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EXECUTIVE SUMMARY

In 2004, astronomers first sighted the asteroid 2004 MN4, later to be named Apophis.
Based on tracking data, in 2029 the asteroid will have a close approach with the
Earth. Depending on the outcome of that fly-by, due to the interaction with the
Earth’s gravity field, it has the potential to set up two possible impact dates in 2036
and 2037. Apophis is only one of 6330 Near Earth Objects (NEO) currently being
monitored, with 1067 listed as potentially hazardous. While the probability of an
impact is currently very low, it is not impossible. It is estimated that on average, a
100 m diameter asteroid impacts every 100 years, an event equivalent to 2000 atomic
bombs. Due the potential danger posed by an impact, many scientists in the last few
decades have proposed several deflection methods.

Based on a quantitative comparison of the various options for NEO deflection,
one of the more interesting and promising methods employs solar sublimation to
actively deviate the orbit of the asteroid. The original concept envisioned a single large
reflector; this idea was expanded to a formation of spacecraft orbiting in the vicinity of
the NEO, each equipped with a smaller concentrator assembly capable of focusing the
solar power at a distance around 1 km and greater. This relieved the strict constraint
on the proximity to the asteroid surface, mitigating the effects of the inhomogeneous
gravity field, as well as temperature concerns by the high magnification ratio.

This purpose of this thesis is to ascertain whether solar sublimation is a viable
method for the deflection of a Near Earth Asteroid. From a research view point, the
methods and analysis are applicable to proximal motion around a celestial body, in
particular one with a non-Keplerian or irregular orbit as in the case here with the
orbit being constantly altered by the deflection action and subject to perturbations,
such as solar radiation pressure.

Two concepts, and the corresponding dynamics and control, are presented based
on previous trade-off and optimisation studies. The first uses a paraboloidic reflector
to concentrate the solar radiation onto a solar-pumped laser, which is then directed
onto a specific spot on the NEO by a small directional mirror. The spacecraft orbits
are designed to fly in formation with the asteroid around the Sun, and are based on
the orbital element differences. The formation orbits were optimised for two objective
functions, one minimising the range while restricting the orbit to outside a limit sphere
(in order to avoid the non-linearities of the close-proximity gravitation field of the
asteroid), and the other maximising the distance in the x-z plane in order to avoid
the debris plume. A feedback control law is presented for the orbital maintenance
required to counteract the solar radiation pressure (due primarily to the large surface
area of the primary reflector), and the third-body effects due to the gravitational field
of the asteroid.

The second option takes advantage of the balance between the gravity attraction
of the NEO and solar pressure acting on the collector. Instead of using a laser and
directional mirror, the mirror focuses the light directly onto the asteroid surface,
controlling the beam by adjusting the focal point of the primary reflector. By altering
the shape of the mirror surface, both the focal point and the vector of the solar
radiation pressure can be manipulated. This has the advantage of being frequency
independent, compared to the laser which is restricted to a given wavelength but is in
closer proximity to the asteroid. A minimal amount of control, on the order of 107° N,

iii



is required to keep the spacecraft at an artificial equilibrium point, which oscillates
with true anomaly.

A key requirement for the successful implementation of the multi-mirror approach
is that each spacecraft must know its position relative to both the NEO and the
other spacecraft in the formation, and be able to find and maintain the direction of
the beam onto a precise spot on the surface of the asteroid. An interesting navigation
strategy is proposed based on the attitude measurements, the inertial position of each
spacecraft, the intersatellite position and velocity measurements, and a 2D image from
a rotating onboard camera. Once the formation is deployed in the vicinity of the NEO,
one spacecraft is temporarily designated as leader and searches the predicted location
of the NEO until it is within the field of view of the camera. Using simple geometry,
the centroid of the image is determined, and aligned with the boresight of the camera.
The pointing vector from the lead spacecraft is then relayed to the whole formation.
Once all the spacecraft have acquired the centre of the NEO, the spacecraft-asteroid
range can be triangulated. The navigational data is used for both the orbital control
of the spacecraft and for the beam pointing.

The results of simulations of a hypothetical deflection mission of the NEO Apophis
are presented for the dynamics, control, attitude and navigation, accounting for solar
radiation pressure, the gravity field of the asteroid, and the deviation of the NEO
orbit. The results show that both concepts provide the required deflection with a
feasible mass at launch, solving most of the issues related to the solar sublimation
method.

One of the critical aspects of this deflection concept is properly placing the concen-
trators in the proximity of the asteroid in order to avoid the plume impingement and
the occultation from the asteroid itself. Issues regarding the contamination of the mir-
rors are addressed and compared with the simulated deflections predicted considering
no contamination. Lastly, initial system mass budgets are presented.
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INTRODUCTION

Neither the appellation of
planets, nor that of comets, can
with any propriety of language be
given to these two stars ... [They]
resemble small stars so much as
hardly to be distinguished from
them. From this, their asteroidal
appearance, if I take my name,
and call them Asteroids;
reserving for myself however the
liberty of changing that name, if
another, more expressive of their
nature, should occur.

Sir William Herschel (1802) on
the discovery of Ceres and Pallas

1.1 PURPOSE AND REPORT STRUCTURE

The aim of this doctoral dissertation is to answer the question: is solar sublimation a
viable option for the deflection of a Near Earth Asteroid? From a research view point,
the methods and analysis are applicable to proximal motion around a celestial body,
in particular one with a non-Keplerian or irregular orbit as in the case here with the
orbit being constantly altered by the deflection action and subject to perturbations,
such as solar radiation pressure.

The starting point of this research is the basic conceptual idea of Lunan (1992) and
Melosh and Nemchinov (1993) to concentrate sunlight in order to heat up the surface
of the asteroid causing the rocky material to vapourise thereby altering the orbit,
with a number of limitations and challenges discussed in a later report by Kahle et al.
(2006). The rationale behind wanting to investigate this particular asteroid deflection
option further, is based on the outcome of a quantitative analysis by Colombo et al.
(2006) and Sanchez Cuartielles et al. (2007) from the Space Advanced Research Team
at the University of Glasgow which compared a wide variety of deflection methods.
The results showed that on the basis of current readiness level of the required technol-
ogy and the effectiveness of the method at deviating the asteroid, solar sublimation
was the best method for long term operations.

Chapter 1 introduces the reader to the field of Near Earth Objects and more specif-
ically, Near Earth Asteroids and the potential hazard they pose to our civilisation.
Many ideas and concepts have been proposed in order to deflect asteroids, spawned
in part by the awareness and interest of popular science and the media. The ideas
range from speculation to a few preliminary mathematical analyses and simulations,
but overall not many. The concept and history behind solar sublimation, and the
comparison between deflection methods are discussed in more detail.



1.2 NEAR EARTH OBJECTS

Chapter 2 presents the design aspects related to the system as a whole. The first
step was to come up with a set of conceptual systems based on the single mirror
baseline of Melosh, and expanding it to cover many mirrors distributed over multiple
spacecraft. These conceptual designs are of the mechanisms for the collection, magni-
fication and re-direction of the solar radiation; specifically, fixed or adaptive mirror(s),
and optical systems such as lens or lasers are presented. The properties of the Sun
play an important part in the analysis of the optical systems, in particular the ef-
fect of non-parallel rays on collimating systems is analysed. Section 2.2 also details
three different options — direct imaging, collimating lens and laser — for the focusing
and beaming system. Section 2.3 presents an estimation of the mass budget for the
spacecraft based on technologies at different readiness levels.

Chapter 3 presents a detailed analysis of two different options for the orbital dy-
namics and control of a spacecraft formation. A background and review of the current
state of the art is first shown for the field of formation flying. In particular, the mathe-
matical modelling of proximal motion is discussed. Based on these models, one design
is developed based on a chief-deputy formation structure using the orbital element
differences method developed by Schaub and Junkins (2003). A control law for the
orbital maintenance is developed that compensates for the solar radiation pressure,
third body gravitational effects from the asteroid and the continuous deviation of the
asteroid orbit. A second design, developed in parallel, aims at placing spacecraft at
‘artificial equilibrium points’ where the asteroid gravity field and the solar radiation
pressure are instantaneously in balance. Simulations of the required orbital control,
and the effect of the gravitational model are shown.

Chapter 4 presents a novel proposal for the orbit determination. A key requirement
of the orbital dynamics and control is that each spacecraft must have a highly accurate
knowledge of the relative position of the asteroid in order to correctly align the spot
beams. In addition it is of interest to monitor the exact inertial position of the asteroid
in order to track the deviation and predict the new altered orbit. A navigation strategy,
and simulations results are presented.

Chapter 5 presents the simulation results for the deflection distance that can be
achieved, as a function of the warning time, thrust duration, number of spacecraft,
and mirror surface area. An analysis of the effect of contamination from the debris
is shown in Section 5.2. Section 5.3 examines the enhanced Yarkovsky effect that is
produced by raising the temperature of a section on the asteroid surface.

The concluding remarks and discussion on future work is presented in Chapter 6.

There are four Appendices in total. Appendix A presents the a detailed mathemati-
cal derivation of the nonlinear (A.1) and linearised (A.2) forms of the proximal motion
equations. Appendix B gives further background information into the optimiser used
in this research study. Appendix C shows the work done on implementing and adapt-
ing a Lyapunov-based control law developed by Petropoulos (2003). While ultimately
it was not used in the simulations due to a number of drawbacks, the work done,
nevertheless, is still of interest to anyone interested in using this approach. Finally,
Appendix D contains the complete set of simulation results for the control algorithm
presented in Section 3.6.

1.2 NEAR EARTH OBJECTS

In 2006, the International Astronautical Union (IAU) passed Resolution B5 which
formally defined three terms to describe celestial bodies within our solar system.
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A planet is a celestial body that (a) is in orbit around the Sun, (b) has
sufficient mass for its self-gravity to overcome rigid body forces so that
it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has
cleared the neighbourhood around its orbit.

A dwarf planet is a celestial body that (a) is in orbit around the Sun,
(b) has sufficient mass for its self-gravity to overcome rigid body forces so
that it assumes a hydrostatic equilibrium (nearly round) shape, (c) has not
cleared the neighbourhood around its orbit, and (d) is not a spacecraft.

All other objects, except satellites, orbiting the Sun shall be referred to col-
lectively as Small Solar System Bodies. These currently include most of the
solar system asteroids, most Trans-Neptunian Objects (TNOs), comets,
and other small bodies.

These ‘Small Solar System Bodies’ (SSSB) are more idomatically known as aster-
oids, which are any solid bodies in space smaller than a planet, comets, defined as
asteroids with visible tails, and meteroids, which are anything with a diameter smaller
than 10 m [Beech and Steel, 1995].

The vast majority of SSSB can be found grouped together into distinct regions
within the solar system. The two largest asteroid groupings are: the main asteroid
belt between Mars and Jupiter and the Kuiper belt, on the outskirts from Neptune.
Figure 1* shows the general distribution of asteroids in the inner solar system, while
Fig. 2t shows those in the outer solar system.

1.2.1  Classification of Asteroids

Asteroids, after the Greek word asteroeides meaning “star-like”, are classified in a
number of different ways depending on the field. The two main areas of interest for
this study are: the composition of the asteroid and the orbital characteristics.

The physical characteristics of the asteroid itself are generally determined by exam-
ining the spectral shape, color, and albedo (or percentage of solar radiation reflected
by the surface of the asteroid). In 1975, three scientists from the USA analysed 110
asteroids [Chapman et al., 1975], and found that ~90% fell relatively evenly into two
main groups: named C for dark carbonaceous objects, and S for stony or silicaceous
objects. This classification system has been since expanded, resulting in the most
common system in use today, the Tholen taxonomy [Tholen, 1989]. Table 1 lists the
main and sub-classes, albedo range and estimated composition material of the asteroid
bodies [Bus et al., 2002; Bus and Binzel, 2002].

Near Earth Objects (NEO), or more specifically Asteroids (NEA) are defined as any
asteroid (or minor celestial body) with a perihelion less than 1.3 AU and an apohelion
larger than 0.983 AU, where 1 AU is the average distance between the Earth and the
Sun (around 150 million km). NEOs can also include comets and meteroids, however
for this study only asteroids were investigated.

The orbital properties of NEAs can be grouped into four categories based on the
semi-major axis a, radius of apoapsis r, and/or radius of periapsis r,, described as
follows [NASA Near Earth Object program, 2009b]:

*Source image at http://en.wikipedia.org/wiki/File:InnerSolarSystem-en.png, last accessed
on February 23, 2010.

TSource image at http://en.wikipedia.org/wiki/File:Outersolarsystem_objectpositions_labels_comp.png,
last accessed on February 23, 2010.
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® Jupiter

Figure 1: The inner Solar System from the Sun to Jupiter, including the Main Asteroid belt
(black), and the Jovian Trojans, Greeks (pink) and Hildas (blue) clusters. This
image was created using JPL DE-405 ephemeris database for the planets, and the
Minor Planet Center database for the asteroids, published 2006 Jul 06.
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Figure 2: Known objects in the Kuiper belt (and outer Solar System) derived from data from
the Minor Planet Center. The Kuiper belt objects (KBO) are in pink, the green
show the Trojans and Greeks around Jupiter (also seen in Fig. 1) and in blue are
the Trojans around Neptune.
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Table 1: Tholen taxonomy of asteroid types

Type Subtype Albedo Composition

C B, E,F, G 0.03-0.10 Anhydrous silicates, hydrated phyllosilicate
minerals, organic polymers, magnetite and sul-

fides
S K, L 0.10-0.22  Iron and magnesium silicates
M, E, P 0.3+ Organic rich silicates, carbon and anhydrous
silicates

ATIRA Asteroids whose orbits are contained entirely with the orbit of the Earth
(named after asteroid 163693 Atira), where r, < 0.983 AU. There are currently
10 discovered Atira class asteroids.

ATENS Earth-crossing asteroids with semi-major axes smaller than Earth (named
after asteroid 2062 Aten), where a < 1 AU, r, > 0.983 AU. There are currently
505 discovered Atens class asteroids.

APOLLOS Earth-crossing asteroids with semi-major axes larger than Earth (named
after asteroid 1862 Apollo), where a > 1 AU, r, < 1.0167 AU. This the largest
class, with 3368 asteroids.

AMORS Earth-approaching asteroids with orbits exterior to Earth’s but interior to
Mars (named after asteroid 1221 Amor), where ¢ > 1 AU, 1.0167 AU <, < 1.3
AU. This the second largest class with 2363 discovered objects.
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Figure 3: Orbits of four asteroids representing each of the four classes of NEAs.

Figure 3 shows the orbits of four asteroids — 163693 Atira, 2062 Aten, 1862 Apollo,
1221 Amor — representing the four classes of NEAs. A subclass of these NEAs are
called Potentially Hazardous Asteroids, defined by the NASA Near Earth Object
program (2009b) as:

Potentially Hazardous Asteroids (PHAs) are currently defined based on
parameters that measure the asteroid’s potential to make threatening close
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approaches to the Earth. Specifically, all asteroids with an Earth Minimum
Orbit Intersection Distance (MOID) of 0.05 AU or less and an absolute
magnitude H of 22.0 or less are considered PHAs. In other words, asteroids
that can’t get any closer to the Earth (i.e. MOID) than 0.05 AU (roughly
7,480,000 km) or are smaller than about 150 m in diameter (i.e. H = 22.0
with assumed albedo of 13%) are not considered PHAs.

As of August 2009, there are 1067 known PHAs out of total of 6246 NEAs, and 6330
NEOs. Of the PHAs detected, 145 are estimated to be over 1 km in diameter?. Figure 4
shows the total number of NEO, NEA and PHAs that were discovered each year.
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Figure 4: Total number of discovered Near Earth Objects by date [NASA Near Earth Object
program, 2009b).

1.2.2  Deflection of Near Earth Objects

Although much less frequent than most natural hazards, cosmic impacts
represent the most extreme known threat in terms of damage and casu-
alties. As we know from the end Cretaceous impact of 65 Ma, the global
effects of such catastrophes can include mass extinction of species.

— David Morrison (2006)

Small celestial bodies like Near Earth Objects (NEO) have become a common sub-
ject of study because of their importance in uncovering the mysteries of the formation,
evolution and composition of the solar system. Among all the asteroids, NEOs have
stepped into prominence because they are among the easiest celestial bodies to see,
and even reach from Earth, in some cases with less demanding trajectories than a
simple Earth-Moon transfer.

Over the last decade, the potential of an asteroid impacting Earth has stimulated
intense debate among the scientific community about the monitoring and orbit pre-
diction of the thousands of objects orbiting near Earth, and as the next step, possible
deviation methods.

In 1992, a NASA report estimated that there was a total population of about 1100
Near Earth Objects larger than 1 km in diameter, leading to an impact frequency

fData on all minor bodies within the solar system are published in monthly circulars by The Minor
Planet Center (http://www.cfa.harvard.edu/iau/mpc.html) at the Smithsonian Astrophysical
Observatory under auspice of the International Astronomical Union (IAU). Link valid as of Febru-
ary 23, 2010.
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of about one in half a million years. For NEOs between 50 and 100 m in diameter
(the lower limit of an object’s atmospheric penetration) it was estimated there were
half a million NEOs with an impact frequency of about one every thousand years
[Near-Earth Object Science Definition Team, 2003].

The effect of an asteroid impact is often compared against either natural phenomena
such as earthquakes or volcanos, or large nuclear explosions. Using this metric, objects
50 to 150 m in diameter are thought to result primarily in airbursts while those
around 300 m in diameter can destroy a small European country [Morrison, 2006].
“The nominal yearly average [...] associated with PHO impact is estimated by [NASA]
to be approximately 300 casualties worldwide, plus the attendant property damage
and destruction. About 17% of the risk is attributed to regional damage from smaller
land impacts, 53% to water impacts and the ensuing tsunamis, and 30% to the risk
of global climatic disruption caused by large impacts.” [Near-Earth Object Science
Definition Team, 2003]

The two most notorious impacts in recorded history are the K-T event, mentioned
above, which is thought to have killed off the dinosaurs and launched the Earth into
an ice age, and the Tunguska event, an airburst in June 1908 over Siberia that resulted
in a 2000 km? crater. More recently though, a number of objects have penetrated the
atmosphere of Earth. On 15 September 2007, a stony meteorite actually impacted
the ground near the village of Carancas in the Peruvian Altiplano, resulting in a 15
m diameter crater. The asteroid, under 2 m in diameter by the time it hit the Earth
with a mass of 7x10°-12x10° kg, should have burned up quickly in the atmosphere
with no effect according to the prediction models. In October 2008, a small meteoroid
(2008 TC3) was discovered by the Catalina Sky Survey in Arizona only one day before
it hit the atmosphere over northern Sudan, resulting in a “brilliant fireball” equivalent
to a kiloton of TNT.

In addition to ground based monitoring programmes, a sizable number of space
missions have been planned and/or launched over the past two decades.

GALILEO (1989-2003) visited two NEOs, 951 Gaspra and 243 Ida, en route to Jupiter
and its moons,

NEAR SHOEMAKER (1996-2001), or Near Earth Asteroid Rendezvous was the first
NASA mission to a NEA (433 Eros),

DEEP SPACE 1 (1998-2001) which performed fly-bys of the comets 9969 Braille and
19P /Borrelly,

STARDUST (1999-2006), a successful sample-return mission to the comet Wild 2,

HAYABUSA (2003-2010), a Japanese sample-return mission to the asteroid 25143
Itokawa which in 2005 reached and observed the NEA however failed to land,

ROSETTA (2004-), an ongoing ESA orbiter-lander mission to perform a fly-by of
two asteroids (2867 Steins, 21 Lutetia) on route to the comet 67P/Churyumov-
Gerasimenko,

DEEP IMPACT (2005-) mission to the comet 9P/Tempel, which both orbited the
comet and sent a secondary probe to collide with the comet nucleus, and is now
on an extended mission to study the comet Hartley-2,

DAWN (2007-2015), a NASA spacecraft which will orbit around first the asteroid
Vesta then around Ceres both located in the main Asteroid belt,



1.2 NEAR EARTH OBJECTS

DON QUIJOTE (estimated launch 2011), an ambitious ESA mission which will orbit
a target asteroid (still TBD, but most likely either 2002 AT4 or 1989 ML) and
test the capability to deflect the orbit through a high velocity impactor.

1.2.3  Comparison of NEO Deflection Methods

In order to predict the effects of a deflection strategy, some studies have addressed
the asteroid deviation problem with either an analytical approach [Colombo et al.,
2009; Vasile and Colombo, 2008; Izzo, 2005; Scheeres and Schweickart, 2004; Conway,
2001] or a numerical procedure based on a n-body model [Carusi et al., 2002].

A few studies included a partial comparative assessment of the numerous proposed
mitigation strategies [Hall and Ross, 1997]. Some of these emphasize a classification
system based on NEO/spacecraft coupling, other systems are based on technology
readiness and a third category on time to impact and/or intervention on the asteroid.

The different deflection techniques can be grouped into several families depending
on the type of asteroid-spacecraft interaction:

¢ Techniques producing an impulsive change in the linear momentum of the as-
teroid, such as kinetic impactors and nuclear interceptors [Tedeschi et al., 1995;
McInnes, 2003; Smith et al., 2004],

¢ Techniques actively producing a controlled continuous low-thrust, such as at-
tached propulsion devices (e.g., electric/chemical engines, solar sails) [Scheeres
and Schweickart, 2004] or gravitational tugs [Lu and Love, 2005],

* Techniques producing a passive low-thrust by an induced change of the thermo-
optical properties of the asteroid surface, such as enhanced Yarkovsky effect or
enhanced emissivity through white paint [Spitale, 2002],

¢ Techniques producing a controlled thrust by the ablation of the asteroid surface,
e.g., through laser beams [Ivashkin, 2004; Park and Mazanek, 2005; Yoo et al.,
2009] or solar mirrors [Melosh et al., 1994; Maddock et al., 2007], or

* Techniques producing a multi-impulsive change of the asteroid linear momentum
by the ejection of surface material, such as the mass driver [Olds et al., 2004].

This research dissertation was part of a triad of studies undertaken at the University
of Glasgow on the subject of the deflection of NEAs. The other two dissertations are
on deflection models and mission analysis for asteroid hazard mitigation by Sanchez
Cuartielles (2009), and optimal trajectory design for interception and deflection of
Near Earth Objects by Colombo (2009).

As part of their research, Sanchez and Colombo performed a comparison of a num-
ber of deflection methods proposed in the literature: Nuclear Interceptor, Kinetic
Impactor, Low Thrust, Mass Driver, Solar Collector and Gravity Tug. The compari-
son was based on a multi-criteria approach: 1) miss distance at the Earth, 2) warning
time (i.e. time between launch and expected impact with the Earth) and 3) mass
into space, were simultaneously used to assess the optimality of a particular method.
These three criteria express quantitatively how easy deflecting an asteroid with a given
method is and whether the given deviation strategy can be implemented with present
launch capabilities. The warning time in particular, in addition to giving quantitative
information on the time to react (how far in advance one would need to know that
an impact is going to occur), gives an indication on the time available to react if the
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deflection fails. The analysis simulated potential missions for a wide range of launch
opportunities for each method, over a period of 20 years, in order to characterise the
optimality of a particular method. Figure 5 shows the Pareto fronts for four popu-

lar deflection methods: nuclear interceptor, kinetic impactor, gravity tug and solar
collector.
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Figure 5: Sets of Pareto optimal solutions for various deflection methods evaluating: warning
time t_warn, initial mass in orbit of the spacecraft ms. and achieved deflection
distance Arge, (figures from Sanchez Cuartielles et al. (2009)). Each dot represents
one complete deflection mission.

In order to account for real mission opportunities and the three criteria at the same
time, the concept of set dominance was introduced [Sanchez Cuartielles et al., 2009]:
given a pair of deflection methods A and B, method A dominates method B if the
number of mission opportunities of A that are dominating the mission opportunities
of B is higher than the number of mission opportunity of B dominating the mission
opportunities of A, where one mission (composed of launch, transfer, interception
and deviation segments) is dominant over another mission if all the three criteria
are better. In other words, one method is considered better than another if there



1.2 NEAR EARTH OBJECTS

were more mission opportunities with a better value for all the three criteria. In
mathematical terms, this is expressed as,

Ma< My — — iA:dv(MA) <L %d-(MB) (1.1)
Na A 1 N j=1 ’
given
di<MA>={ R (1:2)
0 if L(Ma) =0
I,(My) = ’ (| £4 < ff}‘ (1.3)

where M is the deflection method, IV is the total number of the solutions in the Pareto
set and 04 < Op denotes dominance of method B over method A. If the value of the
dominance index I; is 0, it means that there are no solutions in the Pareto optimal
set of strategy B with all three criteria better than the three criteria associated to
element 1.

In addition to the three evaluation criteria, a Technology Readiness Level® (TRL)
factor was applied to all missions, delaying the warning time in order to account for
the required time to bring the current technology to TRL 9.

This comparison approach required the development of a mathematical model for
each of the deflection methods. Note that some methods were excluded from the
comparison because they require an excessively long warning time (e.g., methods
based on the Yarkovsky effect); other methods instead were considered either equal
to or less efficient counterpart of the methods already included in the comparison
(e.g., surface ablation with a laser powered with a nuclear reactor instead of solar
sublimation).

Tables 2 — 3 are excerpts from Sanchez Cuartielles et al. (2009); Sanchez Cuartielles
(2009) showing the dominance of the six different strategies applied to a deflection
mission to the asteroid Apophis, one of nine test cases analysed in the original study.
The values in the tables represent the percentage of elements in the Pareto set of one
method (in italics) that dominate over the number of elements in the Pareto set of
another method. For example, the kinetic impactor dominates over the low thrust
method in 16% of the cases, and over the gravity tug in 100% of the cases. The two
tables show the difference in accounting for development time of the technology.

The methodology used to model and compare the deflection methods found, for
example, that kinetic impact methods are not always better than low-thrust tugs,
though from a theoretical point of view it may appear so. In fact the direction of
the impact is rarely optimal while the thrust direction of low-thrust tugs can be
steered quite efficiently; or gravity tractors are not insensitive to the morphology of
the asteroid because hovering at a distance requires a detailed knowledge of the mass
distribution (i.e. gravity field) of the asteroid. The conclusion of the comparison study
was that nuclear stand-off explosions were the most effective on the widest range of

$ESA Technology Readiness Levels: 1- Basic principles observed and reported, 2- Technology con-
cept and/or application formulated, 3- Analytical & experimental critical function and/or charac-
teristic proof-of-concept, 4- Component and/or breadboard validation in laboratory environment,
5- Component and/or breadboard validation in relevant environment, 6- System/subsystem model
or prototype demonstration in a relevant environment (ground or space), 7- System prototype
demonstration in a space environment, 8- Actual system completed and “Flight qualified” through
test and demonstration (ground or space), 9- Actual system “Flight proven” through successful
mission operations.

10
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Table 2: Strategy Dominance for Apophis, with no TRL applied (from [Sanchez Cuartielles

et al., 2009]).
Nuclear Kinetic Low Mass Solar Gravity

Interceptor Impactor Thrust Driver Collector Tug
Nuclear Interceptor - 100 100 100 1 100
Kinetic Impactor 0 - 16 0 100
Low Thrust 0 98 - 0 100
Mass Driver 0 100 100 - 0 100
Solar Collector 100 100 100 100 - 100
Gravity Tug 0 1 0 0 0 -

Table 3: Strategy Dominance for Apophis, with TRL applied (from [Sanchez Cuartielles

et al., 2009]).
Nuclear Kinetic Low Mass Solar Gravity

Interceptor Impactor Thrust Driver Collector Tug
Nuclear Interceptor - 100 100 100 100/98 100
Kinetic Impactor 7/0 - 99/39  61/54 59 100
Low Thrust 0 1/87 - 7/36 7/48 100
Mass Driver 0 99/100 100 - 0/18 100
Solar Collector 33/36 100 100 100 - 100
Gravity Tug 0 0 1/0 11/4 11/15 -

NOTE: The range of values correspond to the lower/upper limits of the assigned TRLs.

asteroids. The second best was solar sublimation, with all the other methods being
an order of magnitude less effective (according to the proposed comparison criteria).

Although nuclear explosions were found to be the most effective, a subsequent study
by Sanchez Cuartielles et al. (2008) demonstrated that for both nuclear explosions
and kinetic impacts, the risk of a catastrophic fragmentation of the asteroid poses a
significant hazard. The analysis showed that for deflection energy levels at which the
nuclear explosion performs significantly better compared with other deflection meth-
ods, a fragmentation is highly possible. Due to the possible fragmentation caused by
the nuclear option, the solar sublimation method appeared to be the most interesting
deflection method.

1.2.4  Solar sublimation

Lunan (1992) and later Melosh and Nemchinov (1993) proposed the use of a mirror
(or solar concentrator) to focus solar energy onto a small part of the surface of an
asteroid. The resulting heat would sublimate the surface material, creating a jet of gas
and dust that would produce a low, continuous thrust. A conceptually similar idea
is to use a laser beam, either powered by a nuclear reactor or solar arrays, to induce
the required sublimation of the surface material. Melosh et al. compared the solar
concentrator idea against the nuclear blast option showing the advantages of using

11
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Figure 6: Ilustration and caption from Melosh et al. (1994): “Schematic illustration of a solar
collector deflection system. Sunlight collected by a large, light primary mirror is
focused on the surface of an asteroid or comet and evaporates material from its
surface. the reaction to this vapor plume changes the asteroid’s orbit. The primary
mirror requires a modest station-keeping propulsion system, such as a high specific
impulse solar electric system.”

the collector. However, he was proposing the use of a substantially large structure in
space, a primary mirror of 1 km to 10 km in diameter focusing the light of the Sun
directly on the surface of the asteroid or onto a secondary mirror used to steer the
beam. Figure 6 shows an excerpt from his paper describing the idea [Melosh et al.,
1994].

Kahle et al. (2006) compiled a report analysing a number of deflection concepts,
and identifying a number of technological limits of the solar collector concept initially
proposed by Melosh et al. In particular,

e If the light of the Sun is focused directly onto the surface of the asteroid, in
order to have a high enough power density the mirror should be at relatively
close distance from the asteroid, e.g. a separation distance of 1.25 km for a 630
m diameter mirror. As a consequence, the mirror should operate and manoeuvre
under the effect of the irregular gravity field of the asteroid. Furthermore, at
such a distance the contamination of the primary mirror, due to the ejected
gasses, would be significant. A longer distance would imply a larger mirror with
a consequent increased difficulty in the control of the attitude.

* If a secondary steering mirror is used, the contamination of the primary can be
reduced but the secondary would suffer the full contamination problem. Kahle et
al. proposed some solutions to the contamination issue but all imply a significant
increase in the complexity and mass of the system.

* The deployment and control of a large mirror represents a significant technolog-
ical challenge and, moreover, a single point failure for the entire mission.

* The total light pressure on the primary mirror would induce a significant force
on the spacecraft requiring constant orbit control.

12
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* The high level of solar power collected by the primary reflector would force
the secondary reflector to operate at extremely high temperatures, in particular
if the surface is contaminated. When this happens, absorptivity is increased,
causing a further reduction in reflectivity.

All these problems can be solved if a) the light is not focused directly on the surface

of the asteroid and, b) multiple smaller mirrors are used instead of a single large mirror.

The idea is to use multiple mirrors of smaller dimensions and superimpose the various
beams of focused light onto the same spot. The use of a collimating device, e.g. optical
lens, mirrors or lasers, would also allow the placement of the collector at a farther
distance from the surface of the asteroid.

The main advantages of a multi-mirror system are:

* Each spacecraft is relatively small and more easily controlled.

* The solar pressure on each spacecraft is reduced and the total power (and hence
heat) on the surface of the secondary mirror is limited.

* The system is intrinsically redundant: each spacecraft does not represent a single
point failure.

* The system is scalable: the formation is homogenous, therefore a larger asteroid
would only require an increase in the number of spacecraft without the need for
a new design and development phase.

The main challenge of implementing a multi-mirror system is to superimpose all
the beams and maintain pointing with a low margin of error. The use of adaptive
optics to collimate the beam gives more flexibility for the placement of the mirrors
but requires the development of the control of the optics. The aim of the following
study is to assess the feasibility of the deflection method, and to analyse the required
technical aspects of a potential deflection mission using solar sublimation.

13



SYSTEM DESIGN

In the three centuries following
Kepler and Newton, the world’s
greatest mathematicians brought
celestial mechanics to such an
elegant state of maturity that for
several decades preceding the
USSR’s Sputnik in 1957, it all
but disappeared from the
university curriculum. [...] Not
until recently did the problem
exist of designing orbits subject
to elaborate constraints to
accomplish sophisticated mission
objectives at a target planet —
except possibly in the fantasy of
the boldest imaginations.

Richard H Battin (1998)

Several possible conceptual designs are presented for the mirror-spacecraft configu-
ration, consisting of a system that collects the radiation from the Sun, another system
that converts this input power into a form suitable for sublimation, and a third system
that projects the output power onto the surface of the asteroid. All these systems are
related to the study of optics. For each design, the radiation from the Sun is used in a
different way in order to achieve a focused spot of the asteroid surface. In particular,
the device that converts the incoming power of the Sun into a form useful to sublimate
the surface of the asteroid is substantially different. An introduction to the properties
of the Sun and solar radiation is given, with a discussion on the implications on the
conceptual optical configurations.

System mass budgets were developed for a set of representative conceptual designs
in order to assess how feasible the launch of a spacecraft would be. This is also a
consideration in the trade-off between the number of spacecraft versus the individual
mass.

2.1 CONCEPTUAL DESIGN

The design of the device that uses the light of the Sun to sublimate the surface of the
asteroid is a critical aspect of this deflection method. The device has to be able to
concentrate a minimum power density at all times [Sanchez Cuartielles et al., 2007],
therefore must have the capability to steer the beam of light towards any part of the
asteroid and to control the concentration factor (or amount of light that is focused
on a particular spot).

