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Abstract

This work presents an advanced modelling procedure, which applies both struc-
tural modelling and kinetic modelling approaches to the trypanothione metabolic
network in the bloodstream form of Trypanosoma brucei, the parasite responsible
for African Sleeping sickness. Trypanothione has previously been identified as
an essential compound for parasitic protozoa, however the underlying metabolic
processes are poorly understood. Structural modelling allows the study of the
network metabolism in the absence of sufficient quantitative information of tar-
get enzymes. Using this approach we examine the essential features associated
with the control and regulation of intracellular trypanothione level. The first
detailed kinetic model of the trypanothione metabolic network is developed,
based on a critical review of the relevant scientific papers. Kinetic modelling
of the network focuses on understanding the effect of anti-trypanosomal drug
DFMO and examining other enzymes as potential targets for anti-trypanosomal
chemotherapy.

We also consider the inverse problem of parameter estimation when the sys-
tem is defined with non-linear differential equations. The performance of a
recently developed population-based PSwarm algorithm that has not yet been
widely applied to biological problems is investigated and the problem of param-
eter estimation under conditions such as experimental noise and lack of infor-
mation content is illustrated using the ERK signalling pathway. We propose
a novel multi-objective optimization algorithm (MoPSwarm) for the validation
of perturbation-based models of biological systems, and perform a comparative
study to determine the factors crucial to the performance of the algorithm. By si-
multaneously taking several, possibly conflicting aspects into account, the prob-
lem of parameter estimation arising from non-informative experimental measure-
ments can be successfully overcome. The reliability and efficiency of MoPSwarm
is also tested using the ERK signalling pathway and demonstrated in model val-
idation of the polyamine biosynthetic pathway of the trypanothione network.

It is frequently a problem that models of biological systems are based on a
relatively small amount of experimental information and that extensive in vivo
observations are rarely available. To address this problem, we propose a new
and generic methodological framework guided by the principles of Systems Bi-
ology. The proposed methodology integrates concepts from mathematical mod-
elling and system identification to enable physical insights about the system to
be accounted for in the modelling procedure. The framework takes advantage
of module-based representation and employs PSwarm and our proposed multi-
objective optimization algorithm as the core of this framework. The methodolog-
ical framework is employed in the study of the trypanothione metabolic network,
specifically, the validation of the model of the polyamine biosynthetic pathway.
Good agreements with several existing data sets are obtained and new predic-
tions about enzyme kinetics and regulatory mechanisms are generated, which
could be tested by in vivo approaches.
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Chapter 1

Introduction

1.1 Scope of the Thesis

To understand complex biological systems, an integration of experimental and

computational research is required. The emerging field of Systems Biology pro-

vides a powerful foundation and established scientific methods to enable the

understanding of biological pathways at the system level. The best way to

achieve a system-level understanding is via the use of computational modelling.

However, constructing mathematical models for poorly understood biological

systems with a large number of components is not a straightforward process.

Standard engineering methodologies for computational modelling are challenged

and an integrated and iterative approach is necessary for studying biological

systems.

In this thesis, the challenge of computational modelling of complex biological

systems is investigated, when the prior knowledge about the system is incomplete

and the available experimental data is sparse. We propose a new methodolog-

ical framework to address this challenge. This framework takes advantage of

a decompositional approach, which integrates metabolic modelling with global

optimization to simultaneously explore the model structure and kinetic param-

eters. We illustrate the feasibility of the proposed methodological framework on

solving an important biological system that causes a serious illness – the try-

panothione metabolic pathway in Trypanosoma brucei, a parasite that causes

African Sleeping sickness. To pursue this goal, some existing scientific methods

are reviewed and then adapted and extended in an appropriate way for use in

solving the problem of interest.

The following sections give an overall introduction to the relevant background

15



CHAPTER 1. INTRODUCTION 16

of the research subject.

1.2 Systems Biology

A big challenge for computer scientists who are considering getting

involved in Systems Biology, in addition to the requirement of good

level of biological foundation, is to keep open-minded and be creative

in the design of modern methodologies to make a contribution to

biological and computer science domain. — Eberhard O. Voit

Systems Biology (Kitano 2002b) is an interdisciplinary field that applies es-

tablished scientific methods to build mathematical models of biological systems

and to address associated biological problems. The subject provides a vital in-

terface between biologists and computer scientists, applied mathematicians and

statisticians to support the development of a unified understanding of the bio-

logical processes involved.

Systems Biology is becoming very popular as it is widely recognized that,

in biology, dynamic behavior of the whole system may not be easily deduced

from collective descriptions of individual parts, and can only be achieved by a

systematic approach with assistance of advanced computing technology. The ex-

ponential growth of biological knowledge offers the possibility to perform various

computational analyses on one organism or across different organisms.

Computational Modelling is an integral component of Systems Biology (Kitano

2002a). In many publications, the terminologies of mathematical modelling

and computational modelling have been used interchangeably, causing confu-

sion to prospective practitioners of this field. Recently, a fierce discussion on

‘dichotomies between computational and mathematical models’ between Fisher

and Henzinger (Fisher and Henzinger 2008) and Hunt et al. (Hunt et al. 2008)

points out that the concepts can only be properly interpreted in the context in

which the model is used.

We hold the view that mathematical modelling and computational modelling

represent two cornerstones of scientific research that are complementary to each

other. Both terminologies intend to answer critical questions concerning system

behavior when the systems are represented in mathematical formats. Addition-

ally, computational modelling reflects a rigorous procedure for investigating the

structure and dynamic regulation of biological systems and developing design

principles of the systems by computationally executing mathematical models.
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This thesis presents a computational modelling procedure to study the bi-

ological pathway of interest, which involves constructing mathematical models

and devising powerful techniques for the purpose of the study.

1.3 Computational Modeling

Computational Modelling (Bower and Bolouri 2001) is a commonly used ap-

proach to explain and predict system behavior via a variety of mathematical

calculations and established scientific methods. Mathematical models are ap-

proximate and standardized representations of the knowledge of the underlying

processes (de Jong 2002). In the context of biological systems, mathematical

models illustrate a number of different components, rates at which these com-

ponents interact and physical laws that govern the reactions. Good models can

be adopted to supplement or even to replace in vivo or in vitro experiments for

the interpretation and hypothesis of biological phenomenon (Voit 2000).

Computational Systems Biology (Kitano 2002a) suggests a methodological

framework for constructing mathematical models, as illustrated in Figure 1.1.

This modelling methodology is also described as an analytical approach. As

defined by Söderström and Stoica (Söderström and Stoica 1989), the analytical

approach relies on physical insights to elucidate the dynamic behavior of a phe-

nomenon. This is in contrast to the other approach, the experimental approach,

where mathematical models are a parameterized function and model parameters

are assigned with suitable numerical values by fitting the model to experimental

data. Application of the experimental approach to the construction of mathe-

matical models is defined as System Identification; the subject is discussed in

detail in Section 1.5.

Following the analytical approach for mathematical model construction, one

starts from Requirements Capture for a global identification of the system through

the collection of knowledge regarding the structure and regulation of the sys-

tem, based on which an initial model topology is proposed and the inputs of the

system (initial values of system components and kinetic parameters of chemical

reactions) are defined. The second step of Model Construction determines the

modelling formalism to be applied. In this step, correctness of solution method-

ologies has to be ensured, for example, using continuous modelling methods to

model discrete systems is obviously wrong. Assumptions must be made in this

step in order to constrain a system within a feasible boundary.
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After a mathemtical model is formulated, Simulation can be carried out.

As defined by (de Jong 2002), simulation is the process of exhibiting informa-

tion contained in the model, which often refers to the description of dynamic

behaviour of the system. Simulation provides us the abstraction of biological sys-

tems, with which our knowledge about the systems can be consolidated. Data

produced from in silico simulation will have to be carefully compared with exper-

imental observations for Model Validation. A critical question to be answered in

the step of model validation is ‘does the model adequately describe the system

of interest?’ Through model validation we gain confidence in the model that

it is useful not only for reproducing measured dynamics but also for predicting

system behavior.

An inconsistency between model results and observations indicates deficien-

cies in the model, which prompts the process of model refinement, where a new

model structure may be designed and the relevant in vivo experiments may have

to be planned. A cyclic workflow from requirement collection to model valida-

tion is often required in order for a final model to be satisfactory. By the end of

the building cycle, a model that is an adequate representation of reality can be

developed. This is followed by Model Analysis in order to study the systemic

properties, for instance, parameter sensitivity analysis. Little can be gained by

using an inadequate model for analysis.

However, one critical limitation of the analytical approach is the dependence

of model construction on a substantial amount of information being available.

An attempt to construct a mathematical model with a complete mechanistic

description of the system is impractical and in some cases, mathematical mod-

elling can only be enabled on a portion of the system. This is particularly the

case when studying new biological processes.

Biological data that can be detected in experiments is usually limited. Com-

putational simulation without a complete initial status is not allowed. Promis-

ingly, given the system outputs, the inputs can be predicted via backward sim-

ulation, assuming the model structure is known. The process of approximating

parameters that are not available from biological experiments is defined as Pa-

rameter Estimation, which is sometimes known as the Inverse Problem. Param-

eter estimation is one building block of the model validation procedure, and is

therefore an important research problem in Systems Biology.

In forward simulations, the well-posedness of the problem, i.e. the existence,

uniqueness and stability of the solution, is often assumed. However, for backward
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simulations, it is well-known that ill-posedness is generic (Moles et al. 2003). A

theoretical verification by Sontag (Sontag 2006) shows that, in order to suffi-

ciently identify r parameters, as many as 2r+1 experimental measurements must

be available. It is therefore not surprising that for some systems parameter es-

timation is the modelling step that requires the most effort. An experimental

study of the global optimization method in solving the parameter estimation

problem is presented in Chapter 5.

Requirements Capture

Regulatory
Info Topology

Model Construction

Formal Representation

Model Validation

Model Simulation

No

Model Analysis

Yes

Figure 1.1: Five basic steps of standard computational experimentation.

Importantly, two aspects should be addressed prior to a modelling procedure,

which are concerned with identifying the problem and stating the purpose or the

intended use of the model. An explicit definition of these two aspects will help

clarify the applicability of the model.

The problem definition is concerned with the identification of biological ques-

tions to answer and the measurements available and suitable for the intended

use of the model. The purpose of modelling differs in the aspect of whether the

modelling aims at seeking a model to reproduce what has already been observed

or to make predictions about the system before in vivo experiments are car-

ried out. For example, both steady-state metabolic fluxes and time-dependent

concentrations are suitable for investigating the metabolism, giving rise to two

major perspectives underpinning the modelling of metabolic systems, namely

Structural Modelling and Kinetic Modelling. However, the drawback of the
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former is the limited predictive power in studying the system behaviour under

different conditions, which is not compatible with the modelling effort that in-

volves the formulation of mechanistic hypotheses about the system dynamics.

The subject of interest is discussed in detail in Section 1.4.

The availability of the prior knowledge determines the level of detail or ab-

straction of the kinetic model of the system. Two types of rate equations, as

defined by Westerhoff et al. (Westerhoff et al. 2009), are phenomenological

equations and mechanically-precise equations. When we attempt to seek the

mechanism responsible for a particular biological phenomena, phenomenological

equations may be sufficient and they could enable simpler or even analytical so-

lutions of the system. However, when attempting to seek for a mechanism that is

actually responsible, precise equations for the system components are required.

Application of phenomenological equations to approximate the dynamic behav-

ior of all the system components belongs to the field of System Identification.

Discussion on the subject of interest is continued in Section 1.5.

Computational modelling of complex biological systems is an interesting chal-

lenge. Biological complexity is embodied in the non-linearity of enzyme kinetics

and mutual interactions with the environment (Westerhoff et al. 2009). In the

context of computational modelling, the problem of complexity appears in two

facets with regard to Dimensionality and Uncertainty.

Dimensionality, as the term indicates, refers to the fact that a large num-

ber of system components are usually interconnected within a tangled complex

web. Uncertainty arises from two main sources – model structure and parame-

ter values. Parameters (including initial condition and kinetic parameters) are

often unknown and imprecise. Parameter estimation through a small sample

or non-representative samples causes large variations in the estimated solutions.

Uncertainty in model structure is concerned with whether the model captures

the right mechanism. An incorrect model structure can impact the accuracy of

parameter estimates, and as a result, the reliability of model predictions.

It is noteworthy that mathematical models evolve as the knowledge about

the systems increases. It is worthwhile to retain multiple models of the same

system with different levels of detail and abstraction, thus the most appropriate

model can be selected for the tasks at hand.
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1.4 Metabolic Modelling

The approaches applied at various stages of computational modelling are varied

in the amount and type of experimental data available and the intended use

of the model, as elucidated in Section 1.3. The general aim of computational

modelling of metabolic systems falls into two primary categories of studying

time-invariant (i.e. metabolic flux distribution) and time-dependent behavior

(i.e transient metabolite concentrations). The so-called Structural Modelling

and Kinetic Modelling approaches constitute two main approaches of metabolic

engineering (Schuster et al. 1999).

The two main types of modelling are not contradictory but rather com-

plementary to each other. Structural modelling is a relatively straightforward

process that takes the stoichiometry and reversibility of the involved reactions

as the only inputs. Heinrich et al. (Heinrich et al. 1977) stated that a clear

description of the metabolic flux distribution in the system is vital for the un-

derstanding of metabolic regulation. As the knowledge required for structural

modelling is primarily the stoichiometry of the system, this modelling approach

can be regarded as a precondition for kinetic modelling, with which the non-

stiochiometric information, – i.e. enzymatic kinetics, is incorporated.

Both approaches have their own merits. Breitling et al. (Breitling et al. 2008)

argued that structural models can be used to predict mutant growth phenotypes

and wrong predictions can guide iterative model improvement. On the contrary,

kinetic modelling requires the enzyme kinetics and regulatory information; how-

ever, such detailed information has proved to be difficult to obtain. Parameter

estimation is also a complex problem for kinetic modelling when data is miss-

ing. This is however not necessary for structural modelling, resulting in a more

soluble problem with this approach.

The thesis presents an advanced modelling procedure using both modelling

approaches for the metabolic pathway under study. The constructive evalua-

tion of both metabolic models can serve the purpose of chemotherapeutic target

validation and anti-parasitic drug discovery. The computational investigation

aims to gain valuable insights and generate good predictions about the biolog-

ical system under consideration through collectively exploring the steady-state

properties and individual dynamic events of the system.
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1.5 System Identification

In many cases mathematical model construction starts with the application of

basic physical laws (i.e. mass action) to the process being studied, followed by

using a modelling formalism (i.e. ordinary differential equations) to elucidate

the relations between variables. Given complete physical knowledge and detailed

quantitative information about the system, a correct model can, in theory, be

constructed and all the model parameters can be determined numerically. How-

ever, this situation is very rare in the context of biological applications, where

our prior knowledge is restricted by sparse quantitative information and incom-

plete physical aspects of the underlying processes. In such cases, it is necessary

to use identification techniques.

System identification is defined by Ljung (Ljung 2008) as “the art and science

of building mathematical models of systems from observed input-output data”.

Two broad branches of system identification are structure identification and

parameter estimation (Söderström and Stoica 1989). Structure identification is

concerned with finding a suitable model structure, within which a good model

can be determined, and parameter estimation is defined as, given a structure and

a set of experimental data, the determination of model parameters that govern

the dynamic behaviour of the system. In practice, the exploration of structure

and parameters are often carried out iteratively, where a model structure is

chosen and the corresponding parameters are estimated.

The need for system identification has become increasingly common in the

fields of science and technology. The procedure of system identification is charac-

terized by four basic ingredients in sequence according to Söderström and Stoica

(Söderström and Stoica 1989) and Ljung (Ljung 2008):

1. Requirement of experimental observations; this refers to performing cell

culture experiments to produce experimental data.

2. Determination of an appropriate model; this is the single most important

step in the identification process. It concerns looking for a model struc-

ture to approximate the observed input-output relationship of the system.

Models with different mathematical representations, which differ in the

level of prior information contained, can be formed.

3. Decision of a criterion of fit; this refers to defining a fitting criterion, for

example a least squares criterion (the residual between the model predic-
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tions and experimental observations) and applying a parameter estimation

process that attempts to match a particular data set against each candi-

date model. A particular model that can best describe the data set is

selected. An appropriate definition of the criterion is critical for the esti-

mation process.

4. Evaluation and Validation; this step is concerned with testing whether the

model is an appropriate representation of the system when it is used with

other data sets. An iterative refinement procedure is required depend-

ing on the acceptable accuracy of the model in approximating the true

description.

The step of Evaluation and Validation in the system identification procedure

should proceed according to the purpose of the modelling. Predictive models

should be evaluated in terms of the goodness of fit in reproducing measured

data, which provides evidence of the credibility of the model. When the purpose

of the modelling is to develop predictive models, the model performance has to be

validated on interpreting fresh data, which is a data set not used for the training

process. Once the model is evaluated with estimates that are valid and the

predictability is assessed as reliable, the model is considered to be sufficiently

relevant in describing the underlying processes and is ready to be applied to

its intended use. If this is not the case, alternative model structures must be

considered, unknown parameters of the model have to be estimated and new

model has to be validated.

System identification depends on the availability of sufficient experimental

observations. One disadvantage of the model obtained by system identification

is the limited physical insight provided, since in most cases the parameters of

the model have no direct physical meaning. Dynamic models pose the most

challenging identification problem due to the non-linear nature and extensive

computational resources required. Concepts related to system identification will

be introduced in detail in Chapter 2.

1.6 Trypanothione Metabolic Pathway

Trypanosoma brucei, a protozoan parasite, is the causative agent of the fatal

disease African Sleeping sickness. Trypanosoma brucei is transferred between

its mammalian hosts by bites of the tsetse fly, which lives within the bloodstream
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of the mammalian host (bloodstream form) and the midgut of the fly (procyclic

form). The disease is endemic in certain regions of Africa and infects millions

of people annually (Fairlamb 2003). Background information on human African

trypanosomiasis has been reported (Table 1.1). However, compared with these

numbers, research towards understanding the parasite is still insufficient and

more work remains to be done.

Human African Trypanosomiasis
Number infected 0.5 million
Deaths per year 50,000
Disability adjusted life years 1,598,000
Distribution Sub-Saharan Africa
Causative organisms T.brucei rhodesiense & T.brucei gambiense
Vector Tsetse fly (Glossina)
Natural habitat Forested rivers & shores (gambiense)

Savannah (rhodesiense)
Natural host Ungulates & other mammals (rhodesiense)

Mainly man only (gambiense)

Table 1.1: Data on human African trypanosomiasis (Barrett et al. 2003).

Drug development against human African trypanosomiasis has become a

major public concern due to toxicity, efficacy and availability problems with

current drug treatments (Muller et al. 2003, Turrens 2004). Identification of

potential drug targets within the parasites is an invaluable tool for designing

chemotherapeutic agents against the parasitic diseases. The challenge in drug

design arises from the similarity of metabolic pathways in parasitic protozoans

and the mammalian host. Anti-parasitic drugs that are efficient, non-toxic and

affordable are urgently required.

Trypanothione was discovered to be unique to trypanosomatids (Fairlamb

et al. 1985) and has been a major focus of trypanosome research. Several poten-

tial drug targets that result in the depletion of trypanothione, and consequently,

inhibition of the cell growth, have been investigated. The polyamine biosyn-

thetic sub-pathway is of vital importance to the survival of the trypanosomatid

parasite and is a validated drug target for treatment of the disease. α-DL-

Difluoromethylornithine (DFMO), the only new drug licensed for treatment of

African Sleeping sickness in 50 years, inhibits ornithine decarboxylase which

catalyzes the initial step in polyamine biosynthesis (Fairlamb 2003). Glycolysis

in bloodstream-form of Trypanosoma brucei has also been verified as a conve-
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nient context for studying the prospects for using enzyme inhibitors as antipar-

asitic drugs (Eisenthal and Cornish-Bowden 1998, Albert et al. 2005, Bakker

et al. 1997, Bakker 1998).

This work presents the first attempt at kinetic modelling of the trypan-

othione metabolism in the parasitic organism. While some of these metabolic

components have been studied in other cell types (Rodriguez-Caso et al. 2006)

and are relatively well understood, comparatively little work has been done on

these components in trypanosomal cells. A systematic investigation of various

aspects of the trypanothione metabolism will benefit the development of effi-

cient chemotherapeutic drugs that can exert clinical functions in a consistent

and robust manner.

A mechanistic modelling approach is designed to construct the kinetic model

of the trypanothione metabolic pathway, which supports a simultaneous inves-

tigation of the suitability of model structure and the exploration of missing

parameters. Our in silico investigation focuses on understanding the effect of

anti-trypanosomal drug DFMO and examining other enzymes as potential tar-

gets for anti-trypanosomal chemotherapy. The kinetic modelling starts with an

extensive literature research on the physical basis of the cell functions and avail-

able quantitative information on the system components and their interactions.

Substantial knowledge of the network topology and enzymatic reactions makes

the kinetic modelling possible, yet significant numbers of parameters are un-

known. This poses severe difficulties to standard engineering methodologies for

the study of system behaviour and model-based interpretation of the experimen-

tal data.

1.7 Thesis Statement

The best way to understand complex networks of biological pathways is through

the use of computational modelling. Coupled with experimental data, computa-

tional modelling aims to enable the construction and interpretation of complex

systems in a sound and integrated environment. A major problem for such mod-

elling is the uncertainty and incompleteness of prior knowledge and experimental

observations of the system of interest.

We present a methodological framework based on the principles of Compu-

tational Systems Biology and System Identification to guide the establishment

of mechanistic mathematical models. We demonstrate that the methodologi-
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cal framework, which integrates model decomposition with metabolic modelling

and global optimization is advantageous in tackling the problem of uncertain and

partial representation of biological systems. We propose a novel approach for

applying a multi-objective optimization scheme to the validation of perturbation-

based models of biological systems and demonstrate that it is a promising strat-

egy for model validation with an integrated study of different system states. The

novel validation approach can be generalized for application to various real-world

multi-objective optimization problems.

We demonstrate the methodological framework using the computational mod-

elling of the trypanothione metabolic pathway in the bloodstream form of Try-

panosoma brucei. The novel model validation approach is tested on a signal-

transduction pathway and applied to the validation of the trypanosome polyamine

biosynthetic sub-pathway. The proposed approaches enable a systematic evalu-

ation of the kinetic model of the trypanothione metabolic pathway, a consistent

interpretation of the underlying biological processes and in silico hypotheses of

uncovered kinetic mechanisms.

1.8 Thesis Contributions

A list of contributions of the thesis is as follows:

• The first structural model of the trypanothione metabolic pathway in

blood-stream-form Trypanosoma brucei, presented in Chapter 3. This

model supports the study of metabolic capabilities of trypanosomes to

support cell growth and the rational identification of potential drug tar-

gets. By means of structural modelling, the correlation between structural

and functional characteristics of the pathway is unravelled, which assists in

the initialization of the proposed decompositional approach in Chapter 7.

• The first kinetic model of the trypanothione metabolic pathway in blood-

stream-form Trypanosoma brucei, proposed in Chapter 4. The kinetic

model is constructed based on information gleaned from the experimental

biology literature, and represented by two functionally independent sub-

networks derived in Chapter 3. This kinetic model is comprehensively

studied and strategically refined in Chapter 7.

• One of the first experimental studies to investigate the performance of the

single objective optimization algorithm PSwarm on a complex real world
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problem, detailed in Chapter 5. PSwarm is a newly developed population-

based evolutionary algorithm, which has not yet been widely applied to

solve biological systems; in this case the complex model of a signal trans-

duction pathway is examined.

• A novel and generic approach, MoPSwarm, for the validation of perturbation-

based models of biological systems, proposed in Chapter 6. Our proposal

takes advantage of the multi-objective optimization scheme and has the

potential to solve non-linear and dynamic real-world applications. The

usefulness of MoPSwarm is illustrated on the complex model of a signal-

transduction pathway, which enables an effective computation on the pa-

rameter space for system dynamics constrained by multiple conditions.

Reliability of the proposed approach is demonstrated on the validation

of the model of polyamine biosynthetic sub-pathway of the trypanothione

metabolic pathway.

• A methodological framework, proposed in Chapter 7, for addressing the

challenges of computational modelling when the prior knowledge of the

system is incomplete and the experimental data is sparse. The framework

comprises a decompositional approach via an optimization-based study to

the examination of structure correctness of kinetic models. This method-

ological framework is generic to any modelling formalism and independent

of the optimization algorithms used.

• Biologically, a regulatory link between the transporter enzyme of exoge-

nous arginine, intracellular arginase and intracellular ODC of the trypan-

othione metabolic pathway is hypothesized and validated in silico. Un-

known kinetic parameters of the polyamine biosynthetic sub-pathway are

estimated to be tested by in vivo approaches.

1.9 Outline of the Dissertation

This thesis is structured as follows. The connections between these chapters

reflect the systematic development of the thesis from the initial motivation.

In Chapter 2 we give an overview of the background and details about the

theory of computational modelling, with special attention given to metabolic

pathways.
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In Chapter 3 we provide a comprehensive compilation and description of

reactions pertinent to the modelling of trypanothione metabolism. We describe

the construction of a structural model of the trypanothione pathway, using the

information obtained from a thorough review of the relevant literature. The

model is designed based on topological information and analyzed with theoretical

tools and concepts. We employ established methods of structural analysis to

study topological properties and the growth capabilities of the pathway. We

derive functional modules of the system that can operate at steady-state for the

kinetic study in Chapter 7.

In Chapter 4 we describe the construction of the first kinetic model of the

trypanothione metabolic pathway based on the kinetics of enzymes and metabo-

lites obtained from the literature. The model is built based on the standard

Michaelis-Menten law with non-linear regulation of enzyme kinetics explicitly

formulated.

In Chapter 5 we summarize the state-of-the-art of Particle Swarm optimiza-

tion and investigate the performance of the PSwarm implementation of the algo-

rithm on solving the non-linear optimization problem of the complex model of a

signal-transduction pathway. We conduct a scientific investigation of parameter

estimation problems in various scenarios when the observation data is charac-

terized with different levels of information content and noise. The experimental

results motivate us to seek a better solution for optimization problems when

system parameters are constrained by more than one state of the system.

In Chapter 6 we propose a novel approach for applying a multi-objective opti-

mization scheme that accounts for more than one state of the system. A number

of strategies critical to the multi-objective optimization are discussed via a com-

parative study. Satisfactory simulation results for the signal-transduction path-

way were obtained using the proposed approach, demonstrating the reliability

and utility of the algorithm for model validation.

In Chapter 7 we propose a methodological framework for the system identi-

fication of a poorly understood system – the trypanothione metabolic pathway,

whereby the problems of structure identification and parameter estimation are

simultaneously explored. The relationship between topological and functional

modules observed in Chapter 3 guides the decompositional procedure and di-

rects the search for incorrect mathematical representation in an efficient man-

ner. The multi-objective optimization approach developed in Chapter 6 success-

fully solves a structurally-correct sub-system, namely the polyamine biosynthetic
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sub-pathway. The methodological framework is demonstrated to be useful for

tackling the challenge of system identification of poorly understood systems.

We review our results and achievements and discuss ideas for future work in

Chapter 8.

1.10 Publications
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Chapter 2

Background and Related Work

In this chapter we review the theory and related research in the domain of

computational modelling of biological systems. Current challenges related to

the research studies are discussed.

2.1 Biological Systems

Biological systems are non-linear and complex networks, where the interaction of

different pathways and dynamics of information processing within the pathway

produces a multitude of biological outputs. A living organism relies on these

pathways to accommodate internal or environmental changes via a variety of

cellular behaviour, for instance, signal transduction, feedback regulation and

communication among cells.

Biological pathways are classified into three categories. Metabolic pathways

exist within cells, which emerge from interactions between locally-transcrib-ed

proteins to perform two essential activities including the generation of energy

(i.e. ATP) and relying on the energy to construct larger organic molecules (i.e.

proteins and nucleic acids). Signalling pathways refer to the movement of signals

from outside the cell to its intracellular response mechanisms through a series of

phosphorylation events, which triggers specific patterns of gene expression. Gene

regulatory pathways control a host of processes of gene expression in response to

intracellular signals. Interactions between the three categories of pathways unify

these processes and bring out the emergent behaviour of the whole organism.

In this section, we focus on metabolic and signal-transduction pathways in

accordance with the biological application of interest. A comprehensive overview

of the signalling pathways can be found in (Cho and Wolkenhauer 2003, Neves

30
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and Iyengar 2002, Berg et al. 2002, Lauffenburger 2000, Heinrich et al. 2002).

Signal-transduction pathways mediate the sensing and processing of stimuli. It

follows a broadly similar course that can be viewed as a molecular circuit. These

molecular circuits detect, amplify, and integrate diverse external signals to gener-

ate responses such as changes in enzyme activity, gene expression, or ion-channel

activity (Berg et al. 2002).

2.1.1 Metabolic Pathway

A metabolic pathway is the collection of enzymatic processes that produce energy

used by the cell and a number of other molecules (Fell 1997).

An individual metabolic pathway involves biosynthesis and biodegradation

catalysed by enzymes. These two types of reactions occur in a completely oppo-

site way: most synthetic reactions require energy and often involve the break-

down of adenosine triphosphate (ATP), whereas degradative reactions eventu-

ally generate ATP. An enzyme-substrate interaction is the elementary unit of

a metabolic pathway. It is common that an enzyme can react with multiple

reactants and a single reaction can be catalyzed by more than one enzyme. Cat-

alytic activities of enzymes are primarily regulated by two processes, including

conformational modification and peptide-bond cleavage.

A better understanding of the metabolism has many applications (Karp and

Mavrovouniotis 1994), which range from bioprocess engineering, aiming at cre-

ation of novel metabolic processes for optimal cellular productions to health-

related areas, concerned with designing potent drugs than can effectively in-

tervene with the metabolism. Towards this end, a number of techniques have

been developed and successfully applied to studying several metabolic pathways.

Metabolic flux analysis is a frequently used methodology for an accurate quan-

tification of the magnitude of pathway fluxes at a steady state participating in

overall cellular functions (see Stephanopoulos 1999). Introductions to the gen-

eral concepts relevant to metabolic systems are continued later in this chapter.

2.1.2 Gene Regulatory Pathway

Gene regulatory pathways, as defined by de Jong (de Jong 2002), concerns regu-

latory interactions between genes and gene-products. The pathway controls the

process of gene expression, which occurs in two steps, namely transcription (from

DNA to RNA) and translation (from RNA to protein). An operon is an impor-
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tant functional unit of transcription and genetic regulation. An operon comprises

a single promoter, the transcription factor binding sites that modulate the rate

of transcription initiation at that promoter, the genes that are transcribed from

the promoter and the transcription terminator (Karp et al. 2002).

A typical process of gene expression is as follows: an initiating signal gives rise

to the activation of a protein called a transcription factor, then the factor simul-

taneously binds DNA and an RNA polymerase, which triggers the transcription

of DNA to mRNA and translation of mRNA to proteins. Transcription rate can

be modulated by two types of proteins, namely depressors and activators, which

exhibit opposite functions in controlling the activity of RNA polymerase, and in

consequence, the gene expression level. Regulation of gene expression is not only

determined by genes per se but also dependent on their relative spatial location

along the operon. For instance, genes that show regional similarities are likely to

be expressed at the same time. The spatial arrangement of genes is therefore an

useful message that can be used to elucidate temporal gene expression patterns.

Multi-level expression of genes renders gene regulatory pathways extremely

complicated, which makes computational modelling of the pathways necessary.

Intensive scientific research has been carried out in this area. De jong (de Jong

2002) conducted a literature survey about work done in analysis and simulation

of gene regulatory pathways, including methods such as Bayesian networks, par-

tial differential equations and rule-based models. Thieffry and Thomas (Thieffry

and Thomas 1998) discussed some qualitative tools for the dynamic analysis of

gene regulatory pathways, where the authors argued that logical formalisms can

be an interesting alternative to differential approaches because in most cases

qualitative descriptions of biological systems are often available.

Wessels et al. (Wessels et al. 2001) compared different genetic approaches

(e.g. pair-wise methods) that rely on high-throughout gene expression data for

the modelling of gene regulatory pathways. An up-to-date review by Crampin

(Crampin 2006) focused on the issues arising in the attempt to identify regu-

latory pathways directly from high-throughout gene expression data measured

using DNA microarray technology and quantitative PCR. Quantitative high-

throughout measurement of gene expression makes large-scale gene expression

analysis possible.

Overall, the complexity of biological systems lies in the multitude of some-

times subtle ways that different types of biological pathways interconnect. There-

fore, in almost all cases, it is hard or impossible to construct complete mathe-
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matical models – mathematical models are only approximate representations of

biological systems with various degrees of accuracy.

2.2 Metabolic Network and Regulation

Metabolic pathways are an essential key to the systemic behaviour of a biological

cell, as they describe a multitude of enzymatic reactions carrying out various

cellular functions. An understanding of metabolic network and regulation is of

practical importance to the development of new pharmaceutical approaches. In

vitro investigation of the inhibitory potential of chemical compounds on network

enzymes is the primary approach for drug target identification. This approach

can be facilitated by in silico simulation of enzyme activities in response to

external stimuli.

A reaction network is characterized by three aspects (Sauro et al. 2006),

including the number of chemical species and processes, the sequence of their in-

teractions and the rate laws governing the elementary reaction velocities. There

are two families of kinetic rate laws that can be used to model the behaviour

of enzyme reactions, namely Mass Action and Michaelis Menten. The follow-

ing section introduces both rate laws according to the description by Cook and

Cleland (Cook and Cleland 2007).

The Rate Laws of Mass Action and Michaelis Menten

The law of mass action states that the rate of a chemical reaction is proportional

to the product of the substrate concentrations raised to a given power. Given a

simple reversible enzymatic pathway, where substrate S reacts to yield product

P by the catalysis of enzyme E, mass action kinetics model the pathway in a

two-step reaction as shown below:

S + E

k+1−−→
←−−
k−1

ES
k+2−−→ P + E (2.1)

The first reaction depicted with double arrow is a reversible reaction reflecting

the reversible binding and unbinding of the enzyme E and the substrate S, where

k+1 and k−1 are rate constants for forward and backward processes respectively.

The second reaction is an irreversible reaction in which the enzyme-substrate

complex ES is irreversibly converted into product P and enzyme E with rate
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constant k+2. The set of differential equations for state variables E, S, ES

and P is constructed as follows. During the whole process, the total enzyme

concentration [E0] remains constant satisfying the formula [E0] = [E] + [ES].

d[E]

dt
= −k+1[S][E] + k−1[SE] + k+2[SE]

d[S]

dt
= −k−1[S][E] + k−1[SE]

d[ES]

dt
= k+1[S][E] − k−1[SE] − k+2[SE]

d[P ]

dt
= k+2[SE]

Michaelis-Menten kinetics, defined by Henri Michaelis and Maude Menten,

are a commonly used and powerful rate law for modelling the enzymatic mech-

anisms of metabolic pathways, which quantitatively describe the effect of sub-

strate concentration on enzyme reaction rate.

Michaelis-Menten kinetics is based on quasi-steady-state approximations. It

states that after an initial fast transient, the enzymatic reaction enters a slowly

changing regime where the dependent variables are assumed to be in instanta-

neous equilibrium (Schness and Mendoze 1997). This implies that the concen-

tration of the intermediate complex [ES] is in a quasi-steady state with regard

to substrate [S] and product [P ]. The substrate concentration is assumed to

be much larger than the enzyme concentration ([E0]/[S] << 1), which ensures

that the enzyme can be saturated with substrates. Under this assumption, the

concentration of the intermediate complex remains approximately constant, i.e.

d[ES]/dt ≈ 0. With this knowledge, we can solve for [ES] in terms of [S]

yielding

[ES] =
[E0][S]

Km + [S]
(2.2)

where Km is the half-saturation constant defined as the substrate concentration

at which the reaction rate reaches half of its maximum value:

Km =
k−1 + k2

k1

(2.3)

Thus, we derive the differential equation of [S]:

d[S]

dt
= − Vmax[S]

Km + [S]
(2.4)
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Therefore, modelling the sample pathway with Michaelis-Menten kinetics

results in a one-step reaction, as shown below:

S

Vf [S],Km1−−−−−−→
←−−−−−−
Vb[P ],Km2

P (2.5)

This scheme results in the model given below, which contains two variables

S and P and four parameters including Vf and Vb representing the maximum

rate of the forward and backward reactions, and Km1 and Km2 representing the

half-saturation constants:

d[P ]

dt
=

Vf [S]

Km1 + [S]
− Vb[P ]

Km2 + [P ]

d[S]

dt
=

Vb[P ]

Km2 + [P ]
− Vf [S]

Km1 + [S]
(2.6)

Non-linearity of enzymatic reactions is often characterized with multi-activation

mechanisms where multiple substrates may bind to an enzyme to moderate its

activity. A generic rate equation of the enzyme catalyzing a two-substrate reac-

tion (S1 and S2) is expressed as follow

Venzyme = Vmax · [S1]

Km1 + [S1]
· [S2]

Km2 + [S2]
(2.7)

Overall, Michaelis-Menten kinetics and mass action kinetics are fundamen-

tally equivalent as the former can be derived from the latter. Mass action kinetics

allow the description of pathway dynamics to the level of detail of concentra-

tion of enzyme-substrate complex ([ES]). However, as we are only interested in

the dynamics of substrates ([S]) and products ([P ]) of the reactions, Michaelis-

Menten kinetics are a preferable scheme since fewer differential equations need

to be formulated and are therefore applied in this thesis.

Metabolic Regulation

Tyson et al. (Tyson et al. 2003) explored the physiological responses of cells to

external and internal stimuli, which are governed by genes and proteins interact-

ing in complex signalling pathways. Diverse types of responses can be created

by embedding these signal-response elements in pathways.

Cell dynamics and behaviour are characterised by hyperbolic responses, sig-
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moidal responses (ultrasensitive response) and hysteresis (Sontag 2005). Sig-

moidal responses are characteristics of many signalling cascades, which display

the so-called ultrasensitive response to inputs. Sigmoidal responses can be mod-

elled using the Hill function, where the Hill coefficient measures the degree of

cooperativity between subunits that bind the ligand in multi-subunit proteins.

Hysteresis describes the phenomenon in which the actual steady state depends

on the history of the system. One of the main roles of such hysteric behaviour

is in producing oscillations (Blasius et al. 1998). Feedback loops are recognized

as an important mechanism in the regulation and control of biological functions,

which can be treated as modifiers to stabilize, destabilize, sensitize or de-sensitize

the dynamic behaviour of a process (Wolkenhauer et al. 2004).

The stimulus-response representation of a molecular system is necessary

to understand the dynamic interactions among the components that consti-

tute a pathway (Wolkenhauer et al. 2004). The fundamental building blocks

of metabolic pathways are enzymatic reactions, which characterize a diverse

range of enzyme-substrate interactions that fulfill identifiable metabolic func-

tions. Based on years of research, mathematical formulations describing these

non-linearities have been developed.

Figure 2.1 presents three typical shapes of the dependence of enzymatic

velocity on substrate concentration, including the standard Michaelis-Menten

mechanism, substrate inhibition and the Hill function.

Conceptually, any substrate that causes a decrease in the production state of

product as its concentration increases will lead to a reaction that displays sub-

strate inhibition kinetics (shown in Figure 2.1(b)). The Hill function corresponds

to a particular biological phenomena – cooperative binding. In cooperative bind-

ing, the binding of the substrate at one site (of an enzyme with multiple active

sites) increases or decreases the affinity for the substrate at other sites. This

is defined as positive cooperativity and negative cooperatively, respectively. As

shown in Figure 2.1(c), when the Hill coefficient n gets higher, a steeper non-

linearity is produced. In the cases of substrate inhibition and Hill equation,

values assigned for n are for illustrative purposes only.

Rate expressions corresponding to the curves are given in Equations (2.8)

to (2.10). From these components, metabolic pathways can produce regulatory

dynamics of great complexity. Many enzymes in metabolic pathways are subject

to feedback regulations, where an end-product activates or inhibits the enzyme

activity by binding to a separate site. A variety of feedback loops can further
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Figure 2.1: Three typical shapes of the dependence of the enzyme velocity on the
substrate concentration (in the range 0 to 5 mM) are shown schematically. (a):
Michaelis-Menten mechanism. (b): Michaelis-Menten mechanism plus substrate
inhibition with n = 1 (continuous line), n = 2 (dotted line), and n = 3 (segment
and dotted line). (c): Hill equation with n = 3 (continuous line), n = 5 (dotted
line), and n = 8 (segment and dotted line). The three rate expressions are given
in Equations (2.8) to (2.10).
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complicate the regulation and control of metabolic pathways.

(a) Michaelis-Menten kinetics (2.8)

Rate =
Vmax · [S]

Km

1 +
[S]

Km

, Vmax = 1, Km = 0.5

(b) Substrate Inhibition (2.9)

Rate =
Vmax · [S]

Km

1 +
Km

[S]
+ (

[S]

Ksi

)n
, Vmax = 2, Km = 0.5, Ksi = 2, n = 1, 2, 3

(c) Hill Equation (2.10)

Rate =
Vmax · ( [S]

Km

)n

1 + (
[S]

Km

)n
, Vmax = 1, Km = 2, n = 3, 5, 8

2.3 Mathematical Modelling Formalism

Modelling is an advanced technique for the study of dynamic interactions be-

tween cellular components. Complexity of biological systems makes it necessary

to take advantage of formalisms to model and study the systems, for gaining both

better comprehension and experimentally testable predictions. A rapid accumu-

lation of data on biological molecules enables the development of mathematical

models to represent and analyze biological systems.

Construction of mathematical models involves quantitative considerations of

interaction characteristics of biological systems as well as a multitude of informa-

tion regarding the concentrations and rates of the system. Mathematical models

can be classified into a variety of types according to different criteria, some of

which are described below:

• Continuous versus discrete: Continuous models are used to model con-

tinuous systems, where variables (i.e. concentration of chemical species)

undergo smooth changes, whilst discrete models are used to model discrete
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systems where changes in variables occur in discrete steps (i.e. number of

molecules or a countable number of points in time).

• Deterministic versus stochastic: Given a fixed set of initial conditions, a

deterministic model always produces the same output, whilst a stochastic

model takes randomness or probability distributions into account such that

for a given input, the outcome of the model is not uniquely determined

but takes a range of possible values.

• Static versus dynamic: Models are said to be dynamic if their behaviour

varies with time, and time therefore enters as an independent variable (i.e.

differential equation). Models are static if their behaviour is constant and

does not vary with time (i.e. mass-balance equations).

• Quantitative versus qualitative: Quantitative models are designed to study

time dependent behaviour, whereas qualitative models are mainly used to

identify high-level properties, such as structure and global functions of

biological systems. Qualitative models may contain quantitative variables,

which are however used for qualitative rather than numerical reasoning

about relationships between system components.

In this thesis, we focus on continuous deterministic mathematical models by

means of ordinary differential equations (ODE), which are a widespread formal-

ism to model dynamic systems in science and technology. The ODE formalism

models time-dependent behaviour of system variables with respect to the inde-

pendent variable. In the context of biology, the independent variable is usually

time and dependent variables (so-called state variables) are measurable quan-

tities (i.e. concentrations of biological entities), which have non-negative val-

ues. Models defined with ODEs have been employed to quantitatively analyze

metabolic pathways, for example, the glycolysis pathway in bloodstream-form

Trypanosoma brucei (Bakker 1998), the polyamine metabolic pathway in mam-

malian cells (Rodriguez-Caso et al. 2006) and the glutathione metabolic pathway

in liver cells (Reed et al. 2008). ODE-based modelling and simulation has also

been performed on the ERK (Extracellular Signal Regulated Kinase) cascade

of the MAPK (Mitogen-Activated Protein Kinase) pathway, which transduce a

variety of external signals to generate a wide range of cellular responses (Orton

et al. 2005).
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In this section, we give a detailed explanation of ODE-based modelling tech-

niques. However, an alternative technique of stochastic modelling is also outlined

for the sake of comparison. Generally speaking, stochastic approaches are used

to model components that are present in small molecule numbers (i.e. promot-

ers and transcription factors), whilst deterministic approaches are suitable when

components are present in high concentrations (i.e. proteins).

2.3.1 Ordinary Differential Equations

Dynamic cellular processes are frequently described using sets of differential

equations. Of all types of differential equations, ODEs are the most commonly

used technique to describe and explore dynamics of a specified natural system,

in particular, in the modelling and analysis of biological systems.

Equations relating an unknown function and one or more of its derivatives

is called a differential equation (Ascher et al. 1995). Studying system behaviour

by means of differential equations comprises the following steps:

• to formulate the differential equation that can describe a specific system

• to find an appropriate solution of that equation

• to understand the system by interpreting the solution

Construction of an ODE model of metabolic pathways is illustrated by an

example. Consider the simple metabolic pathway:

Ss
υ1−→ Si

υ2−→ Sp (2.11)

where Si is the intermediate component of the pathway, concentrations of which

can vary depending on enzyme activities and concentration of substrate (Ss)

and product (Sp). Intracellular chemical reactions are catalyzed by enzymes Es1

and Es2 at rates υ1 and υ2 respectively. The differential equation of the state

variable Si is expressed as the difference of incoming and outgoing rate velocities

governed by a specific kinetic law (i.e. Michaelis-Menten kinetics)

d[Si]

dt
= υ1 − υ2 (2.12)

Due to the non-linear nature, computational calculation is required to in-

tegrate differential equations in order for essential information underlying the
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model structure to be properly interpreted. General methods of numerical inte-

gration include the Euler method and Runge-kutta Method; relevant materials

are available elsewhere (see Press et al. 2002).

A large number of software tools have been developed for the simulation of

dynamic models specified in terms of ODEs. The software tools differ in two

aspects, including the underlying techniques applied and capabilities supported.

Matlab is a general-purpose mathematical environment that is widely used in the

physical and engineering sciences. A major benefit of the Matlab environment

is the comprehensive library of mathematical and graphical functions, enabling

convenient visualization, analysis and optimization of biological models. A com-

prehensive review on modelling tools and resources is given by Gilbert et al.

(Gilbert et al. 2006).

2.3.2 Stochastic Master Equations

The number of molecules participating in elementary reactions can vary by or-

ders of magnitude (Shampine et al. 2000). ODEs are appropriate to model

systems with a large number of molecules involved, in which case the reaction

probability can be assumed to be independent of the details of collisions between

molecules. When modelling biological systems that contain only a few molecules,

the discrete nature of the number of molecules cannot be ignored. It thus may

be useful to develop models that are both discrete and stochastic in order to

accurately describe the random occurrence of molecule collisions. One of the

frequently used models is stochastic master equations, which has the potential

to describe a wide range of phenomena.

The stochastic formalism decompose biological pathways into elementary re-

actions with probabilities are variables to describe the state of the system. A

joint probability distribution, P (X1, . . . , XN , t), is determined by the probabil-

ity of individual molecular species i having Xi number of molecules. Suppose

that there are M different reactions in the system, the change over time of

the probability distribution is expressed in the following equation, based on the

descriptions given by Baldi and Hatfield (Baldi and Hatfield 2002):

P (Xi, . . . , XN , t + Δt) = P (Xi, . . . , XN , t)

(
1 −

M∑
j=1

αjΔt

)
+

M∑
j=1

βjΔt (2.13)

where αjΔt is the probability that reaction j will occur in the interval Δt given
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the system in the state X1, . . . , XN at time t and βjΔt is the probability that

reaction j will bring the system to the state X1, . . . , XN in the interval Δt.

