A University
& of Glasgow

Finnie, Sigbjorn O. (1998) Composing graphical user interfaces in a
purely functional language. PhD thesis.

http://theses.gla.ac.uk/1597/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.qgla.ac.uk/
theses@gla.ac.uk

Department of
Computing Science

UNIVERSITY
of
GLASGOW

Composing graphical user

interfaces in a purely functional

language

Sigbjorn O. Finne

A thesis submitted for a Doctor of Philosophy Degree in
Computing Science at the University of Glasgow

September 1998

© Sigbjgrn O. Finne 1998

" BLANK IN
ORIGINAL

Abstract

This thesis is about building interactive graphical user interfaces in a compositional man-
ner. Graphical user interface applications hold out the promise of providing users with
an interactive, graphical medium by which they can carry out tasks more effectively and
conveniently. The application aids the user to solve some task. Conceptually, the user is
in charge of the graphical medium, controlling the order and the rate at which individual
actions are performed.

This user-centred nature of graphical user interfaces has considerable ramifications for how
software is structured. Since the application now services the user rather than the other way
around, it has to be capable of responding to the user’s actions when and in whatever order
they might occur. This transfer of overall control towards the user places a heavy burden on

programming systems, a burden that many systems don’t support too well. Why? Because
the application now has to be structured so that it is responsive to whatever action the user

may perform at any time.

The main contribution of this thesis is to present a compositional approach to constructing
graphical user interface applications in a purely functional programming language.

The thesis is concerned with the software techniques used to program graphical user inter-
face applications, and not directly with their design. A starting point for the work presented
here was to examine whether an approach based on functional programming could improve
how graphical user interfaces are built. Functional programming languages, and Haskell in
particular, contain a number of distinctive features such as higher-order functions, polymor-
phic type systems, lazy evaluation, and systematic overloading, that together pack quite
a punch, at least according to proponents of these languages. A secondary contribution
of this thesis is to present a compositional user interface framework called Haggis, which

makes good use of current functional programming techniques. The thesis evaluates the
properties of this framework by comparing it to existing systems.

AL

Contents

Abstract

1 Introduction

1.1 The impact of interactive user interfaces« v v v o v oo

1.2 Thesis contributions

llllllllllllllllllllllllllllll

1.3 ThesiS OUtlIne & & v v ¢ v o v o e ¢ o o o o o o o o o s s s ¢ s 0 o s s o s s o o

2.1 Describing the scene

2.2

2.3
24
2.5
2.6
2.7

2.1.1

The Picture type

2.2.1

Picture elements

Transforming pictures

Structured translation

A picture language

llllllllllllllllllllllllllllll

Summary

Runningexample« v o v v v i it i i e e e e

>
lllllllllllllllllllllllllllll

.

Graphical transformations ¢ . v v ¢ v v v v e e e e e e e e

Composing pictures

lllll
lllllllllllllllllllllllll

28 TIlng pICtUIeS . v v v ¢ ¢ v o ¢ v o o o o o o ot s s s s o s o o s o oo s oo
29 Example i v it i it i e e e e e e s e

29.1 Histogram vt e v v oo oo Ve e s e e e .
2.10 Rendering Pictures S A R

2.11 Related work

iiiiiiiii

i1l

S s W -

-3

vi Contents
3 Exploring the design space 39
3.1 Thecallbackmodel i it ittt e e e 39
3.2 Object oriented userinterfaces 43
3.3 Functional user interface representations 46
331 Arocadmap i i ittt e e e e e e e e e e e A" ¥ {

3.4 Theuserinterfaceasavalue ¢ vueeno. 47
3.0 Adding componentidentity, 50
3.0.1 Using type classes v v v v it it i e e e e e e e e 02

3.6 Making communicationimplicit 0. 55
3.7 Explicit two-way communication i i it e o8
3.8 SUmMMAIY it i it i i e e e e e e et e e 63