If one considers a direct projection of the light of the Sun onto the surface of the
asteroid, the concentration ratio C,. of the system is the ratio of the power density at
the input to the system, to that at the output. Here, the only power provided to the
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2.1 CONCEPTUAL DESIGN

system is the incoming solar radiation of the Sun, therefore while the power density
changes between that received by mirror surface with that reflected onto the asteroid,

the power level does not change (i.e. Psoiar = Pu = Pspot) in an ideal, lossless system.

Therefore, the concentration ratio is simply a ratio of the two surface areas.

Pspot/Aspot _ AM

C,,, = =
PM/AM Aspot

(2.1)

where A is the total illuminated surface area of the mirror Ay that is perpendicular
to the Sun, and A,p,: the illuminated spot area on the asteroid surface. For a 3D
paraboloidic mirror where the optical axis is aligned directly towards the Sun, the
area A, here would be equal not to the total physical surface area of the reflector,
but to the 2D aperture area independent of the depth of the mirror.

Figure 7 shows a collection of five possible designs. This is not an exhaustive list but
serves to identify the basic concepts, each with substantially different technological
implications. In general, each mirror-spacecraft configuration is composed of three
fundamental components: a power collection unit, a power conversion unit, and a
power beaming unit. Analysing the methods in Figure 7,

(a) Fixed mirror collector, with no power conversion and optical system to collimate
and steer the beam. A system of lenses directly collimate the light of the Sun,
with a secondary mirror to steer the resulting beam (see Fig. 7a).

(b) Adaptive collector, with no power conversion and direct imaging onto the surface
of the asteroid. In terms of components this is the simplest concept; the complexity
is in the design of the collector. Note that unlike the original concept of Melosh
et al. there is no steering mirror. The steering is provided by the adaptation of
the shape of the mirror (see Fig. 7b).

(c¢) Dual fixed reflectors as collecting device, a laser (directly or indirectly pumped)
as power conversion unit and a secondary steering mirror as the beam control
system. In this case, both the laser and the secondary mirror are in the shadow
of the primary mirror to help mitigate the problem of excess heat (see Fig. 7c).

(d) Fixed mirror collector, a laser (directly or indirectly pumped) as power conversion
and a secondary steering mirror as beam control system. In this case the laser is
located between the primary collector and the Sun, while the steering mirror is
in the shadow cone of the primary mirror (see Fig. 7d).

(e) Large solar array as solar collector, a laser (indirectly pumped) as power conver-
sion and a secondary steering mirror as beam control system. In this case both
the laser and the secondary mirror are in the shadow cone of the primary mirror
(see Fig. Te).

The following study explores the possible mission design for two such configura-
tions which act as representative examples in order to derive a general answer to the
feasibility of this deflection method: the dual fixed mirror plus laser option given in
Fig. 7d, and the single adaptive mirror, with and without a collimator, given in Fig.
7b.

2.1.1 Fized mirror configuration

The fixed mirror configuration consists of a parabolic reflector which concentrates the
reflected sunlight. This beam is then directed onto the desired spot on the surface

15



2.1 CONCEPTUAL DESIGN

(a) Parabolic reflector with collimating lens,
and steering mirror.

> X ;

(d) Single reflector with solar-pumped laser

(c) Dual reflector system with a solar-fed
and rear directional mirror.

laser followed by a steering mirror.

<4
>

(e) Solar array for an indirect pumped laser
system.

Figure 7: Possible configurations for the mirror assembly.
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by means of a flat directional mirror. The primary parabolic mirror is held normal
to the Sun to maximise the illuminated surface area, and hence power density on the
surface.

As the primary reflector is symmetrical around the z-axis (i.e. the aperture is a
circle), the total surface area is calculated based on the focal length f, and accounting
for the blockage caused by the directional mirror,

duy
2
T 2 y 2
no= [0+ () 1 @ 22
dg
2

where dy;, is the diameter of the aperture on the parabolic mirror, d, is the diameter
of the gap (equal to the entrance aperture of the laser assembly). The surface area
integral is based on the general equation for a paraboloid,

i=L v (2.3)

and the general equation for the surface area element dS on the surface z = f(z,y)
[Adams, 2000],

s (2) (2 ras o)

Several options exist for directing the beam onto the surface of the asteroid, as seen
in Fig. 7. One option is to use a lens system to collimate the beam, while another
uses a laser as the collimator. Both these options are analysed in Section 2.2 on the
advanced optical design.

2.1.2  Adaptive mirror configuration

The single mirror configuration is composed of an asymmetric, adaptive primary mir-
ror. The shape of the primary mirror is assumed to be adaptable such that the focal
point can be moved in order to steer the beam in the desired direction.

If the mirror was flat, then a local Cartesian reference frame could be defined with
coordinated axes M centred in the barycenter of the mirror assembly and with the
axis & perpendicular to the mirror surface. Within the same reference frame M, and
given: the desired position of the focal point in M, the position of the centre of a
mirror element with infinitesimal area dA,, and assuming a perfect reflection, the law
of reflection gives,

dyu
dy

= tan (ﬁ - % — ¢ (wy;, vavayfvﬂ)) (2:5)

where f, = [xy,ys] is the position of the focal point, 8 is the Sun aspect angle
with respect to the y axis in M and ¢ is the angle of reflection. Figure 8 shows
the configurations of the mirror reference frame with respect to the vectors from the
mirror origin (or spacecraft) to the Sun, ry. /., to the focal point f; and finally, to the
asteroid r,. /.
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2.2 OPTICAL SYSTEMS

Figure 8: Definition of mirror-centric relative reference frame M.

By integrating (2.5) with the initial conditions zy, and y,,,, the position and atti-
tude of each section of the mirror in the M-y plane can be found, given the position
of the focal point and the direction of the incoming solar rays. The mirror is then
considered to be symmetric with respect to the -y plane such that each section
of the mirror parallel to the y*™-2™ plane is a parabola. Equation (2.5) was coded
into a Matlab® function and incorporated into an orbital dynamics model, such that
for each position of the mirror with respect to the asteroid (i.e. the focal point) and
for every attitude angle, a different mirror shape is generated.

Two examples are shown in Fig. 9, where the focal point is set by [cos(8—Ap), sin(f—
AB)] and zy € [—1, 1]. Both the incoming and outgoing (or reflected) rays are shown,
as well as the 2D mirror shape and focal point.

2.2 OPTICAL SYSTEMS

It is important to distinguish between the focusing device (or collector) and the beam
generation device. The various options proposed differ in the way the power collected
from the Sun is projected onto the surface of the asteroid. In particular, three different
concepts are examined: direct imaging, indirect imaging through an optical system
(collimating lenses) and lasers.

2.2.1 Solar properties

The physical angular measurement of the Sun (or solar disk) can be calculated by
simple geometry. Given a volumetric mean radius of the Sun of 6.9600x10° km, for
the current orbit of Apophis the Sun has an conic half-angle of 6.2349 mrad at the
NEO periapsis (0.7461 AU), and 4.2348 mrad at the NEO apoapsis (1.0986 AU).
Figure 10 shows the extra-terrestrial solar spectral irradiance for a range of wave-
lengths (assuming a black body temperature of 5777 K). The database used is the
ASTM E-490-000*, published by the American Society for Testing and Materials
(ASTM) in 2000 based on data from spacecraft, space shuttle missions, high-altitude
aircraft, rocket soundings, ground-based solar telescopes, and modelled spectral irra-

*www.astm.org/Standards/E490.htm, link valid as of February 23, 2010.
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Figure 9: Examples of a single mirror directly projecting the light of Sun onto the focal

point. The green dashed lines are the Sun rays, blue lines are the reflected rays.

The mirror is shown in the z-y™ plane, with the axes normalised to one.

diance. The wavelength of visible light falls between violet (380 — 450 nm) and red
(620 — 750 nm), with the peak irradiance occurring at 450.5 nm (2.2198 MHz).

The solar flux constant, Sy, is defined as the rate at which energy is received from
the Sun over a unit area normal to the radiation of the Sun, taken at a mean distance
of one astronomical unit. The World Radiation Centre adopted a mean solar flux
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Figure 10: 2000a (2006) ASTM Standard Extraterrestrial Spectrum Reference E-490-00.

Note, the integrated spectral irradiance has been made to conform to a solar

constant of 1366.1 W/m? [ASTM, 2006].
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2.2 OPTICAL SYSTEMS

value of 1367 W/m?, with an uncertainty of 1%, which is the one most commonly
found in literature. However, as seen from Figure 11 which shows the measurements
of the solar flux over a period of 25 years, that value may overestimate the amount
of energy flux provided. Nevertheless, in the following the solar flux is assumed to be
1367 W/m? and varies quadratically with the distance from the Sun, S(r) oc r=2.
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Figure 11: Composite of total solar irradiance measured by different space-based radiometers
(HF on NIMBUS7, ACRIM-I on SMM, ACRIM-II on UARS, VIRGO on SOHO).
The coloured lines show daily averaged values, and the black line is mean (source
image from Frohlich (2003)).

2.2.2  Direct imaging

The simplest design for the mirror assembly is to directly focus the sunlight onto
the asteroid, essentially imaging the solar disk onto the asteroid surface. There are a
number of restrictions however, given the coupled nature of the variables. The range
is determined by the focal point of the mirror. Coupled with a manufacturing limit
on the maximum size of the mirror, this forces the spacecraft to operate in close
proximity to the surface of the asteroid, subjecting it to the largely unknown, and
inhomogeneous gravity field of the NEO. In addition, issues such as contamination
due to the generated debris also risk damaging the mirror surface.

The beam must also be directed towards the asteroid, since the asteroid, Sun and
spacecraft are not in-line as they would be in a typical imaging system. This means
that either the mirror must operate at an angle, translating into a loss of illuminated
surface area, or the focal point must be raised or lowered relative to the principal
optical axis.

Lastly, the spot size is determined by the concentration ratio (magnification) which
is a function of the ratio of the distance between the source and the mirror (r /SC),
and the distance between the mirror and the image (74./4)-
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angle @ between mirror normal and incoming rays (rad)

true anomaly, v (rad)

Figure 12: Angle of reflection ¢, between mirror surface normal and incoming (or outgoing)
rays.

Given the equation for a z-y symmetrical parabolic reflector,

(=20 (5= w0)

(s = 20 = ol 4 B (26)
The angle between the Sun and one of the spacecraft in the formation is shown in
Fig. 12; on average, the half-angle ¢ fluctuates between 0.7 — 0.9 rads. If a parabolic
mirror with a 100 m aperture diameter is rotated through the same angular range, the
result is shown in Fig. 13. This is the equivalent to the change in angle the directional
mirror would need, in order to keep the spot position on the asteroid constant over
the one entire orbit. This difference is due to the constantly changing position of the
spacecraft relative to the asteroid, and the asteroid and spacecraft relative to the Sun,

as they both orbit around the Sun.
The spot size at a nominal range of 2.5 km fluctuates between 53 m at min(¢) to 66
m at max(¢). The focal length, for a minimum image size at the nominal range, was

set to 5 km. This gives a minimum concentration ratio of 2.5. This can be seen in Fig.

13, where the v-axis is the optical axis of the mirror, and phi is the angle between that
axis, and the outgoing beam. Due to the laws of reflection, the the angle of incidence
is equal in magnitude to the angle of reflection, but negative is sign (i.e. measured
from +v towards the —u-axis. Figure 13a in particular, shows the divergence due to
the solar disk as the distance away from the mirror surface increases, and the change
in direction due to the variation in phi.

For the sake of analysis, if we let ¢ = 0 rad, and place the focal length exactly at
the asteroid (f; = 2.5 km), then the spot diameter due solely to the effect of the solar
disk is 25 m (for a concentration ratio of 20).

The loss due to angle of reflection can be reduced by moving the focal point of
the mirror by continually altering the shape of the reflector. This maximises the
illuminated area, which allows for a greater concentration ratio. Figure 14 shows the
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(a) Overview of the entire system. The reflector is designed for a focal distance of 5 km, located at
the origin (0,0), with the minimum beamwidth occuring half-way, at 2.5 km (or when v= —2.5),
where the v-axis here is the optical axis of the mirror.
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(b) Close-up of the above plot, at the mirror surface. Due to the long focal length relative to the
mirror diameter, the parabolic mirror is essentially flat. The difference in incoming rays is due
to the changing geometry between the Sun-asteroid angle, equal to 2¢.

Figure 13: Example of direct imaging of the solar disk using an 100 m diameter, fixed

paraboloidal reflector, and showing the difference in beam directions and widths
at the maximum and minimum angle of reflection ¢.
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Figure 14: Direct imaging of solar disk on Apophis using an adaptive paraboloidal reflector.
The mirror is located along the y-axis, and the asteroid is located at the minimum
beam width, at 780 m.

result of directly focusing the solar disk on an 80 m aperture diameter reflector at
a range of 780 m from the NEO. The spot diameter on the surface is 8.2 m, which
would correspond to a concentration ratio of 95.

In the work of Sanchez Cuartielles et al. (2009), a system concentration ratio of
2500 was used to perform a comparison of the solar sublimation approach against
other deflection methods. In other words, the power density on the surface is 2500
times greater than that provided by the solar radiation at the mirror surface.

For example, for a 1 m diameter spot size on the surface, 25 spacecraft, each with 50
m diameter mirrors would provide a system concentration ratio of 2500. The number
of spacecraft and mirror size depend on the available time for the deflection action and
on the distance from the asteroid. The distance from the asteroid, in turn, depends on
the orbital position of the spacecraft near the asteroid that would allow the spacecraft
to see the Sun and avoid any plume impingement. Note that C, = 2500 is not the
minimum concentration ratio required to sublimate the surface of a NEO with a single
spacecraft, simply a nominal value.

The minimum required power density of the illuminated spot is dependant on the

distance from the Sun, rotational velocity of the asteroid w,, the size of the spot, etc.

As an example, considering that a point travels with a linear velocity v, = wy R, =
0.0077 m/s (due to the rotation of the asteroid, where R, is the radius along one axis
of the asteroid) through the illuminated spot, the minimum required power density at
ra = 0.92 AU is 7.166x 10> W/m?. This corresponds to a system concentration ratio
of C, = 554 in order the induce sublimation (for a system efficiency of 7sys = 1).
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A study commissioned by NASA [Hedgepeth and Miller, 1987, 1988] in the late
1980s investigated concepts for large solar collectors, including an analysis of the
effects of errors on the effective concentration ratio of space-borne paraboloidal reflec-
tors. Starting with a perfect smooth paraboloidal reflector with aperture diameter d,,
see Fig. 15a, and assuming the same solar disk angle of 2e, ~ 9 mrad, the resulting
image is shown on a receiver plane in Fig. 15b.

v

(a) Geometry of a continuous paraboloid re- (b) Intersection of the Sun’s image and the
flector. receiver disk in the receiver plane.

Figure 15: Analysis of the image of Sun (images from Hedgepeth and Miller (1987)); [uo, vo]
represent an offset due to geometric errors on the reflector surface at the point of
reflection.

The dimensions of the image are,

u=2leg, (2.7a)
20

where ¢ is the distance from a point on the reflector to the focal point, and U is the
angle between ¢ and the optical axis of the reflector. The equations for the image do
not account for any geometric errors on the structure of the reflector. The effect of
any errors would be an offset in the intersection with the focal plane, altering the
centre point of the elliptical image (given as [ug, vg] in Fig. 15b). Relating to this
study, the illuminated spot on the asteroid surface is equivalent to a ‘receiver disk’
with a diameter dspor. Depending on the number of spacecraft in the formation, the
spot is actually a conglomerate of many beams, any errors or offset in position and
the image distortion due to the elevation and azimuth angles between the mirror
assembly and the Sun would result in a situation as shown in Fig. 15b. In the case of
the fixed configuration, the directional mirror would have to be sized relative to the
intended spot area plus a margin of error such that the majority of the beams are
within the given circular area on the surface. The analysis done here accounted for
the spot area and mirror or reflective areas — the diameters listed are, at least in the
case of the fixed mirror configuration, the equivalent diameter assuming the area is a
perfect circle.
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As a first approximation, the radius of the projected image was assumed to increase
linearly with the distance between the mirror and the target; the area of the collector,
for a fixed concentration ratio, increases quadratically with the distance from the
target. Note that as the mirror moves away from the Sun, the concentration ratio can
be increased, at constant distance from the target, by keeping the size of the mirror
constant and changing its curvature. Conversely, when the mirror moves toward the
Sun the concentration ratio for a fixed distance and fixed size has to go down. The
solar flux increases quadratically as the mirror approaches the Sun, thus compensating
for the loss in concentration factor. This is also true when the mirror moves away from
the Sun, therefore by changing the curvature of the mirror the total flux on the target
area can be maintained constant as the mirror moves with respect to the Sun.

2.2.3  Collimating lens

One option investigated to improve the concentration ratio was to considerably reduce
the focal length to the same magnitude of the diameter, and add a lens system which
minimises the divergence of the beam after the focal point of the mirror. An in-house
ray tracing program was developed (in Matlab) in order to design lens systems based
on an objective function. An education-version of the optical software program OSLO
by SinOpt was also used to analyse the lens designs, however it was found that the
Matlab code was more efficient for this analysis (due to limitations in the educational
version of the software, learning curve, etc.).

A single spherical lens will always be subject to, among other errors, spherical
abberations leading to a distortion in the intersection of the beams (i.e. they do not
all meet at a single point, but instead create a ‘curved envelope’ about the original
focal point), or going in the other direction, the ‘collimated’ beams instead diverge.

A common class of lens exist that attempt to minimise both spherical and chromatic
aberrations that result from using multiple wavelengths (or frequencies) of incoming
rays. The two aberrations have a similar corrective approach in that the solution
attempts to bring distorted refractive/reflective rays into focus on the same plane.
The distortion can be due either to the effects of different frequencies through the lens
medium, or by distance from the optical axis and corresponding angle of incidence.
The design for an achromatic lens (or achromat) uses two lenses cemented together
to form a doublet. The first lens generally has a higher index of refraction, while
the second has a lower index such that the aberration of one is counteracted by the
second.

In this case, an optimisation was run to determine a lens systems that would colli-
mate the output from a fixed parabolic mirror. The maximum number of lens surfaces
was set to 5 (each lens having two surfaces), with the free variables set to the radius
of curvature of each surface (assumed to be spherical), and the distance along the
optical axis from the previous lens surface to the current surface. Figure 16 shows the
resulting optimised system of lenses assuming parallel incoming rays from the Sun.
The maximum angular divergence is 5.7923x 1075 rads, resulting in a spot diameter
of 1.6574 m (using a reflector with an aperture diameter of 40 m and a focal length
of 60 m). Table 4 gives the specific solution vector for the lens system.

When the incoming solar rays were modified to account for the size of the solar
disk, the results became infeasible. As seen from Fig. 17, for the same reflector-lens
configuration as above, the divergence results in a spot diameter of just over 900 m.
Even when the lens system was re-optimised to account for the off-axis incoming rays,
the results of the spot size are still larger than the baseline case with no lenses.
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(a) Overview of system, including primary mirror, focal point, and
collimating lens system.
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(b) Close-up of collimating lens configuration, with each surface num-
ber corresponding to Table 4.

Figure 16: Lens configuration for collimating a beam assuming parallel incoming solar rays.
The axes are in metres, with the focal point of the reflector at (0,0).
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Table 4: Dimensions of lens assembly given in Figs. 16, 17.

Surface Radius of Distance from Index of

curvature (m) focal point (m) refraction”, n

Reflector: 0 z= % — —60 1.0
First 1 5.06239 5.220826 1.689
lens: 2 3.4792 1.10455 1.0
Second 3 —18.0540 1.332166 1.673
lens: 4 —3.399048 0.310507 1.564
5.46774 0.615707 1.0

* The index of refraction listed is for the material from surface i to (i + 1).

If the lens system worked with very little distortion, the other concern would be
due to the monochromatic nature of glass lenses versus mirrors, which are frequency-
independent. Superachromatic lens can focus up to four wavelengths bracketing the
visible spectrum, which contains the highest energy segment of the solar spectrum,
however the system would still have to account for a loss of power density due to
the frequency limitation. Other, more complex options include a gradiated index of
refraction of the material, or using slotted or notched lenses (similar in concept to a
Fresnel lens, for example). However these would have to be specifically manufactured
for a fixed set of angles; given the variance in the angle of incidence/reflection this
poses numerous difficulties in the design. It is possible to fix the angle of incidence,
and instead remove the constraint of the primary mirror to remain in-line with the
Sun-pointing vector however at a cost of a decrease in available solar power (due to
the shadows introduced onto the reflector surface).

2.2.4  Solar-pumped laser

The concept of converting emitted radiation from the Sun, a broad-band renewable
energy source, into a narrow, coherent beam is decades old [Young, 1966]. The barrier
has been making the process efficient given the broad frequency band of the Sun’s
radiation, compared with the narrow absorption bands of most lasing crystals.

Lasers work on the premise of exciting electrons by stimulating them with the
addition of photons (or quantum energy), which temporarily boost them up to a
higher energy state. This simulation continues until a population inversion exists,
where there are more electrons at a higher energy state, e.g. F; than at the lower
(or original) state, e.g. Ey. The release of photons when the electrons drop back to
their original base state produce an emission that has the same spectral properties of
the stimulating radiation, and is therefore highly coherent. There can be any number
of energy state levels and transitions, for e.g. an Nd:YAG laser has four states. The
energy that is not released as part of the output emission, is instead released as heat.
This means that the laser must be continually cooled, which in space means large
radiators.

There are two general methods of powering the laser: direct pumping, where the
energy is directly used to excite the laser, and indirect pumping, where an intermediate
step is used to first convert the energy, e.g. solar radiation, into electricity.
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INDIRECT PUMPING Indirect solar-pumped lasers convert the solar energy first
into electricity, which is then used to power the laser. Photovoltaic cells are an obvious
choice for space applications. The drawback, of course, is the addition of an electrical
power generator meaning added mass, size and power requirements.

A possible solution is to use high efficiency solar arrays in conjunction with a solid
state laser. Solid state lasers pumped with electric power can currently reach 60%
efficiency. If the solar arrays have an efficiency of 30%, then the system would have
an overall efficiency of 18%. If a pumped laser is used, then the focal point can be
close to the primary mirror and a high concentration factor can be obtained with a
relatively small mirror. For example, if the mirror has an area of 314 m? (equivalent
to a 20 m diameter circular mirror), then the collected power at 1 AU is 429.5 kW.
The solar array + laser system converts only 18% of this power, therefore only 77.3
kW is beamed to the surface to the asteroid, while the rest needs to be dissipated.

Even by placing the radiator in the shadow cone of the primary mirror and/or
spacecraft, the excess power would still need to be dissipated. In steady state condi-
tions, given a radiator of surface area Ay, the temperature of the radiator T would
be,

Py — Pous — Preflected = O-ERARTVIA{L (28)
1
T, = (aSAS’I‘AM — Nsa Sy Ay — O-GSAT:A) 4 (2-9)
oerAg

where ag, = 0.8 is the absorptivity of the solar converter, S, is the solar flux at
distance 7 /4., Ay is the area of a 20 m diameter mirror, 7, is the efficiency of the
solar converter, o is the Stefen-Boltzmann constant, T, = 200°C is the operating
temperature of the solar converter and lastly €5, = 0.7, ¢ = 0.9 are the emissivity of,
respectively, the solar arrays and the radiator. The solar arrays are assumed to have
a surface area of 1 m2. Figure 18 shows the resulting radiator temperature versus
surface area for different efficiencies 7g, of the solar array plus laser system.
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Figure 18: Radiator area vs. radiator temperature

The system would need to operate at a higher temperature than the radiator, im-
posing severe conditions on the solar arrays. Possible solutions include,

* the heat being dissipated through a large radiator, located in the shadow cone
of the primary mirror,
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* the efficiency of the solar arrays substantially increased above 30%,
* the operating temperature of the solar arrays increased above 200°C.

An alternative could be to use a solar dynamic system with a Stirling engine [Shal-
tens and Wong, 2007; Wua et al., 2003] (or Brayton or Rankine cycle) instead of the
solar arrays. This solution would achieve a conversion efficiency of up to 38% and,
more importantly, could operate at higher temperatures (up to 850°C). However, al-
though the scalability of the system has to be considered with care, according to the
current status of the research at NASA on Brayton converters [Shaltens and Mason,
1999], and considering only the mass of the receiver, Brayton engine, heat rejection
and associated structures, the power conversion unit could have a specific output
power of 27 W /kg. This estimation is based on the advanced technology that NASA
was expecting in 1999. For the example above, the mass of the conversion unit would
be about 5000 kg, with an efficiency of 34%. This mass is still unsatisfactory for a
20 m diameter mirrored spacecraft. The main problem then still exists, to make the
receiver and the heat rejection system far lighter than what they are at present.

DIRECT PUMPING Direct solar-pumped lasers, do precisely what the name sug-
gests: the laser is directly energised using solar radiation. Due to the mismatch be-
tween the wide-band emissions of the Sun with the narrow absorption bands of lasers,
the loss of available solar power is currently rather high. Figure 19 shows the overlap
between the solar spectrum, and that of the absorption bands of a common Nd:YAG
lasing crystal.

Lasing Material

In theory, any lasing material that can be optically pumped can also be used as
a solar laser. It is not the intent of this dissertation to delve too deeply into the
technical details of lasing materials, however a selection of solid-state laser materials
are summarised below based on current literature [Weksler and Shwartz, 1988; Lando
et al., 2003; Adbel-Hadi, 2005].

The Nd:YAG, composed of neodymium ions (Nd**) in yttrium aluminum garnet
(Y2Al5012), is the most commonly used in solid-state laser for many cross-platform
applications since it is relatively cheap to produce and readily available, and more im-
portantly, has good thermal resistance, durability and lifetime. The absorption bands
are relatively narrow however, and with the main peak at 1064 nm (see Fig. 19). The
overlap between the Nd:YAG absorption spectrum, and the solar radiation spectrum
is around 0.14 [Weksler and Shwartz, 1988]. Chromium doping, Cr:Nd:YAG can fur-
ther improve the power conversion over the undoped, conventional Nd:YAG systems.

Adbel-Hadi (2005), quoted below, gives a good general description of other possible
laser types:

ND:CR:GSGG has received considerable attention because of the good
spectral match between the flashlamp emission and absorption of the Cr
ions. The host of this laser is the Gadolinium Scandium Gallium Garnet
(GSGG). An efficient energy transfer between the Cr and Nd ions results
in a highly efficient Nd:laser.

ND:YLF is a good candidate for certain specialized applications, because
the output is polarised, and the crystal exhibits lower thermal bi-refringence.
Nd:YLF has a higher energy storage capability (due to its lower gain co-
efficient) compared to Nd:YAG and its output wavelength matches that
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Figure 19: Nd:YAG absorption bands compared with the standard extraterrestrial solar spec-
trum (source image from Weksler and Shwartz (1988)).

of phosphate Nd:glass. Therefore modelocked and Q-switched Nd:YLF
lasers have become the standard oscillators for large glass lasers employed
in fusion research. The host YLF is the uniaxial crystal Yttrium Lithium
Fluoride (YLiFy).

ND:YVO, The laser emission cross-sections of Nd:YVO, crystal at 1060
nm and 1340 nm are 2.7 and 18 times larger than that in Nd:YAG re-
spectively, and the crystal has good mechanical, physical and chemical
properties.

In a paper presented in 1994, Landis discussed the use of a directly solar pumped
laser based on semiconductor technology [Landis, 1994]. According to Landis, the ex-
pected efficiency of directly pumped semiconductor laser would depend on the same
efficiency losses of a solar cell, therefore Landis was expecting a lasing efficiency (out-
put/input power ratio) of 35%. Such an efficiency would be one order of magnitude
higher than the best YAG system, which was expected to reach 6% of overall efficiency.

Direct solar pumping would represent an interesting solution in terms of complexity
of the overall system. In fact no cooling system for the photovoltaic conversion and
no power transmission would be required. On the other hand the TRL of both solar
cells and semiconductor lasers is far higher than the one of a directly pumped laser
and an indirectly pumped laser can be expected to be operational very soon.

Furthermore, recent semiconductor laser, electrically pumped, have proven over
73% plug efficiency [nLIGHT, 2006]. A substantial increase in cells efficiency has also
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to be expected. In particular, in order to achieve a 35% efficiency in direct pumping,
semiconductor technology should allow the absorbtion of the solar spectrum over a
wide range of frequencies. A high efficiency of a directly pumped laser is therefore
expected to correspond to a high efficiency of solar cells. An increase of solar cell
technology up to 50% [Luque et al., 2004] is reasonable, allowing an indirect pumping
system to have a comparable efficiency to a 35% direct pumping system.

2.2.5  Discussion

From the analysis of the methods for collimation of the solar light, it is apparent
that collimating the solar light at long distances is not possible with conventional
optics. Though a more thorough investigation would be needed to conclude that this
technological solution is not feasible, there are other solutions analysed, such as the
laser, that appear promising.

From this analysis, although still preliminary in nature, the direct imaging option
appears feasible. The advantage of a direct imaging system stands in its reduced
number of components and the virtually zero dependence on the frequency of the
light beamed on the surface of the asteroid. If the surface material has, for example,
an average absorptivity of 0.7 over the visible spectrum then the material absorbs 70%
of the incoming radiation. This is not true for the monochromatic beam generated
by a laser since the surface material has a maximum absorption only at the certain
frequencies specific to a particular laser system. The main disadvantage of a direct
imaging system is that it is strongly dependent on the distance from the asteroid. For
a constant concentration ratio, the size of the mirror increases with the distance from
the asteroid.

The laser option has the fundamental advantage to be far less dependent on the
distance from the asteroid. Therefore it allows for a more flexible beaming of the
light onto the surface of the asteroid. On the other hand the number of components
in the system is higher. The choice between a directly pumped system versus an
indirectly pumped one is not conclusive. At this particular stage of the research in
laser technology and solar cell technology the most short term solution with acceptable
efficiency would be the indirect pumping. On the other hand, a 35% direct pumping
laser would significantly reduce the complexity of the system. Last but not least the
laser option would require a minimum knowledge of the absorption frequency of the
surface material of the asteroid.

33



2.3 MASS BUDGET

2.3 MASS BUDGET

In order to assess the dry mass for a single spacecraft, a range of technology levels
have been assumed, from existing flight hardware (Inflatable Antenna Experiment)
through to a conceptual membrane system with embedded sensing and actuation. The
key driver for the mass budget is the areal density of the adaptive reflector assembly. A
range of technology readiness levels (TRL) will be considered with appropriate mass
margins. It will be assumed that the reflector mass includes all associated control
hardware.

The spacecraft bus is assumed to be comparable to NASA’s NEAR-Shoemaker
spacecraft, and is representative of a mid-sized bus operating in deep space at a solar
distance of up to 2.2 AU. The dry mass of NEAR is 487 kg, therefore a 500 kg bus is
used with a 10% mass margin, given the flight heritage of the NEAR spacecraft. The
bus is assumed to provide power, telecommunications and attitude sensing functions.
It is also assumed that the adaptive reflector is used to manage any off-set in centre-of-
mass and centre-of-pressure, which would represent the primary attitude disturbance.

In addition to the adaptive reflector and bus with appropriate mass margins, a
system contingency of 20% is added to provide margin for the system integration.

Three different levels of system performance are considered based on current and
predicated mass density of the reflector material py [Vasile et al., 2009a].

MASS BUDGET A Based on Inflatable Antenna Experiment flight hardware, p, =
5 kg/m? [Freeland et al., 1997]. The TRL is assumed to be 6 since flight hard-
ware has been demonstrated, although for an RF rather than optical system. A
subsystem mass margin of 10% is added. See Table 5.

MASS BUDGET B Based on ARISE RF Radio Telescope study py ~ 0.5 kg/m?
[Chmielewski et al., 2000]. The TRL is assumed to be 4 since initial technology
development for the ARISE mission has been undertaken. A subsystem mass
margin of 15% is added. See Table 6.

MASS BUDGET C Based on Innovative Large-Aperture Concepts, py =~ 0.05 kg/m?
[Bekey, 2002]. The TRL is assumed to be 2 since the adaptive membrane system
in at a conceptual level, although mass estimates have been made. A subsystem
mass margin of 20% is added. See Table 7.

Table 5: Mass budget A, py =5 kg/m2.

Item TRL Area (m?) Mass (kg) Margin (%) Total (kg)
Adaptive reflector 6 3000 15000 10 16500
Bus 9 500 10 550
Contingency 20 3410
Dry Mass 20460

The spacecraft mass in Tables 5-7 does not include any additional propellant mass
required at launch. From previous studies by Colombo et al. (2009) and Sanchez
Cuartielles et al. (2009), a low thrust transfer to Apophis would take around 470
days, with a maximum thrust level of 0.6 N for a 3000 kg spacecraft and an I, of
3200 s. Therefore, using the rocket equation [Vallado, 2004] and assuming a low thrust
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Table 6: Mass budget B, py = 0.5 kg/m?.

Ttem TRL Area (m?) Mass (kg) Margin (%) Total (kg)
Adaptive reflector 4 3000 1500 15 1725
Bus 9 500 10 550
Contingency 20 455
Dry Mass 2730

Table 7: Mass budget C, py = 0.05 kg/m2.

Item TRL Area (m?) Mass (kg) Margin (%) Total (kg)
Adaptive reflector 2 3000 150 20 180
Bus 9 500 10 550
Contingency 20 146
Dry Mass 876

transfer, a non-optimised propellant consumption of 40% was added to the calculated
spacecraft mass.

As will be seen in Chapter 3, the orbital control of the fixed mirror configuration
is around 10~* N (see Section 3.6), while for the adaptive mirror case is less than
1075 N (see Section 3.7) which could easily be provided with high Iy, FEEP engine
(Isp = 10000 s) with a negligible mass consumption compared to the transfer.