Taking the limit as Δt → 0 gives the master equation, which describes the

probability distribution of all possible states at all times, defined as follows:

∂P

∂t
=

M∑
j=1

(βj − αjP ) (2.14)

Using analytical methods to analyze the master equations would be extremely

difficult, given the amount of information required for the stochastic formalism

(i.e. the number of chemical species involved and the number of molecules

each species contains). Stochastic simulation techniques, for instance, Gillespie’s

method (Gillespie 1977), are required to solve the equations.

Overall, ODE models and stochastic models are concentrated on different

objectives when studying dynamic systems. As stated by de jong (de Jong 2002),

ODEs determine the transient changes of system variables with respect to time,

whilst master equations examine the probability that a shift in the state of the

system occurs.

2.3.3 Computational Simulation

Computational simulation is an essential tool for the study of complex systems,

where a purely empirical approach is infeasible. The type of simulation ap-

plied should correspond to the type of mathematical model to be solved. In

stochastic simulations, concentrations (in terms of numbers of molecules) are

treated as random variables. In contrast, ODE-based approaches are determin-

istic and concentrations are obtained by solving the differential equations (Ullah

et al. 2006). By means of computational simulation, an intuitive impression

of how these equations relate to dynamic responses can be gained. With valid

models, simulation results are able to make predictions about possible behaviour

of biological systems (Endy and Brent 2001).

There can be many circumstances where computational simulation is neces-

sary. Neelamkavil (Neelamkavil 1987) stated that simulation is necessary when

there is a need to study the past, present, or future behaviour of the system

in real time, such as side-effects of new drugs. Computational simulation en-

ables us to investigate the sensitivity of biological systems to parameter changes

such as environmental noise and minor mutations (Liu et al. 2008). Kitano
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(Kitano 2002a) highlighted that noise tolerance is exhibited by several biolog-

ical systems that feature oscillatory behaviour and transcriptional regulations,

however the degree of tolerance can only be quantitatively evaluated using com-

putational simulations. For example, the robustness of segmentation during

Drosophila embryogenesis in response to various kinetic parameters has been

investigated via computational simulation (von Dassow et al. 2000).

Exploration of the time-dependent behaviour of biological processes is one of

the most frequent applications of dynamic models (Wiechert 2002). Huang and

Ferrell (Huang and Jr. 1996) developed differential equation models of MAPK

signalling pathway to study the role of negative feedback mechanisms in gov-

erning ultrasensitivity in the pathway. Mechanisms regulating MAPK pathway

dynamics were further examined by Asthagiri and Lauffenburger (Asthagiri and

Lauffenburger 2001), where the authors implemented feedback mechanisms in a

mathematical model of the pathway and demonstrated that with negative feed-

back regulations, the model yielded a complete signal adaptation to its direct

target. Cho et al. (Cho et al. 2003) developed an ODE model to investigate the

influence of RKIP (the Raf Kinase Inhibitor Protein) on ERK signalling path-

way. Refer to (Hoppensteadt and Peskin 2002) for more interesting applications.

Mathematical models are a valuable tool for organising data and the exami-

nation of complex biological interactions (Bailey 1998). In the context of biology,

mathematical models integrate biological data at various levels (including tran-

scriptome, proteome and metabolome) and provide an unambiguous description

of biological systems. A mismatch between simulation results and experimental

observations can indicate deficiencies in the model, suggest modifications to the

model and guide new biological experiments. For example, as found by Orton et

al. (Orton et al. 2005), computational simulation of the Schoeberl MAPK model

(published by Schoeberl et al. (Schoeberl et al. 2002)) revealed that the negative

feedback loop from ERK-PP to SOS is necessary. Developing sound models with

predictive power is central to the domain of computational modelling.

After a valid model is constructed, formal analysis can be carried out to

study interesting properties of the system. Model analysis comes into various

forms with different objectives. It can be used to understand system structure

or to investigate system dynamics. In reality, analysis of dynamics and structure

are overlapping processes and are beneficial to each other (Kitano 2002b).

Application of analytical methods depends on the amount and type of biolog-

ical knowledge incorporated in the model (Kitano 2002b). For example, static
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models that are based on graph theory are completely adequate for steady-state

analysis, since only the network topology is required. However, static models

are incompatible with simulation-enabled analyses (e.g. parameter sensitivity

analysis), where a dynamic descriptions of the system is necessary.

2.4 System Identification

System identification is defined by Ljung (Ljung 2008) as “the art and science

of building mathematical models of systems from observed input-output data”.

Two broad branches of system identification are Structure Identification and

Parameter Estimation (Söderström and Stoica 1989). Structure identification is

concerned with finding a suitable model structure, within which a good model

is to be decided upon, and parameter estimation deals with, given a structure

and a set of experimental data, how the model can be fitted to observation data

in the best possible way. In this section, we focus on the subject of structure

identification. Computational issues associated with global optimization in the

context of single-objective optimization are studied in detail in Chapter 5. A

multi-objective optimization approach for parameter estimation is investigated

in Chapter 6.

According to different levels of initial knowledge about the system and the

purpose of modelling, mathematical model representations can be classified into

three general categories, which are described in generic terms below and as

summarized in the reviews (Ljung 2007, Sontag 2006, Sj̇öberg et al. 1995).

1. White Box model: This is the case when physical insight about the system

is complete and all the conditions are known quantitatively, indicating that

it is possible to construct the model entirely from prior knowledge.

2. Black Box model: This is the case when no physical insight is available or

used. A black-box model is a parametrized description of the process, and

all parameters are estimated from measurements performed on the process

without taking into account any prior knowledge about the process.

3. Grey Box model: This is the case when physical insight about the system

is incomplete and unknown quantitative conditions have to be determined

from observed data. According to the type and level of information avail-

able for the task, grey-box models can be further divided into the following

sub-classes:
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• A mechanistic description of the system can be built on existing phys-

ical knowledge about the system (i.e. rate laws and interconnection

relationships). When the model structure is defined, the identifica-

tion process is then to estimate the parameters from observed data,

which are unknown physical constants in the description.

• Mechanistic descriptions can be only obtained for some elementary

parts of the system. To construct an entire model, black-box struc-

tures representing non-linear transformations between system com-

ponents are necessary to approximate the ambiguously defined or

unknown dynamics.

The idea of designing white-box models (so-termed mechanistic models) is

to base the model construction on physical cellular functions, thus the results

of model simulation and prediction can be directly applied to actual biological

systems. The development of white-box models in order to understand the sys-

tems of life is the fundamental question addressed by computational systems

biology (Kitano 2002a). A detailed description of biological systems allows the

performance of simulated experiments to predict unobserved properties. How-

ever, a major weakness of this approach is the empirical nature and the essential

relations are often difficult to extract (Heinrich et al. 1977). Constructing a

white-box model for complex dynamic systems is an extremely difficult task as

in most cases the knowledge about the system is at best partial.

System identification is concerned with the development and analysis of

methods for performing black-box modelling (Söderström and Stoica 1989). The

black-box model representations appear to be more beneficial in modelling bi-

ological applications that are poorly defined. Black-box models are relatively

easy to construct and use (Söderström and Stoica 1989), and can be approx-

imated in the form of, for example, power series polynomials, fuzzy logic or

neural networks. A difficult problem in system identification is to find an appro-

priate mathematical form, in particular when the dynamics of the system are

non-linear.

Basically, black-box modelling looks for a relationship between past observa-

tions and future outputs. The area of black-box modelling is very diverse, and

covers topics from mathematical approximation theory; specifically, estimation

theory, regression and classification methods (Sj̇öberg et al. 1995).

Sontag et al. (Sontag et al. 2004) attempted to determine reaction mecha-
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nisms of biological systems from the measurements of time-course species con-

centrations. The authors developed quantitative techniques to identify causal

relationships between species by monitoring time-dependent cellular responses

to perturbations. The basic idea is to analyze the direct effect of a small change

in one network node on the activity of another node, while keeping all remain-

ing nodes fixed. The network responses to perturbations are estimated using the

partial derivatives that quantify the influence of each variable upon the rate of

change of other variables. The big advantage of this approach is that it is also

applicable to the situations where some network nodes cannot be perturbed;

this limit is tackled by applying more independent perturbations to other nodes

to which perturbations are allowed. Thus, an increase in the node connections

does not necessary change the number of required perturbation experiments and

calculations.

Gardner et al. (Gardner et al. 2003) applied multiple linear regressions to

the system identification of a nine-gene sub-network of the SOS pathway in Es-

cherichia coli. Regulatory coefficients for each pairs of genes were determined,

whereby the interconnection map and the key regulatory functions between gene

products in the network were identified. In the work by Gardner et al., no prior

knowledge was claimed to be necessary, but still 36 combinations of seven per-

turbations was used. Geier et al. (Geier et al. 2007) addressed the problem of

model construction of gene-regulatory networks from knockout data. The au-

thors compared the performance of different network reconstruction methods and

investigated the impact of data size and observation noise on the construction of

gene regulatory networks. They found that error rates during the construction

process increased with an elevation in the noise level and a decrease in the data

size.

Moreover, Crampin et al. (Crampin, McSharry and Schnell 2004) and Sriv-

idhya et al. (Srividhya et al. 2007) considered the problem of inferring kinetic

mechanisms for chemical reactions from time series data using polynomial mod-

els of chemical reactions based on mass action kinetics. Kocijan et al. (Kocijan

et al. 2003) also took advantage of the black-box identification approach formu-

lated as a Gaussian process model to study the model-based predictive control

problem. Refer to the works (Lauwers et al. 2007, Liu and Wang 2008, Kemna

and Mellichamp 1995) for more examples of the system identification of biolog-

ical systems.

The biggest disadvantage of model construction via black-box modelling is
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the implicit relationship with physical reality (Heinrich et al. 1977). This is to

say that any arbitrary black-box model can be made to fit experimental ob-

servations, however this does not necessarily mean that they represent a phys-

ically correct model of the system. Söderström and Stoica (Söderström and

Stoica 1989) pointed out that models obtained by system identification in some

cases have limited validity (for example, they are valid only for a certain working

point) and parameters included are used only as tools to give a good description

of the system’s behaviour. The amount of available experimental data and the

non-linearity of biological systems are the deciding factors when selecting an

appropriate model approximation. An overview of system identification tech-

niques for model construction from time series data is given by Crampin et al.

(Crampin, Schnell and McSharry 2004).

In contrast, grey-box modelling can relieve some of the drawbacks arising

from black-box modelling and still maintain dynamical flexibility (Tan and Li

2002, Oussar and Dreyfus 2001). We consider grey-box models as a combination

of white-box and black-box models. Tulleken (Tulleken 1993) argued that grey-

box modelling can benefit the advanced control design, which requires a model

that can adequately describe the mechanisms of the underlying process. Tulleken

proposed an approach to solve the problem of statistical estimation where a

linearly parametrized dynamic regression model was used. Tan and Li (Tan and

Li 2002) employed Padé approximation in the form of a regressive function as

the black-box structure to solve two non-linear chemical processes. Tullenken

(Tulleken 1991) applied this type of modelling to the model construction of a

batch reactor system and indicated that the grey-box strategy could improve

the statistical identification results considerably.

As highlighted by Heinrich et al. (Heinrich et al. 1977), there are compro-

mises among the three modelling representations in the use of models that are

as simple as possible, yet are still consistent with the real system. Simplification

of a model can be achieved through the reduction of the number of variables or

parameters. One useful model reduction technique is based on topological reduc-

tion of metabolic pathways, through which adjacent reactions may be lumped

into a single overall reaction (Heinrich et al. 1977). This technique is applied in

the structural modelling of the trypanothione metabolism in Chapter 3.

In summary, a sound metabolic model is necessary for achieving a global

understanding of the capabilities of metabolic processes. However, no auto-

matic reconstruction methods can be directly used to discover currently un-
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known metabolic reactions (Breitling et al. 2008). Breitling et al. summarized

a number of technological advances that could allow de novo reconstruction of

large unexplored parts of the metabolic map directly from experimental obser-

vations. Breitling et al. (Breitling et al. 2008) highlighted a high-accuracy mass-

spectrometry approach, which has been applied to the study of T. brucei. The

authors argued that this approach can accurately predict the potential connec-

tivity between related metabolites, thus enables a precise de novo reconstruction

of an entire hypothetical metabolic map. Recently developed software by Jour-

dan et al. (Jourdan et al. 2008) enables visualization of mass-spectrometry data

obtained from this method and allows basic analysis of the resulting network.

In many instances, sufficient physical knowledge and quantitative informa-

tion for constructing a mechanistic mathematical model of the entire system is

difficult or impossible to obtain. We take advantage of the concept of grey-

box models in the kinetic modelling of a sub-pathway of the trypanothione

metabolism (the polyamine biosynthetic sub-pathway), as illustrated in Chap-

ter 7. Within the grey-box model, a white-box representation is applied to de-

scribe known physical properties of the system and a black-box representation

is used to approximate the unknown dynamics.

2.5 Network Modularity

Cells can be seen as composed of a large number of self-contained reaction sub-

systems, so-called ‘modules’, which carry out specific biological processes. Cell

behaviour thus can be understood in terms of ‘modules’ interacting via cas-

cades and feedback regulations in a complex web, which is defined by Sontag et

al. (Sontag 2006) as one of the important themes in current molecular biology.

Sub-systems can be thought of as black boxes that process time-dependent in-

put signals (i.e. forcing functions) or external signals (i.e. stimuli) into output

responses (i.e. measurements provided by biological reporter devices). Model

decomposition techniques facilitate the study of emergent properties of intercon-

nections, thus benefiting the model construction of large-scale biological systems

on modular bases (Kholodenko et al. 2002).

From the perspective of molecular biology, a module can be considered as a

group of biological components that are spatially isolated and/or functionally

independent, and classified as topological and functional modules, correspond-

ingly. From a purely topological perspective, hierarchical modularity is evident
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in metabolic networks in all organisms (Ravasz et al. 2002). Topology-based

modules are comparatively straightforward to derive. Since they are based on

graph theory, minimal prior knowledge about biological function or evolution is

required.

Centrality is a core concept for the study of topological modules. Edge be-

tweenness is the most prominent measure of centrality, which determines the

relative importance of an edge within a graph, and therefore the density of

sub-networks of a complex network system (Girvan and Newman 2001). The

measure of edge betweenness favors edges lying between sub-networks and dis-

favors edges lying inside sub-networks. There are various implementations of

this measure. One of the standard variants is shortest-path betweenness, which

finds the shortest paths between all pairs of vertices and counts how many run

along each edge (Newman 2001). Zhao et al. (Zhao et al. 2007) applied this

decompositional approach to examine the co-evolution of topological modules

of metabolic networks in H. sapiens, where they used the simulated annealing

algorithm proposed in (Guimera and Amaral 2005) to develop the modules. In

spite of the prevalence of topological modularity in networks, network modu-

larization should rely on functional characterization of biological components

(Sauro et al. 2006). Hartwell et al. (Hartwell et al. 1999) argued that the iden-

tification of functional modules is a crucial level of abstraction in the modelling

of biological systems. However, how to functionally modularize a network is the

key problem.

Ravasz et al. (Ravasz et al. 2002) proposed a decompositional approach

for the classification of topological modules, where clustering coefficients among

substances are calculated to determine the number and degree of clustering. The

coefficients reflect the The authors attempted to establish a relation between

topological modules and the known functional properties of the metabolites,

and pointed out that biological verification of the relation remains to be the

critical issue. Further experiments and theoretical analyses are needed in order to

understand the potential relation between the identified hierarchical architecture

and functionally relevant sub-networks.

The concept of modularity has been applied to solve the parameter estimation

problem of biological systems, by which the complexity of the problem can be

largely reduced. Van Riel and Sontag (van Riel and Sontag 2006) developed a

‘dependent-input’ approach for the identification of unknown system parameters.

This approach allows a part of the system to be studied independent of the rest
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of the cell by replacing the un-modelled dynamics (of the rest of the system)

with the measured dependent inputs. A critical challenge with regard to the

use of the ‘dependent-input’ approach lies in how to represent the modules to

render the predictive power, since the ultimate goal is not only to examine the

underlying assumptions but also to make predictions to be tested experimentally.

Bentele et al. (Bentele et al. 2004) took advantage of network modularity for

parameter estimation in the apoptotic signalling network. Sensitivity analysis

that describes changes of molecule concentrations as result of changes in the

values of parameters (so-called local sensitivity analysis) is applied to identify

clusters that contain a subset of molecules whose concentrations depend on a

subset of parameters only. The parameter estimation problem was solved via

a two-level hierarchy, where at the upper level, global parameters that belong

to more than one cluster are estimated and at the lower level, remaining local

parameters belonging to individual subsets are estimated separately from each

cluster. At the lower level, estimation of the local parameters is dependent

on the values of the global parameters solved from the upper level. However,

this approach may be computationally expensive, as sensitivity analysis has to

be performed and evaluated within the parameter estimation space after each

iteration step.

In summary, network modularity provides a convenient way to examine the

relationship between topological and functional building blocks that accomplish

specific cellular functions, which assists in the analysis of system behaviour and

exploration of unknown systemic properties. Within a ‘modular’ framework,

the challenge of understanding the complex network of molecular interactions

can be facilitated (Lauffenburger 2000). We take advantage of the concept of

network modularity in the modelling of the trypanothione metabolic pathway.

In Chapter 7, we propose an optimization-based decompositional approach that

is different from the previously discussed approaches to guide the investigation

of model structure correctness of the pathway.

2.6 Discussion

The study of biological pathways is becoming the reference framework for under-

standing the dynamics of many intercellular and intracellular processes. As most

pathways of interest involve components connected through interlocking loops,

an intuitive understanding of their dynamics is hard to obtain. It is therefore
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necessary to apply formal methods to modelling and analysis of these pathways.

There are many different types of models that can be used to study biological

systems, and hence question of which model should be selected might arise. The

type of model is determined by the purpose of model building, for example,

whether it is to obtain an in-depth understanding, to make predictions about

novel behaviour, or to suggest design principles for biological experiments. Even

though dynamic models are widely adopted to quantitatively study biological

systems, the merits of (graph-based) static models should not be overlooked.

Static models are suitable for studying topological properties and time-invariant

behaviour of biological systems, which can help concentrate on the essential

part of the system even without dynamic simulation. Conclusions drawn from

static models can be both qualitative and quantitative such as the description

of system outputs in response to environmental or genetic modifications.

In this thesis, we focus on deterministic continuous models of chemical reac-

tions to study the dynamic properties of the trypanothione metabolic pathway.

There are at least three possible arguments for the use of stochastic models for

chemical reactions (Erdi and Toth 1988), which can take the inherently random

phenomena of processes into account, however stochastic models are not appro-

priate for representing the biological system of interest, as the chemical reactions

are assumed to not occur randomly and a set of inputs of the system will re-

sult in an unique set of outputs. Moreover, for many classes of phenomena the

stochastic model is only slightly ‘better’ than the deterministic approach, while

the mathematics of the stochastic model is considerably more complicated (Erdi

and Toth 1988). There is thus little reason to complicate the problem for only

a small gain in accuracy. ODEs, which are well known for their unambiguous

mathematical expression and compatibility with quantitative analysis, are ap-

plied to model the metabolic processes of interest and to address the importance

of deterministic kinetics.



Chapter 3

Structural Modelling of

Trypanothione Metabolism in

Bloodstream-form Trypanosoma

brucei

In this chapter we investigate how the structural modelling approach can ben-

efit the understanding of important physiological characteristics of the trypan-

othione metabolic pathway in the absence of detailed kinetic information and

rational identification of potential drug targets. We discuss the usefulness of

structural modelling and explore the steady-state properties and growth capa-

bilities of the pathway. The system properties such as network robustness and

flux control coefficients are also studied and interpreted biologically.

3.1 Overview

Metabolic models are used to capture and reproduce the essential behaviour of

the functions of metabolic systems. One commonly-used approach to studying

complex systems is dynamical simulation. A complete description of dynamic

properties requires the knowledge of intricate regulatory features. However, the

regulatory information required to establish such detailed kinetic models are

rarely available (Stelling et al. 2002).

Knowledge about the trypanothione metabolic pathway is currently restricted

to a qualitative view and the network topology (also termed as structural topol-

52
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ogy and used interchangeably) is better understood than its numerical aspects.

The structural modelling approach, based on the network stoichiometry and re-

versibility of reactions, enables us to study the metabolic pathway in the absence

of kinetic information. Network stoichiometry is related to the proportions of

reactants and products that take part in a reaction. This approach is conducted

through analyzing the stoichiometric matrix with established techniques that

compute a set of routes satisfying certain conditions.

In this chapter, we formulate a model of the trypanothione metabolic path-

way represented as a stoichiometric matrix, and perform structural analysis of

this model, to gain insights into the critical properties of the pathway. We first

give some background on the model of T. brucei and anti-trypanosomal drug

development therein. We then investigate the trypanothione metabolism from

a pathway perspective, which illustrates how the conservation constraints and

enzyme subsets can be deduced through a rigorous analysis of the stoichiomet-

ric matrix. We also present a computational investigation into the detection of

network gaps and study system robustness with respect to different structural

topologies to quantitatively measure the network flexibility correspondingly.

Next, we demonstrate the usefulness of Metabolic Flux Analysis for the es-

timation of steady-state flux distributions with respect to specific optimization

criteria. Essentiality of gene products in the pathway for supporting given objec-

tive functions are assessed when individual reactions are knocked out or environ-

mental perturbations are applied. Essential enzymes identified are reckoned to

have considerable potential for chemotherapy. The advantages and limitations

of the structural modelling in general, and the issues specific to modelling the

trypanothione metabolic pathway are summarized in Section 3.6.

3.2 Biological Background

A schematic representation of the trypanothione metabolic pathway in T. brucei

is depicted in Figure 3.1, which is formulated based on biological information

available from the literature and in collaboration with biologists studying T.

brucei. To the best of our knowledge, this schematic representation takes into

account all known elementary interconnections of the system as observed in

biological experiments. We also incorporated biological information derived from

the counterparts in other parasitic organisms (i.e. Leishmania and T. cruzi) into

the model description. The chemical reactions that have been observed in other



CHAPTER 3. STRUCTURAL MODELLING 54

Figure 3.1: A complete schematic representation of the trypanothione
metabolism in T. brucei. In the cytosolic compartment, variable metabolites
with time-dependent concentrations are nodes in green and constant metabo-
lites with fixed concentrations at their physiological levels are nodes in brown.
Boxes in blue are the enzymes catalyzing each elementary step in the pathway,
where the drug ‘DFMO’ is highlighted besides the enzyme it inhibits. In the
blood compartment, external metabolites are nodes in pink, and the unconfirmed
component is the node in purple. The concentrations of both constant and ex-
ternal metabolites are fixed at their physiological levels. Edges with one-way
arrows denote irreversible reaction steps, indicating directions of net reaction
fluxes, and those with two-way arrows denote reversible steps. Edges in pur-
ple, assigned with question marks represent the presence of reactions that have
not been evidenced in T. brucei. A comprehensive description of the enzymes
contained in this figure is presented in Chapter 4.

parasites but not in T. brucei are indicated with a question mark in the diagram.

Extensive research into trypanosomes over the past two decades has been

devoted to target identification for chemotherapy of trypanosomal infections.

Selective toxicity is the main principle of drug action when killing parasites,
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that is, drugs must be toxic to the parasite than to the host (Bakker 1998).

Enzymes and metabolites unique to parasites are good candidate targets for

anti-parasitic drug development (Barrett et al. 2003, Krauth-Siegel et al. 2005).

In spite of knowledge about structure and biosynthetic routes for some in-

hibitory compounds, drugs that are suitable for clinical trials are still difficult

to obtain (Muller et al. 2003). Any new drug that can be developed and taken

into the phase of clinical application has to be examined via a rigorous drug

validation process. This involves testing the drug efficacy with a large number

of substances and long-term collaborations between research institutes and drug

development companies (Keiser et al. 2001).

The lack of success in anti-parasitic drug design can be attributed to several

factors, for example, resistance to drug efficacy. Drug resistance refers to the

ability of organisms to withstand a drug to which they are normally vulnerable.

Considerable research has been performed towards the understanding of DFMO

resistance in a number of cell types and microorganisms, including Ehrlich as-

cites cells (Alhonen-Hongisto et al. 1980), L. infantum (Fouce et al. 1991, Bas-

selin et al. 1996) and procyclic-form T. brucei (Phillips et al. 1987). Another

obstacle in anti-parasitic drug design is that cells have developed a range of

self-repairing systems that could counteract the inhibitory effect. Thus, to en-

hance the in vivo drug efficacy, anti-trypanosomal therapy should aim at more

than one chemotherapeutic target. In this way, an adequate depletion of the

metabolites pertinent to cell proliferation is likely to be achieved.

3.3 Metabolic Balancing

The steady-state properties of metabolic fluxes are important for understanding

the regulation of metabolism. In metabolism, the basic components are metabo-

lites and reactions. Metabolites are converted by biochemical reactions; or they

are transported between compartments or exchanged with the environment.

The degree to which pathways participate in various cellular and metabolic

process can be quantified using metabolic fluxes, which measure the reaction rate

of the pathway. It is thus of considerable importance as a metric in metabolic

engineering. Metabolic Flux Analysis is a methodology that allows flux values

to be determined from intracellular reactions via a stoichiometric model and the

incorporation of appropriate mass balances (Stephanopoulos et al. 1998).

In this section, we first give an introduction to the theory of mass balancing,
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and then present our work on the construction of mass-balance model for the

trypanothione metabolic pathway and the associated structural analysis applied.

3.3.1 Theory

The starting point for structural analysis is the reaction network stoichiometry,

which indicates how substrates are converted to metabolic products and biomass

constituents. To enable the development of a mass-balance model (also termed

as structural model in this thesis), definitions of all the metabolites and reactions

of the network are required.

Biological systems are often open systems interacting with the environment

through the exchange of mass and/or energy. The external sources with which

the systems exchange fluxes are normally set as constants. Internal rate con-

stants in our analysis refer to the net rate of enzymatic reactions within the

system. The term ‘net rate’ is mainly designated for reversible reactions, which

denotes the difference between the rates of forward and backward reactions.

A metabolic model accounts for the interactions of metabolites and enzymes.

It is a list of coupled biochemical reactions, representing the network that the

reactions form by connecting the metabolites. The main concepts in setting

up mass-balance models are now explained in detail and illustrated through an

example.

Consider the simple pathway:

Xin
b1−→ Ss

υ1−→ Si
υ2−→ Sp

b2−→ Xout (3.1)

The two species, Xin and Xout, are boundary species, fixed by the experiment.

Assimilation and export of the boundary species are catalyzed by enzymes Eb1

and Eb2 at rates b1 and b2 respectively; they are so-called external fluxes. The

species Ss, Si and Sp are state variables of the system (so-called internal metabo-

lites), which can change depending on enzyme activities, including kinetic con-

stants and concentrations of the boundary species. Reactions of the internal

metabolites are catalyzed by enzymes Eυ1 and Eυ2 at rates υ1 and υ2 respec-

tively; these are so-called internal fluxes.

To give a concrete example, let us assume the external reaction rates, b1 and

b2, and internal reaction rates, υ1 and υ2, are given by two Michaelis-Menten

rate laws and two Mass-Action rate laws; all reactions are irreversible so that

the rates considered are net rates of the reactions. The rate of reactions for the
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internal reactions are

υ1 = kυ1 · Ss (3.2)

υ2 = kυ2 · Si (3.3)

where kυ1 and kυ2 stand for the rate constants of the reactions. The rate of

change of Si is given by:
dSi

dt
= υ1 − υ2 (3.4)

and at steady sate υ1 = υ2. Given this condition, the steady state concentration

of Si can be easily shown to be:

Si =
kυ1 · Ss

kυ2

(3.5)

For a linear chain pathway, any rate can be used to compute the flux since

all steps carry the same flux. Therefore, in our example pathway, the individual

reactions can be lumped into one step describing a direct conversion of substrate

Ss into product Sp with a forward reaction rate υf . This lumping does not change

the total number of degrees of freedom because the removal of one reaction rate

υ2 is also accompanied by the elimination of one mass balance (that of Si).

A significant reduction on network topology can be achieved with such a

technique by lumping unknown rates of reactions into a linear sequence. This is

equivalent to network simplification by considering only metabolites serving as

network branch points, which refer to the points at which incoming flow is split

into more than one outgoing stream.

In theory, a steady-state flux is a function of all kinetic constants in the

pathway. In the example, the steady-state flux, J2 through the reaction catalyzed

by Eυ2 can be computed from the rate υ2 = kυ2 · Si and by substitution yields

J2 = kυ2 ·
kυ1 · Ss

kυ2

= kυ1 · Ss (3.6)

In general, the rates can be expressed as functions of their influencing factors.

For most systems, however, the algebraic analysis just described is not possible

because the mathematical expressions involved become too complex. Thus, the

system can only be solved with the aid of computers.

Once all the reactions and external fluxes are identified, a mass-balance model

can be derived for all the metabolites in the network. At steady state, the set of
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equations describing the changes of metabolite concentrations is equal to zero

dSi

dt
=
∑

Inflows −
∑

Outflows = 0 (3.7)

The mass-balance model of a metabolic pathway is described using the sto-

ichiometric matrix, S, relating the flux rates of enzymatic reactions, υ, to time

derivatives of metabolite concentrations, X, as

dXm

dt
= S · v (3.8)

υ = [υ1 υ2 · · · υnint
e1 e2 · · · enext ]

T (3.9)

where υi and ei represent the internal and exchange fluxes of the system.

At steady state, the change in the amount of a component over time across

all reactions within the system is zero. The set of differential equations (Equa-

tion (3.8)) is then written in the form

dX

dt
= S · υ = 0 (3.10)

S is a m × n matrix of all feasible fluxes. m and n represent the number of

internal components and reactions, respectively. In the context of metabolism,

internal metabolites are quantified with transient concentrations over time, while

external metabolites have concentrations fixed at certain amount.

Steady-state simulation of a mass-balance model computes the solutions that

satisfy the cellular constraints of each balance equation of the system. Since m

is usually far fewer than n, Equation (3.10) is typically an under-determined

system. As defined by Stephanopoulos et al. (Stephanopoulos et al. 1998),

if the number of unknown variables is greater than the number of equations

defining the system, then the system is under-determined. The consequence of

this is that there exists an infinite number of solutions to the system. In order

to determine a unique solution for the system, it is necessary to apply additional

constraints.

One way to obtain additional constraints is to measure unknown fluxes for

the metabolic pathway. However, when the exact flux values are not available,

ranges of allowable flux values are commonly incorporated as additional con-

straints (Kauffman et al. 2003). When the constraints are not sufficient for

direct calculation, Linear Programming (LP) can be used to estimate the in-
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tracellular flux distribution. The usefulness of this approach in studying the

trypanothione metabolism is illustrated in Section 3.5.1.

3.3.2 Mass-balance Model Construction

The first step towards structural model construction is to define all the metabo-

lites and associated metabolic reactions. The trypanothione metabolic pathway

(Figure 3.1) contains 26 internal metabolites and 32 reactions, mediated through

28 proteins. In Section 3.3.1, we stated that a significant reduction in network

topology can be achieved by lumping (unknown) rates of reactions in linear se-

quence. The concept of Enzyme Subsets suggests that enzymes belonging to

the same subset can be lumped without losing any topological information (see

detailed explaination in Section 3.3.4).

Work by Varma and Palsson (Varma and Palsson 1993) has shown that a

system can also be intuitively simplified by removing the intermediate reactions

where the source reactant and product are involved in only one reaction. This

technique is employed for the system simplification of the trypanothione path-

way, which, in this way, reduced the original pathway into one comprising 18

internal metabolites, 6 extracellular entities and 21 reaction fluxes.

The graphical representation of the reduced pathway is presented in Fig-

ure 3.2. Edges and component(s) with no explicit experimental evidence in T.

brucei were removed from the diagram and will not be considered. The list in

Tabel 3.1 associates reactions in Figure 3.2 with the fluxes going through.

The stoichiometric matrix (3.12) was constructed solely based on the network

stoichiometry and irreversibility of the reactions. Regulations of the enzyme

kinetics are not considered in the mass-balance model. Flux notations υi and

bj denote the exchange of fluxes between variable metabolites and with the

environment respectively. In the case where the external fluxes are known, the

rate of change of flux constraints can be identified precisely.

The entries in each column correspond to the stoichiometric coefficients of

the metabolites of each reaction. By convention, negative values are given for re-

actants and positive values are given for products. The concentration of metabo-

lites is denoted by brackets. The ith row of the matrix defines the participation

of a particular metabolite across all metabolic reactions, and the jth column

provides the stoichiometry of all metabolites in that reaction. We have
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Figure 3.2: Graphical representation of the trypanothione metabolism for struc-
tural modelling. Internal metabolite pools are nodes in green and external ones
are nodes in pink. Edges with one-way arrow denote irreversible reaction steps,
indicating the direction of net reaction fluxes. Metabolites in brown are con-
stant variables of the pathway, whose concentrations are fixed at their physi-
ological levels. Abbreviations of intracellular enzymes: ARG, arginase; ODC,
ornithine decarboxylase; SpdS, spermidine synthase; MAT, adomet synthase;
AdoMetDC, adomet decarboxylase; CysS, cysteine synthetase; MetRcy, methio-
nine recycling enzyme; gGCS, γ-glutamylcysteine synthetase; GS, glutathione
synthetase; TryS, trypanothione synthetase; TryAdm, trypanothione amidase;
TPx, trypanothione peroxidase; TR, trypanothione reductase; PPPEnz, pentose
phosphate pathway enzymes.
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[d[Arg]
dt

d[Orn]
dt

d[Met]
dt

d[AdoMet]
dt

d[Put]
dt

d[dAdoMet]
dt

d[Spd]
dt

d[MTA]
dt

d[Cys]
dt

d[Glu]
dt

d[Gly]
dt

d[gGluCys]
dt

d[GSH]
dt

d[TSH]
dt

d[TS2]
dt

d[G6P ]
dt

d[NADPH]
dt

d[NADP ]
dt ]T =

Stb · [υ1 υ2 υ3 υ4 υ5 υ6 υ7 υ8 υ9 υ10 υ11 υ12 υ13 υ14 barg

bmet bcys beff bglu bgly bglc]T

(3.11)
where

No. Label Reaction Name Stoichiometry
1 υ1 Arginase arginine → ornithine
2 υ2 Ornithine decarboxylase ornithine → putrescine
3 υ3 AdoMet synthase methionine → AdoMet
4 υ4 AdoMet decarboxylase AdoMet → dAdoMet
5 υ5 Cysteine synthase AdoMet → cysteine
6 υ6 Spermidine synthase putrescine+dAdoMet →

spermidine+MTA
7 υ7 MTA recycling MTA → methionine
8 υ8 γGCS cysteine+glutamate → γGluCys
9 υ9 Glutathione synthetase γGluCys+glycine → Glutathione
10 υ10 Trypanothione synthetase spermidine+2glutathione →

trypanothione
11 υ11 Trypanothione hydrolysis trypanothione →

spermidine+2glutathione
12 υ12 Trypanothione perioxidase trypanothione → TS2

13 υ13 Trypanothione reductase TS2+NADPH →
trypanothione+NADP

14 υ14 PPP Enzymes G6P+NADP → Ru5P+NADPH
15 barg Arginine transport Extarg → arginine
16 bmet Methionine transport Extmet → methionine
17 bcys Cysteine uptake Extcys → cysteine
18 beff Cysteine excretion cysteine → Extcys

19 bglu Glutamate uptake Extglu → glutamate
20 bgly Glycine uptake Extgly → glycine
21 bglc Glucose uptake Extglc → glucose

Table 3.1: Reaction names and stoichiometries of the model shown in Figure 3.2.
All reactions are represented as irreversible reactions with one-way arrows.
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Stb =

2
666666666666666666666666666664

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −2 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

3
777777777777777777777777777775

(3.12)

With the above information, the mass-balance equations of the trypanothione

system can be formulated as below:

X1 = d[Arg]
dt = 0 = barg − υ1

X2 = d[Orn]
dt = 0 = υ1 − υ2

X3 = d[Met]
dt = 0 = bmet − υ3 + υ7

X4 = d[AdoMet]
dt = 0 = υ3 − υ4 − υ5

X5 = d[Put]
dt = 0 = υ2 − υ6

X6 = d[dAdoMet]
dt = 0 = υ4 − υ6

X7 = d[Spd]
dt = 0 = υ6 − υ10 + υ11

X8 = d[MTA]
dt = 0 = υ6 − υ7

X9 = d[Cys]
dt = 0 = bcys − befcys + υ5 − υ8

X10 = d[Glu]
dt = 0 = bglu − υ8

X11 = d[Gly]
dt = 0 = bgly − υ9

X12 = d[gGluCys]
dt = 0 = υ8 − υ9

X13 = d[GSH]
dt = 0 = υ9 − 2 · υ10 + 2 · υ11

X14 = d[TSH]
dt = 0 = υ10 − υ11 − υ12 + υ13

X15 = d[TS2]
dt = 0 = υ12 − υ13

X16 = d[G6P ]
dt = 0 = bglc − υ14

X17 = d[NADPH]
dt = 0 = −υ13 + υ14

X18 = d[NADP ]
dt = 0 = υ13 − υ14

(3.13)

Once the mass-balance model is defined, a theoretical analysis can be per-

formed. In the following sections, the general concepts of Conserved Moieties
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and Enzyme Subsets are studied for the trypanothione metabolic pathway.

3.3.3 Conserved Moieties

It is necessary for the stoichiometric matrix to have sufficient information con-

tent in order, for a steady state, to be possible in mathematical terms. In

mathematical terms, this implies that all equations are linearly independent. In

other words, no rows may be a linear combination of, or can be solved from,

the remaining ones. In order to supply enough information for a steady-state

calculation, the first step is to ascertain whether there are groups of balance

equations that can sum to zero, which refers to the study of conserved moieties

of the system. According to conservation moieties, a reduced matrix can be

obtained by clamping ’abundant’ balance equations. Such implementation leads

to a determined system of balance equations that contains enough information

to compute a steady state, though in this case, a unique steady state is not

guaranteed.

Conserved moieties are defined by Heinrich and Schuster (Heinrich and Schuster

1996) as components such as atoms and molecules that are preserved within

the system and does not degrade over time, for example, in a cyclic reaction.

This can be expressed by equations, namely the so-called conservation relation-

ships. The metabolites contributing to a conservation relationship depend on

each other, and their total concentration is fixed (Hofmeyr 1986).

Conserved moieties in metabolic systems reveal themselves as linear depen-

dencies in the rows of stoichiometry matrix. This can be detected by inspecting

the rows of Stb, examining if the rank of Stb is less than m, which indicates the

number of variable metabolites of the system. Rank of Stb with rank(Stb) gives

the number of linearly dependent metabolites. Whenever the system exhibits

conserved moieties, it gives rank(Stb) < m. All the relations have been deter-

mined when the number of variable metabolites is equal to the rank. The em-

bedded function rank from Matlab (http://www.mathworks.com/) was employed

and gave a rank of 17 for the system with 18 variable metabolites, indicating

one conserved relationship.

In our system, the conserved moiety is the redox couple NADP/NADPH,

which is integral for trypanothione synthesis and regeneration. NADP is formed

when NADPH is consumed and vice versa. The row for NADP in Stb is depen-

dent on the row for NAPDH, exhibiting the opposite signs of the coefficients.



CHAPTER 3. STRUCTURAL MODELLING 64

This is true even during transients and not only in steady state;

X17 + X18 = 0

This implies moiety conservation, such that

[NADP ] + [NAPDH] = constant (3.14)

In this way, the moiety conservation reduces the balance equations in Equa-

tion (3.13) to a set of 17 (denoted as Srd
tb), which supplemented by one con-

servation equation. To check if no conserved equations can be further deduced

from Srd
tb, which describes mass balance equations for each of the 17 metabolites

(denoted as mrd), we calculate the rank of the reduced matrix. The calcula-

tion returns an identical value to the number of variable metabolites and the

equality rank(Srd
tb) = mrd is satisfied. The result indicates that the system of

balance equations has been correctly replaced by all possible conservation equa-

tions, and the first step towards steady-state simulation has been successfully

accomplished. The number of degrees of freedom of the system is calculated to

be mrd − rank(Srd
tb) = 0.

3.3.4 Enzyme Subsets

Enzyme subsets can be derived directly from mass-balance equations. Enzyme

subsets (Pfeiffer et al. 1999) are groups of enzymes that have constant flux ratios

whenever the system is in steady state. This concept is useful when studying

gene expression or metabolic regulation, and groups of enzymes with the same

evolutionary pattern are of particular interest. Pfeiffer et al. (Pfeiffer et al. 1999)

indicate that enzymes in any one branch carry the same steady-state flux and

are likely to be expressed simultaneously. Schuster et al. (Schuster, Klamt,

Weckwerth, Moldenhauer and Pfeiffer 2002) found that there is a correlation

between the relative changes of gene expression for the enzymes classified into

the same subset in yeast central metabolism during the diauxic shift.

Enzyme subsets with more than one reaction are of interest. Trivial subsets

with only one reaction are not considered in further analysis. Three non-trivial

subsets are identified for the trypanothione system using METATOOL (Pfeiffer

et al. 1999, von Kamp and Schuster 2006).

Metabolic reactions are often present in linear combinations, so identifying
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Index Label Chemical Reaction
1 υ3, υ5, bmet MAT, CysS, Methionine transport
2 υ10, υ11 TryS, TryAdm
3 υ12, υ13, υ14, bglc TPx, TR, PPPEnz, Glucose transport

Table 3.2: Enzyme subsets of the trypanothione pathway.

a portion of them can assist in deriving the values of the remaining ones. This

information is valuable for biologists in designing experiments in an economical

way. Based on the enzyme subsets in Table 3.2, for example, measurement of

the steady-state flux υ12 can aid in determining the values of other fluxes in the

group (υ13, υ14, bglc).

A special case of enzyme subsets is one that contains all the network gaps.

Network gaps (Schuster and Schusters 1990) were first introduced to describe

the situation where there are reactions that have a net flux of zero after the

system has reached steady state. These subsets are less interesting per se, as the

reactions contained do not show any interactions with other parts of the system.

Another concept that enzyme subsets leads to is the elementary mode, which

studies the set of reactions that can sustain a steady-state flux when the re-

maining reactions function properly. From the perspective of elementary modes,

network gaps are rather important.

3.4 Elementary Mode Analysis

Schuster et al. (Schuster et al. 2000) stated that an elementary mode is the

“minimal set of enzymes that can operate at steady state with all irreversible

reactions operating under normal conditions”. Elementary modes are not de-

composable, which means that no reactions can be removed from the mode

without violating the steady state condition.

With the elementary mode approach, network complexity can be reduced

to a minimal set of reactions. For example, it can help detect which of sev-

eral pathways is preferred by the organism to consume a particular substrate.

Another very similar concept called Extreme Pathways has been introduced re-

cently, which is the systemically independent subset of the elementary modes.

A comparison of these two principles is presented by Klamt and Stelling (Klamt

and Stelling 2003).
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A calculation procedure for the computation of elementary modes is given

by (Schuster, Hilgetag, Woods and Fell 2002), where external metabolites repre-

senting the inputs and outputs are necessary for elementary modes to be calcu-

lated. In our analysis, we applied METATOOL, which has been used in many

applications to calculate elementary modes.

One prominent role for elementary modes is to reveal missing links or network

gaps in the metabolism of organisms. For example, by means of the elementary

mode analysis, Schuster et al. (Schuster et al. 1999) found a missing link in

the metabolism of M. hominis by detecting that some experimentally-verified

enzymes were not contained in any elementary modes of the system.

Four elementary modes were detected by METATOOL for the metabolic

model expressed by Equation (3.13). They correspond to four different metabolic

functions, as shown in Table 3.3.

Mode Name Participating steps
EM1 trans-sulphuration sub-pathway bmet, υ3, υ5, beff

EM2 trypanothione synthesis-hydrolysis υ10, υ11

EM3 trypanothione redox cycle υ12, υ13, υ14, bglc

EM4 cysteine export-assimilation bcys, beff

Table 3.3: Elementary modes of the trypanothione model shown in Figure 3.2.

The above analysis reveals that there are missing links or network gaps in

the pathway, as the enzymatic reactions corresponding to fluxes υ1, υ2, υ4, υ6,

υ7, υ8, υ9, barg, bglu, bgly and bglc carry zero net flux. However, experimentally, it

has been verified that exogenous arginine plays a critical role in cell growth as

well as the other enzymes on the spermidine biosynthesis path. These indicate

that some existing intermediates of the pathway would not have been generated.

A biological pathway can be defined in terms of elementary modes, which are

derived from the network topology and uniquely define it (Papin et al. 2003).

By taking advantage of this unique feature, we proposed an original approach

to detect network gaps and seek potentially suitable topologies. The approach

was programmed in Matlab and dependent on METATOOL for the calculation

of elementary modes for a given network topology. Structural malfunction can

sometimes be examined through an intuitive analysis. The automatic investi-

gation presented here is advantageous in exploring network topologies from the

perspective that diverse results can be calculated with less computation time.
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The following paragraphs briefly introduce the rationale of our approach. Sup-

plementary information is given in Appendix B.1.

3.4.1 An Original Approach to the Identification of Net-

work Gaps

Network gaps are caused by two factors in general. First, there are ‘dead’

metabolites in metabolic systems that are constantly produced but not con-

sumed in other reactions. Schuster and Schuster (Schuster and Schusters 1990)

indicated that treating the ‘dead’ metabolites as external components could be

a solution. Second, topologically, missing reactions prevent a steady-state flux

going through a certain group of metabolites, even though each metabolite in

the group is characterized with both incoming and outgoing fluxes. The first

factor can be scrutinized with relative ease by inspection of the network diagram.

The second factor is often hidden and analytical solutions are sometime hard to

obtain.

The challenge in identifying network gaps is the lack of rules to follow. To

make the computational investigation feasible, we constrain the missing reac-

tions to internal metabolites participating in other metabolic functions. Almost

all the well-known biosynthesis reactions of the internal metabolites have been

incorporated into the pathway; hence, no further investigation will be applied

to this aspect. Given such constraints, there are still several possibilities. For

example, the missing reactions outgoing from the internal metabolites and ter-

minating on unknown sources can occur independently or in pairs, or missing

reactions outgoing from internal metabolites can be recycled to regenerate other

existing metabolite(s).

To narrow down the search, our approach uses the following assumption: in

addition to the existing reactions, there are also reactions of internal metabo-

lites participating into other metabolic functions and these reactions occur in

isolation, one reaction at a time, which we term ‘single-branch’ addition. Bio-

logically, the missing reactions may refer to enzymatic or decay reactions of the

metabolites, which are assumed as irreversible reactions in our analysis. In silico

results of the ‘single-branch’ addition indicate that only the addition of a branch

outgoing from the metabolites trypanothione or oxidized trypanothione (TS2)

can enable a full coverage of the enzymatic reactions in the elementary modes.

We also investigate ‘double-branch’ addition to examine the network topology
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when the outgoing branches of the internal metabolites are assumed to occur

in pairs (see details in Appendix B.1). In silico results of the ‘double-branch’

addition returned 30 pairs, the addition of which to the original topology results

in ‘gap-free’ topologies. Of the 30 pairs, 28 contain either trypanothione or TS2

and one special case where the pair consists of both trypanothione and TS2.

The above observations are equivalent to the findings from the ‘single-branch’

addition that outgoing branches from trypanothione or TS2 are essential for the

system to be ‘gap free’. The last pair is spermidine and glutathione. As this

pair contains neither trypanothione nor TS2 we retain it for further analysis.

In summary, the computational investigation of network gaps discovered

three topologies where the enzymatic reactions of biological importance are all

properly used in metabolism. The three network topologies are highlighted and

labelled in Figure 3.3.

Elementary modes are useful in that they allow important cellular properties

to be extracted from the network topology, for example, mutant phenotypes and

network robustness. The elementary modes derived from the identified network

topologies ST1 to ST3 are shown in Table 3.4.

