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Abstract

In this thesis, two, seemingly different, classes of problems are discussed: locating gas

sources from downwind gas concentration measurements and designing diffractive

optics (i.e. computer generated holograms), which on illumination will produce a

desired light beam in the far field. The similarity between these problems is that

they are both “inverse problems” and we discuss the use of inverse techniques to

solve them.

In many instances within science, it is possible to calculate accurately a set of

consequences which result from defined events. In most cases, however, it is math-

ematically impossible to analytically calculate the unique set of events which led to

the observed consequences. Such problems are termed “inverse problems”. Taking

the example of gas dispersion, one sees that a known source leads to a calculable set

of downwind concentrations. However, given a single concentration measurement it

is impossible to distinguish a specific source and location from a larger, more distant

source that would have given the same measured concentration. This is an example

of the same consequence resulting from two, or more, different events.

Key to solving inverse problems are iterative algorithms which randomly trial

different possible events to find those which best describe the observed consequences.
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Such algorithms use a search method to postulate possible events, apply a forward

model to calculate the anticipated consequences and then use a cost function to

compare the postulated with the known consequences. The process is iterated until

the optimum value of the cost function is found, at which point the current set of

postulated events are taken to be the best estimate of the real events. In this thesis

I apply similar iterative algorithms to solve the two classes of problem.

The current demand on the world’s oil resources have encouraged the development

of new prospecting techniques. LightTouch is one such solution which is discussed

in this thesis and was developed with Shell Global Solutions. LightTouch uses the

fact that oil reserves, through microseepages, leak hydrocarbons to their surface. De-

tection of these hydrocarbons can indicate the presence of oil reserves. LightTouch

measures Ethane to sub-part-per-billion sensitivity at multiple positions across a sur-

vey area. Locating the source of the Ethane from the sparse downwind concentration

measurements is an inverse problem and we deploy algorithms of the type discussed

above to locate the Ethane sources. The algorithm is written in LabView and the

software, Recon, is currently used by Shell Global Solutions to solve this problem.

In appendix B the Recon user interface is shown.

We investigate both the impact of choice of cost function (chapter 3) and forward

model (chapter 4), which in this inverse problem is a gas dispersion model, on the

algorithm’s ability to locate the gas sources. We find that the choice of cost function

is more important to the success of the algorithm than the choice of forward model.

Optical tweezers trap and manipulate particles with light beams. In order to

manipulate the particles in a desired way it is necessary for the shape and position
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of the light beam to be controlled. One way of achieving a desired light beam is to

use a spatial light modulator (SLM) which displays a phase pattern (referred to as

a computer generated hologram), off which the light is diffracted. Calculating the

phase pattern which will result in the desired light beam is an inverse problem and is

referred to as holographic light shaping. The forward model in this case is a Fourier

transform. In this thesis we use an algorithm similar to that used to solve the gas

location problem and the Gerchberg-Saxton algorithm to calculate phase patterns

with applications in optical tweezers.

Within an optical tweezers system the highest trap resolution (the smallest dis-

tance between neighboring traps) that can be achieved is conventionally dictated by

the diffraction limit. In this thesis we investigate two possible ways of beating the

diffraction limit: superresolution and evanescent waves.

In chapter 5 we investigate the application of inverse techniques to calculating

phase patterns which produce superresolution optical traps. We calculate theoreti-

cally the improvements to both relative trap stiffness and trap resolution using the

superresolution optical traps. Although both are improved it comes at a cost to trap

strength. In chapter 7 we simulate evanescent wave fields and demonstrate shaping

three dimensional evanescent optical traps. Similar light shaping techniques are used

in chapter 6 to shape light beams which after being disturbed will self-reconstruct.
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Chapter 1

Inverse problems

1.1 Introduction

Most physical problems can be described in terms of events and consequences. Given

the occurrence of an event we can calculate the resulting consequences using some

known function f ,

consequence = f(event). (1.1)

This relationship is termed a forward problem and is generally well understood.

However, in many problems in science we do not always necessarily wish to calcu-

late consequences from events rather calculate events that caused some measured

consequences. This could be achieved using an inverse relationship,

event = f−1(consequence). (1.2)

Unfortunately for many problems the inverse relationship, unlike the forward

problem, is not well understood and cannot be solved directly. Such a problem is

termed an inverse problem. Essentially an inverse problem is one in which, given
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some known event, we can easily calculate the resulting consequences, however, for

some physical reason given some measured consequences we cannot directly calculate

the events that resulted in these consequences.

Inverse problems are solved by finding the events that result in consequences

closest to those that have actually been observed. Algorithms that solve inverse

problems are commonly divided into three components: search algorithm, forward

model and cost function. Each component is necessary to solve the problem.

The reason that the forward relationship can be solved but the inverse relationship

cannot is dependent on the problem. Reasons for this in the physical sciences range

from problems which are fundamentally difficult to solve for mathematical reasons to

those where the forward relationship has been studied previously and more rigorously

so is just better understood and it is simply more efficient to solve using inverse

techniques.

Inverse problems can be divided into three types: backward or retrospective prob-

lems, coefficient inverse problems and boundary inverse problems [1]. Coefficient

inverse problems are concerned with estimating parameters in an equation. Bound-

ary inverse problems aim to find certain boundary conditions related to a function.

Finally, backward problems aim to find the initial conditions of a system. It is coef-

ficient inverse problems that we are mainly concerned with and solve in the coming

chapters.

In the remainder of this chapter I will summarise two of the inverse problems I

have been working on. These problems are discussed in greater detail in the coming

chapters.
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1.2 Locating gas sources from down wind concen-

tration measurements

Locating gas sources from down-wind gas-concentration measurements is an example

of an inverse problem. Many gas-dispersion models have been developed that aim to

predict gas concentrations resulting from a known source dispersing into the atmo-

sphere. Therefore given a known gas source and knowledge of the wind field we can

easily calculate the resulting down wind gas concentration using a dispersion model.

This is the forward model in this problem. However, many applications require the

inverse of this, locating gas sources from down-wind gas-concentration measurements,

to be solved. The inverse is ambiguous: a small source close to the measurement

location can give the same concentration as a large source further away. It is this am-

biguity that means that locating gas sources from known down-wind concentration

measurements is an inverse problem.

By making multiple measurements at various locations under different wind con-

ditions and applying inverse dispersion techniques, unknown gas sources can be de-

termined from downwind concentration measurements and knowledge of the wind

field. Such an approach has been applied to estimating and locating gas sources

within agricultural settings [2] and land-fills [3]. We apply a similar approach to

locating oil reserves [4, 5].

This is a relevant and important problem. The current demand on the world’s

resources of oil and the increasing difficulty in locating new oil and gas reserves

has sparked the development of many novel oil prospecting techniques. Many of

Laura C. Thomson Page 17
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these techniques aim to survey a large area to find areas worthy of a more detailed

survey. One such technology is LightTouch [4], which aims to locate oil reserves from

downwind gas concentration measurements. This is achieved by solving an inverse

problem.

It is well known that through microseepages oil reserves leak hydrocarbons to

the surface [6, 7]. We can use the presence of hydrocarbons in the atmosphere as an

indication that an oil reserve exists in the vicinity of the measurement. An obvious

approach to locating oil reserves in this way would be to make multiple measurements

over the area, and where the largest concentration was measured would be considered

to be the location of the reserve. Unfortunately, given that we make measurements

from the back of a car, that each measurement takes hours, and the survey area

can be of the order of 20km × 20km, for such a large area it could take months to

survey. Instead we make multiple measurements of gas concentrations at various

locations along with measurements of the wind field and solve the problem as an

inverse problem to locate the unknown gas source. The basic algorithm we apply

is described in chapter 2, and in chapters 3 and 4 we discuss how we optimise the

algorithm.

In chapter 2 we describe the algorithm that we have developed to locate gas

sources from down wind concentration measurements. This algorithm is currently

used by Shell Global Solutions for this application.

The basic structure of this algorithm was already implemented when I started

my PhD. My role was to add the cost functions, the annealing methods used and

take part in discussions about the direction of this work.

Laura C. Thomson Page 18
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In chapter 3 we apply the algorithm described in chapter 2 and show that we

can locate a known gas source in a desert environment. The known source is a

cylinder release of Ethane. We compare the use of three different cost functions

in the algorithm. The cost function is a measure of the quality of the gas source

proposed by the search algorithm and essentially determines the optimum source. All

three of our cost functions locate the known gas source. For our application in this

environment it is very difficult to fully understand the error in the measurements. For

this reason we investigate whether adding Gaussian noise and concentration offsets

to our data set effects the performance of our algorithm. For our application we

show that the most successful cost function in response to the addition of noise is

based on minimising the total emissions of the proposed source.

The work described in chapter 3 was done in collaboration with the following

people: Graham Gibson, Steve Gillespie and kenneth D. Skeldon who gathered the

data used in this chapter; Bill Hirst, Philip Jonathan and Miles J. Padgett provided

useful assistance in the analysis techniques and cost functions used. My own role was

to develop the software used, develop the algorithm, take part in discussions about

the work and produce the results.

In chapter 4 we use simple optimisation techniques to try to improve the Gaussian

dispersion model used in our algorithm. We use a data set where gas concentration

measurements were made downwind of a known cylinder release. We apply multi-

plicative correction factors to the Gaussian plume model and optimise these such

that given the known source the calculated concentrations are closer to those actu-

ally measured. We use this optimised Gaussian plume model in our algorithm to
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investigate whether this results in an improved location of the known source. We

show that in actual fact the Gaussian plume and optimised Gaussian plume model

yield similar results. Again it is the cost function that has greatest bearing on the

results.

The work described in chapter 4 was done in collaboration with the following

people: Claire Patterson, Kenneth D. Skeldon and Graham Gibson collected the

data analysed, Miles J. Padgett provided supervision of the work. My role in this

work was to write and develop the optimisation routine used and carry out the

analysis.

1.3 Light shaping as an inverse problem

Optical tweezers use foci of light to trap, move and manipulate microscopic dielectric

particles. If the refractive index of the particle being trapped is greater than that

of the surrounding medium the particle will be attracted to, and held in, the beam

focus. In order to manipulate and move the particle in a controlled manner the beam

foci must be manipulated in a corresponding fashion.

Optical tweezers are just one example of an application where an optical beam

of a desired shape is required. The shape of light beams can be manipulated using

any one of a number of optical elements: prisms and lenses for example. These

elements obviously limit the shape of the beam that can be achieved and also the

way in which it can be manipulated. Another less limiting way in which a beam can

be manipulated is the application of holographic phase masks. In most modern light
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shaping systems the phase mask is applied to a beam using a spatial light modulator

(SLM). This is a device that contains an array of liquid crystals, each of which is

addressable under computer control. The phase pattern applied to the SLM can

be changed interactively and hence used not only to shape a desired beam but also

change the shape of the beam in almost real time. However, in order to achieve this

we must calculate the hologram that will result in the desired beam.

In most holographic light shaping set-ups the plane that contains the shaped light

lies in the focal plane of a Fourier lens. Therefore given a known phase hologram and

hologram illumination we can calculate the beam in the Fourier plane using a Fourier

transform. In this particular problem this is the forward problem, however we wish

to solve the inverse of this. It could be considered that calculating the hologram

required to give a desired beam in the Fourier plane could be achieved by inverse

Fourier transforming the desired beam. However, this would normally result in both

a calculation of a phase hologram and the hologram illumination. Unfortunately,

there is a constraint on the calculation: we specify the hologram illumination and

it is only the phase hologram we need calculate. Therefore the phase hologram

calculated by inverse Fourier transform would not result in the desired beam when

illuminated by the specified hologram illumination. This is the physical reason that

we must solve this problem as an inverse problem.

Various algorithms can be applied to solve this inverse problem. One example of

an algorithm used to calculate the phase hologram that can be applied to produce a

desired intensity distribution is the Gerchberg-Saxton algorithm [8]. We apply both

the direct search and Gerchberg-Saxton algorithm in chapters 5, 6 and 7 to solve
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light shaping problems.

Algorithms used to solve inverse problems are, like the Gerchberg-Saxton and

direct search algorithms, iterative. The direct search algorithm is the simplest and is

based on a brute force trial and error principle. Initially a random phase hologram

is generated and combined with the set hologram illumination to give the hologram

field. This field is then Fourier transformed to give the resulting field in the Fourier

plane. The desired beam is compared to the resulting beam numerically using a cost

function. This corresponds to an iteration. In all subsequent iterations a change is

made to a single pixel in the phase hologram. The change is retained if the resulting

value of the cost function is less than the value calculated during the previous suc-

cessful iteration. We also utilise a version of this algorithm to solve the problem of

locating a gas source from downwind gas concentration measurements, this version

of the algorithm is described in chapter 2.

In chapter 5 we show, using computer simulations, that we can improve the

optical trapping characteristics of foci using superresolution algorithms. We use

both a superresolution direct search and Gerchberg algorithm to improve both trap

resolution and relative trap stiffness.

The work described in chapter 5 was done in collaboration with the following

people: Yannick Boissel coded the Gerchberg superresolution model; Eric Yao and

Graeme Whyte provided useful ideas on the work; Johannes Courtial had the idea

for the work and carried out some of the analysis. My own role was to develop the

direct search superresolution model and calculate and compare the results from the

algorithms.
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In chapter 6 we discuss an algorithm that we have developed which can be used to

arbitrarily shape self-reconstructing light beams. We show examples of beams shaped

using the algorithm. Self-reconstructing light beams are any light beam which after

being disturbed by an object, such as a particle in an optical trap, will reconstruct

itself on further propagation.

The work described in chapter 6 was done in collaboration with Johannes Courtial

who had the original idea for the work and provided useful supervision. My role in

this work was to develop the self-reconstructing model and produce the results.

In chapter 7 we demonstrate simulating 3D intensity shaping of evanescent wave

fields. Our approach to this is to use light shaping algorithms, we use a version of

the direct search algorithm, to shape the evanescent wave fields.

The work described in chapter 7 was done in collaboration with Michael Mazilu

and Johannes Courtial. The theoretical work and the analysis was carried out by

Michael Mazilu and Johannes Courtial. My own role was to write the model, take

part in discussions about the work and produce some of the results.
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Chapter 2

An algorithm to locate gas sources
from downwind concentration
measurements

2.1 Introduction

We have described in chapter 1 that locating gas sources from downwind gas concen-

tration measurements is an inverse problem. We aim to solve this problem to locate

oil reserves. Oil reserves leak hydrocarbons to their surface, we measure ethane as an

indication of the presence of an oil reserve. The measurements of ethane concentra-

tion are made using a highly sensitive atmospheric ethane sensor based on laser diode

absorption spectroscopy described fully by [9]. Along with the gas measurements our

algorithm requires knowledge of the wind field at the time of measurement, we mea-

sure the wind field using a 3D ultra-sonic anemometer. In this chapter we describe

the algorithm that uses these measurements to locate the unknown gas source.

In all inverse problems the aim is to infer the unknown state from measured

consequences of that state. In the case of gas dispersion, the unknown state is the
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gas source distribution of strengths and locations; and the measured consequences are

the gas concentrations for the associated wind conditions and measurement locations.

Our aim is to find the source distribution that will generate predicted concentrations

closest to those actually measured. This requires three components to the algorithm:

a search algorithm, forward model and cost function. The forward model is unique

to the problem and it is this that we will describe first.

The algorithm described in this chapter was implemented by us in software writ-

ten in Labview titled Recon. This software was used to produce the results discussed

in chapters 3 and 4 and is currently used by Shell Global Solutions to locate gas

sources in the field.