If a laser system is used instead of the direct imaging, the spacecraft is more complex
and requires more elements. Four representative configurations were used:

1. Primary adaptive solar collector, solar arrays to convert the solar energy into
electric power, semiconductor laser as beaming system, cooling system for solar
arrays and laser (Table 8).

2. Primary parabolic (or spherical) solar collector, solar arrays to convert the so-
lar energy into electric power, semiconductor laser as beaming system, cooling
system for solar arrays and laser (Table 9).

3. Large solar arrays (standard technology) to convert the solar energy into electric
power, semiconductor laser as beaming system, cooling system for solar arrays
and laser (Table 10).

4. Large solar arrays (advanced technology) to convert the solar energy into electric
power, semiconductor laser as beaming system, cooling system for solar arrays
and laser (Table 11).

The mass of the bus and of the primary mirror are based on the previous estimation
for the direct imaging system. The laser mass accounts for the mass of the semicon-
ductor and the cavity but no optics. To compensate, a margin of 50% was added to
account for the mass of casing and optical elements. The mass of the cooling system,
which is generally the most massive part is computed separately.

The mass of the solar arrays in the case of the configurations with a solar collector
is for a standard solar array with high efficiency, a rigid structural support and no
concentrator.
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The cooling system is a critical component for the laser option. If large solar arrays
are used with no solar collector, the cooling system needs only to refrigerate the laser,
not the solar panels. If the solar collector solution is used, the cooling process has two
stages: refrigeration of the solar array, and refrigeration of the laser. The assumption
here is that the laser can operate between 0°C and 40°C while the solar array cannot
operate above 100°C. As the efficiency of a laser can go up to 75%, the majority of
the power will need to be dissipated during the first stage since the efficiencies of solar
arrays are at or below 40%.

For the mass budgets, a reference case was considered consisting of a solar collector
(or equivalent large solar array) with a surface area of 314 m?, collecting a total of
429.5 kW of power at 1 AU. If the solar arrays are operating at 40% efficiency, the
cooling system will have to dissipate 257.7 kW at the first stage.

The radiator is located on the shadow of the primary mirror for all cases. However,
in the case of the adaptive mirror the laser has to be placed between the primary
mirror and the asteroid. Therefore, the heat has to be transported from the laser/solar
panel to the radiator. In order to maintain the temperature of the solar array below
100°C, the radiator has to have a total irradiating area of about 300 m? therefore
comparable with the surface area of the solar collector. Note that the dissipated
power is irradiated in every direction randomly and therefore does not provide an
additional thrust. For any future studies, this assumption would have to be verified
once a structural configuration for the radiators is defined.

To transport the heat, a dual-phase system was used, with ammonia as working
fluid. A pumping system is placed in the shadow, with a mass of 3 kg per pump and
a total of 10 pumps (based on the transport rate of standard pumping systems). The
distance of the solar array from the surface of the primary mirror is assumed to be
2 times the aperture diameter; the diameter of the mirror is equal to 20 m, with a
separation distance of 40 m. A mass density of 0.3 kg/m? was used for the pipes, and
3 g/m? for the ammonia. The system is assumed to transport 200 L of ammonia per
hour, corresponding to an 8 m/s flow speed in the pipes with a Reynolds number
R, = 150000 and a pressure loss in the pipes of 16 bar. The radiator mass is based
on advanced technology for all the configurations [Arslanturk, 2006].

In Table 9, the laser and the solar array are both in the shadow cone of the primary
mirror, resulting in a simplified system with no pumps nor pipes, as there is no need
to transport the heat (compared to the first case with an adaptive mirror, shown in
Table 8). A secondary reflective mirror is placed such that it reflects the concentrated
light through small hole in the centre of the primary mirror, through to the back of
the primary where the laser and arrays are housed. The solar array and the laser are
directly connected to the radiator(s). For a reflectivity of the secondary mirror of 99%,
an additional radiator would be needed, attached to the secondary mirror with a total
area of 7 m? (assuming an absorptivity of 0.2). The total mass of the spacecraft is
lower than in the first case , along with a reduction in the overall complexity of the
cooling system.

Tables 10 and 11 show the cases where no solar collector is used; the cooling system
and the laser are placed in the shadow cone of the solar array. The mass of the solar
arrays are taken from Carpenter and Lyons (2002) for both the standard and for the
advanced technology levels. The standard technology system with large flexible solar
arrays is expected to be heavier for two reasons: the overall power system, including
power distribution and cabling, is larger and solar arrays need stretched lenses to
increase their efficiency. The advanced system in Table 11 would be lighter and closer
in mass to the system in Table 8.
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The calculations performed here did not aim at an optimisation of the performances.
For example, the mass of propellant required for the transfer, estimated as 40% of
the dry mass, could be largely reduced. Another possibility to reduce the mass of the
spacecraft is to use frequency selective mirrors. A substantial part of the mass of the
spacecraft is due to the cooling system of the solar panel, which can range between
15% to 27% of the dry mass of the spacecraft for a 5 m and 10 m diameter mirror,
respectively. One idea is to let the mirror absorb the part of the spectrum that the

solar cells are not using.

Table 8: Adaptive primary mirror plus laser.

Component Specific mass  Mass  Margin  Subtotal Accumulative
(kg) (%) (kg) total (kg)
Primary mirror 0.1 kg/m2 32.52 25 40.65 40.65
Laser 0.005 kg/W  601.24 50 901.86 942.51
Solar arrays 1 kg/m2 3.14 15 3.611 946.12
Cables 20% Melec 189.22 0 189.22 1135.35
Radiator (solar array) 1.4 kg/m? 420 20 504 1639.35
Radiator (laser) 1.4 kg/m? 112 20 134.40 177.75
Pipes 0.3 kg/m 12 20 14.4 1788.15
Pumps 10x3 kg 30 20 36 1824.15
Bus - 500 20 600 2424.15
Propellant 40% Mary 969.66 969.66 3393.80
Tanks 10% mipuer 96.97 0 96.97 3490.77
Table 9: Fixed primary mirror plus laser.
Component Specific mass  Mass  Margin  Subtotal = Accumulative
(kg) (%) (kg) total (kg)
Primary mirror 0.05 kg/m? 15.71 25 19.63 19.63
Directional mirror 0.1 kg/m? 0.650 25 0.813 20.45
Laser 0.005 W/m?  601.24 50 901.86 922.30
Solar arrays 1 kg/m2 3.14 15 3.611 925.92
Cables 20% Meelec 185.18 0 185.18 1111.10
Radiator (solar array) 1.4 kg/m? 420.0 20 504.0 1615.10
Radiator (laser) 1.4 kg/m? 112.0 20 134.4 1749.50
Radiator (reflective mirror) 1.4 kg/m? 9.79 20 11.76 1761.26
Bus - 500 20 600 2361.26
Propellant 40% Mary 944.50 0 944.50 3305.76
Tanks 10% M fuer 94.45 0 94.45 3400.21
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Table 10: Primary solar array plus laser, using standard solar array technology.

Component Specific mass Mass Margin  Subtotal Accumulative
(kg) (%) (kg) total (kg)
Directional mirror 0.1 kg/m? 0.3251 25 0.406 0.406
Laser 0.005 kg/W 601.24 50 901.86 902.26
Solar arrays 150 kg/W 1145.22 15 1317.00 2219.26
Cables 20% Melec 443.79 0.00 443.79 2663.11
Radiator (laser) 1.4 kg/m? 112.00 20 134.40 2797.51
Bus - 500.00 20 600.00 3397.51
Propellant 40% Miary 1359.01 0 1359.01 4756.52
Tanks 10% M fuer 135.90 0 135.90 4892.42

Table 11: Primary solar array plus laser, using advanced solar array technology.

Component Specific mass  Mass  Margin  Subtotal Accumulative

(kg) (%) (kg) total (kg)
Directional mirror 0.1 kg/m? 0.3251 25 0.406 0.406
Laser 0.005 kg/W  601.24 50 901.86 902.26
Solar arrays 350 kg/W 490.81 15 564.43 1466.69
Cables 20% Meelec 293.28 0 293.28 1760.03
Radiator (laser) 1.4 kg/m? 112.00 20 134.40 1894.43
Bus - 500.00 20 600.00 2494.43
Propellant 40% miary 997.77 0 997.77 3492.20
Tanks 10% M puer 99.78 0 99.78 3591.98

Discussion

As an example, based on the mass budget for the direct imaging system, a formation
of 26 spacecraft with the mirror technology rated at TRL 4 would require an 80
m diameter mirror, with a mass of between 3.5 and 4.5 metric tons per spacecraft
at launch. For a more reasonable formation configuration, one would need a lighter
adaptive mirror, which is presently at TRL 2.

A system based on a solar pumped laser with a primary mirror of smaller size (e.g.,
20 m diameter) would have a comparable mass per spacecraft for the same number
of spacecraft.

It should be noted that for both the direct imaging system and for the laser system
the mass is directly proportional to the surface area and therefore it is proportional
to the square of the aperture of the collector. This would suggest in both cases, to
opt for many smaller spacecraft rather than a single larger one. On the other hand,
a small reflector in the case of a direct imaging system would also be only able to
provide a low concentration factor. A complete trade off of the number of spacecrafts
against the mass and size is left for future work in this area.

The TRL of the laser solution strongly depends on the TRL of the solar arrays
and the laser itself. Most of the assumptions are based on current laboratory tests
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in both areas (corresponding to a TRL of 4 or higher) but the overall system for
space applications has still to be developed (TRL 2 — 4). The investment in the
development of highly efficient lasers and solar arrays in independent of the study of
asteroid deflection, and is progressing very fast due to the thousands of commercial
applications.

It is important to note that the mass budgets are based on systems with a total
system concentration factor of 2500, to be comparable with the system analysed in
the paper by Sanchez Cuartielles et al. (2009). This assumption corresponds, in the
paper of Sanchez, to a deflection of over 20000 km with a single 60 m diameter
mirror for 2 years operation time prior to the expected impact. If the warning time is
extended from 2 to 5 years, the required concentration ratio can be reduced for the
same deflection distance.

Figure 20 shows the effect of different efficiencies of the laser system (or laser plus
solar arrays in the case of the indirect pumping), with the number of spacecraft as
a function of the aperture area on the collector for each spacecraft. As explained
previously, the concentration ratio is only a factor of the mirror surface area that is

perpendicular to the incoming solar rays, not the total surface area of the reflector.

Therefore, the deeper the parabola, or more tilted the mirror is with respect to the
Sun, the less power the mirror will collect. Both plots in Fig. 20 assume a constant
system concentration ratio of 2500, meaning each individual spacecraft has its own
concentration ratio equal to the system concentration ratio, divided by the number of
spacecraft. For a given illuminated area on the asteroid, Aspee, it is straightforward
to calculate the required surface area of the mirror aperture, with a given efficiency
Nsys Of the ‘beaming and focusing’ system as a whole.

Continuing with the example above, for an equivalent total aperture area of 7(60/2)?
(i.e., the single 60 m diameter mirror) and a system concentration ratio of 2500, and
for the same spot areas in Fig. 20, the required number of spacecraft are given in
Table 12.

Table 12: Required number of spacecraft for a primary aperture area of 2827 m? and a
concentration ratio of 2500.

Spot area, Agpot Number of spacecraft

Nsys = 0.2 Nsys = 0.4

0.2 m? 0.8841 ~ 1 0.4421 ~ 1
1.2 m? 5.3051 ~ 6 2.6526 ~ 3
2.2 m? 9.7261 ~ 10  4.8631 ~ 5
3.2 m? 14.1471 ~ 15 7.0736 ~ 8
4.2 m? 18.5680 ~ 19  9.284 ~ 10

5.2 m? 22.9890 ~ 23 11.495 ~ 12
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Figure 20: Surface area of reflector versus number of spacecraft, for various concentration
ratios.



ORBITAL DYNAMICS AND CONTROL

Solving an optimal control
problem is not easy. Pieces of the
puzzle are found scattered
throughout many different
disciplines.

John T. Betts (2000)

This chapter will analyse the dynamics and control of the spacecraft in the proximity
of an asteroid. The aim is to identify possible orbital solutions to place the spacecraft
close enough to the asteroid to guarantee the required power density yet far enough
from the debris plume, while avoiding any eclipse or occultation that may impinge on
a clear line of sight between the spacecraft and the Sun.

The analysis of the spacecraft dynamics and control is one of the key points in
determining the feasibility of the multi-mirror approach with solar sublimation. One
of the main issues related to the use of this deflection strategy is the contamination
of the mirror system due to the debris coming from the asteroid. The relative motion
of the spacecraft with respect to the asteroid also imposes some severe constraints on
the control of the projected beam.

Two different ways of positioning and controlling the spacecraft in the proximity
of the asteroid are presented: closed formation and artificial equilibrium points.

3.1 BACKGROUND

The following section presents some necessary background on the various concepts,
definitions and theorems used in the analysis of the dynamics and control. An in-
troduction to spacecraft formation flying is given, along with a more mathematical
description of the general equations governing formation dynamics.

3.1.1 Introduction to formation flying

The exact definition of spacecraft formation flying is subjective. Mauro (2005) in his
PhD dissertation, for example, defined it as:

A group of spacecraft which orbit maintaining a certain configuration
which is characterized by small relative distances with respect to the orbit
radius.

while Adams et al. (1996) out of Stanford University, gave a more general definition:

The coordinated motion control of a group of vehicles where the vehicle po-
sitions relative to each other are important. These vehicles may be groups
of trucks, aircraft, spacecraft, or mobile robots.

It is this small relative distance between spacecraft that is often used to distinguish
spacecraft formation flying from spacecraft constellation design — such as the Walker
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delta constellation [Walker, 1984] used by the US global positioning system (GPS), see
Fig. 21a. This is not always true however, as many ‘formation flying’ missions today
are designed with spacecraft separated by hundreds or even millions of kilometres
from each other. The distinction aside, a spacecraft formation can often be thought
of as the equivalent of one, large virtual spacecraft with one overall mission.

The benefits of a formation of spacecraft versus a single large spacecraft are, for
the most part, common sense. In the environment of space, where no maintenance,
refuelling or upgrading are possible, the spacecraft simply must work. Redundancy
is paramount. With formations, the risk of a malfunction or failure is decreased by
dividing the work among several spacecraft — this increases redundancy, and decreases
the complexity (and generally mass) of each individual spacecraft. There is also a po-
tential savings in cost as well, as the production of many smaller, identical spacecraft
drives down the manufacturing cost versus the production of one large, specialised
spacecraft.

The disadvantage of a formation however, is a drastic increase in the complexity
of the design. With so many spacecraft in close proximity, very accurate control of
the absolute and relative position of each spacecraft is required. From an user point
of view, the formation should act as the equivalent of a single spacecraft. Where a
single spacecraft will follow only one orbit, in a formation each individual spacecraft
must be able to track its own course as well as the formation as a whole. Moreover,
in cases with small relative separation distances, issues like collision avoidance and
thruster plume avoidance must be accounted for in the mission design.

With all this complexity however, the concept of a formation, versus a single space-
craft, opens up a wealth of new applications. Virtual or sparse antennas with diameters
up to 10 km are now possible [Bekey, 2002]. For fields such as interferometry or Earth
observation, a large antenna means higher gain and smaller beamwidth, ergo the abil-
ity to see farther and in more detail. A formation also allows the measurement of
gravitational and/or magnetic fields by tracking the relative drift of each spacecraft
in the formation. The joint ESA-NASA mission LISA* (Laser Interferometer Space
Antenna) is an example of this technology, with the mission objective to measure low
frequency gravitational waves by precisely monitoring the relative movement between
three spacecraft placed 5 million miles apart.

Other proposed missions using formation flying are NASA’s Terrestrial Planet
Finder (TPF) project [Beichman et al., 1999; Lawson, 2001], with a proposed in-
frared interferometer based on a fixed formation of small telescopes (Fig. 21e). ESA
has a similar mission planned, under their Cosmic Vision programme [Fridlund, 2004]:
“Darwin is a flotilla of four or five spacecraft that will search for Earth-like planets and
analyse their atmospheres for the chemical signature of life. One spacecraft will be a
central communications hub. The other three will function as light collectors, redirect-
ing light beams to the hub spacecraft?” (Fig. 21b). PROBA-3 (PRoject for OnBoard
Autonomy) is another planned ESA technology demonstrator for various guidance,
navigation and control (GNC) algorithms developed for formation flying. Already in
operation (2000-2009), although not without many problems along the way, is the
Cluster mission (Fig. 21c). “Cluster is constituted of four identical spacecraft that fly
in a tetrahedral configuration. The separation distances between the spacecraft will
be varied between 600 km and 20 000 km, according to the key scientific regions*.”
Other NASA missions include DART (Demonstration of Autonomous Rendezvous

*http://lisa.nasa.gov/, link valid as of February 23, 2010.
Thttp://www.esa. int/science/darwin, link valid as of February 23, 2010.
ihttp://sci.esa. int/cluster, link valid as of February 23, 2010.
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(a) GPS Walker configuration (image cour- (b) Darwin mission (image courtesy of ESA).
tesy of NOAA).

(c) Cluster mission (image courtesy of ESA). (d) PRISMA technology demonstrator (im-
age from DLR).

S
(e) NASA TPF interferometer (image courtesy of NASA).

Figure 21: Formation flying missions.
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Technology) launched in 2005, which incidentally collided with the rendezvous space-
craft, MMS (Magnetosphere Multiscale Mission) a 4-spacecraft formation in a closely
spaced tetrahedral configuration currently in the preliminary design stage, as well
as conceptual designs like STRA (Solar Imaging Radio Array) and MAXIM (Micro-
Arcsecond X-ray Imaging Mission) which envisions a large interferometer to image a
black hole, with up to 33 spacecraft flying in formation with a precision of 20 nanome-
tres, plus a detector spacecraft 500 kilometres behind the mirrors. Other agencies also
investigated formation flying, for example the now-defunct TechSat21 project devel-
oped by the US Air Force [Das and Cobb, 1998; Burns et al., 2000], plus numerous
smaller technology demonstrators such as the Swedish PRISMA mission (Fig. 21d),
which should be launched in 2010 to test GNC algorithms [Persson et al., 2005; Gill
et al., 2007].

Over the past decade, many authors and scholars have complied reviews on the
subject. Scharf and his team at JPL/CalTech presented a comprehensive survey of
spacecraft formation flying guidance [Scharf et al., 2003] and control [Scharf et al.,
2004] methods. Alfriend and Yan (2005) published a paper on the evaluation and
comparison of basic relative motion theories, including the effect of modelling errors.
In addition, there are PhD and Masters’ dissertations which present more detailed
background and comparisons of the various techniques for planet orbiting formation
designs [Sai Vaddi, 2003; Roberts, 2005; Mauro, 2005; Sengupta, 2006]. In this study,
only those related to deep space formations are studies, and therefore do not include
any of the gravitational Js terms, gravity gradient, atmospheric drag and other orbital
perturbations related to orbits in or near the atmospheres of planets.

There are three typical configurations used in spacecraft formation flying: leader-
follower, virtual structure and behavioural. These configurations encompass both the
dynamics and control of the formation, as one directly affects the requirements of the
other. Along with recent applications to space-specific research, many of the papers
and work done originated within the field of robotics, and to a lesser degree the control
of multiple aircraft and unmanned aerial vehicles (UAV) [Schultz and Parker, 2002].

LEADER-FOLLOWER Leader-follower is very much like it sounds. One spacecraft
is designated as the leader, with the remaining spacecraft trailing behind, offset typ-
ically by a time interval. Several of the leader-follower tracking techniques studied
include: leader tracking, nearest neighbour tracking and barycentre tracking [Wang
and Hadaegh, 1996]. Adaptive control laws have also been developed to account for
such problems as mechanical limitations of devices in space, and common space distur-
bances. A good description of a leader-follower design for a Earth-orbiting formation
is given in [Kapila et al., 1999]; Kristiansen and Nicklasson (2009) also published a
review on feedback control methods for leader-follower configurations. This type of
formation flying is also known as ‘chief-deputy’, or occasionally as ‘master-slave’.

VIRTUAL STRUCTURE Virtual structures are defined as “a collection of elements
[...] which maintain a (semi) rigid geometric relationship to each other and to a frame
of reference” [Tan and Lewis, 1997]. These elements are typically robots, or in this
case, individual spacecraft in a formation. Beard et al. (2001), who has written a
number of papers on formation and robotic control, sums up the approach nicely:

In the virtual structure approach, there are three main steps: first, the
desired dynamics of the virtual structure are defined, second, the motion
of the virtual structure is translated into the desired motion for each agent,
and finally, tracking controls for each spacecraft are derived.
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The virtual structure approach has been used, for example, in study of tethered space-
craft formations [Blake and Misra, 2008; Pizarro-Chong and Misra, 2008].

BEHAVIOURAL Last, but not least, is behavioural control. The basic idea is that
various desired behaviours are associated to a spacecraft, for example collision/plume
avoidance or formation keeping, with a certain priority, or weight, attached to each.
The resultant placement and control for the spacecraft are a combination of these
specific behavioural algorithms [Scharf et al., 2004]. Behavioural control is a reactive
type of control, acting as a middle layer between the high level mission objectives and
goals, and the bottom physical layer controlling the thrusters and hardware.

This is a relatively nascent field, with the majority of the work within the scope
of spacecraft formation flying done in the past decade. Arkin [Arkin, 1998; Balch
and Arkin, 1998] is a benchmark reference for behavioural control for ground-based
robotics. Applying to this formations, Lawton (2000) for example, a protegee under
Beard, wrote his doctorate thesis focusing on the development of a behaviour based
control strategy based on ”the coupled dynamics approach to formation flying”, in-
cluding feedback within the control laws. McInnes et al. [McInnes, 1995; McQuade
et al., 2002; Badawy and McInnes, 2009] has published numerous papers on behaviour
control using a potential field method.

3.1.2  Proximal motion

In a Keplerian two-body dynamical system, the motion of an orbit can be described
by the equation,

. 1%
r=——r 3.1
5 (3.1
This can be extended to the case of the proximal motion of body D relative to body
C in inertial space (nominally corresponding to the standard nomenclature of chief C'

and deputy D formations),

Fo = —%rc (3.2)
C
re +x
. 1 [
—_ . __ 7 3.3
rp 3 rp 3 y (3.3)
z

Proximal motion, in this context, is generally described in the Hill frame — a local,
rotating reference frame measured in the radial X, transverse y and normal z directions
defined in (3.4). The normal is defined as parallel to the angular momentum vector h
of the spacecraft.

r

X=1= - (3.4a)
y=hA# (3.4b)
Z= % (3.4¢)

Figure 22 gives a visual representation of this reference coordinate system. Typically
the Hill frame is centred on the chief spacecraft, with the motion of the deputy space-
craft described relative to the chief, however the Hill frame is valid for any object,
virtual or not.
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(a) Reference frames inertial space. (b) Relative to the chief reference
frame.

Figure 22: Hill reference frames for a chief-deputy spacecraft formation.

Integrating (3.2) and (3.4), the exact nonlinear relative equations of motion are,

, . T .

¥ =20 (y - yrZ) + x? + % — %(Tc + ) (3.5a)

ij=—20 (:E - xrc) +y? — %y (3.5b)
e rd

. 1%

Z= _EZ (3.5¢)

where v is the true anomaly. The relative motion between two spacecraft, both in
closed orbits (i.e. circular or elliptical), can be solved either by numerically integrating
(3.5) or by analytical means.

One set of analytical equations [Vadali et al., 2002; Sai Vaddi, 2003] is based on the
general coordinate frame identities in (3.4),

or’-r
2= (3.6a)
or' - (hAr)
y=or (BAT) (3.6b)
[hAx
T .
5= 5rh h (3.6¢)
Lo O orteE (ort r)g(rT 1) (3.6d)
T T
. 6i"(hAr)+0r"(hAr+hAt) or"(hAr)(hAr) (hAr+hAR)
— - 3 (3.6¢)
[h A [h A
T T T T, TLT

h h3
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where the relative position vector from the chief to the deputy is given by,

or=r5 -1 =axtyy+22 (3.7a)

[6r€|| = 0r = /a2 + 42 + 22 (3.7b)

Note that r = r¢ and r, are the vectors from the central body (e.g., the Sun) to the
chief or deputy spacecraft, measured in the Hill reference frame of the chief C (not
the inertial reference frame).

A number of simplified linearised equations exist as well. The most widely-used are
the Clohessy-Wiltshire (HCW) equations developed in 1960 [Clohessy and Wiltshire,
1960], based in part on work done by Hill in 1878.

i = 2ngy + 3n’x (3.8a)
i = —2ni (3.8b)
5= —n’z (3.8¢)

Negating the secular terms by setting yg = —2z9n and solving analytically, the
equations become,

x(t) = 20 sinnt + xo cosnt (3.9a)
n
24 21
y(t) = 210 cosnt — 2xgsinnt — 2T 4 Yo (3.9b)
n n
2(t) = 2 innt + 2o cosnt (3.9¢)
n

where n is the mean motion, equal here to the rotational velocity since the orbit
is circular. These equation form the basis for formation flying design, however are
only valid for orbits that are perfectly circular (¢ = 0) and where, in the inertial
frame, the relative distance between the two spacecraft is orders of magnitude less
compared to the orbital radius from the central body (0r < r). As can be seen from
(3.8), they account for gravitational, Coriolis and centripetal accelerations. For more
information, many text books such as Vallado (2004) for example, give more detailed
deviations of these equations. The other drawback of the HCW equations is that they
were originally derived for short-term spacecraft rendezvous, not long term orbital
propagation.

Since the paper of Clohessy and Wiltshire, several authors have extended their work
to: elliptical orbits [Carter and Humi, 1987; Inalhan et al., 2002; Wang and Yang, 2003],
additional perturbations such as the J; effect for Earth-centric orbits [Schweighart and
Sedwick, 2002; Sengupta, 2006] or Halo orbits [Scheeres et al., 2003], and higher-order
terms [Karlgard and Lutze, 2003; Mitchell and Richardson, 2003; Kasdin et al., 2005]
just to name a few. Notwithstanding the well-known equations of Lawden (1963) and
Tschauner and Hempel (1965) who were the first to independently extend the HCW
equations to the elliptical orbit reference case.

An alternate form of representing orbital motion are Keplerian elements,

k=la, e 1 Q5 w

, V] (3.10)

3 ) )

where a is the semi-major axis, or a maximum distance from the geometric centre of
the orbit to a point along the orbital path, e is the eccentricity which is a measure of
the circularity of the orbit (e = 0 being a perfect circle and e > 1 being a hyperbola),
1 is the inclination of the orbital plane, 2 and w are angles determining the location of
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the line of intersection between the orbital plane and the reference plane, and orbital
plane and periapsis respectively, and lastly v is the true anomaly. The latter term
is the only time-varying parameter, and represents the angle between the periapsis
of the orbit (the location of the minimum distance from the focal point to the orbit
path) and the actual location of the spacecraft at that point in time relative to the
focal point of the orbit.

The general equations of motion given in (3.5) can be linearly mapped from Carte-
sian Hill coordinates to a set of orbital elements by means of a transformation matrix
F [Schaub and Junkins, 2003].

X=[F(k) 6k = odk=[F (k)] X (3.11)

where X(t) = [z, y, 2, &, 9, Z]is the state vector containing the position and velocity
components of the spacecraft in the Hill reference frame at a given time, and 0k(t) =
k, — k¢ = [da, de, di, 692, dw, Ov] is the set of orbital element differences between
the chief orbital element set k. and the deputy k;. Appendix A lists the full set of
equations for the two matrices F and F~!. This research follows the research done
by Schaub (2004), Alfriend and Junkins et al. on orbital element differences, however
other researchers also developed similar methods in parallel, for example Wei (2002).

Using the equations (3.11) above, a set of linearised equations for the relative orbital
motion can be developed in order to propagate the state vector of the spacecraft
forward in time. The equations of motion can be rearranged to use the true anomaly
as the variable parameter instead of time. Indeed, using the rate of change of a central
angle is preferable when working with periodic orbits, rather than simply propagating
forward for a set amount of time (typically equal to the period of the orbit).

A set of equations for the linearised relative motion, represented by matrix F in
(3.11), have been developed based on the true anomaly of the chief at time ¢ [Schaub
and Alfriend, 2002],

z(v) = —da+ ae 2V 5r — (acosv)de (3.12a)
a n
T 9 sinv .
y(v) = (1 +ecosv) M + row + r—5—(2 + ecosv)de + (rcosi)oQ  (3.12b)
n n
z(v) = r (sin 67 — cos O sini §92) (3.12¢)
i(v) = “oa+ 2PV SM 4 (aisiny) de (3.12d)
a
y(v) = % (#(1 + ecosv)? — 2rive(1l + ecosv) sinv) 6 M + réw
n
+ % (7sinv(2 + ecosv) + i cosv(2 + ecosv) — rewsin® v) de + (i cos i) 6§
n
(3.12¢)
Z2(v) =7 (sin@ 6i — cos §sini 6Q) + r (v cos 6 6i + 7 sin O sin i ) (3.12f)

where = v/1 — €2 and 6§ = v + w is the true latitude.

Kepler’s second law states that for a closed orbit “a spacecraft will sweep out equal
areas in equal time” [Vallado, 2004]. For an elliptical orbit, the true anomaly is not
linearly varying with time as the velocity of the spacecraft is constantly changing
depending on the position relative to the central body. Kepler’s equation introduces
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an alternate angular measurement of the position of the spacecraft, the mean anomaly
M, based on the mean angular velocity, n.

ti
/U

The mean anomaly corresponds to a uniform angular motion on an equivalent circle of
radius equal to the semi-major axis, a, of the elliptical orbit. The relationship between
the true v, mean M and eccentric F anomaly is as follows,

tan — (3.14)
M=FE—esinE (3.15)

Figure 23 shows the geometric relations. Note that M has no geometric representation,
it is a mathematical construct only. By replacing the difference in true anomaly with
the difference in mean anomaly, M, the equations can be written in a form which is
more convenient when looking for periodic solutions.

S
1

7 C
a

Figure 23: Geometric representation of the true v and eccentric £ anomalies of an elliptical
Keplerian orbit. Note that the mean anomaly M is a mathematical quantity only,
not a physical one. The semi-major a and semi-minor b axes of the ellipse are
shown along with the radius vector r from the central body C' to the spacecraft S.
The point P is on a reference circle with radius a measured from the geometric
centre of the ellipse O. The eccentricity of an ellipse is given by va? — b?/a.

In order to minimise the required station-keeping of the spacecraft, a bounded, or
periodic, orbit is advantageous. The bounded orbit is essentially one that will return
to the same position after a fixed period of time and thus, not need any external
control to maintain the spacecraft in the orbit. The conditions of periodicity are such
that the period of the formation orbit must be equal to the period of the NEO in
order not to incur any drift. This is done by setting the difference in semi-major axes
equal to zero since the equation for the period of an orbit is a function of only the
semi-major axis and gravitational constant, p.

By setting da = 0, the variation of the mean anomaly é M becomes constant with
time. A periodic orbit can be found for almost any point in space surrounding the

49



3.2 ASTEROID DEFLECTION MODEL

chief orbit. However, as in the case of any space mission, there are several mission-
specific requirements that restrict the choice of the operational orbit, such as being
in close proximity to the surface.

27‘1 (2 + 37“6 Cosé)cos(Qw)) + figst&rzoa) sin F
et (214 22 cosfos(20)) — esind) | | y
ba=0= ’ : (3.16)
2a2esin 0 T
247 (1 4+ 226 cos 6 cos(2w)) + T“Ceots?gg) sinf v
L 0 112 |

Equation (3.16) also demonstrates the difference in complexity, and the obvious benefit
of switching from the Cartesian Hill frame to an orbital element set. Given initial
conditions for the x and y positions, and the radial velocity i, it is possible to rearrange
(3.16) to find the required transversal, or along-track, velocity y for a periodic orbit.
As can be seen from the equation, the calculation is independent of the out-of-plane
elements, z and 2.

Once the complete set of initial conditions are determined, the orbit can be prop-
agated forward. As mentioned earlier, using the Cartesian Hill coordinates requires
the integration of 6 time-varying parameters. By switching to an orbital element set,
there is only one time-dependant parameter, v, that can be integrated over the angular
range [0, 27].

A state-transition matrix, ®x, can also be used to determine the position of the
formation spacecraft at any given point in time [Gim and Alfriend, 2003]. The matrix
determines the sensitivity of the state vector X at time ¢ relative to the initial state
vector at tg.

[ oxX(t) ] 0 dk(t) _1
ex(t.t0) = | s ] = (o) | 2280 B (3.17)
The state vector of the spacecraft can then be determined by,
X(t) & [@x(t, to)] X(to) (3.18)

The implementation and full set of equations can be found in Appendix A.1.

3.2 ASTEROID DEFLECTION MODEL

The asteroid 99942 Apophis was chosen as a test case based on its popularity. Com-
pared to other near Earth objects, Apophis has a relatively high probability of impact-
ing the Earth in April 2036, although the actual cumulative impact probability is low,
only 2.2x107° [NASA Near Earth Object program, 2009a]. Whether the asteroid will
impact the Earth is contingent upon the asteroid’s fly-by of Earth in 2029. During
that event Apophis could pass through a gravitational keyhole, a precise region in
space no more than about 400 m across, which would set up future resonant impacts
starting on 13 April 2036.

As with nearly all NEOs, the orbital data for Apophis has been gained from Earth-
based observations, which are limited based on the visibility of the asteroid from the
astronomy station, availability of the station, etc. [Chesley, 2005]. As a result, the
present knowledge of the orbit of Apophis is not good enough to provide an accurate
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long term prediction of its evolution. This underlines the need for longer term mea-
surements from a space-based platform [Schweickart, 2005]. Table 13 gives the orbital
and physical data of the asteroid used in this study, and, if known, the estimated
uncertainty [NASA Near Earth Object program, 2009a]. The physical dimensions are
estimated using an ellipsoidal model for the asteroid, based on the observed magni-
tude of 19.7, where a; < b, < ¢; are the three radii along the three orthogonal axes
(see Fig. 24) [Delbo et al., 2007]. Figure 25 shows the orbit of Apophis relative to the
nearby planets.

