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Abstract 

cAMP is a well studied second messenger that is ubiquitously expressed in 

mammals. It conducts its function by activating its downstream effectors: 

protein kinase A (PKA), exchange proteins regulated by cAMP (EPAC) and cyclic 

nucleotide gated ion-channels. The sole mechanism to inactivate cAMP is 

through degradation via cyclic-phosphodiesterases (PDEs). The PDEs, especially 

PDE4s, are involved in many diseases including asthma, chronic obstructive 

pulmonary disease (COPD) and depression. Therefore, PDEs have been a 

consistently popular research subject for decades and pharmaceutical companies 

have devoted considerable effort in developing PDE inhibitors. β-arrestin 

interacts with PDE4D5 and is a multifunctional protein that plays pivotal roles in 

signal transduction. It functions as an adaptor protein in the c-Raf/MEK/ERK 

cascade by interacting with c-Raf and ERK. 

In this study, I have shown that (1) β-arrestin1 can bind MEK1 directly, mediated 

at least in part by D26D29 of β-arrestin1 and R47K48R49 of MEK1. (2) Disruption of 

this association by mutagensis or small peptides decreases the phosphorylation 

of Ser412 on β-arrestin1, and accelerates isoprenaline-stimulated G-protein 

coupled receptor (GPCR) internalization. 

Dimerization of PDEs is considered important for their specificity. In this study,  

yeast two hybrid and co-immunoprecipitation were utilised to demonstrate that 

(1) PDE4D5 can form stable homodimers in both yeast and mammalian cell lines. 

(2) The dimerisation requires multiple interaction sites such as R173/N174/N175, 

E228/T229/L230, L306/M307/H308 and K323/T324/E325 (together named QUAD) 

in which R173/N174/N175 contributes most toward the dimerisation. (3) 

Association of an ion-pair R499/D463 also proved to be a necessary condition for 

dimer formation. (4) PDE4D5 dimerisation can be affected by challenge with the 

PDE inhibitor, anisomycin, and cAMP elevating agonists forskolin (Fsk) and 

isobutylmethylxanthine (IBMX).  

RACK1, another PDE4D5 binding partner, mediates and initiates cell migration in 

many cell types and affects the activity of the  c-Jun NH2-terminal kinase (JNK) 

signalling pathway, via its interaction with PKC. SUMOylation of proteins is an 

important method of regulation. In the current study, preliminary investigations 
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were undertaken to determine whether RACK1 is SUMOylated. SUMOylation of 

K271 of a 25-mer peptide sequence from RACK1 was observed, yet there was no  

SUMOylation of RACK1 observed in HEK293 cells in the presence or absence of 

overexpressed E3 ligases.   
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1 General Introduction 

1.1 Cyclic Nucleotide Phosphodiesterase 

Cyclic AMP serves as a second messenger that plays an important role in cell 

signaling. It controls the action of a series of hormones and neurotransmitters, 

and impacts on cell growth, differentiation, survival and inflammatory processes. 

It is produced from ATP by adenylate cyclase, an integral cell membrane protein 

that exists as a number of isoforms. The various adenylate cyclase isoforms have 

distinct regulatory properties, expression patterns and localization in different 

parts of cell plasma membrane (Houslay 2001). There are two main ways to 

regulate adenylate cyclase, both of which are G-protein dependent. The first 

pathway depends on the activation of Gs. The activated Gs stimulates adenylate 

cyclase activity, which leads to an increase in cAMP levels. Cyclic AMP then 

activates downstream signalling factors such as protein kinase A (PKA), EPAC and 

cyclic nucleotide gated ion-channels (Rubin 1994). In contrast, the second 

pathway depends on the activation of Gi, which leads to an inhibition of 

adenylate cyclase activity. However, the only way to inactivate cAMP is to 

degrade it via the action of cAMP phosphodiesterases (PDEs) (Houslay 2001). 

1.1.1 Cyclic Nucleotide Phosphodiesterase Families 

There are at least 11 families of PDE which have been discovered at present 

(Table 1.1). These isoenzymes can hydrolyze cAMP, cGMP or both. According to 

their primary structures, different substrates, inhibitors and different ways of 

regulation, each PDE family can extend to a series of subfamilies (Houslay and 

Milligan 1997) 
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PDE 
family Genes Substrates Selective Inhibitors Regulation 

Domain 
pairs 

      

PDE1 1A,B, C cAMP & cGMP  Nicardipine,Vinopectine  Ca/Cam,PKA/PKG  

CaM 
binding 
domain 

      

PDE2 2A cAMP & cGMP  EHNA 
Activated by 
cGMP GAF 

      

PDE3 3A,B cAMP  Cilostimide,Milrinone 
Inhibited by 
cGMP  

      
PDE4 4A,B,C,D cAMP  Rolipram,Ro20-1724 Phosphorylated  UCR 
   Ariflo, RP73401 by PKA, ERK  
      
PDE5 5A  cGMP Sildenafil Binds cGMP GAF 
    Phosphorylated   
     by PKA, PKC  
PDE6 6A,B,C  cGMP  Activated by   
    transducin  
PDE7 7A,B cAMP     
PDE8 8A,B cAMP     
PDE9 9A cGMP    

PDE10 10A 
cAMP and 
cGMP   GAF 

PDE11 11A 
cAMP and 
cGMP   GAF 

Table 1. 1: PDE families, substrates, selective inh ibitors and paired control domains 

Each of the PDE families consists of one to four genes and, via alternative 5’ 

mRNA splicing and different transcription initiation sites usage, a number of 

these genes can generate several isoforms. Due to this ability, PDE isoenzymes 

have a conserved central catalytic unit and variable NH2-terminal regions and 

COOH-terminal regions. Alternative 3’ mRNA splicing only exists in the members 

of the PDE1 family but 5’ mRNA splicing is found in several families (Houslay 

2001). 

There is a general structure for all PDEs. The region of PDE catalytic units is 

conserved between members of the same gene family and locates in the central 

portion of these PDE isoforms. Essential histidine residues are pivotal to the tight 

binding of divalent cations such as Zn2+ and Mg2+, which are critical for catalytic 

activity (Houslay and Adams 2003).  However, compared to the conserved 

structure of the catalytic region, the N-terminal region is very different and 

contain sequence motifs that are involved in the regulation of PDE catalytic 

activity and in intracellular targeting (Figure 1.1). 
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The PDE1 family has the ability to hydrolyse both cAMP and cGMP by the binding 

of Ca2+/CaM, and provides a means of cross-talk between the cAMP and Ca2+ 

signalling systems (Xu, Hassell et al. 2000).  

                
Figure 1.1: The core components of PDE. 
 

The PDE2, PDE5, PDE6, PDE10 and PDE11 families contain two GAF domains in 

their N-terminal regions. GAF domains exist in a variety of proteins from plants, 

bacteria, and vertebrates. Although the functions of these domains in many PDEs 

haven’t been discovered, it is considered that the domains probably play a role 

in regulation. For example, the GAF domains of PDE2, PDE5, and PDE6 

isoenzymes bind cGMP and in the case of PDE2 this leads to enzyme activation 

(reviewed by Houslay, M.D., 2001)                          

The PDE3s are distinguished by their high specificity and affinity for cAMP 

hydrolysis. However, they can bind cGMP with high affinity as well, whereby 

cGMP is an inhibitor of the hydrolysis of cAMP. Therefore cross-talk between the 

NO pathway and PDE3 is considered to elicit an increase of cAMP levels due to 

PDE inhibition (Denninger and Marletta 1999). There are two subfamilies of PDE3, 

PDE3A and PDE3B. PDE3s are also generated as two different types, membrane-

bound and cytosolic forms. Some groups elucidated that these enzymes are 

essential to the regulation of many important metabolic processes such as 

lipolysis and glycogenolysis, and this ability is due to an important feature of 

these enzymes that they are able to be activated by insulin (Degerman, Belfrage 

et al. 1997).     
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The PDE6 family, which is only expressed in the rod and cone photoreceptors of 

the retina, has an important role in visual signal transduction (Yarfitz and Hurley 

1994). Compared to other PDE families, PDE6 is a multi-subunit protein 

containing two types of catalytic units, α (called PDE6A) and β (called PDE6B), 

and form a complex with two molecules of the inhibitory γ subunit.  

PDE8 isoenzymes are cAMP-specific and contain Per-ARNT-Sim (PAS) homology 

domains in the N-terminal regions. PAS domains are known as their ability of 

sensing oxygen, redox potential, light, and some other stimuli (Gu, Hogenesch et 

al. 2000). 

1.1.2 PDEs and their inhibitors  

As PDEs are the only way to hydrolyze the secondary messengers cAMP and cGMP, 

they are involved in many cellular signaling pathways. Thus they are related to 

many diseases processes, inflammatory processes, as well as cell survival, 

memory and learning. Therefore, PDEs have attracted the attention of research 

and also PDE inhibitors have potential therapeutic functions. Despite the weak 

inhibitory effect, non-selective PDE inhibitors such as theophylline and 

papverine have been used in therapeutic treatment for over 70 years for a range 

of diseases (Boswell-Smith, Spina et al. 2006). However, due to the increase in 

identification of PDE isoforms over last 10 years and the elucidation of their 

functions, PDE selective drugs have begun to be used in the treatment of disease. 

For example, sildenafil in treating erectile dysfunction (Table 2.2).   
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PDE 
ISOENZYME  

NO. OF 
ISOFORMS  

SUBSTRATE  KM 
( M) 
CAMP  

KM 
(
M) 

GMP  

TISSUE 
EXPRESSION  

SPECIFIC 
INHIBITORS  

1  8 Ca2+/calmodulin-
stimulated 

1–30 3 Heart, brain, 
lung, smooth 
muscle 

KS-505a 

2    cGMP-stimulated 50 50 Adrenal gland, 
heart, lung, 
liver, platelets 

EHNA (MEP-1) 

3  4 cGMP-inhibited, cAMP-
selective 

0.2 0.3 Heart, lung, 
liver, platelets, 
adipose tissue, 
inflammatory 
cells 

Cilostamide 
Enoxamone 
Milrinone 
Siguazodan 

4  20 cAMP-specific 4   Sertoli cells, 
kidney, brain, 
liver, lung, 
inflammatory 
cells 

Rolipram, 
Roflumilast 
Cilomilast 

5  3 cGMP-specific 150 1 Lung, platelets, 
vascular smooth 
muscle 

Sildenafil, 
Zaprinast 

6    cGMP-specific   60 Photoreceptor Dipyridamole 
7  3 cAMP-specific, high-

affinity 
0.2   Skeletal 

muscle, heart, 
kidney, brain, 
pancreas, T 
lymphocytes 

BRL-50481 

8    cAMP-selective, 0.06   Testes, eye, 
liver, skeletal 
muscle, heart, 
kidney, ovary, 
brain, T 
lymphocytes 

none 

9  4 cGMP-specific,   0.17 Kidney, liver, 
lung, brain 

BAY 73-6691 

10  2 cGMP-sensitive, cAMP-
selective 

0.05 3.0 Testes, brain none 

11  4 cGMP-sensitive, dual 
specificity 

0.7 0.6 Skeletal 
muscle, 
prostate, 
kidney, liver, 
pituitary and 
salivary glands, 
testes 

none 

Table 1.2: PDE inhibitors    

1.1.2.1 PDE3 inhibitors 

As mentioned above, PDE3 has high affinity for cAMP and also for cGMP. 

However, according to Lugnier (Lugnier 2006) PDE3 can hydrolyze cAMP with a 

Vmax that is 10 times greater than that for which it hydrolyzes cGMP. Thus cGMP 

acts as a competitive inhibitor of cAMP hydrolysis. PDE3 was found as a potential 

therapeutic target in cardiovascular disease and asthma by the means of high 

expression in both the vasculature and airways (reviewed by (Barnes, Chung et al. 

1988)). Subsequently, PDE3 inhibitors have been shown to have the ability to 

relax vascular and airway smooth muscle, inhibit platelet aggregation (Barnes, 

Chung et al. 1988) and cause the induction of lipolysis (Manganiello, Taira et al. 
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1995). The remarkable effects of PDE3 inhibitors as positive inotropic agents 

(Nicholson, Challiss et al. 1991) gave a high possibility of designing new 

therapies for chronic heart disease. Indeed the PDE3 selective inhibitor, 

milrinone, was developed for this but was withdrawn from clinical trials because 

of side effects (Packer, Carver et al. 1991). Nevertheless, milrinone is still 

applied in acute treatment of heart failure. 

1.1.2.2 PDE4 inhibitors          

PDE4 isoenzymes are cAMP-specific and paly an essential role in the majority of 

cells related to inflammatory responses (Muller, Engels et al. 1996). 30 years ago, 

rolipram was developed as a drug for treatment of depression (Scott, Perini et al. 

1991), however, side effects of nausea and gastrointestinal disturbance ended its 

development (Scott, Perini et al. 1991). On the other hand, the finding that 

increasing the intracellular cAMP level in inflammatory cells by PDE4 inhibition 

inhibited their function and the wide distribution of PDE4 in these cells and the 

lung caused the exploration of using PDE4 selective inhibitors as potential drugs 

for airway disease (Torphy and Undem 1991). The first generations of PDE4 

inhibitors, including rolipram, were effective at inhibiting a wide range of 

inflammatory cells function in vitro (Nielson, Vestal et al. 1990; Giembycz, 

Corrigan et al. 1996; Weston, Anderson et al. 1997) . In this regard the PDE4 

selective inhibitor, CDP840, was developed in 1997 and showed a beneficial 

effect in patients with asthma (Hughes, Howat et al. 1996; Harbinson, MacLeod 

et al. 1997) . Subsequently, cilomilast and roflumilast were developed by Ted 

Torphy and Dr Schudt respectively (Brown 2005; Rabe, Bateman et al. 2005). 

Although several PDE4 selective inhibitors were found, inhibitors with better side 

effect profiles are still needed. 

1.1.2.3 PDE5 inhibitors  

PDE5 was first found in rat platelets in 1978 and proved to be a cGMP-specific 

isoform (Hamet and Coquil 1978). Because PDE5 inhibitors can induce vascular 

smooth muscle relaxation, it was considered as a potential drug target for 

cardiovascular disease. For this reason, sildenafil was first designed for angina 

treatment but its effect was disappointing. However, an interesting side effect 

drew the investigators’ attention that penile erections were found in a number 

of patients (reviewed by (Boswell-Smith, Spina et al. 2006)). This led to the 
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change of the sildenafil research programme to investigate the drug as a 

treatment of erectile dysfunction (Boolell, Allen et al. 1996). Finally, sildenafil 

became the most popular medicine in the world market. Furthermore, two new 

PDE5 inhibitors, vardenafil and tadalafil, proved useful for the treatment of 

erectile dysfunction (Maggi, Filippi et al. 2000). Vardenafil is more potent than 

the other two and tadalafil is less active against PDE6 isoforms (Maggi, Filippi et 

al. 2000).  

1.1.3 PDE4 family  

The PDE4 family consists of four PDE4 subfamilies, PDE4A, 4B, 4C and 4D, of 

which each contain several isoforms and that make at least 20 isoenzymes of 

PDE4 (Houslay and Adams 2003). There is a dunce gene found in the fruit fly 

Drosophila melanogaster whose identification generated a probe that led to the 

identification of a rat PDE known as PDE4A1 or RD1 (Davis, Takayasu et al. 1989), 

not only the first PDE4 isoform but also the first PDE isoform to be found. PDE4 

isoforms are identified by their unique N-terminal regions, which are generally 

encoded by a single 5’ exon except PDE4C1 that is encoded by two 5’ exons 

(Davis and Davidson 1986). There are 20+ exons encoding all the PDE4 

isoenzymes and interestingly, the PDE4 exonic sequence is highly conserved 

between human and mouse excluding the PDE4A gene which has a different 3’ 

coding region (Houslay and Adams 2003) This high conservation of PDE4 

isoenzymes indicates that there must be a high selective pressure that exists in 

the genes evolution, otherwise the PDE4 gene would be lost or changed, which 

also indicates that PDE4 is essential for cells.  

Bolger and colleagues’ study (Bolger, Michaeli et al. 1993) provided a model of 

PDE4 structure and also a way to characterize PDE4 isoforms. They found that 

there were two homologous regions located between the N-terminal region and 

catalytic unit (Bolger, Michaeli et al. 1993). These two regions thus were named 

upstream conserved region 1 and 2 (UCR1 and 2). In addition, the existence of 

UCR1 (containing 60 amino acids) and UCR2 (containing 80 amino acids) is a 

unique feature of the PDE4 family. Between UCR1 and UCR2, a linkage region 

called linker region 1 (LR1) is inserted and also a linker region 2 between UCR2 

and the catalytic region (Houslay 2001). Following the different organization of 

UCR1 and UCR2, PDE4 isoforms can be characterized as 4 types: long, short, 
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supershort and dead-short PDE4 isoforms (Figure 1.2). The long PDE4 isoform 

contains complete UCR1, UCR2 and two linker regions such as PDE4A4B; the 

short isoform contains a complete UCR2; and for the supershort isoforms have a 

truncated UCR2. 

 

 

   

Figure 1. 2: Schematic representation of structure of PDE4 Isoforms.  
The Figure shows the gene organization of four PDE4  subfamilies and their location on 
human chromosomes. The common structure of core reg ions forming the UCR1/2 and 
catalytic components is indicated. Certain unique N -terminal regions are encoded by two 5´ 
exons, which are indicated as 'a' and 'b'. Isoform subcategories, generated by alternative 
mRNA splicing, based upon presence of absence of UC R1/2 regions, are also shown 
schematically. The range of species interacting wit h PDE4 isoforms and presumed key sites 
of interaction is indicated. (Reproduced from Housl ay,M.D. and Adams,D.R. 2003). 

The four PDE4 subfamilies all have their unique C-terminal regions; however the 

function of these regions still remains obscure.   

A PDE4 isoform that should also be mentioned is PDE4A7, which consists of a 32 

amino acid N-terminal region and a truncated catalytic unit. This is due to its 

unique mRNA alternative splicing at both 3’ and 5’ ends. The truncated catalytic 

unit deprives the PDE4 isoform of catalytic ability (Horton, Sullivan et al. 1995) 

and is called a dead-short enzyme (Houslay, Baillie et al. 2007). Despite its 

inactive catalytic ability, PDE4A7 is widely expressed in cells (Barber, Baillie et 

al. 2004; Johnston, Erdogan et al. 2004; Houslay, Baillie et al. 2007)  and is 

considered to have some functions, although, which have not been found.     
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Although PDE4 isoforms shared a highly conserved catalytic unit and regulatory 

UCR1/2 regions, there is little redundancy among its four subfamilies. In human 

embryonic kidney cells stably expressing beta2 adrenergic receptors (HEKb2 ), 

PDE4B and PDE4D consist of >90% of PDE4 phosphodiesterase activity (Lynch, 

Baillie et al. 2005). However, using PDE4 interacting protein βarrestin to 

immunoprecipitate PDE4B or PDE4D, only endogenous PDE4D was detected in the 

pellet, but not PDE4B (Lynch, Baillie et al. 2005). Selective knockdown of PDE4D 

via small interference RNA (siRNA) increased isoprenaline stimulated 

phosphorylation of β2-adrenergic receptor (β2AR) and Gi dependent extracellular 

signal-regulated kinase (ERK) activation. Knockdown of PDE4B has no such effect 

(Wallace, Johnston et al. 2005). Nevertheless, gene knockdown experiments 

have shown that mouse peripheral leukocytes from PDE4B-/- mice, not PDE4D-/-, 

lost the ability to respond to lipopolysaccharide (LPS) induced PDE4B mRNA 

accumulation and decreased PDE activity. LPS induced tumor necrosis factor-α 

secretion by circulating leukocytes was also decreased by 90% in PDE4B-/- mice 

(Jin and Conti 2002).  

1.1.4 UCR1 and UCR2 modules of PDE4 

1.1.4.1 UCR1 and UCR2 interaction    

Beard et al found that the hydrophobic region of UCR1 can interact with the 

hydrophilic N-terminal region of UCR2. They also identified two arginine residues 

in UCR1 (Arg98 and Arg100 in PDE4D3) and a group of negatively charged 

residues in UCR2 (Glu146, Glu147 and Asp149 in PDE4D3) played key roles in the 

interaction (Beard, Olsen et al. 2000). 

Jin et al (Jin, Swinnen et al. 1992) showed that the deletion of UCR2 or the N-

terminal region led to an increase of PDE4D catalytic activity. In addition, Beard 

et al found a similar response for PDE4A5 (Beard, Huston et al. 2002). These 

findings support the hypothesis that UCR2 might be a constitutive inhibitor for 

the catalytic unit (Jin, Swinnen et al. 1992).  

1.1.4.2 PDE4 and PKA 

A single serine residue found in UCR1 of all long form PDE4 isoforms plays a key 

role for the activation of the catalytic unit. The special residue is located at the 
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very N-terminal end of UCR1 and it can be phosphorylated by PKA (MacKenzie, 

Baillie et al. 2002). The phosphorylation increases the PDE4 activity by 60% in 

mammalian cells and even more (2-3 fold) in PDE4D3 and PED4A4 (MacKenzie, 

Baillie et al. 2002). This indicates that the upstream conserved regions regulate 

PDE4 activity. 

Hoffmann and collaborators mutated the target serine to either an aspartate or 

glutamate to mimic the PKA activation and interestingly adjacent to the target 

serine there is a glutamate residue that attenuates PKA phosphorylation 

(Hoffmann, Baillie et al. 1999). However, mutation of this glutamate residue 

also mimics the activation by PKA phosphorylation. This phenomenon indicates 

that the PDE catalytic activity might be inhibited at a low level due to the 

interaction between target serine residue and an ion-pair. The phosphorylation 

of UCR1 also is considered to intervene in the interaction between UCR1 and 

UCR2 via a conformational change. Lim et al discovered an antiserum against the 

C-terminal portion of UCR2 activates PDE4D3 to a similar level of that activated 

by PKA phosphorylation. Thus the antiserum and PKA phosphorylation might 

regulate the catalytic activity through their disruption of the interaction 

between UCR2 and the catalytic unit (Lim, Pahlke et al. 1999). In addition, a 

higher sensitivity to stimulation by Mg2+ (in PDE4D3 and PDE4A4), which followed 

by the PKA phosphorylation is also considered to relate to the conformational 

change of UCR1 and UCR2.    

1.1.4.3 PDE4 and ERK   

The extracellular-signal-related protein kinase (ERK) MAP kinase signaling 

pathway is a well-investigated pathway which is essential for cell growth and 

survival. All PDE4 subfamilies except PDE4A contain an ERK consensus motif (Pro-

Xaa-Ser-Pro) in the third subdomain of the catalytic unit (MacKenzie, Baillie et al. 

2000). The serine residue of the motif can be phosphorylated by ERK. A distinct 

docking site that helps the specificity of the phosphorylation of the serine 

residue is the KIM (kinase interaction motif). There also is an FXF motif in the 

catalytic region of PDE4 isoforms, which plays an important role in defining the 

specificity for phosphorylation by ERK (Sharrocks, Yang et al. 2000). 

When the target serine is exclusively phosphorylated by ERK, an inhibitory effect 

occurs in PDE4 long isoforms. This ERK-regulated inhibitory phosphorylation 
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exerts an increase of local cAMP concentration, which leads to the activation of 

PKA. This elicits the phosphorylation of the serine residue in the UCR1 of PDE4 

long isoforms, which has been described above, and then causes an ablation of 

the inhibitory effect of ERK phosphorylation on PDE4 long isoforms. 

Intriguingly, a reprogramming of the ERK-activated effect on the long PDE4D5 

isoform was showed by Baillie et al in human aortic smooth-muscle cells (Baillie, 

MacKenzie et al. 2001). ERK in these cells leads to the autocrine generation of 

prostaglandin E2 (PGE2) by the activation of PKA2 and the production of 

arachidonic acid. The increasing concentration of PGE2 stimulates adenylate 

cyclase to initiate cAMP generation, and leads to PDE4D5 phosphorylation and 

activation by PKA.    

1.1.4.4 UCR2 and Targeting 

Accumulated evidence indicates that UCR2 is probably also involved in 

intracellular targeting. Verde and collaborators provided the primary evidence. 

They used two-hybrid analyses to investigate PDE4D3, and found a PDE4D3 

potential binding partner, myomegalin. Myomegalin, known for its scaffold 

function, locates at the Golgi/centractin region and has a domain similar to that 

found in dynactin/centractin. By utilizing truncation studies, Verde showed 

there was an interaction between the extreme C-terminal 550 amino acids of 

myomegalin and the N-terminal region of UCR2 (Verde, Pahlke et al. 2001).  

In addition, Liu and Maurice treated RASM cells with PMA and forskolin together 

and found this caused the release of particulate PDE4D3. This also indicates 

multi-site phosphorylation of PDE4D3 may lead to re-targeting and suggests that 

multi-site phosphorylation may have the ability to release PDE4 from anchor 

sites (Liu and Maurice 1999). 

1.1.5 PDE4 and AKAPs 

AKAPs can bind to the dimerization interface of the PKA cAMP binding site, 

which is called the RII regulatory subunit. The dimerization interface of R 

subunit forms a hydrophobic pocket that allows the insertion of an amphipathic 

helix of AKAPs, and this exerts a high-affinity interaction. The main functions of 
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AKAPs are their intracellular targeting ability and action as scaffolding protein in 

cells (Diviani and Scott 2001; Feliciello, Gottesman et al. 2001). 

Studies show that the long PDE4D3 isoform is able to bind mAKAP (muscle-

selective AKAP) (Dodge, Khouangsathiene et al. 2001) and AKAP450 (Tasken, 

Collas et al. 2001). mAKAP binds to the N-terminal region of PDE4D3 and 

AKAP450 binds to UCR2. The interaction between AKAP450 and UCR2 gives a rise 

to the possibility that AKAP450 may affect the PDE activity and also the 

phosphorylation of PDE4D3 by PKA and ERK. A possible impact is that the mAKAP 

localized PKA may facilitate the phosphorylation of PDE4D3. This interaction also 

suggests a negative feedback control pathway. The pathway starts with the 

increase of cAMP concentration, which leads to the activation of mAKAP 

localized PKA. The PDE4D3 activated by PKA phosphorylation will initiate the 

decrease of cAMP levels, mAKAP-bound PKA’s inactivation, and 

dephosphorylation of PDE4D3 (Dodge, Khouangsathiene et al. 2001).  

1.1.6 PDE4 and RACK1   

Receptor for activated C kinase 1 (RACK1) as a scaffold protein can bind to 

protein kinase C, Src, integrin β-subunits and γ-aminobutyric acid receptors and 

the long PDE4D5 isoform (McCahill, Warwicker et al. 2002). RACK1 interacts with 

PDE4D5 by binding to the RAID1 (RACK1 interaction domain), a helical domain 

that locates at the PDE4D5 N-terminal region (Bolger, McCahill et al. 2002). 

However, the function of the interaction is still unknown.    

1.1.7 PDE4 and SH3 domain 

SRC homology 3 (SH3) domain, that binds proteins containing PXXP motifs, exist 

in protein-tyrosine kinases, Src, Lyn and Fyn, which act as essential controllers 

in a number of cellular processes. The PXXP motif was found in PDE4A4/5 and 

PDE4D4 isoforms and gives a mean of interaction between PDE and protein-

tyrosine kinases (Pawson 1995). 

Membrane-associated PDE4D5 is found in ruffles at the cell periphery and also at 

a discrete perinuclear region. By using deletion analysis, Huston, E et al  (Huston, 

Beard et al. 2000) showed that a lack of the SH3-domain-interacting site on 

PDE4A5 released the PDE4A5 from ruffles and led to a uniform distribution of 
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PDE4A5 at the cell margin (Huston, Beard et al. 2000). A study performed on 

apoptotic cells showed that during the caspase 3, PDE4D5 lost its SH3-domain-

interacting region through a cleavage at Asp72 (Huston, Beard et al. 2000). This 

raises the possibiity that eliminating PDE4D5 from a functional relevant site may 

facilitate apoptosis. That overexpression of PDE4A5 in these cells does attenuate 

apoptosis indicates that the location of PDE4A5 may play an important part in 

cell survival. Although the mechanism remains obscure, PDE4A5 is activated 

through the phosphoinositide 3-kinase cell-survival pathway (MacKenzie, 

Yarwood et al. 1998).          

Unlike PDE4A5, its human homologue, PDE4A4 contains another SH3-domain-

interating site that locates to the linker region 2 (LR2) (McPhee, Yarwood et al. 

1999). A notable increase of PDE4A4’s sensitivity to inhibition by rolipram has 

been observed by McPhee, I. and the colleagues (McPhee, Yarwood et al. 1999). 

According to this, it is suggested that the side effect of emesis and nausea of 

rolipram may be cause by the high affinity of PDE4 for rolipram inhibition in the 

central nervous system (Souness and Rao 1997; Torphy 1998). 

PDE4D4 binds the three tyrosyl kinases at a similar level, whereas PDE4A5 

showed preference of these, Lyn>Fyn>Src (Houslay 2001).   

1.1.8 PDE4 subfamily 

1.1.8.1 PDE4A1 

PDE4A1 (U97584) was the first PDE isoform to be cloned. It is also the only 

purely membrane associated PDE4 isoform (Scotland and Houslay 1995; Shakur, 

Wilson et al. 1995; Baillie, Huston et al. 2002) and shows restricted expression in 

brain (Bolger, Rodgers et al. 1994; Shakur, Wilson et al. 1995). Thanks to 

Sullivan and his colleagues, we now know that the human isoform of PDE4A1 is 

located in chromosome 19p13.2, and a distinct 5’-exon encoded its specific N-

terminal (Sullivan, Rena et al. 1998). Deletion of this region could generate fully 

active PDE4A1, but without membrane targeting ability (Shakur, Pryde et al. 

1993; Huston, Houslay et al. 2006) . Further studies show that the N-terminal 

contains two helices linked by a flexible hinge (Smith, Scotland et al. 1996). 

These two helices work together to control PDE4A1’s distribution in cell. The 

helix-1 (amino acids 1-8) is pivotal for PDE4A1 intracellular targeting, especially 
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to the membrane and trans-Golgi stack. The Asp5 in helix-1 is the key amino acid 

to interact with Ca2+ after phospholipase-D-dependent PA (phosphatidic acid) 

generation (Baillie, Huston et al. 2002). The helix-2 (amino acids 14-25) contains 

a TAPAS1 domain which can insert into lipid bilayers (Baillie, Huston et al. 2002). 

This function is also regulated by Ca2+ interaction with Asp21. Increase Ca2+ level 

or mutation of either Asp5 or Asp21 would see elicits PDE4A1’s redistribution 

from trans-Golgi stack to throughout the cytosol (Huston, Gall et al. 2006).  

PDE4A1 was found in a number of brain tumour types, which raised the 

hypothesis that it may serve an important role in tumour growth and resistance 

(Goldhoff, Warrington et al. 2008). Indeed, a recent report from Goldhoff P. 

showed that overexpression of PDE4A1 in Daoy medulloblastoma and U87 

globlastoma cells could significantly shorten their in vivo doubling time.  

However, using rolipram along with temozolomide and conformal radiation 

therapy could stop tumour growth and promote tumour regression (Goldhoff, 

Warrington et al. 2008). 

1.1.8.2 PDE4A4/PDE4A5 

PDE4A4 (L20965) (Bolger, Michaeli et al. 1993) is a long isoform PDE that has 

been shown to undertake a dynamic redistribution in living cells independent 

from cAMP (Terry, Cheung et al. 2003). This process is triggered by treatment 

with PDE4 inhibitor Rolipram (Terry, Cheung et al. 2003). The peak of PDE4A4 

foci formation occurred after 10 hours treatment of rolipram and is dose 

dependent. The foci formation is also reversible upon washout of rolipram. 

Further investigation showed that a Db-LR2-PDE4A4 construct with deletion of 

eight amino acids (APRPRPSQ) from LR2 decreased foci formation. The Db-LR2-

PDE4A4 construct has a conformational change in PDE4A4 which disables LYN SH3 

interaction to alter the kinetics of rolipram inhibition of the catalytic activity 

(McPhee, Yarwood et al. 1999). Three single mutations, His505Asn, His506Asn 

and Val475Asp, in the catalytic unit ablated the foci formation but was still 

sensitive to rolipram inhibition (Terry, Cheung et al. 2003). 

Protein-tyrosine kinases Src, Lyn and Fyn can interact with the SH3 interacting 

domain PxxP (Pawson 1995) which locates at the N-terminal region of PDE4A4/5 

and PDE4D4 (Oconnell, McCallum et al. 1996; Beard, O'Connell et al. 1999; 

McPhee, Yarwood et al. 1999; Beard, Huston et al. 2002). This interaction is 
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responsible for the enzymes’ intracellular targeting. The membrane-associated 

PDE4A5 existed at ruffles of the cell periphery and at a discrete perinuclear 

localization (Beard, Huston et al. 2002). Deletion or disruption of the SH3-

domain-interacting site on PDE4D5 released PDE4D5 from ruffles at the cell 

margin, therefore causing a uniform distribution of PDE4D5 through the cell 

margin. In apoptotic cells, the caspase-3-mediated cleavage of PDE4A5 at Asp72 

eliminates the SH3-domian-interacting site, which leads to a similar PDE4D5 re-

distribution from ruffles to throughout the cell margin (Huston, Beard et al. 

2000). Furthermore, overexpression of PDE4A5 in apopototic cells attenuated 

apoptosis, whereas overexpression of another differently targeted PDE4 isoform 

displayed no such effect (Huston, Beard et al. 2000). This indicates that the 

specific localization of PDE4A5 at the cell margin may promote cell survival by 

controlling compartmentalized cAMP levels (Houslay and Adams 2003). In support 

of this hypothesis is that PDE4A5 is activated through the phosphoinositide 3- 

kinase cell survival pathway, however the mechanism of this remains obscure 

(MacKenzie, Yarwood et al. 1998). PDE4A4 (human homologue of PDE4A5) has an 

extra site for interaction with SH3 domains (McPhee, Yarwood et al. 1999), 

which locates at the LR2. Sensitivity of PDE4A4 to inhibition by rolipram is 

remarkably increased after Lyn and Src bind to this site (McPhee, Yarwood et al. 

1999).    

In vitro purified PDE4A4 was reported to exhibits a biphasic response to Mg2+ in 

catalyzing cAMP hydrolysis (Laliberte, Liu et al. 2002). PKA dependent 

phosphorylation on PDE4A4 increased its sensitivity to Mg2+, which leads to a 4 

fold increase of PDE4A4 activity. The PDE4A4 phosphorylation also increases the 

enzyme sensitivity to (R)- and (S)-rolopram (Laliberte, Liu et al. 2002).  

The p75 neurotrophin receptor (p75NTR) belongs to the family of TNFR (tumour 

necrosis factor receptor). It is reported to be expressed in many cell types 

including smooth muscle cells, endothelial cells, myofibroblasts, neurons and 

glia after injury (Sachs and Akassoglou 2007). It has been shown to regulate 

disease progression by mediating a number of functions fundamental for tissue 

repair such as apoptosis (Syroid, Maycox et al. 2000), cellular differentiation 

(Passino, Adams et al. 2007), extracellular matrix remodelling (Sachs, Baillie et 

al. 2007), myelination (Cosgaya, Chan et al. 2002) and inhibition of neurite 

outgrowth (McGee and Strittmatter 2003; Domeniconi, Zampieri et al. 2005). 
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PDE4A4/5 can directly interact with p75NTR via binding to its unique C-termail 

region, and is recruited to the plasma membrane for cAMP degradation. The 

PDE4 dependent inhibition of plasminogen activation allows p75NTR to increase 

fibrin deposition after sciatic nerve injury and lung fibrosis (Sachs, Baillie et al. 

2007). The full process is described in figure below (Figure 1.3). 

 

 

Figure 1.3: Proposed model for the role of p75NTR i n the cAMP-mediated 
plasminogen activation. Taken from (Sachs, Baillie et al. 2007).  
p75NTR interacts with PDE4A4/5 resulting in degrada tion of cAMP and thus a reduction of 
PKA activity. Decrease in cAMP reduces expression o f tPA and increases PAI-1, resulting in 
reduction of plasmin and plasmin-dependent extracel lular proteolysis. Reduction of plasmin 
results in reduced fibrin degradation and ECM remod eling. Because plasmin can 
proteolytically modify nonfibrin substrates, such a s growth factors and cytokines, this 
mechanism may be upstream of various cellular funct ions. 

PDE4A4 is the main PDE isoform that is up-regulated in lung pathogenesis, 

especially COPD (chronic obstructive pulmonary disease) (Barber, Baillie et al. 

2004). Therefore, it has been considered to be a suitable pharmacological target 

for COPD (Houslay, Schafer et al. 2005). 

PDE4A5 (AAF14519), which is the rodent orthologue of PDE4A4, has a unique N-

terminal region that defines its intracellular localization. Two sites of PDE4A5 N-

terminal region were found to target it to the cell margin: one exists in the C-

terminal portion of PDE4A5 unique region and the other one is a SH3 motif which 

can interact with LYN kinase. A third membrane targeting region locates at the 

N-terminal part of UCR2 and is believed to target PDE4A5 to the perinuclear 
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region (Beard, Huston et al. 2002). PDE4A5 can be cleaved by caspase-3 at 69-

DAVE-72 downstream of the SH3 motif, which alters the distribution of PDE4A5 

(Huston, Beard et al. 2000).  Immumophilin XAP2 interaction with PDE4A5 was 

found to decrease activity of PDE4A5 (Bolger, Peden et al. 2003).  

In rat brain, PDE4D5 was found to express in the olfactory nuclei, deep cortical 

layers, dentate and CA1 pyramidal layers (D'Sa, Eisch et al. 2005). Upon 

electroconvulsive seizure (ECS) treatment, PDE4A5 levels were elevated in the 

anterior cingulate and frontoparietal cortices, CA1 and dentate gyrus. PDE4A 

splice variants PDE4A1 and PDE4A10 were also detected in rat brain with 

different distribution and regulation upon stimuli treatment. Their different up-

regulation may suggest a region specific response to chronic depressant-

mediated cAMP increase, making them a potential target for anti-depressant 

therapy (D'Sa, Eisch et al. 2005). 

1.1.8.3 PDE4A7 

PDE4A7 (U18088) is the only PDE4 isoform that lacks catalytic activity. This is 

due to its novel 3’ and 5’ splicing, resulting in both 5’ and 3’ domain swaps, 

which gives PDE4A7 a unique 32-residue N-terminal region and a unique 14-

residue region (Horton, Sullivan et al. 1995; Sullivan, Rena et al. 1998). Further 

investigation showed that the unique N-terminal region was able to support an 

active catalytic unit, whereas the C-terminal cannot (Johnston, Erdogan et al. 

2004). PDE4A7 is exclusively targeted to P1 particulate fraction, whereas other 

active PDE4A isoforms are not. A 19-residue C-terminal region of active PDE4A 

splice prevents the exclusive targeting to P1 particulate fraction, whereas 

PDE4A7 unique C-terminal region cannot (Johnston, Erdogan et al. 2004). 