By definition, elementary modes indicate the number of independent steady-

state fluxes that can exist in a system. If this is zero, the system cannot sustain

any steady-state flux. The elementary modes in Table 3.4 indicate that all the

three structural topologies can carry steady-state fluxes. As all of the modes are

irreversible, which means that no reversible reactions are contained, no negative

fluxes are allowed for any of them.

Elementary flux modes correspond to different basic functions that a bio-

chemical system is able to fulfill. Four common elementary modes were identified

for all structural topologies, namely trans-sulphuration sub-pathway, trypanoth-

ione redox cycle, trypanothione regeneration and cysteine transport. It should

be noted that of the six elementary modes, EM5 – cysteine transport is the

only elementary mode that depends entirely on the chemical exchange between

exogenous cysteine and endogenous cysteine, therefore the flux carried by this

elementary mode always remains constant. As a result, this mode cannot be

analyzed and will not be further discussed.

Before proceeding with further analysis, the three numerical candidates se-

lected from the computational approach must be checked for biological rele-

vance. Detailed inspection of the elementary modes unravels structural flaws.

It is well-known that the intracellular level of trypanothione is determined by
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Figure 3.3: ‘Gap-free’ structural topologies of the trypanothione pathway. Addi-
tional branches outgoing from certain metabolites are labelled with ST1, ST2
and ST3 and highlighted in dark green, red and grey, where the associated
ovals, namely tsh end, ts2 end, spd end and gsh end, are treated as constant
components.

assimilation of exogenous metabolites and intracellular enzymes activity. EM3

from ST3 contradicts biological evidence that trypanothione is independent of

external factors and can constantly operate on its own via the reactions υ10 and

υ11. As a consequence, the structural topology, ST3, will not be considered

further. Our analysis concentrates on studying the systematic properties of the

trypanothione pathway with structural topologies ST1 and ST2 owing to their

biological relevance of the experimental observations.
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3.4.2 Network Robustness

Elementary mode analysis is an established tool for studying system proper-

ties of metabolic pathways. According to Stelling et al. (Stelling et al. 2002),

system properties can be summarized as network diversity, robustness and re-

dundancy. The above concepts are similar properties in the sense that they are

all determined by the quantity of elementary modes when individual reactions

are knocked out.

In the work by Stelling et al. (Stelling et al. 2002), the network robustness of

microbial metabolism has been studied computationally using elementary mode

analysis. The relative occurrence of an enzymatic reaction serves as a qualitative

assessment of the importance or even essentiality of the reaction. The rule is

that a reaction with significant contributions can be predicated by counting the

number of elementary modes retained when the reaction is knocked out. Stelling

et al. concluded that the less elementary modes obtained, the more critical the

reaction is and therefore the less robustness of the network in response to the

changes.

In our study, we based the analysis of network robustness on a single knockout

approach proposed by Wilhelm et al. (Wilhelm et al. 2004). They argued that

network robustness is not identical with redundancy. This is particularly true

when there are parallel routes to the same reaction product.

The basic idea of the approach (Wilhelm et al. 2004) is to use the ratio

Zi/Z to characterize the network robustness in response to the knockout of

one enzyme Ei, where Z and Zi stand for the number of elementary modes

in the unperturbed network and the number remaining after knockout of the

enzyme. In the extreme cases, when no elementary modes are left, the ratio is

0, indicating no robustness and when all elementary modes are left, the ratio is

1, indicating complete robustness of the network to the enzyme knockout. The

value of this ratio is varied between 0 and 1 when only some elementary modes

remained. Calculating the arithmetic mean of all these numbers that reflect

the network robustness in response to individual enzyme knockout quantifies

the overall robustness of the entire network, expressed as R=sum(Zi)/(r × Z),

where r denotes the total number of reactions in the network. The value of the

overall robustness again varies between 0 and 1.

The structural topologies ST1 and ST2 have overall network robustness

Rsg1=0.6894 and Rsg2=0.6742, respectively. The values imply that both topolo-

gies have around two-thirds of the pathways conserved during single-gene dele-
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tion. Different robustness values are stemmed from the elementary modes EM1

and EM6. Knockout of the reaction enzyme carrying flux υ12 causes the two el-

ementary modes to disappear in ST2, but both are still operative in ST1. This

illustrates the point that network topologies with the same number of elementary

modes can give different measures of system robustness.

It is of interest to extend the analysis of system robustness of the trypanoth-

ione pathway to multiple knockouts. The approach of handling double-enzyme

knockouts has been presented in work by Behre et al. (Behre et al. 2008).

This approach first calculates the number of elementary modes remaining af-

ter the knockout of each pair of any two genes. The sum of the numbers is

divided by the product of the number of pairs and the number of modes from

the unperturbed pathway. The structural topologies ST1 and ST2 have overall

robustness Rdg1=0.5303 and Rdg2= 0.5209 to double-gene deletion. This means

that after knockout of two enzymes, half of the pathways in both topologies are

still present.

It should be noted that the network robustness measured with the approaches

by Wilhelm et al. and Behre et al. neglects new metabolic functions that could

be created due to the changes in the structural topology, and only the capabilities

to preserve existing metabolic functions are accounted for.

The measure of robustness can be used to evaluate the appropriateness of

alternative network topologies. Morohashi et al. (Morohashi et al. 2002) stated

that the robustness value of a network is, to some extent, an indicator of its plau-

sibility, in that when cellular processes are preserved in cell mutants, they are

likely to be robust against variability. In our study, both gene-knockout exper-

iments indicate that the trypanothione pathway with structural topology ST1

has only a marginally stronger robustness than that with structural topology

ST2. As such, these results are inadequate to select between the two topologies.

In spite of minor numerical difference in network robustness, biologically, the

structural topology ST1 is preferred and supported by current experimental evi-

dence. Krauth-Siegel et al. (Krauth-Siegel et al. 2005) state that trypanothione,

in addition to converting into TS2, is involved in the synthesis of DNA precursors

and in the detoxification of metals and drugs. However, regarding ST2, TS2

consumed in other cellular functions could not be interpreted biologically. The

disulfide group of the metabolite TS2, which exists only in low concentrations, is

known to be quickly reduced to trypanothione (Krauth-Siegel et al. 1987). This

leads to the amount of TS2 available for other metabolic functions being very
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limited. The assumption that TS2 may participate in cellular functions other

than trypanothione regeneration is therefore not biologically reasonable.

In view of the preceding, the structural topology ST1 will be discussed with

further analysis. The mass-balance model and the stoichiometric matrix of the

trypanothione metabolic pathway expressed by structural topology ST1 is given

in Equation (B.1) and matrix (B.2) in Appendix B.2.

Drug-target Identification

As stated in Chapter 1, one objective of studying the trypanothione metabolic

pathway is to seek optimal anti-parasitic strategies that are efficient in terms

of the depletion of intracellular trypanothione metabolite. The reaction steps

involved in the pathway of trypanothione biosynthesis automatically become the

major concerns of chemotherapeutic research.

An elementary mode can be viewed as a biological function of metabolic path-

ways. EM1 and EM6, identified from the topology ST1, represent a biosynthetic

route that transforms some substrates into certain product(s). The elementary

modes display two net reactions as follows, which differ in the exogenous metabo-

lites employed, namely methionine (Metext) and cysteine (Cysext),

Metext + Argext + Gluext + Glyext −→ tshout (3.15)

Cysext + Argext + Gluext + Glyext −→ tshout (3.16)

The presence of exogenous metabolites in both elementary modes, including

exogenous arginine (Argext), glutamate (Gluext) and glycine (Glyext), demon-

strates their essential role in trypanothione biosynthesis. The elementary mode

analysis reveals the enzymes and the corresponding reactions that could be used

as optimal chemotherapeutic targets.

Computationally, once the mass-balance model is defined, metabolic flux

optimization can be employed to determine optimal flux distributions by maxi-

mizing or minimizing fluxes through particular cellular reactions with respect to

some objective functions. Common choices to study the optimal internal fluxes

against certain physiochemical constraints that describe the potential behaviour

of an organism include biomass production, energy balance and flux limitations

(Kauffman et al. 2003).
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3.5 Metabolic Flux Analysis

Metabolic flux analysis (MFA) is the calculation and analysis of the flux distri-

bution of the entire biochemical reaction network (Stephanopoulos et al. 1998).

The theory of MFA relies solely on the known stoichiometry for all major in-

tracellular reactions of a biochemical network. Given a metabolic pathway and

sufficient flux measurements, MFA allows the reaction rates in the pathway to

be determined. It is however assumed that the system in question is in or near

a steady state, i.e. concentrations remain relatively constant over the course of

the experiment (Wiechert 2001).

Calculation of steady-state flux distributions for metabolic pathways is not

an easy task, not only because input fluxes are only partly known; but also

because the structural topology may make MFA difficult to solve, due to the

presence of bidirectional reaction steps or metabolic cycles contained in the

pathway (Wiechert 2001). Based on the elementary mode analysis reported in

Table 3.4, the trypanothione metabolic pathway under analysis is no exception,

as illustrated by EM4: trypanothione regeneration. One immediate consequence

of this situation is that it gives rise to multiple steady-state solutions satisfying

the stoichiometric constraints of the metabolic pathway.

In this section, we apply the rationale of metabolic balancing to estimate

steady-state flux distributions of the trypanothione metabolic pathway, and to

gain insights into the critical properties of the pathway.

3.5.1 Steady-state Flux Estimation

Optimization of flux distributions is built on the assumption that organisms will

reach a steady state that satisfies physiological constraints under given envi-

ronmental conditions. As knowledge about the organisms is often only partly

known, multiple steady states (and thus multiple sets of flux distribution) are

possible. Optimization is usually required to identify a particular flux distri-

bution that satisfies specific metabolic constraints, given biologically reasonable

bounds on minimum and maximum values of unknown fluxes. This approach

has been employed to study and predict optimal flux patterns and mutant phe-

notypes (Edwards and Palsson 2000b, Edwards and Palsson 2000a) through

maximizing the growth rate.

For the steady-state simulation, rate constants of the external fluxes that

are the inputs of the pathway have to be defined explicitly, from which the
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corresponding internal fluxes can be calculated. In our study, absolute values

of the external fluxes are only partially known, with 17 unknown flux variables

constrained by 14 balance equations. This makes the computation of the steady-

state solution(s) a difficult task. In this case linear programming can be used

to determine intracellular flux distributions, provided that a suitable objective

function can be specified (Stephanopoulos et al. 1998, Lee et al. 1999).

Uptake rates of substrates and secretion rates of metabolites are important

inputs for the calculation of metabolic fluxes. In our analysis, the only ex-

perimental data used for the flux calculations are the external fluxes of exoge-

nous arginine, methionine, cysteine and glucose, denoted by barg, bmet and bcys

and bglc, respectively. The fluxes of glutamate (bglu) and glycine (bgly) are not

known. Endogenous cysteine, the major byproduct of trans-methylation re-

actions, was found to be rapidly excreted into environment by trypanosomes

(Bacchi et al. 1995), which is symbolized as beff . The cysteine uptake and ex-

cretion are described as two individual reactions in steady-state flux calculations

due to the different metabolic functions they participate in.

The external fluxes bmet and bcys and bglc in T. brucei are reported as 28

nmol min−1 (108 cells)−1 (Hasne and Barrett 2000), 3 nmol min−1 (107 cells)−1

(Duszenko et al. 1985) and 0.109 μmol min−1 (mg cell protein)−1 (Haanstra

et al. 2008). Exogenous arginine transport in T. brucei was measured to be

0.05195 pmol min−1 (106 cells)−1 for the transporter with higher affinity (un-

published data from Mike Barrett).

By way of comparison, arginine transport was also measured in L. dono-

vani, which is a closely related parasitic organism. Values reported include 1.66

pmol min−1 (106 cells)−1 (Kandpal et al. 1995), and a recent measurement at

3.1 pmol min (106 cells)−1 (Darlyuk et al. 2009). It is noteworthy that arginine

transport observed in L. donovani is at least 30 fold of the number measured in

T. brucei.

Arginine assimilation flux is calculated based on a volume of 35 μL per 109

cells of L. major promastigotes (Turnock and Ferguson 2007), which is used as

an approximation to the cell volume of L. donovani. Variation in cell volume of

different parasitic organisms is not reckoned to be a factor giving rise to model

uncertainty in the interpretation and prediction of biological phenomenon; the

difference appears to be negligible for parasitic protozoa (Turnock and Ferguson

2007, Quesne and Fairlamb 1996).

All intracellular fluxes are defined with units of μmol per min per mg of
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cell protein. The measured external fluxes expressed per number of cells can be

transformed into the standard units of per mg of cell protein. Unfortunately,

no information is provided on how many transporters are contained in T. brucei

for assimilation of exogenous metabolites. It has been reported that one try-

panosome has a volume of 58 μm3 and the protein concentration of a T. brucei

cell amounts to 175 mg/ml (Opperdoes et al. 1984). Accordingly, 108 cells gives

a cell volume of 5.8 μL.

We assume that the transport enzymes present in the cell membrane account

for 10% of the cell volume, thus resulting in the designated protein concentra-

tion as 17.5 mg/ml. The external fluxes of exogenous arginine, methionine and

cysteine transport in T. brucei are thus approximated as 5.118e-5, 0.276 and

0.3 μmol per minute per mg cell protein, respectively. These data have been

considered during metabolic flux estimation of the trypanothione model.

As stated before, it is impossible to determine a unique solution for under-

determined systems without introducing additional constraints. One possibility

is to specify an objective function expressed as a linear function of intracellular

fluxes. To this end, we introduce the biomass yield, which enables the capa-

bilities of the cell to support optimum growth1 under various conditions. The

mathematical representation of the objective function is formulated as a linear

maximization problem as follows:

maximize Biomass =
∑
all i

ci · υi (3.17)

subject to
dX

dt
= S · υ · (X) = 0 (3.18)

where υi represents the reaction flux converting a precursor to a biomass com-

ponent and ci denotes the ratio of the growth precursor required per gram of

biomass. When there is more than one precursor needed, the biomass compo-

nent is expressed as a weighted sum of the reactions that synthesize the growth

precursors.

We want to choose objective functions with biological relevance that can be

readily related to experimental observations when they are available. In the

model, we choose the biomass yield as an optimization function to represent

cell growth, which takes trypanothione as a precusor. The growth flux (υgr)

is modelled as a single hypothetical reaction that converts trypanothione into

1Note that growth is defined in the context of the pathway under consideration.
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biomass. As trypanothione is assumed to be the only metabolite precursor for

biomass yield, the weight term is set to 1.

In terms of the structural topology, the additional branch labelled as ST1 in

Figure 3.3 can be replaced with this hypothetical reaction without influencing

the results of the analysis on network gaps discussed in Section 3.4. The mass-

balance model specific to the task of flux-distribution estimation is detailed

in Equation (B.1) in Appendix B.2, which identifies the six elementary modes

shown in Figure 3.4.

Once properly formulated, the optimization problem is easily solved using

standard algorithms. We employed the LP solver linprog from the Matlab Op-

timization Toolbox to estimate the unknown fluxes at steady state. Computa-

tionally, as by default linprog solves the minimization problem, maximizing the

growth rate defined as an outgoing flux from trypanothione is then transformed

to minimizing the element of the corresponding column of the stoichiometric

matrix where the outgoing flux is specified.

To compute physiologically feasible fluxes, we set the lower bounds of un-

known fluxes by assuming a directionality for each flux, thus allowing only non-

negative fluxes. The upper bound of growth rate was set to unity, which then

effectively gives the relative ratios of the reaction fluxes.

The solution of the LP problem, using the objective function of maximum

biomass yield, determines flux distributions specifying the fluxes of all internal

reactions and unknown exchanges, as shown in Figure 3.5.

The figure indicates two major peaks at reactions 10, 11 and 18, and in-

tense peaks at reactions 3 and 5. The peaks at reactions 3, 5, 10 correspond

to the production of AdoMet, Cysteine and trypanothione, which are explained

by their high requirement, since they are involved not only in the trypanoth-

ione biosynthetic sub-pathway but also in the trans-sulphuration sub-pathway.

Reactions 16 and 17 represent the measured transport of exogenous methionine

and cysteine across the cell membrane. The largest flux is seen for the excretion

of endogenous cysteine, which is the only output of the trypanothione model

under consideration.

The products of reactions 1, 2, 4, 6–9, 19 and 20 are ornithine, putrescine,

dAdoMet, spermidine, methionine, gGluCys and glutathione. It should be noted

that, in the unperturbed state, the amounts of the metabolites yielded are very

small, compared with the numbers computed for other reactions.

There are eight enzyme subsets (ES) identified from the stoichiometric matrix
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(a) EM1 (b) EM2

(c) EM3 (d) EM4

(e) EM5 (f) EM6

Figure 3.4: Six elementary modes of the ‘gap-free’ trypanothione pathway. In
the pathway for LP optimization, reaction υtshout is replaced with growth rate υgr

that relates to the biomass component. EM1 & EM6–trypanothione biosynthetic
sub-pathway; EM2–trans-sulphuration sub-pathway; EM3–trypanothione redox
cycle; EM4–trypanothione regeneration; EM5–cysteine transport.
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Figure 3.5: In unperturbed state, absolute values of individual reactions are
estimated using linear optimization by stating an objective of maximum biomass
yield for the model of trypanothione metabolism. Reaction 1–21 stand for the
internal and exchange fluxes of the model as shown in Table 3.1. Reaction 22
indicates the trypanosomal growth rate.

(B.2) in Appendix B.2. Three non-trivial subsets are reported in Table 3.5.

Index Reaction Number
ES1 1, 2, 4, 6, 7, 8, 9, 15, 19, 20, 22
ES2 5, 16
ES3 12, 13, 14, 21

Table 3.5: Enzyme subsets of the trypanothione pathway depicted in ST1.

As defined in Section 3.3.4, enzyme subsets are groups of enzymes that have

constant flux ratios whenever the system is in steady state. This implies that

when one reaction flux is known, the remaining fluxes contained in the same

set can be deduced automatically. ES1 in Table 3.5 shows that the measured

transport of exogenous arginine (5.118e-5 nmol min−1 (mg cell protein)−1) de-

termines the small values estimated for the fluxes going through reactions 1, 2,

4, 6–9, 19 and 20, resulting in a low rate of cell growth.

In the next section, we investigate the impact of external fluxes on the esti-

mation of the steady-state flux distribution, which provides further insights into

the regulation pattern of the trypanothione metabolism.
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3.5.2 Sensitivity Analysis

In this section, we performed sensitivity analysis of the steady-state flux distri-

butions induced by variations in individual measured fluxes. This case applies

to the situation where a system component has not been experimentally mea-

sured or a large uncertainty exists for its value. All the internal flux variables

are examined with respect to a 50% increase of the known transport fluxes for

exogenous arginine, methionine, cysteine and glucose, respectively. When one

external flux is under perturbation for the sensitivity analysis, the other fluxes

are maintained at their measured values. Further work can be carried out to

study variations in the flux estimates caused by simultaneous changes in the

known input fluxes.

Steady-state flux estimation of the trypanothoine pathway by LP optimiza-

tion is displayed in Figure 3.6, when external fluxes of exogenous arginine and

methionine are perturbed by 50% of the measured values. It should be noted

that because of the small values reported for arginine transport, the impact of

variations is difficult to observe by inspecting the absolute values of the fluxes.

The inset in Figure 3.6(a) shows the ratio of the perturbed and unperturbed

fluxes, which gives a better view of the changes in the flux distribution. It shows

that fluxes through reactions 1, 2, 4, 6–9, 19 and 20 are increased by up to

50% of the values predicted for the unperturbed state. This agrees with ES1

in Table 3.5, which shows that, in all steady-state conditions, reaction fluxes

contained in the same subset always present with the same fixed flux propor-

tions and the enzymes catalyzing the reactions are likely to be regulated with a

similar pattern.

Both Figure 3.6(b) and the inset indicate that variations in methionine trans-

port only have an influence on the trans-sulphuration sub-pathway, as illustrated

by EM2 in Figure 3.4(b). Figure 3.7 shows that variations in the transport of

exogenous cysteine and glucose affect the internal fluxes going through reaction

18 and reactions 12–14, respectively. As expected, glucose transport influences

the enzymatic reactions contained in ES3 in Table 3.5, which constitutes the

trypanothione redox cycle as shown in Figure 3.4(c).

It should be noted that only the perturbation of arginine transport was ob-

served to affect the growth rate of the trypanothione pathway, increasing growth

by up to 50% of the estimated value from the unperturbed state. The growth

rate remains at the value estimated for the unperturbed state when the pertur-

bation analysis is applied to other measured transport fluxes.



CHAPTER 3. STRUCTURAL MODELLING 81

It is surprising that an increase in cysteine transport does not affect the

downstream reactions but is recycled back into the medium. This differs from

the experimental observations given by Duszenko et al. (Duszenko et al. 1985),

however due to the lack of more recent data no solid conclusions can be drawn.

A possible explanation for our observation is that cysteine excretion is indirectly

regulated by AdoMet concentration, which is not considered in the sensitivity

analysis of cysteine uptake. As a result of this, further constraints would be

necessary in order to correctly model this relationship.

3.5.3 Elementary Flux Decomposition

In designing biological experiments, it is useful to know which system compo-

nents have the greatest effect on the processes of interest. To this end, elemen-

tary mode utilization serves as a metric that can indicate important metabolic

processes. It can also indicate the effect the changes in metabolic processes can

have on the system (Schwartz and Kanehisa 2006).

By definition, any flux pattern can be described as a superposition of elemen-

tary modes with non-negative coefficients. However, this distribution is generally

not unique. As previously proposed by Schwartz and Kanehisa (Schwartz and

Kanehisa 2005), an optimization-based approach is required to study the opti-

mal fluxes decomposed into a set of elementary modes. In this section, we apply

this approach to the structural topology ST1 of the trypanothione pathway.

Based on the description by Schwartz and Kanehisa (Schwartz and Kanehisa

2005), we perform flux decomposition and investigate how the elementary modes

contribute to the construction of physiological steady states. For a steady-state

flux vector Υ and a set of elementary modes, e1, e2, . . . em, the method returns

a set of non-negative values α1, α2, . . . αm that minimizes the cost function Cf

in the format

Cf =
m∑

i=1

α2
i (3.19)

subject to Υ =
m∑

i=1

αi · ei (3.20)

where 0 ≤ αi ≤ 1 for i = 1, . . . , m (3.21)

In our experiment, Υ is the flux distribution solved from LP optimization

in the unperturbed state, which is detailed in Table 3.6. Decomposition of the
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Figure 3.6: Sensitivity analysis of the unknown internal and exchange fluxes with
respect to perturbations in (a) arginine transport and (b) methionine transport.
Insets in both figures show relative changes in the estimated fluxes from both
sensitivity analyses. The steady-state flux distributions in the perturbed states
were estimated using linear optimization, with the maximum biomass yield as
an objective and seeking the optimal value within the stoichiometrically defined
domain. In both figures, blue bars and red bars represent absolute flux estimates
under the unperturbed and corresponding perturbed conditions, respectively.
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Figure 3.7: Sensitivity analysis of the unknown internal and exchange fluxes
with respect to perturbation in (c) cysteine transport and (d) glucose transport.
Insets in both figures show relative changes in the estimated fluxes from both
sensitivity analyses. The steady-state flux distributions in the perturbed states
were estimated using linear optimization, with the maximum biomass yield as
an objective and seeking the optimal value within the stoichiometrically defined
domain. In both figures, blue bars and red bars represent absolute flux estimates
under the unperturbed and corresponding perturbed conditions, respectively.
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flux distribution assigned the highest flux to EM4 (elementary mode flux value

of 0.5). The smallest values were assigned to EM1 (elementary mode flux value

of 1e-5) and EM6 (elementary mode flux value of 5e-5), which represent the

biosynthesis of trypanothione and therefore the trypanosomal growth.

Steady-state Fluxes

υ1=5.118e-5 υ2=5.118e-5 υ3=0.276 υ4 =5.118e-5 υ5=0.276
υ6=5.118e-5 υ7=5.118e-5 υ8=1.024e-4 υ9=1.024e-4 υ10=0.5
υ11=0.5 υ12=0.109 υ13=0.109 υ14=0.109 barg=5.118e-5
bmet=0.276 bcys=0.3 beff=0.576 bglu=1.024e-4 bgly=1.024e-4
bglc= 0.109 υgr=5.118e-5

Table 3.6: Steady-state flux distribution predicted by LP optimization.

We observed that the elementary mode flux values calculated with the above

approach are considerably dependent on the ‘measured’ flux distribution to de-

compose. Decomposition of the flux distribution estimated in the perturbed

condition of arginine transport gave a totally different set of elementary mode

flux values for each mode, with the value assigned for EM6 almost 50% higher

than that for EM1. As a consequence of this limitation, we employed a more

valid method of control-flux analysis to characterize the biological significance

of each reaction in supporting trypanosomal growth. Details are given at the

end of Section 3.5.4

3.5.4 In silico Gene Deletions

One potential application of structural modelling is to analyze and predict cell

growth in mutants with single gene deletions.

In silico gene deletions were carried out on the trypanothione mass-balance

model using the maximum biomass yield as the objective function (see Ap-

pendix B.3). The transport data of exogenous metabolites arginine, methionine,

cysteine and glucose, reported in Section 3.5.1, have been considered during the

gene deletion study. Each of the 21 genes was systematically deleted from the

mass-balance model, one at a time, and the resulting changes in the metabolic

capabilities supporting biomass synthesis, and in consequence, optimum growth,

were examined for each in silico mutant network.

Gene deletions in the context of computational optimization are in fact sim-

ilar to studies of enzyme knockouts in the corresponding biological experiments.
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To simulate a gene deletion, the flux through the enzymatic reaction was re-

stricted to zero. The ratio Zmutant/Z characterizes the systemic effect of a gene

deletion on optimum growth and was calculated for deletions of each individual

gene. In this measure, Zmutant and Z represent the objective function value in

the perturbed and ‘wild-type’ conditions of the pathway.

Gene essentiality is determined according to the rule that if the deletion of

a gene does not significantly alter the maximum biomass yield, then it is classi-

fied as non-essential. The results for mutants of the trypanothione pathway are

shown in Figure 3.8. The results were generated in a simulated environment with

arginine, methionine, cysteine and glucose as the input sources, with the trans-

port fluxes fixed at the measured values. The essential gene products identified

were located on the trypanothione biosynthetic pathway with the transport of

exogenous arginine, glutamate and glycine as the inputs of the pathway. The

remaining genes in the pathway could be removed and trypanosome in silico

still maintained the potential to support optimum growth. The in silico gene

deletion results suggest that a number of the gene products (9 out of 21 genes)

can be removed without eliminating the metabolic capability of trypanosomes

to support optimum growth under the conditions considered.

Consistency with Experimental Evidence

The study of single gene deletions was evaluated in terms of the consistency

between in silico predictions and experimental evidences of known mutants.

ODC and AdoMetDC mutants (Willert and Phillips 2008, Roberts et al. 2002),

SpdS (Taylor et al. 2008), ARG (Roberts et al. 2004), MetRcy (Riscoe et al.

1989), gGCS (Huynh et al. 2003) and TryS (Comini et al. 2004) have been

verified to be essential genes and TPx (Schmidt and Krauth-Siegel 2003) a non-

essential gene for optimum cell growth. There is no biological evidence given

for the enzymes responsible for glutamate and glycine transport; in silico gene

deletion results regarding their physiological significance still have to be validated

by experimental data.

Even though the above analysis using the maximum biomass yield as an

objective function returned consistent predictions, there were still genes that

were mistakenly classified non-essential for optimum cell growth, for instance,

gene product TR.

Trypanothione plays a critical role in the defense against damage by oxi-

dants (e.g. hydrogen peroxide H2O2). Evidently, TR is an essential enzyme to
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Figure 3.8: LP optimization for maximum biomass yield (optimum growth);
maximum yields for biomass component for all possible single gene deletions in
the trypanothione metabolic pathway. The optimal value of the mutant objective
function (Zmutant) is compared with the ‘wild-type’ objective function (Z), where
Z is defined in Equation (3.17). The green bars that have a value of 1 for the
ratio Zmutant/Z represent gene deletions that maintain the maximum biomass
yield at the same level as the in silico wild type. The bars denoted with the
reaction names in red indicate gene deletions that reduced the maximum biomass
yield to zero.

support trypanosomal growth. Krieger et al. (Krieger et al. 2000) showed that

Trypanosomes that lack TR are vulnerable to oxidative stress and will slowly die.

Regeneration of TSH from TS2 is not the rate-limiting step in the metabolism

of H2O2 (Kelly et al. 1993), and the addition of putrescine did not restore cell

growth, which indicates that the cause was not a shortage of polyamines (and

consequently trypanothione) (Krauth-Siegel and Inhoff 2003).

Following an in-depth literature review, H2O2 production was postulated

as a second objective function to tackle the deficiency of the existing function

(maximum biomass yield) in coping with cell death that may be caused by H2O2

toxicity. Note that maximizing H2O2 production so as to kill the parasite was

not the purpose of the linear optimization, rather the objective was minimization

of the residual between the estimated rate and the measured rate, in order to

simulate a realistic growing environment. In other words, the gene-deletion

study at this stage aimed at analyzing the metabolic capability of trypanosomes

to support optimum growth when H2O2 is modelled as a variable metabolite
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and its production rate, rH2O2 , is fixed at the nominal value. A mathematical

representation of the linear optimization is written in the form

minimize Re = |rH2O2 − r̃H2O2| (3.22)

subject to
dX

dt
= S · υ · (X) = 0 (3.23)

where Re stands for the residual error between the calculated production rate

r̃H2O2 and the measured value rH2O2 . A rate of 0.7 μmol min−1 (mg cell protein)−1

(Henderson et al. 1987) was applied for H2O2 production in T. brucei. The mass-

balance model used for calculating minimum Re is detailed in Appendix B.4.

Equation (3.22) is a linear objective function that is referred to as a lin-

ear optimization problem, subject to the steady-state constraint expressed in

Equation (3.23). The flux through the H2O2 production reaction is expressed

in units of μmol min−1 (mg cell protein)−1. Information on gene essentiality

was obtained by minimizing the residual error Re in the objective function. If

the deletion of a gene results in a minimum residual error, then it is classified as

non-essential.

The results identified from in silico knockout mutants are shown in Fig-

ure 3.9. As expected, TPx, TR, PPPEnz and GlcPt were classified as essen-

tial gene products, which emphasized their biological significance in the defense

against oxidative stress. The in silico predictions agree with the experimental

observation that turnover rate of TS2 mediated by TR may be the most im-

portant factor in coping with oxidative stress (Krauth-Siegel and Inhoff 2003),

and enzymes (PPPEnz & GlcPt) involved in the Pentose Phosphate pathway

play an important role in protection against activated oxygen species (Duffieux

et al. 2000). Also, the enzymatic reaction of H2O2 metabolism by TSH un-

der the catalysis by TPx is a major route for H2O2 consumption (Penketh and

Klein 1986).

We conclude that the performance of gene-deletion studies depends criti-

cally on the definition of objective functions. In our study, biomass yield was

formulated as one factor that characterizes trypanosomal growth, however this

failed to reproduce some experimental observations. The other controlling fac-

tor, H2O2 detoxification, was then incorporated as a second objective function.

Optimization of this second objective function can be understood as minimiz-

ing the difference between the computed and experimentally reported values for

H2O2 production. With both objective functions, the in silico predictions on
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Figure 3.9: LP optimization for minimum residual error with respect to H2O2

production; residual error is between the calculated and measured H2O2 rate
for all possible single gene deletions in the trypanothione metabolic pathway.
The optimal value of the mutant objective function (Zmutant) is compared with
the ‘wild-type’ objective function (Z), where Z is defined in Equation (3.22).
The green bars that have a value of 1 for the ratio Zmutant/Z represent gene
deletions that had the minimum residual error, which returned a calculated
H2O2 production rate with the same value as the in silico wild type. The bars
denoted with the reaction names in red indicate gene deletions that resulted in
a calculated production rate of zero, giving rise to large residual errors.

gene essentiality by means of linear optimization provided good predictions of

mutant phenotypes.

In spite of good consistency with available biological evidence, the approach

failed on the identification of the enzyme responsible for cysteine assimilation.

The incorrect classification of gene product CysPt (exogenous cysteine uptake)

may be the result of multiple routes leading to cysteine production via either

de novo biosynthetic pathway or exogenous uptake. In the case of single-gene

knockouts, the inhibitory effect on one route will be compensated for by the

other. As pointed out by Stelling et al. (Stelling et al. 2002), when pathway

redundancy is present in the reaction network, qualitative predictions of gene

essentiality may be problematic.

We therefore employ the method of control-coefficient analysis to quantita-
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tively characterize the significance of individual reactions in supporting certain

metabolic functions. This method can overcome the problem caused by pathway

redundancy in the reaction network under study.

Control-effective Coefficients

Stelling et al. (Stelling et al. 2002) defined control-effective fluxes as represent-

ing “the importance of each reaction for efficient and flexible operation of the

entire network”. This method is dependent on the elementary modes and no

optimization is needed.

Six elementary modes were derived from the mass-balance model, as shown

in Figure 3.4. We investigate the efficiency of each elementary mode with respect

to the objective functions of both maximum biomass yield and minimum residual

error for H2O2 production. The results are presented in Figure 3.10, where the

control-effective fluxes calculated for all the reactions fall into the range 0 to 1

(these quantities are dimensionless as they are coefficients).

Figure 3.10: Control-effective fluxes of individual reactions of the trypanothione
pathway; the x-axis indicates the reaction numbers in the mass-balance model,
corresponding to reactions 1–21 listed in Table 3.1. Reactions 22 and 23 repre-
sent trypanothione consumption (υtshout) and H2O2 production (rH2O2), detailed
in Appendix B.2 and Appendix B.4. The green bars and yellow bars indicate
the significance of individual reactions in supporting the objective of maximum
biomass yield and minimum residual error concerning H2O2, respectively.

The in silico analysis indicates that reactions 11 and 18, trypanothione hy-

drolysis and cysteine excretion, are not essential for either objective. As ex-

pected, reactions located on trypanothione redox cycle and pentose phosphate
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pathway are vital steps for H2O2 detoxification with the maximum control-

effective flux values and the remaining reactions support maximum biomass

yield. Reactions 8, 9, 19 and 20, which constitute the glutathione biosynthetic

sub-pathway, were calculated to have the largest values, and are therefore the

most pertinent for consideration as drug targets.

Reactions 5 and 16 (on the trans-sulfuration pathway) were the least relevant

to optimum growth. It makes sense that depletion of the intracellular cysteine

caused by the removal of this path can be compensated for by the assimilation

of exogenous cysteine. It is noteworthy that with the method of control-effective

flux analysis, reaction 17, cysteine uptake, was determined to be essential to the

objective considered.

The method of control-effective flux analysis shows good consistency with the

results derived from the in silico study of gene knockouts. The method success-

fully identified that non-negligible cysteine uptake is necessary for trypanothione

biosynthesis, which corrected the prediction from gene deletions in the last sec-

tion. The results demonstrate that, in the presence of pathway redundancy,

the method of control-effective flux analysis is a more promising approach for

the understanding of biological essentiality of individual reactions in support of

certain metabolic functions.

3.6 Summary

While the structural modelling approach employed in this chapter is typically

used for large-scale genomic models, the trypanothione metabolic pathway con-

sidered here is still complete and able to provide useful insights, even though it

is relatively small in comparison. More importantly, as stated by Raman et al.

(Raman et al. 2005), when only a single pathway is considered objective func-

tions that are relevant to the problem in question can be more easily defined

and given biological context.

Despite kinetic modelling being a more powerful modelling approach, struc-

tural analysis provides a more straightforward approach to the problem. It is

computationally simpler but can still make accurate predictions that agree with

experimental results. For predicting essentiality from gene knockouts, there is

very little advantage in adopting the more complex kinetic modelling approach.

Parameter estimation is also a complex problem for dynamic modelling when

data is missing. However parameter estimation is not necessary for the structural
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modelling approach, resulting in a more soluble problem with this approach.

Finally, the structural model can provide a guide for kinetic model construc-

tion and is useful for verifying consistency between the two modelling approaches

in representing the pathway.

3.6.1 Related Work

The well-known application of mass-balance metabolic models is of the predic-

tion of mutant-growth phenotypes. Additionally, as stated by Breitling et al.

(Breitling et al. 2008), wrong predictions can also guide the iterative model im-

provement. As in many instances, a complete metabolic map is often hard to

reconstruct, where the lack of experimental information or missing active re-

actions cause some functionalities to be excluded from the network (Herrgard

et al. 2006, Kumar et al. 2007). The use of a model-driven evaluation of gene-

deletion phenotypes in systematically tuning the model and hence improving our

understanding of the biological system is demonstrated with the fully compart-

mentalized genome-scale metabolic model of Saccharomyces cerevisiae (Duarte

et al. 2004).

The construction of metabolic pathways is largely dependent on the avail-

ability of biological evidence. It is demonstrated by the work of Nogales et al.

(Nogales et al. 2008) where a genome-scale reconstruction of P. putida KT2440’s

metabolism was reliant on the integration of high-throughout genomic, biochem-

ical and physiological information.

Herrgard et al. (Herrgard et al. 2006) introduced a method for identifying

the modifications to be made for a genome-scale metabolic network in order

to minimize the discrepancy between the predicted and observed fluxes. The

selection of reactions to be added to or removed from the model is decided

by a two-level optimization procedure, where the outer optimization problem

searches through a set of reactions to include in or exlude from the model and

the inner optimization problem produces a flux distribution as a solution to a

flux estimation problem given a particular structure. One assumption imposed

on their approach is that only a small fraction of the reactions in the model can

be excluded from or included in the model, and for the purpose, some of the flux

databases were used to train the model.

Kumar et al. (Kumar et al. 2007) developed an optimization based pro-

cedure to identify network gaps, which is demonstrated on the genome-scale
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reconstruction of Escherichia coli and Saccharomyces cerevisiae. The authors

postulated three types of modifications (detailed later in the text) to apply for

model reconstructions. With the optimization procedure, the ‘gap-free’ model

can be iteratively adjusted by comparing in silico predictions of growth pheno-

types with in vivo experimental observations.

Reed et al. (Reed et al. 2006) used an optimization-based algorithm to iden-

tify the minimal number of metabolic reactions and transport reactions that

needed to be added to the reconstructed network so that the computed cellular

growth can agree with the experimental observations. A limitation to the com-

putational approach implemented by the authors is that only the reactions stored

in the database were examined as missing reactions for model reconstructions.

However, as a fundamental premise common to all the above related work,

detection of potential sources of model mis-predictions can only be enabled when

enough biological measurements, for example, in vivo growth rate, exchange flux

(substrate uptake and byproduct secretion rate) and intracellular flux data, is

available. In the work by Herrgard et al., the exchange fluxes have to be set

explicitly to their measured values in order for at least one of the intracellu-

lar fluxes to be bounded for the inner optimization problem. Computational

approaches proposed in the work by Kumar et al. and Reed et al. also took

biological databases as essential sources where information regarding missing

reactions can be obtained.

3.6.2 Conclusions and Discussion

Obtaining the metabolic information required to formulate the mass-balance

model is relatively straightforward in comparison to constructing dynamic mod-

els where kinetics of individual rate equations, which are non-linear functions

of parameters and metabolite concentrations, must be known. Structural mod-

elling eliminates this requirement by treating the metabolic reaction fluxes as

the unknown quantities that need to be determined. This approach expresses

each balance equation as linear function of reaction rates.

Mass-balance models are useful in order to obtain a pathway-based perspec-

tive of metabolic functionality and phenotypes (Schilling et al. 2000). Studies

relying on the stoichiometry of metabolic reaction systems have demonstrated

that the underlying network topology limits the possible overall behaviour. A

number of physiologically important results can be derived solely from the well-
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known structure without knowledge of kinetic mechanisms and parameters.

We applied structural modelling approach to the trypanothione pathway in

T. brucei, based on the concept of elementary modes, to understand trypanoth-

ione metabolism. Stelling et al. (Stelling et al. 2002) summarized that systems

biology analysis centered on the elementary modes can assist in explanation of

the relationship between network topology and metabolic functions, which can

also facilitate the fundamental design of living cells.

We designed a computational investigation based on elementary mode anal-

ysis to detect network gaps in the structural topology of the trypanothione

pathway. This refers to the situation where some metabolites or reactions are

biologically important but are not used in metabolism. In the work by Kumar

et al. (Kumar et al. 2007), network gaps in metabolic reconstructions can be

‘filled up’ by checking whether 1) reversing the directionality of existing reactions

in the model, 2) adding new reactions from a multi-species database or finally

3) allowing for the direct importation (uptake and excretion) of the problem

metabolite can restore flow into the metabolites.

The first two possibilities are not explored for the trypanothione pathway

for the following reasons: (for the first) in the mass-balance model only the

net intracellular fluxes are considered, which is independent of the reaction di-

rectionality and (for the latter) relevant biological information from T. brucei

available for the addition of new reactions to the pathway is minimum. The

third possibility is not applicable to the trypanothione metabolic pathway. In

addition to the uptake/excretion fluxes that have already been incorporated, T.

brucei is not capable of or obvious for the existing intracellular metabolites to

be transported across the cell membrane.

Elementary mode decomposition allows a list of the metabolic functions that

are supported by the elementary modes to be obtained, which gives an insight

into the functional diversity of the network (Heinrich and Schuster 1996). This

approach to studying the topological properties is useful in identifying essen-

tial routes in biochemical systems, for example, the purine metabolic pathway

(Oancea 2003). The concept of elementary modes has been demonstrated as

an established tool for studying system properties, namely to analyze network

robustness and to investigate the importance of each reaction for effective and

flexible operation of the entire network. System robustness was examined for the

identified structural topologies by computing the elementary modes after succes-

sively simulating the knockout of each reaction. The robustness values computed
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for the alternative network topologies (ST1 and ST2) were only marginally dif-

ferent and hence cannot be distinguished from each other. Nevertheless, the

network topology (ST1) has biological support and is favored in our study.

Metabolic flux analysis delivers a metabolic flux map showing calculations

of the steady state flux through each biochemical reaction in the network.

The under-determined trypanothione metabolic pathway was solved for optimal

steady state flux distributions with respect to an optimization criteria within the

stoichiometrically defined domain, following which, the system translates into a

LP problem (Varma and Palsson 1994). By means of this analysis method, the

understanding of metabolic fluxes in response to external and genetic perturba-

tions can be facilitated.

Metabolic fluxes in the trypanothione model determined via linear optimiza-

tion revealed that the overall activity of metabolism is dominated by some high-

flux reactions, while most other reactions have low fluxes. Particularly, arginine

uptake has a determining role on trypanosomal growth. Metabolic flux analysis

can also be employed to predict how perturbation of fluxes influence the extent

of allowable states in the trypanothione pathway. The consequences of changing

measured transport fluxes were also examined for all the unknown internal and

exchange fluxes as well as the trypanosomal growth through a sensitivity anal-

ysis. The results indicate that most flux variables respond to variations in the

measured transport fluxes in a local manner.

The capability of the trypanothione metabolic pathway to support cell growth

through an in silico study of gene deletions with respect to different objectives

was investigated. The consistency of two different objective functions with in

vivo single-gene deletion mutants was examined in a qualitative base by ob-

serving the resulting optimization. We have found that the gene-deletion study

of the trypanothione pathway can make predictions in a good agreement with

experimental mutant phenotypes when both objective functions were applied

(biomass yield and H2O2 residual). The importance of objective function defini-

tions in constrained optimization problems has been evaluated by Burgard and

Maranas (Burgard and Maranas 2003). In this chapter, the impact of objective

function definitions on the performance of in silico gene deletion studies was also

discussed.

In summary, a valid investigation relies on the network topology of inter-

actions being correct. The consistency of in silico predicted and in vivo ex-

perimental mutant phenotypes indicates that the mass-balance model of the
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trypanothione metabolic pathway is likely to be correct. Elucidation of the

topological properties and flux distributions in the pathway provides an impor-

tant and initial step toward the understanding of the regulation of trypanothione

metabolism.

However, the time-dependent properties and regulatory principles of the

pathway can only be examined with quantitative simulations when kinetic data

becomes available. Thus, a structure-based modelling strategy is useful in com-

bination with dynamic simulation of the non-linear differential equations of the

patjway. The first kinetic model of the trypanothione metabolic pathway in T.

brucei is given in Chapter 4, where the results of structural modelling guide the

process of model simplification. This kinetic model will be strategically evaluated

and refined with the proposed methodological framework in Chapter 7, where

the steady-state flux distributions predicted by structural and kinetic modelling

are compared.



Chapter 4

Kinetic Modelling of

Trypanothione Metabolism in

Bloodstream-form Trypanosoma

brucei

In this chapter we develop a mathematical model of trypanothione metabolism

in bloodstream-form Trypanosoma brucei.

4.1 Overview

The first basic kinetic model of trypanothione metabolism in T. brucei is de-

scribed. The model is formulated based on an extensive literature search on the

physical knowledge of the cell functions and available quantitative information

about the system components and their interactions. The model is formulated

with ODEs and applies Michaelis-Menten kinetics for the rate description of

enzyme-mediated reactions.

The mechanistic kinetic model of the trypanothione metabolic pathway pro-

vides an integrated representation of the underlying biological processes that

can aid the understanding of the trypanothione metabolism at the system level.

Since mathematical models are manipulable, basic principles of metabolic reg-

ulations of the trypanothione pathway can be evaluated in silico. Hopes are

that, by means of this model, successful therapeutic strategies for trypanosomal

infection could be developed.

96
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4.2 Computational Modelling of Trypanothione

Metabolism

Trypanothione is a unique and essential compound for trypanosomatid para-

sitic protozoans. Despite its pivotal role in the survival of Trypanosoma brucei,

the underlying physiological process is not comprehensively understood. This

obstacle mainly arises from the complex interconnections among the system com-

ponents and their reactions, which constitute a multitude of pathways integral

to the trypanothione metabolism.

The precise knowledge of all involved enzymatic rate equations and associ-

ated parameter values is a prerequisite in the construction of kinetic models.

Great efforts have been made to extract kinetic constants from bibliographic

sources for both metabolite and enzyme levels in T. brucei. Information con-

cerning the enzymes and metabolites is only partially known, and parameter

values from different sources are often conflicting due to different cell lines or

experimental conditions used in quantitative measurements. In particular, ki-

netic information is often determined for enzymes in isolated and purified forms,

which may preclude the regulatory factors controlling the enzyme activity from

consideration. However, there is little guidance available regarding how much

parameter variability from the literature influences model simulation results.

Missing model parameters can be inferred from biological observations. Ranges

for the unmeasured model parameters are derived empirically, guided by avail-

able biological information about the system. The intended use of the model is

to understand the physiological operation of trypanothione metabolism and to

elucidate the mechanisms of action of proven anti-parasitic agents. The kinetic

model will be strategically evaluated and refined with the proposed methodolog-

ical framework in Chapter 7.

4.3 Mathematical Model Description

van Reil (van Riel 2006) argued that many attempts of computational modelling

pursue realistic large-scale complex models, but very often simplified models are

feasible and at least as valuable in understanding the essential and qualitative

features of biological systems.

In order to make the computational modelling of the trypanothione metabolic

pathway more soluble, the following simplifications have been made:
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1. Intracellular glutamate and glycine are regarded as constant metabolites.