Table 13: Estimated and observed orbital and physical properties of Apophis 99942 [NASA
Near Earth Object program, 2009a].

Element Measured Value Uncertainty, 1o
Semi-major axis as 0.922438 AU 2.3613x1078
Eccentricity e 0.191204 7.6074x1078
Inclination in 3.331420 deg 2.0238x107°
RAAN Qa 204.442505 deg 0.00010721
Argument of periapsis  w, 126.404227 deg 0.00010632
Period Ty 323.596917 d 1.2426x107°
Mean motion N 1.112495 deg/d 4.2718x1078
Mass mMa 2.7x10'° kg
Gravitational constant s 1.801599%x107° kme‘/s2
Physical dimensions ar,biy,ee 191 m, 135 m, 95 m 60
Rotational velocity Wa 5.8177x107° rad/s
Albedo Sa 0.33 0.08

Figure 24: Ellipsoid model used for the asteroid, with a;, b, and ¢, giving the radial dimen-
sions.

The minimum orbital intersection distance (MOID) is defined as the separation
distance at the closest point between two orbits, e.g. Apophis and the Earth. The
deviation distance is defined here as the difference in r, between the original, un-
deviated orbit and the deviated orbit at tyemp [Colombo et al., 2009] (see Fig. 26).
Non-linear equations were derived for determining the difference in r, are expressed
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Figure 25: Orbit of the NEO Apophis, compared to the orbits of the Mars, Earth and Venus.

as a function of the ephemeris in the Hill reference frame A (equal to chief reference
frame C in Fig. 22) centred on the asteroid, with Ak giving the difference in Keplerian
parameters between the undeviated and deviated orbit.

The deflection formulas used in the study by Colombo et al. (2009), also shown
in (3.12), are based on proximal motion kinematics with a first order approximation
contingent on dr < 7,. Since the distance Arge, between the undeviated (A4p) and
deviated (Agey) asteroid orbits can be of the order up to the Earth-Moon distance,
the approximations start to lose accuracy at large distances. Moreover, the linearised
proximal motion equations do not account for any out of plane motion, e.g. the incli-
nation of the orbit.

Therefore, a general set of nonlinear equations was derived in terms of the orbital
element differences (see Appendix A.1 for the full derivation) [Maddock and Vasile,
2008a).

Arde'u = rAdev\IJ - 0 (319)
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Coast Arc

Thrust Arc

Figure 26: Definition of deviation distance at the MOID.

&cos(0,, + Af) +sin(b,, + Af) (psinb,, — cos(is, + Ai)sin AQ cosb,,)
U= 1 —Ccos(fs, + AB) + sin(fs, + AB) (0cos by, + cos(is, + Ai)sin AQsinb,,)
—cos(0y, + Af) sin AQsini,, + wsin(,, + Af)

where
W = COS iy, 8in(ia, + Af) — cos AQ cos(iy, + Ad)sini,, (3.20a)
0 = sini,, sin(iy, + Af) + cos AQ cos(is, + Ai) coSiy, (3.20b)
& = cos AQd cos 0, + cosi,, sin AQdsin b, (3.20c)
¢ = cos AQsinf,, — cosi,, sin AQ2cosb,, (3.20d)

The deviation vector Arge, =T, , —Ia, is from the undeviated to the deviated orbit,
in the relative {r-t-h} Hill frame of the undeviated orbit where ¥ is the coordinate
system transformation matrix.

Figure 27 illustrates the error introduced by the linearisation of the equations in
(3.12), compared with the nonlinear equations in (3.19). The error was calculated for
each of the x, y and z components, against the ratio of the relative distance, and the
distance from the central body. The largest values for both dr and r over one full
orbit were used for the comparison. The relative error was determined by,

m3x|5rN —ork

] = —————————— 3.21

el 5TzamA ( )

where 67N, 6rL are the relative distances calculated using the nonlinear and linear
forms respectively, and 67\ is the value of 67" when (max |[5r" — L) is true.

Examining the figures, for a small ratio such as 1 km: 1 AU (or ér/r ~ 107%), the
error is negligible, around 1079 for all axes. However, at a dr around the Earth-Moon
distance, i.e. r/r ~ 1073, the errors start to impact the accuracy of the calculations,
with the relative error in the x and z directions both around 0.01.

The change in the orbital parameters in (3.19) are calculated by numerically in-

tegrating the Gauss planetary equations in (3.23) [Battin, 1999] using an applied

53



Linearisation error, (erel)x

Linearisation error, ()
rel’y

Linearisation error, (arel)Z

=
°© |
EN

=
© |
[}

10°

3.2 ASTEROID DEFLECTION MODEL

10° 10" 10°

max(?Sr)/max(rN £ O)

(a) Relative error along the radial direction, z.
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(b) Relative error along the transverse direction, y.
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(c) Relative error along the normal/out-of-plane direction, z.

Figure 27: Relative error between the linear and nonlinear forms of the proximal motion

equations as a function of the ratio of the maximum ér/r.
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thrust vector operating solely in the tangential direction u = ug4e,, and induced by
the sublimation method.

" dk(ugey
Ak =k, ., —ky, = / dk(8e,)

dt (3.22)
b dt

where the rate of change of elements k are given by,

da 2a%v
da _ ) 3.23
o o (3.23a)
de 1 rsiny
e ) 3 — 2
it ( (e + cosv) uy, - un) (3.23b)
di  rcosf
—_ = 3.23
- " (8.23¢)
dQ)  rsinf
e _ L 3.23d
dt hsini b ( )
dw 1 r rsin 6 cost
do 17, . _ rsmucosy 2
dt ev (2 SI0LY Uy + (26 + a cos 1/) u") hsini (3.23¢)
dv h 1 . r
E=2 o (2 sinv u, + (26 + ~ cos l/) un) (3.23f)
M v/

aM n— YOP (QSinV (1 + €2T> up + reosy un) (3.23g)
dt eav P a

given,
p=a(l—¢é?) (3.24)
h=.\/pp (3.25)
2
v=y|EE (3.26)
T a

n— \/g (3.27)

where n is the mean orbital motion, and u = [uy, Uy, up] the applied control compo-
nents in the tangential direction, also equal to NEO velocity unit vector (u,), normal
to the tangent within the orbital plane (uy,), and in the direction of angular momen-
tum (up).

Note that two different forms of Gauss equations are used within the dynamics and
control simulations: the set described here in {v-n-h} coordinates, and an alternate
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form using the radial-transverse-normal directions {r-¢-h}, given below. This second
form is more suitable when dealing with Hill frame dynamics.

2

z—z = 2% (e sinv u, + 2;7 ut) (3.28a)

d 1

d—: = (psinv u, + ((p+7) cos f + re)) (3.28Db)

di  rcosf

% — h Up, (328C)
dQY  rsiné

dt ~ hsing " (3.28d)
d—w—i(— cosv uy + ( —I—T)Sinuu)—mu (3.28e)
it he' AP ! hecosi " '

d h 1

d—lz =5t (pcosv u, — (p+7)sinv uy) (3.28f)
dM 1
o :n—i-%((pcosu—%e) up — (p+7)siny ug) (3.28g)

In both these cases, the third axis is measured in the same direction, parallel to the
angular momentum vector h. The conversion between the two reference systems is,

]

Colombo et al. (2009) determined that the change in angular location, in this case
given by the mean anomaly, is calculated at the MOID by,

<>

(3.29)

>

esinv —(1+ ecosv) ]

1+ecosv esinv

Lam
AM = o dt + nay (to — tyow) + 14, (fyomn — t4) (3.30)
to

This is used to propagate the equations of motion for the asteroid forward to the
location of the original MOID, in order to calculate the total deflection distance
achieved.

The thrust produced by the deflection method is a direct function of the rate of the
expelled surface matter, ey, [Sanchez Cuartielles et al., 2009].

dmemp Ymaz  (lout 1 \/T
—— = 2Up — | Pin — Qrad — Qcon — | dtd 3.31
i v t/yg /; H Q d Q d n Y ( )

in

where [tin, toyt] is the duration for which a point is illuminated, [yo, Ymaz| are the limits
of the vertical illuminated surface area (i.e. orthogonal to the direction of rotation
of the asteroid), H is the enthalpy of sublimation and v, is the linear velocity of a
point as it travels through the illuminated spot area. The spot area for the simulation
is assumed to be flat (i.e. 2D), such that the velocity as an infinitesimal point moves
through it, is linear. In reality, the area under the spot would be irregular, at best a
small area of an ellipse.
The input power due to the solar concentrators is given by,
Pin = nsyscr(l - gA)@ (332)

o/A

where ¢, is the albedo of the asteroid, (Sy/ Té /A) is the solar flux at the mirror surface
(see Section 2.2.1), 15y, is the system efficiency, and C, is the concentration ratio in

56



3.2 ASTEROID DEFLECTION MODEL

(2.1). The heat losses due to black-body radiation and conduction loss are defined,
respectively, as,

Qrad = ceppT* (3.33)

CaKaAPA
Tt

Qcond = (Tsubl - TO) (334)
where ¢ is the Stefan-Boltzmann constant, €y, is the black body emissivity, T is the
temperature and c,, p, and k, are, respectively, the heat capacity, density and thermal
conductivity of the asteroid. For the asteroid Apophis, ¢, = 750 J/kg-K based on the
average value for silicate materials, k, = 2 W/K/m and p, = 2600 kg/m? [Remo,
1994]. The sublimation temperature assumed is that for forsterites, Ty, = 1800 K
[Wang et al., 1999], with Tj set to 278 K.

Based on the duration of time an infinitesimal ‘point’ spends under the spot beam,
the minimum power density required to sublimate changes. Figure 28 shows the rela-
tionship between time duration of illumination, and the minimum power density for
a 1 m diameter spot.

> O7F .
‘@
R
S o8t .
g2
2 S 066} i
< c
s 5
% T 0641 g
= E
[Ce)
c 3 062f .
g8
£ 0.6 J
s

058 L 1 1 1 1 1 1 1 1 1 1 ]

100 150 200 250 300 350 400 450 500 550 600
Duration each point is illuminated (s)

Figure 28: Amount of time a point spends under the spot beam on the asteroid surface
versus minimum required power density level for sublimation, for a nominal 1 m
diameter spot.

Finally, the induced acceleration ug., can determined by,

AEP/L' mef ~
Udev = PP Va (335)

my,

i

where ¥, is direction of velocity vector of the NEO, A ~ (%) is the scattering factor
assuming the debris plume is uniformly distributed over a half-sphere, and the remain-
ing mass of the asteroid m,, = m,(t;) is calculated by numerically integrating (3.31).
The average velocity of the expelled debris is modelled using the Maxwell-Boltzmann
distribution for particles of an ideal gas,

8kBTsubl

3.36
™™ g,5i0, ( )

5exp =

where kg is the Boltzmann constant, and Mg, si0, is the molecular mass of fosterite.
This induced acceleration is used with the Gauss equations in (3.23) in order to
determine the change in the NEO orbit due to the solar sublimation.
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For further information on the development of the thermal model, please see Sanchez
Cuartielles et al. (2009).

3.3 FUNNEL ORBIT DYNAMICS

For the orbit of the spacecraft, an initial solar orbit was set equal to that of the asteroid
under study, Apophis. A spatial offset was introduced relative to the position of the
asteroid at an arbitrary initial time, ty. This offset acts like a periodic disturbance, in
which the period of the oscillation is equal to that of the orbital period around the
Sun. The end result is a relatively small formation orbit, which in turn orbits around
the Sun. From a kinematic point of view, the concept is similar to the orbit of the
Moon; the Moon orbits about a central point, the Earth, which in turn both orbit as
a system around the Sun. The formation orbit can be thought of as an orbit around
the Sun with a small offset in the initial position éry and velocity dvy.

3.3.1 Optimisation of the initial state vector

A relative periodic orbit can found for almost any point in space surrounding the
chief orbit. However, in the case of most space missions, there are several specific
requirements and conditions that restrict the choice of orbit. As such, an optimiser
was used to determine the optimal initial state vector based on a set of objectives and
constraints.

The dynamics of the funnel orbits are defined by the initial state vector containing
the element set dk(tp). All the elements in the set are constant throughout the orbit
(time-invariant), so dk(tg) = d0k(t;) = dk.

The state vector is defined as either,

& =1[0ry Ory Or. Odvy 0v.] (3.37)
with dv, calculated in order to guarantee the periodicity of the orbit, or,
& =[0e di 60 dw OIM] (3.38)

with da = 0 to guarantee the periodicity of the orbit.

Optimal formation design problems were developed for the two different test mis-
sions: a NEO tracking mission, and a NEO deviation mission. For the deflection
mission case, two different sets of objective functions were used.

The design of a formation made up of n spacecraft, all with optimal orbital charac-
teristics, requires the identification not only of the global minimum but also of (n— 1)
additional, feasible local minima within a given search domain (each solution repre-
sents one orbit for one spacecraft, thus for a n-spacecraft formation, n solutions are
needed). It is expected that for almost every position on the orbit, i.e. every instant
of time, there are several optimal solution vectors that locally minimise the objective
function(s). Therefore, a characterisation of the search space is required in order to
find not only the global optimum but also a set of local optima with a value of the
objective function close to the one of the global solution. For multiobjective optimi-
sation problems, this requires the identification of a set of feasible Pareto optimal
solutions for the set of objective functions.

The optimiser used here, EPIC, was developed by Vasile [Vasile, 2008; Maddock
and Vasile, 2008a], and employs a hybrid behavioural-search approach that stores
all the feasible solutions. Appendix B describes the background information on the
optimisation procedure.
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Tracking mission

For a tracking mission, it is beneficial that the spacecraft remain at a constant dis-
tance from the asteroid in order to get the most accurate measurements possible.
At the same time, it is desirable to see the asteroid from different angles. Therefore
the problem is to design a periodic orbit that minimises the difference between the
minimum and the maximum distance from the centre of the asteroid.

Jr1 = mgx(&r) - rr}jin(&) (3.39)
Another desirable property of the formation would be to bring the plane of the orbit
as close to the NEO as possible without crossing into the sphere of influence of the
asteroid. This is implemented by minimising the difference between the maximum
distance at any point in the formation orbit, and a predetermined minimum distance
rim- In this case, as the spacecraft is to fly as close to the asteroid as possible, the
minimum distance is set equal to the radius of the sphere of influence of the asteroid.

Jra = |Tlim — max(or) (3.40)
subject to the constraint:

Cineq = min (67 = T1im) >0 (3.41)

The constraint is added to reduce the effects of the nonlinear gravity field of the
asteroid on the spacecraft. The radius of the sphere of influence is approximated by
[Battin, 1999],

2
m 5
Tlim = Tso1 = T'c <A> (3.42)

Mg

since the mass of each object differs by an order of magnitude, mg. K my, K mg.

Due to the dependant nature of the two objective functions, the optimisation can
be run as a single objective optimisation. The overall objective function Jy is simply
a sum of the two equations (3.39) and (3.40),

min Jr = min (Jr; + Jp2) (3.43)
£eD £eD

The dependency was verified both by examining the dynamics, and by monitoring the
two objective function values independently for a number of runs. In over 500 runs
using a local SQP optimiser from Matlab fmincon with a multi-start approach for
the start condition, the two values for Jpr; and Jro were almost identical, differing
only after the tenth significant digit.

A number of boundary conditions were set for each element in Cartesian state
vector & to reduce the search space, and improve the computation speed. The position
components were limited to dr € [—5, +5] km, and the velocity values to dv,, dv, €
[—100, 100] x 10~2 km/s. As the relative velocity values are quite small compared to
the position, the two velocity components were scaled up by a factor of 10°.

This first optimisation was run over a period of 30 days, starting on 3693.5 MJD2000
(or 01 January 2010). EPIC was run with a total of 10 agents exploring the search
space. The number of subdomains for the first run was limited to 5 and the maximum
number of function evaluations per subdomain was set to 10000.
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Figure 29: The cross-comparison of the best 30 solutions of & found using EPIC. The dis-
tances are measured in km, velocities in 1072 km/s and time in MJD2000.

Figure 29 shows the distribution of the minima at the end of the search. Each
element in the solution vector, i.e. [0, %Yo, 20], [Vao, V2] and tg, are plotted against
each of the other remaining five elements for all the solutions in a given set. The
diagonal shows the normalised distribution of that element within the solution set.
In Fig. 29, it can be clearly seen that for all the solutions, the values of zg and yq
fall into two main groupings. The two groups can be said to be independent of time
since for every value of ¢ in the solution set, the values of zy will only fall into one of
two values (plus or minus a small margin). By comparison, when xq, yo are compared
against v,,, they form six distinct clusters. This means that there are clear sets of
values for these three variables that satisfy the objective function.

Looking at the velocities, the initial radial velocity v,, forms a cross pattern with
the two out-of-plane elements (z, v, ), meaning they are all closely coupled with each
other. Finally, examining the last row/column showing the time, it can be seen that a
feasible minima can be found for almost every point in time within the search space.
Although, as seen from the normalised distribution of ¢y, some initial times are more
favourable to finding optimal minima than others.

From this search, it is simple to find the smallest objective function value and
extract the optimal initial state vector for the orbit, and starting date. Figure 30
shows the resulting formation orbit. The optimised initial state vector at tg = 3653.0
MJD2000 is,

[ 20 =575.44 m | [ 6a=0m ]
Yo = 646.62 m de = —0.0884
Xgpt _| %= 304.15 m o 5k8pt _ 01 = 1.564 rad < 10-7
Zo = 9.738¢e-5 m/s 002 = —2.347 rad
Yo = —3.517e-4 m/s dw = —23.62 rad
| 20 =—1.00e-4m/s | | dvp = 0.468 rad
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A by-product of the equations of motion is that the closer the orbit is to the
asteroid, the more normal the orbital plane becomes relative to the asteroid velocity
vector. Conversely, the farther away the formation orbit is from the chief point, the
larger the semi-major axis and the more parallel the orbital plane.

In Fig. 30, the period of the formation orbit is equal to the time it takes for the
asteroid to make one complete revolution about the Sun. The final orbit has a slight
deviation from the desired orbital plane, on the order of 300 km. This orbit provides
a relatively consistent distance from the surface of the asteroid and provides good
coverage of the surface.
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Figure 30: Orthographic view of the optimal formation orbit, including the initial state vector

(shown as a diamond), and location relative to Apophis (shown as a brown circle).

Note from Fig. 29, that along the ¢y coordinate the distribution is almost continuous.

This evidence confirms the fact that an optimal configuration exists for every position
along the orbit. It also suggests that there exists a globally optimal position along
the orbit that gives the minimum for both objective functions. A second optimisation
was conducted extending the bounds of ¢y to 1 Earth year, from 01 January — 31

December 2010. The period of Apophis is slightly less than that of Earth; 323.6 days.

By searching for a full year, one can see the effect of the orbital position of the asteroid
on the initial state vector, see Fig. 31.
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Figure 31: Orbit of Apophis showing the optimal ¢y for the two solutions (shown as black
triangles). The apoapsis and periapsis are also shown for reference (green stars)
with the first solution near the periapsis, and the second solution near the apoapsis.
The first search space for to is shown in blue (bold).

The optimal initial state vector is given below for t; = 3789.76 MJD2000, and the
resulting formation orbit in Fig. 32.

ro = —529.88 m da=0m
Yo = —664.10 m de =0.038
Xgpt _| 2= 468.73 m — 5k8pt _ 01 = —1.701 rad < 10-7
&y = —1.000e-4 m/s 00 = 8.389 rad
Yo = 1.95¢—4 m/s dw = —40.92 rad
| 20=-9.9%-5m/s | | 0vp = —0.755 rad |

A more extensive optimisation was performed, with EPIC set to run with a total
of 20 agents exploring the search space. The number of subdomains was set to 14 and
the maximum number of function evaluations per subdomain was set to 60000 (see
Appendix B for more explanation on the equations and design of EPIC). Although the
result was quite good, achieving a value of the objective function of 2.93, it was found
that by re-optimising locally with an SQP method (fmincon), the value of the best
solution could be further improved to 2.8997. The tolerance on the constraint was set
equal to 1079, or 0.00000044%, which was deemed acceptable especially considering
that the equation for the sphere of influence is an approximation.

Figure 33 shows a cross-comparison between the different elements of the solution
vector for 2182 possible solutions (or the total number of solutions generated from 10
independent runs). Note that the intent was not to minimise the number of function
evaluations or convergence time to the best value.

Figure 34 shows the variation in objective function J; across all the runs. It is clear
that there are intervals where the value of the objective function is relatively constant.
This is reflected by either only fractional changes in the orbital element differences in
&, or is due to symmetry around the y-axis of the asteroid. Figure 35 shows the values
of the corresponding solution vector elements as the value of the objective function
increases. The solution index number refers to the ranking of the solution vector &;
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Figure 32: Orthographic view of the formation orbit optimised over an 1 year period, showing
the initial state vector (shown as a diamond), and location relative to Apophis
(shown as a brown circle).

relative to increasing values of J; (the optimal value for min(.J;) has a solution index
number of 1).

Figures 36—38 show the three groupings, or ‘families’, of optimal orbits. Within the
same family, the difference in objective function is almost zero while the differences
in orbit geometry are significant. In particular,

FAMILY A Four types of small symmetric orbits, inclined with respect to the x-y
plane (see Fig. 36),

FAMILY B Two types of symmetric orbits that are slightly inclined with respect to
the z-y plane (see Fig. 37),

FAMILY C Two types of large symmetric orbits, inclined with respect to the x-y
plane and encircle the asteroid (see Fig. 38).

In the three orthographic views, the top figure of the z-y plane shows the view
looking ‘down’ on the ecliptic plane. The second plot in the z-z plane is from the
point-of-view of the asteroid looking out at the formation, and the lastly y-z plot is
the view looking from the Sun. For each of the diagrams, the asteroid is located at
the centre point (0, 0) and the small circle on each orbit represents the position of
the spacecraft at a specific point in time. The corresponding values for Figs. 36 — 38
of the objective function and solution vectors are given in Table 14.
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Figure 33: Cross-comparison of the solution vector & for the SOO using EPIC.
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As can be seen, the spatial separation among the spacecraft flying on the second
family of orbits is very small. Such a small separation is not ideal for tracking measure-
ments in the case where multiple spacecraft are tracking through triangulation. In the
first family of orbits however, four spacecraft can be placed each with good visibility
and good separation. By exploiting the symmetry of the second family another two
spacecraft can be added; with a possibility to add a further four spacecraft using the
orbits from family C.

Table 14: Values for the best results for each family of objection function J; and the corre-

Objective function: Jr 2.8997 45.5922 80.4110

Solution vector: de  1.3629x107° 7.2294x10°® 4.0447x1077
5i 0.01671 0.0006949 —0.08853
50 —0.3908 —0.005114 2.0699
Sw 0.3070 —0.07934 —1.6261
oM —0.08197 —0.08289 —0.4342

NOTE: all values in the solution vector are scaled by an additional factor of 1077.
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Figure 35: Comparison of the values for the solution vector & for each of the results of the
optimisation.
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Figure 36: Orbital geometry of solutions from family A, Jr =~ 2.9.
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Figure 37: Orbital geometry of solutions from family B, J: ~ 45.6.
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Figure 38: Orbital geometry of solutions from family C, J; = 80.4.
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NEO Deflection Mission

In order to deflect an asteroid, the spacecraft have to maintain their relative position
with respect to the asteroid in order to keep the required power density on the same
spot of the surface of the asteroid. Therefore, the formation orbits have to be periodic
and in close proximity with low excursion in the relative distance from the asteroid.
On the other hand the spacecraft should avoid, as much as possible, the irregular
regions of the gravity field close to the asteroid and avoid any impingement with the
plume of debris and gas coming from the sublimation of the surface material.

If the optimal thrust direction that maximises the deviation is along the unper-
turbed velocity vector of the asteroid, [Colombo et al., 2009] then the exhaust gases
will flow in the same general direction as the y-axis of the local Hill reference frame.
Therefore, the size of the formation orbits projected in the x-z plane should be maxi-
mal (see Fig. 39).

Z
A

Figure 39: Illustration of debris plume relative to the desired spacecraft formation orbit.

This is an approximation in the case of Apophis since the orbit is elliptical. The
flight path angle, i.e., the angular difference between the velocity vector of the asteroid,
and the orbit tangential vector y, ranges between £0.1922 rad throughout an orbit.

All the requirements on the formation orbits can be formulated in mathematical
terms as a multi-objective optimisation problem,

Jnin min Jp1 = 0r (3.44)
511?1% min Jps = =V a2 + 22 (3.45)
c v

subject to the same inequality constraint on the minimum allowable dr given in (3.41).

An alternate approach for generating orbits is based on minimising the requirements
for the flat pointing mirror in the spacecraft mirror assembly. The first objective func-
tion is used to minimise the required control accuracy of the spot beam positioning, by
optimising the required angular response of the controller. In other words, the larger
the conic angle of the spot beam, the easier it will be for the controller to maintain
the same position on the asteroid, and the less affected it would be by small errors in
the pointing.

The angular resolution required for the spot beam can be characterised by the
following angle,

dspot/2  dyy,, sSing

sin Vspor = o oo (3.46)
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which is a direct function of the distance of the spacecraft from the asteroid. Therefore,
the first objective function Jp3 for the deflection mission is the same as the one given
in (3.39). The mirror Mg, in (3.46) is the smaller directional mirror.

The second objective is to limit the variation in the Sun-spacecraft-asteroid half
angle ¢ in order to minimise the requirements on the attitude control system. Given,

(or,rg/s)
—9 A4
) arccos ( 5r /s (3.47)
the second objective function is defined as,
?éig Jpsa = max(¢) — min(¢) (3.48)

As with the tracking mission, a number of boundary conditions were set to restrict
the search space and improve the speed of the search. Given the small relative distance
between the spacecraft and the asteroid, in the order of 1 — 10 km, the values of the
0k parameters will be very small, in the order of 0 4 10~7. Due to these very small
expected values, the inputs were scaled up closer to unity for the optimisation process.
Table 15 lists the upper and lower boundaries imposed on optimisation of the solution
vector &.

Table 15: Boundaries on search space for the initial state vector &.

Element in Initial State Vector Lower Bound  Upper Bound
Difference in Eccentricity, de (1077) -0.1 0.1
Difference in Inclination, §i (1077 rad) -0.1 0.1
Difference in RAAN, §Q (1077 rad) -7

Difference in Argument of periapsis, 6w (1077 rad) —m

Difference in Mean anomaly, §M (1077 rad) -7

Through the previous optimisation of the single objective function J;, three families
of formation orbits were identified (see Figs. 36-38) each with different characteristics
and values of the objective function J;. Families A and B were both very close to the
asteroid and are particularly interesting for a deflection mission as they provide an
advantageous position from which the sunlight can be focused on the surface of the
asteroid. Moreover the Sun-spacecraft-Asteroid angle ¢ is nearly the same for all the
spacecraft, which allows all the spacecraft to have similar attitude control. Starting
from the solutions of the first Family A, the whole set of Pareto optimal solutions
was computed that minimise, at the same time Jp3z and Jpy4. EPIC was run for 40000
function evaluations with 20 agents and no domain decomposition.

Figure 41 shows a cross-comparison between the different elements of the solution
vector for the whole Pareto set. Figure 42 shows the optimal Pareto front for the multi-
objective optimisation (MOO). The best group of solutions of the single objective case
would be in the upper left part of the Pareto front, all with a very similar value for
the objective function Jpy.

Figure 43 shows the orbit with the objective function Jps minimised. This repre-
sents the formation orbit closest to the asteroid and with the minimum difference
between the closest point and the farthest point from the asteroid. By comparison,
Fig. 44 shows the orbit minimising the second objective function, Jp4. The space-
craft moves back and forth along an orbit which is stretched in the direction of the
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Figure 41: Cross comparison of the solution vector £ for the MOO using EPIC.
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Figure 42: Optimal Pareto front for MOO illustrating the trade-off in accuracy of the beam.
The red circles represent the two solution points given in Table 16.

y axis and, as such, only requires minute adjustments in the directional mirror. Ta-
ble 16 shows the corresponding values for the objective functions and state vector.
Note that for the latter solution, although the difference between the farthest point
and the closest point is higher than for the former solution, the whole trajectory on
average, is still quite close to the asteroid.
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Figure 43: Formation orbit minimising the Jps value.
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Table 16: Values for the objective functions and solution vector & for the end limits of the

3.3 FUNNEL ORBIT DYNAMICS

Pareto front for the MOO.

Value with optimal Jps

Value with optimal Jpa

Objective function: Jps 2.8997 1558.01
Jpa 0.095905 2.7719 x107°

Solution vector: de 1.3629 x10~° 4.5655 x107°
01 0.01671 —0.03557
o2 —0.3908 0.09568
ow 0.3070 —0.3011
§M —0.08197 -1.5409 x107°

NOTE: all values in the solution vector are scaled by an additional factor of 1077,
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3.4 ARTIFICIAL EQUILIBRIUM POINTS

3.4 ARTIFICIAL EQUILIBRIUM POINTS

If solar pressure and the gravity field of the asteroid are taken into account in the
dynamics, then the mirrors can be designed such that the two forces are in equilibrium,
with the spacecraft hovering at a fixed location and distance from the asteroid using
the single-mirror configuration to control the beam. These points, called here artificial
equilibrium points (AEP), are in fact static points where the forces are momentarily
balanced, or in equilibrium. It should be noted these are not in dynamic equilibrium
in which the spacecraft could remain indefinitely at a fixed point in space, due to the
constantly changing forces at work.

Considering a perfectly spherical and homogenous gravity field of the asteroid, the
dynamics of the mirror are governed by the following set of equations, based on (3.5),

. e Ta .9 Mo Ho Ha Fs, (Iv Y, Z) Fy,
I—2V(y*ya)+l’l/ +T§*ﬁ(TA+I)7ﬁI+T+misc
(3.49a)
. L. Ta .9 Mo Ha Fsy (1‘, Y, Z) Fuy
- 9(F — S NP . WY AL AR AR 3.49b
Y v(@ xTA) v r3, 537 + M + Mse ( )
. Ho Ha Fsz(xayvz) Fuz

where m, is the estimated mass of the spacecraft, Fspp = [Fy,, F, Fs_] is force due
to the solar radiation pressure and F, = [FUI,FMWFHZ] is the control force. Given
the principle of the AEPs to balance the solar pressure and gravitational forces, the
system is therefore,

. Ta .9 Mo 1225 Ha E‘;T,(I7y72767f€) _
21/(—ya) —+ xv® + g — @(T‘A + JT) — ﬁﬂ? + m—sc =0 (350&)
. 'f"A .9 Mo Ha Fsy($7y7za57f£)

v( a:TA) + yv Tgcy 5r3y+ - 0 (3.50Db)
Mo Ha Fsz(xayazvﬂa f@) o

The third equation (3.50c) is always satisfied if the mirror is in the -y, plane.
Considering that the mirror has to constantly reflect the light onto the surface of the
asteroid, if the mirror is flat the only possible equilibrium configuration is with the
asteroid-mirror direction aligned with the spacecraft-Sun direction. If the mirror is
not flat, then the position vector dr, solar aspect angle 5 and focal distance f, can
be determined, such that the vector Fggp is aligned with the asteroid-mirror direction
(see Fig. 45, or Fig. 8 on pg. 18). The angle 8 also represents the attitude angle of the
mirror reference frame with respect to the Hill reference frame centred in the asteroid
A, considering that all the solar rays are parallel to the Sun-Asteroid vector.

Figure 46 illustrates the angular misalignment between the force vector due to the
solar pressure, and the spacecraft-asteroid direction (ideally, they should be in-line).
The angle § is determined by the direction of the incoming light impacting on the
mirror, while Af is the angle between the incoming light and the direction of the
focal point of the mirror (see Fig. 45). The direction of the focal point identifies the
pointing direction of the beam, which should be in the direction of the asteroid.

By setting 5 = 7/2, it can be seen that the only artificial equilibrium points are
along the Sun-asteroid direction. In this case however, the mirror would be in shadow
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>

<

A
1.5
v

Figure 45: Definition of mirror-centric relative reference frame M. The reference frame A’
is the translated from the barycenter of the asteroid to that of the mirror, with

A A

and therefore no equilibrium points can exist along that direction. For higher values of
B, equilibrium points can exist at higher angular distances from the radial direction.

For example, for § = 139° the mirror can be placed at dr = [1.3699, 0.48225, 0] km,
which is about 20° from the radial direction; Fig. 47 shows the level of acceleration
acting on the spacecraft. Only one quadrant of the Hill frame is shown here: {4+, —y},
since the solutions in the {+z,+y} quadrant are symmetric. There are no solutions
in the other two quadrants as in the —zx direction, the back of the mirror would be
blocking the sunlight.

This artificial equilibrium point offers a good location for projecting the light of the
Sun on the side of the asteroid along the y direction, and away from the plume of gases.
Assuming that the optical system can produce a collimated light beam with negligible
divergence, and that the beam is projected at the intersection of the surface of the
asteroid with the y-axis, then the two extreme points of the beam which intersect the
surface of the asteroid can be calculated. At this intersection, the spot size can be
easily computed given the beam size and the elevation over the y-axis.

Figure 48 shows, for a beam size between 0.5 and 1 m in diameter, the increase in
spot size due to an elevation of 70° along the y-axis and 20° from the radial xz-axis is
still limited.

Figure 49 shows the variation of the position of the AEPs for various mirror sizes
(given here by the total reflective surface area due to the irregular shape of the mirror
surface).

It should be noted that due to the movement of the asteroid along the orbit, the
AFEPs are not at a single, fixed position since the modulus of the solar force varies
with the inverse of the square of the distance from the Sun.