1.1.8.4 PDE4A8 

PDE4A8 contains a unique N-terminal region of 85 amino acids that differs from 

the other PDE4A long isoforms, PDE4A4, 4A10 and 4A11 (Mackenzie, Topping et 

al. 2008). The human isoform undergoes rapid evolutionary change in its N-

terminal region, which diverges from its corresponding isoforms in rat and other 

mammals (Mackenzie, Topping et al. 2008). The human PDE4A8 was 

demonstrated to express mainly in skeletal muscle and brain, whereas other 

PDE4A isofroms and rat PDE4A8 displayed a different pattern. PDE4A8 is sensitive 
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to the PDE4 inhibitor rolipram, but less sensitive to cilomilast (Mackenzie, 

Topping et al. 2008). Like all other PDE4 long isoforms, PDE4A8 can be 

phosphorylated by protein kinase A at the conserved Ser site within UCR1, which 

increases PDE enzyme activity (McPhee, Cochran et al. 2001; MacKenzie, Baillie 

et al. 2002).    

1.1.8.5 PDE4A10 

PDE4A10 contains a unique 46 amino acid N-terminal region (Rena, Begg et al. 

2001). It has a similar size and maximal activity to PDE4A4, but differs in many 

aspects such as interaction with LYN, sensitivity to inhibition by rolipram, 

thermostablility and subcellular distribution (Rena, Begg et al. 2001). In cardiac 

myocytes, enhanced cAMP initiates the down-regulation of transcripts and 

promoter activity for PDE4A10 (McCahill, Campbell et al. 2008).   

1.1.8.6 PDE4A11 

PDE4A11 is a recently identified PDE4A isoform that has a unique 81 amino acids 

N-terminal region encoded by exon-1 (4A11) (Wallace, Johnston et al. 2005). 

Recombinant PDE4A11 expressed in COS-7 cells were predominantly localised 

around the nucleus and in membrane ruffles. It can be phosphorylated at Ser119 

by PKA and can interact with beta-arrestin (Wallace, Johnston et al. 2005). 

However, its specific function is not clear yet. 

1.1.8.7 PDE4B1 

Similar to other PDE4 long isoforms, PDE4B1 can be activated by phosphorylation 

at the PKA consensus site within UCR1 (MacKenzie, Baillie et al. 2002).  PDE4B1 

along with its long isoforms such as PDE4A5 and PDE4D3 were activated by 

phosphatidic acid (PA), whereas the short isoforms such as PDE4A1, PDE4B2, 

PDE4D1 and PDE4D2 were not (Nemoz, Sette et al. 1997).  

PDE4B1 can be phosphorylated at Ser659 by ERK (Baillie, MacKenzie et al. 2000). 

The Ser659 is located within the catalytic unit of PDE4B1; phosphorylation at this 

site leads to the inhibition of the enzyme activity. Such ERK phosphorylation has 

also been noted in PDE4D3 at Ser579 and PDE4C2 at Ser535, but not in PDE4A8 
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(Hoffmann, Baillie et al. 1999). However, ERK phosphorylation can activate the 

short variant PDE4B2 (Baillie, MacKenzie et al. 2000).  

Recombinant PDE4B1 (as well as PDE4D3 and PDE4D5) was shown to interact with 

Nuclear distribution element-like (Ndel1; Nudel) protein, and such interaction 

was shown to potentiate the Ndel1-Ndel1 self-association (Collins, Murdoch et al. 

2008). For PDE4D3, elevation of cAMP ablated its potentiating effect on Ndel1 

self-association. However, for PDE4B1 and PDE4D5, they were resistant to the 

increase of cAMP  (Collins, Murdoch et al. 2008). 

PDE4B1, along with its PDE4 isoform PDE4B2 and PDE4B3, were found to interact 

with DISC1 (disrupted in schizophrenia 1) by their UCR2 domain and this 

association is ablated by increased cAMP level (Millar, Pickard et al. 2005). This 

function is described in section 1.1.8.9 below.  

PDE4B1 was found to express in peripheral blood T cells (Baroja, Cieslinski et al. 

1999), monocytes, and macrophages (Barber, Baillie et al. 2004). 

1.1.8.8 PDE4B2 

PDE4B2 has been found to be the predominant PDE isoform in monocytes and 

neutrophils (Wang, Wu et al. 1999). It undergoes different regulation in these 

two cell types (Wang, Wu et al. 1999). In monocytes, expression of the PDE4B 

gene is selectively induced by lipopolysaccharide (LPS) and this induction is 

inhibited by interleukin IL-10 and IL-4. In neutrophils, PDE4B2 is constitutively 

expressed and such expression is not affected by LPS or IL-10 (Wang, Wu et al. 

1999). In the same report, Wang P. also found that leukocytes were the main 

resource for PDE4B2, indicating it to be a potential target for the design of anti-

inflammatory drugs (Wang, Wu et al. 1999). Further study also showed that T 

cell activation was regulated by PDE4B2 through its dynamic distribution in the 

process of immunological synapse formation (Arp, Kirchhof et al. 2003). 

Several analogues of a new non-nucleoside HIV-1 reverse transcriptase inhibitor 

named alkenyldiarylmethanes ( ADAM), whose analogues have been identified to 

protect HIV-infected cells from the cytopathic effects of the virus by an unclear 

HIV- reverse transcriptase independent mechanism, displayed weak inhibition 

effects on PDE4B2 (Cullen, Cheung et al. 2008). PDE4 expression in CD4+ memory 
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T-cells is a necessary condition for HIV infection to occur, which makes PDE4 

inhibitor potential therapeutic target for HIV treatment (Sun, Li et al. 2000).  

PDE4B2 was found to be expressed in peripheral blood T cells (Baroja, Cieslinski 

et al. 1999).  

1.1.8.9 PDE4B3 

Hippocampal long-term potentiation is the most accepted cellular model for 

learning and memory formation (Bliss and Lomo 1973). It contains 2 phases: 

early-LTP (<4h) and late-LTP (>4h), and the latter phase is dependent upon 

protein translation and transcription. PDE4B3 was the first cAMP specific PDE 

found to be associated with LTP and modulated during LTP phase (Ahmed, Frey 

et al. 2004). It is activated through NMDA-receptors and its transcription was 

transiently up-regulated for 2 hours after tenanization. PDE4B3 protein 

expression peaks at 6 hour after LTP induction and is rapidly downregulated by 8 

hours, while the cAMP level continually decreases during the LTP phase (Ahmed 

and Frey 2003). Further study detailed LTP specific translational (not 

transcriptional) regulation of PDE4B3 in hippocampal area CA1 (Ahmed, Frey et 

al. 2004). 

PDE4B3, along with its PDE4 isoform PDE4B1 and PDE4B2, were found to interact 

with DISC1 (disrupted in schizophrenia 1) by their UCR2 domain and this 

association is ablated by increased cAMP level (Millar, Pickard et al. 2005). 

According to the experimental evidence, Millar et a l (Millar, Pickard et al. 2005) 

proposed a mechanism that DISC1 sequesters PDE4B in resting cells and releases 

the activated isoform after cAMP is elevated. DISC1 is considered to be a 

candidate susceptibility factor for schizophrenia. The gene encoding PDE4B is 

disrupted by a balanced translocation in a subject diagnosed with schizophrenia 

and a relative with chronic psychiatric illness (Millar, Pickard et al. 2005). 

Therefore, PDE4B has been considered as a genetic susceptibility factor for 

schizophrenia (Millar, Pickard et al. 2005; Millar, Mackie et al. 2007).  

1.1.8.10 PDE4B4 

PDE4B4 is a recently characterised PDE4B member (Shepherd, McSorley et al. 

2003). It has a unique N-terminal region with 17 amino acids and UCR1/2 regions. 
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It has detectable expression in liver, skeletal muscle and several regions in brain, 

which differs from the pattern of tissue distribution of its two long isoforms 

PDE4B1 and PDE4B3 (Shepherd, McSorley et al. 2003). 

1.1.8.11 PDE4B5 

PDE4B5 is a recently identified PDE4 variant that is brain specific (Cheung, Kan 

et al. 2007). It has a novel 16 amino acids N-terminal region that is identical to 

that of PDE4D6 which is also brain specific. It can be inhibited by PDE4 inhibitors 

rolipram and cilomilast, and can interact with DISC1. However, its function in 

brain is still poorly understood (Cheung, Kan et al. 2007).   

1.1.8.12 PDE4C1/2/3 

There are only three members in the PDE4C subfamily which are PDE long 

isoforms PDE4C1, PDE4C2 and PDE4C3 (Sullivan, Olsen et al. 1999). They are 

generated from different promoters and all form human. Other PDE4C splice 

variants PDE4C- 54 and PDE4C- 109 transcription is considered to be generated 

from a separated common promoter. PDE4Cs are ubiquitously expressed but with 

low concentration in lung and absent in immune system cells (Engels, Sullivan et 

al. 1995; Obernolte, Ratzliff et al. 1997).  PDE4C- 54 is unique for its specific 

expression in testis.  

PDE4C2 and PDE4D3 can interact with PKA anchor protein AKAP450, and gate the 

activation of AKAP450-tethered PKA type-II localised in the perinuclear region 

under conditions of basal cAMP generation in resting cells (see 1.1.8.14) 

(McCahill, McSorley et al. 2005). 

1.1.8.13 PDE4D1/2 

PDE4D1 and PDE4D2 are two PDE4 short isoforms as shown below (Figure 1.4). 

The most profound finding about them is their selective expression in vascular 

smooth muscle cells (VSMCs) (Houslay 2005). In VSMCs, long PDE4D isoforms are 

not transcriptionally regulated by prolonged cAMP signalling in 

synthetic/activated cells, whereas short PDE4D1 and PDE4D2 are. Such an 

observation may indicate a reduced VSMC responsiveness to particular cAMP 

effects, and this may depend on the histone acetylation status of their 
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promoters. According to the elevated expression of PDE4D1 and PDE4D2 in 

synthetic/activated VSMCs, Tilley and Maurice suggested that these cells might 

more readily desensitize to the effects of prolonged cAMP-elevating agents than 

contractile/quiescent VSMCs through both increased cytosolic expression of 

these variants and activation of them by mitogenic stimuli via ERK. Therefore, 

development of PDE4D inhibitors to target specific PDE4D isoforms in 

contractile/quiescent and synthetic/activated VSMCs is of importance (Houslay 

2005; Tilley and Maurice 2005).  

 

Figure 1.4. The PDE4D gene, the long PDE4D7 and sup ershort PDE4D1/2 
products plus putative networks linking them to fun ctions in VSMC.  
a, schematic of the PDE4D gene. Exons are numbered so as to indicate both th ose coding 
the common core PDE4D plus the unique 5' exons enco ding the N-terminal regions of 
particular splice variants (Houslay and Adams 2003) . Note that single exons encode the N-
terminal regions of individual isoforms except for the "first" isoform from each PDE4 
subfamily, the N-terminal region of which is encode d by multiple exons located at the 
extreme 5' region of the gene. The figure is a sche matic and for simplicity does not indicate 
relative distances separating these exons to scale.  The three arrows indicate the start of the 
PDE4D7, PDE4D1, and PDE4D2 coding regions, in order . b, schematic of the domains of the 
indicated PDE4D isoforms. PDE4D7 is a long isoform with both UCR1 and UCR2, PDE4D1 is 
a short isoform with only UCR2, and PDE4D2 is a sup ershort form with a truncated UCR2. 
PDE4D1 and PDE4D7 both have unique N-terminal regio ns, whereas PDE4D2 does not. 
Shown are the phosphorylation sites for PKA on UCR1  (arrows) and the phosphorylation 
site for ERK on the catalytic unit. c, schematic to  show stimulatory (arrows) and inhibitory 
(dashed lines + circle) connections linking PDE4 lo ng and short isoforms in VSMC. The 
"inhibitory" effect on cAMP exerted by PDE4 is thro ugh cAMP degradation. Although the 
major effector of the intracellular actions of cAMP  is PKA (Tasken and Aandahl 2004), 
actions may also be exerted by EPAC (Bos 2003) and cyclic nucleotide-gated ion channels 
(Zagotta and Siegelbaum 1996). PKA is known to medi ate the actions shown here on PDE4, 
RhoA, Raf-1, and various other actions that attenua te proliferation. Cross-talk between the 
ERK and cAMP pathways can occur at the level of Raf , with Raf1 providing a point of 
inhibition by cAMP and B-Raf a point of activation (Houslay and Kolch 2000). (Reproduced 
from Houslay MD, Molecular Pharmacology, 2005) (Houslay 2005) 
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1.1.8.14 PDE4D3 

PDE4D3 is a PDE4D long isoform containing UCR1/2 regions and a unique 15 

amino acids N-terminal. Similar to other long isoforms it can be activated by PKA 

phosphorylation at Ser54 and Ser13 after elevated cAMP (Sette and Conti 1996) 

(MacKenzie, Baillie et al. 2002). Such PKA activation, along with PKC stimulated 

activation of PDE4D3 via Raf/MEK/ERK signalling pathway, coordinated the 

translocation to the cytosolic fraction of vascular smooth muscle cells (Liu and 

Maurice 1999). However, epidermal growth factor (EGF) treatment has an 

inhibitory effect on PDE4D3 (and PDE4D5) activity, which is engendered by the 

EGF induced ERK2 phosphorylation at Ser579 of PDE4D3 and the cognate residue 

in PDE4D5. Such inhibition is transient and can be ablated by feedback PKA 

phosphorylation of PDE4D3 (Hoffmann, Baillie et al. 1999). PKA Phosphorylation 

of PDE4D3 at Ser13 alone increases its affinity with mAKAP, which may facilitate 

the recruitment of PDE4D3 and quick signal termination (Michel, Dodge et al. 

2004). 

Oxidative stress (treatment of cells with H2O2) can lead to a rapid increase of 

PDE4D3 activity and phosphorylation. This phosphorylation occurs at Ser579 and 

Ser239. ERK phsophorylation of Ser579, which locates at the extreme C-terminus 

of the catalytic unit, inhibits PDE4D3 activity (Baillie, MacKenzie et al. 2000). 

Phosphorylation of Ser239, which locates at the extreme N-terminal of the 

catalytic unit, occurs via an unknown kinase that is downstream of phosphatidyl 

inositol 3-kinase (Hill, Sheppard et al. 2006). Such phosphorylation altered the 

inhibitory effect of ERK phosphorylation at Ser579 and leads to the increase of 

PDE4D3 activity. Therefore, it is supposed that phosphorylation at Ser239 

attenuates interaction between UCR1 or UCR1/2 and the catalytic unit to 

reprogramme the functional outcome of ERK phosphorylation. This oxidative 

stress is considered to activate PDE4s in order to lower the cAMP level and 

promote inflammatory responses (Hill, Sheppard et al. 2006).  

Phosphatidic acid is a second messenger which is a product of stimulation of 

cells by hormones and growth factor receptors in many cell types (English 1996; 

Exton 1997; Hodgkin, Pettitt et al. 1998) . It was found to directly bind to a 31-

59 amino acids region of PDE4D3. Such binding activated PDE4D3 enzyme activity 
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and thus provides a new mechanism of cAMP regulation by PA (Grange, Sette et 

al. 2000). 

PDE4D3 and PDE4D5 can interact with βarrestin and be recruited to activated β2 

adrenergic receptors (β2AR) (Perry, Baillie et al. 2002). In doing so, cAMP 

activated membrane bound protein kinase activity is restricted by accelerated 

degradation of cAMP and receptor desensitization (Perry, Baillie et al. 2002).  

This recruitment to β2ARs has been shown to play key roles in regulating the 

receptor switching its signalling from Gs to Gi in cardiac myocytes. 

Phosphorylation of the β2AR by PKA switches its coupling from stimulatory G-

protein (Gs) activation of AC to inhibitory G-protein (Gi) activation of ERK. The 

beta arrestins recruit PDE4 to the receptor in order to regulate the PKA activity 

at the membrane (Baillie, Sood et al. 2003). PDE4 inhibitor rolipram treatment 

significantly enhances the PKA phosphorylation of β2AR and β2AR -mediated 

activation of ERK1/2. This is consistent with the Gs to Gi switch model, because 

the ERK1/2 activation is also sensitive to both inhibitors of Gi (pertussis toxin 

inhibited) and PKA (H89). Thereby, the recruited PDE4 is suggested to be crucial 

in regulating the PKA mediated switching of β2AR signalling from Gs to Gi (Figure 

1.5) (Baillie, Sood et al. 2003). 
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Figure 1.5: A schematic representation of the role of arrestin-recruited PDE4 
in regulating the “switching” of the β2AR from G s to G i stimulation. 
Agonist occupancy of the β2AR initially leads to coupling to G s, which causes activation of 
adenylyl cyclase, elevated cAMP levels, and activat ion of PKA, which is able to 
phosphorylate the β2AR. Concomitantly, agonist occupancy also leads to GRK-mediated 
phosphorylation of the β2AR, which allows for the recruitment of β-arrestin together with 
bound PDE4. PKA phosphorylation of the β2AR confers switching from G s to G i, with 
consequent activation of ERK1/2. However, β-arrestin-recruited PDE4 provides a negative 
feedback loop, the role of which is to attenuate lo cal cAMP levels and thus the ability of 
membrane PKA to phosphorylate the β2AR. This action of β-arrestin-recruited PDE4 is 
uncovered by dominant negative PDE4, which replaces  the active endogenous recruited 
PDE4 to ablate the negative feedback loop and thus accentuate switching to G i. (reproduced  
from (Baillie, Sood et al. 2003)) 

As described for PDE4C1/2/3, PDE4D3 and PDE4C2 can interact with PKA anchor 

protein AKAP450, and gate the activation of AKAP450-tethered PKA type-II 

localised in the perinuclear region under conditions of basal cAMP generation in 

resting cells (Figure 1.6) (McCahill, McSorley et al. 2005). 
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Figure 1.6: Schematic of anchored PDE4/PKA complexe s.  
Active anchored PDE4D3 (PDE4C2) controls the activi ty of AKAP-tethered PKA-RII. In 
resting cells the basal generation of cAMP by adeny lyl cyclase is degraded by anchored 
PDE4. However, inhibition of anchored PDE4, such as  by ERK phosphorylation or 
exogenously added inhibitors, now allows cAMP level s to rise in the immediate environment 
of tethered PKA-RII, eliciting the activation of th is selected pool of PKA. Subsequent 
phosphorylation of the long PDE4 isoform by PKA act ivates the PDE4, lowering cAMP levels, 
deactivating PKA and resetting the system. This all ows for transient activation. Taken from  
(McCahill, McSorley et al. 2005) 

A recent study shows that PDE4D3 exists in the cardiac ryanodine receptor 

(RyR2)/claciun-release-channel complex, which is required for excitation-

contraction (EC) coupling in heart muscle. Elimination of PDE4D from mice leads 

to a progressive cardiomyopathy, accelerated heart failure after myocardial 

infarction and cardiac arrhythmias. In human hearts, reduced PDE4D3 was found 

in subjects with failing hearts, which contributes to PKA-hyperphosphorylated 

“leaky” RyR2 channels that promote cardiac dysfunction and arrhythmias 

(Lehnart, Wehrens et al. 2005). Further investigation also showed that depletion 

of PDE4D3 in mice significantly reduced the exercise capacity of the mice 

(Bellinger, Reiken et al. 2008). PDE4D3, but not PDE4D5, also have been found to 

be recruited to the cardiac I-Ks potassium channel by the A kinase-anchoring 

protein Yotiao (AKAP-9) so as to regulate the cAMP level (Terrenoire, Houslay et 

al. 2009). 

PDE4D3 can interact with Nuclear distribution element-like (Ndel1;Nudel) 

protein. Such interaction with Nudel enhances Nudel-Nudel self-association 
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(Collins, Murdoch et al. 2008). However, this potentiating effect was ablated by 

phosphorylation of PDE4D3 at Ser13 of its unique N-terminal region by PKA after 

cAMP elevation (Collins, Murdoch et al. 2008).    

1.1.8.15 PDE4D4 

PDE4D4 contains a SH3 binding domain in its unique N-terminal region and can 

bind to src, lyn and fyn with similar affinity (Beard, O'Connell et al. 1999).   

Permanent epigenetic modifications of the genome by DNA methylation at CpG-

rich regions (CpG islands) can regulate gene transcription by hypermethylation 

(silence) or hypomethylation (activate) (Momparler and Bovenzi 2000). Change 

of DNA methylation state has been shown to contribute to both cancer initiation 

and promotion (Momparler and Bovenzi 2000; Esteller 2005). A specific 

methylation cluster was identified in the 5’-flanking CpG island of PDE4D4 (Ho, 

Tang et al. 2006). This CpG region was gradually hypermethylated with aging in 

normal prostates, leading to the loss of PDE4D4 expression. Following studies in 

prostate cancer cells confirms the site-specific methylation is involved in 

transcriptional silencing of PDE4D4 expression and found a related 

hypomethylation of this gene. Because the PDE4D4 alterations in the oestrogen-

exposed prostate are detectable before histopathologic changes of the gland, 

this suggests PDE4D4 is a potential molecular marker for prostate cancer risk 

assessment (Ho, Tang et al. 2006). 

Dynamic cAMP changes that are restricted to a subplasma-membrane domain by 

PDE4 enhance endothelial barrier integrity. PDE4D4 was found to be expressed in 

pulmonary microvascular endothelial cells; located in plasma membrane 

fractions; and interacted with αII spectrin within its membrane domain 

(Creighton, Zhu et al. 2008). Inhibition PDE4D4 activity allows cAMP that was 

predominantly restricted at the membrane to enter a cytosolic domain that is 

rich in microtubules, where it enables PKA phosphorylation of tau at Ser214. 

Such phosphorylation reorganizes microtubules and promotes inter-endothelial 

cell gap formation (Creighton, Zhu et al. 2008).  
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1.1.8.16 PDE4D5 

As described in the section above on PDE4D3, PDE4D5 can be recruited to 

activated β2AR by βarrestin in order to switch Gs coupling to Gi (Figure 1.5).  

However, further knock down of PDE4D3 and PDE4D5 gene by siRNA suggested 

PDE4D5 was the isoform that regulated the desensitization of isoprenaline-

stimulated PKA phosphorylation of β2AR and switches the signalling to ERK 

(Lynch, Baillie et al. 2005). This translocation of PDE4D5 generated a spatial 

cAMP gradient around the membrane –bound β2AR, mediating receptor 

phosphorylation by PKA and its ability to activate ERK through Gi in 

cardiomyocytes (Lynch, Baillie et al. 2007).  

PDE4D5 was shown to interact with both N and C-termini of βarrestin (Baillie, 

Adams et al. 2007). Furthermore, PDE4D5 has been shown to interact with 

another scaffolding protein RACK1 via its RACK1 interaction domain (RAID) 

(Bolger, McCahill et al. 2002). Screening scanning peptide arrays showed that 

RACK1 and beta-arrestin interact at overlapping sites within the unique N-

terminal region of PDE4D5 and at different sites in the catalytic unit (Bolger, 

Baillie et al. 2006). Due to these overlapped binding sites, RACK1 competed with 

beta-arrestin in sequestering PDE4D5 (Figure 1.7). Therefore, an alteration of 

RACK1 interaction may affect PDE4 mediated β2AR coupling from Gs to Gi (Bolger, 

Baillie et al. 2006).   
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Figure 1.7: RACK1 and beta-arrestin interacting sit es of PDE4D5.  
A schematic of PDE4D5 with its unique N-terminal re gion, upstream conserved region 1 
(UCR1), upstream conserved region 2 (UCR2), catalyt ic region and extreme C-terminal 
region. Indicated above the schematic are the sites  of ββββ-arrestin and RACK1 interaction 
identified prior to the present study. Below it are  interaction sites arising from the present 
study.  Reproduced from (Bolger, Baillie et al. 200 6) 

In human pulmonary artery smooth muscle cells, hypoxia causes transient up-

regulation of PDE4B2 which reaches a maximum after seven days and sustained 

up-regulation of PDE4A10/11 and PDE4D5 in a period of 14 days (Millen, MacLean 

et al. 2006). The seven days of hypoxia elevated intracellular cAMP levels, PKA 

activity and activated ERK, but not the overall activities of PKA or PDE4 or PDE3 

respectively. This may due to the ERK phosphorylation and inhibitory effect on 

PDE4 (Millen, MacLean et al. 2006). 

PDE4D5 is also the only PDE isoform that exists in gastric smooth muscle cells 

(Murthy and Sriwai 2008). In smooth muscle cells, cholecystokinin (CCK) 

treatment increases forskolin-stimulated PDE4D5 phosphorylation and PDE4D5 

activity. This enhanced phosphorylation was inhibited by U73122 (inhibitor of PI 

hydrolysis), bisindolylmaleimide (PKC inhibitor) and PD98059 (MEK inhibitor), but 

not by C3 exoenzyme (RhoA inhibitor) or Y27632 (Rho kinase inhibitor), 

indicating the increase of PDE4D5 phosphorylation and activity was regulated by 

ERK1/2 derived from sequential activation of PLCβ and PKC. PP2A was shown to 

dephosphorylate PDE4D5 and PP2A itself was inhibited by ERK1/2. Co-

immunoprecipitation suggested that PDE4D5, PKA, and PP2A bound to the 

common anchoring protein AKAP. Therefore, it was concluded that cAMP levels 

in smooth muscle are cross-regulated by contractile agonists in a mechanism: 

PLC-beta/PKC-dependent ERK1/2 activation inhibited PP2A activity. Such 
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inhibition increased PDE4D5 phosphorylation and activity, which resulted in a 

decreased cAMP level (Das, Zhou et al. 2003; Murthy and Sriwai 2008).   

In primary cardiomyocytes, mouse embryo fibroblasts and HEK293B2 cells, the 

beta agonist isoprenaline initiates a rapid and transient ubiquitination of PDE4D5 

(Li, Baillie et al. 2009). Such ubiquitination occurs at Lys48, Lys53 and Lys78 of 

the PDE4D5 unique N-terminal region as well as Lys140, which locates at the 

UCR1 region. These ubiquitination reactions were shown to be mediated by a 

beta-arrestin-scaffolded pool of the E3 ligase, Mdm2. These studies indicated 

that PDE4D5 interacts with non-ubiquitinated pool of beta-arrestin because its 

binding spatially blocks the ubiquitination sites on beta-arrestin thus preventing 

beta-arrestin from being ubiquitinated. Ubiquitination of PDE4D5 increases the 

pool of PDE4D5 sequestered by beta-arrestin. Therefore ubiquitination enhances 

the fidelity of PDE4D5/beta-arrestin association, and decreases the fraction of 

PDE4D5 sequestered by the scaffolding protein, RACK1 (Li, Baillie et al. 2009).  

1.1.8.17 PDE4D6 and PDE4D7 

PDE4D6 is a supershort isoform and PDE4D7 is a long isoform of PDE. PDE4D6 is 

brain-specific and has an identical N-terminal region to PDE4B5 (Cheung, Kan et 

al. 2007). PDE4D7 is ubiquitously expressed and can be activated by elevated 

cAMP levels, which may due to the PKA phosphorylation of the conserved UCR1 

region among PDE4 long isoforms. They are both sensitive to the inhibitory 

effect of rolipram. Their expression also have been suggested to respond to the 

cAMP/PKA signalling pathway (Wang, Deng et al. 2003).   

PDE4D7 has been shown to interact with the light chain domains of microtubule-

associated protein 1A and 1b (Kwan, Wang et al. 2003). 

1.1.8.18 PDE4D8 

PDE4D8 has a unique 30 amino acids N-terminal region and has similar properties 

as other PDE4D long isoforms (Wang, Deng et al. 2003). It is abundant in heart 

and skeletal muscle, but low in lung (Wang, Deng et al. 2003). It has recently 

been found to interact with the beta1 adrenergic receptor in a direct manner 

rather than a previously reported model that PDE4D5 is recruited to β2ARs by 

βarrestin (Richter, Day et al. 2008). 
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1.1.8.19 PDE4D9 

Investigations showed that PDE4D9 was expressed in most rat tissues (Richter, 

Jin et al. 2005). In FRTL5 cells, PDE4D9 is the major variant that represents 

more than 70% of PDE activity. Therefore, the important negative feedback 

regulation of thyroid-receptor activation in cells is mainly mediated by PDE4D9 

activation rather than PDE4D3 (Richter, Jin et al. 2005). 

1.1.8.20 PDE4D10 and PDE4D11 

PDE4D10 is a supershort PDE4 isoform (Chandrasekaran, Toh et al. 2008), 

whereas PDE4D11 is a long PDE4 isoform that was first identified in mouse brain. 

It has a wide distribution in many tissues including brain, liver and spleen. In 

mouse brain, its expression is increased in cerebellum, but decreased in 

hippocampus with progressive age, indicating a potential function in brain 

development (Lynex, Li et al. 2008).  

1.2 Beta-arrestins and GPCR ( β2 adrenergic receptor) 

1.2.1 Arrestins   

βarrestins were first found during the purification of βARK (GRK2) (Benovic, 

Kuhn et al. 1987). When employing progressive purification of the βARK from 

bovine brain, researchers found a progressive decrease of the enzyme’s capacity  

to desensitize the β2 AR-mediated activation of G αs. A large amount of a new 

retinal protein was found to cooperate with rhodopsin kinase, a retinal enzyme, 

so as to end light-activated rhodopsin-mediated signalling. Furthermore, adding 

the new protein back to the purified βARK can largely enhance its ability for 

desensitization. The new protein was the first member of arrestin family that 

was found and so was named arrestin1 (Shenoy and Lefkowitz 2003). Intriguingly, 

a 200-300 fold arrestin/Gs ratio was needed compared with the rhodopsin 

system, which indicated there might be non-retinal original arrestin1-like 

proteins existing in other tissues to act in concert with GRKs to desensitize the 

receptors. During the period of 1990 and 1992, Lohse (Lohse, Benovic et al. 1990) 

and Attramadal (Attramadal, Arriza et al. 1992) found two non-retinal arrestins, 

respectively, with their colleagues. These two isoforms of arrestin, namely 
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arrestin2 and arrestin3, also referred to as βarrestin1 and βarrestin2, were 

ubiquitously expressed in cells and more specific to seven-membrane-spanning 

receptors (7MSRs) rather than rhodopsin. Finally, arrestin4 was found in retinal 

cones, in which it regulated colour opsins (Murakami, Yajima et al. 1993).  

1.2.2 ββββ-arrestin and desensitization  

The classical role of βarrestin is its ability to desensitize GRK-phosphorylated 

receptors such as 7MSRs / GPCRs (Freedman and Lefkowitz 1996). The 

desensitization mechanism included two protein families: GRKs, which are able 

to phosphorylate agonist-occupied receptor molecules specifically, and the 

arrestins family, which can bind to the phosphorylated receptors and sterically 

block their interaction with heterotrimeric G proteins (Freedman and Lefkowitz 

1996; Krupnick and Benovic 1998) .  

The desensitization was first identified when Attramadal and the collaborators  

(Attramadal, Arriza et al. 1992), were testing the efficacy of purified 

recombinant β-arrestin1 and β-arrestin2 to to blunt GTPase activity in an in 

vitro reconstituted β2AR/Gs model system. They found bothβ-arrestin1 and β-

arrestin2 inhibited β2AR stimulated GTPase activity by up to 80% (Attramadal, 

Arriza et al. 1992). In addition to this, transfection of β-arrestin in cell lines 

with overexpression of β2AR generated greater desensitization. Other evidence 

was provided when using β-arrestin siRNA (small interfering RNA) to knock out 

or reduce endogenous β-arrestin expression in HEK 293 cells led to increases in 

cAMP concentration by stimulation of β2ARs (Ahn, Nelson et al. 2003). 

Furthermore, Mundell, S. et al characterized the G protein-coupled receptor 

regulation in antisense mRNA-expressing cells and observed a similar effect 

(Mundell, Loudon et al. 1999).     

For the purpose of investigating the physiological roles of β-arrestins in vivo, 

knockout mice models have been used (Bohn, Lefkowitz et al. 1999). On one 

hand, double knock out of β-arrestins led to embryonic lethality while single 

knock out failed to obtain any abnomal phenotypes. On the other hand, 

stimulation of 7MSRs in these animals caused significant differences such as 

when challenging β-arrestin1 null mice with isoproterenol, when cardiac 
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responses were highly enhanced (Conner, Mathier et al. 1997). Homozygous β-

arrestin2 null mice displayed prolonged and enhanced analgesia to morphine 

treatment caused by an impairment in µ-opioid receptor desensitization (Bohn, 

Lefkowitz et al. 1999). Intriguingly, Bohn, L.M. et al (Bohn, Gainetdinov et al. 

2000) found β-arrestin2 knockout mice lost the ability develop tolerance to the 

antinociceptive effects of morphine and physical dependence on morphine 

unlike the wild-type controls. These suggest that the opiate tolerance might 

have a β-arrestin-dependent mechanism (Shenoy and Lefkowitz 2003).    

It has been proved that although there is some diversity, almost all 7MSRs are 

controlled by β-arrestin-dependent desensitization (Kohout and Lefkowitz 2003). 

The 7MSRs (seven-membrane-spanning receptors) are receptor families that are 

expressed at the cell-surface. They are sensitive to a number of extracellular 

stimuli such as odour, light, peptides, lipids, hormones, neurotransmitters and 

chemoattractants, and they are the largest receptor family that has been 

discovered, including over 600 putative members exist in the human genome 

(Pierce, Premont et al. 2002). The 7MSRs are famous for their ability to mediate 

G-protein-dependent signaling by specifically binding to heterotrimeric G-

proteins. Subsequently to agonist binding, 7MSRs changed to an active 

conformation, thereby disassociating heterotrimeric G-proteins to Gα and Gβγ 

subunits. Then, the activated subunits elicit signal amplification and 

transduction in cells by modulating the activity of those effector molecules, 

including phopholipases, adenylate cyclases and ion channels.            

Currently seven GRKs have been identified, GRK1 to GRK7 (Pierce, Premont et al. 

2002). GRK1 and GRK7 are retinal enzymes that can phosphorylate opsins. GRK4 

is mainly expressed in brain, kidney and testes. GRK2, GRK3, GRK5 and GRK6 are 

ubiquitously distributed, and GRK2/3 are also referred to βARK1 (β-adrenergic 

receptor kinase1) and βARK2, respectively (reviewed by (Shenoy and Lefkowitz 

2003)).   

1.2.3 ββββ-arrestins and endocytosis 

Endocytosis (also called sequestration) is an internalization progress which 

removes the receptors from cell surface (Shenoy and Lefkowitz 2003). Usually, 
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this process happens subsequent to desensitization and it occurs for most 7MSRs 

(Shenoy and Lefkowitz 2003). Lefkowitz et al suggested endocytosis seemed to 

be necessary for dephosphorylation and resensitzation of receptors rather than 

desensitization (Lefkowitz, Pitcher et al. 1998). Mutation studies show that the 

mutation of all the GRK phosphorylation sites diminishes the endocytosis of β

2AR (Hausdorff, Campbell et al. 1991). Additionally, mutation of a highly 

conserved tyrosine residue (Y326A) impairs endocytosis and agonist-promoted 

phosphorylation (Barak, Tiberi et al. 1994).  

 

Figure 1.8: Classical role of ββββ-arrestins: desensitisation  
When an agonist binds to a 7MSR, a transient high-a ffinity receptor–heterotrimeric G-
protein complex is formed. GDP is released from the  G-protein subunits and is replaced by 
GTP, leading to the dissociation of G-proteins into  αααα and βγβγβγβγ dimers. The G-protein subunits 
activate several effector molecules: G ααααs activates adenylate cyclases; G ααααq activates 
phospholipase C etc. In the case of the ββββ2AR, increased cAMP leads to activation of PKA, 
which phosphorylates the receptor as a feedback mec hanism. The agonist-stimulated 
receptor is also a substrate for GRK-mediated phosp horylation that promotes ββββarrestin 
binding. ββββarrestins prevent further G-protein coupling and G- protein-mediated second 
messenger signalling. DAG, diacylglycerol; IP3, Ins (1,4,5)P3. 

Endocytosis of 7MSRs might be mediated by clathrin-coated pits, caveolae or 

uncoated vesicles. The common mechanism of endocytosis is based on the 

interaction of 7MSRs and β-arrestins via clathrin-coated pits (Figure 1.8). 
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Studies (Ferguson, Downey et al. 1996) showed mutated β-arrestin could inhibit

β2AR sequestration and this circumstance could be rescued by overexpression of 

βarrestin. Further study by Goodman et al. (Goodman, Krupnick et al. 1996; 

Goodman, Krupnick et al. 1997)  showed βarrestin was able to bind a region 

(residues 89-100) located at the clathrin terminal domain with high affinity. 

Therefore, βarrestins can desensitize 7MSRs and promote endocytosis via 

clathrin-coated pits. 

A study (Chen, ten Berge et al. 2003) shows βarrestin2 is involved in the 

internalization of the 7MSR Frizzled-4 after stimulation of the receptors by 

Wnt5A. In all previous studied endocytosis cases (Chen, ten Berge et al. 2003; 

Lefkowitz and Whalen 2004) , βarrestin was recruited directly to a GRK-

phosphorylated receptor (Figure 1.9a). However, in this model, β-arrestin 

binds to PKC-phosphorylated Dv12, an adaptor protein that can interact with Fz 

to mediate its canonical signaling via βarrestin (Chen, ten Berge et al. 2003).  

Chen et al. (Chen, Kirkbride et al. 2003) reported that the single-membrane-

spanning TGF-β type-III receptor, classified as a receptor for TGF-β, could also 

be internalized via binding to βarrestin2. This is the only one displaying such an 

ability among the tested TGF-β receptors (Figure 1.9b) (Chen, Kirkbride et al. 

2003; Lefkowitz and Whalen 2004) . Furthermore, the phosphorylation of TβRIII 

is necessary to its interaction with βarrestin2, and this phosphorylation is 

catalyzed by the TGF-βtype-II receptor rather than a GRK. TβRII is a S/T kinase 

as well. After phosphorylation and interaction with βarrestin, TβRII and TβRIII 

then internalize together (Chen, Kirkbride et al. 2003). 

βarrestin1 also can bind to the agonist-occupied IGF-1 (insulin- like growth 

factor 1) receptor and thus cause the receptor internalization (Lin, Daaka et al. 

1998)(Figure 1.9c).  
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Figure 1.9: β-arrestin-mediated endocytosis of the Frizzled 4 re ceptor and 
non-7MSRs.  
(Left) βarrestin2-mediated endocytosis of the Wnt5a-stimula ted Frizzled 4 (Fz4) receptor 
mediated by protein kinase C (PKC) phosphorylation of the intracellular β-arrestin adaptor 
Dishevelled 2 (Dvl2). (Middle) β-arrestin2-mediated internalization of TGF- β1 receptor 
subtypes RII and RIII, facilitated by RII phosphory lation of T841 on RIII. (Right) β-arrestin-
mediated internalization of the IGF1 receptor. (Lef kowitz and Whalen 2004)  

1.2.4 ββββarrestin and ubiquitination 

Ubiquitin (Ub) is known as a ubiquitous, highly conserved protein, which consists 

of 76 residues (Hochstrasser 1996; Hershko and Ciechanover 1998) . 