Biological knowledge about the assimilation of exogenous glutamate and

glycine in T. brucei is limited and no experimental data is available for

the kinetics of the corresponding enzyme transporters. On the contrary,

intracellular concentrations of glutamate and glycine have been measured

experimentally, reported at 3000 μM and 4000 μM, respectively (measured

by the group of Mike Barrett at University of Glasgow). Elimination of up-

take reactions of the exogenous metabolites reduces the available degrees

of freedom of the model in simulation and as the dynamics of endogenous

glutamate and glycine are unknown, treating the intracellular metabolite

concentrations as constant will provide us with a feasible initial model with

manageable complexity. In future use of the model, the impact of exoge-

nous glutamate and glycine on trypanothione biosynthesis can be assessed

by examining the influence of variations in intracellular concentrations of

the metabolites.

2. Consideration of the trans-sulphuration sub-pathway was limited to the

first step only. The pathway enzymes in sequence (Figure 3.1 in Chapter 3)

including Methyltransferase, AdoHcy Hydrolyase, Cystathionine Syntase

and Cystathionase are at best partly known. Analysis in Chapter 3 in-

dicated that the trans-sulphuration sub-pathway was not critical to try-

panothione biosynthesis and oxidative stress defense. In accordance with

the principle that the intended use of the model should drive the mod-

elling process, consideration of the trans-sulphuration sub-pathway was

limited to the first step, which is concerned with converting AdoMet into

AdoHcy under the catalysis of Methyltransferase. AdoHcy is defined as

a constant metabolite since under normal conditions AdoHcy has to be

removed rapidly due to its toxicity when accumulated (Bacchi et al. 1995)

and in the presence of DFMO, no significant changes in the intracellular

level of AdoHcy were observed after 36 hours of drug inhibition (Yarlett

and Bacchi 1988).

3. Cysteine excretion was eliminated. Analysis in Chapter 3 indicated that

exogenous cysteine was involved into two elementary modes fulfilling dis-

tinct metabolic functions and after the previous step of this simplification

process, exogenous cysteine was found to participate into the mode of cys-

teine transport only. Under normal conditions, an increase in the branch
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of endogenous cysteine excretion will always be cancelled by the opposite

effect exerted by the other branch. Therefore, the mode of cysteine trans-

port was not incorporated into the modelling process, and by consequence,

the reaction branches involved in this elementary mode were removed from

the model. Future work on the model could evaluate the biological role of

cysteine excretion by varying the cysteine uptake activity and observing

the effect on trypanothoine synthesis.

4. Trypanothione participation in other cellular functions was eliminated. In

Chapter 3, trypanothione involved in the synthesis of DNA precursors and

detoxification of metals and drugs was predicted to be necessary. Even

though this prediction could be interpreted with the current biological ev-

idence, it is however achieved with specific constraints made on missing

reactions. No quantitative experimental data is available for the enzyme(s)

catalyzing this reaction and its biological function in the regulation of try-

panothione metabolism is unclear. Only verified enzymes and metabolites

pertinent to the trypanothione metabolism are taken into account. This

reaction is therefore eliminated from the network topology of the kinetic

model.

As a consequence of the simplification process, the schematic representation

of the trypanothione metabolic pathway given in Figure 3.1 (in Chapter 3) is

reduced to the diagram depicted in Figure 4.1 for the kinetic modelling. It

should be noted that due to the discussions in Section 3.5.4 in Chapter 4, H2O2

is modelled as a variable metabolite. This diagram presents us a complex sys-

tem with metabolites participating in multiple reactions; this is complicated by

the features associated with the system including homeostasis, feedback loops,

recycling path, and enzyme bifunctionality.

We focus on continuous, deterministic descriptions of the dynamics by apply-

ing non-linear ordinary differential equations (ODE). The rate of enzyme medi-

ated reactions for many enzymes are described with Michaelis-Menten kinetics.

When the enzyme kinetic model involves regulators, the standard Michaelis-

Menten kinetics is modified in accordance with the following rules.

Types of Regulation

An increase in the concentration of inhibitors will cause a decrease in the rate

of production of product, which is in contrast to activators where an increase



CHAPTER 4. INITIAL KINETIC MODEL 100

F
ig

u
re

4.
1:

G
ra

p
h
ic

al
re

p
re

se
n
ta

ti
on

of
tr

y
p
an

ot
h
io

n
e

m
et

ab
ol

is
m

fo
r

k
in

et
ic

m
o
d
el

li
n
g.



CHAPTER 4. INITIAL KINETIC MODEL 101

in the concentration will give rise to a concomitant increase in the enzyme ac-

tivity. There are three types of inhibitors, called competitive, noncompetitive

and uncompetitive. These inhibitors represent a similar pattern in regulating

enzyme kinetics of chemical reactions. For a simple reaction S + E −→ P ,

the Michaelis-Menten kinetic scheme can be formulated correspondingly. As un-

competitive inhibitors are not common and are difficult to design (Eisenthal and

Cornish-Bowden 1998), the trypanothione metabolic pathway is limited to the

following modes of regulation.

• Competitive Inhibition

Rate =
kcat · E · S

Km

1 +
S

Km

+
I

Ki

• Noncompetitive Inhibition

Rate =
kcat · E(

1 +
I

KI

)γi
· S

Km + S

• Substrate Inhibition

Rate =
kcat · E

1 +
Km

S
+

S

Ksi

• Product Activation

Rate =
kcat · E(

1 +
Ka

A

)γa
· S

Km + S

In the above schemes, kcat represents the turnover number, expressed as

number of substrate molecules turned into product per enzyme site per time

unit. E and Km are the total enzyme concentration and the half-saturation

constant. Ki and Ka stand for the inhibitory and stimulating effect chemical

compounds I and A exert on the enzyme activity, respectively. A regulatory

term can be regarded as the concentration of chemical compounds divided by

activation or inhibition constant. Apart from the scheme of substrate inhibition,
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when the regulatory terms are set to zero, the above rate equations give identical

kinetics to the standard Michaelis Menten. The parameters γi and γa represent

the strength of inhibition and activation, respectively.

Structural analysis in Chapter 3 implies that the trypanothione metabolism

in T. brucei is composed of two fundamental building blocks, including trypan-

othione biosynthesis and trypanothione redox system. These two building blocks

appear to be spatially isolated in the network topology. This shows an agreement

with observations in the study by Ravasz et al. (Ravasz et al. 2002) that cellular

metabolism is best represented with a hierarchical and modular network. The

hierarchical layout of the trypanothione pathway in T. brucei provides a natural

breakdown of metabolism into relevant sub-networks. Further discussion on the

subject is given in Section 7.8 in Chapter 7.

In the rest of this chapter, we summarize the model description for individual

sub-networks responsible for the trypanothione biosynthesis and the trypanoth-

ione redox system. Trypanothione biosynthesis is achieved through integration

of two elementary sub-pathways carrying out specific cellular functions, namely

the polyamine biosynthetic sub-pathway and the glutathione biosynthetic sub-

pathway. The trypanothione redox system is comprised of two metabolic pro-

cesses, including the trypanothione oxidation and regeneration and the formation

of NADPH and pentoses.

4.3.1 Polyamine Biosynthesis

Polyamines are ubiquitous cellular components essential for cell growth and di-

vision. In mammalian cells, the most common polyamines are putrescine, sper-

midine and spermine. ODC catalyses the initial step in the pathway leading to

putrescine production from ornithine. In the presence of the aminopropyl donor

decarboxylated AdoMet (dAdoMet), spermidine and spermine are synthesized

from putrescine under the catalysis of spermidine synthase and spermine syn-

thase respectively. AdoMetDC catalyses the conversion of S-adenosylmethionine

(AdoMet) to the methyl donor dAdoMet.

ODC and AdoMetDC are rate-limiting enzymes that can be rapidly induced

by various growth stimuli. A comprehensive review on T. brucei ODC and

AdoMetDC can be found in (Persson 2007).

One primary use of polyamines in bloodstream-form trypanosomes lies in

the formation of the conjugate GspdSH, which is an essential substrate for
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trypanothione biosynthesis. It has been shown that trypanosomes depend on

spermidine for growth and survival, which ceases when spermidine level drops

below a certain level (Heby et al. 2007). There is therefore considerable thera-

peutic potential in compounds that disrupt polyamine biosynthesis (Wallace and

Fraser 2004, Marton and Pegg 1995, Bacchi and Yarlett 2002, Kaiser et al. 2003).

The antiparasitic drug, DFMO, for example, functions in a way that irreversibly

interacts with ODC to reduce polyamine levels.

There is a dependence between levels of polyamines and viability and growth

of parasites. In the parasitic organism L. donovani, polyamine supplementa-

tion can rescue intracellular pools of Δadometdc (Roberts et al. 2002), Δodc

(Jiang et al. 1999) and Δspdsyn (Roberts et al. 2001)1. Unexpectedly, over-

expression of the enzymes did not proportionally increase polyamine content

(Roberts et al. 2007). It was found that lack of spermine (Kaur et al. 1986)

and/or an increase in spermine pool (Ariyanayagam and Fairlamb 2001, Fair-

lamb et al. 1987, Bellofatto et al. 1987) did not affect trypanosomal growth

rate. We therefore excluded spermine production from the model owing to its

negligible role in the regulation of trypanothione metabolism.

Polyamine metabolism in mammalian cells has been studied using mathe-

matical modelling (Rodriguez-Caso et al. 2006). The major differences between

polyamine metabolism in mammals and trypanosomes lie in the specificity of

metabolites and enzymes as well as the associated regulation patterns. The

model of polyamine biosynthesis in T. brucei considers the enzyme activities

and polyamine concentrations extracted from experimental studies. T. brucei

lackes the capacity to assimilate exogenous performed radioactive putrescine and

spermidine (Bacchi et al. 1980, Taylor et al. 2008). The polyamine biosynthetic

sub-pathway takes exogenous methionine and arginine as inputs for the produc-

tion of downstream metabolites. We also incorporate the enzymatic reaction

converting AdoMet in S-adenosyl-L-homocysteine (AdoHcy) under the catalysis

of methyltransferases due to its potential role in regulating AdoMet dynamics.

The polyamine biosynthetic sub-pathway is described mathematically by a

set of rate equations for each of the T. brucei enzymes.

ODC Ornithine, putrescine and spermidine are metabolites common to both

mammalian cells and trypanosome parasites. The major difference between

enzyme ODC in the two families of organisms lies in their turnover rates (Persson

1Δ stands for the enzyme knockout strains of parasites.
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et al. 2003). ODC has an extremely short intracellular half-life in mammals,

reportedly 15 min to 1 hr, which is in contrast to the more stable protein in T.

brucei with a turnover rate greater than 6 hrs. As indicated by Ghoda et al.

(Ghoda et al. 1990), the stability of T. brucei ODC results from the lack of the

L-terminal PEST sequence (proline, glutamate, serine and threonine) necessary

for rapid degradation and polyamine-dependent regulation.

Rapid turnover allows the enzyme to respond to regulatory stimuli promptly.

Hayashi and Murakami (Hayashi and Murakami 1995) reported that exogenously

added polyamines accelerated repression and destabilization of ODC activity in

mammalian cells. On the contrary, T. brucei ODC activity in the procyclic form

is unaffected by putrescine and spermidine, which indicates that the mechanism

for polyamine-mediated regulation may be absent (Hua et al. 1995). The same

argument with regard to the unresponsiveness of T. brucei ODC to polyamines

was also made by Ghoda et al. (Ghoda et al. 1992). A conflicting experimental

observation, however, reported by Osterman et al. (Osterman et al. 1994), which

indicated that putrescine inhibited ODC with an inactivation coefficient equal to

350±43 μM. The experimental work performed by Osterman et al. is considered

as a relevant data source to our study for its known validity.

A mathematical rate expression for ODC is modelled in the form

VODC = kODC
cat · [ODC] ·

[Orn]

KODC
mOrn

1 +
[Orn]

KODC
mOrn

+
[Put]

KODC
iP

(4.1)

where kODC
cat is the turnover number, and KODC

mOrn stands for the half-saturation

constant of the enzyme by ornithine (Orn). KODC
iP is the constant of competi-

tive inhibition by putrescine (Put). Square brackets [ · ] stand for intracellular

concentrations of the corresponding metabolites. The same notation scheme is

applied to other equations below.

In the presence of DFMO, ODC is irreversibly deactivated. A modified ex-

pression of the dynamic velocity of ODC is written below:

V DFMO
ODC = kODC

cat · [ODC]

1 +
[DFMO]

KODC
iDFMO

·
[Orn]

KODC
mOrn

1 +
[Orn]

KODC
mOrn

+
[Put]

KODC
iP

(4.2)
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where KODC
iDFMO represents the inhibition constant from the inhibitor DFMO.

As ODC activity responds to DFMO in a time and concentration dependent

manner, the dynamics of intracellular DFMO must be known. T. brucei ODC

has a higher KODC
iDFMO value of 130 μM for DFMO than that of the mammalian

enzyme (39 μM) (Bitonti et al. 1985). Phillips et al. (Phillips et al. 1988)

reported an even higher value on KODC
iDFMO around 160±60 μM. A differential

equation for the transient DFMO concentration is expressed as follows

d[DFMO]

dt
= kDFMO

s − kODC
d · [DFMO] · V ODC

max

where kDFMO
s represents the uptake parameter of the inhibitor and V ODC

max is the

maximum velocity of the enzyme at the normal condition.

However, the DFMO uptake kinetics have not been rigorously characterised

due to a few of factors involved in the process; drug transport and intracellular

distribution, for instance. Procyclic-form T. brucei was reported to take up

DFMO at a linear rate for the initial 60 mins (Phillips and Wang 1987). However,

for simulation of the dynamics of drug-enzyme interactions over 4 days (the

time span considered in model validation), not enough information is available

for an unambiguous characterization of the kinetics of DFMO uptake over the

prolonged time duration.

Despite the absence of a quantitative description, the DFMO-induced sup-

pression of ODC activity is well understood in a qualitative sense. ODC activity

was found to be completely blocked after a certain period of treatment with

DFMO, which caused the amount of putrescine to drop below the experimentally

detectable level (Bacchi et al. 1983, Fairlamb et al. 1987, Bellofatto et al. 1987).

In view of the qualitative knowledge, ODC activity in response to DFMO

is modelled with an exponential decay function below that reflects the time-

dependent pattern of the drug inhibition, expressed as

V ODC
max · e−λ·t (4.3)

where λ stands for the decay rate of ODC under DFMO treatment, and can be

obtained by simple curve fitting, resulting in a value 0.007.

Table 4.1 contains parameter values for T. brucei ODC.

AdoMetDC AdoMetDC is an essential enzyme for the formation of dAdoMet,

the methyl donor for the biosynthesis of spermidine from putrescine. As is the
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Parameters Description Value/Ranges Source
V ODC

max maximum velocity 45 μmol/min/mg (Phillips et al. 1988)
MW molecular weight 45000 (Phillips et al. 1987)
kODC

cat turnover rate 444±4.8 min−1 (Osterman et al. 1994)
KODC

mOrn half-saturation 160 μM (Bitonti et al. 1985)
constant or

280±30 μM (Phillips et al. 1988)
KODC

iP inhibition 350±43 μM (Osterman et al. 1994)
constant

KODC
iDFMO DFMO 220±70 μM (Phillips et al. 1988)

inhibition
λ decay rate 0.007 Analytical Solution

Table 4.1: Parameter values for T. brucei ODC.

case for T. brucei ODC, T. brucei AdoMetDC is a stable enzyme and has a

lower turnover rate than that in mammalian cells. AdoMetDC is a regulatory

enzyme within the polyamine biosynthetic sub-pathway. Regulatory enzymes

can respond to chemical signals with an increase or decrease in their activities.

Metabolic pathways are regulated by controlling the activity of one or more

enzymatic steps along the path. Allosteric control refers to allosteric enzymes

that have distinct binding sites for effector molecules which control their reaction

rates.

AdoMetDC is regulated by an allosteric mechanism with ‘prozyme’, an en-

zymatically inactive close homologue of AdoMetDC iteself. Prozyme induces a

conformational change from an inactive structure to an active one; the bind-

ing of AdoMetDC with prozyme is postulated to enable a dynamical control

on metabolic fluxes through the polyamine pathway (Willert et al. 2007). A

similar mechanism of allosteric regulation was also found for Trypanosoma cruzi

AdoMetDC (Beswick et al. 2006).

Willert et al. (Willert et al. 2007) discovered a regulatory mechanism in

T. brucei that neither AdoMetDC or prozyme per se is sufficiently active to

prompt normal cell growth, and only the complex of AdoMetDC|prozyme can

maintain the physiological level of spermidine. Willert et al. drew a conclusion

that putrescine stimulates the activity of AdoMetDC but has no effect on the

AdoMetDC|prozyme heterodimer.

Recent work by Willert and Phillips (Willert and Phillips 2008) has ex-

tended the subject to examining the influence of AdoMetDC RNAi inhibition
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and prozyme knockout on polyamine synthesis and parasite growth. In accor-

dance with the study by Willert and Phillips, we elaborate an enzyme-ligand

binding reaction describing the transition of the free inactive conformer (E ′)

into a ligand-occupied active conformer (EL), which complies with the formula

of the total enzyme concentration ET = EO + EL, where L stands for ligand.

EO + L � EOL (4.4)

Prozyme regulates T. brucei AdoMetDC by altering the value of kcat, giving

rise to the so-called ’V-system’, which is in contrast to ’K-system’ that alters

the affinity for substance (Birnbaumer et al. 1980). Here we model the ligand-

enzyme binding reaction as a one-step conformation system, with the assumption

that the ligand can rapidly interact with the enzyme. This assumption makes

sense given the observation that prozyme concentration is not comparable to

the enzyme concentration of AdoMetDC (Willert et al. 2007), giving rise to

the reaction occurring at a rapid-equilibrating rate following the linear mass

action kinetics (i.e. [E]�[S]). Because of the limited amount of prozyme in

parasites, AdoMetDC is present in the cell in both ligand-occupied form and

free form. Accordingly, we express the velocity equation of the total AdoMetDC

as a superposition of two terms stemming from individual form of the enzyme.

The representation of regulatory capabilities in summation of distinct states has

been verified for allosteric enzymes in (Birnbaumer et al. 1980).

AdoMet decarboxylase (AdoMetDC) was reported to be strongly or weakly

activated by putrescine (Bitonti et al. 1986, Tekwani et al. 1992, Willert et al.

2007). Inspection of the details of the experiments that led to these opposing

conclusions showed that different basal levels of putrescine were used by the

different groups and this possibly explains the apparent contradiction. Bitonti

et al. and Willert et al. (Bitonti et al. 1986, Willert et al. 2007) both used crude

extracts rich in putrescine. Tekwani et al. (Tekwani et al. 1992) however used

dialyzed extract without putrescine. In the study of Tekwani et al., addition of

500 μM putrescine gave a 10 fold jump in AdoMetDC activity, which plateaued

at 12 fold enhanced activity with higher concentrations. In vivo putrescine

content was reported at 517 μM (Fairlamb et al. 1987) or 678 μM (Willert and

Phillips 2008), suggesting that the ‘strong’ putrescine activation of AdoMetDC

observed in the study by Tekwani et al. would not be achieved in in vivo

environment. Observations in the works by Bitonti et al. and Willert et al.
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are therefore considered as relevant data sources to our study.

A mathematical rate expression of the total AdoMetDC is shown below:

VAdoMetDCT = VAdoMetDCL + VAdoMetDCO (4.5)

where VAdoMetDCL and VAdoMetDCO stand for the velocity contributed by the

ligand-occupied and free form of the enzyme, modelled as follows

VAdoMetDCL = kAdoPro
cat · [AdoMetDCL] ·

[AdoMet]

KAdoPro
mAdoMet

1 +
[AdoMet]

KAdoPro
mAdoMet

(4.6)

VAdoMetDCO = kAdoMetDCO

cat · [AdoMetDCO] · (4.7)

[AdoMet]

KAdoMetDCO

mAdoMet

1 +
[AdoMet]

KAdoMetDCO

mAdoMet

+
[dAdoMet]

KAdoMetDCO

idAdoMet

+
[KAdoMetDCO

aPut ]

[Put]

where kAdoMetDCO

cat , KAdoMetDCO

mAdoMet and kAdoPro
cat , KAdoPro

mAdoMet stand for the turnover

rate and half-saturation constant to substrate AdoMet of the free (AdoMetDCO)

and ligand-occupied (AdoMetDCL) form, respectively. Concentration of the

free-form AdoMetDC can be calculated by reducing the total enzyme concen-

tration by the ligand-binding portion

[AdoMetDCO] = [AdoMetDCT ] − [AdoMetDCL]

KAdoMetDCO

aPut and KAdoMetDCO

idAdoMet describe the activation and competitive inhi-

bition exercised by putrescine and dAdoMet. No numbers have been reported

for either parameter in T. brucei. We derived the constant KAdoMetDCO

aPut from

(Bitonti et al. 1986) that gave a value of 1.5 μM. T. brucei AdoMetDC was

thought to be insensitive to dAdoMet, which is in contrast to the strong in-

hibition exerted by dAdoMet on the enzyme in many other species (Pegg and

Jacobs 1983). We apply a range between 1 to 1000 μM to parameter KAdoMetDC
idAdoMet

as the quantitative description of T. brucei AdoMetDC in response to product

dAdoMet. The parameter boundaries are wide enough to cover the possibilities

of both weak and strong product inhibition. The parameter estimates from in

silico simulations can be used to qualitatively assess the biological observations.

The formation and dissociation of complex AdoMetDC|Prozyme are de-



CHAPTER 4. INITIAL KINETIC MODEL 109

scribed as an irreversible one-step binding model and a linear decay response,

as shown below

RAdoMetDCL

b = kAdoMetDCL

b · [AdoMetDCT ] · [Prozyme] (4.8)

RAdoMetDCL

d = kAdoMetDCL

d · [AdoMetDCL] (4.9)

where kAdoMetDCL

b and kAdoMetDCL

d stand for the binding and dissociation rate

of the ligand-enzyme interaction. The complex was formed at high affinity with

the dissociation constant smaller than 0.5 μM (Willert et al. 2007); this gives the

functional relation as kAdoMetDCL

d = 0.5 ∗ kAdoMetDCL

b to eliminate one unknown

parameter from the model.

According to the recent experimental observations (Willert and Phillips 2008),

an induction of T. brucei ODC activity was detected when AdoMetDC or

prozyme was inhibited or knocked out. Inhibition of polyamine contents on

ODC activity that has been demonstrated in mammalian cells was not applica-

ble to T. brucei. Willert and Phillips hypothesized that the de-repression of ODC

protein expression could be ascribed to the reduced inhibition by AdoMetDC ac-

tivity, since when AdoMetDC protein expression is diminished, less ODC mRNA

strands would be consumed by AdoMetDC, thus more ODC mRNA could be

translated. Quantitatively, AdoMetDC knockdown induced gene expression of

ODC and prozyme up to an average of 10 to 25 fold the controlled level; exoge-

nous spermidine (100 μM) weakened the stimulating strength but still enabled

5 to 10 fold increases in the enzyme activity. Knockout of prozyme also boosted

ODC expression by 4-5 fold.

To reflect this observation, enzyme ODC is modelled as a variable dependent

on the expression level of AdoMetDC. Equations (4.10) and (4.11) describe the

synthesis term of Prozyme and ODC, respectively, with the expression level of

AdoMetDC and prozyme included in the lower part of the formulas to illustrate

the regulatory effect they exercise.

RProzyme
s =

(
kprozyme

s

1 + [AdoMetDCT ]

)
·
(

1 +
1

[Spd]

)
(4.10)

RODC
s =

(
kodc

s

1 + keq([AdoMetDCT ] + [Prozyme])

)
· (4.11)(

1 +
1

[Spd]

)
RODC

d = kODC
d · [ODC] (4.12)
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where kprozyme
s and kodc

s represent the production coefficients of prozyme and

ODC, respectively. keq acts as the scaling factor tackling distinct intracellular

amounts of AdoMetDC and prozyme. kODC
d is the degradation constant of ODC.

AdoMetDC is a good therapeutic target in T. brucei (Wallace 1996). AbeAdo2,

an enzyme-activated inhibitor of AdoMetDC, was more potent than DFMO

in curing T. brucei infections (Marton and Pegg 1995). In mammalian cells,

dAdoMet does not accumulate under normal conditions because of its rapid uti-

lization in spermidine synthesis. However, DFMO-treated cells display a striking

accumulation of this metabolite due to the lack of putrescine for aminopropyl-

transferase reactions and the elevation of AdoMetDC activity.

In mammalian cells, AdoMetDC activity was detected to elevate threefold

over the normal value within 12 hrs of DFMO addition and then decreased

slightly, with AdoMet staying relatively constant (Mamont et al. 1982). This is

in contrast to drug-treated T. brucei where the levels of AdoMet and dAdoMet

were significantly increased (Fairlamb et al. 1987) concomitant with an approx-

imately 30-70 percent decrease in AdoMetDC activity (Bacchi et al. 1983). Ex-

periments on AdoMetDC down-regulation also revealed a decrease in AdoMet

use for polyamine synthesis and an increase in available AdoMet for tryans-

methylation reactions (Selzer et al. 1996).

Table 4.2 contains parameter values for T. brucei AdoMetDC.

MAT: Methionine Adenosyltransferase In trypanosomes, MAT catalyzes

the synthesis of AdoMet from methionine in the presence of ATP. AdoMet plays

an important role in a variety of cellular functions, such as methylation, sulphu-

ration and polyamine. Polyamines are not inhibitory to the enzyme, and AdoMet

only exercises weak inhibition on the enzyme activity (Yarlett et al. 1993).

Interference with T. brucei polyamine biosynthesis by DFMO resulted in a

dramatic increase in the intracellular AdoMet and dAdoMet pools (Fairlamb

et al. 1987, Bellofatto et al. 1987), and a two-fold increase in AdoMet synthetase

activity in vivo (Yarlett et al. 1991). A mathematical rate expression of AdoMet

synthetase is modelled in the form

VMAT =

⎛
⎜⎜⎝

V Met
max · [Met]

KMAT
mMet

1 +
[Met]

KMAT
mMet

+
[AdoMet]

KMAT
iAdoMet

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

V ATP
max ·

(
[ATP ]

KMAT
mATP

)n

1 +

(
[ATP ]

KMAT
mATP

)n

⎞
⎟⎟⎠ (4.13)

2Systematic name: 5’-{[(Z)-4-Amino-2-butenyl]methylamino}-5’-deoxyadenosine
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Parameters Description Value/Ranges Source

kAdoMetDCO

cat turnover rate 0.078±0.024 min−1 (Willert et al. 2007)
kAdoPro

cat turnover rate 84±6 min−1 (Willert et al. 2007)
KAdoPro

mAdoMet half-saturation 110±20 μM (Willert et al. 2007)
constant

KAdoMetDCO

mAdoMet half-saturation 380±150 μM (Willert et al. 2007)
constant or 30 μM (Bitonti et al. 1986)

KAdoMetDCO

idAdoMet inhibition 1-1000 μM Modelling
constant Assumption

KAdoMetDCO

aPut activation 1.5 μM Analytical
constant Solution

kb binding 0–10 μM/min Modelling
constant Assumption

kprozyme
s binding 0–1 μM/min Modelling

constant Assumption
kodc

s synthesis 0–1 μM/min Modelling
constant Assumption

kodc
d degradation 0–0.1 μM/min Modelling

constant Assumption
keq scaling 0–1 μM/min Modelling

constant Assumption
[AdoMetDCT ] enzyme 1e-4–1 μM Modelling

concentration Assumption
[AdoMetDCO] enzyme 1e-4–1 μM Modelling

concentration Assumption

Table 4.2: Parameter values for T. brucei AdoMetDC.

where kinetic parameters of the enzyme are substrate-concentration dependent;

V Met
max , V ATP

max and KMAT
mMet, KMAT

mATP denote the maximum velocity and half-saturation

constant for each of the two reactants, respectively. KMAT
iAdoMet stands for the com-

petitive inhibition by AdoMet. n is the Hill rate of the enzyme activity with

respect to co-substrate ATP.

The maximum velocity of MAT has never been reported in T. brucei, and the

only measurement available for the enzyme was observed in parasitic organism

L. infantum by Reguera et al. (Reguera et al. 2001)3. For this reason, the

enzyme activity of MAT is considered as an unknown parameter during the in

silico simulation of the kinetic model. We thus refined Equation (4.13) by using

a single parameter, V MAT
max , to represent the enzyme maximum velocity, which

3MAT with methionine and ATP as substrates were measured to hold the maximum activity
of 0.19 μmol/mg/min and 0.12 μmol/mg/min, respectively.
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results in the rate equation below

VMAT = V MAT
max ·

⎛
⎜⎜⎝

[Met]

KMAT
mMet

1 +
[Met]

KMAT
mMet

+
[AdoMet]

KMAT
iAdoMet

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

(
[ATP ]

KMAT
mATP

)n

1 +

(
[ATP ]

KMAT
mATP

)n

⎞
⎟⎟⎠ (4.14)

Table 4.3 contains parameter values for T. brucei MAT. In the model, we

consider ATP as a constitutely supplied protein, since the knowledge concerning

ATP generation and energy conversion with ADP is lacking. ATP concentration

is fixed at its normal cellular value, approximately 4000 μM.

Parameters Description Value/Ranges Source
V MAT

max maximum 1e-3–20 μmol/mg/min Modelling
velocity Assumption

KMAT
mMet half-saturation 20 μM w.r.t. (Yarlett et al. 1993)

constant [ATP]⊂10-250 μM
200 μM w.r.t.
[ATP]⊂0.5-5 mM

KMAT
mATP half-saturation 53 μM w.r.t. (Yarlett et al. 1993)

constant [Met]⊂10-250 μM
1750 μM w.r.t.
[Met]⊂500-5000 μM

KMAT
iAdoMet inhibition 240 μM (Yarlett et al. 1993)

constant
[ATP ] concentration 4000 μM Normal Value

in cytosol

Table 4.3: Parameter values for T. brucei MAT.

A common feature of MAT protein in parasitic protozoans lies in its sigmoidal

kinetics for both methionine and ATP (Reguera et al. 2007), which display

a concentration dependent pattern. It was evidenced in (Yarlett et al. 1993)

that non-cooperativity was shown for low methionine and ATP concentrations,

whilst positive cooperativity of the enzyme was realized at higher concentrations

of ATP with a Hill rate equal to 2.0.

ARG: Arginase Arginase is a metalloenzyme that plays key roles in many

pathways involving arginine catabolism and metabolism in cells. Comprehensive

reviews on mammalian arginine metabolism are presented elsewhere (Wu and

Sidney M. Morris 1998, Li et al. 2001, Sidney M. Morris 2002).
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In parasitic protozoan, role of arginase is not limited to polyamine biosynthe-

sis. It has been postulated to be pivotal in helping parasitic species Leishmania

(Vincendeau et al. 2003) and T. cruzi (Peluffo et al. 2004) escape immune re-

sponses by modulating Nitric oxide (NO) production upon macrophage infection.

NO is toxic to parasites, and is produced in macrophages by NO synthase from

arginine. A correlation between arginine metabolism and the cell replication

rate was proposed for T. cruzi (Pereira et al. 2002).

Vincendeau et al. (Vincendeau et al. 2003) argued that arginine concentra-

tion could play a critical role in determining NO toxicity to trypanosomes by

macrophages, where the authors observed that an arginine content greater than

400 μM led to total parasite death. The same effect was obtained with addition

of an arginase inhibitor, e.g. Nw-hydroxy-L-arginine, even for low concentrations

of intracellular arginine (Iniesta et al. 2001).

Gobert et al. (Gobert et al. 2000) presented the only or one of the few

experimental works to study the arginase up-regulation in macrophages from T.

brucei. The authors demonstrated that arginase and NO synthase competed for

substrate availability, and an early and fast induction of arginase activity could

restore the death of T. brucei caused by NO synthase induction. Specifically,

observations during the first 24 hours of trypanosomal infection displayed a

linear and time dependent utilization of arginine in ornithine production with a

percentage of consumption equal to 2.7 per hour.

Kropf et al. (Kropf et al. 2005) reported that arginine in Leishmania parasites

can be converted to NO. The balance between the reactions consuming arginine

– NO and ornithine production – appears to be determined by the requirement

for parasite growth. When arginase, which catalyzes ornithine production, is

inhibited or knocked out, arginine participation in NO production is enhanced

to prevent the accumulation of intracellular arginine. Kropf et al. observed that

when arginase is inhibited, parasite growth can be restored by the addition of

ornithine from an external source. This supports the conclusion that arginase

activity directly regulates parasite growth.

Arginine dynamics in response to DFMO have only been examined in procyclic-

form T. brucei (Bellofatto et al. 1987) and have never been studied in the blood-

stream form. We attempt to understand the arginine metabolism in bloodstream-

form T. brucei by explicitly incorporating the reactions of exogenous arginine

uptake and ornithine production into the model. Since little knowledge about

T. brucei arginase can be found from the literature, we started with a standard
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Michaelis-Menten kinetics as follows

VARG = V ARG
max ·

[Arg]

KARG
mArg

1 +
[Arg]

KARG
mArg

(4.15)

where V ARG
max and KARG

mArg stand for the maximum velocity and half-saturation

constant to substrate arginine (Arg). Experimental measurements in L. donovani

arginase (Silva et al. 2007) were used in our model, as a substantial amount of

similarity exists between the two parasitic organisms.

Table 4.4 contains parameter values for L. denovani ARG.

Parameters Description Value/Ranges Source
V ARG

max maximum velocity 144.9 μmol/mg/min (Silva et al. 2007)
KARG

mArg half-saturation 21500 μM (Silva et al. 2007)
constant

Table 4.4: Parameter values for L. donovani ARG.

SpdS: Spermidine Synthase Interference with polyamines has been con-

sidered as an efficient means of parasite destrubtion. Consequently, enzymes,

responsible for polyamine biosynthesis have been the focus of anti-trypanosomal

research. Compared with other enzymes (e.g. ODC and AdoMetDC) in the

pathway, the biochemical properties of SpdS that mediates spermidine produc-

tion are not well understood.

The only two studies available for T. brucei SpdS however return us again the

fact that different groups frequently present conflicting observations on the en-

zyme activity. Taylor et al. (Taylor et al. 2008) detected a Vmax of 0.0119±0.0014

μmol/min/mg, whereas Bitonti et al. (Bitonti et al. 1984) argued that the spe-

cific activity of SpdS in trypanosomes is comparable to the highest enzyme

activity in mammalian tissues, which is reported to vary between 0.43 and 10.95

μmol/min/mg (Rodriguez-Caso et al. 2006).

As demonstrated by Taylor et al. (Taylor et al. 2008), T. brucei does not have

an efficient mechanism for the uptake of exogenous spermidine, and relies on de

novo synthesis to acquire this polyamine. Within 96 hours of switching down

expression of spermidine synthase, there was a 33% decrease in the growth rate,

with a reduction in TbSpSyn mRNA and a 60% decline in spermidine contents;
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putrescine was found to drop to 40% of the normal value. The kinetic mechanism

of the enzyme is modelled in equation (4.16).

dAdoMet is present in parasites with a low intracellular concentration (Yarlett

et al. 1993). Methylthioadenosine (MTA) is the second product formed during

the transfer of an aminopropyl group from dAdoMet to putrescine. MTA is not

detectable in mammals because of its rapid degradation rate (Rodriguez-Caso

et al. 2006). In T. brucei, MTA is rapidly consumed by MTA phosphorylase to

adenine and 5’-methylthioribose-1-phosphate, where the latter is then converted

back to methionine (Berger et al. 1996) (More details can be found later in this

chapter). Owing to the rapid metabolization of MTA, the intracellular concen-

tration of this compound is low (Peter S. Backlund et al. 1982). Spermidine,

however, is present in millimolar concentrations. The spermidine-putrescine ra-

tio of intracellular concentrations in T. brucei was given in the range of 2:1

(Taylor et al. 2008) or 19:1 (Bacchi et al. 1977) in different studies.

A mathematical rate expression for SpdS is modelled in the form

VSpdS = V SpdS
max ·

[dAdoMet]

KSpdS
mdAdoMet

1 +
[dAdoMet]

KSpdS
mdAdoMet

+
[MTA]

KSpdS
iMTA

·
[Put]

KSpdS
mP

1 +
[Put]

KSpdS
mP

+
[Spd]

KSpdS
iD

(4.16)

where V SpdS
max is the maximum velocity of SpdS. KSpdS

mdAdoMet and KSpdS
mP repre-

sent half-saturation constant to substrate dAdoMet and putrescine. KSpdS
iD and

KSpdS
iMTA are the constants of competitive inhibition by spermidine (Spd) and

MTA, respectively.

Table 4.5 contains parameter values for T. brucei SpdS.

Enzyme involved in methionine recycling from MTA MTA, the byprod-

uct of aminopropyl group transfer from dAdoMet, is recycled to methionine via

a series of enzymatic steps in trypanosomes (Sufrin et al. 2008). The MTA recy-

cling path has been illustrated in mammals (Peter S. Backlund and Smith 1981),

and also observed in parasitic protozoa (Berger et al. 1996, Reguera et al. 2007).

MTA is first converted to methylthioribose-1-phosphate by MTA phosphory-

lase; the latter product is then metabolized to keto-methylthiobutyrate, which

is finally transaminated to methionine.

Methionine has a unique role in cellular growth, originating in its metabolic

conversion to AdoMet, which then participates in several downstream pathways
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Parameters Description Value/Ranges Source
V SpdS

max maximum 0.0119μmol/mg/min (Taylor et al. 2008)
velocity

KSpdS
mdAdoMet half-saturation 0.09±0.01 μM (Taylor et al. 2008)

constant (Bitonti et al. 1984)

KSpdS
mP half-saturation 205±65 μM (Taylor et al. 2008)

constant (Bitonti et al. 1984)

KSpdS
iD inhibition 100 μM (Taylor et al. 2008)

constant

KSpdS
iMTA inhibition 1–1000 μM Modelling

constant Assumption

Table 4.5: Parameter values for T. brucei SpdS.

of polyamine biosynthesis and methylation reactions. A constant supply of me-

thionine is imperative for cell proliferation, which requires adequate AdoMet in

physiological functions. The amount of methionine in the environment is lim-

ited and de novo synthesis is energetically expensive (Riscoe et al. 1989). MTA

recycling therefore seems to be an important source of this amino acid.

Because of the importance of MTA recycling in retaining cell viability, in-

terference with methionine metabolism has been explored as a potential target

for chemotherapy for African trypanosomiasis (Porter and Sufrin 1986, Bacchi

et al. 1991, Riscoe et al. 1989, Sufrin et al. 1995).

It has been established that methionine is regenerated via a multistep metabo-

lism of MTA, kinetics for which, however, are not available experimentally.

Available quantitative descriptions for the recycling path limit to the half-

saturation constant of MTA phosphorylase with respect to its substrate MTA.

Since the enzyme has a broad substrate specificity (Ghoda et al. 1988), the in

vivo maximum velocity is hard to obtain, but it is assumed to hold a very high

value (Bacchi et al. 1991).

MTA degradation is important; its accumulation is potentially toxic to mam-

malian cells (Christa et al. 1988). MTA can be degraded through normal protein

efflux or utilization in the recycling path. In our study, we consider methionine

regeneration as the major route of MTA consumption, which is assumed to oc-

cur via a single-step reaction. ‘MetRcy’ is used to denote the enzyme catalyzing

this reaction. Standard Michaelis-Menten kinetics are applied to describe the
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enzyme kinetics, shown below:

VMetRcy = V MetRcy
max ·

[MTA]

KMetRcy
mMTA

1 +
[MTA]

KMetRcy
mMTA

(4.17)

where V MetRcy
max and KMetRcy

mMTA are the maximum velocity of the enzyme and half-

saturation constant to substrate MTA.

Table 4.6 contains parameter values for T. brucei MetRcy catalyzing the

methionine regeneration from MTA.

Parameters Description Value/Ranges Source
V MetRcy

max maximum 1–50 μmol/min/mg Modelling Assumption
velocity

KMetRcy
mMTA half-saturation 1–1000 μM Modelling Assumption

constant

Table 4.6: Parameter values for the enzyme on the methionine recycling path in
T. brucei.

Trans-methylation Processes AdoMet is the common substrate for both

transmethylation processes and polyamine biosynthesis. The byproduct of AdoMet

methyl donation is S-adenosylhomocysteine (AdoHcy). AdoHcy is then cleaved

to salvage adenosine and homocysteine, where the latter is consumed by trans-

sulfuration events to produce cystathionine and cysteine (Bacchi et al. 1995).

Enzymes of MAT, AdoHcy hydrolase, homocysteine methyltransferase and

AdoMet transmethylases have been detected in cell-free extracts of T. brucei

(Yarlett and Bacchi 1988). AdoHcy exerts a feedback inhibition on AdoMet in

most methylation reactions (Chiang et al. 1996). In T. brucei, transmethylation

reactions were found to be very sensitive to AdoHcy inhibition with an apparent

KI value of 12.9 μM (Yarlett et al. 1991).

By contrast, in mammalian cells, homocysteine is recycled to methionine via

enzymatic catalysis by BHMT4 or MTR5 (Sufrin et al. 1995). Parasitic T. cruzi

and Leishmania species lack the enzyme methionine synthase, which catalyses

the methionine production from homocysteine (Reguera et al. 2007). However,

4Systematic name: Betaine-homocysteine methyltransferase
5Systematic name: 5-methyltetrahydrofolate-homocysteine methyltransferase
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debate remains as to whether homocysteine can be converted to methionine

in T. brucei. It was speculated that whether homocysteine is remethylated

to methionine or irreversibly committed to tran-ssulfuration, largely depends

on AdoMet concentration (Yarlett and Bacchi 1988). A different argument by

Goldberg et al. (Goldberg et al. 2000) suggested that, even though homocysteine

remethylation may exist in T. brucei, as most trans-sulfuration metabolites are

excreted from trypanosomes, any homocysteine recycled to methionine was not

as significant as methionine regeneration from MTA. In the current stage of

model construction, we consider the MTA recycling path as the unique source

of methionine reproduction.

Yarlett and Bacchi (Yarlett and Bacchi 1988) observed that, in contrast to

an enormous elevation of AdoMet level, AdoHcy remained undetectable in T.

brucei after 12hrs and 36hrs of DFMO treatment . This could be explained with

the high activity of cystathionine synthase in T. brucei that effectively converts

AdoHcy into cystathionine and cysteine.

The ratio of AdoMet to AdoHcy, termed the ‘Methylation index’ indicates

the transmethylation potential of a cell. Normal methylation index values were

shown to range from 2:1 to 9:1 (Bacchi et al. 1995). The ratio increased al-

most 20 fold in DFMO-treated trypansomes compared to the ratio under nor-

mal conditions from 6.5 to 114 after 24 hours of DFMO treatment (Yarlett and

Bacchi 1988). Under normal conditions, a decline of the ratio, resulting from

either a reduction in AdoMet or an accumulation of AdoHcy, can induce the

so-called hypermethylation status leading to cell death (Reguera et al. 2007).

Bloodstream-form trypanosomes undergo significant changes in cell methy-

lation events in response to the intervention of polyamine synthesis. Under per-

turbed conditions, the levels of transmethylation byproducts, cystathionine and

cysteine can be rapidly increased. In DFMO-treated trypanosomes, cysteine

and cysthationine in the incubation medium, increased about 5-fold (Bacchi

et al. 1995), while the intracellular pools did not vary significantly from the con-

trol cells. A substantial flow from AdoMet through AdoHcy was also observed,

indicating that the rate of AdoMet utilization in trans-methylation processes

under DFMO treatment may be several times higher than that in normal con-

ditions.

In our study, the consideration of trans-methylation processes is limited to

the first step describing the conversion of AdoMet into AdoHcy. The remaining

reactions under the catalysis of a number of enzymes, including AdoHcy hy-
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drolase, cystathionine syntase and cystathionase, are excluded from the model,

partially because no or very limited kinetic information is available for the en-

zymes. More importantly, under the DFMO-induced condition, the intermedi-

ates of tran-smethylation processes were quickly excreted into the environment,

and no significant changes were observed in intracellular concentrations of the

metabolites (Bacchi et al. 1995, Yarlett and Bacchi 1988).

Since the kinetic modelling is primarily concerned with evaluating the try-

panothione metabolism under the treatment of anti-trypanosomal drug DFMO,

the trans-methylation intermediates that have no or negligible effects on the in-

tended use of the model are not included. AdoHcy production is incorporated

in the model for its potential role in adjusting the intracellular AdoMet concen-

tration, where the latter is a critical metabolite for trypanothione biosynthesis.

AdoHcy is regarded as a constant metabolite during the in silico simulation and

the methylation index 2:1 is assumed for the ratio of AdoMet to AdoHcy at

normal conditions (resulting in the constraint [AdoHcy] = 0.5 · [AdoMet]) to

approximate the relationship between the concentrations of the metabolites.

‘AHS’ is used to denote the enzyme catalyzing the AdoHcy production from

AdoMet. The kinetic mechanism of the enzyme is modelled based on the stan-

dard Michaelis-Menten kinetics

VAHS = V AHS
max ·

[AdoMet]

KAHS
mAdoMet

1 +
[AdoMet]

KAHS
mAdoMet

+
[AdoHcy]

KAHS
iAdoHcy

(4.18)

where V AHS
max and KAHS

mAdoMet are the maximum velocity and half-saturation con-

stant to substrate AdoMet. KAHS
iAdoHcy is the constant of competitive inhibition

by AdoHcy.

Table 4.7 contains parameter values for T. brucei AHS catalyzing the chem-

ical conversion from AdoMet to AdoHcy.

Methionine & Arginine Transport The uptake rate V MetPt
max of exogenous

methionine into the cytosol of T. brucei was measured to be 8.9×10−7 mol/L/min

at 26 μM, the human serum concentration of methionine (Goldberg et al. 2000).

Different kinetics were reported by Hasne and Barrett (Hasne and Barrett 2000)

as V MetPt
max = 28.8±0.1 nmol ·min−1 ·(108 cells)−1 and KMetPt

m = 32.8±3.4 μM. In

our study, the numbers from Hasne and Barrett are used for its known validity.
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Parameters Description Value/Ranges Source
V AHS

max maximum 1e-3–50 μmol/min/mg Modelling
velocity Assumption

KAHS
mAdoMet half-saturation 1–1000 μM Modelling

constant Assumption
KAHS

iAdoHcy inhibition 12.9 μM (Yarlett et al. 1991)
constant

Table 4.7: Parameter values for the enzyme of AdoHcy production in T. brucei.

Kinetics of exogenous methionine uptake are modelled as a standard Michaelis

Menten, given below:

VMetPt = V MetPt
max ·

[Met]exg

KMetPt
m

1 +
[Met]exg

KMetPt
m

(4.19)

where [Met]exg is the exogenous methionine concentration (26 μM). V Met
max and

KMetPt
m are the maximum velocity and the half-saturation constant with respect

to the substrate.

To express the maximum velocity in μmol min−1 (mg cell protein)−1, an

assumption that transporter enzymes account for 10% of overall cell protein

of trypanosome is applied (refer to Section 3.5.1 for detailes). This gave the

maximum velocity of the transporter enzyme of exogenous methionine a value

of 0.276 μmol min−1 (mg cell protein)−1.

A biological experiment examining exogenous arginine uptake was designed

for the task by the group of Mike Barrett. The experimental results showed

that exogenous arginine was taken into T. brucei through two transporters with

distinct affinities. Carriers were measured with a high capacity V ArgPt
maxH and a low

capability V ArgPt
maxL upto 0.9 μmol/min/mg and 0.14 μmol/min/mg, respectively;

half-saturation constants KArgPt
mH , 1130 μM and KArgPt

mL , 26 μM, were measured

for each carrier. Exogenous arginine is considered as a constant supply into the

system; the concentration is assumed to be 33 μM in plasma. In accordance

with the experimental observations, arginine transport was expressed as the

superposition of transport functions via both carriers as follows

VArgPt = V ArgPt
H + V ArgPt

L (4.20)
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where

V ArgPt
H = V ArgPt

maxH ·
[Arg]exg

KArgPt
mH

1 +
[Arg]exg

KArgPt
mH

(4.21)

V ArgPt
L = V ArgPt

maxL ·
[Arg]exg

KArgPt
mL

1 +
[Arg]exg

KArgPt
mL

(4.22)

The aforementioned biological experiment indicated that in T. brucei argi-

nine has a much lower uptake capability compared to methionine. In Chapter 3

we highlighted that arginine transport observed in L. donovani is about 30 times

higher than the number measured in T. brucei. Even at the level observed in

L. donovani, arginine transport is still not comparable to methionine transport.

Due to the large uncertainty in the numbers reported for arginine transport in

T. brucei, we choose to treat them as unknown parameters. This results in the

following kinetic equation, which replaces the preceding set of equations.