The approach to oil and gas prospecting we describe in this thesis is targeted

at frontier exploration - where large areas must be screened prior to more detailed

investigation. Other examples of such novel techniques include searching satellite

and airborne images for subtle signs of oil on the sea surface [10] and stimulation of

florescence in these oil films by airborne lasers [11]. Currently more detailed oil and

gas exploration is carried out by seismic reflection [12]. Using this technology prop-

erties of the earth’s subsurface, such as whether the survey area contains geological

structures which could support hydrocarbons, can be estimated by the analysis of

reflected seismic waves.
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2.2 The forward model

Gas dispersion is a complicated phenomenon with numerous physical processes active

at different length scales [13], in most experimental situations access to wind field

data is limited, typically comprising a very small number of measurement locations.

In common with much earlier work, [4] and [14], we employ a simple Gaussian plume

dispersion model which can be implemented using a single location wind speed and

direction measurement. Within our numerical model we divide the survey area (in

our trials in the Middle East the survey area was of km dimension) into a grid, with

each cell, j, containing a central diffuse source of unknown strength Sj. Each of these

M sources gives rise to a downwind gas concentration approximated by a Gaussian

plume model [14], see figure 2.1, and the predicted concentration is the sum over all

the gas sources in the grid of cells. For the ith measurement of mass concentration

(units of kg/m3) we have,

Ci =
M∑
j=1

Sj
πViσwi

σhi

exp

−1

2

(
∆wi

σwi

)2
 exp

−1

2

(
∆hi

σhi

)2
 (2.1)

where Vi is the wind velocity (m/s) at the time and location of the ith measurement,

∆wi
and ∆hi

(m) are the offset from the plume centre, σwi
is the width of the Gaussian

plume and σhi
is the height in the plume. Both σwi

and σhi
are length measurements

and are calculated using the angular standard deviations of the wind direction in

both the horizontal, θwi
, and vertical, θhi

, directions respectively,

σwi
= θwi

z + k (2.2)

σhi
= θhi

(z + k). (2.3)
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Figure 2.1: The Gaussian Plume Model. The source is shown by the blue semi-
circle and the gas concentration it disperses is shown by the coloured plume. The
parameters used in the model are also shown.

Where z is the distance from the source position, j, to the measurement location, i,

and we have approximated the near field concentration effects of diffuse sources by

adding a constant, k, to these plume width terms, where k is in units of cell size.

2.3 The search algorithm

There are many search algorithms that could be used to identify the combination of

source strengths and locations that best predict the measured concentrations. We

employ an iterative direct search algorithm [15] to postulate different source distri-

butions. Within each iteration, a new postulated source distribution is generated by

assigning a random source strength to a randomly selected cell, j. The predicted

concentrations arising from the new set of postulated sources are then calculated

using the Gaussian plume model. The new postulated source distribution is numer-

ically assessed by evaluating the chosen cost function, En, giving a single numerical
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value reflecting the closeness of the predicted concentrations to those actually mea-

sured. Typically, En would be defined such that a closer match between observed

and predicted concentrations gives a lower value of En. The new postulated source

value, Sj, is accepted or rejected depending on whether the corresponding value of

En is reduced or not. Repeated iterations minimize the value of En and result in

a source distribution that best accounts for the concentrations measured. χ2 is an

obvious candidate cost function, based solely on the predicted, Cei
, and measured,

Cmi
, concentration;

En =
χ2

N
=

1

N

N∑
i=1

|Cmi
− Cei

|2

σ2
i

. (2.4)

We note that an accurate determination of χ2/N requires a correspondingly accurate

knowledge of the error, σ2
i , which encompasses both the noise associated with the

measurement technique and errors in the forward model. In chapter 3 we will discuss

how to estimate σi.

2.4 Simulated annealing

If we calculated the cost function over the full range of M source strengths, we

would obtain an M dimensional landscape where each axis represented the range of

emissions from the source in a particular cell. Ideally, the resulting cost function

landscape would contain a clearly identified global minimum, corresponding to the

optimum distribution of M source strengths and locations. However, typically, this

global minimum will be surrounded by local minima, to which the algorithm will

converge to. Figure 2.2 is a representation of a typical cost function landscape. We
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avoid converging on a local minimum by refining the search algorithm to occasionally

accept postulates that increase En, thereby allowing escape from a local minimum.

The technique is referred to as simulated annealing [16] and was developed by anal-

ogy with thermodynamic cooling, [17]. The criterion for accepting an increase in

the cost function is based by thermodynamic analogy on the Boltzman probability

distribution,

R(0, 1) < exp
(
−En − En−1

Tn

)
(2.5)

where R(0, 1) is a random number between zero and one, En is the value of the cost

function for the new postulate, En−1 is the value of the cost function at the last

accepted change and Tn is the temperature or cooling parameter, which is reduced

after each iteration. If En < En−1 that change is always accepted, however if En >

En−1 the change is sometimes accepted dependent on whether exp(En −En−1/T ) is

greater than the random number, R. Whether or not this holds true depends on the

value of T . The value of T is reduced after each iteration according to,

Tn = Tn−1(1− ε). (2.6)

The initial iterations, corresponding to high values of T , accept most changes

whether En is improved or not. As T is reduced fewer changes are accepted. Since

the parameter T is described as a temperature it is usual to describe the rate of cool-

ing in terms of thermal mass. It is the parameter ε, which has a value between 0 and

1, that determines the rate of cooling. For our reconstructions of source strengths

on a 16× 16 grid we typically run upwards of 4 million iterations during which time

the annealing parameter, T , is progressively reduced to zero.
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Global Minimum

Local Minimum

Figure 2.2: A representation of a cost function landscape. The global and a local
minimum are highlighted by the arrows.

Noise annealing is another annealing method, that operates on the principle that

by persistently adding different random noise distributions to the measured concen-

trations Cm the algorithm will consequently be displaced and knocked out of any

local minima. Like simulated annealing we believe that any source distribution the

algorithm persistently converges towards despite the constant addition of added noise

it does so because it is the global minimum.

We add a random noise distribution, K, of standard deviation, σK , to Cm. After

a particular number of iterations, n = A, K is recalculated with a reduced standard

deviation,

σK,n+A = σK,n=0(1− ε) (2.7)

and again is added to Cm. By both methods of annealing we have increased confi-

dence that the algorithm will converge to a global minimum.

Laura C. Thomson Page 31



Inverse Techniques: Problems in Optics
and Gas Sensing PhD Thesis

2.5 Conclusions

We have described in this chapter the basic algorithm that we apply to locate gas

sources from down-wind gas concentration measurements. This algorithms was im-

plemented in LabView and the software is currently used by Shell Global Solutions.

We have described above a simple χ2/N cost function. Such a function in most

cases will result in an unrealistic reconstructed source distribution. In chapter 3 we

apply the algorithm and discuss why χ2/N results in unrealistic source distribution.

We also demonstrate the cost functions we apply in practice and show the results of

our algorithm using each cost function. Each cost function, although locating the

source, results in a different looking source distribution.

The algorithm described above is also used in chapter 4. Having optimised the

Gaussian plume model we compare the results of using this model and the non-

optimised Gaussian plume model in the algorithm.
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Chapter 3

Comparison of cost functions used
to locate gas sources from
downwind concentration
measurements

Locating gas sources from downwind gas concentration measurements is an inverse

problem. Having made measurements of both gas concentration and wind data we

can apply our algorithm, described in chapter 2, to solve this problem. We use

a random search algorithm with simulated annealing to generate candidate source

distributions. These are assessed numerically using a cost function. It is the cost

function that greatly influences the resulting optimum source distribution. In this

chapter we investigate the affect of three different cost functions on the converged

solution. The work described here was published in reference [5].
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3.1 Introduction

In chapter 2 we have discussed the algorithm we use to locates gas sources from

down-wind concentration measurements. The algorithm consists of three compo-

nents, a search algorithm, forward model and a cost function. The search algorithm

postulates a source distribution, the forward model calculates the resulting concen-

trations and the cost function numerically assesses the postulated source distribution

by quantifying the degree to which the postulated source distribution accounts for

the measured gas concentrations. In this chapter we discuss three different cost

functions with differing regularisation terms and present results from applying each.

We assess the robustness of these and the differing regularisation terms by the pro-

gressive addition of random noise and systematic offsets to the concentration data.

We show that for our application, the best reconstructions are obtained by using a

multiplicative regularisation parameter defined to minimise the total gas emissions.

The reconstructions shown in this chapter were produced using data collected

from a single calibrated gas source at a known location. This survey site was a flat

desert location meaning that the wind field could be assumed consistent over the

area of interest. The source comprised a continuously weighed cylinder of ethane

with a regulated release rate of 5 Kg/hr. We used a two hundred meter diameter

network of perforated pipes to distribute the gas to simulate a diffuse area source.

The gas concentrations were measured at a height of 5m above the ground collocated

with the anemometer at seven downwind locations. These locations were 2 to 5km

downwind of the release in a North West direction. Gas concentration and wind

measurements were made for a period of at least fifteen minutes, before moving to
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the next location. The whole measurement sequence was completed over four hours

from noon i.e. during the most stable wind conditions. Within our algorithm we

divide the 8km x 8km survey area into a grid of 16 x 16.

3.2 Cost functions

To evaluate how accurately we have estimated the source distribution we use a cost

function , En. An obvious choice of cost function would be χ2,

En =
χ2

N
=

1

N

N∑
i=1

|Cmi
− Cei

|2

σ2
i

. (3.1)

The χ2 cost function described in equation 3.1 is based solely on the measured

data and although this is a useful indicator of the closeness of fit of the measured

and estimated concentrations a minimisation of this function generally leads to an

unrealistic distribution of sources. By simply minimising equation 3.1 any noise in the

data has the ability to dominate the minimisation of the function which can lead to an

unrealistic distribution. By simply minimising χ2 we often see a halo effect. Where

sources are placed around the outskirts of our survey area. It is possible that the

correct sized source placed far enough away can account for any of the measurements

recorded by fitting the data alone we see this effect. The map in figure 3.1 shows the

result of our algorithm (the calculation of the source distribution) used with a χ2

minimisation, the data set used contains concentration measurements downwind of

a known source. In this figure colour indicates source strength, the scale is shown on

the figure. Although the cylinder is approximately located this minimisation gives

rise to strong sources at positions distant from the source location which in this case

Laura C. Thomson Page 35



Inverse Techniques: Problems in Optics
and Gas Sensing PhD Thesis

is simply wrong. We can note at this point that although we do not show the results

in this thesis we have experimented with using our algorithm to successfully locate

multiple known sources. The data set in this case was simulated.

In order to avoid encountering this problem it is usual to add another term to

the merit function,

E =
χ2

N
+ λf(S). (3.2)

This additional term f(S) is called a regularisation term which is a function of the

source distribution. The term f(S) is generally based on some knowledge of what we

expect the source distribution to look like before we begin the reconstruction. This

type of knowledge is termed a priori. The parameter λ is a weighting factor that

dictates the respective influence that both the concentration data fitting χ2/N and

the prior source knowledge term f(S) will have on the reconstruction.

The regularisation term f(S) is chosen to favour a source distribution that cor-

responds to physically realisable source values and behaviours. f(S) can be chosen

for a range of reasons. Some may be specific to the particular inverse problem that

is being solved and some may be based on a statistical belief. One obvious choice

of f(S) specific to this and many other problems would be to enforce positivity. We

know that there does not exist some form of massive gas sink inhaling the gas that

we are trying to measure which would numerically correspond to a negative source.

This is in fact something we do not need to include in our cost function as it is

already strictly enforced in the algorithm as when making random changes to the

sources we only consider positive values as a possible replacement.

One regularisation term that we use is based on geophysical expectation; we ex-
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pect that the microseepage process responsible for oil reserves leaking hydrocarbons

into the atmosphere gives rise to a limited supply of gas. We therefore choose a cost

function where we aim to reduce the magnitude of the postulated source distribu-

tions,

E(Flux) =
χ2

N
λ

M∑
j=1

(Sj +
1

λ
). (3.3)

The form that E(Flux) takes is different to that suggested in equation 3.2. The

E(Flux) cost function is multiplicative not additive like the others, however, the

function contains the same parameters χ2, λ and f(s).

Another distinctly different and widely used cost function we have chosen to

implement is based on minimising the entropy [17] of the source distribution,

E(Maxent) =
χ2

N
+ λ

M∑
j=1

Sj ln

(
Sj∑M
j=1 Sj

)
(3.4)

The entropy of any distribution refers to its disorder. By minimising the entropy

of the source distribution we are encouraging the sources to be of the same value

meaning that any distinguishing feature that forms in the source distribution we take

it to do so because it exists.

The third and final cost function that we have implemented encourages the source

distribution to take a similar form to that of E(Maxent). The regularisation param-

eter in this function

E(Smooth) =
χ2

N
+ λ

M∑
j=1

(Sj− < Sj >8)
2

α + (Sj− < Sj >8)2
(3.5)

compares the source Sj in grid box j to the average source in the 8 grid boxes

surrounding Sj this is denoted by < Sj >8. The parameter α has a similar effect
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on the function to that of λ but also prevents singularities in the cost function. Al-

though both E(Maxent) and E(Smooth) encourage a smooth distribution of sources

E(Smooth) is sensitive to the interchange of one or more sources, this same sensi-

tivity does not apply to E(Maxent).

In all three cost functions discussed in equations 3.3, 3.4 and 3.5 we must define

λ so that it sets the correct balance between χ2/N and the regularisation term. It

is discussed in [17] that λ should be chosen such that χ2/N falls within a statistical

range, 1±
√

2/N . Obviously to achieve values of χ2/N within the range it is necessary

to have an accurate knowledge of the standard deviation σ. Unfortunately we lack

understanding of the true value of σ. We can estimate the appropriate value of

σ by simply running an initial χ2/N reconstruction for a given data set and from

this reconstruction calculating the standard deviation of the residuals, effectively

normalising χ2/N to unity. We can then use the value of the standard deviation

of the residuals as the standard deviation σ used in the calculation of χ2/N . The

acquisition of σ in this way allows us to achieve values of χ2/N within the appropriate

statistical range 1±
√

2/N .

We must determine the optimum value of λ for each cost function; the value of λ

that results in the reconstruction closest to the known source distribution. Figure 3.2

shows reconstructions using the known data set for each of the three cost functions

discussed above for increasing values of λ. The value of λ is increased from 0 to a

value that results in an increase of χ2/N by a factor 1 +
√

2/N .

When using the optimised λ values, all three cost functions approximately locate

the cylinder release. However, the smoothing cost function results in the source
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being, incorrectly, spread over adjacent cells; a result of the averaging function.

3.3 Reconstructions with added noise

We are able to test the robustness of each cost function by modifying our controlled

release data to include Gaussian noise added to the measured concentrations. In

figure 3.3 we see that even adding up to 1.2ppb of noise to the intrinsic sensor noise of

0.2ppb does not prevent reasonable reconstruction of the gas source. This significant

level of noise immunity arises because multiple measurements under similar wind

directions are taken at each measurement location. As might be expected, we see

that using the smoothing regularization spreads the reconstructed source over the

neighbouring grid cells. On visual inspection of figure 3.3 we can see that the Maxent

and Flux Minimiser regularisation functions perform similarly with the latter finding

the best overall reconstruction. The best result is achieved by adding 1.2ppb of noise

and using the Flux cost function, see figure 3.3.