Ubiquitination is a well-studied process of protein degradation in cells. The 

process includes three types of proteins: E1-Ub activating enzyme, E2-Ub carrier 

enzyme and E3-Ub ligating enzyme. After the first Ub is added to the target 

protein, following ubiquitination can be classified as two extended kinds, either 

multi-ubiquitination, Ubs attached to several different lysines, or 

polyubiquitination, a chain of Ubs added on the preceding Ub (Hochstrasser 1996; 

Hershko and Ciechanover 1998; Li, Baillie et al. 2009).         

Studies (Shenoy, McDonald et al. 2001) show that ubiquitination is involved in 

the βarrestin- dependent internalization of 7MSRs. Such 7MSRs as β2AR are also 

ubiquitinated in an agonist dependent way. In the ubiquitination progresses, β

arrestin is able to bind MDM2, an E3 ubiquitin ligase which has the ability to 

regulate the tumor suppressor p53 (Shenoy, McDonald et al. 2001) . The 

receptors such asβ2AR will bind βarrestin after their stimulation, and then 

exerts MDM2-mediated ubiquitination of βarrestin (Shenoy, McDonald et al. 
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2001). This ubiquitination for βarrestin is believed to play a pivotal role for it to 

act as an adapter in the receptor internalization process. However, the precise 

mechanism is still unclear (Shenoy and Lefkowitz 2003).  

In addition, receptor ubiquitination has been suggested (Marchese and Benovic 

2001) to be crucial for the proper sorting and degradation of the internalized 

receptor in lysosome. This sorting function of ubiquitination has been found in 

HIV coreceptor CXCR4 (CXC chemokine receptor 4) (Marchese and Benovic 2001). 

However, the mutation of the target lysines does abolish the ubiquitination and 

degradation of the receptor, but not the internalization (Marchese and Benovic 

2001).     

1.2.5 ββββarrestins in receptor trafficking  

Besides the ability of helping receptor internalization, βarrestin may play an 

important role in receptor trafficking (Lefkowitz and Whalen 2004). There are 

two patterns of receptor-trafficking which can be classified by their different 

affinity to βarrestin after β-arrestin-dependent internalization, Class A and 

Class B (Figure 1.10). Class A receptors includingβ2AR recruit βarrestin2 more 

efficiently than βarrestin1 and Class B receptors such as vasopressin V2 and 

angiotensin AT1A receptors recruit both βarrestin1 and βarrestin2 equally 

(Oakley, Laporte et al. 2000). After stimulation of receptors, the Class A 

receptors transiently bind to βarrestins and the receptors can internalize 

without βarrestin and recycle rapidly, whereas Class B receptors bind to the β

arrestins in a more stable manner and internalize βarrestins together, recycling 

more slowly (Oakley, Laporte et al. 1999). This might relate to the different 

rates of deubiquitination of the receptor-bound βarrestins. Shenoy and 

Lefkowitz (Shenoy and Lefkowitz 2003) proved this hypothesis by transfecting a 

chimeric molecule including β-arrestin2 with ubiquitin fused in frame to the C-

terminus, which can not be deubiquitinated, leading the Class A receptors to be 

internalized as the Class B receptors (Shenoy and Lefkowitz 2003).           
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Figure 1.10: βarrestin binding and receptor trafficking propertie s delineate 
two classes of seven-transmembrane-span receptors ( 7MSRs).  
Class A receptors, which include the β2AR, preferentially recruit βarrestin 2, whereas Class 
B receptors, which include the angiotensin AT1A rec eptor (AT1AR) and vasopressin V2 
receptor (V2R), recruit both β-arrestins with equal efficiency. After stimulation  of receptors, 
the Class A receptors transiently bind to βarrestins and the receptors can internalize 
without βarrestin and recycle rapidly, whereas Class B recep tors bind to the βarrestins in a 
more stable manner and internalize βarrestins together, recycling more slowly. (Perry a nd 
Lefkowitz 2002) 

NSF (N-ethymaleimide-sensitive fusion protein, an ATPase that plays key roles in 

many intracellular trafficking pathways) has been found to interact with β

arrestin1 and βarresstin2, and overexpression of NSF in HEK 293 cells is able to 

improve βarrestin-mediated β2AR endocytosis (McDonald, Cote et al. 1999). 

Besides NSF, the small GTP binding protein ARF6 (ADP-ribosylation factor 6) is 

also an important protein for vesicular trafficking and it also binds to βarrestin 

(Claing, Chen et al. 2001). Substitution of GDP by GTP is necessary for ARF6’s 

activation (Claing, Chen et al. 2001). The activation of ARF6 can be enhanced by 

the GEF (guanine nucleotide exchange factor) activity of ARNO (ARF nucleotide 

binding site opener) which constitutively binds to βarrestin2. Intriguingly, both 

the GDP inactive mutant and the GTP active mutant can impair the β2AR 

internalization and in contrast, overexpression of ARNO enhances the receptor 

internalization.             
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1.2.6 ββββarrestins and Src-family kinases 

Src-family non-receptor tyrosine kinases are structurally related kinases (Kefalas, 

Brown et al. 1995). They are essential in various cell functional responses such 

as receptor endocytosis, ERK1/2 activation and exocytosis (Kefalas, Brown et al. 

1995). When βarrestins bind to the kinases, they act as adaptors that regulate 

the recruitment of the Src-family kinases to 7MSRs, and the kinases can promote 

downstream cellular responses subsequently. 

Most 7MSRs mediate the activation of ERK1/2 mitogen-activated protein kinases 

(MAPKs). Using EGF (epidermal growth factor) as an example,when 

transactivation of EGF via the β2AR, βarrestin1 plays an role as adaptor 

through which the kinase is recruited to the active receptor by binding to both 

the catalytic domains of c-Src and the SH3 (Src-homology 3) (Luttrell, Ferguson 

et al. 1999; Maudsley, Pierce et al. 2000; Miller, Maudsley et al. 2000) . C-Src 

then tyrosine phosphorylates many proteins involved in the propagation of 

ERK1/2 activation as soon as it has been relocated to the plasma membrane. 

Phosphorylation of the adaptor protein Shc by c-Src leads to the recruitment of 

the Ras GDP-GTP exchange factor SOS by its interaction with the adaptor Grb2, 

which leads to the subsequent activation of Ras, Raf-1, MEK1 and ERK1/2 (Figure 

1.11).    
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Figure 1.11: Several seven-transmembrane-span recep tors (7MSRs) signal to 
members of the Src family of tyrosine kinases by me chanisms that depend 
on β-arrestin-mediated recruitment of the kinases to th e 7MSRs. 
c-Src can be recruited to both the β2 adrenergic receptor ( β2AR) and the neurokinin 1 
receptor (NK1R) during Erk1/2 activation. Hck and/o r c-Fgr recruitment to the CXC-
chemokine receptor 1 is necessary for the release o f interleukin-8-elicited granule from 
neutrophils requires (CXCR1). After stimulation of adipocytes with endothelin, GLUT4 
translocates to the plasma membrane (resulting in g lucose uptake) by a mechanism 
involving the recruitment of Yes to the activated e ndothelin type A receptor (ETAR). (Perry 
and Lefkowitz 2002). 

Interleukin8 (IL-8) activates the CXC-chmokine receptor 1 (CXCR1) in neutrophils, 

and which induces the rapid formation of complexes containing βarrestin, Hck 

and c-Fgr (two members of the Src-family). This elicits granule release from 

neutrophils (Barlic, Andrews et al. 2000).  

In addition, βarrestin also has been proved necessary in the endothelin-

stimulated GLUT4 translocation to plasma membrane, which results in glucose 

uptake via the recruitment of Yes to the activated ETAR (endothelin type A 

receptor) (Imamura, Huang et al. 2001).   
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1.2.7 ββββarrestin and apoptosis 

Regulation of arrestin2 (the Drosohpila functional equivalent of visual arrestin) 

and rhodopsin are mediated by their phosphorylation. When the flies are 

exposed to light, the activation of rhodopsin gives rise to the activation of Gq 

coupling and phospholipase C (NorpA), and then elicits signal generation 

(Alloway, Howard et al. 2000; Kiselev, Socolich et al. 2000). The fly 7MSRs are 

rapidly desensitized in the same way of that in mammalian cells. The receptors 

are phosphorylated first and bind to unphosphorylated arrestin2. NorpA 

activation initiates the activation of rhodopsin phosphatase RdgC and CamKII 

(calcium/calmodulin-dependent kinase II). The arrestin2 phosphorylation results 

in its dissociation from rhodopsin and rhodopsin dephosphorylation by RdgC, 

leading to the resensitization of rhodopsin. In cells with mutated non-functional 

NorpA or RdgC, the regulation of arrestin2 and rhodosin phosphorylation are 

disturbed, which causes a formation of a stable receptor-arrestin2 complex and 

ends at subsequent rod-cell apoptosis. It is not too surprising that this complex 

formation is believed to provide the signal for apoptosis (Alloway, Howard et al. 

2000; Kiselev, Socolich et al. 2000).  

In HEK293 cells, βarrestins enhance the ubiquitin-dependent degradation of 

apoptosis signal-regulating kinase 1 (ASK1), thereby attenuating H2O2-induced 

apoptosis (Zhang, Hao et al. 2009).  

1.2.8 ββββarrestin and MAPK kinases cascades 

The MAPKs consist of a large number of members that include ERK1 (p44), ERK2 

(p42), ERK5 (big MAPK or BMK), JNK1-JNK3 (stress –activated protein kinase) and 

p38 MAPKs (α,β,γ and σ isoforms) (Shenoy and Lefkowitz 2003). The MAPKs 

play pivotal roles in the regulation of variable cellular processes such as cell 

proliferation, gene expression and apoptosis  (Shenoy and Lefkowitz 2003). 

MAPKs cascades are highly regulated systems, MAP2K kinases (MAP3Ks) activate 

MAPK kinases (MAP2Ks), which then activate MAPKs. The cascades are also 

complex as the same kinase may be involved in different pathways (Figure 1.12) 
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Figure 1.12: β-Arrestins act as scaffolds for mitogen-activated protein kinase 
(MAPK) cascades and aid in their regulation by seven-membrane-span receptors 
(7MSRs). 
By binding to one or more of the kinases of MAPK ca scades, the β-arrestins scaffold them 
into a signaling complex that can be recruited to a nd regulated by activated 7MSRs. In this 
manner, the pathway made up of ASK1, MKK4 and JNK3 is regulated by βarrestin2 and the 
angiotensin 1A receptor (AT1AR); Raf-1, MEK1 and ER K1/2 are regulated by βarrestins1 and 
2, and by both the AT1AR and type-2 protease-activa ted receptor (PAR2). (Perry and 
Lefkowitz 2002) 

βarrestin acts as an scaffold protein in MAPKs cascades by interacting with JNK3 

and ERK1/2 MAPK modules. By yeast two-hybrid screening, JNK3 was found to 

bind to βarrestin. It can interact with βarrestin at the endogenous level of 

protein expression. Additionally, overexpression of βarrestin in HEK 293 cells 

can keep JNK3 in the cytosol. ASK1 activates JNK3 and forms a complex with 

JNK3 and βarrestin. Furthermore, βarrestin guides the formation of 

appropriate kinase complexes and plays a scaffolding role to help the 7MSRs 

mediating these proteins (Perry and Lefkowitz 2002).     

βarrestins also act as 7MSR-regulated scaffold proteins for ERK1/2, which brings 

Raf (MAPKKK), MEK1 (MAPKK) and ERK (MAPK) together. The stimulation of Gαq 

–coupled PAR2 results in the formation of a multi-protein signaling complex 
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including βarrestin, Raf-1 and ERK, cytosolic retention of phosphorylated ERK 

and co-localizes the receptor-arrestin- ERK complex on endocytic vesicles 

(Yasuda, Whitmarsh et al. 1999). Studies of uninternalized and undesensitized 

mutated PAR2 demonstrates that the mutant can still activate ERK by 

stimulation via a Ras-dependent pathway, resulting in nuclear translocation of 

phosphorylated ERK and mitogenic signaling (Yasuda, Whitmarsh et al. 1999). 

This suggests that βarrestin seems to determine different ERK activation 

pathways, Ras dependent or independent, via its complex with the activated 

PAR2. In addition, Luttrell et al. reported another Gαq –coupled receptor, the 

AT1AR that is also able to induce the formation of a βarrestin/Raf/MEK/ERK 

complex (Luttrell, Roudabush et al. 2001).    

Various data (Sun, Cheng et al. 2002) demonstrate that βarrestin is involved in 

the activation process of p38 MAPK through 7MSRs stimulation. This p38 

activation is essential for SDF (stromal cell-derived factor)-induced chemotaxis 

in HEK293 cells (Sun, Cheng et al. 2002). βarrestin2-dependent p38 signaling is 

proved to interact with the human cytomegalus virus-encoded viral GPCR US28 

(Miller, Houtz et al. 2003). Finally, β-arrestin can enhance p38 MAPK signalling 

of CXCR4 (Sun, Cheng et al. 2002).    

1.2.9 ββββarrestin1 goes nuclear 

The function of βarrestin in receptor endocytosis and its scaffolding role in 

signaling has already been uncovered (Perry and Lefkowitz 2002; Shenoy and 

Lefkowitz 2003; Lefkowitz and Whalen 2004) . Recent studies have shown that β

arrestins and mediators of the endocytosis of 7MSRs are able to shuttle between 

the cytoplasm and nucleus, and intriguingly, βarrestin1 is present in both 

cytoplasm and the nucleus at a stable level. These data highly suggest βarrestin 

may play important functional roles in the nucleus.  

Kang and his colleagues  (Kang, Shi et al. 2005) have found a novel function of 

β-arrestin1 whereby the scaffolding protein acts as a cytoplasm-nucleus 

messenger in GPCR signalling and elucidates an epigenetic system for direct 

GPCR signalling from cell membrane to the nucleus via signal-dependent histone 

modification. 
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Delta-opioid receptor (DOR) is a member of the GPCR family. When it is 

challenged with its specific agonist DPDPE, the βarrestin1 and βarrestin2 are 

transferred to the cell membrane, but βarrestin 1, not βarrestin2 accumulated 

in nucleus. It is already known that βarrestin has a nuclear export signal, and 

the mutation of this signal by a single residue mutation (Q394L) eliminates β

arrestin1 accumulation in nucleus. 

P27 and c-fos are cycle related genes that play key roles in the regulation of cell 

proliferation (Kang, Shi et al. 2005). Expression of βarrestin1 notably increases 

p27 and protein concentration, but expression of βarrestin2 failed to do so. 

DPDPE stimulation significantly increases the expression of p27 and either 

naltridole (DOR inhibitor) or βarrestin 1 siRNA can block the DPDPE’s effect. 

Furthermore, the inhibition of Gi/Go (pertussis toxin), PI3K (wortmannin), p38 

(SB203580), JNK (SP600125) and ERK (PD98059) has no effect on the p27 

transcription. These indicate that activation of DOR can mediate gene expression 

at a transcription level and this effect depends on βarrestin1 nuclear 

translocation. 

Epigenetic regulation such as acetylation modification of histone is believed to 

be essential in the regulation of eukaryotic gene transcription. Overexpression of 

βarrestin 1 increases the acetylation of histone H4 and βarrestin siRNA 

treatment leads to decrease acetylation (Kang, Shi et al. 2005). These 

observations suggest that βarrestin 1 may influence the transcription of a 

variety of gene expression by regulating the acetylation of H4. 

Overexpression of βarrestin 1 increases the level of p300 at p27 and c-fos 

promoters, while inhibition of βarrestin1 by siRNA decrease the accumulation of 

p300  (Kang, Shi et al. 2005). Additionally, DPDPE stimulation also causes the 

accumulation of p300 at p27 and c-fos promoters, where βarrestin 1 is 

temporally increased. Furthermore, p300 and βarrestin1 can co-

immunoprecipitate (Kang, Shi et al. 2005). These data suggest βarrestin 1 may 

promote gene-specific H4 hyperacetylation by recruiting p300 to the target 

promoters.                           
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As DOR is an important neurotransmitter receptor widely expressed in neural 

cells, Kang et al  (Kang, Shi et al. 2005) tested the physiological consequence of 

βarrestin-dependent gene regulation in human brain neuroblastoma SK cells 

through DOR stimulation by DPDPK. They found that activation of the DOR in 

such cells promotes βarrestin1-dependent histone H4 hyperacetylation, p27 

transcription and growth inhibition (Kang, Shi et al. 2005).    

1.2.10 ββββarrestin and insulin resistance 

 Insulin resistance is a defect of insulin in stimulating insulin receptor signalling 

(Matthaei, Stumvoll et al. 2000; Taniguchi, Emanuelli et al. 2006) . It is a 

phenotype of type 2 diabetes, which has become more prevalent. The known 

insulin signalling pathway includes a series of reactions  (Luan, Zhao et al. 2009). 

Thus, upon insulin stimulation, insulin receptor substrate proteins are recruited 

to and phosphorylated at the insulin receptor; resulting the activation of the 

phosphatidylinositol-3-OH kinase (PI3K)- Akt pathway; the activated Akt 

phosphorylates its downstream effectors and transcription factors, thereby 

modulating insulin –induced metabolic actions (Luan, Zhao et al. 2009).  

Luan et al (Luan, Zhao et al. 2009) found that βarrestin2 has a very low 

expression level in a diabetic mouse model. Silencing of βarrestin2 in 

transgenetic mice deteriorated insulin sensitivity, whereas increased βarrestin2 

expression in diabetic db/db mice restored their insulin sensitivity. This new 

function of βarrestin2 is due to its scaffolding role in translocating Akt and Src 

to the insulin receptor. Loss or dysfunction of βarrestin2 leads to the disruption 

of the Akt/Src/βarrestin2 signalling complex and the disturbance of insulin 

signalling, thus resulting in the development of insulin resistance in type 2 

diabetes (Luan, Zhao et al. 2009).   

1.2.11 Beta-2 adrenergic receptor 

Adrenergic receptors (adrenoceptors) belong to the G protein-coupled receptor 

superfamily (Liggett 2002). There are five subtypes of adrenergic receptors, α1, 

α2, β1, β2 and β3, in which β2-adrenegic receptor (β2AR) has been extensively 

studied and used as a model for studying GPCR. It can be regulated by PKA and 
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GRK phosphorylation, and can undertake rapid desensitization upon βarrestin 

binding as described above. For an easy understanding, phosphorylation sites and 

important interaction sites of β2AR are labelled in Figure 1.13 (Liggett 2002). 

Recently, the high-resolution crystal structure of β2AR has been constructed 

(Cherezov, Rosenbaum et al. 2007), which will no doubt shed light on the 

structural understanding of β2AR as well as facilitating drug design for β2AR 

related diseases.  

 

Figure 1.13: Amino acid sequence and proposed membr ane topology of the 
human β2AR. (Liggett 2002) 
Regions or specific domains with structural signifi cance are labeled. Mutation of R259R260  
(red arrows) or  Y350Y354 (red arrows) to alanines may lead to reduced RACK1 and 
βarrestin translocation to the receptor. TMD 1 and T MD 7 indicate the first and seventh 
transmembrane- spanning domains, respectively. βARK, β-AR kinase.  

1.3 RACK1 scaffolding protein 

Receptor for activated C kinase 1 (RACK1) belongs to the tryptophan-aspartate 

(WD) family, which is famous for its propeller-like structure (Neer, Schmidt et al. 

1994). It was first identified as an intracellular receptor for protein kinase C 

(Mochlyrosen, Khaner et al. 1991). The identification of RACK is based on criteria 
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that were originally established by Ron et al. (1994) and modified by Dorn and 

Mochly Rosen (2002): 1) injection purified RACK in cells should block PKC 

mediated cell process; 2) delivery of certain peptides into cells should block the 

interaction between a particular PKC isozyme and RACK, and the peptides should 

specifically ablate a known cellular function of that isozyme; 3) delivery of 

peptides that trigger an interaction between a particular PKC isoform and its 

interacting RACK should uniquely activate that isozyme; 4) RACK should bind PKC 

in the presence of PKC activators (Ron and Mochlyrosen 1994; Dorn and Mochly-

Rosen 2002). More and more RACK1-interacting proteins have been found in 

these years, extending its function in many biological processes.  

1.3.1 RACKs 

According to the criteria described above, three RACK isoforms were discovered: 

RACK1, receptor for activated C kinase 1 (also known as the receptor for 

activated PKCβII) (Ron, Chen et al. 1994); RACK2, which binds PKCε(Csukai, Chen 

et al. 1997); and PRKCBP1, a RACK like protein for PKCβI (Fossey, Kuroda et al. 

2000). RACKs have no catalytic activity and their binding sites on PKCs are 

isolated from their substrate binding sites (Ron, Chen et al. 1994). Various 

proteins apart from PKCs were found to interact with RACKs as well, leading to 

the hypothesis that RACKs may work as adaptor proteins (Schechtman and 

Mochly-Rosen 2001) (Table 1.3). Two functions normally seen in adaptor 

proteins were found in RACK as well: 1) transferring and positioning of a 

signalling enzyme to appropriate locations such as bringing a certain enzyme to 

its substrate (Jaken and Parker 2000); 2) altering the enzyme activity by direct 

interaction (holding PKC in an active conformation).   

1.3.2 Evolutionary conservation of RACK1 genes 

The RACK1 sequence is highly evolutionary conserved (McCahill, Warwicker et al. 

2002). It shares 100% identity between chicken, rat and human, which implies its 

crucial position in regulating key signalling pathways in cellular processes. It was 

first cloned from a human B-lymphoblastoid cell line (H12.3) as well as from a 

chicken liver library (C12.3) (Guillemot, Billault et al. 1989).  The human RACK1 

gene (Gene Bank; GNB2L1) locates on the chromosome 5 (5q35.3) and contains 8 

exons and 7 introns. RACK1 is a 36 kDa protein that has seven Trp-Asp 40 (WD40) 
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repeats in the pattern X6-14-[GH-X23-41-WD]n4-8 where n is the number of WD 

repeats.  

The evolutionary conserved RACK1 exists in a diverse range of eukaryotes such as 

plants (Toxoplasma gondii), fungi (Paracoccidioides brasiliensis), yeast 

(Saccharomyces cerevisiae and Schizosaccharomyces pombe), insects (Drosophila 

melanogaster and Heliothis virescens), vertebrates (Gallus gallus and 

Brachydanio rerio) and mammals (Bos taurus, Sus scrofa, Rattus norvegicus and 

Homo sapiens) (Sklan, Podoly et al. 2006). The positioning of RACK1 WD repeats 

even exists in the alga Chlamydomonas reinhardtii which diverged from the 

forerunners of the plant and animal kingdoms about 600 million to 1 billion years 

ago (Schloss 1990). This evolutionary conservation confirms the notion that 

RACK1 possesses important functions in many biological systems, and this 

function established even before the separation of plant and animal kingdoms 

(Neer, Schmidt et al. 1994). Furthermore, RACK1 also is expressed ubiquitously 

in human tissues including liver, spleen and brain, and the promoter of RACK1 

gene contains multiple transcription factor binding sites (serum response 

element [SRE] for example). These indicate that RACK1 has key roles in many 

cell types, and it may respond to various stimuli (Guillemot, Billault et al. 1989; 

Chou, Chou et al. 1999).    

1.3.3 RACK1 binds to PKC 

The first function of RACK1 that was identified relates to its ability to interact 

with active “conventional” protein kinase-C (PKC) such as PKCβII (Ron, Luo et al. 

1995; Stebbins and Mochly-Rosen 2001) and “novel” PKCs such as PKCε(Besson, 

Wilson et al. 2002). Conventional PKC (α, βI, βII, γ) are calcium- and 

diacylglycerol-dependent protein kinases which are activated upon elevated 

calcium and diacylglycerol that are generated by receptor-stimulated hydrolysis 

of plasma membrane phosphatidylinositol 4, 5-bisphosphate; whereas novel PKCs 

are those calcium-independent kinases (δ, ε, η, θ, µ) or calcium- and 

diacylglycerol-independent (atypical) kinases (ζ, λ) (Mellor and Parker 1998). 

Activation of the different PKC isoforms triggers their translocation to distinct 

intracellular compartments where they might play specific physiological roles. 
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The PKC contains four conserved regions (namely C1-C4) that are interrupted by 

five variable regions (namely V1-V5). Each PKC isoform consists of a catalytic 

unit and regulatory unit involving one or two C1 domains. The C1 domain exists 

in “typical” and “atypical” structure variants, where phorbol ester/DAG can bind 

to the “typical” but not the “atypical”. Most PKCs contain a “typical” C1 domain 

that is responsive to phorbol ester/DAG, whereas one exception, aPKCs, contains 

the “atypical” domain (Newton and Johnson 1998).  

The C2 domain exists in conventional and certain modified forms of novel PKCs 

as well as other unrelated proteins, which are commonly of membrane 

associated in a Ca2+ dependent manner. Although the novel PKCs contains the C2 

domain, they are not Ca2+ dependent because they lack key amino acids for Ca2+ 

binding. Unlike conventional PKCs that require Ca2+ to bind lipid, novel PKCs are 

assumed to bind anionic lipids independently.   

C3 domain containing an ATP binding lobe and C4 containing the substrate 

binding lobe are the two catalytic domains that are present in all known PKCs. 

All PKCs, except the µ isoform, contain an auto-inhibitory domain (also known as 

pseudosubstrate domain). This domain sterically occupies the active site of PKC 

in order to maintain PKC in an inactive conformation. Removing this domain is 

necessary for activation of PKC (Newton and Johnson 1998).  

RACK1 binding to PKCs is not interrupted by delivery of synthetic peptides that 

derived from PKC substrate and the pseudosubstrate domain, suggesting that the 

RACK1 binding site is distinct from the PKC substrate binding sites. Three PKC 

isoforms contain RACK1-homologous sequences in their C2 regions. These 

sequences are supposed to function as pseudo-RACK binding sites in PKCs (Ron, 

Chen et al. 1994). 

Three C2-derived peptides, amino acids 86-198, 209-216 and 218-226 in PKCβ, as 

well as the vesicle-specific p65 protein, which has a PKC-C2 homologous region, 

can bind to RACK1 (Ron, Luo et al. 1995). This implies there might be part of the 

RACK1 binding site on the C2 region. A peptide derived from the V5 domain 

(amino acids 645-650 in PKCβII) can selectively inhibit the PMA –induced 

translocation of PKCβII, but not PKCβI, indicating that V5 also contains part of 

RACK1 binding site (Stebbins and Mochly-Rosen 2001).    
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1.3.4 RACK1 and diseases 

Enhanced RACK1 expression level was detected in colon carcinoma (Berns, 

Humar et al. 2000), melanoma (Lopez-Bergami, Habelhah et al. 2005), non-

small-cell lung carcinoma (Berns, Humar et al. 2000), and oral squamous cell 

carcinoma (Wang, Jiang et al. 2008). The inhibition of RACK1 expression 

increased the sensibility of melanoma cells to treatment and reduced their 

tumorigenicity in a xenograft tumor model. Therefore, RACK1 is expected to be 

important in tumorigenicity (Lopez-Bergami, Habelhah et al. 2005) and may 

become a molecular marker for certain carcinoma.  

Alterations of RACK1 expression also have been found in brain pathologies during 

aging. In Alzheimer’s disease (AD) and some aging model animals, a lack of 

RACK1 was detected in post-mortem brains which contributed to the reduced 

activation and translocation of PKC in the aging brain. This phenomenon is 

suggested to be associated with the PKC related processing of the amyloid 

precursor protein (APP) through the action of secretases (Pascale, Fortino et al. 

1996; Battaini, Pascale et al. 1997; Battaini, Pascale et al. 1999; Sanguino, 

Roglans et al. 2004). However, a contradicting observation showed no detectable 

RACK1 variation between AD brains and control brains (Shimohama, Kamiya et al. 

1998). Population differences may be a reasonable explanation, but no 

experimental evidence has been obtained so far for this. Furthermore, RACK1 

levels were significantly reduced in the cortex part of patients with Down 

syndrome (young patients with AD). A popular explanation for Down syndrome is 

that it is due to novel neuronal migration and early neurite outgrowth (Peyrl, 

Weitzdoerfer et al. 2002). However, this interpretation also needs to be proven. 

Wang and Friedman found that the increased PKC activity in the frontal cortex of 

patients with bipolar disorder might due to the enhanced association between 

RACK1 and PKC (Wang and Friedman 2001). The anti-Parkinsonian drug 

Rasagiline can increase the RACK1 concentration (Bar-Am, Yogev-Falach et al. 

2004).     
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1.3.5 Structure of RACK1 

1.3.5.1 RACK1 and its β-propeller 

RACK1 shares 42% identity with G protein β subunit (McCahill, Warwicker et al. 

2002). A comparative model of RACK1 was constructed using bovine transducin 

Gβ as the structural template (Sondek, Bohm et al. 1996). As seen in the 3D 

structure, 7 blades form a conical ring of RACK1. Each blade of the propeller is 

generated from a WD repeat which is formed by four anti-parallel β-sheets 

(Sondek and Siderovski 2001; Steele, McCahill et al. 2001).  

Within all WD proteins, the WD repeats are connected by various loops with 

different sizes. These loops are positioned above and below the of the propeller 

structure. Unlike the highly homologous β-sheets, these loops share little 

similarity, both in their sizes and properties, which distinguish each WD protein 

from other family members and endue them with various interacting proteins. In 

RACK1, the β-sheets are splayed out to form the conical shape of RACK1 and 

provide RACK1 with three protein interacting sites: top, bottom and 

circumference (Figure 1.14). Nevertheless, maintaining the hydrogen bond 

formation between β strands in the propeller provides an additional possibility 

for protein interactions. Thereby, proteins can interact with these potential 

sites simultaneously. Indeed, many proteins have been found to bind RACK1 such 

as C2-domain containing proteins (PKC, synaptotagmin and phospholipase Cγ1) 

and PH-domain containing proteins (dynamin-1 and β-spectrin). RACK1 has also 

been proposed to bind more than one interacting partner simultaneously 

(Schechtman and Mochly-Rosen 2001).    

1.3.5.2 Blade 6 and its lengthened loop 

From the structure, an internal region that derivates from the Gβ structure is 

identified (Lambright, Sondek et al. 1996) (Lambright, Sondek et al. 1996). It 

locates in blade 6 of the RACK1 propeller and is distinct from Gβ with a longer 

inter-β-strand loop at the comparable region. The Gβ-strand preceding loop 

region has a SIKIWD sequence (amnio acids 255-260), which is considered to be 

part of the PKC binding sites of RACK1 (Ron and Mochlyrosen 1995). The loop 

also has been assumed to form an extra β-sheet (Chen, Spiegelberg et al. 2004). 

The lengthened loop supports a conformational flexibility of this region; thus, 
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this provides the fundamental structure for the existence of many protein 

interaction clusters in this region (Figure 1.14). β-propeller models showed that 

the ligand- binding site also was made of these β-sheets-connecting loops 

(Springer 1997). For blade 6, it functions as a major docking station of RACK1, 

which due to its tyrosine phosphorylation followed by conformational changes. 

These changes might facilitate additional protein binding or exposing of hidden 

binding sites.   

 

Figure 1.14: Putative interaction surfaces of RACK1 .  
Left: Shown is a schematic picture of the seven-bla de structure characteristic of RACK1, 
presented as a flat-topped cone. The upward protrud ing loop is in the middle of  two blades. 
The top and bottom surfaces and the peripheral β-sheets are all amenable for putative 
interactions. Right: Blades (blue) and loops (black ) are shown in the RACK1 sequence.  

1.3.5.3 RACK1 dimerization 

Dimerization is common property of WD40 proteins. Indeed, RACK1 can form 

homo- and hetero-dimers (Kominami, Ochotorena et al. 1998; Dell, Connor et al. 

2002; Chen, Spiegelberg et al. 2004) . The homo-dimers are generated through 

its WD40 motif in a way similar to the dimer formation of F-box/WD repeats 

protein Pop1 and Pop2 in fission yeast (Kominami, Ochotorena et al. 1998) and 

the regulation by self-interaction of the WD40 repeat region apaf-1 (Hu, Ding et 

al. 1998). For hetero-dimerization, RACK1 can associate with its homologue Gβ 

via its WD40 repeats (Dell, Connor et al. 2002; Chen, Spiegelberg et al. 2004) as 

well as generates a complex with Fyn which interacts with RACK1 5-7 WD40 

repeats (Tcherkasowa, Adam-Klages et al. 2002). RACK1 binds to Gβγ and 

subsequently translocates to cell membrane, indicating a scaffolding role of 

RACK1 for assembly of multiple protein complex.  
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The 7 blades structure of RACK1 also implies 6 putitive forms of WD40-WD40 

complex:  top-to-top, top-to-bottom, top-to-side, side-to-bottom, side-to-side, 

and bottom-to-bottom. Therefore, specific WD40 protein may interact in unique 

form and allow free binding surface for additional interaction.  

1.3.6 RACK1 signal transduction 

1.3.6.1 PKC 

RACK1 associated with PKCβII and its overlapping positioning with PKCβII have 

been found in CHO cells treated with PMA, in NG108-15 neuroblastoma cells and 

in cardiomyocytes (Ron, Jiang et al. 1999). The localization of RACK1 is cell-type 

dependent in both stimulated and unstimulated cells. This suggests that RACK1 

may deliver active enzyme to the appropriate subcellular site rather than 

anchoring PKCβII in a specific position (Ron, Jiang et al. 1999; McCahill, 

Warwicker et al. 2002). As mentioned above, RACK1 can binds two parts of 

PKCβII, one is the C2 domian, the other is the V5 domain. C2- and V5 derived 

peptides have inhibitory effects on translocation of PKC and can disrupt several 

cellular functions, such as Xenopus leavis oocyte maturation, myocyte 

hypertrophy and activation of PLD (Ron, Luo et al. 1995; Thorsen, Bjorndal et al. 

2000; Stebbins and Mochly-Rosen 2001).      

Another PKC isoform PKCε binds RACK1 with lower affinity compared to that of 

RACK2. In U87 glioblastoma cells, RACK1 intreacts with PKCε, whereas in PC12 

cells, RACK1 forms a complex with PKCβII and the stress-induced variant of 

acetycholinesterase AChE-R (Perry, Sklan et al. 2004).  

1.3.6.2 PDE4D5 

RACK1 has been shown to interact with PDE4D5 (Bolger, McCahill et al. 2002) , a 

key regulator in cAMP dependent signal transduction, indicating that it may 

involved in the regulation of pathways activated by adenylyl cyclase. Indeed, 

treatment with the adenylyl cyclase activator forskolin induces RACK1 

translocation to the nucleus, whereas the localization of PKCβII is unaffected 

(Ron, Vagts et al. 2000). Furthermore, treating cells with another cAMP-

elevating agent, ethanol, which increases the activity of adenylyl cyclase, 

therefore activating the PKA signalling pathway, also promotes the nuclear 
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translocation of RACK1 (Ron, Vagts et al. 2000). Such translocation can be 

blocked by adenosine-3’,5’-cyclic monophosphorothioate, Rp-isomer, an 

inhibitory analogue of cAMP that prevents the activation of PKA. Together with 

Dohrman’s finding that ethanol also induces the translocation of PKA catalytic 

unit to the nucleus (Dohrman, Diamond et al. 1996), it is highly possible that 

RACK1 may target PDE4D5 to a fraction of PKA or certain subcellular localization 

in order to regulate the cAMP/PKA signalling there. Nevertheless, RACK1 can 

regulate PDE4D5 distribution via competing with the binding of PDE4D5 with 

other scaffold proteins, in particular the beta-arrestins (Bolger, Baillie et al. 

2006). It has been shown (Bolger, Baillie et al. 2006) that RACK1 and beta-

arrestin have overlapping binding sites on PDE4D5 N-terminal region, which 

makes their binding to the enzyme occur in a mutually exclusive way. Beta-

arrestin was shown (Perry, Baillie et al. 2002) to recruit PDE4D5 to the activated 

beta2 adrenoceptor after stimulation for quick desensitization of the cAMP 

around the receptors and alter the receptor coupling from Gs to Gi. However, 

this process can be affected by elevated RACK1 levels for competing with beta-

arrestin in the binding of PDE4D5 (Bolger, Baillie et al. 2006).        

As for RACK1 translocating to the nucleus, it can influence gene transcription by 

interacting with the upstream effectors. In this regard, RACK1 was found to be a 

novel binding partner of Smad3 (Okano, Schnaper et al. 2006). It interacts with 

the linker region of Smad3 by its WD repeats 6 and 7. In human kidney epithelial 

cell line, knock-down of the RACK1 expression increases transcriptional activity 

of TGF-1-responsive promoter sequences of the Smad binding element (SBE), 

p3TP-Lux, and 2(I) collagen (transforming growth factor-1 [TGF-1] is crucial for 

renal fibrogenesis; it can stimulate phosphorylation of Smad2/3 and activate 

other signaling molecules). However, over expressing RACK1 negatively regulates 

2(I) collagen transcriptional activity in TGF-1-stimulated cells. RACK1 has no 

influence on the phosphorylation of Smad3 in the linker region or the C-terminus. 

It reduces the Smad3 direct binding to SBE in order to modulate the transcription 

of 2(I) collagen (Okano, Schnaper et al. 2006). 

He et al (He, Vagts et al. 2002) also found that nuclear RACK1 was involved in 

the induction of c-Fos mRNA and protein expression upon acute exposure of cells 

to ethanol. The type I receptor for PACAP (PAC1) was characterized as a 
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candidate downstream gene that could be altered in response to the induction of 

c-Fos by ethanol via RACK1 (He, Vagts et al. 2002). 

1.3.6.3 Tyrosine Kinases/ Phosphatases 

Apart from interaction with Ser/Thr kinases such as PKA and PKC, RACK1 also 

interacts with Src tyrosine kinase (Chang, Conroy et al. 1998). Two other 

tyrosine kinases, Lck and Fyn were identified in a following study, in which 

RACK1 was demonstrated to bind to the SH2 domain of Src via its WD repeat 6 

(Chang, Conroy et al. 1998). In vitro protein kinase assay demonstrated that 

purified GST-RACK1 could inhibit Src activity in a concentration dependent 

manner (Chang, Chiang et al. 2001), whereas RACK1 has no influence on the 

activity of three Ser/Thr protein kinases (Chang, Conroy et al. 1998). Reduced 

Src activity and tyrosine phosphorylation of many protein were observed in cells 

overexpressing RACK1. Fibroblasts with overexpressed RACK1 grow more slowly 

compared to wild type cells. This slowed growth rate is due to the prolonged 

G0/G1 stage of the cell cycle, rather than cell death (Chang, Conroy et al. 1998). 

As an endogenous inhibitor, RACK1 inhibits Src, causing the inhibition of Src 

downstream effectors, Vav2, Rho GTPases, Stats and Myc; the subsequently 

suppresses cyclin D1 and cyclin-dependent kinases 2 (CDK2) and CDK4; activates 

CDK inhibitor p27 and retinoblastoma protein and sequesters E2F1, resulting in 

delayed G1/S progression (Mamidipudi, Zhang et al. 2004). 

It has been shown (Yaka, Thornton et al. 2002) that Src is involved in brain 

functions including learning, memory, and long-term potentiation, and 

phosphorylated the NMDA ionotropic glutamate receptor. A Src family kinase Fyn 

was found to interact with RACK1, and was recruited to the ctNR2B subunit of 

the NMDA receptor and inhibited of its kinase activity. Thus, the recruiting and 

the subsequent releasing of Fyn are regulated by RACK1, leading to the 

phosphorylation of ctNR2B and enhancing the activity of the NMDA receptor 

channel (Yaka, Thornton et al. 2002).         