VArgPt = V ArgPt
max ·

[Arg]exg

KArgPt
m

1 +
[Arg]exg

KArgPt
m

(4.23)

where [Arg]exg is the exogenous arginine concentration (30 μM). V ArgPt
max and

KArgPt
m are the maximum velocity and half-saturation constant with respect to

exogenous arginine. They are expressed in μmol per min per mg of cell protein

and μM, and constrained by the boundary conditions 0 < V ArgPt
max ≤ 1 and

1 ≤ KArgPt
m ≤ 1000, respectively. These unknown parameters will be estimated

during the in silico simulation.

4.3.2 Glutathione Biosynthesis

Glutathione biosynthesis in the model starts from cysteine, to which bloodstream-

form T. brucei is very sensitive. Cysteine in human serum has concentration of

13 μM and can be effectively incorporated into the cell with the maximum veloc-

ity and half-saturation constant at 0.3 μmol ·min−1 ·(mg cell protein)−1 and 400

μM (Duszenko et al. 1985). Cysteine transport is modelled with the standard
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Michaelis-Menten kinetic, as below:

VCysPt = V CysPt
max ·

[Cys]exg

KCysPt
m

1 +
[Cys]exg

KCysPt
m

(4.24)

where [Cys]exg stands for the concentration of exogenous cysteine. V CysPt
max and

KCysPt
m are the maximum velocity and half-saturation constant with respect to

exogenous cysteine.

Conversion of cysteine into glutathione occurs as a two-step enzymatic re-

action. The first and rate-limiting step in the biosynthesis of glutathione is the

ligation of glutamate (Glu) and cysteine (Cys), catalyzed by γ-glutamylcysteine

synthase (gGCS); the product L-γ-glutamyl-L-cysteine (gGluCys) is then con-

verted to glutathione by glutathione synthase (GS) through addition of glycine

(Gly). Huynh et al. (Huynh et al. 2003) observed that gGCS is an essential

enzyme for the growth of T. brucei cells, implying gGCS as a potential drug

target.

Enzyme γGCS is modelled in the form:

VgGCS = V gGCS
max ·

[Glu]

KgGCS
mGlu

1 +
[Glu]

KgGCS
mGlu

+
[GSH]

KgGCS
iGSH

·

[Cys]

KgGCS
mCys

1 +
[Cys]

KgGCS
mCys

·
[ATP ]

KgGCS
mATP

1 +
[ATP ]

KgGCS
mATP

(4.25)

where [Glu] and [Cys] represent the concentrations of the co-substrates of the

enzyme. [ATP ] represents the concentration of a cofactor of the reaction, where

the value is reported in Table 4.3. V gGCS
max is the maximum velocity of the enzyme.

KgGCS
mGlu , KgGCS

mCys and KgGCS
mATP are the half-saturation constants for each reactant of

the reaction. KgGCS
iGSH stands for the feedback inhibition from product glutathione,

which is competitive with respect to the co-substrate glutamate.

Table 4.8 contains parameters for T. brucei gGCS.

GS was only measured in Plasmodium falciparum (Meierjohann et al. 2002)

and no information is available for the enzyme in T. brucei. In our analysis,
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Parameters Description Value/Ranges Source
V gGCS

max maximum 7.6 μmol/min/mg (Lueder and Phillips 1996)
velocity

KgGCS
mGlu half-saturation 240 μM (Lueder and Phillips 1996)

constant

KgGCS
mCys half-saturation 690 μM (Lueder and Phillips 1996)

constant

KgGCS
mATP half-saturation 70 μM (Lueder and Phillips 1996)

constant

KgGCS
iGSH feedback 1100 μM (Lueder and Phillips 1996)

inhibition
[Glu] intracellular 3000 μM Experimental Data

concentration from Mike Barrett

Table 4.8: Parameter values for T. brucei γGCS.

kinetics of GS are modelled with the standard Michaelis-Menten law:

VGS = V GS
max ·

[Gly]

KGS
mGly

1 +
[Gly]

KGS
mGly

·
[ATP ]

KGS
mATP

1 +
[ATP ]

KGS
mATP

·
[gGluCys]

KGS
mgGluCys

1 +
[gGluCys]

KGS
mgGluCys

(4.26)

where V GS
max is the maximum velocity. KGS

mGly, KGS
mgGluCys and KGS

mATP repre-

sent the half-saturation constants of the enzyme with respect to the substrates

glycine, gGluCys and ATP, respectively.

Table 4.9 contains parameters for T. brucei GS.

Parameters Description Value/Ranges Source
V GS

max maximum 1e-3–20 μmol/min/mg Modelling
velocity Assumption

KGS
mGly half-saturation 1–1000 μM Modelling

constant Assumption
KGS

mATP half-saturation 1–1000 μM Modelling
constant Assumption

KGS
mgGluCys half-saturation 1–1000 μM Modelling

constant Assumption
[Gly] intracellular 4000 μM Experimental Data

concentration from Mike Barrett

Table 4.9: Parameter values for T. brucei GS.
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The Reversible Reaction of Trypanothione Production

The biosynthetic reaction of trypanothione consists of two steps. First, two

molecules of spermidine are combined with glutathione to synthesize a glutathione-

spermidine dithiol conjugate (GspdSH) that plays a central role in several detox-

ification processes, which is followed by the formation of trypanothione from

the conjugate and one molecule of glutathione. The enzymes of trypanothione

biosynthesis are potential targets for drug design.

TryS: Trypanothione Synthetase Trypanothione synthetase has been the

focus of anti-trypanosomal research, owing to not only its significant role in

trypanosomal viability but also its capability in regulating the levels of GspdSH,

spermidine and glutathione.

Recent work (Willert and Phillips 2008) discovered that, the absence of

GspdSH or trypanothione led to trypanosome death. Willert and Phillips ob-

served that trypanosome death followed an irreversible process. This implies that

when the intracellular spermidine level is lower than a physiologically required

level, the biosynthesis of GspdSH or trypanothione cannot be hardly fulfilled.

The authors suggested that the cell did not build up GspdSH and trypanothione

pools until spermidine level reached an appropriate steady-state set point. This

is commonly referred to as the homeostasis response, a so-called ultrasensitive

response to external signals.

Both a synthetase and amidase activity has been associated with glutathionyl-

spermidine synthetase in Escherichia coli (Kwon et al. 1997, Bollinger et al.

1995), and trypanothione synthetase in Leishmania parasites (Fyfe et al. 2008),

Crithidia fasciculata (Oza et al. 2002) and T. brucei (Oza et al. 2003). The

conflicting activities of synthetase and amidase, which allow for a bidirectional

response between the involved metabolites, may serve to modulate intracellular

levels of the metabolites without additional protein synthesis or degradation of

existing metabolites.

The regulation mechanism between synthetase and amidase is not yet pre-

cisely characterized in T. brucei. However, some qualitative properties of this

enzyme can be predicted by studying other organisms. For example, under nor-

mal conditions, in Escherichia coli, the activity of the amidase site is about

40-fold lower than that of the synthetase site and the former prefers GspdSH as

a substrate over trypanothoine for effective hydrolysis.

Fyfe et al. (Fyfe et al. 2008) observed that the structure of L. major trypan-
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othione synthetase-amidase has two active sites, where each site binds to differ-

ent molecules for specific functions. Due to the substantial amount of similarity

shared by parasitic Leishmania and Trypanosoma species, it is assumed that

there are no interactions between the active sites of T. brucei synthetase-amidase

and the kinetic behaviour of the conflicting activities are modelled separately.

Kinetic mechanisms of the synthetase catalyzing GspdSH and trypanothione

production are given in equations (4.28) and (4.27), and the amidase kinetics

responsible for the hydrolysis of trypanothione and GspdSH in equations (4.29)

and (4.30), respectively. Parameters for trypanothione synthetase (TryS) and

admidase (TryAdm) are contained in Table 4.10.

V gd
TryS =

KTryS
cat · [TryS]

1 +
KTryS

mGSH

[GSH]
+

[GSH]

KTryS
siGSH

·
[ATP ]

KTryS
mATP

1 +
[ATP ]

KTryS
mATP

· (4.27)

(
[Spd]

KTryS
mD

)n

1 +

(
[Spd]

KTryS
mD

)n

+
[GspdSH]

KTryS
mGspdSH

V gg
TryS =

KTryS
cat · [TryS]

1 +
KTryS

mGSH

[GSH]
+

[GSH]

KTryS
siGSH

·

[GspdSH]

KTryS
mGspdSH

1 +
[GspdSH]

KTryS
mGspdSH

·
[ATP ]

KTryS
mATP

1 +
[ATP ]

KTryS
mATP

(4.28)

V TSH
TryAdm = V TryAdm

maxTSH ·
[TSH]

KTryAdm
mTSH

1 +
[TSH]

KTryAdm
mTSH

(4.29)

V GspdSH
TryAdm = V TryAdm

maxGspdSH ·

[GspdSH]

KTryAdm
mGspdSH

1 +
[GspdSH]

KTryAdm
mGspdSH

(4.30)
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Parameters Description Value/Ranges Source

kTryS
cat turn-over rate 2.9±0.4 s−1 (Oza et al. 2003)

KTryS
mGspdSH half-saturation 2.4 μM (Oza et al. 2003)

constant

KTryS
mGSH half-saturation 56.2 μM (Oza et al. 2003)

constant

KTryS
mATP half-saturation 7.1 μM (Oza et al. 2003)

constant

KTryS
mD half-saturation 37.8 μM (Oza et al. 2003)

constant

V TryAdm
maxTSH maximum 6.4e-3 μmol/min/mg (Oza et al. 2003)

velocity

KTryAdm
mTSH half-saturation 1–1000 μM Modelling

constant Assumption

V TryAdm
maxGspdSH maximum 21e-3 μmol/min/mg (Oza et al. 2003)

velocity

KTryAdm
mGspdSH half-saturation 1–1000 μM Modelling

constant Assumption

KTryS
siGSH substrate 36.5 μM (Oza et al. 2003)

inhibition
n hill coefficient 1–3 Modelling

Assumption
[TryS] enzyme 1e-5–0.5 μM Modelling

concentration Assumption

Table 4.10: Parameter values for T. brucei TryS and TryAdm.

where kTryS
cat is the turnover number. KTryS

mGspdSH , KTryS
mGSH , KTryS

mD and KTryS
mATP

represent the half-saturation constants of TryS with respect to the substrates

GspdSH, glutathione and spermidine and co-factor ATP, respectively. n rep-

resents the hill coefficient that substrate spermidine may exercise on the en-

zyme. KTryS
siGSH is the substrate inhibition coefficient of glutathione. V TryAdm

maxTSH ,

V TryAdm
maxGspdSH and KTryAdm

mTSH , KTryAdm
mGspdSH stand for the maximum velocity and half-

saturation constants of enzyme TryAdm with respect to the substrates TSH and

GspdSH, respectively.

Table 4.10 contains parameters for T. brucei TryS and TryAdm.



CHAPTER 4. INITIAL KINETIC MODEL 127

4.3.3 Trypanothione Oxidation and Regeneration

In most eukaryotes, the glutathione peroxidase-glutathione reductase system

protects cells against oxidative stress. In trypanosomes, the defense mechanism

against oxidative stress is instead achieved by the cyclic action of trypanothione

and the enzymes trypanothione peroxidase and trypanothione reductase.

TPx: Trypanothione Peroxidase Oxidative stress, represented as the level

of hydrogen peroxide (H2O2), is toxic to parasites, which is produced from molec-

ular oxygen in the living environment of parasites. Under normal conditions,

H2O2 is maintained at very low intracellular concentrations by various enzymes

and molecular antioxidants. An intracellular concentration of 0.1 μM is assumed

in our analysis. H2O2 can be consumed by either glutathione or trypanothione

as substrate via both enzymatic and non-enzymatic reactions.

The non-enzymatic processes are excluded from the model, since the non-

enzymatic reduction of H2O2 accounts for only a small proportion of the overall

H2O2 consumption (Henderson et al. 1987). The major route of H2O2 con-

sumption is through the fast response of trypanothione under the catalysis of

trypanosome peroxidase, as shown in reaction (4.31). Trypanosomes can convert

one molecule of H2O2 to two molecules of H2O using trypanothione which is ox-

idized to form trypanothione disulfide (TS2) in the process. TS2 then rapidly

reacts with NADPH to regenerate the intracellular pool of trypanothione. T.

brucei was found to have a value of 1.3 nmol · min−1 · (108 cells)−1 for trypan-

othione peroxidase when using H2O2 as an oxidant (Penketh and Klein 1986).

T (SH)2 + H2O2 −→ TS2 + 2H2O : TPx (4.31)

The standard Michaelis-Menten kinetics are applied to TPx, shown below:

VTPx = V TPx
max ·

[TSH]

KTPx
mTSH

1 +
[TSH]

KTPx
mTSH

·
[H2O2]

KTPx
mH2O2

1 +
[H2O2]

KTPx
mH2O2

(4.32)

where V TPx
max is the maximum velocity of enzyme TPx. KTPx

mTSH and KTPx
mH2O2

are

the half-saturation constants of TPx with respect to the substrates TSH and

H2O2, respectively.

Trypanothione peroxidase has a very low half-saturation constant with re-
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spect to substrate H2O2, and is assumed to have a value of 1 μM in our analysis

(Henderson et al. 1987, Penketh and Klein 1986). The half-saturation constant

KTPx
mTSH is an unknown parameter. A range of 1–1000 (μM) is given to this

parameter.

H2O2 production in T. brucei has been determined to fall somewhere in the

range 0.2–0.7 nmol · min−1 · (108 cells)−1 (Henderson et al. 1987, Penketh and

Klein 1986). The dynamics of H2O2 are modelled in the form of the difference

between the production rate and consumption rate as follows

d[H2O2]

dt
= RH2O2

g − VTPx (4.33)

where RH2O2
g represents H2O2 generation in bloodstream-form T. brucei.

TR: Trypanothione Reductase Trypanothione reductase serves an impor-

tant role in the regulation of the intracellular thiol-redox balance and in defense

against oxidant.

It catalyses the conversion of TS2 into trypanothione and trypanosomes with

reduced TR levels were found to be very vulnerable to oxidative stress (Krieger

et al. 2000, Khan 2007). Kinetics for TR are only available for T. cruzi; however

these values are included in the model of T. brucei due to the similarity shared

by the two organisms. The standard Michaelis-Menten law is applied to describe

the kinetic mechanism of TR.

VTR = V TR
max ·

[NADPH]

KTR
mNADPH

1 +
[NADPH]

KTR
mNADPH

·
[TS2]

KTR
mTS2

1 +
[TS2]

KTR
mTS2

(4.34)

where V TR
max is the maximum velocity and KTR

mTS2
and KTR

mNADPH stand for the

half-saturation constants with respect to the substrate TS2 and coenzyme NADPH.

Table 4.11 contains parameters for T. brucei TR.

Contradicting Observations on Glutathione Reductase The removal of

H2O2 through the action of glutathione peroxidase and glutathione reductase

in mammalian cells is replaced in T. brucei by trypanothione acting as a redox

carrier. It is commonly recognized that T. brucei does not contain glutathione

peroxidase, but a conflicting observation was reported regarding the presence of
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Parameters Description Value/Ranges Source
V TR

max maximum 112.7 μmol/min/mg (Krauth-Siegel et al. 1987)
velocity

KTR
mTS2

half-saturation 9 μM (Krauth-Siegel et al. 1987)
constant

KTR
mNADPH half-saturation 36 μM (Krauth-Siegel et al. 1987)

constant

Table 4.11: Parameter values for T. brucei TR. Note that the values are obtained
from experiments on T. cruzi.

glutathione reductase (GR) in the organism. Krauth-Siegel and Comini (Krauth-

Siegel and Comini 2008) observed that T. brucei lacks the necessary genes for

glutathione reductase. However, Fairlamb and Cerami (Fairlamb et al. 1985)

indicate that the activity of glutathione reductase could be readily measured in

the presence of the co-factor trypanothione, and the enzyme-mediated reaction

can be written as follows

GSSG + NADPH −→ 2GSH + NADP : GR (4.35)

GSSG is toxic to cells and under normal conditions it does not accumu-

late because it reduces to glutathione. The rate equation of the enzyme GR

is modelled below. The maximum velocity of GR was reported as 1.4 nmol ·
min−1 · (108 cells)−1 (Penketh and Klein 1986) or 4.5 nmol ·min−1 · (108 cells)−1

(Fairlamb et al. 1985).

VGR = V GR
max ·

[GSSG]

KGR
mGSSG

1 +
[GSSG]

KGSSG
mGSSG

·
[NADPH]

KGR
mNADPH

1 +
[NADPH]

KGR
mNADPH

(4.36)

where V GR
max is the maximum velocity and KGR

mGSSG and KGR
mNADPH stand for the

half-saturation constants with respect to the substrate GSSG and co-enzyme

NADPH.

In T. brucei, trypanothione is a spontaneous reductant of GSSG and thiore-

doxin (Krauth-Siegel et al. 2005). In the present kinetic model, the involvement

of trypanothione in the consumption of GSSG and thioredoxin is neglected owing

to its instantaneous occurrence. The enzymatic reaction in which trypanothione

metabolizes H2O2 is taken as the only reaction that trypanothione participates
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in as a substrate. Moreover, because of the contradicting observations reported

for GR, the rate equation (4.36) is not taken into account in the modelling pro-

cess. Further clarification is required regarding the presence of this enzyme and

its associated kinetics.

4.3.4 Formation of NADPH and Pentoses

Glycolysis in bloodstream-form T. brucei cells provides a convenient context for

studying the enzyme inhibitors to be used as anti-parasitic drugs (Eisenthal and

Cornish-Bowden 1998) because of the significant differences in the organization

of glycolysis in parasites and host cells. The model of trypanosomal glycolysis

developed by Bakker et al. (Bakker et al. 1997) provides a good starting point

for a systematic investigation of potential drug targets.

Glycolysis represents the sole pathway for glucose metabolism to provide cells

with energy ATP, and bloodstream-form T. brucei depends completely on rapid

glycolysis for its energy supply. Glucose metabolism is facilitated by the glucose

transporter of T. brucei, which follows a reversible process. Intracellular glucose

is converted into D-glucose 6-phosphate (G6P) under the catalysis of hexokinase

(HKK), and consequently glycerol and ribose. The majority of intermediate

compounds and enzymes of the glycolysis pathway are located in the glycosome

of T. brucei.

The pentose phosphate pathway plays a crucial role in the metabolism of

many parasitic protozoa and in the host-parasite relationship (Barrett et al.

2003). The pathway maintains intracellular pools of NADP and NADPH, where

the latter is used as substrate in the protection of trypanosomes against oxida-

tive stress. The cellular ratio of NADPH to NADP is an important means of

regulating the metabolic flux through the pathway. When the NADPH/NADP

ratio is high, a powerful inhibition of trypanosomal growth may occur.

The pentose phosphate pathway converts glucose 6-phosphate (G6P) to ri-

bose 5-phosphate (Ru5P) via a sequence of enzymatic reactions, and the ma-

jority of the pathway intermediates are shown to be cytosolic in T. brucei. The

enzyme hexokinase catalyzing the production of glycosomal G6P is reported to

have an exclusively glycosomal location and T. brucei has not been evidenced to

be able to synthesize G6P de novo in cytosol. This compartmentation constraint

leads to a question of where the required metabolites of the pentose phosphate

pathway come from, especially in the case of G6P. One theory is that a trans-
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porter exists in the glycosomal membrane that facilitates the transfer of this

intermediate between the glycosome and cytosol (Barrett 1997). However, no

kinetic information describing this postulated membrane transporter in T. bru-

cei has ever been reported. To enable the in silico simulation, we assume that

G6P concentrations in the glycosome and the cytosol are equal, and thus the

well-understood kinetics of glycosomal hexokinase can be applied to the present

model.

The complete pentose phosphate pathway consumes G6P to produce ri-

bose via a series of enzymatic reactions catalyzed by the enzymes Glucose-

6-phosphate Dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL), 6-

phosphogluconate dehydrogenase (6PGDH), ribose 5-phosphate isomerase and

ribokinase, leading to the intermediate products D-glucono-1,5-lactone 6-phosph-

ate (6-PGL), 6-phospho-D-gluconate (6-PG), D-ribulose 5-phosphate (Ru5P), D-

ribose 5-phosphate (R5P) and ribose, respectively. In the present kinetic model,

the pentose phosphate pathway is revised in accordance with the intended use

of the model. Two primary factors for trypanosomal growth – trypanothione

biosynthesis and oxidant detoxification – are the focus of the study of trypan-

othione metabolism. Owing to the critical role of NADPH in the defense mech-

anism against oxidative stress, the consideration of the pathway is limited to the

elementary steps that produce NADPH.

The pentose phosphate pathway can be separated into an oxidative branch

and a non-oxidative branch. The oxidative branch of the pathway involves

G6PDH, 6PGL and 6PGDH, which are essential for the protection of the par-

asite against oxidative stress. The reactions processing the exchange between

NADP and NADPH are the reactions catalyzed by G6PDH and 6PGDH, given

as follows

G6P + NADP −→ 6-PGL + NADPH : G6PDH (4.37)

6PG + NADP −→ Ru5P + NADPH : 6PGDH (4.38)

The intermediate reaction responsible for the production of 6PG (the reac-

tant in the chemical reaction in equation (4.38)), occurs spontaneously compared

to other enzymatic reactions in the pathway. 6PGL is a unstable compound

and the necessity of 6PGL to catalyze this reaction in the cells is questionable

(Duffieux et al. 2000). For this reason, a direct conversion from 6PGL into Ru5P

is assumed. Combined with the aforementioned reactions for glucose transport
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and glycosomal G6P production, the revised pentose phosphate pathway is rep-

resented by the following chemical reactions:

Glucoseext ←→ Glucoseg : GlcPt (4.39)

Glucoseg + ATP −→ G6P + ADP : HKK (4.40)

G6P + NADP −→ 6PG + NADPH : G6PDH (4.41)

6PG + NADP −→ Ru5P + NADPH : 6PGDH (4.42)

Kinetic mechanisms of the required enzymes catalyzing the above reactions

are documented in the following paragraphs.

GlcPt: Glucose Transport The kinetics of glucose transport are known in

detail. We apply the kinetic equation defined by Haanstra et al. (Haanstra

et al. 2008) to model the dynamics of glucose transport, shown below:

VGlcP t = V GlcP t
max · [Glc]ext − [Glc]g

KGlcP t
m + [Glc]ext + [Glc]g + α · [Glc]ext

[Glc]g
KGlcP t

m

(4.43)

where V GlcP t
max is the maximum velocity of the forward glucose transport reaction.

[Glc]ext and [Glc]g represent the concentrations of exogenous and glycosomal

glucose. As glucose transport is modelled as a reversible reaction, KGlcP t
m is thus

the generalized half-saturation constant. α is the scaling factor adjusting the

weight of the forward glucose uptake and the backward glucose efflux.

Table 4.12 contains parameters for T. brucei glucose transport.

Parameters Description Value/Ranges Source
V GlcP t

max maximum 0.109 μmol/min/mg (Haanstra et al. 2008)
velocity

KGlcP t
m half-saturation 1000 μM (Haanstra et al. 2008)

constant
α scaling factor 0.75 μM (Haanstra et al. 2008)
[Glc]ext concentration 5000 μM (Haanstra et al. 2008)

in blood

Table 4.12: Parameter values for T. brucei glucose transport.
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HXK: Hexokinase The kinetic equation of Hexokinase from the model of

glycolysis designed by Haanstra et al. (Haanstra et al. 2008) is adopted, which

is expressed as follows

VHKK = V HXK
max ·

[Glc]g
KHXK

mGlcg

· [ATP ]g
KHXK

mATP(
1 +

[ATP ]g
KHXK

mATP

+
[ADP ]g
KHXK

mADP

)
·
(

1 +
[Glc]g
KHXK

mGlcg

+
[G6P ]

KHXK
mG6P

) (4.44)

where V HXK
max is the maximum velocity. KHXK

mGlcg
and KHXK

mATP are the half-saturation

constants of the enzyme with respect to endogenous glucose and co-factor ATP

in glycosome. KHXK
mADP and KHXK

mG6P represent the inhibition constant of the prod-

ucts ADP and G6P, respectively.

Table 4.13 contains parameters for T. brucei HXK.

Parameters Description Value/Ranges Source
V HXK

max maximum 1.93 μmol/min/mg (Haanstra et al. 2008)
velocity

KHXK
mGlcg

half-saturation 100 μM (Haanstra et al. 2008)

constant
KHXK

mATP half-saturation 116 μM (Haanstra et al. 2008)
constant

KHXK
mADP inhibition 126 μM (Haanstra et al. 2008)

constant
KHXK

mG6P inhibition 12000 μM (Haanstra et al. 2008)
constant

[ATP ]g concentration 240.5 μM (Haanstra et al. 2008)
in glycosome

[ADP ]g concentration 1519 μM (Haanstra et al. 2008)
in glycosome

Table 4.13: Parameter values for T. brucei HXK.

G6PDH: Glucose-6-phosphate Dehydrogenase G6PDH is the first en-

zyme of the pentose phosphate pathway. The product of the enzyme-mediated

reaction, G6P, is toxic to trypanosomes when it is accumulated. Several stud-

ies on T. brucei G6PDH however return us again to the fact that different

groups frequently present conflicting observations of enzyme activity. Cronin

et al. (Cronin et al. 1989) detected a maximum velocity of 0.0168±0.0057
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μmol/min/mg and 0.0124±0.0038 μmol/min/mg for the bloodstream form and

procyclic form of T. brucei, respectively, whereas Heise and Opperdoes (Heise

and Opperdoes 1999) measured a maximum velocity of procyclic form T. bru-

cei G6PDH of 14μmol/min/mg. Duffieux et al. (Duffieux et al. 2000) however

reported a much higher value of 740 μmol/min/mg.

The maximum velocity of bloodstream-form T. brucei G6PDH is thus con-

sidered as an unknown parameter due to the conflicting data. The published in

vivo experiments were performed in a realistic environment, where the poten-

tial G6P transport between the glycosome and the cytosol are naturally taken

into account. However, in our kinetic model, no distinction was made between

glycosomal G6P and cytosolic G6P. Treating the maximum velocity of G6PDH

as an unknown parameter adds an extra degree of freedom to the system, which

allows the in silico model to be solved computationally.

Compared to the wide range of values reported for the specific activity of

G6PDH, there is less uncertainty about the value of half-saturation constants

of the enzyme with respect to the involved substrates. The half-saturation con-

stants are hence considered as known parameters, which are extracted from the

published articles.

The Michaelis-Menten based kinetics are applied to model the dynamics of

G6PDH, shown below:

VG6PDH = V G6PDH
max ·

[G6P ]

KG6PDH
mG6P

1 +
[G6P ]

KG6PDH
mG6P

·
[NADP ]

KG6PDH
mNADP

1 +
[NADP ]

KG6PDH
mNADP

+
[NADPH]

1 + [NADPH]

KG6PDH
iNADPH

(4.45)

where V G6PDH
max is the maximum velocity. KG6PDH

mG6P and KG6PDH
mNADP are the half-

saturation constants of G6PDH with respect to the substrate G6P and co-

enzyme NADP. KG6PDH
iNADPH represents the inhibition constant of product NADPH

on the enzyme.

Table 4.14 contains parameters for T. brucei G6PDH.

Igoillo-Esteve et al. (Igoillo-Esteve et al. 2007) hypothesized that under

normal conditions, T. cruzi G6PDH is maintained in its reduced less-active form

by NADPH. Under oxidative stress, in which the level of the reduced cofactor

drops and other molecules like H2O2 are present, the enzyme is oxidized to attain

its more active form. This process would constitute a fast response to increase

NADPH level to counteract the oxidative stress.
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Parameters Description Value/Ranges Source
V G6PDH

max maximum 1e-4–40 μmol/min/mg Modelling
velocity Assumption

KG6PDH
mG6P half-saturation 138 μM (Duffieux et al. 2000)

constant
KG6PDH

mNADP half-saturation 35 μM (Duffieux et al. 2000)
constant

KG6PDH
iNADPH inhibition 1–1000 μM Modelling

constant Assumption

Table 4.14: Parameter values for T. brucei G6PDH.

We propose that T. brucei G6PDH activity may also be induced by oxidative

stress due to the similarity shared by the two organisms. Accordingly, the rate

equation (4.45) is modified with the last factor representing the activation of

G6PDH by oxidative stress.

VG6PDH = V G6PDH
max ·

[G6P ]

KG6PDH
mG6P

1 +
[G6P ]

KG6PDH
mG6P

·
[NADP ]

KG6PDH
mNADP

1 +
[NADP ]

KG6PDH
mNADP

+
[NADPH]

1 + [NADPH]

KG6PDH
iNADPH

· [H2O2] + Ka

[H2O2]ss + Ka

(4.46)

where [H2O2]ss and [H2O2] represent the concentration of H2O2 under steady-

state and oxidative stress conditions. Ka is the activation constant. When

[H2O2] = [H2O2]ss the factor is 1.

6PGDH: 6-phosphogluconate Dehydrogenase Hanau et al. (Hanau et al.

1996) performed detailed kinetic analysis of T. brucei 6PGDH. The authors

observed that NADPH acts as a competitive inhibitor of NADP and Ru5P is a

competitive inhibitor of 6PG. The maximum velocity of this enzyme has been

measured experimentally by Hanau et al.; however, this parameter is treated as

unknown in the present kinetic model for the same reasons as G6PDH.

The Michaelis-Menten based kinetics for 6PGDH dynamics are

V6PGDH = V 6PGDH
max ·

[6PG]

K6PGDH
m6PG

1 +
[6PG]

K6PGDH
m6PG

+
[Ru5P ]

K6PGDH
iRu5P

·
[NADP ]

K6PGDH
mNADP

1 +
[NADP ]

K6PGDH
mNADP

+
[NADPH]

K6PGDH
iNADPH

(4.47)

where V 6PGDH
max is the maximum velocity. K6PGDH

m6PG and K6PGDH
mNADP are the half-
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saturation constants of 6PGDH with respect to the substrate 6PG and co-

enzyme NADP. K6PGDH
iRu5P and K6PGDH

iNADPH represent the inhibition constants of

the products of the enzyme, Ru5P and NADPH, respectively.

Table 4.15 contains parameters for T. brucei 6PGDH.

Parameters Description Value/Ranges Source
V 6PGDH

max maximum 1e-4–40 μmol/min/mg Modelling
velocity Assumption

k6PGDH
cat turnover 27 s−1 (Hanau et al. 1996)

number
K6PGDH

m6PG half-saturation 3.5 μM (Hanau et al. 1996)
constant

K6PGDH
mNADP half-saturation 1 μM (Hanau et al. 1996)

constant
K6PGDH

iRu5P inhibition 30 μM (Hanau et al. 1996)
constant

K6PGDH
iNADPH inhibition 0.6 μM (Hanau et al. 1996)

constant
[Ru5P ] intracellular 20 μM Modelling

concentration Assumption

Table 4.15: Parameter values for T. brucei 6PGDH.

4.4 The Initial Kinetic Model

Differential equations for the different metabolites and other time-dependent

variables of the trypanothione metabolism are formulated in Table 4.16. There

are 20 ODEs for variable metabolites derived from 23 catalytic mechanisms and

3 ODEs for time-dependent variables, derived from 3 regulatory mechanisms.

The steady-state concentrations of the variable metabolites and time-dependent

variables are given in Table 4.17.

To simulate a realistic environment for G6P production, a volume of 0.2451

μL (mg cell protein)−1 is applied to the glycosome (Vg). The remaining intracel-

lular and transport reactions are assumed to take place in the same cell volume.
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Variables Differential Equations

[Met] d[Met]
dt

= VMetPt − VMAT + VMetRcy

[AdoMet] d[AdoMet]
dt

= VMAT − VAdoMetDCT − VAdoHcy

[dAdoMet] d[dAdoMet]
dt

= VAdoMetDCT − VSpdS

[Arg] d[Arg]
dt

= VArgPt − VARG

[Orn] d[Orn]
dt

= VARG − VODC

[Put] d[Put]
dt

= VODC − VSpdS

[MTA] d[MTA]
dt

= VSpdS − VMetRcy

[Cys] d[Cys]
dt

= VCysPt − VgGCS

[gGluCys] [gGluCys]
dt

= VgGCS − VGS

[Spd] d[Spd]
dt

= VSpdS − V gd
TryS + V GspdSH

TryAdm

[GspdSH] d[GspdSH]
dt

= V gd
TryS − V gg

TryS + V TSH
TryAdm − V GspdSH

TryAdm

[GSH] d[GSH]
dt

= VGS − V gd
TryS − V gg

TryS + V GspdSH
TryAdm + V TSH

TryAdm

[TSH] d[TSH]
dt

= V gg
TryS − V TSH

TryAdm − VTPx + VTR

[TS2] d[TS2]
dt

= VTPx − VTR

[Glu]in
d[Glu]in

dt
= VGlcP t − VHXK

[G6P ] d[G6P ]
dt

= (VHXK − VG6PDH)/Vg

[6PG] d[6PG]
dt

= VG6PDH − V6PGDH

[NADP ] d[NADP ]
dt

= VTR − VG6PDH − V6PGDH

[NADPH] d[NADPH]
dt

= VG6PDH + V6PGDH − VTR

[H2O2]
d[H2O2]

dt
= RH2O2

g − VTPx

[ODC] d[ODC]
dt

= RODC
s − RODC

d

[AdoMetDCL] d[AdoMetDCL]
dt

= RAdoMetDCL

b − RAdoMetDCL

d

[Prozyme] d[Prozyme]
dt

= RProzyme
s − RAdoMetDCL

b

Table 4.16: Differential equations for the different metabolites and other time-
dependent variables of the trypanothione metabolism.
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Variables Value/Ranges Source
[Orn] 0–43 μM (Fairlamb et al. 1987)

(Bellofatto et al. 1987)

[AdoMet] 0–34 μM (Fairlamb et al. 1987)
(Bellofatto et al. 1987)

[Met] 3798 μM Experimental Data
from Mike Barrett

[Arg] 700±35 μM Experimental Data
from Mike Barrett

[dAdoMet] 9 μM (Fairlamb et al. 1987)

[Put] 500–700 μM (Fairlamb et al. 1987)

[Spd] 2000–14000 μM (Fairlamb et al. 1987)

[MTA] 20 μM Modelling Assumption

[Cys] 100-1000 μM Modelling Assumption

[GSH] 234 μM (Fairlamb et al. 1987)

[gGluCys] 100 μM Modelling Assumption

[GspdSH] 48 μM (Fairlamb et al. 1987)

[TSH] 340 μM (Fairlamb et al. 1987)

[TS2] 0.1 · [TSH] Analytical Solution

[NADPH] 150 μM Experimental Data
by Mike Barrett

[Glc]g 0 μM (Haanstra et al. 2008)

[G6P ] 500 μM (Haanstra et al. 2008)

[NADP ] 150 μM Experimental Data
by Mike Barrett

[6PG] 20–500 μM Modelling Assumption

H2O2 0.1 μM Modelling Assumption
[ODC] 0.01–0.2 μM Modelling Assumption

[Prozyme] 5e-6–5e-2 μM Modelling Assumption

[AdoMetDCL] 0–0.1 μM Modelling Assumption

Table 4.17: Steady-state concentrations of the different metabolites and other
time-dependent variables of the trypanothione metabolism.
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4.5 Summary

In this chapter we outlined the development of the first kinetic model of try-

panothione metabolism in bloodstream-form T. brucei. A critical review of the

scientific papers relevant to the trypanothione metabolic pathway was presented.

We illustrated the model structure and enzyme dynamics on the basis of

two individual sub-networks that fulfill specific metabolic functions, including

the trypanothione biosynthetic sub-network and the trypanothione redox sub-

network. Description of the mathematical model concentrated on potential reg-

ulation of trypanosomal enzymes in the context of the control of intracellular

levels of key metabolites and trypanosomal growth. We also explained why bio-

logical measurements extracted from the literature have to be used with caution

and some of the issues raised by conflicting observations in the context of the

modelling procedure were discussed.

Overall, there are a large number of unknown parameters in the kinetic model

of trypanothione metabolism and the experimental data available for solving

the inverse problem is incomplete and uncertain. In Chapter 7 we propose a

methodological framework to strategically evaluate and refine this kinetic model,

where both problems of structure identification and parameter estimation are

investigated. A grey-box mathematical model representation, which combines

mechanistic (white-box) models and empirical (black-box) models, is applied to

successfully model the polyamine biosynthetic sub-pathway.

Missing quantitative information about the metabolic system makes the in

silico model simulation extremely challenging, in which case a reliable parameter

estimation is necessary for identifying unknown parameters. The computational

issues associated with solving the inverse problem of non-linear dynamic systems

(via single-objective optimization) are discussed in Chapter 5.



Chapter 5

Parameter Estimation of

Computational Models

In this chapter some of the basic theory associated with optimization is re-

viewed. A brief discussion of a global optimization approach, Particle Swarm

optimization, and the derivation of the PSwarm algorithm is presented. The

computational issues related to global optimization in studying the dynamic be-

haviour of biological systems are investigated and analysis techniques that can

be employed to evaluate and refine the estimated solutions are discussed.

5.1 Introduction

Optimization in general deals with the minimization (or maximization) of an

objective function that measures the quality of an estimated parameter set in

satisfying a given criteria (e.g. minimization of residuals) for a model that

describes, for example, the dynamics of a non-linear system. In the context

of biological systems, the optimization frequently aims to match experimental

results as closely as possible, however direct determination of in vivo parameters

is difficult and often noisy. Given sufficient experimental measurements of system

components, the goal is to minimize the objective function, normally written

as a least-squares expression, by adjusting the model parameters. Parameter

estimation problems, also known as inverse problems, belong to the family of

system identification, where the model structure is assumed as given.

Traditionally, parameter estimation is tackled by solving the initial-value

problems (Hemker 1972). Arbitrary guesses for the model initial condition and

parameters are chosen, which are refined by comparing the model trajectory

140
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obtained at each iteration of function evaluations with experimental data. The

initial-value approach is efficient and can rapidly converge to the correct solution

only if the initial guess is in the vicinity of the optimal solution (Bock 1982).

Another group of methods for parameter estimation uses a multiple-shooting

approach (Childs and Osborne 1996). These methods are generally used to solve

boundary-value problems. Multiple-shooting methods involve the superposition

of initial-value solutions of the differential equations over short sub-intervals and

enforcing continuity of the solution across interval boundaries. This consequently

transforms the original system into a constrained, over-determined system that is

parameterized by both kinetic parameters and the values of state variables at the

boundaries of each sub-interval. The advantages of multiple-shooting approaches

lie in the conceptual simplicity and the ability to make use of established solution

methods for initial-value problems.

Both of these approaches, however, require a good selection of mesh (as an

initial guess to parameter estimate) in order to avoid drifting far away from

the solution trajectory or converging to a local optimum. When solving stiff

boundary-value problems, the number of mesh points grows unacceptably large

with an increase in the stiffness of the problem (Ascher and Petzold 1998).

In this thesis, the initial-value problem of time-dependent ODEs is consid-

ered. This chapter lays the foundation for the subjects of interest with regard

to parameter estimation and model identifiability. The structure of this chapter

is as follows. In Section 5.2, an introduction to optimization theory is given. In

Section 5.3.1, the Particle Swarm global optimization approach is described. In

Section 5.4, the performance of the optimization method in various scenarios is

evaluated using the ERK signalling pathway as a case study. The identifiabil-

ity analysis performed on the mathematical model of the signalling pathway is

presented in Section 5.5.

5.2 Optimization Background

There are two important concepts associated with optimization, namely search

space and fitness landscape. Exploring the search space refers to the process

of searching for an optimal solution among a collection of candidate solutions.

The optimum solution is often signified with a vector, where the length of the

vector indicates the number of variables to be optimized. This also gives the

dimensionality of the search space. Here we take a two parameter problem as
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an example, forming a two-dimensional search space. Suppose each candidate

solution can be assigned a real-valued fitness. In this case, the fitness landscape

can be thought of as a three-dimensional plot in which the two parameters form a

2D mesh and the fitness at each point is plotted along the third axis. An example

fitness landscape based on trigonometric functions is shown in Figure 5.1. Such

plots are called landscapes because the plot of fitness values typically contains

‘hills’, ‘peaks’ and ‘valleys’.

Parameter 1

Parameter 2

O
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n

Figure 5.1: A simple fitness landscape for a two-parameter problem.

Optimization techniques can be seen as ways of moving solution candidates

around on the landscape defined by the fitness function. The performance of the

techniques is characterized by the rate of convergence and diversity of optimal

solutions. A difficult but common problem is that the search stops at a local

optimum, a problem termed premature convergence. A local optimum is not

necessarily the highest point in the landscape, but is the highest point in the

local vicinity and any small movement from it results in a reduction in fitness.

A number of computational approaches to parameter optimization have been

employed for biological systems. Optimization methods are generally classified

into either local or global categories based on their capability in solving multi-

modal problems, where multiple local minima are expected. Global optimiza-

tion methods, as the name indicates, attempt to seek the global minimum in

the landscape. Local optimization methods, such as the Gauss-Newton method,
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are however very likely to arrive at solutions of a local nature. A systematic

multi-start method is often used in conjunction with local optimization meth-

ods in order for them to be able to tackle the problem of multi-modality. It is

commonly known that global optimization methods can provide us with globally

optimal solutions, and a combination of stochastic searching strategies and de-

terministic global methods have been shown to be able to enhance the efficiency

of optimization approaches (Rodriguze-Fernandez et al. 2006).

Comparison of optimization methods is beyond the scope of the thesis, how-

ever. A comprehensive study investigating the performance of some local and

global optimization methods is presented by Moles et al. (Moles et al. 2003),

where the authors found that evolutionary strategies coupled with stochastic

ranking technique might be the most competitive optimization algorithm; how-

ever, the computational cost of this algorithm can be very expensive when solving

complex parameter estimation problems.

It would become very difficult to distinguish global and local methods when

the available observed data is noisy and incomplete. One major issue associated

with optimization is concerned with Parameter Identifiability, which aims to

discern whether or not unknown model parameters can be uniquely determined

from experimental data. Theoretically, there are two situations where parame-

ters cannot be independently identified regardless of the optimization methods

applied.

First, intrinsic constraints in the model formulation can cause parameters

to be non-identifiable. Given a simple mathematical function x with respect to

time t and parameters a and b:

x(t) = e(a−b)t · x0

the time-dependent ODE model is derived as

dx

dt
= a · x − b · x = (a − b) · x

In this case, the parameters a and b are correlated with each other. The factor

(a− b) will be treated as a single parameter that will be tuned during the opti-

mization process; a unique solution for parameters a and b cannot be obtained.

Second, the lack of information in the observation data causes the parameters

to be non-identifiable. Given another mathematical function with respect to time
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t and parameters a and b:

x(t) = e−bt · C +
a

b

where C is a constant. The time-dependent ODE model is represented as

dx

dt
= −b · x + a

In this case, optimization with measurements at steady state leads to a and b

not being independently solved for, since the ratio between the two parameters

is the factor that will be adjusted by the optimizer. As shown in Figure 5.2,

the steady-state level is decided by the ratio a/b, and the rate at which the

variable x decays to steady state is controlled by the parameter b in the term

e−bt of the function. In this figure, the ratio a/b is fixed at 0.5 to illustrate that

different values of a and b can yield the same steady state, but different transient

behaviour. The two parameters are more likely to be independently identified

when the transient data, rather than steady-state data, is used for optimization.

Further investigation is necessary to examine if noise in experimental data will

influence parameter identifiability.

5.2.1 Problem Statement

This work deals exclusively with Bound Constrained Optimization problems,

where parameters to be determined are subject to certain constraints. Math-

ematically, the formulation is that of a non-linear programming problem with

boundary conditions on the parameters:

minimize f(z) subject to z ∈ Ω

with

Ω = {z ∈ R
n : l ≤ z ≤ u},

where the inequalities l ≤ z ≤ u are posed on each parameter to be solved for

and l ∈ (−∞, R)n, u ∈ (R, +∞)n, and l ≤ u. In the context of optimization of

biological systems, model parameters must typically be non-negative.

We consider deterministic, non-linear dynamic models of biochemical sys-

tems, described by ordinary differential equations (ODEs). A common statement
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Figure 5.2: A simple decay function for an illustration of the non-identifiability
problem. The red dotted line represents the steady-state level, labelled with a/b.
The horizontal axis represents time and the vertical axis represents transient
values of dependent variable x. The convergence of the function to the steady
state is proportional to the increase in the value of parameter b.

of this type of problem is given below:

ż(t, x) = f(z(t, x),p)

yM(t, x) = g(z(t, x),p)

where z is the vector of state variables describing the change over time of the

system and p is the vector of model parameters. f specifies the model, and yM is

the vector of measured states. The measurement process yM is modelled by an

observational function g. Often, the experimental data points yD are corrupted

by measurement noise. Given a set of time points i = 1, . . . , m for system

components j = 1, . . . , n, if we assume the noise to be Gaussian with known

constant variance η ∼ N(0, σ2
ij), then the experimental data can be expressed

as:

yD(ti, xj) = yM(ti, xj) + ηij

The aim is now to estimate the initial value z0 and the parameters p from
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the observed data yD(ti, xj) by minimizing the objective function, χ(p), which

is defined in the form of a least-squares residual of model predictions (ỹ) and

experimental measurements (yD), as follow:

χ(p) =
∑

1≤i≤m

∑
1≤j≤n

(
yD(ti, xj) − ỹ(ti, xj,p)

σij

)2

(5.1)

5.2.2 Objective Function

Formulating objective functions is not a simple task and typically a rather em-

pirical process. The value of the objective value must ultimately give a measure

of how well the optimization requirements are satisfied. An incorrect mathemat-

ical formulation of the objective function can have an influence on the estimated

solutions when solving non-linear dynamic systems.

Objective functions in the form of least-squares residuals of experimental

observations and model predictions (for each measured system component at

each discrete time point available) is a technique commonly integrated with

optimization methods in solving inverse problems. The simple nature of the

least-squares structure should be used with caution however; as an inappropriate

formulation may affect the searching algorithm, leading to incorrect solutions as

a result.

Take a simple pathway for illustrative purposes. Suppose the output is de-

scribed by a non-linear function y = f(t,p), where variable y is dependent on

time t and parameter p. The objective function formulated using the standard

least-squares structure is applied to resolve the unknown parameter vector p us-

ing steady-state observations. The predicted dynamics of variable y can be pro-

duced by three different sets of parameter estimates, each having approximately

the same objective function value. Figure 5.3 clearly indicates that different sets

of parameter estimates, p̂, can have the same least-squares residual between the

reference (dotted red) and model simulation (black solid), giving rise to diverse

dynamics for variable y. Only Figure 5.3(c) is consistent with the target, which

is to model steady sate behaviour. This example shows that objective functions

based on residual errors, i.e. a sum of least-squares residual, is not capable of

tackling the estimation problem when the fitting is characterized by more than

one feature. This subject is discussed in detail in Chapter 6, where a solving

strategy to cope with multiple features appropriately is proposed.
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(a) Model with linear dynamics
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(b) Model with oscillatory dynamics
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(c) Model with the steady-state property

Figure 5.3: Diverse dynamics of variable y with respect to time, produced with
different optimal parameter vectors. Vertical bars (blue) in each plot indicate the
residual of the simulated (black solid with circles) and target data (red dotted)
at each discrete time point. The sum of the residuals gives the overall value
of the objective function. All the plots return approximately the same overall
objective function value.

