 

We have seen that when the sample is very large a Mandelbrot-Pareto-Zipf law ex- 

ists between the size of the corpus and the term frequencies. Potential applications of 

the rank-frequency law have been hardly explored in IR. Aalbersberg substituted the 

ranks for frequencies in the term-weights of the vector space model and showed that the 

performance is still comparable with that of the standard vector space model [1]. Blair 

instead used the Zipf law to measure the effectiveness of retrieval systems[12]. 

In Section 6.3 we show how to explore the Mandelbrot-Pareto-Zipf law and obtain 
from it a parameter free term-weighting function for IR. This model of normalization 

gives results that are quite robust and in general superior to the linear correlation, 

suggested by Harter (see [52, page 23] and page 35). The main content of this Chapter 

is published in [6,5]. Last investigation concerns the use of probabilities as they are 

assigned in the language modelling approach. We employ Dirichlet's priors to normalize 

the term-frequency within a document. The application from language modelling to the 

divergence from randomness models is straightforward. Any probability p(t1d) based on 

the language model can be transferred as it is into the term-frequency normalization 

component. It is sufficient to observe that the expected number of tokens of a term t in 

a document is p(t1 d) " 1. When we compare the term tokens to a standard length Al, the 

term-frequency normalization of a language model is 

tfn=p(tld)"Al 

However, the hypotheses H2 seems to be the most robust and effective proposal for 

term-frequency normalization. 
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6.1 Related works on term-frequency normalization 

Comparing the document length to the average document length has been shown to 

enhance the effectiveness of IR systems. For example, the BM25 matching function of 

Okapi has an implicit form of normalization: 

(k1+1)tf (k3+1)"gtf (r + 0.5)(N -n-R+r+0.5) (6.1) 
t , 2Q 

(K + tf) (k3 + qtf) 
1og2 

(R -r+0.5)(n -r+0.5) 

where 

-R is the number of documents known to be relevant to a specific topic, 

-r is the number of relevant documents containing the term, 

- qt f is the frequency of the term within the topic from which Q was derived 

-I and avgl are respectively the document length and average document length. 

-K is k1((1 - b) + b(av9 )), 

- kl, b and k3 are parameters which depend on the nature of the queries and possibly 

on the database; 

- kl and b are set by default to 1.2 and 0.75 respectively, k3 is often set to 1000 

(effectively infinite). In TREC 4, [88] kl was in the range 1< kl <2 and b in the 

interval 0.6 <b<0.75 respectively. 

Using the default parameters above (k1 = 1.2 and b=0.75), the unexpanded BM25 

ranking function is defined from Equation 5.9 without using the information about rel- 

evance, that is setting R=r=0. 

2.2"tf 1001 "qtf N-n+0.5 

tEQ 0.3 + 0.9 
av9 +tf' 1000 -I- qt f 

1og2 
n+0.5 

An evolution of the INQUERY ranking formula [2] uses the same normalization factor 

as the unexpanded BM25 with kl =2 and b=0.75, and qt f=1: 

tf loge N+0.5 
n (62) 

tf+0.5+1.5avi 1o92(N+1) 
g 
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Hence, the BM25 length normalization tfn can be thought as the product 

(6.3) 

where T is: 

tfn= T- tf 

(6.4) T= 
tf -F 0.3 -} 

1 

0.9 "1 avgl 
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Our experiments will show that this normalization can be taken as a simple, powerful 

and robust type of normalization of tf. We will demonstrate that the BM25 length 

normalization is strictly related to the Equation 4.19. 

Indeed, 
avg_l tf + 0.3 -0.9 l= 

tf +kl 

with kl = 1.2 when 1= avg1. 

If we use the normalization factor T in Equation 6.4 as a combined way to perform 

both the normalization gain and the term-frequency normalization we may use it to 

generalize the BM25 with our basic models of divergence from randomness as follows: 

(6.5) weight(t, d) =T" In fl (t f) 

Moreover, if the basic model In f1(t f) in Equation 6.5 is I(n) or I (F) of Equations 4.13 

or 4.16 as shown in Table 1.2, then from the normalization T we obtain the randomness 

model given in Equation 4.19 up to the parameter k1. The formal derivation of the 

unexpanded BM25 formula is given in Section 7.1. 

6.2 Term-frequency normalizations H1 and H2 

Our next concern is to introduce suitable functions able to normalize the random vari- 

ables tf to a given length of document. In other words, we would like to obtain the 

expected number of tokens of a term in a document as if the lengths of the documents 

were all equal to a fixed value, for example to their average length. 

The probabilistic models of randomness are based on the term independence assump- 

Lion. We assume that an occurrence of a term cannot be conditioned by the presence of 
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other tokens in the observed text. According to the formal model, the length of a docu- 

ment should be the sum of finitely many independent random variables. However, when 

tokens of the same term occur densely within a portion of text it is possible to detect 

dependence. All terms which co-occur more often over the collection or within single 

documents are related. This dependence also extends to the occurrences of the same 

word. Indeed, the divergence from randomness measures such a dependence. Although 

we can explain and measure how improbable the density is by chance, the same models 

do not give us any insight to derive an expected document length. 

It is difficult to express how improbable it is for us to obtain a specific length of 

observed document or why it should have that length. The comparison of tf tokens in 

a document of length ll to tf tokens in a document of length 12 is not yet possible in a 

framework based on the term independence assumption. 

We make some alternative hypotheses on how to compare different term frequencies 

and test them with a Bayesian methodology choosing the hypothesis which is best from 

an empirical point of view. 

We make four assumptions on how to resize term-frequencies according to the length 

of the documents and we evaluate them. The first assumption is similar to the "verbosity 

hypothesis" of Robertson [87], which states that the distribution of term-frequencies in 

a document of length 1 is a 2-Poisson with means A" 
av9 and it " av9 , where A and µ 

are the original means related to the observed term (as discussed in the Introduction) 

and avgl is the average length of documents. 

We first define a density function p(l) of the term-frequency. Then, for each document 

d of length l (d) we compute the term-frequency on the interval [1(d), l (d) + At] of given 

length Al. We take this value as the normalized term-frequency. The magnitude Al 

of the interval is a crucial choice. It can be either the median, the mean avg. l of the 

distribution or their multiples. The mean, minimizes the mean squared error function 

N)2 Ný 
(Al - l(d) 

while the median minimizes the mean absolute error function 

N 
(Al - I(d)) 
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Hl The distribution of a term is uniform in the document. The term-frequency density 

p(l) is a constant p 

(6.6) P(1) _c. 
tl 

=P 

where c is a constant. 

H2 The term-frequency density p(l) is a decreasing function of the length 1. 

We start with these two assumptions H1 and H2 on the density p(l) but other choices 

are equally possible. 

Experiments shows that the normalization with Al = avgl is the most appropriate 

choice for long queries (see Chapter 7). For short queries Al =c" avgl with c=7 is the 

most effective value. However Figures 6.2 and 6.3 show a great stability in performance 

with a very large interval of values of c. 

According to hypothesis H1 the normalized term frequency tfn is: 

I(d)+c"avgl g 
(6.7) tfn=J(d) p(l)dl=p"c"avgl=c"tf" 1(d) 

whilst, according to the hypothesis H2 

1(d)+c"avgl l(d)+c"avgl dl (1 c" aygJ 
(6.8)tfn=l(10 p(l)dl=c"tf-J(d) tf"lný- 1(d) 

) 

To determine the value of the constant c in H1 when the effective length of the document 

coincides with the average length, 1(d) = avg1, we assume that the normalized term- 

frequency tfn is equal to t f. 

Therefore, the constant c is 1 assuming H1. 

(6.9) tfn = tf " 
1(d) [H1] 

(6.10) tfn = tf " In I1+c 
l(a) 

l) [H2] 

We substitute uniformly tfn of Equations 6.9 or 6.10 for tf in weight(t, d) of Equa- 

tions 4.19 and 4.23. 

Note that H1 is an approximation of H2 when 1 is large: 

tfn"1=tf "1"1n(1+Al) =tf "1n(l+Al)i Ntf "1ne61=tf - Al 
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Figure 6.1: The average correlation coefficient between the document length and the 

term-frequencies normalized by H2 of Formula 6.10. The sample of terms are from the 

queries of TREC-7, TREC-8 and TREC-10 respectively. 

6.2.1 A discussion on the Second Normalization H2 

We have observed that, with the exception of the vector space model, which possesses an 

implicit mechanism of length normalization, all models of IR, such as language models 

and probabilistic models, have parameters which need to be estimated. Best Match 

method is the easiest way to determine the optimal values of the parameters for a given 

collection. We observed from the experiments (see Tables 7.11,7.10 and 7.12 and 

Table 8.4) that the parameter it of the IR model with Dirichlet's priors depends both 

on the collection and on the length of the query. It is quite difficult to predict for an 

arbitrary collection an optimal value of the parameter of the language model. On the 

contrary the BA125 has its parameters quite stable for all collections, but it performs 

in general worse than language models. The optimal values for the parameters of the 

BAi25 are close to the values which we formally derived from the model I(n)L2 when 

the parameter c of H2 is set to 1. This setting of the parameter c corresponds to the 

normalization with the average length of the documents. However, we see that for short 

or moderately long queries the optimal values are located after c=1. As shown in 
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Figure 6.2: Comparison of the the correlation coefficient as in Figure 6.1 to the perfor- 

mance. The model is I(ne)B2. The best matching value of MAP for TREC 7 data is 

0.1904 at c= 13. Best Pr©10 is 0.4400 at c=8. 

Figures 6.2 and 6.3 the size of the interval Al =c" avgl is relatively important since 

performance is almost constant for a relatively large interval of values of c. Therefore, 

the parameter c can be set to any arbitrary value greater than 1 (around 7 is the best). 

For long queries, however, the best matching value of c tends to converge to 1. 

Although, Normalization H2 is not parameter free, however the introduction of the 

parameter c has been theoretically motivated and also its optimal matching values lie 

in a large interval of values. In addition for actual queries, that is when users submit 

a short query and the query expansion mechanism is activated, the normalization H2 

comes out to be very stable and robust. 
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Figure 6.3: Comparison of the the average correlation coefficient as in Figure 6.1 to the 

performance. The model is I(ne)B2. The best matching value of MAP for TREC 10 

data is 0.2107 at c= 12. Best Pr©10 is 0.3720 at c=7. 

6.3 Term-frequency normalization based on the classical 

Pareto distribution 

In Section 2.1 we have seen that an homogenous piece of text, like a document or a 

book of length 1, can be seen as a sample of the population. The sample space is 

the product space V' and the probability distribution is the number of possible outcome 

configurations satisfying the empirical data. In the case of independent and equiprobable 

trials the process is Bernoullian with a probability distribution given by Equation 2.1. 

Let 1 be the length of the text sample and let V be the set of all terms contained in the 

text sample. 

Mandelbrot derived several relationships among the vocabulary size, the text length 

and term-frequencies Ft, using a Estoup-Zipf like law [74]. According to Mandelbrot the 
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rank-frequency relationship is 

p= BCB(rank + C)'(8+1) with B>0 

where C and B are two unknown parameters. According to Mandelbrot -1og2 p is the 

"cost" of transmitting the signal with frequency p in some optimal binary code. Indeed in 

our implementation of the direct file which is needed to implement the query expansion 

module we have used the ö-code of the rank of the word with frequency p [72,126] 

as optimal code for encoding the words. This cost is roughly -1og2 p, following the 

rank-frequency relationship above. 

We now derive Mandelbrot's relationships using the Feller-Pareto distributions. The 

proof is similar to that used by Mandelbrot [74]. We assume that all terms t, are ordered 

by the decreasing ordering of their occurrence frequencies F, that is: 

Fl>F2>... >Fv 

The probability that the term t,. occurs F times is according to the binomial law 2.1: 

(6.11) p(FJl) =1 p* qrl-F where pr = P(X = r) 
F 

In Section 2.5.1 we have derived a relation between frequencies and number of out- 

comes of the sample space that possess the same frequencies. In other words the al- 

ternative outcomes of V having the same rank in the occurrence ordering distribute 

according to the Paretian distribution. Let us thus assume that the classical Pareto 

density function of Equation 2.37 specifies the value of the probability p= p(r). 

ar (a+l) 
(6.12) p=p(X=r)= a 

(r) 
with r>o anda>0 

We take a as the first rank in the ordering for which the Paretian law begins to hold. 

We recall that a>0 and it is the parameter inherited by one of the two parameters of 

the Beta distribution. Let 

(6.13) A= (a + 1)'1 

Notice that a= A-1- 1=1 AA 
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Since a>0,0 <A<1 and A is a monotonically decreasing function of the parameter 

a: 

(6.14) lim A=1 

(6.15) lim A=O 
a-ý+oo 

Extracting r from Equation 6.12 

C QA \-a 
v (6.16) r= p) 1-A 

Hence deriving the function r= r(p) with respect to the probability p: 

(6.17) dr 
-- 

(yA)1- ÄP 
(I+A) 

dp (1- A)- 

The rank r should range from 0 to V, but we may assume that r is continuous and 

ranges from 0 to oo, since we here use the Paretian distribution which is the continuous 

analogue of Zipf's law. 

The number of terms n(FIl) that occur F times in the text is given by the sum of 

p(Fjl, t,. ) over all terms tr. This number is equivalent to the integral of the function in 

Equation 6.11 with respect to the variable r: 

(6.18) n(FIl) = fOm F 
pFgl-Fdr 

Let 

(6.19) Co = (oA)l-A(1- A)A 

then the derivative of r in Equation 6.17 can be rewritten as 

(6.20) 
dr 

= Co "p 
(1+A) 

Substituting the derivative of r of Equation 6.20 in the integral of Equation 6.18 

JFpF-A- 
14l - Fdp (6.21) n(Fil) = Co 

1l 

0() 
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Exploiting Relation B. 7 of the Beta distribution with parameters F-A and I-F+1 

and Relation B. 3, i. e. I'(1- F+ 1) = (I - F)!, 

n(Fil) = Co 
a (1-F)! r(F-A) 

r l-A +1 F() 

_ 
l! r(F-A) c°F! 
r(l - A+ 1) 

We now find an approximation of the ratio C(a, n) = 
r(n a) 

n. 
assuming that n is 

large. From the Stirling Formula 2.10 and the approximation of the Gamma function of 
Equation B. 4, the ratio C(a, n) is equivalent to 

V27re-n-a(n+ap+a-0.5 

2r " e-nnn + 0.5 

e-a(n + ap +a-0.5 

nn+a-0.5n-(a-1) 
- 

n+a-0.5 
_e-a(1+ 

a 
na-1= 

n/ 

n+ a-0.5 
For n large 

(1 
+ a) n+ 

e' which implies 
n 

(6.22) C(a, n) "" na -1 

Substituting the approximation of Equation 6.22 in n(Fll) 

n(F11) = Co 
C(-A, F) 

C( -1+A, 1) 
A 

(6.23) n(F11) CO 
T7A1 +1 with l and F large 

Equation 6.23 is the same relationship determined by Mandelbrot [74, see Appendix A] 

up to a proportional factor. 

6.3.1 The relationship between the vocabulary and the text length 

In the last section we derived the number n(F11) of different terms of the vocabulary V 

having a given term-frequency F in an arbitrary text of length 1, based on the hypothesis 

that the distribution of the terms in V, classified according their frequencies, follows the 

Paretian law. 
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We want now to compute the number of unique terms in the text, that is the size 

of the vocabulary V. The derivation is similar to that obtained for n(F1l). First we 

note that the number of terms occurring in the text can be obtained by summing the 

probabilities of occurrence over all terms. The probability of occurrence of an arbitrary 

term is 1- q' as defined in Equation 6.11. 