In a yeast two-hybrid screen employing the membrane proximal catalytic region 

of PTPµ as bait, RACK1 was found to generate a positive interaction with PTPµ 

(Mourton, Hellberg et al. 2001). PTPµ is composed of an intracellular domain and 

an extracellular domain. The intracellular domain is responsible for its tyrosine 

phosphatase activity, whereas the extracellular domain is for cell adhesion 
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through homophilic binding. Challenging cells with phorbol esters didn’t ablate 

the interaction of RACK1/PTPµ. However, their association was increased under 

high cell density, indicating that it was triggered by cell contact (Mourton, 

Hellberg et al. 2001). RACK1, PTPµ and PKCδ have been shown to form a 

complex in developing neuritis and growth cones of retinal explants (Rosdahl, 

Mourton et al. 2002). Inhibition of PKC activity caused the inhibition of neurite 

outgrowth on a PTPµ substrate, confirming that RACK1 is involved in the 

mediation of these cell processes (Rosdahl, Mourton et al. 2002). In subconfluent 

cells, RACK1 localizes mainly in the cytosol, but when cell density increases, 

RACK1 is mainly detected in the regions of cell-to-cell contact with PTPµ. This 

translocation to cell-cell contacts can be abolished by cell infection with an 

antisense PTPµ retrovirus (Mourton, Hellberg et al. 2001). Mourton also found 

that constitutively active Src could disrupt the association between RACK1 and 

PTPµ in a kinase independent manner, suggesting PTPµ and Src compete in 

binding to RACK1.       

1.3.6.4 Cell development 

The discovery of RACK1 homologues in the genetic model system Drosophila 

melanogasterhas (fruit fly) and yeast have provided us with invaluable methods 

for elucidating its cellular functions (Vani, Yang et al. 1997; Won, Park et al. 

2001) .  

In fission yeast, the RACK1 homolog Cpc2 shares 77% similarity with mammalian 

RACK1. It is found to interact with Schizosaccharomyces pombe Ran1 (Pat1), 

which regulates the transition between mitosis and meiosis. Activated Ran1 

(Pat1) inhibits sexual differentiation in fission yeast, whereas inactivation of 

Ran1 (Pat1) kinase is necessary and sufficient to initiate G1 arrest, conjugation 

and meiosis. The mutant fission yeast lacking Cpc2 (Cpc2  cells) was viable but 

with a delayed cell cycle. Starvation of nitrogen failed to rest the Cpc2  cells in 

G1, which leads to defects in conjugation and meiosis (McLeod, Shor et al. 2000). 

All the defects in Cpc2  cells can be rescued by introducing mammalian RACK1, 

confirming that Cpc2 is functionally homologous to mammalian RACK1. Cpc2 has 

no effects on Pat activity despite its physical interaction with the kinase, and 

fluorescent-labelling of Pat1 displays altered localization in Cpc2  cells, 

suggesting Cpc2 may function as an anchoring protein for Pat1 (McLeod, Shor et 
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al. 2000). Though RACK1 can interact with PDE4D5 and is considered to be 

involved in cAMP signaling regulation, Cpc2 shows little effect on cAMP 

modulation (McLeod, Shor et al. 2000).  

In Drosophila melanogaster, RACK1 is expressed in all developmental stages and 

in many tissues, especially concentrated in ovary. It has been proved to be 

essential at many steps of Drosophila development (Kadrmas, Smith et al. 2007). 

1.3.6.5 Cell movement and growth 

Overexpression of RACK1 in NIH3T3 mouse fibroblasts causes a reduction in 

growth rate under both anchorage-dependent and independent conditions which 

is due to G1/S delay (Chang, Conroy et al. 1998; Hermanto, Zong et al. 2002). 

This delay also correlates with increased levels of the cyclin-dependent kinase 

inhibitors P21Cip/WAF1 and p27kip1 (Chang, Conroy et al. 1998; Hermanto, Zong et 

al. 2002). Furthermore, cells overexpressing RACK1 are observed having 

enhanced spreading, increased number of actin stress fibers, focal contacts and 

enhanced tyrosine phosphorylation of paxillin and focal adhesion kinase 

(Buensuceso, Woodside et al. 2001; Hermanto, Zong et al. 2002).  

Integrins are cell surface receptors are comprised of αβ-heterodimers. They 

mediate the binding of cells to the extracellular matrix (ECM) (Skubitz 2002). 

The interaction of ECM/integrins triggers signal transduction required for 

reorganization of the actin cytoskeleton and formation of focal adhesion 

complexes, leading to the activation of FAKs (Focal adhesion kinase), the 

Src/MAPK cascades, elevated intracellular calcium, activation of PKC, and 

changes in cell transcriptional activity (Humphries 1996; Yarwood and Woodgett 

2001). By yeast-two-hybrid screen, RACK1 is found to interact with the catalytic 

β-integrin via its WD repeats 5-7, suggesting an involvement in cell adhesion and 

movement. Indeed, several reports show RACK1 is play important roles in both 

cell adhesion and movement. RACK1 has been shown to scaffold PKCε to integrin 

β chains. Disruption of the PKCε association with integrin receptors leads to 

reduced adhesion and cell migration (Liliental and Chang 1998; Besson, Wilson et 

al. 2002). In chinese hamster ovary fibroblast-like cells (CHO-K1 cells), RACK1 is 

localized to a subset of nascent focal complexes in areas of protrusion which 

contains paxillin. Cell protrusion and chemotactic migration is through RACK1 Src 

binding sites (Cox, Bennin et al. 2003).  
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Several reports have suggested that cooperation between insulin-like growth 

factor I receptor (IGF-IR) and integrin signaling is essential for the growth and 

migration of transformed cells (Goel, Breen et al. 2005; Kiely, Leahy et al. 2005). 

RACK1 is found to interact with the serine/threonine protein phosphatase 2A 

(PP2A), and this releases RACK1 immediately after stimulation using IGF-I. This 

dissociation of PP2A from RACK1 and the subsequent IGF-I dependent decrease 

in PP2A activity is not observed in cells expressing RACK1 binding deficient IGF-

IR mutants. Ligation of integrins with fibronectin or Matrigel can cause IGF-I-

regulated dissociation of PP2A from RACK1 as well as to recruit β1 integrin. 

Furthermore, both β1 integrin and PP2A can interact with the C-terminus of 

RACK1 (WD repeats 4 to 7), which implys that integrin ligation displaces PP2A 

from RACK1. Overexpressing RACK1 in MCF-7 cells increases their motility, which 

could be inhibited by the PP2A inhibitor okadaic acid. Suppressing RACK1 

expression by siRNA also decreases the motility of DU145 cells. Thereby, Kiely 

proposed a model (Figure 1.15) that RACK1 increases IGF-I regulated cell 

migration via its mutually exclusive binding between β1 integrin and PP2A within 

the complex at the IGF-IR (Kiely, O'Gorman et al. 2006).   

 

Figure 1.15: Model to illustrate actions of RACK1 i n regulating recruitment of 
ß1 integrin and PP2A to control cell migration. 
 Panel (a) represents serum-starved cells where RAC K1 is associated with the IGF-IR and 
PP2A. FAK phosphorylation and PP2A activity are hig h, and there is no cell migration. Panel 
(b) represents cells stimulated with IGF-I. PP2A is  rapidly released from RACK1, and ß1 
integrin is recruited to RACK1,  which forms a comp lex that includes the IGF-IR and ß1 
integrin. PP2A activity decreased transiently as we ll as FAK phosphorylation, and cell 
migration is started (Kiely, O'Gorman et al. 2006).  
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1.3.6.6 Intracellular Ca 2+ regulation  

Intracellular Ca2+ regulation is vital for nerve cell activities. Control of this 

process is primarily by inositol 1,4,5-trisphosphate receptors (IP3R) (Nishiyama, 

Hong et al. 2000; Kandel 2001). RACK1 can modulate Ca2+ release from 

intracellular stores by increasing the binding affinity between IP3 and IP3R 

(Patterson, van Rossum et al. 2004). Release of Ca2+ via the action of IP3R is vital 

for long-term potentiation (LTP) (Raymond and Redman 2002), implying putative 

RACK1 function in this neuronal network. 

First of all, the complexity of LTP process, along with RACK1’s scaffolding ability 

to interact with many protein partners, indicate some additional checkpoints 

provided by RACK1 interaction (Sklan, Podoly et al. 2006). Early LTP is induced 

by a cascade of actions: NMDA activation enables Ca2+ influx into the 

postsynaptic cell, and initiating receptor activation and association with the Src 

family member Fyn (Sheng and Kim 2002). RACK1 has been shown to interact 

with both NMDA receptors and Fyn; NMDA receptor and Fyn are essential for LTP. 

Therefore, RACK1 might be important in the LTP progress (Thornton, Tang et al. 

2004). Elevated Ca2+ influx activates adenylyl cyclase, leading to the cAMP/PKA-

dependent phosphorylation and activation of CREB. CREB subsequently initiates 

transcription of genes including neurotrophin, which induces signals that 

promote the survival and differentiation of neurons (Bonni, Ginty et al. 1995). 

RACK1 interaction with the dopamine receptor can also regulate adenylyl cyclase, 

provding another checkpoint (Lee, Kim et al. 2004). 

Maintaining long-term L-LTP process requires different modulating input such as 

PKC signalling, which involves RACK1 regulation. Furthermore, L-LTP also 

requires mRNA translation, and RACK1 serves its part in this process (Sklan, 

Podoly et al. 2006). 
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Table 1.3: RACK1 protein partners and putative func tions (Sklan, Podoly et 
al. 2006) 

(A) Molecular 
mechanisms  

(B) Biological processes  (C) Neuronal infect  

Signaling  Gene 
expression  

Adhesio
n 

Receptors 
and related 
proteins  

Scaffoldin
g protein  

Viral 
proteins  

Bacterial 
proteins  

  PKC 
  Type I interferon 
receptor β long 
subunit 
(IFNαRβL) 

  PTPmu 

  Angiotensin II 
receptor-
associated 
protein 
(Agtrap)  

  β-
Adrenergic 
receptor  

  HIV-1 Nef 
protein 
synthesized 
early after 
infection. 
Crucial for 
high viral 
loads and 
pathogenesi
s 

  Helicobacter 
pylori VacA 
cytotoxin  

  PLCγ1 

  Messenger 
ribonucleoprotei
n (mRNP) 
complexes 
associated with 
translated 
mRNAs  

  Integrin  
  Beta chain of 
IL-5/IL-3/GM-
CSF receptor  

  β-Spectrin    Epstein-
Barr BLZF1  

 

  PDE4D5 

  eIF6 translation 
initiation factor    Insulin-

like growth 
factor I 
(IGF-IR) 

  FAN, an 
adapter protein 
factor 
associated 
with neutral 
sphingomyelin
ase activation  

  Synaptotag
min  

  Epstein-
Barr A73  

 

  Gβ1γ1 and 
transducin 
hetero-
trimer 
Gα1β1γ1 

 

  P0 (MPZ) 
myelin 
protein  

  NR2B subunit 
of the NMDA 
receptor and 
the non-
receptor 
protein 
tyrosine 
kinase, Fyn  

 

  Influenza A 
M1 

 

  p73α, pRB 

 
  Plectin 
(cytoskelet
al linker 
protein)  

  Na(+)/H(+) 
exchange 
regulatory 
factor 
(NHERF1), a 
binding partner 
of CFTR 

 

  Adenoviral 
E1A 

 

  p63α     Androgen 
receptor (AR)  

   Mumps 
virus 
protein V  

 

  Src 
    Dopamine 

transporter 
(DAT) 

   Human 
papillomavir
us E2 
protein  

 

  p19(H-
RasIDX) 
alternative 
splicing 
variant of c-
H-ras 

      

  p120GAP(
Ras GTPase 
activating 
protein)  

      

  Dynamin1        
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1.4 SUMOylation  

Small ubiquitin-like modifier (SUMO) was characterized as a reversible post-

translcational modification protein. The first discovered SUMOylation substrate 

was Ran GTPase-activating protein RanGAP1 (Matunis, Coutavas et al. 1996; 

Mahajan, Delphin et al. 1997). SUMO attaches to its substrate by a covalent 

binding. In these studies, two important features of SUMO have been revealed: 

SUMOylation is a reversible modification process and it can change the 

localization of the target protein. For example, non-sumoylated RanGAP1 is 

cytosolic, whereas SUMOylated RanGAP1 is translocated to the nuclear pore 

through interaction with nucleoporin RanBP2 (Matunis, Coutavas et al. 1996; 

Mahajan, Delphin et al. 1997). 

SUMO proteins have a molecular size around 10 kD and have ubiquitin-like 3D 

structures (Bayer, Arndt et al. 1998; Mossessova and Lima 2000; Bernier-Villamor, 

Sampson et al. 2002) . However, the SUMO is far from similar to ubiquitin. They 

share less than 20% amino acids identity and are distinct from their overall 

surface-charge distribution.  SUMO protein possesses an unstructured stretch of 

10 to 25 amino acids at its N-terminal region that does not exist in other 

ubiquitin-like proteins. These unique N-terminal sequences are responsible for 

the formation of SUMO chains (Geiss-Friedlander and Melchior 2007). 

SUMO proteins can be found in eukaryotic organisms. So far, four SUMO proteins 

have been found to be expressed in humans: SUMO1-SUMO4. Among the four 

SUMO proteins, SUMO1/2/3 are ubiquitously expressed, whereas SUMO4 only 

exists in kidney, lymph node and spleen (Bernier-Villamor, Sampson et al. 2002; 

Guo, Li et al. 2004). 

All SUMO proteins are expressed as immature precursors. The mature SUMO 

proteins have a universal Gly-Gly motif; whereas immature SUMO has an 

additional sequence containing 2-11 amino acids immediately after the Gly-Gly 

motif. Truncation of the C-terminal extension is necessary for mature SUMO 

conjugation with its substrate. SUMO2 shares 97% sequence identity with SUMO3, 

but only 50% amino acids identity with SUMO1.  
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1.4.1 Mechanism of sumoylation  

Similar to ubiquitylation, it need a three step enzymatic cascade to form an 

isopeptide bond between the C-terminal Gly residue of SUMO protein and the –

amino group of a Lys residue in the substrate protein.   

Three enzymes are involved in the sumoylation process (Figure 1.16). E1 

activating enzyme that exists in the heterodimer ASO1-UBA2 is responsible for 

activation of a mature SUMO protein at its C-terminus (Johnson, Schwienhorst et 

al. 1997; Desterro, Rodriguez et al. 1999; Gong, Li et al. 1999). ATP is required 

in this step for the formation of a SUMO-adenylyl conjugate, which provides the 

energy for the thioester bond between the C-terminal carboxy group of SUMO 

and the catalytic Cys residue of UBA2 (Geiss-Friedlander and Melchior 2007). 

Then the SUMO is transferred to the E2 conjugating enzyme UBC9. In the last 

step, SUMO is transferred from UBC9 to the target substrate by the help of E3 

ligases.  

Three classes of E3 ligase have been identified. The first and the largest group of 

E3 ligase is characterized for their SP-RING motif (a RING-related sequence in 

the formation of Sx2Cx15Hx2/CSx17Cx2C, where x is any amino acid). It includes 

five PIAS (1, 3, xα, xβ and y) in mammals, Zip3 in yeast and MMS21 (NSE2) in 

plants. The second class contains the vertebrate-specific nuclear pore protein 

RanBP2. The third group of E3 ligase is the Human Polycomb group memberPc2 

(Geiss-Friedlander and Melchior 2007). 

As a reversible modification, desumoylation is carried out by a specific family of 

proteases, which includes Ulp1 and Ulp2 in yeast and their homologues in human 

named sentrin-specific proteases (SENP1-3 and SENP5-7) (Li and Hochstrasser 

1999). Apart from their isopeptidase function, they also control the hydrolysis of 

the C-terminal of newly synthesized SUMO for their maturation (Geiss-

Friedlander and Melchior 2007).  
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Figure 1.16: The mechnism of reversible SUMOylation .  
Before the first conjugation, nascent SUMO requires  to be proteolytically processed to 
expose its C-terminal Gly-Gly motif . This is accom plished by SUMO-specific isopeptidases 
(sentrin-specific proteases; SENPs), which remove 4  C-terminal amino acids from SUMO1, 
11 amino acids from SUMO2 and 2 amino acids from SU MO3. Three enzymes are involved in 
the following sumoylation process . E1 activating e nzyme that exists in the heterodimer 
ASO1-UBA2 is responsible for activation of a mature  SUMO protein at its C-terminus. ATP is 
required in this step for the formation of a SUMO-a denylyl conjugate, which provides the 
energy for the thioester bond between the C-termina l carboxy group of SUMO and the 
catalytic Cys residue of UBA2. Then the SUMO is tra nsferred to the E2 conjugating enzyme 
UBC9. In the last step, SUMO is transferred from UB C9 to the target substrate by the help of 
E3 ligases. SENP is also responsibe for the reversi ble nature of SUMOylation. 

1.4.2 SUMO binding sites 

The consensus SUMO –acceptor site is ψKxE, where ψ is an aliphatic branched 

amino acid and x can be any amino acid. UBC9 can directly interact with this 

motif: the large Lys can insert into the catalytic pocket of UBC9, and the alipatic 

and acidic amino acids interact with residues on the surface of UBC9. UBC9 can 

only recoganise the ψKxE motif if it exists in an extended loop (RanGAP1) 

(Bernier-Villamor, Sampson et al. 2002), belongs to an unstructured area (ETS1) 

or the N termius of SUMO2/3 (Tatham, Jaffray et al. 2001). UBC9 cannot 

recognise ψKxE motifs in stable helical structures (Pichler, Knipscheer et al. 

2005). 
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Apart from the classic consensus SUMO interacting motif ψKxE, two extended 

motifs have identified for SUMO interaction (Hietakangas, Anckar et al. 2006; 

Yang, Galanis et al. 2006). One is ψKxExxpSP, where it has an additional 

phosphorylated serine and a proline. The negative charge that extended from 

phosphorylation of the Ser has been shown to enhance substrate-UBC9 

interaction (Hietakangas, Anckar et al. 2006). Another one is the negatively 

charged amino-acid-dependent sunoylation motif (NDSM), in which a cluster of 

negatively charged amino acids has been found to be important for UBC9 

interaction (Yang, Galanis et al. 2006).   

K164 of proliferating cell nuclear antigen (PCNA) in S. cerevisiae and K14 in 

human E2-25K can be sumoylated as well. However, the Lys does not exist in a 

classic ψKxE motif. K164 is in a hairpin turn sequence (Hoege, Pfander et al. 

2002), and K14 of E2-25K is part of a α-helix (Pichler, Knipscheer et al. 2005).     

1.4.3 Effects of sumoylation 

Among the increasing list of SUMO substrate proteins (Geiss-Friedlander and 

Melchior 2007), only a limited number of them are quantitatively sumoylated 

either constitutively or upon stimulation. Most of the target proteins can be 

sumoylated in a small percentage. However, despite the small percentage of 

sumoylated protein, sumoylation can induce dramatic changes on the target 

protein and the phenotypic functional output. Although sumoylated proteins are 

kept at low levels, due to the rapid sumoylation and desumoylation progress, the 

pool of sumoylated protein can be affected in a short time. 

Sumoylation is primarily considered as a nuclear effect as most of SUMO enzymes 

are enriched in the nucleus, and many researchers focussed on its role in DNA 

repair, transcription, nuclear bodies and nucleo-cytoplasmic transport (Geiss-

Friedlander and Melchior 2007). Sumoylation has been shown to have a negative 

effect in transcription. For DNA repair, sumoylation of TDG, a DNA-repair 

enzyme that can bind the mismatched DNA and activate the corrupted base, can 

reduce its binding affinity with DNA and result in the release of the enzyme to 

the nucleoplasm (Hardeland, Steinacher et al. 2002; Baba, Maita et al. 2005).  

In addition to the nuclear targeted effects, sumoylation has recently been found 

(Harder, Zunino et al. 2004; Rajan, Plant et al. 2005; Dadke, Cotteret et al. 2007) 
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to occur in many parts of cells including the plasma membrane, the endoplasmic 

reticulum (ER) and in the cytoplasm. In mitochondria, sumoylation is suggested 

to be important for maintaining the balance between mitochondrial fission and 

fusion (Harder, Zunino et al. 2004). At the ER membrane, cell proliferation and 

growth factor signalling are negatively modulated by dephosphorylation of key 

receptor tyrosine kinases through ER-associated protein-tyrosine phosphatase-1B 

(PTP1B). Insulin treatment can cause the sumoylation of PTP1B thereby 

inhibiting its activity (Dadke, Cotteret et al. 2007). Sumoylation has been 

observed to have a negative effect on membrane protein K2P1 potassium-leak 

channel (Rajan, Plant et al. 2005). Other sumoylated membrane related proteins 

include voltage-gated potassium channel (Benson, Li et al. 2007), metabotropic 

glutamate receptor-8 (mGluR8) (Tang, El Far et al. 2005) and GluR6 subunit of 

kainite receptor (Martin, Nishimune et al. 2007).    
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2 Methods and Materials  

 

2.1 Antiserum and material  

Santa Cruz Biotechnology: phospho-β2-AR T350 (sc-16720), PP2A (sc-14020), 

βarrestin2 (sc-13140), β2-AR pSer355/356 (sc-16719-R), Clathrin HC (sc-12734), 

RACK1 (sc-17754), β2-AR (sc-569), glutathione S-transferase (GST) (sc-53909). 

Cell Signaling Technology: pERK (9106s), MEK1(61B2) (2352), ERK (4695), 

phospho-MEK1/2 (Ser217/221) (9121s), ERK (4969), pSer412 (2416s), S 

UMO1 (4930), SUMO2/3 (4871s), MEK2 (4694), Anti-FLAG rabbit (2368), pERK 

(4377s), MEK1/2 (9128), ERK (9102), MEK2 (9125),. 

Millipore: Anti-PP2A C subunit (07-324), Anti-PP2A B subunit (05-529), Active 

GST-MEK1 (SGT-220), inactive HisMEK1 (14-706) 

ABGENT: SUMO4 (AP1263b), SUMO1 N-terminal (AP1222d) 

BIOMOL International: SUMO1 (PW9460), SUMO2 (9465) 

Sigma Aldrich: Anti-FLAG HRP (A8592-1MG), donkey serum. 

Invitrogen: mouse Anti-GMP-1, anti-Src pan (44-655G), anti-His-horseradish 

peroxidase (P/N56-0707)  

Bio-Rad: Bradford reagent 

All the antibodies were used as 1:2000 dilution for immuno-blot, and 2µl per 

50µl agarose beads for immunoprecipitation.  

PDE4D antibodies are kind gifts from from Dr. S Wolda (ICOS Corp., Seattle, WA). 

HEKB2 cells were a kind gift from Prof. Graeme Milligan (University of Glasgow). 

Cell permeable peptides were a kind gift from Prof. Enno Klusmann (Leibniz-

Institut für Molekulare Pharmakologie, Berlin) 
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2.2 Molecular Biology 

2.2.1 Plasmid construction and site-directed mutagenesis 

FLAG-tagged-βarrestin1, which was generated by an insertion of the full ORF of 

βarrestin1 into the Not1 site of pcDNA3 (Invitrogen), was a kind gift from Dr. 

Graeme B. Bolger (University of Alabama at Birmingham, USA). Primer 5-

GGGAAAGCGG GCCTTTGTGG CCCACATCGA CCTCGTGGAC C-3 and 5-

GGTCCACGAG GTCGATGTGG GCCACAAAGG CCCGCTTTCC C-3 were used to 

generate the FLAG-tagged Asp26Ala:Asp29Ala-βarrestin1 mutant with QuikChange 

site-directed mutagenesis kit (Stratagene). pCHA-MEK1 construct was a kind gift 

from Prof. Walter Kolch (the Beatson Institute for Cancer Research, Glasgow, 

UK). It was constructed as described below: Rat MEK1 was tagged at the N 

terminus with the influenza virus hemagglutinin (HA) epitope. Briefly, adenosine 

deaminase was excised from pLNCAL7 and replaced with an oligonucleotide 

specifying a translation initiation codon, HA tag, and unique NotI site, to yield 

vector pCMV-HA. MEK inserts were generated by PCR amplification of cDNAs and 

ligated to NotI-digested pCMV-HA, fusing the amino acid sequence 

MDTKYPYDVHDYAAA in frame with codon 2 of MEK1. Primer 5-GGAGCTTGAC 

GAGCAGCAGG CGGCGGCGCT CGAGGCCTTT CTGACG-3 and 5-CGTCAGAAAG 

GCCTCGAGCG CCGCCGCCTG CTGCTCGTCA AGCTCC-3 were designed to generate 

Arg47Ala:Lys48Ala:Arg49Ala-MEK1. 

2.2.2 Large scale DNA purification 

DNA was purified using a QIAfilter Plasmid Maxi Kit according to the 

manufacturers instructions. Briefly, bacterial cultures (3-4 x 109 cells/ml) were 

harvested by centrifugation (6000 x g for 15 min at 4°C ) and the pellet 

resuspended in 10 ml Buffer P1 containing RNase A. Buffer P2 (10ml) was added 

and mix thoroughly by inversion 4–6 times, prior to incubation at room 

temperature for 5 min. Chilled Buffer P3 (10ml) was added to the lysate, and 

mixed by inversion 4–6 times. The mixture was then decanted to a QIAfilter 

Cartridge and incubated at room temperature for 10 min. The mixture was then 

filtered into a QIAGEN-tip 500 pre-equilibrated in Buffer QBT, and allowed to 

enter by gravity flow. The QIAGEN-tip was washed with 2 x 30 ml Buffer QC and 

the DNA eluted with 15 ml Buffer QF. The DNA was precipitated by adding 10.5 
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ml (0.7 volumes) room-temperature isopropanol to the eluted DNA, prior to 

centrifugation at ≥15,000 x g for 30 min at 4°C. The DNA pellet was washed with 

5 ml of room-temperature 70% ethanol, and centrifuged at ≥15,000 x g for 10 

min. The pellet was air-dried for 5–10 min, and the DNA redissolved in a suitable 

volume of buffer (e.g., TE buffer, pH 8.0, or 10 mM Tris�Cl, pH 8.5). 

2.2.3 Small scale DNA purification  

 DNA was purified using a QIAprep Spin Miniprep Kit according to the 

manufacturers instructions. Briefly, bacterial cultures (3-4 x 109 cells/ml) were 

harvested by centrifugation (6000 x g for 10 min at 4°C ) and the pellet 

resuspended in 250 µl Buffer P1 containing RNase A. Buffer P2 (250 µl) was 

added and mix thoroughly by inversion 4–6 times. Do not allow the lysis reaction 

to proceed for more than 5 min before add Buffer N3. Chilled Buffer N3 (350 µl) 

was added to the lysate, and mixed by inversion 4–6 times. The mixture was 

then centrifuged at ≥ 17,900 for 5 min and pipetting the supernatants to the 

QIAprep spin column. The supernatants were centrifuged for 30–60 s and the 

flow-through was discarded. Wash the QIAprep spin column by 0.5 ml Buffer PB 

(centrifuging for 30–60s) and 0.75 Buffer PE (centrifuging for 30–60s) in turn. The 

flow-through was discarded, and the QIAprep spin column was centrifuged for an 

additional 1 min to remove residual Buffer PE. The QIAprep column was placed 

in a clean 1.5 ml microcentrifuge tube. The DNA was eluted by adding 50 µl 

Buffer EB (10 mM Tris�Cl, pH 8.5) or water to the center of each QIAprep spin 

column and centrifuging for 1 min.  

2.2.4 Site direct mutagenesis (Stratagene QuickChange) 

2.2.4.1 Mutant Strand Synthesis Reaction (Thermal C ycling) 

1. Prepare the sample reaction(s) as indicated below: 

5 μl of 10× reaction buffer 

X μl (5–50 ng) of dsDNA template 

X μl (125 ng) of oligonucleotide primer #1 
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X μl (125 ng) of oligonucleotide primer #2 

1 μl of dNTP mix 

ddH2O to a final volume of 50 μl 

Then add 

1 μl of PfuTurbo DNA polymerase (2.5 U/μl) 

2. If the thermal cycler to be used does not have a hot-top assembly, overlay 

each reaction with ~30 μl of mineral oil. 

TABLE I. Cycling Parameters for the QuikChange Site-Directed Mutagenesis Method 

Segment  Cycles Temperature Time 
1 1 95°C 30 seconds 

95°C 30 seconds 
55°C (or 70°C) 1 minute 

2 18 

68°C 1minutes/kb of 
plasmid length 

3. Cycle each reaction using the cycling parameters outlined in Table I. 

4. Following temperature cycling, place the reaction on ice for 2 minutes to cool 

the reaction to ≤37°C. 

2.2.4.2 Dpn I Digestion of the Amplification Products 

1~2 l of Dpn I restriction enzyme (10 U/μl) was added directly to each 

amplification reaction below the mineral oil overlay using a small, pointed pipet 

tip. The reaction mixture was mixed and centrifuged for 1 minute prior to  

incubation at 37°C for 1 hour to digest the parental (i.e., the non-mutated) 

supercoiled dsDNA. 

2.2.4.3 Transformation of XL1-Blue Supercompetent Cells  

1. Gently thaw the XL1-Blue supercompetent cells on ice. For each control and 

sample reaction to be transformed, aliquot 50 μl of the supercompetant cells to 

a pre-chilled 14-ml BD Falcon polypropylene round-bottom tube. 
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2. Transfer 1~4 μl of the Dpn I-treated DNA from each control and sample 

reaction to separate aliquots of the supercompetant cells. (Note Carefully 

remove any residual mineral oil from the pipette tip before transferring the Dpn 

I-treated DNA to the transformation reaction). As an optional control, verify the 

transformation efficiency of the XL1-Blue supercompetant cells by adding 1 μl 

of the pUC18 control plasmid (0.1 ng/μl) to a 50-μl aliquot of the 

supercompetant cells. Swirl the transformation reactions gently to mix and 

incubate the reactions on ice for 30 minutes. 

3. Heat pulse the transformation reactions for 45 seconds at 42°C and then place 

the reactions on ice for 2 minutes. (Note: This heat pulse has been optimized for 

transformation in 14-ml BD Falcon polypropylene round-bottom tubes.) 

4. Add 0.5 ml of L-Broth preheated to 42°C and incubate the transformation 

reactions at 37°C for 1 hour with shaking at 225–250 rpm. 

5. Plate the appropriate volume (0.25ml) of each transformation reaction, on 

agar plates containing the appropriate antibiotic for the plasmid vector. 

6. Incubate the transformation plates at 37°C for >16 hours. 

2.2.4.4 Colony Selection and Storage  

About 6 single colonies of each transformation were picked and their DNA were 

extracted for sequencing. The colonies were grown in 6 ml LB-broth, 0.7ml of 

which then mixed with 0.3ml 70% (v/v) glycerol and the mixture was stored at -

80°C.    

2.3 Biochemistry  

2.3.1 In Vitro pull down using purified proteins 

1nmol of purified GST or GST-βarrestin1 mixed with equal amount of HisMEK1 

(Millipore) in 0.5 ml binding buffer (50mM Tris-HCl pH7.5, 100mM NaCl, 2mM 

MgCl2, 1mM DTT, 0.5% Triton X-100). The mixture was incubated for 1 hour at 4

℃, then 50µl of pre-washed Anti-poly-Histidine-agarose beads (Sigma: A5713) 
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were added and incubated overnight incubation. Beads were collected by 13,000 

xg centrifugation for 1min at 4°C, and washed three times with binding buffer 

before separation of proteins by SDS-PAGE. 

2.3.2 Immuno-precipitation 

Wash adherent cells twice in the dish with ice-cold PBS and drain off PBS. Wash 

non-adherent cells in PBS and centrifuge at 3000xg in a table-top centrifuge for 

5 minutes to pellet the cells. Add ice-cold 3T3 lysis buffer or modified RIPA 

buffer to cells (1 ml per 10 7 cells/100 mm dish/150 cm2 flask; 0.5 ml per 5 x 

106 cells/60 mm dish/75 cm2 flask). Scrape adherent cells off the dish with a 

plastic cell scraper that has been chilled in ice-cold PBS. Transfer the cell 

suspension into a centrifuge tube. Gently rock the tube with suspension on an 

orbital shaker at 4˚C for 20 minutes to obtain cell lystae. Centrifuge the cell 

lysate at 13,000 x g for 5~10 minutes to separate cell debris, which is pelleted at 

the bottom of the tube. Immediately transfer the supernatant to a fresh 

centrifuge tube to obtain clear cell lysate and discard the pellet. Quantify the 

amount of protein of the clear cell lysate, and dilute it to 1µg/µl or 2µg/µl of 

total protein with lysis buffer (higher concentration may require when handle 

low expression proteins). 

To prepare protein A or G agarose/sepharose, wash the beads 3 times with lysis 

buffer and resuspend the beads to a total 500µl volume. Add proper amount of 

antibody to the beads and rotate for 1 hour at 4˚C to allow antibody conjugation 

to the beads. Aliquot the beads slurry to required number of Eppendorf tubes; 

spin down the beads at 13000 xg; and carefully discard the supernatant (if using 

conjugated agarose beads such as FLAG-beads or His-beads, just wash them 3 

times and make required aliquot). Cut the tip off of the pipette when 

manipulating agarose beads to avoid disruption of the beads.  

Pre-clear the clear cell lysate by adding 50 µl of either protein A or G 

agarose/sepharose bead slurry to 500 µl of clear cell lysate and incubating at 

4°C for 20 minutes on an orbital shaker. Pre-clearing the lysate will reduce non- 

specific binding of proteins to the agarose or sepharose. Remove the protein A or 

G beads by centrifugation at 13,000 x g at 4°C for 1 minute. Transfer the 

supernatant to prepared antibody conjugated beads.  
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Gently rock the clear cell lysate/beads mixture for either 2 hours or overnight at 

4°C on an orbital shaker. A 2 hour incubation time is recommended for the 

immunopecipitation of active enzymes for kinase or phosphatase assays.  

Collect the agarose/sepharose beads at 13,000 xg. Discard the supernatant and 

wash the beads 3 times with 500 µl ice-cold lysis buffer. Occasionally, washing 

with lysis buffer will strip the immunocomplex off of the agarose/sepharose 

beads. In these cases, washing with the milder PBS is recommended.  

Resuspend the agarose/sepharose beads in 60 µl 2x sample buffer and mix gently. 

This will allow for sufficient volume to run three lanes.  

The agarose/sepharose beads are boiled for 5 minutes to dissociate the 

immunocomplexes from the beads. The beads are collected by centrifugation 

and SDS-PAGE is performed with the supernatant. Alternatively, the supernatant 

can be transferred to a fresh microcentrifuge tube and stored frozen at –20°C 

for later use. Frozen supernatant should be reboiled for 5 minutes directly prior 

to loading on a gel.  

2.3.3 Cell fractionation  

The  medium was removed from cells by washing with 5ml ice cold PBS 2 times. 

The excess PBS was removed by inverting and tapping the dishes on a piece of 

tissue. 0.5ml complete KHEM was added to 10cm dish (or 0.75ml to 150ml flask). 

Cells were srapped and removed into a fresh microcentrifuge tube. Snap freeze 

and thaw the lysate for 3 times. The cell solution was passaged through needle 

10 times by 1ml syringe. Cell solution was homogenized for 10 times. The cell 

solution was centrifuged at 6000 xg for 2 min and homogenized again for 10 

times (Repeat this step if necessary). The cell solution was centrifuged at 6000 

xg for 10mins. 0.5ml complete KHEM was added to the pellet to obtain P1 

nuclear fraction. Supernatant was transferred to a new microcentrifuge tube. 

The supernatant was centrifuged at 186000 for 30mins.  The supernatant was 

removed and kept as S fraction which is the cytoplasm. The pellet was washed 1 

time with KHEM and was resuspended and centrifuged again. The pellet was 

resuspended in 100-200 µl(or appropriate) complete KHEM buffer to botain the  

membrane fraction.  
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2.3.4 Protein analysis 

2.3.4.1 Whole cell lysate 

Cell culture plates were maintained on ice and all buffers used were pre-chilled 

on ice to minimize protein degradation and denaturing of enzymes. The medium 

in the culture plates or flask was discarded, washed 3 times with PBS and the 

plates were tapped on tissues to remove excess buffer. 1ml/10cm of 3T3 lysis 

buffer (20 mM N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), 

pH7.4, 50 mM NaCl, 50 mM NaF, 10 % v/v glycerol, 1 % v/v triton X-100, 10 mM 

Ethyleneglycol-bis(P-aminoethylether)-N,N,N’,N’-Tetra-acetic acid (EGTA), 30 

mM sodium pyrophosphate, proteases inhibitor cocktail) was added to the plates. 

The cells were scraped by a plastic scraper and the cell lysate was transferred to 

a fresh 1.5ml Eppendorf tube. Snap freeze the lysate by putting the Eppendorf 

tube into dry ice for several minutes. The lysate was kept at -80°C.  

 
2.3.4.2 Protein quantification (Bradford assay) 

The protein assay was carried by using ELISA 96-well plate. A standed protein 

concentration curve with a range of 1 µg/µl - 5 µg/µl was generated by using 

0.5mg/ml BSA (bovine serum albumin) solution. 2µl of each sample lysate was 

added to the 96-well plate in triplicate. Bradford reagent from Bio-rad was 

diluted 1:5 with distilled water to make a total volume of 20ml solution per 

plate. 200 µl of the diluted Bradford reagent was added to each well. The 

protein concentration was analyzed by the Revelation program and an MRX 

microtitre plate reader (absorbance read at 590 nm). Protein concentrations 

were obtained by plotting the standard curve and using the least squared 

regression analysis to obtain the line of best fit. The equation of the line was 

used to determine the protein concentration of samples. 
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2.3.5 Gel electrophoresis and Western blotting 

2.3.5.1 Cell lysis samples 

Cell lysates were prepared and protein concentration was analyzed as described 

above. Equal amounts of total protein were mixed with 5x Laemmli sample 

buffer (260mM TrisCl, pH 6.7, 55.5% v/v glycerol, 8.8% v/w SDS, 0.007% v/w 

bromophenol blue, 11.1% v/v 2-mercaptoethanol) to obtain 1x loading solution 

(normally 30µg total protein per well). Loading solution was boiled for 3~5 

minutes or 37°C for 1 hour when working with beta2 adrenergic receptors. 

2.3.5.2 Nu-PageTM gel system 

Pre-cast 4-12%, 10-well, 12-well or 15-well Bis-Tris 1.0mm gels (Invitrogen) were 

used for protein electrophoresis. The gels were assembled in Xcell SureLockTM 

containers (Invitrogen) according to the manufacturer’s instructions. Depending 

on the molecular weight of protein interest, either NuPageTM MOPS SDS running 

buffer or NuPageTM MES SDS running buffer (Invitrogen) was used. 3~5µl of Bio-

Rad Blue prestained broad range precision protein marker was used as standard 

marker to measure protein weight. An appropriate volume of boiled samples was 

loaded to each well of the gel. The gels then were run at 160~200V constant 

(operated by POWER-PAC 300 (Bio-Rad) for about 1 hour or until the lightest 

protein marker band reaches the bottom of the gel. 