5.3 Partical Swarm Optimization

In the past few decades, many algorithms have been applied to solve optimization

problems of dynamic systems. These include evolutionary algorithms (EAs)

(Coello 2002), which are optimization algorithms that incorporate mechanisms

that mirror biological evolutionary processes. They have proved popular as

they require few assumptions about the problem and tend to have better global

convergence properties.

Recently a modern heuristic algorithm–Particle Swarm Optimization (PSO)

has been proposed (Kennedy and Eberhart 1995). PSO is a population-based

optimization algorithm which was inspired by the social behaviour of fish school-

ing and birds flocking. Similar to other EAs, PSO can solve a variety of hard

problems but with a faster convergence rate. The feature that it only requires
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a few parameters to be tuned also makes the algorithm very attractive from the

implementation point of view.

Copasi (Mendes 1993) is a popular software package for modelling, simula-

tion and analysis of biochemical systems. It features many different algorithms

for numerical optimization, ranging from those based on derivatives, to those

inspired by nature, such as evolutionary algorithms. Recently, Copasi has been

expanded with the PSO algorithm (Hoops et al. 2006) because of its very com-

petitive performance in tackling the hard problem of high-dimensional parameter

estimation.

The Bayesian approach (see Girolami 2008) is gaining increasing attention in

this field, serving as a promising alternative; however, when the prior knowledge

is scarce, the requirement for an appropriate prior distribution for all unknown

parameters is very hard to satisfy. The approach can also be very computation-

ally expensive when solving high-dimensional systems. Another drawback is the

difficulty in making the Bayesian approach available within software packages –

many of the fine-tuning tricks are problem specific and hence cannot be easily

generalised. The theoretical sophistication causes the approach too subtle to be

widely employed beyond the Bayes-educated community.

In light of its cost-effectiveness in tacking complex inverse problems, the PSO-

based technique is investigated and employed in the thesis with an application

to biological systems. A brief introduction on the basic PSO technique and the

PSwarm algorithm is given in this section.

5.3.1 Basic PSO Technique

This description follows the presentation of the algorithm given by van den Bergh

(van den Bergh 2001).

The PSO algorithm is based on a population of ‘particles’ that are initialised

randomly and represents solutions of the optimization problem. Particles are

associated with a velocity vector that guides the particle’s movement through

the search space and is dynamically adjusted according to the optimal position(s)

of the particle throughout the previous generations.

Each particle is updated by two ‘best’ values termed pbest and gbest. The

first value is the best position a particle has achieved so far – the so-called

personal best, and the second value is the best particle position found among

all particles – the global best. At each generation t, a stochastic combination
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of the directions to the best position of the ith particle (pbestti) and the best

(among all) particle’s position (gbestt) is added to the previous velocity vector

υt
i associated with each particle xi, allowing the search space to be effectively

explored. Particles’ velocities are updated by adding the new velocity vector

υt+1
i to the old position υt

i according to the equations below:

υt+1
i = ω · υt

i + α1 · r1 · (pbestti − xt
i) + α2 · r2 · (gbestt − xt

i)

xt+1
i = xt

i + vt+1
i

where ω is called the inertia weight that was proposed by Shi and Eberhart

(Shi and Eberhart 1998). Inertia weight is employed to control the impact of

the previous history of velocities on the current velocity. α1 and α2 are two

positive constants with values upto 2, called the cognitive and social parameter

respectively. r1 and r2 are random numbers in the range 0 to 1.

There is evidence that has shown that PSO can outperform generic algo-

rithm for difficult problem classes, primarily unconstrained global optimiza-

tion problems (Vaz and Vicente 2007, Eberhart and Shi 1998, Parsopoulos and

Vrahatis 2002b). Many successful applications of the PSO algorithm have been

reported for solving engineering problems and numerous improvements to the

algorithm have been proposed (Pant et al. 2008, Huang et al. 2005, Naka and

Fukuyama 2001, Yoshida et al. 1999, van den Bergh and Engelbrecht 2004, Hu

and Eberhart 2002a, Grosan et al. 2005, Higashi and Iba 2003, Krohling et al.

2004). However, very little work (Liu and Yokota 2005) has attempted to tackle

biological problems with PSO. Refer to the thesis by van den Bergh (van den

Bergh 2001) for an in-depth review of PSO-based variations.

Of all the modifications, the strategy of combining the PSO algorithm with

the mutation mechanism often applied to EAs is the most prevalent technique.

Mutation is an important component integral to genetic search. It has the

potential to extend the effective area of the search space by introducing more

diversity into the population (van den Bergh 2001). The mutation operator

is triggered when a predefined threshold is satisfied that quantifies the current

rate of convergence. A good choice of threshold is important to prevent the

disruption of good candidates and the occurrence of a primitive random search.

One modern representative of the PSO-based variations is proposed by Ge

et al. (Ge et al. 2007). The modification introduced an adaptive mutation

mechanism to the standard PSO. At each generation, the prematurity state of



CHAPTER 5. PARAMETER ESTIMATION 150

the algorithm is judged using the variance σ2 and average fitness value f̄ of all

the particles according to the equations:

τ 2 =
σ2

f

f̄ 2
, where σ2

f =
1

n

n∑
i=1

(fi − f̄)2, f̄ =
1

n

n∑
i=1

fi

where n is the number of particles in the population and fi is the fitness value

of the ith particle. τ 2 represents the convergence degree of the population. If

τ 2 is smaller than a given threshold (a predefined value) and the maximum

number of iterations has not yet been reached, the algorithm is considered to

have arrived at a premature convergence. When τ 2 is satisfied, inactive particles

can be identified using the following inequality:

fg − fi

max[(fg − fj), (j = 1, . . . , n)]
≤ θ

where the difference in fitness values between the gbest particle, fg, and the

current particle, fi, over the maximum difference in fitness values between the

gbest particle and the rest of the population is compared with a predefined

threshold, θ. In Ge et al.’s proposal, τ 2 and θ were given values of 0.005 and

0.01.

Next, Gaussian mutation is applied to the inactive particles, where each com-

ponent in the inactive particle is perturbed using a Gaussian random disturbance

with zero mean and constant variance. In our implementation, we randomly gen-

erated 20 samples with Gaussian mutation from each of the inactive particles.

If no perturbed particle is better than the parent particle in terms of the fitness

value, then the parent particle is retained, otherwise the best perturbed particle

is used.

In the following section, we introduce the implementation of the core opti-

mization algorithm that has been employed throughout the thesis.

5.3.2 PSwarm Algorithm

The PSwarm algorithm (Vaz and Vicente 2007) is a recently developed imple-

mentation of PSO. The algorithm is designed around a Search and Poll frame-

work. The Search step is the key to the practical efficiency and takes advantage

of the standard PSO procedure. The Poll step ensures robustness and explores

around the positions of unsuccessful particles in the Search step by perturbing
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the particle in all possible search directions. The Poll step is only involved when

the Search step failed to find an improved solution (i.e. one that decreases the

objective function value).

Generalized pattern search algorithms were defined and analyzed by Torczon

(Torczon 1997). Their study dealt with derivative-free unconstrained optimiza-

tion on continuously differentiable functions using the ideal spanning directions

introduced by Lewis and Torczon (Lewis and Torczon 1996). The set of spanning

directions D is the basic ingredient in the definition of the mesh, and is formed

by the set of unit vectors and their negatives that are the basis for the problem

space, as below:

D = [e1, . . . , en,−e1, . . . ,−en]

PSwarm uses the spanning set to coordinate the search for variables. In the

algorithm, e1, . . . , en and −e1, . . . ,−en form two identity matrices (positive and

negative) of order n representing the dimension of solution vector x.

Given a positive spanning set D and the current iterate k, two sets of points

are defined: the mesh set Mk and the poll set Pk. The mesh is centered around

the current iterate xt and its fitness is parameterized through the mesh size

parameter Δk as follows:

Mk = {xk + ΔkDz : z ∈ Z+} (5.2)

where Z+ is the set of nonnegative integers, which, in the algorithm, has the

dimension equal to the dimension of solution vector x. The mesh set Mk is

used to conduct the search step. If the poll step is activated, the function f is

evaluated at the neighboring mesh points to check if a lower function value can

be found. If either the search or poll step produces an improved mesh point,

then the mesh size parameter is reset using the rule:

Δk+1 = τωkΔk (5.3)

where τ is a rational number ≥ 1 that remains constant over all iterations, and

ω is an integer ≥ 0. If the poll step fails to find an improved mesh point, the

mesh is reset by setting the mesh size parameter

Δk+1 = τωkΔk (5.4)

where τ is greater than one, as defined above and ωk is an integer ≤ −1.
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When no success is obtained at the search step, the poll step evaluates the

function f at the point xk in the poll set. The poll set Pk is composed of mesh

points neighboring the current iterate xk in the directions of the columns of Dk:

Pk = {xk + Δkd : d ∈ Dk} (5.5)

A general procedure of pattern search framework is summarized in Algo-

rithm 1, based on the description given by Audet and Dennis (Audet and

Dennis 2000).

Algorithm 1 A general pattern search algorithm for unconstrained minmization
(Audet and Dennis 2000).

1: INITIALIZATION:
2: Let x0 ∈ Rn be such that f(x0) is finite. Let D be a positive spanning

set, and let M0 be the mesh defined by Δ0 > 0, and set D0 = D. Set the
iteration counter k = 0.

3: SEARCH STEP:
4: Evaluate f at a number of points in Mk. If an improved mesh point x̂k is

found for which f(x̂k) < f(xk), then set xk+1 = x̂k and update Δk+1 ≥ Δk

according to rule in Equation (5.3). If the search step was successful, then
go to step 7, otherwise invoke the poll step.

5: POLL STEP:
6: Evaluate f on the poll set defined in Equation (5.5). If an improved point is

found for which f(xk + Δkd) ≤ f(xk), then set xk+1 = xk + Δkd and update
Δk+1 ≥ Δk according to rule in Equation (5.3). Otherwise, set xk+1 = xk

and update Δk+1 < Δk according to rule in Equation (5.4).
7: Increment k by 1 and go back to the search step.

The algorithm uses the appealing ‘barrier’ strategy to handle the boundary

constraints when solving unconstrained minimization problems, excluding any

infeasible point from being used in the next iteration. The termination criteria

include the satisfaction of the maximum number of iterations and number of

function evaluations, and the specified tolerance threshold.

The PSwarm algorithm applies the standard PSO technique in the search

step to enhance the capability of the pattern search method in solving multi-

modal problems, helping to prevent the population from being trapped at local

optima. In the meantime, the poll step inherited from pattern search meth-

ods rigorously guarantees the convergence to stationary points from arbitrary

starting points. PSwarm has been demonstrated to outperform several global

optimization methods, giving a better convergence rate and an optimal set of pa-
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rameter estimates and a Matlab implementation of the algorithm was obtained

from Vaz and Vicente (Vaz and Vicente 2007).

One objective of the computational investigation is to compare the perfor-

mance of the PSwarm algorithm and its variant with Gaussian mutation, termed

PSwarmGM, when solving a complex biological problem – in this case, the ERK

signalling pathway. The adaptive mutation mechanism proposed by Ge et al.

(Ge et al. 2007) (introduced in Section 5.3.1) was adopted as the modification

to the algorithm as previous results have shown it to have fast convergence and

accurate parameterization in solving non-linear systems. The PSwarm imple-

mentation was modified to include this mutation mechanism by myself.

Crucial questions for model parameter estimation that arise in the process

of computational modelling are concerned with

1. How capable an optimization algorithm is in tackling the problem of inter-

est. This is reduced to testing the performance of an optimization method

• when experimental measurements are not informative, and

• when experimental measurements are contaminated with noise.

2. If unknown parameters are identifiable with a given model structure and

how they are determined by the quality of experimental measurements.

To clarify the above questions, the ERK signalling pathway is considered

as a case study. The computational study was conducted under a variety of

conditions. The first question is investigated in Section 5.4, with both clean

data sets and those corrupted with measurement noise, and data sets containing

different levels of information content. The second question refers to the problem

of model identifiability, which is discussed in Section 5.5.

5.4 Case Study: ERK Signalling Pathway

The ERK signalling system (also called the Ras/Raf1/MEK/ERK pathway) is

“a ubiquitous pathway that conveys mitogenic and differentiation signals from

the cell membrane to the nucleus” (Cho et al. 2003). Briefly, Raf1 (Raf-1* or

activated Raf) is activated by binding to Ras proteins activated by external

stimuli (e.g. growth factor). This then reacts with RKIP to form Raf1/RKIP,

in turn activating ERK, which is responsible for gene expression of transcription

factors. A schematic representation of the pathway is shown in Figure 5.4.



CHAPTER 5. PARAMETER ESTIMATION 154

 k6/k76 7

m1

               Raf1
m2

               RKIP

m3               Raf1/RKIP

m4               Raf1/RKIP/ERK

m5

               ERK

m6

            RKIP-P

m7

            MEK-PP

m8               MEK-PP/ERK

m10

               RP

m11               RKIP-P/RP

m9

               ERK-PP

k1/k2

  k11

k9/k10

  k5

k3/k4

   k8

Figure 5.4: A schematic representation of ERK signalling pathway.

The cascade of Raf1-MEK-ERK regulates cellular proliferation, differentia-

tion, and survival. Its malfunction is a common occurrence in human cancers,

and due to this reason, there has been substantial scientific investigation into

the functioning and structure of this pathway for the development of efficient

therapies. The primary objective of our work consisted of studying the global

optimization approach in solving the inverse problem of this interesting biolog-

ical application. Information about the biological significance of the pathway

in growth factor signaling and cancer can be obtained from the studies (Calder

et al. 2006, Shankland et al. 2005, Schoeberl et al. 2002).

The ERK signalling pathway is selected as the case study of the compu-

tational investigation for its well-characterized mathematical model structure.

Thus, parameter estimation uncertainties arising from an incorrect model struc-

ture can be eliminated. Since model parameters (e.g. reaction rates) are known,

we can assess the accuracy and reliability of parameter estimation methods by

calculating the deviation between estimated parameter sets and the reference
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values. When the reference values of the parameters are not known, this mea-

sure is infeasible, as is the case for the parameter estimation of the polyamine

biosynthetic sub-pathway in Chapter 7.

The computational model is presented in the form of non-linear ODEs based

on mass-action kinetics for the production and decay of all the components in-

volved in different chemical reactions. In Figure 5.4, nodes stand for system

components labelled by proteins and edges indicate biochemical conversion be-

tween proteins with arrows denoting the reversibility of the conversion. Each

node and reaction has an associated concentration and a rate constant, symbol-

ized by mi (where i = 1, 2, . . . , 11) and kj (where j = 1, 2, . . . , 11), respectively.

Rate constants are given in rectangles, where the pair kn/kn+1 represents both

the forward (kn) and backward (kn+1) rate of a particular reaction.

To understand the functionality of the ERK signalling pathway, a quantita-

tive description of the system dynamics is necessary. The ODEs of the pathway

are presented in Table 5.1.

Reaction Number Kinetic Equations

1 −k1 · m1 · m2 + k2 · m3 + k5 · m4

2 −k1 · m1 · m2 + k2 · m3 + k11 · m11

3 k1 · m1 · m2 − k2 · m3 − k3 · m3 · m9 + k4 · m4

4 k3 · m3 · m9 − k4 · m4 − k5 · m4

5 k5 · m4 − k6 · m5 · m7 + k7 · m8

6 k5 · m4 − k9 · m6 · m10 + k10 · m11

7 −k6 · m5 · m7 + k7 · m8 + k8 · m8

8 k6 · m5 · m7 − k7 · m8 − k8 · m8

9 −k3 · m3 · m9 + k4 · m4 + k8 · m8

10 −k9 · m6 · m10 + k10 · m11 + k11 · m11

11 k9 · m6 · m10 − k10 · m11 − k11 · m11

Table 5.1: An ODE-based computational model of ERK signalling pathway.

The performance of both standard PSwarm and PSwarmGM for the solu-

tion of the inverse problem of ERK signalling system is presented. As we are

interested in the dynamic behaviour of the system and since the accuracy of pa-

rameter estimation depends on the actual parameter values, an exact knowledge

of the actual parameters is required in order to assess the performance of the

techniques.

To demonstrate the prospects of experimental design considerations, the fol-

lowing parameters ki and initial concentrations of system components mi|t=0
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have been chosen for the purpose of the presented simulation study.

k1 = 0.53, k2 = 0.0072, k3 = 0.625, k4 = 0.00245, k5 = 0.315, k6 = 0.8,

k7 = 0.0075, k8 = 0.071, k9 = 0.92, k10 = 0.00122, k11 = 0.87.

m1|t=0 = m2|t=0 = 2.5, m3|t=0 = m4|t=0 = m5|t=0 = m6|t=0 = 0,

m7|t=0 = 2.5, m8|t=0 = 0, m9|t=0 = 2.5, m10|t=0 = 3, m11|t=0 = 0.

The computational model of the ERK signalling pathway (Table 5.1) was

then used to generate pseudo-experimental data from the above predefined pa-

rameters and initial concentrations of proteins, to which the estimation algo-

rithm was applied. The time-dependent behaviour of the system components

is shown in Figure 5.5. The time span of the computational simulation was 10

minutes and was solved with the ode15s solver in Matlab. This simulated data

represents the exact results that are free of measurement noise.
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Figure 5.5: Simulation profiles of the dynamics of ERK signalling pathway com-
puted with the reference values of model parameters and initial concentrations
of system components.



CHAPTER 5. PARAMETER ESTIMATION 157

5.4.1 Informative vs. Non-informative Measurements

This section is concerned with the element of the first question defined in Sec-

tion 5.3.2 – what is the impact of experimental measurements on parameter es-

timation? Towards the end, we employed both estimation algorithms (PSwarm

and PSwarmGM) to solve the inverse problem of the ERK signalling pathway

by using data sets with different levels of information content.

Derivatives of the system dynamics over time are shown in Figure 5.6. It

indicates that over the whole simulation interval 0–10 minutes, large changes in

the concentrations of the system components occur within the first 5 minutes.

No transient dynamics are observed in the later stage of simulation between 5

and 10 minutes, indicating that the system has reached a steady state.
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Figure 5.6: Derivatives of the concentrations of system components shown in
Figure 5.5, with respect to time.

Solving the inverse problem of the ERK signalling pathway involves estimat-

ing 11 parameters. The objective function was formulated using the least-squares

structure (see Equation (5.1)). The choice of the least-squares representation is

suitable for the present study since the fitting is only characterized by the resid-

ual between model simulation and observed data. The estimation algorithms

were evaluated when the simulated data over the three intervals 0–5 minutes,
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5–10 minutes and 0–10 minutes were used as experimental measurements. The

optimization methods of PSwarm and PSwarmGM were executed 100 times to

solve the problem of interest. Each run started with a different initial population

in the search space, and the objective function was evaluated every 30 seconds

of the simulated time interval.

The convergence of the estimation algorithm PSwarm and PSwarmGM to

minima from arbitrary starting points is evaluated by studying the properties

of a sequence of global best solutions (gbest). Global convergence is ensured if

the gbest solution at the current iteration is no worse than the gbest solution

obtained from the previous iteration (Reyes-Sierra and Coello 2006). In order

to determine the most favourable strategy, it is necessary to examine both final

objective function value and the time taken to reach this value (convergence

rate). As such, the strategy that reaches the lowest objective function value in

the shortest time in the most useful.

The convergence curves of the algorithms are plotted in Figure 5.7, which

describe the objective function values calculated by the gbest particle at each

iteration versus computation time. The figure is scaled by applying a logarithm

(base 10) to computation time and a double logarithm (base 10) to the objective

function values in order to allow the convergence tendency to be better shown.

The convergence characteristic was studied for both the best run (smallest ob-

jective function value) and worst run (largest objective function value) returned

by the algorithm when the following data sets were used for the estimation. In

this case, noise-free experimental measurements were considered.

• Data set 1 : pseudo-experimental data over time interval 0–5 minutes

• Data set 2 : pseudo-experimental data over time interval 5–10 minutes

• Data set 3 : pseudo-experimental data over time interval 0–10 minutes

For the best run, as shown in Figure 5.7(a), PSwarm presented a better

convergence at most times for all the data sets. In particular, PSwarm out-

performs PSwarmGM in terms of convergence rate with data set 2 (in blue).

When data set 1 and 3 were used for estimating the parameters, PSwarm and

PSwarmGM dominate the convergence rate in turn; however, in the later stages,

PSwarm approaches the global minimum with a faster convergence speed. Sim-

ilar convergence property is also observed for the worst run, as shown in Fig-

ure 5.7(b). During the entire course of parameter searching, PSwarm always
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arrives at much better objective function value than PSwarmGM. The inves-

tigation demonstrates a good agreement with the finding by van den Bergh

(van den Bergh 2001) that the mutation mechanism can slow down the rate of

convergence of the PSO-based approach.

Figure 5.8 shows the estimated statistical distribution of the objective func-

tion values from PSwarm and PSwarmGM, using the three data sets mentioned

above. It is evident that data set 1 results in a more accurate determination of

the parameters than the other two data sets with both algorithms. In this case,

no significant differences are detected between PSwarm and PSwarmGM. This

suggests that parameter estimation with transient data considerably improves

the performance of the optimization algorithms.

The density plots (Figure 5.8) computed with the last two data sets reveal an

interesting result that might be surprising at first sight: parameter estimation

with data set 3 using the whole-interval dynamics did not improve the optimiza-

tion performance compared with the solutions using data set 2, which captures

only a small range of the system dynamics. This may be due to the fact that

when the observation data points are given equal weight in the objective func-

tion, adding more, less informative points (the steady-state points) reduces the

information content of the data set 3.

Mean and standard deviations of the parameter estimates from 100 runs

of PSwarm and PSwarmGM are reported for the three data sets, reported in

Table 5.2 and Table 5.3. Both algorithms show better performance in recovering

the underlying parameters from transient data over the range 0 to 5 minutes

(data set 1). Additionally, with all data sets, PSwarmGM does not improve the

accuracy of the estimated parameters of the ERK signalling pathway compared

with PSwarm. In the former case, inaccurate mean values or large standard

deviations were observed for all parameters.

5.4.2 Perfect vs. Noisy Measurments

In an attempt to investigate the effect of noise on parameter estimation, the

following three scenarios are examined using both PSwarm and PSwarmGM.

• Scenario 1: perfect data without noise

• Scenario 2: noisy data with a normally distributed error of 5%

• Scenario 3: noisy data with a normally distributed error of 10%
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Figure 5.7: Convergence curves (objective function versus computation time)
of PSwarm (solid line) and PSwarmGM (dotted line) with all three data sets:
red–data set 1; blue–data set 2; black–data set 3. PSwarm converges to the
global minimum with better performance in all three cases.
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Figure 5.8: The estimated statistical distributions of the objective function val-
ues from PSwarm (solid line) and PSwarmGM (dotted line) using all data sets:
red–data set 1; blue–data set 2; black–data set 3. Better performance from both
algorithms is obtained when data set 1 was used.

The data sets employed in scenario 2 and 3 were generated by adding Gaus-

sian white noise to the perfect pseudo-measurements. White noise satisfies the

requirement that the errors are independent and identically distributed. We use

a relative error (r) of 5% and 10% of the measurements to define the standard

deviation σ:

ŷ(ti) = yo(ti) ± σ (5.6)

where σ = r · yo(ti). yo(ti) and ŷ(ti) stand for the pseudo-experimental and the

noise-corrupted measurements at each discrete time point.

The uncertainty in the parameter estimates is analyzed for proteins Raf1 and

Raf1/RKIP, which have the largest changes in dynamics over time course (refer

to Figure 5.6). Model predictions with the estimated parameters from scenario

2 and scenario 3 are comparable over the three time intervals (as defined in the

last section) for both PSwarm and PSwarmGM. In this section, only the results

from PSwarm, scenario 2 are discussed to avoid repetitive analysis.

The predictions of the protein concentrations are given in Figure 5.9. It

shows that parameter estimation with PSwarm using 5% noisy measurements
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Nominal Data set 1 Data set 2 Data set 3
Values

P1: 0.5300 0.5390±0.0069 0.7258±0.1754 0.5402±0.0082
P2: 0.0072 0.0265±0.0141 0.1212±0.1086 0.0312±0.0206
P3: 0.6250 0.6235±0.0083 0.6946±0.1651 0.6281±0.0070
P4: 0.00245 0.0046±0.0043 0.0125±0.0177 0.0070±0.0047
P5: 0.0315 0.0288±0.0026 0.0300±0.0064 0.0278±0.0035
P6: 0.8000 0.9316±0.0628 0.9308±0.0861 0.9381±0.0935
P7: 0.0075 0.0681±0.0574 0.0449±0.0395 0.0498±0.0410
P8: 0.0710 0.0247±0.0470 0.0616±0.0667 0.0306±0.0374
P9: 0.9200 0.9663±0.0485 0.9494±0.0830 0.8919±0.0902
P10: 0.00122 0.1500±0.0884 0.0834±0.1002 0.0608±0.0640
P11: 0.8700 0.7509±0.1101 0.8079±0.1495 0.7548±0.1094

Table 5.2: Mean and standard deviation values of the parameters estimated by
PSwarm. Column 1 gives the nominal values of the parameters and columns 2
to 4 report the estimates from each data set.

Nominal Data set 1 Data set 2 Data set 3
Values

P1: 0.5300 0.5411±0.0096 0.7622±0.1756 0.5411±0.0087
P2: 0.0072 0.0302±0.0170 0.1410±0.1052 0.0321±0.0210
P3: 0.6250 0.6238±0.0101 0.6828±0.1678 0.6266±0.0090
P4: 0.00245 0.0052±0.0050 0.0121±0.0174 0.0065±0.0046
P5: 0.0315 0.0285±0.0030 0.0297±0.0062 0.0279±0.0035
P6: 0.8000 0.9465±0.0584 0.9340±0.0913 0.9382±0.0954
P7: 0.0075 0.0605±0.0576 0.0547±0.0405 0.0514±0.0407
P8: 0.0710 0.0261±0.0524 0.0576±0.0646 0.0309±0.0375
P9: 0.9200 0.9770±0.0426 0.9423±0.0879 0.9043±0.0848
P10: 0.00122 0.1832±0.1106 0.0814±0.0987 0.0727±0.0621
P11: 0.8700 0.7312±0.1331 0.8027±0.1429 0.7560±0.1098

Table 5.3: Mean and standard deviation values of the parameters estimated by
PSwarmGM. Column 1 gives the nominal values of the parameters and columns
2 to 4 report the estimates from each data set.

over the range of 0–5 minutes and 0–10 minutes compare reasonably well with

the predictions made using the nominal parameter values and those estimated

using the noise-free measurements; the latter is shown in Figure 5.10.

The predictions with measurements over 5–10 minutes are poor, which may

be due to poor identifiability of the parameters for the reactions stabilizing the

steady state. It is observed that a decrease in the information content of the



CHAPTER 5. PARAMETER ESTIMATION 163

0 2 4 6 8 10
Time [mins]

0

0.5

1

1.5

2

2.5

3

C
on

ce
nt

ra
tio

n 
[A

rb
. U

ni
ts

]
Raf1 Exact
Raf1/RKIP Exact

0-5 mins
5-10 mins
0-10 mins

Line Type

Raf1

Raf1/RKIP

Figure 5.9: Model predictions of the protein concentrations of Raf1 (open circle)
and Raf1/RKIP (open square) with parameters estimated from PSwarm when
5% noise was added to the pseudo-experimental data.

measurements results in poor model predictions, and this is most prominent

when measurement noise is present. An analysis of the information content of

the data sets is presented in the next section.

5.5 Model Identifiability Analysis

There may exist several groups of functionally related parameters, which may

consequently be difficult or impossible to determine unambiguously. Parameter

values are estimated by fitting the model structure to experimental data, and

parameters for which no unique solution exists are called non-identifiable. Non-

identifiability originates from two sources, including structural non-identifiability

and practical non-identifiability.

Structural non-identifiability is related to the model structure and indepen-

dent of experimental measures. Such non-identifiability is referred to as an a

priori identifiability analysis and in this case the model should be examined be-

fore computational procedures for parameter values. Practical non-identifiability

is determined by the amount and quality of experimental measurements and is

independent of structural identifiability. That is, a system may be confronted
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Figure 5.10: Model predictions of the protein concentrations of Raf1 (open circle)
and Raf1/RKIP (open square) with parameters estimated from PSwarm with
the noise-free pseudo-experimental data.

with such identifiability difficulty even with a structurally identifiable model.

It is a necessary prerequisite for mathematical analysis of a parameterized

model that it should be sufficiently identifiable. There are different analytical

strategies that can be employed to investigate the model identifiability. In Ap-

pendix C, we detail the theoretical background of identifiability analysis and the

numerical methods for computational calculation. An identifiability analysis of

the ERK signalling pathway is conducted in this section. The main questions

to be addressed are:

• if model parameters are identifiable with a given model structure, and

• how estimation accuracy is determined by the quality of experimental mea-

surements

5.5.1 Structural Identifiability

The Taylor series and Ritt-Wu are two popular analytical approaches to prove

structural identifiability. However, when it comes to solving complex non-linear

problems, analytical approaches are not feasible. Muller (Muller 2002) presented
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an overview of the relevant numerical methods. An estimation based method

proposed by Muller et al. (Muller et al. 2002) achieved success in proving the

structural identifiability of a non-linear model of anaerobic waste water treat-

ment. The method investigates structural identifiability by calculating the con-

dition number of covariance matrix of the estimates and observing the changes

of the condition number in response to an increase in the number of data points.

When structural non-identifiability is the case, the condition number tends to-

wards infinity.

In this thesis, we employed the well-established numerical method of Jacquez

and Greif (Jacquez and Greif 1985) to evaluate the structural identifiability of

the parameters at the nominal parameter values. When the nominal values are

hard to obtain, which is common in reality, the best set of parameter estimates

can be used instead, since we assume that the best estimates at the convergence

point are close to the true parameter values.

The correlation matrix of the ERK signalling pathway in Figure 5.11 was

generated to evaluate (local) structural identifiability. The numerical method

for calculating the correlation matrix was given in Appendix C.1. In this figure,

certain pairs of parameters presented correlation coefficients very close to +1 or

-1, indicating that some parameters cannot be identified from the data.
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Figure 5.11: Correlation matrix for evaluating structural identifiability with the
data set devoid of noise.
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As an example, Figure 5.11 shows that pairs such as (k6, k7) and (k9, k10) have

correlation values greater than 0.9, while pairs such as (k1, k7) and (k3, k9) have

correlations less than 0.01. To further illustrate the identification difficulties,

Figure 5.12 and Figure 5.13 present a fitness landscape of a two-parameterized

situation for a pair of the highest correlated parameters (k9, k10) and lowest cor-

related parameters (k6, k11), respectively. The first case shows a very long valley

along the diagonal of the parameters k9 and k10, reflecting the fact that there

exist many combinations of the values which can give an equally low value of the

objective function. The second case shows that, due to the lack of correlation,

there is a unique pair of values for k6 and k11 that corresponds to the minimum

of the objective function.
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Figure 5.12: Objective function versus parameters k9 and k10, indicating the
large parameter correlation.

In the context of optimization, a severe obstacle imposed by parameter corre-

lation is that some of the parameters are unidentifiable or identifiable but poorly

estimable. The latter refers to the situation where a small value of the objective

function can be obtained but some of the estimated parameters always have a

very large standard deviation. If this is the case, then the unidentifiable param-

eters would have to be fixed at measured values or at the best estimated values

in order to make the model structurally identifiable. Alternatively, models can
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Figure 5.13: Objective function versus parameters k6 and k11, indicating a lack
of identifiability.

be reduced further to remove unidentifiable parameters if necessary.

5.5.2 Practical Identifiability

Practical identifiability analysis arises due to limited amount and quality of

experimental data. Practical non-identifiabilities manifest as functionally related

parameters. The analysis examines the probability distribution of parameter

estimates by fitting a model repeatedly to data containing a certain degree of

noise and investigating the estimates.

The Hessian matrix, which contains the second derivatives of the objective

function with respect to the parameter estimates at convergence, is a common

means for testing the practical identifiability. The inverse of the Hessian matrix

gives the variance-covariance matrix of the parameter estimates, which enables

us to quantify the information content of an experimental data set (Faller et al.

2003). A basic procedure for constructing the FIM is presented in Appendix C.2.

The Hessian matrix is interesting in its own right. In gradient descent meth-

ods, the condition number of the Hessian gives an indication of the rate of

convergence and the impact of floating point rounding errors on the minimum



CHAPTER 5. PARAMETER ESTIMATION 168

objective function value (Thacker 1989). This number is defined as a ratio of its

largest to smallest eigenvalues. When the ratio is close to unity, the matrix is

well conditioned. However, in practice, the observable data is generally not rich

enough to allow for reliable estimation of all parameters. This causes an ill-posed

estimation problem, where a large uncertainty in the parameter estimates will

result.

We computed the gradient of the objective function, with each column of

the gradient corresponding to an individual system component, and calculated

the Hessian matrix. The eigenvalues of the Hessian matrix are used to deter-

mine whether a particular set of data is sufficient for parameter estimation. We

determined the information content of all the three sets of experimental measure-

ments (noise free) over 0–5, 5–10 and 0–10 minutes by calculating the condition

number of the Hessian matrix of the best fit estimated by each of the three data

sets. All the three data sets returned a condition number close to zero, with

the first data set (3.7973e-21) being slightly better than the others, and when

5% noise was added to the first data set, a condition number of 4.3305e-25 was

obtained. The tests indicate that the practical identifiability can be improved

by using transient and precise measurements.

The variance-covariance matrix is the key to parameter uncertainty analysis.

The conventional approach dependent on the Hessian matrix is not allowed when

there are non-identifiable parameters in the underlying model. Parameter non-

identifiability results in the Hessian matrix being singular, which causes the

probability distribution of the parameters to be asymmetric. It is fair to say

that the usefulness of Hessian matrix based approach is limited to studying

identifiable parameters only.

The subset of structurally identifiable parameters must be determined be-

forehand in order for the Hessian matrix approach to be useful. The technique

of Singular Value Decomposition can be employed towards this end. Refer to

Golub et al. (Golub et al. 1976) for technical details on the subject. Singular

value decomposition identified a subset of structurally identifiable parameters

(k1, . . . k6) for the model under investigation, which gives a condition number

1.7395e-07 using the first measurement set. This shows that, after removing the

rest of the parameters (k7, . . . k11), the original ill-posed problem is transformed

into a better conditioned problem.
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5.6 Conclusions and Discussion

In this chapter, we investigated the problem of parameter estimation for dynamic

biochemical systems. We gave an in-depth introduction to the theoretical back-

ground of optimization, and evaluated the usefulness of a global optimization

approach – Particle Swarm optimization and the derived method – the PSwarm

algorithm – in solving the inverse problem of non-linear systems. A careful anal-

ysis of an inverse problem related to the ERK signalling pathway was presented

as an illustrative example, where an error-free model structure was assumed.

The case study revealed the usefulness of PSwarm in tacking the problem of

ill-conditioning and multi-modality in parameter estimation.

By definition, parameter estimation involves using observed data to esti-

mate values of parameters based on statistical procedures. Parameter estimation

problems with measurement sets containing different information content were

analyzed. Noise in the measurements leads to noisy estimates of the parameters,

resulting in poor model predictions with the estimated solutions. This is most

prominent when using measurements providing the least information content.

We are aware of variations of standard PSO that are claimed to perform bet-

ter. A modern, well-tested variant (Gaussian Mutation) was implemented and

was also used in this study. In this case, we found that the Gaussian Mutation

variant takes more iterations to converge than with standard PSwarm. Accord-

ingly, standard PSwarm is chosen for the study of the trypanthione metabolic

pathway in Chapter 7. We emphasize that the prediction of correct system dy-

namics is more important than the accuracy of the estimated parameters when

evaluating the performance of the algorithms.

We conducted an analysis of model identifiability and examined the impact

of prior structural knowledge and the quality of experimental measurements on

the parameterization issue. Model identifiability analysis explains the challenges

of estimating parameters for non-linear systems where the parameters are poten-

tially highly correlated. It concluded that the ERK signalling pathway is neither

structurally or practically identifiable, since there are pairs of parameters that

are significantly correlated. Such analysis can guide the estimation problem by

suggesting biological experiments for measuring parameters that are dependent

on each other, or by removing parameters via model reformation for a better

identifiability property.

The challenge of parameter estimation using experimental measurements
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that suffer from a poor information content (i.e. steady-state data) is addressed

in Chapter 6. We propose an approach that tackles this problem by coupling

transient data, which is rich in information, with steady-state data in the calibra-

tion procedure. The proposed approach can be generalized to solve a variety of

multi-objective optimization problems constrained by more than one condition,

which is particularly useful for model validation of biological systems where the

observed data for parameter estimation is measured in the perturbed condition

of the system. The proposed approach is applied to solve the inverse prob-

lem of the polyamine biosynthetic sub-pathway of the trypanothione metabolic

pathway in Chapter 7.



Chapter 6

MoPSwarm: The Proposed

Approach for Perturbation-based

Model Validation

In this chapter we propose a novel approach for applying a multi-objective op-

timization to validation of perturbation-based models of biological systems. We

compare the results from the proposed approach with those from the conven-

tional validation procedure.

6.1 The Challenge

It is necessary to be able to accurately and reliably determine values for system

parameters in order to develop predictive models (van Riel 2006). This is espe-

cially important when the dynamic behaviour of a system is highly dependent

on parameter values. Parameter estimation is therefore an important research

area in Systems Biology.

Parameter estimation is a particularly complex task when the validation of

a biological system can only be achieved by comparing simulation results with

measurements from perturbation experiments. A common approach to model

validation involves a two-step procedure to determine the vector of estimated

parameters that can correctly describe a system’s responses to perturbations.

This involves fitting model parameters to experimental data generated by a

reference cell type (wild type) and then testing this model on data generated by

a variation (mutant). Parameter estimation is one building block of the model

171



CHAPTER 6. MULTI-OBJECTIVE PSWARM 172

validation procedure.

For the trypanothione metabolic pathway under investigation, the drug in-

hibitor DFMO, which degrades the activity of enzyme ODC, was added to the

cell after the cell reached steady state. When solving the model of trypanothione

metabolism, a decision vector p that can be considered as a potential solution

for the unknown parameters should satisfy two constraints:

1. Simulation results of the model with p should be consistent with the ob-

served steady state (wild type)

2. When the parameter of interest in p is perturbed with a certain percentage

that constitutes the perturbed vector p̃, simulation results of the model

with p̃ should be consistent with the measured perturbation data (mutant).

It is well-known that a major difficulty in estimating model parameters from

the steady-state data (as the reference cell type) lies in the fact that a potentially

very large number of different values can be obtained for the model parameters,

showing equally good consistency with the experimental data. This frequently

makes the common approach infeasible in practice. From the perspective of

parameter estimation, this difficulty arises from the lack of information contained

in the wild-type data used for this purpose, as discussed in Chapter 5. An

intuitive way to solve the problem is to use informative data, for example, the

transient concentrations of the system components, to optimize the parameters

with respect to a mutant and then test potential solutions against the wild-type

cell. Again, the challenge is still present regarding whether or not the decision

vector can meet the steady-state constraint.

Existing implementations of multi-objective optimization with Particle Swarm

(MOPSO) have never been applied to complex real-world applications, by which

we mean the applications involving a large number of decision variables and

dependent on differential equations to describe the system dynamics. Even

the most up-to-date MOPSO implementation by Rabbani et al. (Rabbani

et al. 2009) was initially designed for solving the project selection problem,

formulated as a set of time-independent algebraic equations parameterized with

binary (0 and 1) decision variables.

In this chapter, we thus propose a novel approach for the application of multi-

objective optimization using Particle Swarm for the validation of perturbation-

based models of biological systems. This implementation is inspired by the
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single-objective optimizer, PSwarm, which is designed in a Search-and-Poll frame-

work. With the proposed approach, the constraints arising from both the steady-

state condition (wild type) and the perturbed condition (mutant) are handled

simultaneously. In the following sections, the theoretical background of multi-

objective optimization is introduced and our proposed approach is described and

evaluated using the ERK signalling pathway as a case study. The pathway was

studied in detail in Section 5.4 in Chapter 5.

6.2 Multi-objective Optimization

This section provides the necessary background for the work on multi-objective

optimization, which is described later. Some of the basic concepts in multiob-

jective optimization are introduced and the visualization of approximate non-

dominated solutions, as produced by the proposed multi-objective optimizer, is

also presented. The theoretical background related to multi-objective optimiza-

tion is explained based on descriptions given by Fonseca and Fleming (Fonseca

and Fleming 1995) and Coello (Coello 2001).

Most problems in nature have several, possibly conflicting, objectives to be

satisfied. Many of these problems are frequently treated as single-objective op-

timization problems by transforming all but one objective into constraints.

Multi-objective optimization attempts to find a solution to more than one

objective function simultaneously. Specifically, the Multi-objective Optimization

problem can be defined as the problem of finding a solution which would give

values for all objective functions that are acceptable to the performance criteria

(Osyczka 1985). Specifically, multi-objective optimization attempts to find a

vector of decision variables X that optimizes a vector function F

F (X) = [f1(X), f2(X), . . . , fk(X)]T (6.1)

whose elements represent each individual objective function, fi(X).

Multi-objective optimization intends to seek good compromises (or trade-

offs), which are Pareto optimum, rather than a single solution as in conventional

global optimization. By definition, X∗ is Pareto optimal if there exists no feasible

vector of decision variables X ∈ R which would improve one performance criteria

without causing a simultaneous degradation of performance in at least one other

criterion. More precisely, we have the following definition.
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Definition 6.1 (Pareto Optimum): We say that a vector of decision variables

X∗ ∈ R is Pareto optimal if there does not exist another X ∈ R such that fi(X) ≤
fi(X

∗) for all i ∈ 1, . . . , k and fj(X) < fj(X
∗) for at least one j ∈ 1, . . . , k. Here

R denotes the feasible region of the the problem, where all constraints are satisfied.

The concept defines a set of solutions that is the so-called Pareto optimum

set. The vectors X∗ corresponding to the solutions included in the Pareto opti-

mal set are referred to as non-dominated solutions1. The objective functions of

non-dominated solutions in the Pareto optimal set form the Pareto front, which

can be purely/partially convex, concave or discontinuous. Approximation of the

Pareto front is sometimes referred to as Pareto optimization. If we plot the

objective functions (for two objectives) of the Pareto-optimal solutions, then we

can obtain a Pareto front as shown schematically in Figure 6.1.
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Figure 6.1: An ideal Pareto front for two objective functions is formed with filled
circles in this figure. The rough curve in filled triangles can be understood as an
intermediate front resolved during the course of search process. Test particles
labelled with P1, P2 and P3 illustrate different types of solutions. Refer to the
text for a full explanation.

Figure 6.1 indicates that a solution lying on the Pareto-optimal frontier can-

1We will clarify later how to interpret ‘non-dominated solutions’ in this context.
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not improve one objective without sacrificing performance in the other. In a

cost-effective scenario, no better performance can be possibly achieved without

increasing cost. Given the constraints of the problem, no solutions can exist in

the region below the front. All possible solutions located in the region above

the front are defined as non-Pareto optimum indicated with filled triangles in

Figure 6.1. As the search continues, the intermediate trade-off curve moves to-

wards the true Pareto front in the possession of a smoother appearance. It is

worth emphasizing that when solving real-world applications, no Pareto front

can be as smooth as it is presented in Figure 6.1 (filled circles); a real example

is demonstrated by Figure 6.3.

A different group of methods for solving multi-objective optimization prob-

lems do not incorporate directly the concept of Pareto optimum. A represen-

tative of non-Pareto approaches is the Aggregation Function, which combines

all objectives into a single objective by using addition, multiplication or any

other combination of arithmetical operators. Individual objective functions are

frequently assigned a weighting value to distinguish the significance of different

objectives. Non-Pareto approaches are simple and easy to implement but they

are unable to produce certain segments of the Pareto front and are limited to

handling only a few objectives. Linear combinations of weights are not appli-

cable when the Pareto front is concave, regardless of the weights used (Fonseca

and Fleming 1995).

Related work on aggregation functions by van Riel and Sontag (van Riel

and Sontag 2006) studied the metabolic regulation in Saccharomyces cerevisiae

when different nitrogen pulses are added to the cell at a number of time points.

Model parameters were estimated via a constrained optimization method, where

solutions are subject to constraint(s). The model was optimized by minimizing

the difference between the experimental data and model output in a least-squares

criterion subject to the constraint of steady-state condition implemented as the

sum of squares. These two identification criteria are added together as the overall

fitness function to be adjusted by the optimizer. van Riel and Sontag again

raised the issue that it is difficult to define the relative importance of different

objectives in a multi-objective criterion and the decision is always somewhat

subjective.
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6.2.1 Multi-objective Particle Swarm Optimization

Particle Swarm Optimization (PSO) is one of the newest techniques in the

family of evolutionary algorithms, motivated by the simulation of social be-

haviour. PSO is particularly suitable for multi-objective optimization due to

the high convergence rate of the algorithm. This is discussed in the context

of single-objective optimization in Chapter 5. Due to the population-based na-

ture of PSO, it appears to be fairly straightforward to transform the algorithm

to solve multi-objective optimization problems using a ‘Pareto ranking scheme’

(Goldberg 1989). However, only a few works have been recently proposed for

MOPSO.

The application of evolutionary algorithms into multi-objective optimization

has been under investigation since the mid 1980s, and is largely centered on Ge-

netic Algorithms (Fonseca and Fleming 1993, da Fonseca 1995, Deb et al. 2000).

For example, da Fonseca (da Fonseca 1995) has applied the multi-objective ge-

netic algorithm to a subset selection problem. The selection criteria constrained

by the objectives of residual variance and mean-square prediction error are used

in the selection of appropriate non-linear terms for polynomial models of a pilot

scale liquid-level system. In their study, a large number of 1000 input-output

pairs are employed for the optimization process.

Evolutionary algorithms deal with a set of possible solutions simultaneously.

This is particularly suitable for coping with multi-objective optimization prob-

lems, where the search of the Pareto optimal set may be achieved in a single

run of the algorithm. Evolutionary algorithms are also less susceptible to the

shape or continuity of the Pareto front (Coello 2001). This corresponds to the

problem of concavity and discontinuity when solving optimal vectors over a high-

dimentional search space.

Fieldsend (Fieldsend 2004) compared the proposed techniques for MOPSO

(Hu and Eberhart 2002b, Parsopoulos and Vrahatis 2002a, Coello and Lechuga

2002, Fieldsend and Singh 2002, Mostaghim and Teich 2003). These methods

mainly differ in the two aspects, namely: the use of an external ‘repository’ for

non-dominated solutions, which is retrieved by every particle after each flight

cycle; and the selection of personal best (pbest) and global best (gbest) particles

for each particle in the population. In Fieldsend’s review, the impact of selec-

tion strategies for particles on the convergence rate and diversity of solutions is

emphasized when solving a number of objectives simultaneously.