These results identify AEPs in the case of a perfectly spherical asteroid only. The
actual shape of Apophis however, as well as most other asteroids, cannot be consid-
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Figure 46: Angular misalignment between the position vector ér and the direction of net force
due to solar pressure, where the focal point is given by [L cos(8 — AfB), Lsin(8 —

ApB)] where L is the projection of the mirror shape onto the y™M

axis.
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Figure 47: Example of AEP at 20° from the radial direction.
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Figure 48: Increase in the spot size as a function of the elevation above the y axis.

ered spherical. Consistent with studies by other authors [Hu and Scheeres, 2002], the
asteroid was modelled as an ellipsoid with semi-axes a;, b; and ¢ (see Table 13 and
Fig. 24). The smallest semi-axis ¢, is assumed to be along the z-axis of the asteroid

Hill frame A with the asteroid is rotating around the z-axis with angular velocity w,.
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Figure 49: Artificial equilibrium points for different mirror sizes.

The gravity field of the asteroid can be expressed as the sum of a spherical field plus
a second-degree and second-order field [Hu and Scheeres, 2002; Rossi et al., 1999],

3
Uspyoo = (;LTA?) (C’zo (1- 3 cos? v) + 3Cay cos? 7 cos 2&) (3.51)

where the harmonic coefficients Coy and Cy can be expressed as a function of the
semi-axes,

1
Cao = _To(%? —a? —b?) (3.52a)
1
Co = 2*0(@12 —b) (3.52b)

where k is defined as,
k = arctan (Q) +w,t
x

and v = 0 since only the in-plane motion is considered.
The equations for the orbital dynamics of the spacecraft can therefore be expressed

as,
. Ta .o Mo He Ha Fy, (% Y, 2,8, fé) 8U20+22
2'/(_‘1/5) vt E B @(” +o) - 5r3x + Mge + ox
(3.53a)
. Ta .2 Mo Ha Fsy($>y7275,fe) aU20+22
—20(—x— - =Y —= =0 3.53b
o xm) tyv rgcy 5r3y + Mse + Oy ( )
Mo Ha Fs ('/anvzaﬁafl) aUv20-‘,—22
——Z— = = =0 3.53

Note that even in this case (3.53c) is satisfied for z = 0. If the actual shape of the
asteroid is considered, the AEP position is no longer moving along a rectilinear line
but is now spiralling around the line, as shown in Fig. 50.

=0
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(a) Overview. (b) Close-up view.

Figure 50: Variation of the equilibrium points with the true anomaly for a mirror of surface
area Ay = 196 m2, and using an ellipsoidal model for the asteroid.

3.4.1 AEP in three dimensional space

The initial analysis considered a two dimensional motion with a high concentration
ratio, or short focal distance and small mirror size. As a consequence, the elevation
angle from the y-axis and distance from the centre of the asteroid were limited. In
fact at low elevation angles, equilibrium points may exist only for high solar aspect
angles. However, for short focal distances, high curvature of the mirror and high solar
aspect angles, the edges of the mirror were shadowing part of the mirror surface.

If the direct imaging concept is used, then the focal point is set equal to the position
of the asteroid, causing the mirror shape to be almost flat. This removes the limitation
on the elevation angle and on the solar aspect angle. Furthermore, an increase in
the surface area implies a higher solar pressure and therefore a demand for a closer
positioning of the mirror with respect to the asteroid.

The distance from the asteroid can be determined for different surface areas and
different spacecraft masses by integrating,

Ha Ay

dF = — — P.oy

=0 3.54
or? Mg ( )

where P, is the solar pressure at a distance r,. from the Sun given by,

So [ Tav 2 T'au 2
P.=— () =P () (3.55)
c /rSC TSC
and Sy is the solar flux, ¢ is the speed of light, u, is given in Table 13, oy is the
coeflicient of reflectivity of the mirror, A, is the perpendicular surface area, and r,
and r,y are the distance between the Sun and spacecraft, and the Sun and the Earth
(1 AU) respectively.

For a distance of rsc = 1 AU, (3.54) gives the curves in Figs. 51a and 51b for a
spacecraft mass of 1000 kg and 2000 kg respectively, where the curve labelled with
r — Sp shows the line of equilibrium between the gravity attraction and solar pressure
for each distance and surface area. On the same graph, the curves were plotted at
constant concentration factors in the range [20, 200]. The two plots shows that for
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a low concentration factor the surface area of the mirror is small and therefore the
distance from the asteroid can be high. On the other hand, for high concentration
factors the surface area of the mirror is high and the distance from the asteroid must
be low to have a balance between gravity and solar pressure.

The situation works concurrently, for a shorter distance from the asteroid would
imply little space to place multiple mirrors while larger distances would allow for
multiple spacecraft. Conversely, a larger distance implies bigger mirrors. As a conse-
quence, with a constant concentration factor, the number of spacecraft that can be
placed on the surface of a sphere centred on the asteroid is linear depending on the
distance from the asteroid. For example, a concentration factor of 2000 and an arc of
60° on each side of the y-z plane, would accommodate 5 spacecraft, each with an edge
length of 288 m (assuming a square shape). If the concentration factor is reduced to
100, then it is possible to accommodate 22 spacecraft, each with an edge length of 64
m.

The distance from the asteroid is also limited by the size of the asteroid, the exten-
sion of the plume and the shadow projected by the asteroid. In Fig. 51, moving away
from the boundary line where the forces are balanced (i.e. Fy;, = Fgmv) along a curve
with constant concentration factor, the distance from the asteroid increases causing
the solar pressure to dominate the gravitational attraction. An alternative approach
would be to compensate for the unbalanced force with a low thrust propulsion system.

700

e (-5

— - —-100

650 50
— — —200

900

850

800

r-Sp

— - — 100
50

— — — 200

20

750

700

650

600

Distance (m)
Distance (m)

550

-~ 1 e
500 - 1
7 -
4 450 - -7 1
s _

400 R4 -7

~ = 350 7 -

1000 3500 4000

500 1000
Surface Area (mz)

1500 2000 500 1500 2000 2500

Surface Area (mz)

(b) Spacecraft mass of 2000 kg.

3000
(a) Spacecraft mass of 1000 kg.

Figure 51: Balance between solar pressure and gravity forces for different concentration ra-
tios, where r-Sp denotes the line where the two forces are in balance, X F = 0.

Figure 52 shows the strategy in the two dimensional case (i.e. z-y plane only). As-
suming an elevation of 60°, the plume can flow into a ‘cone’ with an angular extension
of up to 120°. Higher elevations are limited by the shadow projected by the asteroid.
Furthermore the plume partially shadows the mirrors, which limits the maximum
number of spacecraft. Note that the spacecraft can either lead or lag the asteroid (as
in Fig. 52), but not both. The strategy in Fig. 52 is based on the assumption that
thrusting along the y-axis is optimal for this deflection method; see Colombo et al.
(2009); Vasile et al. (2009b); Song et al. (2007) for further reference on the optimality
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of deflection methods. Thrusting along the z-axis would solve a number of problems
and would allow placing the spacecraft along both the positive and negative y axis.
By comparison, thrusting in the z direction is suboptimal for long warning times
[Colombo et al., 2009; Song et al., 2007] and requires a higher level of thrust.

x
§ 60°
¥
x :
(a) Asteroid major axis along y-axis. (b) Asteroid minor axis along y-axis.

Figure 52: Spacecraft configuration with respect to the asteroid.

Figure 53 instead shows the strategy in the three dimensional case. The spacecraft
are clear of the plume and can be placed on both sides (along the z axis) at any
elevation angle outside the shadow region produced by the asteroid. High elevation
angles would lead to a elongation of the spot area on the surface of the asteroid which,
would reduce the power density, albeit perhaps by only a small percent. This would
be a consideration to account for in further work on this topic.

The other interesting aspect is that the concentration factor is proportional to the
inverse of the square of the distance from the Sun, therefore as the spacecraft moves
toward the Sun, the power collected increases and the concentration factor decreases,
while moving away from the Sun the concentration factor increases and the power of
the Sun light decreases. The product of the two remains constant therefore, even if
the curvature of the mirror is altered, the power density on the surface of the asteroid
remains constant.

The approach used to design the mirror in three dimensions is similar to the one
used in two dimensions. A local mirror reference frame M is defined (see Fig. 54), with

the position of the light source given by (24, ys, 2) and the focal point, (z¢, ys, z¢).

For each point (z, y, z), the direction of the normal vector i1 is defined such that a
ray coming from the Sun is reflected onto the focal point. For each surface element,
the magnitude of the solar force in the mirror reference frame F); is given by,

F\ = 20 P, / cos® ¢ i dA (3.56)
AM

where ¢ is the angle of reflection, and P, is the solar pressure at a distance 7, /4. from
the Sun. The force vector in the mirror reference frame M is then transformed to the
local spacecraft reference frame S through the rotation matrix Q(q),

F, = Q(Q)FM (3.57)
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Tt

Figure 53: Conceptual spacecraft configuration using AEPs in three dimensions.

Figure 54: Reference frame for the three dimensional mirror design.

For each position of the mirror in the spacecraft-centric Hill reference frame S, the goal
is to find the correct attitude and shape of the mirror that allows for an equilibrium
state between the gravity force and solar pressure force.

Figure 55 shows two possible mirror shapes and positions; showing both the incom-
ing and reflected rays as a result of the surface shape. For both figures, 5 = 130° and
AB = 20°, with the focal point located at [sin 3, cos(5 —Ap) cos 3, sin(§ — Af) cos j3].

Regions of equilibrium exist also in the 3D case, but for viable values of the con-
centration factor for direct imaging, they are too close to the asteroid. A possible
solution would be to move away from the equilibrium positions and use a low-thrust
system to compensate for the solar pressure (the dominant component in this case).
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(a) Attitude, ¢ = [0.75, 0.75, 0.75, 0.75].

2
(b) Attitude, ¢ = [2, 1, 0, 1].

Figure 55: Example of a single 3D mirror projecting the light of Sun onto a focal point. Green
lines are the Sun rays, blue lines are the reflected rays. The mirror is represented
in the mirror reference frame M, with the axes in normalised units.
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The other possibility is to use a solar pumped laser, similar to that in the fixed mirror
design. If a solar pumped laser solution is adopted, then smaller mirrors can be used
and the analysis of the 2D case is valid.

3.5 PERTURBATIONS

In the case of the two-body problem, as in the case of the funnel orbits, only the
gravitational effect of the Sun was accounted for in the equations. However, there
are many other forces that act on the spacecraft and affect the orbit. The two main
sources are the pressure from the solar radiation on the surface of the spacecraft, and
in particular on the large surface area of the primary mirror, and the gravitational
effects from the asteroid. The two perturbations are modelled in the following section
for the fixed mirror case.

3.5.1 Solar radiation pressure

Solar radiation pressure (SRP) acts on every surface area exposed to either the Sun

and/or the focused beam. For the fixed mirror configuration in Fig. 56, this includes:

the primary reflector (M), the secondary reflector (M), the laser (L), the directional
mirror (Ms3), and the solar panels. The spacecraft body and radiators are both blocked
by the primary mirror.

20 M
.:l;?/,;/l:‘5 % |:> F,
I F;

Figure 56: Vectors of solar radiation pressure on a fixed mirror configuration.

The force from the solar radiation pressure on the primary reflector is given by,
F, =2P, Ay, 0y, - IA'@/sc (3-58)

where o is the coefficient of reflectivity of the surface, A, is the illuminated surface
area perpendicular to the Sun (i.e. the area of the aperture), and P, is the solar power
at distance 7. from the Sun, given in (3.55).
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The secondary reflector is exposed to both direct sunlight (on the ‘back’ of the
mirror), and the focused light from the primary reflector.

Fy = (2P.0y, Ay, — F1o,) - o e (3.59)

In order to help balance the forces on the mirror, the coefficient of reflectivity on the
back is the set the same as the front, meaning that both sides are equally reflective.
The focused beam from the second mirror is fed directly into the laser assembly,

F, = (%Flom) oL Ty (3.60)

The output of the laser is then directed onto the asteroid by means of a small
directional mirror,

F3 = FLoy, cos® ¢ - Dy (3.61)

where 7, is the efficiency of the laser.
Lastly, the pressure on the solar panels powering the spacecraft must be accounted
for,

Fop = P Asyosp - Toyse (3.62)
The total acceleration on the spacecraft due to SRP is then,

F F F F F,
Usrp = ki mL TEs e (3.63)

The equations for the solar pressure given in (3.58) — (3.62) can be rewritten in
terms of the orbital elements of the asteroid, and the orbital element differences Jk.
All the equations are relative to the S Hill frame. Given,

1

2 4
cos” ¢ = 55,

((57“ — 75+ 1rsecos(fy + 660) ( cos(—082) cos 8, + cos i, sin 6 sin HA)
+ Tse ( cos(i, + 6i) cos B, sin 6 + (cos i, cos(i, + 6i) cos(—5Q)
+sini, sin(i, + 0i)) sin 0A> sin(f, + 59)> (3.64)

where ¢ is the angle of reflection from the optical axis of the mirror (normal to the
surface), and 6 = v + w is the true latitude.

The unit vector n, gives the direction of the net force due to the SRP on the
directional mirror Ms,
1y

3.65
T (3.65)

n, =

s
—7r, (cos(06 — 0) sin 6Qsin i + wsin(d6 — 0)) ( 2L 4+ 2 (ry +rr0c08 6 + 7, sin 9))

Ny = | 7, (cosicos(d — @) cosBsin 6 + £ cosOsin(60 — ) — psin0)
—\/% (rsc +ra0cosf + ry(sinb)
(3.66)
where @, &, o, ¢ are defined in (3.20), and

I'=0r+ry—rs ( cos 62 cos(06 — @) cos 0
(3.67)
+ cos(di — i) cos 0 sin §Q sin (60 — 6) + ( sin 9)



3.6 FUNNEL CONTROL

3.5.2  Third body effects

Since the effects of the asteroid’s gravity field after a certain distance are relatively
linear [Sanchez Cuartielles et al., 2007], and much less compared to those due the
solar radiation pressure, the asteroid is treated, as a first approximation, as a point
mass with p, = 1.8016e-9 km?3/s?. The acceleration due to a third body is given by
[Vallado, 2004],

.. HoTo/sc or T
To/se = — ®3 o/ + pa <63 - g/A> (368)
T /s r T /A

assuming mg > my > mg.. Adding the perturbing acceleration due to the asteroid,
the perturbing control vector becomes,

Fi+F+F,+F, Fs 6ty Teet+ors\ 1°
m * m Tl + Hha |03 B [rsl3
ScC ScC A

3 . Ty Ty
_ Ory Oy 3.69
Upert — Ty + fa I ERRENE ( )

B (on o

A AT R PNE

Figures 57 — 60 show the forces acting on the spacecraft due to the solar radiation
pressure and third body effects from Apophis. Formation orbit dks/; from Table 17
was used as the representative case. The spacecraft mass was set to 2000 kg, for a 20
m diameter primary mirror with a 5 m focal length, a 1 m diameter secondary and
tertiary mirrors, and solar arrays of dimensions 8x2 m.

As expected, the SRP is dominant in the radial direction given that all the mirrors
are positioned such that they directly face the Sun, with the force normal in the
positive x direction. There is a small component in the y, and to an even lesser degree
the out of plane z due to the directional mirror which is angled towards the asteroid.
It is interesting to compare the difference in magnitude between Figs. 57c and 57d,
which show the forces acting on either side of the directional mirror. The focused light
exerts a force, in this case a factor of 10® greater than the pressure from the Sun. The
oscillation in the SRP is due to the elliptical orbit, and shows the effect of even a
relatively small eccentricity of 0.191 will change the force by 1.2 mN.

The perturbations introduced by the asteroid, modelled as a point source, is relative
small compared to the SRP. It does not follow the same trend however, with the
dominant direction being along the y axis. The gravitational force still contributes
to the overall perturbations, as seen in Figure 60 along the y axis. Examining the
effect on the orbital parameters in Fig. 61, only the semi-major axis is affected by any
tangible amount. However, while the perturbations seem small, on the order of 10~7
it is important to remember that the orbital differences that the control would need
to maintain are on the same order of magnitude.

3.6 FUNNEL CONTROL

While the dynamical design of the artificial equilibrium points accounts for the ad-
ditional perturbations, the funnel formation design does not. Instead, a control law
is required to compensate not only for the solar pressure and third body effects, but
also for the constantly changing orbit of the asteroid. The aim of the control law is to
match the relative orbital parameters to those determined by the funnel orbits, using
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Figure 57: Force due to solar radiation pressure on the various surfaces of the spacecraft.
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as feedback the measured position and velocity of the spacecraft relative to the NEO
since these values are needed for the tracking and deviation the asteroid.

3.6.1  Proximity-quotient control law

The initial approach was to use the proximity-quotient, or @)-law, originally developed
by Petropoulos (2003) for the restricted two-body problem. The Q-law is based on a
Lyapunov feedback control law, and calculates the optimal in-plane and out-of-plane
thrust angles (o, ) based on the proximity to the target orbit (i.e. the difference in
the static Keplerian parameters) and the current location of the spacecraft on the
orbit (i.e. true anomaly). The thrust vector here is assumed to the net direction of
thrust applied by the spacecraft, which is modelled here as a simple point mass. It is
not the intent to delve into what or how the thrust would be applied.

Appendix C contains a detailed description and discussion of the work done on
implementing Q-law, and a full listing of all the derivations and equations required.

The control law function is give by,

ki — kr ? :
Q=> Wi ( - ) — min(Q) (3.70)
6Zk k(amaxa Bmaz, Vma:c)
where k is given by the Gauss equations (3.28), setting the in-plane thrust angle
Q = Qaz, the out-of-plane thrust angle 8 = 8,442, and the orbital location v = vy,44
that give the maximum rate of change for each of the following elements: a, e, 7, 2 and
w.
In this case, the control acceleration u is given by,

Up = sin acos 8 (3.71)
sc

up = cos a.cos 3 (3.72)
sc

up = sin 8 (3.73)

sc

where 7 is the maximum thrust that can be applied to the spacecraft, which when
divided by the spacecraft mass gives the applied acceleration (in order to feed into the
Gauss equations). The Q-law is constructed assuming that the thrust level is either
on, or off. No partial thrust can be applied, although since it can be turned on and
off over very short intervals of time, this can be somewhat approximated.

The @Q-law was developed to provide a first-guess solution for transfers between
orbits, not point-to-point, so the mean anomaly M (or true anomaly v) was left as a
free variable. The equations were updated to include the target M term, and account
for SRP and third body effects in the Gauss equations k required for this test case
[Maddock and Vasile, 2008b].

3.6.2  Orbital maintenance control law

There were a number of issues that arose when using the adapted Q-law for the orbital
maintenance of the funnel orbits. The first was due to the high degree of accuracy
needed to maintain the funnel orbits. The difference in Keplerian orbital elements
between the NEO and the spacecraft are on the order of 1077, and need to remain
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constant even as the NEO deviates. This resulted in a lot of ‘chatter’ (over-shooting)
around the target orbital elements, due to strong dependance on the time step §t
and the magnitude of the control (which employed on-off shooting). Even at very
small time steps, the magnitude of the over-shooting was too large for the system
requirements. The effects of the perturbations are also relatively large, on the scale of
mN in the radial direction (see Fig. 61) and need to be compensated on a continuous
basis.

An alternative approach was therefore developed to deal with these mission-specific
limitations. The first was to switch from minimising only with respect to the thrust
angles, to minimising with respect to the components [u,., u, up], which has the benefit
of finding the optimal magnitude for the thrust, as well as the required angles. A new
Q* function was created,

ot dk. 2
Q =Dy Mkry— [ (3.74)

Jj=1

where Ak; = (k; — ky) is the desired variation of the orbital parameters in the time
interval §t. The function Q* is then minimised with respect to the control components
[ty Uz, up] every Ot units of time.

Least-squares solution

It can be assumed that over very small time steps, the rate of change of orbital
parameters given by the Gauss equations is constant. If so, then the control function
can be directly solved by,

2
> oW, (Akm - ‘Z?&) (3.75)

Inherently, if the desired change in the ;' element (ki — k7 ;) is negative, then the
rate of change is positive, and vice versa. As such, the control equation will always
have a single minimum. Therefore there is no need to minimise the time derivative.

The solution for the control vector u, is found by using an ordinary least squares
fitting to the linear systems of equations, Au. = b. In our case, the matrix A is set
equal to the Gauss equations,

dk
(s ] 2a’esiny 2a°p 1
a h hr
psinv (p+7) cosv+re
€ R h u
. rcos 6 T
L= 0 0 R (3.77)
Q 0 0 rsin 6 Ut '
hsint
. __bcosv (ptr)sinv __rsinfcosi Up
w he ( he) hsint
ek pcosv—2re _ (ptr)sinv
| M* | L  evan e\/af 0 i

The actual Gauss equation for dM/dt also includes a term for the mean motion
n to account for the rotation around the Sun. In this case however, the control does
not need to compensate for the nominal motion of the orbit, just those induced by
the perturbations and deviation of the asteroid. The mean motion is added to M*
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after each iteration of the simulation control loop, where M; = M™* + n4.0t (since the
nominal rate of the change of the mean anomaly is linear).
The matrix b is solved by,

_kr—k;

b
ot

- A(upert) (378)
Again, this is equivalent to minimising the quadratic function
> WAk — Akr;)?

where Ak; is the change of the 4t orbital element over time dt, and Ak is the
desired change.

Integration approach

An integration approach can also be used with the same control function Q* in (3.74)
which numerically integrates the Gauss equations to determine Ak; ;.

ot
dk;
=[G (3.79)

The least-squares approach provides a computationally faster solution (for the same
time step) but is less accurate, especially over larger time steps. To see the effect of
the linear assumption, Fig. 62 shows the variation of the orbital elements of Apophis
over one full orbit. The control acceleration was set to 1072 km/s? in all directions
(equivalent to u = 1.732¢-9 km/s?, @ = T rad and 8 = arctan(cos a) & 0.6155 rad).

Stmulation results
The algorithm loop for computing the control is as follow,

STEP 1: Identify starting conditions for spacecraft: the number of spacecraft n,., the
initial state vector dkg, the mass-in-orbit of each spacecraft mg. kg, the aperture
diameter d,;, depth and illuminated surface area for the parabolic mirror A,; and
spot on the NEO Ay

STEP 2: Identify starting conditions for NEO Apophis: time and true anomaly at
calculated MOID, tyop, and vyom, time when the spacecraft starts the deviation
action (i.e. solar sublimation) ¢o, target deviation distance Ar gy, initial mass
of asteroid m, kg, and initial orbital parameters k..

STEP 3: Initial target elements are set equal to initial starting position, kr = k; =
ko.

STEP 4: Determine optimal control vector u. = [uc,, Ue,, Ue, | solving the linear sys-
tem of equations Au. = b given in (3.76)—(3.78) by the method of ordinary
least squares fitting, given: k;, kr, 0k, ma,.

STEP 5: Propagate spacecraft forward by time step dt using Gauss equations with
input u = u; + Upers.

STEP 6: Update k;
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Figure 62: Variation in the orbital elements over one orbit of Apophis.
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STEP 7: Propagate asteroid forward by time step 0t using Gauss equations with
input u = ugey-

STEP 8: Update k,, m4, and dk; = k; — k,.

STEP 9: Update target vector to reflect the deviated orbit of Apophis, kr = k4 +
okg.

STEP 10: Calculate achieved deviation distance Ar,. If Ar, > Arge,,., then stop;
otherwise repeat from Step 4.

Simulations were run using both the least squares and integration method control
loop, each with time steps d¢t = [1, 10, 60] s, using the five test orbits chosen out of
the set of Pareto optimal funnel solutions (see Table 17 and Fig. 63). A 20 spacecraft
formation was used (ns. = 20), however all the spacecraft were assigned the same
set of orbital elements dk, meaning they were in essence co-located. While this is
an unrealistic assumption in practice, the purpose of this simulation was to test the
control of a spacecraft. The number of spacecraft in the formation only affects the
NEO deviation distance, not the control. The reason it was included is to simulate
the deviations to the orbit of the NEO when the sublimation process occurs. It is
important to note that the control is not trying to coordinate the movement of the
formation, but simply to ensure that each single spacecraft follows its target orbit.

Table 17: Test case formation orbits, 0k parameters.

97

Spacecraft de ) 9] dw oM
ks /1 1.0000x10~""  —6.6861 x 1077  —5.0000 x 107®  4.4815 x 107°  2.5043 x 107®
ks /o 3.3323x 10712 —3.7934 x 107% —4.7308 x 107 4.9561 x 10~® 1.5711 x 1078
ks /3 6.1028 x 1071%  —1.3168 x 1078  —4.9986 x 1078  2.8846 x 10~®  4.4166 x 10~
6Ks /4 —8.5308 x 107"%  —2.0467 x 1077  —2.4000 x 107®  3.0878 x 10°®  9.9775 x 10~°
ks /s —6.8000 x 1072 —1.4403 x 107 —2.1705 x 10~®  3.0000 x 10~%  8.4145 x 10~°

NOTE: da = 0 for all test orbits.

The thrust leg of the mission was started 13 April 2031 — 5 years before the first
potential impact. The required thrust duration is 552.30 days to reach a deviation
distance of 384400 km (equal to the Earth-Moon distance) in 2036. The mass of the
spacecraft was set to 2000 kg.

The initial parameters for the asteroid Apophis are given in Table 13, with o, =
13252.06736 MJD2000 and vyom = —2.690855 rad. These are needed for the calcula-
tion of the deflection distance, not directly for the control. The primary mirror has an
aperture diameter of 20 m (corresponding to a focal length of 5 m), and a spot area
of m(0.5)2 m?. The efficiency of all the mirrors was set to 90%, including the front
and back of the secondary mirror. This was done in order to help balance the SRP
exerted on the second mirror. The laser efficiency was set to 25%. The total area of
the solar panels was set to 16 m?, with an efficiency of 30%.

Figures 64 — 69 show the change in Keplerian elements, position vector and thrust
profile for the integration method required for a single spacecraft in the formation;
Figs. 70 and 75 show the same for the least squares method. Only the figures for the
orbit dks,; are shown here; the remaining figures are included in Appendix D.
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Figure 63: Formation orbits for test cases, shown in the Hill reference frame A relative to
Apophis, located at (0,0). The initial position at to is shown as a solid circle on
the orbit.

3.6.3 Discussion

For both the integration and least squares approach, the simulations run with a time
step 6t = 60 s do not converge to the target values, and end up diverging to orbits

that are impractical and not feasible for the deflection mission and spacecraft design.

In the case of the least squares law, the control acts like an underdamped system,
where the parameters are oscillating with the same period as the NEO Apophis (323
days). The longer the duration of the mission, the larger the deviations to which the
control law seems unable to compensate for. For all the simulations, there was no
upper limit placed on the solution values for the thrust level.

In most of the simulations, there occurs periods of large quick variations in the
thrust where the system is overcompensating resulting in chatter around the target
parameters. This chatter can be seen in the plots of the variation of the Keplerian
parameters and thrust levels, but due to the low level are too small to be seen in the
Hill reference frame components.

As seen in Section 3.5, the perturbations are mainly in the z-y plane of the Hill
coordinate system, so as expected, the divergence, if any, occurs predominantly in
these two axes. The out of plane motion, either in the z axis or in the inclination,
RAAN and in part in the argument of periapsis are much better controlled than the
semi-major axis, for example.

For the smaller time steps of 6t = 1,10 s, both methods are able to control the
various perturbations and track the target orbit parameters with a relatively high
degree of accuracy, on the order of 0.001 — 1%. As expected, the least squares is faster
to simulate (in terms of computational time), but with slightly larger errors than those

of the integration. The oscillations, for example in the control of the eccentricity in Fig.

64 are due to the rotational period of the NEO (30 hrs in the case of Apophis) which
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alters the distance between the spacecraft and the NEO, increasing and decreasing
the third body perturbations.
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Figure 70: Least squares control law for spacecraft formation dks/; at time step of 6t =1s
using the fixed mirror configuration with a system efficiency of 25% and weights,
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Figure 72: Least squares control law for spacecraft formation dks,; at time step of 4t = 10 s
using the fixed mirror configuration with a system efficiency of 25% and weights,

W = [le-6,1e6,1,1,1,1].
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3.7 CONTROL OF AEPS

Two strategies were studied to maintain the orbital position of the mirror: the first
directly compensates for the solar pressure and gravity attraction with an active
control, whereas the second option allows the spacecraft to oscillate along the radial
direction, effectively chasing the artificial equilibrium points. Both of these approaches
are based on a model of the adaptive mirror with a collimating laser. A Lyapunov-
based controller is also simulated for the case of direct imaging with an adaptive
mirror.

3.7.1 Adaptive mirror with laser

Solar pressure depends on the distance from the Sun, therefore, if the size of the mirror
is constant, as the asteroid moves around the Sun, the force acting on the spacecraft
changes with the true anomaly v. As a consequence, the position of the equilibrium
points changes with time unless the orbit of the asteroid is circular.

Once the shape and orientation of the mirror are defined, the total force acting on
the mirror assembly can be computed by integrating the following expression over the
surface of the mirror Aj;:

Fape = 204, P, / cos? ¢ i dA (3.80)

where o, is the efficiency of the mirror, or coefficient of reflectivity, and P, is the solar
pressure at a distance r, /5. from the Sun.
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(a) Position of the equilibrium points over a full (b) Variation of the position of the AEP for a
orbit of the asteroid Apophis. mirror attitude of 129°, over half an orbit.

Figure 76: Variation of the equilibrium points with the true anomaly for Ay = 196 m?.

Figure 76a shows, for different attitudes of the mirror, the position of the equilib-
rium points over a full orbit of the asteroid Apophis. Figure 76b instead shows the
variation of the position of the AEP for a particular attitude of the mirror, over half
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an orbit. The black dots represent the computed position of the equilibrium points
for an angle § = 129° while the continuous line is given by the following equations,

1+ ecosy,
Tapp = 6TAEP0 COS € (14—@(305;)) (381&)
. 1+ ecosy
Yapr = OTapp, Sil €9 (1-i-€COSVO) (3.81b)
where
€g = arctan (yAEP(VO))
CEAEP(VO)

is the angular position of the AEP at v = vy.
Then, the distance of the AEP from the asteroid varies with the following law,

1+ ecosyy

0T amp = OTpppg —————
°1+ecosv

(3.82)
Since the AEPs are moving a spacecraft placed at an AEP would depart toward the
asteroid or away from the asteroid depending on the initial true anomaly v. In par-
ticular, for the true anomaly v € [0, 7] the spacecraft would fall toward the asteroid,
while for v € [, 27] the spacecraft would escape along a radial direction.
In order to chase the AEPs the spacecraft has to move with the same kinematics,
the following conditions are placed on the velocity and acceleration,

dz spp d((sTAEP)

0= aqp oS¢ (3.83a)
dyAEP - d((sﬂmp) .
= g Sine (3.83b)

deAEP . d? (57"AEP)

T = g cose (3.84a)
T d? (87 ax
dz‘;” = (d:;“)) sin e (3.84b)
with
d(6rsee)  (07app)’ersinv (3.85)
dt  67app, (14 ecosvy) '
a2 (6 1)
(d;AEP) == (61 iAZPcos 7o) (207 i sinv + O supl? COSV + 07 s zpl SN v)
AEP(

(3.86)

Equations (3.83) and (3.84) represent an imposed shape to the motion of the space-
craft. If (3.81), (3.83) and (3.84) are substituted back into the dynamic equations in
(3.53) and solving for the controls, it is possible to get the thrust components required
to follow the prescribed kinematics.

Figure 77 presents an example of the required thrust profile to maintain a fixed
position for an AEP computed at the perihelion. By comparison, Fig. 78 shows the
required control profile to allow the spacecraft to drift, following the motion of the
AEP for different values of the true anomaly. Both examples assume a spherical gravity
model for the asteroid.
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Figure 77: Control profile for orbit maintenance for (A = 196 m?, 8 = 139°, vy = 7) main-
taining a fixed position in the Hill frame
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Figure 78: Control profile for orbit maintenance for (A = 196 m?, 8 = 139°) following the
motion of the AEP.

As can be seen the control capability required to maintain a fixed position is greater
than the one required to chase the AEP. A possible scenario, therefore, is that the
formation can be distributed around the asteroid at different angles of €, with the
mirrors oscillating along the radial directions. As can be seen from the figures, the
control authority required to maintain the position of an AEP is several orders of
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magnitude higher, though still very small, than what is required to chase the AEP.

Figure 79, instead, shows the required control profile to follow the motion of the AEP
computed for a spherical asteroid when the gravity field for an elongated body is
considered.

x107°

of ]

Control Components (N)

True Anomaly (rad)

Figure 79: Control required to follow the AEP motion originally computed assuming a spher-
ical asteroid (see Fig. 78) for a non-spherical asteroid.

3.7.2 Adaptive mirror with direct imaging

For a direct reflection of the light onto the NEO surface, the vector from the mirror to
the focal point is parallel to the mirror-asteroid direction, with a magnitude roughly
equal to the distance between the mirror and the asteroid. For such a long focal
distance, the resulting mirror is almost flat.

Assuming a perfect reflection, the force Fs,, is,

2 cos ¢
F.p = 24, P (:AU) cos’¢ | sing (3.87)
sc 0

where Py = 4.562 x 1076 kg-s?/m is the solar pressure at 1 AU, and ¢ is the angle of
reflection.

o= 1 arctan (yAEP> (3.88)
2 TP

Given these equations, the force due to solar pressure cannot be aligned with the

asteroid-mirror direction. Therefore in order to maintain the spacecraft position rel-

ative to the asteroid, it is necessary to have an active control system. Moreover, the

modulus of the solar pressure is a function on the distance from the Sun, therefore the

active control will also need to compensate for the variation in solar pressure along
the orbit.
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A Lyapunov control function can be formulated, assuming (1) the centrifugal and
Coriolis forces are negligible compared to solar pressure, and (2) the gravity of the
asteroid and any non-spherical terms in the gravity field expansion result in only a
small perturbation.