2.3.5.3 Protein Transfer 

2 pieces of Whatman 3MM paper and 1 piece of nitrocellulose paper (Schleicher& 

Schuell) were prepared to the gel size. 1 piece of Whatmann 3MM paper was 

soaked in 1x NuPage Transfer Buffer (Invitrogen). The gel cassette was dis-

assembled and the gel was placed on the Whatmann 3MM paper. The pre-soaked 

nitrocellulose paper and another pre-soaked whatmann 3MM paper were placed 

onto the gel. A round pen or a glass stick was rolled from one side of the second 

layer of Whatmann paper to the other side in order to get rid of bubbles 

between the layers (alternately, assemble all the layers in a tank filled with 

transfer buffer to avoid bubble formation). The sandwich was moved to the 

middle of two pieces of foam and this was assembled with the Xcell IITM Blot 

Module. Make sure the nitrocellulose was prone to the positive electrode. The 



 

 90 

tank was filled with 1x transfer buffer and the proteins were transferred at 25V 

for 1 hour or 10V overnight. 

2.3.5.4 Immunoblotting 

Once the protein transferred to the nitrocellulose, the membrane was washed 

with Ponceau S stain (0.1% v/w Ponceau S, 3% v/w Trichloroacetic Acid) for 3~5 

miuntes, the membrane then was washed with distill water for 3 times to 

visualize the proteins. To block all the binding sites on the nitrocellulose, the 

membrane was incubated with 5% (w/v) skimmed milk in TBST (137mM NaCl, 

20mM TrisCl, pH 7.6, 0.1% v/v Tween20) for an hour. After blocking, the 

nitrocellulose was incubated with primary antibody in 1% milk (w/v, skimmed 

milk dissolved in TBST) for 1 hour (all the incubations were perfomed with 

vigorous shaking). The membrane was washed with TBST for 3 times, each time 

was 10 minutes.  Secondary antibody was an anti-immunoglobulin (IgG) antibody 

conjugated to horse-radish peroxidase (HRP) that directed against the primary 

antibody. It was diluted in 1% milk and incubated with the nitrocellulose for 1 

hour followed with 3 times TBST washing. To obtain the immunoblot image, the 

nitrocellulose was incubated with ECL reagents (Amersham) for at least 1 minute 

according to the manufacturers’ instruction. The nitrocellulose (soaked with ECL) 

was then covered with a piece of x-ray film (Kodak) in a dark room for different 

time length. It was finally developed by using a Kodak Xomat machine.      

2.3.6 Expression and Purification of GST Fusion Proteins 

2.3.6.1 GST Fusion Protein Expression  

The plasmid DNA of interest was inoculated into 30ml of L-Broth (1% NaCl, 0.5% 

Bacto Yeast Extract, 1% Bacto-Tryptone pH 7.5) containing 100µg/ml ampicillin, 

and the culture mixture was incubated at 200 rpm, 37°C overnight. Next 

morning, the overnight culture was transferred to 500ml of L-Broth (100µg/ml) 

for further incubation until OD600 reached 0.6~1.0 at 37°C. 1ml of culture 

mixture was taken as sample 1 (no IPTG sample showing none expressing of 

interested protein). IPTG was added to the culture at a final concentration of 

0.2mM, shaking at 200 rpm at 25~30°C for another 2~5 hours to allow expression 

of the interested protein. Samples were taken at 2 hours interval in order to 

monitor the protein expression. 5 hours later, cells were collected at 3000x g at 
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4°C for 10 minutes and froze under -80°C (in this step, the cell pellet can be 

kept at -80°C for 1 month).     

2.3.6.2 GST Fusion Protein Purification  

The frozen cells were thawed on ice, resuspended with 10 ml of ice cold 

resuspension buffer (50mM TrisCl pH8.0, 10mM sodium chloride, 1mM EDTA, 

10mM mercaptoethanol, 1x Roche protease inhibitor tablet). 1/10 of volume of 

10mg/ml Lysozyme was added to the resuspended cells and the mixture was 

kept on ice for 15 minutes. The cell mixture was then sonicated on ice for 5 

minutes (5x 30 seconds with 30 seconds rest). 1/500 volume of 10% Triton X-100 

was mixed with the sonicated cell mixture and spun down at 12,000x g, 4°C for 

15 minutes. 1 ml glutathione beads were washed with wash buffer (50mM TrisCl 

pH8.0, 10mM sodium chloride, 1mM EDTA, 10mM beta-mercaptoethanol, 1x 

protease inhibitor tablet, 0.05% NP-40) for 3 times. 10 ml of the supernatant was 

transferred to a 15ml falcon tube with 1 ml of pre-equilibrated Glutathione 

Sepharose 4B beads (Amersham Biosciences).  The mixture was rotated end to 

end at 4°C for 1 hour. The beads were collected at 366x g at 4°C for 2 minutes 

and the supernatant was carefully removed; they were washed by 5 ml wash 

buffer, collected, and transferred to a 2 ml Eppendorf tube by adding 1 ml fresh 

wash buffer; the beads were then washed with 1 ml wash buffer for 3 times. The 

GST fusion protein was eluted from the glutathione beads with elution buffer 

(10mM glutathione in 50mM TrisCl pH 8.0), rotated at 4°C for 20 minutes, and 

centrifuged at 13,000 xg for 10 seconds. The supernatant was carefully removed 

to a fresh microcentrifuge tube. This step was repeated for another 2-3 times 

and the supernatants were collected. The protein concentration of all of the 

elutes was quantified and those with a high protein concentration were 

combined. In order to remove free glutathione, the combined elutes were 

transferred to Slide-ALyzer® Dialysis Cassette (0.5-3.0ml capacity) (PIERCE) and 

dialyzed in 700ml chilled dialysis buffer (50mM TrisCl pH8.0, 100mM NaCl, 5% v/v 

glycerol) overnight. The dialyzed elute was collected for further analysis.   

2.3.6.3 Visualization of Proteins  

Following gel electrophoresis, the gel was incubated with Coomassie Blue 

(1.25mg/ml Blue R250, 44.4% methanol, 5.6% acetic acid, 50% distilled water) 

for 4 hours to stain the protein. The limit of detection of protein by Coomassie 
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Blue stain is 0.3~1.0 µg. After gel stain, the gel was then destained using destain 

buffer (44.4% methanol, 5.6% acetic acid, 50% distilled water) until the protein 

bands could be clearly visualized. 

2.3.6.4 SDS Polyacrylamide Gel Dehydration  

The SDS gels were dried on a Bio-Rad gel drier. A piece of damp filter paper was 

placed on the drying surface of the drier, the gel was laid on the filter paper, 

and covered with cling film and the cover sheet of the drier. A vacuum was used 

to tight seal all the layers. The gel was dried at 63 °C for 2 hours. 

2.3.7 Peptide Array Analysis 

Peptide libraries were produced by automatic SPOT synthesis (Kramer and 

Schneider-Mergener 1998). Peptide libraries were synthesized on continuous 

cellulose 75 membrane supports on Whatman 50 cellulose membranes according 

to standard protocols by using Fmoc-chemistry with the AutoSpot-Robot ASS 222 

(Intavis Bioanalytical Instruments AG, Koln, Germany). Alanine scan peptide 

array was undertaken  by taking positive interaction spots on peptide array, and 

substituting each residue of the positive spot to alanine (when alanine is the 

native residue, then it was substituted with aspartate on the scanning array).  

The fresh membrane-immobilised peptide array was immersed in 75% or 100% 

ethanol to activate the hydrophobic group of the peptide. The membrane was 

then washed 3 times with TBST (137mM NaCl, 20mM TrisCl, pH 7.6, 0.1% 

tween20) to exclude ethanol. The peptide array membrane was then incubated 

with 5% skimmed milk in TBST for 2 hours to block all the non-specific binding 

sites. The purified protein of interest was diluted in 1% skimmed milk (w/v) to a 

concentration of 10µg/ml, which was then used to incubate with the blocked 

peptide array overnight at 4°C. The presence, on the peptide array, of the 

bound protein of interest was detected by western blot with corresponding 

primary and secondary antibody. 

2.3.8 Biotin Protection Assay 

Cells were growed in 10cm dishes until they reached 80% confluent. The cells 

were treated with 0.3mg /ml disulfide-cleavable biotin (Pierce) in PBS at 4°C for 
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30 mins (5 ml/well). Cells were washed with pre-cooled PBS for 3 times to cease 

biotinylation. 100% and Strip biotinylation control group were setup and kept 

under 4°C. Pre-warmed medium were added (37 °C) and cells were incubated 

for 15mins.Cells were treated with specific ligands. (a,507 MEK replace peptide 

for 2h. b, Iso time course.) At the end of the treatment, the media was removed 

and the dishes were left on ice immediately to stop the reaction. The dishes 

were wash 2 times with PBS and the biotinylated receptors was stripped with 

stripping buffer (0.05M glutathione, 0.3M NaCl, 0.075M NaOH, 1% FBS/NCS in PBS) 

at 4°C for 30 mins or 15 mins for 2 times if better stripping was needed. The 

dishes were wash 2 times with PBS at 4°C. (Note: if you have a lot of samples to 

process then it is better to split the dishes into several group and speed up the 

washing process, but just make sure that the cells always have some media on 

them so as to prevent cells unexpectedly floating off the plastic surface). Cells 

were lysed in RIPA (150mM NaCL, 25mM KCl, 10mM Tris-HCl and 0.1% Triton X-

100, pH 7.4) and then the cellular debris was removed by centrifugation at 

10,000g for 10 mins at 4 °C. The biotinylated receptors was immunoprecipitated 

with Immobilized NeatrAvidin (Pierce) at 4 °C overnight (50ul beads each). The 

pellet was washed 3 times with RIPA or PBS. An appropriate amount of 2x 

loading buffer was added in the pellet and it was incubated at 37°C for 1 hour or 

70°C for 10 mins. The samples were subjected to Western Blot and blotted with 

proper antibodies. (anti-β2AR, Santa Cruz). 

2.3.9 In Vitro Sumoylation on Peptide Array 

A commercial Sumoylation Kit (BIOMOL) was used in these studies.  

2.3.9.1 Components of SUMOylation Kit 

20x SUMO Activating Enzyme Solution (SUMO E1); 20x SUMO Conjugating Enzyme 

Solution (SUMO E2); 20x SUMO Enzyme Solutions (SUMO1, SUMO2, SUMO3); 10x 

SUMOylation Buffer; 20x Mg-ATP Solution. 

2.3.9.2 Peptide Array Preparation  

Peptide arrays were activated in 100% ethanol for 10 seconds, followed with 3 

washes of TBST. The peptide array was then incubated with 5% skimmed milk (in 
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1x TBST) for 2 hours to block the unoccupied binding sites. The peptide array 

was washed 5 times, each time 5 minutes to ensure TBST had been removed.  

2.3.9.3 In Vitro SUMOylation 

All the components (20x SUMO Activating Enzyme Solution (SUMO E1); 20x SUMO 

Conjugating Enzyme Solution (SUMO E2); 20x SUMO Enzyme Solutions (SUMO1, 

SUMO2, SUMO3); 10x SUMOylation Buffer; 20x Mg-ATP Solution) were mixed to 

the volume of 1 ml with distilled water. The mixture was incubated with 

prepared peptide array at 37°C for 1 hour. The reaction was ceased by washing 

with TBST for 3 times.  

The SUMOylated peptide array was subjected to Western Blot with the kit 

provided primary antibody. The potential sumoylation site would be identified as 

a positive dark spot after development.  

2.4 Mammalian Cell Culture  

2.4.1 HEK293 cell 

HEK293 (ATCC CRL 1573) is an epithelial cell line that is derived from Human 

Embryonic Kidney cells. HEK293 cells were maintained in Dulbecco’s Modified 

Eagles Medium (DMEM) supplemented with 2mM glutamine, 10% (v/v) foetal 

bovine serum (FBS), 100 units/ml penicillin and 100µg/ml streptomycin in an 

atmosphere of 5% (v/v) CO2 at 37 °C. Cells were passaged at 80~90% confluence. 

To passage cells, they were rinsed with pre-warmed PBS. Then 1~2ml 1x 

trypsin/EDTA solution (Sigma) was  added, and incubated at 37°C until cells 

detached from the flasks. Cells were collected by adding 10ml of cell culture 

medium and centrifuged at 1000 xg for 3 minutes. The cells were then 

resuspended by adding fresh media and transferred to new flasks at 105 cells/ml. 

2.4.2 HEKB2 cells 

HEKB2 cells are HEK293 cells stably expressing GFP/FLAG tagged β2 adrenergic 

receptor under the selection pressure of G418 antibiotic. It was developed by 

Prof. Graeme Milligan (Glasgow). The HEKB2 use a modified culture medium 

from HEK293 medium. It contains Dulbecco’s Modified Eagles Medium (DMEM) 
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supplemented with 2mM glutamine, 10% newborn calf serum (NCS), 1% 

penicillin/streptomycin (100units/ml) and 1mg/ml G418 antibiotic. The 

maintentance and passaging condition are the same as HEK293 that has been 

describe above. 

2.4.3 Making HEK293 cells stably expressing mutated GFP/FLAG 

tagged β2 adrenergic receptor 

HEK 293 cells were cultured with HEK293 media (Dulbecco’s Modified Eagles 

Medium (DMEM) supplemented with 2mM glutamine, 10% (v/v) foetal bovine 

serum (FBS), 100 units/ml penicillin and 100µg/ml streptomycin) to >80% 

confluence in 10cm Petri-dishes. The HEK293 cells were transfected with 

GFP/FLAG tagged β2AR YY350/354AA mutant by Poyfect (Qiagen) as 

manufacture’s instruction. The next day, the medium was changed to HEKB2 

medium (Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 2mM 

glutamine, 10% newborn calf serum (NCS), 1% penicillin/streptomycin 

(100units/ml) and 1mg/ml G418 antibiotic) that contained G418 anitbiotic. The 

tranfected cells were left in HEKB2 medium and keep topping the vaporized 

medium for 7 days. Normally, >90% of transfected cells may die under the harsh 

G418 selection pressure. It was important to avoid vigorous handling of the 

tranfected cells to allow sufficient cell attachment. Discard unattached cells 

with medium and refill with fresh HEKB2 medium. You may see single cell 

colonies at this stage. Keep feeding the cells with HEKB2 media for another 2 

weeks or wait until cell colony was large enough to transfer to 6-well plate. 

Iindividual cell colony was scraped with the large end of 0.2 ml pipette tip 

(sterile), transferred them to 6-well plates. When cell colony was confluent in 6-

well plate, it was passaged to 75 cm2 flasks and was analyzed using Confocal 

Microscopy and Western blot for final characterization. Cells that stable 

expressing GFP/FLAG tagged β2AR YY350/354AA mutant were selected as stable 

cell line.     

2.5 Confocal analyses 

HEKB2 cells transfected with FLAG- βarrestin 1 (or interested cells) were seeded 

on to poly(L-lysine)-treated coverslips at approx 20% confluence. After 

treatment with indicated ligands, cells were fixed for 10 min in 4%(w/v) 
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paraformaldehyde followed by three washes with TBS (Tris-buffered saline; 

150mM NaCl, 20 mM Tris, pH 7.4). Cells were permeabilised by incubating with 

0.2% Triton dissolved in TBS.  Cells were blocked for 1 hour with blocking 

solution (10% donkey serum, 4% BSA in TBS). The primary antibody was diluted to 

required concentration (normally at 10 fold of the required concentration in 

Western blotting for the same antibody) using diluent (TBS: Blocking buffer at 

1:1 volume). 200µl of diluted primary antibody was added to the coverslip for 1 

hour incubation. The coverslips were washed with diluent 3 times before the 

fluorescent probe was added. The fluorescent probe (Alexa 594-conjugated 

antibody or Alexa 488-conjugated antibody) was diluted at 1:200 using diluent 

and added to the coverslip for 1 hour (repeat this procedure if a second 

fluorescent probe was needed). The coverslips were washed 5 times with TBS 

before being mounted on microscope slides with Immunomount (sandon). Cells 

were visualized using the Zeiss Pascal laser-scanning confocal microscope (Zeiss, 

Oberkochken, Germany). The Alexa 594-conjugated antibody was excited at 543 

nm and detected at 590 nm. The Alexa 488-conjugated antibody was excited at 

495 nm and detected at 518 nm. 

2.6 Buffers  

3T3 lysis buffer (20 mM N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic acid 

(HEPES), pH7.4, 50 mM NaCl, 50 mM NaF, 10% (v/v) glycerol, 1% (v/v) triton X-

100, 10mM Ethyleneglycol-bis(P-aminoethylether)-N,N,N’,N’-Tetra-acetic acid 

(EGTA), 30 mM sodium pyrophosphate, protease inhibitor cocktail) 

5x Laemmli sample buffer (260mM TrisCl, pH 6.7, 55.5% v/v glycerol, 8.8% (v/w) 

SDS, 0.007% (v/w) bromophenol blue, 11.1% (v/v) 2-mercaptoethanol) 

Binding buffer (50mM Tris-HCl pH7.5, 100mM NaCl, 2mM MgCl2, 1mM DTT, 0.5% 

(v/v) Triton X-100)  

Blocking solution (10% (v/v) donkey serum, 4% (w/v) BSA in TBS) 

Coomassie Blue (1.25mg/ml Blue R250, 44.4% (v/v) methanol, 5.6% (v/v) acetic 

acid) 

Destain buffer (44.4% (v/v) methanol, 5.6% (v/v) acetic acid) 
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EB buffer (10 mM Tris�Cl, pH 8.5) 

Elution buffer (10mM glutathione in 50mM TrisCl pH 8.0) 

HEKB2 medium (Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 

2mM Glutamine, 10% (v/v) newborn calf serum (NCS), 1% penicillin/streptomycin 

(100units/ml) and 1mg/ml G418 antibiotic) 

KHEM (KCl 50mM, EGTA 10 mM, MgCl2 1.92 mM, dithiothreitol 1 mM, HEPES 50 

mM, final pH 7.2,) containing `complete' protease inhibitors (Boehringer - 

Mannheim) of final concentrations 40 mg/ml PMSF, 156 mg/ml benzamine, 1 

mg/ml aprotonin, 1 mg/ml leupeptin, 1 mg/ml pepstatin A and 1 mg/ml 

antipain.) 

L-Broth or LB medium (1% v/w NaCl, 0.5% (v/w) Bacto Yeast Extract, 1% (v/w) 

Bacto-Tryptone pH 7.5) 

Ponceau S stain (0.1% (v/w) Ponceau S, 3% (v/w) Trichloroacetic Acid) 

Resuspension buffer (50mM TrisCl pH8.0, 10mM NaCl, 1mM EDTA, 10mM 

mercaptoethanol, 1x Roche protease inhibitor tablet) 

RIPA (150mM NaCl, 25mM KCl, 10mM Tris-HCl and 0.1% (v/v) Triton X-100, pH 7.4)  

Stripping buffer (0.05M glutathione, 0.3M NaCl, 0.075M NaOH, 1% (v/v) FBS/NCS 

in PBS) 

TBS (Tris-buffered saline; 150mM NaCl, 20 mM Tris, pH 7.4) 

TBST (137mM NaCl, 20mM TrisCl, pH 7.6, 0.1% v/v Tween20) 

TE buffer (pH 8.0, or 10 mM Tris�Cl, pH 8.5) 

Wash buffer (50mM TrisCl pH8.0, 10mM sodium chloride, 1mM EDTA, 10mM beta-

mercaptoethanol, 1x protease inhibitor tablet, 0.05% NP-40) 
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3 MEK1 binds βarrestin1 directly 

3.1 Introduction 

The βarrestins are well studied scaffolding proteins that serve not only as key 

regulators in heptahelical G protein coupled receptor (GPCR) desensitization, 

but also determine their recycling and play pivotal roles in many different 

signalling pathways (DeWire, Ahn et al. 2007; DeFea 2008). The β2-adrenergic 

receptor (β2AR) is the most popular receptor used in studies of GPCR and 

βarrestins. The classic paradigm is that after agonist occupancy with the 

receptor, GRKs are translocated to the receptor where they phosphorylate it, 

thereby initiating cytosolic βarrestin recruitment (Ferguson, Downey et al. 1996; 

Premont and Gainetdinov 2007). The βarrestins then associate with agonist 

occupied receptors and sterically block their interaction with G proteins. 

Meanwhile, βarrestin also facilitates GPCR internalization, leading to either 

recycling or degradation of the target GPCR (Baillie, Sood et al. 2003). In this 

fast internalization, the interaction between βarrestin and clathrin cages is 

considered as a key part of the receptor desensitization process (Gurevich and 

Gurevich 2006). In the case of the β2AR, βarrestin can also bring the cAMP 

degrading PDE4D5 enzyme to the receptor at the site of cAMP synthesis. This 

controls phosphorylation of the β2AR by an AKAP-tethered PKA sub-population, 

which serves to regulate the switching of β2AR coupling between Gs and Gi, 

thereby providing a further means of regulating receptor desensitization (Baillie, 

Sood et al. 2003; Lynch, Baillie et al. 2005; Bolger, Baillie et al. 2006).     

Without any stimulation, cytosolic βarrestin1 is constitutively phosphorylated by  

ERK at Ser412, which is located at its distal C-terminus (full length βarrestin1 

contains 418 amino acids) (Lin, Miller et al. 1999; Luttrell, Roudabush et al. 

2001). After agonist-dependent activation of GPCRs, βarrestin1 is 

dephosphorylated at Ser412 and recruited to GPCRs. Clathrin recruitment and 

dynamin phosphorylation are two important features in receptor internalization. 

The dephosphorylation of Ser412 is considered as a molecular switch to allow the 

interaction between βarrestin1 and clathrin (Lin, Krueger et al. 1997; Lin, Miller 

et al. 1999), and also is considered to play a pivotal role in the association of 

βarrestin1 with c-Src, which leads to the phosphorylation of dynamin (Miller, 

Maudsley et al. 2000). Thus, the ERK-dependent Ser412 phosphorylation and 
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dephosphorylation orchestrates the association of βarrestin1 with the endocytic 

machinery in the internalization of GPCRs (Lin, Krueger et al. 1997).   

The c-Raf/MEK/ERK signalling pathway is one of the mitogen-activated protein 

kinase (MAPK) signalling cascades and contains three kinases where each kinase 

is phosphorylated and activated by the upstream kinase (Rubinfeld and Seger 

2005).  The MAPKs play pivotal roles in the regulation of a variety of cellular 

processes such as cell proliferation, transcription regulation, apoptosis and cell 

differentiation (Lu and Xu 2006). Due to the great importance of this process in 

many diseases, ERK is a hot target for drug development. However, there has 

been little success in using ERK inhibitors therapeutically. Because of the high 

fidelity of the cascade, more and more attempts have been made to develop a 

MEK inhibitor to treat cancer and, recently, for chronic inflammatory disorders, 

such as asthma and rheumatoid arthritis (English and Cobb 2002; Pelaia, Cuda et 

al. 2005; Sweeney and Firestein 2006).  

Luttrell et al suggested that βarrestin may form a complex with ERK and MEK to 

restrict MAPK signals in defined intracellular compartments (Lefkowitz, Inglese 

et al. 1992; Luttrell, Roudabush et al. 2001). A number of studies indicated that 

MEK recruitment to signalling complexes might be due to its interaction with ERK 

and c-Raf rather than a direct contact with βarrestin (DeFea, Zalevsky et al. 

2000; McDonald and Lefkowitz 2001; Perry and Lefkowitz 2002; Lefkowitz and 

Whalen 2004; Lefkowitz and Shenoy 2005). However, a very recent report, which 

came out after the current study was completed, suggested that MEK can bind 

directly to βarrestin on both its N and C domains (Song, Coffa et al. 2009). 

However, no functional study of this interaction has been made. Given that 

βarrestin1 is ERK phosphorylated and it is important in GPCR internalization (Lin, 

Miller et al. 1999), the nature of the MEK1/βarrestin1 interaction requires 

further investigation. Here then, we demonstrate that MEK1 binds directly with 

βarrestin1, influencing both its phosphorylation and the timing of its 

isoprenaline-stimulated internalization with the β2AR. 
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3.2 Results 

3.2.1 MEK1 binding sites on βarrestin1 

MEK1 is a 45kDa MAPK kinase that activates ERK by phosphorylating it at 

Thr202/Tyr204 of ERK1 or Thr185/Tyr187 Of ERK2. It has been shown to interact 

with βarrestin by overexpressing multiple key intermediates such as c-Raf, ERK, 

MEK and βarrestin (Luttrell, Roudabush et al. 2001). However, such studies 

didn’t investigate whether the interaction between βarrestin and MEK depends 

on a direct contact or depends on a bridging partner, such as ERK, which has 

been shown to associate with both MEK and βarrestin directly (DeFea, Zalevsky 

et al. 2000; Tohgo, Pierce et al. 2002; Xu, Baillie et al. 2008). A newly published 

paper by Song et al., which was published after the current study was 

compeleted, proved that MEK can bind to both the N and C domain of βarrestin1 

(Song, Coffa et al. 2009). However the nature of this interaction remains in 

obscure. 

Firstly, to investigate whether MEK1 has the ability to interact with βarrestin, a 

SPOT immobolised peptide array analysis was employed (Bolger, Baillie et al. 

2006; Baillie, Adams et al. 2007). To perform the analysis, we generated a 

library of 25-mer overlapping peptides, each shifted by 5 amino acids, spanning 

the whole region of βarrestin. These 25-mer peptides were synthesised and 

immobilized on cellulose membranes. Purified GST and GST-MEK1 were then 

incubated with the membrane to allow potential association to occur. A further 

detection by anti-GST antibody identified the ‘dark’ spots as positive 

interactions (Fig 3.1a). Spots 3-6 were picked up by the analysis for GST-MEK1 

binding but not for GST. Spot 6 that had the strongest interaction was further 

investigated later by an alanine substitution array procedure as below. 

To identify which amino acids may play the pivotal role in this interaction, an 

alanine substitution array analysis was designed. Spot 6, which gave the 

strongest signal in the peptide array analysis, represents the amino acids Asp26-

Glu50 of βarrestin1. It was used as a template to generate the alanine 

substitution array by sequentially replacing each amino acid to alanine to 

provide a family of mutant peptides based upon the parent template. By this 

method, we observed that the binding between MEK1 and Asp26-Glu50 
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βarrestin1 was ablated when Asp26 and Asp29 were replaced with alanines (Fig 

3.1b). This binding was also ablated when Asp26 to His30 were all substituted to 

Ala, but not when Tyr46 to Glu50 were replaced with alanines. 

Fusion proteins were used in our in vitro mix assay in order to prove that MEK1 

and βarrestin1 could interact directly in vitro. To perform the experiment, His-

MEK1 was mixed with either GST-βarrestin1 or GST protein alone in reaction 

buffer first.  Then His-MEK1 was pulled down by His conjugated agarose, and the 

pull-down pellet was analyzed by Western Blotting (Fig 3.2a). GST-βarrestin1, 

but not GST, could co-immunoprecipitate with His-MEK1, which confirms our 

hypothesis that MEK1 can associate with βarrestin1 directly and that this 

association is not dependent on any other component of the signalling complex.  

To evaluate the importance of the DXXD motif in the MEK1 and βarrestin1 

interaction, Asp26 and Asp29 were mutated on a FLAG epitope-tagged βarrestin1 

to generate a MEK1-binding null mutant. FLAG-βarrestin1 and its D26A/D29A 

mutant were expressed in HEK293 cells. Cell lysates were collected and 

immunoprecipitated with FLAG-agarose. Although MEK1 can co-

immunoprecipitate with wild type FLAG-βarrestin1, only 8.3±3.9% (mean;n=3) 

endogenous MEK1 could be pulled down by the D26A/D29A mutant. However, 

equal amounts of PDE4D5 were pulled down in both wild type FLAG-βarrestin1 

and its mutant (Fig 3.2) due to the fact that PDE4D5 has a different docking site 

in βarrestin1 (Baillie, Adams et al. 2007).  

ERK, being a downstream effector of MEK, was shown to associate with 

βarrestin1 (Luttrell, Roudabush et al. 2001). Therefore it has been assumed to 

that ERK might act as adaptor to recruit MEK1 to βarrestin. So is the loss of MEK1 

interaction with βarrestin1 due to the loss of ERK? To answer this question, ERK2 

was blotted for in FLAG-βarrestin1 immunoprecipitations (Fig 3.2). In our hands 

it is quite clear that the ERK/βarrestin interaction still occurs in the D26A/D29A 

mutant as well as with wild type FLAG-βarrestin1 (Fig 3.2).          

3.2.2 Βeta-arrestin1 interacting region on MEK1 

To further investigate how βarrestin1 may bind to MEK1, a full sequence MEK1 

peptide array was designed and probed using purified GST-βarrestin1. A 

potential βarrestin1 binding sequence was identified (spot 10), which consists of 
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amino acids Gln46-Lys60 (Fig 3.3a).  An interesting finding about this peptide is 

that it includes a cluster of positive charged amino acids, Arg 47, Lys48 and 

Arg49.  An alanine scanning peptide array was designed to test if these positive 

charged amino acids interact with their negative counterpart DxxD on βarrestin1. 

βarrestin1 binding was attenuated when Lys48 and Arg49 were replaced with 

alanine, whereas this binding was abolished when either Arg47 and Lys48 or all 

these residues were superseded to alanine. However, substitution of three 

negative charged residues, Asp65, Asp66 and Asp67, had limited effect (Fig 3.3b). 

To examine whether this positive charged cluster of MEK1 is involved in the 

MEK1/βarrestin1 association, a R47A/K48A/R49A mutant was made using a HA 

epitope-tagged MEK1 construct. Upon co-transfection of FLAG-βarrestin1 with 

wild type HA-MEK1 in HEK293 cells, βarrestin1 could be immunoprecipitated with 

HA-MEK1 (Fig 3.3c). However, R47A/K48A/R49A mutant could not be pulled 

down with FLAG-βarrestin1 (Fig 3.3c).  

3.2.3 Use of a 25-mer short βarrestin peptide to disrupt 

MEK1/βarrestin complex in vivo 

Two small peptides were generated. One peptide was 6-

TRVFKKASPNGKLTVYLGKRDFVD-30 that was derived from βarrestin1 so as to 

include the DXXD motif, and this was called MEK displacer peptide (T~DFVD); the 

other peptide was the same core sequence of the MEK peptide but with alanine 

substitutions at Asp26 and Asp29. This was the control peptide (T~AFVA) 

TRVFKKASPNGKLTVYLGKRAFVA.  Both peptides were modified by N-terminal 

stearoylation to allow for cell-permeability.  

This approach has been used in several studies to disrupt signalling complexes in 

intact cells (Futaki, Ohashi et al. 2001; Murdoch, Mackie et al. 2007; Smith, 

Baillie et al. 2007). The peptide was selected based on two rules. First, it 

contains only one DXXD motif includes the Asp26 and Asp29 which has been 

shown to play key roles in βarrestin1 association with MEK1. Second, to avoid 

any steric impact on the disruption of the βarrestin1/MEK1 complex, the 

stearate group was added away from the DXXD motif at the N-terminal of the 

peptide.   
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To inspect the effects of the MEK displacer peptide (T~DFVD) and its control 

peptide (T~AFVA), wild type HEKb2 cells were harvested after 2 hours treatment 

with each peptide. In a co-immunoprecipitation experiment, MEK1 could be 

pulled down by βarrestin1 when treated with control peptide (T~AFVA); and the 

amount of MEK1 was attenuated when treated with the MEK displacer peptide 

(Fig.3.4b). However, the endogenous MEK1 pulled down by βarrestin1 was at the 

edge of our MEK1 detection ability (Fig 3.4b). In order to obtain clear results, we 

overexpressed FLAG-βarrestin1 in HEKb2 and analyzed effects of the MEK 

displacer peptide and its control peptide. Similar results were observed in co-

immunoprecipitation studies with MEK1 with βarrestin1, where the MEK displacer 

peptide successfully disrupted the association of MEK1/βarrestin1, but there was 

hardly any effect using the control peptide (Fig 3.4a).       

3.2.4 MEK1 binding to βarrestin1 regulates its ERK 

phosphorylation 

In the cytosol, βarrestin1 is constitutively phosphorylated by ERK at Ser412 

without any G-protein agonist treatment (Lin, Miller et al. 1999). ERK is the 

downstream effector of MEK, thus either change of MEK activity or its 

association with ERK would influence ERK activity, leading to potential changes 

in the phosphorylation status of βarrestin1. Indeed, after 4 hours treatment with 

the MEK inhibitor UO126 and/or PD98059 we see a clear decrease of βarrestin1 

phosphorylation at Ser412 (Fig 3.5a). Furthermore, in contrast to wild-type 

βarrestin1, the MEK1 binding null mutant D26A/D29A-βarrestin1 has significantly 

decreased phosphorylation on Ser412 (Fig 3.5a). 

When HEK293 were treated with the MEK displacer peptide, a decrease in 

βarrestin1 Ser412 phosphorylation was seen after 2 hours, while treatment using 

the control peptide had no such effect (Fig 3.5b). Since a change of two negative 

charged residues Asp26/Asp29 in the control peptide may potentially affect the 

peptide’s cell-permeability, a fluorescent version of this stearoylated peptide 

was designed to test this notion. After 2 hours treatment at the same condition 

as Fig.3.5b similar peptide accumulation both at the membrane and in the 

cytosol was observed using the wild-type and substituted, Asp26/Asp29 peptides 

by confocal microscopy (Fig.3.6).           
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We then used EGF under conditions to reach maximum ERK activation so as to 

explore its influence on phosphor-Ser412 and to further test the efficiency of the 

peptides. First, we saw that the EGF-treated cells exhibited the same amount of 

phosphorylated βarrestin1 as untreated cells (5 min of EGF, vehicle control, 

second lane; normalised 100% ERK phosphorylation of βarrestin1 on Ser412  at 

basal level) (Fig.3.5c). Second, the MEK displacer peptide retains its efficiency 

to down-regulate the phosphorylation of βarrestin1 at Ser412, indicating that the 

displacer peptide has a dominant effect on the disruption of the MEK/βarrestin1 

complex even under increased global ERK activity (Fig.3.5c). 

3.2.5 MEK1 binding to βarrestin regulates the association of 

clathrin and Src to βarrestin 

It has been shown that βarrestin1 recruitment to the β2AR was necessary for the 

dephosphorylation at Ser412 of βarrestin1 (Lin, Krueger et al. 1997). 

Dephosphorylation of βarrestin1 at Ser412 increases its binding affinity with 

clathrin and Src, leading to clathrin dependent receptor internalization (Lin, 

Miller et al. 1999; Miller, Maudsley et al. 2000). In HEK293 cells with stable 

expressed β2-adrenergic receptor, upon stimulation of the receptors by 

isoprenaline, there is enhanced βarrestin1 association with both clathrin and Src. 

In cells that were pre-treated with MEK displacer peptide, we observed an 

enhanced association of βarrestin1 with clathrin and Src both under basal and 

stimulated conditions, yet the control peptide had no such effect (Fig.3.7).  

These findings confirm the notion that the MEK displacer peptide (V~DFVD) 

induces the dephosphorylation of βarrestin1 at Ser412. 

3.2.6 MEK displacer peptide accelerate β2-adrenergic receptor 

internalization  

Upon stimulation of β2AR, βarrestin1 undergoes rapid dephosphorylation at 

Ser412, leading to enhanced association of with clathrin and Src, and increased 

β2AR internalization. To follow the receptor internalization, we used HEK293 

cells stable expressing FLAG and GFP tagged β2AR (Li, Huston et al. 2006). A 

biochemical assay and confocal microscopy were employed to monitor the 

endocytosis of β2-AR. First, we used cleavable biotin to label all β2-adrenergic 
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receptor on the cell surface. After agonist stimulation, internalized receptors 

were protected from the following biotin cleavage step, which allowed us to 

quantify the amount of internalized receptor. Here, we see pre-treatment with 

the MEK displacer peptide facilitated the rate of β2AR endocytosis, whilst this 

was not seen with the control, Asp26Ala:Asp29Ala substituted peptide (Fig.3.8a). 

We then set to investigate the receptor internalization by using confocal 

microscopy. Significant receptor internalization was observed upon MEK 

displacer peptide treatment (Fig.3.8b,c), but not the control peptide. These 

findings underpin the notion that disruption of the MEK1/βarrestin1 complex 

dephosphroylates βarrestin1 at Ser412, enhancing the association of βarrestin1 

with clathrin and Src to facilitate β2AR internalization.   

3.3 Discussion  

It has been shown that the phosphorylation of βarrestin1 at Ser412 plays a 

pivotal role in regulating receptor endocytosis, but has no effect on β2-

adrenoceptor desensitization (Lin, Miller et al. 1999).  βarrestin is located in the 

cell cytosol in the resting state. Upon receptor stimulation, it translocates to the 

activated receptor and becomes dephosphorylated at Ser412, which enables the 

association of βarrestin1 with clathrin and Src after c-Src dependent dynamin 

phosphorylation that is known to be a key process in GPCR endocytosis.  

βarrestin2 has also been shown to undergo similar dephosphorylation after 

challenged with isoproterenol (Lin, Chen et al. 2002). However, the sites at which 

dephosphorylation occurs are at Ser361 and Thr383, which are regulated by 

casein kinase 2 (Kim, Barak et al. 2002; Lin, Chen et al. 2002). Insulin treatment 

can induce the phosphorylation of βarrestin1 at Ser412, and this can block 

isoprenaline-activated dephosphorylation of Ser412, subsequent β2 

adrenoceptor internalization and subsequent βarrestin-mediated ERK signalling. 

Previous investigators have reported that either MEK inhibitors or dominant 

negative MEK (inactive) attenuated Ser412 phosphorylation of βarrestin1 

(Luttrell, Roudabush et al. 2001; Tohgo, Pierce et al. 2002; Hupfeld, Resnik et al. 

2005). Therefore, the phosphorylation of βarrestin1 on Ser412 is dependent on 

MEK. Indeed, in this study we show that βarrestin1 is phosphorylated by 

activated ERK, and the activation of ERK is dependent on βarrestin1 interacting 

MEK. 
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In this study, we demonstrate that MEK1 binds directly to βarrestin1 and this 

interaction does not require ERK to orchestrate. Several studies had suggested 

that c-Raf, MEK and ERK could simultaneously interact with βarrestin (Luttrell, 

Roudabush et al. 2001; Tohgo, Pierce et al. 2002). C-Raf has also been suggested 

as an adaptor protein involved in MEK/ERK association to βarrestin to facilitate 

the signalling complex formation (Luttrell, Roudabush et al. 2001; Tohgo, Pierce 

et al. 2002). Nevertheless, a recent study by Song et al. showed that both 

βarrestin C-domain and N-domain can bind to MEK1 (Song, Coffa et al. 2009). In 

agreement with Song et al’s finding, in our experiments we showed that MEK1 

binds directly to a DxxD motif on βarrestin’s N-domain. Interestingly, another 

recent study identified an ERK docking site in βarrestin’s C-domain (Xu, Baillie et 

al. 2008), which is distant from the MEK1 docking site on βarrestin’s N-domain. 