4 Virtual I/O devices | 65
4.1 Programming I/O withactions 65
4.1.1 HandlingI/O o 0 i i it it e e e e e e e 66

4.1.2 COnCUITENCY & ¢ v ¢ v v v e vt vt e et e e e ee e e it 68

4.1.3 BuildingonIO e 68

4.2 VirtualI/Odevices. o v i i i i it e e e e 68
4.3 Applicationhandles 70
44 VirtualI/Odevicehandles 75
4.5 VirtualI/Odevicetypes o v 76
4.6 Virtual user interfacehandles 79
4.7 Newhandlesfromold 80
4.7.1 Example: radiogroup 81

4.8 SUMMATY . . v v v vttt e e e e e e e e e e e e e 83

5 Composing Haggis 87
5.1 Chapteroverview 87
0.1.1 A simple graphical user interface 88

0.1.2 Addinggraphics 90

5.1.3 Creating virtual I/Odevices. 91

Contents vii

0.2

0.d
0.4
3.0

0.0

6 The
6.1

6.2
6.3

0.4
6.5

0.0

5.1.4 Adding conCurrency« oo oo e v ottt oo o o0 e 93
5.1.5 Addinginteraction« . ¢t i ittt it e 94
5.1.6 Addinglayoutt it e 95
5.1.7 SUIMINATY &« v v v v o e o e v e e ottt a o aaaasosaenos 95
Displaying graphicaloutputt i v ie oo 96
5.2.1 Changing the glyph’spicture 97
0.2.2 Creatingnewglyphs ¢ i i i it i il i e i e e 98
5.23 Addingstate i it i e e e e e e e e 100
524 Displayingvalues v i i i i e e e e e 104
5.2.5 A simple framework for visualisingdata 106
Adding concurrency ¢ v v v v b v et e e e e e e e e e e 108
Adding interaction « v ¢ v v i b ot et i e e e e e e e e 111
Addinglayout v v v o v it e e e e e e e e e 119
55.1 Pairwisetiling ¢t ittt i i e e i 119
552 Boxingit up . . ¢ v v v o vttt et it e e s e e e 123
553 Constrained boxing. . . .« « ¢« ¢ ¢ ¢t e i et et i i et 127
0.0.4 Computingtheboxlayout......... ... 128
5.5.0 Building layout abstractions 0 0oL 129
5.5.6 Embeddingacomponent0c0 0000 130
5.5.7 Freeformlayout i i ittt e 131
SUINIMNATY '+ v v v v v o v o e o e o o s e ot v s o o s s o s o s oo n o oo s oo 132
implementation of Haggis 139
Display handles« ¢« ¢ v it v i it i et e e e e s 139
6.1.1 SystemrequestS . . . ¢ v ¢ v it e e e e e e v e e e 143
Display contexts U T I S 144
Accessing the window system e e e e 145
Customisingcomponents. v v v v v v v v v o oo s o v oo n oo oo 145
Realisation i v vt v v v v v o e v o o oo o e e e e e e e s 151

Viii Contents

7 Evaluating Haggis 153
71 Example: 16 puzzle. L e e e e e e 153
72 TheHaggissolution ittt ieeeneeenno. 154
7.3 TheJava/AWT solution ittt innnn. 158
74 The Tcl/Tksolution i i ittt ittt ee e 161
7.5 Evaluation. . . o ¢ ¢ v v v i i i i e i e i e e e e e e e e e e e e e e e e e 162
7.6 Concludingremarks ittt ittt 167

8 Conclusion r 179
8.l SUMMATY . . v v i i it et e e e e et et e ettt et e 179
8.2 Future work v o v i i i e e e e e e e e e e e et e e e e e 179

A Picture definition 183
A.l BasicgeometriC types . ¢ v v ¢t v i i i it e e e e e e e e e e e e e e e 183
A2 Pictureelementso i v i it it i it e e e e et 183
A3 Picture operations v v v v i i i it i e e e e e e e e e e .. 184
A4 Graphical attributes o it i s e e e e e e e e e e 185

A.4.1 Penattributestyles 00 i vttt ittt et 186
AD The Painter type v v i i i i i it s e e e s e e e e e e e e e e 186

