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Abstract 

 

 RNA polymerase III (Pol III) is responsible for transcribing a relatively small but 

vital set of genes, including 5S rRNA and tRNAs. Pol III transcription has been shown to 

be upregulated in transformed and cancer cells, suggesting an important role in cell growth 

and proliferation. Its tight regulation is, therefore, fundamental for cell welfare, and a 

number of factors have been shown to be implicated in its control. These include the 

tumour suppressors p53 and Rb, as well as p107 and p130, and the basal transcription 

factor Dr1. The work in this thesis focused on the role of these repressors in regulating Pol 

III transcription in human cells. 

 The Dr1-DRAP1 complex has been identified as a transcriptional repressor of Pol 

II transcription. Dr1 has also been shown to inhibit Pol III transcription when expressed at 

high levels, either in vitro or in yeast cells. Here it is shown that depletion of endogenous 

Dr1 by RNAi resulted in upregulation of tRNA expression. This seems to be a direct 

effect, as the expression of subunits of TFIIIB, TFIIIC and Pol III remained unaltered. 

ChIP experiments revealed that both Dr1 and DRAP1 are found at Pol III-transcribed 

genes in human cells, in contrast to previous studies in yeast, and sequential ChIP 

experiments indicated co-occupancy of Dr1 and Pol III, suggesting the presence of Dr1 at 

active Pol III templates. Moreover, promoter occupancy by Dr1 is increased under hypoxic 

conditions, which correlates with negative regulation of Pol III transcription. Dr1 can 

interact with TFIIIB and TFIIIC subunits, and promoter mapping experiments suggest that 

TFIIIB might be responsible for its recruitment to Pol III-transcribed genes. 

 Both Dr1 and DRAP1 can be phosphorylated, but little is known about their 

regulation. It was found that under stress conditions, such as heat shock and hypoxia, 

DRAP1, but not Dr1, protein expression is induced. This seems to be a posttranscriptional 

effect, as the mRNA of both Dr1 and DRAP1 remained stable. Moreover, p53 seems to be 

involved, as DRAP1 expression was decreased under hypoxic conditions in p53-impaired 

cells. Furthermore, serum-starved mouse cells presented comparable protein levels of 

DRAP1 with growing cells, but not of Dr1, which was reduced. These experiments, thus, 

indicate that both Dr1 and DRAP1 can be posttranscriptionally regulated differentially 

under stress conditions. 
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 The tumour suppressors p53 and Rb, as well as p107 and p130, have been 

previously shown to regulate Pol III transcription in mouse cells. An RNAi approach was 

employed to study the effect of the depletion of their endogenous levels on Pol III 

transcription in human cells. It was found that they can negatively regulate tRNA 

expression in U2OS or IMR90 cells, in accordance with the studies in mouse cells.  

 The tumour suppressor ARF has been shown to suppress rRNA production in a 

p53-independent manner. Therefore, it was investigated if ARF has a role in the regulation 

of the Pol III system. It was found that ARF can repress tRNA transcription, but in a p53-

dependent manner, as it was unable to inhibit tRNA gene transcription when p53 was 

ablated. 
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1.1 Transcription and RNA polymerases 

 Genetic information stored in the genome of prokaryotes and eukaryotes is 

retrieved by DNA-dependent RNA polymerases, which initiate gene expression 

programmes by transcribing DNA to RNA. While in prokaryotes and archaeabacteria a 

single RNA polymerase is responsible for the transcription of all cellular RNA, eukaryotes 

employ a set of different polymerases to share the task of eukaryotic transcription (White, 

2001). More specifically, in the nucleus of eukaryotic cells, three RNA polymerases named 

RNA polymerase I, II and III, have been found to transcribe different sets of genes (White, 

2001). This list has been recently extended by the discovery of a polymerase expressed 

from an alternative transcript of the mitochondrial RNA polymerase gene in mammalian 

cells (Kravchenko et al, 2005) and a plant specific polymerase that participates in 

transcriptional silencing (Herr et al, 2005). Moreover, outside the eukaryotic nucleus, 

mitochondria and chloroplasts contain their own RNA polymerase systems, which bear 

similarity to the prokaryotic ones (Falkenberg et al, 2007; Lysenko & Kuznetsov, 2005). 

 Each nuclear RNA polymerase transcribes specific target genes. RNA polymerase I 

(Pol I) is responsible for the transcription of one single transcript, the 45S ribosomal RNA 

precursor (pre-rRNA), which is then processed to the 18S, 5.8S and 28S ribosomal RNAs 

(rRNAs). These RNAs constitute essential components of the ribosomes and therefore, 

depending on the cellular demand for protein synthesis, Pol I transcription can contribute 

35-60% of the total nuclear transcription (Moss & Stefanovsky, 2002). RNA polymerase II 

transcribes protein-coding genes to produce messenger RNAs (mRNAs) and many non-

coding (nc)RNAs, such as most of the small nuclear RNAs (snRNA), small nucleolar (sno) 

and micro (mi)RNAs. RNA polymerase III (Pol III) is dedicated to the transcription of 

several small, untranslated RNAs with a variety of functions and can account for 10-20% 

of total nuclear transcription (Moss & Stefanovsky, 2002). Finally, the recently discovered 

RNA polymerase of mitochondrial origin, named spRNAP-IV, seems to transcribe the 

mRNA of certain protein-coding genes (Kravchenko et al, 2005). 

 Pol I, II and III all consist of several subunits, forming complex multimeric 

enzymes (Cramer, 2002). They share five common subunits and also contain subunits 

homologous to subunits of prokaryotic and archaeal RNA polymerases (Cramer, 2002), 

indicating functional similarity and common evolutionary origin. It must be noted, 

however, that the three polymerases not only have distinct target genes, but also different 
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nuclear localisations, with Pol I residing at the nucleolus, and Pol II and III at separate 

locations in the nucleoplasm (Pombo et al, 1999). 

 

1.2 RNA polymerase III transcripts 

 The Pol III products are small, typically less than 400 bp, untranslated RNAs that 

are involved in a variety of cellular functions (Table 1.1). 

 

Table 1.1. Summary of class III gene products and their functions 

Pol III product Known Function 

5S rRNA Protein synthesis 

tRNA Protein synthesis 

U6 snRNA mRNA splicing 

7SL RNA Intracellular protein transport 

7SK RNA Control of transcriptional elongation by Pol II 

H1 RNA 

MRP RNA 

tRNA processing 

rRNA splicing 

VA RNA Adenovirus translational control 

EBER RNA 

SINE 

Epstein-Barr virus translational control 

Potential role in cellular stress responses 

  

 

 5S rRNA is the smallest, 121 bp in length in human, of the rRNAs and the one 

transcribed by Pol III rather than Pol I. As with the other Pol III-transcribed gene products, 

it is synthesised in the nucleoplasm, but is then transferred to the nucleolus, where it is 

incorporated into the large ribosomal subunit together with 5.8S and 28S rRNAs and 

several ribosomal proteins (Lafontaine & Tollervey, 2001). There are 200-300 5S rRNA 

genes in human cells, most of them in tandem repeat clusters (White, 2002). 

 tRNA genes are transcribed by Pol III as precursors which are quickly processed to 

the mature tRNAs between 70-90 bp in length. Human cells contain 171 putative tRNA 
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pseudogenes and about 450 tRNA genes, which encode up to 274 different tRNA species 

(Goodenbour & Pan, 2006; GtRNADb, 2004). Different tRNA species can code for the 

same amino acid (through different anticodons) and several genes can code for the same 

tRNA anticodon resulting in considerable functional redundancy.  

 U6 snRNA, together with the Pol II-transcribed U1, U2, U4 and U5 snRNAs, is an 

essential part of the gigantic ribonucleoprotein assembly called the spliceosome. The 

spliceosome is responsible for the removal of introns from the pre-mRNAs and the 

formation of mature mRNA (Valadkhan, 2005). U6 snRNA is highly conserved and about 

106 nt in length in humans (Valadkhan, 2005; White, 2002). 

 7SL is 299 bp in human cells and forms the RNA component of the signal 

recognition particle (SRP). The SRP recognises the N-terminal signal sequences of nascent 

polypeptides just after they are translated by the ribosome, and targets the whole SRP-

polypeptide-ribosome complex to the endoplasmic reticulum through interactions with the 

SRP receptor (Lutcke, 1995).  

 7SK is a 331 nt long Pol III transcript that was found to function as a negative 

regulator of the transcription elongation factor P-TEFb (Nguyen et al, 2001; Yang et al, 

2001). P-TEFb is a heterodimer consisting of the RNA polymerase II carboxy-terminal 

domain (CTD) kinase Cdk9 and a cyclin subunit (T1, T2 or K), and can promote 

transcription elongation by increasing the phosphorylation of the RNA polymerase II CTD. 

7SK can interact with P-TEFb, inhibiting its CTD kinase activity and its ability to associate 

with transcription complexes; it can therefore play an important role in the regulation of 

transcription of Pol II-transcribed genes (Nguyen et al, 2001; Yang et al, 2001). 

 The H1 and MRP RNAs are transcribed by Pol III and are the RNA components of 

the RNase P and RNase MRP endoribonucleases respectively. RNase P is involved in the 

processing of the 5’-termini of pre-tRNAs (Bartkiewicz et al, 1989), while the structurally 

related MRP (mitochondrial RNA processing) RNase is mainly involved in pre-rRNA 

processing, but also in DNA replication in the mitochondria (Morrissey & Tollervey, 1995; 

Schmitt & Clayton, 1993). It is interesting that regulation of Pol III transcription is not 

only affecting translation directly, through the production of tRNAs and 5S rRNA, but also 

via their posttranscriptional processing by these endoribonucleases. 
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 Certain viruses can employ the Pol III machinery to synthesise specific viral 

transcripts. The best characterised example is the adenovirus VAI gene, which is highly 

transcribed, especially at the late stages of infection, and promotes the efficient translation 

of the viral mRNAs by the host’s translational apparatus (Svensson & Akusjarvi, 1984; 

Thimmappaya et al, 1982). Similarly, the Epstein-Barr virus (EBV) utilises Pol III to 

transcribe EBER1 and EBER2 genes (Rosa et al, 1981). EBER 1 and 2 can functionally 

substitute for VAI during adenovirus infection and are believed to allow the efficient 

synthesis of viral proteins by the host cell’s translational machinery (Bhat & 

Thimmappaya, 1985). More recently, the EBERs have been implicated in oncogenesis, 

providing the first example of untranslated RNA with oncogenic functions (Komano et al, 

1999; Ruf et al, 2000). 

 Pol III is also responsible for the transcription of short interspersed nuclear 

elements (SINEs). SINEs comprise a large family of repetitive elements that includes Alu 

elements in primates, and B1 and B2 elements in rodents. B1 elements show about 80% 

homology to Alu and both are considered to have involved from a 7SL gene, while B2 

evolved from tRNA genes (Batzer & Deininger, 2002). Alus are present in more than a 

million copies in human cells and therefore represent about 10% of the whole human 

genome (Lander et al, 2001), but are highly silenced by DNA methylation (Batzer & 

Deininger, 2002). Although Alu elements are the most successful transposons in humans 

and contain their own internal promoters, they lack coding sequences and depend on long 

interspersed nucleotide elements (LINEs) for their retrotransposition (Dewannieux et al, 

2003).  

 Although Alu, and other repetitive elements, were traditionally considered to be 

parasites of the genome, ‘selfish’ or ‘junk’ DNA (Orgel & Crick, 1980), several recent 

lines of evidence suggest otherwise. SINEs have been proposed to be involved in cellular 

stress responses, as heat shock and DNA damaging agents have been found to induce their 

transcription (Li et al, 1999a; Liu et al, 1995; Rudin & Thompson, 2001). B2 elements 

have been shown to be induced after heat shock, bind to Pol II and repress its transcription 

(Allen et al, 2004; Espinoza et al, 2004). Furthermore, Alu elements have been shown to 

be involved in alternative splicing (Lev-Maor et al, 2003), RNA editing (Athanasiadis et al, 

2004) and translational regulation (Hasler & Strub, 2006; Rubin et al, 2002), while it has 

also been suggested that Alu sequences upstream from gene promoters provide binding 

motifs for transcription factors (Polak & Domany, 2006). It is slowly emerging that even if 
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SINEs started as genomic parasites, they might have acquired important cellular functions 

throughout evolution. 

 In addition to the above-mentioned Pol III transcripts, the Pol III repertoire includes 

several other products of less well known or unknown function, such as the vault RNAs 

(van Zon et al, 2003), Y RNAs (Deutscher et al, 1988) and the neural-specific BC1/BC200 

RNAs (Cao et al, 2006). Furthermore, novel Pol III-transcribed non-coding RNAs of 

different classes have emerged over the last few years and more are expected to be found 

in intron-transcribed regions (Dieci et al, 2007; Nakaya et al, 2007). Of interest is the 

finding that in human cells, miRNAs can be transcribed by Pol III via upstream Alu 

elements that lack a transcription termination signal (Borchert et al, 2006). Since miRNA 

was so far considered to be exclusively transcribed by Pol II, this discovery extends the 

potential of Pol III transcription in relation to translational and transcriptional regulation. 

 

1.3 RNA polymerase III promoters 

 There are three types of Pol III promoters, named type 1, 2 and 3 (Figure 1.1). The 

5S rRNA gene promoter is type 1. It is an internal promoter that consists of three elements 

downstream of the transcription start site; the A-block, an intermediate element and the C-

block (Figure 1.1, A) (Pieler et al, 1987). This type of promoter is highly conserved in 

different species (White, 2002), and mutations in the A- and C-blocks substantially reduce 

transcription (Pieler et al, 1985a). Mutations in the sequence between the elements does 

not affect transcription (Pieler et al, 1985a), but alterations of the spacing are not tolerated 

(Pieler et al, 1987; Pieler et al, 1985b). 

 Type 2 promoters are also intragenic and the most common promoter type used by 

Pol III, found in tRNA genes, as well as in SINEs and VA genes (White, 2002). They are 

well conserved in different species and consist of an A- and a B-block (Figure 1.1, B). The 

A-block of type 2 is homologous to that of type 1 and, at least in Xenopus, functionally 

interchangeable (Ciliberto et al, 1983). Similarly to the type 1 promoters, mutations in the 

type 2 elements result in reduced gene expression (Traboni et al, 1984; Traboni et al, 

1983). Although the sequence of the A- and B-blocks is highly conserved, the distance 

between them can vary, with an optimal 30-60 bp (Baker et al, 1987) that can be stretched 
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Figure 1.1. Different types of Pol III promoters. A. Type 1 promoter of 5S rRNA genes. B. Type 

2 promoter of tRNA genes. C. Type 3 promoter of U6 snRNA genes. The transcription start site is 

indicated by +1 and the site of termination by Tn. IE: intermediate element; DSE: distal sequence 

element; PSE: proximal sequence element. Adapted from White, 2002. 

 

up to 365 bp and maintain functionality (Fabrizio et al, 1987); the naturally occurring 

differences in the spacing between the two blocks is partly due to introns in some tRNA 

genes (White, 2002). 

 In contrast to the intragenic type 1 and 2 promoters, type 3 promoters are gene-

external (Figure 1.1, C). They consist of a proximal sequence element (PSE), a TATA box 

at a fixed distance downstream the PSE, and a distal sequence element (DSE) upstream of 

the PSE (Schramm & Hernandez, 2002). Pol III-transcribed genes with this kind of 

promoter include the U6 snRNA (Krol et al, 1987), 7SK RNA (Murphy et al, 1986), H1 

RNA (Baer et al, 1990) and MRP RNA genes (Topper & Clayton, 1990). Interestingly, the 

yeast U6 snRNA promoter contains A- and B-blocks, which, together with the TATA box, 

are required for efficient transcription (Brow & Guthrie, 1990; Eschenlauer et al, 1993), 

suggesting that the extragenic promoter type 3 genes have evolved relatively recently 

within the Pol III system (Paule & White, 2000). 

 A number of Pol III-transcribed genes present promoters that cannot be 

characterised as type 1-3. For example, the EBER2 gene of EBV contains A- and B-blocks 
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typical of type 2, but also a TATA box and upstream elements, all of which are required 

for efficient transcription (Howe & Shu, 1989). The 7SL RNA gene also falls in the 

category of Pol III promoters that rely on both internal and upstream sequences, as it 

requires the first 37 nt upstream of the transcription start site, in conjunction with the 

internal promoter elements (Ullu & Weiner, 1985). 

 

1.3 Transcription complex assembly at Pol III promoters 

 Pol III promoters are recognised by Pol III-specific transcription factors that form a 

transcription preinitiation complex (PIC), which is completed by the recruitment of Pol III. 

Depending on the type of the promoter, different transcription factors are required in order 

to form a functional PIC. 

 

1.3.1 Transcription complex assembly at type 2 promoters 

 In type 2 promoters (Figure 1.2), the A- and B-block sequences are recognised by 

transcription factor IIIC (TFIIIC) (Lassar et al, 1983). This large transcription factor can 

recognise and bind simultaneously the two promoter elements, even though their 

separation can vary between different genes. Human TFIIIC has been shown to consist of 

five subunits, known as TFIIIC220, 110, 102, 90 and 63, with a total mass approaching 

600 kD (Kovelman & Roeder, 1992; Yoshinaga et al, 1989). The TFIIIC220 and 110 

subunits interact with the promoter DNA, with 220 specifically binding to the B-block 

(Shen et al, 1996; Yoshinaga et al, 1987; Yoshinaga et al, 1989). TFIIIC63 is also thought 

to contribute to the binding of TFIIIC to the DNA, by interactions with the A-block (Hsieh 

et al, 1999b). TFIIIC90 binds to TFIIIC220, 110 and 63 subunits and appears to bridge the 

two subdomains (220/110 and 102/63) and extend over the entire gene (Hsieh et al, 1999a). 

Interestingly, two or three (110, 90 and probably 220) subunits of the TFIIIC complex 

exhibit histone acetyltransferase (HAT) activity, which might have an important role in the 

chromatin remodelling of Pol III genes, before the formation of a functional PIC (Hsieh et 

al, 1999a; Kundu et al, 1999).  
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Figure 1.2. Transcriptional complex assembly on a type 2 promoter. TFIIIC binds to A- and B-

blocks on DNA and recruits TFIIIB via protein-protein interactions. Once bound, TFIIIB recruits Pol 

III and transcription is initiated. The transcription site is indicated by +1. 

  

TFIIIC

A B
+1

TFIIIC

A B
+1

TFIIIC

Pol III

A B

+1

A B
+1



33 
 

 The main role of TFIIIC is to recruit transcription factor IIIB (TFIIIB) onto the Pol 

III promoters. TFIIIB consists of three subunits: TBP (TATA-binding protein), Brf1 

(TFIIB-related factor) and Bdp1 (B double prime 1). TBP and Brf1 strongly interact with 

each other (Khoo et al, 1994; Wang & Roeder, 1995), while Bdp1 binds weakly with the 

complex (Kassavetis et al, 1995). The recruitment of TFIIIB by TFIIIC is achieved by 

protein-protein interaction between the subunits of the two factors. More specifically, the 

TFIIIC102 subunit is thought to initially contact Brf1 and several subsequent interactions 

between the other subunits contribute to the formation of a stable complex (Schramm & 

Hernandez, 2002). These interactions include association of TFIIIC90 with Brf1, and of 

TFIIIC102 and 63 with both Brf1 and TBP (Hsieh et al, 1999a; Hsieh et al, 1999b). 

 Once TFIIIB has formed a stable complex with TFIIIC, Pol III is recruited. TBP 

and Brf1 have been shown to interact with Pol III subunits and these interactions are 

considered to be important for Pol III recruitment (Brun et al, 1997; Wang & Roeder, 

1997; Werner et al, 1993). Furthermore TFIIIC102, 90 and 63 also interact with Pol III 

subunits and, therefore, TFIIIC might not only recruit TFIIIB, but also facilitate the 

recruitment of the polymerase (Hsieh et al, 1999a; Hsieh et al, 1999b), although TFIIIB is 

sufficient to recruit Pol III in vitro and initiate multiple rounds of transcription (Kassavetis 

et al, 1990). 

 

1.3.2 Transcription complex assembly at type 1 promoters 

 Recruitment of TFIIIC onto 5S rRNA genes requires transcription factor IIIA 

(TFIIIA) (Figure 1.3). TFIIIA is a single polypeptide of approximately 40 kD and has nine 

zinc-finger domains. These domains bind to the A-block, the intermediate element and 

mainly the C-block of the type 1 promoters, with the latter contributing about 95% of the 

binding affinity of TFIIIA (Clemens et al, 1992; Nolte et al, 1998). As TFIIIC has little 

affinity for type 1 promoters, which lack a B-block, TFIIIA serves as an adaptor, allowing 

TFIIIC to be recruited onto 5S rRNA genes (Paule & White, 2000). It is not clear how 

TFIIIA recruits TFIIIC, but both factors must form a complex at the promoter prior to 

recruitment of TFIIIB, which in turn will recruit Pol III (Bieker et al, 1985; Carey et al, 

1986). 
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Figure 1.3. Transcriptional complex assembly on a type 1 promoter. TFIIIA binds to the 

promoter elements on DNA and recruits TFIIIC, which results in consequent recruitment of TFIIIB 

and TFIIIC and transcription initiation. The transcription site is indicated by +1. 
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1.3.3 Transcription complex assembly at type 3 promoters 

 In contrast to the intragenic type 1 and 2, type 3 promoters are gene-external and 

contain different promoter elements, namely the TATA box, PSE and DSE (Figure 1.1, C). 

Therefore, they do not require TFIIIC or TFIIIA, but employ a different set of transcription 

factors (Figure 1.4) (Schramm & Hernandez, 2002). 

 The PSE is recognised by SNAPc (snRNA activator protein complex), a five 

subunit transcription factor (Schramm & Hernandez, 2002) that is involved in the 

transcription of snRNA genes by both Pol II and Pol III (Henry et al, 1998). The TATA 

box is recognised by TBP, which is a subunit of TFIIIB. In the case of type 3 promoters, 

Brf1 is substituted in the TFIIIB complex by the related factor Brf2 (Schramm et al, 2000), 

which is specifically required for this type of promoter and contributes to TBP-promoter 

binding (Ma & Hernandez, 2002). Both SNAPc and TBP can bind weakly to DNA on their 

own, but cooperative binding interactions between them result in their efficient recruitment 

to the DNA (Mittal & Hernandez, 1997). The interaction of SNAPc and TFIIIB with the 

promoter DNA is further enhanced by Oct-1, a transcription factor that binds to the DSE 

and stabilises SNAPc and TFIIIB by protein-protein interactions (Mittal et al, 1996; 

Murphy et al, 1992). However, although Oct-1 contributes to a stable SNAPc-TFIIIB 

complex on the promoter, it is not essential for basal transcription (Hu et al, 2003). 

Assembly of the SNAPc-TFIIIB complex at type III promoters facilitates Pol III 

recruitment and, subsequently, transcription initiation. 

 

1.4 RNA polymerase III 

 As discussed previously, TFIIIA, TFIIIC and SNAPc are considered recruitment 

factors whose main role is to recruit TFIIIB to Pol III promoters, which will then allow the 

recruitment of Pol III (Schramm & Hernandez, 2002).  

 Pol III consists of 17 subunits in yeast and human and 16 of them have been shown 

to be essential in yeast (Geiduschek & Kassavetis, 2001). Of the 17 subunits, five are 

common to Pol I, II and III, two common to Pol I and III and ten unique to Pol III 

(Schramm & Hernandez, 2002). It is thought that the Pol III-specific subunits contribute to 
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Figure 1.4. Transcriptional complex assembly on a type 3 promoter. TFIIIB and SNAPC bind 

cooperatively to the TATA box and PSE respectively, and recruit Pol III to initiate transcription. 

Binding of Oct-1 to the DSE enhances the recruitment of SNAPC/TFIIIB. The transcription site is 

indicated by +1. 
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the Pol III-specific properties, like its nuclear localisation, the interactions with the 

promoter factors and RNA-related enzymes and its elongation and termination properties 

(Geiduschek & Kassavetis, 2001). 

 Experiments regarding the formation of the preinitiation complex at Pol III 

promoters have been executed in vitro, allowing for the possibility that in vivo many of the 

factors that mediate Pol III promoter recognition and Pol III itself are recruited to the 

promoter as a holoenzyme. Indeed, it has been reported that subunits of TFIIIB and TFIIIC 

can be immunoprecipitated with Pol III as an active holoenzyme in human cells and that 

about 10% of the Pol III molecules in the immunoprecipitate were associated with TFIIIB 

and/or TFIIIC components (Wang et al, 1997b). A similar approach in yeast also showed 

association of Pol III with TFIIIB and TFIIIC subunits, but in this case the holoenzyme 

was not functional and required supplementation with all three TFIIIB subunits for 

transcriptional activity (Chedin et al, 1998). Although the presence of functional Pol III 

holoenzymes in vivo, at least in yeast, is not clear, it is believed that it might be a valid 

possibility (Geiduschek & Kassavetis, 2001).  

 

1.5 Transcription initiation, elongation and termination by RNA 
polymerase III 

 Pol III recruitment onto the promoter DNA results in the formation of a complete 

preinitiation complex. Following that, the DNA strands are separated without requiring 

ATP hydrolysis and a transcription bubble, is formed (Kassavetis et al, 1992). The TFIIIB 

subunits Brf1 and Bdp1 have an important role in promoter opening; impairment of 

specific domains on them can result in failure to form the transcription bubble and initiate 

transcription, although Pol III is properly recruited (Kassavetis et al, 1998; Kassavetis et al, 

1999).  

 Once the DNA strands have been separated, RNA synthesis can be initiated. Pol III 

dissociates from promoter-bound TFIIIB and progresses along the DNA. It is unclear how 

Pol III manages to read through the DNA when factors like TFIIIC and TFIIIA (in the case 

of 5S rDNA) are stably bound to it and the assembled transcription complexes are not 

removed even after multiple rounds of transcription (Bogenhagen et al, 1982; Wolffe et al, 
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1986). However, one possibility might be that the factor is transiently displaced by Pol III 

during transcription, but remains associated with TFIIIB, which interacts with DNA 

upstream of the start site, due to protein–protein contacts. 

 In contrast to other polymerases, Pol III has the ability to recognise transcription 

termination sites independently of other factors (Cozzarelli et al, 1983); clusters of four or 

more T residues are sufficient to signal the accurate and efficient termination of 

transcription (Paule & White, 2000). Mutations or deletion of these termination signals 

resulted in the production of run-off transcripts, but also diminished the efficiency of 

single- and multiple-round transcription, suggesting that the termination signal might 

contribute to the efficiency of initiation and re-initiation (Schramm & Hernandez, 2002; 

Wang et al, 2000; Wang & Roeder, 1996). 

 After termination, Pol III can either disassociate or undergo a termination-coupled, 

re-initiation event and go through a new round of transcription, much more rapidly than the 

initial one (Dieci & Sentenac, 1996). This is because Pol III can re-initiate transcription on 

the same template, without being released from it and, thus, avoid the slow step of 

polymerase recruitment (Dieci & Sentenac, 1996). It is thought that bending of the DNA 

by TFIIIA, TFIIIB and TFIIIC may facilitate re-initiation by bringing the two ends of Pol 

III-transcribed genes into close proximity (Paule & White, 2000). Indeed, it has been 

shown that TFIIIB and TFIIIC are involved in the efficient polymerase recapture and 

transcription re-initiation (Ferrari & Dieci, 2008; Ferrari et al, 2004). 

 The La autoantigen and NF1 polypeptides have been implicated in the efficient 

termination and re-initiation of Pol III transcription in human cells. La binds to nascent Pol 

III transcripts and promotes their processing to mature forms (Maraia, 2001), but is also 

involved in transcription; addition of purified La to immobilised DNA templates increased 

the release of RNA and the overall level of transcription (Maraia et al, 1994), while 

presence of La resulted in more efficient transcription re-initiation (Maraia, 1996). NF1 

polypeptides were implicated in transcription termination due to their binding sites 

downstream of VAI terminators and were reported to increase VAI transcription in crude 

extracts, but not in a purified system, suggesting that NF1 might counteract negative 

factors not present in the latter (Wang et al, 2000). However, although a recent in vivo 

study showed La to associate with several Pol III-transcribed genes, it failed to detect NF1 

at Pol III templates (Fairley et al, 2005). 
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1.6 RNA polymerase III transcription regulation 

 By being responsible for the transcription of 5S rRNA and tRNAs, Pol III is 

directly associated with translation and protein synthesis. Protein synthesis is essential for 

cell growth, since growth is defined as increase in cell mass and 80-90% of the dry mass of 

a cell is protein (Zetterberg & Killander, 1965). Therefore, Pol III transcription is tightly 

associated with cell growth. Because adequate cell growth is a requirement for cell cycle 

progression and proliferation (Neufeld & Edgar, 1998), one would expect that conditions 

that deregulate cell growth would also affect transcription by Pol III. 

 Indeed, a wide variety of transformed cell types, including lines transformed by 

DNA tumour viruses, RNA tumour viruses, or chemical carcinogens, have been found to 

express abnormally high levels of Pol III products (White, 2004b). Furthermore, 

conclusions inferred from studies in cell culture have been validated in tumour cells. For 

example, 7SL was found to be elevated in each of 80 tumour samples tested, representing 

19 different types of cancer, when compared to healthy tissue (Chen et al, 1997a). 

Moreover, 5S rRNA and tRNA, as well as 7SL, were consistently overproduced in ovarian 

cancers (Winter et al, 2000), while breast, tongue and lung carcinomas also revealed 

increased levels of Pol III transcripts in cancer cells (Chen et al, 1997b). These 

experiments indicate that the deregulation of growth and proliferation in cancer cells is 

associated with deregulation of Pol III transcription.  

 One way to increase Pol III output would be to raise the levels of transcription 

factors which are required for Pol III transcription and are found at limiting concentrations. 

To this end, it has been shown that adenoviral infection (Hoeffler et al, 1988) and simian 

virus 40 (SV40) (White et al, 1990), polyomavirus (Felton-Edkins & White, 2002) or EBV 

transformation (Felton-Edkins et al, 2006) can result in TFIIIC overexpression. 

Furthermore, TFIIIC was also overexpressed in ovarian carcinomas, confirming that 

upregulation of TFIIC can be observed in tumours and suggesting clinical significance 

(Winter et al, 2000). Subunits of TFIIIB can also be found at elevated levels in transformed 

cells. TBP can be induced after activation of Ras signalling by hepatitis B virus (Wang et 

al, 1997a) and is also elevated in colon carcinomas (Johnson et al, 2003). Bdp1 was also 

found to be increased in cell lines transformed by EBV, SV40 or polyoma virus (Felton-

Edkins et al, 2006; Felton-Edkins & White, 2002), as well as in some cervical tumours 

(Daly et al, 2005), while Brf1 mRNA was found to be induced in biopsies positive for the 
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oncogenic HPV16 strain, but not for the lower risk strains or HPV-negative biopsies (Daly 

et al, 2005).  

 Pol III transcription has also been found to be upregulated by direct activation of 

TFIIIB. The Tax oncoprotein of the human T cell leukaemia virus-1 (HTLV-1) was shown 

to activate Pol III transcription by targeting TFIIIB and accelerating the rate and/or extent 

of transcription initiation complex assembly (Gottesfeld et al, 1996). Moreover, c-Myc, 

one of the most frequently activated oncogenes that is estimated to be involved in 20% of 

all human cancers (Dang et al, 2006), interacts with TFIIIB and potently upregulates Pol 

III transcription (Gomez-Roman et al, 2003). c-Myc can be found at 5S rRNA and tRNA 

genes, and its depletion by RNA interference or genetic knock-out results in decreased 

tRNA expression (Felton-Edkins et al, 2003b; Gomez-Roman et al, 2003).  

 Kinases have also been found to bind to TFIIIB and activate transcription by Pol 

III. CK2 can directly interact with and phosphorylate Brf1, resulting in the upregulation of 

Pol III transcription by facilitating recruitment of TFIIIB to TFIIIC (Johnston et al, 2002) 

and it has been shown to be oncogenic in transgenic mice (Seldin & Leder, 1995) and 

hyperactive in some human cancers (Faust et al, 1996; Munstermann et al, 1990; 

Notterman et al, 2001). The MAP (mitogen-activated protein) kinase Erk (extra-cellular 

signal regulated kinase) can also activate Pol III transcription by binding and 

phosphorylating Brf1 and stimulating the assembly of Pol III transcription complexes 

(Felton-Edkins et al, 2003a). Erk, which is downstream of the Ras-Raf-Mek signalling 

pathway, is found to be abnormally elevated in about 30% of cancers, most frequently 

because of mutational activation of the upstream Ras (Downward, 2003). It must be noted, 

however, that phosphorylation of Brf1 (TFIIIB) does not always result in upregulation of 

Pol III transcription. Cyclin-dependent kinases (Cdks) from mitotic frog extracts inhibit 

expression of Pol III templates (Gottesfeld et al, 1994; Hartl et al, 1993), with cdc2–cyclin 

B kinase being sufficient to repress expression of a Xenopus 5S rRNA gene (Gottesfeld et 

al, 1994). Work in human cells showed that hyperphosphorylation of Brf1 at mitosis, with 

kinase(s) other than cdc2–cyclin B, can result in compromised Pol III recruitment and gene 

expression, due to release of Bdp1 from chromosomal templates (Fairley et al, 2003). 

 A third way to stimulate Pol III transcription is by derepression of TFIIIB. TFIIIB 

has been shown to be bound by tumour supressors and transcription repressors that bind to 

TFIIIB and inhibit the formation of a functional preinitiation complex, resulting in 

repression of Pol III transcription (White, 2004a). The tumour suppressors p53 (Cairns & 

White, 1998; Crighton et al, 2003) and Rb (Retinoblastoma) (Larminie et al, 1997; White 
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et al, 1996), as well as the Rb-family proteins p107 and p130 (Sutcliffe et al, 1999), have 

been shown in vitro and in vivo to repress Pol III transcription in mouse cells. The tumour 

suppressor ARF also has the ability to repress Pol III transcription in human cells (Jen 

Morton, personal communication). Furthermore, Maf1 can repress Pol III transcription in 

yeast and human cells (Johnson et al, 2007; Reina et al, 2006; Upadhya et al, 2002), while 

the general transcriptional repressor Dr1 has been shown to repress Pol III transcription in 

yeast (Kim et al, 1997) and in human cell extracts (White et al, 1994). 