Therefore there is a strong possibility that βarrestin works as a scaffold protein 

to organise complex formation involving ERK, MEK and c-Raf. This report, in 

agreement with that of Song et al., provides firm evidence that MEK binds 

directly to βarrestin’s N-domain. Whether it is possible to envisage an additional 

indirect association between βarrestin and MEK via ERK remains to be seen. This 

would require further investigation. 

 By using our peptide array and substitution array technology, we identified a 

cluster of potential MEK1 docking residues on βarrestin1 comprising two amino 

acids, namely Asp26 and Asp29 (Fig.3.9). Gratifyingly, from the known crystal 

structure of βarrestin it is evident that Asp26 and Asp29 are partially exposed on 

the surface of βarrestin in its basal conformation (Protein Date Bank codes 1G4M, 

1G4R and 1ZSH (Milano, Kim et al. 2006)). However, they are involved in 

interactions with neighbouring residues. Thus Asp26 connects to the C-terminal 

Lys355 and Arg393 by salt bridges, and also interacts with the “phosphate 

sensor” Arg169. Also, Asp29 forms a salt bridge to Lys170 and contacts the side 

chain of Gln172 by hydrogen-bonds. These interactions make it unlikely that MEK 

can binds to these residues of βarrestin1 in such a basal conformation without 

either competing these interactions out and thereby triggering a conformation 

change in βarrestin or it’s interaction is gated by a change that causes disruption 

of this basal conformation such as could occur through post-translational 

modification (e.g. phosphorylation) or binding some other partner protein 

(Fig.3.9). The binding between Asp26 and MEK1 could occur only if the 

sequestered effects of the βarrestin1 C-terminal sequence on these residues is 
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removed. Asp26 becomes more accessible when the C-terminal sequence is 

displaced, but MEK1 binding to Asp26 and Asp29 require further conformational 

changes.  An example of this is that βarrestins undergo a great conformational 

change upon association with their activated phospho-GPCR partners. This 

includes GPCR-phosphate engagement with βarrestin phosphate-sensor and 

repositioning of the C-terminal tail from its location of basal conformation where 

it is folded across the N-terminal region. βarrestin1 as a scaffold protein has a 

number of binding partners (Perry and Lefkowitz 2002; Xiao, McClatchy et al. 

2007), and it undergoes structural alteration in binding of these proteins. In fact, 

βarrestin1 could undertake conformational changes upon binding to receptors 

and post-translational modification (Vishnivetskiy, Hosey et al. 2004). Based on 

this, it is possible that MEK1 can bind to modified or partner protein sequestered 

βarrestin1 that enables surface exposure of Asp26 and Asp29. It is also possible 

that there is equilibrium between βarrestin1’s basal conformation and small 

percentage of “open conformation” that MEK1 and other proteins, such as MEK, 

may bind. If so, MEK1 binding may stabilize the open conformation of βarrestin1, 

shifting the equilibrium to generate a sub-population of MEK1 binding βarrestin1. 

Of interest, the Asp26 to Asp29 sequence is permanently located at the surface 

of isolated βarrestin1 N-domain. Thus, this sequence must have a similar 

interaction with MEK1 as Asp26 and Asp29. Another possibility is that if Song 

suggested MEK1 could associate with both N-domain and C-domain of βarrestin1, 

the MEK1 binding to the C-domain may act as a trigger of βarrestin1 

conformational change, leading to increased accessibility to Asp26 and Asp29 at 

βarrestin1’s N-domain. 

Although we found two amino acids, Arg47 and Arg49, on MEK1 that βarrestin1 

could bind to, we can’t evaluate their accessibility due to lack of this region in a 

crystal structure of MEK1 (Ohren, Chen et al. 2004). However, considering their 

position at the upstream of MEK1 kinase domain, it is possible that they are 

surface exposed for interaction. 

We designed and constructed a double alanine substitution βarrestin1 mutant 

that cannot bind MEK1. We also employed a novel small peptide technology to 

generate the inhibitory peptide for MEK1 binding to βarrestin1 and, by using this 

peptide, we demonstrated that it can regulate the phosphorylation of βarrestin1 

at Ser412. Disassociation of MEK1 from the βarrestin1/ERK complex decreases 
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the phosphorylation of βarrestin1 at Ser412, which increases interactions of 

clathrin and c-Src to βarrestin1. This enlarged association of βarrestin1 with the 

endocytotic machinery accelerates the internalization of β2AR, which is known 

to be induced by dephosphorylation of βarrestin1 at Ser412. In fact, the MEK1 

displacer peptide leads to the dephosphorylation of βarrestin1, increases the 

interaction of βarrestin1 to clathrin and c-Src, and promotes β2AR 

internalization indicates that the dephosphorylation of βarrestin1 is a bottle-

neck for the receptor internalization process. 
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Figure 3.1: Peptide array identified potential MEK1 binding sites on 

βarrestin1 N-terminal. 

(a) Synthesized peptide spots containing 25 –mer peptides were immobilized on 

nitrocellulose. Each of the peptide is shifted by 5 amino acids, covering the 

whole length of βarrestin1. The nitrocellulose was activated by a 15 seconds 

wash in pure ethanol, followed by a 2 hours (minimum) incubation with 5% (w/v) 

skimmed milk to block the non-specific binding sites. Purified GST-MEK1 or GST 

proteins were used to probe their interaction sites on the βarrestin1 peptide 

array. The GST signal was detected by immunoblotting with anti-GST antibody 

(Santa Cruz). Positive interaction sites are presented in DARK spots. Spot 6 

spanning D25-E50 has the strongest interaction with GST-MEK1 and was selected 

for alanine-scan peptide array analysis. (b) The alanine-scan peptide array for 

full sequence of D26-E50 (spot6) was designed as below: for the control spot, it 

represents the identical spot 6 from (a) full length βarrestin1 array; the 

following spots were also from spot 6 but with its amnio acid sequentially 

substituted with an alanine residue; the A26-30 and A46-50 have 5 amino acids 

substituted with alanines. The alanine-scan array was prepared and processed as 

described in (a). Light spots represented attenuated Gst-MEK1 interaction. 

(Shown are representative immunoblots from three independent experiments. 

Data provided by George Baillie)  
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Figure 3.2a: βarrestin1 binds to MEK1 directly in vitro. 

Purified fusion protein His-MEK1 was mixed with either GST-βarrestin1 or GST 

protein alone in vitro for 1 hour. The His-MEK1 was isolated by 

immunoprecipitation with anti-His agarose. Pull-down pellets were subjected to 

Western blot analysis and GST tag was detected by immunoblotting with GST 

antiserum. (Shown are representative immunoblots from three independent 

experiments.)     
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Figure 3.2b: βarrestin1 binds to MEK1 directly in vivo. 

HEK293 cells were transfected with wild type Flag-βarrestin1 or DD-AA mutant 

where Asp26 and Asp29 were each mutated to alanine. Cells were lysed in 3T3 

lysis buffer and centrifuged at 13,000 for 5 minutes in order to remove the 

debris. Supernatants were measured for total protein concentration. Equal 

amounts of supernatants were precleared with Protein G beads before 

immunoprecipitation by Flag epitope. The immunoprecipitates were then 

subjected to Western blot and MEK1/2, ERK2, PDE4D were detected with specific 

antibodies. Lysate, precleared lysate contains 30 µg of total protein. MOCK IP, 

protein G beads for MOCK IP. IP, IP with anti-FLAG antibody. Ab, 

Antibody.(Shown are representative immunoblots from three independent 

experiments. Data provided by George Baillie)         
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Figure 3.3a: βarrestin1 binds to the N terminal of MEK1 in peptide array. 

Synthesized peptide spots containing 25 –mer peptides were immobilized on 

nitrocellulose. Each of the peptide is shifted by 5 amino acids, covering the 

entire sequence of MEK1. The nitrocellulose was prepared using the method in 

Fig 3.1. GST or GST-βarrestin1 interaction with MEK1 peptide array was probed 

using anti-GST antibody. Spot 10 showed positive interaction with GST-βarrestin1. 

(Shown are representative immunoblots from two independent experiments. 

Data provided by Martin Lynch.)  
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Figure 3.3b: N-terminal residues Arg47/Lys48/Arg49 are identified as 

βarrestin1 binding sites. 

Spot 10 from MEK1 peptide array (Fig 3.3a) was selected for alanine scan 

analysis. Sequence Q46-K70 and its mutant with alanine substitutions were 

generated as indicated. (Shown are representative immunoblots from two 

independent experiments. Data provided by Martin Lynch.)  
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Figure 3.3c: N-terminal residues Arg47/Lys48/Arg49 are identified as 

βarrestin1 binding sites. 

HEK293 cells expressing FLAG-βarrestin1 with either HA-MEK1 or HA-MEK1 R47KR 

–AAA mutants were lysed and prepared as described in Fig 3.1 before being 

subjected to immunoprecipitation with anti-Flag agarose beads. The pull-down 

pellets were analysed by Western Blotting. HA-MEK1 and Flag-βarrestin1 were 

probed with antisera for HA and Flag epitope. Lysate, precleared lysate contains 

30 µg of total protein. MOCK IP, protein G beads for MOCK IP. IP, IP with anti-

FLAG antibody. Ab, Antibody. (Shown are representative immunoblots from 

three independent experiments.)         
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Figure 3.4: Disruption of the MEK1/βarrestin1 complex via disruptor peptide. 

(a) HEK293 cells transfected with FLAG-βarrestin1 were treated with vehicle 

(DMSO), a cell permeable peptide consisting of amnio acids 6-29 of βarrestin1 

(T6-DFVD29, MEK displacer peptide, 10µm) or a mutant where D26D29 were 

substituted to alanines (Control peptide, 10µm). Cells were lysed and prepared 

as described in Fig 3.1 before being subjected to immunoprecipitation with anti-

Flag agarose beads. The pull-down pellets were analysed by Western Blot. 

Endogenous MEK1 was probed with anti-MEK1 antiserum. Lysate, precleared 

lysate contains 30 µg of total protein. MOCK IP, protein G beads for MOCK IP. IP, 

IP with anti-FLAG antibody. Ab, Antibody. (b) Wild type HEK293 cells were 

treated as that in (a), and endogenous MEK1 was probed with the same antibody. 

(Shown are representative immunoblots from three independent experiments. 

Thanks George Baillie for his help with the immunoprecipitation.)        
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Figure 3.5a: Disruption of the MEK1/βarrestin1 complex by mutagenesis  

Right, HEK293 cells transfected with FLAG-βarrestin1 were treated with MEK1 

inhibitors UO126 and/or PD98059 (1µM) for 4 hours. Phospho-Ser412 of FLAG-

βarrestin1 was detected by an antibody for phospho-Ser412 (Cell Signaling). 

FLAG epitope was blotted to show equal loading. NT, no treatment. Left, 

HEK293 cells transfected with wild type FLAG-βarrestin1 or its DD-AA mutant for 

48 hours. Cells were lysed and prepared as described in Fig 3.1 before being 

probed with anti-phospho-Ser412 and FLAG antiserums. (Shown are 

representative immunoblots from three independent experiments.) 
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Figure 3.5b: Disruption of the MEK1/βarrestin1 complex by disruptor peptide 

attenuates the phosphorylation of βarrestin1. 

HEK293 cells transfected with FLAG-βarrestin1 were treated with a cell 

permeable peptide consisting of amino acids 6-29 of βarrestin1 (T6-DFVD29, MEK 

displacer peptide, 10µm) or a mutant peptide where D26D29 were substituted to 

alanines (Control peptide, 10µm). Cells were lysed and prepared as described in 

Fig 3.1 before being subjected to Western Blotting. Flag-βarrestin1 was probed 

with anti-FLAG antiserum. Phospho-Ser412 was detected by a site directed 

phosphor-antibody. **, statistical significance (P<0.01 using student’s t test) 
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Figure 3.5c: Disruption of the MEK1/βarrestin1 complex by disruptor peptide 

has no influence on phosphorylation of ERK. 

HEK293 cells transfected with FLAG-βarrestin1 were treated with vehicle (DMSO), 

a cell permeable peptide consisting of amino acids 6-29 of βarrestin1 (T6-DFVD29, 

MEK displacement peptide, 10µm) or a mutant where D26D29 were substituted 

to alanines (Control peptide, 10µm) for 2 hours before treatment of EGF for 

indicated time. Cells were lysed and prepared as described in Fig 3.1 before 

being subjected to Western Blot. Cell lysates were immunoblotted for expression 

using FLAG epitope and phosphorylation at Ser412 of βarrestin1, ERK and 

phospho-ERK using corresponding antibody. (Shown are representative 

immunoblots from three independent experiments.) 
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Figure 3.6: Uptake of fluorescently labeled cell-permeable peptides 

HEK293 cells transfected with FLAG-βarrestin1 were treated with fluorescently 

labelled cell permeable peptide consisting of amino acids 6-29 of βarrestin1 (T6-

DFVD29, MEK displacement peptide, 10µm) or a mutant where D26:D29 were each 

substituted to alanine (Control peptide, 10µm) for 2 hours. Cells were then fixed 

and subjected to confocal microscopy in order to visualise the peptides. 

(Peptides and data provided by Enno Klusmann, Leibniz-Institut für Molekulare 

Pharmakologie, Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, 

Germany) 
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 Figure 3.7: Disruption of the MEK1/βarrestin1 complex by disruptor peptide 

enhances βarrestin1 association with c-Src and Clathrin.  

(a),HEK293 cells transfected with FLAG-βarrestin1 and β2AR were treated with 

vehicle (DMSO), a cell permeable peptide consisting of amnio acids 6-29 of 

βarrestin1 (T6-DFVD29, MEK displacement peptide, 10µm) or a mutant where 

D26:D29 were each substituted with alanine (Control peptide, 10µm) for 2 hours 

before treatment of isoprenaline for 5 minutes. Cells were lysed and prepared as 

described in Fig 3.1 before immunoprecipitation of Flag-βarrestin1. Cell lysates 

and pull-down pellets were immunoblotted for expression using FLAG epitope 

and MEK1, ERK, PDE4D, c-Src, Clathrin (Heavy Chain) using corresponding 

antisera. (b), Control IP for (a). Same cells as that used in (a) were treated with 

disruptor peptides and isoprenaline under the same procedure of (a). Cells 

lysates were immunoprecipitated with anti-VSV agarose. The IP products were 

blotted for Flag, c-Src, ERK and Clathrin HC (Heavy Chain). (Shown are 

representative immunoblots from three independent experiments. Thanks 

George Baillie for his help with the immunoprecipitation.) 
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Figure 3.7: Disruption of the MEK1/βarrestin1 complex by disruptor peptide 

enhances βarrestin1 association with c-Src and Clathrin.  

(a),HEK293 cells transfected with FLAG-βarrestin1 and β2AR were treated with 

vehicle (DMSO), a cell permeable peptide consisting of amnio acids 6-29 of 

βarrestin1 (T6-DFVD29, MEK displacement peptide, 10µm) or a mutant where 

D26:D29 were each substituted with alanine (Control peptide, 10µm) for 2 hours 

before treatment of isoprenaline for 5 minutes. Cells were lysed and prepared as 

described in Fig 3.1 before immunoprecipitation of Flag-βarrestin1. Cell lysates 

and pull-down pellets were immunoblotted for expression using FLAG epitope 

and MEK1, ERK, PDE4D, c-Src, Clathrin (Heavy Chain) using corresponding 

antisera. (b), Control IP for (a). Same cells as that used in (a) were treated with 

disruptor peptides and isoprenaline under the same procedure of (a). Cells 

lysates were immunoprecipitated with anti-VSV agarose. The IP products were 

blotted for Flag, c-Src, ERK and Clathrin HC (Heavy Chain). (Shown are 

representative immunoblots from three independent experiments. Thanks 

George Baillie for his help with the immunoprecipitation.) 
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Figure 3.8a: Biotin protection assay shows disruption of the MEK1/βarrestin1 

complex by disruptor peptide promotes β2AR endocytosis upon isoprenaline 

treatment. 

HEKb2 cells were biotinylated and then pretreated with vehicle (DMSO), a cell 

permeable peptide consisting of amnio acids 6-29 of βarrestin1 (T6-DFVD29, MEK 

displacement peptide, 10µm) or a mutant where D26:D29 were each substituted 

with alanine (Control peptide, 10µm) for 2 hours before treatment of 

isoprenaline for 5 minutes. Biotin-tags on receptors at cell surface were stripped 

before cells were lysed. The lysates were prepared as described in Figure 3.1 

before immunoprecipitation with agarose specific binding to biotin tag. The pull-

down products were blotted for β2AR with a specific antiserum. 100%, full 

biotinylation of receptors. Strip, biotinylated receptors were stripped before any 

treatment. *, statistical significance (P<0.05 using student’s t test) (Shown are 

representative immunoblots from three independent experiments.) 
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Figure 3.8b,c: Confocal image shows disruption of the MEK1/βarrestin1 

complex by disruptor peptide promotes β2AR endocytosis upon isoprenaline 

treatment. 

(b), HEKb2 cells were treated with control peptide and disruptor peptide 

similarly as for Figure 3.7a. Cells were fixed and subjected to confocal 

microscopy to visualise GFP tag on the β2AR. (P<0.05 using student’s t test). (c), 

quantification of internalized β2ARs. n= number of cells analysed /treatment. ***, 

p<0.001 (Thanks Elaine Huston for her help with confocal microscopy.) 
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Figure 3.9. Views taken from the crystal structure of bovine _arrestin1 

(Protein Data Bank code 1ZSH) to illustrate the environment of Asp26/Asp29 

implicated in the binding of MEK1.  

(a), ribbon view of basal state arrestin conformation. (b), as (a) but with 

solvent-accessible surface rendition. c, detail of internal interactions for Asp26 

and Asp29 in basal state arrestin conformation. Light blue, N-domain; light 

orange, C-domain; bright orange, C-terminal peptide latch; gray, interdomain 

hinge peptide sequence; cyan, 6TRVFKKASPNGKLTVYLGKRDFVD29 peptide-6 

sequence; yellow, surface exposure of Asp26 in b. The numbering used is taken 

from human _arrestin1 (P49407); all of the identified residues are conserved 

between the bovine and human isoforms. Unresolved electron density for the 

sequence spanning residues 356–384 is indicated by the dotted orange line. (Data 

provided by Professor David R. Adams, Heriot-Watt University, Edinburgh, UK) 
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4 PDE4D5 dimerization 

4.1 Introduction  

cAMP and cGMP are  well-studied second messengers that are in charge of 

transducing  extracellular signals such as light, hormones and neurotransmitters 

into numerous cell functions. Both of them play key roles in lots of physiological 

progresses that are involved in vision, memory, immunity and cell development 

(Beavo 1995; Manganiello, Murata et al. 1995; Conti and Jin 1999; Soderling and 

Beavo 2000 ; Francis, Turko et al. 2001). Therefore, regulation of their 

intracellular concentration is of high importance. There are two ways to 

modulate the intracellular cyclic nucleotide synthesis by adenylyl cyclases and 

degradation by phosphodiesterases. The phosphodiesterases can hydrolyze the 

phosphodiester bond and produce the corresponding 5’-nucleoside 

monophosphates.  

PDEs consist of 11 subfamilies (PDE1 to PDE11), which are characterized by their 

sequence and enzymatic properties. They all contain a highly conserved catalytic 

domain, which is located between the unique N-terminal and C-terminal of each 

PDE. These N and C termini can undergo post-translational modification such as 

phosphorylation (by PKA, PKB, ERK1/2, CaMK and PKG) (Chu, Corbin et al. 1997; 

Grange, Sette et al. 2000) and association with other signalling messengers 

(cGMP, Ca2+-calmodulin and phosphatidic acid) (Sharma and Wang 1986; Thomas, 

Francis et al. 1990; Sette and Conti 1996; Hoffmann, Baillie et al. 1999; Ahmad, 

Cong et al. 2000) in order to change PDE activity; or restrict PDE subcellular 

distribution by interaction with other protein partners and membrane insertion 

(Yarwood, Steele et al. 1999; Shakur, Takeda et al. 2000; Verde, Pahlke et al. 

2001). Thus, the terminal domains work in different combinations to form unique 

PDEs, and the different PDEs, in turn, form one of the basic regulatory devices 

of specific cell types. 

The cAMP specific PDE4 family is the largest PDE family and consists of over 20 

isoforms. They are composed by expression of different variants of 4 genes, 

namely the PDE4A, PDE4B, PDE4C and PDE4D subfamilies. However, PDE4s can 

also be divided into long, short and supershort isoforms based on their specific N 

terminal features. The unique N-terminal distinguishes PDE4 from other PDE 
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families in that it contains two upstream conserved regions 1 and 2 (UCR1 and 

UCR2). The long form contains both UCR1 and UCR2, whereas the short form 

contains only UCR2 or part of UCR2 for supershort PDE4 (Houslay and Adams 

2003). The UCR1 and UCR2 domains in the long form PDE4 splice variants have 

been shown to interact with each other, and this interaction was suggested to be 

intramolecular (Lim, Pahlke et al. 1999; Beard, Olsen et al. 2000). To form the 

interaction, two positively charged residues (Arg98 and Arg101 in PDE4D3) of the 

UCR1 are suggested to contact with a cluster of negatively charged residues 

(Glu146, Glu147 and Asp149 in PDE4D3) (Beard, Olsen et al. 2000). This 

interaction can be changed by PKA phosphorylation on a serine residue (Ser54 in 

PDE4D3). The PKA phosphorylation also activates the long PDE4.  Since UCR2 was 

suggested to have an inhibitory effect on the catalytic region, it is possible that 

the PKA phosphorylation alters the interaction between UCR1 and UCR2, which 

in turn remove UCR2 from the centre of catalytic unit to cause enzyme 

activation (Sette and Conti 1996; Lim, Pahlke et al. 1999; Beard, Olsen et al. 

2000).  ERK2 phosphorylation of PDE4 long isoforms at C terminus inhibits their 

activity, whereas phosphorylation of PDE4 short isoform PDE4D1 leads to its 

activation (Hoffmann, Baillie et al. 1999; MacKenzie, Baillie et al. 2000).  

A previous study led to the suggestion that the PDE4 long form PDE4D3, 

containing both UCR1 and UCR2, existed as a dimer in cells, whereas the short 

form PDE4D2 behaves as a monomer (Richter and Conti 2002). Truncation of 

either the N-terminal or C-terminal regions of PDE4D3 ablated dimer formation. 

However, this interaction can be distinguished from previous reported UCR1/2 

intramolecular interaction, since PKA phosphorylation that could ablate the 

intramolecular interaction has little impact on its dimerization. A following 

study on PDE4D3 dimerization highlighted the importance of such an effect in 

determining the regulatory property and inhibitor (rolipram) sensitivity of 

PDE4D3.  From a site-directed mutagenesis study, it was shown that monomeric 

PDE4D3 cannot be activated by PKA phosphorylation or phosphatidic acid binding.  

PDE4D5, a PDE4 long isoform, shares a highly conserved catalytic unit and 

UCR1/2 with PDE4D3. These isoforms are only different at their extreme N-

terminal region. PDE4D3 has a 15 amino acid unrelated N-terminal region, 

whereas PDE4D5 has a unique region of 88 amino acids (Bolger, Erdogan et al. 

1997). However, this small difference is sufficient to bring isoform specificity to 
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these PDEs (Lynch, Baillie et al. 2005). Indeed, even with high similarity, PDE4D3 

and PDE4D5 are not redundant with respect to each other (Lynch, Baillie et al. 

2005).   

To further understand the isoform specificity of PDE4D5, we investigated the 

dimerization ability of PDE4D5 in this study.  

4.2 Results 

4.2.1 PDE4D5 can interact with itself and other isoforms 

We first set up to test if PDE4D5 can form dimerize with itself (homodimerisation) 

via yeast two hybird experiments. All the yeast two hybrid data in this study 

were obtained from Dr Bolger (the University of Alabama, USA).  

Yeast two hybrid assay is a powerful way in screening for interacting protein 

partners. The molecular basis for this method is that in most eukaryotic 

transcription factors, their binding and activating domain can function in close 

proximity without direct binding. In the following experiment, it employs DNA 

binding domain (BD), activation domain (AD) and the LacZ reporter gene to 

obtain an observable colour change when a protein interaction occurs. The 

proteins of interest are fused with BD and AD separately and their plasmids are 

transfected into yeast simultaneously. The protein fused with BD also is referred 

to as bait, whereas the protein fused with AD is referred to as prey. In yeast, the 

BD domain can bind to UAS (upstream activating sequence), when there is an 

interaction between the BD fused protein and AD fused protein, it brings AD 

domain in close proximity with the BD domain to activate the transcription of 

the down-stream LacZ reporter gene. The product of LacZ reporter gene, β-

galactosidase, generates a blue colouration through metabolism of X-gal (5-

bromo-4-chloro-3-indolyl-β-D-galactoside), therefore giving an positive 

indication of protein interaction. The yeast two hybrid assay allows for fast  

screening of interacting partners which is much faster than doing expression 

studies in mammalian cells, althrough the key interactions need to be confirmed 

in mammalian systems.  In the yeast two hybrid experiments of this study, either 

LexA-PDE4D5 or empty vector was used as bait, and different PDE4D constructs 

were used as prey. It is clear that PDE4D5 can form strong homo-dimerization 
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with itself. It is also interesting that PDE4D5 can form weaker hetero-

dimerization with the PDE4D3 isoform. This finding was a surprise as PDE4D3 and 

PDE4D5 do not co-immunoprecipitate in mammalian cells (Baillie, MacKenzie et 

al. 2001; MacKenzie, Baillie et al. 2002; Lynch, Baillie et al. 2005). However, 

since PDE4D5 and PDE4D3 are long forms that have conserved UCR1 and UCR2 

domains, which were shown to play key roles in PDE4D3 dimerization, it is 

possible that in this model system small numbers of heterodimers can form. In 

native cells the availability of partner proteins for PDE4D3 and PDE4D5 together 

with their very low expression cells would be expected to prevent heterodimers 

from forming.  

The EELD motif on UCR2 N-terminal was considered to be important in PDE4 

intramolecular interaction but not in dimer formation (Richter and Conti 2004) . 

Indeed, we see here that mutation of EELD has no detectable effect on PDE4D5 

dimerization. Consistent with Conti’s finding (Richter and Conti 2004) on PDE4D3, 

the V172A/F176A/L224A/L227A mutation of PDE4D5 has an attenuated 

interaction on dimer formation of this mutant with its wild-type isoform. (Figure 

4.1)   

To show whether PDE4D5 dimerization occurs in mammalian cells, I 

cotransfected HEK293 cells with differently tagged PDE4D5 forms (vsv tag and 

FLAG tag), immunoprecipitated FLAG-PDE4D5 with anti-FLAG agarose beads, and 

immunoblotted for the counter-part vsv-PDE4D5 (Figure 4.2). One problem for 

this that transfection of equal amount of PDE4D5 constructs normally see 

different expression levels in the same cell line, which can due to the nature of 

constructs themselves since some mutations may change their transcription 

ability, or due to the purity and quality of the DNA since the transfection regent 

(Polyfect, QIAGEN) can be affected by impure DNA. To obtain a comparable 

result, normalization of each PDE4D5 construct used in the co-expression is of 

high importance. This normalisation includes several aspects: firstly, all 

constructs under the same procedures; secondly, equal amount of construct is 

transfected into cells and their individual expression levels are checked. A 

expression ratio is obtained using mutants to against their native forms such as 

vsv-QUAD mutant against vsv-4D5. The amounts of construct that will be used in 

the transfection are adjusted according to the ratio; Thirdly, the vsv tagged 4D5 

or its mutant with Flag tagged 4D5 are co-transfected and the expression levels 
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of each construct are checked again before immunopreicipitation. This process is 

time consuming and requires a lot of effort to go through all the procedures in 

normalisation the necessary conditions. However, by doing this I observed clear 

dimerization of PDE4D5 as seen in the two hybrid experiment.     

4.2.2 PDE4D5 binding partners influence its dimerization 

PDE4D5 is known to associate with a number of proteins including G-protein 

coupled receptors, AKAPs, RACK1 and βarrestins (Bolger, McCahill et al. 2002) 

(McCahill, Warwicker et al. 2002) (Baillie, Sood et al. 2003) (Bolger, Baillie et al. 

2006) (Lynch, Baillie et al. 2005) . Many of the interactions are believed to cause 

structure change of PDE4D5, altering its enzyme activity and influencing its 

affinity with other proteins. In order to investigate whether these partner 

proteins can impact on the PDE4D5 dimerization, we requsted that Dr Bolger 

examine the role of RACK1 and βarrestin as these key signalling scaffold proteins 

interact specifically with PDE4D5 and have functional roles in cells (Bolger, 

McCahill et al. 2002; McCahill, Warwicker et al. 2002; Kiely, Leahy et al. 2005) . 

These scaffolds were co-expressed with bait and prey PDE4D5 in yeast two 

hybrid experiments. Compared to the control that only has bait and prey PDE4D5, 

additional RACK1 and βarrestin expression ablated the PDE4D5 dimerization 

(Figure 4.3). However, when I set out to evaluate this potential disruptive effect 

in HEK293 cells, I observed that RACK1 and βarrestin failed to intervene in 

PDE4D5 dimerization (Figure 4.4). This is curious as we have shown (Lynch, 

Baillie et al. 2005) that PDE4D5 cannot bind both barrestin and RACK1 at the 

same time. As these scaffolds bind to overlapping interaction sites on PDE4D5 

and so one molecule of PDE4D5 can’t bind both barrestin and RACK1, we 

surmised from this observation and the 2-hybrid result that these scaffolds 

disrupted dimers to give monomers complexed with RACK1 or barrestin.  It 

appears that in mammalian cells there may be some other modification or 

partner protein that stabilises the dimers even when these scaffold interact. 

However, if such dimers do occur natively then a PDE4D5 dimers must only be 

able to bind RACK1 or barrestin as mixtures are never observed. This also, 

however, suggests that if barrestin is bound to one molecule of the dimer its 

binding must sterically block any binding of RACK1 to the other PDE4D5 molecule 

in the dimer.      However, in yeast two hybrid experiments, we did see that 
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RACK1 and βarrestin ablated PDE4D5 dimerization (Figure 4.3). This might due to 

the nature of yeast-two-hybrid assay, especially if the threshold for the signal to 

be detected is high such that disruption of only a small number of dimers by 

overexpression of RACK1 and βarrestin could attenuate the dimerization such 

that the signal now falls below the minimum detectable concentration in yeast-

two-hybrid.   Conversely, overexpression of RACK1 and βarrestin may reduce 

dimer formation by a small amount in mammalian cells but this is not readily 

detected by the immunoprecipitation assay.  

4.2.3 Reversibility of PDE4D5 dimerization 

In order to investigate the stability of PDE4D5 dimerization, I co-transfected 

different tagged versions of PDE4D5, together or separately, into HEK293 cells, 

cell lysates were subjected to immunoprecipitation. FLAG-PDE4D5 and VSV-

PDE4D5 were separately transfected into HEK293 cells; 48 hours later, cells were 

lysed using 3T3 lysis buffer. Equal amount of cytosolic fractions (total protein) 

containing either FLAG or VSV tagged PDE4D5 were mixed, and rotated end to 

end at 4°C for 16 hours. The lysates were then subjected to 

immunoprecipitation using anti-vsv agarose, and the pull down pellets were 

analysed for vsv and FLAG tagged PDE4D5 using the corresponding antibody. As 

can be seen in Figure 4.5 lane 4, co-immunoprecipitation of co-transfected vsv 

and FLAG-PDE4D5 using anti-vsv agarose can pull-down FLAG-tagged PDE4D5. 

However, when immunoprecipitating vsv-PDE4D5 from separately expressed 

lysates mixture, tiny amounts of FLAG-PDE4D5 can be detected (Figure 4.5 lane 

1). Furthermore, FLAG-PDE4D5 was also detectable in mixed lysates with 

separate expressed RACK1 and βarrestin (Figure 4.5 lane 2, 3). These data 

indicate that PDE4D5 dimerization is quite stable and that a limited percentage 

of PDE4D5 is subjected to disassociation/reassociation. This in vitro 

disassociation/reassociation is not consistent with Conti’s finding (Richter and 

Conti 2002) that PDE4D3 does not disassociate in vitro. It could be that the 

disassociation/reassociation of PDE4D5 might be an isoform-specific feature 

when compared to the closely related PDE4D3, which has no detectable 

reassociation in vitro (Richter and Conti 2002). In addition, adding RACK1 or 

βarrestin to the PDE4D5 mixture neither enhanced the disassociation of 

dimerized PDE4D5 nor prohibited the reassociation of PDE4D5, which suggests 
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that expression of RACK1 and βarrestin have no significant influence on PDE4D5 

dimerization. This may be because PDE4D5 dimerises as it is synthesised in cells.  

4.2.4 Mapping the PDE4D5 dimerization domain using peptide 

array  

To narrow down the PDE4D5 dimerization domain, we employed a novel peptide 

array technology. The full length PDE4D5 peptide library was synthesized on 

nitrocellulose. Each spot contains a 25 amino acid peptide, and each spot has 20 

amino acid overlapping region with the adjacent spot in an order to cover the 

full length PDE4D5. To prepare the PDE4D5 peptide array, it was first activated 

in pure ethanol for 10 seconds; after 3 times 10 minutes wash with TBST, it was 

then incubated with 5% skimmed milk for at least 2 hours to block the non-

specific binding sites. Purified GST tagged PDE4D5 was diluted to 1µg/ml in 1% 

milk, and applied to prepared PDE4D5 array for 2 hours. The PDE4D5 peptide 

array was probed with anti-GST antibody, and analysed with immunoblotting. 

The putative interaction (dimerisation) sites were recognised as dark spots 

(Figure 4.6A).  From the full length PDE4D5 peptide array, three PDE4D5 

dimerisation regions were detected, which includes N-terminal regions of UCR1, 

UCR2 and part of the catalytic domain.  

To further narrow down the dimerization sites, an alanine scan array was 

performed to locate the putative candidates. Alanine scan array is where the 

various amino acids of the positively interacting peptides from the primary scan 

above were each substituted to give a family of peptides where every amino acid 

in the sequence was sequentially and individually replaced with alanine (note 

than when the native amino acid was alanine we changed it to aspartic acid). 

These alanine scanning peptides were probed with GST-PDE4D5 and GST control, 

with detection using an anti-GST antibody. The amino acids that contribute to 

potential binding sites were detected as light spots indicating the loss of 

interaction when substituted to alanine/asparate. The three putative regions 

found in PDE4D5 peptide array were subjected to alanine scan array respectively. 

This yielded data suggesting that key residues forming the first dimerization site 

are R173/N174/N175 of PDE4D5 UCR1 region (Figure 4.6B). This is consistent 

with Conti’s suggestion (Richter and Conti 2004) that LRTVRNNF is the 

dimerization site of PDE4D3. The sequence of the putative second dimerization 
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site is E228/T229/L230 on the UCR2 (Figure 4.6C), which is adjacent to a 

previously (Richter and Conti 2004) proposed dimerization domain 219E-227L. 

We also discovered the sequence of the putative two novel PDE4D5 dimerization 

sites L306/M307/H308 and K323/T324/E325. Both of these are located within 

the catalytic domain, and the latter one could be a potential sumoylation site 

based upon it having a sequence of V322KTE325 that is a classic consensus SUMO 

motif ψKxE (where ψ is an aliphatic brandched amino acid and x could be any 

amino acid) (Figure 4.6D). 

4.2.5 Initial evaluation of RNN, ETL, LMH and KTE mutants 

In these experiments I used WT, native PDE4D5; E53 (125), S54(126)A, S54(126)D 

mutants related to the PKA consensus phosphorylation site at the beginning of 

UCR1 (Sette and Conti 1996); S579(651)A, S579(651)D, related to the MAPK 

consensus phosphorylation site (Hoffmann, Baillie et al. 1999) and S239(311)D, 

related to the oxidative stress kinase site (Hill, Sheppard et al. 2006). (These 

mutants are numbered as they were in PDE4D3, PDE4D5 numbering in 

paretheses).  

PDE4D5 constructs with RNN, ETL, LMH and KTE mutants were generated with 

each mutated to AAA. These were co-expressed with wild type PDE4D5 in yeast-

two-hybrid experiments. The results showed that the RNN, ETL, LMH and KTE 

mutants had a minimal effect on the PDE4D5 dimerization (Figure 4.7A). 

However, this does not mean that these mutated sites do not form the 

dimerization sites. It is very likely that PDE4D5 dimerization requires more than 

one dimerizing region, and each of these may contribute partially to overall 

PDE4D5 dimerization. Therefore, disruption of a single site alone might not be 

enough to abolish the whole association. Indeed, some of these sites may be 

regulatory, where changes could enhance or disrupt binding.  

To evaluate the effects of combinations of triplet and Quad mutants, we 

generated constructs expressing PDE4D5 with RNN, ETL, LMH and KTE mutations 

(to AAA), either in triplet or altogether (the Quad mutant), and tested them in 

yeast-two-hybrid assays. However, these mutants still had limited effects on 

PDE4D5 self-dimerization even with the Quad mutant. The only detected effects 

were increasing PDE4D5 dimerization rather than decreasing it (Figure 4.7B). In 
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these experiments, all of the mutants were in one of the two dimerized PDE4D5s. 

Thereby, the mutations might need to be on both dimerizing PDE4D5 to give a 

detectable result.     

Though the mean purpose of these yeast-two-hybrid experiments was to test the 

effects of RNN, ETL, LMH and KTE mutants, we also made several PDE4D5 

mutants to test if PKA and ERK phosphorylation had any influence on PDE4D5 

self-association. However, most of the mutants had no significant on PDE4D5 

dimerization except S54A/S579A mutant, which totally abolished interaction 

with either wild type PDE4D5 or PDE4D3 (Figure 4.7A). This requires further 

investigation in both 2-hybrid and mammalian cells. However, it is possible that 

this double mutant triggers some disruptive conformational change. As it does 

not reflect any modified state, eg the Ser/Asp muatants would reflect a  

phosphorylated state. We decide it did not have enough priority to evaluate 

further. .   

Apart from PDE4D5 homodimerization, we also analyzed the PDE4D3 hetero-

dimerization with PDE4D5 mutants.  Two PDE4D5 mutants S54A, which blocks the 

enzyme to be phosphorylated by PKA (Sette and Conti 1996), and LMH showed 

decreased dimerization affinity with PDE4D3 (Figure 4.7A). There are two 

possibilities for this observation: First, PDE4D3 may indeed dimerize with 

PDE4D5, but with less affinity than PDE4D5 with itself. Therefore, the mutants 

indeed caused a reduction that could be detected by yeast-two-hybrid. Second, 

the PDE4D3 constructs express less well than PDE4D5 constructs. The signal of 

wild type PDE4D3 with PDE4D5 is lower, as you can see in the wild type positive 

control, which allows the differences to be more readily apparent for detection. 

However, further confirmation for these effects is required by 

immunoprecipitation.    