B 1/0 in Haskell | 189
B.1 Syntactic support. e e e e e e e e e e e e 192

C Concurrent Haskell 193
C.1 Thebasicideas e, 194

C.l.1 AreviewofmonadicI/O 194
C.ll2 Processes . . . v v i i it it it it e e e e e 197
C.1.3 Synchronisation and communication ¢¢.... 199
- C.2 A standard abstraction: buffering 200
C21 Abuffervariable 201
C22 Abufferedchannel 202

-
. P, FUET o ST W N e PR T N S R PE T B g PP S e T L o T T S F L e A T T -

Contents 1X

C.3

CA4

C.5

C.6

C.7

C.8

Control over scheduling 205
C.3.1 Implementing quantity semaphores 206
C.3.2 Variable-munch quantity semaphores 207
C3.3 Priority v i it i it i i et e e e e e e e e e 208
C.34 SUMMATY . v v v vttt et e e e e et e et e e et i e 208
0 1T) (- 209
C.4.1 Iterated choice e e et e et e e e e e e e e e 210
C4.2 Singularchoice i i i i it i it it ettt e e e e e 211
SCMANLICS & v v v v v e e e e e e e e e e e e e e e e e e 212
C.5.1 Deterministic Reduction 213
C.5.2 Concurrent Reaction ¢ i v v v v v vttt v oo v o 213
C5.3 Fairness v v i i i i it i ittt e e e et et 216
Chd4d Summary v v v v i it e ot s oo oo vt e et ot 216
Implementation ¢ v v v vttt e e e e e e e e e 217
C.6.1 Otherprimitives« ¢ ¢t vt ot v v o o v v o v v o v oo 218
C.6.2 Garbagecollection ¢ o v i vt v vt vt ittt vt i, 218
C.6.3 Distributed implementation ¢ v, 219
Related work i 0 i i it it e e e e e e e e e e e 219
C.7.1 Concurrent functional languages 220
C.7.2 Functional operating sysfems 221
C.7.3 Concurrent object-oriented languages 222
C.7.4 Synchronousvsasynchronous ¢ oo 222
Conclusions and furtherwork v oo 223

Contents

[M L e e e L el L

i e R b e o T i i - bl A S AT 2 20 o e
"

4

List of figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2

3.3
4.1
4.9
4.3

2.1
0.2
9.3
5.4
0.0
5.0
2.7

The boxedCircle PICtUIE. . . « & ¢ ¢ v ¢ vt o v v o o o o o s s o s o v s s o 15
Picture primifives.. « . ¢« ¢ ¢ v ¢ ¢ o v et 6 v o o v oo v o a8 s o s o s e 17
Basic geometric types. « .« v v v v v o v i i e e e e et e e e e e e e e 18
Picture primitives.. . « .« . v v ¢ v o v v v v i e e e e e e e e e e 18
Transformed geometricshapes.« o v v i v v v v i v i oL 19
Aspiral Picture. ¢ v v i o v v vttt e e et 20
Structured translationof pictures « « v ¢ o oot e oo oL 22
graph (scatter) dataPts - scatter plot of annualdata 29
A counter button in Java/AWT. 45
Functional user interface representations. 46
The Fudgets counter vt v i i i it it i it ittt e s oo 57
Type class structure for Haggishandles. 78
Standard handle constructors, part 1 ¢ o i e e oo e e 84
Standard handle constructors, part 2 ¢ o oo oo e e e e e e 85
Hello, world example in Haggis.« v ot et v v vt oo n oo oo v 88
Displaying pictures withaglyph.« ¢ e e e v v v v v e oo v o0 v 91
Displaying Picture values withaglyph. “ e s e e e 97
Changing the Picture displayed by a glyph.. . ..« « « o« ¢ & e e e e e e 98
Duplicating the contents of a glyph. ¢ v v v e v v v v oo 99
Picture book abstraction. G e e e e e e e e 103
The DeviceEvent datatype SRR e e v e e e s e e e 113