 Since most of the work on the negative regulators of Pol III transcription has been 

done in yeast or mouse cells, the work in this study focused on human cells. The regulation 

of Pol III transcription by Dr1 and its interacting protein DRAP1, in human cells, is 

investigated in chapters 3 and 4 respectively, while the effects of different stress conditions 

on their regulation, as well as on Pol III transcription are examined in chapter 5. The effect 

of RNAi knock-down of Rb, p107 and p130 on Pol III transcription in human cells is 

explored in chapter 6, while similar experiments are reported in chapter 7, regarding the 

role of p53 in the repression of Pol III transcription, by itself or in response to ARF. 
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CHAPTER 2 

 

 

 

 

 

 

Materials and Methods 
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2.1 Cell culture 

 Cell culture was performed in a class II hood, using aseptic techniques and sterile 

equipment and reagents. All plasticware used was supplied by Corning. 

 

2.1.1 Cell lines and maintenance 

 HeLa, U2OS and A31 cells were maintained in DMEM (Dulbecco’s Modified 

Eagle Medium, Cambrex) supplemented with 10% foetal bovine serum (FBS, Sigma), 2 

mM L-Glutamine (Sigma), 100 U/ml penicillin (Sigma) and 100 U/ml streptomycin 

(Sigma). NARF2 cells were maintained as the above mentioned cells lines, but with the 

addition of 150 µg/ml hygromycin (Duchefa Biochemie) and 300 µg/ml G418 sulfate 

(Sigma). The E6-expressing NARF2-E6 cells were cultured the same way as NARF2, but 

with puromycin (Sigma) at a concentration of 1.5 µg/ml. IMR90 cells were maintained in 

McCoy’s medium (Cambrex) supplemented with 20% FBS (Sigma), 2 mM L-Glutamine 

(Sigma), 50 U/ml penicillin and 100 U/ml streptomycin. The CHO-Brf1 cell line was 

maintained in ɑMEM (Cambrex), supplemented with 10% doxycycline-free FCS 

(Clontech), 2 mM L-Glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin (Sigma), 100 

µg/ml G418 sulfate, 100 µg/ml hygromycin (Duchefa Biochemie) and 2 µg/ml 

doxycycline (Melford Laboratories). 

 Cells were maintained at 37 °C in humified atmosphere containing 5% CO2 and 

were passaged when 80-90% confluent. For cell passaging, the media were aspirated from 

the flask and 2 ml of buffered trypsin-EDTA (0.05% (w/v) trypsin, 0.02% (w/v) EDTA, 

Sigma) were added to the cells (in a 75 cm2 flask or adjusted properly) and then aspirated 

immediately. A further 2 ml were added and left for approximately 2 minutes at 37 °C. 

Following trypsinisation, fresh medium was immediately added to the dissociated cells in 

order to neutralise the trypsin and cell suspensions were appropriately transferred to new 

flasks.  
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2.1.2 Cryo-freezing and recovery 

 Cryo-freezing was used for storage of all cell lines. Cells were trypsinised as 

described, pelleted by centrifugation at 1000 g for 5 min, and resuspended in 80% DMEM, 

10% FBS and 10% dimethyl sulphoxide (DMSO, Sigma). Cells from a sub-confluent 75 

cm2 flask were aliquotted into 2 ml in cryo-tubes and frozen in two steps, initially by being 

placed at -80 oC overnight and subsequently by being transferred to liquid nitrogen storage. 

For cell recovery after liquid nitrogen storage, the content of the cryo-tubes was rapidly 

thawed at 37 oC and mixed with fresh medium. The cells were pelleted by centrifugation 

and the supernatant was aspirated off to ensure removal of DMSO, prior to resuspension in 

maintenance medium in 25 cm2 flasks. 

 

2.1.3 Protein induction in inducible cell lines 

 Induction of ARF in NARF2 cells was achieved by adding 1 mM IPTG in the 

medium and harvesting the cells 24 hours later, as previously described (Stott et al, 1998). 

 Brf1 induction in the CHO-Brf1 cell line was achieved by washing the cells twice 

with pre-warmed PBS and re-culture with doxycycline-free medium for 48 hours (Marshall 

et al, 2008). 

 

2.1.4 Application of stress conditions and chemical treatments of the cell lines 

 HeLa and U2OS cells were subjected to hypoxic stress by incubation for 24 hours 

in a hypoxic incubator (Wolf Laboratories, UK) at 37 oC, with a gas mixture containing 

5% CO2 and 1% O2, balanced with nitrogen. Cells under normoxic conditions were treated 

the same way, but using a gas mix of 5% CO2 and 20% O2. 

 HeLa and U2OS cells were subjected to heat shock by incubating at 45 oC for 30 

minutes, as described previously (Liu et al, 1995), but in a cell culture incubator. Cells 

were then either harvested immediately (0h) or left to recover at 37 oC for 2, 4 or 8 hours 

before harvesting. Control cells were not subjected to heat shock. 
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 HeLa and U2OS cells were subjected to chemically-induced anoxia by addition of 

the iron chelator deferoxamine mesylate salt (DFX, Sigma). Cells were treated with 150 

µM DFX for 24 hours before harvesting. Control cells were cultured the same way, but 

with the addition of an equal volume of H2O rather than DFX. 

 HeLa cells were treated with the mTOR inhibitor rapamycin (Calbiochem) for 4 

hours at a concentration of 100 nM, before harvesting. Control cells were treated with the 

equal volume of DMSO. 

 Serum starvation experiments took place by washing A31 cells twice with PBS, 

before subjecting them in DMEM supplemented with 0.5% FBS (Sigma), 2 mM L-

Glutamine (Sigma), 100 U/ml penicillin (Sigma) and 100 µg/ml streptomycin (Sigma), for 

24 hours. Control cells were treated equally, but maintained in 10% FBS. 

 

2.2 Preparation of whole cell extracts 

 Cells were cultured in either 10 cm culture dishes or 6-well plates to about 80% 

confluency before harvesting. Preparation was performed on ice, as rapidly as possible, 

and all solutions and plasticware were kept ice-cold to maintain cell activity. The 

maintenance medium was aspirated and the cells were washed twice with ice-cold PBS. 

They were then scraped into cell lysis buffer (20 mM HEPES (pH 7.8), 150 mM NaCl, 

25% glycerol, 50 mM NaF, 0.2 mM EDTA, 0.5% Triton X-100, 0.5% NP-40, 10 mM β-

glycerophosphate, 1 mM sodium orthovanadate, 1 mM PMSF, 1 mM DTT, 0.5 µg/ml 

leupeptin, 1.0 µg/ml trypsin inhibitor, 0.5 µg/ml aprotinin and 40 µg/ml bestatin) and 

transferred to sterile microfuge tubes. 100 or 500 µl of buffer was used per well or per 10 

cm plate, respectively. The cell lysates were then passed through a 26G needle five times 

and centrifuged at 16000 g for 10 minutes at 4 ºC. The supernatants were aliquoted and 

snap-frozen on dry ice, before being stored at -80 ºC. 
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2.3 Determination of protein concentrations 

 The protein concentrations of whole cell extracts were determined using Bradford’s 

reagent (BioRad) diluted 1 in 5 with distilled H2O. For each experiment, a standard curve 

was constructed by measuring the absorbance at 595 nm of 1, 2, 4, 6, 8, 10 and 12 µg of 

BSA in 1ml of Bradford’s reagent. The absorbance readings of the whole cell extracts were 

performed in triplicate at 595 nm, and the protein concentration of each sample was 

determined from the standard curve. 

 

2.4 Separation of proteins by polyacrylamide gel 
electrophoresis (SDS-PAGE) 

 Whole cell extracts containing 50 µg of protein per lane were resolved by 

denaturing SDS-PAGE typically on 7.8% or 12% polyacrylamide (National Diagnostics) 

minigels (375 mM Tris pH 8.8, 0.1% SDS), with 4% polyacrylamide stacking gels (125 

mM Tris pH 6.8, 0.1% SDS). Prior to loading, samples were boiled for 2 minutes in 1x 

protein sample buffer (62.5 mM Tris pH 6.8, 0.5% SDS, 5% β-mercaptoethanol, 10% 

glycerol, 0.125% bromophenol blue). Electrophoresis was performed in 1x SDS running 

buffer (0.1% SDS, 76.8 mM glycine, 10 mM Tris pH 8.3) at 200 V, until the bromophenol 

dye had moved to the bottom of the gel. 

 

2.5 Western blot analysis 

 After separation by SDS-PAGE, proteins were transferred to nitrocellulose 

membranes (BioRad) using the BioRad Mini Trans-Blot Electrophoretic Transfer Cell 

system (BioRad). The transfer was carried out in 1x transfer buffer (76.8 mM glycine, 

10mM Tris pH 8.3, 20% methanol) at 100 V for an hour at room temperature or at 50 V, 

overnight at 4 ºC and the proteins immobilised on the nitrocellulose were then visualised 

by staining with 1x Ponceau S solution (Sigma) to ensure their efficient transfer. 

Subsequently, the membranes were washed with PBS and then blocked in milk buffer 
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(32.5 mM Tris, 150 mM NaCl, 0.2% Tween-20, 5% skimmed milk powder (Marvel)) for 1 

hour at room temperature. The membranes were then incubated in the presence of the 

appropriate primary antibody diluted in milk buffer for 2 hours at room temperature or at 4 

ºC overnight. The primary antibodies used and their appropriate concentrations are listed in 

table 2.1. After the primary antibody incubation, the membranes were washed three times 

for 5 minutes each in PBS containing 0.5% Tween-20, in order to remove excess primary 

antibody. Following the washes, the membranes were incubated in the presence of the 

appropriate secondary antibody (Dako) at a dilution of 1:1000 in milk buffer. The excess 

of secondary antibodies on the membranes was washed off by sequential washes with 

western wash buffer (32.5 mM Tris, 150 mM NaCl, 0.2% Tween-20); three washes of 5 

minutes each, followed by two washes of 15 minutes and a final wash of 5 minutes with 1x 

TBS (2.5mM Tris-HCl pH 7.6, 15mM NaCl). The bound antibodies were then detected 

using enhanced chemiluminescence (ECL) according to the manufacturer’s instructions 

(Amersham). The obtained signals were quantified by densitometry (ImageJ v1.37), 

normalised to the respective actin signals and represented in graphs as the average fold 

increase or decrease, along with the standard deviations.  

 

2.6 Co-immunoprecipitation  

 25 µl of packed protein G sepharose beads (Sigma) were used per 

immunoprecipitation. The beads were washed three times with 1 ml of low salt 

microextraction buffer (LS-MEB) (150 mM NaCl, 50 mM NaF, 20 mM HEPES pH 7.8, 

25% glycerol, 1 mM DTT, 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 0.2 mM 

EDTA, 40 µg/ml bestatin, 1 µg/ml trypsin inhibitor, 0.7 µg/ml pepstatin, 0.5 µg/ml 

aprotinin, 0.5 µg/ml leupeptin) prior to incubation with 5 µl anti-Dr1 (1162) and the 

respective pre-immune sera or anti-Brf1 (128) antibodies and rabbit IgGs (sc-2027, Santa 

Cruz Biotechnology); the total volume was made up to 50 µl with LS-MEB and the 

antibodies were incubated with the beads rotating for 2 hours at 4 ºC. Following that, the 

beads were washed three times with 1x LS-MEB to remove excess antibody. 300 µg of 

HeLa protein extract (Computer Cell Culture Belgium) were added to the beads and 

incubated rotating for 1 hour at 4 ºC. The beads were then washed five times with 1x TBS,  
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Table 2.1. Primary antibodies used for western blot analysis 

Protein Antibody Dilution Source 

Dr1 1162 1:1000 In house 

Dr1 1163 1:1000 In house 

DRAP1 V-18 1:1000 Santa Cruz Biotechnology 

DRAP1 D9390-01 1:1000 US Biological 

TBP 58C9 1:1000 Santa Cruz Biotechnology 

TBP MTBP-6 1:200 In house 

Brf1 128 1:1000 In house 

Bdp1 2663 1:1000 In house 

TFIIIC90 1898 1:1000 In house 

TFIIIC110 3208 1:1000 In house 

TFIIIC220 Ab7 1:1000 In house 

Pol III (155) 1900 1:1000 In house 

Actin C11 1:5000 Santa Cruz Biotechnology 

TFIIB C18 1:1000 Santa Cruz Biotechnology 

HIF1ɑ NB100-105 1:500 Novus Biologicals 

p-S6K 9202 1:1000 Cell signalling technologies 

Oct-1 12F11 1:1000 Santa Cruz Biotechnology 

p53 554293 1:1000 BD Pharmingen 

Hsp70 4E7 1:10000 Santa Cruz Biotechnology 

Rb G3-245 1:1000 BD Pharmingen 

p107 SD9 1:1000 Santa Cruz Biotechnology 

p130 C-20 1:1000 Santa Cruz Biotechnology 

ARF FL-132 1:200 Santa Cruz Biotechnology 
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before adding 50 µl of 2x protein sample buffer. The samples were then boiled for two 

minutes and either stored at -20 ºC for future use or directly subjected to western blotting.  

 For co-immunoprecipitation experiments using radiolabelled proteins, the in vitro 

synthesised protein and HeLa nuclear extract were pre-cleared to minimise non-specific 

interactions between the proteins and the beads. For this, 40 µl of the labelled protein 

together with 400 µg HeLa nuclear extract and 50 µl packed protein A sepharose beads 

(Sigma) made up to a final volume of 400 µl with LS-MEB, were incubated rotating for 1 

hour at 4 ºC. 100 µl of the pre-cleared supernatant were then aliquoted to new tubes, 5 µl 

of Dr1 (1162) antibody or the 1162 pre-immune control were added and the volume was 

made up to 500 µl with LS-MEB. The incubation with the antibodies took place for 2 

hours rotating at 4 ºC and then 25 µl of protein A sepharose beads were added and the 

incubation continued for another hour. Finally, the beads were washed five times with 

TBS, before being mixed with the appropriate volume of loading dye, boiled for 10 min 

and run in SDS-PAGE. The gel was then incubated with fixing solution (10% (v/v) acetic 

acid, 30% (v/v) methanol) for 30 minutes at room temperature and washed with dH2O for 

15 min. Subsequently, it was incubated with Autofluor (National Diagnostics) for 2 hours 

at room temperature and then vacuum dried for 2 hours at 80 ºC. The co-

immunoprecipitated proteins were visualised by autoradiography. 

 

2.7 Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) 

2.7.1 RNA Extraction 

 Total cellular RNA was extracted from cells by using the TRI reagent (Sigma). The 

maintenance medium was aspirated and the cells were washed three times with ice-cold 

PBS. 1 ml or 500 µl of TRI were used per 10 cm dish or per well of a six-well plate, 

respectively, to harvest the cells. The samples were incubated for 5 minutes at room 

temperature to allow the complete dissociation of nucleoprotein complexes, before the 

addition of 0.2 ml (per ml of TRI used) of chloroform to each. The samples were then 

thoroughly mixed by vortexing for 15 seconds and were left incubating for 5 minutes at 

room temperature, before being centrifuged at 16000 g for 15 minutes at 4 ºC. This 

resulted in the separation of the samples into three phases: a lower red organic phase 
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containing protein, a middle white interphase containing DNA and an upper colourless 

aqueous phase containing RNA. The aqueous phase was carefully transferred into new 

tubes and 0.5 ml of isopropanol was added to precipitate the RNA. The samples were 

mixed by repeated inverting, incubated for 10 minutes at room temperature and centrifuged 

at 16000 g for 10 minutes at 4 ºC. The resulting RNA pellet was washed with 1 ml of 75% 

ethanol, vortexed briefly and centrifuged at 8000 g for 5 minutes at 4 ºC. Subsequently, the 

supernatant was aspirated off, and the RNA pellets were left to air dry for approximately 

10 minutes before being resuspended in 20-50 µl of RNase-free water. Samples were 

heated to 50 °C to facilitate resuspension. Following resuspension, the RNA concentration 

was calculated by spectrophotometry at 260 nm, considering that OD of 1 at 260 nm 

corresponds to 40 µg/ml of RNA and following the formula: RNA concentration (μg/ml) = 

absorbance at 260 nm x 40 x dilution factor. All RNA samples were stored at -80 ºC. 

 

2.7.2 cDNA production 

 1 µg of RNA was added to 2 µl of 1x hexanucleotide mix (Roche) and made up, 

with RNase-free water, to a final volume of 25 µl. Primer annealing was carried out at 80 

°C for 10 minutes before transferring to ice. 8 µl of 5x First Strand Buffer (Invitrogen Life 

Technologies), 4 µl of 0.1 M dithiothreitol (DTT) (Invitrogen Life Technologies), 2 µl of 

10 mM dNTP mix (Promega) and 1 µl (200U) of Superscript II Reverse Transcriptase 

(Invitrogen Life Technologies) were added to initiate reverse transcription. The reaction 

took place for 1 hour at 42 °C before being terminated by heating at 70 °C for 15 minutes. 

The cDNA was stored at -20 ºC.  

 

2.7.3 Polymerase Chain Reaction (PCR) 

 Each PCR reaction had a total volume of 20 μl and contained 1 μl of cDNA, 20 

pmol of the appropriate primers, 0.5 U of Taq DNA polymerase (Promega), 1x Taq DNA 

polymerase buffer (Promega), 1.5 mM MgCl2, 0.2 mM of each non-radioactive dNTP, and 

1.8 μCi of [α-32P] dCTP (Amersham). The cycles used for the PCR amplification of the 

cDNA ranged from 18-30 depending on the amplified target molecule. The sequences of 

the primers used and the cycling parameters are listed in table 2.2. The PCR products were  
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Table 2.2. RT-PCR primers and cycling parameters 

 
Transcript 

Primers 5’-3’:  
Forward 
Reverse 

PCR Conditions 
(denaturing; cycling; 

final elongation) 
 

5S rRNA 

GGCCATACCACCCTGAACGC 

CAGCACCCGGTATTCCCAGG 

95ºC-3min; 95ºC-30s; 58ºC-30s; 72ºC-

1min; 72ºC-5min 

 

ARPPP0 

GCACTGGAAGTCCAACTACTTC 

TGAGGTCCTCCTTGGTGAACAC 

95ºC-2min; 95ºC-1min; 58ºC-30s; 72ºC-

1min; 72ºC-5min 

 

tRNALEU 

GAGGACAACGGGGACAGTAA 

TCCACCAGAAAAACTCCAGC 

95ºC-3min; 95ºC-30s; 68ºC-30s; 72ºC-30s; 

72ºC-5min 

 

tRNATYR 

AGGACTTGGCTTCCTCCATT 

GACCTAAGGATGTCCGCAAA 

95°C-3min; 95°C-1min; 65°C-30s; 72°C-

15s; 72°C-5min 

 

U6 snRNA 

GCTCGCTTCGGCAGCACATATAC 

TATCGAACGCTTCACGAATTTGCG 

95°C-3min; 95°C-1min; 60°C-30s; 72°C-

1min; 72°C-5min 

 

7SK 

CGATCTGGTTGCGACATCTG 

CGTTCTCCTACAAATGGAC 

95°C-3min; 95°C-30s; 57°C-30s; 72°C-30s; 

72°C-10min 

 

Brf1 

CACCCAGAATGCATGACTTCCG 

AAATTCTGTGAGCCTCTTCCGTAGCG

95°C-3min; 95°C-1min; 61°C-30s; 72°C-

1min; 72°C-5min 

 

TBP 

GCTGCAGCCG TTCAGCAGTC 

GCGGTACAATCCCAGAACTC 
95°C-3min; 95°C-30s; 58°C-30s; 72°C-30s; 

72°C-5min 

 

Bdp1 

GCTGATAGAGATACTCCTC 

CCAGAGACAAGAATCTTCTC 

95°C-3min; 95°C-1min; 56°C-1min; 72°C-

1min; 72°C-5min 

 

TFIIIC90 

AAACAGAAGTTGCTGAGTGC 

ATGGTCAGGCGATTGTCC 

95oC-3min; 95oC-1min; 55oC-30s; 72oC-

1min; 72oC-10min 

 

TFIIIC110 

CCAGAAGGGGTCTCAAAAGTCC 

CTTTCTTCAGAGATGTCAAAGG 

95oC-3min; 95oC-1min; 62oC-30s; 72oC-

30s; 72oC-10min 

 

TFIIIC220 

TCCAGCGAGACCTTCACACC 

GGATTGAGTGTTGCTGGGCT 

95oC-3min; 95oC-30s; 62oC-30s; 72oC-30s; 

72oC-10min 

RPC155 

(Pol III) 

GCACAGAGCATTGGTGAG 

CGTCATCATCCTTGTCTAG 

95°C-3min; 95°C-30s; 60°C-30s; 72°C-30s; 

72°C-5min 

 

TFIIB 

GCAGACAGAATCAATCTAC 

CAGTTGTAATCAAATCCACAC 

95°C-3min; 95°C-30s; 55°C-30s; 72°C-30s; 

72°C-5min 

 

Dr1 

AGAGCTGGTGGTGAACTGCT 

CCAAGGTTTTCCAAACGAGA 

95°C-3min; 95°C-30s; 58°C-30s; 72°C-30s; 

72°C-5min 

 

DRAP1 

GGAACGAAAAGCAAGGACAA 

CGTCCTCTTCATCAGGTGCT 

95°C-3min; 95°C-30s; 58°C-30s; 72°C-30s; 

72°C-5min 
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Hsp70 

CCGAGCATTCTCTGAATCCAT 

CACTTTCGGCTGTCTCCTTC 

95°C-3min; 95°C-1min; 62°C-30s; 72°C-

1min; 72°C-5min 

 

p53 

GTTCCGAGAGCTGAATGAGG 

TCTGAGTCAGGCCCTTCTGT 

95°C-3min; 95°C-30s; 58°C-30s; 72°C-30s; 

72°C-5min 

 

p21 

CTAGGCGGTTGAATGAGAGG 

CAGGTCTGAGTGTCCAGGAA 

95°C-3min; 95°C-30s; 60°C-30s; 72°C-30s; 

72°C-5min 

 

Rb 

GGAAGCAACCCTCCTAAACC 

TTTCTGCTTTTGCATTCGTG 

95°C-3min; 95°C-30s; 58°C-30s; 72°C-30s; 

72°C-5min 

 

p107 

AGAATGCCTCCTGGACCTTT 

GGGGTGTCACGAGTGAACTT 

95°C-3min; 95°C-30s; 58°C-30s; 72°C-30s; 

72°C-5min 

 

p130 

ATTTGGCATGGAAACCAGAG 

GTCACCCTTCTGGGAGTCAA 

95°C-3min; 95°C-30s; 58°C-30s; 72°C-30s; 

72°C-5min 

 

diluted with equal volume of formamide loading buffer (98% formamide, 0.01% 

bromophenol blue, 0.01% xylene cyanol, 5mM EDTA) and resolved on 7% 

polyacrylamide (National Diagnostics) sequencing gels containing 7% urea and 0.5x TBE 

(45 mM Tris, 45 mM boric acid, 0.625 mM EDTA pH 8.0). Gels were pre-run at 40 W for 

30 minutes in 0.5x TBE. The samples were heated at 95 ºC for 2 minutes and 1.5 µl of 

each sample was loaded per gel lane. Electrophoresis was carried out for 1 hour at 40 W 

and the gels were vacuum dried for 1 hour at 80 ºC, prior to being exposed to 

autoradiography film overnight at -80 ºC. The obtained signals were quantified by 

densitometry (ImageJ v1.37), normalised to the respective ARPP P0 or TFIIB signals and 

represented in graphs as the average fold increase or decrease, along with the standard 

deviations. 

 

2.8 In vitro transcription and translation 

 Proteins were in vitro transcribed and translated using the TNT reticulocyte lysate 

kit (Promega), according to the manufacturer’s instructions. The newly synthesised 

proteins were labelled with 35S-methionine. After the reactions took place, 2 µl of the 

sample were analysed by SDS-PAGE. The gel was incubated with fixing solution (10% 

(v/v) acetic acid, 30% (v/v) methanol) for 30 minutes at room temperature and washed 
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with dH2O for 15 minutes. Subsequently, it was incubated with Autofluor (National 

Diagnostics) for 2 hours at room temperature and then vacuum dried for 2 hours at 80 ºC. 

The radiolabelled proteins were visualised by autoradiography. 

 

2.9 Propagation, preparation and analysis of plasmid DNA 

2.9.1 Transformation of competent cells 

 E. coli XL-1 blue competent cells (Stratagene) were used for the bacterial 

transformations. The cells, stored at -80 °C, were thawed on ice prior to the addition of 20 

ng of plasmid DNA per 50 µl of competent cells and gentle mixing. The mixture was then 

left to incubate on ice for 30 minutes. Following that, the cells were heat-shocked at 42 ºC 

for 45 seconds and immediately transferred to ice for a further 2 minutes. 500 µl of SOC 

medium (LB Broth, 0.05% glucose, 10 mM MgSO4, 10 mM MgCl2), pre-heated at 37 ºC, 

were then added to the cells, followed by a 1 hour incubation at 37 ºC on an orbital shaker 

(250 rpm). 150 µl of the transformation mixture were then plated onto LB-agar plates (LB-

broth, 2% agar, 100 µg/ml ampicillin) and incubated at 37 ºC overnight to allow colony 

formation. 

 

2.9.2 Preparation of plasmid DNA 

 A single bacterial colony was selected to inoculate 5 ml of LB (Luria-Bertani) 

medium containing 100 µg/ml ampicillin as the selection antibiotic. The incubation took 

place for about 6 hours at 37 °C on an orbital shaker (300 rpm). 500 µl of this culture were 

then used to inoculate a larger culture of 500 ml of LB, which was incubated overnight at 

37 °C on an orbital shaker (300 rpm). Bacteria from the smaller or larger culture were then 

harvested by centrifugation and their plasmid DNA was isolated using the Qiagen Plasmid 

Mini or Maxi kit (Qiagen) respectively, according to the manufacturer’s instructions. The 

plasmid DNA was retrieved in 30 µl (Mini) or 50 µl (Maxi) of sterile water and stored at -

20 °C. The DNA concentration was determined by measuring absorbance at 260 nm, 
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according to the formula: DNA concentration (µg/ml) = absorbance at 260 nm x 50 x 

dilution factor.  

 

2.9.3 Restriction endonuclease analysis 

 The restriction endonucleases XhoI and EcoRI (Promega) were used to digest the 

plasmid DNA isolated from the SUPER RNAi library (Cancer Research UK) and ensure 

the presence of the shRNA insert. The reactions were performed in a total volume of 30 µl, 

containing 1 µl of each restriction enzyme, 1 µg of plasmid DNA and 3 µl of the MULTI-

CORE buffer (Promega). The DNA was digested for 1 hour at 37 ºC. Subsequently, the 

digest products were mixed with 6x agarose gel DNA loading buffer (0.25% (w/v) 

bromophenol blue, 0.25% (w/v) xylene cyanol, 30% (v/v) glycerol) and analysed by 1% 

(w/v) agarose gel electrophoreses. The electrophoreses were performed in 1x TAE (40 mM 

Tris-acetate, 1 mM EDTA pH 8.0) buffer containing 0.1 µg/ml ethidium bromide (Sigma) 

and visualised under UV.  

 The plasmids containing the correct size Dr1 shRNA insert were then sent for 

sequencing (Cogenics) to verify and identify the Dr1 target sequence, using the sequencing 

primer 5’-GCTGACGTCATCAACCCGCT-3’.  

 

2.10 RNAi 

2.10.1 shRNA 

 The shRNA employed to knock-down the expression of Dr1 gene was retrieved 

from a human whole genome RNAi library (SUPER RNAi, Cancer Research UK and 

http:/www.screeninc.nl) (Brummelkamp et al, 2002). The library contains mammalian 

expression vectors in E. coli, with an insert that encodes one to three hairpin transcripts, 

each of which is later, in the cells, processed into a 21 nucleotide siRNA, targeting the 

mRNA of a specific gene. The Dr1 vector employed encoded an insert with the sequence: 

5’-GAAGAAAGGCCAGTTCTCG-3’ targeting the mRNA of the second exon of the Dr1 

gene. The p53 (insert sequence: 5’-GACUCCAGUGGUAAUCUAC-3’) and DRAP1 (not 
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sequenced) targeting vectors were also used to knock-down p53 and DRAP1 expression 

respectively; an empty vector, containing no insert, was used as control. The plasmid 

containing the specific shRNA insert was isolated, identified by restriction enzyme digests 

and/or sequencing, propagated and transfected in HeLa cells.  

 

2.10.2 siRNA 

 Commercially available siRNAs targeting the first (AM16704-44899, Ambion) and 

third (AM16704-114186, Ambion) exons of Dr1 were also used to knock-down Dr1 

expression, while a validated, non-targeting siRNA (AM4390844, Ambion) was used as 

control. siRNAs targeting DRAP1 (sc-38091, Santa Cruz Biotechnology), Oct-1 (sc-

36119, Santa Cruz Biotechnology), Rb (sc-29468, Santa Cruz Biotechnology), p107 (sc-

29423, Santa Cruz Biotechnology) and p130 (sc-29425, Santa Cruz Biotechnology) were 

also purchased and employed to reduce the expression of their respective targets.  

 

2.11 Transient transfections 

2.11.1 Transient transfections using Nucleofector 

 The Nucleofector (Amaxa Biosystems) transfection system is an electroporation-

based method. Cells were grown to about 80% confluency, trypsinised and harvested by 

centrifugation at 1000 g for 5 minutes. They were then washed twice with, pre-warmed at 

37 ºC, 1x PBS and 1x106 cells were resuspended to 100 μl of Nucleofector solution R per 

transfection reaction. 1 µg of plasmid DNA containing a shRNA insert or 100 nM siRNA 

were added to the above suspension and the cells were electroporated with the appropriate, 

depending on the cell line, programme using the Amaxa Nucleofector apparatus (Amaxa 

Biosystems). 500 μl of the culture medium were added immediately after the 

electroporation and the suspension was first transferred to 2 ml of medium and then to six-

well plates containing 2.5 ml of growing medium. The medium was replaced with fresh the 

day after and the cells were left to grow for 48 hours, unless otherwise stated, before 

harvesting. 
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2.11.2 Transient transfections using Lipofectamine 2000 

 Transfections using Lipofectamine 2000 (Invitrogen) were performed according to 

the manufacturer’s instructions. Briefly, the siRNA used per reaction was added to 

Optimem (Gibco) to a final volume of 100 µl while 2.5 µl Lipofectamine 2000 were added 

to 97.5 µl Optimem. The mixtures were left incubating for 10 minutes at room temperature 

and were then mixed together and left for an extra 10 minute incubation at room 

temperature. During this time, cells of about 70% confluency, grown on 6-well plates, 

were washed twice with pre-warmed Optimem and finally covered with 800 µl Optimem. 

200 µl of the siRNA/Lipofectamine 2000/Optimem mixture were added per well. Fresh 

medium was added to the cells the next day and they were harvested 48 hours after 

transfection, unless otherwise stated.  

 

2.12 Chromatin immunoprecipitation (ChIP) assay 

 Cells were grown in 10 cm plates to about 80% confluency and one 10cm dish of 

cells was used per IP. Formaldehyde, to a final concentration of 1%, was added to the cell 

maintenance medium to cross-link the protein-DNA complexes for 10 minutes at 37 °C. 

The cross-linking was stopped by the addition of glycine at a final concentration of 0.125 

M and the plates were transferred to ice for harvesting. The cells were harvested in the 

culture medium/formaldehyde/glycine mix and pelleted by centrifugation at 500 g for 5 

minutes at 4 °C. The cell pellets were resuspended/washed in ice cold PBS, centrifuged at 

500 g for 5 minutes at 4 °C, resuspended/washed for a second time with ice cold PBS/0.5% 

NP-40, and centrifuged at 500 g for 5 minutes at 4 °C. The cells were then resuspended in 

40 ml of high salt buffer (0.5% NP-40, PBS, 1 M NaCl) and incubated on ice for 30 

minutes. Following that step, the cells were pelleted by centrifugation at 1500 rpm for 5 

minutes at 4 °C, washed with 40 ml PBS/1% NP-40 and resuspended in 40 ml of low salt 

buffer (0.5% NP-40, 10 mM Tris HCl, pH 8.0, 1 mM EDTA, 0.1 M NaCl) for a 30 minute 

incubation on ice. Following this incubation, the cells were centrifuged as previously, 

resuspended in 1 ml of low salt buffer and passed through a 26G needle five times. 300 μl 

of 20% sarcosyl were then added to the cell suspension and the final volume was made up 

to 3 ml by low salt buffer. This volume was then transferred to a sucrose cushion and 
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centrifuged at 4000 g for 10 minutes at 4 °C. The supernatant was then discarded, the pellet 

resuspended in 3 ml TE, transferred to a second sucrose cushion and centrifuged at 4000 g 

for 10 minutes at 4 °C. The pelleted material, containing genomic DNA and cross-linked 

proteins, was then resuspended in 2 ml TE (10 mM Tris pH 8.0, 1 mM EDTA) and the 

DNA was sheared into smaller fragments, of about 0.5 kb, by sonication (Branson sonifier 

250, 10x for 10 seconds, duty cycle 30%). 0.2 ml of 11x NET Buffer (1.56 M NaCl, 5.5 

mM EDTA, 5.5% NP-40, 550 mM Tris HCl, pH 7.4) were added to the 2 ml sonicated 

material, which was then centrifuged at 13000 g for 5 minutes. The supernatant was then 

aliquoted evenly in microfuge tubes, while 10% of the aliquoted volume was retained for 

use as input control. 25 µl of the custom-made or 5 µg of commercial antibodies were 

added per aliquot (Table 2.3), and the tubes were incubated rotating overnight at 4 °C.  

 The next day, 50 µl of protein G sepharose beads (Sigma) (25 µl packed beads, 

washed three times and made up to 50 µl with 1x NET buffer) were added to each tube and 

left to incubate rotating for 2 hours at 4 °C. The beads were then recovered on 

polypropylene columns (Pierce), washed twice with 10 ml ice-cold RIPA buffer (50 mM 

Tris HCl, pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% deoxycholate, 1% NP-40), twice with 

10 ml ice-cold LiCl buffer (10 mM Tris HCl, 250 mM LiCl, 0.5% NP-40, 0.5% 

deoxycholate, 1 mM EDTA, pH 8.0) and finally twice with ice-cold TE. The beads were 

then incubated for 10 minutes with 400 μl TE/1% SDS at room temperature. The eluted 

material was then incubated overnight at 42 °C in the presence of 0.125 mg/ml proteinase 

K. 