V(1) _ 
J: (1- qt) _ 

r+oo(1- 
gl)dr fo 

I. 
Since 

1-1 1-1 
1-q =(1-9)Egx=> pqx 

x=0 x=0 

we first approximate for every integer x, with 0<x<I 

f+00 pgydr 
0 

With the same steps as in the derivation of Equation 6.21 from the binomial law 6.18, 

we similarly derive 

(6.24) r +IW 
pgxdr =Co= Co r(1 - A)r(x + 1) 

r(x +2- A) 

= Cor(1- A) 
r(x +2- A) = Cor(1- A) 

C, (2 
1 

A, x) 

(6.25) Cor(1- A) 
xl-A 

The last equality comes from the approximation 6.22. Therefore 

+00 1-1 +00 1-1 Cor 1- A) 1 V(I) =f (1 - q')dr =>f Pgxdr ^, > 1-A )= corgi - A) E 
x1-A ==o z-o x-o 

Now 

which implies 

l-1 t 
E 

Ali A, 
0 

x-1+Adx = 

(6.26) vet) corgi - A)zA 
A 

Equation 6.26 is the same as the relationship determined by Mandelbrot [74, see Ap- 

pendix A] up to a proportional factor. 
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It is interesting to find the limiting values of the size of the vocabulary for A -º 0 

(i. e. for a -º oo) and for A -. 1 (i. e. for a -+ 0). First, let us substitute Expression 6.19 

for Co in V(1). 

(6.27) V(t) N 
(A)''(1 - A)Ar(1- A)ZA 

A 

Also, note that (1 - A)Ar(1- A) = (i 
Ä)A 

-º 1 for both A --+ 0 and A -+ 1, since 
I'(2) = 1! = 0! = r(1). Then 

and 

Ä 
ÖV(I) 

AÖ 
Oi-AIA 

AA =O 

Äim V(1 = Äim Qi-AAALA 
=1 

-1 -1 

The parameter A measures the expressiveness of the vocabulary or the specificity of the 

language. A rich vocabulary is characterized by a small value a or equivalently of a value 

of A close to 1. 

6.3.2 Example: the Paretian law applied 

Let us show how Relation 6.27 has been used with the collection Wtl0g [56,9]. We have 

to fit the Paretian model with the data thus determining the values for the parameters 

a and A. a is the number of the most frequent terms after the indexing process. These 

terms appear at the top places in the ranking and therefore these terms are added to 

the stop list. In Section 2.5 we derived the value a=1.36 for the TREC-10 collection 

(see Figure 2.5) and v= ro - 29 = 512. 

Without the use of Porter's stemmer but with a very large initial stop list we have 

determined a number V of 293,484 unique terms occurring in a text collection of length 

1= 469,493,061. For a we found the value 0.82 and v= 230. The corresponding value of 

A= (a+1)'1 is 0.55. This value for a is used to obtain a term-frequency normalization 

function in Section 6.3.3. 

6.3.3 The Paretian term-frequency normalization formula 

In the previous section, 1 was the number of total tokens in the collection. This time let 

i be the length of a document. With a smaller text the expressiveness of the language 



Chapter 6. Term frequency normalization 127 

that is the size of the vocabulary changes. Let us discuss this problem with some de- 

tails. With a different and smaller text sample the values of the parameters a and A 

characterizing the Paretian law should be different. They depend on the sample and not 

on the population. Obviously with a larger size 1 of text a variation of expressiveness of 

the language, expressed in terms of the number of unique words used in the text, can be 

observed [100]. Many of the non-stop terms in a large text collection are hapax legomena. 

These terms are all terms that appear only once in the collection. In our example the 

relative frequency of their class is 45.99%. Sichel [100] observed that a proportion of 

N 50% has been often observed in real cases. It is also observed that the proportion of 

hapax legomena decreases with the increase of the size of the collection and should go 

slowly to 0. The proportion of hapax legomena according to Sichel measures the richness 

of the vocabulary. This is not far from what Paretian law establishes. With the Paretian 

law, the expressiveness rate of the language is instead measured by the parameter a. As 

it has been shown in the limit cases, a should slowly increase and A thus slowly decrease 

with a larger collection. However, we here make some reductive assumptions on a and 

A in order to exploit the Paretian law and obtain a term-frequency normalization. We 

assume that: 

1. The Paretian law is the same for all document samples and its parameters v and 
A are given by fitting the classical Pareto's model with the empirical data. 

2. In order to compare two different frequencies within two different documents we 
do not compare their maximum likelihood frequencies if 

but their frequency class, 
d 

that is we compare the expected number n(tf jld) of terms in the term class having 

a given frequency tf. This number is provided by Equation 6.23. 

3. Under the two hypotheses 1 and 2, the unknown term-frequency tfn satisfies thus 

the equation 

(6.28) n(tf 11) = n(t f nlavgl) 

where avgl is the average document length. 

According to these, we obtain the relation 

n(t fIL) lAt f-(A+1) 

n(t f nlavgl) avglAt f n-(A+1) -1 
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Solving the equation, we get 
A 

(6.29) tf n= t f" avg11 XT-l 
IJ 

Let 

A+1 

Since A and a>0 are related by Relation 6.13 and since A ranges in the interval 

(0,1), the parameter Z ranges in the interval (0,0.5). For the collection Wtl0g, whose 

parameters are found in Section 6.3.1, the value of Z is , 0.30 which corresponds to 

a=1.365. 

Experiments with Paretian term-frequency normalization 

We verify that the determined value N 0.3 of Z in Equation 6.29 for the WT10G collection 

and that of 2 GB of TREC 7 and TREC-8 lies within the interval of the best match 

values for retrieval (0.28 - 0.35) using the set of queries of TREC-8 and TREC-9. 

The results reported in Table 6.3 are confined to the setting used in the official 

runs at TREC-10. We have not used the stemming algorithm leaving therefore a richer 

vocabulary in the set of the most informative terms than after reduction by stemming. 

We also eliminate some noise by not including the terms occurring less than 10 times. 

Notice that the performance of the model BEL with the Zipfian normalization, without 

query expansion and without stemming (second line of the Table 6.3) is slightly superior 

to the performance of the model BEL with H2 normalization without query expansion 

(first line of the Table 6.3). 

The results of Tables 6.4 and 6.5 show that Zipfian normalization is effective and 

that the derived parameter from the Pareto-Zipf is close to the experimental Best Match 

value. 

6.4 Term-frequency normalization Dirichlet priors 

We assume that 

(6.30) tfn=p AD; 
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Method Parameter f AvPrec Prec-at-10 Prec-at-20 Prec-at-30 

Model performance without query expansion 
BEL2 c=7 0.1788 0.3180 0.2730 0.2413 

BEL Pareto Z =0.30 0.1824 0.3180 0.2700 0.2393 

BE L Pareto Z =0.35 0.1813 0.3200 0.2590 0.2393 

BEL Pareto Z =0.40 0.1817 0.3240 0.2670 0.2393 

129 

Table 6.3: Performance of BEL with different term-frequency normalizations on TREC- 

10 data. 

TREC 8. 

Models MAP MAP®10 Pr 05 Pr 010 Pr ®20 R. Prec Re1Ret 

I(ne)BZ, Z=0.28 0.2598 0.3613 0.4960 0.4740 0.4210 0.2983 2891 

I(ne)BZ, Z=0.2942 0.2603 0.3608 0.4800 0.4740 0.4180 0.3001 2898 

I(ne)BZ, Z=0.31 0.2610 0.3615 0.4840 0.4740 0.4160 0.3017 2900 

I(ne)BZ, Z=0.32 0.2617 0.3617 0.4840 0.4740 0.4200 0.3033 2904 

I(ne)BZ, Z=0.33 0.2621 0.3599 0.4880 0.4680 0.4210 0.3026 2905 

I(ne)BZ, Z=0.34 0.2623 0.3582 0.4880 0.4660 0.4240 0.3021 2903 

I(ne)BZ, Z=0.35 0.2630 0.3567 0.4920 0.4620 0.4240 0.3039 2905 

I(ne)BZ, Z=0.36 0.2631 0.3584 0.4920 0.4640 0.4240 0.3037 2905 

1 I(ne)BZ, Z=0.38 
1 

0.2623 0.3589 0.4920 0.4640 0.4210 0.3041 2904 

Table 6.4: The performance of the Pareto term-frequency normalization for TREC-8 

data. The run Z=0.2942 is that relative to the value of Z corresponding to the slope 

a=1.399 for the 2 GB collection of TREC-8. 

TREC 9. 

Models MAP MAP®10 Pr ®5 Pr 010 Pr 020 R-Prec Reiftet 

I(ne)BZ, Z=0.25 0.1858 0.2225 0.2800 0.2480 0.2120 0.2220 1489 

I(ne)BZ, Z=0.28 0.1905 0.2246 0.2880 0.2440 0.2110 0.2226 1494 

I(ne)BZ, Z=0.2972 0.1924 0.2253 0.2840 0.2440 0.2090 0.2218 1498 

I(n. )BZ, Z=0.31 0.1926 0.2261 0.2800 0.2460 0.2110 0.2228 1498 

I(n. )BZ, Z=0.32 0.1920 0.2243 0.2840 0.2480 0.2130 0.2254 1500 

I(nr)BZ, Z=0.35 0.1917 0.2204 0.2800 0.2460 0.2140 0.2242 1494 

Table 6.5: The performance of the Pareto term-frequency normalization for TREC 9 

data. The run Z=0.2972 is that relative to the value of Z corresponding to the slope 

a=1.365 for the wtlOg collection. 
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where AD; is given by the Dirichlet priors of Equation 5.40 in the models based on 

divergence from randomness. This is equivalent to 

Ft; 
t f' +µ FregTotColl (6.31) tfn= At "N= Id +µµ 

[H3] 

In the experiments we test Dirichlet's priors normalization only against the model 

I(ne)B. The new model is denoted by I(ne)B3. 
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Normalized models of IR based 

on divergence from randomness 

In previous chapters the three components of our theoretical framework have been en- 

tirely developed. We have several instances of each component which only need to be 

assembled together to obtain the full IR models. In Section 4.8 we have introduced 

the 14 First Normalized Models in which the term-frequency variable tf was not yet 

normalized as shown in Chapter 6. We are now ready to provide the retrieval score of 

each document of the collection with respect to a query. The query is assumed to be 

a set of independent terms. Term independence assumption translates into the additive 

property of gain of Equation 4.27 over the sets of terms occurring in both the query and 

the observed document. We obtain the final matching function of relevant documents 

under the hypothesis of the uniform substitution of tin for tf and the hypothesis H1 or 
H2: 

(7.1) R(q, d) weight (t, d) qt f. (1 - Prob2 (tin)) " In f 1(t f n) 
tEq tEq 

where qt f is the multiplicity of term-occurrences in the query. 

We cannot here list all models because they are 14 x4= 56, being 14 the number of 

First Normalized Models and 4 the normalization techniques presented in Chapter 6. For 

the sake of completeness we now recapitulate how to instantiate the three components 

of the model 

The weighting formulas are obtained as the product of two informative content func- 
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tions (see Formula 1.1 on page 28). The first function In f 1(t f Id, D) =- log pi (t f Id, D) 

is related to the collection D. The second In f2 = 1- p2 (t fI Et, d) takes into account the 

elite set Et of the term. The weight 

(7.2) w(tld) = Infl(tfnjd, D) " Inf2(tfnIEt, d) 

Possible interpretations of In fl, In f2 and tfn are: 

2F"D(f, P) 

\D tf 
(27rt f 

1(1- 
f))! ' 

tf "loge 
T+1 

A+ 
12 tf -tf I "logee+ 

+0.. 5 " 1092 (27r "t f) 
/ 

[P] 

1l 
-loge 1+A 

At f" 
[BE] )( 

(7.3) Infj(tfnjd, D) =( 
lo9e(1+A)+tf "loge 

c1+ ) [G] 

-loge 
(nN 

+ 15) 
fn 

[I (ne)] 

0.5 
-loge 

(N 
+ 1) 

tf n [I (n)] 

t f'1092' 
+05 

[I (F)] 

1 
tfn+1 

[L] 
(7.4) Inf2 (tfnld, Et) = F+1 

[B] 1 n(tfn+1) 

and 

tf. a g1 [1] 

tf -In 1+c avg.. l [2] 
(7.5) tfn =ll 

/A AD: [3] 
z 

tf"(ai-l) [Z] 

The factor In f2 of Equation (7.2) is the First Normalization of the informative 

content In fl. The Second Normalization is the uniform substitution of tf for tfn in 

Equation(7.2). Before presenting results from our experiments we would like to con- 

nect the BM25 formula to the model I(n)L2 assuming the value c=1 in the Second 

Normalization H2. 
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7.1 A derivation of BM25 and INQUERY formula 

The normalization of the term-frequency of the ranking formula BM25 can be derived 

by the normalization L2, and therefore both the BM25 and INQUERY [2) formulae are 

versions of the model I(n)L2: 

(7.6) I (n)L2 :tf 
tfn 

kl 
logen 

0.5 

where 

tfn=tf "log2(1+ 
a1 J) 

and k1 = 1,2 

Let kl =1 and let us introduce the variable x= Then: 
avgl 

tfn 
_ 

tf 

tfn+1 1 
tf+ 

1092 (x + 1) -1092X 

Let us carry out the Taylor series expansion of the function 

g(x) =1 1092(X + 1) - 1092 X 

at the point x=1. Its derivative is 

9 (x) - 
lo92e " g2(x) 

x(x+1) 

From g(1) =1 and g'(1) = logge " 0.5 we obtain 

tfn 
_ 

tf 
tfn+1 tf+1+log2e"0.5"(av1 -1)+O((av9 -1)2) 

77 tf (ý) 
tf+0.2786+0.7213"Qv9 +°((av1 -1)2) 

The expansion of 7.7 in t 
to+l with error O((a -- 1)3) gives 

tf 
tf +1 +lo92e - 0.5 " (QVý -1) - 

$1o92e (3 - 2log2e)(av9 -1)2 

_ 
tf 

tf+0.2580 + 0.7627. 
avI - 0.0207 " a. 

g 

The INQUERY normalization factor of Formula 6.2 is obtained with the parameter 

kl =2 which corresponds to the application of Laplace's law of succession as stated in 

Formula 4.17 (with coefficients 0.5572 and 1.4426 instead of 0.5 and 1.5). 
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Collection TREC avgl a 47 
-1 ß= -D(ß) documents : 

l 
-1 <1 

avgi 
Disks 1,2 1,2,3 209.6 776.2 0.27 0.61 0.89 

Disks 4,5 6 265.5 1149.4 0.23 0.59 0.91 

Disks 4,5 7,8 246.5 707.2 0.35 0.64 0.90 

(no CR) 
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Table 7.1: The probability 4ý(ß) is the probability computed by the standard normal 

distribution that a random document has length 
I 

av -1<1 in a collection with 
9 

mean avgl and variance Q2. 

When kl is the default value 1.2 of the BM25, the coefficients become 0.3096 and 

0.9152 instead of the empirical values 0.3 and 0.9 of the BM25 formula. 

The O((- -1)2) in 7.7 is small when I 
Qv9 -1 ý<1. It is interesting to estimate the 

probability that the length d of a random document satisfies such a relation. By applying 

the Central Limit Theorem to the random variable l with mean avg_l and variance a. 2, 

the discrepancy l- avgJ <Q"ß for every fixed value ß converges to the value 4(ß) 

given by the normal distribution -(D. If we set 8=° the relation- - 11 <1 

is satisfied. Thus the approximation 7.7 should hold when the standard deviation v is 

close to the mean avg1. In practice, the expected number of documents satisfying the 

constraint 1 
av9 -1 1<1, given by the Central Limit Theorem, is smaller than the actual 

number, as shown in Table 7.1. The effectiveness of the approximation is confirmed by 

our experiments, not reported here, that have shown that the BM25 formula with its 

parameters set as in Formula 7.7 has the same performance as I(n)L2. 