<ii List of figures

5.8 The Channelinterface i i i i i i vt v it v v oo oo 114
5.9 Using beside to layout components. 120
5.10 Nested applicationsofabove. e 122
5.11 Geometric attributes of a user interface component 124
5.12 Geometry attribute abstractions e R 133
5.13 Making a component refusetoresize. it ittt e 0. 134
5.14 Centreingacomponent. v v v v v v v v v o v oo o v s o oo e 134
5.15 Constrained boxing inaction. i v v v v v o ot o o s 0 0 oo 134
5.16 Putting a border aroundacomponent. ¢ ... 135
5.17 Adding bordertoabutton. it e e e e 136
5.18 Framingacomponent. i i i i i i e st e e e e e e e e e 136
5.19 CompositeContainerEltoperations. ¢ v v v v v v v ooeoo 137
5.20 The composite container at work. v v v v v v b v o e oo 137
6.1 User interface component system commands v v v v v v v v v v 0 v . 142
#6.2 System requests e 142
6.3 TheDeviceEvent data type v i i i v i v it e e e o e oo oo eos 143
6.4 Window Operations . . . v v v i v i i i i i e ittt e e e e e e 146
7.1 The architecture of Haggispuzzle. 154
7.2 The Board Interface v v v v v v v s s s e e e e e e e . 156
7.3 The 15-puzzle game boardinHaggis. 156
74 The Board and Puzzlein Haggis. v v v v v v v v e e e v e 168
7.5 The graphical user interface to the puzzle in Haggis 169
7.6 Screendump of the 15 puzzleinHaggis. 170
7.7 Toplevel control i i e e e e e e e 170
7.8 ThePiececlass. i ittt it 171
79 TheldpuzzleinJdava,part 1l i i i i i it v e 172
710 The 15 puzzlein Java, part 2 o i i i i it it e e e e e 173
7.11 Snapshot of 15 puzzleinJava.. 0o, . 174

7.12 Building the puzzle board in Tcl/Tk 175

List of figures Xiii

7.13 Snapshot of 15 puzzlein Tel/Tk. v v v o v i e v o oot 176
7.14 Initialisation of the 15 puzzlein Tcl/Tk. o v oot 176
7.15 Checking for valid move and updatingboard. 177
7.16 Evaluation dimensions ¢ v i i it i ittt e e e e o177
A.1 Basicgeometric types. « v v v v v v it ot e e e e e e e e e e e e e e 184
A2 Picture PrimitIves.. .« v v v v v v v e e o e e e e o e b e o e e oo n e 184
A3 Picturecombinators. i i it it e e 185
A4 Penattribute type. « v v v v v v vt e e e e e e e e e e e e 185
A.5 Pen attribute specific settings. i i e v e e 186
A.6 The Painter dictionary type. . . . « ¢« v o v e v v v et o v o o v o o o 0 o o 187
C.1 A channel with unbounded bufferingo 202

C.2 The skip-channel abstractionottt 205

" BLANK IN
ORIGINAL

Acknowledgements

I would like to thank my supervisor, Professor Simon Peyton Jones, for his guidance, bound-
less enthusiasm and support during this research. I would also like to thank the members

of the Functional Programming Group at the University of Glasgow for providing a stimu-
lating environment to work in. Many thanks also to the Pacsoft group at the Department
of Computer Science and Engineering at Oregon Graduate Institute for their hospitality
during my 9 month stay there (October 1996 to July 1997.)

This research would not have been possible without financial support. I am very grateful
to the Royal Norwegian Research Council for the Research Scholarship that made all this
possible. I am also grateful to Simon Peyton Jones for giving me time off to complete the

writing up of this thesis.

Finally, I'd like to thank family and friends for all the support and encouragement through-
out, without which there would have been no end product.

XV

Chapter 1

Introduction

This thesis is about building interactive graphical user interfaces in a compositional man-
ner. Graphical user interface applications hold out the promise of providing users with
an interactive, graphical medium by which they can carry out tasks more effectively and
conveniently. The application aids the user to solve some task. Conceptually, the user is
In charge of the graphical medium, controlling the order and the rate at which individual

actions are performed.