3.4 Reconstructions with concentration offset

We also want the reconstruction results to be robust to offsets in measured concen-

trations. This is particularly relevant because the exact background ethane concen-

tration in the atmosphere is uncertain and subject to daily variation. In order to

test robustness to offsets, we add a concentration offset to the data collected from

the controlled release and calculate the reconstructions using each of the cost func-

tions. Figure 3.4 shows reconstructions for each of the three cost functions with
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progressively increasing offsets added to the concentration measurements. From the

reconstructions shown in figure 3.4 we draw similar conclusions to those made in

relation to the addition of Gaussian noise, namely the flux minimzer cost function is

the most robust.

3.5 Conclusion

In this chapter we have shown that we can locate (and estimate the release rate of)

a source of ethane dispersing in a desert environment by inverting the gas dispersion

process. We have used the algorithm described in chapter 2 in conjunction with

simulated annealing to evaluate the performance of three cost functions. Despite

the addition of Gaussian noise or concentration offsets to the data our algorithm

continues to locate the gas source with each of our three cost functions. For our

application the cost function minimising the total source emissions is the most robust

to the experimentally relevant effects of increased noise or concentration offsets in

the measured data.
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Figure 3.1: Result of the algorithm used with χ2/N . The cylinder release area is
shown with colour indicating source strength, with the scale shown. X marks the
known location of the cylinder. It can been seen from the map that the cylinder is lo-
cated by the algorithm, however the algorithm also places sources at other locations.
This is a result of the χ2 cost function.
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Figure 3.2: Reconstructions shown for each cost function for a range of regularisation,
λ from λ = 0 (the χ2/N solution) to a value which increases χ2/N by a factor

1 +
√

2/N . The location of the release is marked with an x. All three cost functions
approximately locate the cylinder, reconstructions using the optimum value of λ for
each cost function are shown in the third row of the figure.
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Figure 3.3: Reconstructions for each cost function with increasing added noise, colour
indicates ethane flux at source. The first row shows the reconstructions based on the
original data. Subsequent rows show reconstructions for each of the cost functions
as increasing amounts of random noise are added to the concentration data. The
location of the release is marked with an x. The reconstructions produced using the
flux cost function are most robust against added noise.

Laura C. Thomson Page 43



Inverse Techniques: Problems in Optics
and Gas Sensing PhD Thesis

Smooth Maxent Flux
Added
Offset
(ppb)

0.2

0

0.4

0.8

1.2

X X X

0 0.83 1.67 2.5 3.33 4.17   5
Flux in kg/(hr.km2)

X X X

X X X

X X X

X X X

Figure 3.4: Reconstructions for each cost function with increasing added concentra-
tion offsets, colour indicates ethane flux at source. The first row shows the recon-
structions based on the original data. Subsequent rows show reconstructions for each
of the cost functions as increasing amounts of offset are added to the concentration
data. The location of the release is marked with an x. From the reconstructions the
flux cost function is most robust in response to concentration offset.

Laura C. Thomson Page 44



Chapter 4

Dispersion model optimisation

Many different gas dispersion models have been applied to calculate gas concentration

downwind of a known source [18]. So that they can be applied in real field situations,

many of these models are simplified to require measurement of only a small number of

meteorological parameters. Their simplicity means that although they may provide

a good estimate of the time averaged concentration they, by their very nature, have

little predictive power for short term measurements. We investigate in this chapter

whether a simple Gaussian plume dispersion model, like that described in chapter

2 and utilised in chapter 3, can be optimized to better describe the measurements

within a particular field situation. The optimized model is then compared to a non

optimized model: both are utilised in the algorithm described in chapter 2 and their

resulting converged source distributions are compared for effectiveness at locating a

known gas source. We find that although the model parameters may be set to give a

better match to measured downwind concentrations, the overall performance of the

algorithm is more dependent upon the extent of regularization rather then variations

in dispersion model.
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4.1 Introduction

Locating a gas source from a few measurements of down-wind gas concentration is

an example of an inverse problem, this was previously discussed in chapter 1. High-

speed and cheap computational power has meant that this and similar problems can

be tackled numerically using various techniques to iteratively trial possible solutions,

eventually finding a solution which adequately predicts the real measurements. In

chapters 2 and 3 we discussed our algorithm which aims to solve such a problem

by finding the distribution of gas sources which best describe a set of concentration

measurements, such inverse techniques have been applied by [4] and [5].

In many inverse problems, the forward model is known precisely - like the Fourier

transform used in the light shaping inverse problem described in chapter 1. However,

for the location of gas sources a precise forward model would require full 3D knowl-

edge of the wind field. In most field situations these measurements are not possible

and data collection is restricted to a single point measurement of the concentra-

tion and wind speed and direction. Various simple gas dispersion models have been

proposed using single-point, time-varying wind speed and direction, supplemented

by additional local meteorological data to predict the shape of the down-wind gas

plume [13, 19, 20]. Most of these models assume a gas plume, within which the gas

concentration varies with a Gaussian cross section, centered on the average wind

direction. We use a similar simple Gaussian plume model, described by equation 2.1

[14], within our algorithm and have shown in the previous chapter that it can be

used to locate a gas source from downwind gas concentration measurements. How-

ever, from these and other observations, by ourselves and others, we know that like
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most other gas dispersion models it does not accurately describe the concentration

measurements made in the field. In this chapter we examine the extent to which

optimizing the dispersion model for a set of measurements made downwind of a sin-

gle known source can improve the performance of the algorithm we use to locate an

unknown gas source from various downwind gas concentration measurements.

4.2 Measurements of gas concentration and wind

data, used to evaluate the dispersion model

and algorithm

Measurements for this work were made over a 3-day period at an open air site,

approved for limited gas release. The gas source was a certified high pressure cylinder,

feeding a calibrated regulator to deliver 1Kg/hour of ethane to a perforated network

of pipes laid over an area of 4m2, the cylinder and pipes laid out on site are shown

in the picture in figure 4.1. The wind was measured in the same location using

an ultrasonic anamometer, giving both horizontal and vertical wind speed to an

accuracy of 0.1m/s with a data rate of 1Hz. The gas concentrations were measured

to an accuracy of 0.1ppb using a lead-salt laser system operating at 3.4microns,

performing wavelength modulation spectroscopy of atmospheric samples within a

multi pass Heriot cell. The air, filtered to remove particulates, was drawn through

the cell using a high speed pump such that the sample refresh rate was approximately

0.5Hz [21]. The gas concentration at a specific position and the corresponding wind
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Figure 4.1: The cylinder and perforated pipes laid out to simulate a diffuse micro
seepage.

measurements were logged to a common, time stamped, data file for subsequent

analysis. We typically measured data for a period of 15 minutes at each position

and at approximately 10 different positions on each of the three days. The various

measurement locations are marked on a map of the survey area shown in figure 4.2.

4.3 Optimization of the Gaussian plume model

We have shown in [5] that the Gaussian plume model allows easily obtainable data to

be used, specifically relating to meteorological data and we have succesfully utilised

the Gaussian plume model within our algorithm (chapter 2). Despite this it is clear

that the Gaussian plume model has a number of limitations. Firstly, in many appli-

cations it is the location of the gas source rather than its flux which is of primary
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800m

800m

Figure 4.2: The survey area with the location of the cylinder (known source) shown
in green and each measurement position shown in black.

importance. Factors such as calibration of the sensor and partial buoyancy of gas

may additionally result in a small multiplicative error. Secondly, in estimating the

height, σhi
, and width, σwi

of the Gaussian plume it is usual to define this by the

fluctuation in wind direction over a chosen averaging time. This averaging time is

often, somewhat arbitrarily, set as the anticipated transit time of the gas from the

source to the detector. Thirdly, that the Gaussian plume model assumes a point

source, hence predicting extremely high concentrations near the source, these can

perturb the algorithm we apply. Finally, in some situations our measurement system

may can contain systematic errors: there may be a slight alignment error in the

compass setting, or perturbation in measured wind direction due to the ananometers

local environment.

We use our experience of optimisation to try to overcome these limitations. We

modify the Gaussian plume model described by equation 2.1 such that it contains
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correction factors,

Ci =
aSj

πVi(bσwi
)σhi

exp

−1

2

(
∆wi

bσwi

)2
 exp

−1

2

(
∆hi

σhi

)2
 . (4.1)

Where a and b are multiplicative correction factors modifying the measured con-

centration and plume width. Both σwi
and σhi

are length measurements and are

calculated using the angular standard deviations of the wind direction calculated

over a one minute average in both the horizontal, θwi
, and vertical, θhi

, directions

respectively,

σwi
= θwi

z + k (4.2)

σhi
= θhi

(z + k). (4.3)

where k describes the minimum source size, and therefore prevents singularities in

the distribution of predicted concentrations.

In our situation, the vertical offset from the plume centre is zero and the horizontal

offset, ∆wi
, is calculated with respect to the plume centre whilst allowing for an

additive angular correction c.

Within our plume optimisation model we position the release at it’s known lo-

cation and use the data we measured to simply optimise the correction parameters,

a, b and c, such that the model best describes the concentrations we measured. The

known release location is shown with respect to the measurement locations in figure

4.2. To ensure that the optimisation only considers likely combinations of correction

parameters we set a max/min range of a, b and c. The optimisation algorithm we

utilise here is an exhaustive search. This algorithm trials all possible combinations

of a, b and c and calculates the predicted concentrations at the actual measurement
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locations due to each combination using the modified Gaussian plume model (4.1).

To evaluate the quality of each set of predicted concentrations and hence to evaluate

the merit of each combination of a, b and c we use a cost function.

The cost function we use for this application is similar to χ2 (equation 2.4),

however we modified the function so that emphasis is placed on correct prediction

of the low concentrations,

Ek =
1

N

N∑
i=1

|Cmi
− Ck

i |2

(Cmi
+ σi)2

. (4.4)

Where Ek is the value of the cost function due to combination k, N is the number

of measurements made, Cmi
is the concentration measured at i = 1, ..., N and σi is

the estimated error.

We found that using this modified cost function to find the optimised values of

a, b and c gave a more realistic set of correction values and a better match over a

wider range of measured and predicted concentrations than a χ2 cost function alone.

The bar charts in figure 4.3 compare the concentrations for each day’s data. The

measured concentrations are plotted in red, the concentrations calculated using a

simple Gaussian plume algorithm where the algorithm only optimizes the release rate

are plotted in green, and the concentrations where the Gaussian plume is optimized

for the release rate, plume width and compass correction are plotted in blue. From

the figure it is clear that by optimizing the wind direction and the plume width as

well as the release rate that we are able to produce a better fit to the measured data.

The fit can be assessed using the sum of the squared differences. The value calculated

using the measured concentrations and the concentrations calculated with optimised

release rate is 1.28× 10−14. The value calculated using the measured concentrations
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and the concentrations calculated with optimised release rate, wind direction and

plume width is 8.82× 10−15. The typical values of the optimisation parameters are

a = 0.36, b = 1.98 and c = 0.8.

4.4 Application of the optimised Gaussian plume

model within our algorithm

We have shown in the previous section that we can optimise the Gaussian plume

model to predict the concentrations we have measured in the field given a known

source and known wind conditions. We now investigate the effect this optimised

dispersion model has when included in the algorithm used to locate gas sources from

downwind gas concentrations.

We described the algorithm we use to locate an unknown gas source in chapter 2.

We use the algorithm with the optimised Gaussian plume model - equation ?? with

the values of a, b and c that led to the optimum value of the cost function. To evaluate

whether the application of the optimised model leads to improved performance of

the algorithm we compare the converged source distributions to those resulting when

the non-optimised model is used in the algorithm.

In chapter 3 we described three cost functions which we can use within the algo-

rithm. The first favours postulated source distributions with low total flux, E(Flux),

described by equation 3.3, another which aims to minimize the entropy of the pos-

tulated source distribution, E(Maxent), described by equation 3.4 and the final

cost function which favors a smooth postulated source distribution. Figure 4.4 show
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Figure 4.3: Both the measured and optimised concentrations averaged over each
measurement are plotted. The measured concentrations are plotted in red, the con-
centrations calculated having used the algorithm to optimise only the release rate are
plotted in green and the concentrations calculated having used the algorithm to opti-
mise release rate, wind direction and plume width are plotted in blue. Plot (a) shows
the concentrations corresponding to Monday’s measurements, (b) the concentrations
corresponding to Tuesday’s measurement and (c) the concentrations corresponding
to Wednesday’s measurements. From the better fit of blue bars to red bars than green
bars to red bars we can conclude that by optimising release rate, wind direction and
plume width we can optimise the Gaussian plume model.
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reconstructions using E(Flux) as the cost function, using both the simple and op-

timized Gaussian plume dispersion models. In both cases values of λ are chosen

so that the reconstructions correspond to a gradual fractional increase in the χ2

component of the cost function compared to that obtained for λ = 0. We see that

both dispersion models yield similar results, correctly identifying the known source

location for a range of λ. Figure 4.4 shows a similar set of reconstructions obtained

using E(Maxent) as the cost function, again with little to choose between the two

dispersion models.

4.5 Conclusions

We have shown, perhaps not surprisingly, that under a specific set of field condi-

tions the simple Gaussian plume model can be optimized such that the predicted

concentrations agree better with those actually measured. Although this specific op-

timization may not hold for all situations it is probable that in any field environment,

a controlled release could be made in advance of real data being collected. The op-

timized plume model could then be used in subsequent investigations or monitoring

of unknown gas sources.

More surprising is that when used within the algorithm, both the simple and

optimized Gaussian plume model yield similar results. In both cases the accuracy

to which the gas source is located depends less on the choice of dispersion model

and more on the choice of cost function and the degree to which the prediction is

regularized away from χ2. This is demonstrated by the comparison of reconstruction
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Figure 4.4: Comparison of reconstruction results produced using the algorithm with
the optimised and non-optimised Gaussian plume models, the flux cost function is
used. The results are shown for a range of regularisation, λ, values. X marks the
location of the known source. It is clear that algorithms with both the optimised
and non-optimised Gaussian plume models can be used to locate the source. The
degree of regularisation has a greater bearing on the result than choice of dispersion
model. The base of each graph represents an 800m × 800m survey area.
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Figure 4.5: Comparison of reconstruction results produced using the algorithm with
the optimised and non-optimised Gaussian plume models, the maxent cost function
is used. The results are shown for a range of regularisation, λ, values. X marks the
location of the known source. It is clear that algorithms with both the optimised
and non-optimised Gaussian plume models can be used to locate the source. The
degree of regularisation has a greater bearing on the result than choice of dispersion
model. The base of each graph represents an 800m × 800m survey area.
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results in figures 4.4 and 4.5. Suggesting that in both cases the errors between

predicted and measured concentration are largely random in nature and therefore

can be largely overcome by sufficient numbers of measurements and appropriate

regularization of the cost function.

Whether more complex dispersion models, requiring more meteorological data,

would give an improved performance of the algorithm cannot be ruled out, but it

seems that the most important consideration is that the errors in the dispersion

model be random.

Laura C. Thomson Page 57



Inverse Techniques: Problems in Optics
and Gas Sensing PhD Thesis

Laura C. Thomson Page 58



Chapter 5

Superresolution optical tweezers

Optical tweezers use foci of light to trap and manipulate microscopic particles [22, 23].

It is the intensity distribution of each focus that defines its trapping characteristics.

The trapping characteristics we are interested in here are trap resolution and relative

trap stiffness. Improvement in both of these characteristics could be useful for the

development of optical tweezers in many areas. In this chapter we show, using

computer simulations, that by using superresolution algorithms we can produce foci

with improved trapping characteristics. This work was published in reference [24].