 The DNA was extracted twice using 400 µl phenol/chloroform/isoamylalcohol 

(25:24:1) and once using 400 µl of chloroform alone. For the DNA precipitation, 1 ml of 

ethanol and 40 µl of 3 M sodium acetate were added to the tubes, which were then mixed 

by inversion and left at -20 ºC overnight. The next day, the samples were centrifuged at 

16000 g for 20 minutes to pellet the DNA, which was washed with 1 ml of 70% ethanol, 

prior to being air-dried and resuspended in 50 µl of TE. The samples was then kept at 4 °C 

and analysed by PCR, as previously described. The primer sequences and conditions used 

for the ChIP assays’ PCR analyses are displayed in table 2.4. 

 For sequential ChIP experiments the beads, after the final TE wash, were incubated 

with 150 μl TE/1% SDS, rather than 400 μl, and the eluted material was diluted up to 1.5 

ml with TE. This was then aliquted to new tubes, while 10% of the aliquot volume was 
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retained as secondary input control. The secondary antibodies were then added as 

appropriate and the tubes were left incubating overnight rotating at 4 ºC. The next day, the 

experiments were continued as in the primary ChIPs, with the addition of beads, etc.  

 

 

 

 

 

Table 2.3. Antibodies used for ChIP analysis 

Protein Antibody Source 

Dr1 1162 In house 

Dr1 1163 In house 

Dr1 Ab28185 Abcam 

DRAP1 TM-301A-55 Austral Biologicals 

DRAP1 V18 Santa Cruz Biotechnology 

TBP MTBP-6 In house 

Brf1 128 In house 

TFIIIC220 Ab7 In house 

Pol III 1900 In house 

TFIIA FL-109 Santa Cruz Biotechnology 

TFIIB C18 Santa Cruz Biotechnology 
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Table 2.4. Primers used in PCR analysis of ChIP samples 

 
Transcript 

Primers 5’-3’:  
 Forward 
Reverse 

PCR Conditions 
(denaturing; cycling;  

final elongation) 
 

5S rRNA 

GGCCATACCACCCTGAACGC 

CAGCACCCGGTATTCCCAGG 

95ºC-3min; 95ºC-30s; 58ºC-30s; 72ºC-

1min; 72ºC-5min 

 

ARPPP0 

GCACTGGAAGTCCAACTACTTC  

TGAGGTCCTCCTTGGTGAACAC 

95ºC-2 min; 95ºC-1min; 58ºC-30s; 72ºC-

1min; 72ºC-5min 

 

tRNALEU 

GAGGACAACGGGGACAGTAA 

TCCACCAGAAAAACTCCAGC 

95ºC-3min; 95ºC-30s; 68ºC-30s; 72ºC-30s; 

72ºC-5min 

 

tRNATYR 

GGACTTGGCTTCCTCCATT 

GACCTAAGGATGTCCGCAAA 

95°C-3min; 95°C-1min; 65°C-30s; 72°C-

15s; 72°C-5 min 

 

Hsp70 

GGAGGTGCGGGAAGGTTCG 

TTCTTGTCGGATGCTGGA 

95°C-3min; 95°C-30s; 58°C-30s; 72°C-

30s; 72°C-5min 

 

U1 snRNA 

CACGAAGGAGTTCCCGTG 

CCCTGCCAGGTAAGTATG 

95°C-3min; 95°C-30s ; 55°C-30s; 72°C-

1min; 72°C-5min 

U1 snRNA 

upstream 

control 

 

GAACTTACTGGGATCTTGG 

GAGACAACTGAGCCACTTG 

95°C-3min; 95°C-30s; 55°C-30s; 72°C-

1min; 72°C-5min 

 

U6 snRNA 

TTCTTGGGTAGTTTGCAG 

GTTTCGTCCTTTCCACAAG 

95°C-3min; 95°C-30s; 55°C-30s; 72°C-

1min; 72°C-5min 

U6 snRNA 

upstream 

control 

GGAATGCTAAGAACTAGC 

GGCTGGGTTCAACTCTAC 

95°C-3min; 95°C-30s; 55°C-30s; 72°C-

1min; 72°C-5min 

 

7SL-1 

CCGTGGCCTCCTCTACTTG 

TTTACCTCGTTGCACTGCTG 

95°C-2min; 95°C-1min; 58°C-30s; 72°C-

1min; 72°C-3min 

 

7SL-2 

CGTCACCATACCACAGCTTC 

CGGGAGGTCACCATATTGAT 

95°C-2 min; 95°C-1min; 58°C-30s; 72°C-

1min, 72°C-3min 

 

7SL-3 

GTTGCCTAAGGAGGGGTGA 

TCTCTTGAGAGTCCAAAATTAA 

95°C-2min; 95°C-1min; 58°C-30s; 72°C-

1min; 72°C-3min 

 

7SL-4 

TTTTTGACACACTCCTCCAAGA 

ATCTGGTCAAAGCAACATACACTG

95°C-2min; 95°C-1min; 58°C-30s; 72°C-

1min; 72°C-3min 

 

7SL-5 

TGCCTCCAGATAAAACTGCTC 

ACCCCACTAGAACCCTGACA 

95°C-2min; 95°C-1min; 58°C-30s; 72°C-

1min; 72°C-3min 
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CHAPTER 3 

 

 

 

 

 

 

The Dr1-DRAP1 complex regulates expression of 
RNA polymerase III-transcribed genes  
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3.1 Introduction 

3.1.1 The Dr1-DRAP1 (NC2) repressor 

 Dr1 (down-regulator of transcription 1, also known as negative cofactor 2 beta-

NC2 beta) was first identified from HeLa nuclear extracts as an activity that could bind to 

TBP in electrophoretic mobility shift assays (EMSA) and repress Pol II transcription in 

vitro (Inostroza et al, 1992; Meisterernst & Roeder, 1991). Later, it was recognised that 

Dr1 interacts with DRAP1 (Dr1-associated protein 1, also known as NC2 alpha) and that 

the two proteins function together as a heterodimer (Goppelt et al, 1996; Mermelstein et al, 

1996).  

 Human Dr1 is a 19 kD protein containing 176 amino acids (Inostroza et al, 1992). 

Structure-function studies indicated that it has at least three different domains, a TBP 

binding domain, a glutamine-alanine (QA)-rich region and a region with homology to the 

histone fold motif of H2B (Figure 3.1) (Goppelt et al, 1996; Mermelstein et al, 1996; 

Yeung et al, 1994). Human DRAP1 is a 28 kD protein with 205 amino acids (Goppelt et al, 

1996; Mermelstein et al, 1996). It contains acidic and proline-rich stretches and also a 

histone fold motif similar to that of H2A (Figure 3.1) (Goppelt et al, 1996; Mermelstein et 

al, 1996). Dr1 and DRAP1 form a complex together through the histone fold motif, similar 

to H2A-H2B and a number of other proteins (Arents & Moudrianakis, 1995; Baxevanis et 

al, 1995; Kamada et al, 2001; Mermelstein et al, 1996). The histone motifs are essential for 

the interaction of Dr1 and DRAP1 and maximal repression of Pol II transcription by the 

complex (Mermelstein et al, 1996). 

 Genes encoding Dr1 and DRAP1 are absent in prokaryotes, including Archaea, but 

are conserved in all eukaryotes. In yeast the Dr1-DRAP1 complex is well conserved, as the 

S.cerevisiae homologs yDr1 and BUR6, the DRAP1 homolog in yeast, are both 37% 

identical to their human counterparts (Goppelt & Meisterernst, 1996; Kim et al, 1997). 

However, the yeast proteins are smaller, and the repression-related QA domain of Dr1 and 

most of the C-terminal region of DRAP1 are not present. Also, especially in the case of 

DRAP1, most gene identity corresponds to the histone fold motif (Figure 3.1) (Goppelt & 

Meisterernst, 1996; Kim et al, 1997). Both yDr1 and BUR6 are essential for yeast viability, 

and the complex interacts with TBP-DNA complexes in EMSA similarly to the human 

complex, indicating that it might function in an analogous manner (Kim et al, 1997). 
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Figure 3.1. Schematic representation of Dr1 and DRAP1 domains from human (h) and S. 
cerevisiae (y). A. Dr1 B. DRAP1. Adapted from Goppelt and Meisterernst, 1996.  

 

3.1.2 Transcriptional repression by Dr1-DRAP1 

 The Dr1-DRAP1 complex targets TBP and is considered to be a global repressor of 

transcription (Kim et al, 1997). Human Dr1-DRAP1 can repress Pol II transcription in 

vitro and in vivo from a number of different TATA-containing and TATA-less, viral and 

cellular promoters (Goppelt et al, 1996; Inostroza et al, 1992; Meisterernst & Roeder, 

1991; Mermelstein et al, 1996; Yeung et al, 1994). The complex can also repress Pol II 

transcription in vitro and in vivo in yeast (Gadbois et al, 1997; Goppelt & Meisterernst, 

1996; Kim et al, 1997; Lemaire et al, 2000; Prelich, 1997). Dr1 is the subunit that has the 

ability to repress transcription, with the QA domain, as well as the TBP-binding domain, 

being required for this function; DRAP1 cannot repress transcription, but significantly 

enhances Dr1-mediated transcriptional repression and is therefore considered a co-

repressor (Mermelstein et al, 1996; Yeung et al, 1997).  
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 The mechanism of transcriptional repression by Dr1-DRAP1 has been studied 

mainly in vitro. EMSA experiments have shown that Dr1-DRAP1 can bind to TFIIA-TBP-

DNA, TFIIB-TBP-DNA and TFIIA-TFIIB-TBP-DNA complexes, and replace TFIIA and 

TFIIB (Goppelt et al, 1996; Inostroza et al, 1992; Meisterernst & Roeder, 1991; 

Mermelstein et al, 1996). It is therefore believed that the Dr1-DRAP1 complex binds to 

TBP at the promoter and disrupts the formation of a functional transcription preinitiation 

complex, by blocking recruitment of TFIIB and consequently the loading of the general 

transcription factors and Pol II (Goppelt et al, 1996; Mermelstein et al, 1996; Yeung et al, 

1997). In support of this model, in yeast, TBP mutants defective for binding to Dr1-

DRAP1 display increased transcription from core promoters in vivo and are resistant to 

Dr1-DRAP1 inhibition in vitro (Cang et al, 1999). The crystal structure of the Dr1-DRAP1 

complex is also consistent with this concept. It revealed that the heterodimer acts as a 

molecular clamp gripping the upper and lower surfaces of the TBP-DNA complex (Figure 

3.2) and thereby blocking binding by TFIIB and TFIIA (Figure 3.3) (Kamada et al, 2001).  

 

 

Figure 3.2. Schematic representation of the crystal structure of the Dr1-DRAP1-TBP-DNA 
complex. Dr1 is shown in dark blue, DRAP1 in light blue, TBP in green and DNA in yellow/orange 

(adapted from Kamada et al, 2001). 
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Figure 3.3. Dr1-DRAP1 binding to the TBP-DNA complex blocks recruitment of TFIIA and 
TFIIB. Dr1-DRAP1 is shown in blue, TFIIA in pink, TFIIB in gray, TBP in green and DNA in 

red/yellow ribbons. The image is a superposition of NC2-TBP-DNA, TFIIB-TBP-DNA and TFIIA-

TBP-DNA complex structures (adapted from Kamada et al, 2001).  

 

 The Dr1-DRAP1 complex as a transcriptional repressor participates in an elaborate 

interplay network between negative and positive regulators that control transcriptional 

output. Genetic experiments involving Dr1-DRAP1 and subunits of the SRB/Mediator 

component of the Pol II holoenzyme in yeast, suggest that there is an intricate balance 

between positive and negative regulators in vivo; defects in the SRB/Mediator positive 

regulators and also TFIIH and Pol II can be suppressed by defects in Dr1-DRAP1 (Gadbois 

et al, 1997; Kim et al, 2000; Lee et al, 1998; Lemaire et al, 2000; Peiro-Chova & Estruch, 

2007). Another example of finely balanced regulation includes factors that target TBP; 

Mot1 has been shown to compete with Dr1-DRAP1 for promoter occupancy in vivo 

(Geisberg et al, 2002), while TAF1 has been found to regulate a certain number of genes in 

common with Dr1-DRAP1 (Chitikila et al, 2002). 
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3.1.3 Potential positive role of the Dr1-DRAP1 complex 

 Interestingly, although Dr1-DRAP1 is a well documented transcriptional repressor, 

there are also reports suggesting a positive, direct or indirect, role in Pol II transcription. 

Yeast strains expressing mutant BUR6 increased transcription from certain promoters, but 

reduced transcription from others (Prelich, 1997) and yDr1 mutants revealed that Dr1-

DRAP1 is required for transcription of the HIS3 TATA-less promoter, but also for 

repression of transcription of the HIS3 TATA promoter (Lemaire et al, 2000). 

Furthermore, whole genome expression analyses using two different mutant BUR6 strains 

revealed that 17% of all yeast genes are affected by two-fold or more (Cang & Prelich, 

2002; Geisberg et al, 2001). In these studies, about 50% (Geisberg et al, 2001) or 60% 

(Cang & Prelich, 2002) of the at least 2-fold affected genes presented, increased expression 

while the expression of the rest was decreased. BUR6 was found at Pol II promoters of 

genes whose expression was increased, suggesting that this is a direct effect (Geisberg et 

al, 2001). Moreover, it was shown that TBP was also needed for activation in vivo and 

proposed that activation by the Dr1-DRAP1 complex is mediated by stimulating TBP 

binding in the presence of other activators, while inhibition due to blocking TBP 

interactions with TFIIA and TFIIB, as originally described (Cang & Prelich, 2002). 

Finally, another study in yeast, that examined both subunits, showed that yDr1 and BUR6 

are not always associated in growing conditions, but form a tight complex when glucose is 

depleted (Creton et al, 2002). Furthermore, the presence of BUR6 without yDr1 at 

promoters correlated with transcriptional activity, while increased presence of yDr1 

correlated with transcriptional repression, suggesting that the two subunits might play 

different roles in vivo (Creton et al, 2002). 

  Positive effects of Dr1-DRAP1 were also reported in other systems. In Drosophila, 

Dr1-DRAP1 was found to repress transcription by TATA promoters, but increase 

transcription by the, common in Drosophila, TATA-less DPE promoters in in vitro 

experiments (Willy et al, 2000). In humans, Dr1 has been found at active Pol II gene 

promoters in asynchronous cells and was displaced at some, but not all genes in mitotic 

cells (Christova & Oelgeschlager, 2002). Interestingly, TBP and TFIIB were also found at 

gene promoters in mitotic cells, indicating that TFIID complexes can withstand 

condensation of chromatin into transcriptionally silenced chromosomes (Christova & 

Oelgeschlager, 2002). Dr1 was also found to interact with the C-terminal domain-
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phosphorylated IIO form of Pol II; Dr1 immunodepletion from HeLa nuclear extracts 

resulted in reduced transcription due to co-depletion of IIO Pol II, but transcription was 

restored by addition of this enzyme, suggesting that Dr1 might have a role in 

transcriptional activation (Castano et al, 2000).  

 

3.1.4 The Dr1-DRAP1 complex and Pol III transcription 

 Not much is known about the effect of Dr1-DRAP1 in other than Pol II 

transcription systems. In vitro studies with human nuclear extracts revealed that Dr1 can 

repress Pol III, but not Pol I transcription, probably by blocking binding of Brf1 to TBP 

and formation of an active Pol III preinitiation complex (White et al, 1994). Dr1 

overexpression in Xenopus embryos, resulted in inhibition of transcription of Pol II, but 

not Pol III or Pol I (Nagano & Shiokawa, 1999). In yeast, overexpression of yDr1-BUR6 

also resulted in reduced Pol III and Pol II, but not Pol I transcription, confirming the 

findings in human cell extracts (Kim et al, 1997); this was most probably due to yDr1, as 

overexpression of yDr1 alone impaired growth, while overexpression of BUR6 alone was 

without effect (Kim et al, 1997). Furthermore, ChIP experiments in yeast revealed absence 

of BUR6 at rRNA genes and presence at very low level compared to TBP (BUR6/TBP 

ratio < 0.05) at tRNA genes, and therefore, it was suggested that yDr1-BUR6 complex 

does not associate with Pol I- or Pol III- transcribed genes (Geisberg et al, 2001).  

  It would be interesting to investigate if Dr1 can affect Pol III transcription and is 

not found at Pol III-transcribed genes in vivo, in human cells. 
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3.2 Results 

3.2.1 Validation of Dr1 custom made antibodies 

 Due to commercial unavailability, two Dr1 antibodies were custom made against 

peptides ASSSGNDDDLTIPRA and SNQAESSQDEEDDDDI. The peptides were 

selected to be found uniquely in the Dr1 protein from human, mouse and rat origin. They 

were injected in two rabbits and polyclonal antibodies were generated according to the 

company’s protocol (Eurogentec Ltd). The sera produced from the two rabbits, named Dr1 

1162 and Dr1 1163, were tested by western analysis to test their efficacy to detect the Dr1 

protein (Figure 3.4, A and B). Bands of the expected 19 kD, corresponding to the Dr1 

protein were detected in whole and nuclear cell extracts from HeLa cells; Dr1 purified 

from HeLa cells (hDr1) and recombinant Dr1 (rDr1) protein were used as positive controls 

(White et al, 1994). Except from the 19 kD band, a number of two or more slower 

migrating bands were observed, which were also present in the rDr1 lane when higher 

concentrations of the recombinant protein were used. Although these antibodies clearly 

recognise Dr1, they also seem to recognise additional proteins of higher molecular weight. 

Taking into account the molecular weight of these bands, as well as their presence in the 

recombinant protein lanes (Figure 3.4, A), it is tempting to hypothesise that they might 

belong to Dr1 complexes that failed to dissociate, even though the samples were denatured 

and run in SDS-PAGE gels, as Dr1 is known to form homodimeric and homotetrameric 

complexes (Inostroza et al, 1992). 

 

3.2.2 Dr1 regulates Pol III transcription 

 Dr1 has been shown to be a Pol II transcriptional repressor in vitro and in vivo, in 

yeast and mammalian systems (Geisberg et al, 2001; Kim et al, 1997; Mermelstein et al, 

1996). In reference to Pol III, Dr1 has been shown to repress Pol III transcription in vitro in 

human extracts (White et al, 1994) and also in vivo in yeast (Kim et al, 1997). To further 

extend these studies and test whether Dr1 has an effect on Pol III transcription in vivo in 

human cells, an RNAi approach was employed. HeLa cells were transiently transfected by 

electroporation, either with pSUPER-Dr1 plasmid, which encodes a shRNA against the 

second exon of Dr1, or the empty pSUPER vector as control (Brummelkamp et al, 2002).  
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Figure 3.4. Dr1 custom made antibody validation. Western blotting was employed to test the 

ability of the antibodies to recognise Dr1 protein. Nuclear cell extract (NCE) and whole cell extract 

(WCE) from HeLa cells were used as source. Human purified Dr1 (hDr1) and recombinant Dr1 

(rDr1) protein were used as positive controls. 30 µg of WCE and NCE, 30 ng hDr1 and 20 ng, 0.2 

µg and 2 µg of rDr1 were loaded in the respective lanes. A. Dr1 1162 serum. B. Dr1 1163 serum. 

The arrow indicates the Dr1 protein. 
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 The cells were harvested 48 hours later, whole cell extracts were prepared and 

RNA was isolated. Western blotting showed that there was a partial knock-down of Dr1 at 

the protein level (Figure 3.5.A), which was in agreement with Dr1 reduction in the mRNA 

level, as determined by RT-PCRs (Figure 3.5.B). A total of three independent experiments 

showed that on average, there was about 60% reduction in the mRNA level of Dr1 and 

40% in the protein level as compared to the control (Figure 3.5.C). Any attempts to achieve 

higher knock-down efficiency have failed, resulting in high toxicity and cell death. 

 Having achieved a partial Dr1 depletion, the next step was to evaluate the effect 

that this might have on Pol III transcription. RT-PCRs revealed that RNAi-treated samples 

had enhanced tRNA expression compared to the control (Figure 3.6.A). Other Pol III 

templates like 5S rRNA, 7SK RNA and U6 snRNA were unaffected (Figure 3.6.A). 

Quantification of three different experiments showed that tRNAs are increased by a factor 

of about 2-fold, when Dr1 is partially depleted, while the other Pol III transcripts are not 

(Figure 3.6.B).  

 To further confirm and validate the results of the pSUPER-Dr1 vector shRNA 

experiments, Dr1 was also depleted by siRNA. Two different siRNAs, targeting the first 

and third exon of Dr1, were transfected into cells. 48 hours later the cells were harvested 

and cell extracts and RNA were analysed. Both siRNAs partially depleted the Dr1 protein 

and RNA levels at an equivalent degree to shRNA (Figure 3.7, A and B). These Dr1 

knock-downs also resulted in an about 2-fold enhancement of tRNA expression, but left 

unaffected the 5S rRNA and U6 snRNA transcripts (Figure 3.8).  

 In conclusion, all three exons of Dr1 were targeted by RNAi (shRNA or siRNA) in 

three independent experiments and the results obtained were similar and reproducible. 

Even a 40% decrease in the protein level of Dr1 seems to be enough to increase tRNA 

expression by two-fold, while other Pol III transcripts remain unchanged. These data 

suggest that Dr1 can repress Pol III transcription in vivo, in human cells. 

 

3.2.3 TFIIIB, TFIIIC and Pol III are not affected by Dr1 depletion 

  Since the Dr1-DRAP1 complex is a Pol II transcriptional repressor, the increased 

tRNA expression observed after Dr1 depletion could potentially be attributed to enhanced  
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Figure 3.5. Dr1 knock-down by shRNA. HeLa cells were transfected with the pSUPER-Dr1 

vector by electroporation and harvested 48 hours later. An empty pSUPER vector was used as 

control. A. Western analysis for Dr1 from whole cell extracts of control and Dr1 targeted cells. Actin 

was used as loading control. B. RT-PCRs for Dr1. The Pol II-transcribed gene ARPP P0 was used 

as control. C. Quantification of Dr1 signals from A and B. n=3.  
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Figure 3.6. Effect of Dr1 shRNA knock-down on Pol III transcripts. A. RT-PCR analysis for a 

number of Pol III templates. The Pol II-transcribed genes TFIIB and ARPP P0 (data not shown) 

were used as controls. B. Quantification of the signals of Pol III transcripts from A. n=3. 
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Figure 3.7. Dr1 knock-down by siRNA. Dr1 was knocked-down by siRNA in HeLa cells. A 

validated, non-targeting siRNA was used as negative control. A. Western for Dr1 siRNA against 

exon 1. B. Western for Dr1 siRNA against exon 3. C. Quantification of Dr1 signals from A and B. 

n=2. D. RT-PCR for Dr1 depletion by siRNA against exon 1. E. RT-PCR for Dr1 depletion by siRNA 

against exon 3. F. Quantification of Dr1 signals from D and E. n=2.    
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Figure 3.8. Effect of Dr1 siRNA knock-down on Pol III transcripts. A. RT-PCR analysis for Pol 

III templates in cells treated either with control or siRNA against Dr1 exon 1. B. RT-PCR analysis 

for Pol III templates in cells treated either with control or siRNA against Dr1 exon 3. C. 
Quantification of the signals of Pol III transcripts from A. n=2. D. Quantification of the signals of Pol 

III transcripts from B. n=2.   
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Pol II transcription and increased levels and availability of TFIIIB, TFIIIC and/or Pol III. 

To investigate this possibility, the protein levels of the TFIIIB subunits, a number of 

TFIIIC subunits and a Pol III subunit, from control and Dr1-depleted cells were tested by 

western blotting analysis. No differences were found between the two conditions (Figure 

3.9) and the same conclusion was reached for the mRNA levels of TFIIIB and TFIIIC 

(Figure 3.10). The mRNA levels of TFIIIB and TFIIIC subunits in cells treated with 

control or siRNAs against exons 1 and 3, were also tested and found to be unaffected 

(Figure 3.11). 

 Since the levels of TFIIIB, TFIIIC and Pol III remain stable and are not affected by 

the Dr1 RNAi, the enhanced tRNA expression cannot be attributed to changes in these 

factors; therefore, these data would suggest that this increase is not due to raised Pol II 

transcription, but probably due to alleviation of direct repression of Pol III transcription by 

Dr1.  

 

3.2.4 Dr1 is found on Pol III-transcribed genes 

 Experiments in yeast have shown the DRAP1 occupancy at tRNA promoter to be 

negligible compared to TBP, and it was concluded that the Dr1-DRAP1 complex is absent 

from Pol III promoters (Geisberg et al, 2001). In order to investigate if Dr1-DRAP1 is 

occupying Pol III-transcribed genes in human, chromatin immunoprecipitation (ChIP) 

experiments were performed. It was found that endogenous Dr1 is present at Pol III-

transcribed genes, like 5S rDNA, tRNALEU and tRNATYR and U6 snRNA in HeLa cells 

(Figure 3.12). Both 1162 and 1163 Dr1 sera were able to precipitate DNA for Pol III-

transcribed genes (Figure 3.12 and data not shown). Dr1 was also found at Pol II-

transcribed genes like U1 snRNA and Hsp70; the promoter of the latter can be repressed 

by Dr1 (Kraus et al, 1994). No signal was detected when primers were used for the 

upstream, not transcribed DNA region of the U6 snRNA gene, as well as for an internal 

coding region of the Pol II-transcribed gene ARPP P0. These data indicate specific binding 

of the antibodies to the promoter regions of specific genes and minimal promiscuous 

binding to DNA.  

 To further validate the above results and minimise the possibility that they might be 

artifacts of the custom-made antibodies, a recently available commercial antibody for Dr1  
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Figure 3.9. Dr1 shRNA knock-down does not affect the protein levels of TFIIIB, TFIIIC and 
Pol III. Western analysis was employed to determine the protein levels of TFIIIB, TFIIIC and Pol III 

(RPC 155) in control cells and cells treated with shRNA. A. The protein levels of the TFIIIB 

subunits were not altered by Dr1 RNAi. B. The protein levels of TFIIIC subunits 220,110, and 90 

were not altered after Dr1 RNAi. C. Quantification of signals of TFIIIB and TFIIIC subunits from A 

and B. n=3.  
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Figure 3.10. Dr1 shRNA knock-down does not affect the mRNA levels of TFIIIB and TFIIIC. 
RT-PCR analysis was employed to determine the RNA levels of TFIIIB and TFIIIC in control cells 

and cells treated with shRNA. A. The mRNA levels of the TFIIIB subunits were not altered by Dr1 

RNAi. B. The mRNA levels of TFIIIC subunits 220,110, and 90, were not altered after Dr1 

depletion. C. Quantification of signals of TFIIIB and TFIIIC subunits from A and B. n=3.  
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Figure 3.11. The mRNA levels of TFIIIB and TFIIIC are not affected by Dr1 siRNA knock-
down. RT-PCR analysis was employed to determine the RNA levels of TFIIIB and TFIIIC in control 

cells and cells treated with siRNA. A. siRNA against Dr1 exon 1. B. siRNA against Dr1 exon 3. C. 
Quantification of signals from A. n=2. D. Quantification of signals from B. n=2.  
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Figure 3.12. Dr1 occupancy at Pol III-transcribed genes. HeLa cells were used for ChIP. The 

Dr1 1162 antibodies were used together with the 1162 pre-immune (PI) serum and mock (no 

antibody) as negative controls. Brf1 (128) and Pol III (1900) antibodies were used as positive 

controls for Pol III-transcribed genes and TBP (MTBP-6) as positive control for Pol III- and Pol II-

transcribed genes. 
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was used in ChIP experiments, in parallel with Dr1 1162 serum. Dr1 was found again to be 

present at 5S rDNA, tRNALEU and tRNATYR genes (Figure 3.13). The Pol II transcription 

factor TFIIA was used as a negative control and revealed no presence at Pol III genes, as 

did the mock (no antibody) and the 1162 pre-immune serum controls. Interestingly, it has 

been reported that TFIIA can regulate Pol III transcription, at least in vitro (Meissner et al, 

1993). PCR analysis from ChIP experiments showed, however, that this does not seem to 

the case in vivo, as TFIIA is absent from 5S rDNA, tRNATYR , 7SK RNA and U6 snRNA 

genes, but present at Pol II-transcribed genes encoding U1 snRNA (Figure 3.14).  

 As previously mentioned, the DRAP1/TBP ratio from ChIP experiments in yeast 

was found to be below 0.05 and considered negligible (Geisberg et al, 2001). However, the 

Dr1/TBP ratio at human Pol III-transcribed genes was found to be 0.4-0.5, very similar to 

the ratio of Pol II-transcribed genes 0.5-0.7 (Table 3.1). These results suggest that in 

humans Dr1 is found at Pol III-transcribed genes at about the same ratio to TBP as at the 

Pol II-transcribed genes. 

 

Table 3.1. Dr1/TBP ratio at Pol III-transcribed genes 

Genes  Dr1/TBP  
5S rRNA  0.5 ± 0.03  

tRNA
LEU

  0.4 ± 0.20  

tRNA
TYR

  0.5 ± 0.10  
U6 snRNA  0.5 ± 0.05  

Hsp70  0.5 ± 0.08  
U1 snRNA  0.7 ± 0.13  

ChIP signals were normalised to input and the value of the Dr1 signal was divided by the TBP 

signal. The ratio shown is the average of two independent experiments with standard variation.  

 

 In summary, ChIP experiments employing different antibodies against Dr1 revealed 

in vivo occupancy of the Dr1 protein at Pol III-transcribed genes. If Dr1 can repress Pol III 

activity in a way similar to that of repressing Pol II, i.e. by disrupting the preinitiation 

complex, then one would not expect to find Dr1 at these genes. However, it could be 

argued that Dr1 is present at inactive/repressed Pol III genes and not the active ones. In this 

case ChIP experiments, due to their inherent limitations, would not distinguish between the 

two states.   
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Figure 3.13. Dr1 is found at Pol III-transcribed genes. HeLa cells were used for ChIP. The Dr1 

1162 and Dr1 (ab28185) antibodies were used together with 1162 pre-immune serum (PI) and 

mock (no antibody) as negative controls. The Pol III (1900) antibody was used as positive control 

for Pol III-transcribed genes and the TBP (MTBP-6) antibody as positive control for Pol III- and Pol 

II- transcribed genes. 
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Figure 3.14. TFIIA is not found at Pol III-transcribed genes. HeLa cells were used for ChIP. 

Antibodies against TFIIA (FL-109) and positive control TBP (MTBP-6) were used. 
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 To further clarify if Dr1 is actually present at active Pol III-transcribed genes, 

sequential ChIP experiments were performed. Antibodies against Pol III, TBP and TFIIB 

(as negative control) were used in the primary ChIP, while antibodies against Dr1 (1162 

and 1163) and pre-immune serum (as negative control) were used in the secondary ChIP. 

These experiments revealed co-occupancy of Dr1 and Pol III at Pol III-transcribed genes 

(Figure 3.15). Dr1 can also be found together with TBP at Pol II- and Pol III-transcribed 

genes, but is not present at not-transcribed DNA regions, indicating the antibodies’ 

specificity. Antibodies against TFIIB reveal that Dr1 can be found together with TFIIB at 

Pol II-, but not Pol III-transcribed genes. These results, suggest that Dr1 might actually be 

able to occupy formed Pol II and Pol III preinitiation complexes with a number of other 

factors. This comes in contrast with the proposed mechanism of Dr1 repression that has 

been shown in in vitro experiments, and might indicate a more complicated repression 

mechanism in vivo.  

 

3.2.5 Dr1 can be found in complexes with TFIIIB and TFIIIC 

 Since Dr1 can be found at Pol II- and Pol III-transcribed genes, it must be recruited 

to them by specific factors. It has been shown that Dr1 can bind TBP and this interaction 

seems to stabilise the complex at DNA (Gilfillan et al, 2005; Inostroza et al, 1992; Kim et 

al, 1995). TBP is therefore considered responsible for bringing Dr1 to promoters. 

However, this interaction does not exclude the possibility of other factors being involved, 

recruiting Dr1 specifically to Pol III promoters.  

 To test if Dr1 can interact with TFIIIB and TFIIIC, 35S co-immunoprecipitation 

(co-IP) experiments were employed. TFIIIB and TFIIIC subunits were in vitro translated 

and radio-labelled with 35S, mixed with HeLa nuclear extract and then used in co-IP 

assays. Antibodies against Dr1 were capable of bringing down the radio-labelled subunits 

Brf1 and TBP (Figure 3.16, A), as well as TFIIIC90 and TFIIIC110 (Figure 3.16, B). Very 

little or no signal was detected when the pre-immune serum was used instead of the 

antibody, indicating that the interactions were specific. These data suggest that the Dr1 

protein can interact with TFIIIB and TFIIIC. Interactions of Dr1 with endogenous subunits 

of TFIIIB or TFIIIC were also observed by co-IP experiments. Dr1 antibodies were used to 

bring down Dr1-binding proteins in HeLa nuclear extracts. In these experiments the Dr1 
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antibodies can immunoprecipitate Dr1 and also co-immunoprecipitate TBP and TFIIIC90 

(Figure 3.17, A). Other subunits of TFIIIB (Brf1 and Bdp1) and TFIIIC (110 and 220) 

were also detected in this kind of analysis (Figure 3.17, B). Using antibodies against Brf1 it 

was also possible to co-immunoprecipitate endogenous Dr1 (Figure 3.17, C). These 

interactions were specific, as they were not detected when using the pre-immune serum. 