7.2 Experimental data 

The data we used consisted of three test collections of TREC (Text REtrieval Confer- 

ence). The first test collection was put on disks 1 and 2, the second collection, on disks 

4 and 5. The third collection is the collection WT10g [9]. 

We also report here the results from the last TREC Conference TREC-11 with a new 

collection the ". GOV" collection. TREC-11 experiments were carried out by Glasgow 
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University [81]. 

Disks 1 and 2 for TREC-1, TREC-2 and TREC-3 experiments consists of about 2 

Gbytes of data, of about 528,000 documents from the Department of Energy Abstracts, 

the Federal Register, the Associated Press Newswire and the Ziff-Davis collections. Disks 

1 and 2 contain (after the use of the stop list) 138,743,975 pointers (a pointer is the 

unit piece of information of the inverted file, that contains the pair "term-document" 

information and the relative within-document term-frequency). We used the compression 

techniques of [126] to represent the inverted file in a compressed format. The space 

required by the compressed inverted file for disks 1 and 2 is 96 Mbytes, i. e. 11.4 bits 

per pointer. The average length of a document from disks 1 and 2 is 210 tokens (tokens 

from the stop list were not computed). 

The TREC-6 test collection consists of about 2.1 Gbytes of data, of about 556,000 

documents, from the Congressional Record, Financial Register, Financial Times, Foreign 

Broadcast Information Service and LA Times collections. Unlike TREC-6, in TREC-7 

and TREC-8, the collection CR (about 28,000 transcripts from Congressional Record) 

was not indexed. Disks 4 and 5 contain 147,625,088 pointers . 
The space occupied by 

the compressed inverted file for disks 4 and 5 is 103 Mbytes, i. e. the inverted file needs 

11.2 bits per pointer. The average length of a document on disks 4 and 5 is 265 tokens. 

This average length decreases to 246 without indexing the CR collection. Indeed, the 

CR document length average is much longer than the document average length of other 

collections (624 tokens per document). 

The text in the fields that was human-assigned was not indexed for use in the exper- 

iments. 

7.3 Experiments with long queries 

For the first test collection we used the topics of TREC-1, TREC-2 and TREC-3 (50 

topics each), while for the second collection we used the topics of TREC-6, TREC-7 and 

TREC-8 (50 topics each). 

Each of the 50 topics consists of three fields: a title (from 1 to 3 words), a description 

(1 or 2 sentences), and a narrative (a paragraph listing specific criteria for accepting or 

rejecting a document). In our experiments we used all these three fields. We used 
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Porter's stemming algorithm and a stop list of 235 words. 

We tested the basic models with first and second normalization and compared them 

with model BA125 of Okapi as defined by Formula 5.19. To find the non-interpolated 

average measure of precision (as proposed by Chris Buckley and first used in TREC-2 

[49]), for each query and for each i-th retrieved relevant document the exact precision 

Prob; is computed (i. e. T, where r is the document position in the rank), then the 

average precision for the query is obtained (i. e. 
Prob`, 

where R is the number of 

relevant documents in the collection) and finally the mean of the average precision over 

all topics (see also Appendix A. 1). The non interpolated average precision for the 11 

levels of recall is shown in Tables 7.2,7.3,7.4,7.5,7.8 and 7.9 by MAP, the precision 

at 5,10,30,100 and R (R-precision) retrieved documents, where R is the number of 

relevant documents for each query, denoted by Pr05, Pr©10, PrQ30, Pr©100 and Pr©R 

respectively. We used 1 and avgl as the length of a document and the average number 

of tokens in a document in the collection respectively. The results from the experiments 

can be summarised as follows: 

" Results from TREC-1 (see Table 7.2). I(ne)B2 and its approximation I(F)B2 

have the best average precision and precision at 5 documents retrieved. The two 

limiting forms of Bose-Einstein model, GB2 and BEB2, have best precision at 10. 

BM25 has best precision for high recall. 

" Results from TREC-2 (see Table 7.3). I(ne)L2 and its approximation I(F)L2 have 

the best average precision and precision at 5 documents retrieved. The standard 

idf-tf model with Laplace's Law of Succession, I(n)L2, has the best precision at 

30. BM25 has the best precision at high recall values and the highest precision at 

10. 

" Results from TREC-3 (see Table 7.4).. I(ne)L2 and its approximation I(F)L2 

have the best average precision. The two approximations of the Bernoulli model, 

PL2 and DL2, have the highest precision at 5 documents retrieved. The standard 

idf-tf model with Laplace's Law of Succession, I(n)L2, has the best precision at 

30. BM25 has the best precision at high recall values and the highest precision at 

10. 
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" Results from TREC-6 (see Table 7.5). The standard tf-idf model with Laplace's 

Law of Succession, I(n)L2, has the highest precision at 5 documents retrieved. 

I(ne)B1, namely the idf and Poisson mixture model together with the uniform 

distribution hypothesis on term-frequency Hl and the Bernoulli normalization B, 

has the best performance at higher recall values. 

" Results from TREC-6 without the CR collection (see Table 7.6). Removing long 

documents from the collection has positive effects on the approximation G of the 

Bose-Einstein model and on the term-frequency normalization B. 

9 Results from TREC-7 (see Table 7.8). I(ne)L2 and its approximation I(F)L2 have 

the highest precision at different recall levels. 

" Results from TREC-8 (see Table 7.9). Similarly to TREC-7, I(ne)L2 and its ap- 

proximation I(F)L2 have the highest precision at different recall levels, except for 

the Poisson model PL2 which has the highest precision at 5. 

7.3.1 Results from experiments with long queries 

Our results show that all the models are robust with respect to different data sets. We 

have used a parameter-free version of the term-frequency normalization H2, that is with 

c=1. Notwithstanding the fact that we have not contributed parameters, models are 

shown to have a performance in most TREC experiments better than BM25 (TREC-10 

included). In the following we discuss the results shown in Tables 7.13-7.9. 

1. There is no convincing evidence or argument in favour of either normalization B 

or L. The results of TREC-7 (Table 7.8) are confirmed on TREC-8 (Table 7.9) 

and similarly, the relative performance of the models in TREC-1, TREC-2 and 

TREC-3 (see Tables 7.2,7.3,7.4) shows similar trends. In TREC-1, TREC-2 and 

TREC-3, L2 is in general superior to B2 independently of the basic model used, 

while in TREC-7, TREC-8 and TREC-10 (see Tables 7.8,7.9,7.13), B2 is in general 

superior to L2 independently of the basic model used. The notable exception is 

the Poisson model P: Ll and L2 performs in general better than B2. 
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Disks 1 and 2 of TREC 1, topics 51-100. Relevant documents: 16386 
Models MAP Pr©5 Pr©10 Pr©30 Pr©100 Pr©R Rel Ret 
I(F)BI 0.1989 0.6200 0.5660 0.4973 0.3886 0.2813 7128 
I (F)Ll 0.1933 0.5760 0.5760 0.4853 0.3814 0.2751 6993 
I(F)B2 0.2103 0.6400 0.5740 0.5333 0.4038 0.2878 7396 
I(F)L2 0.2068 0.6200 0.5700 0.5127 0.3978 0.2843 7300 

I(n)B1 0.1911 0.6040 0.5740 0.5027 0.3798 0.2675 6928 
I(n)L1 0.1968 0.5920 0.5600 0.5013 0.3908 0.2787 7034 
I(n)B2 0.2003 0.6280 0.5900 0.5200 0.3964 0.2781 7123 
I(n)L2 0.2077 0.6200 0.5800 0.5193 0.4030 0.2863 7267 

I(ne)B1 0.1985 0.6240 0.5660 0.4987 0.3882 0.2795 7109 
I(ne)L1 0.1946 0.5800 0.5420 0.4907 0.3856 0.2764 7006 
I(ne)B2 0.2098 0.6440 0.5860 0.5327 0.4054 0.2865 7395 
I(ne)L2 0.2073 0.6200 0.5720 0.5153 0.4004 0.2852 7307 

GB1 0.1984 0.6120 0.5820 0.5093 0.3934 0.2782 7144 
GL1 0.1968 0.5920 0.5560 0.4953 0.3878 0.2771 7093 
GB2 0.2041 0.6320 0.5980 0.5193 0.3974 0.2816 7274 
GL2 0.2047 0.6280 0.5660 0.5107 0.3952 0.2856 7232 

BEB1 0.1984 0.6120 0.5820 0.5093 0.3934 0.2782 7144 
BELl 0.1968 0.5920 0.5560 0.4953 0.3878 0.2771 7093 
BEB2 0.2042 0.6320 0.5980 0.5193 0.3974 0.2816 7276 
BEL2 0.2047 0.6280 0.5660 0.5107 0.3952 0.2856 7232 

PB1 0.1696 0.5360 0.5020 0.4587 0.3536 0.2517 6404 
PL1 0.1741 0.5360 0.5300 0.4593 0.3562 0.2572 6442 
PB2 0.2003 0.6000 0.5900 0.5127 0.3970 0.2755 7094 
PL2 0.2065 0.6360 0.5780 0.5087 0.4056 0.2861 7124 

DB1 0.1695 0.5360 0.5000 0.4587 0.3536 0.2513 6404 
DL1 0.1741 0.5360 0.5300 0.4587 0.3562 0.2572 6442 
DB2 0.2003 0.6000 0.5900 0.5127 0.3970 0.2755 7094 
DL2 0.2065 0.6360 0.5780 0.5087 0.4056 0.2861 7124 

BA125 0.2091 0.6240 0.5740 0.5260 0.4080 0.2882 7307 

Table 7.2: Results from TREC-1 with the long queries. The best precision values are in 

bold. See Section 1.8 and Table 1.2 for an explanation of the model names. 
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Disks 1 and 2 of TREC 2, topics 101-150. Relevant documents: 11645 
Models MAP Pr©5 Pr©10 Pr030 Pr©100 Pr©R Rel Ret 
I(F)B1 0.2320 0.5640 0.5180 0.4800 0.4090 0.3069 6356 
I(F)Ll 0.2333 0.5720 0.5420 0.4853 0.4026 0.3116 6322 
I(F)B2 0.2413 0.5640 0.5440 0.4960 0.4134 0.3142 6464 
I(F)L2 0.2456 0.5880 0.5540 0.5087 0.4160 0.3208 6497 

I(n)B1 0.2225 0.5480 0.5160 0.4780 0.4028 0.3006 6261 
I(n)L1 0.2364 0.5680 0.5440 0.5047 0.4130 0.3148 6380 
I(n)B2 0.2262 0.5600 0.5200 0.4907 0.4086 0.3037 6258 
I(n)L2 0.2439 0.5560 0.5420 0.5147 0.4224 0.3187 6472 

1(ne)B1 0.2325 0.5560 0.5260 0.4873 0.4110 0.3093 6410 
I(n,, )L1 0.2348 0.5720 0.5460 0.4920 0.4050 0.3137 6349 
I(ne)B2 0.2406 0.5600 0.5420 0.4993 0.4154 0.3155 6483 
I(n. )L2 0.2456 0.5960 0.5540 0.5087 0.4176 0.3219 6503 

GB1 0.2329 0.5440 0.5280 0.4833 0.4112 0.3094 6392 
GL1 0.2379 0.5800 0.5540 0.4980 0.4074 0.3178 6392 
GB2 0.2336 0.5400 0.5220 0.4947 0.4106 0.3089 6320 
CL2 0.2417 0.5800 0.5440 0.5120 0.4142 0.3177 6391 

BEB1 0.2329 0.5440 0.5280 0.4833 0.4112 0.3094 6392 
BELl 0.2379 0.5800 0.5540 0.4980 0.4074 0.3179 6392 
BEB2 0.2336 0.5400 0.5220 0.4947 0.4106 0.3089 6321 
BEL2 0.2418 0.5800 0.5440 0.5120 0.4144 0.3181 6391 

PB1 0.1951 0.5280 0.5060 0.4667 0.3772 0.2780 5769 
PL1 0.2089 0.5640 0.5260 0.4700 0.3836 0.2892 5924 
PB2 0.2223 0.5760 0.5420 0.4940 0.4144 0.3039 6232 
PL2 0.2383 0.5880 0.5540 0.5000 0.4194 0.3223 6402 

DB1 0.1951 0.5280 0.5060 0.4660 0.3772 0.2776 5769 
DL1 0.2089 0.5640 0.5260 0.4693 0.3836 0.2892 5924 
DB2 0.2223 0.5760 0.5420 0.4940 0.4144 0.3039 6232 
DL2 0.2383 0.5880 0.5540 0.5000 0.4196 0.3223 6403 

BA125 0.2455 0.5720 0.5560 0.5087 0.4252 0.3230 6523 

Table 7.3: Results from TREC-2 with the long queries. The best precision values are in 

bold. See Section 1.8 and Table 1.2 for an explanation of the model names. 
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Disks 1 and 2 of TREC 3, topics 151-200. Relevant documents: 9805 
Models MAP Pr©5 Pr©10 Pr©30 Pr©100 Pr©R Rel Ret 
I(F)B1 0.2565 0.6960 0.6520 0.5320 0.3776 0.3217 5437 
I(F)Ll 0.2675 0.6960 0.6560 0.5367 0.3832 0.3336 5460 
I(F)B2 0.2644 0.7160 0.6620 0.5380 0.3846 0.3254 5516 
I(F)L2 0.2765 0.7440 0.6660 0.5540 0.3902 0.3390 5524 

I(n)Bl 0.2439 0.6800 0.6400 0.5193 0.3694 0.3100 5320 
I(n)Ll 0.2669 0.7080 0.6740 0.5367 0.3870 0.3329 5535 
I(n)B2 0.2480 0.7000 0.6540 0.5307 0.3714 0.3114 5315 
I(n)L2 0.2716 0.7280 0.6720 0.5500 0.3926 0.3325 5524 

I(ne)B1 0.2569 0.7000 0.6540 0.5313 0.3820 0.3223 5454 
I(ne)L1 0.2682 0.6880 0.6580 0.5420 0.3826 0.3348 5483 
I(ne)B2 0.2637 0.7080 0.6680 0.5400 0.3848 0.3258 5514 
I(ne)L2 0.2767 0.7320 0.6720 0.5533 0.3906 0.3379 5543 

GB1 0.2548 0.6880 0.6580 0.5227 0.3746 0.3182 5436 
GL1 0.2681 0.6960 0.6800 0.5393 0.3842 0.3343 5495 
GB2 0.2527 0.7040 0.6520 0.5260 0.3750 0.3165 5373 
GL2 0.2682 0.7120 0.6680 0.5447 0.3818 0.3303 5446 

BEB1 0.2548 0.6920 0.6580 0.5220 0.3746 0.3182 5436 
BELl 0.2681 0.6960 0.6780 0.5393 0.3840 0.3343 5495 
BEB2 0.2527 0.7040 0.6520 0.5260 0.3750 0.3165 5373 
BEL2 0.2683 0.7120 0.6680 0.5447 0.3820 0.3303 5446 

PB1 0.2107 0.5800 0.5400 0.4667 0.3330 0.2821 4990 
PL1 0.2314 0.6280 0.5800 0.4873 0.3466 0.3056 5092 
PB2 0.2459 0.7120 0.6660 0.5267 0.3744 0.3093 5336 
PL2 0.2705 0.7520 0.6780 0.5573 0.3934 0.3274 5490 