This user-centred nature of graphical user interfaces has considerable ramifications for how
software is structured. Since the application now services the user rather than the other way
around, it has to be capable of responding to the user’s actions when and in whatever order

they might occur. This transfer of overall control towards the user places a heavy burden on
programming systems, a burden that many systems don’t support too well. Why? Because
the application now has to be structured so that it is responsive to whatever action the user
may perform at any time.

The main contribution of this thesis is to present a compositional approach to constructing
graphical user interface applications, which overcomes many of the problems that current

systems suffer from.

The thesis is concerned with the software techniques used to program graphical user in-
terface applications, and not with the design of graphical user interface applications. A
starting point for the work presented here was to examine whether an approach based on
functional programming could improve how graphical user interfaces are built. Functional
programming languages, and Haskell[P*97] in particular, contain a number of distinctive
features such as higher-order functions, polymorphic type systems, lazy evaluation, and

systematic overloading, that together pack quite a punch, at least according to proponents
of these languages. For theoretical and technical reasons we will touch upon later, func-

2 CHAPTER 1. INTRODUCTION

tional languages have not been fully exploited in the domain of graphical user interfaces
until recently. A secondary contribution of this thesis is to present a compositional user
interface framework based on current functional programming ideas, and to evaluate how
it compares to existing systems.

The emphasis of this thesis 1s strongly practical. We describe a fully-fledged user interface
framework and an implementation thereof in a current functional programming language.

We're interested in applying a real language to the task and actually building something

of practical use; it is only through considerable implementation experience and subsequent -

evaluation that we can have confidence in any conclusions drawn. Being based in a current
language naturally implies that the language imposes boundaries; we cannot roam freely in
the design space. In our case, the language of choice is Haskell, the standard non-strict,
purely functional programming language[P197].

Others have addressed goals similar to ours. In the context of functional programming,
eXene[GR92], Fudgets[CH93], Clean[Ach96], Gadgets[Nob96] and TkGofer[CVM97] are all
examples of considerable graphical user interface systems. As we will see in Chapter 3,
the design space is quite rich and the framework presented in this thesis is a thorough
exploration of one part. A dimension that distinguishes these different systems is how
they solve the basic problem of communication with the graphical user interface and, more
generally, the outside world. By drawing on the hard-learned experiences of the functional
programming community on expressing I/O conveniently and purely, this thesis proposes
a design that fits graphical user interface interaction within Haskell’s monad based I/0
model [PJW93]. By integrating the graphical user interface into the general I/O model the

user interface becomes part of the programmer toolbox, rather than the programmer (and
application) having to accommodate an existing user interface toolbox.

User interface systems based in non-functional languages share similar goals to the work
presented in this thesis. LiveWorld[Tra94], Interviews[LVC89], ET++[WG94] and to some
extent' Mastermind [SSC*96] all emphasise composition as an important ingredient in their
approach to building user interface applications. As will be expanded upon later, the pro-
gramming model being put forward in this thesis differs from these systems in a number of
ways, but perhaps most importantly, it is based on top of a functional programming lan-
guage. One of the central tenets of functional programming is the construction of programs

by the repeated composition of values [Hug89], so a user interface system built on top of

a functional language has in principle the greater potential for exploiting compositional
programming techniques.

1.1. THE IMPACT OF INTERACTIVE USER INTERFACES 3

1.1 The impact of interactive user interfaces

What'’s all the fuss about writing interactive user interface applications? One major reason
is their importance. An application that interfaces with its users through a richly interactive

and graphical medium has the potential to be both more compelling, effective (to the user)
and offer a closer mapping to its domain. Another important feature of such applications is
that they represent a shift of control in the direction of the user. The user is in control, with

the application taking on the role of a supervisor or a servant. The increased expressiveness
that such interfaces represent can only be realised if there is good programming support for

writing graphical user interfaces.

Is it a ‘solved’ problem? The use of interactive graphical interfaces is hardly new: from one of
the first applications to make use of interactive graphics, SketchPad{Sut63] in 1963, the field
of computer graphics, and later the fields of user interface software technology and human-

computer interaction, have developed tremendously. Applications with graphical surfaces
that are both involving and richly interactive are today not an uncommon occurrence. With
current advances in computer hardware, this trend is set to continue, especially with respect

to quality of the graphical content.