 

 

 

Figure 3.15. Dr1 and Pol III co-occupancy at Pol III-transcribed genes. HeLa cells were used 

for sequential ChIP experiments. TFIIB (C-18), Pol III (1900) and TBP (MTBP-6) antibodies were 

used for the primary ChIP. The immunoprecipitated DNA was subjected to secondary ChIP with 

antibodies against 1162 PI serum, Dr1 1162 and Dr1 1163. The inputs of the primary and the three 

secondary ChIP experiments are shown at the left.  
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Figure 3.16. 35S co-immunoprecipitation experiments reveal interaction of Dr1 with TFIIIB 
and TFIIIC subunits. A. Brf1 and TBP were in vitro translated and radio-labelled with 35S, mixed 

with HeLa nuclear extracts and then used in co-IP experiments with antibodies for Dr1 (1162) and 

1162 pre-immune serum as control. B. TFIIIC90 and TFIIIC110 were in vitro translated and radio-

labelled with 35S, mixed with HeLa nuclear extract and then used in co-IP experiments with 

antibodies for Dr1 (1162) and 1162 PI serum as control.  
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Figure 3.17. Co-immunoprecipitation experiments reveal interaction of Dr1 with TFIIIB and 
TFIIIC subunits. HeLa nuclear extracts were used for co-IP experiments. A. Antibodies for Dr1 

(1162) were used to immunoprecipitate Dr1 and co-immunoprecipitate TBP and TFIIIC90 B. 
Antibodies for Dr1 (1162) were used to co-immunoprecipitate Brf1 and Bdp1 as well as TFIIIC110 

and TFIIIC220 C. Antibodies for Brf1 (128) were used to co-immunoprecipitate Dr1.  
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 The above findings demonstrate interaction of Dr1 with endogenous TFIIIB and 

TFIIIC. Dr1 might be able to bind not only TBP, but also other subunits of TFIIIB, i.e. 

with Brf1 and Bdp1 and subunits of TFIIIC, like TFIIIC90, TFIIIC110 and TFIIIC220. By 

binding to TFIIIB and/or TFIIIC subunits, Dr1 could be specifically recruited to Pol III-

transcribed gene promoters and form a stable complex. It must be noted, however, that 

these assays do not distinguish between direct and indirect binding; it is possible that Dr1 

directly binds only to TBP and through TBP, indirectly to the other TFIIIB and TFIIIC 

subunits, although this is unlikely for the 35S radio-labelled in vitro translated Brf1 and 

TFIIIC subunits. Nevertheless, this is a surprising result, as it comes in contrast to in vitro 

data where Dr1 could clearly inhibit the TBP-Brf1 interaction in pull-down assays (White 

et al, 1994).  

 

3.2.6 Brf1 overexpression results in Dr1 recruitment to Pol III-transcribed genes 

 A probable Brf1-Dr1 interaction could potentially recruit the Dr1-DRAP1 complex 

to Pol III promoters. According to this hypothesis, overexpression of Brf1 would then 

result in enhanced recruitment of Dr1 at these promoters. To test this, a Brf1-inducible 

“TET-OFF” CHO cell line was employed. The cells were either induced, or not, to over-

express Brf1 and 48 hours later were harvested and prepared for ChIP assays. PCRs using 

the precipitated DNA revealed increased occupancy of Pol III-transcribed genes by Dr1 

after overexpression of Brf1, compared to control (un-induced) (Figure 3.18).  

 These results suggest Dr1 recruitment to Pol III-transcribed genes by TFIIIB. It 

remains unclear, whether TBP, Brf1 or both are responsible for recruiting Dr1. 

Interestingly, however, increased TFIIIB presence at Pol III-transcribed genes correlates 

with activation of Pol III transcription (Marshal and White, personal communication). The 

enhanced presence of Dr1 then contrasts with both its role as a repressor and its postulated 

repression mechanism, according to the current model of inhibiting formation of a 

complete transcription preinitiation complex. 
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Figure 3.18. Overexpression of Brf1 results in increased Dr1 presence at Pol III-transcribed 
genes. CHO cells, stably transfected with an inducible Brf1 TET-OFF expression system, were 

induced to express Brf1 for 48 hours before harvesting. ChIP experiments were performed using 

antibodies against TBP (MTBP-6), Brf1 (128) and Dr1 (1162). Pre-immune (PI 1162) serum and 

rabbit IgGs (sc-2027, Santa Cruz Biotechnology) were used as negative controls. The “+” denotes 

induction of Brf1 compared to the un-induced “-” control.  
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3.2.7 Hypoxia results in increased occupancy of Pol III-transcribed genes by Dr1. 

 The Dr1 recruitment at Pol III-transcribed genes after induction of Brf1, casts 

doubts as to whether increased presence of Dr1 at promoters correlates with transcriptional 

repression. Therefore, it would be interesting to investigate if increased occupancy of Pol 

III-transcribed genes by Dr1 can also be detected when Pol III transcription is repressed.  

 Dr1 has been reported to repress Pol II transcription under extreme hypoxic 

conditions (Denko et al, 2003) and it has also been shown that hypoxia represses Pol III 

transcription (Ernens et al, 2006). To test whether Dr1 can be found at Pol III-transcribed 

genes in hypoxia, U2OS cells, grown under normal (20% O2) or hypoxic conditions (1% 

O2) for 24 hours, were used for ChIP assays. PCRs from these ChIPs revealed increased 

Dr1 recruitment at Pol III-transcribed genes under hypoxic conditions, while Brf1 and TBP 

were displaced (Figure 3.19, A). The protein levels of Dr1, as well as TBP and Brf1, did 

not change (Figure 3.19, B), indicating that the TFIIIB and Dr1 occupancy changes at the 

Pol III-transcribed genes were not due to reduced or increased protein levels. Repression of 

Pol III transcription under these conditions was confirmed in later experiments (Figure 

5.14). 

 These results demonstrate that Dr1 can be recruited to Pol III-transcribed genes 

under repressing conditions. These data, combined with the observation of increased Dr1 

occupancy at Pol III-transcribed genes when Pol III transcription is activated due to Brf1 

overexpression, suggest that mere presence of Dr1 at gene promoters is not indicative of 

transcriptional repression. 

 

3.2.8 Rapamycin treatment displaces Dr1 from Pol III-transcribed genes 

 To further investigate the presence of Dr1 at Pol III-transcribed genes under 

repressive conditions, HeLa cells were treated with the drug rapamycin (100 nM) for 4 

hours. Under these conditions, Pol III transcription is repressed in cells treated with the 

drug compared to untreated cells (Ramsbottom and White, personal communication and 

Figure 5.20). ChIP experiments revealed that in rapamycin-treated cells Dr1 occupancy at 

Pol III-transcribed genes was reduced, along with that of Brf1, TFIIIC, and Pol III (Figure 

3.20, A). This decrease cannot be attributed to lower protein levels, as western 
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Figure 3.19. Dr1 is recruited at Pol III-transcribed genes under hypoxic conditions. U20S 

cells were grown under normoxia (N) or 1% O2 hypoxia (H) for 24 hours, before they were 

harvested. A. ChIP experiments were performed using antibodies against TBP (MTBP-6), Brf1 

(128) and Dr1 (1162). Pre-immune serum (PI 1162), rabbit IgGs (sc-2027) and TFIIA (FL-109) 

antibodies were used as negative controls. B. Western blotting shows that the total protein levels of 

Dr1, Brf1 and TBP have not changed under hypoxic conditions. HIF1ɑ was used as a positive 

control and actin as a loading control. 
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Figure 3.20. Rapamycin treatment results in displacement of Dr1 from Pol III-transcribed 
genes. HeLa cells were treated with rapamycin (100 nM) or with DMSO control for 4 hours before 

harvesting. A. ChIP experiments were performed using antibodies against TBP (MTBP-6), Brf1 

(128), TFIIIC220 (Ab7), Pol III (1900) and Dr1 (1162). Pre-immune (PI 1162) and mock (no 

antibody) were used as negative controls. B. Western blotting shows that the total protein levels of 

Dr1 and Brf1 do not change after rapamycin treatment. p-S6K was used as a positive control and 

actin as a loading control. The “R “denotes treatment with rapamycin and the “C” treatment with 

DMSO control.  
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blotting analysis reveals that the total Brf1 and Dr1 protein levels remain unaltered (Figure 

3.20, B). Interestingly, the TBP levels do not decrease, suggesting that Brf1 might have a 

role in Dr1 recruitment at Pol III-transcribed genes. 

 

3.2.9 Dr1 is found at Pol III promoters together with TFIIIB rather than TFIIIC 

 Protein co-IP experiments revealed possible, direct or indirect, interactions of Dr1 

with TFIIIB and TFIIIC. ChIP experiments in cells overexpressing Brf1 also suggested 

that Dr1 might be recruited to Pol III promoters by TFIIIB. However, a role of TFIIIC in 

recruiting Dr1 at Pol III promoters cannot be excluded. To investigate if Dr1 is 

preferentially associated with TFIIIB rather than TFIIIC at Pol III promoters, a 7SL gene 

promoter mapping approach was followed. PCR reactions using five sets of primers, 

designed for DNA regions at and around the Pol III-transcribed 7SL gene promoter (Figure 

3.21, A), amplified the DNA immunoprecipitated from ChIP assays. It was revealed that 

the presence of transcription factors TFIIIB and TFIIIC at different positions at and around 

the 7SL gene promoter is not uniform (Figure 3.21, B). More specifically, increased 

occupancy of Dr1 and TFIIIB was observed at the start of the gene (position 2), but is 

relatively decreased at the end of it (position 3) (Figure 3.21, C). On the other hand, TFIIIC 

and Pol III occupancies remain stable throughout the gene (positions 2 and 3) (Figure 3.21, 

C). According to these results, the presence of Dr1 at the 7SL gene seems to relate more to 

the presence of TFIIIB, rather than TFIIIC, implying that Dr1 is bound to and recruited by 

TFIIIB.  
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Figure 3.21. Dr1 occupancy at the 7SL gene locus. ChIP assays were performed in HeLa cells. 

A. Schematic diagram showing the relative positions of the five primer sets (1-5) at the 7SL gene. 

B. ChIPs were performed using the Dr1 (1162), Brf1 (128), TFIIIC (Ab7) and Pol III (1900) 

antibodies together with the 1162 pre-immune (PI) serum and mock (no antibody) as negative 

controls. C. Schematic representation of the ChIP signals. The x-axis represents the five primer 

sets. The Y-axis shows the mean relative strengths of ChIP signal expressed in arbitrary units after 

normalisation against input and the signal with pre-immune serum. n=3. 
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3.3 DISCUSSION 

3.3.1 Dr1 can regulate tRNA expression in vivo 

 It has been previously shown that Dr1 can affect Pol III transcription in vitro in 

HeLa nuclear extracts (White et al, 1994) and in vivo in yeast (Kim et al, 1997). yDr1 

shares 37% identity with its human homolog, most of it is in the histone fold domain, while 

its C-terminal region does not contain the QA domain, which is important for repression in 

human (Goppelt & Meisterernst, 1996; Kim et al, 1997). Therefore, it would be interesting 

to test if Dr1 can regulate Pol III transcription in vivo in human cells. In order to 

investigate this, an RNAi approach was employed and each of the three human Dr1 exons 

was targeted either by shRNA (exon 2) or siRNA (exons 1 and 3). The targeting of all 

three different exons by two different RNAi approaches should minimise off-target effects 

and provide reliable results. 

 RNAi for Dr1 in human HeLa cells resulted in an about 40% decrease of Dr1 

protein levels and about 60% decrease in mRNA levels compared to the control (Figures 

3.5 and 3.7). It is interesting that all three different experiments resulted in very similar 

levels of Dr1 reduction, both in protein and mRNA level. Attempts to achieve a better 

knock-down by fine-tuning the transfection methods, the amount of shDNA or siRNA used 

or the time before harvesting the cells, did not result in a better outcome. Taking into 

account that Dr1 is considered to have a general role in transcription affecting, perhaps, as 

many as 25% of the human Pol II-transcribed genes (Albert et al, 2007) and is important 

for cell growth in yeast (Kim et al, 1997), this might indicate a need for the presence of a 

certain lower limit amount of Dr1 protein in cells, essential for cell growth and survival. 

 Nevertheless, the RNAi-mediated depletion of Dr1 did have an effect on tRNA 

expression. More specifically, tRNA expression was elevated about two-fold, both for 

tRNALEU and tRNATYR, in all three experiments (Figures 3.6 and 3.8). This result indicates 

that Dr1 can regulate Pol III transcription in vivo and argues for a repressive role of Dr1 in 

human cells, in accordance with the in vitro data (White et al, 1994), and its well 

documented role as a repressor in yeast (Kim et al, 1997).  

 Interestingly, the effect was specific for tRNAs and not other Pol III templates, like 

5S rRNA, 7SK RNA and U6 snRNA. This could imply that Dr1 particularly affects 
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promoter type 2 (tRNA) genes and not type 1 (5S rRNA) or type 3 (7SK, U6 snRNA). 

However, the failure to detect increased transcripts of all templates might also be attributed 

to technical issues. One cannot exclude the possibility that more efficient Dr1 depletion 

and consequently lower Dr1 protein levels, could result in increased expression of the other 

Pol III products. Furthermore, it should be noted that the primers designed for detection of 

5S rRNA, 7SK RNA and U6 snRNA recognise the final mature RNA product (after its 

reverse transcription to cDNA), which can be relatively stable. In contrast, the primers for 

tRNALEU and tRNATYR are designed to detect the unspliced short-lived tRNA precursor, 

which allows for the detection of newly synthesised tRNAs, and better represent the 

transcription product. Therefore, the two-fold increase in tRNAs would suggest an increase 

in Pol III transcription due to relief from Dr1 repression. 

 Since Dr1 can repress both Pol II and Pol III transcription (Inostroza et al, 1992; 

White et al, 1994), it is possible that the two-fold increase in tRNA after depletion of Dr1, 

is not directly due to alleviation of Pol III transcriptional repression, but rather of Pol II. 

Indeed, since the Pol II-transcribed TFIIIB and TFIIIC can be limiting factors for Pol III 

transcription (White, 1998), increased Pol II transcription could result in increased levels 

of TFIIIB and TFIIIC and subsequent elevation of Pol III transcription. However, the 

protein and RNA levels of all three subunits of TFIIIB did not change after Dr1 RNAi 

(Figure 3.9, 3.10 and 3.11). The same is true for the three TFIIIC subunits that were 

examined (Figure 3.9, 3.10 and 3.11). Pol III protein levels were also not affected, 

indicating that Pol III remained stable too (Figure 3.9, B). These data demonstrate that 

TFIIIB, TFIIIC and Pol III were not affected in Dr1-depleted cells and, therefore, the 

observed effect in tRNA expression cannot be attributed to elevated Pol II transcription, 

but rather to relief of Pol III repression. 

 

3.3.2 Dr1 occupancy at Pol III-transcribed genes 

 The Dr1-DRAP1 complex is thought to repress transcription through binding to 

TBP and blocking recruitment of TFIIB or TFIIIB (Inostroza et al, 1992; White et al, 

1994). Interestingly, the Dr1-DRAP1 subunits have been found at Pol II-transcribed gene 

promoters and it was suggested that the Dr1-DRAP1 complex might have a positive role in 

transcription (Christova & Oelgeschlager, 2002; Creton et al, 2002; Geisberg et al, 2001). 
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ChIP experiments were employed to investigate if Dr1 is found at Pol III-transcribed 

genes. 

  Indeed, Dr1 is found at a number of Pol III templates like 5S rRNA, tRNALEU and 

tRNATYR and U6 snRNA genes (Figure 3.12). The binding of Dr1 at these Pol III genes 

seems to be specific, as no signal could be detected in a mock ChIP with no antibody or 

when the Dr1 pre-immune sera was used. Dr1 was also found at Pol II-transcribed genes 

encoding U1 snRNA and Hsp70; the latter acted as positive control, as the presence of Dr1 

at Hsp70 promoters has been previously reported (Christova & Oelgeschlager, 2002). 

Neither Brf1 nor Pol III were detected at Pol II-transcribed genes, acting as internal 

controls. Furthermore, no signal was detected at the non-transcribed region upstream of the 

U6 snRNA promoter and also in the coding region of the Pol II-transcribed ARPP P0 gene, 

suggesting specificity for the gene promoter regions. 

 The ChIP experiments revealed Dr1 occupancy at Pol III-transcribed genes (Figure 

3.12). In these experiments the Dr1 1162 serum was used, but identical results were 

obtained also by Dr1 1163 serum (data not shown). However, the validation of both Dr1 

1162 and 1163 sera revealed a couple of extra bands of unknown origin and higher 

molecular weight than the one expected for Dr1 (Figure 3.4). Since one cannot exclude the 

possibility that these Dr1 antibodies can recognise proteins other than Dr1, the ChIP 

experiments were repeated, using an additional commercial Dr1 (ab28185) antibody that 

became available recently. Dr1 was detected by both antibodies at the Pol III-transcribed 

genes tested, i.e. 5S rRNA, tRNALEU and tRNATYR, confirming that Dr1 can occupy Pol 

III-transcribed genes (Figure 3.13). It must be noted that in this experiment the signal of 

Dr1 in comparison to the other factors is lower when compared to the one obtained in a 

number of previous experiments (compare TBP, Brf1, Pol III signal to Dr1 in Figures 3.12 

and 3.13). However, the signal from both Dr1 (ab28185) and Dr1 1162 antibodies was 

clearly above the background level as defined by the mock (no antibody) control, as well 

as with the TFIIA and pre-immune sera controls. Therefore the differences are probably 

due to the experimental conditions of this specific experiment. Taken together, these 

results show that Dr1 can be found at Pol III-transcribed genes in human cells.  

 An antibody recognising TFIIA was employed as negative control in ChIP 

experiments and revealed absence of TFIIA at Pol III-transcribed genes (Figure 3.13). 

However, in vitro experiments have suggested that TFIIA can regulate Pol III transcription 
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(Meissner et al, 1993; Waldschmidt & Seifart, 1992). Experiments with better purified 

factors suggested that TFIIA was not essential for Pol III transcription (Hu et al, 2003). To 

exclude an in vivo supporting role of TFIIA in Pol III transcription, ChIP experiments were 

employed. TFIIA was found to occupy the Pol II-transcribed U1 snRNA gene, but not the 

Pol III-transcribed 5S rRNA, tRNATYR, 7SK and U6 snRNA genes (Figure 3.11). These 

data suggest that TFIIA does not have an in vivo role in Pol III transcription regulation. 

 It has been demonstrated that in yeast cells the level of Pol II transcriptional 

activity strongly correlates with the level of TBP association at promoters (Kuras & Struhl, 

1999; Li et al, 1999b) and that the TBP/TFIIA and TBP/TFIIB occupancy ratios are 

essentially constant at promoters (Kuras et al, 2000). ChIP experiments showed that BUR6 

(the yeast homolog of DRAP1) was found at Pol II promoters and that the ratio of 

BUR6/TBP was very similar to that of TFIIB/TBP; enhanced BUR6/TBP ratio at specific 

genes was interpreted as a direct, positive transcriptional role of the Dr1-DRAP1 complex 

(Geisberg et al, 2001). In the same experiments DRAP1, was found at a very low level at a 

tRNA promoter; the signal ratio of BUR6/TBP was <0.05 and it was concluded that Dr1-

DRAP1 is not found at Pol III-transcribed genes (Geisberg et al, 2001). However, the 

results presented in this thesis argue that the Dr1-DRAP1 complex is present at human Pol 

III-transcribed genes (Figure 3.9). The ratio of Dr1/TBP at all Pol III promoters tested is 

~0.5, the same as that of Dr1/TBP at Pol II-transcribed genes (Table 3.1). These data 

demonstrate that Dr1 is found at human Pol II and Pol III at a similar ratio, in contrast to 

findings in yeast (Geisberg et al, 2001).  

 Dr1 RNAi affected the expression of tRNA (promoter type 2), but not of other Pol 

III templates (Figures 3.6 and 3.8). On the other hand, ChIP experiments showed the 

presence of Dr1 at all Pol III-transcribed genes tested (promoter types 1, 2 and 3) (Figure 

3.12). Technical reasons that might inhibit the detection of 5S rRNA and U6 snRNA 

products have already been discussed. The finding of Dr1 at 5S rRNA and U6 snRNA gene 

promoters, might argue for a general repressive role of Dr1 at all Pol III target genes. 

 DRAP1 occupancy at Pol II-transcribed genes has been interpreted as evidence of 

transcriptional activation (Creton et al, 2002; Geisberg et al, 2001). In this light, Dr1 

occupancy at Pol III-transcribed genes contradicts the RNAi evidence of Dr1 repressing 

tRNA expression. However, Dr1 occupancy at promoter regions as shown by ChIP 

experiments might not necessarily be indicative of transcriptional activation or repression. 
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It might be that ChIP experiments recognize TBP and Dr1 at transcriptionally silent genes; 

it has been shown that in yeast, TBP and Pol II can been found associated with 

heterochromatin (Sekinger & Gross, 2001), and also that human TBP and Dr1 can be 

found at mitotic chromosomes (Christova & Oelgeschlager, 2002). Moreover, it is possible 

that the signal detected by ChIP does not originate from active, but rather from 

transcriptionally repressed genes, considering that in a cell population, not all the genes 

coding for a transcript are necessarily active or inactive at the same given time.  

 In an attempt to address these arguments, sequential ChIP experiments were 

employed to determine co-occupancy of Dr1 and Pol III. The idea behind this experiment 

was that after the first round of ChIP, by using antibodies against Pol III, only active Pol 

III-bound genes would be precipitated; from that pool, the second ChIP with Dr1 

antibodies would select those genes that are bound both by Pol III and Dr1. 

 As it is shown in figure 3.15, Dr1 was found to co-occupy the tested 5S rRNA and 

tRNALEU genes together with Pol III or TBP, but not TFIIB. The Pol II-transcribed Hsp70 

and U1 snRNA genes were occupied by TBP and TFIIB, but not Pol III, which in this case 

acts as negative control. No signal was detected form the non-transcribing region upstream 

of the U1 snRNA gene promoter, indicating the specificity of the experiment. There was a 

higher background signal in the pre-immune sera in the case of Pol III antibody, compared 

to that of TFIIB and TBP antibodies used in the primary ChIP, but this was clearly of much 

less intensity than the signal given by the Dr1 1162 and 1163 sera in both 5S rRNA and 

tRNALEU genes. It must be noted that the amount of the immunoprecipitated material after 

the primary ChIP, as indicated by the secondary TFIIB, Pol III and TBP inputs, was not 

always equal, representing the different immunoprecipitating efficiencies of the different 

antibodies. Nevertheless, these data show that Dr1 can be found at Pol III promoters 

together with Pol III, suggesting that Dr1 can be found at active Pol III-transcribed genes. 

Furthermore, they also suggest that Dr1 can be found together with TFIIB at Pol II-

transcribed genes, which contrasts with the proposed repression mechanism of Dr1-

DRAP1 (Cang & Prelich, 2002; Goppelt et al, 1996; Mermelstein et al, 1996), but is in 

agreement with studies in yeast (Creton et al, 2002; Geisberg et al, 2001). 

  These surprising findings might indicate that the Dr1-DRAP1 complex can be 

found at promoters in an inactive, non-repressing form, as part of an active Pol II, or in an 

analogous way Pol III, transcription complex. In this case Dr1-DRAP1 might be bound to 
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TBP, but still allow TFIIB, or analogously Brf1, to productively bind the Dr1-DRAP1-

TBP-promoter complex. This possibility, that would provide an explanation for the ChIP 

(Figure 3.12) and sequential ChIP results (Figure 3.15), in this and previous studies 

(Creton et al, 2002; Geisberg et al, 2001; Gilfillan et al, 2005), has already been suggested 

as a potential strategy for upregulation of Pol II transcription initiation (Kamada et al, 

2001); transcriptional activators and/or positive cofactors might bind and alter the 

conformation of the Dr1 helices that contact the DNA backbone and upper surface of TBP 

(Figure 3.3), allowing efficient binding of TFIIB, while the histone-like portion of Dr1-

DRAP1 remains bound to the core promoter (Kamada et al, 2001). Possible advantages for 

the presence of the Dr1-DRAP1 complex at the promoter might be the more efficient 

binding of TBP to DNA, especially at TATA-less promoters (Gilfillan et al, 2005), as well 

as the potential for rapid repression of transcription. 

 It is well established that Dr1 can bind to TBP and inhibit binding of TFIIB 

(Goppelt et al, 1996; Inostroza et al, 1992; Mermelstein et al, 1996; Yeung et al, 1994). It 

has also been shown that GST-fused Brf1 can bind to TBP, but this interaction is lost if 

rDr1 is included in the reaction mix, indicating that Dr1 can disrupt TFIIIB by blocking 

binding of TBP and Brf1 (White et al, 1994). To further investigate the interaction of Dr1 

with TFIIIB and TFIIIC, co-immunoprecipitation experiments were employed. Dr1 was 

found to interact with radio-labelled subunits of TFIIIB and TFIIIC (Figure 3.16), as well 

as with endogenous subunits of TFIIIB and TFIIIC (Figure 3.17). These data suggest that 

in vivo, Dr1 can be found in complexes with TFIIIB and TFIIIC, in contrast to previous 

reports in vitro (White et al, 1994). Dr1-TFIIIB-TFIIIC interactions come in agreement 

with the ChIP data showing Brf1 at Pol III-transcribed gene promoters and suggest that 

perhaps Brf1 or subunits of TFIIIC could recruit Dr1 to Pol III promoters. Co-IP 

experiments with TFIIB have not been reported and it is possible that in vivo, but not in 

vitro, TFIIB can be found in complexes with Dr1 and TBP. The presence of TFIIB in a 

similar ratio as DRAP1 at the same Pol II promoters in yeast (Geisberg et al, 2001), and 

the co-occupancy of TFIIB and Dr1 at Pol II promoters in human cells (Figure 3.15) would 

support this idea. 
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3.3.3 Dr1 presence at Pol III promoters does not necessarily correlate with repression 

or activation of Pol III-dependent transcription 

 The findings that Dr1 associates with Pol III-transcribed genes (Figure 3.12), co-

occupies Pol III templates with Pol III (Figure 3.15), and forms a complex with TFIIIB and 

TFIIIC in vivo (Figure 3.16 and 3.17), demonstrate recruitment of Dr1 to Pol III promoters. 

To investigate if TFIIIB is responsible for recruiting Dr1, a Brf1-inducible cell line was 

employed. ChIP analysis revealed that cells overexpressing Brf1 had increased Dr1 

occupancy at Pol III-transcribed genes, compared to cells expressing physiological 

amounts of Brf1 (Figure 3.18). TBP occupancy was also elevated, suggesting that 

overexpression of Brf1 results in TFIIIB and Dr1 recruitment to Pol III promoters. Since 

TFIIIC is recruited at Pol III promoters previously to TFIIIB, it seems that the latter might 

be recruiting Dr1, although a role for TFIIIC cannot be excluded. Interestingly, this Dr1 

recruitment correlates with increased Pol III transcription (Marshal and White, personal 

communication), offering further support to the argument that Dr1 can bind active Pol III-

transcribed genes.  

 However, RNAi experiments revealed a negative role of Dr1 in Pol III transcription 

(Figures 3.6. and 3.8). To test if Dr1 presence at Pol III-transcribed genes is also enhanced 

under repressive conditions, ChIP assays were performed with cells growing under normal 

or hypoxic conditions. Under hypoxia, TFIIIB is displaced from Pol III-transcribed genes, 

but Dr1 occupancy is increased (Figure 3.19, A). These results agree with previous 

findings that associated Dr1 with Pol II transcriptional repression under hypoxic conditions 

(Denko et al, 2003). However, in contrast to that report, under these conditions Dr1 protein 

levels were not altered (Figure 3.19, B). A possible explanation might be the different cells 

lines (human U2OS and murine hepatoma) used or that the current experiments used mild 

hypoxia of 1% O2, in contrast to the almost anoxic conditions of 0.01% O2 used previously 

(Denko et al, 2003). Nevertheless, these data, taken together with those from the Brf1 

overexpression, suggest that enhanced occupancy of Pol III promoters by Dr1 can correlate 

both with transcriptional activation and repression, suggesting that other factors might be 

implicated and dictate the final transcriptional outcome.  

 To further examine the Dr1 status at Pol III-transcribed genes under stress 

conditions, the drug rapamycin was used to inhibit the mTOR pathway and repress Pol III 

transcription. ChIP analysis revealed that in cells treated with rapamycin, Dr1 occupancy at 
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Pol III-transcribed genes was reduced (Figure 3.20, A), while the protein levels of Dr1 

were not affected (Figure 3.20, B). Brf1, TFIIIC and Pol III were also displaced, but 

interestingly TBP occupancy was not affected (Figure 3.20, A). This finding suggests that 

Dr1 presence at the Pol III promoters does not necessarily correlate with TBP, implying 

that other factors might have a more active role in the recruitment and association of Dr1 

with Pol III promoters. 

 Potential factors that could recruit Dr1 to Pol III promoters might include Brf1 and 

TFIIIC, as well as Pol III itself. Promoter mapping experiments were employed in an 

attempt to map the presence of Dr1 at a Pol III promoter and distinguish how this relates 

with the presence of the previously mentioned factors. These experiments revealed that 

Dr1 is present at the beginning of the Pol III-transcribed 7SL gene, but not at the end of it, 

following the same pattern with Brf1 (TFIIIB), but not TFIIIC or Pol III and suggesting 

that Dr1 is rather associated with Brf1 than TFIIIC or Pol III (Figure 3.21). This finding 

therefore implies that in vivo Brf1 might have a role in the recruitment of Dr1 to Pol III 

promoters.  

 In summary, this chapter presented data that Dr1 can repress Pol III transcription in 

vivo, and that this effect seems to be direct, rather than mediated by changes in expression 

of TFIIIB, TFIIIC or Pol III. ChIP experiments revealed Dr1 occupancy at Pol III 

promoters and sequential ChIP experiments showed co-occupancy of Dr1 with Pol III, 

suggesting the presence of Dr1 at active Pol III-transcribed genes. Dr1 can be associated 

with TFIIIB, probably through both TBP and Brf1, and through these interactions might be 

recruited to Pol III promoters. Promoter occupancy by Dr1, however, is a subject of 

regulation and can be related to either transcriptional activation or repression. These data 

contradict the model of Dr1-DRAP1 repression by inhibition of an active preinitiation 

complex (Goppelt et al, 1996; Inostroza et al, 1992; Mermelstein et al, 1996) and come in 

partial agreement with reports suggesting the presence of Dr1-DRAP1 at active genes 

(Creton et al, 2002; Geisberg et al, 2001). 
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4.1 Introduction 

4.1.1 DRAP1 is found at Pol II promoters and might have roles independent of Dr1 

 As previously described, DRAP1 is considered to be a co-repressor that cannot 

repress transcription independently, but significantly enhances Dr1-mediated 

transcriptional repression (Mermelstein et al, 1996; Yeung et al, 1997). A number of yeast 

studies, with strains expressing mutant BUR6 (the yeast homolog of DRAP1), reported 

increased transcription of specific genes and the presence of BUR6 at active Pol II 

promoters, suggesting a positive role for the Dr1-DRAP1 complex (Cang & Prelich, 2002; 

Geisberg et al, 2001). Moreover, it was observed that the presence of BUR6 at Pol II 

promoters correlated with transcriptional activity, while increased presence of yDr1 

correlated with transcriptional repression, suggesting that the two subunits might play 

different roles in vivo (Creton et al, 2002). 

 DRAP1 has also been found at TATA-containing and TATA-less promoters of Pol 

II genes in human cells (Gilfillan et al, 2005). A recent genome-wide promoter association 

study of DRAP1 in human cells revealed that DRAP1 was present at more than 25% of 

human Pol II promoters, supporting the original hypothesis of a general role of Dr1-

DRAP1 in gene transcription regulation (Albert et al, 2007). DRAP1 occupancy positively 

correlated with mRNA levels, probably reflecting the Dr1-DRAP1 capacity to stabilise 

TBP on promoter regions (Albert et al, 2007). In contrast to a previous study in Drosophila 

(Willy et al, 2000), genome-wide DPE promoter binding in human was not confirmed 

(Albert et al, 2007), neither activation of the human DPE-dependent IRF1 gene (Lewis et 

al, 2005); however, there is some correlation of Dr1-DRAP1 occupancy with the initiator 

element, which was also independently confirmed (Albert et al, 2007; Malecova et al, 

2007). DRAP1 was also found to interact with BTAF1, the mammalian homolog of yeast 

Mot1 (Klejman et al, 2004). The role of this interaction is not clear, but it seems that 

BTAF1 can compete with Dr1 for binding at overlapping surfaces of TBP and DRAP1; it 

was proposed that BTAF1 may first contact DRAP1 and then disrupt the Dr1-DRAP1 

complex from TBP, relieving repression and contributing to transcriptional activation 

(Klejman et al, 2004). 

 Interestingly, as was suggested by yeast studies (Creton et al, 2002; Kim et al, 

2000), DRAP1 seems to have Dr1-independent roles. Knock-out of the DRAP1 gene 
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resulted in embryonic lethality and it was found that DRAP1, independently of Dr1, can 

interact with and inhibit binding of DNA by the transcription factor FoxH1, a critical 

component of a positive feedback loop for Nodal signalling (Iratni et al, 2002). 

Furthermore, in rice OsDRAP1 is the main repressor of the complex, with Os Dr1 having a 

co-repressor role (Song et al, 2002). 
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4.2 Results 

4.2.1 DRAP1 RNAi and Pol III transcription 

 Nothing has been reported so far concerning the role of DRAP1 in Pol III 

transcription. Therefore, it would be interesting to investigate if DRAP1 has a role in 

affecting Pol III transcription in human cells. To this end, shRNA was employed in an 

attempt to knock down DRAP1 and study the effects on Pol III-transcribed genes. HeLa 

cells were transiently transfected by electroporation, with either a pSUPER-DRAP1 

plasmid or the empty pSUPER vector as control (Brummelkamp et al, 2002). The cells 

were harvested 48 hours later, whole cell extracts were prepared and RNA was isolated. 

RT-PCRs showed that the DRAP1 mRNA levels were depleted by more than 90% (Figure 

4.1, B and C); however the protein levels were decreased by an average of only 25% 

(Figure 4.1, A and C). Under these conditions the levels of tRNALEU and tRNATYR tend to 

increase (Figure 4.2, A), but the experimental errors do not allow for a sound conclusion 

(Figure 4.2, B). 