1 1
V= 55’02 + ik ((x - xAEP)Z + (y - yAEP)2 + (Z - ZAEP)Z) (3'89)

where 0rygp = [Tapp, Yarr, Zapp] are the coordinates of the artificial equilibrium point
at which the mirror should be placed. Consistent with Lyapunov stability, if there
exist a control u such that dV/dt < 0, then the mirror can be placed at or in the
proximity of the artificial equilibrium point. A possible control is given by,

FS’I”
u=-— (6/17251' + msf) — k(6 — Orapp) — cadv (3.90)
With the derivative of the Lyapunov function V,
dv
o= VIV 4 k(0r — 1) T Ov (3.91a)
vl — Ha Fop (1 Forp
= ovT (= Lor+ o ( o msc) (3.91b)
kOt — Oram) — cd6v) 4 ROt — 81 ppp) OV
= —cgdv v <0 (3.91¢)
where dv = [&,y, 2] is the velocity of the spacecraft in the asteroid Hill reference
frame A.

The control (3.90) can be introduced into the full dynamic model in (3.53) to
validate the earlier assumptions that the perturbations given by centrifugal, Coriolis
forces and aspherical gravity field are negligible.

The Lyapunov controller is applied to two cases: the first fixes the position of the
AFEP and maintains the spacecraft at that one location. The second allows the space-
craft to follow the same oscillatory motion of the AEPs, where at different instants of
time during the asteroid orbit, a different AEP location is chosen along the asteroid-
mirror line.

In particular, AEPs are selected such that,

d /2 - COS €xgp
spot sc .
Orpapp = ——— —— | sin e pp (3.92)
€6 Tau
0

where dgpot is the desired diameter of the illuminated spot and e, = 4.53 mrad is the
angular radius of the Sun at one AU (see Section 2.2.1).

Figure 81 shows that the controller is able to maintain the mirror in close proximity
to the radial direction, effectively chasing the position of the AEP. Figures 82 and
80 represent the modulus of the thrust and the mass consumption for a one year of
operation of a 3.5 metric ton spacecraft, carrying a mirror with an aperture diameter
of 65 m. The required peak thrust is below 13 mN, with a total mass consumption
of 4.5 kg assuming an engine I, of 4500 s. The elastic coefficient k for both cases is
109 while the dissipative coeflicient cq was set to 107°.

The second strategy maintains a constant concentration ratio, compensating for
the variation in the Sun-asteroid distance (due to the elliptical orbit of Apophis). In
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Figure 80: Spacecraft mass after fuel consumption for Lyapunov controlled AEPs.

order to maintain a constant C,., the focal length has to be modified according to the
angular diameter of the Sun.

These figures demonstrate that with a very small electric propulsion system, the
mirror position can be maintained at the desired proximity to the asteroid.
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Figure 81: Variation in position over one orbit shown in the local mirror reference frame, for
Lyapunov controlled AEPs.



Thrust (N)

Thrust (N)

3.7 CONTROL OF AEPS

0.03

0.025

0.02

0.015

0.01

0.005

| | | | | | |
0 50 100 150 200 250 300 350
Mission time (days)

(a) Fixed position.

0.022

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350
Mission time (days)

(b) Variable position.

Figure 82: Thrust magnitude for Lyapunov controlled AEPs.
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NAVIGATION AND ORBIT DETERMINATION

The use of a single mirror implies a number of difficulties in the control of the orbit and
attitude of the spacecraft and in the overall system design. On the other hand, the use
of multiple mirrors will require pointing control of the beams in order to maintain the
superposition. The navigation strategy has two goals: (a) to coordinate the pointing
control of all the spacecraft in order to intersect the beams and hit the same spot on
the surface of the asteroid, and (b) to estimate the position of the asteroid during the
deflection manoeuvre.

4.1 INTRODUCTION

A number of systems, such as the control, require knowledge of the position and ve-
locity of the asteroid relative to the spacecraft in the formation. It is assumed that
the inertial position and velocity of each spacecraft are known from ground measure-
ments. Furthermore, it is assumed that each spacecraft can measure its attitude with
a star tracker. In order to determine the location of the asteroid, an onboard camera
is used to first determine the angular direction of the asteroid. Using the formation,
the range can than be determined by triangulation. The same technique can be used
to coordinate the steering of all the beams in order to target the same spot on the
surface of the asteroid.

A preliminary analysis of the relative orbit determination of the spacecraft with
respect to the asteroid is presented for the fixed mirror case, as it is the most criti-
cal one. The single mirror design maintains a fixed angular separation between the
spacecraft-asteroid vector and the spacecraft-Sun vector, therefore the beaming direc-
tion is constant with respect to time and does not need to be controlled.

Previous studies have addressed different approaches towards navigation in the
proximity of minor bodies, e.g. Kubota et al. (2003); Xiangyu et al. (2004), with
particular attention to the problem of landing. For this application, the requirements
are substantially different and therefore some of the strategies that could be found
in the literature cannot be used. On the other hand, a wide range of navigation
techniques using, e.g., radar, lidar and other instruments have been already developed
for past and future missions and are expected to be used for this application as well.

4.2 COORDINATE TRANSFORMATION

The directional cosine matrix D, quaternions q and Euler angles [e, ¢] can all be used
interchangeably for conversion from one coordinate system to another [Wie, 1998].

@ = e1sin(39) = i(ng — D32) (4.1a)
g2 = easin(31) = T;(D:ﬂ — D13) (4.1b)
gs = essin(Ly) = ﬁ(Du ~ Do) (4.10)
1 = cos(3¢)) = £31/1+ D11 + Doy + D3 (4.1d)

120



43 SIMULATION MODEL

where D;; is entry in the ™™ row, j* column of the matrix D.

Of particular interest, is the rotational matrix Dy /s that translates a vector from
the heliocentric inertial reference frame O to the spacecraft-centric reference frame S.

-1

r, (hAr); hy
r |JhAr| A
ry, (hAr), h
Doje— | T y Oy 4.2
/s r A h (4.2)
r. (hAr), h,
hAax| A

where r =r /5., V.= Vs, are position and velocity vectors from the Sun to a given
spacecraft in the inertial O frame, and the angular momentum h =r, ;. A v /g

Figure 83: Camera reference frame Z shown in inertial frame (not to scale).

The other reference frame required is the relative camera reference frame Z, defined
with the z-axis along the camera boresight (i.e. pointing direction of the camera), and
the z-y axes composing the image plane (see Fig. 83). For the navigation simulation,
the local yZ-axis was nominally set parallel to the angular orbital momentum of the
spacecraft. Figures 84 — 86 show the quaternions for three of the test orbits, along
with the rotational angle ¢ from (4.1) which in this case represents the angle between
the intended z axis of the mirror reference frame, expressed in the inertial reference
frame. This is equal to elevation angle of the vector 6+© in spherical coordinates.

The five test orbits used here are the same as in the control simulations, and are
given in Table 17 (on pg. 97) and Figure 63 (on pg. 98).

4.3 SIMULATION MODEL

The first step is to correctly locate the asteroid, using a nominal lead spacecraft.
Each spacecraft should have a basic idea of the region of space in which the asteroid
should be located, however even in the worst cast where no region is known, a wide-
coverage scan/search procedure can be implemented. Once the asteroid is in view of
the camera, the camera aligns the calculated centre of the asteroid with the boresight
of the camera (i.e. the origin (0,0) on the camera image plane). This is repeated
for a second camera, in order to triangulate the location of the asteroid. Figure 87
illustrates this concept.
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Figure 84: Quaternions and rotational angle 1 for transformation from inertial O to camera
Z reference frame, for orbit ks ;.
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Figure 85: Quaternions and rotational angle 1 for transformation from inertial O to camera
Z reference frame, for orbit dks /3.

The asteroid is modelled as a series of discrete points composing a hollow ellipsoid,
since we are only interested in the surface boundaries of the image (see Fig. 88a). The
physical dimensions used to model Apophis are given in Table 13 (on pg. 51).

In Fig. 88a, [u,v,w] are the axes of inertia of a rotating ellipsoid. As not much is
known about the rotational characteristics of Apophis, the smallest radius, w here,
was nominally aligned with the direction of orbital momentum (2°) with the asteroid
rotating about w in the u-v plane. Depending on the geometry of the spacecraft and
camera, the points are projected onto the image plane and discritised according to
the given pixel size, to account for the errors introduced by rasterisation.

A simple equation was used that estimates the average horizontal and vertical pixel
locations within the asteroid image on the camera plane. If we defined a set p of
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Figure 86: Quaternions and rotational angle 1 for transformation from inertial O to camera
Z reference frame, for orbit ks 5.
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Figure 87: Navigation strategy using on-board cameras.

points on the surface of the NEO in 3D mapped onto the discritised 2D camera (or
image) plane, then the estimated centre of the asteroid is defined as,

min pZ + % (|maxpf — minpf’)
. (4.3)
minpf +3 (|maxpf - minpﬂ)

For this study, the approximation is sufficient however a more advanced algorithm is
clearly necessary for future studies due to a number of sources of errors, such as the
distortion of the image due to high elevation angles. Clipping errors are also a factor,
since the vector of points p given by the camera only contains those seen within
the field-of-view (FOV) of the camera. For the simulation, the camera is designed
with specification such that the entire asteroid can be contained with the FOV of the
camera.

The estimation of the centre gives the angles — spacecraft-relative azimuth and ele-
vation — required by the mirror pointing system, however the range is still outstanding.

If each camera is aligned with the centre of the image on the estimated centre of the
asteroid, then all the cameras should be pointing along the spacecraft-asteroid vector.
Logically then, the intersection point(s) of these beams will create the spot area. For
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(a) Model of Apohis as a set of discrete surface points of an ellipsoid with di-
mensions Ry = 190.92 m, R, = 135.0 m, Ry = 95.46 m. [Delbo et al.,
2007]
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(b) Camera image view of the asteroid Apophis. The pixel size in this plot was
enlarged to 10x10 m in order to see the effects of rasterisation on the object.

Figure 88: Asteroid representations for navigation simulation.
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this simulation, the centre of the NEO was used; in future studies, this should be
adjusted to cross on the surface instead, accounting for the changes in range due to
rotation.

The spacecraft-asteroid vector (i.e. from the camera to the centre of the NEO) in
the inertial reference frame can be written in parametric form as,

T = gt + o
2= g.t+2

From a simulation point of view, with the angles determined, the only remaining
factor to solve is ¢, and ¢, (corresponding to two nominal spacecraft, a and b). This
can be solved by a minimisation function (in this case fminbnd in Matlab) where ¢, is
the free variable. Fixing the direction of camera pointing vector z&, the intersection
point is moved until the zO camera vector is aligned with the estimated centre of
the asteroid from spacecraft b. Once x,xg and ¢ are known, the parameter g can be
determined by solving the system of equations.

Measurement errors were introduced on the position estimate of the spacecraft
in inertial space, and the attitude determination each spacecraft. Table 18 lists the
three different sets of errors used in the simulations, depending on the accuracy of
the onboard devices.

Table 18: Errors on positional and angular measurements.

Error set A Error set B Error set C' Error set D

Position m 0 5 100 1000
Angle deg 0 0.003 0.01 0.001

The camera parameters are given in Table 19. For ease of simulation, all the param-
eters, such as the CCD matrix are assumed to be square, e.g. 800 x 800 px instead
of the more common 600 x 800 px. Three different cameras configurations were used,
representing good (A), poor (B), and optimal (C) which was used for testing only.
The focal length is calculated by simple trigonometry,

ced X by

- tan(fov) (45)

fe
The variables are defined in Table 19. For reference, Apophis subtends a half-angle
of 76.146 mrads, as seen from a distance of 2.5 km (the minimum distance from the
formation).

To compensate for the errors introduced by rasterisation and pointing errors, the
intersection points were calculated for each pair of spacecraft. Figure 89 shows the
differences between the estimated centres determined by each spacecraft-pair combi-
nation relative to the actual centre, located at (0,0). A 5-spacecraft formation was
used, giving 20 estimated values for the centre of the NEO in inertial space, with
camera A and error set B, taken at a nominal true anomaly of v = 20°.

Figures 90 — 100 show the mean and standard deviation of the set of estimated
centres relative to the actual centre of Apophis in the heliocentric inertial reference
frame O, over one full orbit, for each camera and error set using the five-spacecraft
formation given previously. Table 20 summaries the results.
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Table 19: Parameters of on-board camera (all dimensions are assumed square).

Camera A Camera B Camera C
Total field-of-view (fov) deg 10 20 10
Pixel size (lz) m 5x 1077 9x 107 1x107'2
CCD array dimensions (ced) — pixels 1768 800 8000
Focal length (f¢) m 2.5067 x 107%  9.8909 x 1072 2.0417 x 1077

Estimated centres from each s/c pair
€  Actual NEO
> Mean estimated centre

100 —
80 —
60 —

40 —

20 - . ‘°

z-axis (m)
o
|

100

x—axis (m)

0.
y-axis (m) O -50 _100 -100

-150

Figure 89: Positions of the estimated centres relative to the actual centre of Apophis with
camera A and error set B, taken at a nominal true anomaly v = 20°.

4.4 DISCUSSION

The method shown for the navigation works in principle provided that the position
of the spacecraft is known with good accuracy. Although an accuracy of 1 km in
position has to be expected for a single spacecraft in deep space, a formation can
improve this accuracy by combining the intersatellite position measurements with
the position measurement based on other navigation approaches. The use of inter-
satellite measurements, in fact, would filter out all position errors with opposite sign.
A substantial improvement in the estimation of the position of the spacecraft was
theoretically proven for the mission LISA in a recent study by Chung (2006).

Furthermore, note that the algorithm used to isolate the centre from the 2D image
plane is overly simplistic and does not use measurements over long arcs. In addition,
for the orbits chosen, the spacecraft are often in close proximity to each other, reducing
the accuracy of the differential measurements. This can be seen when the standard
deviation of the measurements increases around the periapsis.

A more selective analysis of spacecraft orbits would certainly improve the esti-
mation. The simulations assumed that the asteroid was a geometric object with no
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Table 20: Error range statistics on the estimation of the NEO inertial position, for the 5
spacecraft formation.

Range error (m)

Camera  Error set Minimum Maximum Mean  Standard deviation

A A 0.038741 42.144 2.7655 5.075
B 0.39318 42.561 3.172 4.9803
C 3.2068 47.556 20.936 8.9259
D 15.345 482.42 211.65 88.157
B A 0.093827 74.272 13.015 15.291
B 0.47067 74.552 13.106 15.182
C 4.9653 85.625 25.411 14.178
D 23.193 598.64 211.02 97.729
C A 0.04022 11.43 1.0995 1.2739
B 0.32809 12.086 1.6174 1.2267
C 4.4508 47.886 20.343 8.6189

irregularities in the surface beyond those introduced by rasterisation. Moreover, the
NEO will be partially in shadow, or eclipse, which the algorithm will have to compen-
sate for. Therefore, the irregular shape of the asteroid should be known in advance
or better the ellipsoid enveloping the true shape of the asteroid should be known in
advance.

Lastly, if the laser option is considered the quality of the beam needs to be controlled
during the operations. Existing studies and patents [Bennett, 2005] suggest that this
is feasible with an evolution of current technology.
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Figure 90: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera A, error set A (no errors).
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Figure 91: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera A, error set B.
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Figure 92: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera A, error set C.
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Figure 93: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera A, error set D.
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Figure 94: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera B, error set A (no errors).
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Figure 95: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera B, error set B.
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one full orbit using 5 spacecraft each with camera B, error set C.
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Figure 97: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera B, error set D.
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Figure 98: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera C, error set A (no errors).
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Figure 99: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O, over
one full orbit using 5 spacecraft each with camera C, error set B.
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Figure 100: Mean and standard deviation (shown as error bars) of estimated centres relative
to the actual centre of Apophis in the heliocentric inertial reference frame O,
over one full orbit using 5 spacecraft each with camera C, error set C.



DEFLECTION SIMULATIONS

The dinosaurs became extinct
because they didn’t have a space
program. And if we become
extinct because we don’t have a
space program, it’ll serve us
right!

Larry Niven

This chapter ties together the simulation models developed previously for the as-
teroid, orbital dynamics and deflection method. In order to reduce the simulation
time, the control law was removed. A number of free variables exist in the design of
the mission: the number of spacecraft in the formation ng., the warning time ¢4
and thrust duration 5, or target deflection distance, the concentration ratio C.,
size/surface area of the mirrors or spacecraft mass, and system efficiency depending
on the design used.

5.1 SIMULATION RESULTS

Figures 102-103 provide an estimation of the required operation time, along the =
axis, against the concentration ratio for different warning times (i.e., time from the
beginning of the deflection operation to the date of the forecasted impact) and two
different estimated masses of Apophis for each of the two systems. The warning times
are given as multiples of the orbital period of the NEO (T, = 323.5599 days) instead
of Earth years, such that the starting true anomaly is always the same. Due to the
eccentricity of the orbit of Apophis, the effect of the thrust on the deflection distance
changes depending on the orbital location.

Figure 104 show the differences in required thrust time for a set of warning times
between 4-6 T, or 1294-1941 days prior to the tyo, on 13 April 2036 (64796.56736
MJD). The thrust duration is plotted against both the true anomaly of the NEO at
the start of the thrust segment (Fig. 104a), and the warning time (Fig. 104b).

Figure 105 shows the total expelled mass, from 14, in (3.31), versus a fixed value of
the ‘system’ concentration ratio, i.e. the number of spacecraft times the concentration
ratio of each individual spacecraft. It is clearly shown in the plot that for a larger
number of spacecraft (e.g., 5) with a smaller individual concentration ratio, a greater
thrust and hence deflection can be achieved. Figure 105 also shows that below a
given number of spacecraft and a given concentration ratio (lower left corner of the
plot), deviating the asteroid is not possible. The power density is too low and the
sublimation process does not start.

Figures 106 — 124 show the achieved deflection distance at the MOID with the
Earth in 2036 (tyom = 13252.06736 MJD2000) versus a given number of spacecraft,
concentration ratios, different warning ¢4, and thrusting times ¢;p,s¢), a fixed aper-
ture diameter of the primary mirror (dy) and system power efficiency (nsys). In the
case of the laser system, the efficiency is set to 25%, whereas for the direct imaging, a
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Figure 101: Deviation of Keplerian elements for Apophis, with a warning time of 5 years

before the 2036 potential impact for a deviation distance of 384400 km in 2036.
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Figure 102: Concentration ratio vs required thrust time for a single 60 m diameter mirror

using direct imaging to achieve a deflection of 20000 km at the 2036 MOID.
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Figure 104: Effect of orbital location at the start of thrust period, on the required duration

to achieve a deflection of 10000 km at tyomn = 64796.56736 MJD using a single
60 m mirror with direct imaging (C, = 1000).
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Figure 105: Total asteroid debris mass expelled by sublimation vs a system concentration
factor which is composed of the number of spacecraft in the formation multiplied
by the individual concentration ratio of each onboard focusing system.

system efficiency of 90% was used. The thrust leg is assumed to start at (tyom — twarn)s
and thrust continuously until (tyomn — twarn + tthrust)-

Following the trends in all the simulations, it can clearly seen that increasing the
concentration ratio does not improve the total deviation distance. According to the
thrust model in (3.31) and (3.35), the thrust magnitude depends on the input power
and surface area illuminated by the beam. As the concentration ratio increases, the
area, for a fixed size mirror, decreases and therefore the thrust does not improve. On
the other hand, increasing the number of spacecraft and superimposing the beams
increases the power density while leaving the size of the spot area unchanged. There-
fore, for a larger deflection for the same mirror surface area, the better strategy is to
increase the number of spacecraft, each with constant concentration ratio.
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Figure 106: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 2 m aperture diameter primary mirror with laser (nsys = 25%), a
warning time of 5T, (1617 days), and a thrust period of 5T, (1617 days).
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Figure 107: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 5 m aperture diameter primary mirror with laser (7sys = 25%), a
warning time of 27, (647 days), and a thrust period of 27, (647 days).
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Figure 108: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 5 m aperture diameter primary mirror with laser (nsys = 25%), a
warning time of 47, (1294 days), and a thrust period of 27, (647 days).
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Figure 109: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 5 m aperture diameter primary mirror with laser (7sys = 25%), a
warning time of 67, (1941 days), and a thrust period of 2T, (647 days).
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Figure 110: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 10 m aperture diameter primary mirror with laser (nsys = 25%), a
warning time of 27, (647 days), and a thrust period of 2T, (647 days).
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Figure 111: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 10 m aperture diameter primary mirror with laser (nsys = 25%), a
warning time of 47, (1294 days), and a thrust period of 27, (647 days).
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Figure 112: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 10 m aperture diameter primary mirror with laser (nsys = 25%), a
warning time of 67, (1941 days), and a thrust period of 2T, (647 days).
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Figure 113: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 20 m aperture diameter primary mirror with laser (nsys = 25%), a
warning time of 27, (647 days), and a thrust period of 27, (647 days).
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Figure 114: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 20 m aperture diameter primary mirror with laser (nsys = 25%), a
warning time of 47, (1294 days), and a thrust period of 47, (1294 days).
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Figure 115: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 20 m aperture diameter primary mirror with laser (nsys = 25%), a
warning time of 67, (1941 days), and a thrust period of 2T, (647 days).
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Figure 116: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 30 m diameter adaptive mirror with direct imaging (nsys = 90%), a
warning time of 5T, (1617 days), and a thrust period of 57, (1617 days).
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Figure 117: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 60 m diameter adaptive mirror with direct imaging (nsys = 90%), a
warning time of 67, (1941 days), and a thrust period of 27, (647 days).
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Figure 118: Deflection distance for various concentration ratios and number of spacecraft,
assuming a 60 m diameter adaptive mirror with direct imaging (7sys = 90%), a
warning time of 17, (323 days), and a thrust period of 17, (323 days).
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Figure 119: Deflection distance for various warning and thrust times and number of space-
craft, assuming a 20 m diameter adaptive mirror with a laser (nsys = 25%) and
a concentration ratio of 2000.
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Figure 120: Deflection distance for various warning and thrust times and number of space-
craft, assuming a 5 m diameter adaptive mirror with a laser (1sys = 25%) and
a concentration ratio of 2000.

=25%

Deflection (km) for a d’v1 =5m, Cr = 3000, nsys ‘1 04

15
22
13} | 2
1.8
11t 16
kS
S 1.4
(9]
Q g L
®©
3 1.2
S
S 7y 1
E
2 0.8
5
0.6
0.4
3 -
0.2

Warning time, t = Thrust time, t
warn thrust

(multiples of TA)

Figure 121: Deflection distance for various warning and thrust times and number of space-
craft, assuming a 5 m diameter adaptive mirror with a laser (1sys = 25%) and
a concentration ratio of 3000.
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Figure 122: Deflection distance for various warning and thrust times and number of space-
craft, assuming a 50 m diameter adaptive mirror with direct imaging (nsys =
90%) and a concentration ratio of 50.
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Figure 123: Deflection distance for various warning and thrust times and number of space-
craft, assuming a 65 m diameter adaptive mirror with direct imaging (nsys =
90%) and a concentration ratio of 70.
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Figure 124: Deflection distance for various warning and thrust times and number of space-
craft, assuming a 65 m diameter adaptive mirror with direct imaging (nsys =
90%) and a concentration ratio of 100.
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5.1.1 Trade-off optimisation

The deflection figures suggest an important point about the system: the system is
very flexible and scalable. It is therefore expected that an optimal trade off point
exists between warning time, number of spacecraft, size of the spacecraft, deflection
and total operation time.

Using the same optimiser EPIC (see Appendix B) as for the funnel orbit dynamics,
a multi-objective optimisation was run which minimised the total formation mass
while maximising the deviation distance. The optimisation was run using the fixed
mirror case.

min J = ( — (Mscnse), ATde (v = VMOID)) (5.1)

Edev

where the solution state vector is £gey = [du, s Tses twarn, Cr]. The specific parameters
are given in Tables 21 — 23, and based on the work developed earlier for system design
in Chapter 2.

Table 21: Mirror design parameters for optimisation.

Aperture area of secondary mirror Ay, =7 m?
Surface area of directional mirror Ay, =7 m?
Surface area of solar arrays Ay = mm?
Laser efficiency n, = 0.8
Reflection efficiency of primary mirror oy, = 0.9
Absorptivity of the solar arrays Qsq = 0.8
Emissivity of the solar arrays €sq = 0.8
Efficiency of the solar arrays Nsq = 0.4
Emissivity of the radiator er = 0.9

Table 22: Component mass parameters for optimisation.

Mirror specific mass by = 0.1 kg/m?
Laser specific mass b, = 0.005 kg/W
Solar array specific mass bee = 1 kg/m?
Cable mass as percentage of power system mass Meable = 0.2Mpower
Mass of the radiator my = 1.4 kg

Mass of the bus Mpus = D00 kg
Mass of propellant as percentage of dry mass Mpyel = 0.3Mgry

Mass of tanks as percentage of mass of propellant  Mmyignks = 0.1Mfye
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Table 23: Temperature parameters for optimisation.

Temperature of the solar arrays Tse =373 K
Temperature of the laser T, =313 K

Temperature of secondary mirror surface 7y, =373 K

The radiators are sized according to the following equations,

Prasa - Prnsa - 2T4 esaUAsa
AR = 2d 5.2
R1 20 (Ton — Ap)? (5.2a)

Pr(l - WL)
Ao = ——— 2
2 ero (T}, — Ap)? (5.2b)

0.01P. — 2T% €,,0A
Aps = - Mp S0~ 5.2¢
s 61{U<TMQ - AT)4 ( )

where o is the Stefan-Boltzman constant and A = 10 K is taken, nominally, as the
temperature gradient between the components and the radiator. The total area of the
radiators is then,

AR = ARI + AR2 + max (AR:),,O) (53)

For the mass estimates, a 20% margin was added to the radiator mass, 50% to the mass
of the laser assembly, 25% to the mirrors, 15% to the solar arrays, and an overall 20%
margin was added to the dry mass. The input power is given by P;,, = 1540, Aum, Pr-

myp = 1.20(Apmg) (5.4a)

my, = 1.50(b,m.Pin) (5.4b)

my = 1.25 (b, (Ay, + Au, + 244,)) (5.4c)

Msq = 1.15(b,, Asa) (5.4d)
Mharness = Meable(Msa + M) (5.4e)
Mary = 1.2(Mparness + Msa + My + My, + My + Mpus (5.4f)

L Mse = Mdry + Mfyel + Mianks (5.4g)

Figures 125 — 129 show the various Pareto fronts as a function of the four parameters
used in the optimisation, i.e. in £4.,. For each run, the number of function evaluations
was set to 5000, with a 10 individuals, and a convergence tolerance of 1074,
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Figure 125: Pareto front for primary mirror aperture diameter, spacecraft mass and deflec-
tion distance at the MOID.
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Figure 126: Pareto front for primary mirror aperture diameter, number of spacecraft in the
formation, and concentration ratio.
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Figure 127: Pareto front for concentration ratio, spacecraft mass and deflection distance at
the MOID.
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Figure 128: Pareto front for number of spacecraft in the formation, primary mirror aperture
diameter and warning time.



5.1 SIMULATION RESULTS 159

x10°

Deflection (km)

x10°

10

0 4 6
Total Mass (kg) 0 2

Number of Spcecratft, ne.

Figure 129: Pareto front for number of spacecraft in the formation, spacecraft mass and
deflection distance at the MOID.
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5.2 DEBRIS CONTAMINATION

The contamination of the mirror surfaces due to the debris plume was modelled based
on the work by Kahle et al. (2006). The study, commissioned in part by DLR, is based
on a number of assumptions regarding the expansion of the plume and sublimation
process. The first assumption holds that the sublimation process is comparable to
the generation of tails in comets. The asteroid is assumed to contain a reservoir of
material underneath the surface, with the gas expanding both outwards as expected,
and inwards through a throat into vacuum within the asteroid itself. This assumption
holds true, for example, for a loose rubble-pile asteroid model.

The second assumption is that the plume expansion is similar to the expansion of
gas of a rocket engine outside the nozzle. The density of the gas can be computed
analytically,

d2 VS k—1
k- spot
p(r’ 9) — e (QTspot/sc + ds;oot)2 (COS <2@ma;c )) (55)

where 7g,01/5 i the distance between the spot on the surface of the asteroid and
the spacecraft, dspo is the illuminated spot diameter, © is the elevation angle of the
spacecraft with respect to the y axis of the asteroid Hill reference frame A (© = 0°
means the spacecraft is along the y axis, while © = 90° means it is along the x).
The jet constant j. was set to 0.345, the maximum expansion angle @4, = 130.45°,
and adiabatic index x = 1.4, based on the values for diatomic particles [Legge and
Boettcher, 1982].

The value p* is the density at the sublimation point and in the model is computed
as the total mass flow 7iey, divided by the product of the spot area Agp,: and gas
exhaust velocity vgqs,

* Megp
= =7 5.6
p (Aspotvgas) ( )

Substituting p* into (5.5),

4m, 1 e k-1
r,0)=—£4, (COS( )) 5.7
p( ) TVgas J (2Tspot/sc + dspot)2 20 maz ( )

This model predicts that the density at a given distance r is mildly dependent on
the size and geometry of the spot. In particular the maximum expansion angle is not
a function of the spot geometry. In the case of an extended body which is an order
of magnitude bigger than the spot, the expansion cone is probably different from the
one reported in the work of Kahle et al.

The third assumption made is that all the particles impacting the surface of the
mirror condense and stick to the mirror. The average flow of particles per unit area
is given by the product of the density p(r, ¢) and expelled particle velocity Uy, com-
puted using (3.36), where the velocity of the particles is assumed to be independent
of the spacecraft elevation angle ©.

Kahle assumes that the mirror is perpendicular to the flow and that the density
of the condensed material is pjayer = 1 g/cm?® therefore, for the conservation of the
mass, the height h.onq of the condensed material on the mirror surface is,

p(r7 @) Ugas (p)
Player

Reond = th (5.8)
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with the time 5 to reach a given thickness,

hcondplayer
"= 501, ©) tyaap) )
The contamination time, therefore, is inversely proportional to the mass flow, while
the thrust is directly proportional to the mass flow. In our model the exhaust velocity
is constant and function of the sublimation temperature, therefore the thrust depends
only on the mass flow. A higher thrust results in a higher mass flow and thus in a
faster contamination.

In our case, the primary mirror never directly faces the asteroid nor the plume.
For more than half of the orbit, the face of the primary mirror is completely shielded
by the spacecraft, and depending on the size, the back of the mirror. The steering
mirror, on the other hand, though it is in the plume is not perpendicular to the flow.
Following the approach used to compute the contamination of surfaces due to out-
gassing, a ‘view factor’ ¢, was added to (5.9), equal to the angle between the laser
beam and the directional steering mirror (if the laser beam is parallel to the y axis,

@y is 45°),

dhcond _ pexp<2@emp)
dt Player

COS Qy f (5.10)

Note that the primary mirror is protected not only from the flow of gas but also from
the debris. As the gas expands its velocity increases till it reaches the free molecular
flow state, at that point, following the assumption of Kahle, the velocity can be
considered constant.

For the asteroid model, the sublimation temperature is 1800 K giving an initial
debris velocity Tezp = 552.028 m/s. This velocity will double after a distance of 1.3
m from the asteroid. At that point, the Knudsen number is about 1, meaning the
gas is considered to be in a free molecular state. Note that, although in (5.9) the
velocity is considered to be directed toward the mirror, in reality the velocity field
will present more scattered directions of motion. Therefore, the debris velocity in
(3.36) (on pg. 57) is multiplied by a factor of 2 to account for this expansion of the
gas in a vacuum. The layer density pigyer is to set to 1 g/cm®. The power density
on the asteroid surface is decreased based on the contamination of the mirrors. A
degradation factor v, is applied to the power reaching the asteroid surface, based on
the Lambert-Beer-Bouguer law [Kahle et al., 2006],

Yp = exp” 2vehtend (5.11)

where v. = 10%/cm is the absorption coefficient for forsterite. Equations (3.31) and
(5.10) are numerically integrated, along with the Gauss equations in (3.23), for the
duration of the deflection mission. Due to the design of the orbit, which is designed to
help avoid the plume, the effect of the contamination is small. For e.g., a 20 m mirror
with a thrust duration of 7 years generates a maximum of 0.1 um of contaminant,
equivalent to a degradation factor vy of 98% (see Fig. 130).

An important consideration is that the gas flowing toward the steering mirror is
continuously illuminated by the laser beam, therefore either the wavelength of the
laser is such that there is no interaction or the gas is not cooling down but is further
heated up. The additional heat will further expand and likely ionize the gas. If the
gas is ionized a simple electrostatic field would maintain the mirrors clean. If the gas
is not ionized, since it is not cooling down a condensation is less probable. Assuming
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Figure 130: Height (or depth) of contaminant on mirror surface, and power degradation
factor for a 7 year sample mission, operating with a 20 m aperture diameter
fixed mirror.

that the gas is actually condensing on the surface of the mirror, the condensed layer
will be constantly illuminated by the laser, therefore either it is not absorbing the
light of the laser or it is heated up and will evaporate again. Thus, it is possible that
the laser system is also keeping the mirrors clean.

Figures 131-137 represent the deflection that can be achieved accounting for con-
tamination. The asteroid is deviated continuously until either the mirror cannot be
operated due to the contamination or until impact. For the laser option, with small di-
ameter primary mirrors and high concentration ratios (so small spot size), the impact
of the contamination is very small. For the direct imaging, which by comparison has a
large primary mirror and low concentration ratio, the effect is much more noticeable,
as in Figs. 136 and 137.
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Figure 131: Deflection as a function of concentration ratio and number of spacecraft, includ-
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of 5T, and a system efficiency of 25%. See Fig. 106 for comparison.
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Figure 132: Deflection as a function of concentration ratio and number of spacecraft, includ-
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ing mirror contamination, for a 10 m primary mirror, a warning and thrust time
of 4T, and a system efficiency of 25%. See Fig. 111 for comparison.
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Figure 133: Deflection as a function of concentration ratio and number of spacecraft, includ-
ing mirror contamination, for a 20 m primary mirror, a warning and thrust time
of 4T, and a system efficiency of 25%. See Fig. 114 for comparison.
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Figure 134: Deflection as a function of concentration ratio and number of spacecraft, includ-
ing mirror contamination, for a 30 m primary mirror, a warning and thrust time
of 5T, and a system efficiency of 90%. See Fig. 116 for comparison.
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Figure 135: Deflection as a function of the warning time and number of spacecraft, including
mirror contamination, for a 20 m primary mirror, concentration ratio of 2000

and a system efficiency of 25%. See Fig. 119 for comparison.