A recent and comprehensive survey on the state-of-the-art of multi-objective
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optimization with PSO is also provided by Reyes-Sierra and Coello (Reyes-Sierra

and Coello 2006). The key issues related to the extension of PSO to multi-

objective optimization scheme are detailed in the survey, and include:

1. How to ensure the diversity in the solutions found in order to obtain a

smooth and uniform distribution and to avoid convergence to a single

solution;

2. How to determine, retain and update the non-dominated solutions during

the search process;

3. How to select leader particles to guide the global search;

Reyes-Sierra and Coello underlined the fact that even though MOPSOs have

been used in a few applications, they are almost never employed as a pri-

mary search engine in solving the real-world applications. This survey urges

researchers from this domain to develop well-designed multi-objective optimizers

in order to effectively solve real-world applications. The usefulness of MOPSOs

should be examined with respect to the capability of the algorithm in producing

reasonably good approximations of the Pareto front when applied to real-wold

multi-objective optimization problems. For instance, applications that include

a large number of decision parameters and time-dependent behaviour of system

components is of interest. This is in contrast to the relatively simple algebraic

equations for which MOPSOs were initially designed and tested with. The lack

of relevant applications may explain why, despite a fast growth of this field,

MOPSO techniques have not yet been widely used in practice.

In the following sections, we provide a detailed description of the proposed

approach for solving complex multi-objective optimization problems. The per-

formance of the approach is evaluated using the ERK signalling pathway as a

case study.

6.2.2 Basic Concepts

In this section we define several mathematical terms used in this chapter in order

to establish a common terminology.

Definition 6.2 (Weak Dominance): A decision vector x∗ from a feasible region

S ∈ R is said to weakly dominate a decision vector x ∈ S (denoted x∗ � x) iff: the
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decision vector x∗ is not worse than x in all objectives, stated as fi(x
∗) ≤ fi(x) for

i = 1, . . . , k.

Definition 6.3 (Strong Dominance): A decision vector x∗ from a feasible region

S ∈ R is said to strongly dominate a decision vector x ∈ S (denoted x∗ ≺ x) iff:

(i) the decision vector x∗ is not worse than x in objectives where fi(x
∗) ≤ fi(x) for

i = 1, . . . , k and (ii) the decision vector x∗ is strictly better than x in at least one

objective where fi(x
∗) < fi(x) for i = 1, . . . , k.

Definition 6.4 (Fully Dominated Solutions): A decision vector y is termd a fully

dominated solution with respect to a test vector x iff; the decision vector y is worse

than x in all objectives, i.e. fi(y) > fi(x) for i = 1, . . . , k.

Definition 6.5 (Partially Dominated Solutions): A decision vector y is termed

a partially dominated solution with respect to a test vector x iff; (i) the decision

vector y is strictly better than x in at least one objective, i.e. fi(y) < fi(x) for

i = 1, . . . , k and (ii) the decision vector y is no worse than twice of the objective

value of x in all other objectives, i.e. fi(y) ≤ 2 × fi(x) for i = 1, . . . , k.2

Definition 6.6 (Non-dominated Solutions): A decision vector y is termed a non-

dominated solution with respect to a test vector x iff; the decision vector y is strictly

better than x in all objectives, i.e. fi(y) < fi(x) for i = 1, . . . , k.

It should be emphasized that different types of solutions (e.g. fully domi-

nated, partially dominated and non-dominated solutions) must be defined with

respect to a test particle. As illustrated by Figure 6.1, particle P1 and P3 are

non-dominated solutions with respect to particle P2, and conversely, P2 is a fully

dominated solution with respect to P1 and P3. Particle P1 and P3 are mutually

partially-dominated solutions, as neither solution is superior to the other. Solu-

tions lying on the true Pareto-optimal front should fully dominate all the other

points ‘inside’ the front but partially dominate each other. In other words, no

other solutions in the search space are superior to the Pareto-optimal solutions.

2The choice of ‘2× fi(x)’ is arbitrary and can be changed. This is to avoid the selection of
particularly bad particles.
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6.3 Description of the Proposed Approach for

Multi-objective Optimization

The currently proposed approach for multiple-objective optimization is based

on the Search-and-Poll framework adopted in the single-objective optimizer

PSwarm, which is a generalized pattern search algorithm – in the search step

standard PSO is employed and the poll step is only activated when the search

step failed.

Our proposal is based on the strategy of having an external repository (also

termed as the archive in this chapter) in which every particle can deposit its flight

experiences after each flight cycle3. The mechanism of crowding distance com-

putation is incorporated in the multi-objective optimization with PSO (Raquel

and Naval 2005) for the purpose of selecting the global best particle.

The crowding distance computation provides an estimate of the density of

solutions surrounding a particular solution in the population (Deb et al. 2000).

It estimates the size of the largest rectangle (or higher dimensional equivalent)

enclosing the solution i without including any other solution in the population.

The crowding distance of a particular solution takes the average distance of its

two neighboring solutions, which helps distribute particles uniformly over the

search space. This computation is carried out for each objective, and the final

distance measure of a solution is computed by adding the individual crowding

distance values calculated for each objective. The pseudo code of the mechanism

(for an individual objective) is given in Algorithm 2, based on the description

by Deb et al. (Deb et al. 2000).

One distinct feature of the proposed approach which we shall call ‘MoP-

Swarm’ is the employment of a Poll step in seeking non-dominated solutions.

The Poll step is used in order to provide more opportunities to gain satisfac-

tory convergence and ensure a good diversity. The problems we are interested

in solving with MoPSwarm are Bound Constrained Optimization problems, the

definition of which was given in Section 5.2.1 in Chapter 5.

In multi-objective optimization, a set of non-dominated solutions represent-

ing the best individuals found so far during the search process replaces the single

global best particle in the single-objective optimization case. This leads to a de-

3In practice, two external repositories are required, one stores the non-dominated solutions
and the other stores the decision variables corresponding to non-dominated solutions. The
repository of non-dominated solutions is manipulated through the searching process, and the
other repository should be updated accordingly.
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Algorithm 2 Crowding Distance Computation (Deb et al. 2000).

1: Get the number m of non-dominated solutions in the archive REP
2: Initialize distance value of each non-dominated solution DistanceREP (i) to

zero for all m stored solutions
3: for i = 0 to m do
4: Sort the solutions in descending order of the objective value
5: Set infinite crowding distance values to the lowest and highest objective

function values DistanceREP (1) = DistanceREP (m) = ∞
6: for j = 2 to m − 1 do
7: Calculate the average distance of each particle solution us-

ing the formula DistanceREP (j)=DistanceREP (j)+(DistanceREP (j+1) −
DistanceREP (j−1))

8: end for
9: end for

cision whether an external repository is used to store non-dominated solutions

that are retrieved by every particle after each flight cycle.

MoPSwarm incorporates an external repository (REP ) with a filtering pro-

cess that encourages a uniform distribution of solutions along the Pareto front.

No limit is imposed on the maximum number of solutions that REP can store.

REP is initialized with the objective function values of the initial particles and

the global best guide particle is then selected from a set of Pareto-optimal solu-

tions via distinct selection strategies.

The proposed algorithm is summarized in Algorithm 3.

6.3.1 Local Best Selection

Choosing pbest and gbest particles to direct a swarm member’s flight is not triv-

ial in multi-objective optimization with PSO (Fieldsend 2004). In MoPSwarm,

the selection criteria for pbest for individual particles follows the rule of Strong

Dominance. At each iteration of the flying cycle, for each individual particle,

the position that fully dominates the previous position is recorded. The Poll

step is activated if the search for a local best guide fails at the Search step. In

the Poll step, members in a finite set of trial points are examined in turn and

selected in accordance with the rule of Strong Dominance. The pseudo code for

the selection of local best guide is summarized in Algorithm 4.
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Algorithm 3 MoPSwarm: A general algorithm for multiple-objective optimiza-
tion
1: Choose a population size s and termination criteria. Randomly initialize

the initial particles in the population x1(0), . . . ,xs(0) with initial local best
positions y1

lb(0), . . . ,ys
lb(0) and the initial velocities v1(0), . . . ,vs(0).

2: Initialize the external repository REP with f 1(z), . . . , fk(z), where
z ∈ x1(0), . . . ,xs(0) for k objectives

3: while Termination criteria are not met do
4: Search for personal best positions, pbest, for individual particles in the

population (defined in Section 6.3.1) using the Search-and-Poll framework
5: Update the external repository REP (defined in Section 6.3.3) using the

Search-and-Poll framework
6: Refresh the external repository REP every nr iterations (defined in Sec-

tion 6.3.4)
7: Select a global best particle, gbest, from REP to guide flying of each

particle in the population (defined in Section 6.3.2).
8: Update velocities of individual particles in the population with the formula

x(t + 1) = x(t) + v(t).
9: end while

6.3.2 Global Best Selection

As illustrated by Fieldsend (Fieldsend 2004), the selection strategies for gbest to

guide the search of the next cycle fall into two categories, namely ‘unrestricted’

and ‘restricted’ groups. The former allows the selection of members freely from

the external repository, whilst the latter restricts the selection of gbest using

some form of distance measure.

Each method has it own advantages and disadvantages, and often one method

compensates for another’s deficiency. The unrestricted selection of gbest helps

avoid ‘clumping of particles’ and prevents particles from becoming trapped

within limited areas of the search space. However, this method will proba-

bly accept particles with ‘bad’ positions as the leading particle, thus requiring

more computational time on average to converge. The restricted gbest selection

may promote clumping of particles, but a good set of non-dominated solutions

is more likely to be obtained at each iteration.

In our proposed approach, both strategies of ‘unrestricted’ and a geographically-

based selection (Crowding Distance) strategy are examined. With the restricted

selection strategy, a non-dominated solution from the top 10% least crowded

area of the archive is randomly chosen as the global best guide. A different

gbest is selected for each particle in the population.
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Algorithm 4 Search for local best guide

1: [Search Step]
2: for i = 1, . . . , s do (for every particle i): do
3: Compute f(xi(t)) for each objective j ∈ 1, . . . , k
4: if the decision vector xi fully dominates yi

lb then
5: Set yi

lb(t + 1) = xi(t) (update the particle i local best position; search
step successful)

6: Reset the search direction for pattern search
7: end if
8: [Poll Step]: Skip the poll step if the search step was successful.
9: Choose the spanning set D.

10: if there exists d(t) ∈ D such that f(yi
lb(t) + αi(t)d(t)) is a non-dominated

solution with respect to f(yi
lb(t)) then

11: Set yi
lb(t + 1) = yi

lb(t) + αi(t)d(t) (a new local best position found for
the particle; poll step successful)

12: Set αi(t + 1) = φ(t)αi(t) (increase the mesh size parameter according
to the rule in Equation (5.3))

13: else
14: Set yi

lb(t+1) = yi
lb (No change in the local best position for all d(t) ∈ D;

poll step unsuccessful)
15: Set αi(t + 1) = θ(t)αi(t) (decrease the mesh size parameter according

to the rule in Equation (5.4))
16: end if
17: end for

6.3.3 Updating the Archive

In the scheme of multi-objective optimization, the definition of ‘superior’ par-

ticles for the update of the archive REP is a critical consideration, which may

have a major influence on the convergence of the algorithm and the diversity of

the Pareto-optimal solutions. In our proposed approach, two different updating

strategies are applied and the resulting optimization performance is assessed.

The two proposals are termed Strong-Dominance and Weak-Dominance up-

dating strategies, which specify that during the search process

1. With the strong-dominance updating strategy, only the particles that are

non-dominated by the stored solutions in the archive are inserted and the

corresponding dominated solutions in the archive are deleted.

2. With the weak-dominance updating strategy, particles that are non-domin-

ated or partially dominated by the stored solutions in the archive are

inserted and only fully dominated stored solutions are deleted.
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The Pseudo code of the Weak-Dominance updating strategy is summarized

in Algorithm 5. The description in Algorithm 5 can also be used to refer to the

Strong-Dominance updating strategy, where for the latter partially dominated

solutions are not accepted in the Poll step (see statement 19 in the algorithm).

Algorithm 5 Weak-dominance updating strategy of the archive REP

1: [Search Step]
2: for i = 1, . . . , s do (for every particle i): do
3: Compute f(xi(t)) for each objective j ∈ 1, . . . , k
4: if the current particle f(xi(t)) fully dominates the stored solution(s) in

REP then
5: Remove the dominated stored solutions from REP and insert f(xi(t))

into REP
6: Retain the remaining stored solutions in REP ; search step successful
7: end if
8: if the current particle f(xi(t)) partially dominates the stored solution(s)

in REP then
9: The current particle is retained for the Poll step

10: No update is made to the archive REP ; search step unsuccessful
11: end if
12: if the current particle f(xi(t)) is fully dominated by the stored solution(s)

in REP then
13: No update is made to the archive REP ; search step unsuccessful
14: end if
15: end for
16: [Poll Step]: Skip the poll step if the search step was successful.
17: Choose the spanning set D.
18: For dn(t)n=[1,...,m] ∈ D find f(yi(t) + α(t)d̂(t)) ∈ arg minn∈[1,...,m]f(yi(t) +

α(t)dn(t))
19: if there exist f(yi(t)+α(t)d̂(t)) that fully dominates or partially dominates

f(yi(t)) then
20: Set yi(t) = yi(t) + αi(t)d̂(t) and f(yi(t))=f(yi(t) + α(t)d̂(t))
21: Remove the dominated solution(s) stored in the archive REP
22: Insert the solution f(yi(t)) into the archive REP (update of the archive

REP is done; poll step successful)
23: Set αi(t + 1) = φ(t)αi(t) (increase the mesh size parameter according to

the rule Equation (5.3)).
24: else
25: No update is made to the archive REP ; poll step unsuccessful
26: Set αi(t + 1) = θ(t)αi(t) (decrease the mesh size parameter according to

the rule in Equation (5.4)).
27: end if
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6.3.4 Refreshing the Archive

In MoPSwarm, a check on the archive REP is performed every nr=10 iterations4

during the search process. The Pareto-optimal subset of the current archive is

saved and all other (fully dominated) solutions are eliminated. The possibil-

ity that fully dominated solutions are inserted into the archive arises from the

mechanism that we applied to the update of the archive, which is that the Poll

step may accept potentially inferior solutions for the sake of diversity. This re-

fresh step can help form a better Pareto-optimal front by eliminating the fully

dominated solutions from the archive.

6.3.5 Termination Criteria

The maximum number of iterations is a commonly used stopping criterion for

evolutionary algorithms. To ensure a proper termination in practice, in the

proposed approach, we introduce a mechanism for deactivating particles when

the mean magnitude of changing position of the particle within two neighboring

iterations is smaller than the tolerance (1e-5).

Our experiences from experimental testing of MoPSwarm suggest that it is

possible that under some conditions the expected value of the norm of the veloc-

ities vectors tends to zero for most of the particles after being through enough

iterations of the search process. These particles will have less contribution to

the global parameter search for their low search activity. Deactivated particles

from the previous iteration will be removed from the population and won’t be

considered in the subsequent search process.

In the implementation, no particle deactivation is permitted in the first five

iterations of the search cycle, which is designed to allow the particles with small

initial velocity values to start moving. The algorithm terminates when there

is only one particle remained in the population. The mechanism of particle

deactivation can not only save the computational resources by removing the

particles that don’t show enough movement, but also promote a satisfactory

convergence of other particles to the true Pareto front by preventing them from

being trapped by the inactive particles.

4Note that 10 interations is arbitrary and can be changed.
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6.4 Case Study: ERK Signalling Pathway

To demonstrate the usefulness of MoPSwarm in solving the inverse problem

of the ERK signalling pathway, a comparison of model validation via both the

common approach and the proposed approach is carried out. The computational

model of the pathway was given in Table 5.1 in Chapter 5.

Regardless of which approach is used, true perturbation data for the ERK

signalling pathway has to be available beforehand. This can be the data de-

scribing the perturbation experiment applied to an arbitrary model parameter.

To obtain a perturbation of the model, we applied a 90% knockdown of each

parameter from its reference value, one at a time, and simulated the model with

the mutated parameter set for perturbation data. The initial conditions and

the reference parameter values for the model simulations are fixed at the num-

bers reported in Chapter 5. Each perturbation data set contains the transient

concentrations of the system’s components at 11 time points evenly spacing the

time span between 0 and 100 minutes.

We observed that under these perturbed conditions some of the parameters

have negligible effects on the change of concentrations of the system’s compo-

nents. To better demonstrate the prospects for experimental design considera-

tions, only the perturbation data exhibiting an evident impact on the system’s

dynamics is retained. The perturbation data to be used as the ‘true’ data in the

second step of model validation was generated with the parameter set where k8

was mutated to 10% of the reference value, and the remaining parameters were

unchanged.

The ODEs of the pathway used in the perturbed condition are shown in

Table 6.1, where k∗8 is expressed as k8 · β. Here, β represents the perturbation

applied to the parameter of interest (k8).

In this in silico study, the initial condition of the pathway is considered as an

unknown parameter so as to mimic a realistic situation, where prior knowledge

about the system is at best partial. This consideration leads to 22 unknown

parameters to be estimated in total. All unknown kinetic parameters were as-

sumed to vary between 0 and 1. Values of the initial concentrations of the

system’s components are restricted to ±20% of the given steady state to help

the convergence of the algorithm from random positions in the search space.

Following the conventional approach, a set of parameters that can satisfy

the steady-state constraint of the pathway was solved using the global optimizer
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Reaction number Kinetic equations

1 −k1 · m1 · m2 + k2 · m3 + k5 · m4

2 −k1 · m1 · m2 + k2 · m3 + k11 · m11

3 k1 · m1 · m2 − k2 · m3 − k3 · m3 · m9 + k4 · m4

4 k3 · m3 · m9 − k4 · m4 − k5 · m4

5 k5 · m4 − k6 · m5 · m7 + k7 · m8

6 k5 · m4 − k9 · m6 · m10 + k10 · m11

7 −k6 · m5 · m7 + k7 · m8 + k∗8 · m8

8 k6 · m5 · m7 − k7 · m8 − k∗8 · m8

9 −k3 · m3 · m9 + k4 · m4 + k∗8 · m8

10 −k9 · m6 · m10 + k10 · m11 + k11 · m11

11 k9 · m6 · m10 − k10 · m11 − k11 · m11

Table 6.1: The ODE-based computational model of ERK signalling pathway.

PSwarm for the simulation study. Two hundred runs of the steady-state op-

timization were executed in Matlab. Each run starts with a different initial

population of particles and is computed over a simulated time span of 200 min-

utes. The set of parameters, P∗, which gives the smallest value of the objective

function, is retained. P∗ is given below:

k1 = 1, k2 = 0.1880, k3 = 0.8015, k4 = 0.0437, k5 = 1e − 6, k6 = 0.9970,

k7 = 0.1014, k8 = 1e − 6, k9 = 0.9758, k10 = 0.9903, k11 = 1e − 6.

m1|t=0 = 0.3090, m2|t=0 = 0.2320, m3|t=0 = 0.6274, m4|t=0 = 1.5646,

m5|t=0 = 0.03099, m6|t=0 = 0.01487, m7|t=0 = 1.7822, m8|t=0 = 0.7169,

m9|t=0 = 0.1907, m10|t=0 = 2.9364, m11|t=0 = 0.0610.

To test if P∗ is able to reproduce the true perturbation data, a 90% knock-

down is applied to the estimated value of k8 in P∗, which forms the mutated

parameter set, p̃∗. The model dynamics under the perturbed condition are ap-

proximated with p̃∗, where the initial condition for model simulation correspond

to the final values of the steady-state model computed with P∗.

The predicted perturbation profiles of Raf1/RKIP, Raf1/RKIP/ERK, MEK-

PP and MEK-PP/ERK are shown in Figure 6.2. The other system components

do not present dynamic changes in response to k8 knockdown and are therefore

omitted from the figure. This figure indicates that with the common approach,

even the ‘best’ set of parameters estimated from the steady state failed to pro-

duce satisfactory results compared with the true perturbation data.
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Figure 6.2: Comparison of the simulated perturbation profile (continuous lines)
with the true perturbation data (dotted lines). Note that concentration profiles
only match at t = 0.

6.5 A Comparative Study of MoPSwarm

In this section, we investigate the performance of several variants of MoPSwarm

in solving the multi-objective optimization problem of ERK signalling pathway.

The variants differ in the strategy used for selection of the global best guide

and in whether the archive REP is refreshed. The weak-dominance updating

strategy was adopted in all the MoPSwarm variants, which are summarized

below

• Variant 1: The crowding distance computation is adopted and the archive

is not refreshed.

• Variant 2: The unrestricted selection technique is adopted and the archive

is refreshed every 10 iterations.

• Variant 3: The unrestricted selection technique is adopted and the archive

is not refreshed.

• Variant 4: The crowding distance computation is adopted and the archive

is refreshed every 10 iterations.
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Solutions computed with the four variants of MoPSwarm are presented in

Figure 6.3, and the corresponding Pareto front is convex. Note that the scales

are different in each of these plots, indicating significant differences in the range

of the objective function values. The maximum number of iterations was set to

100 and 20 particles were used in the initial population. Both objectives of the

steady-state and perturbed condition are formulated using the penalized likeli-

hood error criterion, in which the error increases exponentially as the distance

between the estimated and observed value increases. The penalized likelihood

error criterion is expressed as follows for time points i = 1, . . . , m and system

components j = 1, . . . , n:

minimize ε =
∑

1≤i≤m

∑
1≤j≤n

1

fij

(6.2)

where fij is defined as a Normally distributed probability density function, with

a mean of the experimental measurement yD(ti, xj) and a standard deviation σ

of 1. This is given as follows

fij =
1√

2πσ2
exp

(
−(ỹ(ti, xj,p) − yD(ti, xj))

2

2σ2

)
(6.3)

where ỹ(ti, xj,p) represents the model predictions. The aim is thus to minimize

the error criterion ε for optimal model parameters p, which corresponds to

minimizing

ε =
∑

1≤i≤m

∑
1≤j≤n

exp(ỹ(ti, xj,p) − yD(ti, xj))
2 (6.4)

The multi-objective optimization problem under study contains a total of

23 unknown parameters, where the first 11 parameters, k1 to k11, are common

to both objectives and the remaining parameters are specific to the individual

objectives. Parameters k12 to k22 represent initial concentrations of the system

components under the steady-state condition, and k23 represents the pertur-

bation (β, varied between 0 and 1) applied to the parameter of interest. For

example, if the estimated value of k23 is 0.8, then the prediction from MoP-

Swarm indicates that a 20% perturbation has to be applied in order for both

objectives to be satisfied simultaneously. To ensure an objective comparison

among the variants, the same population of initial particles was used.

The performance of different MoPSwarm variants is evaluated based on the

following criteria: whether (1) a good distribution of the solutions found is at-
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Figure 6.3: Solutions of the multi-objective optimization problem from the differ-
ent variants of MoPSwarm. The optimization problem of interest is constrained
by two conditions: the steady-state condition (horizontal axis) and the per-
turbed condition (vertical axis). All the Pareto fronts resolved from the variants
are convex. Note the different scales in the four figures.

tained and (2) a wide range of values is covered by the Pareto-optimal solutions

found. In accordance with these criteria, Variant 4 presents the best perfor-

mance and is adopted for use in MoPSwarm. Variant 3 is desirable in terms of

the maximum number of trade-off solutions, but unfavorable in the spread of so-

lutions. The solutions found with Variant 3 are bounded in a small range, which

is also seen in the results computed with Variant 2. Variant 1 shows a better

spread along the horizontal axis than the other two variants, but inferior to the

distribution obtained when using Variant 4. The solutions found with Variant 1

are also restricted to a small range of values for the objective representing the

perturbed condition, and the majority are clustered in the corner nearest the
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origin.

6.5.1 Archive Updating Strategies

Our in silico study also investigates how the choice of updating strategy for

the archive REP affects the performance of the algorithm when solving the

ERK signalling pathway. The strong-dominance updating strategy only allows

non-dominated particles to be inserted into the archive, which differs from the

weak-dominance updating strategy, where partially dominated particles are also

accepted.

In all the four variants of MoPSwarm (In Variant 1 to Variant 4 defined

above, the weak-dominance updating strategy was applied), the strong-dominance

updating strategy is adopted instead and the performance of each variant is ex-

amined. Interestingly, all these variants converged to a single solution at the

end of each run of the optimization (altogether there were 10 runs, each with

a different population of initial particles). Thus adopting the strong-dominance

updating strategy fails to maintain diversity in the non-dominated solutions.

According to the criteria used to assess the performance of multi-objective algo-

rithms, the weak-dominance updating strategy is preferable.

Figure 6.4 illustrates the potential problem with the strong-dominance up-

dating strategy. If there is a non-dominated solution PN (red filled square) found

in the later stages of the flying cycle, the Pareto-optimal front (black filled cir-

cles) developed in the earlier stages will be completely eliminated. This makes it

very difficult to re-form a well-distributed front again, rather the search engine

is more inclined to move towards the origin as shown by the arrow in red.

Based on the experimental results, we summarize that in the multi-objective

optimization scheme, the selection of global best guide and the update of ex-

ternal repository are two major problems that have to be addressed carefully.

An appropriate selection mechanism is critical in guiding the search towards

the Pareto-optimal set and achieving a well distributed trade-off front. We have

found that it is a very challenging problem particularly where multi-optimization

algorithms are proposed for solving real-world applications. Our in silico investi-

gation (Figure 6.3) demonstrates that the Crowding Distance computation and

the refresh step can facilitate the generation of a well-distributed and smooth

Pareto-optimal front.
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Figure 6.4: An illustration of the strong-dominance updating strategy. The
solution PN moves towards the origin indicated by red arrow.

6.5.2 Mutation Mechanism

Most of the existing implementations of multi-objective optimization with PSO

apply some sort of mutation operator (Reyes-Sierra and Coello 2006). The muta-

tion scheme adopted in the method designed by Coello et al. (Coello et al. 2004)

is implemented in MoPSwarm (Variant 4) and compared with the ‘vanilla’ algo-

rithm. The optimization results from the original MoPSwarm and MoPSwarm

with mutation are shown in Figure 6.5. The results were obtained using 10

particles and 20 iterations.

Our in silico investigations indicate that the mutation operator resulted in

inferior solutions, which is likely due to the additional disorder introduced into

the system by the operator, making it more difficult/slower to converge. As

explained in Figure 6.5, by the end of 20 iterations, MoPSwarm without the

mutation operator produces slightly better results than the alternative. By the

end of the search process (which stopped at 432 iterations due to single particle),

MoPSwarm without mutation produced a good, well-distributed Pareto-optimal

set, whereas MoPSwarm with mutation produced a solution set with much less

diversity, with the results being essentially a small subset of those produced
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Figure 6.5: A comparison of the performance of MoPSwarm in the use of the
mutation operator by the end of 20 iterations of the search process.

by MoPSwarm without mutation. The mutation operator tends to drag the

search into a small and condensed area of the parameter space, giving rise to

convergence to a small set of similar solutions.

Reyes-Sierra and Coello (Reyes-Sierra and Coello 2006) draw attention to the

issue that the choice of a good mutation operator is a difficult task, and there

are approaches that show good performance without using any kind of mutation

operator. The incorporation of a mutation operator certainly deserves a more

careful study, which is beyond the scope of the thesis, however. The mutation

mechanism is excluded from our proposal according to the results from the in

silico investigations on the issue.

6.5.3 Optimization Results with MoPSwarm

The predicted concentration profiles of Raf1/RKIP, Raf1/RKIP/ERK, MEK-PP

and MEK-PP/ERK in both steady-state and perturbed conditions are generated

with two particular sets of parameters estimated with Variant 4 of MoPSwarm.

These two sets of parameters are selected from the upper-left end and bottom-

right end of the Pareto front, as shown in Figure 6.3(d).
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Parameter Set 1:

k1 = 0.7885, k2 = 0.0576, k3 = 0.5600, k4 = 0.0044, k5 = 0.0218,

k6 = 0.3934, k7 = 0.0068, k8 = 0.0482, k9 = 0.7927, k10 = 0.0041, k11 = 0.7160.

m1|t=0 = 0.4110, m2|t=0 = 0.3200, m3|t=0 = 0.5178, m4|t=0 = 1.4004,

m5|t=0 = 0.0391, m6|t=0 = 0.0205, m7|t=0 = 1.6726, m8|t=0 = 0.8149,

m9|t=0 = 0.1718, m10|t=0 = 2.9295, m11|t=0 = 0.0554.

β = 0.2662.

Parameter Set 2:

k1 = 0.6527, k2 = 0.0106, k3 = 0.5399, k4 = 0.0039, k5 = 0.0330,

k6 = 0.3975, k7 = 0.0010, k8 = 0.0301, k9 = 0.8044, k10 = 0.0026, k11 = 0.7328.

m1|t=0 = 0.4115, m2|t=0 = 0.3198, m3|t=0 = 0.5081, m4|t=0 = 1.3980,

m5|t=0 = 0.0336, m6|t=0 = 0.0201, m7|t=0 = 1.8198, m8|t=0 = 0.8063,

m9|t=0 = 0.1767, m10|t=0 = 2.8189, m11|t=0 = 0.0549.

β = 0.2588.

Parameter Set 1 and Parameter Set 2 are the solutions that have the

minimum values for a single objective function across the Pareto-optimal set,

that is, they have the best objective function values for the steady-state and

perturbed conditions respectively. The steady-state and perturbed concentration

profiles predicted with Parameter Set 1 and Parameter Set 2 are shown in

Figure 6.6 & Figure 6.7 and Figure 6.8 & Figure 6.9, respectively. As indicated

previously, only the four system components shown here present responses to

knockdown of k8, thus the other system components are omitted. It should be

noted that this approach yielded good predictions of the dynamics of the other

system components.

The steady-state concentration profiles of the pathway are simulated with the

model given in Table 5.1 in Chapter 5. The perturbation profile of the pathway

is simulated with the model given in Table 6.1, where the initial condition cor-

responds to the concentration level of the system components simulated for the

steady-state condition. The true experimental data used for comparison against

the simulation results in both conditions is produced with the reference and per-

turbed (with a 90% knockdown applied to k8) parameter sets of the pathway,

respectively.
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Compared to the simulation results using the conventional approach (shown

in Figure 6.2), predictions with our proposal are reasonably satisfactory for

both objectives given the large number of unknown parameters. The simulation

profiles shown in Figure 6.6 to Figure 6.9 indicate that with both parameter

sets, the model predicts a steady-state value close to the target, and can also

reproduce the measured dynamics of the system components, even though no

exact match is found in the optimization of either objective.

The predicted values of the perturbation, β, vary between 0.1 and 0.3 along

the Pareto front, which is comparable to the true perturbation value, β = 0.1.

From a biological point of view, predictions of the perturbation between 0.1 and

0.3 indicate that similar effects on the system dynamics could be achieved by

a lower degree of knockdown on the reaction enzyme of interest (i.e. a 70%–

80% predicted perturbation produces a similar effect to the true perturbation of

90%). This observation is useful in a general sense in that although the activity

of an enzyme can never be completely suppressed, enzymes that are easier to

suppress are preferable as drug targets (Bakker et al. 2002). Therefore, one of

the important applications of our proposal is to provide alternative solutions for

perturbation experiments where modifying the rate reaction constants (or initial

concentrations) is more economical and probable than designing a high-affinity

compound inhibitor.

6.6 Discussion

Given that the use of mathematical models may have large consequences for drug

development in case of model inadequacy or lack of precision, these models must

go through a rigorous validation process before they can be adopted as predictive

models. The use of a multi-objective optimization scheme is encouraged for

reliable model validation. It appears to be a natural solution to the optimization

problem that is constrained by more than one condition, particularly, in cases

where, among all the unknown parameters, a subset of parameters is common

to all the objectives and some of them are specific to certain objectives.

The proposed approach MoPSwarm is beneficial in tackling the systems

where the components are time-dependent variables and the number of unknown

parameters is large. MoPSwarm can successfully detect solutions exhibiting con-

vex tradeoffs in the objective function space using a smaller number of popu-

lation (20 initial particles) within a smaller number of generations (maximum
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Figure 6.6: Comparison of the predicted concentration profile (continuous line)
and the true steady-date data (segment line) for (filled circle): Raf1/RKIP,
(open circle): Raf1/RKIP/ERK, (filled square): MEK-PP and (open square):
MEK-PP/ERK. The predicted concentration profile is yielded with Parameter
Set 1.

1000 generations). By applying the multi-objective optimization scheme, alter-

native solutions that are more practical and effective can be obtained for design

of perturbation experiments. Compared to biological experiments, computa-

tional study is an economical strategy, which can help biologists design in vivo

experiments in a more efficient way.

We presented a comparative study investigating some of the factors impor-

tant to the performance of MoPSwarm in solving multi-objective optimization

problems. We found that the choice of selection scheme for global best guide

and the mechanism for updating the archive is critical for the Pareto-based ap-

proach, from the perspective of promoting an effective search towards the Pareto

front and maintaining diversity in the population.

In summary, a multi-objective optimization scheme is advantageous over

single-objective optimization in two major aspects.

First, in the context of single-objective optimization, a multi-criteria fitness

value must be defined to aggregate individual fitness value, in order to perform
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Figure 6.7: Comparison of the predicted concentration profile (continuous line)
and the true perturbation data (segment line) for (filled circle): Raf1/RKIP,
(open circle): Raf1/RKIP/ERK, (filled square): MEK-PP and (open square):
MEK-PP/ERK. The predicted concentration profile is yielded with Parameter
Set 1.

an optimization or search process with a single objective. This multi-criteria

fitness value summarizes the degree of satisfaction of all the individual criteria.

The danger of function aggregation lies in the fact that the objectives with large

values may dominate the search process. This leads to the result that objectives

with large function values could be satisfactorily optimized but the performance

of objectives with small function values is always poor. One way to solve the

problem is to weight the individual measures for each criteria and carefully com-

bine them all together into a single measure. However, in our experience, it is

not trivial to develop a good multi-criteria measure that aggregates the individ-

ual criteria properly, which may have a significant impact on the optimization

performance.

Second, in the context of single-objective optimization, normally only one

solution can be detected per optimization run. On the contrary, with the multi-

objective optimizer, a set of Pareto-optimal solutions can be obtained with a

single run of the algorithm. Considering all the objectives simultaneously but in
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Figure 6.8: Comparison of the predicted concentration profile (continuous line)
and the true steady-state data (segment line) for (filled circle): Raf1/RKIP,
(open circle): Raf1/RKIP/ERK, (filled square): MEK-PP and (open square):
MEK-PP/ERK. The predicted concentration profile is yielded with Parameter
Set 2.

a separate form during the search process allows practitioners to favor certain

objectives over the others in the selection of solutions. Given the Pareto-optimal

front in Figure 6.3(d), biologists can choose the solution according to the impor-

tance ascribed to each objective. For example, if it is more important for the

objective concerning the perturbed condition to be accurately optimized, then

the solutions lying at the bottom of the front are favored, which are the ones

that hold smaller values for this objective function.

Further statistical analysis of the Pareto-optimal solutions of multi-objective

optimization problems can be carried out. Important information can be ob-

tained from the Pareto-optimal front with regards to the reliability of the esti-

mated parameters. This can be achieved by analyzing the variation of estimated

values of the unknown parameters along the Pareto-optimal front. If the esti-

mated values of one parameter vary widely, then it may indicate that either

the available experimental data is not informative enough or the model contains

intrinsic difficulties for estimating this parameter.
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Figure 6.9: Comparison of the predicted concentration profile (continuous line)
and the true perturbation data (segment line) for (filled circle): Raf1/RKIP,
(open circle): Raf1/RKIP/ERK, (filled square): MEK-PP and (open square):
MEK-PP/ERK. The predicted concentration profile is yielded with Parameter
Set 2.

Application of the analysis (described above) to the solutions displayed in

Figure 6.3(d) implies that it may be hard for parameters k2 and k7 to be accu-

rately estimated with the given observed data, where the coefficient of variation

(ratio of standard deviation over mean) of the estimated values of these param-

eters is large: up to 0.5. Large variations shown on k2 and k7 suggest that

reactions involving these two parameters should ideally be further characterized

or/and more biological experiments concerning the pathway (i.e. with a focus on

the reactions containing k2 and k7) should be designed so as to obtain substantial

measurements.

In Chapter 7, a schematic approach for system identification of the trypan-

othione metabolic pathway in T. brucei is presented. MoPSwarm (Variant 4) is

applied to model validation of the polyamine biosynthetic sub-pathway.



Chapter 7

A Methodological Framework for

Mathematical Modelling of the

Trypanothione Metabolic

pathway

In this chapter we describe the challenges of computational modelling of complex

systems where prior knowledge about the system is incomplete and experimen-

tal data is sparse. We propose a methodological framework to address these

challenges and illustrate the feasibility of the approach in guiding our work on

the computational modelling of a real biological system – the trypanothione

metabolic pathway in Trypanosoma brucei.

7.1 The Challenge

Sauro et al. (Sauro et al. 2006) stated that, owing to the inherent non-linearity

of biological systems, the problem of system identification is extremely challeng-

ing. The authors drew attention to the biochemical network inverse problem

when there are many variables for which there is no experimental data and also

pointed out that few of the existing attempts have been applied to severely

under-determined problems where only a limited amount of information can

contribute to model construction.

Mechanistic modelling is a particularly useful tool in the study of new bio-

logical processes. However, despite its great value, the application of this type

199
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of modelling of large-scale complex biological systems is not straightforward

and sometimes impractical because it necessitates the consideration of many

pathways for which detailed reactions and their kinetic parameters are not yet

known. This is complicated by the fact that exact mechanisms accounting for

the phenomenon under study are frequently elusive.

The experimental measurements of the trypanothione metabolic pathway

are insufficient to achieve a complete mathematical description of the pathway.

In addition, there are several challenges to constructing a suitable mechanistic

mathematical model of the trypanothione pathway. First, there is uncertainty

in the network topology describing chemical activities of the relevant system

components. Second, the use of in vivo enzyme kinetics and regulatory data

measured from different experimental settings also poses difficulties. It is nec-

essary to explore both the model structure and missing parameters in order for

the identification of an appropriate model.

There are many challenges that are imposed on conventional approaches to

modelling, simulation and analysis by the complexity of biological pathways.

This is further complicated by data sparsity, which leads to a requirement for

novel approaches to cope with these challenges (van Riel 2006).

7.2 Goals and Objectives

As stated in Chapter 1, the intended use of the model has a critical impact on

the approaches applied at different stages of the modelling procedure. There

are two primary goals of our work on kinetic modelling of the trypanothione

metabolic pathway as follows:

1. Given the mathematical formulation combined with the estimated param-

eters, the model can reproduce the observed biological phenomenon.

2. With a valid model, predictions of the system responses under different

experimental conditions can be obtained and hypotheses regarding the

biological pathway can be generated to be proved or disproved experimen-

tally.

In order to achieve these goals, two categories of mathematical models are

required for the pathway under consideration – a descriptive model and a predic-

tive model. Different computational strategies are recommended to accomplish

the specific objectives.
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Descriptive models are concerned with the question of ‘whether the model

can reproduce the experimentally measured dynamics of the system’. One use of

such models is to estimate the unknown kinetic parameters and the structural

characters of the system in silico. Descriptive models are evaluated in terms

of goodness of fit and finding a good fit involves simultaneously exploring the

mathematical structure and unknown parameters. The compatibility of simula-

tion results with experimental data provides evidence for the credibility of the

model.

Predictive models are concerned with the question of ‘does the model ade-

quately describe the system of interest’. In other words, in addition to repro-

ducing biological observations, models must be developed to allow predictions

of system dynamics in response to environmental or genetic perturbations. Pre-

dictive models are usually validated using independent data that is not used

for model building and parameter estimation. Good predictions of independent

data can be used to assess the applicability of the model.

7.3 Our Approach

The challenge of kinetic modelling of complex biological systems is investigated,

when prior knowledge about the system is incomplete and observed data is

sparse. We develop a methodological framework to tackle the challenge and

assess the usefulness of our proposal on the trypanothione metabolic pathway.

The schematic flowchart of the proposed methodological framework is illus-

trated in Figure 7.1. The major phases of this framework are Initial Model

Construction, Model Decomposition, Model Reconstruction and Model Valida-

tion. The Model Structure Exploration step is employed in the phases of model

decomposition and model reconstruction, where necessary and applicable. The

proposed framework can be generalized to mathematical modelling of any non-

linear systems that are at best characterized with incomplete and sparse obser-

vation data.

One big strength of this framework is that it can be applied to tackle the

system identification problem of different sub-systems in an independent man-

ner. Once biological information is sufficient for the in silico investigation, these

sub-systems can be further studied with regard to the correctness of mathe-

matical model structures and unknown parameters can be estimated. After the

remaining unexplored portion of the pathway is successfully resolved, the final
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Figure 7.1: The schematic flowchart of the proposed methodological framework.

model of the trypanothione metabolic pathway can be developed by integrating

the models describing individual sub-systems in the step of Merge Model. If

the models are not directly connected, then black-box connectors are required

to link the models and the involved parameters have to be estimated.
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The phase of Initial Model Construction involves gleaning prior knowledge of

the system from the literature, including identifying the network topology, the

characters of enzymatic-reaction mechanisms and the experimentally measured

initial states. The initial states, in the context of biological systems, refer to the

initial concentrations of the system components and kinetic parameter values of

the enzyme catalyzed reactions. The initial kinetic model of the trypanothione

metabolic pathway was presented in Chapter 4.

The phase of Model Decomposition aims to decompose the initial system

into functionally independent sub-systems, and study structural insufficiency

via optimization-based simulation. Models of each sub-system are represented as

closed systems, where the inputs and outputs of the sub-systems are known vari-

ables, approximated with the measured dynamics from biological experiments.

The degree of decomposition is dependent on the correctness of mathematical

model structures of the sub-systems and the availability of experimental mea-

surements for system components. Choosing a model variable to initialize the

decompositional process is not a trivial task. We take advantage of the struc-

tural modelling (see Chapter 3) as a strategy to determine the initial functional

sub-system(s). In this phase, mathematical structures of the sub-systems are

examined and the structures are rejected if no satisfactory fit with the experi-

mental data can be obtained for any possible set in the parameter space. The

consistency of the model behaviour is verified through a qualitative comparison

with experimental data.

The phase of Model Reconstruction continues the investigation into the cor-

rectness of mathematical model structures, the appropriateness of which is ex-

amined via the same optimization procedure. Model reconstruction is an itera-

tive procedure, which can be understood as the reverse of model decomposition,

where enzymatic reactions may be added and/or removed from the sub-system.

By the end of this phase, structurally-correct models can be identified that allow

mechanistic insights into the system or sub-systems, and useful in vivo experi-

ments can be suggested in order to enable structural exploration of the remaining

portions of the system (if there are any) in the future.

Sub-system models that are obtained from the model decomposition and/or

reconstruction phases may be structurally incorrect. Candidate models for these

sub-system(s) are examined for appropriateness in the Model Structure Explo-

ration step. Detailed biological information on structural constraints of the sub-

system is required in order to design biologically meaningful model variants. The
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structural constraints can be specified using the network topology (i.e. elemen-

tary reaction steps) and/or the kinetic character (i.e. regulatory mechanisms

of enzymes or between enzymes). When it is feasible, the constraints are incor-

porated into the current mathematical structure of the sub-system to formulate

new model structures and the appropriateness evaluated via optimization-based

simulation. If a candidate mathematical structure reproduces experimental data

sufficiently accurately, then according to Heinrich et al. (Heinrich et al. 1977),

it is likely that this sub-system is correctly modelled.

The phase of Model Validation is concerned with proving that the model is an

adequate representation of reality, which gives confidence that the model is useful

not only for reproducing measured dynamics, but also consistently interpreting

the underlying biological processes. The multi-objective optimization algorithm,

MoPSwarm, proposed in Chapter 6 is applied in this phase. If only structurally-

correct sub-system(s), rather than a complete kinetic model, are obtained from

the previous phases, then a black-box approximation must be applied to the

inputs and/or outputs of the sub-system(s) prior to the validation procedure

in order to render predictive power. The applicability of the model with the

parameter estimates solved using MoPSwarm is assessed by comparisons between

the model predictions and independent data sets obtained from distinct states of

the system. We term the data sets serving as the inputs to MoPSwarm algorithm

as Estimation Data and the independent data sets for model assessment as

Validation Data. Unsatisfactory results trigger the model refinement process,

which may involve checking the reliability of validation data or examining the

presence of regulatory mechanisms that may be missing from the model.

According to the conventional process of in silico simulation, the model

should be solved as a whole, with all the parameters estimated simultaneously

using the optimization method. The missing protein initial concentrations are

treated as parameters to be estimated together with the unknown kinetic pa-

rameters. The initial kinetic model of the trypanothione metabolism proposed

in Chapter 4 (see Section 4.4) consists of 23 ODEs derived from 23 catalytic

mechanisms and 3 regulatory mechanisms. In this thesis, we focus on study-

ing the trypanothione dynamics at the metabolic level. Towards the end, only

ODEs for variable metabolites are taken into consideration, which results in a

kinetic model consisting of 23 catalytic mechanisms with 80 kinetic parameters.

There are 29 unknown kinetic parameters to be estimated with the optimiza-

tion method and 3 unknown initial concentrations (intracellular AdoHcy, cys-
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teine and G6P). According to Chapter 4, the initial concentration of AdoHcy

can be approximated from the metabolite AdoMet with the equality constraint

[AdoHcy] = 0.2 × [AdoMet].

Prior to computational simulation, models may be simplified by reducing the

number of unknown parameters so as to improve the performance of system iden-

tification. Based on relevant qualitative knowledge, meaningful simplifications

can be introduced on two unknown kinetic parameters as follows.

First, AdoMetDC is assumed to be present in the cell in two forms, namely a

free form and a ligand-occupied form. The total concentration of AdoMetDC is

therefore the superposition of free-form AdoMetDC and ligand-occupied AdoMe-

tDC. We introduced a factor β to represent the percent of free-form AdoMetDC

taking up the total enzyme concentration, thus the ligand-occupied form is ex-

pressed as 1 − β of the total concentration. Willert and Phillips (Willert and

Phillips 2008) observed that the prozyme reacting with AdoMetDC is a lim-

iting factor on the activity of AdoMetDC. This observation implies that the

concentration of the ligand-occupied form accounts for a limited quantity of the

total AdoMetDC concentration. β is assumed to vary between 0.5 and 1 in or-

der to reflect the experimental observation and still allow the ligand-occupied

AdoMetDC to change within a physiologically feasible range. In this way, the

three unknown parameters are reduced to two unknown parameters – the total

concentration of AdoMetDC and the ratio β. The mathematical rate expressions

of the ligand-occupied and free form of the enzyme defined in Equation (4.6) and

Equation (4.7) in Chapter 4 are modified to the following equations

VAdoMetDCL = kAdoPro
cat · [AdoMetDCT ] · (1 − β) ·

[AdoMet]

KAdoPro
mAdoMet

1 +
[AdoMet]

KAdoPro
mAdoMet

(7.1)

VAdoMetDCO = kAdoMetDCO

cat · [AdoMetDCT ] · β · (7.2)

[AdoMet]

KAdoMetDCO

mAdoMet

1 +
[AdoMet]

KAdoMetDCO

mAdoMet

+
[dAdoMet]

KAdoMetDCO

idAdoMet

+
[KAdoMetDCO

aPut ]

[Put]

Second, a relation between the enzyme activities of trypanothione peroxidase,

V TPx
max , and H2O2 synthesis rate, Rsyn, is approximated. The published values
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for V TPx
max and Rsyn have been extracted from the literature, which are 1.3 nmol ·

min−1 ·(108 cells)−1 and between 0.2–0.7 nmol ·min−1 ·(108 cells)−1, as given in

Chapter 4. We clarified that the standard unit of enzyme specificity is defined as

μmol ·min−1 · (mg of cells)−1. However, both values are given in the literature

in a different unit. To transform the values into the standard enzyme unit,

the protein concentrations of the associated enzymes must be known. There

are, unfortunately, difficult to measure in vivo. Instead, with the published

values in units of number of cells, a ratio of V TPx
max and Rsyn can be derived,

which falls in the range 1.8 to 6.5. In our study, a ratio of 6.5 is assumed

to describe the relationship between the two parameters, thus removing one

unknown parameter.