 In an attempt to clarify the effect of DRAP1 knock-down on Pol III transcription, a 

siRNA approach was also employed. siRNA targeting DRAP1 or control siRNA targeting 

Oct-1 were transfected into cells. 48 hours later, the cells were harvested and cell extracts 

and RNA were analysed. Western blotting revealed that at the protein level, the positive 

control Oct-1 was reduced by more than 55% (Figure 4.3, A). RT-PCRs revealed that 

DRAP1 mRNA levels were decreased by more than 80% (Figure 4.3, B and C), but still 

the protein levels remained quite high, reduced by about 35% (Figure 4.3, A and C). Under 

these condition the 5S rRNA and U6 snRNA Pol III-transcripts were not affected, but 

tRNALEU and tRNATYR tended to decrease by about 28% compared to the control (Figure 

4.4, A and B). However, the experimental errors were not optimal, casting doubt on the 

validity of these results (Figure 4.4, B).  

 In summary, the two RNAi approaches employed to investigate the effect of 

DRAP1 knock-down on Pol III transcripts gave confusing results. The shRNA experiments 

revealed a tendency for tRNA expression to increase, while the siRNA experiments 

showed tRNA expression to decrease. In both cases the experimental errors do not allow  
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Figure 4.1. DRAP1 knock-down by shRNA. HeLa cells were transfected with the pSUPER-

DRAP1 vector by electroporation and harvested 48 hours later. An empty pSUPER vector was 

used as control. A. Western analysis for DRAP1 from whole cell extracts. Actin was used as 

loading control. B. RT-PCRs for DRAP1 mRNA. The Pol II-transcribed gene ARPP P0 was used as 

control. C. Quantification of DRAP1 signals from A and B. n=2. 

DRAP1 

Actin

A

ARPP P0

DRAP1
B

C

0

0.5

1

1.5

2

2.5

Re
la

tiv
e 

ex
pr

es
si

on

DRAP1 shRNA knock-down

Control

DRAP1 RNAi



106 
 

 

 

 

 

 

Figure 4.2. tRNA expression levels tend to increase after DRAP1 shRNA knock down. HeLa 

cells were transfected with the pSUPER-DRAP1 vector by electroporation and harvested 48 hours 

later. An empty pSUPER vector was used as control. A. RT-PCRs for tRNALEU and tRNATYR. The 

Pol II-transcribed gene ARPP P0 was used as control. B. Quantification of tRNA signals from A. 

n=2. 
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Figure 4.3. DRAP1 knock-down by siRNA. HeLa cells were transfected with DRAP1 siRNA by 

electroporation and harvested 48 hours later. siRNA targeting Oct-1 was used as control. A. 
Western analysis for DRAP1 from whole cell extracts. Actin was used as loading control. B. RT-

PCRs for DRAP1. The Pol II-transcribed gene ARPP P0 was used as control. C. Quantification of 

DRAP1 signals from A and B. n=2.  
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Figure 4.4. tRNA expression levels tend to decrease after DRAP1 siRNA knock-down. HeLa 

cells were transfected with DRAP1 siRNA by electroporation and harvested 48 hours later. siRNA 

targeting Oct-1 was used as control. A. RT-PCRs for tRNALEU and tRNATYR. The Pol II-transcribed 

gene ARPP P0 was used as control. B. Quantification of tRNA signals from A. n=2.  
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for safe interpretations of the results obtained. Moreover, in both cases, DRAP1 depletion 

at the protein level proved to be difficult, in contrast to the mRNA level, suggesting that 

DRAP1 protein can be quite stable under these conditions. 

 

4.2.2 DRAP1 is found at Pol III-transcribed genes 

 DRAP1 has been found at Pol II promoters in yeast (Creton et al, 2002; Geisberg et 

al, 2001) and human (Albert et al, 2007; Gilfillan et al, 2005; Lewis et al, 2005). DRAP1 

occupancy at Pol III-transcribed genes has been investigated in yeast, but found to be 

present at very low levels compared to TBP and therefore, DRAP1 (and the Dr1-DRAP1 

complex) was proposed to be absent from Pol III promoters (Geisberg et al, 2001). 

However, the current study previously showed that Dr1 is found at Pol III-transcribed 

genes in human cells (Figure 3.9 and 3.10), implying that DRAP1 might also be present 

there. 

 To investigate if DRAP1 can be found at Pol III-transcribed genes, ChIP 

experiments were employed. Endogenous DRAP1 can be found at the Pol III-transcribed 

5S rDNA, tRNALEU, tRNATYR and U6 snRNA genes in HeLa cells (Figure 4.5). DRAP1 

can also be found at the Pol II-transcribed Hsp70 and U1 snRNA genes, but not in the 

internal ARPP P0 region or the non-transcribed U6 snRNA upstream region, showing that 

under these experimental conditions the antibodies specifically recognise proteins bound 

at, or near to the promoters of the specific genes (Figure 4.5). As expected, Brf1 and Pol III 

are not present at Pol II genes, working as internal controls for the specificity of the 

antibodies (Figure 4.5). To further validate these results, the ChIP experiments were 

repeated with a different DRAP1 antibody together with Dr1 (Figure 4.6). These 

experiments confirmed the presence of DRAP1, as well as Dr1, at Pol III-transcribed genes 

and minimised the possibility of recognition of other proteins at Pol III-transcribed genes 

by a DRAP1 antibody.  

 As previously mentioned, the DRAP1/TBP ratio from ChIP experiments in yeast 

was found to be below 0.05 and compared to ratios of over 0.8 for Pol II-transcribed genes, 

considered negligible (Geisberg et al, 2001). However, this does not seem to be the 

situation in humans. The DRAP1/TBP ratios at Pol III-transcribed genes were found to be 

0.4-0.6 and the ratio at Pol II-transcribed genes 0.7-0.8 (Table 4.1). These results suggest  
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Figure 4.5. DRAP1 occupancy at Pol III-transcribed genes. HeLa cells were used for ChIP. A 

polyclonal DRAP1 antibody (sc-17272) was used to test for DRAP1 presence at Pol III-transcribed 

genes. TBP (MTBP-6), Brf1 (128) and Pol III (1900) antibodies were used as positive controls. 

Goat IgGs (sc-2028, Santa Cruz Biotechnology) and mock (no antibody) were used as negative 

controls.  
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Figure 4.6. DRAP1 is found at Pol III-transcribed genes. HeLa cells were used for ChIP. A 

monoclonal DRAP1 antibody (TM-301B-55) was used to confirm DRAP1 presence at Pol III-

transcribed genes, along with the Dr1 (1162). TBP (MTBP-6), Brf1 (128) and Pol III (1900) 

antibodies were used as positive controls; mouse IgGs (sc-2025) and pre-immune (PI 1162) serum 

were used as negative controls.  

 

 

 

 

 

 

  

Input

tRNATYR

tRNALEU

5S rDNA

U1 snRNA
Upstream region
(not transcribed)



112 
 

Table 4.1. DRAP1/TBP ratio at Pol III-transcribed genes 

Genes  DRAP1/TBP  
5S rRNA  0.6 ± 0.04  

tRNA
LEU

  0.6 ± 0.37  

tRNA
TYR

  0.6 ± 0.16  
U6 snRNA  0.4 ± 0.08  

Hsp70  0.8 ± 0.40  
U1 snRNA  0.7 ± 0.06  

ChIP signals were normalised to input and the value of the DRAP1 signal was divided by the TBP 

signal. The ratio shown is the average of two independent experiments with standard variation.  

 

that in humans DRAP1 is found at Pol III-transcribed genes at about the same ratio to TBP 

as at the Pol II-transcribed genes. 

 Since DRAP1 can be found at Pol III-transcribed genes, it is of interest to 

investigate where DRAP1 is found at Pol III promoter regions. The 7SL promoter was 

mapped by five pairs of primers in order to examine the positions of DRAP1 (Figure 4.7, 

A). As in the case of Dr1 (Figure 3.18), DRAP1 was found to correlate with the presence 

of Brf1 at the promoter, rather than TFIIIC or Pol III (Figure 4.7, B and C). This finding 

suggests that DRAP1 might be found at Pol III promoters with Brf1 and also Dr1. 
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Figure 4.7. DRAP1 occupancy at the 7SL gene locus. ChIP assays were performed in HeLa 

cells. A. Schematic diagram showing the relative positions of the five primer sets (1-5) at the 7SL 

gene. B. ChIPs were performed using the DRAP1 (TM-301B-55), Brf1 (128), TFIIIC (Ab7) and Pol 

III (1900) antibodies. Mouse IgGs (sc-2025) were used as negative control. C. Schematic 

representation of the ChIP signals. The x-axis represents the five primer sets. The Y-axis shows 

the mean relative strengths of ChIP signal expressed in arbitrary units after normalisation against 

input and the signal with the negative control. n=2. 
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4.3 Discussion 

4.3.1 DRAP1 RNAi and Pol III transcription 

 RNAi experiments showed that knock-down of Dr1 results in enhanced expression 

of tRNA, indicating that Dr1 has a role in Pol III transcription regulation. It is not clear, 

however, if DRAP1 has a role as well, either independently or as a co-repressor. To 

investigate a possible role of DRAP1 in Pol III transcription in human cells, DRAP1 was 

knocked-down by RNAi using either shRNA (Figures 4.1) or siRNA (Figure 4.3). Both 

RNAi approaches resulted in almost complete depletion of DRAP1 mRNA, as detected by 

RT-PCRs, but the protein levels of DRAP1 were only moderately affected (Figures 4.1 and 

4.3). Expanding the RNAi incubation period from 48 up to 96 hours, or increasing the 

amount of the transfected shDNA (1-3 µg) or siRNA (50-200 nM) did not result in a better 

protein knock down, but rather in reduced cell viability (data not shown).  

 Under these conditions, the two approaches led to contradicting results concerning 

Pol III transcription. In the case of shRNA, tRNALEU and tRNATYR expression seems to be 

elevated (Figure 4.2, A and B), while when siRNA was used, tRNALEU and tRNATYR 

expression seems to be reduced (Figure 4.4, A and B). If DRAP1 works as a co-repressor, 

enhancing Dr1-mediated repression, then depletion of DRAP1 would be expected to result 

in increased Pol III transcripts, as seems to be indicated by the shRNA experiments (Figure 

4.2, A and B). If, however, DRAP1, as has been suggested (Creton et al, 2002; Geisberg et 

al, 2001), has a positive role in vivo, either direct or indirect by stabilising TBP to the 

promoters, then knock-down of DRAP1 might result in decreased expression of Pol III 

transcripts, as is suggested by the siRNA experiments (Figure 4.4., A and B). In both cases, 

however, the mildly depleted protein levels of DRAP1 and the high experimental errors do 

not allow for safe conclusions. Future experiments with a sound DRAP1 knock-down 

should reveal to what degree DRAP1 can affect Dr1 repression and if there is a positive 

role for DRAP1 in Pol III transcription regulation. 
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4.3.2 DRAP1 is found at Pol III-transcribed genes 

 It has been previously reported that DRAP1 can be found at the promoters of Pol 

II-transcribed genes in yeast (Creton et al, 2002; Geisberg et al, 2001) and in human 

(Gilfillan et al, 2003; Lewis et al, 2005). In yeast, DRAP1 occupancy of Pol III promoters 

was found to be negligible, and it was inferred that Dr1-DRAP1 is not present at Pol III-

transcribed genes (Geisberg et al, 2001). However, ChIP experiments revealed that Dr1 is 

present at Pol III-transcribed genes in human cells (Figure 3.9). By expanding these studies 

to DRAP1, it was shown that DRAP1 also occupies Pol III-transcribed genes (Figure 4.5). 

This was further confirmed by obtaining the same result with the use of an alternative 

DRAP1 antibody, thus minimising the possibility of antibody-related unspecific effects 

(Figure 4.6). Mapping experiments of DRAP1 occupancy at the 7SL gene promoter 

indicate that DRAP1 is mainly found in the beginning of the gene (Figure 4.7). This 

finding suggests that DRAP1 is found at the same region as Dr1, as expected. 

 The ratio of DRAP1/TBP occupancy of Pol III-transcribed genes is ~0.6 (Table 

4.1), in contrast to the <0.05 ratio found in yeast (Geisberg et al, 2001), demonstrates that 

endogenous DRAP1 is present at Pol III-transcribed genes in human cells. These findings 

suggest that there might be substantial differences between the two organisms, especially 

since the identity between the two DRAP1 homologs mostly occurs in the histone motif.  
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CHAPTER 5 

 

 

 

 

 

 

Dr1 and DRAP1 can be differentially regulated 
under stress conditions that affect RNA 

polymerase III transcription  
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5.1 Introduction 

 A number of stress conditions, such as heat shock (Allen et al, 2004; Liu et al, 

1995) and hypoxia (Ernens et al, 2006), have been shown to affect Pol III transcription in 

murine or human cells. It has also been shown that DRAP1 can be recruited at heat shock 

gene promoters after heat shock in yeast (Geisberg et al, 2001) and suggested that in yeast 

Dr1 and DRAP1 might not always work together, but cooperate under stress conditions, 

such as a diauxic shift (Creton et al, 2002). In this chapter a number of stress conditions 

were investigated with regards to Pol III transcription and the Dr1-DRAP1 complex. 

 

5.2 Results 

5.2.1 Heat shock, Pol III transcription and Dr1-DRAP1 

 Heat shock has been shown to affect Pol III transcription by increasing the levels of 

Alu RNA in human cells, but not of 5S rRNA, 7SL RNA, 7SK RNA and U6 snRNA (Liu 

et al, 1995). Similarly, in mouse cells, B1 and B2 RNAs (Allen et al, 2004; Li et al, 1999a) 

increase after heat shock and it has been proposed that the B2 elements have a role in 

repressing Pol II transcription (Allen et al, 2004). In yeast it has also been shown that 

under heat shock, DRAP1 was recruited to heat shock gene promoters (Geisberg et al, 

2001).  

 In order to investigate how heat shock affects Pol III transcription in human cells, 

HeLa cells were subjected to heat shock at 45 ºC for 30 minutes, and were then left to 

recover at 37 ºC, for different periods of time. Western blotting showed that while the total 

protein levels of Dr1 remained stable, DRAP1 levels were increased, even just after the 

heat shock, and kept increasing for the next 2-4 hours, while they remained high even after 

8 hours (Figure 5.1, A and B). The Hsp70 heat shock protein was also induced after 2 

hours and started going down after 4 hours, in accordance with previous studies in the 

same cell line (Liu et al, 1995). p53 levels were also increased in a similar pattern to 

DRAP1, i.e. increased immediately after the heat shock and peaked after 2-4 hours of 
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Figure 5.1. Induction of DRAP1, but not Dr1, after heat shock in HeLa cells. HeLa cells were 

subjected to heat shock at 45 ºC for 30 minutes and left to recover for 0, 2, 4 or 8 hours before 

being harvested. Control cells were not subjected to heat shock A. Western blotting for total protein 

levels. Actin was used as loading control. B. Quantification of DRAP1 and Dr1 signals from A. n=3.  
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recovery (Figure 5.1, A). Quantification of 3 different experiments revealed that the Dr1 

protein levels remained stable, while DRAP1 increased up to 3-5 times (Figure 5.1, B). 

 The rapid increase in the protein levels of DRAP1 would suggest that this is 

probably a posttranscriptional effect, perhaps due to protein stabilisation and decreased 

degradation. Indeed, the mRNA levels of DRAP1 and Dr1 remained unaffected, even after 

8 hours of recovery (Figure 5.2). The RNA levels of Pol III-transcribed genes were also 

examined. 5S rRNA and U6 snRNA levels were stable (Figure 5.3, A), as expected from 

previous studies (Liu et al, 1995). Although, tRNA expression levels initially seemed to be 

increased (Figure 5.3A), analysis of three different experiments showed that there was no 

consistent increase of the tRNALEU levels. However, tRNATYR seemed to be two-fold 

increased after the 2 hour time point (Figure 5.3, B). 

 To further verify the above results, the experiments were repeated with a U2OS cell 

line (human osteosarcoma). In this cell line, the levels of DRAP1 were also increased 

about 2.5-fold after heat shock, while the Dr1 levels remained stable (Figure 5.4). 

Interestingly, DRAP1 protein was found to be at levels comparable to the control at the 8 

hour time point, in contrast to the experiments in HeLa cells (Figure 5.4, A and B). p53 

and Hsp70 were also increased after the 2 hour time point (Figure 5.4, A). The increase at 

the protein level was not accompanied with an increase at the mRNA levels of DRAP1, as 

was the case in HeLa cells (Figure 5.5), while the mRNA levels of Hsp70 seemed to be 

elevated after 2 hours from the heat shock (Figure 5.5), in accordance with previous studies 

(Liu et al, 1995). The RNA levels of Pol III transcripts (Figure 5.6), and especially of 

tRNALEU and tRNATYR (Figure 5.6, A and B), were also examined and found not to change 

significantly (Figure 5.6, A and B). 

 These results indicate that heat shock in human cells results in increased protein 

levels of DRAP1, but not Dr1. This does not seem to be a transcriptional effect as the RNA 

levels of both proteins remain unaffected. Furthermore, the heat shock treatment, as well as 

the physiological response of DRAP1 induction, do not seem to affect Pol III transcription, 

as the examined 5S rRNA, tRNAs and U6 snRNA transcripts do not change significantly. 
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Figure 5.2. DRAP1 and Dr1 mRNA levels remain stable after heat shock in HeLa cells. HeLa 

cells were subjected to heat shock at 45 ºC for 30 minutes and left to recover for 0, 2, 4 or 8 hours 

before being harvested. Control cells were not subjected to heat shock. A. RT-PCRs for DRAP1 

and Dr1 mRNA. ARPP P0 was used as a control. B. Quantification of DRAP1 and Dr1 signals from 

A. n=3. 
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Figure 5.3. RNA levels of Pol III-transcribed genes after heat shock in HeLa cells. HeLa cells 

were subjected to heat shock at 45 ºC for 30 minutes and left to recover for 0, 2, 4 or 8 hours 

before being harvested. Control cells were not subjected to heat shock. A. RT-PCRs for Pol III 

templates. ARPP P0 was used as a control. B. Quantification of the signals of Pol III transcripts 

from A. n=3.  
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Figure 5.4. Induction of DRAP1, but not Dr1, after heat shock in U2OS cells. U2OS cells were 

subjected to heat shock at 45 ºC for 30 minutes and left to recover for 0, 2, 4 or 8 hours before 

being harvested. Control cells were not subjected to heat shock A. Western blotting from whole cell 

extracts. Actin was used as loading control. B. Quantification of DRAP1 and Dr1 signals from A. 
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Figure 5.5. DRAP1 and Dr1 mRNA levels remain stable after heat shock in U2OS cells. U2OS 

cells were subjected to heat shock at 45 ºC for 30 minutes and left to recover for 0, 2, 4 or 8 hours 

before being harvested. Control cells were not subjected to heat shock. ARPP P0 was used as a 

control.
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Figure 5.6. RNA levels of Pol III-transcribed genes after heat shock in U2OS cells. U2OS cells 

were subjected to heat shock at 45 ºC for 30 minutes and left to recover for 0, 2, 4 or 8 hours 

before being harvested. Control cells were not subjected to heat shock. A. RT-PCRs for Pol III 

templates. ARPP P0 was used as a control. B. Quantification of tRNA signals from A. n=3.  
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5.2.2 Hypoxia, Pol III transcription and Dr1-DRAP1  

 Dr1 has been reported to repress Pol II transcription under extreme hypoxic 

conditions (Denko et al, 2003) and it has also been shown that hypoxia represses Pol III 

transcription (Ernens et al, 2006). Previous experiments revealed Dr1 being recruited to 

Pol III-transcribed genes in 1% O2 hypoxia (Figure 3.19, A), while under these conditions 

the protein levels of Dr1 remain unaffected (Figure 3.19, B). It would be interesting to 

investigate if, as is the case in heat shock, the protein levels of Dr1 and DRAP1 are 

differentially regulated under hypoxic conditions. 

 To this end, HeLa cells were subjected to hypoxic conditions (1% O2) for 24 hours 

or normal conditions (20% O2) for the same amount of time. Western blotting revealed that 

the protein levels of DRAP1 in cells under hypoxia were elevated two-fold compared to 

the control (20% O2) cells, while Dr1 levels remained stable (Figure 5.7, A and B). Protein 

levels of p53 and HIF1ɑ, genes known to be induced in hypoxic conditions (Graeber et al, 

1994; Wang & Semenza, 1993), were increased, as expected (Figure 5.7, A). Under these 

conditions, the mRNA levels of Dr1 and DRAP1, as tested by RT-PCRs, were not affected, 

while p53 was induced (Figure 5.8). The RNA levels of the Pol III products, at least in the 

case of tRNAs, were reduced about two-fold (Figure 5.9), in accordance with previously 

published results in rat cardiomyocytes (Ernens et al, 2006).  

 Similar results were obtained from experiments where HeLa cells were subjected to 

chemically-induced severe hypoxia/anoxia. Cells treated with 150 µM deferoxamine 

(DFX) were found to have 2.5-fold more DRAP1 protein than the untreated control (Figure 

5.10). Dr1 remained stable, while HIF1ɑ and p53 were induced, as expected (Figure 5.10). 

As also seen in HeLa cells with 1% O2 hypoxia, the mRNA levels of DRAP1 and Dr1 

remained stable, p53 mRNA was induced, while tRNAs were reduced (Figure 5.11).  

 In order to further validate the above results, the experiments were replicated with 

the human U2OS cell line. In these cells, 1% O2 hypoxia also resulted in two-fold 

increased protein levels of DRAP1, while Dr1 remained stable (Figure 5.12, A and B). In 

accordance with the results obtained from the HeLa cells, the mRNA levels of Dr1 and 

DRAP1 were not altered, while p53 was increased (Figure 5.13, A and B). Pol III 

transcription was also affected similarly to HeLa cells, i.e. tRNAs were reduced about two-

fold (Figure 5.14, A and B).  
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Figure 5.7. Induction of DRAP1, but not Dr1, under hypoxic conditions in HeLa cells. HeLa 

cells were subjected to 1% O2 hypoxia for 24 hours, before being harvested. Control cells were 

grown at 20% O2. A. Western blotting from whole cell extracts. HIF1ɑ and p53 were used as 

positive controls and actin as loading control. B. Quantification of Dr1 and DRAP1 signals from A. 
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Figure 5.8. Dr1 and DRAP1 mRNA levels remain stable under hypoxic conditions in HeLa 
cells. HeLa cells were subjected to 1% O2 hypoxia for 24 hours, before being harvested. Control 

cells were grown at 20% O2. Total RNA was isolated, reverse transcribed to cDNA and analysed by 

PCRs. ARPP P0 was used as a control. 
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Figure 5.9. tRNA expression levels decrease under hypoxic conditions in HeLa cells. HeLa 

cells were subjected to 1% O2 hypoxia for 24 hours, before being harvested. Control cells were 

grown at 20% O2. A. RT-PCR analysis for Pol III-transcribed genes. ARPP P0 was used as a 

control. B. Quantification of the Pol III transcripts from A. n=3.  
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Figure 5.10. DRAP1, but not Dr1, protein levels increase under anoxic conditions induced by 
deferoxamine (DFX) in HeLa cells. HeLa cells were grown either with or without (control) 150 µM 

DFX for 24 hours, before being harvested. A. Western blotting with whole cell extracts. HIF1ɑ and 

p53 were used as positive controls and actin as loading control. B. Quantification of DRAP1 and 

Dr1 signals from A. n=2.   
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Figure 5.11. tRNA expression levels decrease in DFX-induced anoxia in HeLa cells, while 
Dr1 and DRAP1 mRNA levels remain stable. HeLa cells were growing either with 150 µM DFX or 

without (control) for 24 hours, before being harvested. RT-PCR analysis for Pol III-transcribed 

genes, as well as Dr1, DRAP1 and p53. ARPP P0 was used as a control. 
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Figure 5.12. Induction of DRAP1, but not Dr1, under hypoxic conditions in U2OS cells. U2OS 

cells were subjected to 1% O2 hypoxia for 24 hours, before being harvested. Control cells were 

grown at 20% O2. A. Western blotting from whole cell extracts. HIF1ɑ and p53 were used as 

positive controls and actin as loading control. B. Quantification of DRAP1 and Dr1 signals from A. 

n=3.  

  

Dr1

DRAP1

p53

Actin

HIF1ɑ

A

B

0

0.5

1

1.5

2

2.5

3

3.5

DRAP1 Dr1

R
el

at
iv

e 
ex

pr
es

si
on

DRAP1 and Dr1 western analysis quantification

Control

Hypoxia



132 
 

 

 

Figure 5.13. Dr1 and DRAP1 mRNA levels remain stable under hypoxic conditions in U2OS 
cells. U2OS cells were subjected to 1% O2 hypoxia for 24 hours, before being harvested. Control 

cells were grown at 20% O2. A. RT-PCR analysis for Dr1, DRAP1, and p53. ARPP P0 was used as 

a control. B. Quantification of DRAP1 and Dr1 signals from A. n=3.  
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Figure 5.14. tRNA expression levels decrease under hypoxic conditions in U2OS cells. 
U2OS cells were subjected to 1% O2 hypoxia for 24 hours, before being harvested. Control cells 

were grown at 20% O2. A. RT-PCR analysis for Pol III-transcribed genes. ARPP P0 was used as a 

control. B. Quantification of the signals of Pol III transcripts from A. n=3.  
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 Recently, a new p53 database containing p53 family direct targets in human was 

reported (Sbisa et al, 2007). The database contains p53 target genes, selected by the 

presence of p53 responsive elements and also by the expression profile of these target 

genes, as obtained by microarray experiments (Sbisa et al, 2007). A search for DRAP1 and 

Dr1 revealed that, according to the database, both contain a responsive element at their 

promoter region (Figure 5.15), while Dr1 has a second one in its intronic region 

(http://www2.ba.itb.cnr.it/p53FamTaG). Data from the hypoxic and heat shock 

experiments show no transcriptional effect on mRNA levels of DRAP1 and Dr1 (Figures 

5.2, 5.5 and 5.8, 5.11, 5.13), as would be expected if they were p53 targets; however, there 

might be a correlation between elevated DRAP1 protein and stabilised p53; in both cases 

when p53 was induced, DRAP1 protein levels were elevated (Figures 5.1, 5.4 and 5.7, 

5.10, 5.12).  

 In order to test if DRAP1 protein stabilisation is related to p53, NARF2-E6 cells 

were employed. This cell line is a NARF2 derivative, which constitutively expresses the 

human papillomavirus HPV E6 protein (Rocha et al, 2003); HPV E6 has been shown to 

bind p53 and target it for degradation via the ubiquitin pathway (Scheffner et al, 1992; 

Werness et al, 1990). NARF2 itself is a derivative of the human osteosarcoma U2OS cells 

containing an isopropyl β-D-thiogalactopyranoside (IPTG)-inducible ARF gene (Stott et al, 

1998). NARF2-E6 cells were subjected to 1% O2 hypoxia and it was found that, in contrast 

to the parental U2OS cells, or HeLa cells, under the same hypoxic conditions, the p53 

protein levels in these cells are decreased (Figure 5.16, A and B). HIF1ɑ, however, was 

induced, indicating that the cells were under hypoxia (Figure 5.16, A). Surprisingly, 

DRAP1 levels also decreased, while Dr1 remained about the same (Figure 5.16, A and B). 

At the mRNA level, as tested by RT-PCRs, there seems to be a small decrease in the levels 

of DRAP1, Dr1 and p53 (Figure 5.17, A and B). Pol III transcription was reduced at the 

same level as seen previously in U2OS and HeLa cells, indicating that changes in the 

DRAP1 levels are not responsible for hypoxic repression of the Pol III system (Figure 

5.18, A and B). 

 To further investigate if p53 has a role in stabilising DRAP1 protein levels, shRNA 

against p53 was employed. NARF2 cells were transfected with a pSUPER-p53 shRNA 

vector or an empty pSUPER control vector, and left to grow for 48 hours before 

harvesting. Under these conditions, p53 was knocked-down in the shRNA-treated cells 

compared to the control (Figure 5.19, A). DRAP1 protein levels also seem to be reduced,  
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Figure 5.15. Dr1 and DRAP1 contain p53 responsive elements in their promoters. Image 

adapted from http://www2.ba.itb.cnr.it/p53FamTaG. A. Dr1 contains two p53 responsive elements. 

B. DRAP1 contains one p53 responsive element at the promoter region.  
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Figure 5.16. DRAP1 is not induced under hypoxic conditions in p53-impaired NARF2-E6 
cells. NARF2-E6 cells were subjected to 1% O2 hypoxia for 24 hours, before being harvested. 

Control cells were grown at normal 20% O2. A. Western blotting from whole cell extracts. HIF1ɑ 

and p53 were used as positive controls and actin as loading control. B. Quantification of DRAP1, 

Dr1 and p53 signals from A. n=3.   
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Figure 5.17. Dr1 and DRAP1 mRNA levels are slightly affected under hypoxic conditions in 
p53-impaired NARF2-E6 cells. NARF2-E6 cells were subjected to 1% O2 hypoxia for 24 hours, 

before being harvested. Control cells were grown at 20% O2. A. RT-PCR analysis. ARPP P0 was 

used as a control. B. Quantification of signals from A. n=3.  
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Figure 5.18. tRNA expression levels decrease under hypoxic conditions in NARF2-E6 cells. 
NARF2-E6 cells were subjected to 1% O2 hypoxia for 24 hours, before being harvested. Control 

cells were grown at 20% O2. A. RT-PCR analysis for Pol III-transcribed genes. ARPP P0 was used 

as a control. B. Quantification of the signals of Pol III transcripts from A. n=3.  
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Figure 5.19. p53 depletion by RNAi results in decreased DRAP1 in NARF2 cells. NARF2 cells 

were transfected by electroporation with either a pSUPER-p53 vector that targets p53 or an empty 

pSUPER vector control. Cells were left to grow for 48 hours before harvesting. A. Western blotting 

from whole cell extracts. Actin was used as loading control. B. RT-PCRs for DRAP1 and Dr1 

mRNA. ARPP P0 was used as control. C. RT-PCRs for Pol III transcripts. ARPP P0 was used as 

control. 
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while Dr1 remained unaffected (Figure 5.19, A). At the mRNA level, as tested by RT-

PCRs, both DRAP1 and Dr1 were not affected (Figure 5.19, B), while Pol III transcription 

was increased (Figure 5.19, C), as would be expected after release of repression by p53 

(Cairns & White, 1998). 

 In summary, the above experiments reveal a differential regulation of the two 

subunits of the Dr1-DRAP1 complex in hypoxia. DRAP1 is induced about two-fold and 

this seems to be a posttranscriptional effect, as DRAP1 mRNA levels are not affected. This 

DRAP1 induction might be related to p53 stabilisation under hypoxic conditions; NARF2-

E6 cells with impaired p53 presented decreased DRAP1 levels under the same conditions, 

while p53 depletion by RNAi also resulted in DRAP1 reduction.  

 

5.2.3 Rapamycin, Pol III transcription and Dr1-DRAP1 

 Rapamycin is an antifungal agent (Abraham & Wiederrecht, 1996), that has been 

shown to target the mTOR pathway (Kunz et al, 1993). Rapamycin can inhibit Pol III 

transcription in mouse cells (Ramsbottom and White, personal communication). To test if 

rapamycin has the same effect in human cells and if it affects Dr1-DRAP1 levels, HeLa 

cells were treated either with 100 nM rapamycin or a DMSO control for 4 hours before the 

cells were harvested. Rapamycin treatment resulted in decreased Pol III transcripts (Figure 

5.20, A and B), confirming experiments in mouse (Ramsbottom and White, personal 

communication). This treatment, did not affect Dr1 or DRAP1, neither at the protein 

(Figure 5.21, A and B) nor the mRNA level (Figure 5.22, A and B). S6 kinase (S6K), a 

direct target of mTOR, was not phosphorylated after rapamycin treatment, demonstrating 

that under the conditions used, the mTOR pathway and subsequently the S6K 

phosphorylation was inhibited (Figure 5.21, A). Therefore, these results suggest that the 

effect of rapamycin on Pol III transcription is independent of Dr1-DRAP1. 
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Figure 5.20. Inhibition of the mTOR pathway results in Pol III transcriptional repression in 
HeLa cells. HeLa cells were grown with 100 nM rapamycin (+) or with DMSO control (-) for 4 hours 

before harvesting. A. Total RNA was isolated, reverse transcribed to cDNA and analysed by PCRs. 

ARPP P0 was used as control. B. Quantification of the signals of Pol III transcripts from A. n=3.  
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Figure 5.21. Inhibition of the mTOR pathway does not affect Dr1 and DRAP1 proteins in 
HeLa cells. HeLa cells were grown with 100 nM rapamycin (+) or with DMSO control (-) for 4 hours 

before harvesting. A. Western blotting from whole cell extracts. Actin was used as loading control. 

B. Quantification Dr1 and DRAP1 signals from A. n=3.  
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Figure 5.22. Inhibition of the mTOR pathway does not affect Dr1 and DRAP1 mRNA in HeLa 
cells. HeLa cells were grown with 100 nM rapamycin (+) or with DMSO control (-) for 4 hours 

before harvesting. A. Total RNA was isolated, reverse transcribed to cDNA and analysed by PCRs. 

ARPP P0 was used as control. B. Quantification of Dr1 and DRAP1 signals from A. n=3.  
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5.2.4 Serum starvation, Pol III transcription and Dr1-DRAP1  

 Serum starvation has been shown to repress Pol III transcription in mouse A31 cells 

(Scott et al, 2001). It would be interesting to test if and how Dr1 and/or DRAP1 are 

regulated under these conditions. A31 cells were grown normally with 10% FBS or serum 

starved with 0.5% FBS for 24, 48 or 72 hours before harvesting (Scott et al, 2001). Whole 

cell extracts from Scott et al, (2001) were analysed by western blotting and revealed that 

under these conditions, Dr1 seems to be reduced, while DRAP1 remains unaffected (Figure 

5.23). Further experiments in cells growing with 10% or 0.5% serum for 24 hours, revealed 

that at the protein level Dr1 was reduced, while DRAP1 remained stable (Figure 5.24). The 

levels of TFIIIB, TFIIIC or Pol III subunits were also found to be unaffected (Figure 5.24), 

as previously shown (Scott et al, 2001). At the RNA level, RT-PCRs showed that Pol III 

transcripts were reduced, while Dr1 and DRAP1 mRNA levels remained stable (Figure 

5.25). These results indicate that under these conditions Dr1, but not DRAP1, levels are 

affected, in contrast to what was observed in hypoxia and heat shock.  