Deflection (km) including contamination effects
=5 Cr =50, r]Sys =90%

Number of spacecraft

2 4 6 8 10
Warning time, tWam = Thrust time, t'hrust (multiples of TA)

Figure 136: Deflection as a function of the warning time and number of spacecraft, including
mirror contamination, for a 50 m primary mirror, concentration ratio of 50 and

a system efficiency of 90%. See Fig. 122 for comparison.
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Figure 137: Deflection as a function of the warning time and number of spacecraft, including
mirror contamination, for a 65 m primary mirror, concentration ratio of 100 and
a system efficiency of 90%. See Fig. 124 for comparison.
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5.3 ENHANCED YARKOVSKY EFFECT

The direct imaging concept offers an additional, interesting possibility. Even if the

power density is not high enough to sublimate the surface material, the heat on the

surface will induce a very low thrust by means of the Yarkovsky effect. This effect was

first measured in 1991 on the asteroid 6489 Golevka which drifted 15 km over twelve

years, equivalent to an induced acceleration of 107!% m/s? [Chesley et al., 2003].
The force due to the light projected onto the asteroid is,

2 2
Eight = 2(1 - aA)Uh'[CTASpOtPO < Iav ) + OZAO'MCrAspotPO ( fav ) (512)

To/se To/sc

given the mirror reflectivity oy, absorptivity «, and the emissivity €,. The first com-
ponent is the reflected light and the second component is the absorbed light.

For an asteroid surface temperature T, the emission of photons will add a force
component Fj,. [Broz, 2006],

2 e,oT
Fy = *EAU 2 Aspot (513)

s C

The temperature of the spot surface can be computed with the simple one-dimensional

model given by Sanchez Cuartielles et al. (2009).
o*T  oT

— = 5.14

X222 T ot (5.14)

where

K,
Xa =
PACa
is the thermal diffusivity of the material, K, = 2 W/m/K is the conductivity, p, = 2

kg/m? is the density of the material and ¢, = 750 J/kg/K is the heat capacity. The
boundary conditions are given by,

T, A\
_ KAiA —+ GAO'T‘;L = CYAUMCrAspotSO ( "' ) (515&)
axspot To/sc
T(0,2) = Ty (5.15b)
T(t, L) =1y (515(3)

The initial surface temperature Ty is taken to be 278 K, which is assumed here to be
constant from the surface down to a depth of 50 m inside the asteroid. A scattering
factor A of 2/ is multiplied by the total force to account for emissions in all directions
on a dome. Figure 138 shows the sum of the two force components Fj, in (5.12) and
Fiight in (5.13) as a function of the surface temperature for two different spot sizes.

Figure 139 shows the deflection that can be achieved with the simple combination
of forces given in (5.12) and (5.13), for two different mirror diameters.

The achieved deflection is much lower compared with sublimation, for e.g., for 5
years of operation using 10, 65 m diameter mirrors, the deflection distance with the
Yarkovsky effect is ~ 1200 km, while sublimation would produce a deflection of 10000
km. That said, the deviation is still quite useful for moving asteroids into a nearby
orbit where smaller deviations are needed.
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Figure 138: Total thrust due to combined Yarkovsy and solar pressure effects.

5.4 DISCUSSION

For the contamination problem the solar pumped laser option offers a range of possible
solutions which can be explored. The primary can be further protected by shielding

the exterior part of the spacecraft and by adding baffles along the rim of the mirror.

The steering mirror can be protected using a counter flow of inert gas, though this
solution would require extra mass, and a shutter that is timed with the flow of debris
and gas.

However, if the laser interacts with the plume, or even if the surface of the mirror
is kept at high temperature, the system could be potentially self-cleaning. In fact the
average time of residence of a contaminant on a surface can be estimated as [Tribble,
2003],

E,

Eres = To €Xp T

=

(5.16)

where 7y is oscillation period of molecule, and R = 8.314472 J/K-mol is the gas
constant. If the temperature T,, of the mirror or layer of material is kept high, most
of the contaminants with a low activation energy F, could sublimate again after a
few seconds of residence.

The absorption of the laser beam by the plume also means a reduction in the power
density on the surface. A reduction of the power density would correspond to an
interruption of the sublimation process. As the sublimation stops, the plume would
dissipate quite fast and the laser would be able to sublimate again. Therefore, the
overall system would work through a sequence of impulses. These impulses can be
timed with the duty cycle of the laser to maximise performance.

As stated above the current computation of the deflection is not optimal, although
proper scheduling of the thrusting operations would greatly increase the deflection
[Colombo et al., 2009]. In particular, thrusting around the perihelion for deflection
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Figure 139: Deflection achievable with the enhanced Yarkovsky effect.
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strategies that are pushing in the direction of the velocity is optimal while for other
values of the true anomaly the deflection action is not very effective. Although pushing
only at the perihelion would increase the warning time, it would also mitigate the
contamination problem extending the lifetime.

The direct imaging system may represent a problem if the optics cannot be pro-
tected. It is expected that the flow of gas will be excited by the flux of light and
therefore will not condense, as predicted by the model of Kahle et al. On the other
hand, if the flux is not dense enough to sublimate the debris, this could pose a severe
problem. Therefore, the study of the optical system and of the contamination of the
optics in the case of the direct imaging remains an open issue.
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CONCLUSION

The beginning of wisdom is
found in doubting; by doubting
we come to the question, and by
seeking we may come upon the
truth.

Pierre Abelard

This study addressed some of the problems related to the implementation of the
solar sublimation concept for asteroid deflection.

ORBITAL DYNAMICS AND CONTROL IN PROXIMITY OF AN IRREGULAR BODY
It proved that the mirrors can be maintained at close distance with minimum
control. Furthermore, the use of a formation can provide improved orbit deter-
mination capabilities both to keep track of the motion of the spacecraft of the
spacecraft with respect to the asteroid and of the asteroid with respect to the
Sun.

DEPLOYMENT OF A LARGE REFLECTOR IN SPACE Although the direct imag-
ing concept still requires a reflector of considerable aperture, a significant de-
flection can be achieved with reflectors that are one to two orders of magnitude
smaller than the ones proposed in literature for this deflection method. In par-
ticular, for the solar pumped laser concept the reflector can be as small as 5
m in diameter. From the preliminary system design, the size and mass of the
spacecraft is within present launch capabilities. Furthermore the TRL of the
individual elements of technologies involved in indirect solar pumping is higher
than 4, and is expected to increase regardless the specific application to asteroid
deflection.

CONTAMINATION OF THE OPTICS A basic calculation of the effect on the contam-
inant on the surface of the mirror was implemented, following a model developed
by Kahle et al. The results show that the effect would be minimal as the mirror
is placed, by design, outside the main area of the plume however, again, this is
an initial calculation only. Further study is required in order to refine and test
the model and assumptions used.

Two configurations for the mirrors were analysed and for each one a different strat-
egy for orbit maintenance was considered.

The multi-mirror fixed configuration led to the definition of a particular set of
formation orbits composing two symmetric funnels with the principal axis aligned with
the y-axis of the asteroid Hill reference frame. These funnel orbits allow the spacecraft
to have very good visibility of the target spot on the surface of the asteroid and, at
the same time, allow room for the plume of gas to flow with minimal impingement.
The funnel orbits are located outside a limiting sphere where the gravity field of the
asteroid can be considered homogenous. This limit sphere imposes requirements on
the pointing accuracy and focusing capabilities of the mirror assembly. The orbital
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maintenance strategy is based on the computation of the control components that
minimise the difference between the current and target value of the relative Keplerian
elements. The control compensated for two sources of perturbations: solar radiation
pressure due to the large surface area of the mirror assembly and third body effects
due to proximity of Apophis, and for the constantly deviating orbit of the NEO. The
decrease in mass of Apophis due to the solar sublimation was also accounted for.

A second option considered an adaptive single mirror configuration. For this option,
the mirror can be placed at artificial equilibrium points highly inclined over the y-axis
of the Hill frame. From this position the spacecraft sees the target spot from a high
angle, however AEPs can be found that allow the spacecraft to maintain a reasonable
size of the spot area. A control strategy was proposed that allows the spacecraft to
oscillate in a confined region in the proximity of the asteroid with a very low control
thrust. Even adding the effect of the gravity field of an elongated body, the magnitude
of the required control thrust remains limited. The low level of thrust would suggest
the use of FEEP engines, which would lead to a minimal propellant consumption over
a long operational period.

An interesting strategy for the navigation was developed and simulated, with the
results being quite successful.

The results shows that the solar sublimation concept is an effective solution to
the drawbacks of the original idea of a solar sublimation system. However many key
points remain open. For example, though it was found that a simple optical lens
system cannot collimate the light at the required distance from the asteroid, the
arguments in this study are not conclusive and further, more detailed investigations
are required. Furthermore, the system design analysis is only partial and does not
include any trade-offs between number of spacecraft, achieved deviation, warning
time and overall system mass. The design of the spacecraft, therefore, also has room
for improvement.

6.1 FUTURE WORK

This study answered the primary goal of determining whether solar sublimation is a

feasible option for the deflection of the asteroid, but was preliminary in nature and

only addressed the major concerns and potential ‘show-stoppers’ for this method. The

aim was not to produce an optimal design, but to provide a set of feasible options.
Within the realm of a general study, the next steps would entail:

* A further analysis of the optical system including detailed investigations and
designs of solar cells, laser efficiencies and implementation issues such as the

heat dissipation (done in this study through radiators) and crystal selection.

Also, while the lens option was examined here, an advanced optical designer

may be able to produce a collimation lens designed for one specific mission.

This would probably require a different set of orbits that were designed in order
to minimise the variation in the reflection angle and solar disk size.

* For the control, a number of methods were investigated with the results of the
most promising shown here. However, this still needs further work to refine the
effect of the tuning weights. Long term simulations are also necessary to see the
full reaction after a number of years. The code was written in Matlab, however
the simulation time could be reduced, for example, by porting the code over to
the programming language c.
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* The navigation presented here illustrates that the concept works. The next
step is to implement a filtering algorithm to both reduce the errors in the po-
sition determination, and to predict the velocity of the NEO. Factors such as
eclipse/shadow, partial images and other visual factors will also need to com-
pensated for in the image recognition algorithm. Due to the high development
level of this technology in computing, this should not be a problem to develop.

* A more accurate contamination model should be developed which can either
verify the assumptions made here, and/or develop more accurate models based
on experimental testing.



ANALYTICAL DERIVATIONS OF PROXIMAL MOTION
EQUATIONS

The following appendix outlines the various analytical forms of equations describing
the relative position and velocity of one object with respect to another.

A.1 NON-LINEAR RELATIVE EQUATIONS OF MOTION

Starting with the well known coordinate transform matrix from the inertial heliocen-
tric Cartesian reference frame O to the relative rotating perifocal coordinate system
P where 7 points towards the periapsis of the orbit, and 27 is normal to the orbital
plane (see Fig. 140),

x© = [Ry(~Q) - Ra(—i) - Ra(—w) - Ro(~)] x” (A1)

where R; are the Euler elementary rotation matrices along the i'" axis (see Battin
(1999) for background on Euler angles). The vector x” = [r, v] is,

a(l—e?)cosv

rcosv 1+ ecosv
P = | rsiny | = | al—e€?)sinv (A.2)
0 14 ecosv
0
— #sinu
T CcosSv — rusiny a(l —e?)
7 =vP = | jsinv +rvcosy | = L(e + cosv) (A.3)
a(l —e?)
0
0

There is no out-of-plane motion by definition of the coordinate system since -7 define
the plane of the spacecraft orbit.

Note that these results are valid only for elliptical orbits (i.e. 0 < e < 1). For circular
orbits (e = 0), w = Q@ = 0 and v = M (mean anomaly) or v = 6 (true latitude)
depending on the inclination; see Vallado (2004) for a complete explanation of all the
cases (e.g., circular, parabolic).

174



A.1 NON-LINEAR RELATIVE EQUATIONS OF MOTION

Figure 140: Inertial Cartesian system of S—— -
the central body Of7,],k}
and perifocal coordinate sys- Figure 141: Hill Cartesian reference frames

tem P{z, 9, 2}, where z points for objects A and B, including
towards the periapsis of the or- vectors. NOTE: the diagram is
bit, x-y lie in the orbital plane not to scale.

and z is normal to z-y.

The equations for the position and velocity of an object in inertial space as a function
of the Keplerian orbital elements can be found by expanding (A.1) with (A.2) and
(A.3),

r(k) =7 (cos Qcos(v + w) — cosisin Qsin(v + w)) (A.4a)
ry (k) = r (cos(v + w) sin Q + cos i cos Q sin(v + w)) (A.4b)
r.(k) = rsinisin(v + w) (A.4c)
1
ve(k) = - ( cos ) (er\/gcos(u +w)sinv — /ppsin(v + w)) (A.4d)
— cosisin ) (,/pu cos(v +w) +er % sinvsin(v + w)) )
vy(k) = (_Jw + e\/ﬂcos 1/) sin v (cosw sin 2 + cos i cos 2 sinw) (A.4e)
r p

+ <W + e\/ﬁsin2 V) (cosicos Q) cosw — sin Qsinw)
r p
v, (k) = sini (‘pMCOSW + e\/ﬁsin vsin(v + w)) (A.4f)
p

r
where,
h=|rAv|=ypp
_ p
p—_—r
1+ ecosv

p=a(l-¢?)

175



A1 NON-LINEAR RELATIVE EQUATIONS OF MOTION 176

The equations of the definition of the Hill frame given in (3.4) can be expressed in
terms of the orbital elements of object A, where G is simply the matrix form of the
equations in (3.4).

h, 1 N
Gs31 = =7 (ry(ka)va(ka) — r2(ka)vy(ky)) = sini, sin 2, (A.5)
h 1
Gy = fy =7 (ro(ks)va(ks) — ro(ka)ve(ky)) = —cosQasinig (A.6)
h, 1 .
Gs3 = =5 (rz(ka)vy(ks) —1y(ka)ve(ka)) = cosia (A.7)
ra:(kA) .. .
Gi1 = . = 08, cos(Vy + wy) — €8, sin 2, sin(vy + wy) (A.8)
A
_ 1, (ky) _ . . .
Gio = = cos(Vy + wy ) sin Q, + cos i, cos 2, sin(vy + wy) (A.9)
TA
k
Gi3 = r:(ﬂiA) = sini, sin(v, + w,) (A.10)
A

Expanding the cross product hAf gives the remaining axis,

Ga1 = G32G13 — G33G12 = — €08, cos(vy + wy)sinQ, — cos Q, sin(vy, +w,)  (A.11)
Ga2 = G33G11 — G31G13 = cosi, cos ), cos(vy + wy) — sinQ, sin(v, + w,) (A.12)
Ga3 = G31G12 — G32G11 = cos(vy + wy ) sini, (A.13)
Combining the equations (A.8)—(A.5) for the transformation matrix G with the def-

initions in (A.4), gives the equations for the vector ry in the Hill frame of A and
expressed as a function of the orbital elements,

TBZ =T = Gllrw(kB) + Glgry(kB) —+ Glgl‘z(kB) (A14)
=7y ( cos(vg + ws) ( cos(Q, — Q) cos(vy + wy) — cosiy sin(Qy — Q) sin(v, + wA))
+ (COS ip cos(vy + w,y) sin(Q, — Q)
+ (cos ix cO8ip cos(y — Qp) + sini, sin iB) sin(v, + wA)) sin(vg + wB)>
TBy =Yy = Gglfz(kB) + Gggl"y(kB) + Gggfz (kB) (A15)
=7y ( — cos(vp + wB)(cos iscos(vy + wy)sin(Qy — Q) + cos(Qy — Q) sin(v, + wA))
+ (COS(Z/A + wA)(cos ix cO8ig cos(y — Qp) + sini, sin ZR))
— cosipsin(Q, — Qp) sin(v, + wA)> sin(vg + wB)>
g, =2 = G31Tx(kB) + G32ry(k3) + G33rz(kB) (A].G)

= rB(cos(uB + wg) sin i, sin(Q, — Qg)

+ ( — cosig cos(Qy — Q) sini, + cosi, sin iR) sin(vg + wR))



A2 LINEAR RELATIVE EQUATIONS OF MOTION

Note that if the two objects A and B are very close together compared to the dis-
tance from the central body, then a common assumption used is r2t = r5, therefore

rit & [rg, 0,0] where A and B are the Hill frames centred on objects A and B respec-

tively. Here this assumption is not used, and the exact equations for ry are derived.

The unit or directional vector dr from object A to object B in the Hill coordinate
system centred on object A is then,

_ v, -
NCETN RN
Iy —7T Y
51 (ko kp) = Tz - T: =| Vet 2t t2 (A.17)
z
N(CETN RN

4 where [x,y, z] are given above (A.14)—(A.16) in terms of orbital element sets for A
and B. Note that vectors r,,rg are measured from the central body of the O frame
(e.g. the Sun) to objects A and B respectively, expressed in the Hill reference frame .A.
Therefore r{! = [r,,0, 0], which is why there are no 7, terms in the § and 2 definitions.

A.2 LINEAR RELATIVE EQUATIONS OF MOTION

Schaub et al. [Schaub et al., 2000; Schaub and Alfriend, 2002; Schaub and Junkins,
2003; Schaub, 2004] developed a set of linear equations that provide a direct mapping
between the Cartesian Hill frame X = [x,y, 2,4, 7, 2|7 and the set of orbital element
differences ok = [da, de, §i, 692, 6w, S M|T.

X=Fk) -6k +— odk=F1'k)-X (A.18)

Given the set of Keplerian elements of the chief orbit: k = [a, e, 4, Q, w, V], the following
basic identities,

0=v+w (A.19)
p=a(l—e?) (A.20)
p

= A. 1
" 1+ ecosv (A.21)
h = \/ip (A.22)
n=+vy1—e2 (A.23)
and the time derivatives,
. h
7= ae(l — e?) e (A.25)

(1+ ecosv)?
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A2 LINEAR RELATIVE EQUATIONS OF MOTION

then the matrix F is defined as follows,

Fll = — (A26a)
a
Fi5 = —acosv (A.26Db)
Fi3 =0 (A.26¢)
Fla=0 (A.26d)
F15 =0 (A266)
Fig = aesmy (A.261)
n
F21 =0 (A27a)
Fpy = © SH; v (2 + ecosv) (A.27b)
n
F23 =0 (A27C)
Fyy = rcosi (A.27d)
Fos =7 (A.27¢)
Fos = %(1 + ecosv)? (A.271)
F31 =0 (A28a)
Fy =0 (A.28D)
F33 =rsind (A.28c)
F34 = —rcosfsini (A.28d)
F35 =0 (AQSB)
Fys =0 (A.28f)
,’}.
F41 = - (A29a)
a
Fyo = avsinv (A.29b)
F43 =0 (AQQC)
Fuy=0 (A.29d)
Fis =0 (A.29€)
Fio = aev cos v (A.296)
n
F51 =0 (ASOa)
Fso = % (7sinv(2 + ecosv) + rivcosv(2 + ecosv) — riesin® v) (A.30b)
n
Fs3=0 (A.30¢)
Fs4 =1 cosi (A.30d)
F55 =7 (A30€)
Fs¢ = % (#(1 + ecosv)® — 2reir(1 + ecosv)sinv) (A.30f)
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A2 LINEAR RELATIVE EQUATIONS OF MOTION

Fe1 =0 (A.31a)
Fea =0 (A.31b)
Fs3 = 7sinf + rvcosd (A.31¢)
Fsa = —cosfsini 4 risinfsini (A.31d)
Fgs =0 (A.31e)
Fss =0 (A.31f)

where Fj; is the component in the i*® row, 5 column of the 6 x 6 matrix F

B ] Fiu. Fip Fiz - o Fig B ]
T ) da
y For . Fs Se
z | _ : - : 01 (A.32)
T .. : 02
] ow
: . R
: 50 SM
. | Fi¢ -+ -+ Feu Fes Fge | - .

To avoid singularities in the e and w terms, Schaub expressed his equations in terms
of an alternate set of orbital elements k* = [a, 6, i, q1, g2, §2], where

0=w+v (A.33)
g1 = ecosw (A.34)
g2 = esinw (A.35)

in this case the radius vector can be defined as

. a(l—q—q3)
1+ g1 cos0 + gosinf

(A.36)

The set of equations in the local Hill frame in (3.12) or in the matrix F, can also be
expressed in terms of this new orbital element set,

v =0r="da+Trs0 - " (2aq1 +rcosf)dqr — r (2aqz + rsin ) dgo (A.37a)
a Ut p p

y =1 (660 + cosidQY) (A.37b)

z = (rsin®) §i — (r cosfsin i) 652 (A.37¢)

X 1 1 . i — 3
b —Ysay ( B ) hso 4 Uraa + hsmﬁ(sq1 L Urag hcosﬁ&h (A.38)
2a p
3y 3viaqy + 2hcos 6

Y= —2—5a—vr69—|— 0q1
a p

.
4 Sviadr +2hsinb s s is0) (A.38b)

Z2 = (vycosf + v, sin ) §i + (v sin 6 — v,. cos ) sin 10 (A.38¢)
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A2 LINEAR RELATIVE EQUATIONS OF MOTION 180

where v,., v; are the radial and transverse components of the chief velocity vector.
. h .
v =7 = — (g1 8in 6 — g2 cos h)
p
v =10 =— (14 q1cos0 + gasinb)
p
The inverse transformation from Hill Cartesian coordinates X to orbital element dif-

ferences 0k can also be derived analytically — this is generally preferred as the matrix
F is often close to singular making numerical methods impractical or impossible.

2 2,
da :1% (4p + 5ae® + ae (6 cosv + ecos(2v))) = + % {
ae (2p + 3ae® + ae (4cosv + ecos(2v))) sinv (A.39)
_ > y :
+ ﬁ (2p + 3ae® + e (4 cos v + ecos(2v))) ¥
sz_’_ecosw—i—cosez_ hsin @ P (A.40)
r P w(l + ecosv)
5i:esinw+sin92+ hcos@ P (A41)
D w(l+ ecosv)
San :5ecosw+6cos§+ e cos(2v +w)w+ \/ﬁsinej:
r 1

— i (4sin(2v + w) + e (sin(v — w) + 4sinf + sin(3v + w)) )y

\/5 ( esinusin&) . e(ecosw + cosh)sinw (A42)
+4+/=|2cosf + g — - z
I 1+ ecosv ptani
hesinw sin 0 P
ptani(l + ecosv)
Sesinw + 6sinf + esin(2v + w) D )
gy = x — /= cosOz
2r o
n e4008(2u +w) +e(—cos(v —w) +4cosf + cos(3v + w))y
4
. b (A.43)
D (ecos@smu ) > . ecosw(ecosw + cosh)
— /= ———+2sinf ) y+ - z
w\1+ecosv ptani
ecoswsiné P
ptani(l 4+ ecosv)
6Q:_60059+?0592+ . hsin@ P (A.44)
pCosi cosiu(l +ecosv)
Using the following relations,
de = dgs sinw + dqp cosw (A.45)
S — dgo cosw — gy sinw (A.46)
e
. 2 3
oM = (56— g — SYREecosy) 5 7 (A.47)
n? (1+ ecosv)?
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(A.39)—(A.44) can be converted back to the conventional set of Keplerian elements
5k = [da, Se, §i, w, §Q, 6 M]. The inverse matrix F~1 is defined as follows,

r

Ft=— (A.48a)
a
F,' = —acosv (A.48Db)
Fig' =0 (A.48¢)
Fl =0 (A.48d)
Fl=0 (A.48e)
o aesinv (A.486)
n
Fit=0 (A.49a)
Fyt = ! j;;l Y (24 ecosv) (A.49Db)
Fypl=0 (A.49c)
Fyt = rcosi (A.494)
Fylt=r (A.49e)
_ r
Fyt = n—B(l + ecosv)? (A.491)
Fal=0 (A.50a)
Fpl=0 (A.50Db)
Fy' =rsind (A.50¢c)
F;,t = —rcosfsini (A.50d)
Fpl =0 (A.50e)
Fi' =0 (A.50f)
T
Fy'== (A.51a)
Fpt = avsiny (A.51Db)
Fgl=0 (A51c)
Fpl=0 (A.51d)
Fpl=0 (A.51e)
o aev cos v (A516)

Ui
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=0 (A.52a)
1
Fo,' = ol (7sinv(2 + ecosv) + rvcos v(2 + ecosv) — rivesin® v) (A.52b)
Fl=0 (A.52¢)
Fs,t =1 cosi (A.52d)
Fll=7 (A.52¢)
Fit = ;—3 (7(1 + ecosv)® — 2rei(1 + ecosv) sinv) (A.52f)
F;t=0 (A.53a)
Fl =0 (A.53b)
Fg;' = 7sin® + rvcos (A.53c)
F;t = —cosfsini + risinfsini (A.53d)
Fil=0 (A.53e)
F' =0 (A.53f)

A state-transition matrix ®x was developed by Gim and Alfriend (2003) in order to
directly determine the position and velocity state vector of the formation spacecraft
at any given point in time, given the initial state.

The definition of the matrix is based in part on the above two matrices F and F~!.

Bx(t,t0) = | g ] = F(0) | 726 | B (A.55)

The only remaining unknown is the matrix ®sx, based on a 6 x 6 standard identity
matrix. The only time variant parameter is dv in the set dk, or 66 in the set dk*,
which can be expressed in the form,

ov = ®y10a + »de + Pardiyg (A.56)
00 = bv + ow = @215(1 + @2251/0 + (1)24(5(]1 + @255(]2 (A57)

For the entire derivation, see Schaub and Junkins (2003). The matrix is therefore
given by,

1 0 0o 0o o0 0]
Py Doy 0 Poy Dos O
8 6k* (t) 0O 0 1 0 0 0
Dyper = { ] - (A.58)
0 6k*(to) 0 0 0 1 0 0
0O 0 0 0 1 0
0 0 0 0 0 1

182



A2 LINEAR RELATIVE EQUATIONS OF MOTION

where
—3a
1 = (M = My) —5 (A.59)
O\ 2
Doy = [ — (A.60)
To

(1 = (;)2> (A.61)
Po5 = % - Z—; (1 - (7:))2> (A.62)

1
n = 6772<(q1 sin @ — g cos ) (2 + g1 cos 0 + ¢o sin 6)

2
— (q1sinfy — g2 cosbp) (2 + q1 cos By + g2 sin bp) (:) ) (A.63)
0

The variables g1 and ¢z are defined above in (A.34) and (A.35) and are from the set
0k™*, used here to avoid singularities due to e or w.
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OPTIMISATION ROUTINES

The following is an excerpt from [Maddock and Vasile, 2008a] outlining the optimi-
sation procedure used in the research. The work is based on proprietary software
package EPIC (Evolutionary Programming and Interval Computation) developed by
Vasile for use in local and global trajectory optimisation for space mission analysis.
For further reading, see [Vasile, 2005a,b, 2008; Vasile and Locatelli, 2009).

B.1 OPTIMISATION PROCEDURE

Normally in literature, single objective optimisation and multiobjective optimisation
are treated as two distinct problems with different algorithms developed to address
either one or the other. Many approaches for both single and multiobjective opti-
misation are biologically inspired. Some derive their inspiration from evolutionary
processes, e.g., [Coello Coello et al., 2007; Price et al., 2005; Deb et al., 2000, 2002],
while others from social behaviours in animals, e.g., [Kennedy and Eberhart, 1995;
Elbeltagi et al., 2005; Reyes-Sierra and Coello Coello, 2007].

Vasile [Maddock and Vasile, 2008a; Vasile, 2008; Vasile and Locatelli, 2009] developed
a unified formulation that can be applied to the solution of both single and multi-
objective problems in which the aim is to find a set of optimal solutions rather than a
single one. A hybrid behavioural-search approach tries to collect into an archive A, as
many feasible solutions, either locally or Pareto optimal, as possible. The behavioural
search is hybridised with a domain decomposition technique in order to extend the
exploration of the search space. The stochastic part of the algorithm is based on a
meta-heuristic that selects and implements an appropriate set of actions (i.e. heuris-
tics derived from various bio-inspired approaches) for a small group of agents aimed
at finding the optimal set. The deterministic part partitions the search domain, de-
pending on the outcome of the stochastic part, and directs the search toward areas of
the solution space that are either unexplored or particularly promising.

B.2 GENERAL PROBLEM FORMULATION

The general problem both for single and multiobjective optimisation is to find a set
X, contained in a given domain D, of solutions u such that the property P(u) is true
forallue X C D,

X ={ueD|Pu)} (B.1)

where the domain D is a hyper-rectangle defined by the upper and lower bounds of
the components of the vector u,

D={u|u €l bJCR, i=1,...,n} (B.2)

All the solutions satisfying property P are defined to be optimal with respect to P, or
‘P-optimal’, and X can be said to be a P-optimal set. Now, the property P might not
identify a unique set, for example if P is the Pareto optimality then X can collect all
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B.3 BEHAVIOURAL-BASED SEARCH

the points belonging to a local Pareto front. Therefore we can define a global optimal
set Xopt such that all the elements of X,,; dominate the elements of any other X,

Xopt = {u* € D| P(u*) A\Vue X = u* <u} (B.3)

where u* < u represents the dominance of the u* solution over the u solution.

If we are looking for local minima, the property P is to be a local minimiser or a
solution u* can be said to dominate solution u if the associated value of the objective
function f(u*) < f(u). In this case X,,; would contain the global optimum or a set
of global optima all with the same value of f. In the following we will look for the
union of X and X,p.

In the case of multiple objective problems, given a set of solution vectors we can
associate to each one of them a scalar dominance index Iz such that,

Ly(u;) = [{i linjeN, Au; < uj}] (B.4)

where |O] is the cardinality of a set*, and N, is the set of the indices of all the
given solution vectors. Here and in the following, a solution vector u; is said to be
dominating a solution vector u; if the values of all the components of the objective
vector f(u;) are lower than or equal to the values of all the components of the objective
vector f(u;) and at least one component is strictly lower. In this case, for the j*8
solution, P(u;) simply defines the property of being not-dominated by any other
solution in the set N, thus:

X ={uj € D|I4(u;) =0} (B.5)

For constrained problems, the property P is to be optimal, either locally or Pareto,
and feasible at the same time.

B.3 BEHAVIOURAL-BASED SEARCH

A population of virtual agents is deployed in the search space. Each agent is associated
to a solution vector u and endowed with a set of basic actions forming a behaviour.
The entire population evolves through a number of steps toward the feasible set X. At
each evolutionary step, the agents collect clues about the environment and implement
actions according to an action selection mechanism. Some of these actions are devoted
to acquire new information, others to displace the agents toward the local minima,
while other actions are instead used to exchange information among the agents.

The basic idea is that most of the bio-inspired global optimisation approaches im-
plement some form of basic behaviour derived from nature: from mating of Evolu-
tionary Algorithms (EA) to the flying of bird flocks in Particle Swarm Optimisation
(PSO) to the social behaviour of ants in Ant Colony Optimisation (ACO). Some of
those behaviours can be classified as social, such as crossover in genetic algorithms,
because they are devised to exchange pieces of information among the individuals.
Other behaviours can be classified as individualistic because they aim at improving
the individual status of each individual.

We implement a set of actions, each one producing an outcome uy,, derived from
PSO, EA and DE (Differential Evolution) and a very simple, basic action selection

*“In formal set theory, the cardinality is a type of number defined in such a way that any method
of counting sets using it gives the same result (this is not true for the ordinal numbers). Cardinal
numbers are obtained by collecting all ordinal numbers which are obtainable by counting a given
set. The cardinality of a set is also frequently referred to as the power of a set.” [Weisstein, 2009].
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Figure 142: Action selection mechanism for individualistic behaviour.

mechanism. In particular, for individualistic behaviours (see Fig. 142), each agent
can perform three types of actions: A, B and C. This general scheme accommodates
two types of heuristics: Action A generates always the same outcome every time
is performed once a solution vector u is given (e.g. inertia in PSO), while Actions
B and C generate different values for the same u every time they are performed
(e.g. mutation in EA). These last two actions are repeated until an improvement is
registered or a maximum number of attempts is reached. The index k. is increased
by one every time an action is performed, and every action makes use of the agent
status, the status of other agents and of the outcome of the preceding actions.

After an initialisation is performed by sampling the solution space by Latin Hypercube,
each solution vector is associated to an agent. Each agent is then evaluated and social
behaviours (such as crossover) are implemented. After exchanging information with
the other agents, each one can implement a set of individualistic actions (such as
mutation, for example). The archive collects all the solutions for which P is true at
every evolutionary step. Furthermore, at termination the entire population is added
to the archive. Note that the property P required for feasible and for unfeasible agents
is different: feasible agents are required to be either locally or Pareto optimal and to
remain feasible, while unfeasible agents are required to simply become feasible. As a
consequence, the entire population of agents is divided into two subpopulations: one
aiming at being optimal, the other aiming at being feasible. The overall algorithm,
called Multiagent Collaborative Search (MACS), is represented in Fig. 143 and briefly
outlined below.

STEP 0. INITIALISATION Generate an initial population of agents IIy within D
through a Latin Hypercube (i.e., a non-collapsing design where points/agents
are evenly spread when projected along a single parameter axis) [van Dam et al.,

2007]. A hyperrectangle S is associated to the 5t agent u? € Ily. The initial

size p(uj)) of each region SY9 s fixed to 1 (i.e., the initial local region of each
agent corresponds to the whole set D). The effort s(uf) dedicated to agent
ug € I, is fixed to the same value $yax (equal to n in the computations) for all
agents in IIy. Set & = 0.