5.1 Superresolution

Optical and acoustic signals are often band limited. Monochromatic light is one

such signal band limited because the transverse k value is between −2π
λ

and +2π
λ

.

The diffraction limit suggests that the smallest focus size that can be achieved is

approximately half the wavelength. This is also the smallest distance that can be

achieved between neighbouring foci. Superresolution gives the ability to beat the
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diffraction limit and shape a signal such that it locally contains features that have a

higher spatial frequency than would normally be expected according to the frequency

spectrum. This is achievable by leaving part of the signal unconstrained, which then

allows the rest of the signal to be shaped to greater detail. Such signals have been

described by Berry [25], who constructs a 1Hz frequency-bandwidth-limited sound

signal that contains Beethoven’s ninth symphony. The downside of this signal is that

it is very quiet. Locally, the signal contains frequency components not contained in

the signal as a whole, which Berry uses to shape the symphony. These frequency

components are called superoscillations.

Superoscillations have been found to exist in optics, for example near the centre

of an optical vortex [26] and close to a beam focus [27]. It is possible to shape

superoscillations; in optics this has been achieved for example in the development and

implementation of the Gerchberg algorithm [28, 29]. Such a light-shaping algorithm

aims to find a hologram that will produce a desired light beam, and in the case of the

Gerchberg algorithm the desired beam can contain structures smaller than allowed

by the diffraction limit.

One area of optics where the application of superoscillations could have signif-

icant implications is microscopy. Much work has already been done in this area,

minimizing the spot size of a light beam for use in microscopy [30]. More commonly

used superresolution techniques in microscopy include 4Pi-microscopy [31] and STED

microscopy [32]. Such techniques are reviewed in reference [33]. The resolution of

traditional confocal laser scanning microscopes is limited by the size to which the

excitation spot can be focussed. STED (stimulated emission depletion) microscopy
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beats this limit by using a very short excitation pulse followed by a depletion pulse,

which significantly reduces the size of the excited area and determines the resolu-

tion. It is the fluorescence of this reduced excited area which is then detected by the

microscope.

Other areas where superresolution techniques have already been utilised include

two-photon polymerisation [34] and for the manipulation of molecules [35].

The ability to produce an intensity distribution that contains features that beat

the diffraction limit appears desirable for optical tweezers [22]. Materials exist that

have a negative refractive index. A slab of such materials can amplify evanescent

waves and thus resolve images to better than the diffraction limit [36]. Such ma-

terials have already been used in optical tweezers to produce superresolved optical

traps. In chapter 7 we discuss the use of a light shaping algorithm to shape a three

dimensional intensity distribution of evanescent waves. This intensity distribution

contains superresolution optical traps.

The application of superresolution holography in optical tweezers has previously

been suggested but never studied any further. We describe our implementation of

two superresolution holography algorithms and study theoretically the effect super-

resolution has on trap resolution and relative trap stiffness.

5.2 Optical tweezers

Optical tweezers [22] use foci of light to trap, move and manipulate microscopic

dielectric particles. Provided the refractive index of the particle being trapped is
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Figure 5.1: Typical layout for holographic optical tweezers. A laser beam is expanded
before hitting a spatial light modulator (SLM). The SLM is shown here as operating
in transmission, however most SLMs operate in reflection. The first lens acts like a
Fourier lens and Fourier transforms the field in SLM plane onto the Fourier plane.
The remaining optics are used to image the beam in the Fourier plane onto the
trapping plane. It is in this, the trapping plane, where the foci produced are used as
optical traps to manipulate particles.

greater than that of the surrounding medium the particle will be attracted to and

held in the beam focus as a result of the gradient force [37, 38].

Simple arrangements of optical elements can be used to create beam foci suitable

for optical trapping. A lens positioned in the centre of a laser beam will create

a single focus and a lens array will create an array of foci; foci created in these

ways can be shifted sideways using a prism or a mirror. Although the use of these

optical elements results in foci that can be used as optical traps there is clearly a

limit on how particles can be manipulated when trapped in this way. Holographic

optical tweezers replace such optical elements with spatial light modulators. Figure

5.1 shows a typical experimental setup for holographic optical tweezers.

Recent development of spatial light modulator (SLM) technology has led to ex-
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tensive improvements in the optical trap configurations that can be achieved and also

significantly progressed the interactive use of optical tweezers. An SLM consists of

an array of liquid crystals, each of which is addressable under computer control. The

properties of each of the liquid crystals can be changed in almost real time to give the

illuminating beam a specific phase (it is also possible for SLMs to intensity-modulate

the beam). An SLM is the equivalent of a hologram and the phase pattern applied

to the SLM to achieve intensity shaping can be calculated using any number of light-

shaping algorithms [15, 8, 39]. Such light shaping algorithms numerically aim to

find a phase array (hologram) that, when combined with the illumination intensity,

will give the best approximation to a desired beam, usually in the SLM/hologram’s

Fourier plane. The desired beam can take any physically realisable form such as an

approximation to a Bessel beam or even an array of multiple foci; examples of both

beams have been proven to be useful in optical tweezers [40, 41]. Many of the light

shaping algorithms can produce a phase array in almost real time given a change to

the desired beam [42]. Such algorithms, and the fact that the phase hologram can be

applied to an SLM, make this setup ideal for use in optical tweezers and even allow

optical tweezers to work interactively.

Improvements in trap resolution and relative trap stiffness are likely to open up

new possibilities in areas such as the manufacturing of permanent structures and the

use of tweezers to make precision biological measurements. Trap resolution refers to

the inverse of the minimum resolvable distance separating two optical traps that can

be achieved and trap stiffness is a measure of how still a trap can hold a particle.

Both of these characteristics are defined by the intensity distribution of the traps
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and are what we chose to try to improve in this chapter. The trap resolution and

stiffness that can be achieved in the traditional holographic optical tweezers setup,

discussed here, is limited by the diffraction limit. We aim to beat these limits with

the introduction of superresolution.

5.2.1 Superresolution optical tweezers

To implement superresolution into holographic optical tweezers no changes to the

setup are necessary. It is however required that in order to shape (even just rep-

resent) superresolved structure we need to calculate the field in the Fourier plane

at higher resolution than we would normally represent the field. This is achieved

by zero-padding the field in the SLM plane, which corresponds to trigonometrically

interpolating in the Fourier plane. The setup described in figure 5.1 can be used to

describe superresolution optical tweezers.

In optical tweezers it would be normal to shape all of the beam in the Fourier

plane. For example if the desired beam was a single bright spot surrounded by

darkness it would be common to desire all of the power in the Fourier plane to make

up the spot and any good algorithm would attempt to put all of the power in the

Fourier plane within this spot. As was discussed in section 5.1, superresolution is

achieved in part of a signal. In that case we were refering to an audio signal, in this

case we are considering a signal which is a transverse light beam function which is

frequency limited.

To implement superresolution into the light shaping algorithms we use – direct

search [15] and Gerchberg-Saxton [8] algorithms – we restrict the algorithms such
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that the optical traps are shaped within a central area of interest, A, of diameter

a, in the Fourier plane. Within A we limit the amount of power to be a fraction,

P , of the total power in the beam. Outwith A the algorithm does not attempt to

directly influence the form the beam takes. By decreasing P we are increasing the

superresolution strength, allowing improved shaping of the light within A and leading

to improvements in both the trap resolution, d, and relative trap stiffness, Sx,y.

Without implementing this limitation to the Fourier plane that leads to superres-

olution light shaping, improvements can be made to the achievable trap resolution by

altering the beam that illuminates the spatial light modulator (SLM). It is common

to illuminate the SLM with a narrow Gaussian beam such that all of the power in

the beam is utilised. This increase in power is of course transferred to the optical

traps. However, when the SLM is illuminated with a narrow Gaussian beam the

outer pixels which correspond to high spatial frequencies in the Fourier plane are

not illuminated, leading to a reduction in the trap resolution that can be achieved.

The alternative method leads to a decrease in power with better shaping, giving a

valuable increase in trap resolution and relative trap stiffness. In this case the SLM

is illuminated with a wide Gaussian beam such that the pixels on the outside of the

SLM are also illuminated. However not all of the power in the illuminating beam

hits the SLM leading to a reduction in power in the optical traps. We calculate our

superresolution results using both a narrow and wide Gaussian beam to illuminate

the SLM.

The geometry describing both the restriction we place on the Fourier plane to

implement superresolution and both illumination options are shown in figure 5.2.
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We implement this geometry into both the direct search algorithm (appendix C) and

the Gerchberg algorithm.

5.3 Superresolution algorithms

We chose to adapt the direct search algorithm [15] and we also used the Gerchberg

algorithm [28] to introduce superresolution by including the restrictions discussed in

section 5.2.1.

5.3.1 Superresolution direct search

The direct search algorithm [15] repeatedly makes random changes to the phase in

the hologram plane until it results in a light distribution in the Fourier plane that

is the best approximation to the desired light beam. The changes are assessed using

a cost function which compares the resulting light distribution to the desired light

beam. An improvement is made when the current value of the cost function is less

than the previous value. The best approximation is reached when no further changes

result in a lower value of the cost function. We modify the direct search algorithm –

described in appendix C – such that it contains the modifications required to shape

superresolution optical traps.

The algorithm begins by initially generating a random phase distribution, φn=0
S (xi, yj),

containing phases between 0 and 2π, that represents the SLM, where n is the cur-

rent iteration number, xi and yj are the coordinates of the SLM pixels (i, j = 1, ....N

where N ×N is the total number of pixels that represents the SLM). All subsequent
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Figure 5.2: The geometry of the illumination of an SLM with the restrictions on the
SLM’s Fourier plane required for superresolution algorithm. (a) The Fourier rela-
tionship between the SLM and its Fourier plane utilised by light shaping algorithms.
(b) The xy cross section of the Fourier plane of length L showing the central area
of interest, A, of diameter a. (c) The illumination of the zero padded SLM by the
narrow Gaussian beam. The SLM plane is shown with the narrow Gaussian beam
illuminating the central area (highlighted by the pink dashed line) of length s. The
plot shows, for the pixels that di-sect the beam at its peak, the intensity of the beam,
I, as a fraction of its peak intensity, Ipeak,narrow. (d) Shows the same as in (c) for
illumination of the zero padded SLM by the wide Gaussian beam.
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iterations begin by combining the phase with the illumination intensity, IS(xi, yj),

to give the field in the SLM plane, Un
S =

√
IS(xi, yj) exp(iφnS(xi, yj)). As is shown in

figure 5.2, the field that represents the SLM is zero-padded (Un
S is positioned in the

centre of the larger Y ×Y matrix which is 0 outside the area that represents the SLM)

and is then Fourier-transformed to give the corresponding field in the Fourier plane,

Un
F (xk, yl), where xk and yl (k, l = 1, ..., Y ) are the coordinates of the pixels in the

Fourier plane which is represented by the Y ×Y pixels. We use a cost function to eval-

uate how close the current intensity in the Fourier plane, InF (xk, yl) = |Un
F (xk, yl)|2,

is to the desired intensity in the Fourier plane ID(xk, yl). The cost function we use

is the sum of the square of the difference between the actual and desired intensity at

each pixel,

En =
∑

(xk,ylεA)

(InF (xk, yl)− ID(xk, yl))
2. (5.1)

As we are only interested in shaping within the area of interest, A, we only compare

pixels within A. If En is less than the value of the cost function calculated during

the previous successful iteration, En−1, we retain φnS(xi, yj) and replace the value of

a random pixel with a random value between 0 and 2π to give the phase distribution

in the SLM, φn+1
S (xi, yj), to be used the next iteration, n + 1. However if En >

En−1 we discard φnS(xi, yj) and replace a random pixel in the previously accepted

(successful) phase distribution that represents the SLM, φn−1
S (xi, yj), with a random

value between 0 and 2π to give φn+1
S (xi, yj). It should be noted that if the current

iteration is the first, n = 0, φnS(xi, yj) is always retained. The next iteration can

then begin in the same way as the previous. The algorithm continues to iterate until

it converges; no more changes to the phase distribution that represents the SLM
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improve the value of the cost function.

We scale the desired intensity distribution, ID(xk, yl), within A to be a fraction

P of the total power in the beam, as is described by the following equation:

∑
(xk,ylεA)

ID(xk, yl) = P
∑
xi,yj

IS(xi, yj). (5.2)

A value of P should be chosen such that 0 < P < 1. For a value of P = 1 no

superresolution is present, the closer P is to 0, the greater the superresolution effect.

5.3.2 Superresolution Gerchberg algorithm

A superresolution algorithm was developed by Gerchberg [28] that can be used to

shape a signal to better than the diffraction limit. The Gerchberg algorithm is a vari-

ation on the Gerchberg-Saxton algorithm [8] (see appendix A); during each iteration

of the Gerchberg algorithm only part of the intensity distribution in the Fourier plane

is replaced as opposed to the whole intensity distribution in the Gerchberg-Saxton

algorithm.

The first iteration, n = 0, of the Gerchberg algorithm begins with an arbitrary

phase distribution, φn=0
S (xi, yj), being calculated to represent the phase of the SLM,

where xi and yj are the coordinates of the SLM pixels (i, j = 1, ....N) and N × N

is the total number of pixels that represent the SLM. This phase φn=0
S (xi, yj) is

combined with the illumination intensity, IS(xi, yj), and in all subsequent iterations

(n > 0) it is the phase calculated during the previous iteration that is combined with

IS(xi, yj) to give the field in the Fourier plane, Un
S =

√
IS(xi, yj) exp(iφnS(xi, yj)),

at the current iteration n. As is shown in figure 5.2, Un
S is zero-padded (Un

S is
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positioned in the centre of the larger Y × Y matrix, which is 0 outside the area that

represents the SLM) and is then Fourier-transformed to give the field in the Fourier

plane, Un
F (xk, yl) =

√
InF (xi, yj) exp(iφnF (xi, yj)), where xk and yl (k, l = 1, ..., Y ) are

the indices of the pixels in the Fourier plane. As we are only interested in shaping

the beam within A, the algorithm retains both the resulting phase in the entire

Fourier plane and the resulting intensity outwith A. The resulting intensity within

A is replaced with the desired intensity within A, rescaled such that the desired

fraction of power in the beam, P , lies within A, and then combined with the retained

intensity to give the replaced field in the Fourier plane, InF,R(xk, yl). The new field

Un
F,R =

√
IF,R(xk, yl) exp(iφnF (xk, yl)) is inverse-Fourier-transformed to give the field

in the SLM plane. It is only the resulting phase, φn+1
S (xi, yj), in the SLM plane

that is retained and that forms the start point of the next iteration. This process

continues until the algorithm converges – repeated iterations no longer improve the

resulting beam in the Fourier plane.

5.4 Resolution

Trap resolution is inversely related to the minimum distance separating two optical

traps (foci). The minimum separation, d, between two traps is the distance at which

the intensity distribution of the traps still satisfies the Rayleigh criterion [43] . For a

given setup there is a limit on the trap separation that is normally achievable without

the use of superresolution – we will refer to this limit as the resolution benchmark

dbenchmark. In this section we show that by using the superresolution light shaping
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algorithms discussed in section 5.3 we are able to improve the achievable trap sepa-

ration to values less than the benchmark and that by increasing the superresolution

strength (as P → 0) we are able to further improve this. It is the intensity dis-

tribution of the beam that defines the trap resolution, hence we investigate this by

numerically studying the intensity distribution of beams shaped by our algorithm.