However, the cost of creating and maintaining user interface applications is currently high.
Surveys of programming projects [MR92] have shown that it is not uncommon to spend
around 50 percent of the resources on user interface issues. One reason for such high numbers
s that arriving at an effective and usable user interface is an experimental process. There
isn’t always a right or a wrong, or if there is, it is normally arrived at through user testing
and prototyping. Clearly, human-computer interaction techniques can educate, guide and
help locate an effective user interface quicker, but experimentation and prototyping of user

interfaces are an integral part of this process.

Another main reason for the difficulty and cost of writing the user interface is that software
teéhnology lacks expressiveness. Libraries for programming graphical user interface appli-
cations tend to be bolted onto existing languages, sequential languages with operational
models that are inimical to the nature of a graphical user interface. The result is that both

the application and user interface part have to be expressed in contorted and unnatural

ways.

A consequence of graphical user interface programming being hard with current systems 1S
that it restricts the experimentation and sheer playfulness on the part of the designer. If
the creation of novel and special-purpose interactive content is hard, it is much harder to
justify the cost of creating it, which results in tried and tested solutions being employed
instead. It could be argued that application-specific user interface controls is not a Good

4 CHAPTER 1. INTRODUCTION

Thing, having basic elements such as text input fields and button groups behave differently
across applications in a desktop environment can be confusing, error-prone and downright
annoying. However, having the possibility of easily creating new user interface abstractions
does not have to conflict with good design and the conformance to user interface guidelines.

1.2 Thesis contributions

The main contribution of the thesis is to provide a compositional view of user interface con-

struction in a functional language. One important development in the history of graphical
user interface programming was the introduction of object-oriented programming languages.

Indeed, the user interface is a showcase for object-oriented ideas and a multitude of object-
oriented GUI frameworks and libraries have been built over the years. Interactive objects

on the screen are naturally represented and modelled by objects in the language. One
such influential system was InterViews[LVC89] which used object orientation heavily. One
of the main features of InterViews was the use of composition as the main programming
glue, a user interface being made up of components that have been repeatedly combined
together. The result, it is claimed, is a consistent and extensible user interface programming
framework.

A main distinguishing feature of functional programming languages is the use and emphasis
placed on composition. Values representing complete programs are constructed by combin-
ing smaller units. The number of ways that values can be combined (the toolbox) is not

fixed. Through the use of higher-order functions and models of evaluation more conducive

to a declarative, value-based view of the world, appropriate combining forms (‘glue’) can
easily be built[Hug89].

If composition is considered a worthwhile feature when programming graphical user inter-
faces, functional programming languages provide the natural home for taking advantage of
this.

The thesis introduces a simple programming framework for building graphical user interfaces
which employs composition as the main programming glue. Using this framework, a number
of examples are presented to highlight the simple and uniform model it presents to the
graphical user interface programmer.

A fully-fledged implementation of this framework, called Haggis, is also presented - a system
which makes essential use of the features of its implementation language, Haskell, a lazy
functional programming language. The resulting system provides the programmer with
a means to construct' and manipulate user interface applications that is compatible with

1.2, . THESIS CONTRIBUTIONS o

functional programming ideas.

More concretely, the thesis makes the following contributions:

o Compositional model Present a simple and uniform model for composing graphical
user Interface applications in a functional language. Through the introduction of
a small set of graphical user interface primitives and the glue for combining these

together, a modular and extensible framework for writing user interface applications

1S presented.

One distinguishing feature of the framework is that it makes no distinction between a

‘primitive component and one built by composing existing components together. One
outcome of this uniformity is that the distinction between building a user interface

application and a user interface abstraction is eliminated.

o Virtual I/0 devices The user interface and the application interact through virtual
I/0 devices. The thesis explores how a user interface component can be seen as just
another I/O device, which just happens to appear in a window. Using the basic
compositional model, these virtual I/O devices can then be combined together to

build complete user interface applications.