 Taken together the above results suggest both Dr1 and DRAP1 are subject to 

posttranscriptional regulation. Interestingly, different stress conditions can affect the two 

subunits differently, suggesting that they might not always work as a complex. 
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Figure 5.23. Serum starvation results in decreased protein levels of Dr1, but not DRAP1, in 
mouse A31 cells. Mouse A31 cells were grown either with 10% FBS (Growing) or 0.5% FBS for 

24, 48 or 72 hours before harvesting. Western blotting was performed from whole cell extracts. Cell 

extracts were provided by Scott et al, 2001.  
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Figure 5.24. Serum starvation downregulates Dr1 protein, but not DRAP1 or TFIIIB, TFIIIC or 
Pol III subunits, in mouse A31 cells. Mouse A31 cells were grown either with 10% FBS or 0.5% 

FBS for 24 hours before harvesting. Western blotting was performed from whole cell extracts. Actin 

was used as a loading control.  
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Figure 5.25. Serum starvation results in Pol III transcriptional repression, but does not affect 
the mRNA levels of Dr1 and DRAP1, in mouse A31 cells. Mouse A31 cells were grown either 

with 10% FBS or 0.5% FBS for 24 hours before harvesting. Total RNA was isolated, reverse 

transcribed to cDNA, and analysed by PCRs. ARPP P0 was used as control.  
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5.3 Discussion 

5.3.1 DRAP1 protein induction after heat shock 

 The heat shock response is a highly conserved in all organisms molecular stress 

response, that includes induction of gene expression and elevated synthesis of a family of 

stress-induced proteins called heat shock proteins (Hsps) (Lindquist & Craig, 1988). The 

Hsps function as molecular chaperones, responsible for ‘protein holding’ and ‘protein 

folding’ (Buchner, 1999; Mayer & Bukau, 2005). The main holding proteins belong to the 

Hsp70 and Hsp90 families, which bind to unfolded sequences in polypeptides and show 

preference for hydrophobic regions. These interactions can occur 1) during mRNA 

translation, when Hsp70 binds to the elongating polypeptide chain to prevent premature 

self associations in the nascent protein 2) constitutively, when Hsp90 binds to proteins with 

unstable tertiary structures and 3) during heat shock, when proteins partially unfold and 

expose hydrophobic sequences (Calderwood et al, 2006; Mayer & Bukau, 2005; Pratt & 

Toft, 2003).  

 Heat shock has been shown to affect Pol III transcription. More specifically, after 

heat shock in human cells, Alu RNA levels were found to be increased, while 5S rRNA, 

7SL RNA, 7SK RNA and U6 snRNA remained unaffected (Liu et al, 1995). Similarly in 

mouse, B1 and B2 RNAs, but not the 5S rRNA, are induced (Allen et al, 2004; Li et al, 

1999a). Moreover, the B2 RNAs have been shown to repress mRNA transcription after 

heat shock, by binding directly to Pol II (Allen et al, 2004; Espinoza et al, 2004).  

 Experiments in this study have confirmed that the levels of 5S rRNA and U6 

snRNA are not affected after heat shock in the human HeLa and U20S cell lines (Figure 

5.3 A and B, and Figure 5.6, A). Furthermore, the levels of tRNALEU and tRNATYR were 

investigated. In HeLa cells, tRNATYR was found to be increased after heat shock; tRNALEU, 

however, was not significantly altered (Figure 5.3, A and B). Initial experiments in U2OS 

cells also seemed to indicate enhanced tRNA levels after heat shock (Figure 5.6, A), but 

further experimental data from replicate experiments failed to established a significant 

increase (Figure 5.6, B). Thus, it seems that under the conditions tested, tRNA expression, 

as well as 5S rRNA and U6 snRNA, are not significantly affected by heat shock. 
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 Interestingly, heat shock resulted in elevated levels of DRAP1. DRAP1 protein 

levels were clearly raised both in HeLa (Figure 5.1, A and B) and in U2OS cells (Figure 

5.4, A and B), while Dr1 remained stable. This increase was not due to transcriptional 

activation of DRAP1, as both DRAP1 and Dr1 mRNA levels remained unaffected in both 

cell lines (Figure 5.2, A and B and Figure 5.5). Therefore, it appears that DRAP1 induction 

might be attributed to posttranscriptional regulation, perhaps by enhanced mRNA 

translation or/and protein stabilisation by decreased degradation.  

 It has previously been reported that heat shock can lead to DRAP1 recruitment to 

Hsp gene promoters in yeast (Geisberg et al, 2002). This seems contradictory to the finding 

that Dr1 release from the human Hsp70 promoter results in alleviation of repression (Kraus 

et al, 1994). It was suggested that increased presence of DRAP1 relative to Dr1 at the gene 

promoters might result in transcriptional activation (Creton et al, 2002; Geisberg et al, 

2001). It would be interesting to perform ChIP experiments in cells subjected to heat shock 

and investigate possible changes of the Dr1 and/or DRAP1 at human gene promoters. 

 Although it is not clear why DRAP1 protein is being induced and what cellular 

function this might serve, these results are interesting, as it is the first time that differential 

regulation of the Dr1-DRAP1 subunits is being reported. In contrast to the current model 

for Dr1-DRAP1 functioning as a complex with 1:1 stoichiometry, DRAP1 induction after 

heat shock, implies alternative roles for DRAP1 in response to heat shock. 

 

5.3.2 DRAP1 protein induction and Pol III transcriptional repression under hypoxic 

conditions 

 Low oxygen supply in cells triggers a coordinated stress response to restore oxygen 

homeostasis, by enhancing tissue perfusion and anaerobic ATP generation through 

glycolysis (Cummins & Taylor, 2005). This response includes transcriptional and 

posttranscriptional events, with the transcription factor HIF1 (hypoxia inducible factor 1) 

playing a major role in the control of the adaptive responses to hypoxia; under oxygen 

limiting conditions HIF1 gets stabilised (Schofield & Ratcliffe, 2004), and in turn, rapidly 

regulates the transcription of a wide range of genes, either positively or negatively (Rocha, 

2007; Semenza, 2003). However, gene expression in hypoxia is not only achieved by 

transcriptional regulation, but also by translational modulation, where translation of certain 
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mRNAs can be inhibited or enhanced (Koumenis et al, 2002; Liu et al, 2006; Wouters et 

al, 2005). 

 It has been recently reported that Pol III transcription is repressed under hypoxia in 

rat cardiomyocytes (Ernens et al, 2006). It has been shown that at 1% O2, tRNA 

transcription is downregulated due to reduced recruitment of the polymerase to promoters 

(Ernens et al, 2006). Interestingly, Dr1-DRAP1 complex has also been reported to be 

induced at severe hypoxia (0.01% O2) and mediate transcriptional repression of Pol II 

genes in a murine hepatoma cell line (Denko et al, 2003). In an attempt to extend these 

studies, hypoxic conditions were employed to investigate Pol III transcriptional repression 

and the role of Dr1-DRAP1 in human cell lines. 

 DRAP1 protein, but not Dr1, was found to be induced under hypoxic conditions 

(1% O2) in HeLa and U2OS cell lines (Figures 5.7 and 5.12). The same conclusion was 

reached when using chemically-induced anoxia (Figure 5.10). This comes in contrast to the 

previous report, where both subunits were increased in murine hepatoma cells (Denko et 

al, 2003). One cannot exclude that this contradiction might be attributed to the different 

species and cell lines used (human epithelial or osteosarcoma vs murine hepatoma). 

Another possibility might be the fact that hypoxic conditions in experiments described in 

this thesis contained 100 times more oxygen (1% O2 mild hypoxia vs 0.01% O2 severe 

hypoxia), even though chemically-induced anoxia reproduced the 1% O2 hypoxia effect 

(Figures 5.10 and 5.7, 5.12). 

  Furthermore, the induction of DRAP1 under hypoxic conditions seems to be a 

posttranscriptional effect, as the DRAP1 mRNA levels were not altered either in HeLa or 

U2OS cell lines after hypoxia or in HeLa cells after chemically-induced anoxia (Figures 

5.8, 5.11 and 5.13). This result is consistent with the Dr1-DRAP1 changes in 0.01% O2 in 

murine hepatoma cells, where the Dr1 and DRAP1 mRNA also remained stable (Denko et 

al, 2003). Moreover, a number of studies that used genomic approaches to detect gene 

expression differences between normal and hypoxic conditions, did not detect altered Dr1 

and/or DRAP1 expression at the mRNA level, supporting the argument that DRAP1 is 

posttranscriptionally regulated (Hammond et al, 2006; Ning et al, 2004; Sung et al, 2007). 

As mentioned previously, this DRAP1 protein induction might be attributed to protein 

stabilisation by decreased degradation. Since DRAP1, at least in vitro, is strongly 

phosphorylated by CK2, while Dr1 is weakly (Goppelt et al, 1996), it would be interesting 
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in the future to investigate if DRAP1 stability under hypoxic conditions is related to its 

phosphorylation status by CK2 and/or other kinases. 

 Interestingly, DRAP1 was decreased under hypoxic conditions (1% O2) in NARF2-

E6 cells (Figure 5.16). These cells are of U2OS origin and constitutively express the HPV 

E6 protein, which has been shown to bind p53 and target it for degradation via the 

ubiquitin pathway (Scheffner et al, 1992; Werness et al, 1990). Therefore, it seems that 

when p53 is impaired, DRAP1 stability under hypoxic conditions is severely affected. In 

these cells, the mRNA levels of Dr1 and DRAP1, as well as p53, were found to be 

relatively reduced in contrast to similar experiments in HeLa and U2OS, where mRNA 

remained stable (compare Figures 5.17 with 5.8 and 5.13). However, this agrees with the 

finding that Dr1 and DRAP1 seem to have a p53-responsive element at their promoter 

region and could therefore potentially be p53 targets (Figure 5.15). Depletion of p53 by 

RNAi in NARF2 cells also resulted in decreased levels of DRAP1 at the protein, but not 

mRNA level (Figure 5.19, A and B), further suggesting a relation between p53 and 

DRAP1 protein stability. It would be interesting to further investigate this in the future, by 

inducing overexpression of p53 in human cell lines, the prediction being that increased p53 

protein levels would result in increased DRAP1 protein, and perhaps also mRNA levels. 

 Pol III transcription was downregulated under hypoxic conditions in the human 

HeLa, U2OS and NARF2-E6 cell lines (Figures 5.9, 5.14 and 5.18) and in chemically-

induced anoxic conditions in HeLa (Figure 5.11). These results are in accordance with 

similar experiments in rat cardiomyocytes that showed Pol III transcription downregulation 

under hypoxic conditions (Ernens et al, 2006). Dr1 seems to have a role in Pol III 

transcriptional repression, as it was recruited to Pol III-transcribed genes under 1% O2 

hypoxia, although the total protein levels of Dr1 were unaffected (Figures 3.16, A and 

5.12). 

 Interestingly, DRAP1 protein induction during hypoxia does not seem to affect Pol 

III transcription. Pol III transcription was downregulated when DRAP1 protein levels were 

physiologically either increased (HeLa and U2OS cells) or decreased (NARF2-E6 cells) 

due to hypoxia or anoxia (Figures 5.7, 5.9, 5.10, 5.11, 5.12, 5.14, 5.16 and 5.18). Although 

DRAP1 is expected to be found together with Dr1 at Pol III promoters under hypoxic 

conditions, the substantial increase at the protein levels does not correspond to any 

significant changes in Pol III transcription (compare Figures 5.9 and 5.14 with 5.18), and 
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therefore suggests that under these conditions, DRAP1 does not have a role in the 

regulation of Pol III transcription. However, this DRAP1 induction might affect the 

transcription of certain Pol II genes or affect processes other than gene transcription. 

 As previously mentioned, Pol III transcription is downregulated under hypoxic 

conditions in rat cardiomyocytes and Pol III is disassociated from its target genes (Ernens 

et al, 2006). However, in that report TFIIIB was found to be stably associated with Pol III 

promoters, even when Pol III was displaced in hypoxia. It was suggested that this might be 

attributed to the nature of cardiomyocytes, as they are post mitotic cells that have 

withdrawn permanently from cell cycle; it was therefore predicted that in proliferating cells 

TFIIIB would be displaced under hypoxic conditions (Ernens et al, 2006). Indeed, 

experiments presented in this thesis revealed that TFIIIB was displaced at Pol III-

transcribed genes in U2OS cells under hypoxic conditions (Figure 3.16, A), confirming the 

work previously done in cardiomyocytes (Ernens et al, 2006). 

 There are conflicting reports as to whether and to what extent p53 is accumulated 

under hypoxia, in relation to HIF1ɑ (Schmid et al, 2004). Severe hypoxia has been shown 

to induce p53 (Graeber et al, 1994) and this was considered to be due to stabilisation of 

p53 by its association with HIF1ɑ (An et al, 1998). Others found that mild hypoxia (1% 

O2) strongly stabilised HIF1ɑ (Triantafyllou et al, 2006; Wenger et al, 1998), but it did not 

induce p53 and suggested that mechanisms other than HIF1ɑ activation contribute to 

induction of p53 (Wenger et al, 1998). The latter report was also challenged; it was shown 

that in HCT116 cells, 1% O2 hypoxia stabilises HIF1ɑ only after 4 days, while in 

chemically induced anoxia HIF1ɑ was stabilised after 24 hours and suggested that hypoxia 

induces a p53-dependent growth arrest without HIF1ɑ stabilization, while anoxia induces 

significant HIF1ɑ protein stabilisation and p53 activation (Achison & Hupp, 2003). Other 

reports indicated that hypoxia alone is insufficient to accumulate p53, but cooperates with 

DNA damage signals (Kaluzova et al, 2004) or glucose deprivation and acidosis (Pan et al, 

2004) to provoke p53 activation.  

 In contrast to the above mentioned reports, in the experiments included in this 

thesis, hypoxic conditions of 1% O2 resulted in p53 induction together with HIF1ɑ 

stabilisation in HeLa and U2OS cells (Figures 5.7 and 5.12). Experiments with chemically-

induced anoxia also induced p53, in agreement with previous reports (Achison & Hupp, 

2003; Ashcroft et al, 1999) and stabilised HIF1ɑ (Figure 5.10). Since the mechanism of 

p53 induction in hypoxia is not yet clear and secondary processes seem to affect p53 
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induction, this contradiction might be attributed to the specific experimental conditions 

used and also to deviations in the behaviour of different cell lines under these conditions. 

Interestingly, it seems that expression of HPV E6 (HeLa or NAFR2-E6 cells), which 

targets p53 for ubiquitination, results in greater stabilisation of HIF1ɑ (compare Figures 

5.7 and 5.16 to 5.12). This comes in accordance with the finding that p53 promotes Mdm2-

mediated ubiquitination and proteasomal degradation of the HIF1ɑ and that, therefore, loss 

of p53 enhances HIF1ɑ levels (Ravi et al, 2000).  

 In summary, experiments discussed in this chapter confirmed that Pol III 

transcription is repressed under mild hypoxia and anoxia in human cell lines. Under these 

conditions DRAP1 is posttranscriptionally stabilised, while Dr1 is not affected; p53 might 

have a role in DRAP1 stabilisation, but more experiments are needed to clarify this 

possibility; interestingly, in heat shock experiments, where DRAP1 was also found to be 

stabilised, p53 was also induced (Figures 5.1 and 5.4), in agreement with previous reports 

(Graeber et al, 1994). These results, taken together with the results from heat shock 

experiments, strongly suggest differential regulation of the two subunits and imply 

additional roles for DRAP1. 

 

5.3.3 Inhibition of mTOR by rapamycin does not affect Dr1-DRAP1 

 As previously discussed, Dr1 and DRAP1 are differentially regulated under 

hypoxic conditions, resulting in elevated DRAP1 levels. It was also mentioned that 

hypoxia does not only affect gene transcription (Rocha, 2007), but also mRNA translation 

(Wouters et al, 2005). One of the mechanisms by which hypoxia regulates translation is by 

inhibiting mTOR; it has been shown that hypoxia results in the inhibition of mTOR and 

subsequent hypophosphorylation of its substrates 4E-BP1 (4E-binding protein 1) and S6K 

(ribosomal p70 S6 kinase) (Arsham et al, 2003). 

 Rapamycin is an antifungal and immunosuppressant drug that forms a complex 

with FKBP12 (FK506-binding protein); the complex then binds to the kinase domain of 

mTOR and inhibits its function (Fingar & Blenis, 2004). Transcriptional profiling of 

rapamycin treatment has shown that the drug can affect about 5% of all the genes in yeast, 

Drosophila and mammalian cells, indicating that TOR broadly affects cellular functions 

(Reiling & Sabatini, 2006). 
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 The mTOR is required for the activation of 45S ribosomal gene transcription by Pol 

I; rapamycin treatment resulted in dephosphorylation of the rDNA transcription factor, 

UBF, which significantly reduced its ability to associate with the basal rDNA transcription 

factor SL-1 (Hannan et al, 2003). Inhibition of the mTOR pathway by rapamycin also 

downregulated Pol III transcription in mouse cells, although the mechanism(s) for 

activation of Pol III transcription by the mTOR has not yet been described (Ramsbottom 

and White, personal communication). 

 Rapamycin was employed to inhibit mTOR in human cells and confirm the 

observations in mouse cells. Indeed, treatment with rapamycin resulted in repressed Pol III 

transcription, including reduction in the expression of the stable 5S rRNA, but 

interestingly, not the U6 snRNA (Figure 5.20, A and B). Since the stable 5S rRNA was 

affected under these conditions, it is tempting to hypothesize that U6 snRNA is not 

affected due to an inhibition mechanism relying on Brf1, which is essential for 

transcription from type 1 and 2 Pol III promoters, but not Brf2, which is needed for type 3 

promoters, such that of U6 snRNA genes.  

 As hypoxia did affect DRAP1 regulation and mTOR inhibition resulted in Pol III 

downregulation, it was tested if Dr1 and DRAP1 were also regulated under these 

conditions. Dr1 and DRAP1 were found to be unaltered after rapamycin treatment both at 

the protein (Figure 5.21, A and B) and mRNA levels (Figure 5.22, A and B). S6K was 

found to be hypophosphorylated after the rapamycin treatment, confirming that mTOR was 

inhibited (Figure 5.21, A). It is therefore concluded that Dr1 and DRAP1 are not regulated 

by components downstream of the mTOR pathway. 

 

5.3.4 Serum starvation affects Dr1, but not DRAP1 

 Serum starvation results in growth arrest at G1 phase (Pardee, 1974) and is widely 

used to synchronise mammalian cells and analyse the cell cycle. It has been shown in 

mouse fibroblasts that serum starvation results in Pol III transcriptional repression of all 

three types of Pol III promoters and that Rb plays a major role by binding to TFIIIB (Scott 

et al, 2001). In HeLa cells, Pol III transcription was also shown to be downregulated when 

cells were growing in low serum (Sinn et al, 1995).  
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 Mouse A31 fibroblasts were used to investigate if serum starvation, and the 

subsequent mitogen deprivation and growth arrest, would result in regulation of Dr1 and/or 

DRAP1. It was found that protein levels of Dr1, but not DRAP1, are reduced in serum-

starved cells (Figures 5.23 and 5.24). The protein levels of TFIIIB, TFIIIC and Pol III 

subunits were also tested and found to be unaltered in accordance with previous studies 

(Scott et al, 2001). At the mRNA level, Dr1 and DRAP1 were not affected (Figure 5.25), 

while the Pol III transcripts were reduced (Figure 5.25), as expected (Scott et al, 2001). 

These results indicate that in contrast to the data from heat shock and hypoxia experiments, 

where DRAP1 was posttranscriptionally regulated, Dr1 can also be, probably by 

posttranscriptional mechanisms that might involve inhibition of mRNA translation or 

enhanced degradation of the translated protein. 

 In summary, a number of experiments employing different stress conditions, such 

as heat shock, hypoxia, and serum deprivation, reveal that the two subunits of the Dr1-

DRAP1 complex can be differentially regulated at the posttranscriptional level. The 

mechanism of regulation, as well as the role and function of the two subunits under these 

conditions, are not yet known; it is tempting to hypothesise that under stress Dr1 and 

DRAP1 might also acquire additional roles, other than forming a dimeric transcriptional 

regulation complex.  
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CHAPTER 6 

 

 

 

 

 

 

The in vivo role of the pocket proteins 
Rb/p107/p130 in RNA polymerase III transcription 
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6.1 Introduction 

6.1.1 The pocket proteins Rb/p107/p130 

 The retinoblastoma (Rb) gene family includes three members Rb, p107 and p130, 

that are commonly referred as the ‘pocket proteins’ due to their conserved binding pocket 

region. The pocket region, that mediates interactions with viral oncoproteins and cellular 

proteins, contains two conserved functional domains separated by a spacer which differs 

among the members (Figure 6.1) (Classon & Harlow, 2002). The pocket proteins are 

differentially expressed during the cell cycle; p130 is highly expressed in arrested cells, 

whereas p107 expression peaks during the S phase and Rb is steadily expressed through 

the cell cycle (Classon & Harlow, 2002). More than 100 proteins have been reported to 

interact with the Rb proteins and in most cases the interactions occur through the pocket 

region (Morris & Dyson, 2001).  

 

 

Figure 6.1. The Rb family. Rb, p107 and p130 make up the Rb family proteins. The pocket 

domain consists of regions A and B, separated by a spacer. Adapted from Classon and Harlow, 

2002. 

 

6.1.2 Rb/p107/p130 function and regulation 

 Major targets of the Rb proteins are the E2F transcription factors. The family of 

E2F transcription factor consists of at least 9 members that can be transcriptional activators 

(E2F1, E2F2, E2F3a) or repressors (E2F3b, E2F4, E2F5, E2F6, E2F7, E2F8) (Dimova & 
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large number of genes, which are involved in cell cycle progression, DNA replication and 

damage repair, apoptosis, development and differentiation (Bracken et al, 2004; Trimarchi 

& Lees, 2002). Individual E2Fs have distinct mechanisms of action and regulation, and are 

associated with particular types of biological activities (Dimova & Dyson, 2005); Rb 

preferentially binds to E2F1-3, while p107 and p130 bind to E2F4 and E2F5 (Cobrinik, 

2005). Binding of the E2F/DP dimers by pocket proteins results in blocking their 

transcriptional domains and, thus, in the inhibition of E2F-dependent transcription (Helin 

et al, 1993). 

 The activity of the Rb family members is regulated post-translation by 

phosphorylation; they can interact with their target proteins when hypophosphorylated, 

while phosphorylation results in their inactivation (Mittnacht, 1998). This phosphorylation 

of the pocket proteins is mediated by cyclins and cyclin-dependent kinases (CDKs), with 

their hyperphosphorylation at the end of G1 being essential for progress to the S phase of 

the cell cycle (Adams, 2001). More specifically, cyclin D/CDK4,6 and cyclin E/CDK2 can 

phosphorylate Rb and p130 in G1 (Ewen et al, 1993; Hansen et al, 2001), while p107 

seems to be phosphorylated by cyclin D/CDK4 (Beijersbergen et al, 1995). In general, 

according to the current model (Knudsen & Knudsen, 2006; Mittnacht, 1998), mitogenic 

signals in G1 activate cyclin D/CDK4,6 and cyclin E/CDK2 complexes that 

hyperphosphorylate Rb and render it inactive. E2F proteins are thus no longer inhibited 

and proceed with their transcriptional programmes that facilitate progression through S and 

G2/M phases; with the exception of G1, Rb is held inactive (hyperphosphorylated) during 

the rest of the cell cycle (Knudsen & Knudsen, 2006; Mittnacht, 1998). 

 Rb proteins can regulate transcription not only through the inhibition of E2F-

mediated gene transcription, but also by changes in chromatin structure. It has been shown 

that Rb, p107 and p130 can interact with histone deacetylase 1 (HDAC1) and be recruited 

to E2F complexes (Brehm et al, 1998; Ferreira et al, 1998; Magnaghi-Jaulin et al, 1998). 

Rb family proteins can also associate with hBRM and BRG1 (Dunaief et al, 1994; Strober 

et al, 1996; Trouche et al, 1997), homologs of components of the yeast chromatin 

remodelling SNF2/SWI2 complex, although a physical interaction between Rb and BRG1 

is not required for Rb-mediated growth arrest and transcriptional repression of E2F target 

genes (Kang et al, 2004). Moreover, the pocket proteins can associate with the histone 

methyl transferase SUV39H1, that specifically methylates K9 of histone H3 (Nicolas et al, 

2003; Nielsen et al, 2001; Vandel et al, 2001), and also with the tri-methylating enzymes 
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Suv4-20h1 and Suv4-20h2 that tri-methylate K20 of histone H4 (Gonzalo et al, 2005), 

suggesting an important role of the Rb proteins in histone methylation and 

telomeric/centromeric chromatin. Taken together, the above studies suggest that the Rb 

family proteins can regulate transcriptional repression at the chromatin level by recruiting 

HDACs, methylases and other chromatin remodelling enzymes. 

 

6.1.3 The pocket proteins as tumour suppressors 

 It is believed that in almost all cancers the Rb function is compromised and several 

mechanisms that can accomplish this have been identified in human tumours (Hanahan & 

Weinberg, 2000). First, loss or mutation of the Rb locus itself, as occurs in retinoblastoma, 

can ablate Rb function (Hanahan & Weinberg, 2000). Overexpression of cyclin D or 

CDK4, as well as loss or mutation of the cyclin-dependent kinase inhibitor p16INK4, result 

in enhanced Rb phosphorylation and its subsequent inactivation (Hanahan & Weinberg, 

2000; Knudsen & Knudsen, 2006). Moreover, oncoproteins such as the HPV E7 (Dyson et 

al, 1989), the SV40 large T antigen (Dyson et al, 1990) or the adenovirus E1A (Whyte et 

al, 1988) can sequester Rb and inhibit interaction with E2F or corepressor molecules, 

compromising its function (Hanahan & Weinberg, 2000; Knudsen & Knudsen, 2006).  

 A number of knock-out mice were generated in order to genetically study the role 

of the Rb family proteins in tumourigenesis. Mice deficient for Rb (Rb-/-) are embryonic 

lethal (Clarke et al, 1992; Jacks et al, 1992; Lee et al, 1992). Surprisingly, low-passaged 

cells derived from Rb-/- mice exhibit a cell cycle profile similar to that of Rb proficient 

cells (Mayhew et al, 2004; Sage et al, 2003); moreover, unlike in human, Rb+/- (or Rb-/-) 

mice do not develop retinoblastoma (Jacks et al, 1992), but instead the inactivation of p107 

or p130 simultaneously with Rb is needed (MacPherson et al, 2004; Robanus-Maandag et 

al, 1998). It is thus believed that there is some redundancy in the function of p107/p130 

and Rb and that the lack of Rb is compensated for by p107 and p130 (Donovan et al, 2006; 

Hurford et al, 1997; Lee et al, 1996); this compensation might be especially important in 

particular tissues (Vidal et al, 2007). Furthermore, tissue-specific knockouts revealed that, 

in many cases, Rb inactivation resulted in increased proliferation, but not tumourigenesis, 

which required additional mutations, often disabling the p53 pathway (Vidal et al, 2007). 
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 Unlike Rb, mutations in p107 and p130 loci are not a common event in cancer 

(Classon & Dyson, 2001). Knockouts for p107 and p130 showed no predisposition for 

tumour formation; similarly, p107+/-; p130-/- or p107-/-; p130+/- mice did not develop 

tumours (Cobrinik et al, 1996; Lee et al, 1996; Vidal et al, 2007). However, as mentioned 

before, Rb-/-; p107-/- and Rb-/-; p130-/- mice, in contrast to Rb-/-, do develop retinoblastoma 

(MacPherson et al, 2004; Robanus-Maandag et al, 1998). Thus, it has been proposed that 

p107 and p130 may function as tumour suppressors in combination with other mutations, 

such as those that result in Rb deactivation (Classon & Dyson, 2001); this seems to be the 

case, as Rb/p107- and Rb/p130- deficient mice are highly cancer-prone and p107 and p130 

can suppress tumour development by loss of pRB in a variety of tissues (Dannenberg et al, 

2004). Cell culture evidence also supports the role of p107 and p130 as tumour 

suppressors, as experiments with triple knockout fibroblasts showed that all three Rb 

family proteins collaborate to maintain control of the cell cycle (Dannenberg et al, 2000; 

Sage et al, 2000). 

 

6.1.4 The Rb family and RNA polymerase III transcription  

 Apart from controlling E2F-dependent transcription, Rb can bind to a large number 

of proteins that participate in various cellular functions (Morris & Dyson, 2001). Rb has 

been shown to repress Pol III transcription (White et al, 1996) by binding to TFIIIB when 

it is hypophosphorylated (Chu et al, 1997; Hirsch et al, 2004; Larminie et al, 1997; Scott et 

al, 2001; Sutcliffe et al, 2000). As a result, TFIIIB is sequestered in an inactive complex 

and cannot interact with TFIIIC or Pol III at Pol III promoters, resulting in Pol III 

transcriptional repression (Hirsch et al, 2004; Sutcliffe et al, 2000). The U6 snRNA genes, 

which possess type 3 Pol III promoters, are an exception, as Rb can be found at these 

promoters (Hirsch et al, 2004). p107 and p130 have also been shown to interact with 

TFIIIB and repress Pol III transcription, although Rb may have a dominant role in 

controlling Pol III transcription, at least in certain cell types (Sutcliffe et al, 1999). 
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6.2 Results 

 A number of in vitro and in vivo experiments have established control of Pol III 

transcription by the Rb family proteins in mouse cells (Larminie et al, 1997; Sutcliffe et al, 

2000; Sutcliffe et al, 1999; White et al, 1996). However, there are considerable differences 

between the human and mouse models regarding tumour suppression by the Rb family. For 

example, humans heterozygous for Rb develop retinoblastoma, while heterozygous mice 

only develop a mild form of dysplasia (Vidal et al, 2007). Therefore, it would be 

interesting to investigate if the Rb family members can repress Pol III transcription in vivo, 

in human cells, in a similar manner to that already shown in mouse.  

 

6.2.1 Regulation of Pol III-transcribed gene expression by Rb in IMR90 and HeLa 

cells 

 To investigate how loss of Rb would affect Pol III transcripts, an RNAi approach 

was employed. IMR90 human lung fibroblasts were transfected with siRNA against Rb or 

Oct-1 (control). Twenty four hours post-transfection the cells were harvested and extracts 

were prepared for protein or RNA analysis. Western blotting revealed that cells treated 

with the Rb siRNA had reduced levels of Rb in comparison with the control (Figure 6.2, 

A). Acting as control, Oct-1 was decreased, confirming the effectiveness of the RNAi 

depletion under these conditions (Figure 6.2, A). Furthermore, RNA analysis revealed that, 

as expected, Rb mRNA was also diminished (Figure 6.2, B).  

  RT-PCR analysis revealed that depletion of Rb resulted in about 2-fold and 4-fold 

increase of 5S rRNA and tRNA expression levels respectively (Figure 6.3, A and B). 

These results agree with previous studies in mouse cells, where Rb-null cells presented 

elevated levels of Pol III transcripts (Larminie et al, 1997; White et al, 1996), and suggest 

that Rb maintains the same Pol III transcriptional repressive role in normal human cells.  

 HeLa is a human cervical carcinoma cell line that has the viral HPV18 DNA 

integrated into the cellular genome and expresses the viral E7 protein (Schwarz et al, 

1985). E7 can bind to Rb, p107 and p130 (Dyson et al, 1989; Gonzalez et al, 2001), 

resulting in the inhibition of the activity of these tumour suppressors and elevated Pol III 

transcription in this cell line (Larminie et al, 1999). Since a fraction of Rb is thought to be  
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Figure 6.2. Rb RNAi in IMR90 cells. IMR90 human lung fibroblasts were transfected with siRNA 

(100 nM) against Rb or Oct-1 (control). Cells were harvested 24 hours after transfection. A. 
Western blotting for Rb and Oct-1. Actin was used as loading control. The arrow indicates the Rb 

protein (total). B. RT-PCR analysis to confirm the Rb knock-down at the mRNA level. 
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Figure 6.3. Expression of Pol III transcripts is elevated after Rb knock-down in IMR90 cells. 
IMR90 human lung fibroblasts were transfected with siRNA (100 nM) against Rb or Oct-1 (control). 

Cells were harvested 24 hours after transfection, total RNA was isolated, reverse transcribed to 

cDNA and analysed by PCR. A. RT-PCR analysis for Pol III templates. B. Quantification of the 

signals of Pol III transcripts from A. 
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active in HeLa cells and it still binds to a percentage of TFIIIB (Larminie et al, 1997), 

further depletion of Rb should result in higher levels of Pol III transcription. 

 To test this hypothesis, HeLa cells were transfected with siRNA targeting Rb or 

Oct-1 (control) and harvested after 24 hours. Western blotting revealed that Rb protein 

levels were decreased in the RNAi treated cells compared to the control, while the Oct-1 

levels were also decreased as expected (Figure 6.4, A). Furthermore, Rb mRNA was also 

diminished (Figure 6.4, B). However, depletion of Rb did not result in upregulation of Pol 

III transcription as anticipated (Figure 6.5). More specifically, 5S rRNA and tRNALEU 

levels were about 40-50% reduced after depletion of Rb (Figure 6.5, A and B), in contrast 

to the results obtained from the untransformed IMR90 cells under the same experimental 

conditions (Figure 6.3). 

 

6.2.2 Regulation of Pol III-transcribed gene expression by p107 in IMR90 and HeLa 

cells 

 To further extend these studies and investigate if the other two family members can 

affect Pol III transcription in human cell lines, p107 was depleted by RNAi. Knock-down 

of p107 in IMR90 cells after RNAi treatment was confirmed by reduced p107 protein and 

mRNA levels in the treated cells compared to the control (Figure 6.6, A and B). 

Interestingly, p107 depletion resulted in an about 2.5-fold upregulation of tRNA, but about 

50% downregulation of 5S rRNA expression (Figure 6.7, A and B).  