STEP 1. COLLABORATION Agents collaborate with each other (social behaviour).

The collaborations give rise to a set of new solutions denoted by Q1.

STEP 2. SELECTION A subset of members of the set II;, U Q1 will be selected to
give rise to the new updated population ITx1.
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B.4 DOMAIN DECOMPOSITION

STEP 3. REPULSION The population is updated through a repulsion mechanism:
when the reciprocal distance of a number of agents goes below a given threshold,
the worst one according to P is re-generated randomly within D.

STEP 4. FILTERING The population is ranked according to the assigned P. A filter
partitions the population Ilj; into two subsets: II;", |, the population fractiotn
ou

within the filter made of the best agents according to the property P, and 134,
the population fraction outside the filter.

STEP 5. INDIVIDUALISTIC ACTIONS A set of actions, specified by a behaviour,
are applied to each agent u?“ € Ilgy1. These allow local exploration within,

k+1
SY  of the region around the agent. They are repeatedly applied until either
an improvement is observed or the number s(u?“) of actions is reached. If an
k
j .
with its improvement. The agents in II}", | versus HZ’jrtl perform different

agent u" ™! generates an improvement, population Il ; is updated by replacing
k+1

u;

sequences of actions. In particular, the ones in HZfl only perform a random

sampling of D through mutation.

STEP 6. HYPERRECTANGLE UPDATE The size parameter p and the effort param-
eter s associated to each agent within the filter are updated.

STEP 7. ARCHIVE UPDATE Apply filtering and update archive A;.

STEP 8. STOPPING RULE A stopping rule is checked. If it is not satisfied, then
set k = k+ 1 and go back to Step 1. If it is satisfied, then update the archive
A; by adding the current population, i.e., set 4; = A; UIlgy1. The search is
terminated after a given number of function evaluations.

Initialization with Latin Hypercube

v

Social Behaviors ¢—— noO

v

Individualistic Behaviors

v

Update Archive, A, @ yes—p-

Figure 143: Overall algorithm for the Multiagent Collaborative Search (MACS)

B4 DOMAIN DECOMPOSITION

In the case of single objective optimisation, the number of local minima is expected
to be finite (for physical reasons). In the case of multiobjective optimisation different
portions of the Pareto front in the criteria space can correspond to different portions of
the solution space. Therefore, the search space can be decomposed into a finite number
of subsets, each containing a portion of the optimal set X such that X N D # 0. The
initial domain D is progressively decomposed into smaller domains D; C D according
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Decomposition of Domain, D

v

MACS on D l¢———no0

v

Update Archive, Ay

v

Selection of subdomains, D @ yes—p-

Figure 144: Hybrid domain decomposition and stochastic search.

to a decomposition strategy. The decomposition strategy is based on the output of
the stochastic search step and produces a number M of subdomains D; such that,

M
Ubpi=b (B.6)
=1

Decomposition (B.6) is then iteratively applied to the subdomains D; that need fur-
ther exploration, so that

M
D =Dt (B.7)
=1

where d is the decomposition depth.

In this implementation we use a simple regular cutting of each coordinate into two
halves. Since the interest is to widely explore the search space and to collect as many
elements of X as possible, after each stochastic search the largest subdomain D;
with the least number of collected samples belonging to X is selected for further
decomposition provided that the number of times n; its parent subdomains have
already been decomposed without improvement is below a given threshold.

We use the following merit function to balance the search of completely unexplored
subdomains against those containing elements of X,

\I/DL = (1 — V)le —|— V¢Dl (BS)

where wp, is the density of already discovered solutions in D, ¢p, is the best fitness
in D; and v is a weighting factor used to favour either convergence or exploration.
The partitioning cycle is stopped when a given number of subdomains have been
generated, or when the size of the archive has been exceeded. Note that in order
to collect as many solutions belonging to X as possible while maintaining a low
computational cost, we used a local archive A; of limited size for each run of the
MACS algorithm. We then store all the globally, non-dominated solutions for all the
subdomains in a global archive, Ag.

The overall algorithm combining the MACS and the domain decomposition tech-
nique is called Evolutionary Programming and Interval Computation or EPIC [Vasile,
2005a,b, 2008; Vasile and Locatelli, 2009].

B.5 SINGLE VERSUS MULTIPLE OBJECTIVE OPTIMISATION

Although the problem formulation through the definition of P is general and ap-
plicable to both single objective (SOO) and multiple objective optimisation (MOO)
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problems, either constrained or not, the actual property is substantially different de-
pending on the type of problem.

For box constrained single objective problems, the property P is to be a local min-
imiser in D. If S" is the local portion of the search space containing the agent u, then
the property can be formally expressed as follows:

f(a) > f(ug,) + €= P(uy,) = true (B.9)

where € is a minimum required local improvement. For multiobjective problems, the
property P is defined by the value of the scalar dominance index I, thus:

Ij(u) > Iy e(ug,) = P(ug,) = true (B.10)

where ¢ is now the minimum expected improvement in the computation of the domi-
nance. Note that this easily accommodates the concept of ¢ dominance.

When multiple outcomes with the same dominance index are generated by either social
or individualistic actions, the one that corresponds to the longest vector difference in
the criteria space with respect to u is considered. Note that in many situations the
action selection scheme in Fig. 143 generates a number of solutions that are dominated
by the agent u. Many of them can have the same dominance value; therefore in order
to rank them, we use the modified dominance index:

Lo(w) = [{j | flur,) = F@} [+ [ {5 ] F(e) > )} (B.11)

where « is equal to one if there is at least one component of f(u) which is better than
the corresponding component of f(uy, ), and is equal to zero otherwise.

Now, if for the k. outcome, the dominance index in (B.11) is not zero but is lower
than the number of components of the objective vector, then the agent u is only
partially dominating the ko™ outcome. Among all the partially dominated outcomes
with the same dominance index, we chose the one that satisfies the condition:

min  (f(u) = f(w,)) &) (312
where
& = M (B.13)

VN;

is the unit vector of dimension N¢, and Ny is the number of objective functions.
Since the partially dominated outcomes of one agent could dominate other agents or
the outcomes of other agents at the end of every evolution cycle all the outcomes are
added to the archive. Then, the dominance index in (B.4) is computed for all the
elements in A; and only the non-dominated ones are preserved.

B.6 CONSTRAINT HANDLING TECHNIQUE

The algorithm described above solves box-constrained problems. Since in most of
the cases the imposed constraints are nonlinear, an extension of the algorithm was
developed in order to account for nonlinear inequality constraints explicitly.

At each generation, the population of agents is divided into two subpopulations with a
different P is assigned to each one, namely the property in (B.9) or (B.10) is assigned
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to the subpopulation of feasible agents while the following property is assigned to the
subpopulation of unfeasible agents:

F(u) > F(ug,) + € = P(ug,) = true (B.14)
where

H.lgiBF =Y max ([0, Cj]) (B.15)
u =

The two subpopulations are evolved in parallel and agents are allowed to migrate
from one population to the other, i.e., if a feasible agent becomes unfeasible it is
inserted in the subpopulation of unfeasible agents and assigned to the solution of the
constraints. On the other hand, if an unfeasible agent becomes feasible it is inserted
into the population of feasible agents and a different property P is assigned to it.
As a result, the final optimal solution is either feasible or minimises the infeasibility.
This procedure does not maintain feasibility for any one of the agents. Feasibility can
be preserved once a feasible set has been found by defining the following augmented
function F* for the feasible agents:

min F* =

if every C; <0
min { f &= (B.16)

f + max(C) ifany C; >0

The described strategy of co-evolving two populations with two different goals allows
a flexible search for feasible optimal solutions; in fact through (B.16) feasibility can
be maintained on all or only part of the feasible solutions.

If all the feasible solutions are forced to remain feasible during the whole search pro-
cess, the global exploration of the solution space may be penalised. The subpopulation
of feasible agents could remain stuck in a niche along the boundary of the feasible re-
gion. Therefore, in order to search more extensively along the boundary of the feasible
region, a subset of the feasible solutions is allowed to temporary violate the constraint
and become unfeasible. Feasibility is always preserved only for the best agent.

Note that if in (B.16), f is substituted with the dominance index I; then the described
constraint handling technique can be extended to the multiobjective case.

B.7 PRELIMINARY OPTIMISATION TEST CASES

The proposed optimisation approach was extensively tested on several space related
problems with a single objective. Here the interest is to apply EPIC at first to a
single objective case and then to a multiobjective problem. Therefore a preliminary
test was performed, applying EPIC to two well known problems in literature. For
further details about these test functions, please refer to [Deb et al., 2000, 2002].
The first test case, DEB, is a constrained multiobjective optimisation problem with
a convex Pareto front. The constraint C fragments the admissible Pareto front into
a disconnected set. Running EPIC with a single level of branching and a limited
population of 10 agents with 5 explorers, iterated for 12000 function evaluations,
led to the result reported in Fig. 145 where the constraint is represented with a
continuous line while the solutions found by EPIC are represented by points. The test
was repeated 20 times with nearly identical results.

The second test case, ZDT/, is commonly recognised as one of the most challenging
problems since it has 21 different local Pareto fronts of which only one corresponds to
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Table 24: Parameters for the two preliminary test cases for EPIC.

ID Parameters Objective Function and Constraint
Yy e [O 1] fi=wn
i=L...,n fzzg(l—\/f;‘)ﬂLl given g=1+ 25 S v
DEB a=0.2 b=10 . =

=1 -6 C = (f2—e)cosh — fisinf ]
e—1 n—=10 —a‘sin (b?’l’((fg—6)Sin0—f1COSG)C)’
y€[01] fi=wu

; — _ /£
L =2,... n
TSl given g=1410(n—1)+ > (yi — 10cos(47y;))
n =10 i=2

1

09

0.8

0.7

«N 0.6

05

04}

0.3

02 1 1 1 1 1 1 1 1 1

Figure 145: Admissible Pareto front for the test case DEB. The constraint is represented by
a continuous line, the points represent the solutions found by EPIC.

the global Pareto-optimal front. In this case the exploration capabilities of each single
agents are enough to locate the correct front with very limited effort. In fact, even
with just five agents it was possible to reconstruct the correct Pareto front 20 times
over 20 different runs (see Fig. 146a). The total number of function evaluations was
fixed to 20000 for each of the runs, although already after 10000 function evaluations
EPIC was always able to locate the global front (see Fig. 146b).

Despite the small number of agents, the sampled points of the Pareto front are quite
well distributed with just few, limited interruptions. The use of a limited number of
agents instead of a large population is related to the complexity of the algorithm. In
fact, the computational cost of the procedure for the management of the local archive
A; is of the order n4(n, +na), where n4 is the archive size and n,, is the population
size, while the cost of the implementation of the individualistic-social behaviours is
of the order ny,(n + np). Therefore, even if the overall algorithm is polynomial in the
population dimension, the computational cost would increase quadratically with the
number of agents.
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@
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(a) After 10000 function evaluations.
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(b) After 20000 function evaluations

Figure 146: Admissible Pareto fronts for the test case ZDT4. The global Pareto-optimal front
is represented by a continuous line, and the points represent the solutions found
by EPIC.
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As an additional proof of the effectiveness of MACS, we compare the average Euclidean
distance of 500 uniformly spaced points on the true optimal Pareto front from an
equal number of points belonging to the solution found by EPIC with the analogous

performance metric found in [Deb et al., 2000] for NSGA-II, SPEA and PAES (see
Table 25).

Table 25: Comparison of the average Euclidian distances between 500 uniformly space points
on the optimal Pareto front for various optimisation algorithms.

Approach  Average Euclidian Distance Standard Deviation

EPIC 1.542 x 1073 5.19 x 107%
NSGA-II 0.513053 0.118460
SPEA 7.340299 6.572516

PAES 0.854816 0.527238




EQUATIONS FOR THE PROXIMITY-QUOTIENT CONTROL
LAW

The following appendix lists the full derivations of the equations for the Proximity-
Quotient control law, or Q-law, developed by Petropoulos starting in 2003 [Petropou-
los, 2003, 2005]. A discussion and example transfer are also included at the end.

c.1 DERIVATION OF EQUATIONS

Gauss’ Variational Equations

The Gauss planetary equations in 3.28 are repeated here, for a disturbing or control
acceleration u in the radial r, tangential ¢ and normal h directions [Battin, 1999].

da 2a2 .
pr o (e sinv u, + gut) (C.la)
de 1 .
i pi\/ﬂ[p sinv u, + ((err) cosz/+re>ut} (C.1b)

di 7 cosf

ki .1
dt p\//j Up, (C C)
@ rsind (C.1d)
dt  p\/p sinv

do 1 [— cosV U + ( +T)SiHVU]—MU (C.le)
dt  eypu p TP ¢ JPH sini " '

d

aT: = p;éﬁ =T [p cosv u, — (p+r)sinv ut} (C.1f)

where the thrust acceleration components can also be defined in terms of magnitude
and in-plane angle o and out of plane angle 8 (see Fig. 147),

upr = ||u|| cosf sina (C.2a)
us = ||u|| cosB cosa (C.2b)
up, = ||ul| sing (C.2¢c)

Note that u = ||u||. The latter term is used here to avoid confusion with the variable
1, used for the gravitational constant of the central body.

Optimised Control Equations

Based on the Gauss equations above, an analytic expression can be found for each of
the orbital elements the gives the maximum rate of change possible of that element,
over the orbit. In mathematical terms, this can be expressed as,

K., = max (k) (C.3)

a,B,v

which is determined by the optimal location along the orbit v, and the direction of
thrust at that point «, 8 that maximise the rate of change of the orbital element k. A
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Figure 147: In-plane angle « of thrust acceleration vector u which lies in the orbital plane
and measured positive clockwise from the tangential axis; and the out-of-plane
angle B, measured from the orbital plane and positive in the direction of the

angular momentum vector.

more complete rationale behind these derivations can be found in Petropoulos (2003);

Gefert and Hack (1999).

: ad(1+e)
iro(a,€) = 2]y [T
p(l—e)
érz(a,e) = 2u||\/7
||u|\

e (a, e,w) =

Qa::r (0.1, w) [p ||u||cscz
H\/1 = (ecosw)? — efsinw]|

Wy (a, €) = 1j—b ( [l \/pcosum + ((p—&—rm)sinymf)
N b ( P |[u]||cos | csci )
1+b ft /1 = (ecosw)? — elsinw|
where,
1
COS Vg = L (5)7

1

(9e3 — 9e5 + \/3/27€5 — Bded + 27e10 + 4e12) 3
1
N (9¢® — 9¢® + /3/27e6 — 54eB + 27e10 4 4¢12) 3

1
183¢2

(C.4a)

(C.4b)
(C.4c)

(C.4d)

(C.de)

(C.5)
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a(l 762)

Topp = ——————
1+ ecos vy,

(C.6)

The Q-law is designed for orbit-to-orbit transfers, not point-to-point. When specifying
the initial and targets states, the orbital location (in this case the true anomaly v) is
determined by the control law, not specified by the user a priori.

Note that the equation for w,, in (C.4e) is split into two components: in-plane and out-
of-plane with an additional tuning parameter b to alter the weighting of the two parts.
If b = 0, then w,, only accounts for the in-plane component of w, else if b = 1, both
the in-plane and out-of-plane components are accounted for equally. Generally, the in-
plane component is weighted more heavily due to the cost difference (in Av) between
‘lateral’ manoeuvres within the orbital plane versus a change in the inclination of the
orbital plane.

Control Law

The Q-law is given by the following equation,

Aa\? Ae\? Ai\? A0\ ? Aw) >
strlsawa (“) TW, <e> W, <Z> +Wo () +WW(,‘*’>
Qo Cxa o Quo Wz

(C.7)
Integrating (C.4) into (C.7),
e X
(o) [t (1 (@) )" o
= (14w To)min .
@\ 1P 0
W.Ae?u W, A%k WoAO?ky)? sin? i (C.8)
dpllull* * allul* (1 —€?) pllull?
W, Aw?(1 + b)%pe?pn W, Aw?(1 + b)%uk3 sin? i
[ul[? [p?2? + (p+7)?(1 = 2?)] ~ ab?||luf? (1 — €?) cosi?

where Ak is the difference between the target (kr) and initial/current states (k,k;),
and Wy > 0 are optional weights that alter the focus of the control, i.e. if a certain
orbital element has priority over another, for example if it is compulsory to change
the semi-major axis and eccentricity, and optional to change the inclination, with the
RAAN and argument of periapsis left as free variables, an appropriate set of weights
might be: W, =1, W, =1, W, =0.5, Wo =W, =0.

The value of @ should always be greater than or equal to zero, therefore in order to
determine the optimal direction of thrust, the derivative d@/dt should be negative
in order to drive @ towards zero. It is of interest to note that the equation for @ is
independent of the thrust angles a, 8, while the equation for d@/dt is not.

min —- where O dr k={a,ei,Qw} (C.9)

0 dQ  —0Q dk
wp dt’ dt _Zk: for
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In [Petropoulos, 2005], Petropoulos added a series of penalty functions S. In particular,
a function S, was added to include a minimum radius of periapsis term, for e.g. if one
was orbiting around a planet. As the output of the Q-law is based on a minimisation
function, S, increases exponentially as one approaches the minimum value (7p)min
given for the radius of periapsis.

™
Sp=1+W, expk(1 <Tv)min> (C.10)
where W, is a weighting parameter.
An byproduct of the original Q-law was that for orbital changes involving the semi-
major axis, @ would tend towards zero as Aa either converged towards zero (as

desired) or infinity. To compensate for this, a penalty function S, was added to ensure
a; — Qr.

S, = (1 + (GA;Y); (C.11)

A number of tuning parameters, k, m, ¢ and n are included that can be set by the user.

A set of effectivities, or efficiencies, were also added by Petropoulos (2004, 2005). In
his words:

While the thrust angles a and 3, ensure the optimal rate of reduction
of () at the current true anomaly, they do not provide any information
about how effective the thrust is, as compared with other locations on
the osculating orbit. Thus, it is natural to define the effectivity of the
thrust at the current true anomaly. A mission designer may then chose
to prevent the spacecraft from thrusting if the effectivity is below some
cut-off value. Broadly speaking, the greater the cut-off, the greater the
expected propellant savings and the longer the expected flight time.

Two effectivities can be applied: the first is an ‘absolute effectivity’ 1445, which is a
ratio between the minimum value of Q at the current location along the orbit transfer
(i.e. at a specific true anomaly v), and the minimum value of Q along the entire
‘orbit’ where the orbit is propagated for one period starting at that true anomaly.
Along the transfer, the orbital elements at each point in time are constantly changing.
In this case, the ‘orbit’ is defined as the set of orbital elements at that particular
instance of time. This is equivalent to the gravitational orbit the spacecraft would
take if the thrust was turned off. The relative efficiency 7, is similar in that it
compares the different possible values of () however as a percent ratio compared with
the maximum possible and minimum possible Q along one full propagated orbit. The
merit of effectivities can be seen if one considers the difference between thrusting at
perigee or apogee of a highly elliptic orbit, in order to increase the semi-major axis.

Nabs = g"n (C.12a)
Qn - Qn:c
o] = DT C.12b
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given

Q, = rgiﬁnQ (C.13)
OQpn = min Q,, (C.14)
Qna = miax Qn (C.15)

where Q,.,, gives the location along the orbit corresponding largest possible negative
Q@ (judiciously quantifying the ‘best’ or more efficient location to apply the thrust),
and Qn, gives the largest positive @ corresponding to the worst, i.e. least efficient
location to apply thrust in order to manoeuvre to the target orbit. The first variable
Q,, is simply the output of the minimisation of the Q-law from (C.9), which finds an
optimised direction of thrust to achieve the desired orbit transfer.

Partial Differential Equations of @

Each component of the minimisation function in (C.9) has a corresponding analytical
equation: dk/dt are given by the Gauss planetary equations in (C.1), and the partial
derivatives 0Q/0k were manually derived, and are given below.

0Q _ 45

n—1
Aa
_v W AGQ' p(l_e) <n(arm) +2Sa_35a>
Oa ¢

a?(1+e) armqSy Aa a

(2(1 + b)prze)®
~ (vk2 + bpe|cosi| csci)®

— WA — W;A2 - puk? — WoAQ? - 4sin? k3 + W,Aw? -

. [/{2 (v +2r(p+72a)(2* — 1) 4+ 2a (p + 1oy — T2227) (€% — 1)) + abe(e® — 1)7y|cosi| csc z”

- S}',(l —e)|W,Ad? - m + W.Ae? + W;Ai% - 462 + WqAQ? - 4sini’k32
WAL 4(1 + b)?p?K3e?

(vra + bpe|cosi| csci)®
(C.16)
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99 _ S
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de 4W “
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JAad® - a -1 A2 2 — —
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(C.17)
%—Q = 25',,/6% W; A2 + WoAQ? - cosisini
i
2\, 3.3 . 2. . (018)
WAL b(1 + b*)p*e®u (sgn(cos i) csc? i — dlcos il)
wRAW" -
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0
6—8 = S, [WoAQ? - 22 sin” ] (C.19)
oq = 2S,e|W;Ai? - K sinw S O|cos w|
Ow \/ 1—e2sin®w
+ WqAQ? - kg coswsin? i ( csinw 8smw|>
V1 —e2cos?w
WAL (1 + b)2p2kse bpe? i|cosi| cosw csci (V% - 8|Sinw|)
+ wAw” - Ko + ; :
(k2 + bpelcosi| esci)? ? VK2 + bpe|cosi| csci
(C.20)
where,
v = P22+ (1 — 22)(p+ ree)? (C.21)

k1 = —e|cosw| + V1 — e2sin®w (C.22)
ko = —elsinw| + /1 — €2 cos? w (C.23)
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K [ k(1- i)
S = S’I” = <1 + W exp (rp)min )
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(C.24)

(C.25)

(C.26)

(C.27)

For the partial derivatives of the trigonometric functions 9| sinz| and 9| cos x|, given

a function g(x) = |f(z)|, the derivative with respect to x is ¢'(z) = f'(x)f(z)/|f(z)].

—sinz coszx : nmw

6|COS.’I}| _ W lfCC# >

Oz 0 if 2 = ox
0| sin z| S o #Fnm
O 0 ifx=nm

where n is any integer value.

c.2 DISCUSSION

(C.28)

(C.29)

One of the issues found when using the Q-law was the sensitivity of dQ/dt to the
magnitude of the orbital elements k, and their variation Ak. Figures 148-152 show
the values of @) for a sample transfer manoeuvre between two Earth-centric orbits.

The initial state vector kg = [a, e, i, Q, w, V] and target state vector kr (with no

specified target v) are set to,

ko = [Re + 7000 kim, 0.5, 1.3 rad, 0.01 rad, 0.01 rad, 1.44 rad]
kr = [Rg + 10000 km, 0.8,0.1 rad, 0.87 rad, 1.27 rad]
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Table 26: Minimum and maximum values of dQ/dt corresponding to Figures 148-152.

Target orbital Corresponding
element in k minQ maxQ figure no.

a —42.2456655327675  42.245665532767 148

e —99.6125362956156  99.6125362956156 149

1 —6555922.77168483  6555922.77168483 150

Q —135922.74398538 135922.74398538 151

w —77646153487.0223  77646153487.0224 152

with (rp)min = Re = 6378.16 km, the magnitude of the thrust ||u|| = 9.3e-03 km/s,
integer weights of Wy = 0 | 1, gravitational constant pg = 398600.446192176 km? /s?,
and tuning parameters: W, =1, k=1, m=3,n=4, ¢ =2, and b = 0.01.

Each of the five figures corresponds to a change in one of the elements of the state
vector (given a weight W = 1), with the remaining elements set as free variables
(set by W = 0). The thrust angles, a and S, are varied between [0, 27| to show
the different values of the function d@Q/dt. The result is a series of regular peaks
and valleys, in quadrants. A local, constrained, nonlinear multivariable optimisation
function in Matlab, fmincon, was used to numerically determine the minimum and
maximum points on each graph, which correspond to the direction of applied thrust
which should maximise, or minimise, the rate of change of the orbital element(s) in
question, at that specific point along the orbit. The function fmincon employs a se-
quential quadratic programming (SQP) method, and was used in conjunction with a
multi-start approach, using 10 runs of randomly seeded initial conditions with bounds
of 0 < [ap, Bo] < 2m. Table 26 shows the values of the maxima and minima correspond-
ing to the figures. As expected, the absolute values of the minima and maxima are
the same.

As can be seen from the table and figures, the values for d@Q/dt range from 102 to 10!
depending on the orbital element. Here, each orbital element was run in isolation,
however in the majority of cases, a transfer between two orbits involves a desired
change in a number of the orbital elements, not just one. Since the cost function Qis
a sum of the components of d@/dt, the large difference in magnitude makes it difficult
to achieve an ‘optimal’ or near-optimal transfer.

An example transfer is shown below. The first is an orbital transfer between two
Earth-centric orbits, as above. The required change is for the semi-major axis and
eccentricity, with the other three elements left as free variables.

ko = [7452.7, 0.2, 0.17453, 0.2, 0.2, 0.2]

k; = [9000, 0.4, free, free, free]

W =]1,1,0,0, 0]

The thrust was set to a maximum of 60 N with a spacecraft mass of 2000 kg, giving
a total acceleration of 0.03 m/s?. The applied thrust can only be turned on (60 N) or

off (0 N), no partial control of the thrust was allowed. The units are km and rad. The
minima for d@/dt was found using fmincon with a time step of 100 s, and a multi-
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Figure 148: Values of dQ/dt for the range of thrust angles «, 3, and weights W = [1,0, 0,0, 0].
The maximum A and minimum V¥ points for d@Q/dT found by the local optimiser
are indicated.
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Figure 149: Values of dQ/dt for the range of thrust angles «, 3, and weights W = [0, 1, 0, 0, 0].
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Figure 150: Values of dQ/dt for the range of thrust angles «, 8, and weights W = [0, 0, 1,0, 0].
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Figure 151: Values of dQ/dt for the range of thrust angles «, 3, and weights W = [0, 0, 0, 1, 0].
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Figure 152: Values of dQ/dt for the range of thrust angles «, 8, and weights W = [0, 0, 0,0, 1].
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start run with 10 random initial conditions. The orbit was propagated by numerically
integrating the Gauss equations with ode45 in Matlab (over the same 100 s time step).

Figure 153 shows the variation in the orbital elements over the transfer duration, in
this case around 3.5 days. The other parameters are not adversely affected by the
applied thrust, with the inclination varying by only 10~ rad, the RAAN by 108 rad
and the argument of perigee between 10~® rad. Figure 154 shows the multi-revolution
transfer, with the original and final target orbits identified, and the directions of
thrust represented as arrows along the orbit. While the transfer is 3D, only the 2D

projection is shown since there was no intended change in the out-of-plane direction.

Lastly, Fig. 155 shows the resulting thrust angles as calculated by the Q-law. The
points calculated at each time step are shown as dots, with the lines added for clarity
to see how the thrust angles changed over time. Note that in the simulation, the thrust
angles are kept constant for the duration of the time step, i.e. over the 100 s in this
case.

The effectivities were used to allow for coasting phases depending on how effective
applying a thrust would be, and to help reduce the ‘chatter’ when the spacecraft
approached the target orbit. Since the thrust is restricted to an ‘on-off’ scheme, the
resulting transfer will alternately over and under-shoot the target value if the thrust
is too large for the time step. An obvious solution would be to reduce either the time
step and /or thrust level applied depending on the proximity to the target orbit.

Algorithm 1 shows an implementation of this concept. Cut-off values for the effectivity,
Nabsy, » Mrel, are introduced, as well as a tolerance value 7 which effects the proximity
of the current state to the target element state. In this example, 7(¢9) = 0.1 and
Nabsy, (to) = Nrel,, (to) = 0.5. Essentially, as the spacecraft gets closer to the target
orbit, the thrust is applied for smaller and smaller periods, only at the most efficient
times.

Algorithm 1 Thrust effectivity.
if |Ak;| < T7ky then

Nabsy, = /MNabsy,
7= 72
end if

if (nabs S nabsL) or (nrel S nrelL) then
Thrust is turned off, u; =0

else
Thrust is turned on, u; = Umaz

end if
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Figure 153: Change in orbital elements during a transfer around the Earth, with a from
7452.7 — 9000 km, and e from 0.2 — 0.4. The variance between the initial
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FUNNEL CONTROL RESULTS

The following contains the results of the control law for the funnel orbits using both
the least squares method and the integration method presented in Section 3.6, each for
three time steps dt = [1, 10, 60] s and for the four test orbits dks 2, 0ks /3, 0ks /4, 0k5 /5
listed in Table 17. The results for the first orbit, dks,; are shown previously in Figs.
70 — 75 for the least squares method, and Figs. 64 — 69 for the integration method.

Table 27: Cross reference between figure numbers and simulation inputs for the results in
Appendix D.

Control law type Time step 0t (s) Figure numbers

Least squares 1 156 — 163
10 164 - 171
60 172 - 179
Integration 1 180 — 187
10 188 — 195
60 196 — 199
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FUNNEL CONTROL RESULTS

using the fixed mirror configuration with a system efficiency of 25% and weights,

W =[le=6,1e6,1,1,1,1].
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Figure 159: Least squares control law for spacecraft formation dks,3 at time step of 0t =15

using the fixed mirror configuration with a system efficiency of 25% and weights,
W = [le-6,1¢6,1,1,1, 1].
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W = [le=6,1e6,1,1,1,1].
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Figure 170: Least squares control law for spacecraft formation dks/5 at time step of 6t = 10 s
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using the fixed mirror configuration with a system efficiency of 25% and weights,

W = [le=6,1e6,1,1,1,1].
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Figure 172: Least squares control law for spacecraft formation dks /o at time step of 6t = 60 s
using the fixed mirror configuration with a system efficiency of 25% and weights,
W =[le-6,1e6,1,1,1,1].
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W = [le-6,1¢6,1,1,1, 1].
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Figure 174: Least squares control law for spacecraft formation dks/3 at time step of 6t = 60 s
using the fixed mirror configuration with a system efficiency of 25% and weights,
W = [le-6,1¢6,1,1,1, 1].
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Figure 175: Least squares control law for spacecraft formation dks/3 at time step of 6t = 60 s
using the fixed mirror configuration with a system efficiency of 25% and weights,

W = [le-6,1e6,1,1,1,1].
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Figure 176: Least squares control law for spacecraft formation dks,4 at time step of 6t = 60 s
using the fixed mirror configuration with a system efficiency of 25% and weights,
W = [le-6,1¢6,1,1,1,1].
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Figure 178: Least squares control law for spacecraft formation dks/5 at time step of 6t = 60 s
using the fixed mirror configuration with a system efficiency of 25% and weights,
W = [le-6,1¢6,1,1,1,1].
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Figure 179: Least squares control law for spacecraft formation dks/5 at time step of 6t = 60 s

using the fixed mirror configuration with a system efficiency of 25% and weights,
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FUNNEL CONTROL RESULTS

Mission Time (days)

(b) Variations in the Hill frame components.

0.02
aF 0.01
2 o
()
< -0.01
-0.02
1 2 3 4 1 2 3 4
x107* x107°
6
S)
o
o 4
®
s
c 2
<
0
1 2 3 4 1 2 3 4
X107 x10°
10
g
@ 5
Q
2
s 0
<
-5
1 2 3 4 1 2 3 4
Mission Time (days) Mission Time (days)
(a) Variations in the orbital element differences.
_—
|- / /_/ 4
i / — ]
|- /_/ V 4
Il Il Il Il Il Il Il Il Il
0 0.5 1 15 2 25 3 35 4 4.5
C T T T T s
M ,/\M/\’J\/\A
| /\_/\/\/\/\/\« -
L pf N -
O J S ad
| /\,A,»Jf" ~ B
[ I I I I I I I I =
0 0.5 1 15 2 25 3 35 4 45
T T
r ctual
- Target
C Il Il Il Il Il Il Il Il L]
0 0.5 1 1.5 2 25 3 3.5 4 4.5

using the fixed mirror configuration with a system efficiency of 25%.
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Figure 181: Integration control law for spacecraft formation dks,o at time step of 6t = 1 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 182: Integration control law for spacecraft formation dks,3 at time step of 6t = 1 s
using the fixed mirror configuration with a system efficiency of 25%.
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using the fixed mirror configuration with a system efficiency of 25%.
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Figure 184: Integration control law for spacecraft formation dks,4 at time step of §t = 1 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 185: Integration control law for spacecraft formation dks,4 at time step of 6t = 1 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 186: Integration control law for spacecraft formation dks,5 at time step of §t = 1 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 187: Integration control law for spacecraft formation dks,5 at time step of 6t = 1 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 188: Integration control law for spacecraft formation dks,, at time step of 6t = 10 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 189: Integration control law for spacecraft formation dks,, at time step of 6t = 10 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 190: Integration control law for spacecraft formation dks,3 at time step of 6t = 10 s
using the fixed mirror configuration with a system efficiency of 25%.
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using the fixed mirror configuration with a system efficiency of 25%.
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Figure 192: Integration control law for spacecraft formation dks,4 at time step of 6t = 10 s
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using the fixed mirror configuration with a system efficiency of 25%.
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Figure 193: Integration control law for spacecraft formation dks,4 at time step of 6t = 10 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 194: Integration control law for spacecraft formation dks,5 at time step of 6t = 10 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 195: Integration control law for spacecraft formation dks,5 at time step of 6t = 10 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 196: Integration control law for spacecraft formation dks,3 at time step of ot = 60 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 198: Integration control law for spacecraft formation dks,s at time step of 6t = 60 s
using the fixed mirror configuration with a system efficiency of 25%.
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Figure 199: Integration control law for spacecraft formation dks,s at time step of 6t = 60 s
using the fixed mirror configuration with a system efficiency of 25%.
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