e Haggis In order to demonstrate properly the use of composition as the main program-
ming glue for user interface applications, the thesis introduces Haggis, a fully-fledged
user interface framework. Implemented in a functional language, it provides a practi-
cal demonstration of the benefits of compositional user interfaces and how functional
programming techniques can with benefit be applied to a domain that has always

been a stronghold for object-oriented programming techniques.

o Abstraction through concurrency We show that concurrency is vital to support fully
the compositional style of programming based on virtual I/O devices. One ‘side-effect’
of the thesis work was the development of Concurrent Haskell[PJGF96], a concurrency
substrate for Haskell that allows the programmer to conveniently deal with the multi-

threaded nature of user interfaces.

o Evaluating compositionality To assess the properties of Haggis, we present a collection
of common user interface abstractions built using it. With the help of these abstrac-
tions, a number of application examples are presented to evaluate the advantages and

disadvantages of a compositional framework.

6 CHAPTER 1. INTRODUCTION

1.3 Thesis outline

The thesis presents a compositional approach to user interface construction by first looking
at how to present static graphical content. Chapter 2 introduces a simple model for describ-
ing two dimensional pictures as values, and a set of primitive mechanisms for combining
picture values together. The chapter also introduces a pervasive theme of the thesis, namely
a compositional view of programming graphics and graphical user interfaces.

Chapter 3 explores the design space for a user interface system based in a functional lan-
guage. It evaluates the programming models used by existing systems, leading up to a
representation of a user interface as a virtual I/0 device. Chapter 4 presents a virtual I/O
device programming model, and how it can be applied to the representation of user interface
components. Chapter 5 introduces Haggis, a user interface framework that puts the virtual
I/0O device model of the previous model to the test.

Chapter 6 considers some implementation aspects of Haggis. In Chapter 7 Haggis’ pro-
gramming model is evaluated by comparing it against some commonly used user interface
systems. After having presented the conclusions of this evaluation, Chapter 8 concludes the

thesis.

Chapter 2
A picture language

A natural component of a graphical user interface system is the ability to describe graphical
output that can be viewed and manipulated by the user. This chapter presents a simple
framework for describing two-dimensional graphical static scenes from within a functional
language. Later chapters employ this framework to describe the appearance of graphical

user interfaces.

As well as introducing a model for describing pictures, this chapter also illustrates some

pervasive themes of this thesis:

e The compositional view of graphical and user interface programming. As we will see,
a picture is represented as a value, built by composing smaller pictures together rather
than by a sequence of drawing actions.

¢ The separation of modelling from presentation. A picture can be rendered in many
ways, none of which need be considered when constructing the picture.

2.1 Describing the scene

When describing graphical content using a programming notation, not surprisingly, ab-
straction is a powerful tool. By providing a programming notation that hides details of
how to render graphical objects on a particular device, graphical content can be mapped to
multiple devices. The framework or system library that is provided as part of the graphical
programming model takes care of converting the device-independent graphical content to
output on the screen and printer, say. No changes are required on the part of the program-

mer describing the graphical model.

8 CHAPTER 2. A PICTURE LANGUAGE

Device-independence is clearly a Good Thing and technology is certainly moving in that
direction, converging on and standardising programming interfaces to graphical capabil-
ities, PostScript{AS90a], OpenGL[SG97] and DirectX[DX98] being recent examples. So,
abstraction is being put to good use in hiding low-level details of graphical devices, but
what about the actual description of the device-independent graphical content itself? One
way of expressing the drawing of a rectangle in a procedural programming language might

be:

void Rectangle(DrawContext d, int x, int y,int w,int h)

{

DrawLine(d,x,y,x+w,h);
DrawLine(d,x+w,y,x+w,y+h);
DrawLine(d,x+w,y+h,x,y+h);
DrawLiﬁe(d,x,y+h,;,y);

}

the Rectangle procedure draws the lines making up the rectangle, with the DrawContext
parameter encoding the device we will be drawing onto. This function can then be used as
a building block for others:

void RectPair(DrawContext d, int x, int y, int w, int h);
{

Rectangle(d,x,y,w/2,h);

Rectangle(d;x+w72,y,w/2,h);