 In order to test if depletion of p107 would result in a similar effect in HeLa cells, 

p107 RNAi was employed under the same conditions as in the IMR90 cells. The knock- 

down of p107 in HeLa cells was confirmed by p107 reduction at the protein and mRNA 

level (Figure 6.8, A and B). In this case, the 5S rRNA expression was found to be 

significantly decreased, as was also observed in the IMR90 cells, while the tRNA 

expression was slightly downregulated too (Figure 6.9, A and B). 
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Figure 6.4. Rb RNAi in HeLa cells. HeLa cells were transfected with siRNA (100 nM) against Rb 

or Oct-1 (control). Cells were harvested 24 hours after transfection. A. Western blotting for Rb and 

Oct-1. Actin was used as loading control. The arrow indicates the Rb protein (total). B. RT-PCR 

analysis to confirm the Rb knock-down at the mRNA level. 
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Figure 6.5. Expression of Pol III transcripts is decreased after Rb knock-down in HeLa cells. 
HeLa cells were transfected with siRNA (100 nM) against Rb or Oct-1 (control). Cells were 

harvested 24 hours after transfection, total RNA was isolated, reverse transcribed to cDNA and 

analysed by PCR. A. RT-PCR analysis for Pol III templates. B. Quantification of the signals of Pol 

III transcripts from A. 
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Figure 6.6. p107 RNAi in IMR90 cells. IMR90 fibroblasts were transfected with siRNA (100 nM) 

against p107 or Oct-1 (control). Cells were harvested 24 hours after transfection. A. Western 

blotting for p107 and Oct-1. Actin was used as loading control. B. RT-PCR analysis to confirm the 

p107 knock-down at the mRNA level. 
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Figure 6.7. Expression of Pol III transcripts after p107 knock-down in IMR90 cells. IMR90 

fibroblasts were transfected with siRNA (100 nM) against p107 or Oct-1 (control). Cells were 

harvested 24 hours after transfection, total RNA was isolated, reverse transcribed to cDNA and 

analysed by PCR. A. RT-PCR analysis for Pol III templates. B. Quantification of the signals of Pol 

III transcripts from A. 
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Figure 6.8. p107 RNAi in HeLa cells. HeLa cells were transfected with siRNA (100 nM) against 

p107 or Oct-1 (control). Cells were harvested 24 hours after transfection. A. Western blotting for 

p107 and Oct-1. Actin was used as loading control. B. RT-PCR analysis to confirm the p107 knock-

down at the mRNA level. 
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Figure 6.9. Expression of Pol III transcripts after p107 knock-down in HeLa cells. HeLa cells 

were transfected with siRNA (100 nM) against p107 or Oct-1 (control). Cells were harvested 24 

hours after transfection, total RNA was isolated, reverse transcribed to cDNA and analysed by 

PCR. A. RT-PCR analysis for Pol III templates. B. Quantification of the signals of Pol III transcripts 

from A. 
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6.2.3 Regulation of Pol III-transcribed gene expression by p130 in IMR90 and HeLa 

cells 

 Data from Rb and p107 RNAi experiments hint at possible different roles for the 

two proteins in the regulation of Pol III transcription, that might also vary in different cell 

lines. To extend this line of investigation to the remaining family member, p130 was 

knocked-down by RNAi in IMR90 and HeLa cells. p130 was depleted by RNAi in IMR90 

under the same conditions used for Rb and p107, and the knock-down was confirmed by 

western blotting and RT-PCR analysis (Figure 6.10, A and B). p130 depletion resulted in 

an about 65% increase of tRNA expression and slightly decreased (about 30%) expression 

of 5S rRNA (Figure 6.11, A and B), in a pattern similar to that observed after p107 

depletion in IMR90 cells and in partial contrast to the Rb depletion, which resulted in 

enhanced 5S rRNA and tRNA expression. RNAi of p130 in HeLa cells resulted in similar 

decrease of p107 protein and mRNA as in the case of IMR90 cells (Figure 6.12, A and B). 

Pol III transcription of 5S rRNA and tRNA in this cell line was downregulated by about 

40-50% after depletion of p130 (Figure 6.13, A and B), in general accordance with the 

results obtained after depletion of Rb and p107 in the same cell line. 
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Figure 6.10. p130 RNAi in IMR90 cells. IMR90 fibroblasts were transfected with siRNA (100 nM) 

against p130 or Oct-1 (control). Cells were harvested 24 hours after transfection. A. Western 

blotting for p130 and Oct-1. Actin was used as loading control. B. RT-PCR analysis to confirm the 

p130 knock-down at the mRNA level. 
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Figure 6.11. Expression of Pol III transcripts after p130 knock-down in IMR90 cells. IMR90 

fibroblasts were transfected with siRNA (100 nM) against p130 or Oct-1 (control). Cells were 

harvested 24 hours after transfection, total RNA was isolated, reverse transcribed to cDNA and 

analysed by PCR. A. RT-PCR analysis for Pol III templates. B. Quantification of the signals of Pol 

III transcripts from A. 
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Figure 6.12. p130 RNAi in HeLa cells. HeLa cells were transfected with siRNA (100 nM) against 

p130 or Oct-1 (control). Cells were harvested 24 hours after transfection. A. Western blotting for 

p130 and Oct-1. Actin was used as loading control. B. RT-PCR analysis to confirm the p130 knock-

down at the mRNA level. 
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Figure 6.13. Expression of Pol III transcripts after p130 knock-down in HeLa cells. HeLa cells 

were transfected with siRNA (100 nM) against p130 or Oct-1 (control). Cells were harvested 24 

hours after transfection, total RNA was isolated, reverse transcribed to cDNA and analysed by 

PCR. A. RT-PCR analysis for Pol III templates. B. Quantification of the signals of Pol III transcripts 

from A. 
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6.3 Discussion 

6.3.1 The in vivo role of Rb family proteins in the regulation of Pol III transcription in 

human cells 

 It is believed that almost all cancers need to compromise Rb function in order to 

develop (Hanahan & Weinberg, 2000). The control of cell growth and proliferation by the 

Rb tumour suppressor and the other family members is, therefore, of paramount 

importance. A large number of studies focused on the ability of the Rb family members to 

bind E2F factors and inhibit E2F-mediated transcription (Bracken et al, 2004; Classon & 

Harlow, 2002; Dimova & Dyson, 2005). However, the pocket proteins interact with a large 

number of proteins other than E2Fs (Morris & Dyson, 2001; Mulligan & Jacks, 1998); the 

661W mutant Rb is unable to bind E2Fs, but can still suppress cell cycle progression and 

tumour cell growth (Sellers et al, 1998; Whitaker et al, 1998), indicating important roles 

for proteins other than E2Fs interacting with the Rb family members. 

 Growth, as an increase in cell mass, depends on protein synthesis, which in turn is 

limited by ribosome availability (White, 2005). Consequently, transcription of rRNA and 

tRNA genes by Pol I and Pol III is essential for maintaining protein synthesis and growth 

and is therefore tightly regulated (White, 2005). Rb family members can regulate Pol I and 

Pol III transcription by interactions with the transcriptional factors UBF and TFIIIB, 

respectively (White, 2005). More specifically for Pol III transcription, interaction of the 

pocket proteins with TFIIIB seems to inhibit the formation of an active preinitiation 

complex with TFIIIC and Pol III, sequestering TFIIIB and resulting in transcriptional 

repression (Larminie et al, 1997; Sutcliffe et al, 2000; Sutcliffe et al, 1999; White et al, 

1996). 

 Since most of the experiments elucidating the role of RB proteins in Pol III 

transcription were performed in mouse cells, it is important to confirm that the same 

conclusions stand in human cells. Moreover, studying the effect on Pol III transcription 

after the loss of each individual protein of the family in the human system could potentially 

lead to conclusions about the differences within the family members in regulating the 

expression of different types of Pol III transcripts.  
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 To this end, the in vivo role of Rb, p107 and p130 in Pol III transcription was 

investigated by RNAi in IMR90 fibroblasts. Knock-down of Rb resulted in increased 

expression of rRNA and tRNA transcripts (Figure 6.3). These data are in accordance with 

previous reports that showed Rb to repress Pol III transcription in mouse cells (Larminie et 

al, 1997; White et al, 1996). Interestingly, partial depletion of p107 or p130 also resulted in 

increased tRNA, but decreased levels of 5S rRNA (Figures 6.8 and 6.12). These results 

might suggest that p107 and/or p130 can regulate 5S rRNA and tRNA promoters in diverse 

ways and, in the case of 5S rRNA, distinctly from Rb.  

 It has been shown that although all three Rb family members can bind TFIIIB and 

repress Pol III transcription (Larminie et al, 1997; Sutcliffe et al, 1999), Rb and p130, but 

not p107, can bind to UBF and repress Pol I transcription (Ciarmatori et al, 2001; Hannan 

et al, 2000). As mentioned previously, the expression pattern of p107 and p130 during the 

cell cycle is different, with p107 mainly expressed in the S phase and p130 in quiescent 

cells. Co-ordination of Pol I and Pol III transcription would require equimolar expression 

of the rRNA produced by the two polymerases and thus, it seems plausible that p107 might 

not repress transcription of 5S rRNA by Pol III. p107 might compete with Rb for binding 

with TFIIIB and might not inhibit recruitment of the complex at 5S rRNA promoters. If 

this is the case, then depletion of p107 could result in greater sequestering of TFIIIB by 

Rb, resulting in decreased levels of 5S rRNA, as observed in p107 RNAi (Figure 6.7). 

p130 seems to act similarly to p107, since p130 RNAi did not result in increased 

expression of 5S rRNA, although the effect was not as strong as that observed with p107 

RNAi (Figure 6.11).  

 The finding that knock-down of Rb resulted in increased Pol III-transcribed gene 

expression, comes in agreement with previous studies in mouse and human cells (Larminie 

et al, 1997; Sutcliffe et al, 2000; White et al, 1996). These studies identified Rb as a 

repressor of Pol III transcription and the RNAi experiments confirm that that this is indeed 

the case in IMR90 human cells, in vivo. p107 and p130 also repress transcription of tRNA 

genes in vivo, extending previous studies in human SAOS cells overexpressing p107 or 

p130 (Sutcliffe et al, 1999), but they do not repress 5S rRNA transcription (Figure 6.7 and 

6.12). This contrasts with previous experiments, where addition of GST-p107 or GST-p130 

in human extracts resulted in decreased transcription of 5S rRNA genes (Sutcliffe et al, 

1999). However, it is not clear that the effect on 5S rRNA after p107 or p130 knock-down 
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is a transcriptional one; it might also be attributed to post-transcriptional effects on rRNA 

stability.   

 The overall growth characteristics of Rb-/-, p107-/-, p130-/- and p107-/- ; p130-/- 

mouse embryonic fibroblasts (MEF) did not deviate from those of wild-type MEFs 

(Cobrinik et al, 1996; Herrera et al, 1996; Lee et al, 1996), while triple (Rb-/- ; p107-/- ; 

p130-/-) knockouts resulted in cells unable to arrest in G0/G1 (Dannenberg et al, 2000; 

Sage et al, 2000), suggesting functional redundancy and compensation within the pocket-

protein family. There might also be redundancy in the regulation of Pol III transcription by 

the three family members in human cells; after partially depleting one, the other two might 

be able to compensate for the loss. However, this was not observed in the RNAi 

experiments. Knock-down of each individual member resulted in enhanced tRNA levels, 

while 5S rRNA was increased after knock-down of Rb, but decreased when p107 or p130 

were partially depleted. The 5S rRNA expression was less affected after loss of p130 than 

loss of p107, hinting that p107 might have a dominant role in controlling 5S rRNA 

transcription compared to p130, if that is a transcriptional effect. Alternatively, however, it 

could also be attributed to a less efficient p130 knock-down. It is possible that in humans 

there is a much lower degree of functional redundancy within the family members than in 

mice; the fact that Rb+/- humans develop retinoblastoma, while Rb+/- mice are unaffected 

might constitute an example of different functional overlap of the Rb proteins in the two 

species. 

 Interestingly, knock-down of the individual Rb family members by RNAi in HeLa 

cells resulted in decreased expression of Pol III-transcribed genes (Figures 6.6, 6.10 and 

6.14), in contrast to the findings in IMR90 cells (Figures 6.4, 6.8 and 6.12). Since Rb, p107 

and p130 bind to TFIIIB (Larminie et al, 1997; Sutcliffe et al, 1999) and are partially 

active in HeLa cells (Goodwin & DiMaio, 2000; Scheffner et al, 1991), their partial 

depletion should result in release of TFIIIB and stimulation of Pol III transcription. A 

possible explanation for the diverse effect after partial depletion of Rb proteins in the two 

cell lines might lie in the physiology of HeLa cells. 

 HeLa is a human cervical carcinoma cell line that expresses wild type p53 and Rb 

(Scheffner et al, 1991), but also has the viral HPV18 DNA integrated into the cellular 

genome and expresses the viral E6 and E7 proteins (Schwarz et al, 1985). E7 can bind to 

the Rb family proteins and mediate their proteosomal degradation (Dyson et al, 1989; 
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Gonzalez et al, 2001), resulting in inhibition of the activity of these tumour suppressors. 

Overexpression of HPV16 E7 has been shown to stimulate Pol III transcription in mouse 

and human cells, probably due to release of TFIIIB from repression by Rb, p107 and p130 

(Larminie et al, 1999; Sutcliffe et al, 1999). Due to E7 expression in HeLa cells and the 

consequent degradation of the Rb proteins, it would be anticipated that a higher percentage 

of TFIIIB would be available, resulting in stimulated Pol III transcription; indeed, Pol III 

transcription is elevated in HeLa cells and it is estimated that only 5-10% of TFIIIB is 

associated with Rb in extracts made from asynchronous HeLa cells (Larminie et al, 1997).  

 The effect observed on Pol III transcription in HeLa cells after knocking-down 

members of the Rb family might not be a direct effect as expected, i.e. depletion of Rb 

leading to release of TFIIIB and stimulation of Pol III transcription, but rather indirect, 

implicating the p53 pathway. According to this scenario, knock-down of Rb would result 

in release of E7 that could bind to available p107 and p130. Thus, depletion of Rb and 

further inhibition of p107 and p130 would result in transcriptional activation of E2F 

targets, including ARF (Lowe & Sherr, 2003). Activation of ARF would inhibit Mdm2, 

stabilise p53 and repress Pol III transcription (Cairns & White, 1998; Crighton et al, 2003; 

Morton et al, 2007), explaining the repression of Pol III transcription observed after Rb 

RNAi. Repression after partial depletion of p107 and p130 by RNAi might be explained 

similarly. This response would require an intact Rb pathway in HeLa cells, which seems to 

be the case as repression of E7 in HeLa resulted in reactivation of the Rb and p53 

pathways (Goodwin & DiMaio, 2000). 

 In summary, data included in this chapter suggest that Rb, p107 and p130 can 

repress tRNA transcription in normal human cells, confirming previous studies in mouse 

cell lines. The role of the Rb proteins in transformed cells, like HeLa, is more complex as 

viral proteins, like E7, might tip the balance between different pathways, such as the Rb 

and p53 pathways, resulting in complicated responses.  
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The tumour suppressors p53 and ARF can regulate 
RNA polymerase III transcription in human cells 
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7.1 Introduction 

7.1.1 The p53 tumour suppressor 

 p53 is a key player in tumour development; approximately half of all malignancies 

contain p53 mutations, and tumours that do not have these kind of mutations, usually have 

inactivated p53 by other mechanisms (Vogelstein et al, 2000). Moreover, p53 null mice are 

born and develop normally, but develop cancer before 6 months (Donehower et al, 1992), 

while humans that suffer from Li Fraumeni syndrome, and carry a germline mutation in 

p53, display an abnormally high and early incidence of cancer (Srivastava et al, 1990). 

Therefore, p53 is considered to be an important tumour suppressor. Moreover, a number of 

other roles have recently been suggested for p53, including the regulation of glycolysis and 

autophagy, the repair of genotoxic damage, regulation of oxidative stress, angiogenesis, 

cell differentiation and others (Vousden & Lane, 2007).  

 The tumour suppression function of p53 is mainly achieved through its ability, as a 

transcription factor, to positively or negatively regulate a large number of target genes and 

induce different cellular responses (Figure 7.1), including cell cycle arrest, senescence and 

apoptosis (Prives & Hall, 1999; Vogelstein et al, 2000). p53 may promote transcription by 

Pol II via a number of mechanisms. It can bind to its response elements within promoters 

and recruit histone transacetylases, methyltransferases and chromatin remodelling factors, 

resulting in histone modifications and subsequently in alterations in chromatin structure 

and promoter opening (Laptenko & Prives, 2006). Furthermore, p53 can interact with 

components of the Mediator complex and facilitate the formation of the preiniation 

complex and also, bind and recruit basal transcription factors and consequently stimulate 

transcription (Laptenko & Prives, 2006). Several mechanisms have also been documented 

for the transcriptional repression of Pol II-transcribed genes by p53. It can directly interact 

with transcriptional activators and exclude them from the promoter or displace them from 

their binding sites within promoter complexes, resulting in the inhibition of preinitiation 

complex formation. Moreover, p53 might repress transcription through novel DNA binding 

elements or by recruiting histone deacetylases and other chromatin modifying factors 

(Laptenko & Prives, 2006), while p53-mediated repression can also be achieved by 

activation of p53 targets, such as p21 (Lohr et al, 2003). 
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Figure 7.1. Activation and functions of p53. p53 can be induced by a number different stress 

conditions (blue boxes) and its activation can result in different cellular responses (pink boxes). 

Adapted from Vousden and Lane, 2007. 

  

 The anti-proliferative, such as cell cycle arrest and senescence, and apoptotic 

activities of p53 would require efficient control of p53 expression to allow normal cell 

growth and development. Indeed, p53 protein stability is tightly regulated. p53 is degraded 

by the proteasome after being ubiquitinated and a number of ubiquitin ligases can promote 

the degradation of p53 (Horn & Vousden, 2007), Mdm2 (also known as Hdm2 in human) 

being the best studied. Mdm2 functions as an ubiquitin ligase that can ubiquinate and 

target p53 for degradation (Fang et al, 2000). Interestingly, Mdm2 is also a target of p53, 

creating a feedback loop, through which p53 levels are kept low (Zauberman et al, 1993). 

A number of other proteins, like Yin Yang 1 (Sui et al, 2004), gankyrin (Higashitsuji et al, 

2005) and p300 (Grossman et al, 2003), interact with Mdm2 and contribute to p53 poly-

ubiquitination and degradation.  

 Apart from the regulation of p53 stability, other processes can also contribute to the 

control of p53 function. MdmX (also known as Mdm4) is a relative of Mdm2 that does not 

show E3 ligase activity (Jackson & Berberich, 2000), but rather functions by binding to 

p53 and directly inhibiting its transcriptional role (Shvarts et al, 1996). Furthermore, p53 

can be modified by the ubiquitin-like proteins NEDD8 and SUMO-1 (Watson & Irwin, 

2006), resulting in inhibition or activation of p53, respectively (Bischof et al, 2006; 

Xirodimas et al, 2004), while p53 modifications in a ubiquitin-ligase-dependent manner by 

Mdm2 (Li et al, 2003), Cullin 7 (Andrews et al, 2006), WWP1 (Laine & Ronai, 2007) and 

Ubc13 (Laine et al, 2006) can result in accumulation of transcriptionally inactive p53 in 
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the cytoplasm. Furthermore, p53 is also subject to several post-translational modifications, 

such as phosphorylation, acetylation, methylation, glycosylation and ribosylation that play 

important roles in controlling p53 interactions and cellular responses (Bode & Dong, 

2004). 

 Tight regulation of p53 is essential for normal cell growth, but p53 must be 

stabilised and activated to function as a tumour suppressor. This can be achieved by a 

number of stress signals (Figure 7.1), including DNA damage and oncogene activation 

(Horn & Vousden, 2007). DNA damage results in p53 phosphorylation by a cascade of 

Ser/Thr kinases that includes ATM (ataxia telangiectasia mutated), ATR (ATM- and Rad3- 

related), Chk1 (Checkpoint kinase1) and Chk2 (Checkpoint kinase 2) (Appella & 

Anderson, 2001), and probably other kinases, such as JNK (c-Jun N-terminal kinase) and 

p38 (Bulavin et al, 1999; Efeyan & Serrano, 2007; Fuchs et al, 1998). Oncogenic 

signalling e.g. from Ras (Palmero et al, 1998), E1A (de Stanchina et al, 1998) or Myc 

(Zindy et al, 1998), activates p53 via the ARF tumour suppressor. ARF (also known as 

p14ARF in humans and p19ARF in mice) responds to hyperproliferative signals originating 

from oncogenic stimuli by interacting directly with Mdm2 and inhibiting p53 

ubiquitination and degradation (Pomerantz et al, 1998; Zhang et al, 1998); this results in 

p53 activation and consequently, the re-routing of cells that endured oncogenic damage to 

growth arrest or apoptosis (Sherr, 2001). As expected, mice deficient in ARF present a 

tumour-prone phenotype, but have a normal DNA damage response (Kamijo et al, 1997); 

moreover, recent experiments showed that p53 is unable to suppress tumourigenesis in the 

absence of ARF, despite the ability to respond to DNA damage effectively, suggesting that 

ARF might be responsible for almost all tumour suppressor activity of p53 (Christophorou 

et al, 2006; Efeyan et al, 2006). This, however, contrasts with other studies that indicated 

DNA damage can be induced by oncogenes and activate p53 in an ARF-independent 

manner (Bartkova et al, 2005; Bartkova et al, 2006; Di Micco et al, 2006; Gorgoulis et al, 

2005). 

 p53 has a profound effect on Pol III transcription. It can inhibit the synthesis of a 

range of Pol III targets from all types of Pol III promoters, such as 5S rRNA, tRNA, U6 

snRNA, Alu elements and others, while certain promoters like U6 snRNA and Alu might 

be more sensitive to p53-mediated repression than others (Cairns & White, 1998; 

Chesnokov et al, 1996). Mechanistically, this is achieved by the ability of p53 to interact 

with TBP and prevent the association of TFIIIB with TFIIIC and Pol III, inhibiting the 
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formation of a functional transcription preinitiation complex and resulting in 

transcriptional repression (Cairns & White, 1998; Crighton et al, 2003). Several regions of 

p53 are implicated in the repression and p53 mutations commonly found in tumours, as 

well as mutant p53 from Li-Fraumeni patients, contribute to the upregulation of Pol III 

transcription (Stein et al, 2002a; Stein et al, 2002b). Interestingly, in UV-treated MCF7 

cells, p53 could be found at U6 snRNA promoters (type III), although the p53 induction 

caused little or no repression of Pol III transcription (Gridasova & Henry, 2005). This 

finding contrasts with the mode of action of p53 at 5S RNA and tRNA promoters (type I 

and II), where it inhibits recruitment of TFIIIB (Crighton et al, 2003), suggesting a 

complex effect of p53 at Pol III transcription, that might depend on different factors, such 

as the promoter type, the cell type and the conditions under which the p53 was induced. 

Since most of the above experiments in human cells were based on induction of p53, either 

under stress or by plasmid overexpression, it would be interesting to confirm the effect of 

p53 on Pol III transcription by decreasing, rather than increasing, the endogenous p53.  

 Pol I transcription is also repressed by p53, and this is attributed to direct 

interaction between p53 and SL1, resulting in the inhibition of recruitment of SL1 at rRNA 

promoters and interfering with the assembly of a productive transcriptional machinery 

(Budde & Grummt, 1999; Zhai & Comai, 2000). p53 can thus regulate both Pol I and Pol 

III transcription and contribute to the co-ordination of rRNA production (White, 2005). As 

ARF can interact with Mdm2 and stabilise p53, it might indirectly regulate Pol I and Pol 

III transcription through p53. Interestingly, ARF has been found to affect rRNA, 

independently of p53, by inhibiting the processing of the primary rRNA transcript 

(Sugimoto et al, 2003), by interacting with the nucleolar endoribonuclease 

nucleophosmin/B23 and inhibiting rRNA maturation (Bertwistle et al, 2004) or by 

repressing transcription by Pol I (Ayrault et al, 2006). It would be interesting to investigate 

if ARF can regulate Pol III transcription and if this is a direct or indirect effect, through 

p53.  
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7.2 Results 

7.2.1 p53 can regulate RNA polymerase III transcription in human cells  

 Previous studies have demonstrated that induction of p53 in human cells results in 

repression of Pol III transcription (Crighton et al, 2003). In an attempt to extend these 

studies and investigate the effect of p53 on Pol III transcriptional repression under more 

physiological conditions, an RNAi approach was employed. U2OS cells were transiently 

transfected either with pSUPER-p53 plasmid, which encodes a shRNA against p53 or the 

empty pSUPER vector as control (Brummelkamp et al, 2002). The cells were harvested 24 

hours later, whole cell extracts were prepared and RNA was isolated. Western blotting 

confirmed that p53 was knocked-down at the protein level (Figure 7.2, A), which was 

consistent with p53 reduction at the mRNA level, as determined by RT-PCRs (Figure 7.2, 

B). The knock-down of p53 resulted in 2-3 fold elevated levels of 5S rRNA and tRNALEU 

(Figure 7.3, A and B), suggesting an in vivo repressive role for p53 on Pol III transcription 

in U2OS cells, in accordance with the p53 induction experiments previously reported in 

different human cell lines (Crighton et al, 2003; Stein et al, 2002b). 

 It has been previously shown that induction of p53 following treatment with the 

DNA damaging agent methane methylsulfonate (MMS) results in repression of tRNA 

expression in HeLa cells (Crighton et al, 2003). However, induction of p53 after exposure 

to UV light or overexpression of p53 in the same cell line did not result in repression of Pol 

III transcription (Gridasova & Henry, 2005). To further investigate if p53 can affect Pol III 

transcription in HeLa cells under more physiological conditions, the RNAi methodology 

previously used in U2OS cells was followed. Western blotting and RT-PCRs confirmed 

that the protein (Figure 7.4, A) and mRNA (Figure 7.4, B) levels of p53 were depleted 

after RNAi application. RT-PCR analysis revealed that, in contrast to the observations in 

U2OS cells, the expression of Pol III transcripts was not upregulated (Figure 7.5, A and B); 

tRNA transcription was not affected, in contrast to results obtained after MMS treatment 

(Crighton et al, 2003), while the expression of 5S rRNA presented a slight, but repeatable 

reduction, in agreement with results previously observed in overexpression experiments in 

the same cell line (Gridasova & Henry, 2005). It must be noted that the lack of Pol III 

transcriptional repression in this cell line cannot be attributed to inactive or non-functional  
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Figure 7.2. p53 shRNA knock-down in U2OS cells. U2OS cells were transfected with the 

pSUPER-p53 vector by electroporation and harvested 24 hours later. An empty pSUPER vector 

was used as control. A. Western analysis for p53 from whole cell extracts of control and p53 

targeted cells. Actin was used as loading control. B. RT-PCRs for p53 mRNA. The Pol II-

transcribed gene ARPP P0 was used as control.  

 

 

ARPP P0

p53
B

p53

Actin

A



187 
 

 

 

 

Figure 7.3. Knock-down of p53 by shRNA results in elevated levels of Pol III transcription in 
U2OS cells. U2OS cells were transfected with the pSUPER-p53 vector by electroporation and 

harvested 24 hours later. An empty pSUPER vector was used as control. A. RT-PCRs revealed 

increased levels of Pol III transcripts. The Pol II-transcribed gene ARPP P0 was used as control. B. 
Quantification of the signals of Pol III transcripts from A. n=2. 
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Figure 7.4. p53 shRNA knock-down in HeLa cells. HeLa cells were transfected with the 

pSUPER-p53 vector by electroporation and harvested 24 hours later. An empty pSUPER vector 

was used as control. A. Western analysis for p53 from whole cell extracts of control and p53 

targeted cells. Actin was used as loading control. B. RT-PCRs for p53 mRNA. The Pol II-

transcribed gene ARPP P0 was used as control.  
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Figure 7.5. Knock-down of p53 by shRNA does not upregulate Pol III transcription in HeLa 
cells. HeLa cells were transfected with the pSUPER-p53 vector by electroporation and harvested 

24 hours later. An empty pSUPER vector was used as control. A. RT-PCRs did not reveal elevated 

Pol III transcripts. The Pol II-transcribed genes p21 and ARPP P0 were used as controls. B. 
Quantification of the signals of Pol III transcripts from A. n=2. 
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p53 protein, as p21, a direct downstream target of p53, was accordingly reduced (Figure 

7.5, A). 

 

7.2.2 ARF can regulate RNA polymerase III transcription  

 As previously discussed, it has been shown that p53 can repress Pol III and Pol I 

transcription by interfering with the formation of the preinitiation complexes on the 

promoters (Budde & Grummt, 1999; Cairns & White, 1998; Crighton et al, 2003; Zhai & 

Comai, 2000). Furthermore, Pol I transcription can be directly regulated by ARF (Ayrault 

et al, 2006). In order to test if ARF can affect Pol III transcription as well, the NARF2 cell 

line, a derivative of U2OS osteosarcoma cells carrying an IPTG-inducible ARF gene (Stott 

et al, 1998), was employed. Addition of IPTG resulted in a substantial increase in the 

expression of ARF after 24 hours, accompanied by elevated p53 levels, as expected from 

its stabilisation due to ARF (Figure 7.6, A) (Stott et al, 1998). RT-PCR analysis revealed 

that under these conditions the expression of tRNAs was downregulated by about 50% 

(Figure 7.6, B and C), indicating that ARF can regulate Pol III transcription. This effect 

was due to the induction of ARF, as addition of IPTG in the parental U2OS cell line did 

not affect tRNA expression (Figure 7.7). 

 To confirm that p53 affects Pol III transcription in the NARF2 cell line in a similar 

manner to the U2OS cells, p53 was knocked-down by shRNA, as previously described, 

and the depletion of p53 at the protein and mRNA level was confirmed by western blotting 

and RT-PCR analysis (Figure 7.8, A and B respectively). Indeed, the p53 knock-down in 

the NARF2 cells resulted in about 2-fold elevated levels of Pol III transcripts (Figure 7.9, 

A and B), as was the case in the parental U2OS cells. To test whether depletion of p53 by 

RNAi would affect Pol III transcription when the cells are expressing ARF, the experiment 

was repeated with NARF2 cells induced to express ARF. The p53 knock-down was 

confirmed by western blotting and RT-PCR analysis (Figure 7.10, A and B respectively). 

RT-PCR analysis revealed about 2-fold elevated expression levels of Pol III transcripts 

when p53 was partially depleted by RNAi (Figure 7.11, A and B), suggesting that the ARF 

repression of Pol III transcription is mediated by p53. To further confirm that ARF can 

repress Pol III transcription through p53 and be able to compare directly the effects of ARF  
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Figure 7.6. ARF induction in NARF2 cells results in decreased expression of tRNAs. NARF2 

cells were induced to express ARF after addition of 1 mM IPTG. The cells were harvested after 24 

hours, cells extracts were prepared and RNA was isolated. A. Western blotting confirms induction 

of ARF. Actin was used as loading control. B. RT-PCRs reveal decreased expression of tRNAs. 

The Pol II-transcribed ARPP P0 was used as control. C. Quantification of tRNA signals from B. 

n=2. 
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Figure 7.7. IPTG does not affect tRNA expression in U2OS cells. 1 mM IPTG was added in 

U2OS cells. The cells were harvested after 24 hours and RNA was isolated. RT-PCR analysis 

revealed no effect on the expression of tRNAs. The Pol II-transcribed ARPP P0 was used as 

control. 

 

 

 

Figure 7.8. p53 shRNA knock-down in NARF2 cells. NARF2 cells were transfected with the 

pSUPER-p53 vector by electroporation and harvested 24 hours later. An empty pSUPER vector 

was used as control. A. Western analysis for p53 from whole cell extracts of control and p53 

targeted cells. Actin was used as loading control. B. RT-PCRs for p53 mRNA. The Pol II-

transcribed gene ARPP P0 was used as control.  
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Figure 7.9. Knock-down of p53 by shRNA results in elevated levels of Pol III transcription in 
NARF2 cells. NARF2 cells were transfected with the pSUPER-p53 vector by electroporation and 

harvested 24 hours later. An empty pSUPER vector was used as control. A. RT-PCR analysis 

reveals increased levels of Pol III transcripts in the RNAi treated cells. The Pol II-transcribed gene 

ARPP P0 was used as control. B. Quantification of the signals of Pol III transcripts from A. n=2. 
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Figure 7.10. p53 shRNA in NARF2 cells induced to express ARF. NARF2 cells were 

transfected with the pSUPER-p53 vector by electroporation and grown in medium containing 1 mM 

IPTG for 24 hours. An empty pSUPER vector was used as control. A. Western analysis for p53 

from whole cell extracts of control and p53 targeted cells. Actin was used as loading control. B. RT-

PCRs for p53 mRNA. The Pol II-transcribed gene ARPP P0 was used as control.  
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Figure 7.11. Knock-down of p53 by shRNA results in elevated levels of Pol III transcription in 
NARF2 cells induced to express ARF. NARF2 cells were transfected with the pSUPER-p53 

vector by electroporation and grown in medium containing 1mM IPTG for 24 hours. An empty 

pSUPER vector was used as control. A. RT-PCR analysis reveals increased levels of Pol III 

transcripts in the RNAi treated cells. The Pol II-transcribed gene ARPP P0 was used as control. B. 
Quantification of the signals of Pol III transcripts from A. n=2. 
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induction and p53 RNAi, the experiments were repeated in parallel with uninduced 

NARF2 cells (lane 1), uninduced NARF2 cells subjected to p53 RNAi (lane 2), ARF-

induced NARF2 cells (lane 3) and ARF-induced NARF2 cells subjected to p53 RNAi (lane 

4) (Figure 7.12). Western blotting confirmed the induction of ARF and the knock-down of 

p53 (Figure 7.12). RT-PCR analysis (Figure 7.13, A and B) showed that the partial knock-

down of p53 caused elevation of tRNA expression by about 2-fold (compare lanes 1 and 

2), consistent with the role of p53 in Pol III repression. Furthermore, it prevented the 

repression of tRNA expression (lane 4) that otherwise accompanies the ARF induction in 

NARF2 cells (about 2-fold, compare lanes 1 and 3). Since the tRNA levels are no longer 

diminished in response to ARF when p53 has been depleted (compare lanes 2 and 4), these 

data suggest that the repression of Pol III transcription by ARF occurs indirectly, in a p53-

dependent manner. 
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Figure 7.12. p53 shRNA knock-down and ARF induction in NARF2 cells. NARF2 cells were 

transfected with pSUPER-p53 (lanes 2 and 4) or an empty pSUPER vector (lanes 1 and 3). IPTG 

(1 mM) was added 24 hours later (lanes 3 and 4) and cells were harvested after a further 24 hours. 