DB1 0.2107 0.5800 0.5400 0.4667 0.3330 0.2821 4990 
DL1 0.2314 0.6280 0.5800 0.4873 0.3466 0.3056 5092 
DB2 0.2459 0.7120 0.6660 0.5273 0.3744 0.3093 5336 
DL2 0.2706 0.7520 0.6780 0.5573 0.3934 0.3274 5490 

BA125 0.2754 0.7320 0.6840 0.5587 0.3960 0.3352 5586 

Table 7.4: Results from TREC-3 with the long queries. The best precision values are in 

bold. See Section 1.8 and Table 1.2 for an explanation of the model names. 
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Disks 4 and 5 of TREC 6, topics 301-350. Relevant documents: 4611 
Models MAP Pr05 Pr©10 Pr030 Pr©100 Pr@R Rel Ret 
I(F)Bl 0.2457 0.5160 0.4580 0.3427 0.2162 0.2885 2667 
I(F)Ll 0.2557 0.5400 0.4420 0.3293 0.2074 0.2979 2640 
I(F)B2 0.2482 0.5240 0.4840 0.3367 0.2092 0.2863 2651 
I(F)L2 0.2597 0.5400 0.4600 0.3267 0.2058 0.2962 2595 

I(n)B1 0.2381 0.5280 0.4620 0.3413 0.2144 0.2794 2607 
I(n)L1 0.2560 0.5520 0.4480 0.3327 0.2090 0.3017 2654 
I(n)B2 0.2362 0.5440 0.4640 0.3327 0.2062 0.2730 2546 
I(n)L2 0.2544 0.5760 0.4840 0.3333 0.2126 0.2887 2594 

I(n. )B1 0.2479 0.5280 0.4640 0.3487 0.2182 0.2940 2689 
I(n. )L1 0.2557 0.5560 0.4700 0.3427 0.2164 0.2950 2654 
1(ne)B2 0.2488 0.5480 0.4860 0.3393 0.2112 0.2855 2638 
I(ne)L2 0.2600 0.5480 0.4620 0.3313 0.2086 0.2931 2595 

GB1 0.2458 0.5480 0.4700 0.3473 0.2124 0.2883 2653 
GL1 0.2567 0.5400 0.4620 0.3367 0.2116 0.3051 2623 
GB2 0.2414 0.5320 0.4720 0.3333 0.2058 0.2797 2566 
GL2 0.2548 0.5400 0.4560 0.3253 0.2074 0.2879 2538 

BEB1 0.2452 0.5480 0.4680 0.3467 0.2120 0.2878 2652 
BELl 0.2562 0.5400 0.4620 0.3353 0.2114 0.3045 2622 
BEB2 0.2410 0.5320 0.4720 0.3327 0.2058 0.2791 2565 
BEL2 0.2546 0.5400 0.4560 0.3253 0.2072 0.2879 2537 

PB1 0.2032 0.4600 0.4140 0.3100 0.1878 0.2445 2307 
PL1 0.2243 0.4760 0.4260 0.3247 0.2000 0.2642 2452 
PB2 0.2183 0.5040 0.4440 0.3113 0.1870 0.2509 2373 
PL2 0.2424 0.5320 0.4560 0.3300 0.2010 0.2778 2497 

DB1 0.2027 0.4600 0.4120 0.3100 0.1878 0.2440 2306 
DL1 0.2238 0.4760 0.4260 0.3240 0.1998 0.2636 2451 
DB2 0.2178 0.5040 0.4440 0.3107 0.1868 0.2503 2372 
DL2 0.2421 0.5320 0.4560 0.3300 0.2008 0.2778 2496 

BA125 0.2440 0.5600 0.4700 0.3233 0.2032 0.2834 2511 

Table 7.5: Results from TREC-6 with the long queries. The best precision values are in 

bold. See Section 1.8 and Table 1.2 for an explanation of the model names. 
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Disks 4 and 5 without CR collection, topics 301-350 of TREC 6. Rel. doc.: 4290 
Models MAP Pr(05 Pr©10 Pr©30 Pr©100 Pr©R Rel Ret 
I(n)B1 0.2550 0.5240 0.4600 0.3420 0.2130 0.2906 2535 
I(n)Ll 0.2689 0.5320 0.4540 0.3380 0.2112 0.3089 2568 
I(n)B2 0.2581 0.5560 0.4680 0.3320 0.2036 0.2866 2470 
I(n)L2 0.2705 0.5560 0.4840 0.3267 0.2088 0.3004 2510 

I(ne)B1 0.2648 0.5400 0.4480 0.3393 0.2176 0.3025 2615 
I(ne)L1 0.2711 0.5320 0.4500 0.3320 0.2058 0.3154 2545 
I(ne)B2 0.2662 0.5680 0.4680 0.3373 0.2100 0.2991 2566 
1(72e)L2 0.2751 0.5440 0.4620 0.3213 0.2044 0.3129 2493 

GB1 0.2615 0.5400 0.4500 0.3407 0.2118 0.2997 2576 
GL1 0.2714 0.5400 0.4540 0.3327 0.2070 0.3169 2527 
GB2 0.2605 0.5560 0.4740 0.3340 0.2038 0.2893 2502 
GL2 0.2707 0.5440 0.4540 0.3247 0.2028 0.3018 2444 

PB1 0.2170 0.4640 0.4060 0.3073 0.1842 0.2566 2271 
PL1 0.2373 0.4600 0.4220 0.3187 0.1960 0.2750 2373 
PB2 0.2338 0.5160 0.4400 0.3073 0.1868 0.2653 2318 
PL2 0.2569 0.5160 0.4480 0.3213 0.1972 0.2882 2417 

BA125 0.2584 0.5200 0.4560 0.3167 0.1978 0.2943 2420 

Table 7.6: Results from TREC-6 with the long queries and removing long documents. 

The best precision values are in bold. See Section 1.8 and Table 1.2 for an explanation 

of the model names. 

TREC MAP Pr@5 Pr©10 Pr©30 Pr©100 PrOR Rel Ret 
1 I(ne)B2 I(n, e)B2 GB2 I(ne)B2 BM25 BM25 I(ne)B2 
2 I(ne)L2 I(n, )L2 BN125 I(n)L2 BM25 BM25 BM25 
3 I(n¬)L2 PL2 BM25 BM25 BM25 I(ne)L2 BM25 
6 I(n. )L2 I(n)L2 I(ne)B2 I(ne)B1 I(ne)B1 GL1 I(ne)B1 
7 I(ne)B2 I(ne)B2 I(n, e)B2 I(ne)B2 GB1 I(ne)B2 I(ne)B2 
8 I(n,, )B2 PL2 I(ne)B2 I(ne)B2 I(ne)B2 I(ne)B2 I(ne)B2 

Table 7.7: Best performing models for each test collection and for different precision 

measures. The basic probability models I (F), D and BE are not considered here, as 

they do not differ significantly from their alternative approximations I(ne), P and G 

respectively. See Section 1.8 and Table 1.2 for an explanation of the model names. 
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Disks 4 and 5 of TREC 7, topics 351-400. Relevant documents: 4674 
Models MAP Pr©5 Pr©10 Pr©30 Pr©100 Pr©R Rel Ret 
I(F)B1 0.2352 0.5720 0.4960 0.3700 0.2370 0.2785 2876 
I(F)L1 0.2180 0.5320 0.4780 0.3553 0.2170 0.2586 2777 
I(F)B2 0.2484 0.5800 0.5200 0.3813 0.2374 0.2869 2883 
I(F)L2 0.2312 0.5400 0.5000 0.3647 0.2158 0.2711 2796 

I(n)B1 0.2191 0.5240 0.4720 0.3413 0.2116 0.2625 2531 
I(n)L1 0.2225 0.5520 0.4920 0.3620 0.2230 0.2659 2828 
I(n)B2 0.2337 0.5520 0.4840 0.3467 0.2164 0.2700 2540 
I(n)L2 0.2360 0.5400 0.4960 0.3687 0.2278 0.2763 2845 

I(ne)B1 0.2352 0.5680 0.4960 0.3700 0.2382 0.2778 2861 
I(ne)L1 0.2184 0.5440 0.4760 0.3553 0.2176 0.2601 2782 
I(ne)B2 0.2482 0.5800 0.5100 0.3813 0.2386 0.2874 2881 
I(ne)L2 0.2320 0.5400 0.4980 0.3613 0.2174 0.2717 2810 

GB1 0.2364 0.5720 0.5000 0.3760 0.2390 0.2787 2859 
GL1 0.2196 0.5360 0.4720 0.3527 0.2166 0.2640 2770 
GB2 0.2463 0.5720 0.5100 0.3753 0.2350 0.2847 2858 
GL2 0.2315 0.5520 0.4880 0.3587 0.2174 0.2713 2780 

BEB1 0.2361 0.5720 0.5000 0.3760 0.2390 0.2787 2859 
BELl 0.2196 0.5360 0.4720 0.3527 0.2166 0.2640 2770 
BEB2 0.2462 0.5720 0.5100 0.3753 0.2350 0.2847 2858 
BEL2 0.2315 0.5520 0.4880 0.3580 0.2174 0.2713 2780 

PB1 0.1914 0.4840 0.4300 0.3407 0.2126 0.2434 2526 
PL1 0.1944 0.4640 0.4480 0.3440 0.2092 0.2465 2584 
PB2 0.2194 0.5200 0.5020 0.3533 0.2208 0.2624 2669 
PL2 0.2212 0.5120 0.4880 0.3607 0.2194 0.2634 2743 

DB1 0.1914 0.4840 0.4300 0.3407 0.2126 0.2434 2526 
DL1 0.1944 0.4640 0.4480 0.3440 0.2092 0.2465 2584 
DB2 0.2194 0.5200 0.5020 0.3533 0.2206 0.2624 2669 
DL2 0.2212 0.5120 0.4880 0.3607 0.2194 0.2634 2743 

BM25 0.2274 0.5320 0.4880 0.3540 0.2152 0.2643 2676 

Table 7.8: Results from TREC-7 with the long queries. The best precision values are in 

bold. See Section 1.8 and Table 1.2 for an explanation of the model names. 
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Disks 4 and 5 of TREC 8, topics 401-450. Relevant documents: 4728 
Models MAP Pr05 Pr©10 Pr030 Pr©100 Pr©R Rel Ret 
I(F)B1 0.2734 0.5400 0.4820 0.3820 0.2496 0.3135 3135 
I(F)L1 0.2645 0.5280 0.4860 0.3700 0.2416 0.3103 3067 
I(F)B2 0.2833 0.5520 0.5060 0.3967 0.2528 0.3280 3189 
I(F)L2 0.2767 0.5240 0.4860 0.3840 0.2448 0.3179 3095 

I(n)L1 0.2681 0.5120 0.5000 0.3787 0.2444 0.3164 3046 
I(n)B1 0.2664 0.5240 0.4740 0.3880 0.2524 0.3221 3000 
I(n)B2 0.2763 0.5520 0.4980 0.3900 0.2528 0.3235 3038 
I(n)L2 0.2792 0.5360 0.5040 0.3927 0.2492 0.3233 3073 

I(ne)B1 0.2735 0.5320 0.4960 0.3807 0.2504 0.3286 3142 
I(ne)L1 0.2664 0.5240 0.4840 0.3707 0.2420 0.3114 3061 
I(ne)B2 0.2841 0.5520 0.5080 0.3967 0.2532 0.3295 3178 
I(ne)L2 0.2769 0.5200 0.4940 0.3887 0.2452 0.3171 3067 

GB1 0.2757 0.5360 0.4800 0.3880 0.2494 0.3292 3142 
GL1 0.2667 0.5120 0.4840 0.3727 0.2416 0.3146 3031 
GB2 0.2826 0.5440 0.5040 0.3960 0.2514 0.3290 3153 
GL2 0.2757 0.5280 0.4860 0.3887 0.2438 0.3183 3032 

BEB1 0.2757 0.5400 0.4800 0.3880 0.2494 0.3292 3142 
BELl 0.2669 0.5120 0.4860 0.3727 0.2416 0.3146 3031 
BEB2 0.2827 0.5440 0.5040 0.3960 0.2514 0.3290 3153 
BEL2 0.2758 0.5280 0.4880 0.3887 0.2438 0.3183 3032 

PB1 0.2379 0.5240 0.4800 0.3520 0.2246 0.2905 2838 
PL1 0.2350 0.5120 0.4700 0.3553 0.2232 0.2898 2829 
PB2 0.2559 0.5560 0.4980 0.3847 0.2360 0.3060 2948 
PL2 0.2562 0.5680 0.4880 0.3780 0.2374 0.3044 2923 

DB1 0.2379 0.5240 0.4800 0.3520 0.2246 0.2905 2839 
DL1 0.2350 0.5120 0.4700 0.3553 0.2232 0.2898 2829 
DB2 0.2559 0.5560 0.4980 0.3840 0.2358 0.3060 2948 
DL2 0.2562 0.5680 0.4880 0.3780 0.2374 0.3044 2923 

BM25 0.2716 0.5400 0.4980 0.3827 0.2464 0.3181 3083 

Table 7.9: Results from TREC-8 with the long queries. The best precision values are in 

bold. See Section 1.8 and Table 1.2 for an explanation of the model names. 
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It is interesting to observe that results of TREC-6 (Table 7.5) (whose test bed uses 

the additional collection CR containing long documents) are significantly different 

from all other TREC experiments. This allows us to conjecture but not to assert 

that the statistics of the collection (e. g. number of unique terms, mean and variance 

of document length) may have more effect on the relative performance of models 

than the content of the submitted topics. We tried a small experiment which 

seemed to begin to corroborate this hypothesis. We used the topics of TREC-6 

on the collection used in TREC-7 and TREC-8 (without indexing the collection 

CR). In order to compare the two Tables 7.5 and 7.6 we considered the means of 

different precision values and of the number of retrieved documents in Table 7.6 

and computed the variation rates with respect to the values of Table 7.5 and then 

normalized to the mean values. Results show that the normalization B increases 

average precision and more significantly the early precision, that is the precision 

at the beginning of the ranking, while L slightly increases the precision for high 

values of recall (R-precision included). Model G showed the most sensitivity to the 

effect of the normalization process. 

2. The Poisson model PL2 gave a good performance for precision early in the rank- 

ing (precision at 5 documents retrieved). For the average precision, Poisson per- 

formance is good in TREC-1, TREC-2 and TREC-3 (see Tables 7.2,7.3,7.4), less 

satisfactory in TREC-6 and TREC-7 (see Tables 7.5,7.8), unsatisfactory in TREC- 

8 (Table 7.9) (but in TREC-8, PL2 has the best performance for precision at 5 

documents retrieved). By contrast, the normalization B2 seems to work poorly 

with P. 

3. Model C with both normalizations B2 and L2 gave a good performance in all 

TREC experiments. G's performance depends on the choice of the normalization 

B2 (better in TREC-7 and TREC-8, see Tables 7.8 and 7.9) and L2 (better in 

TREC-1, TREC-2, TREC-3, TREC-6 and TREC-10, see Tables 7.2,7.3,7.4,7.5 

and 7.13). Surprisingly, our experiments with TREC-10 show that BEL2 is the 

model which best combines with the query expansion technique. Indeed BEL2 
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with query expansion was the best over all performing run at TREC-10. 

4. The model I (ne) works well with both normalizations B2 and L2. We observe also 
that, the I(ne) performance depends on the choice of the normalization, B2 better 

in TREC-1, TREC-7, TREC-8 and TREC-10 (see Tables 7.2,7.8,7.9, and 7.13) 

or L2 which is better in TREC-2, TREC-3 and TREC-6 (see Tables 7.3,7.4, and 
7.5). 

5. The model I (n) gives results similarly to I (ne) but always performs less well than 

I(ne). 