We restrict ourselves here to the superresolution direct search algorithm. Before

describing how we calculate the trap separation benchmark, the trap separation and

whether they are resolvable from the resulting beam we will first describe the desired

beam we use in the algorithm.

As was discussed in sections 5.3.1 and 5.3.2, both the superresolution direct search

algorithm and the superresolution Gerchberg algorithm, like their non-superresolution

counterparts, require the user to specify a desired beam in the Fourier plane. These

algorithms aim to find the hologram that gives the best approximation to the desired

beam. To investigate trap separation we consider the simplest case of two optical

traps separated in the x direction. The desired beam therefore contains two optical

traps (represented in the algorithm by the only two non-zero values in the array

representing the desired intensity distribution) which are normalised to contain a

fraction P of the total beam power in the Fourier plane. Such a desired beam can

only have a discrete separation between traps limited by the fact that the beam is

described by an array containing a specific number of elements. An example of a

desired beam used in the algorithms to calculate resolution is shown in figure 5.3.
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Figure 5.3: An example of a desired beam for calculating resolution. The trap
separation (or inverse resolution) in this case is d = 4pixels

5.4.1 Calculating the resolution and Rayleigh criterion

The Rayleigh criterion [43] states that two intensity peaks are resolved if the ratio

between the intensity of the smaller of the two peaks, Ipeak,min, (for simplicity we

will refer to this in this section as the peak intensity) and the intensity of the trough

between the peaks, Itrough, meets the following criterion:

Itrough
Ipeak,min

≤ 8

π2
. (5.3)

Figure 5.4 (a) shows the intensity distribution (xy cross section) of a beam (prop-

agating in the z direction) shaped using the direct search algorithm. It contains two

intensity maxima, each of which can be considered an optical trap. The graph shown

in figure 5.4 (b) is a plot of the intensity at each of the pixels that dissect the peaks

at their maximum (in the x direction along the y = 0 axes as shown), ranging from a

pixel to the left of the first peak to a pixel to the right of the second peak. To evaluate

whether the traps satisfy the Rayleigh criterion (equation (5.3)), we locate the peaks

and trough from the discrete intensity values at each pixel by fitting parabolas to the
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Figure 5.4: The intensity cross section of a beam containing two optical traps. The
xy cross section of the beam, which is propagating in the z direction, is shown in (a).
In (b) the intensity of the beam is plotted along a line that di-sects the optical traps
through their peaks. Parabolas are fitted to the peaks (red) and the trough (blue)
to give the actual location and intensity of the peaks and trough. This information
is then used to calculate whether the optical traps satisfy the Rayleigh criterion; in
this case the beam satisfies the Rayleigh criterion.

three points closest to each of the peaks and the trough, like in the example shown

in figure 5.4 (b). Having fitted the parabolas we now achieve interpolated values for

the separation between the peaks, d, the intensity of the trough, Itrough, and the

intensity of the peak with the lowest intensity value, Ipeak,min. If the condition

in equation (5.3) holds true for the values of Itrough and Ipeak,min, the traps are

resolvable with a trap separation of d.

5.4.2 The resolution benchmark

To show that we can improve the trap resolution using light shaping algorithms

that incorporate superresolution (section 5.3) we must first define a benchmark trap
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separation to improve upon.

To create multiple peaks across the Fourier plane of the set-up that we use (as

shown in figure 5.2) it is necessary to illuminate four different points of the SLM.

The optimum separation of peaks in the intensity distribution in the Fourier plane

that can be achieved in this way is to illuminate the outer most pixels of the SLM,

essentially interfering the highest spatial frequency components. Such an SLM il-

lumination, shown by beam (a) in figure 5.5, when Fourier transformed results in

an array of intensity peaks in the Fourier plane, like beam (b) shown in figure 5.5.

Having achieved the array of peaks it is then necessary to calculate their separation,

d, which can be achieved using the method discussed in section 5.4.1.

The beams in figure 5.5 are calculated using the parameters we use to calculate

our results. The benchmark resolution is then calculated (in the way discussed in

section 5.4.1) in our case to be dbenchmark = 4.6pixels; the intensity across the

peaks at their maximum is plotted in figure 5.5 with the parabolas fitted to the

peaks and trough. When we run the direct search superresolution algorithm for the

wide Gaussian illumination of the SLM and with P = 1 (no superresolution) we

find that the algorithm results in a value of trap separation approximately equal to

dbenchmark.

5.4.3 Improvements in resolution

We run the algorithm for various values of desired trap resolution to find the desired

power fraction, P , within the area of interest, A, that results in a beam in the

Fourier plane where the intensity at the minimum of the two peaks, Itrough, to
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Figure 5.5: Calculating a benchmark trap separation for comparison. The beam
cross sections represent (a) the illumination of the SLM and (b) the resulting beam
in the Fourier plane. The dashed line in (a) represents the edge of the area that
represents the SLM. In the graph the intensity of the peaks is plotted along the axis
that dissect the peaks at their maximum.

the intensity at the trough, Ipeak,min, just meets the Rayleigh criterion (0.8 ≤

Itrough/Ipeak,min ≤ 8/π2). Figure 5.6 shows the separation d between resolvable

optical traps calculated using the direct search algorithm plotted as a function of the

logarithm of the actual power in the area of interest p. The desired beam in each

run of the algorithm is normalised such that it contains a desired power fraction

P in the area of interest A. When the algorithm has converged the beam in the

Fourier plane within A does not contain exactly the power fraction P we therefore

calculate and use the actual power in the area of interest of the converged beam p

in the results shown. For all beams calculated we find that p < P . The graph shows

that a decrease in p leads to an improvement in d, although at a cost: the line fitted

to the data has a slope of ≈ 0.18, which means that a reduction in power in A from

100% to 10% results in only an 18% reduction in d.
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The data is plotted relative to the trap separation benchmark dbenchmark = 4.6

i.e. d/dbenchmark is plotted. As all of the values of d/dbenchmark plotted are less

than 1, our results show that by using the superresolution direct search algorithm

we are able to reduce d to less than the benchmark dbenchmark which was set by

illuminating the four corner pixels of the SLM. We must however highlight that when

calculating the trap separation benchmark the trough intensity drops to 0, however

we select the values plotted in figure 5.6 such that the trough intensity is only ≈ 81%

of the peak intensity. For this reason perhaps a more realistic comparison would be

with the trap separation calculated using the direct search without superresolution

(P = 1) dmax which is calculated to be 4.4 pixels, all trap separations plotted here

are less than 4 pixels.

5.5 Relative trap stiffness

The trap stiffness [44] is the ”spring constant” of the trap. The trap stiffness defines

the ability of an optical trap to hold a trapped particle tight; the greater the trap

stiffness the tighter the particle will be held.

Just like the trap resolution it is the intensity distribution of the optical trap that

defines the trap stiffness. In the case of a point particle (which we consider here)

the trap stiffness can be calculated as the second derivative of the intensity at the

peak. Trap stiffness is proportional to the intensity in the trap. Therefore, if we

consider two traps of equal peak intensity, the peak with narrower width will have a

higher trap stiffness. It is this dependence on the intensity in the trap which makes
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Figure 5.6: The trap separation, d, as a function of the logarithm (base 10) of the
actual fraction of the power ration in the area of interest p. The trap resolution is
plotted relative to the benchmark resolution, dbenchmark. All the values plotted
here are for those light distributions that are just only just resolvable according to
the Rayleigh criterion: the ratio of the lower of the peak intensities to the trough
intensity is between 0.8 and 8/π2. All the data shown was calculated using the direct
search algorithm with a wide Gaussian illumination. The dashed line is a linear fit to
the data. The beam cross section inset is an example of the shaped light distribution
in the Fourier plane (the beam shown corresponds to the point at log10(p) = −1.15)
the red circle shown indicates the area of interest.
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it necessary for us to calculate and compare the relative trap stiffness here; we find

that using our algorithm with increased superresolution strength (decreasing P ) the

width of the peak does not decrease at the same rate as the peak intensity, therefore

not improving the trap stiffness. The relative trap stiffness is the stiffness divided

by the intensity at the peak of the optical trap, Ipeak.

To show improvements in relative trap stiffness beyond the relative trap stiff-

ness benchmark (the optimum value of relative trap stiffness normally achievable

without the use of superresolution) using the superresolution algorithms, we use a

desired beam in both the superresolution direct search algorithm and superresolu-

tion Gerchberg algorithm that consists of a single intensity maximum at its centre.

This intensity maximum is normalised such that it contains the desired fraction P

of the total power in the beam. This desired beam has optimum stiffness that can

be achieved for the value of P ; all possible power is in a single pixel surrounded by

pixels of 0 value. We repeatedly run the algorithm for various values of P and show

that as P → 0 (increasing superresolution strength) the relative trap stiffness im-

proves beyond the benchmark. Before we show the improvements we make with the

introduction of superresolution, we discuss how we calculate relative trap stiffness

and derive the relative trap stiffness benchmark.

5.5.1 Calculating relative trap stiffness

For an infinitely small trapped particle the relative trap stiffness can be calculated

as the second derivative of the intensity at the peak of the optical trap divided by

the peak intensity. To calculate the relative trap stiffness of an optical trap in a
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beam shaped using one of our algorithms (like the beam shown in figure 5.7) we fit

a parabola to the three pixel intensities closest to the trap. We fit parabolas, I(x)

and I(y), to the pixels that dissect the optical trap at its peak in both the x and y

directions. Figure 5.7 shows the parabola fitted to the pixel intensities that dissect

an optical trap in the x direction. The relative trap stiffness in the x and y direction,

Sx and Sy, can be calculated using the following equations:

Sx =
1

Ipeak

d2I

dx2
(5.4)

Sy =
1

Ipeak

d2I

dy2
. (5.5)

Ipeak is the peak intensity of the optical trap – the actual intensity peak calculated

from the fitted parabola. The values of both Sx and Sy are comparable; we use their

average, Sx,y = (Sx + Sy)/2, as a measure of relative trap stiffness.

5.5.2 The relative trap stiffness benchmark

Without the use of superresolution algorithms the relative trap stiffness of an optical

trap positioned at the centre of the Fourier plane for our wide and narrow illumina-

tions would simply be, in each case, that of the Fourier transform of the illumination

combined with a uniform phase distribution. We refer to this value as the relative

trap stiffness benchmark. Figure 5.8 shows a plot of the intensities in the pixels that

dissect an optical trap produced in this way as a function of their peak intensity for

the trap resulting from each illumination. From this plot it is easy to see that with

a wide Gaussian illumination the relative trap stiffness is much greater than that
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Figure 5.7: Calculating the relative trap stiffness by fitting a parabola to the inten-
sities of the pixels that dissect the optical trap at its maximum. The cross-section
of a beam shaped using the direct search superresolution algorithm is shown in the
inset. The main plot shows the intensities in the pixels that dissect the optical trap
in the x direction with the parabola fitted from which the relative trap stiffness is
calculated.

produced using the narrow Gaussian illumination, as previously discussed in sec-

tion 5.2.1. Using the method discussed in section 5.5.1 we calculate the benchmark

for the wide Gaussian illumination to be 0.375pixel−2 and for the narrow Gaussian

illumination to be 0.173pixel−2.

5.5.3 Improvements in relative trap stiffness

By running both superresolution algorithms for values 0 < P ≤ 1 we find that by

increasing the superresolution strength (P → 0) the relative trap stiffness increases.

Figure 5.9 shows the relative trap stiffness, Sx,y, plotted as a function of p, the

actual fraction of power within the area of interest, A, for both illuminations and

superresolution algorithms. From the results plotted here it is clear that the increase
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Figure 5.8: Calculating the relative trap stiffness benchmark by fitting parabolas to
the pixel intensities that dissect the optical traps resulting from a Fourier transform of
both the narrow (shown in green) and wide Gaussian illumination (shown in yellow)
with a uniform phase distribution. In order to compare the relative trap stiffness
for the trap resulting from both the narrow and wide illumination we plot intensity,
I, divided by peak intensity, Ipeak. From the plot we can see that with the wide

Gaussian illumination the relative trap stiffness is much greater than that produced
using the narrow Gaussian illumination.
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in Sx,y is greatest for the direct search superresolution algorithm with the narrow

Gaussian illumination; reducing p by 90% leads to an improvement in Sx,y by a factor

of ≈ 1.7.

5.6 Z-trapping properties

We have so far been concerned with shaping the light in one transverse plane (z =

0) only. The result was one or more small foci in a disc of darkness in the x − y

plane, the dark disc is surrounded by brightness. Here we discuss the trapping

properties of such light fields in the direction perpendicular to the trapping plane, z.

When moving out of the z = 0 plane, the small foci will diffract very quickly, which

suggests that the z-trapping properties of such fields are very good. On the other

hand, the brightness surrounding the central dark disc might diffract into the center

very quickly, spoiling the z-trapping properties. It is not obvious which of the two

mechanisms dominates, and therefore what the z-trapping properties of our shaped

light fields are.

We restrict ourselves here to demonstrating that it is possible to create situations

in which the former mechanism dominates, corresponding to good z-trapping prop-

erties. This is also backed up by a recent investigation into the lifetime of superoscil-

lations in quantum-mechanical wave functions [45]. We calculate the z-dependence

of a specific light field. The light field we chose to investigate was the single peak

calculated with the DS algorithm for illumination with a narrow-Gaussian-beam and

a power ratio in the area of interest of p = 0.029. To calculate the z evolution of
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Figure 5.9: Relative trap stiffness, Sx,y, and relative trap stiffness with respect to
the benchmark value S

x,ybenchmark plotted as a function of the power in the area

of interest, p. Sx,y is plotted for both the wide Gaussian illumination (a) and the
narrow Gaussian illumination (b). In both cases the data is calculated using two
superresolution algorithms: the direct search algorithm (red points) and Gerchberg
algorithm (blue points). The direct search supperesolution algorithm with the narrow
Gaussian illumination results in the greatest increase in relative trap stiffness.
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the field we had to make a choice of λ and L; we chose λ = 633 nm and L = 1 mm.

Figure 5.10 shows the resulting intensity both in the xy (transverse) plane (figure

7(c)) and in the yz (longitudinal) plane (figure 7(d)). It can clearly be seen that the

central intensity peak is surrounded by darkness not just in the xy-plane, but also

in the yz-plane.

Figure 5.10 also shows the corresponding intensity cross-sections of the narrow-

Gaussian, flat-phase, benchmark beam (figures 5.10(a) and (b)). Comparison con-

firms that the focus of the superresolved beam is narrower in the xy-plane, and

that it is significantly narrower in the yz-plane. This is reflected in the 2.2-fold and

dramatic 14-fold increases in the relative trap stiffnesses in the transverse (xy) and

longitudinal (z) directions, respectively.