}

RectPair creates a pair of rectangles horizontally next to each other, taking care of trans-
lating the second rectangle to the right of the first one. Procedural abstraction certainly

helps. Here’s a pair of blue and red rectangle pairs:

BlueRed(DrawContext d,int x,int y)
{

Color c;

Bool fill; -

/* record some graphics state */
¢ = GetColor(c);

fill = GetFillFlag(d);

SetFill(d,True);

2.1. DESCRIBING THE SCENE 1 9

SetFillColor(d;red);
RectPair(d,x,y,100,100);

SetFillColor(d,blue):
MoveRelative(d,0,100);

RectPair(d,x,y,100,100);

/* restore graphics state */
MoveRelative(d,0,-100);
SetFill(d,fill);
SetFillColor(d,c);
}

The construction of the rectangles is hidden away, but the above code snippet does exhibit

some rather serious shortcomings:

e The graphical state has to be managed by the programmer, taking care to set and
reset the necessary pieces of the state encoded in the drawing context. The drawing
context represents the state of the surface/canvas we’re drawing onto, and maintains
amongst other things the current set of graphical attributes to use when drawing.
Managing the graphics state can be unpleasant and error-prone. For e}iample, the
BlueRed procedure saves away the current settings for the graphical attributes it
wishes to override. After having performed the drawing operations, care is taken to

restore the original state of the drawing content.

¢ The second rectangle is drawn using a modified transformation matrix, so that it
appears next to the red one. A similar form of programmer management of state
happens here, this time with the transformation matrix, translating before drawing
the second rectangle. Again, the programmer is forced to restore the transformation

matrix to what it was before returning.

In effect, the above procedure implements scoping for both graphical and geometric trans-
formations, which the underlying programming language unfortunately is not providing. An
alternative is to make use of the underlying procedural language’s support for scoping and
pass the various elements of the graphics state around explicitly via procedure arguments.
Since there are numerous graphical attributes a picture can have, this is not particularly
feasible or convenient. Drawing procedures would end up having tortuously long argument
lists, which perhaps would be just as error prone as passing in a mutable drawing context.

10 | CHAPTER 2. A PICTURE LANGUAGE

However, there’s an alternative to having drawing procedures explicitly manage the state
of a drawing context: Instead of having the procedures perform the actual drawing actions,
they return an object or data structure that describes the graphical content it wants to

draw:

Picture Rectangle(DrawContext d, int x, int y,int w,int h)
{
Picture rect = emptyPicture();
AddPicture(rect,DrawLine(d,x,y,x+w,y));
AddPicture(rect,DrawLine(d,x,y,x+w,y));
AddPicture(rect,DrawLine(d,x,y,x+w,y));
AddPicture(rect,DrawLine(d,x,y,x+w,y));

return rect;

}

Now Rectangle is a procedure that returns a Picture value, a data structure that encodes
the picture to draw. The Picture value representing the rectangle is built by incrementally
adding the necessary lines to the rect, with the AddPicture function side-effecting its first
argument to include the Picture value passed as second argument.

With the‘representa‘tion of pictures as a value, geometric transformations can now be dealt
with more smoothly:

Picture Transform(DrawContext d, Transform tr, Picture pic);

Picture Translate(DrawContext d,int dx, int dy,Picture pic)

{

return (Transform(d,Translation(dx,dy),pic));

}

The Translate function takes a Picture as argument and returns a new one that, when
rendered, takes care of adding the desired translation amount while drawing the embedded
Picture. It is implemented using Transform, a primitive operator over Picture values.
The Transform procedure returns a Picture that when drawn will take care of setting the
transformation matrix before rendering pic, and restoring it afterwards.

A Picture value is turned into actual graphical output by a system-provided procedure
Render, passing it the picture data structure to display:

void Render(DrawContext d, Picture p);

2.1. DESCRIBING THE SCENE _ 11

Given a drawing context and the picture to display, Render converts the data structure into

a series of drawing actions.

A fundamental shift has occurred by going from a system where graphical output was
done by performing a series of drawing commands, to one where procedures return a data
structure representing the graphical content. The move to a declarative approach allows
us to abstract away the details of how to issue the right graphics command<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>