6. By comparing the results from the models which are approximations or limiting 

forms of one theoretical basic model, we may observe that they are indistinguish- 

able. We do not need to distinguish between the models P and D for the binomial 

basic model nor between the models G and BE for the Bose-Einstein basic model. 

Similarly, we may observe that I (F) and I (ne) do not differ significantly in the 

experiments. Since I (F) can be considered as an approximation of I (ne ), the ex- 

periments show that we may reduce the seven basic models (P, D G, BE, I(ne), 

I (F) and I (n)) to four: P, G, I (ne) and I (n). 

7. The term-frequency normalization H2 of formula 6.10 seems to be superior to the 

term-frequency normalization H1 of formula 6.9. Indeed, given any model XE 

{P, G, I (n), I (ne) } and any normalization YE {L, B} the model X Y2 performs 

better that its analogous XY1. There are some partial exceptions especially in the 

experiment of TREC-6 for high values of recall (PrG30, Pr©100, Pr©R and for 

the number of relevant retrieved) as shown in Tables 7.7 and 7.5. 

7.4 Experiments with short queries 

Our results show that all the models are robust with respect to different data sets. Unlike 

the experiments with long queries, we have used a parameter-based version of the term- 

frequency normalization H2, that is assuming a fixed value c=7. Though this is not 

the best matching value for each collection, this value was shown to lie within a large 
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interval of optimal values as shown in Sections 6.2 and 6.2.1 (see Figures 6.2 and 6.3 on 

page 129 and page 130). 

We used two collections the wT2G collection of TREC-8 of 2 GBytes and the col- 

lection WT10g of 10 GBytes of TREC-9 and TREC-10. We have already presented in 

Section 7.3 the collection of TREC-8. The WT10g collection is made up of 1.69 million 

pages selected from the WEB. 

wT1OG contains 666 million tokens, 3.09 million unique words and 273.74 million 

pointers (term-frequency and document pairs). We compressed the inverted file achiev- 

ing a number 12.60 of bits per pointer for an overall size 411.3 MB of inverted file. 

We used only the titles of the TREC-8, TREC-9 and TREC-10 queries. After the 

application of the stop list the average query-length was 2.6. words. 

From the analysis of the results from long queries we could reduce the number of 

experiments to be presented here. We proved that limiting forms behave similarly and 

that H1 was not performing as good as H2. The performance of the Zipfian technique 

Z was shown to lie in between H1 and H2. Therefore we have compared only 10 

term-weighting models of divergence from randomness BEB2, BEL2, I(n)B2, I(n)L2, 

I(ne)B2, I(ne)L2, I(ne)B3 and DL2 (=PL2) with the language model based on the 

Dirichlet Priors and the BM25. 

Notice that I(ne)B3 uses the Dirichlet Priors as term-frequency normalization (see 

Section 6.4 on page 137). 

We submitted at TREC-10 four runs as shown in Table 7.13 to compare retrieval 

with or without query expansion. The indexing and stemming techniques were different 

from those used in the previous experiments. 

Because of a different IR system used to participate to the conference and because 

of the size of the collection (10 Gbytes for about 1,600,000 WEB documents), and as 

we had very limited storage capabilities, we reduced the size of the inverted files and 

we performed some document and word pruning. Specifically, we indexed with single 

terms only, ignoring punctuation and case. The whole text was indexed except for 

HTML tags, which were removed from documents. Pure single keyword indexing was 

performed, and link information was not used. We did some document pruning. We 

removed 2,897 documents with more than 10,000 words and 57,031 documents with 
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Models MAP MAP®10 

TREC 8. 

Pr ®5 Pr 010 Pr ®20 PrOR Re1Ret 

BB2 0.2616 0.3619 0.4920 0.4580 0.4160 0.3032 2882 

BL2 0.2587 0.3548 0.4880 0.4540 0.4040 0.3027 2834 

I(n)B2 0.2629 0.3675 0.5080 0.4700 0.4150 0.3046 2910 

I(n)L2 0.2606 0.3548 0.4920 0.4560 0.4110 0.3056 2890 

I(ne)B2 0.2616 0.3639 0.4920 0.4600 0.4140 0.3019 2859 

I(n. )L2 0.2588 0.3518 0.4840 0.4500 0.4060 0.3043 2823 

PL2 0.2477 0.3587 0.4880 0.4580 0.3970 0.2967 2866 

I(ne)B31A = 1700 0.2509 0.3467 0.4800 0.4520 0.3940 0.2878 2845 

BM25 0.2361 0.3509 0.4720 0.4500 0.3960 0.2910 2776 

LMµ300 0.2548 0.3461 0.5120 0.4440 0.4000 0.3017 2862 

Table 7.10: Baselines for short queries of TREC-8 

TREC 9. 

Models MAP MAP®10 Pr 05 Pr 010 Pr 020 PrOR Re1Ret 

BB2 0.2029 0.2448 0.3040 0.2620 0.2120 0.2353 1479 

BL2 0.2085 0.2459 0.3080 0.2560 0.2080 0.2410 1547 

I(n)B2 0.1975 0.2450 0.3160 0.2640 0.2120 0.2320 1437 

I(n)L2 0.2067 0.2465 0.3120 0.2560 0.2060 0.2376 1521 

I(ne)B2 0.1984 0.2393 0.3040 0.2620 0.2110 0.2331 1480 

I(n. )L2 0.2085 0.2456 0.3040 0.2580 0.2100 0.2400 1553 

PB2 0.1858 0.2076 0.2640 0.2400 0.1940 0.2201 1395 

PL2 0.1939 0.2288 0.2960 0.2580 0.2100 0.2300 1484 

I(n. )B314 = 1600 0.1962 0.2382 0.3040 0.2640 0.2180 0.2346 1456 

BM25 0.1786 0.2183 0.2880 0.2340 0.1950 0.2131 1327 

LMµ1300 0.1990 0.2210 0.3000 0.2520 0.2070 0.2384 1529 

Table 7.11: Baselines for short queries of TREC-9 

TREC 10. 

Models MAP MAP®10 Pr 05 Pr ®10 Pr ®20 PrOR Re1Ret 

BB2 0.2105 0.3011 0.4280 0.3720 0.3170 0.2461 2413 

BL2 0.2017 0.2870 0.4040 0.3620 0.3090 0.2356 2348 

I(n)B2 0.2105 0.2975 0.4240 0.3720 0.3170 0.2454 2404 

I(n)L2 0.2041 0.2852 0.4200 0.3560 0.3120 0.2393 2409 

I(n. )B2 0.2105 0.2979 0.4200 0.3720 0.3170 0.2473 2415 

I(ne)L2 0.2023 0.2870 0.4040 0.3640 0.3100 0.2386 2353 

PB2 0.1995 0.2690 0.3800 0.3460 0.2950 0.2340 2391 

PL2 0.2065 0.2909 0.4120 0.3740 0.3230 0.2366 2448 

I(ne)B3µ = 1200 0.2132 0.2983 0.4400 0.3680 0.3240 0.2451 2458 

BM25 0.1866 0.2680 0.3800 0.3480 0.3080 0.2285 2318 

LMµ1200 0.2126 0.2837 0.4160 0.3620 0.3250 0.2437 2443 

Table 7.12: Baselines for short queries of TREC-10 
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Method Run MAP Pr©10 Pr©20 Pr030 

Model performance without query expansion 

BEL2 0.1788 0.3180 0.2730 0.2413 

I(n)L2 0.1725 0.3180 0.2740 0.2353 

I(ne)L2 official 0.1790 0.3240 0.2720 0.2440 

BEB2 0.1881 0.3280 0.2980 0.2487 

I(n)B2 official 0.1900 0.3360 0.2880 0.2580 

I(ne)B2 0.1902 0.3340 0.2860 0.2580 

Model performance with query expansion 

BEL2 official 0.2225 0.3440 0.2860 0.2513 

I(n)L2 0.1973 0.3200 0.2730 0.2380 

I(ne)L2 official 0.1962 0.3280 0.2760 0.2507 

BEB2 0.2152 0.3400 0.2870 0.2527 

I(n)B2 0.2052 0.3380 0.2970 0.2680 

I(ne)B2 0.2041 0.3360 0.2990 0.2660 

Table 7.13: Comparison of models with TREC-10 data without using Porter's stemming 

algorithm. 

less than 10 words. Also, we removed 86,146 documents containing more than 50% of 

unrecognized English words. In all, we removed 118,087 documents. Words contained 

in less than 11 documents, that were apparently exclusively misspelled words, were not 

included for the indexing. Words containing more than three consecutive equal characters 

or longer than 20 characters were also deleted. In this way, the number of distinct words 

in the collection was only 293,484. We used a very limited stop list and did not perform 

word stemming at all. 

7.4.1 Results from experiments with short queries 

As observed in the previous section we assumed the value c=7 for the normalization 

H2. As shown in Figures 6.2 and 6.3 this setting is not the best matching value for each 

collection, but this value was shown to be within a large interval of best matching values 

(see Sections 6.2 and 6.2.1). 
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In the following we discuss the results shown in Tables 7.10,7.11,7.12 and 7.13. 

1. Similarly to the results from experiments with long queries, there is no convincing 

evidence or argument in favour of either normalization B or L. it seems that B 

combines well with the inverse document-frequency based models I (n) and I (ne), 

though in TREC-9 I (ne) was the best performing model. We are not in the position 

to draw any conclusion for the other models. The exception is the binomial model, 

for which Laplace's law normalization L provides good results. 

2. The Poisson model PL2 gave a good performance in TREC-10. Also results from 

TREC-11 evaluation, where models of divergence from randomness were used, 

is reported that PL2 gave better results than other models in topic distillation 

task [811. By contrast, the normalization B2 seems to work poorly with P. 

3. Model BE with both normalizations B2 and L2 gave a good performance. It was 

the best performing model together with I(ne)L2 in TREC-9. 

4. Again, the model I(n) gives results similarly to I (ne). 

5. The term-frequency normalization H3 of formula 6.4 gave the best run for TREC- 

10 but not with other two set of queries. Also, we are not in the position to draw 

a conclusion on which method between H2 and H3 is the best one. 

6. The BM25 worked poorly in comparison to the divergence from randomness models 

and language model (MAP= 0.2361,0.1786 and 0.1866 against 0.2629,0.2085 and 
0.2132 of the best runs). We will see that the BM25 reduces its gap from the other 

models by using our query expansion technique (see Chapter 8). 

7. The language model LM is as effective as the models of divergence from randomness 

(MAP= 0.2548,0.1990 and 0.2126 against 0.2629,0.2085 and 0.2132 of the best 

runs). However its best performing parameter p is not stable (it varies from 300 

in TREC-8 to 1300 in TREC-9). This value seems also to depend on the length 

of the query (see Chapter 8 on query expansion). In contrast, the best performing 

value of it is stable when Dirichlet's priors are used as term-frequency normalizing 

factors H3 in the models of divergence from randomness over both the collections 

and the query-lengths (see Chapter 8 on query expansion). 
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8. In Table 7.13 there are the results from TREC-10 with the collection indexed 

without stemming. The first normalization B2 is superior to L2 with the exception 

of model BE in combination with the query expansion. 

7.5 Conclusions 

We have created a framework for generating non-parametric Information Retrieval mod- 

els. We constructed a weighting formula which is a combination of three different prob- 

abilities. The first and basic probability models were obtained from urn models with 

random drawings. We computed a second probability, the probability of relevance of 

a term in its "elite set". This provided a normalization factor on the weighting for- 

mula. Finally, a probability related to the length of a document was constructed to 

resize the cardinality of the term-frequency in the document. Four hypotheses about the 

distribution of document length were tested. 

We used the basic probability models to derive for IR, a Bernoulli model, the tf -idf 

model I(n), the tf -it f model I (F) and the model I (ne) which is a combination of the 

Poisson and the idf models. Two workable approximations of Bernoulli's model were 

introduced: the Poisson model P and the information theoretic approximation model D. 

These two approximation models performed equally under all normalizations. 

The other basic model is Bose-Einstein. Two approximations of the Bose-Einstein 

model were also introduced: the geometric models G and BE. These two approximation 

models performed equally under all normalizations. 

All models were compared with the BM25 formula, which is frequently used by many 

participants of TREC and the language model based on Dirichlet's priors. I(ne)B2 and 

I(ne)L2 were often shown to be superior at many recall levels and in average precision. 

Experiments showed that the model I(ne) and I(F) perform in a similar way. I(ne) was 

shown to perform often better than the standard idf model I(n) under all normalizations. 

B2, L2 and B3 are shown to be universal normalization factors, in the sense that the 

normalization works independently of models and independently of variation in document 

length. L2 is less sensitive to the variation of document length. On the other hand, 

when the variation is moderate B2 seems to perform better. The normalization factor 

B2, containing both the document frequency and the term-frequency, derives formally 
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from Bernoulli process and from the standard axioms of utility theory. 

Our models are all formally derived. Parameter-free models work well with long 

queries, while a stable value for the parameter c was found to hold for short queries. 

Finally we have shown that BM25 can be formally derived from our framework 

together with its parameter values. 



Chapter 8 

Query expansion 

8.1 Introduction 

In contrast to the inherent difficulty of representing complex concepts such as for example 

our information need, which we would like to express by a long and articulate statement, 

the average length of a query submitted to search engines is typically short. 

Although users often formulate very short queries, automatic query expansion is 

highly effective for many information retrieval tasks. However, automatic query expan- 

sion may be detrimental in some situations. If early precision is critical, or if the number 

of relevant documents is a few, then automatic query expansion may be not rewarding 

or may even harm the effectiveness of retrieval. In cases where only early precision is re- 

quired, the employment of query expansion may induce the system to include irrelevant 

documents high in the ranking. As observed by Harman [47], automatic query expansion 

can make a gain in recall that is countered by a loss in precision. Notwithstanding these 

considerations, we show that query expansion performed with our methodology brings in 

a substantial increment of the mean average precision (MAP). However, MAP increment 

is not uniform over all queries. Indeed, the average precision drops for approximately 

one-third of queries. The same proportion was also reported in [80] with different query 

expansion techniques. The decision has to be taken when performing query expansion 

as to whether the increase of the mean average precision is more valuable than the loss 

produced in average precision for a significant number of queries. The decision depends 

on the type of application, but if the utility function measuring the effectiveness of the 

153 
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system is MAP or even the early precision, such as the exact precision at 10 documents 

retrieved, then query expansion seems to be of benefit. 

The literature on automatic query expansion and its strictly related subjects, such as 

relevance feedback, is huge [64,90,27,86,95,48,26,45,120,130,69,131,70]. The basic 

and most effective strategy for performing query expansion is local feedback, also known 

as pseudofeedback. The term local feedback was introduced by Attar and Fraenkel [8] to 

denote the process of formulating a new improved search based on clustering terms from 

the documents returned in a previous search. Clustering terms can be computationally 

expensive because of the size of term-by-term matrices which have to be built with a 

global statistical analysis. The local feedback technique is able to select a set of terms 

from the topmost retrieved documents in a first ranking pass. After this phase, the 

selected terms are added to the original query with a weight. Rocchio's methodology[92] 

is generally used to compute the weights of the terms in the expanded query. The term- 

weights for selection and the actual term-weights used for the second ranking pass may 

not necessarily coincide [88]. 

A non-probabilistic approach to query expansion is taken by Bruza and Song with the 

Hyperspace Analogue to Language [15,16] whereby the strength of an information flow 

is computed between pairs of queries, conceived as logical concepts, and terms. Hyper- 

space Analogue to Language is claimed to be as effective as probabilistically motivated 

expansion model. 

In this Chapter we follow Rocchio's approach to define the query expansion model. 