4.2.6 The Quad PDE4D5 can still dimerize in vivo 

To assess whether PDE4D5 can dimerize with its Quad mutant, vsv tagged 

PDE4D5 construct with the Quad mutant was generated. The vsv-Quad mutant 

and Flag-PDE4D5 were co-expressed in HEK293 cells for 2 days; the cells were 

then harvested and the lysate was subjected to immunoprecipitation. The Flag-

PDE4D5 were detectable in both wild type vsv-PDE4D5 and vsv-Quad mutant pull-
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downs indicating that the Quad mutant can still dimerize with wild type PDE4D5 

in vivo (Figure 4.8), which is consistent with the previous finding in yeast-two-

hybrid. 

A Korean group has shown that a single ion pair was crucial for dimerization of 

PDE4B truncated catalytic unit in the PDE4B crystal structure (Lee, Chandani et 

al. 2002). These paired residues are D322 and R358, and they also suggested that 

mutation of D322 to arginine disrupted the dimer interface. Therefore, we 

surmised that it may be possible that the two correspondent residues in PDE4D5, 

R499 (R358 in PDE4B) and D463 (D322 in PDE4B), could contribute to the 

dimerization of PDE4D5 (Figure 4.9).  

4.2.7 R499-D463 ion pair is crucial for PDE4D5 dimerization   

 To evaluate (1) the influence of ion pair R499-D463 to PDE4D5 dimerization; (2) 

the effect of Quad mutation on both part of dimerized PDE4D5, we made PDE4D5 

constructs with R499D mutation and/or Quad mutation on both bait and prey  in 

yeast-two-hybrid assay.  

Interestingly, in the yeast-two-hybrid assay, the R499D mutant has little effect 

by itself (Figure 4.10A, third row). This clearly proves that the disruption of the 

dimer interface in the catalytic unit is not sufficient to stop dimerisation in the 

full-length molecule. Although we do not have the full length peptide array that 

covers this site, however, as we see here, disruption of the known catalytic 

binding site by R/D mutation now allows the Quad mutation to ablate 

dimerisation (Figure 4.10 fifth row, fifth column; fourth row, sixth column). We 

see that when PDE4D5 Quad mutant is challenged against itself, there is still 

strong interaction (Figure 4.10A, fourth row, fifth column). However, when 

adding R499D to the Quad mutant, it could abolish the dimerization against not 

only itself (Quad/R499D) but also the Quad mutant itself. This suggests that the 

PDE4D5 dimerization requires the combination of R499-D463 ion pair and RNN, 

ETL, LMH, KTE (Quad) sites. Note that shown here PDE4D3 against Quad mutant 

was a false negative as it was positive on subsequent repeats (data not shown). 

Molecular modeling of PDE4D5 3D structure indicated D463 as the counterpart of 

R499 was also contributing to the charge on the dimerization interface (data not 

shown). Therefore, mutating D463 to its opposite charged amino acid arginine 
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was expected to restore interaction lost with the R499D mutant. Indeed, when 

we tested this hypothesis in yeast-two-hybrid assay, the PDE4D5 D463R mutant 

alone has no effect on PDE4D5 dimerization when against other mutants (Figure 

4.10B third row). And when combining D463R with Quad, it ablates the 

interaction with Quad and itself (Figure 4.10B fifth column, fourth and fifth row). 

However, when using D463R Quad mutant against R499D Quad mutant, it rescued 

the PDE4D5 dimerization by restoring the charge between the ion pair (Figure 

4.10B, fifth row, sixth column).   

4.2.8 Quad R499D mutant behaves as a monomer in vivo 

 To confirm that Quad R499D PDE4D5 behaves as a monomer in vivo, we made 

Flag and vsv tagged PDE4D5 constructs with the mutants that have been tested 

in the yeast-two-hybrid assay. The mutants were transfected into HEK293 cells 

for 2 days before lysis with 3T3 lysis buffer. The lysates were then centrifuged to 

remove the insoluble debris and subjected to Bradford assay in order to quantify 

the protein concentration. Equal amounts of cell lysates (total protein) were 

subjected to immunoprecipitation using anti-vsv agarose, and the pull-down 

pellets were analyzed by Western Blotting.  

In the pull-down results, it is clear that Quad (Figure 4.11, lane 4), R499D 

(Figure 4.11, lane 5, 6) and Quad R499D mutants (Figure 4.11, lane 7) were not 

enough to disrupt the dimerization with wild type PDE4D5. However, the 

interaction between Quad R499D and Quad mutants was successfully ablated 

(Figure 4.11, lane 8). All these results were identical to those we observed in the 

yeast-two-hybrid assay. Therefore, the Quad R499D mutant is a monomeric 

PDE4D5. It is noticeable that Flag tagged Quad R499D mutant (Figure 4.11, lane 

7, 8) is expressed less well than wild type Flag tagged PDE4D5 and its mutants, 

therefore, we use Flag-QUAD R499D against vsv-4D5 (Figure 4.11, lane 7) as 

standard when analyzing the effect of Flag-QUAD R499D against vsv-Quad (Figure 

4.11, lane 8). Based on this, we concluded that the Quad R499D mutant forms a 

monomeric PDE4D5. A possible explanation for the low expression of Quad R499D 

mutant in HEK293 may be that PDE4D5 dimerization may serve important roles in 

its synthesis, and disruption of dimerization may lead to decreased PDE4D5 

expression. However, we cannot exclude the possibility that the Quad R499D 

mutant itself is a low expressing construct.    
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4.2.9 Dissecting out the effects of the various portions of the 

Quad mutant 

As explained above, the Quad mutant contains four triplets, in total 12 amino 

acids that contributed in PDE4D5 dimerization. To analyze the different 

contribution of each triplet to dimerization, we made constructs with all the 

possible combination of the triplets as indicated (Figure 4.12). Then, we 

compared their effects on PDE4D5 dimerization of Quad R499D and Quad 

mutants. The RNN triplet was proved to be the key element in the binding to 

Quad R499D, and no such effect was detected in other triplets (Figure 4.12, 

bottom row, third column). 

4.2.10 Comparing the effect of the RNN-R499D mutant to that 

of the Quad-R499D mutant 

RNN mutant has been shown to represent the Quad effect when against Quad 

R499D. We therefore tested if RNN may act in the same way as the Quad mutant.     

In this yeast-two-hybrid assay, when using Quad R499D as a Gal4 activation 

domain and RNN as a LexA DNA-binding domain like the Quad mutant in Figure 

4.12, the RNN mutant works as well as the Quad mutant (Figure 4.13, third 

column).  However, when using RNN R499D as Gal4 activation domain and 

comparing it to the full Quad R499D mutant, there is a difference between RNN 

and Quad when using these as LexA DNA-binding domain. The major difference is 

the single patch with LexA-Quad-R499D vs. Gal4 AD RNN-R499D: LexA-Quad-

R499D does not interact with Gal4 AD Quad-R499D (Figure 4.13, third column, 

third row), while LexA-Quad-R499D does interact with Gal4 AD RNN-R499D 

(Figure 4.13, fourth column, third row). This discrepancy may reflect the steric 

affects of the large fusions on dimerization. The reason for this explanation is 

that the LexA fusion has to simultaneously bind to DNA as well as its Gal4 AD 

partner in order to activate beta-galactosidase. Therefore, the LexA fusion may 

reflect a “global” conformational change in the dimer, which are mutation 

dependent. This emphasizes that one needs to be very careful when choosing 

which observation may reflect the nature of the PDE4D5 dimerization. Therefore, 

expressing these mutants in mammalian cells for further confirming their 

interaction is absolutely essential.  
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4.2.11 Testing the RNN R499D mutant in HEK293 cells 

The RNN R499D PDE4D5 mutant was first considered as a good representative for 

Quad R499D mutant to be a monomeric PDE4D5 with fewer mutations (Figure 

4.12). However, later evidence suggested that it may still dimerize in some way 

with itself (Figure 4.13 fourth column, bottom). To evaluate its dimerization 

ability, we created Flag tagged PDE4D5 with RNN mutant and vsv tagged PDE4D5 

with RNN R499D mutant, and coexpressed them in HEK293 cells. The cells were 

collected and analyzed using methods identical to that used in Figure 4.11. Flag 

tagged RNN-R499D-PDE4D5 may be a better substitution for Flag-RNN mutant, 

however, due to the low expression of the RNN R499D mutant, it is hard to 

coexpress both vsv and Flag tagged RNN R499D mutant together in order to get a 

detectable signal for both of them. Therefore, we chose RNN mutant vs RNN 

R499D mutant to see if they dimerize in the way that was observed in yeast-two-

hybrid assay (Figure 4.13). 

The immunoprecipitation result showed that the dimerization between vsv-RNN 

R499D and Flag-RNN mutants was decreased by around 20% compared to wild vsv 

and Flag PDE4D5 dimerization (Figure 4.14). This is consistent with results that 

we found in yeast-two-hybrid, but the association is quite strong compared to 

that in mammalian cells (Figure 4.11). Therefore, although the RNN R499D 

mutant has fewer mutations, which means it may have less possible effects on 

PDE4D5 conformation, compared to Quad R499D, the Quad R499D may be a 

better choice for studying the nature of monomeric PDE4D5.   

4.2.12 Preliminary data of different agonist effects on 

PDE4D5 dimerization  

Previous reports indicate disruption of dimerization ablated the activation of 

PDE4D3 by either protein kinase A phosphorylation or phosphatidic acid binding 

(Richter, 2004). Additionally, it was claimed that disruption of dimerization 

reduces the sensitivity of the PDE long isoform to PDE4 inhibitor Rolipram. 

Therefore, dimerization of PDE4 has been suggested to be an important feature 

involved in PDE4 regulatory function. 
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Concerning the importance of PDE long isoform dimerization, an understanding 

of its regulation may also contribute to our appreciation of the properties of 

PDE4. For such reasons, we tested a series of agonists which are known to 

interact with PDE4D5.  

We first tested the effects of the PDE4 inhibitors, rolipram and ariflo on the 

dimerization of PDE4D5. Rolipram and Ariflo (cilomilast, SB 207499) are PDE4 

specific inhibitors.  According to rolipram binding affinity, there are two 

conformers of PDE4. One of the conformers termed “high affinity rolipram 

binding” PDE4 or HARB, can be inhibited by nanomolar concentrations of 

rolipram. The other conformer termed “low affinity rolipram binding” PDE4 or 

LARB, requires 10-100 fold higher concentrations of rolipram to inhibit it 

(Griswold, Webb et al. 1998). HARBs were shown to predominate in the central 

nervous system (CNS) (Saccomano, Vinick et al. 1991), which is considered to be 

the main cause for side effects of rolipram, while LARBs usually exist in 

inflammatory cells (Souness, Griffin et al. 1996).  Rolipram has a high binding 

affinity to HARBs. However, ariflo prefers to interact with LARBs (Christensen, 

Guider et al. 1998; Griswold, Webb et al. 1998).    

HEK293 cells expressing vsv and Flag tagged PDE4D5 were seeded into 10cm 

culture plate. Rolipram and Ariflo were dissolved in pure DMSO and added to cell 

culture medium to a final concentration of 10µM. The cells were then incubated 

at 37°C for 10 minutes. After 2 washes with pre-chilled PBS to cease the 

reaction, the cells were lysed in 3T3 lysis buffer. The lysates were then 

subjected to immunoprecipitation using anti-vsv agarose. In the IP experiment, 

there were no detectable differences on PDE4D5 dimerization between rolipram 

and ariflo treatment (Figure 4.15A). Thus, PDE4D5 dimerization is not affected 

by PDE4 inhibitors able to distinguish between the HARBs and LARBs conformers 

(n=2).       

We then tested the influence of mitogen-activated protein kinase ERK on PDE4D5 

dimerization by activating this pathway using the PKC activator, PMA (Phorbol-

12-myristate-13-acetate). PMA was applied to the transfected HEK293 cells at a 

final concentration of 10µM. It is shown that PMA has no effect on PDE4D5 

dimerization. This is consistent with our yeast two hybrid assay that a muation 
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that mimics erk phosphorylation of PDE4D5, namely the S54D mutation (Figure 

4.7A) has little effect on PDE4D5 dimerization (Figure 4.16). 

The p38 MAPK activator anisomycin was shown to increase PDE4D5 dimerization 

by 2 fold (n=2) (Figure 4.15A, B). One explanation is that anisomycin may either 

triggers the phosphorylation of PDE4D5 by p38MAPK or a downstream kinase or 

interacts directly with PDE4D5, thereby changing the conformation of PDE4D5 

and increasing its dimerization. Further exploration is needed to fully 

understand this phenomenon.    

HEK293 cells expressing Flag and vsv tagged PDE4D5 were also set up to test the 

influence of PKA phosphorylation on PDE4D5 dimerization. The PDE inhibitor 

IBMX and adenylyl cyclase activator forskolin were added to prepared cells at a 

final concentration of 10µM to ensure elevated cAMP levels (McCahill, McSorley 

et al. 2005). Activated PKA leads to the activation of PDE4D5 by phosphorylation 

at Ser126 (Baillie, MacKenzie et al. 2001 ). The IBMX + forskolin treatment 

caused a 60% reduction in PDE4D5 dimerization (Figure.15 A, C). When 

pretreating the cells with the PKA inhibitor KT5720, it partially rescued this 

decreased dimerization. This indicated that PKA phosphorylation of PDE4D5 

could reduce its dimerization, and inhibiting PKA activity could partially rescue 

it. Further work is needed to be done to clarify this using other inhibitors and 

mutants. 

4.3  Discussion 

Cyclic nucleotide phosphodiesterases provide the only way to degrade the 

ubiquitous second messenger cAMP/cGMP and have been a popular research 

subject for decades. Their functions are now far extended from their first 

identified desensitization ability for G-protein coupled receptors that increase 

cAMP to playing fundamental roles in cross-talk between different signaling 

pathways (Hoffmann, Baillie et al. 1999) {O'Connell, 1996 #22}and regulating 

cAMP compartmentalization (Dodge, Khouangsathiene et al. 2001) (Lynch, Baillie 

et al. 2007). It has been pointed out that most PDEs, at least members of PDE 

families 1-6, can exist as dimers (Richter and Conti 2004). For PDE4 subfamilies, 

the long PDE isoforms have been shown to undergo dimerization via interactions 

involving their conserved UCR1 and UCR2 domains. One of the PDE4 long 
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isoforms, PDE4D3 was investigated intensively by Marco Conti’s group (Richter 

and Conti 2002) (Richter and Conti 2004). They suggested that disruption of 

PDE4D3 dimerization can be achieved through its activation by either protein 

kinase A phosphorylation or by phosphatidic acid binding and that this led to 

reduced sensitivity to inhibition by rolipram (Richter and Conti 2004). They also 

demonstrated that ablating the UCR1 and UCR2 intramolecular interaction did 

not interfere with dimerization (Richter and Conti 2002).  

PDE4D5 is another long PDE4 isoform that shares conserved UCR1&2 and 

catalytic domains with PDE4D3, but they are not redundant in their functions. 

PDE4D5 is unique for its function in binding to the scaffold protein, βarrestin 

which allows it to be recruited to the β2 adrenoceptor after agonist challenge 

and generating a compartmentalized cAMP pool adjacent to these receptors 

(Lynch, Baillie et al. 2005; Lynch, Baillie et al. 2007). Due to the high similarity 

between PDE4D3 and PDE4D5, it seems likely that PDE4D5 is also dimeric. In 

order to better understand the function and regulation of PDE4D5, I set out to 

explore the nature of PDE4D5 dimerization.          

Yeast two hybrid and immunoprecipitation results showed that PDE4D5 can 

dimerize both in vitro and in vivo. In yeast two hybrid studies, adding PDE4D5 

interacting protein RACK1 or βarrestin could successfully disrupt PDE4D5 dimer 

formation; however, we did not see such an effect in immunoprecipitation 

studies using HEK293 cells. This is strange as we have shown (Lynch, Baillie et al. 

2005) that PDE4D5 cannot bind both barrestin and RACK1 at the same time. As 

these scaffolds bind to overlapping interaction sites on PDE4D5 and so one 

molecule of PDE4D5 can’t bind both barrestin and RACK1, we surmised from this 

observation and the 2-hybrid result that these scaffolds disrupted dimers to give 

monomers complexed with rack1 or barrestin.  There are various possible 

explanations for this observation. One may be that in the yeast two hybrid assay 

the threshold for a signal to be detected between the prey and bait protein is 

different from the immunoprecipitation studies such that RACK1 or βarrestin can 

ablate PDE4D5 dimerization in yeast two hybrid but not in immunoprecipitation. 

It may also be that in mammalian cells there may be some other modification or 

partner protein that stabilises the dimers even when these scaffolds interact. 

However, if such dimers do occur natively then a PDE4D5 dimers must only be 

able to bind RACK1 or βarrestin as mixtures are never observed. This also, 
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however, suggests that if βarrestin is bound to one molecule of the dimer its 

binding must sterically block any binding of RACK1 to the other PDE4D5 molecule 

in the dimer. I also observed that overexpressing PDE4D5 alone or with RACK1 

and βarrestin together significantly increases the amount of PDE4D5. This causes 

an increased ratio of PDE4D5 against RACK1 and βarrestin, which makes RACK1 

and βarrestin less potent to disrupt PDE4D5 dimerization. We also found PDE4D5 

dimerization is of high stability, and its disassociation and reassociation is not 

affected by separately expressed RACK1 and βarrestin. This may mean that 

PDE4D5 immediately forms dimers upon its synthesis at the plasma membrane.  

It has been reported (Richter and Conti 2004) that the dimerization of PDE4D3 

could be ablated with mutation of hydrophobic residues V100/F104 on UCR1 

(V172/F176 in PDE4D5) and L145/L148/L152/L155 on UCR2 

(L217/L220/L224/L227 in PDE4D5) (Richter and Conti 2004). In this study, we 

employed a novel technology peptide array in order to locate the PDE4D5 

dimerization sites. We found four potential dimerization sites, which are 

R173/N174/N175 in UCR1, E228/T229/L230 in UCR2, L306/M307/H308 and 

K323/T324/E325 in the catalytic domain. The R173/N174/N175 is adjacent to 

V172/F176 in UCR1 and E228/T229/L230 is adjacent to L217/L220/L224/L227, 

which locate within the same region of previously discovered PDE4D3 

dimerization sites. However, the constructs with mutated RNN and ETL had little 

effect on PDE4D5 dimerization, neither did the Quad mutant construct that has 

all four potential dimerization sites mutated to alanine. As in a previous report 

indicated that mutation of an ion pair of the catalytic domain can disrupt the 

oligomerization of the isolated PDE4 catalytic unit, we mutated residues of this 

ion pair in PDE4D5, in addition to the Quad mutant and found this successfully 

abolished PDE4D5 dimerization. According to this, we generated the monomeric 

PDE4D5 Quad R499D mutant. We then investigated their individual contribution 

to the Quad mutant. The RNN R99D was found to be the replicate for the Quad 

R499D mutant in yeast two hybrid. However, when we tested the its 

dimerization in mammalian cells, it worked less well than Quad R499D as a 

monomeric mutant.  

I also obtained some preliminary data testing the ability of PDE4D5 to dimerize 

in response to several treatments. Rolipram, which binds preferentially to HARB 

conformers and Ariflo, which binds similarly to HARBS and LARB conformers 
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exhibited little effect on PDE4D5 dimerization. However, we do not know if the 

dimerized PDE4D5 exist in their HARBs or LARBs or both, and this may be worth 

further investigation.  

I also showed that anisomycin can increase the PDE4D5 dimerization and this 

may be due to the activation of its downstream effecters in activating the p38 

MAPK pathway. Recent (unpublished) work from our laboratory suggests that this 

pathway can trigger the phosphorylation of PDE4 isoforms and so making 

phosphomimetic mutants would be useful to test. Also one could evaluate a 

selective inhibitor of p38 MAPK to check whether it was exerting its action on 

PDE4D5 through this pathway or some other.  

IBMX/Forskolin treatment leads to a reduction of PDE4D5 dimerization. This 

might due to PKA phosphorylation on PDE4D5 and further experiments are 

needed to confirm it.  Note in this regard that phosphomimetic muatants for 

PDE4D5 phosphorylation by PKA appeared to have no effect in 2-hybrid studies 

(Fig.4.7A). This suggests that if they do occur in mammalian scells they must 

exert and action through a route that does not just involve PDE4D5 alone. It 

could be that accessory proteins stabiled PDE4D5 dimers in intact cells, 

protecting against disruption by Rack1/barrestin. The interaction of these may 

be disrupted by PKA phosphorylation. It would be interesting then to see if 

either RACK1/barrestin augmented the disruption of PDE4D5 dimers by Fsk/IBMX. 

In our yeast two hybrid experiment, we found that PDE4D5 could form hetro-

dimers with PDE4D3. However, its function and regulation remain obscure. We 

also generated the monomeric PDE4D5, the Quad R499D mutant. Its enzyme 

activity, compartmental distribution, binding affinity to PDE4D5 interacting 

proteins and sensitivity to PDE inhibitors are required for further study.   

In summary, we find that PDE4D5 can form strong dimerisation with itself in both 

yeast and mammalian cell lines. The dimerisation requires multiple interaction 

sites such as R173/N174/N175, E228/T229/L230, L306/M307/H308 and 

K323/T324/E325 (together named QUAD) in which R173/N174/N175 contributes 

most in the dimerisation. Association of an ion-pair R499/D463 also proved to be 

a necessary condition for dimer formation. The PDE4D5 dimerisation can be 

affected by challenge of the PDE inhibitor anisomycin and cAMP elevating 
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agonists Fsk/IBMX. However, the mechanism for such phenomenons need further 

investigation.        
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Figure 4.1:  PDE4D5 can interact with itself and with other PDE4 isoforms. 

For all the patches, the bait was LexA-PDE4D5 or empty vector (columns).  This 

was tested against various prey, all expressed as GAL4 fusions (rows).  Pink 

patches are negative and blue patches are positive. (Data provided by Graeme B. 

Bolger) 
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Figure 4.2: Confirmation of PDE4D5 dimerization in vivo by 

immunoprecipitation.  

Vsv-4D5 and FLAG-4D5 were co-expressed in HEK293 cells. Cells were lysed in 

3T3 lysis buffer and centrifuged for 5 minutes at 13’000 for preclearing. Equal 

amount of total proteins were subjected to immunoprecipitation with anti-vsv 

agarose. Pulled down pellets were then subjected to SDS-PAGE and 

immunoblotted for vsv and FLAG. 1-4 are precleared cell lysates, 5-8 are IP using 

anti-FLAG agarose. 1 and 5, HEK cells with polyfect alone as mock control. 2 and 

6, transfected with vsv-PDE4D5. 3 and 7, with FLAG-PDE4D5. 4 and 8, with both 

vsv and FLAG-PDE4D5. (Shown are representative immunoblots from three 

independent experiments.) 
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Figure 4.3: Co-expression of either RACK1 or ββββ-arrestin2 significantly 

attenuates dimerization of PDE4D isoforms. 

RACK1 or β-arrestin2 were co-expressed along with the LexA-PDE4D5 and GAL4-

PDE4D5 fusions used in Figure 4.1. (Data provided by Graeme B. Bolger) 
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Figure 4.4. PDE4D5 binding partner RACK1&β-arresitn effects on PDE4D5 

dimerization in vivo.  

HEK293 were cotransfected with vsv-4D5, FLAG-4D5 and FLAG-β-arrestin or HA-

RACK1. Cell lysates were then centrifuged at 13,000 rpm for 5 minutes to 

remove debris. Equal amounts of protein were subjected to anti-vsv 

immunoprecipitation and the differently tagged PDE4D5 were detected by 

blotting with their corresponding antibody. (Shown are representative 

immunoblots from two independent experiments.) 
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Figure 4.5: PDE4D5 binding partner RACK1&β-arresitn effects on PDE4D5 re-

dimerization in vitro.  

HEK293 cells over-expressing FLAG-4D5, VSV-4D5, FLAG-β-arr1, HA-RACK1 or 

FLAG&VSV-4D5 were lysed in 3T3 lysis buffer, precleared and measured as 

described in Figure 4.2. Equal amounts of protein were mixed as indicated, 

rotated at 4 ℃  for 20hrs. The lysates were then subjected to 

immunoprecipitation with anti-vsv and blotted for vsv and FLAG-PDE4D5. (Shown 

are representative immunoblots from three independent experiments.)   
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Figure 4.6A: Identification of putative dimerization sites by peptide array.  

Synthesized peptide spots containing 25 –mer peptides were immobilized on 

nitrocellulose. Each of the peptide is shifted by 5 amino acids, covering the 

entire sequence of PDE4D5. The nitrocellulose was prepared using the method in 

Fig 3.1. GST-PDE4D5 interaction with PDE4D5 peptide array was probed using 

anti-GST antibody. Spot 31-34, 45-50 and 56-62 showed positive interactions 

with GST-βarrestin1. (Shown are representative immunoblots from two 

independent experiments. Data provided by George Baillie.) 
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Figure 4.6B: Identification of RNN dimerization site by ALA scan array .  

Sequence Q164~N175 of PDE4D5 was subjected to alanine scan analysis. 

Sequence Q164~N175 and its mutant with alanine substitutions were generated 

as indicated. GST-PDE4D5 interaction with sequence Q164~N175 was probed 

using anti-GST antibody. (Shown are representative immunoblots from two 

independent experiments. Data provided by George Baillie.) 
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Figure 4.6C: Identification of ETL dimerization site by ALA scan array. 

Sequence D221~L230 of PDE4D5 was subjected to alanine scan analysis. 

Sequence D221~L230 and its mutant with alanine substitutions were generated 

as indicated. GST-PDE4D5 interaction with sequence D221~L230 was probed 

using anti-GST antibody. (Shown are representative immunoblots from two 

independent experiments. Data provided by George Baillie.) 
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 Figure 4.6D: Identification of LMH and KTE dimerization sites by ALA scan 

array.  

Sequence Q277~E325 of PDE4D5 was subjected to alanine scan analysis. 

Sequence Q277~E325 and its mutant with alanine substitutions were generated 

as indicated. (Data provided by George Baillie) 
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Figure 4.7A: Initial evaluation of the phosphorylation site and RNN, ETL, LMH 

and KTE mutants 

Constructs expressing LexA-PDE4D5 with some of the phosphorylation site 

mutants, as well as RNN, ETL, LMH and KTE (columns) are used as bait. Empty 

vector, GAL4-PDE4D3 and GAL4-PDE4D5 (rows) are usd as prey. The assay used 

methods identical to those used in Figure 4.1. (Date provided by Graeme B. 

Bolger) 
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Figure 4.7B: Evaluation of combinations of triplets and the Quad mutant. 

Constructs expressing LexA-PDE4D5 with RNN, ETL, LMH and KTE, either in 

triplets or all together (i.e., the Quad mutant) are used as baits and empty 

vector, GAL4-PDE4D3 and GAL4-PDE4D5 (rows) are used as preys. The assay used 

methods identical to those used in Figure 4.1. (Date provided by Graeme B. 

Bolger, Comprehensive Cancer Center, University of Alabama at Birmingham, 

Birmingham, AL 35294-3300, U.S.A.) 
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Figure 4.8: Investigate PDE4D5 QUAD mutant and its ability of dimerizzation. 

HEK293 cells were transfected with different constructs as indicated: FLAG-4D5 

plus VSV-4D5 (first column), FLAG-4D5 plus vsv tagged Quad mutant (second 

column). After 48 hours culture at 37°C, cells were lysed in 3T3 lysis buffer, 

precleared and measured as described in Figure 4.2. Equal amounts of protein 

were subjected to immunoprecipitation of vsv-PDE4D5 and blotted for vsv and 

FLAG-PDE4D5 using anti-vsv and anti-Flag antibody. (Shown are representative 

immunoblots from three independent experiments.)   



 

 156 

 

Figure 4.9: PFE4D5 3D structure  

This shows a single ion-pair R499 with D463 that may play key roles in PDE4D5 

dimerization. (Data provided by David Adams, Heriot Watt University, Edinburgh, 

U.K.) 
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Figure 4.10A: Evaluating the R499D mutant alone, or as part of the Quad set. 

Constructs expressing PDE4D5 with the Quad mutant plus R499D, or with R499D 

alone were made, and were tested in two-hybrid assays, using methods identical 

to those used in Figure 4.1. (Date provided by Graeme B. Bolger) 
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Figure 4.10B: Testing the D463R mutant for its effect on dimerization. 

We made constructs expressing PDE4D5 with the D463R mutant, or the Quad 

mutant plus D463R, and tested them in two-hybrid assays, using methods 

identical to those used in Figure 4.1. (Date provided by Graeme B. Bolger) 
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Figure 4.11: IP results of 4D5 QUAD R499D mutant. 

HEK293 cells were transfected with FLAG-4D5, VSV-4D5, FLAG and vsv tagged 

Quad, R499D and Quad R499D mutants in different combinations as indicated. 

Cells were lysed in 3T3 lysis buffer, precleared and measured as described in 

Figure 4.2. Equal amounts of protein were subjected to immunoprecipitation of 

vsv-PDE4D5 and blotted for vsv and FLAG-PDE4D5 using anti-vsv and anti-Flag 

antibody. (Shown are representative immunoblots from two independent 

experiments.) 
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Figure 4.12: Dissecting out the effects of the various portions of the Quad 

mutant. 

The Quad mutant contains four triplets in all.  To determine the contribution of 

each triplet to the overall effect of the Quad mutant, we generated constructs 

expressing PDE4D5 with each of the triplets, as well as doublets and triplets, and 

compared their effects to that of the Quad mutant.  The mutants were tested in 

two-hybrid assays, using methods identical to those used in Figure 4.1. GAL4-

empty vector, wild type PDE4D5 and Quad R499D mutants are used as prey 

(rows). Different combinations of the triplets are all LexA fusion and used as bait 

(columns). (Date provided by Graeme B. Bolger) 
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Figure 4.13: Comparing the effect of the RNN-R499D mutant to that of the 

Quad-R499D mutant. 

 Since effects of the RNN mutant seem to replicate the effects of the entire 

Quad set (Figure 4.9, above), we compared the effect of RNN-R499D mutant to 

that of Quad-R499D.  The mutants were tested in two-hybrid assays, using 

methods identical to those used in Figure 4.1. (Date provided by Graeme B. 

Bolger) 
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Figure 4.14. Testing the RNN R499D mutant on dimerization in vivo.  

HKE293 cells expressing different constructs as indicated: (1) Wt HEK293 (2) vsv-

4D5 (3) FLAG-4D5 (4) vsv+FLAG-4D5 (5) vsv-RNN R499D+FLAG-RNN were lysed in 

3T3 lysis buffer, precleared and measured as described in Figure 4.2. Equal 

amounts of total protein were subjected to SDS-PAGE and subsequently blotted 

for each tagged protein. According to this, cell lysates then diluted to contain 

equal amount of vsv tagged and Flag tagged protein before immunoprecipitate 

for vsv-PDE4D5. The vsv and Flag tagged PDE4D5 and its mutants are detected by 

Western blotting using anti-vsv and anti-flag antibody. (This experiment only 

carried once.) 
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Figure 4.15: Different drug effects on 4D5 dimerization. 

HEK293 cells expressing vsv and Flag tagged PDE4D5 were seeded onto 10cm 

culture plates. All the compounds were dissolved in pure DMSO and added to cell 

culture medium to a final concentration of 10µM. The cells were then incubated 

at 37°C for 10 minutes. For IBMX/Forskolin and KT5720 treated cells, KT5720 

was added to cells for 10 minutes before adding IBMX/Forskolin. After 2 washes 

with pre-chilled PBS to cease the reaction, the cells were lysed in 3T3 lysis 

buffer. (A) The lysates were then subjected to immunoprecipitation using anti-

vsv agarose and blotted with vsv and flag antibody. Western blot results were 

scanned in and analyzed with QuantityOne (Biorad). Immunoprecipitated Flag-

PDE4D5 (row 1) vs vsv-PDE4D5 (row 2) was plotted in bar chart. The vsv vs Flag 

ratio of DMSO treated cells was set as 100% dimerization, and comparing this 

with ratios from other treatments displayed the changes of PDE4D5 dimerization 

under the corresponding treatments. (B) shows anisomycin effect on PDE4D5 

dimerization. (C) shows effect of IBMX/Forkolin (trigger PKA phosphorylation) on 

dimerizaiton. (Shown are representative immunoblots from two independent 

experiments.) 

(A) 

(B) (C) 
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Figure 4.16: Co-expression of ERK2 has no major effect on dimerization of 

PDE4D isoforms. 

ERK2 was co-expressed along with the LexA-PDE4D5 and GAL4-PDE4D5 fusions 

and experiments were carried out identically to those in Figure 4.1. (Date 

provided by Graeme B. Bolger) 
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5 Preliminary studies on RACK1 

5.1 Introduction 

Receptor for activated C-kinase 1 (RACK1) is a 36 –kDa protein consisting of 

seven internal tryptophan-aspartate 40 (WD40) repeats. The structure of RACK1 

is indicated to be a seven-bladed propeller from the WD repeats (Sondek and 

Siderovski 2001; Steele, McCahill et al. 2001). Each blade of RACK1 is built up by 

β-sheets as shown in Gβ crystal structure (Wall, Coleman et al. 1995; Sondek, 

Bohm et al. 1996). RACK1 and Gβ subunit share 42% amino acids similarity. 

RACK1 has also been found to interact with Gbeta-gamma subunit via its WD 

repeats (Chen, Spiegelberg et al. 2004). 

The first function of RACK1 identified was its ability to interact with activated 

“conventional” protein kinase-C forms (PKC) such as PKCβII (Ron, Luo et al. 1995; 

Stebbins and Mochly-Rosen 2001) and “novel” PKCs such as PKCε (Besson, Wilson 

et al. 2002). Conventional PKCs (α, βI, βII, γ) are calcium- and diacylglycerol-

dependent protein kinases which are activated upon elevated calcium and 

diacylglycerol that are generated by the receptor-stimulated hydrolysis of 

plasma membrane phosphatidylinositol 4, 5-bisphosphate. Novel PKCs are those 

calcium-independent kinases (δ, ε, η, θ, µ) or calcium- and diacylglycerol-

independent (atypical) kinases (ζ, λ) (Mellor and Parker 1998). 

Another RACK1 interacting protein of particular note is the cAMP-specific 

phosphodiesterase PDE4D5, which has been shown to contain a RACK1 

interacting domain (RAID) in its N-terminal region (Bolger, McCahill et al. 2002).  

Further investigations revealed that there is another RACK1 interacting site 

within the PDE4D5 catalytic region (Bolger, Baillie et al. 2006). RACK1 interacts 

with PDE4D5 via WD repeats 5-7 (Steele, McCahill et al. 2001). The PDE4D5-

interacting protein, β-arrestin has overlapping binding sites with RACK1 on 

PDE4D5.  

RACK1 has been reported to mediate and initiate cell migration in many cell 

types (Buensuceso, Woodside et al. 2001; Cox, Bennin et al. 2003; Kiely, 

O'Gorman et al. 2006). It works as a scaffolding protein at focal adhesion sites 

and regulates the formation of focal adhesions (Doan and Huttenlocher 2007; 
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Onishi, Lin et al. 2007). It has been shown to associate with core kinases of the 

ERK signalling pathway, Raf, MEK and ERK, and target active ERK to focal 

adhesions. FAK and paxillin are two focal adhesion proteins whose 

phosphorylation is modulated by RACK1 (Mamidipudi, Chang et al. 2004; 

Vomastek, Iwanicki et al. 2007).  

Signalling from Insulin-like Growth Factor I (IGF-I) receptor and β1 integrins are 

also orchestrated by RACK1 in a way where RACK1 scaffolds the receptors and 

signalling molecules into a complex (Hermanto, Zong et al. 2002; Lynch, 

Vodyanik et al. 2005; Kiely, O'Gorman et al. 2006). The signalling collaboration 

between IGF-I and β1 integrin is essential for tumour generation (Goel, Breen et 

al. 2005).        

RACK1 is considered to influence the activity of another member of the MAPK 

signalling pathway, c-Jun NH2-terminal kinase (JNK), via its interaction with PKC. 

JNK activation can be affected by changes in activity or levels of the PKC-RACK1 

module. Thereby, JNK activity varies upon the expression level of RACK1 (Lopez-

Bergami, Habelhah et al. 2005). Interestingly, enhanced RACK1 expression levels 

were detected in colon carcinoma (Berns, Humar et al. 2000), melanoma (Lopez-

Bergami, Habelhah et al. 2005), non-small-cell lung carcinoma (Berns, Humar et 

al. 2000), and oral squamous cell carcinoma (Wang, Jiang et al. 2008). The 

inhibition of RACK1 expression increased the sensitivity of melanoma cells to 

treatment and reduced their tumourigenicity in a xenograft tumour model. 

Therefore RACK1 is expected to be important in tumorigenicity (Lopez-Bergami, 

Habelhah et al. 2005). Understanding RACK1 and its link to JNK and other RACK1 

interacting proteins may lead us to new methods in tumour treatment.  

Since RACK1 has been shown to relocate the nucleus after ethanol and foskolin 

treatment (Ron, Vagts et al. 2000; He, Vagts et al. 2002) and SUMOylation may 

lead to protein nuclear transport, we investigated whether RACK1 is a SUMO 

substrate and, if so, whether nuclear translocation is related to RACK1 

SUMOylation. 

Sumoylation is considered to have a nuclear effect as most of SUMO enzymes are 

enriched in the nucleus, and many researchers focussed on its role in DNA repair, 

transcription, nuclear bodies and nucleo-cytoplasmic transport (Geiss-

Friedlander and Melchior 2007) 
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Small ubiquitin- related modifier (SUMO) proteins can covalently associate with 

many proteins as a post-translational modification. Sumo modification 

participates in various cellular processes, including signal transduction, DNA 

repair, transcription regulation and nuclear transport (Mahajan, Delphin et al. 

1997; Du, Bialkowska et al. 2008). An isopeptide bond between the C-terminal 

carboxyl group of SUMO and the ε-amino group of a lysine residue in the 

substrate connects the SUMO with its substrate. This SUMO modification requires 

three different enzymes to attach SUMO to its substrate. SUMOylation starts with 

an activation procedure by a SUMO-activating enzyme (also named E1), which 

initiates an ATP-dependent activation of SUMO C-terminus. Activated SUMO is 

transferred to a SUMO-conjugating enzyme (E2) Ubc9 from E1. In the last step, 

SUMO is transferred to the specific substrate from Ubc9 with the help of SUMO 

ligases (E3). The SUMO proteins are attached to the lysine residues within a short 

consensus sequence ΩKXE, where Ω is a large hydrophobic amino acid such as 

isoleucine, valine or lecuine; K is the lysine residue where the SUMO is attached; 

X could be any amino acid; and E represents a glutamic acid. The Ubc9 (E2) 

binds directly to this motif. E2 and E3 control substrate specificity. The SUMO 

unit can be cleaved off by several cleavage enzymes (Johnson 2004; Hay 2005).  

5.2 Results 

5.2.1 RACK1 is a potential SUMOylation substrate 

We first scanned RACK1 full-sequence (NP_006089, NCBI) for classic SUMOylation 

sites. SUMOplot™ prediction, developed by ABGENT 

(www.abgent.com/tools/sumoplot) was used to search for potential target 

lysine sites in consensus motifs. Two possible SUMOylation motifs were identified 

in the scan: one is LK271QE with a score of 0.91 (red) indicating high possibility, 

the other one is GK212DG with a score of 0.50 (blue) indicating low possibility. 