5.7 Conclusions

In this chapter we have discussed our theoretical investigation of the application of

superresolution holography to optical tweezers. We have found that in our scaled-

down model system, this can improve optical tweezers in a number of ways: it can

improve the relative stiffness of individual traps, and it can make it possible to bring

neighboring traps closer together while maintaining the identities of the individual

traps. Unfortunately, these improvements come at the cost of a significant loss

of trap depth. We show that by increasing the amount of superresolution we can

improve the relative trap stiffness by a factor of 1.7, this was achieved using the direct

search algorithm with the narrow Gaussian illumination. We also show that the trap
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Figure 5.10: Intensity cross-sections in the xy- (left; i.e. (a) and (c)) and yz-planes
(right; (b) and (d)) of a focus created without (top; (a) and (b)) and with (bot-
tom; (c) and (d)) superresolution. xy cross-sections represent a 1mm×1mm area,
yz cross-sections show an area of 1mm×10mm area (compressed in the z-direction).
The non-superresolution beam is the flat-phase benchmark beam (section 6). The
superresolved beam was calculated with the DS algorithm with p = 0.029 (the target
power fraction was P = 0.01). Both were calculated for narrow-Gaussian illumina-
tion. Propagation of both beams was calculated for λ = 633 nm and L = 1mm. The
normalized stiffnesses corresponding to the four frames are Sxy = 0.24 (a); Sxy =
0.52 (c), a 2.2-fold increase with respect to (a); Sz = 0.000 048 (b); and Sz = 0.000
69 (d), a 14-fold increase compared to (b).
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separation can be improved by 18% by increasing the amount of superresolution.

We tried to make our results as useful as possible by formulating them in terms

of improvement factors over benchmark values. However, these improvement factors

are not universal: they do, for example, depend significantly on the intensity profile

of the beam illuminating the SLM and on the size of the area of interest. The

dependence on illumination and area of interest needs to be investigated in more

detail.

Our algorithms in their simplest form are not fast enough to be used interactively

in optical tweezers with moderate computing power, but they might form part of

other algorithms, which we are planning to explore.

We are considering testing our predictions experimentally. We will need to over-

come a number of difficulties, including aberrations in the optics, most likely the

SLM, which will decrease the trap resolution, and light from the bright, and un-

interesting, part of the beam being scattered into the interesting, but dark, part. We

hope that it will be possible to overcome the latter problem, certainly in samples

that inherently scatter little light. In order to overcome the former problem, we will

be able to draw on expertise in our research group for correcting for such aberrations

[46].
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Chapter 6

Holographic shaping of generalised
self-reconstructing light beams

The term self-reconstructing light beam can be used to describe any light beam

that, having been disturbed, will on further propagation reconstruct itself. Bessel

beams [47] are examples of self-reconstructing light beams [48]. However, it is not

well understood that many other light beams can exhibit this self-reconstructing

property. In this chapter we present details of a light-shaping algorithm that can

be used to arbitrarily shape self-reconstructing light beams, and we show examples

of beams that have been shaped using the algorithm. The worked discussed in this

chapter was published in this reference [49].

6.1 Self-reconstructing light beams

Bessel beams are useful for the optical trapping of 3-dimensional structures [40, 50]

due to their self-reconstructing character; on further propagation a Bessel beam will

reconstruct itself after any disturbance in the beam caused by a trapped particle.
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The self-reconstructing property of Bessel beams is a result of their structure.

Bessel beams are formed exclusively by multiple plane waves propagating at an angle

to the beam axis. Provided the plane wave spectrum is symmetric in the region

where the plane waves overlap a Bessel beam is formed (figure 6.1(a) shows the two-

dimensional equivalent of a circularly symmetric Bessel beam). As a result, light that

forms the centre of the beam in one transverse plane moves outwards on propagation.

Likewise, some of the light that forms the outside of the beam in one transverse plane

moves inwards to form the center of the beam on further propagation. Therefore any

disturbance to the beam caused by an obstruction in one plane will move outwards

in subsequent planes, allowing the beam to be reconstructed behind the obstruction.

Figure 6.2 shows a square disturbance to a Bessel beam and the beam after further

propagation where the disturbance has moved outwards.

Bessel beams are propagation-invariant; on propagation the beam remains un-

changed. One example of a Bessel beam (a zero order Bessel beam, where m = 0, like

that shown in figure 6.2) has a bright centre contained within concentric dark and

bright rings. This bright centre corresponds to a line of brightness along the centre

of the beam in the direction of propagation. As the intensity distribution of a beam

defines the beam’s trapping potential, this would correspond to a long trap which is

not usually desirable in optical trapping. It is normally desirable in optical trapping

to use an intensity distribution that contains bright points of light (optical traps)

located at specific controllable positions in a dark volume. Although it has previ-

ously been shown that by using a superposition of Bessel beams it is possible to create

trap configurations other than the single long trap (using counter-propagating Bessel
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Figure 6.1: Two planes waves, shown in grey, travelling at an angle α to the z axis
(direction of propagation). The area where the plane waves overlap and the beam
is constructed is shown in white. (a) The formation of non-diffracting interference
fringes (shown in white) is the two dimensional equivalent to a Bessel beam (formed
by multiple plane waves from cylindrically symmetric directions). (b) An obstruc-
tion of radius r in the beam creates a shadow of length ` after which the beam is
reconstructed again.
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Figure 6.2: The xy cross-sections of the self-reconstruction of a Bessel beam behind
a square obstruction. (a) A square obstruction has been placed in the centre of the
beam. Frames (b), (c) and (d) show the beam after increasing propagation distances,
z. It is evident that the disturbance, highlighted by the arrow, moves outwards after
further propagation.

beams, an optical conveyor belt has been created [50] and by interfering more than

one Bessel beam, arrays of elongated traps of limited control have been produced

[51]) it would be almost impossible to generate any desired intensity distribution

normally attributed to optical trapping in this way. However, it is possible to shape

such an intensity distribution using appropriate modifications of various algorithms,

such as those described in [8, 39, 15]. We chose to modify the Curtis-Koss-Grier

algorithm [39] to shape the intensity distribution in a self-reconstructing beam.
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6.2 Algorithms for shaping self-reconstructing light

beams

6.2.1 Modification made to beam shaping algorithm

We modify the Curtis-Koss-Grier algorithm [39] to shape optical traps that are self-

reconstructing. Our modification is not specific to the Curtis-Koss-Grier algorithm

(described fully in section 6.2.2) and could be applied to many light shaping algo-

rithms.

As discussed in section 6.1, light beams are self-reconstructing due to the fact

that they are composed of plane waves traveling at an angle to the beam axis; there

is an absence of light traveling at less than a minimum inclination angle α with

respect to the beam axis. As shown in figure 6.1(b) this angle α defines the length

of a shadow, `, that will be cast by a trapped particle of a particular radius, r, hence

defining the region after which the beam, and specifically any shaped trap, will be

reconstructed. The shadow length, particle radius and minimum inclination angle

are related through the equation

tanα =
r

`
. (6.1)

To create traps that are self-reconstructing we must use only light propagating at an

angle greater than a minimum inclination angle α with respect to the propagation di-

rection, or indeed any direction in which the beam is the beam is self-reconstructing.

It is the wave numbers of a Fourier space component, kx and ky, that determine the

direction at which this component will propagate. By creating dark discs of radius
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kr,min in Fourier space we are able to both dictate in what direction the beam will

be self-reconstructing and define the minimum inclination angle α, which is related

to kr,min through the equation

tanα =
kr,min√

k2 − k2
r,min

, (6.2)

where k = 2π/λ. As is shown in figure 6.3, we can define dark discs in Fourier space

as dark discs of radius ρ in the hologram’s illumination. The dark disc of radius ρ

in the hologram plane is related to the angle α through the equation

tanα =
ρ

f
, (6.3)

where f is the focal length of the Fourier lens (or the effective focal length of any

combination of lenses used between the hologram plane and the Fourier plane). For

the results shown in the next section we chose to simply centre this disc at the

centre of the hologram plane ((kx, ky) = (0, 0)), meaning that the beams are self-

reconstructing in the z direction. By changing the location of this disc we could create

beams that would self-reconstruct in other directions. The only modification that is

required to be made to a light shaping algorithm is the introduction of this dark disc

in the hologram’s illumination. As mentioned before, this could be introduced into

any algorithm that allows the k-space intensity to be directly specified. We chose to

modify the Curtis-Koss-Grier algorithm, an algorithm frequently used in the shaping

of optical traps.
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Figure 6.3: Set-up for self-reconstructing Fourier holography. The hologram illumi-
nation directly defines the Fourier space structure of the beam: a dark disc of radius
ρ in the hologram illumination intensity defines a dark disc of radius kr,min in Fourier
space. The radius of the dark disc directly defines the minimum inclination angle
α of the beam used to shape two traps (1 and 2) where trap 1 is located in the
hologram’s Fourier plane given a Fourier lens of focal length f .

6.2.2 The Curtis-Koss-Grier algorithm

The Curtis-Koss-Grier algorithm [39] is a modified version of the Gerchberg-Saxton

algorithm [8], described in appendix A, that is optimised to shape multiple optical

traps in multiple planes. Unlike the original Gerchberg-Saxton algorithm, which can

be used to shape the intensity of a light beam across an entire plane, the Curtis-Koss-

Grier algorithm in its simplest form only calculates the optical field at the discrete

locations in the trapping volume that correspond to the position of desired optical

traps. At all other positions the beam is automatically made dark. This makes the

Curtis-Koss-Grier algorithm fast in comparison and hence useful for the shaping of

optical traps.

Before describing the algorithm as a whole it is useful to understand the Fourier

relationship used to calculate the field at each discrete trap from the field in the
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hologram plane, and the corresponding inverse Fourier relationship used to calculate

the field in the hologram plane from the field at each discrete trap. First consider a

number of traps positioned at the Fourier plane surrounded by complete darkness.

We define the centre of the hologram’s Fourier plane, which we define to be the origin

of a coordinate system ∆~r = (x, y, z). The field at the trap position uj = aj exp(iφj),

where the trap number j = 1....N , is then related to the field Uε = Aε exp(iΦε) at

pixel number ε (ε = 1, ...,M) in the hologram plane, by an inverse Fourier transform

Uε =
1

M

N∑
j=1

uj exp
(
i
−−→
∆rj ·

−→
kε
)
. (6.4)

Here
−−→
∆rj is the position of the jth trap, 1/M is a normalisation factor and

−→
kε is the

position of the εth pixel in the hologram plane expressed in terms of the Fourier space

coordinates, kx, ky and kz. The Fourier space coordinates can be calculated from

the real space coordinates in the hologram plane, X and Y . Figure 6.4 shows the

relationship between Y and ky. Both Y and ky are related to the angle α through

the equations tanα = Y/f and sinα = −ky/k respectively, where f is the focal

length of the Fourier lens, k = 2π/λ is the wavenumber where λ is the wavelength

of the light and the angle α is defined in figure 6.4. By considering the small angle

approximation, Y is therefore related to ky through the equation

ky = −2πY

λf
. (6.5)

Similarly,

kx = −2πX

λf
. (6.6)

The z component of the wave vector, kz, is related to the others through the equation

kz =
√
k2 − k2

x − k2
y. (6.7)
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Figure 6.4: The definition of the parameters that can be used to calculate the Fourier
space coordinate ky from the real space coordinate Y0 in the hologram plane.

If we restrict ourselves to the case of a single trap, j = 1, located at the centre

of the hologram’s Fourier plane,
−−→
∆rj = (0, 0, 0), then

−−→
∆rj ·

−→
kε = 0, hence equation

(6.4) becomes

Uε =
1

M
uj. (6.8)

Considering again our more general case of multiple traps, equation (6.4) can

be turned round, to give the field at trap number j positioned at the centre of the

hologram’s Fourier plane calculated from the field at each element of the hologram

plane, Uε, forming the Fourier transform,

uj =
M∑
ε=1

Uε exp
(
−i−→∆r · −→kε

)
. (6.9)

Again equation (6.9) can be simplified when considering a single trap j = 1 positioned

at the centre of the hologram’s Fourier plane (
−−→
∆rj = (0, 0, 0)). Then

uj =
M∑
ε=1

Uε. (6.10)
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Both equations (6.8) and (6.10) are simplified Fourier transforms that can be used

to calculate Uε and uj respectively for a case where we aim to find a hologram that

gives one trap positioned at the centre of the hologram’s Fourier plane. However, it

is usual within optical tweezers to have multiple traps in positions such that ~∆rj 6= 0

(j = 1, ..., N). To accommodate the shift ~∆rj from the centre of the Fourier plane

to the desired trap location we include a kernel in the Fourier transform and inverse

Fourier transform. The kernel Kj(
−−→
∆rj,

−→
kε) – essentially an additional hologram –

shifts the trap field from the actual trap location back into the centre of the Fourier

plane. Equation 6.10 then becomes Uε = 1
M
ujk

−1
j . For the case of multiple traps

located at various locations, the field at each element in the hologram plane Uε

can be calculated from the field at each of the trap locations uj using the following

relationship:

Uε =
N∑
j=1

ujK
−1
j (
−−→
∆rj,

−→
kε), (6.11)

where λ is the wavelength of the light, f is the focal length of the Fourier lens and

~kε = (kx, ky, kz) is the position of the εth element in the hologram plane expressed in

terms of the Fourier space coordinates. The field at trap number j can be calculated

from the field at each element of the hologram plane, Uε, using the following equation:

uj =
M∑
ε=1

UεKj(
−−→
∆rj,

−→
kε). (6.12)

As mentioned above, the addition of a kernel to the Fourier transform is the

equivalent of experimentally adding an additional hologram to the optical setup.

The form of this additional kernel hologram depends on the shift required to return

the optical trap to the centre of the Fourier plane. By introducing a lens (or the
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phase hologram equivalent of a lens) into an optical system, any foci of light will

be shifted in the lateral direction (z), alternatively by introducing a wedge (or the

phase hologram of a wedge, a blazed phase grating) into an optical system, any foci

of light will be shifted in the transverse direction (x, y) (see figure 6.5). Therefore if

the desired optical trap needs to be shifted in the lateral direction to move the trap

back to the centre of the Fourier plane, the kernel, Kj(
−−→
∆rj,

−→
kε), is calculated as the

phase hologram of a lens ,

Kj(
−−→
∆rj,

−→
kε) = exp(ik2

z ·∆z). (6.13)

Alternatively we can add the equivalent of a blazed grating to the hologram to shift

the desired optical trap in the transverse direction back to the centre of the Fourier

plane, achieved by calculating the kernel, Kj(
−−→
∆rj,

−→
kε), using the grating equation ,

Kj(
−−→
∆rj,

−→
kε) = exp (−iλ(kx sinα + ky sin β)) (6.14)

where α = − arctan(∆xj/f) and βj = − arctan(∆yj/f).

The relationships described in equations (6.11) and (6.12) are used in the Curtis-

Koss-Grier algorithm in a slightly modified form [39]. As discussed in Appendix

A, the constraint that means light shaping problems have to be solved as inverse

problems is that the hologram illumination profile A is set. We therefore cannot

simply use equation (6.12) to calculate U from our desired trap intensities aj; this

would result in an illumination intensity that was not the hologram illumination

profile, A. The algorithm is iterative; the first iteration (n = 1) begins by setting

a random phase distribution, Φ1, in the hologram plane. We combine this with the

known illumination intensity, A, to give the field U1 = A exp(iΦ1). In the following
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Figure 6.5: The introduction of kernels as lenses or wedges can shift the trap back
to the centre of the Fourier plane. The focus created by the hologram is shown by
the red circle and the red cross shows the centre of the hologram’s Fourier plane. (a)
shows the desired position of the trap shifted in x, y and z from the centre of the
Fourier plane. The focus can be shifted back to the Fourier plane by the use of a
lens (b), and shifted into the centre of the Fourier plane with the addition of a wedge
(c). The kernel is exactly the phase hologram of the lens/wedge combination.
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iterations (here the nth iteration) we apply Un to equation (6.12) to give the resulting

field at discrete trap number j,

unj =
M∑
ε=1

Aε exp(iΦn
ε )Kj(

−−→
∆rj,

−→
kε)

≡ anj exp(iφnj ). (6.15)

This is repeated for each of the N discrete traps. Like in the Gerchberg-Saxton algo-

rithm we replace the resulting amplitude anj at each trap with the desired amplitudes

aj and retain the resulting phase φnj to give unj = aj exp(iφnj ). From this we calculate

the resulting field at the hologram plane Un+1 using equation 6.11,

Un+1 =
N∑
j=1

aj exp(iφnj )K−1
j (
−−→
∆rj,

−→
kε)

≡ An+1 exp(iΦn+1). (6.16)

Again we retain the resulting phase Φn+1, which then forms the starting point of

iteration n+1. The process of Fourier transform – replace intensity – inverse Fourier

transform – replace intensity is repeated. Φn converges such that the un+1
j s are a

good approximations to the desired values.