We introduce a general methodology of query expansion following the leading idea of 

divergence from randomness as introduced in Section 3. Our approach based on the 

divergence from randomness is able to explain how Kuliback-Leibler divergence (see Sec- 

tion 2.2.3) is connected to the binomial distribution and why it performs similarly to 

the binomial in the case of query expansion task. Our approach can be seen as a gener- 

alization of the approach used by Carpineto and Romano in [19,17] which applied the 

Kullback-Leibler divergence to the unexpanded version of BM25 [19]. Our framework 

precisely relates different query expansion formulae, such as the binomial formula, the 

Poisson, the X-square and the Bose-Einstein statistics. Results show that this methodol- 

ogy is effective for all probabilistic models of IR from the BM25 and the language model 
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based on the Dirichlet priors to the divergence-based probabilistic models. Finally, we 

show how to perform query expansion with a parameter-free Rocchio formula. 

8.2 Term-weighting in the expanded query 

For the moment we assume that an arbitrary IR model is used. The model computes a 

weight w(t1d) for each pair of term t of the vocabulary and document d in the collection. 
We also assume that the weight w(qld) of a query q given a document d satisfies two 

conditions: 

1. Let q= (ti, ... , tk) and let ti, ... , tk be independent. We assume that the weight 
k 

is additive, namely w(gjd) = >w(tild) 
i=1 

2. All tokens in the query are independent, even if they are tokens of the same word. 

Therefore, the weight w(gld) of the query given a document is: 

w(ql d) = tfq " w(tl d) 
tEq 

where tfq is the number of occurrences of t in the query q. 

The document score given a query is thus made up of two components: 

" The term-weight t fq in the query . In absence of other evidence, t fq is taken to be 

the raw frequency of the term in the query. 

" The term-weight w(t1d) in the document, called more briefly the term-weight. 

Query expansion consists of enlarging the set q of initial terms with a superset q* D q. 
A weight tfq" of the term in the query is associated with each term tE q*. The final 

document score w*(q* d) is the new weight of the query given the document: 

(8.1) w'(q*Id) = 1: (tfq+atfq") " w(tld) 
tEq' 

With Equation 8.1, we assume that the process of query expansion does not affect the 

original term-weight w(t1d) in the document, but it only modifies the component of the 

term-weight in the query. The value t fq. , to be added to the original tfq (possibly =0 

when the term is new) is computed on the basis of a first pass retrieval. t fy. will be 
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in general a real number drawn from the term-frequency observed in a new "Elite" set, 

that is the set Ey of the topmost retrieved documents. 

To introduce the underlying idea of our approach, we assume that tfy. is a monotoni- 

cally decreasing function of a probability p(tlEq). p(tlEq) is defined to be the probability 

that the tokens of the term t in the set Eq occur accidentally. Again, the notion of 

accidental occurrence of a term is here explained by a suitable urn model. The balls 

are word tokens, the successes are all the balls of the same colour drawn from the urn. 

Once again, we assume that human beings put the word tokens in sequence diverging as 

much as possible from the way this urn model would instead generate an arbitrary text, 

that is randomly. The divergence from randomness assumption is equivalent to asserting 

that only non-informative words possess a distribution fitted by, for example, a bino- 

mial process, or by its approximations such as, for example, by a Poisson. It turns out 

that non-informative words are also non-discriminant, in the sense that the frequency of 

the term in an arbitrary piece of text is exactly that obtained by chance, that is that 

predicted by the binomial distribution. Our divergence from randomness idea is similar 

to that which has conceived the 2-Poisson model of IR[52], that in turn contributed to 

the formulation of the BM25 formula. 

We have already seen in Chapter 4 that Formula 4.2 on page 81 captures the diver- 

gence between the information content of a term and the probability of its frequency 

following a suitable urn model. Therefore, we can display the fundamental equation for 

query expansion: 

(8.2) w`(q*Jd) => (tfq -a" logp(tIEq)) - w(t1 d) 
tEq' 

8.3 Query expansion 

Let us assume that the weight w(qld) has produced a first pass ranking of documents. 

The topmost documents in the ranking are probably relevant and therefore we may 

regard them as constituting a second "Elite set Eq of documents", that is the set of 
documents which best describe the content of the query q. 

We employ the same models which are used to define the retrieval functions Infl of 
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Chapter 3. Like the information content Infl of the term in a document, we define the 

information content In f (tlEq) of the term in the elite set E. of the query. E. is the set 

of r documents with the highest weights In f (tlEq). 

Inf (tlEq) = -1ogP(tlEq) 

The probability P(tlEq) is computed by either the binomial or the Bose-Einstein 

statistics. 

Let us show the computation of P(tlEq) by an example. Let "What is a prime 

factor? " be a query. After the use of the stop list the query reduces to "prime factor". 

We produce a first pass document ranking and we use r=3 topmost documents to derive 

the information content of all terms contained in these documents. The parameter r is 

set to the same value as in [3]. In general, r is set to much higher value than 3 by most 

query expansion techniques. For example, the query models of the language model based 

based on the Markov chains use 50 documents [70] for the training. 

Then, we filter the terms according to the condition that t belongs to at least 2 

documents of Eq. This is a simple application of the hypothesis that a common term 

from the top-ranked documents tends to co-occur with all query terms within this top- 

ranked document set [130,131]. However, we do not use ad hoc co-occurrence metrics for 

selection, but we interpret this hypothesis as a simple Boolean condition to be satisfied. 

Our constraint is to avoid the noise which may be generated by very frequent terms 

appearing in only one single non-relevant document of the Elite set E.. Indeed, the 

occurrence of a highly informative term in two distinct documents out of 3 topmost 

retrieved documents would make it quite improbable to belong to both non-relevant 

documents, especially if the exact precision at 3 is close or greater than 50%, as in actual 

situation. For example, if the precision at 3 is exactly 0.5 then the prior probability 

that an arbitrary term, co-occurring into 2 different documents, belongs to at least one 

relevant document is 87.5%, (1 - 0.53). This probability grows to 93.7% if the precision 

at 3 is 0.6. However, this probability should be much higher, since we have not assumed 

in our computation the fact that a highly informative term in general is a rare term in 

the collection, and therefore its probability of occurring in a non relevant document is 

very low. 

After selection, the terms are ordered according to the weights computed by means 
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of the binomial. The first r= 10 terms of the ranking are chosen to expand the original 

query. 

Turning back to our example, the term "prime" is used FE, = 55 times out of 

TotFrEq = 1535 of words used in the first 3 retrieved documents. Its relative frequency 

in the collection is p=6.4.10-5. The probability of obtaining the term-frequency FEq 

by chance can be obtained by the binomial law. 

B (55,1535, p) = 129 1535 
pssqiaao =1.4.10- 

55 

where p=6.4 . 10-5 and q= 1-p. 

The information content of the term t in the set Eq of the topmost documents is 

obtained by the logistic function: 

(8.3) Inf(tlEq) = InfEq(t) = -1og2B (FEq, TotFrEq, p) 

For the term "prime" of our example we have 

In fEq (t) _ -1og2 B (55,1535,6.4 . 10-5) = 428.04 

In a similar way we may compute the information content of all terms contained in the 

first r=3 retrieved documents, under the condition that they must belong to most of 

these r documents. We regard the most informative terms as good candidates for query 

expansion. In our example, the first r= 10 stemmed terms with the highest information 

content are shown in Table 8.1. 

Once the information content of the terms related to the query is computed, we have 

to face the problem of exploiting these scores to obtain the new weighted expanded query 

and thus the final document ranking. One approach [19], is simply to add the first r 

informative terms to the original query q, obtaining thus a new query q'. Then, the 

information content values are normalized to a value nIn fE9 (t) less or equal to 1. The 

information content values are normalized by their maximum 

M= argtEQ max In fEq (t) 

or by a maximal value M. Finally, Rocchio's formula is derived, that is the new weighted 

query is a linear combination of the original query vector and the normalized information 
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term tfq FEq P InfE9 nlnfEq tfq + 0.5 " nlnfEQ 

prime 1 55 6.4. 10-5 428.04 1.0000 1.5000 

number 0 99 1.4. 10-3 412.48 0.9636 0.4818 

factor 1 49 1.83. 10-4 299.67 0.7001 1.3500 

integ 0 30 4.36. 10-5 225.19 0.5261 0.2630 

primal 0 8 3.17. 10-6 76.77 0.1794 0.0896 

multipl 0 15 1.78. 10-4 68.74 0.1606 0.0802 

test 0 21 6.24. 10-4 68.28 0.1595 0.0797 

divid 0 11 6.28. 10-5 62.53 0.1461 0.0730 

common 0 15 2.65. 10-4 60.34 0.1410 0.0704 

composit 0 9 2.62. 10-5 60.26 0.1408 0.0703 

159 

Table 8.1: The highest informative terms for the query 502 (Prime factor? ) of TREC-10 

data. The last column shows the weights of the terms in the new expanded query. 

content term-vector. If t fq is the original query and 

I 1E 
nlnfEg =M 

is the normalized information content term-vector, then the new weighted query q is: 

(8.4) 
tf9+a"fIn 

Eq 

a<1 

With this approach the term-weighting formulae are not modified. Indeed the informa- 

tion content is used to weight a new query constituting thus an independent component 

of the system. In addition, an independent query expansion component may be easily 

combined with any arbitrary term-weighting formula, unexpanded BM25 or language 

model included. 

The final term-weighting is thus provided by the following formula: 

(8.5) w'(tld)= 
(tfq 

+ 
Inf(tIEg)) 

w(t1d) 

In the following we exploit approximations of function 8.3 with the limiting forms de- 

scribed in Section 2.2. Among the approximations we use the Poisson process, the X2 
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statistics, the asymmetric Kullback-Leibler divergence function, the information the- 

oretic divergence function D. All of these limiting forms are equivalent in terms of 

performance with the exception of the X2. They are also equivalent in theoretical terms 

up to an approximation error and to a proportional factor. This proportional factor is 

independent of the term, and thus all expansion methods are equivalent to the binomial 

for term-ranking up to an approximation error. 

In addition, we also use the Bose Einstein statistics and show that Bose Einstein 

statistics performs in a similar way of the binomial. 

8.4 Rocchio's method 

A simple and commonly used method of query expansion is due to Rocchio [92]. Actually, 

the Rocchio method was designed to process the relevance feedback and provides a 

measure for the selection of query expansion terms as follows: 

86 tfq' =a" tfq +Q E w(tf dk) r w(tjdk) (Rocchio Or-7 
Lý rL 

dkEEE 
IEq, 

dkEEq-Eq* IEq - EqI 

where tfq is the original weight of the term in the query, and Eq is the set of the retrieved 

documents, and w(tldk) is the term-weight within the k-th retrieved and relevant or non- 

relevant document, as assigned in Section 8.2, and Ey is the set of relevant and retrieved 

documents, and a, ß and -y are parameters. This formula can be used both for selecting 

terms and weighting terms in the new expanded query. 

In local or blind feedback, that is assuming Eq = E9 we use a simplified version of 

the Rocchio formula: 

(8.7) t fq =a" tfq +, Q w(E i) [Rocchio] 
dkEEy 

Notice that we may set a +, 8 +y=1 for the scores would be equal up to a proportional 

factor and thus the ranking would be the same. Rocchio's method contains three pa- 

rameters to be estimated, that is %3, the number of topmost documents to be processed, 

and the number of terms to be added to the query. 

Notice that Formula 8.5 is more general from the standard definition of Rocchio's for- 

mula. Rocchio's formula computes the mean of within-document term-weights w(tldk) 
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in the set of pseudo relevant documents and this value is averaged with the original 

within-query term weight tfq according to the priors a+ß=1. Then, this averaged 

mean is matched against the within-document term-weights w(tld). 

Formula 8.5 computes the informative content of the terms in the set of pseudo 

relevant documents and this value is averaged with the original term-within query- 

weight tfq according to the priors a and P. Then, this value is matched against the 

within-document term-weights w(t1d) obtaining the final second pass ranking. 

8.5 The Binomial Law for query expansion 

Let PD = (PD, qD) be the relative term-frequency of a term t in the collection D, that is 

F 
PD _ TotFrD 

4D =1- pD 

The probability PD is the a priori probability of occurrence of t in D. 

Let E be a subset of D and let 

_ 
FE 

pE TotFrE 

be the frequency of the term in E. We regard each occurrence of a word in E as a trial 

of an experiment. A successful outcome for the term t is when t occurs. Then the text of 
E becomes a sequence of trials. The a priori probability of obtaining FE successes over 
TotFrE trials (the total number of occurrences of words in E), with prior PD = (PD, qD) 

can be modeled by Bernoulli process: 

rE-FE (8.8) B(FE, TotFrE, pD) = 
TotFrE 

P 
FE 
Dq 

TotFrE-FE 

FE 

If E is large and randomly chosen, then E can be considered as a sample of the entire 

collection D. In this case, for any term t the frequency PE should be close to its prior 

pD. To see this one can use the Chernoff bounds: a deviation e, with 0<e<1 from the 

average number of successes TotFrE " pD in TotFrE experiments in a Bernoulli process 

is analyzed by observing the tail probability 

(8.9) P 
(IfE-1I 

>eI=E B(FE, TotFrE, PD) < 2e-E2PD. TotFrE 
PD IPD-ll>e 
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The tail in the inequality of Formula 8.9 (see also Formula 3.7) becomes definitely small 

as soon as the size of E becomes large. However, when we expand queries, E is neither 

large nor chosen by a random process. E is rather chosen according to the document 

ranking, that is when E is the Elite set Eq of the query. 

In the case of query expansion, when E= Eq, the two frequencies pE9 and PD should 

diverge and not converge as in the limiting process of sample selection. More generally, 

notwithstanding Eq is obtained by a query driven document selection, if a term t still 

shows a distribution PE, not much dissimilar to the prior PD, then we assume that 

the term t is not a discriminant term of E from the entire collection D and thus it is 

not a good descriptor of the content of the query. Only those terms t, for which the 

probability distribution PEq diverges from PD, should have a significant weight in the 

expanded query. In different words, if the distribution PEQ generates a large tail, then 

the term is a discriminant, and equivalently, the probability of frequency pEq given by 

Bernoulli process of Formula 8.8 should be very small. 

The probability B(FEq, TotFrEq, pD) defined by a Bernoulli process is thus inversely 

related to the information content of the term in the set Eq. Once again, as in Chap- 

ter 3, we assume that the information content Inf(tlEq) is inversely proportional to 

B (FE,,, TotFrEq, pD). 

In f (tI Eq) _ -1092 B(FEq, TotFrEq' PD) 

8.6 The hypergeometric model of query expansion 

This section is a straightforward application of Section 2.3 on page 55. 

A different model of query expansion can be defined by using the hypergeometric 

distribution. The hypergeometric distribution is generated by a process of sampling 

from an urn (Type I) without replacement of the extracted balls. There is a population 

D of TotFrD tokens having a number F of tokens of the same word t. A sample E of D 

is given. For query expansion E is the set of topmost documents in a first pass document 

ranking. A number FE of tokens of the same word t is observed in the sample E. The 

hypergeometric distribution defines the probability P(FEID, E) of observing exactly FE 

tokens in the sample assuming that the sample was chosen at random. Since E is the set 
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of topmost documents, the hypergeometric distribution provides a measure of divergence 

from randomness of the sample with respect to a given word. 