Western analysis confirmed the induction of ARF and the knock-down of p53. Actin was used as 

loading control. 

 
 

 

  

IPTG :

p53 RNAi :

- - +       +

p53

actin

ARF

- + - +

1        2       3       4



198 
 

 

 
Figure 7.13. ARF-mediated repression of Pol III transcripts is blocked by RNAi of p53. 
NARF2 cells were transfected with pSUPER-p53 (lanes 2 and 4) or an empty pSUPER vector 

(lanes 1 and 3). IPTG (1 mM) was added 24 hours later (lanes 3 and 4) and cells were harvested 

after a further 24 hours. A. RT-PCR analysis revealed that ARF cannot repress Pol III transcription 

when p53 is knocked-down. The Pol II-transcribed ARPP P0 was used as control. B. Quantification 

of tRNA signals from A. The numbers correspond to the lanes. n=2. 
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7.3 Discussion 

7.3.1 p53 can regulate RNA polymerase III transcription in human cells  

 Several studies investigated the effect of p53 in Pol III transcription regulation in 

mouse and human cells (Cairns & White, 1998; Chesnokov et al, 1996; Crighton et al, 

2003; Gridasova & Henry, 2005; Stein et al, 2002a; Stein et al, 2002b). Experiments in 

vitro and in vivo have shown that overexpression of p53 or its activation under stress 

conditions, results in transcriptional repression of Pol III transcription from all types of Pol 

III promoters (Cairns & White, 1998; Chesnokov et al, 1996; Crighton et al, 2003; 

Gridasova & Henry, 2005). Furthermore, p53-null mouse fibroblasts present higher levels 

of Pol III transcripts due to relief of repression from p53 (Cairns & White, 1998). These 

studies were extended by depleting endogenous p53 in human cells, rather than inducing 

exogenous or endogenous p53, by employing a tested RNAi methodology to specifically 

reduce the protein levels of p53 (Brummelkamp et al, 2002). Knock-down of p53 (Figures 

7.2 and 7.8) resulted in upregulation of Pol III transcription in U2OS and NARF2 cells 

(Figures 7.3 and 7.9), which is consistent with the previous reports. The fact that depletion 

of endogenous p53 had an effect on the expression of Pol III products suggests that Pol III 

transcription is restrained by p53 not only as a response to stress signals, but also under 

physiological conditions in human cells, in accordance with the results obtained by 

experiments in mouse p53-null fibroblasts (Cairns & White, 1998).  

 Interestingly, the effect of p53 on Pol III transcription seems to differ between 

different cell types. For example, p53 activation by UV radiation repressed the 

transcription of U6 snRNA in MCF-7 cells, but not in HeLa cells (Gridasova & Henry, 

2005). However, treatment of HeLa cells with MMS clearly repressed tRNA expression 

(Crighton et al, 2003), while overexpression of p53 in HeLa cells also did not have an 

effect on U6 snRNA transcription, but seemed to slightly increase transcription of 5S 

rRNA (Gridasova & Henry, 2005). To further extend these studies in HeLa cells, RNAi 

was employed to deplete endogenous p53. Knock-down of p53 (Figure 7.4) did not affect 

the expression of tRNA in HeLa cells (Figure 7.5). Moreover, the expression of 5S rRNA 

was slightly reduced (Figure 7.5), in agreement with the previous overexpression 

experiments in the same cell line (Gridasova & Henry, 2005). The latter finding could 
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suggest that under physiological conditions in HeLa cells, the two types of Pol III 

promoters for 5S rRNA and tRNA might be regulated differently; for example, U6 snRNA 

and Alu elements have been shown to be more sensitive to p53-mediated Pol III repression 

(Cairns & White, 1998; Chesnokov et al, 1996). However, under the same experimental 

conditions both 5S rRNA and tRNA transcripts were upregulated in U20S cell and 

therefore, although one cannot exclude that this is due to promoters differences only in 

HeLa cells, it seems unlikely that this is the case. 

 The findings in HeLa cells clearly contrast with observations in several other cell 

lines, where p53 does have a repressive effect on Pol III transcription (Crighton et al, 2003; 

Gridasova & Henry, 2005; Stein et al, 2002a). A possible explanation might lie in the 

physiology of this cell type. HeLa is a human cervical carcinoma cell line that has the viral 

HPV18 DNA integrated into the cellular genome and expresses the viral E6 protein 

(Schwarz et al, 1985). HPV E6 can bind to p53 (Werness et al, 1990) and promote its 

degradation via the ubiquitin pathway (Scheffner et al, 1990). It is possible that in HeLa 

cells the interference of HPV E6 protein with p53 can affect the regulation of Pol III 

transcription by the latter. Indeed, overexpression of HPV E6 in the HPV-negative SAOS2 

cells resulted in relief of Pol III repression by p53 (Stein et al, 2002a), providing evidence 

that Pol III transcription can be affected by E6-mediated p53 degradation. Although 

depletion of p53 might have been expected to upregulate Pol III transcription, it might be 

that in HeLa cells, due to the low levels of functional p53, Pol III transcription might no 

longer be regulated by p53 under physiological conditions; instead, stress conditions such 

as DNA damage that induce p53 might be needed to repress Pol III transcription, as 

observed after treatment of HeLa cells with MMS (Crighton et al, 2003).  

 

7.3.2 ARF can regulate RNA polymerase III transcription in human cells  

 As previously mentioned, ARF can bind to Mdm2 (also known as Hdm2 in human) 

and inhibit the ubiquitination and degradation of p53, resulting in its stabilisation 

(Pomerantz et al, 1998; Zhang et al, 1998). By doing so, ARF can indirectly, via p53, 

repress Pol III and Pol I transcription. Furthermore, ARF can repress Pol I transcription 

(Ayrault et al, 2006) and disrupt the process of rRNA maturation (Bertwistle et al, 2004; 

Sugimoto et al, 2003) independently of p53. Since in most situations Pol I transcription is 
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co-ordinated with Pol III transcription (White, 2005), the effect of ARF on Pol III 

transcription was investigated. NARF2 cells, an ARF-inducible cell line which originates 

from the ARF-negative U2OS cells and thus provide a null background to study the effects 

of ARF induction, were employed (Stott et al, 1998). Expression of ARF resulted in 

elevated p53 and decreased levels of tRNA expression (Figure 7.6), indicating that ARF 

can regulate Pol III transcription.  

 To further investigate if the regulation of Pol III transcription by ARF is mediated 

by p53, RNAi was used to knock-down p53 in NARF2 cells. Partial depletion of p53 in 

NARF2 cells that were induced (Figures 7.8 and 7.12) or not (Figures 7.10 and 7.12) to 

express ARF resulted in elevated expression of tRNAs (Figures 7.9, 7.11 and 7.13). Partial 

depletion of p53 by shRNA in NARF2 cells resulted in increased tRNA levels (Figure 

7.13, lane 2), while induction of ARF reduced tRNA transcripts (Figure 7.13, lane 3); more 

importantly, induction of ARF and partial depletion of p53 together did not result in 

decreased tRNA levels, but rather elevated (lane 4, compare lane 4 with 1 and 3). This 

finding clearly suggests that regulation of Pol III transcription by ARF is mediated through 

p53, at least in U2OS cells. In support of this conclusion, induction of ARF in NARF2-E6 

cells, a NARF2 derivative cell line that constitutively expresses HPV E6 protein (Rocha et 

al, 2003), resulted in elevated levels of tRNA expression and, therefore, the expression of 

ARF did not repress Pol III transcription, as was the case in NARF2 cells (Morton et al, 

2007). These data are also consistent with the fact that although p53-null mouse fibroblasts 

display high levels of ARF (Qi et al, 2004), they transcribe tRNA and 5S rRNA genes 

much more actively than wild type fibroblasts (Cairns & White, 1998).  

 When p53 was knocked-down in the presence of ARF rather in its absence, the 

effect on tRNA transcription was substantially higher (Figure 7.13, compare lane 4 to lane 

2). This finding might suggest that the ability of p53 to regulate Pol III transcription is 

strengthened when cells induce ARF. In support of this argument, time-course experiments 

revealed robust repression of Pol III transcription after the induction of ARF, which was 

faster and more potent than the induction of p21, a direct downstream target of p53 

(Morton et al, 2007). In this light, the lack of response after depletion of the endogenous 

p53 in HeLa cells might be explained by the low levels of ARF, a result of its weak 

activation due to the low p53 levels in the cells. Furthermore, it has been argued that p53 is 

unable to suppress tumourigenesis in the absence of ARF, despite the ability to respond to 

DNA damage effectively (Christophorou et al, 2006; Efeyan et al, 2006). It might be that 
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the repression of Pol III transcription by ARF is part of the protective cellular response to 

hyperproliferative signals originating from oncogenes, which initially activate ARF; 

although Pol III transcriptional repression is mediated by p53, ARF might be ultimately 

responsible for its control. 

 In summary, data included in this chapter extend previous studies of p53 by 

depleting endogenous p53 and confirming that p53 can regulate Pol III transcription under 

physiological conditions in human cells. Furthermore, ARF is shown to repress Pol III 

transcription and this effect is mediated by p53. Interestingly, the effect of p53 on Pol III 

transcription might differ in different cell lines and might depend on the availability of 

ARF. By regulating Pol III transcription, ARF adds another layer of transcriptional control 

in the Pol III system, and combined with its ability to also regulate Pol I transcription, ARF 

can potentially co-ordinate the production of rRNA and, through the control of ribosome 

availability, control cellular growth. 
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CHAPTER 8 

 

 

 

 

 

 

Conclusion 
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8.1 Regulation of Pol III transcription by Dr1 and DRAP1 

   

8.1.1 Dr1 and DRAP1 RNAi 

 Dr1 has been shown to repress Pol II and Pol III transcription in vitro in human 

cells (Inostroza et al, 1992; White et al, 1994). In this study it was investigated if partial 

depletion of endogenous Dr1 would affect Pol III transcription. It was found that knock-

down of Dr1 by RNAi resulted in a two-fold upregulation of tRNA expression in human 

cells. This finding therefore, in accordance with the previous studies in human (White et al, 

1994) and yeast cells (Kim et al, 1997), indicates a repressing role for Dr1 in Pol III 

transcription in human cells.  

 It is not clear why only the expression of tRNAs was affected, while the expression 

of other Pol III transcripts was not. This might be attributed to the partial nature of the Dr1 

knock-down resulting in little or no change on the steady-state levels of Pol III transcripts; 

the effect on tRNA, thus, might have been detected due to the use of primers specific for 

the short-lived, intronic, pre-tRNA transcripts, which represent a better measure of Pol III 

transcription than the rather stable 5S rRNA and U6 snRNA transcripts. The use of primers 

specific for the detection of the mature form of tRNAs might provide more information on 

this issue in the future. Nevertheless, the occupancy of tRNA, but also 5S rRNA and U6 

snRNA genes by Dr1, adds credibility to this hypothesis. It must be noted, however, that 

similar, albeit relatively more effective, knock-downs of other Pol III repressors, such as 

Rb, p107, p130 and p53, performed by the same methodology and conditions, resulted in 

altered tRNA and 5S rRNA levels, suggesting that Dr1 might specifically target type 2 

promoters and thus only modulate tRNA transcription. If that is the case, this repressive 

property of Dr1 would be an interesting example of a repressor that only affects one type 

of Pol III transcripts. This might be a beneficial strategy for the cellular economy and the 

coordination of Pol I and Pol III transcription for the production of ribosomal RNAs.  

 Experiments with human cell extracts have shown that although Dr1 can repress 

transcription from Pol II templates, DRAP1 alone cannot (Mermelstein et al, 1996; Yeung 

et al, 1997). In an attempt to examine its role in Pol III transcription in human cells, 

DRAP1 was knocked-down by RNAi. Unfortunately however, shRNA and siRNA 
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experiments gave opposing results as to the effect of DRAP1 on Pol III transcription; 

partial depletion of DRAP1 by shRNA resulted in modestly elevated levels of tRNAs, but 

siRNA gave modestly decreased levels. In both cases, the experimental errors do not allow 

for safe interpretation of these results. It would be interesting in the future to continue these 

experiments by employing different siRNAs, the hypothesis being that depletion of 

DRAP1 would result in impaired repression by Dr1.  

 

8.1.2 Promoter occupancy by Dr1 and DRAP1 

 Dr1 and DRAP1 have been previously found to occupy a variety of Pol II genes in 

yeast and human (Albert et al, 2007; Christova & Oelgeschlager, 2002; Creton et al, 2002; 

Geisberg et al, 2001; Gilfillan et al, 2005). Regarding Pol III genes, a study in yeast 

reported that the yeast DRAP1 (BUR6) was not found on tRNA genes (Geisberg et al, 

2001). However, ChIP experiments in this study revealed that Dr1 and DRAP1 are found 

at Pol III-transcribed genes of promoter types 1, 2 and 3 in human cells. Geisberg et al 

(2001) concluded that BUR6 was not found at tRNA genes due to the low ratio of 

BUR6/TBP at Pol III promoters compared to the ratio at Pol II promoters. This does not 

seem to be the case in human cells, as the DRAP1/TBP occupancy ratio was very similar 

between Pol II and Pol III templates for both Dr1 and DRAP1. These results might suggest 

differences in the regulation of Pol III transcription between yeast and human, but it cannot 

be excluded that they are due to the different methodologies used. For example, ChIP 

assays were performed with antibodies against the endogenous Dr1 and DRAP1 in this 

study, while Geisberg et al (2001) employed anti-HA antibodies for use with a yeast strain 

expressing HA-tagged BUR6.  

 The finding of Dr1-DRAP1 occupancy at Pol II and Pol III genes is a surprising 

one. According to the conventional view on Dr1 function, Dr1 binds to TBP and inhibits 

recruitment of TFIIA and TFIIB at the promoters, resulting in an incomplete preinitiation 

complex and transcriptional repression (Goppelt et al, 1996; Inostroza et al, 1992). 

Therefore, Dr1 would not be expected to be found at active promoters; however, it seems 

to be present (Creton et al, 2002; Geisberg et al, 2001). In the current study, sequential 

ChIP assays showed co-occupancy of Dr1 with Pol III, indicating that Dr1 might also be 

found at active Pol III-transcribed genes.  
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 It was suggested that the Dr1-DRAP1 complex can be found at active Pol II 

promoters because it can play a direct positive role at certain promoters in vivo (Geisberg 

et al, 2001). However, it has also been argued that the presence of the complex at 

promoters does not necessarily indicate a positive role, as it might be possible for the 

complex to still bind TBP, but not affect the recruitment of TFIIA or TFIIB (Kamada et al, 

2001). The knock-down of Dr1 and the subsequent upregulation of Pol III transcription 

suggest that although Dr1 is found at Pol III promoters, it negatively affects Pol III 

transcription. 

 To explain the presence of Dr1-DRAP1 at active genes (Geisberg et al, 2001) and 

its ability to stimulate transcription from specific promoters in yeast (Cang & Prelich, 

2002; Lemaire et al, 2000; Prelich, 1997), it was proposed that whereas Dr1-DRAP1 can 

repress transcription by inhibiting TFIIA and TFIIB as originally described, it can also 

activate transcription by stimulating TBP binding (Cang & Prelich, 2002; Gilfillan et al, 

2005). According to this model, the Dr1-DRAP1-TBP-DNA complex can be considered as 

an intermediate state which can result in negative or positive effects, depending on the 

absence or presence of an appropriate activator (Cang & Prelich, 2002). In human cells, 

ChIP-chip experiments (Albert et al, 2007) showed an overall positive correlation of 

mRNA levels with DRAP1 occupancy in accordance with the Cang and Prelich (2002) 

model. 

 A number of observations on the regulation of Pol III transcription by Dr1 in 

human cells also seem to fit in that model. Dr1 RNAi resulted in the upregulation of tRNA 

expression suggesting that Dr1 can repress tRNA transcription by Pol III. Moreover, under 

hypoxic conditions, where Pol III transcription is downregulated, Dr1 occupancy at Pol III-

transcribed genes was increased, consistent with a repressive role for Dr1 in Pol III 

transcription, as was previously suggested for Pol II transcription in anoxic conditions 

(Denko et al, 2003). Interestingly, however, sequential ChIP experiments showed Dr1 to 

co-occupy Pol III-transcribed genes together with Pol III, suggesting that Dr1 can be found 

at active Pol III-transcribed genes, although it cannot be excluded that these genes were 

negatively regulated by posttranscription initiation mechanisms. Moreover, induction of 

Brf1 resulted in enhanced occupancy of Pol III-transcribed genes by TFIIIB and Dr1, and 

stimulated Pol III transcription, suggesting that Dr1 can occupy Pol III-transcribed genes 

without, always, repressing their transcription. However, it cannot be excluded that the 

observed increase in transcription is due to genes not bound by Dr1. 
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 Since the Dr1-DRAP1 complex is found at Pol III-transcribed genes it must be 

recruited to them by a specific mechanism. Co-IP experiments showed that, in contrast to 

what was expected from the in vitro experiments (White et al, 1994), Dr1 can interact with 

TFIIIB and TFIIIC in vivo, an observation consistent with the ChIP findings. Interestingly, 

induction of the Brf1 subunit of TFIIIB resulted in enhanced occupancy of Pol III-

transcribed genes by Dr1, suggesting that TFIIIB has a role in recruiting Dr1-DRAP1 to 

Pol III promoters. Moreover, in support of this argument, promoter mapping experiments 

indicated that Dr1-DRAP1 localises with TFIIIB at Pol III promoters, with the Dr1-

DRAP1 being placed preferentially at the beginning of the gene, rather than the end with 

TFIIIC or Pol III. These findings indicate that TFIIIB, and more specifically Brf1, have a 

role in recruiting Dr1 to Pol III-transcribed genes. 

 It has been known for some time that genes like the ones coding for heat shock 

proteins (Gilmour & Lis, 1986; Rasmussen & Lis, 1993; Rougvie & Lis, 1988), and some 

oncogenes, like c-Myc and junB (Aida et al, 2006; Krumm et al, 1992), and other genes in 

human, such as ERalpha and Igkappa (Aiyar et al, 2004; Raschke et al, 1999), have their 

expression attenuated by stalling of polymerase elongation within the promoter-proximal 

region (Saunders et al, 2006). Interestingly, however, recent genome-wide studies in 

Drosophila reported that this is a much more widespread phenomenon, with a large 

numbers of genes being regulated this way (Muse et al, 2007; Zeitlinger et al, 2007). Since 

Dr1 has been found to regulate Hsp70 (Christova & Oelgeschlager, 2002; Kraus et al, 

1994) in human cells, one might speculate that the Dr1-DRAP1 complex might have a role 

in this phenomenon. However, this hypothesis remains to be tested. Furthermore, it would 

be interesting to investigate if Pol III transcription can be regulated in a similar way. 

  Dr1 has been shown to interact with the elongating form of Pol II, suggesting that 

Dr1 might have a positive role in transcription elongation (Castano et al, 2000). Regarding 

the Pol III system, however, there is no evidence for an interaction between Dr1 and 

different subunits of Pol III (data not shown). Furthermore, promoter localisation 

experiments indicated that Dr1 is localised, together with TFIIIB, at the beginning of Pol 

III promoters rather than near the end of the gene, offering no evidence that Dr1 might be 

involved in transcript elongation by Pol III. 
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8.2 Differential regulation of Dr1 and DRAP1 under stress 
conditions  

 

8.2.1 Heat shock 

 Heat shock in yeast cells resulted in a rapid increase of BUR6 (Geisberg et al, 

2001; Masson et al, 2007) and Dr1 (Masson et al, 2007) occupancy at heat shock protein 

(Hsp) promoters. Heat shock in human cells has been shown to affect Pol III transcription 

by increasing the levels of Alu RNA; the levels of Pol III transcripts like 5S rRNA and U6 

snRNA were not affected (Liu et al, 1995). Furthermore, Dr1 can be found at Hsp70 

promoters (Christova & Oelgeschlager, 2002) and affect Hsp70 transcription (Kraus et al, 

1994). Since the Dr1-DRAP1 complex can affect the transcription of tRNA genes and the 

effect of heat shock on tRNA gene expression was not reported previously (Liu et al, 

1995), it was investigated if the heat shock stress in human cells affects tRNA expression. 

 Heat shock stress did not result in a convincing upregulation of tRNA expression in 

human cell lines. Interestingly, however, it resulted in striking induction of DRAP1, but 

not Dr1, protein levels. This was a posttranscriptional effect, as the mRNA levels of Dr1 

and DRAP1 remained stable before and after the heat shock. This is an interesting result, 

as it is the first time that differential regulation of the endogenous levels of the two 

subunits is reported.  

 A very recent study reported that heat shock in yeast cells resulted in increased 

occupancy of the heat shock promoter Hsp12 by both Dr1 and DRAP1 and induction of the 

Hsp12 protein (Masson et al, 2007). This finding agrees with that previously published 

(Geisberg et al, 2001) and suggests that the Dr1-DRAP1 complex stimulates transcription 

from heat shock promoters under stress conditions. However, when the yeast cells 

expressed a mutant Dr1, the Hsp12 gene transcription was derepressed compared to wild 

type cells prior to heat shock, but was increased after, although to a lesser degree (Masson 

et al, 2007). This finding suggests that Dr1 can act as a repressor or an activator for the 

same gene under different conditions. In the Pol III system, the transcription of tRNA 

genes was negatively regulated by Dr1, but tRNA promoter occupancy by Dr1 was 

increased, both when Pol III transcription was upregulated due to induction of Brf1 or 
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downregulated in hypoxia, suggesting that promoter occupancy by Dr1 does not 

necessarily reflect activation or repression by it. 

 Interestingly, the same study reported that Dr1 and DRAP1 can control the 

association of TFIIB at promoters both negatively and positively (Masson et al, 2007). 

Thus, it was proposed that Dr1 and DRAP1 can regulate the promoter association of TFIIB 

in a highly gene specific and dual manner (Masson et al, 2007). These results are in 

accordance with the sequential ChIP experiments that showed Dr1 and TFIIB co-

occupancy at Pol II promoters and also do not support the model that Dr1 functions by 

inhibiting TFIIB recruitment (Goppelt et al, 1996; Inostroza et al, 1992; Mermelstein et al, 

1996). Furthermore, they provide support to the argument that Dr1 can be found at 

repressed and active promoters in Pol II and Pol III transcription systems.  

 

8.2.2 Hypoxia 

 It has been reported that under severe hypoxic conditions, of 0.01% O2, the Dr1-

DRAP1 complex is induced, resulting in transcriptional repression (Denko et al, 2003). 

Since it was shown that hypoxia of 1% O2 can affect Pol III transcription and downregulate 

the expression of tRNA genes in rat cardiomyocytes (Ernens et al, 2006), these studies 

were extended by investigating the effects on Pol III templates in human cell lines and the 

possible role of the Dr1-DRAP complex. 

 It was found that under mild hypoxia (1% O2) or chemically induced anoxia the 

expression of tRNA genes was downregulated in HeLa and U2OS cells, in accordance with 

the study in rat cardiomyocytes (Ernens et al, 2006). However, the expression of other 

transcripts like 5S rRNA and U6 snRNA was not affected, in a manner reminiscent of the 

Dr1 RNAi, where, again, only the expression of tRNA genes was affected. This finding is 

suggestive of the involvement of the Dr1-DRAP1 complex in the regulation of tRNA 

transcription. Indeed, ChIP experiments revealed increased occupancy of tRNA promoters 

by Dr1 under hypoxic conditions, indicating a role for Dr1 in tRNA repression, in broad 

agreement with the Dr1 RNAi experiments.  

 Dr1 and DRAP1 protein levels were induced under severe hypoxic/anoxic 

conditions (0.01% O2) in a murine hepatoma cell line and this was considered to be a 



210 
 

posttranscriptional effect, as the Dr1-DRAP1 mRNA levels were not affected (Denko et al, 

2003). However, when the protein levels of Dr1 and DRAP1 were tested in human cell 

lines that were subjected to 1% O2 hypoxia or chemically-induced anoxia, DRAP1, but not 

Dr1, was strikingly induced. This was also a posttranscriptional effect, as the mRNA levels 

of both Dr1 and DRAP1 remained unaltered. It is interesting that under two different stress 

conditions, heat shock and hypoxia, DRAP1 is induced, as this finding indicates that the 

two subunits are differentially regulated under stress. 

 The stabilisation of DRAP1 protein under both heat shock and hypoxic conditions 

might be related to the induction of p53, as p53 was induced under the experimental 

conditions employed for both heat shock and hypoxia. Interestingly, when the p53 

impaired NARF2-E6 cells were subjected to hypoxia, DRAP1 instead of being 2-fold or 

more induced, was markedly decreased as was p53, while Dr1 remained stable. The 

mRNA levels of Dr1, DRAP1 and p53 were not affected, while the expression of tRNA 

genes, but not other Pol III templates, was downregulated as previously observed and 

expected. This striking result strongly argues for a connection between the observed 

DRAP1 stabilisation after stress and the presence of p53. Partial depletion of p53 by RNAi 

in NARF2 cells also resulted in a small decrease in DRAP1 protein levels without affecting 

the mRNA levels of Dr1 and DRAP1, supporting the above argument and suggesting that 

even under conditions where p53 is not induced, it might still have a role in regulating the 

protein levels of DRAP1. Future experiments employing p53-inducible cell lines should 

examine the above observations. 

 

8.2.3 mTOR inhibition  

 The mTOR pathway integrates multiple environmental signals to regulate 

translation and cell growth in response to stresses such as nutrient deprivation, DNA 

damage, osmotic stress, heat shock and hypoxia (Reiling & Sabatini, 2006). Since heat 

shock and hypoxia can affect mTOR (Hardie, 2005; Ohji et al, 2006) and differentially 

regulate Dr1 and DRAP1 in human cells, but mTOR can also stimulate Pol III transcription 

in mouse cells (Ramsbottom and White, personal communication), it was tested if 

inhibition of mTOR by rapamycin has the same effect in human cells and if Dr1 and 

DRAP1 are affected.  
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 As was the case in mouse cells, inhibition of the mTOR pathway by rapamycin in 

HeLa cells resulted in downregulation of 5S rRNA and tRNA gene expression, while U6 

snRNA remained unaffected. At the promoter level, ChIP experiments indicated that 

treatment with rapamycin resulted in the displacement of Dr1, Brf1, TFIIIC220 and Pol III 

from 5S rRNA and tRNA promoters, though TBP seemed not to be displaced. Thus, these 

data collectively suggest that the mechanism of Pol III repression by rapamycin might rely 

on the interaction of Brf1 with TBP, explaining why type 3 promoter templates (U6 

snRNA) are not affected by rapamycin treatment. Inhibition of mTOR by rapamycin did 

not affect Dr1 and DRAP1, as their protein and mRNA levels were not affected, suggesting 

that they are not regulated by components downstream of mTOR and that downregulation 

of Pol III transcription by Dr1-DRAP1 is a specific event, not correlating with all cases of 

repression of Pol III transcription. 

 

8.2.4 Serum starvation 

 Pol III transcription is regulated through the cell cycle (White et al, 1995a; White et 

al, 1995b). It is repressed in mitosis (White et al, 1995b) and early G1, and gradually 

increases to reach maximal levels during S and G2 phases (White et al, 1995a). During 

mitosis, Brf1 is hyperphosphorylated and associated, along with TBP, with promoters in 

condensed chromosomes, while Bdp1 is selectively released; it was proposed that 

hyperphosphorylation disrupts the TFIIIB complex, compromising Pol III transcription 

(Fairley et al, 2003). Interestingly, it has also been shown that Dr1 can remain associated 

with some, but not all of its target genes in mitotic cells (Christova & Oelgeschlager, 

2002). It is tempting to speculate that since Dr1 can bind with Brf1 and TBP, it might be 

present at Pol III templates in mitosis and might also have a role in their transcriptional 

repression. 

 Protein extracts from serum starved cells were analysed with regards to levels of 

Dr1 and DRAP1 and it was found that in arrested cells, DRAP1 protein levels remain 

stable, while Dr1 levels are reduced. The mRNA levels of both proteins remained 

unaffected, indicating that this is a posttranscriptional effect. Since both Dr1 and DRAP1 

are phosphoproteins (Goppelt et al, 1996; Inostroza et al, 1992; Mermelstein et al, 1996), it 

is possible their stability might depend on site-specific phosphorylation and that they might 
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be regulated during the cell cycle. This finding is interesting, because combined with those 

after heat shock, hypoxia or rapamycin treatment, it indicates that not only DRAP1, but 

also Dr1 can be posttranscriptionally regulated under specific conditions. These data show 

that the two subunits of the Dr1-DRAP1 complex are differentially regulated under 

specific conditions and suggest that they might not always act together as a complex. 

 

8.3 Regulation of Pol III transcription by Rb, p107 and p130 in 
human cells 

 The pocket proteins have been shown to regulate Pol III transcription by binding to 

TFIIIB and inhibiting recruitment of TFIIIB to TFIIIC (Chu et al, 1997; Hirsch et al, 2004; 

Larminie et al, 1997; Sutcliffe et al, 2000; Sutcliffe et al, 1999; White et al, 1996). Since 

most of the above studies investigated the role of Rb and family members in mouse cells, it 

was investigated if Rb, p107 and p130 can also repress Pol III transcription in human cells. 

Partial depletion of Rb, p107 and p130 results in elevated expression of tRNAs in IMR90 

cells, in accordance with their transcription repression role in mouse cells. 5S rRNA 

transcripts were increased after knock-down of Rb, but decreased in the case of p107 and 

p130 knock-down. Although this result might suggest a potential positive role of p107 and 

p130 in the regulation of 5S rRNA in human, it might also be attributed to 

posttranscriptional effects on 5S rRNA stability.  

 Similar experiments in HeLa cells resulted in decreased, rather than increased Pol 

III transcripts, after partial depletion of Rb, p107 or p130. It is not clear why HeLa cells 

respond differently to IMR90 and mouse cells, but it might be due to their transformed 

nature and the expression of the viral proteins, like HPV E7 (Schwarz et al, 1985), which 

can bind to the pocket proteins and mediate their proteasomal degradation (Dyson et al, 

1989; Gonzalez et al, 2001).  
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8.4 Regulation of Pol III transcription by p53 and ARF in human 
cells 

 p53 has been shown to negatively regulate Pol III transcription by interacting with 

TFIIIB and block its association with TFIIIC and Pol III (Cairns & White, 1998; Crighton 

et al, 2003). Induction of the tumour suppressor ARF results in stabilisation of p53, due to 

interaction with Mdm2 and inhibition of p53 ubiquitination and degradation (Pomerantz et 

al, 1998; Zhang et al, 1998).  

 The induction of ARF, and the subsequent stabilisation of p53, results in repression 

of Pol I transcription, but ARF can also affect rRNA independently of p53; ARF can 

inhibit primary rRNA transcript processing (Sugimoto et al, 2003), interact with 

nucleophosmin/B23 and inhibit rRNA maturation (Bertwistle et al, 2004), and also directly 

repress transcription by Pol I (Ayrault et al, 2006). As p53 directly regulates Pol III 

transcription, it was hypothesised that ARF induction might also have an effect on Pol III 

transcription, at least indirectly through p53. 

 Indeed, experiments presented in this thesis revealed that induction of ARF resulted 

in downregulation of Pol III transcription. Partial depletion of endogenous p53 by RNAi 

enhanced transcription by Pol III as expected, while partial depletion of p53 combined with 

induction of ARF did not result in downregulated tRNA expression, suggesting that ARF 

represses Pol III transcription indirectly via p53. In support of this, induction of ARF in 

cells expressing the HPV E6 protein did not repress Pol III transcription (Morton et al, 

2007), while p53-null mouse fibroblasts, which display high levels of ARF (Qi et al, 2004), 

presented higher levels of Pol III transcription than wild type fibroblasts (Cairns & White, 

1998).   

 Oncogenes, like Myc, can induce expression of ARF (Zindy et al, 1998) and might 

therefore be expected to downregulate Pol III transcription. On the contrary, Myc has been 

shown to stimulate Pol III output (Gomez-Roman et al, 2003). There is also evidence that 

ARF can bind to Myc and block its ability to activate transcription and induce 

hyperproliferation and transformation (Cleveland & Sherr, 2004; Qi et al, 2004). It has 

been suggested that Myc might be able to activate Pol III transcription in cells that are 

compromised in the function of p53 and/or ARF (Morton et al, 2007). Indeed, loss of ARF 

or p53 is essential for cell immortalisation by Myc (Eischen et al, 1999; Zindy et al, 1998). 
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Thus, an intact p53-ARF pathway can protect against oncogene activation, while when it is 

impaired in immortalised cells, Pol III transcription is not restrained anymore by p53-ARF 

and Myc can activate the system. 

 It might be that the ability of p53 to regulate Pol III transcription is enhanced when 

ARF is induced. For example, the effect on Pol III transcription after partial depletion of 

p53 by RNAi was higher when ARF was induced. Furthermore, the repression of Pol III 

transcription was much more robust after the induction of ARF than before (Morton et al, 

2007). Moreover, it has been argued that p53 is unable to suppress tumourigenesis in the 

absence of ARF, despite the ability to respond to DNA damage effectively (Christophorou 

et al, 2006; Efeyan et al, 2006). Therefore, it might be that the repression of Pol III 

transcription by ARF is part of the protective cellular response to hyperproliferative signals 

originating from oncogenes and although Pol III transcriptional repression is mediated by 

p53, ARF might be responsible for its control. 

 Hyperproliferative signals that originate from oncogene activation induce ARF 

expression, which consequently stabilises p53, initiating a downstream series of events that 

include inhibition of the cell cycle, proliferation and cellular growth. The ability of ARF 

and p53 to regulate Pol I transcription and rRNA production, and thus ribosome 

availability, provides a potent means to control mass accumulation and therefore growth. 

By also controlling transcription by Pol III, ARF and p53 contribute to the coordination of 

5S rRNA production with that of the other rRNA transcripts from Pol I, with important 

benefits in terms of cellular metabolic economy. 
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