Both motifs are consistent with the SUMO consensus sequenceψKXE, where ψ is 

an aliphatic branched amino acid, K is the lysine that SUMO added to and x could 

be any amino acid (Fig. 5.1).     
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5.2.2 In vitro SUMOylation on RACK1 peptide array 

I employed peptide array technology to investigate further whether LK271QE and 

GK212DG are SUMOylation motifs. The full length RACK1 peptide library was 

synthesized on nitrocellulose and prepared as described in 3.2.1. An in vitro 

SUMOylatin kit (BIOMOL) was used according to the instructions: all buffers were 

mixed and diluted with double distilled water into a total volume of 1 mL before 

applying to prepared RACK1 peptide array for 1 hour incubation at 37 degree. 

The reaction was stopped by washing the membrane with TBST 3 times. The 

SUMOylated RACK1 peptide array was probed with anti-SUMO1 antibody 

(BIOMOL). As a control, an identical RACK1 peptide array was probed with anit-

SUMO1 antibody without in vitro SUMOylation. The dark spots were recognised as 

positive sumoylated peptides. 

Two regions were identified as potential SUMO attachment sequences from this 

in vitro SUMOylation experiment. One contains 51-NYGIPQRALR GHSHFVSDVV 

ISSDGQFALS GSWDG-85 (in green), which does not include any lysine and so was 

considered false positive. The other is 251-ATGPSIKIWD LEGKIIVDEL KQEVI-275 

(in red), which contains the LK271QE motif that found in SUMOplot prediction. 

However, the GK212DG found in SUMOplot prediction was not SUMOylated under 

the same conditions (Fig. 5.2).       

5.2.3 Accessibility of LK271QE in the RACK1 crystal structure  

From the RACK1 crystal structure, we can see that lysine271 is on the side chain 

directly opposite to the FAK interaction surface (Fig. 5.3). The lysine271 is 

accessible and conformational flexibility allows it to poke downwards in the 

direction of the indicated arrow. However, one thing to be noticed is that among 

the LK271QE the Gln272 is disconnected from Glu273 in this RACK1 crystal 

structure. A reasonable explanation is that the template proteins used in 

construction of this homology model have a longer repeat on this repeat of the 

structure. However, the key information is that the lysine271 is surface exposed 

and accessible. 
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5.2.4 In vitro sumoylation on alanine/arginine scan array 

In full length RACK1 peptide array, I found sequence 251-ATGPSIKIWD 

LEGKIIVDEL KQEVI-275 containing LK271QE can be SUMOylated in vitro. The 

sequence between 251~275 was subjected to alanine scan array and arginine 

scan array. The alanine/arginine scan array was subjected to in vitro 

SUMOylation using methods identical to those in Fig 5.2. It was then probed with 

anti-SUMO antisera (Cell signalling and BIOMOL). It is quite striking that mutation 

of lysine271 to alanine (Fig 5.4a) did not attenuate the SUMOylation of the 

peptide, which argues against the hypothesis that K271 is the SUMOylation site. 

Similar results were obtained when lysine271 was mutated to arginine. Note that 

when immunobloting the same alanine scan array with anti-SUMO1 from 

different resources, they gave different results as leucine270 was positive when 

blotting with anti-SUMO1 from BIOMOL (Fig 5.4a 1), but negative when using 

anti-serum from Cell Signaling (Fig 5.4a 2). This indicated the non-specific 

binding of different antisera may give diverse and even opposite results, which 

highlights the importance in choosing the right antiserum. Another thing to be 

noticed is that even when using the same antibody, the alanine scan array (Fig 

5.4a 1) and arginine scan array (Fig 5.4a) also displayed different results in the 

in vitro SUMOylation analyses. Indeed, amino acid substitution may possibly 

cause changes in the peptide nature and their subtle structural conformation, 

which may affect the in vitro SUMOylation of the peptide or the antibody 

specificity to the peptide.  

5.2.5 In vitro sumoylation on amino acid replacement scan array 

251-275 

As mentioned above, Leu271substitution with Ala or Arg has different effects on 

SUMOylation, therefore, in searching for a suitable amino acid replacement to 

ablate the SUMOylation on Leu271, an amino acid replacement scan array was 

designed and generated. Peptide 251-A T G P S I K I W D L E G K I I V D E L K Q E 

V I-275 was usd as a template in this amino acid replacement scan array. K271 of 

the template was replaced by 19 different amino acids as indicated (Fig 5.5). All 

the peptides were synthesized and mounted on nitrocellulose, which was 

SUMOylated and detected using methods identical to that in Fig 5.2. Surprisingly, 

changing K271 to any other amino acid significantly increased the sumoylation of 
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this peptide rather then decreasing it. There are two possible conclusions from 

this. One is that the Leu271 is not the substrate for SUMOylation. The other one is 

that it may due to the non-specific binding of the antiserum for SUMO that we 

have observed previously (Fig 5.4).  

5.2.6 In vitro sumoylation on purified GST-RACK1 and its K271A 

mutant 

GST fusion RACK1 protein was constructed and its K271A mutant was made using 

site directed mutagenesis. Equal amounts of purified GST-RACK1 and K271A 

mutant were subjected to in vitro SUMOylation using a SUMOylation kit (BIOMOL). 

RanGAP is a known protein that carries a SUMO modification. It was used as a 

positive control for testing the efficacy of the SUMOylation kit. After in vitro 

SUMOylation, equal volume of reaction solution were subjected to SDS-PAGE and 

detected with immunoblotting. When immunoblotting with anti-SUMO1: Lane 1 is 

SUMOylated RanGAP which showed the same pattern as shown in the kit 

instructions; Lane 2 is wild type GST-RACK1 with no detectable SUMOylation; 

Lane 4 is GST-RACK1 K271A mutant with a pattern similar to SUMOylated RanGAP; 

Lane 3 and 5 are negative controls (Fig 5.6 IB:SUMO1). It seems that RACK1 

K271A mutant rather then wild type RACK1 can be SUMOylated (Fig 5.6 

IB:SUMO1). SUMO1 is a small protein with a molecular weight of 11 kDa and 

SUMOylated target protein normally has a 20 kDa size increase in gel 

electrophoresis. However, when blotting for the GST tag on RACK1, there was no 

detectable molecular weight migration (Fig 5.6 IB:GST). Thus, GST fusion RACK1 

cannot be SUMOylated in vitro. Protein expressed in prokaryotes lacks post 

translational modification and sometimes can lead to incorrect folding. 

Therefore, purified GST-RACK1 may have a different structure / conformation 

than RACK1 generated in eukaryotes, blocking K271 from being SUMOylated. 

5.2.7 In vivo sumoylation on RACK1 

To test if RACK1 can be SUMOylated in mammalian cells, I made an HA tagged 

RACK1 construct with K271A mutation. Wild type HA-RACK1 or K271A mutant 

were transfected with HA-PIASy in HEK293 cells. PIAS is an E3 ligase that 

contributes to SUMO substrate specificity. To determine whether overexpressing 

PIAS with the target protein can increase the SUMOylation. PIASy was 
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overexpressed with RACK1 in HEK293 cells that were lysed in modified RIPA 

buffer with NEM (de-SUMOylation inhibitor). The lysates were centrifugation at 

13,000 for 5 minutes, the supernatant were collected as precleared lysates. The 

precleared lysates were analyzed for their protein concentration and subjected 

to immunoprecipitation using anti-HA agarose beads. The pull-down pellets were 

analyzed by Western Blotting. In this experiment, no SUMOyalted RACK1 was 

detected in the HA IPs (lane 4, Fig 5.7B, D) nor in the lysates (lane 4, Fig 5.7A, C, 

E). Identical experiments were carried out and immunoblotted for SUMO2/3 and 

SUMO4 rather than SUMO1. However, no detectable SUMOylation was observed 

(data not shown). One reason for this is that it might due to the substrate 

specificity of PIASy. As there are several PIAS subtypes, PIASy may not be the 

right E3 ligase for RACK1 SUMOylation. Another reason might be that RACK1 

SUMOylation is stimuli-dependent. RACK1 cannot be SUMOylated without 

activation.       

5.2.8 PIAS isoforms cannot sumoylate RACK1 in HEK293 cells 

Different tagged PIAS1, PIAS3 and PIASy were co-transfected with vsv tagged 

RACK1 in HEK293 cells. Cells lysates were prepared using methods identical to 

those used in Fig 5.5. The lysates were then subjected to Western Blot. When 

immunobloting for vsv epitope, vsv-RACK1 can be detected but no SUMOylated 

RACK1 which should have a drift in molecular weight (Fig 5.8). This indicates 

that co-expressing PIAS isoforms with RACK1 does not cause RACK1 SUMOylation. 

5.2.9 Stimuli treatment on RACK1 SUMOylation 

Forskolin and Ethanol treatment of G6 cells has been reported to cause RACK1 

translocation to the nucleus, and SUMOylation has been shown to cause 

translocation of proteins to the nucleus (Du, Bialkowska et al. 2008). Therefore, 

forskolin and ethanol treatment may leads to RACK1 sumoylation.  

To test this, HA-RACK1 was transfected in HEK293 cells for 48 hours before 

adding different agonists. Cells were treated with forskolin, ethanol, insulin and 

isoprenaline at indicated concentration for 30 minutes (Fig 5.9). Cells were lysed 

and subjected to Western Blot. There was no detectable shift in migration of 

vsv-RACK1 to a higher molecular weight species when immunoblotting for vsv-
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RACK1 using anti-vsv anti-serum. AS this may due to the cell specificity since 

forskolin and ethanol can cause RACK1 nuclear translocation in G6 cells, 

attempts were made to overexpress RACK1 in G6 cells, but without success.   

5.3 Discussion 

SUMOylation has been a popular research subject since the first sumo substrate 

Ran GAP was found (Mahajan, Delphin et al. 1997). As a reversible post-

transcriptional modification, it is involved in many cellular progresses, such as 

signal transduction, DNA repair, transcription regulation and nuclear 

translocation (Hardeland, Steinacher et al. 2002; Baba, Maita et al. 2005; Geiss-

Friedlander and Melchior 2007) . 

In this study, I found that RACK1 contains a SUMO consensus motif ΩKXE by 

scanning the full sequence of RACK1 using a sumoylation predication software 

system (ABGENT). I found that the small peptide A251~L K Q E V I275 containing 

LK271QE can be sumoylated in vitro, and the LK271QE was surface exposed and 

accessible according to its crystal structure. However, further in vitro  

SUMOylation of Ala/Arg substitution scanning arrays of the corresponding A251~L 

K Q E V I275 sequence showed that mutating the Lysine271 to Ala or Arg strangely 

increased, rather than decreased, the in vitro sumoylation of the A251~L K Q E V 

I275 peptide. Purified GST fusion RACK1 cannot be sumoylated in vitro, but GST 

RACK1 K271A mutant displayed a pattern similar to sumoylated RanRAP1. One 

explanation is that K271A is not the sumoylation site. I thus set out to see if 

mutation of this site in RACK1 may give any information on whether this is a 

SUMO site in itself or may lead to a structural conformational change and 

exposure of another sumoylation site. However, exposing another site is rather 

unlikely because (1) in A251~L K Q E V I275  peptide, there is no other ΩKXE SUMO 

consensus site; (2) RACK1 K271A mutant has no molecular weight increase that is 

normally seen in sumoylated proteins.  Of course it is possible that the 

sumoylation signal that was detected in the peptide array might due to the non-

specific binding of the antisera. Indeed, anti-sera from different resources did 

give diverse results (Fig 5.4).  

As SUMO E3 ligase PIASy has been shown to assistant sumoylation, I co-

transfected PIASy with RACK1 construct into HEK293 cells, but there was no 
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detectable sumoylation.  I then set out to investigate other PIAS substrates 

PIAS1/3 yet there was still no detectable SUMOylation. 

To sum up, RACK1 seems unlikely to be sumoylated (at least under conditions 

that I have tested). The sumoylation signal detected on peptide array is due to 

the non-specific binding of anti-sumo anti-sera. However, several reports 

suggested that there were proteins that could undertake sumoylation without 

possessing the sumo consensus motif (Hoege, Pfander et al. 2002), therefore it is 

possible that RACK1 can be sumoylated in a way that is not related to currently 

known sumo consensus motifs. Hietakangas, V. also reported several negatively 

charged residues E/D or phosphorylated residues downstream of the consensus 

motif ΩKXE may play key roles in regulating substrate sumoylation (Hietakangas, 

Anckar et al. 2006). This might be an alternative explanation for the observation 

made here. In in vitro SUMOylatin of the RACK1 peptide array, the sequence 

A251~L K Q E V I275 contianing LK271QE was sumoylated (Fig 5.2 and Fig 5.4 

control), but not the following sequence containing LK271QEVISTSS (Fig 5.2 right 

to spot B, Fig 5.4, last two spots of each array). This may support the hypothesis 

that the RACK1 sumoylation (if any) is regulated by the phosphorylation of STSS. 

Thus, the phosphorylation of STSS may trigger conformational change of RACK1 

structure, thereby promote the subsequent sumoylation. If this hypothesis is true, 

finding the right kinase for this site on RACK1 provides a major challenge.     
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Figure 5.1: Identification of two SUMO consensus motifs, GK212DG and LK271QE, 

in RACK1.  

Full length of RACK1 sequence was scanned by SUMOplot™ prediction developed 

by ABGENT. Blue indicates motifs with low probability and Red indicates high 

probability.  
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Figure 5.2: In vitro SUMOylation of a RACK1 peptide array identified A251~I275 

containing LK271QE which can be SUMOylated.   

RACK1 peptide array was in vitro SUMOylated as described before. It was then 

subjected to Western Blot with an antiserum for SUMO1. Dark spots represent 

the SUMOylation sites. A, sequence N51YGIPQRALR GHSHFVSDVV ISSDGQFALS 

GSWDG85 (in green). B, sequence A251TGPSIKIWD LEGKIIVDEL KQEVI275 (in red). 

Underlined is LK271QE motif. (Shown are representative immunoblots from two 

independent experiments. Data provided by George Baillie) 
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Figure 5.3: Crystal structure of RACK1 showing LK271QE motif is surface 

exposed.  

K271 is on the side chain directly opposite to the FAK interaction surface as 

indicated. The green motif is the LK271QE. The K271 pokes downwards in the 

direction of the indicated arrow. (Data provided by David R. Adams, Heriot-Watt 

University, Edinburgh, UK) 
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Figure 5.4: In vitro SUMOylation of alanine/arginine scan arrays 

Sequence 251-A T G P S I K I W D L E G K I I V D E L K Q E V I-275 (Ct) containing 

LK271QE was subjected to alanine scan array (a) and arginine scan array (b). The 

alanine/arginine scan arrays were subjected to in vitro SUMOylation identically 

to that described in Fig 5.2. They were probed with anti-SUMO antisera: 1 from 

BIOMOL and 2 from Cell Signaling Technology. 270-273A/R, residues 270-273 are 

substituted to Ala/Arg. 252-255A/R, residues 252-255 are substituted to Ala/Arg. 

LK271QE is highlighted in RED. (Shown are representative immunoblots from two 

independent experiments.) 
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Figure 5.5: In vitro SUMOylation of an amino acid replacement scan array 

251-275.  

Peptide 251-A T G P S I K I W D L E G K I I V D E L K Q E V I-275 was used as a 

template in an amino acid replacement scan array. K271 (RED) of the template 

was replaced by 19 different amino acids as indicated (Fig 5.5). All the peptides 

were synthesized and mounted on nitrocellulose, which was SUMOylated and 

detected using methods identical to that in Fig 5.2. (Shown are representative 

immunoblots from two independent experiments.) 

 

 

 



 

 179 

 

Figure 5.6: In vitro SUMOylation of purified GST-RACK1 and its K271A mutant.  

In vitro sumoylation kit (BIOMOL) was used in this experiment. + is the positive 

reaction, – is the negative control lack activation reagent. Purified GST tagged 

protein and the activation reagent were loaded as described below: (1) GST-

RanGAP1 +. (2) GST-RACK1 +. (3) GST-RACK1 –. (4)GST-RACK1 K271A +. (5) GST-

RACK1 K271A -. IB: Immunoblot. (Shown are representative immunoblots from 

two independent experiments.) 
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Figure 5.7: In vivo SUMOylation of RACK1.   

HEK293 cells expressing HA-PIASy and/or HA-RACK1 were lysed and lysates 

blotted with antibodies to RACK1(A),SUMO1(E) or HA(C). HA-RACK1 was 

immunoprecipitated using HA-antibodies and blotted with SUMO1(B) or HA(D). 

(Shown are representative immunoblots from three independent experiments.) 
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Figure 5.8: PIAS isoforms cannot sumoylate RACK1 in HEK293 cells 

HA-PIAS3/y, FLAG-PIAS1 were co-expressed with vsv-RACK1 in HEK293 cells. A, 

cell lysates were blotted for HA and FLAG to show the expression of PIAS 

isoforms. B, immunoblot for vsv-RACK1. Cell lysates were loaded as indicated. 

(Shown are representative immunoblots from three independent experiments.) 
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Figure 5.9:Various stimuli have no influence on RACK1 sumoylation.  

HEK293 cells overexpressing HA tagged RACK1 were treated with Forskolon (Fsk), 

isoprenaline (Iso), Ethanol or Insulin for 30 mins at the indicated concentration. 

Lysates were prepared and  immunobloted with anti-HA antibodies for HA. 

(Shown are representative immunoblots from two independent experiments.) 
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6 General discussion and predication  

6.1 MEK1 binds directly to βarrestin1 

 G protein coupled proteins (GPCR) can undertake fast desensitization, 

receptor internalization and recycling upon receptor stimulation with βarrestins 

and have been shown to play pivotal roles in regulation of these processes 

(DeWire, Ahn et al. 2007; DeFea 2008). The β2-adrenergic receptor (β2AR) has 

been a topical and important subject relating to investigations of the functioning 

of GPCRs and βarrestins. The classic signal transduction through GPCR (β2AR) is 

that upon agonist binding to the receptors, they interact with the GTP-binding 

protein Gs. This releases the GTP-bound form of alpha-Gs which can then 

activate the downstream effector, adenylyl cyclase, leading to elevated cAMP 

levels and PKA activation.  

However, a process of desensitization is rapidly started to cease the receptor 

signal transduction: GRKs are translocated to and phosphorylate the receptor, 

which facilitates cytosolic βarrestin recruitment to the receptor (Ferguson, 

Barak et al. 1996; Premont and Gainetdinov 2007). The βarrestins then associate 

with agonist occupied receptors, sterically blocking their interaction with G 

proteins. The receptor associated βarrestin is crucial for the GPCR 

internalization, as βarrestins can interact with clathrin cages and bring them to 

the GPCR to facilitate GPCR internalization (Gurevich and Gurevich 2006). In the 

case of β2AR, βarrestin can sequester the cAMP specific phosphodiesterase, 

PDE4D5 thereby transferring a cAMP degrading enzyme to the receptor at the 

plasma membrane close to where cAMP is synthesised. This recruited 

PDE4D5/βarrestin complex is able to regulate cAMP levels around the β2AR so as 

to control phosphorylation of the β2AR by an AKAP-tethered PKA sub-population. 

This serves to regulate the switching of β2AR coupling between Gs and Gi, thus 

providing a further means of regulating receptor desensitization (Baillie, Sood et 

al. 2003; Lynch, Baillie et al. 2005; Bolger, Baillie et al. 2006).   

βarrestin1 (418 amino acids), which has an additional 10 amino acids in its C-

terminal region, compared to βarrestin2 (409 amino acids), is constitutively 

phosphorylated by ERK at Ser412 (Lin, Miller et al. 1999; Luttrell, Roudabush et 

al. 2001). Upon agonist stimulation of GPCRs, βarrestin1 undergoes rapid 
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dephosphorylation at Ser412 and translocates to the GPCR at the plasma 

membrane. βarrestin has been considered to regulate clathrin recruitment to 

the receptors and dynamin phosphorylation, which are two important features in 

receptor internalization. The dephosphorylation of Ser412 is considered to be a 

molecular switch that allows interaction between βarrestin1 and clathrin (Lin, 

Krueger et al. 1997; Lin, Miller et al. 1999), and also is considered to play a 

pivotal role in the association of βarrestin1 with c-Src, which leads to the 

phosphorylation of dynamin (Miller, Maudsley et al. 2000). Therefore, the ERK-

dependent Ser412 phosphorylation and dephosphorylation of βarrestin1 

modulates its interaction with the endocytic machinery (clathrin and dynamin) in 

the internalization of GPCRs (Lin, Krueger et al. 1997).   

The mitogen-activated protein kinase singaling pathway c-Raf/MEK/ERK includes 

three serine/threonine kinases that are phosphorylated and activated by their 

upstream kinases (Rubinfeld and Seger 2005). The c-Raf/MEK/ERK complex 

mediates various cellular processes including cell proliferation, transcription 

regulation, apoptosis and cell differentiation (Lu and Xu 2006). This signaling 

system is involved in many diseases, and ERK has become a popular target in 

searching for a specific inhibitor as a possible therapeutic. However, there has 

been little success in trying to do this. Considering the high fidelity of this 

MEK/ERK cascade, a MEK inhibitor would be expected to work equally well in 

causing ERK inhibition. Therefore, MEK inhibitors have become candidates as 

potential anti-cancer tehraputics and also for treating chronic inflammatory 

disorders, such as asthma and rheumatoid arthritis ( English and Cobb 2002; 

Pelaia, Cuda et al. 2005; Sweeney and Firestein 2006). 

Previous studies have indicated that either MEK inhibitors or dominant negative 

MEK (inactive) can attenuate Ser412 phosphorylation of βarrestin1 (Luttrell, 

Roudabush et al. 2001; Tohgo, Pierce et al. 2002; Hupfeld, Resnik et al. 2005). 

Consistent with this, I have shown that treating cells with MEK inhibitor UO126 

or PD98059 does decrease ERK-dependent phosphorylation on Ser412, which 

confirms that the phosphorylation of βarrestin1 on Ser412 is dependent on MEK. 

Previous research suggests that c-Raf, MEK and ERK could form a signaling 

complex with βarrestin. In this, C-Raf acts as the adaptor protein linking 

MEK/ERK with βarrestin to facilitate the formation of a signaling complex 
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(Luttrell, Roudabush et al. 2001; Tohgo, Pierce et al. 2002). In addition, a report 

that came after my research was completed shows that MEK1 can bind to both 

the C-domain and N-domain of βarrestin (Song, Coffa et al. 2009). In the course 

of my work, I have shown that MEK1 binds directly to a DxxD motif on βarrestin’s 

N-domain and that this association is not ERK dependent. In another recent study, 

an ERK docking site has been found to locate in βarrestin’s C-domain. Based on 

these reports, we can conclude that MEK1 binds directly to βarrestin’s N-domain 

and can presume an indirect interaction between βarrestin and MEK via ERK. 

To locate the possible interaction motif for βarrestin1 on MEK1 and vice versa, I 

employed a novel peptide array and substitution array in my study. By this 

scanning technology, I located the MEK1 docking sites on βarrestin1, namely 

Asp26 and Asp29, and the corresponding βarrestin1 docking residues on MEK1, 

namely Arg47 and Arg49. To confirm this finding, I made and tested the MEK1-

binding-KO βarrestin1 mutant with the two aspartic acids substituted to alanines 

and the βarrestin1-binding-KO MEK1 mutant with two Arg residues mutated to 

Ala. Immunoprecipitation assays showed that these mutations disabled the 

binding ability to the counterpart. In addition to this, a peptide that inhibited 

MEK1 binding to βarrestin1 (T~DFVD, with a sequence identical to residue 6-30 of 

βarrestin1) was designed, generated and evaluated. This small peptide with a N-

terminal stearoylation can penetrate cell membrane in 2 hours where it 

regulates the phosphorylation of βarrestin1 at Ser412. Disassociation of MEK1 

from the βarrestin1/ERK complex by the inhibitory peptide decreases the 

phosphorylation of βarrestin1 at Ser412, which increases interactions of clathrin 

and c-Src to βarrestin1. The dephosphorylation of βarrestin1 at Ser412 thereby 

increases the association of βarrestin1, which, in turn, facilitates the 

internalization of β2AR. All these pieces of evidence indicate that the 

dephosphorylation of βarrestin1 is a rate-limiting step for the receptor 

internalization process. 

From the known crystal structure of βarrestin it is evident that Asp26 and Asp29 

are partially exposed on the surface of βarrestin in its basal conformation 

(Brookhaven Protein Date Bank codes 1G4M, 1G4R and 1ZSH (Milano, Kim et al. 

2006)). However, in the basal / crystalline state they are involved in interactions 

with neighbouring residues. Thus Asp26 connects to the C-terminal Lys355 and 

Arg393 by salt bridges, and also interacts with the “phosphate sensor” Arg169. 
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Also, Asp29 forms a salt bridge to Lys170 and contacts the side chain of Gln172 

by hydrogen-bonds. These interactions make it unlikely that MEK can bind to 

these residues of βarrestin1 in such a basal conformation without either 

competing these interactions out and thereby triggering a conformation change 

in βarrestin or its interaction is gated by a conformational change that causes 

disruption of this basal conformation, such as could occur through post-

translational modification (e.g. phosphorylation) or binding some other partner 

protein. The binding between Asp26 and MEK1 could occur only if the 

sequestered effect of the βarrestin1 C-terminal sequence on these residues is 

removed. Asp26 become more accessible when the C-terminal sequence is 

displaced, but MEK1 binding to Asp26 and Asp29 requires further conformation 

changes.  An example of this is that βarrestins undergo a great conformation 

change upon association with their activated phospho-GPCR partners. This 

includes GPCR-phosphate engagement with βarrestin phosphate-sensor and 

repositioning of the C-terminal tail from its location of basal conformation where 

it is folded across the N-terminal region.  βarrestin1 as a scaffold protein has a 

number of binding partners (Perry and Lefkowitz 2002; Xiao, McClatchy et al. 

2007), and it undergoes structural alteration upon binding of these proteins. 

Thus the binding of a specific partner protein may also cause a conformational 

change in this region to allow MEK1 to bind. Indeed, barrestin has so many 

possible partners that defined sub-populations might form where the binding of 

one partner changes the conformation of barrestin such that only certain other 

partners can bind.  Thus βarrestin1 could undertake conformational changes 

upon binding to receptors, post-translational modification and binding to specific 

partners (Vishnivetskiy, Hosey et al. 2004) that then defines which complexes 

MEK1 can associate with depending upon which modifications and interactions 

open up the sites for MEK1 interaction. In the future it might be interesting then 

to harvest barrestin/MEK1 complexes specifically as see what other proteins are 

associated with this complex using mass spectrometry/proteomics methods. 

Based on this, it is possible that MEK1 can bind to modified or partner protein 

sequestered βarrestin1 that enables surface exposure of Asp26 and Asp29. It is 

also possible that there is equilibrium between βarrestin1’s basal conformation 

and a small percentage of “open conformation” that MEK1 and other proteins, 

such as MEK, may bind. If so, MEK1 binding may stabilize the open conformation 

of βarrestin1, shifting the equilibrium to generate a sub-population of MEK1 

binding βarrestin1. To be noted, the Asp26 to Asp29 sequence is permanently 
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located at the surface of isolated βarrestin1 N-domain. Thus, this sequence must 

perform similar interaction with MEK1 as Asp26 and Asp29. Another possibility is 

that if, as Song suggested MEK1 could associate with both N-domain and C-

domain of βarrestin1, the MEK1 binding to the C-domain may act as a trigger of 

βarrestin1 conformational change, leads to increased accessibility to Asp26 and 

Asp29 at βarrestin1’s N-domain. Although we found two amino acids, Arg47 and 

Arg49, on MEK1 that βarrestin1 could bind to, we can’t evaluate their 

accessibility due to lack of a crystal structure of MEK1 (Ohren, Chen et al. 2004). 

However, considering their position upstream of MEK1 kinase domain, it is 

possible that they are surface exposed and thus available for interaction. 

6.2 PDE4 dimerization  

cAMP is a well studied second messenger that plays key roles in many cellular 

processes, and its degradation by cyclic phosphodiesterases (PDEs) is the only 

way to stop signal transduction. PDEs were first identified for their ability to 

cause desensitization of adenylyl cyclase signalling. The wide range of PDEs 

places them as important proteins involved in regulation of cAMP 

compartmentalization (Dodge, Khouangsathiene et al. 2001; Lynch, Baillie et al. 

2007) and the cross-talking between different signalling pathways (Hoffmann, 

Baillie et al, 1999 ; O'Connell, McCallum et al 1996). Dimerization has been 

noted in many PDE subfamilies including members from PDE1 to PDE6 (Richter 

and Conti 2004). In the case of the PDE4 subfamily, PDE4D3 has been used in 

investigating the nature of dimerization. These studies showed that the 

conserved region UCR1 and UCR2 of PDE4D3 are responsible for its dimerization 

(Richter and Conti 2002; Richter and Conti 2004).  

It has been pointed out that most PDEs, at least members of PDE families 1-6, 

can exist as dimers (Richter and Conti 2004). In the PDE4 subfamilies, the long 

PDE isoforms were shown to form dimers via their conserved UCR1 and UCR2 

domains. In this, the PDE4D3 isoform was investigated intensively by Macro 

Conti’s group (Richter and Conti 2002) (Richter and Conti 2004). They suggested 

that disruption of PDE4D3 dimerization abolished its activation by either protein 

kinase A phosphorylation or phosphatidic acid binding and reduced the sensitivity 

to inhibition by rolipram (Richter and Conti 2004). They also demonstrated that 

ablating the UCR1 and UCR2 intramolecular interaction did not interfere with 
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dimerization (Richter and Conti 2002). PDE4D5, which shares conserved UCR1, 

UCR2 and catalytic unit with PDE4D3, can be presumed to provide another 

dimeric PDE4 isoform. Even with high similarity, PDE4D3 and PDE4D5 are not 

redundant in their functions. PDE4D5 is unique for its βarrestin dependent 

translocation to the β2 adrenoceptor after agonist challenge and generating a 

compartmentalized cAMP pool adjacent to the receptors, whereas PDE4D3 does 

not (Lynch, Baillie et al. 2005; Lynch, Baillie et al. 2007) but interacts with the 

ryanodine receptor (Lehnart, Wehrens et al. 2005) amd myomegalin (Verde, 

Pahlke et al. 2001).  

In this study, I show that PDE4D5 can form strong homo-dimers. Indeed PDE4D5 

can dimerise both in vivo and in vitro using yeast-two-hybrid assay and 

immunoprecipitation. Peptide array and scanning substitution array approaches 

were then used to to identify the dimerization sites on PDE4D5, locating four 

triplets of residues that may be involved in the dimerization process.  These are 

R173/N174/N175 of UCR1, E228/T229/L230 of UCR2, L306/M307/H308 and 

K323/T324/E325 on the catalytic domain. The R173/N174/N175 and the 

E228/T229/L230 are adjacent to V172/F176 (V100/F104 in PDE4D3) and 

L217/L220/L224/L227 (L145/L148/L152/L155 in PDE4D3) respectively, both of 

which are suggested dimerization sites in PDE4D3 (Richter and Conti 2004), 

indicating a high possibility that RNN and ETL are involved in PDE4D5 

dimerization. However, substitution of each triplet to triple AAA or even 

mutating all four triplets (also know as Quad) did not ablate the PDE4D5 

dimerization. A previous report indicates that mutating an ion pair (D463-R499 in 

PDE4D5) of the catalytic domain can disrupt the oligomerization of the isolated 

catalytic units (Lee, Chandani et al. 2002). We then made the Quad mutants 

with disrupted catalytic unit  ion-pairs by mutating either R499 to Asp or D463 to 

Arg, and showed these Quad R499D and Quad D463R mutants lost their ability to 

dimerize with Quad mutant, suggesting that the ion-pair is crucial for PDE4D5 

dimerization. We then set out to explore the individual contribution of each 

triplet to PDE4D5 dimerization, and found that R173/N174/N175 alone with 

R499D mutation could ablate its dimerization with Quad and Quad R499D in 

yeast hybrid assay, but not the other triplets. However, when we test the 

monomeric RNN R499D via immunoprecipitation, it ablates the dimerization to a 

certain percentage rather than the total loss of dimerization that we have seen 

in Quad R499D.  
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One thing that should be mentioned is that in the yeast two hybrid and 

immunoprecipitation studies, the results showed that PDE4D5 can dimerize both 

in vitro and in vivo; In yeast two hybrid, adding PDE4D5 interacting protein 

RACK1 or βarrestin could successfully disrupt PDE4D5 dimer formation; however, 

we did not see such an effect in immunoprecipitation using HEK293 cells. There 

are two explanations for this observation. One is due to the nature of yeast two 

hybrid assay that it has a threshold for the signal to be detected, in another 

words, the interacted prey and bait protein must reach a certain affinity to 

initiate the interaction. However, the immunoprecipitation analyses are perhaps 

more sensitive than yeast two hybrid assay in detecting protein interaction. 

Therefore, RACK1 or βarrestin can ablate PDE4D5 dimerization in yeast two 

hybrid assay but not in immunoprecipitation. Another reason is that in 

mammalian cells, PDE4D5 exists as low transcript number but high activity, 

RACK1 and βarrestin have more transcripts than PDE4D5. Therefore, RACK1 and 

βarrestin may sequester PDE4D5 in abundance to intervene in the dimer 

formation. However, overexpressing PDE4D5 alone or with RACK1 and βarrestin 

together also significantly increases the amount of PDE4D5, causing an increased 

ratio of PDE4D5 against RACK1 and βarrestin. This makes RACK1 and βarrestin 

less potent in disrupting PDE4D5 dimerization. We also found PDE4D5 

dimerization is of high stability and its disassociation and reassociation is not 

affected by separately expressed RACK1 and βarrestin. 

PDE4D5 dimerization responses in to several compounds were tested and some 

preliminary results were obtained. We see rolipram (binds to HARB and LARB 

conformation of PDE4D5, LARB and HARB are explained in 4.2.12) and ariflo 

(binds to LARB conformation only of PDE4D5) have little difference in intervening 

in PDE4D5 dimerization. However, we do not know if the dimerized PDE4D5 

exists in the HARBs or LARBs conformation, and this may worth further 

investigation. Anisomycin can increase the PDE4D5 dimerization and this may 

due to the activation of its downstream effecters such as P38 and JNK. 

IBMX/Forskolin treatment leads to a reduction of PDE4D5 dimerization. This 

might due to PKA phosphorylation on PDE4D5 and further experiments are 

needed to confirm it.       

We found that PDE4D5 could form hetero-dimers with PDE4D3 in yeast two 

hybrid experiments, but not in cells. Therefore, this hetero-dimer might be an 
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artefact of the yeast-two-hybrid system.  In the case of the monomeric PDE4D5, 

the Quad R499D mutant, its enzyme activity, compartmental distribution, 

binding affinity to PDE4D5 interacting proteins and sensitivity to PDE inhibitors 

are also required for further study.   

6.3 RACK1 sumoylation 

Sumoylation is a reversible post-translcational modification that is involved in 

DNA repair, transcription, nuclear bodies and nucleo-cytoplasmic transport 

(Geiss-Friedlander and Melchior 2007). Small ubiquitin- related modifier (SUMO) 

proteins can be added to substrates via an isopeptide bond between the C-

terminal carboxyl group of SUMO and the ε-amino group of a lysine residue in the 

substrate. Three different enzymes E1, E2 and E3 are required in attaching SUMO 

to its substrate. The only E2 conjugating enzyme, UBC9, can recognise the 

classic SUMO consensus sequence ψKXE, where ψ is an aliphatic brandched 

amino acid, K is the lysine that SUMO added to and x could be any amino acid 

(Johnson 2004; Hay 2005). 

RACK1 is a scaffolding protein that can interact with PKC (Ron, Luo et al. 1995; 

Stebbins and Mochly-Rosen 2001) and PDE4D5 (Bolger, McCahill et al. 2002), 

mediate and initiate cell migration in many cell types (Buensuceso, Woodside et 

al. 2001; Cox, Bennin et al. 2003; Kiely, O'Gorman et al. 2006) and affect the 

activity of MAPK signalling pathway, c-Jun NH2-terminal kinase (JNK), via its 

interaction with PKC (Lopez-Bergami, Habelhah et al. 2005).  

RACK1 can translocate to the nucleus upon challenge with ethanol and foskolin 

(Ron, Vagts et al. 2000; He, Vagts et al. 2002), and sumoylation can target its 

substrate to the nucleus. Therefore, we investigated whether RACK1 is a SUMO 

sibstrate and obtained some preliminary data.  

By doing in vitro sumoylation on a RACK1 peptide array and scanning Ala and Arg 

array, I identified a potential SUMO modification site K271, which lies in the 

sequence LK271QE that is consistent with the SUMO consensus motif ψKXE. 

Although the sumoylation is detectable in the in vitro sumoylated peptide array, 

I did not see sumoylation in the in vitro sumoylation on purified GST-RACK1. This 

may due to the incorrect folding of GST-RACK1 blocking the sumo site LK271QE. 
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As overexpression of the E3 ligase PIASy may facilitate in vivo RACK1 sumoylation, 

I overexpressed PIASy, PIAS1 and PIAS3 respectively with RACK1 in HEK293 cells, 

however, no sumoylation was detected. Furthermore, challenging cells with 

forskolin and ethanol has been reported to cause RACK1 translocation to nucleus, 

and sumoylation was known to cause protein nucleus translocation (Du, 

Bialkowska et al. 2008). Thereby, forskolin and ethanol may cause RACK1 

sumoylation and translocation to nucleus. However, there was no detectable 

RACK1 sumoylation in forskolin and ethanol treated HEK293 cells. This may due 

to the low percentage of SUMOylated protein (normally < 5% of target protein) or 

because I haven’t found the correct E3 ligase or the correct cell lines that allow 

RACK1 to be SUMOylated. Another thing to be considered is that the non-specific 

binding of different anti-SUMO anti-sera gives diverse results, therefore, 

choosing a good antiserum is crucial for this study.         

For future work, there are several aspects that can be investigated: (1) Using 

other cell lines such as G6 to see if RACK1 can be sumoylated in vivo with or 

without forskolin and ethanol treatment. (2) Overexpressing the E2 conjugating 

enzyme UBC9 with PIAS and RACK1 to see if they can facilitate RACK1 

sumoylation. (3) Mutating Lys271 of RACK1 to Arg and transfecting the mutant in 

cells to compare its distribution with native RACK1 under confocal microscopy.       

In conclusion, this sumoylation event was only detectable in an in vitro 

sumoylated peptide array. The notion that RACK1 can undertake sumoylation 

still requires firm evidence and so much more experimental work is required.  

Peptide array and the scanning substitution array is very potent technology in 

searching for the specific interaction sites between proteins, and it has been 

used through my researches. However, care must be taken when using this 

technology: (1) Due to the relative large molecular weight and potential non-

specific binding to some proteins, GST tagged proteins are not as good as His 

tagged ones. And the control reaction which uses GST protein to evaluate the 

non-specific binding to the peptide array is also essential. (2) The small peptides 

all exist in their own conformations. Deletion or changing even one single 

residue of the peptide may give diverse results in binding to target proteins. (3) 

In respect to (1) and (2), the potential interaction sites  require further 
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confirmation using other methods such as site-directed mutagenesis and 

immunoprecipitation.  
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