In the hypergeometric distribution we do not replace the balls drawn from the urn 

as we do for the binomial model. In the process of drawing balls from the urn without 

replacement, the probability of observing a given word frequency from a population 

is computed by counting the number of possible exchangeable combinations of tokens 

having the given word frequency out of all possible combinations. The probability of the 

given word frequency is Formula 2.22 of Section 2.3. However, as shown in Section 2.3, 

the limiting form of the hypergeometric distribution for query expansion is still the 

binomial model of query expansion defined in Section 8.5. From Equation 2.23 on page 

56 we obtain: 

TotFrE FE TotFrE-FE (_ TotFrE) -TotFrE 
- loge P(FEID, E) _ -1092 FE 

pD qD `1 TotFrD /J 

r0 
(1- TotFrE 

(8.10) In f (tlEq) _- loge B(FEq, TotFrEq, pD) -TotFE '1g2 \ TotFrD ) J 

Since the second expression of the sum 8.10 does not depend on the term but on the size 

of the collection and the sample, the term-weights within the query are those from the 

binomial model up to a constant. 
From this fact we can say that for large populations and small samples we may regard 

all tokens of Eq as independent trials with fixed probability of success. This is the same 

remark made by Feller[37, page 59], who observed that for large populations there is no 

practical difference between sampling with or without replacement. 

8.6.1 Approximations of the Binomial 

We use some of the approximations of the Bernoulli process used in [5] and described in 

Section 2.2. 

The approximation of Bernoulli's process via the divergence function 

Formula ( 8.8) can be rewritten as Formula 2.15 of Section 2.2: 

2-TotFrEq 
D(PEq . PD) 

(8.11) B(FEq, TotFrEq, pD) _ 
(2aTotFrEq(1-pRq)) 

(1+0( 
of rEq 
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where D(PEq) PD) = PEq " 1092 p+ (1 - f) " loge (i_pD 
pEQ and PD are the frequen- 

cies of the term in the subset E. and in the collection D respectively, as introduced in 

Section 8.5. The information content is then obtained from Formula 8.3 and by For- 

mula 2.16: 

(8.12) InfEq(t) =TotFrEQD(pEq, pD) + 21og2(27rTotFrEq(1 - pE9)) [Bi] 

The approximation error is +O( of 
1,. 

E4 
). 

The Kullback-Leibler divergence approximation 

From Formula 8.12, if c= 111092 2ir then: 

InfEq(t) = TotFrEgD(PE9, PD) + 
1092 Tot2 rEQ +c+ D((TotFrEq)2) 

Since 1092 T°t2 rE°+c is independent of the term t, then its contribution in the sum is a 

constant. Therefore, the information content can be supposed to be proportional to: 

InfEq(t) ^' D(PEgiPD) 

1-PE 
Moreover the contribution (1-PEq) loge 1PD) in D(pEq, PD) is very small and negative, 
because we may in general assume that pEq > PD. Thus, as obtained in Section 2.2.3 we 
derive a further approximation of the Bernoulli process: 

(8.13) In f (tlEq) ' pEq " logs E" [KLJ 

which is the asymmetric Kullback-Leibler divergence. 

The X2 divergence weighting formula 

Then the divergence D of Formula ( 8.13), From Equation 2.21, is approximated as 

follows: 

(8.14) D(PEq, PD) ^' 
1o22e 

-x2(, F, 7') [x] 

The error of the approximation of D(pEq, pD) is O((f; - p; )3). This error must be added 

to the error of the approximation of the binomial with D. Hence the error of using X2 as 
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an approximation of the binomial is larger, than errors produced by the Formulae 8.12 

and 8.13, which is is confirmed by our experimental results. 

(8.15) Inf(tJE. ) oc 
1092e 

X2(. F, p) [X] 

8.7 Query expansion with the Bose-Einstein distribution 

The computation of the information content of a term in the term-weighting formula does 

not differ from the computation of the information content of a term in the expanded 

query. In fact, the mean is Al = jq in the case of the Bernoulli model D of IR., while in 

the Poisson model of the query expansion the mean is )2 = TotFrEq "o 
This analogy suggests us to use the other urn model for IR to obtain alternative 

methods of expansion for the query , that is the Bose-Einstein statistics. We have seen 

that one possible approximation of the Bose-Einstein statistics is given by the geometric 
distribution G. The probability 

p_ 
1 

1+A 

generating the geometric distribution has the same parameter A=. as the Poisson 

process. The urn model based on BE of Formula 2.31 can be thus used for measuring 

the information content of terms in the query expansion process giving us: 

In fEq (t) _ -1092 +ýý - FEq " loge aE 

[Bo1] 
(8.16) AEq - TotFrEq " FE 

" [Bo2] 

8.8 Normalized term-frequency in the expanded query 

We have used Formula 8.4 to obtain a virtual term-frequency within the query for each 

of the 10 terms with the highest information content, that were extracted from the first 

three retrieved documents. An alternative way of obtaining the term-frequency in the 

new query can be computed as follows. One possible upper bound of the information 

content described by Formula 8.12 can be obtained by observing that the divergence is 
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maximum when FEq = Ft. In such a case: 

In fEq (t) < FE, 1092 
TotFrD 
TotFrEQ 

TotFrD TotFrD 
M= argtET maxFE9 "1og2 TotFr = (argtET maxFEQ) 109 2 TotFr Eq EQ 

The expanded query becomes: 

(8.17) q= fy + 
I-nM-EA 

[BM] 

8.9 Experiments with query expansion 
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For the sake of space we could not report all possible experiments with all 56 models in- 

troduced so far by our theoretical framework. We have compared only 10 term-weighting 

models BEB2, BEL2, I(n)B2, I(n)L2, I(ne)B2, I(ne)B3, I(ne)L2, DL2 (=PL2), the 

language model based on the Dirichlet Priors and the BM25 formula with the 6 infor- 

mation content formulae for query expansion: 8.12,8.13,8.15, [Bol] and [Bo2] of 8.16 

and 8.17. We used two different collections and 3 sets of TREC queries, that is TREC 

8, TREC 9 and TREC 10 data. 

We used only the titles of the queries. The parameters of the query expansion are 

three: the parameter a for combining the information content with the term-frequency 

tfq in the query, the number of retrieved documents to be used for term extraction and 

finally the optimal number of extracted terms which are added to the original query. 

For sake of space we show in the results just the best value for a and a variant for the 

normalization which eradicates the parameter a. The number of documents processed 

for each query is also set to 3 and the number T of terms added to the query is 10. The 

same choice, r= 10 was taken at TREC-10 for the official runs of Okapi. 

These parameter values are optimal for short queries for both the collection of 2 GB 

of TREC 8 and the collection wTlOg of 10 GBytes used for TREC 9 and TREC 10 

queries. 

8.10 Results from query expansion 

For the language model with Dirichlet priors we tried different values for the parameter 

p. The best performing value with the expanded queries is µ= 300 for all TREC 
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collections. In the case of the original queries, µ= 300 was still the best performing 

value for TREC 8, whilst µ= 1200 was for the WT10g collection. 
Beside the Mean Average Precision we used the Mean Average Precision at 10 doc- 

uments retrieved (MAP010). MAP010 is defined as MAP except that the average 

precision is computed only for the first 10 retrieved documents in the ranking and is 

normalized by the minimum between 10 and the number of relevant documents existing 

in the collection for the query. In the case that two rankings have the same Pr©10, 

MAP810 provides further information on the quality of the ranking, since it considers 

the position of the relevant documents and also the recall for very specific queries, that 

is in the cases where the number of relevant documents is less than 10 (and in such cases 

MAP©10 can be greater then Pr©10, see the behaviour of the model I(n)L2 in TREC 

9). 

The results are summarised in Tables 8.2,8.3,8.4. 

The runs which gave the best Mean Average Precision (MAP) are: 

TREC 8. I(n)B2 with Bo2 expansion (0.2904) and BB2 with Bo2 expansion 
(0.2880). 

TREC 9. BEL2 with Bo2 expansion (0.2256) and I(ne)L2 with Bo2 expansion 

(0.2254). 

TREC 10. I(ne)B2 with BM expansion (0.2528) and LM(µ = 300) with Bo2 

expansion (0.2513). 

The best runs with Precision at 10 are: 

TREC 8. I(n)B2 with BM expansion (0.4880) and I(n)L2 with KL expansion 
(0.4860). 

TREC 9. BEL2 with Bi expansion (0.2820) and I(ne)L2 with Bi expansion 
(0.2800). 

TREC 10. BM25 with Bi expansion (0.4280) and I(ne)B2 with KL expansion 

(0.4160). 
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1. All expansion methods, except the divergence X2, work similarly and they do not 
differ from one another significantly. 

2. The parameter p of the language model for the Dirichlet priors must be tuned 

when the original query is expanded (greater value with shorter queries). 

Dirichlet priors can also be used to define an alternative term-frequency normaliza- 

tion function for all models of randomness (see Section 6.4). Unlike the language 

model, this usage of the Dirichlet priors, as used in the model I(ne)133 has shown 

the same best performing value for the parameter µ for both non-expanded and 

expanded query. 

3. Expansion methods based on Bose-Einstein statistics are good choices to improve 

the Mean Average Precision. Dirichlet priors of the language model show the 

biggest increase +17.5% of MAP in comparison to an average of +12% (+30% of 

increment in TREC 10 with Bo2 in comparison to an average of about 17%). Also 

the increment of MAP for BM25 is greater (+14.1%) than that observed for other 

models, especially if the Bose-Einstein statistics expansion is performed. 

4. Kullback-Leibler and the binomial expansions are most effective for achieving a 

good early precision. 

5. The parameter-free expansion method BM, based on the binomial performs sim- 

ilarly to both the parameter-based version of the binomial and to the Kullback- 

Leibler approximation. 

8.11 Conclusions 

We derived general models for query expansions using the binomial and the Bose-Einstein 

statistics. The binomial was approximated through the information theoretic divergence 

D which lead to several further approximations, the Kullback-Leibler asymmetric diver- 

gence and the X-square divergence. The Bose-Einstein statistics produced two different 

formulae to be used as distribution means. The query expansion method required three 

parameters: a) the number r of documents for learning the new query terms, b) the 
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I Expansion methods 

Baseline B KL X3 Bol Bo2 BM 

MAP 

TREC 8 0.2547 0.2786 0.2787 0.2671 0.2805 0.2801 0.2768 

TREC 9 0.1981 0.2126 0.2128 0.2061 0.2135 0.2133 0.2129 

TREC 10 0.2052 0.2403 0.2385 0.2296 0.2417 0.2416 0.2387 

Average 0.2193 0.2438 0.2433 0.2343 0.2452 0.2450 0.2428 

MAP 010 

TREC 8 0.3548 0.3819 0.3833 0.3694 0.3815 0.3843 0.3813 

TREC 9 0.2356 0.2600 0.2604 0.2476 0.2595 0.2545 0.2600 

TREC 10 0.2873 0.3282 0.3256 0.3127 0.3255 0.3272 0.3242 

Average 0.2925 0.3233 0.3231 0.3099 0.3222 0.3220 0.3218 

Prec at 10 

TREC 8 0.4553 0.4683 0.4688 0.4605 0.4642 0.4678 0.4663 

TREC 9 0.2555 0.2622 0.2637 0.2503 0.2615 0.2582 0.2642 

TREC 10 0.3628 0.3917 0.3925 0.3775 0.3867 0.3850 0.3880 

Average 0.3579 0.3741 0.3750 0.3628 0.3708 0.3703 0.3728 
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Table 8.2: Precision obtained by different expansion methods averaged over all models 

and TREC collections. 

Expansion methods 

Baseline B KL X2 Bol Bot BM 

MAP 

TREC 8 0.2547 9.4% 9.4% 4.9% 10.1% 10.0% 8.7% 

TREC 9 0.1981 7.3% 7.4% 4.1% 7.8% 7.7% 7.5% 

TREC 10 0.2052 17.1% 16.2% 11.9% 17.8% 17.8% 16.3% 

Average 0.2193 11.2% 10.9% 6.8% 11.8% 11.7% 10.7% 

MAP 010 

TREC 8 0.3548 7.6% 8.0% 4.1% 7.5% 8.3% 7.5% 

TREC 9 0.2356 10.4% 10.6% 5.1% 10.2% 8.0% 10.4% 

TREC 10 0.2873 14.2% 13.3% 8.8% 13.3% 13.9% 12.8% 

Average 0.2925 10.5% 10.4% 5.9% 10.1% 10.1% 10.0% 

Prec at 10 

TREC 8 0.4553 2.9% 3.0% 1.1% 1.9% 2.7% 2.4% 

TREC 9 0.2555 2.6% 3.2% -2.0% 2.3% 1.0% 3.4% 

TREC 10 0.3628 7.9% 8.2% 4.0% 6.6% 6.1% 6.9% 

Average 0.3579 4.5% 4.8% 1.4% 3.6% 3.5% 4.2% 

Table 8.3: Increment of precision obtained by different expansion methods averaged over 

all models and TREC collections. 
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11 MAP rec 10 
Models Unex. Exp. MAP o nex. Exp. Pr o 

Met. Met. ®10 
TREC 8 

BB2 0.262 Bo2 0.288 10.1% 0.458 0.482 5.2% 
BL2 0.259 Bol 0.282 9.2% 0.454 Bot 0.474 4.4% 

1(n)B2 0.263 Bo2 0.290 10.5% 0.470 13M 0.488 3.8% 
I(n)L2 0.261 Bol 0.288 10.4% 0.456 KL 0.486 6.6% 

I(ne)B2 0.262 Bo2 0.288 9.9% 0.460 KL 0.480 4.3% 
I(n. )B3 

0 251 Bot 0.269 7.2% 0.454 Bot 0.444 -2.2% (µ = 1600) . 
I(ng)L2 0.259 Bo2 0.282 8.9% 0.450 Bot 0.472 4.9% 

PL2 0.248 Bol 0.280 12.8% 0.458 BM 0.476 3.9% 
BM25 0.236 Bol 0.266 12.6% 0.450 Bol 0.466 3.6% 

LM 255 0 Bol 0.287 12.4% 0.444 KL 0.486 9.5% (µ = 300) . 
TRE C9 

BB2 0.203 Bol 0.210 3.5% 0.262 0.262 0.0% 
BL2 0.208 Bo2 0.226 8.3% 0.256 B 0.282 10.2% 

I(n)B2 0.198 KL 0.216 9.5% 0.264 BM 0.278 5.3% 
I(n)L2 0.207 Bol 0.223 8.0% 0.256 BM 0.276 7.8% 

I(n. )B2 0.198 Bol 0.220 10.7% 0.262 BM 0.276 5.3% 
I(ne)B3 0.196 Bot 0.220 12.1% 0.264 KL 0.270 2.3% 

(µ = 1600) 
I(n. )L2 0.209 Bot 0.225 8.1% 0.258 B 0.280 8.5% 

PL2 0.194 Bol 0.206 6.4% 0.258 BM 0.246 -4.7% 
BM25 0.179 Bol 0.188 5.3% 0.234 KL 0.248 6.0% 

LM 0.192 Bol 0.211 10.2% 0.234 Bol 0.262 12.0% (µ = 300) 
LM 0.199 BM 0.206 3.9% 0.254 BM 0.236 -7.1% (µ = 1200) 

TREC 10 
BB2 0.211 B 0.251 19.2% 0.372 0.412 10.8% 
BL2 0.202 B 0.234 15.9% 0.362 B 0.384 6.1% 

I(n)B2 0.211 Bol 0.249 18.1% 0.372 KL 0.390 4.8% 
I(n)L2 0.204 Bo2 0.251 22.9% 0.356 KL 0.402 12.9% 

I(ne)B2 0.211 KL 0.253 20.1% 0.372 KL 0.416 11.8% 
I(n. )B3 0.212 Bol 0.246 16.0% 0.360 B 0.378 5.0% (µ = 1600) 
I(n. )L2 0.202 Bo2 0.232 14.7% 0.364 KL 0.386 6.0% 

PL2 0.207 Bot 0.239 15.5% 0.374 B 0.380 1.6% 
BM25 0.187 Bo2 0.232 24.4% 0.348 B 0.428 23.0% 

LM 193 0 Bot 0.251 30.0% 0.352 B 0.408 15.9% 
(µ = 300) . 