The Curtis-Koss-Grier algorithm of course shares many similarities with the

Gerchberg-Saxton algorithm, namely the symmetric Fourier transform – replace-

ment – inverse Fourier transform relationship used to bring both algorithms to con-

vergence. The Curtis-Koss-Grier algorithm can be considered a three-dimensional

version of the Gerchberg-Saxton algorithm described in Appendix A useful for shap-

ing optical traps over a volume. Both the Curtis-Koss-Grier algorithm and the

Gerchberg-Saxton algorithm converge much quicker than the direct search algorithm

[15]. However, the direct search algorithm generally converges to a better hologram;
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the Curtis-Koss-Grier and Gerchberg-Saxton algorithm with a suitably defined cost

function [52] commonly converge to a local rather than a global minimum. Perhaps

this could be avoided by some form of noise annealing (chapter 2) .

6.3 Examples of shaped self-reconstructing light

beams

To demonstrate the self-reconstructing algorithm we investigate a particularly simple

situation: shaping two traps positioned one behind the other with a separation of

variable distance ∆z as shown in figure 6.3. The first trap contains a completely

absorbing disc-shaped particle (in the transverse plane) of variable radius r. We

simulate wave-optically the shadow cast by this particle and investigate the effect

the shadow has on the formation of the second trap.

Figure 6.6 shows the yz intensity cross sections for two traps separated by a

distance ∆z = 8.25µm. Frames 1,2 and 3 are calculated for varying radius r of the

particle in trap 1. Frame 1 shows the beam with particle of radius r = 0 (i.e. no

particle in trap 1); trap 2 in this case is obviously fully formed. Frame 2 shows the

same beam, but now with a particle of radius r = 3µm positioned at trap 1. The

second trap is fully reconstructed because it is not positioned in the shadow cast

by the trapped particle, i.e. the length of the shadow ` cast by the particle is less

than the trap separation ∆z. Frame 3 shows the beam with a trapped particle of

radius r = 9µm. Now the shadow cast by the trapped particle is longer than the

trap separation ∆z, so the second trap is not reconstructed.

Laura C. Thomson Page 100



Inverse Techniques: Problems in Optics
and Gas Sensing PhD Thesis

11

r/R=0

22

r/R=0.63 (r=3µm)

33

r/R=1.91 (r=9µm)

12µm

18
.8

µm

y

z

Figure 6.6: yz intensity cross-sections showing the self-reconstruction of beams be-
hind obstructions of increasing size, all shown for the same trap separation ∆z and
different obstruction sizes. The solid red line indicates the size of the obstruction
which casts a shadow shown by the dashed red line; the cross marks the position
of trap 2 in the undisturbed beam. Cross-section 1 contains no obstruction in first
trap. Cross-section 2 is produced by simulating the presence of an obstruction in the
first trap of radius r less than the critical radius R. Cross-section 3 was produced by
simulating an obstruction in the first trap of r > R. Like all the other results shown
in this section, this figure was calculated for a hologram of size 20mm×20mm which
was uniformly illuminated outside the dark disc of radius ρ = 12.5mm. We simulated
this on a grid of size 256×256 for light of wavelength λ = 633nm; the effective focal
length was f = 11mm. In trap 2 of the figure the trapping geometry is such that the
second trap is reconstructed despite the presence of the particle in the first trap.
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We call the particle radius for which the length of the particle’s shadow equals

the trap separation ∆z the critical radius R. For a trapped particle of radius r > R,

trap 2 is not reconstructed as a result of the shadow that is cast (frame 3 of figure

6.6); for a trapped particle of radius r < R, trap 2 is reconstructed as the shadow

length ` is shorter than ∆z (frame 2 of figure 6.6). By insertion into equation 6.1,

the critical particle radius R for the given trap separation ∆z comes out to be

tanα =
R

∆z
. (6.17)

This is investigated in more detail in figure 6.7, which shows the intensity at the

position of trap 2, I2, plotted as a function of r/R for constant values of ∆z and

α. As the particle radius is increased from 0 to the critical radius (0 < r/R < 1),

the intensity in trap 2 I2 remains approximately constant; the shadow cast by the

trapped particle is shorter than the trap separation ∆z, hence the second trap is

fully reconstructed. As r/R is increased further (r/R > 1), the intensity in trap 2

begins to decrease, ultimately to 0; the trapped particle casts an increasing shadow

over the second trap, hence the second trap is not fully reconstructed.

Figure 6.8 shows yz intensity cross sections for a fixed particle of radius r = 3µm

with varying trap separation ∆z. The red cross shown marks the location of the

second trap given that no particle is present in the first trap. Frame 4 in figure 6.8

shows a cross section in which the second trap is not reconstructed; the length of the

shadow cast ` is greater than the trap separation ∆z. Frame 6 shows a cross section

where the shadow cast by the trapped particle is less than the trap separation ∆z,

hence the second trap is fully reconstructed.

Now there is a critical trap separation Z equal to the length of the shadow cast
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Figure 6.7: Intensity in the second trap, I2, as the radius of the obstruction, r, is
increased from 0 to show that for obstructions of r less than the critical radius R
the second trap will reconstruct fully given the presence of the obstruction. This
is shown by the almost constant value of I2 until r = R. For values of r > R the
peak intensity decreases. The yz cross-sections corresponding to points 1,2 and 3 are
shown in figure 6.6.

by the trapped particle, given by

tanα =
r

Z
. (6.18)

If the trap separation ∆z is less than the critical trap separation Z, trap 2 is not

reconstructed (frame 4 of figure 6.8); if it is greater than the critical trap separation

Z, trap 2 is outside the shadow and therefore reconstructed (frame 6 of figure 6.8). In

the graph of the intensity in trap 2, I2, as a function of ∆z/Z (figure 6.9), these two

cases show up respectively as a darkened intensity (∆z/Z < 1) and as full intensity

(∆z/Z > 1).

Note that for the graph in figure 6.9 a new hologram had to be calculated for

each data point. As the calculation of the hologram involves random processes, this

resulted in a less smooth curve than the one shown in figure 6.7, which was calculated

for the same hologram.
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Figure 6.8: yz intensity cross-sections showing the self-reconstruction of beams be-
hind an obstruction of radius r = 3µm. Each frame shows the cross section for a
different trap separations ∆z. The red line indicates the size of the obstruction which
casts a shadow shown by the red dotted line. Cross-section 4 is shown for ∆z less
than the critical trap separation Z. Cross-section 5 is shown for ∆z ≈ Z and cross
section 6 is shown for ∆z > Z. Parameters are the same as those used in figure 6.6.
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Figure 6.9: Intensity in the second trap, I2 as the trap separation ∆z is increased for
a fixed obstruction radius r = 3µm. As ∆z is increased from the critical separation
Z the peak intensity in the second trap remains constant showing that for ∆z > Z
the second trap reconstructs given the presence of the obstruction. Figure 6.8 shows
the yz cross-sections corresponding to points 4,5 and 6. Parameters like in figure 6.6.
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6.4 Light beams that self-reconstruct in directions

other than the propagation direction

Here we describe the potential to extend the concept of the generalized self-reconstructing

algorithm to shape light beams that may be useful for the trapping of photonic crystal

structures [53].

It is possible to create light beams that are self-reconstructing in directions other

than the direction of propagation and in multiple directions. This is achieved by

specifying the correct dark disc in the hologram illumination. The beam will be self-

reconstructing in the direction around which its k-space representation is dark. The

length of the shadow cast by the trapped particle is defined by the radius of the dark

disc. By creating a hologram illumination that contains multiple dark discs centered

on various locations we can then create light beams that are self-reconstructing in

different directions.

6.5 Conclusions

We have demonstrated that it is possible to make a simple modification to a light

shaping algorithm so that it can then be used to shape a light beam that is self-

reconstructing. We explain generalized self-reconstructing light beams using a simple

ray-optical argument. By wave-optically simulating a completely absorbing trapped

particle in our shaped self-reconstructing beam we are able to demonstrate its self-

reconstructing properties. Any introduction of a reflecting or refracting particle,
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which could lead to optical binding [54], would, of course make our simulations more

complicated. This could form the basis of future work.
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Chapter 7

Evanescent wave shaping

The size of bright structures in travelling-wave light fields is limited by diffraction.

This in turn limits a number of technologies, for example optical trapping. One way

to beat the diffraction limit is to use evanescent waves instead of travelling waves. In

this chapter we discuss the application of light shaping algorithms to shape the three

dimensional intensity distribution of evanescent waves. We simulate 3D intensity

shaping of evanescent-wave fields using this approach, and we investigate some of its

limitations. The work discussed in this chapter was published in reference [55].

7.1 Introduction

Optical tweezers trap microscopic particles in the intensity maxima or minima of a

light beam. The smallest possible size of a maximum or minimum and the proximity

of multiple maxima or minima to each other is limited by the diffraction limit. This

therefore places a limit on the optical trapping resolution. We previously addressed

beating the diffraction limit in chapter 5, where we applied light shaping algorithms
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produce super-oscillations. Another way to beat the diffraction limit and achieve

superresolution is to use superpositions of evanescent waves to form optical traps.

The transverse wavelength of evanescent waves can be significantly shorter than

that of a traveling wave, with the same frequency. This results in the ability to

beat the diffraction limit. Superpositions of small numbers of evanescent waves have

previously been used for optical trapping [56] and sorting [57].

In this chapter we describe a method of using a light shaping algorithm, direct

search algorithm [15], to shape the intensity distribution of an arbitrary number of

evanescent wave superpositions. We demonstrate this numerically and show that this

approach can be used to shape evanescent wave superpositions in three dimensions.

We apply the algorithm to shape intensity maxima in evanescent waves at desired

three dimensional locations. The shaping of such evanescent wave fields in this way

is applicable to optical trapping.

In the following sections we discuss the creation of superpositions of evanescent

waves, the application of the direct search algorithm to evanescent wave shaping and

present our results.

7.2 Creation of superpositions of evanescent waves

We have previously discussed the use of the direct search algorithm in chapter 5.

For our application of the direct-search algorithm to evanescent-wave shaping, the

algorithm is written with a specific experimental design in mind (but it can be applied

more generally). In this section we discuss two candidate designs for the creation of
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superpositions of evanescent plane waves.

α90°-α
x

z

λ

λ/n

Λ

Figure 7.1: Geometry of the creation of evanescent waves by total internal reflection
of a prism surface. A plane wave of vacuum wavelength λ is incident on a prism
surface with angle of incidence α. The transverse wavelength along the prism surface,
Λ, is given by the equation Λ sin(α) = λ/n.

Figure 7.1 shows the geometry of a plane wave entering a glass prism and hit-

ting its top side, where total internal reflection (TIR) is taking place. During TIR

evanescent waves are produced on the surface of the top side of the prism.

The wavelength outside the prism (in air) is λ, that inside the prism glass of

refractive index n is λ/n. We choose our coordinate system such that the TIR

surface is in the z = 0 plane and that the plane wave in the prism is travelling

perpendicular to the y direction. Above the prism, the evanescent waves have the

form of plane waves, namely

u(x, y, z) = exp(i(kxx+ kzz)), (7.1)

where k2
x + k2

z = (2π/λ)2 (in our coordinate system ky = 0). However, in evanescent

waves kz is purely imaginary, and the wave therefore decays exponentially in the z

direction.
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The smallest transverse wavelength that can be achieved in evanescent waves

using TIR as described above is λ/n, which corresponds to grazing incidence at

the TIR surface. Small transverse structures can be achieved with small transverse

wavelengths, which in turn can be realized using high-n glass. One example of a

suitable glass is Schott SF11, which has a refractive index of n > 1.7 for a wide range

of wavelengths, and which is relatively cheap as it is frequently used in femtosecond-

laser correction.

A

Figure 7.2: Glass hemisphere configuration creating an evanescent wave field in the
centre of the flat surface. Illuminating the sphere with a point light source, A, which
can be for example the end of a single-mode fiber, can create a collimated beam
inside the glass, which in turn can create an evanescent plane wave above the centre
of the hemisphere’s flat side. Illuminating with two or more coherent point light
sources at different positions can create a superposition of evanescent waves.

An alternative design uses a glass hemisphere in place of a prism (figure 7.2). This

is a more versatile design as the hemisphere can be illuminated from any direction

(ky 6= 0) and with any value of (kx 6= 0). Such versatility makes this design more

suitable for use with the direct search algorithm. The hemisphere’s flat side acts as

the TIR surface. We propose to illuminate the hemisphere with a number of fiber

ends, each effectively acting as a point light source. If a fiber end is positioned at the

correct distance from the glass hemisphere, the curvature of the glass collimates the

beam from the fiber inside the glass. The correct distance can be calculated from the
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lens maker’s formula, which states that a spherical glass surface of refractive index

n and radius of curvature r has a focal length

f =
r

n− 1
. (7.2)

Therefore each fiber end has to be positioned this distance f from the spherical

surface to create a plane wave inside the glass hemisphere.

We limit the setup such that all of the evanescent planes waves have the same

global polarization, so they will interfere. The different plane waves inside the glass

hemisphere are then incident on the TIR surface, the hemisphere’s flat side, from

different directions. This creates different evanescent waves on the other side of

the TIR surface. By varying each fibres illumination we can create varying desired

interference patterns.

The illumination fibres could be gathered together in a bundle and illuminated

using a phase-only spatial light modulator (SLM). The SLM is imaged onto the end

of the fibre bundle - each SLM pixel addressing a fibre end. The phase at both ends

of the fibres can therefore be controlled directly. The intensity at the input fibre

ends, and therefore also the intensity of the corresponding evanescent plane-wave

components, is given by the intensity distribution of the illuminating laser beam.

7.3 Application of the direct search algorithm to

evanescent wave shaping

With a view to potential applications in optical trapping, we aim to create super-

positions of N evanescent plane-wave components that have bright spots at M trap
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positions with coordinates (xj, yj, zj) (j = 1, ...,M). We restrict ourselves to chang-

ing the phases of the evanescent plane waves, all of which are of the same intensity

(generalization to different intensities is straightforward; a traveling-wave example

can be found in [15]). We characterize the ith plane-wave component by its trans-

verse wave-number values, kx,i and ky,i. The corresponding plane wave can then be

written in the form

ui(x, y, z) = exp(i(kx,ix+ ky,iy + kz,iz)) (7.3)

= exp(i(kx,ix+ ky,iy)) exp(−βiz), (7.4)

where

kz,i =
√

(2π/λ)2 − k2
x,i − k2

y,i (7.5)

and βi = −ikz,i describes the exponential decay in the z direction. We then want to

optimize the phases φi of the plane-wave amplitudes in the superposition

v(x, y, z) =
N∑
i=1

exp(iφi)ui(x, y, z) (7.6)

such that the intensities at the trap positions (xj, yj, zj),

Ij = |v(xj, yj, zj)|2, (7.7)

are as bright and as equal as possible.