LM 0.213 Bol 0.240 12.8% 0.362 Bol 0.382 5.5% 
(µ = 1200) 

11 TREC 8, TREC 9 and TItEC 10 
Average 11 0.219 0.246 12.0% 11 0.358 0.379 5.7%-- 

Table 8.4: Best expansion methods for each model and TREC collection. The best values 

for each TREC data are in bold. 
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number T of terms to add to the query, c) the parameter a combining the original query 

terms and the term-weights in the expanded query. For short queries (with an average 

length of 2.4), for two different collections and different set of queries, r= 10 and r=3 

were shown to be optimal. The best performing choice for the parameter a was 0.5. A 

query dependent value M was instead computed as a substitution for a and it provided 

similar performance. All models, with the exception of the X-square method, performed 

similarly, though a slight preference goes to the Bose-Einstein statistics for improving 

the MAP measure, and to the binomial based methods for improving early precision 

(MAP©10 and Pr©10). 



Chapter 9 

Conclusions 

This chapter reviews the contributions of this work and discusses a number of directions 

for future investigation. 

9.1 Summary of the results from the experiments 

We ran experiments with very long queries and with short queries with and without 

query expansion. The experiments were conceived to evaluate the following features of 

the theoretical framework: 

1. The robustness of models with respect to the term independence assumption. 

The additivity property of the term-weighting function may cause a deterioration 

of the effectiveness with the long queries. The experiments with long queries were 
dedicated to test the effects of additivity on performance. From the experiments 

we demonstrated that our framework generates many different models which are 

very robust and do not suffer from the term independence assumption. 

2. The consistency of the three components of the theoretical framework in the con- 

struction of the basic models of divergence from randomness. 

From the cross comparison of all models we drew conclusions about the effects 

which the single basic models and the normalization processes may have on per- 
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formance. The three components were shown to be each highly effective, and 

the results largely corroborated the theory underpinning each component of the 

framework. 

3. The competitiveness of the models of IR based on divergence from randomness 

with respect to the commonly used IR models, such as the BM25 formula and the 

language model. 

We showed that our models achieved often the best performance. In particular, 

our framework produced the best run at the TREC-10 evaluation conference. 

4. The effectiveness of the parameter free models of divergence from randomness. 

The parameter-free models showed the best performance with long query. The 

standard length used in the term-frequency normalization component was set to a 
larger value than the average length for short or moderately long queries. 

The parameter of the standard document length was theoretically motivated and 

the best match value we can choose lies within a stable, that is independent of the 

collection, and quite large interval. 

5. The effectiveness of the query expansion technique based on the basic models of 

divergence from randomness. 

The idea of divergence from randomness was applied to offer a solution to the 

problem of expanding a query. We showed that the performance of any IR model, 
language model and BM25 included, was largely improved using only a few docu- 

ments and a few newly added terms. 

9.2 Research Contributions and Future Research 

1. The theory of eliteness of Harter was revisited. This theory was related to auto- 

matic indexing and consisted in fitting the empirical data to a 2-Poisson distri- 

bution. In this dissertation eliteness was explained by the notion of informative 

content of a term within a document. The informative content measures the di- 

vergence of the term-frequency distribution from randomness. In order to relax 
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the term independence assumption, the informative content has been normalized 

with a probabilistic process, which is related to the aftereffect of sampling from 

the set of the elite documents of the query. In statistics the apparent aftereffect 

is illustrated by the theory of accidents. If accidents, like rare terms, do occur 

frequently, then there must be a cause explaining the proneness to have accidents. 

The apparent aftereffect of sampling is measured by a conditional probability. We 

have tested two main possible explanations of the aftereffect of sampling, that is 

Laplace's law of succession and a ratio of two Bernoulli processes. The apparent 

aftereffect measure is used to compute the risk involved in the decision of accepting 

a term as a descriptor of the observed document. The risk function is then used 

to compute the portion of informative content gained with the term. The gain 

provides the weighting score of our functions. 

2. We used the urn models to introduce the models of divergence from randomness. 
Urn models were not used as a metaphor to exemplify the inference process in 

Information Retrieval but they were used systematically to derive the models of 

divergence from randomness. We have first made clear what rules we would have 

applied for deriving our models. Weighting formulas were not displayed and moti- 

vated a posteriori on the basis of the evaluation results. We gave great attention 

to the basic definitions of space of events, possible outcomes, experiments, trials in 

the context of Information Retrieval. We did not rush to experiment novel ways 

to combine the observables of IR following arbitrary heuristic reasoning. 

We first investigated how to represent the terms and the documents, how to connect 

these entities with the notion of sampling in the context of IR. A new theory of 

IR was found. Our theory has a unifying view of the processes involved in IR. For 

example the query expansion was reduced to the same process described by the 

basic models of IR. We have demonstrated a tight connection of our models with 

a new paradigm of IR modelling, the language modelling. Indeed we have shown 

that any language model can be used, with a more steady parameter, as a second 

normalization component of our models. This is a further item of evidence that 

our framework is sound and robust. 
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3. The effectiveness of the models based on divergence from randomness is very high 

in comparison with both BM25 and language model. For short queries the per- 

formance of the models of divergence from randomness is definitely better than 

the BM25 model, which since 1994 has been used as a standard baseline for the 

comparison of the models. 

4. We even derived the BM25 formula from a parameter-free model of divergence 

from randomness. The empirical values of the three parameters of the BM25 were 

formally derived with an extreme and surprising precision. This is a further item 

of evidence of the generality and soundness of our theoretical framework. 

5. We introduced several limiting forms as workable models for IR. Possibly the miss- 

ing investigation on the use of some distributions for IR was also due to the difficulty 

to manage cumbersome formulae from the implementation point of view. 

6. We unified the query expansion problem and the query-document matching prob- 

lem within a single approach. We offered the same solution to both the problems. 

The divergence from randomness idea is so powerful, that, unlike other query 

expansion techniques, our method needs only a few documents to achieve best 

performance. 

7. With the query expansion component we provided four independent components. 

Our framework is very general and flexible. We can modify each component by 

choosing alternative techniques which capture the semantics of the component. 

Therefore our framework opens different and independent research directions for 

future investigation: new probability distributions for capturing the informative 

content, new techniques for obtaining the information gain and the term-frequency 

normalizations. 

8. We formulated the term-frequency normalization problem following a formal ap- 

proach. The term-frequency normalization (called the length normalization) has 

been viewed before only as an empirical problem of penalizing the term-weights in 

long documents. 

The length normalization has not been a central topic and it has not been studied 
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independently of the specific matching function. 

176 

One exception comes from the language modelling that we successfully deployed 

in our framework, using a more stable parameter value, which is independent of 

the collection. We believe that term-frequency normalization is a central issue not 

only in the context of our framework but also in other probabilistic approaches to 

IR, and more research will be done in this direction. 

9. The notion of gain was introduced as an attenuation of the term independence 

assumption. We devised two different models of gain. We still would like to test 

other models of aftereffect, such as those used in the theory of accidents [37,129, 

67,65], and other potential models for term-frequency normalization such as one 

using bivariate discrete distribution [67]. 

10. We have also revisited the literature of Information Retrieval under the light of our 

probabilistic approach. For example we showed how to use De Finetti's theorem 

to connect with a single thread the standard probabilistic models, our divergence- 

based models and language models. De Finetti's theorem suggests that Dirichlet's 

priors based on the multinomial distribution is effective for IR, but other distribu- 

tions are equally possible. 

In conclusion, our theory offers a unifying theoretical framework able to explain the 

inductive problem of IR and to construct many different and highly effective models of 

Information Retrieval. The future research is enhancing and finding out novel instances 

of the components of the theoretical framework. 



Appendix A 

Evaluation 

A. 1 Evaluation measures 

A theory on evaluation of IR systems is mainly developed in van Rijsbergen's book [119]. 

The effectiveness of an IR system is evaluated by the standard measures of recall and 

precision as follows: 

Recall = 
Rel fl Ret 

Rel 
Rel fl Ret ý 

Precision = IRetI 

where Ret = {did is retrieved} and Rel = {dId is relevant}, so that I Rel n Ret I is 

the number of relevant and retrieved documents, ( Ret I is the number of retrieved 
documents, and I Rel ( is the number of relevant documents. 

The definition of recall and precision is based on the counting measure I"ý, because 

of the binary relationship of relevance. We may generalize recall and precision with an 

arbitrary measure m used at the place of the counting function I- [4]. We call them 

multi-valued recall (M-recall) and multi-valued precision (M-precision), which are based 

on non-binary values of relevance. 

Let m be a discrete measure on the set of documents D on n>2 positive real values. 
Let w be the score function on the set of documents. Let <m be the decreasing 
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ordering induced by relevance m on the set of documents, 

d1 <m d1 a m(di) > m(do(, )) 

and <, be the decreasing ordering induced by the score w on the set of documents, 

di dj s w(di) > w(d,. (j)) 

We want to compare the ordering <, against the ordering 
We define the M-recall measure as 

M -recall = 
m(Ret) 

= 
m(Ret) 

= 
m(Ret n Rel) 

m(D) m(Rel) m(Rel) 

where Ret = {djd is retrieved } and Rel = {djm(d) > 0}. It is easy to note that 

m(Ret) = m(Ret n Rel) and m(D) = m(Rel). 
Let 0<x<1. We now define two positive integers kx ed mx such that: 

1. Let dl dir. k. ý is the lowest k satisfying the condition 
k 

m(di) >x. m(D) 

2. Let dl <m .... <m dN. mx is the lowest m so that 

m 
M(di) >x" m(D) 

m, (kx) is the minimum number of documents according to the decreasing ordering of 

<w (<m) which is sufficient to retrieve a set of documents whose measure of relevance is 

at least x. m(D). Note that kx < mx and kx = mý for all x if and only if the two rankings 

are equivalent (that is are equal up to permutations of documents which preserves their 

values by m). 

Let us define the M-precision at x of M-recall: 

kx 
rx m x 

, xample 5 Consider the two rankings: 
Rank 

1123456789 
10 11 12 13 14 15 16 17 18 19 20 

<m 1111111111z111000000 
222 

<w 011101001300z1133 
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At the recall values 0.1,0.3,0.5 and 1 we have m(D) = 10 and x" m(D) = 1,3,5,10 

respectively. So, mo. 1 = 2, mo. 3 = 4, m0.5 =9 and ml = 20 while ko. i = 1, k0.3 = 3, 

ko, 5 =5 and kl = 14. We get the precision values po, l = 0.5 , po. 3 = 0.75, po. 5 = 0.55 e 

pi = 0.7 

On the other hand, if the relevance values were binary as 

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

<m 

<W 

1 

0 

1 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

0 

1 

0 

1 

1 

1 

1 

1 

0 

1 

1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

we would have m(D) = 14 and x" m(D) = 1.4,5.2,7,14 respectively. Then, mo, l =3 

, m0,3 = 10, mo, 5 = 12 and ml = 20, while ko. 1 = 2, k0.3 = 6, ko. 5 =7e kl = 14, with 

precision po. i = 0.66, p0_3 = 0.6, po. = 0.58 and pl = 0.7 respectively. 

The definition of recall and precision in the binary case derives easily. Observe that 

k. 

kxk. _ m(do(i)) >x" m(D) 
i=1 

where kx is the mean value. Similarly, 

n iii => m(do(i)) ?x" m(D) 
i=1 

where mi is the mean. In the binary case it is always kx = 1, mx is the number of 

retrieved documents and kx is the number of retrieved and relevant documents, that is 

the exact precision at recall x is 

kx 
__ 

IRelnRetI 
px=mx =mmx IRetl 

Similarly, if i is the i-th document in the ranking, then the exact precision at the i-th 

retrieved document is: 

PrOi = 
fRel n Retf 

_f 
Rel fl Retl 

f RetI i 
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Once precision at recall r or at the first n retrieved documents is defined we can plot the 

precision curve at different values of the number of retrieved documents. If we used exact 

precision at given recall values we would obtain a certain number of precision values for 

measuring the effectiveness of the system, for example precision at 0.1,0.2.... 1.0. In 

order to have 11 points of precision values and define the precision at the point 0.0, 

we may use the interpolated precision. For each level of recall r, one may consider the 

maximum exact precision at any retrieved document with any recall value after r: 

Pr,. = argi max{Pr©il with recall at the i- th retrieved document > r} 

The interpolated precision is obviously nondecreasing and is defined in the recall point 

0.0, i. e. the maximum precision Pr©i for every i. 

All previous precision measures are functions of the recall or the retrieved documents. 

In order to rank different systems, it is important to have a unique value as a useful 
indicator of the system performance. 

A single-value measure is given by the non-interpolated average precision which was 

proposed by Chris Buckley and was first used in TREC-2 [49]). The non-interpolated av- 

erage measure of precision is defined as follows: for each i-th retrieved relevant document 

the exact precision pi is first computed 
2 

Pi -n 

where n is the document position in the ranking, then the average precision is obtained 

MAP= 1Ep; 

c 

where R is the number of relevant documents in the collection. The evaluation with the 

TREC collections considers the first 1000 documents of the ranking, therefore the Mean 

Average Precision (MAP) is the mean average precision non-interpolated with the first 

1000 retrieved documents. 

We may generalize the definition of MAP considering the first n retrieved documents. 

The normalization of the sum of the precision values pi is done with respect to the 

minimum between the number R of relevant documents and n: 

MAP©n =1 Epi 
min{n, R} 

, 



Appendix A. Evaluation 181 

The exact precision at n retrieved documents is denoted by Pr©n. We also consider 

the R-precision, which is the exact precision at R retrieved documents, where R is the 

number of relevant documents of the query. R-precision is denoted by Pr©R. 

Finally, for a set of queries, the performace value is obtained by the mean over all 

queries of the precision measure on single queries. 



Appendix B 

Functions and probability 

distributions 

B. 1 Functions and distributions 

The Gamma function is defined by 

(B. 1) r(x) = 
j°°ta_1e_tdt ( where x> 0) 

The following relations hold 

(B. 2) r(a + 1) = ar(a) ( with a>0) 

(B. 3) r(n) = (n - 1)! ( with n integer ) 

(B. 4) r(x) 27re-'xx-0'5 ([37, Problem 11.12.22] ) 

A random variable X has a Gamma distribution with parameters a and ß (a >0 

and ß> 0) if X has the probability density function defined by 

(B. 5) r a) 
xa-le-Qx ( where x> 0) 

The Beta distribution of a random variable Y with parameters a and ß is defined by the 

probability density function: 

(B. 6) fy(y, a, ß) = r(a)r 
ß)yß`-1(1- 

y)ß-1 (0 <y< 1) 
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Therefore 

(B. 7) 
101 

y«-1(1 - y)ß-1dy = 
T(a)r(ß) 

Mandelbrot's probability density function of rank-word frequency is: 

(B. 8) p(r) = (B -1)V'-1(r +V )'2 

where V is the size of the vocabulary. The following distribution is the Zipf distribution 

and was claimed to be experimentally an excellent approximation of the Equation 13.8 

by Mandelbrot: 

00 
(B. 9) p(r) = P. r'B where P'1 = E(r + V)''3 

r=1 

The Yule distribution is: 

(B. 10) p(r) = C'- r(r)+p+iý 
r, p>0 

The Multinomial distribution function of a random variable Y is defined by the 

probability density function: 

n! k 
(B. 11) 

. 
fY(y) = 

nl! ... nkl 
ynl... yk"° (E=1 y, = 1) (2 nt = n) 

{al 
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