We again utilise the direct search algorithm [15] as a brute-force approach to

solving such “inverse” problems [58]. Initially, we set the phases of all beam ampli-

tudes to random values. We then calculate the quality of the resulting superposition

in terms of the intensity at the trap positions according to the definition

Q =
∑
j

ln(Ij + 1). (7.8)
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This cost function is chosen as it has two properties important to solving this prob-

lem: 1) Increasing any one of the intensities Ij increases Q. 2) Transferring intensity

from a brighter to a less bright trap position also increases Q. Other cost functions

could be chosen for the same reason, however comparison of cost function was not

the focus of this work but could be the basis of later work. Now we make a random

change to the superposition: we pick a random component and change the phase of

its amplitude ai to a random value. We calculate the quality of the altered super-

position, again according to the definition (7.8), but calling this new quality Q′. If

the new superposition is better than the old one, that is if Q′ > Q, we accept the

random change; otherwise we discard it. We repeat the process of randomly picking

one component, randomly altering its phase, and keeping only changes that lead

to improvements until the quality does not change any longer for several hundred

iterations.

7.4 Results

We have tested this approach to evanescent-wave shaping for various target distri-

butions. The results we present in this section show that the approach to evanescent

wave shaping we have taken works, but they also demonstrate its limits.

The simulations in this section were performed for specific choices of additional

parameters. All our simulations were performed for λ = 632.8nm. We also made

a choice on the specific arrangement of optical fibers around the glass sphere: our

model represents an arrangement of optical fibers that are equally spaced in their
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Figure 7.3: Example of the transverse wave numbers k-space distribution of evanes-
cent plane-wave components used in our simulation. The dots represent evanescent-
plane-wave components. They all lie outside the shaded area in the centre, which
represents travelling waves.

projection angles into the xz and yz planes, whereby travelling-wave components are

not allowed. An example of the corresponding k-space distribution is shown in figure

7.3.

Figure 7.4 demonstrates shaping of the transverse intensity distribution of the

evanescent-wave field immediately above the hemisphere’s surface (z = 0). It also

demonstrates that the intensity features can be sub-wavelength in size.

The algorithm can also shape the transverse intensity in planes a finite distance

above the hemisphere’s surface. Figure 7.5 shows the result of optimization of the

intensity at two points a finite distance above the prism surface. Figure 7.5(a)

shows the transverse (x, y) intensity cross-section away from the prism surface. The

corresponding (x, z) cross-section (figure 7.5(b)) demonstrates that, unlike in similar

algorithms used for shaping travelling waves, simply optimising the intensity at a
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x
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Figure 7.4: Shaping of the transverse intensity distribution of an evanescent-wave
superposition, here directly above the prism surface (z = 0). “+” symbols indicate
positions where the intensity was maximized. The k-space components are those
shown in Fig. 7.3. The shaped intensity features are sub-wavelength in size.

number of points does not produce 3D intensity maxima.

Figure 7.6 shows the results of attempting to force the creation of 3D intensity

maxima. In addition to trap positions where the intensity is maximised, we modified

the algorithm to minimise the intensity on a set of points on spheres around the

maximum-intensity trap positions, simply by extending the definition of Q to include

a term such that an increase of the intensity at any one of L “no-trap” positions

(xj, yj, zj), where j = M + 1...M + L, leads to a decrease of the quality:

Q =
M∑
j=1

ln(Ij + 1)−
M+L∑
j=M+1

ln(Ij + 1). (7.9)

Interestingly, we did not succeed in creating 3D intensity maxima. This might well

be due to the fact that we restrict ourselves to superpositions of evanescent plane

waves that all have the same intensity. In [55] it is suggested that it may also be –

fully or in part – due to a more fundamental reason related to Earnshaw’s theorem.

Finally, we address the commonly held belief that the intensity of evanescent-wave

fields can only ever fall off in the longitudinal direction. Figure 7.7 demonstrates that,
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Figure 7.5: (Color online) Transverse (a) and longitudinal (b) intensity cross-section
after optimization of the intensity at two trap positions (“+” signs). The trap posi-
tions are 300nm above the prism surface. The k-space distribution is that shown in
Fig. 7.3. Unlike in similar algorithms used to shape travelling waves, (b) shows that
simply optimising the intensity at a number of points does not produce 3D intensity
maxima.

along a line in the transverse (z) direction, the intensity can not only rise in the z

direction, but it can also go through one or more maxima. (Note, however, that in

3D all of the intensity maxima along the line in the z direction are saddle points.)

figure 7.8 explains how an out-of-phase superposition of exponential functions (such

as amplitudes of different evanescent waves) can have a maximum; superpositions of

more exponentials can have more maxima.

7.5 Conclusions

In this work, we have investigated the potential use of evanescent-wave holography

for optical micromanipulation. Our results are useful not only for showing that

evanescent-wave intensities can be shaped in 3D, but also for investigating the limi-

tations of holographic evanescent-wave shaping.
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Figure 7.6: (Color online) Intensity resulting from an attempt to force the creation of
two 3D intensity maxima. The algorithm tries to maximize the intensity at the trap
positions, which are indicated by “+” signs (green in the online version); it tries to
minimize the intensity at the points marked with “-” signs (red in the online version).
k-space distribution as in Fig. 7.3. 3D intensity maxima are not successfully shaped.

We have shown in figure 7.4 that we can successfully shape evanescent-wave

fields that have desired sub-wavelength features. We also demonstrate, figure 7.7

that in the transverse direction (as we move away from the surface of the prism)

the evanescent-wave field can go through multiple intensity maxima. Showing that

evanescent-wave intensity maxima can be shaped away from the surface of the prism.
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Figure 7.7: (Color online) Demonstration of intensity maxima away from the prism
interface. The intensity was maximized in two points, each marked with a “+”, on
the line x = y = 0. The intensity is shown in two planes that both include the line:
y = 0 (a), and x = 0 (b). What appears to be a 3D maximum in (a) turns out
to be a saddle point in (b). The intensity was calculated for a k-space distribution
different from that shown in Fig. 7.3.
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Figure 7.8: Local maximum in the field, u, sum of two evanescent waves, u1(z) =
exp(−z) and u2(z) = − exp(−2z) where z is the propagation distance (dimensionless
units).
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Chapter 8

Conclusions

Rather than repeat the conclusions made at the end of each previous chapter this

chapter simply makes some overall concluding comments.

In the first half of this thesis we discussed the use of inverse techniques to locate

gas sources from downwind concentration measurements. This is done with an ap-

plication in oil prospecting in mind. The software resulting from this work, Recon,

is currently used by the LightTouch team at Shell Global Solutions.

We have demonstrated that when solving inverse problems in this way the choice

of cost function has a large bearing on the result. The results in chapter 4 suggest

that the choice of cost function has greater bearing on the results than choice of

forward models we compare. This is due to the fact that changes to the gas source

distribution, for example, are accepted or discarded based solely on the an improved

value of the cost function. In a mathematical sense it is essentially the cost function

that determines the underlying characteristic of the source distribution. For example,

cost functions can be defined to favour sources that are smoothly distributed or highly

localised. This choice is made on the basis of experience gained from knowledge of
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the problem itself. I believe there is no universal cost function suited to solving all

inverse problems. Rather each problem requires the cost function to be chosen with

care and knowledge of the problem itself.

The fact that Shell Global Solutions continue to pursue this technology is proof

that it is a viable solution to gas location problems. This approach to solving inverse

problems can be computationally intense. With a desktop PC running Recon with

one of our typical gas measurement data sets can take between many minutes and

many hours to converge. The time to converge is dependent on the amount of

annealing, the number of measurements made and the number of potential sources.

Recent developments in computing technologies should make this type of approach

viable for solving this problem and others. Programmable graphics cards are one

such computing development which in cases have reportedly improved processing

time by 100 to 1000 times.

The holographic light shaping problems, we discussed in the second half of this

thesis, could also benefit from being implemented with graphics cards. Such an

implementation would make more rigorous and varied algorithms available to real

time holographic light shaping. We could therefore foresee the realisation of the

suggested experimental setup discussed in chapter 7 to manipulate desired three

dimensional evanescent fields in real time.

The work discussed in chapter 7 demonstrates that evanescent fields can be

shaped in three dimensions and suggests an experimental setup to realise this. Fur-

ther to this we show that multiple evanescent intensity maxima can be shaped in the

transverse direction from the TIR surface.
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Using evanescent fields to make optical traps is one suggested way to improve

trap resolution. Another approach which we have described in this thesis utilises

superresolution and is described in chapter 5. In this work, we show numerically,

that by shaping only a small part of the beam we can create superresolution optical

traps which have an improved relative trap stiffness and trap resolution. However,

both improvements come at a cost to trap strength.

Another light shaping problem we have described in this thesis, in chapter 6,

is shaping self-reconstructing beams. We have demonstrated that it is possible to

modify a light shaping algorithm to shape self-reconstructing light beams. We shape

a self-reconstructing beam which contains multiple optical traps along the direction

of propagation. We demonstrate it’s self-reconstructing properties by numerically

simulating an absorbing particle in the first trap and show that on propagation the

beam reconstructs with the remaining traps preserved.
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Appendix A

Gerchberg-Saxton Algorithm

The Gerchberg-Saxton Algorithm [8] is used to calculate the phase hologram that

can be used to produce a desired intensity of a light field for a given hologram

illumination. The Gerchberg-Saxton Algorithm is based on the Fourier relationship

between the hologram plane and the Fourier plane as shown in figure A.1.

We set the intensity in the hologram plane to be the known illumination intensity,

IH(xi, yj), and choose an arbitrary distribution for the initial phase in the hologram

plane, φnH(xi, yj). The initial complex field in the hologram plane, Un
H(xi, yj) =

IH(xi, yj) exp(iφnH(xi, yj)), is Fourier transformed to give the field in the Fourier

plane, Un
F (xi, yj) = InF (xi, yj) exp(iφnF (xi, yj)). As we are interested only in shap-

ing the intensity we leave the phase in the Fourier plane, φnF (xi, yj), unchanged

and replace the intensity with the desired intensity in the Fourier plane, IF (xi, yj).

The replaced field in the Fourier plane, Un
F (xi, yj) = IF exp(iφnF (xi, yj)), is inverse

Fourier transformed to give the new field in the hologram plane, Un+1
H (xi, yj) =

In+1
H (xi, yj) exp(iφn+1

H (xi, yj)). The intensity at Un+1
H (xi, yj) is replaced by the illumi-

nation intensity and the phase again remains unchanged. The replaced Un+1
H (xi, yj) =

123



Inverse Techniques: Problems in Optics
and Gas Sensing PhD Thesis

f f

LensHologram
Plane

Fourier
Plane

FT

FT-1

Figure A.1: The Fourier relationship between hologram and Fourier plane.

IH(xi, yj) exp(iφn+1
H (xi, yj)) is again Fourier transformed to give the new field in the

Fourier plane Un+1
F (xi, yj) and the process of replacement inverse Fourier transform

replacement Fourier transform is repeated until the algorithm converges. The algo-

rithm has converged when the Fourier transform of the replaced field in the hologram

plane, Un+j
H (xi, yj) = IH(xi, yj) exp(iφn+j

H (xi, yj)), gives the best approximation to

the desired intensity IF (xi, yj) and no further iterations of the algorithm make any

improvement. Figure A.2 shows a schematic of the Gerchberg-Saxton algorithm.
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Figure A.2: The Gerchberg-Saxton algorithm.
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Appendix B

Recon

Recon is the software, written in Labview, that we have written to locate gas sources.

The software utilises the inverse techniques discussed in chapters 2, 3 and 4.

Figure B.1 shows a flow chart detailing the main inputs, outputs and processes

completed by Recon. The initial stage in the process, to process the measured

data, can be used to remove the background gas concentration and average the

measurement data in the time domain. The next stage in the process calculates the

forward model, which in this case is a gas dispersion model, resulting in a matrix,

A, which is used during the iterations to calculate the downwind gas concentration

measurements resulting from the trialed source distribution. The algorithm itself

follows and is detailed in the flow chart shown in figure B.1.

Screen shots from Recon have been taken which show the user interface. Figure

B.3 shows the section of the program which calculates the forward model. In the case

shown it is the Gaussian plume model which is being used, however, one of others

can be selected here by changing the tab.

Figure B.4 shows the interface of the section of the program where the iterations
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of the algorithm are carried out. In this case it is a χ2 cost function with no annealing

that is being used, again this can be changed by changing the appropriate tab.
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Figure B.1: A flow diagram highlighting the input, output and main processes com-
pleted by Recon.
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Figure B.2: The algorithm.
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Figure B.3: A screen shot taken from Recon showing the forward model being cal-
culated.
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Figure B.4: A screen shot taken from Recon showing the progressing iterations.
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Appendix C

Direct Binary Search Algorithm

The direct binary search algorithm [15] can be used to shape a desired light field;

both phase and intensity if desired. The algorithm aims to find the phase hologram

that will give the best approximation to the desired intensity IFD
(xi, yj), desired

phase φFD
(xi, yj) or desired field UFD

(xi, yj).

Like in the Gerchberg-Saxton algorithm described in Appendix A we set the

illumination intensity to IH(xi, yj). We know that we can calculate using a Fourier

transform the field in the Fourier plane from the field in the hologram plane. However,

if we inverse Fourier our desired field in the Fourier plane we will get both a random

phase and intensity distribution in the hologram plane. As we set the intensity in the

hologram plane to be the illumination intensity IH(xi, yj) it is this constraint on the

problem that means we must solve this problem as an inverse problem. The Fourier

transform in this problem is our forward model; used to calculate the unknown result,

field in Fourier plane, from the known event, field in the hologram plane.

The initial phase is a random distribution φnH(xi, yj). We Fourier transform the

initial complex field in the hologram plane Un
H(xi, yj) = IH(xi, yj) exp(iφnH(xi, yj)) to
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give the corresponding field in the Fourier plane Un
F (xi, yj) = InF (xi, yj) exp(iφnF (xi, yj)).

We then must numerically evaluate the fit of the guessed intensity distribution

InF (xi, yj) to the desired intensity distribution IFD
(xi, yj) which we do using a cost

function . In this case where the algorithm is shaping a desired intensity distribution

the most simple cost function would be a least squares comparison between InF (xi, yj)

and IFD
(xi, yj),

En =
∑
i

∑
j

| InF (xi, yj)− IFD
(xi, yj) |2 . (C.1)

This cost function can be modified to compare phase or field depending on what is

desired. If the value of the En is less than the value of the cost function calculated

at the previous iteration we retain φnH(xi, yj). During this initial iteration we always

retain φnH(xi, yj) as En=0 =∞.

All subsequent iterations begin by selecting a random pixel in the hologram

plane and replacing the phase at that pixel with a random value to give a new

field Un+1
H (xi, yj) = IH(xi, yj) exp(iφn+1

H (xi, yj)). Again we Fourier transform Un+1
H

to give the field in the Fourier plane due to this random change Un+1
F (xi, yj) =

In+1
F (xi, yj) exp(iφn+1

F (xi, yj)). We again numerically evaluate the random change

using a cost function like that described in equation C.1. If En+1 is less than En at

the last successful iteration we retain φn+1
H (xi, yj) and if not we discard φn+1

H (xi, yj)

and retain the phase at the previous successful iteration φn+1
H (xi, yj). We then begin

another iteration by making a random change to the retained phase distribution.
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