7.4 Initial Model Simulation

The experimental observations adopted for global optimization were obtained

from the paper by Fairlamb et al. (Fairlamb et al. 1987). The reported data set

describes the in vivo drug-induced dynamics of bloodstream-form T. brucei in

response to DFMO. This is the only relevant data source that was obtainable for

this project. A few of other types of data has been published (e.g. gene knock-

down data), but they are comparatively insufficient to be used as the Estimation

Data for the identification of model structure and unknown parameters.

The experimental measurements published by Fairlamb et al. are available

for eight metabolites, namely AdoMet, dAdoMet, ornithine, putrescine, spermi-

dine, glutathione, GspdSH and trypanothione, with data given for three time

points (12 hrs, 36 hrs and 48 hrs). This results in a partial and sparse opti-

mization problem, where the availability of observed data is given for only a

portion of the total metabolites (8 out of 20 metabolites) and measured at a

limited number of time points. This constraint poses a significant challenge to

the optimization problem under study.

In order to apply the drug perturbation data reported by Fairlamb et al., a

modification to the initial model has to be modified by incorporating the DFMO-

induced factors. DFMO profoundly changes the metabolism of T. brucei by

altering the enzyme activity of ODC, in consequence, influencing the polyamine

synthesis and content. The steady-state protein levels of other enzymes, in-

cluding SpdS, AdoMetDC, γ-GCS, prozyme, TryS and TR were unaffected by

DFMO inhibition (Xiao et al. 2009).
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According to Bacchi et al. (Bacchi et al. 1983), ODC activity was decreased

by more than 99% within 12-hour treatment of DFMO. In our study, the generic

form of enzyme activity is represented as the product of turnover number and

the protein concentration

V ODC
max = kODC

cat · [ODC] (7.3)

where kODC
cat remains fixed in all conditions but the enzyme concentration, [ODC],

may vary in some cases when the biological system is treated with an activator

or inhibitor.

To describe the enzyme inhibition, time-dependent changes of the ODC con-

centration in response to DFMO have to be explicitly modelled. The inhibition

is assumed to follow an exponential decay, expressed as

[ODC]ss · e−λ·t (7.4)

where [ODC]ss is the steady-state ODC concentration. Parameter λ is solved

for simple curve fitting using the qualitative description of the enzyme dynamics

with addition of DFMO and takes a value of 0.007 in this instance. A detailed

discussion of this drug-enzyme interaction was given in Section 4.3.1 in Chap-

ter 4. The rate equation of the enzyme under normal conditions, which was

defined in Equation 4.2, is modified to give the following:

VODC = kODC
cat · [ODC]ss · e−λ·t ·

[Orn]

KODC
mOrn

1 +
[Orn]

KODC
mOrn

+
[Put]

KODC
iP

(7.5)

No boundary values for the unknown parameters can be directly extracted

from the literature. In terms of optimization, there is a trade-off between small

and large ranges within which the parameters may vary. Small ranges on un-

known parameters lead to a narrow search space that will probably preclude po-

tentially good solutions from consideration. On the other hand, a broad search

space is more likely to lead to globally optimal solutions by thoroughly explor-

ing the search space. However, in the latter case it is more likely that the

optimization will move into a region of the search space where the ODE solver

becomes numerically unstable. The lower and upper bounds imposed on the

unknown parameters were assumed to be based on the modeller’s experiences
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and communications with the biologists. The boundary values are reported in

Chapter 4 and are deemed appropriate for the current study. The possibility

that the model is not soluble is thus less likely to stem from ill formation of the

parameter search space.

In total, we carried out 300 optimization runs using the global optimization

algorithm PSwarm. The algorithm parameters were set as follows: 50 initial

particles in the population, 2000 maximum iteration number and 5000 maximum

function evaluations. The simulations were performed for 48 hours and the model

was solved using ode15s from Matlab.

The optimization method failed to produce a set of parameters that can

reasonably reproduce the experimental data. Figure 7.2 shows the simulation

results and experimental measurements for the metabolites critical to the reg-

ulation of trypanosomal growth, including spermidine, glutathione-spermidine

conjugate and trypanothione. The simulation results were calculated with the

estimated set of parameters having the smallest objective function value. In

Figure 7.2(a), Figure 7.2(b) and Figure 7.2(c), the simulation results are con-

stantly higher or lower than the observed data, representing distinct dynamic

trends over the time course. Figure 7.2(d) shows interesting dynamics, where the

simulation results are both higher and lower than the observed data at different

time points.

The optimization problem under investigation is a non-linear, high dimen-

sional problem. Simultaneously estimating all the unknown parameters in the

pathway is computationally expensive and sometimes not possible. This is par-

ticularly true when the observed data is limited. The problem is further com-

plicated by correlations between the unknown parameters. In the following sec-

tions, the proposed methodological framework is applied to guide the computa-

tional modelling of the trypanothione metabolic pathway. We aim at exploring

the ill-defined kinetic mechanisms of the reactions, subsequently, inferring po-

tentially suitable structures, and identifying the sub-system for which a sound

mathematical model can be possibly obtained given the limited experimental

data.

7.5 Model Decomposition

Cells can be seen as composed of a number of sub-systems. These sub-systems

themselves can in turn be further broken down into sub-systems — for example,
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Figure 7.2: Simulation profiles compared to experimental data for the key
metabolites when solving the model as a whole. Logarithmic axis is used for
glutathione in order to better present the data. Error bars are presented where
appropriate data was available in the original papers.

functionally independent modules. Biological systems can thus be seen as hier-

archical systems. As stated in Chapter 1, a key problem is how to functionally

modularize a system.

In this study, we propose a decompositional approach to break down the ini-

tial model, which is not well-characterized, into modules for the investigation of

the correctness of mathematical model structures. Each module fulfills a certain

metabolic function pertinent to the trypanothione metabolism. The boundaries

of each module are formed by the model components for which there are con-

centration profiles with experimental data. We term these model components as

constant components. Modules should be able to operate independently of the

rest of the system. In the context of global optimization, parameters included in

modules can be estimated separately from the remaining unknown parameters.

The proposed procedure for Model Decomposition is embodied in the follow-
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ing basic steps:

Step 1: If this is the first iteration, identify the initial point for model

decomposition to derive initial modules and go to Step 3. Otherwise,

go to Step 2.

Step 2: Remove boundary components of the module derived from the

previous step of model decomposition. The removal of boundary compo-

nents involves deleting the associated chemical reactions. The formation

of new boundaries should comply with the following conditions:

• If observed data is not available for the new boundary component

after the first set of boundary components is removed, then the re-

actions associated with this component must also be deleted. This

process may be continued for a number of iterations until the exte-

rior components of the resulting module are constant components.

• If observed data is available for the new boundary component af-

ter the first set of boundary components is removed, then either

the reaction(s) incoming to, or the reaction(s) outgoing from this

component are deleted, depending on whether the component set

participates in the module as an input or output.

Step 3: apply global optimization to the module obtained from the first

step. If the results are satisfactory when compared with experimental

results, then this module is considered as an ‘elementary’ module (the

module is assumed to be well-characterized) and no further decomposi-

tion is required.

Step 4: (optionally) return to the first step if the optimization results

are not satisfactory until the end point of decomposition is reached.

The proposed decompositional approach is an iterative process, the termi-

nation of which depends on the quality of the optimization results in describing

the measured system dynamics. Modules derived using this approach should

satisfy the following condition: boundary components of the module are treated

as independent inputs and only the components within the module are variable

components with dynamics dependent on time and the inputs. In order to ap-

ply the global optimization method to the modules, an additional constraint is

imposed – observed data should be available for at least one variable component
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contained in the module. The availability of observed data (e.g. coverage and

adequacy) therefore also determines the degree of model decomposition.

In order to check whether the module’s behaviour is consistent with experi-

mental data, the behaviour is qualitatively compared based on the similarity of

curves or on certain effects which the model can reproduce. This comparison

method is defined by Heinrich et al. (Heinrich et al. 1977) as ‘qualitative com-

parison’. The mathematical structure of the module is rejected if no satisfactory

fit with the experimental data can be obtained.

Identifying the first component to initialise model decomposition is a non-

trivial task, particularly for real systems, where the number of variable com-

ponents involved is often large. It is noteworthy that in metabolic networks a

potential relationship exists between topological modularity and the functional

classification of different metabolites, for example in the metabolic network of

E. coli (Ravasz et al. 2002).

We attempt to take advantage of the network hierarchy to guide the se-

lection of starting point for the decompositional procedure. In Chapter 3, we

conducted structural modelling of the trypanothione pathway. The results pre-

sented indicate that, from a topological perspective, trypanothione metabolism

is organized in a hierarchical architecture. This provides a natural breakdown of

the pathway into two large modules, responsible for two necessary components

of trypanothione metabolism, namely trypanothione biosynthesis and oxidative

stress defense.

However, the oxidative stress defense module cannot be processed for model

decomposition. As stated previously, there must be at least one variable com-

ponent contained in the module where observed data is available; however no

components contained in this module were provided in the experimental mea-

surements by Fairlamb et al..

There is however comparatively sufficient data to investigate the correctness

of the mathematical model structure of the trypanothione biosynthesis mod-

ule. Initially, the constant boundary components of this module are exogenous

methionine, arginine, cysteine and intracellular trypanothione. Following opti-

mization to assess the compatibility of the module with experimental data, the

module will be further partitioned into smaller but more integrated sub-modules.

The time evolution of the intracellular trypanothione is approximated with

a time-dependent polynomial. The use of different input functions to simulate

the concentration profiles of the boundary components has been found to have



CHAPTER 7. A PROPOSED METHODOLOGICAL FRAMEWORK 212

an impact on the accuracy of parameter estimation (Faller et al. 2003). With

the four data points (including the initial concentration) measured by Fairlamb

et al., a polynomial input function up to 4th order can be generated. In this

stage, the error in parameter estimates is irrelevant, since the comparison of

the module’s behaviour to the experimental data is qualitative rather than a

goodness-of-fit criterion, such as on the sum of least squares. A 3rd-order poly-

nomial function is employed in this case, which is believed to be sufficient the

qualitative comparison.

The first three stages of model decomposition of the trypanothione biosyn-

thesis sub-system are shown in Figure 7.3.

Model Decomposition–Stage 1 Optimization of the trypanothione biosyn-

thesis sub-system, which is shown Figure 7.3(A), failed to produce a satisfactory

match with the experimental data. In particular, simulation results for glu-

tathione, spermidine and GspdSH are no better than the results obtained by

solving the entire model (shown in Figure 7.2).

According to the decompositional rules, the trypanothione biosynthesis sub-

system is further decomposed by removing the boundary component, trypan-

othione, which involves deleting the incoming reactions of this metabolite. This

process results in a new module with GspdSH and glutathione as the boundary

components, shown in Figure 7.3(B). The results of this new module are however

still not compatible with experimental data. This indicates that a further level

of model decomposition is required in order to correct the module.

It is worth pointing out that setting glutathione as a known input results

in the optimization method being unable to correctly tune the parameters in-

volved in the upstream glutathione production reactions (sub-pathway in grey

in Figure 7.3(B)). This involves the reactions catalyzed by exogenous cysteine

transporter, gGCS and GS.

Model Decomposition–Stage 2 Removing the boundary component GspdSH

and associated reactions from the module (Figure 7.3(B)) leads to two individual

sub-pathways with spermidine and glutathione as the end products. As discussed

above, the glutathione production sub-pathway cannot be examined for mathe-

matical structure deficiency by parameter estimation because no observed data

is available for the intermediate components included in this sub-pathway.

The spermidine biosynthesis module, shown in Figure 7.3(C), is suitable
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Figure 7.3: The first three stages of model decomposition of the trypanothione
biosynthesis sub-system: (top left): overview of the trypanothione biosynthesis
sub-network; (bottom left): reduced module of the sub-network via stage 1; (bot-
tom right) reduced module of the sub-network via stage 2; (top right); reduced
module of sub-network via stage 3. Boundary components of the three reduced
modules are denoted in brown color: GspdSH and glutathione in bottom left;
spermidine in bottom right; and spermidine and ornithine in top right.

for the investigation of the correctness of mathematical model structure. In

this case, intracellular spermidine becomes the boundary component that is

approximated with a 3rd-order polynomial function. The simulation results

of the ‘known’ intermediate components (for which observed data is available)

including AdoMet, dAdoMet, ornithine and putrescine are shown in Figure 7.4.

Inspection of Figure 7.4 shows that a moderate improvement in the opti-
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Figure 7.4: Simulation profiles compared to experimental data for the key
metabolites obtained in Stage 2 of the model decomposition. Error bars are
presented where appropriate data was available in the original papers.

mization performance in solving the spermidine biosynthesis module. Of the

four intermediate metabolites, the match with experimental data for dAdoMet,

ornithine and putrescine (Figure 7.4(b), Figure 7.4(c) and Figure 7.4(d)) is sat-

isfactory given the sparse experimental data. The simulation results of AdoMet

(Figure 7.4(a)) still contradict the target data in terms of the trend in the change

of transient concentrations.

The simulation profile of arginine is shown in Figure 7.5. No values were

reported by Fairlamb et al. for arginine concentrations in the DFMO inhibi-

tion experiment; however, its intracellular level is assumed not to significantly

change during the course of drug inhibition (Alan H. Fairlamb, personal email,

28 August 2007). Different arginine dynamics were observed in the procyclic-

form T. brucei by Bellofatto et al. (Bellofatto et al. 1987) (see Table A.2 in

Appendix A), where arginine concentrations were increased up to four times of

the steady-state level after 48 hours of DFMO treatment.
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Figure 7.5: Simulation profiles for the arginine dynamics obtained in Stage 2
of the model decomposition. Arginine concentrations reduced to 90% of the
steady-state level within 12 hours of DFMO treatment. No experimental data
is available for arginine dynamics.

Regardless of which arginine dynamics are taken into account, simulation

results of the mathematical model deviate from experimental measurements. As

displayed in Figure 7.5, the model prediction for arginine concentrations are con-

tradictory to both assumptions that the concentration increases approximately

linearly or is unchanged during the course of DFMO treatment.

Model Decomposition–Stage 3 The unsatisfactory optimization results ob-

tained from Stage 2 promote further decomposition in order to identify possible

missing reactions or ill-defined kinetics of the spermidine biosynthesis module.

Since the number of metabolites for which observed data is available is compara-

tively large in quantity (4 out of 7 metabolites have experimental measurements),

the proposed decompositional approach allows several strategies to be developed

for decomposition of this module.

We take advantage of the optimization results obtained in Stage 2 to guide

the model decomposition in the current stage. Figure 7.4(a) and Figure 7.5

indicate that the dynamics predicted for AdoMet and arginine present differing
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trends to the observed data. This implies that the reactions participating in the

metabolism of AdoMet and arginine may be ill-characterized. As a consequence,

the purpose of model decomposition in this stage is to examine the correctness

of mathematical model descriptions of the related reactions. Two strategies can

be developed in accordance with the focus of investigation centered on either

AdoMet and arginine metabolism.

Strategy 1 with focus on AdoMet metabolism When the focus of in-

vestigation is concerned with AdoMet metabolism, the spermidine biosynthesis

module (Figure 7.3(C)) is decomposed by removing the upstream reactions for

ornithine production. Such decomposition leads to intracellular ornithine as the

new boundary component of the derived module, shown in Figure 7.3(D). The

concentration profile of intracellular ornithine is approximated with a 3rd-order

polynomial function.

The simulation results of the intermediate components including AdoMet,

dAdoMet and putrescine are shown in Figure 7.6.

It is clear that the simulation results for AdoMet, dAdoMet and putrescine

do not differ considerably from those obtained in Stage 2 of the model decom-

position. Apart from AdoMet (Figure 7.6(a)), the simulation results obtained

for dAdoMet and putrescine (Figure 7.6(b) and Figure 7.6(c)) via global opti-

mization are reasonably good, although not perfect. The overall optimization

performance is satisfactory for solving the high-dimensional search space, given

the limited and incomplete experimental data.

Simulation results in Figure 7.4(a) and Figure 7.6(a) show that almost no

difference is observed in the AdoMet dynamics. The intracellular concentra-

tions of AdoMet are estimated to remain constant over 12 to 48 hours after

DFMO inhibition. This is in contrast to the experimental observations from

Bacchi et al. (Bacchi et al. 1983) and Fairlamb et al. (Fairlamb et al. 1987)

that report AdoMet concentrations increasing more than 50 fold 48 hours af-

ter DFMO treatment. However, more recent and reliable biological experiments

(Xiao et al. 2009) support our model predictions that AdoMet concentrations do

not significantly change in response to DFMO treatment. This is not shown in

Figure 7.6 as Xiao et al. report only a qualitative comparison with their control

experiment.
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Figure 7.6: Simulation profiles compared to experimental data for the key
metabolites obtained in Stage 3 of the model decomposition. Ornithine is an
input. Error bars are presented where appropriate data was available in the
original papers.

Strategy 2 with focus on arginine metabolism When the focus of in-

vestigation is concerned with arginine metabolism, the spermidine biosynthe-

sis module is decomposed by removing the intracellular spermidine and by-

product MTA. This leads to the deletion of methionine and the related reac-

tions. AdoMet, dAdoMet and putrescine therefore become the new boundary

components, as shown in Figure 7.7.

Figure 7.7 shows that the arginine and dAdoMet biosynthetic sub-pathways

are topologically isolated and can be studied independently from each other, as

no interactions between the two branches are indicated at the metabolic level.

We are aware that changes in AdoMetDC activity have an impact on the gene

expression level of ODC (Willert and Phillips 2008), and that ODC suppression

may also have a concomitant influence on AdoMetDC activity, though this has

not yet been evidenced.
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Figure 7.7: Results of decompositional Stage 3, arginine-centered strategy

The gene-level regulation between the enzyme activities of AdoMetDC and

ODC is not considered in the phase of mode structure exploration, rather they

are solved independently from each other during the optimization process. This

consideration is consistent with the purpose of the current study, which aims to

seek possible solution(s) for the unknown parameters within the defined search

space so that model predictions are compatible with the measured dynamics of

the system. Elucidating the underlying relation between the enzyme activities of

AdoMetDC and ODC is not possible with the DFMO-induced data set that de-

scribes the changes in concentrations at the metabolic level, thus is not relevant

to this study.

The module used for investigating the correctness of the model of arginine

metabolism is the individual sub-pathway on the right side of Figure 7.7. This

module takes putrescine as the boundary component and employes a 3rd-order

polynomial function to approximate its concentration profile. No significant

improvements were obtained for the simulation results of arginine dynamics.

This implies that the enzymatic reactions concerning arginine dynamics may be

incorrect, which suggests in silico exploration for appropriate model structures.
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7.6 Model Structure Exploration

When one attempts to construct a novel model of a complex biological system,

for which the prior knowledge is partial, the first and foremost thing to do is to

examine the soundness of the mathematical model. The mathematical models

considered in this thesis are defined as a set of differential equations, which

associate the changes in concentration levels of system components with reaction

rate equations. The reaction rate equations express the enzyme reaction rate

as a function of the concentrations of other model components. The algebraic

expression for each rate equation depends on the kinetics under consideration.

In this thesis, we apply the law of Michaelis-Menten to model the biological

system of interest.

The structure of mathematical models can be characterized with two types

of structural constraints, including network topology and kinetic character. The

former refers to the spatial layout of system components and the reversibility

of the chemical conversion between them. The latter specifies the realization

of interactions between system components, which is concerned with different

manners by which a reaction mechanism may be regulated. Kinetic characters

of standard Michaelis-menten and the derived forms featuring competitive inhi-

bition, noncompetitive inhibition, substrate inhibition and product activation,

are expressed in Section 4.3 in Chapter 4.

Model structure used to represent biological systems is often a key source

of uncertainty, when there are alternative sets of assumptions for developing

a model. Othmer (Othmer 1980) argued that, biologically, model structure is

important as a constraint, for example, certain structures are not compatible

with some dynamic behaviour fashions. Accurate model formulation can lower

the uncertainty associated with model structure. In silico investigations aimed

at identifying ill-characterized reactions and, subsequently, inferring potentially

suitable structures are inevitable.

In biological systems, there is only a small amount of information that can be

used to guide the design of candidate models. Very few studies take the time to

test the appropriateness of model structures explicitly and show their effects on

model predictions (Swameye et al. 2003). This is mainly because a lot of work is

required and there is a lack of established methods to aid the design. Detailed

biological information is also required in order to establish testable assumptions.

In the absence of enough knowledge, system-specific decisions will have to be
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made when designing variants of a mathematical model of the system.

As the trypanothione metabolic system is better known qualitatively than nu-

merically, we assume that the model inappropriateness discovered in the phase

of model decomposition most likely originates from the kinetic characters of

the system reactions, and the network topology currently in use is acceptable.

The modifications to kinetic mechanisms are reaction specific. In other words,

changes made to the kinetic character of one reaction so that the time-series

metabolite concentrations compare favorably with experimental data may not

be applicable to other reations. As illustrated by Tyson et al. (Tyson et al. 2003),

for a predefined stimuli-response relation, the model structure must comply with

a certain pattern in order for the model to accurately mimic the measured dy-

namics. With additional or modified kinetic characters, a better model repre-

sentation can be selected.

7.6.1 Identification of the Regulatory Link between ArgPt,

ARG and ODC

The model decomposition study reveals that the enzyme kinetics employed in the

arginine metabolism module may be ill defined (the individual sub-pathway on

the right side of Figure 7.7), as discrepancies between the mathematical model

and experimental observations are observed. There is no available biological

knowledge about T. brucei that can be used for postulating underlying model

structures. Instead, we refer to information about other organisms in the liter-

ature to aid the design of candidate models. The corresponding mathematical

structure of the equations are evaluated with two different sets of experimental

data by Bellofatto et al. (Bellofatto et al. 1987) and Fairlamb et al. (Fairlamb

et al. 1987).

Early work indicated that, in mammalian cells, stimulation of ODC would

cause a concomitant increase in the level of arginase expression (Cederbaum

et al. 2003) or that ornithine may have an inhibitory effect on arginase (Selamnia

et al. 1998). These two hypotheses indicate the same phenomenon that arginase

activity may be regulated by the concentration of the enzyme ODC. We propose

the following mathematical expression to reflect the postulated relation between
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the two enzymes

VARG =
V ARG

max(
1 +

KARG
aODC

[ODC]

)γ1
·

[Arg]

KARG
mArg

1 +
[Arg]

KARG
mArg

(7.6)

where KARG
aODC (μM) represents the activation coefficient of the ODC concen-

tration ([ODC]) on the enzyme activities of arginase; and γ1 stands for the

activation strength. These two parameters are assumed to vary between 0 and

10.

We performed an optimization-based simulation study on the arginine metabolism

module to examine the presence of this regulatory relationship in T. brucei. The

rate equations of the constituent enzymes, including arginine uptake, ODC and

arginase, are expressed in Equation (4.23) and Equation (4.2) (in Chapter 4) and

Equation (7.6), respectively. The simulation results for intracellular arginine and

ornithine are shown in Figure 7.8. Both metabolites show a satisfactory match

with the experimental data, where arginine dynamics observed in the procyclic-

form T. brucei are assumed as the true experimental data.
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Figure 7.8: Simulation profiles compared to experimental data for the argi-
nine and ornithine dynamics computed with the modified rate of change of the
enzyme arginase. In this case, arginine dynamics observed in procyclic-form T.
brucei is assumed as the true experimental data. Error bars are presented where
appropriate data was available in the original papers.

However, a different mathematical model structure of the module is required

in order to interpret the dynamics properly when constant arginine concentra-

tions are assumed in the DFMO-induced experiment. Our modelling experience
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suggests that a refined rate equation of the upstream reaction of endogenous

arginine production – exogenous arginine uptake, has to be applied by incorpo-

rating the activatory regulation from the enzyme ODC as follows

VArgPt =
V ArgPt

max(
1 +

KArgPt
aODC

[ODC]

)γ2
·

[Arg]exg

KArgPt
m

1 +
[Arg]exg

KArgPt
m

(7.7)

where KArgPt
aODC (μM) represents the activation coefficient of the ODC concentra-

tion ([ODC]) on the enzyme activities of arginine transporter; and γ2 stands for

the activation strength. The two parameters are assumed to vary between 0 and

10.

We performed another simulation study on the arginine metabolism module,

where the rate equations of ODC, arginine uptake and arginase are expressed in

Equation (4.2) (in Chapter 4), Equation (7.7) and Equation (7.6), respectively.

The simulation results of the intracellular arginine and ornithine are shown in

Figure 7.9. Both metabolites can be correctly estimated in terms of both the

transient changes and exact values of the intracellular concentrations.
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Figure 7.9: Simulation profiles compared to experimental data for the arginine
and ornithine dynamics computed with the modified rate of change of the enzyme
arginase and arginine transporter. In this case, constant arginine concentrations
are assumed as the true experimental data. Error bars are presented where
appropriate data was available in the original papers.

Applying the fitted module of arginine metabolism, we determined that the

quantitative behaviour of the module is not compatible with both experimental

data sets. By in silico investigation, we identified a regulatory link between the
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arginine uptake, arginase and ODC enzymes as an essential feature of arginine

metabolism. Biological experiments are necessary to experimentally verify this

prediction in T. brucei, however. A recent biological experiment performed

by Darlyuk et al. (Darlyuk et al. 2009) observed that in L. donovani exogenous

arginine uptake increased significantly during cell starvation and was suppressed

to avoid intracellular arginine accumulation (which is toxic to the cell growth)

when polyamines are abundant or genetically ablated from the parasite, which

supports the existence of this link in T. brucei.

7.7 Model Reconstruction

Briefly, our proposed approach attempts to identify the ill-defined reaction(s)

by reducing the whole system into sub-systems for the examination of structure

correctness via global optimization. In Model Structure Exploration phase, we

discovered a potential regulatory link between arginase, arginine transporter

and ODC, which is postulated to be of biological importance in the regulation

of intracellular polyamines contents.

According to the decompositional rules, there are two situations where the

phase of model decomposition terminates and the phase of model reconstruction

begins. The first is, when in a certain stage of model decomposition, the module

becomes ‘elementary’ and has deficiencies in the mathematical model structure.

‘Elementary’ refers to the situation where further decomposition of the module is

not possible. The second is when the resulting module can produce a satisfactory

match with experimental data for the components of interest.

The former restricts a detailed examination of the model structure correct-

ness to a local area of the module. The phase of Model Structure Exploration

is activated in this situation for scrutinizing only the reactions included in the

resulting module for appropriate kinetic characters. The latter situation implies

that the reactions removed from the previous stages of the decomposition pro-

cedure may be incorrectly described, and the kinetic mechanisms related should

be examined for appropriate variants.

To continue the investigation of model structure deficiency, Model Recon-

struction has to be performed in order to scrutinize the reactions in the rest of

the mathematical model. This suggests a procedure where reactions that com-

prise the initial model but are excluded from the structurally-correct module

are added back to the module following the same rules for deciding the bound-
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ary components defined in the proposed decompositional approach. Thereby,

model reconstruction, which is an iterative procedure, can be understood as the

reverse of model decomposition. In this phase of the methodological framework,

we intend to explore the ill-defined kinetic characters of the modules devel-

oped in each stage of the decomposition procedure via global optimization. The

proposed mathematical model structure for arginine metabolism (discussed in

Section 7.6.1) is applied throughout the in silico investigation.

Certainly, designing sound mechanisms to describe enzyme kinetics depends

on how much biological knowledge is available for the reaction(s) in question.

When lacking biological evidence, it is an intrinsic impossibility for ambiguously-

defined reactions to be thoroughly studied. Therefore, the level to which the

process of model decomposition or reconstruction is applied is in most cases

determined by the richness of available biological information.

7.7.1 Experimental Results

We perform optimization-based simulation of the modules developed in all three

stages of model decomposition. To maintain consistency in the use of experi-

mental data, arginine dynamics assumed by Fairlamb et al. for the bloodstream-

form T. brucei in response to DFMO inhibition are applied. Accordingly, Equa-

tion (4.2) (in Chapter 4), Equation (7.7) and Equation (7.6) proposed in Sec-

tion 7.6.1 are employed to model the reactions relevant to arginine metabolism.

Satisfactory simulation results were obtained for the fitted polyamine biosyn-

thetic module in Figure 7.3(C), hence supporting our mathematical formulation

of the reactions in the considered sub-system.

A satisfactory match with the experimental data was also obtained for the

module in Figure 7.3(B), where GSH and GspdSH were boundary components.

Solving the model of the trypanothione biosynthetic module shown in module in

Figure 7.3(A) however resulted in simulation results not consistent to experimen-

tal data, particularly for the metabolites glutathione and GspdSH. In addition

to the introduction of reactions associated with trypanothione synthesis, the

major difference between the modules lies in the inclusion of the glutathione

biosynthetic sub-pathway, where, for the former, glutathione is solved over time

simultaneously with other variable components.

In the following section, we focus on evaluating the correctness of the math-

ematical equations that are currently applied to describe the kinetics of the
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bi-functional enzyme trypanothione synthetase, which catalyzes the reactions

associated with trypanothione synthesis (defined in Equations (4.27) to (4.30)

in Chapter 4). Optimization-based simulation is performed on the entire model,

where glutathione is defined as a known input, approximated with the experi-

mentally measured dynamics.

Investigation on the kinetic character of trypanothione synthetase and

amidase with DFMO-induced experimental data

Our literature research reveals two different GSH dynamics under the DFMO

treatment. Specifically, GSH concentrations were observed to increase by almost

80% (Fairlamb et al. 1987) or reduce by 60% (Xiao et al. 2009) of the controlled

level. The dynamics of other metabolites including spermidine, GspdSH and

trypanothione did not differ significantly between the two experimental settings.

The simulation results for putrescine, spermidine, GspdSH and trypanothione

compared to the observed values from Fairlamb et al. are shown in Figure 7.10,

where the glutathione dynamics are approximated using a 3rd-order polyno-

mial function (fitted to the observations by Fairlamb et al.) and a first-order

exponential function (fitted to the observations by Xiao et al.).

Figure 7.10 indicates that trajectories of the fitted model with different input

functions for glutathione can closely reproduce the experimental data in a self-

consistent manner. Model predictions for putrescine dynamics (Figure 7.10(a))

with two different inputs are almost identical in terms of both the trend and the

estimated values of the concentration changes. Model predictions for the dynam-

ics of spermidine (Figure 7.10(b)), GspdSH (Figure 7.10(c)) and trypanothione

(Figure 7.10(d)) share certain similarities in the transient changes in concentra-

tion, even though they differ in exact values with respect to experimental data.

Interestingly, concentration levels of spermidine and trypanothione are raised

(with both inputs) by about 12% and 40%, respectively, of the initial values

within 6 hours of drug addition, followed by a gradual decrease later on.

One explanation for our in silico observations that spermidine and trypan-

othione concentrations increase sharply is that T. brucei may attempt to restore

proliferation in the early stage of trypanosomal infection via defense mecha-

nisms, for example, the well-known antioxidant enzyme defense system based on

trypanothione (Schirmer et al. 1987). Recently, the compensatory mechanism

of arginase up-regulation by activated macrophages has been observed in Leish-

maina (Kropf et al. 2005) and T. cruzi (Peluffo et al. 2004) to counteract parasite
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Figure 7.10: Simulation profiles compared to observed values (Fairlamb et al.)
for the key metabolites when glutathione dynamics is approximated using differ-
ent experimental data reported by Fairlamb et al. (continuous line) and Xiao et
al. (dotted line). Error bars are presented where appropriate data was available
in the original papers.

infection; however this mechanism has not been verified to exist in T. brucei.

Further work is required in order to gain new insights on defense mechanisms in

trypanosomes, and consequently to unravel the underlying causes.

A mathematical model is valid only if it can reproduce all existing data

consistently, given that the data is relatively accurate and the sets are compatible

with each other. To illustrate this principle, we continue the evaluation of the

mathematical equations with another set of experimental data that is suitable

for this investigation, namely the gene-knockdown profile of spermidine synthase

measured by Xiao et al. (Appendix A.2). Since the dynamic behaviour of

ornithine was not reported, intracellular putrescine combined with dAdoMet and

glutathione are taken as the model inputs. All three inputs are approximated

using 3rd-order polynomials.
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In the RNAi knockdown experiment, spermidine synthase mRNA and protein

were reduced up to 90% of the original value by day 2 after the RNAi induction.

No correlated changes in the expression levels of other polyamine biosynthetic

enzymes, trypanothione synthetase or trypanothione reductase were observed in

the in vivo experiment. In accordance with biological information, the inhibition

of enzyme SpdS is assumed to follow a time-dependent exponential decay that

replaces the parameter V SpdS
max in Equation 4.16, expressed as

V SpdS
maxSS · e−λ·t (7.8)

where V SpdS
maxSS stands for the maximum velocity of spermidine synthase under

normal conditions. Parameter λ is solved by simple curve fitting using the

qualitative description of the enzyme dynamics with addition of DFMO and

takes a value of 0.0015 in this instance. The time span from 0 to 6 days is

covered by the experiment.

The resulting time courses of the module for intracellular spermidine and

GspdSH are shown in Figure 7.11. Both metabolites return a satisfactory match

with the experimental data in terms of the transient changes in concentration,

though it is not perfect with regard to the estimated concentration levels. Model

prediction of the trypanothione dynamics reveals rather interesting behaviour, as

shown in Figure 7.12. A high peak within the first 2 hours of DFMO treatment

is observed and presented in more detail in the enlarged inset to discern the peak

clearly.

Overall, in the phase of model reconstruction, the mathematical model struc-

ture of the polyamine biosynthetic module was evaluated to be correct in terms

of the DFMO inhibition data. The entire model of trypanothione metabolism

with glutathione as a known input can reproduce both experimental data sets in

a consistent manner. However, it is not possible to assert that the mathematical

equations currently in use to model the bi-functional enzyme trypanothione syn-

thetase and the trypanothione redox system are definitely correct; the structure

may be disproved later when more experimental observations about the system

are available.

Prior to the step of Model Structure Exploration, which searches for model

variants of the remaining sub-systems, targeted in vivo experiments are required

to distinguish between the two conflicting observations on glutathione dynamics

in response to DFMO inhibition and to explain the abrupt elevation of the
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Figure 7.11: Simulation profiles of spermidine and GspdSH compared to gene
knockdown data by Xiao et al.. In the simulation plot of GspdSH, the data point
measured after four days of RNAi knockdown of spermidine synthase seems to
be corrupted with large noise level. Error bars are presented where appropriate
data was available in the original papers.

metabolite concentration levels within the first 6 hours of DFMO treatment.

Additionally, biological information about other organisms may suggest changes

that can be used to further refine the model of T. brucei. As stated in Chapter 4

(Section 4.3.3), glutathione was found to enable a 15-fold activation of GspdSH

hydrolysis (Fyfe et al. 2008) in Escherichia coli. This promotes an investigation

on the potential stimulating effect that GspdSH exercises on amidase activity in

T. brucei, which may give rise to a modification of the mathematical expression

of the kinetic character of the enzyme.

The remarkable improvement obtained for the fitted model of trypanothione

biosynthesis when glutathione dynamics are given as an input implies that the

glutathione biosynthetic sub-pathway may be ill-characterized. This may be

ascribed to the kinetic mechanisms of reactions related to glutathione production

wrongly formulated or to some elementary reactions vital for the regulation of

glutathione metabolism being missing from the current topological structure. We

have explained that the kinetic character of the upstream reactions of glutathione

production cannot be investigated by our approach, because dynamic responses

of the intermediate metabolites of this sub-pathway (cysteine and gGluCys)

in response to DFMO inhibition have never been measured in vivo, thus the

optimization-based decompositional approach cannot be applied.

A recent hypothesis that the γ-glutamyl transpeptidase cycle is present in T.

brucei (Mike Barrett, personal communication, March 2009) provides support
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Figure 7.12: Simulation profiles of trypanothione compared to gene knockdown
data from Xiao et al.. Inset in the figure refers to the enlarge version of the
indicated dynamics of trypanothione over the first two hours of DFMO addition.
Error bars are presented where appropriate data was available in the original
papers.

for our postulation of the incompleteness of the network topology concerning glu-

tathione biosynthesis. The γ-glutamyl transpeptidase cycle may have an impor-

tant role in regulating glutathione dynamics, which accounts degradation of glu-

tathione into cysteine, glycine and glutamate via intermediate compounds cys-

teinylglycine and (5-L-glutamyl)-L-amino acid, and regeneration of glutathione

from the products. The γ-glutamyl transpeptidase cycle is supplementary to

research in the area of glutathione metabolism and function (Vina et al. 1989).

This concept is worth consideration for improved comprehension of glutathione

metabolism in T. brucei when relevant biological evidence is substantial enough

for the investigation. Model structure correctness of the glutathione-centered re-

actions can only be assessed when the glutathione dynamics are modelled. This

involves incorporating the glutathione biosynthetic sub-pathway, the γ-glutamyl

transpeptidase cycle and the GspdSH activatory function into a unified environ-

ment.
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7.8 Remarks on Modelling Framework

In summary, we have demonstrated that the proposed methodological frame-

work can be applied to systematically guide and refine the model construction

procedure of biological systems when prior knowledge about the system is in-

complete and the available experimental data is sparse. We illustrate that by

means of optimization-based simulation, biological hypotheses describing differ-

ent underlying processes can be formulated mathematically and evaluated by

comparison to experimental data.

Defining a set of candidate models for complex biological systems is an impor-

tant part of model development, but often underemphasized due to the amount

of work required and the lack of established methods. Only a few studies have

examined the impact of model structure on interpreting biological processes.

The discrepancy between model predictions and experimental data emphasizes

the necessity of investigating various structures for the mathematical models.

Swameye et al. (Swameye et al. 2003) compared models of the JAK-STAT

signalling pathway with the assumption of a feed-forward cascade versus a model

capturing the cycling capacity of STAT5 and identified that the cycling path is

an essential feature of the JAK-STAT core module. The authors underlined

the essentiality of detailed knowledge of biological pathways for establishing

mechanistic models. Takors et al. (Takors et al. 1997) performed a simulation-

based study to discriminate between 10 competing macrokinetic models, where

the best suitable model was selected according to the discrimination criteria

based on probability theory rather than the traditional sum of squares. The

authors also highlighted the importance of the identification and discrimination

of macrokinetic models in bioprocess development.

The works by the authors above have two features in common. First, model

discrimination is largely reliant on experimental data for comparison, and sec-

ond, the assumptions about possible system structures for constructing com-

peting models were taken directly from biological observations measured under

different conditions. By contrast, in our study, no biological information about

the trypanothione metabolic system is available to aid the definition of candi-

date models. It is not surprising that for such a complex and poorly understood

system, relying on repetitive in vivo experiments to discover unknown regula-

tory mechanisms or to clarify ambiguous concepts about the system would be

impractical.
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We made great efforts by means of optimization-based simulation to investi-

gate physical grounds of the underlying biological processes. We proposed two

kinetic mechanisms for arginine metabolism from the two contradictory sets of

experimental data. Both proposed mechanisms imply a potential regulatory link

between the enzymes of polyamine biosynthetic sub-pathway. We also identified

the parts of the model for which structure exploration via computational simu-

lation is not allowed due to the absence of sufficient biological observations. Our

in silico investigations provide advice for biologists on design of in vivo experi-

ments and analysis of the experimental results in order to enable the exploration

of model structure, to discriminate between rival hypotheses and to gain new

insights about the system.

Recently, a Bayesian approach has been applied to model selection of bio-

logical networks (Vyshemirsky 2007), which uses the rules of probability theory

to select among different models. The probability-based approach for model

discrimination was first proposed by Box and Hill (Box and Hill 1967) based

on the concept of entropy. The mathematical method developed by Box and

Hill can also be applied to guide the design of ‘new’ experiments so as to attain

maximum expected discrimination among rival models that would fit the data

equally well. The authors used the method to identify the operating point (e.g.

time, temperature, etc.), at which rival models can be discriminated.

As stated by Box and Hill (Box and Hill 1967), experiments in any given

situation can only be conducted within the physical constraints of the experi-

mental setup, e.g. the time span or operating temperature. This is the so-called

operability region. In the context of biological experiments, the operability re-

gion frequently corresponds to the time span, which can be very extensive, and

it may be impossible to cover the full range. In terms of an experimental design

for model discrimination, our in silico investigations can help improve the effi-

ciency of ‘new’ biological experiments by advising experimentalists to focus on

the operability region where the discriminatory power of the experiments can

be increased. Time-series concentration profiles estimated via computational

simulation, for instance the results in Figure 7.10 and Figure 7.12, indicate that

an enhanced discriminatory capability can be obtained by measuring the system

behaviour over the first 6 hours after DFMO addition.

It is worth emphasizing that a mathematical model is only an approxi-

mate representation of the phenomena being studied; it is useful for achieving

a system-level understanding with the assistance of computational simulation.
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However, in reality, no biological systems will follow a mathematical model ex-

actly. When the number or the precision of observed data points increases, it is

likely that revision of the model will be necessary.

During the course of system identification, it is always important to be re-

minded of the saying from Box (Box 1979) that “all models are wrong, only some

are useful”. Models should be designed and evaluated with respect to their in-

tended use. Asking whether a model is correct or wrong is not appropriate.

Rather, one should ask if the model is valid in representing the essential features

of the system and if uncertainty in the model will result in noticeable effects on

model inferences, and consequently, the confidence in model applicability.

Our study is intended to, given certain experimental data, seek for kinetic

mechanisms of the reactions that can produce a reasonably good description

of the underlying biological properties. The adequacy of model structures in

predicting the system dynamics in different experimental conditions can only

be determined when relevant biological evidence is available for the system.

We argue that model structure is correct if it can reproduce the existing data

consistently within the limit of the modelled biology, whereby models can be

assumed as a good representation of reality.

Remarks on Model Decomposition

We noticed that our proposal on model decomposition and the approach pro-

posed by Koh et al. (Koh et al. 2006) appears similar to a certain degree, for

instance, modules are defined as closed systems. However, fundamentally, they

are distinct approaches as summarized below:

1. In Koh et al.’s approach, model decomposition intends to solve the problem

of parameter estimation, assuming the structure as correct. In contrast,

in our approach, model decomposition intends to solve the problem of

structure identification, where ill-defined reactions can be identified via a

qualitative comparison between model simulation results and experimental

data.

2. In Koh et al.’s approach, a typical evolutionary procedure is applied to

the parameter estimation procedure, which is inactive until all the model

components (so-called sub-systems in our approach) are derived. Their

approach chooses a particular component for parameter estimation that

contains the ‘richest’ information on kinetic parameters and experimental
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data, which enables the remaining components to be solved in sequence. In

our approach, an optimization-based simulation is performed once a sub-

system is derived and the quality of fit and the availability of experimental

data determines if further levels of model decomposition are required.

3. In Koh et al.’s approach, model decomposition begins with a single state

variable and components are derived by adding reactions and metabolites

associated with the state variable according to predefined criteria. In our

approach, model decomposition begins with an entire model and at each

stage, ‘unmeasured metabolites’1 and associated reactions are removed in

a recursive manner until ‘known metabolites’ are obtained which can be

used as module boundaries. It is not clear how Koh et al. initiated the

decompositional procedure, particularly, the selection of the first state vari-

able. Our approach takes advantage of the relationship between structural

topology and functional modules discovered via structural modelling to

initialize the decompositional procedure.

4. In Koh et al.’s approach, model components share inputs or outputs, how-

ever in our approach sub-systems may be subsets of other sub-systems.

The modularity of the trypanothione metabolic pathway (shown in Fig-

ure 4.1) was also explored using a topology-based decomposition strategy. In

order to detect sub-networks, MatlabBGL package2 was used to determine a

betweenness measure based on the shortest path (see Section 2.5 in Chapter 2).

An adjacency matrix was formulated as an input to the algorithm, with each

path (reaction) given equal weight for the pathway vertices (metabolites). An

adjacency matrix (A) of a directed graph (such as the trypanothione pathway)

represents which vertices are adjacent to which other vertices; the entry A(i, j)

is equal to 1 if there is an edge from vertex i to vertex j, otherwise it is 0.

The highest edge betweenness values were obtained for the paths between the

following pairs of metabolites: spermidine, glutathione and trypanothione, and

trypanothione and TS2. These two paths divide the pathway into two topo-

logically isolated sub-networks, which corresponds to the functionally isolated

sub-networks identified in Chapter 3. This observation supports our decom-

position approach, where trypanothoine, which is the joint between the two

1in our context, unknown metabolites refer to metabolites for which no experimental data
is available.

2http://www.stanford.edu/∼dgleich/programs/matlab bgl/
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sub-networks, is selected as the initial point. In this way, each sub-network

can be explored independently, which is complemented by an investigation of

interactions among the modules.

Remarks on Model Structure Exploration

The phase of Model Structure Exploration in our proposed framework shares

some similarities with the concept of Model Selection. Model Selection refers

to the process of selecting the ‘best’ model from a given set of potential models

(Anderson et al. 2000). A typical selection strategy is, starting from the smallest

model or from the full model, to add or delete one parameter until a predefined

critical significance is reached. The present study of structure exploration differs

from the framework of model selection in several aspects, including

• First, how a set of candidate models was defined. In the current study,

candidate models were designed by revising the kinetic characters of reac-

tions of the intact model, which is guided by available information from

the literature. When a candidate model is proposed, a global optimiza-

tion task is applied to examine the model correctness in terms of whether

the simulation results can reproduce the observed experimental data. The

number of optimization tasks to be performed is equal to the number of

candidate models proposed, the network topology of which remains fixed

for individual tasks. This is in contrast to the (automatic) procedure of

model selection, which is often realized via a single optimization task that

consists of a number of runs. At each run, the network topology examined

is distinct in terms of which parameters are contained.

• Second, how the ‘best’ candidate is selected. In our study of structure

exploration, a qualitative comparison method is applied, which indicates

that the model with simulation curves most similar to the experimental

data is retained as a good candidate. On the contrary, a pre-specified

criteria is often set in the model selection procedure for a quantitative

comparison of model variants, and the one with the smallest fitness value

is chosen as the ‘best’ model.

Both Model Selection and Structure Exploration procedures are computa-

tionally expensive, particularly for applications when, for Model Selection, no

prior knowledge is given, regarding the sequence or combinatory form in which
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the parameters should be considered and, for Structure Exploration, regarding

the types of kinetic characters to be introduced and on which enzymatic reac-

tions they should be investigated. The automatic procedure of model selection

is more likely to lead to models without biological interpretation, thus models

without biological support should be excluded from the set of candidate models.

In summary, through the processes of model decomposition, model structure

exploration and model reconstruction, a sub-system of the initial mathematical

model (polyamine metabolism) was evaluated and refined to a structurally cor-

rect variant. The polyamine biosynthetic sub-pathway will now be considered

in the phase of model validation.

7.9 Model Validation of Polyamine Metabolism

Model validation is concerned with proving that the model is an adequate repre-

sentation of reality (Neelamkavil 1987). The substantial value of mathematical

models lies in their power to predict system behaviour characterized by new

and fresh data. As previously stated, there is no ultimate proof of correctness

of a mathematical mechanistic model; knowledge about physical insights of the

underlying processes will always increase as more biological evidence becomes

available. In this section, we aim at investigating the general applicability of

the model of the polyamine biosynthetic sub-pathway. Model validation may

challenge the model credibility and encourage further model refinement.

Comparisons of in silico predictions with experimental data enable the eval-

uation of model credibility in interpretation and prediction of biological phe-

nomena. Discrepancy in the comparisons can be used to systematically identify

potential improvements to the model and suggest specific experiments to verify

hypothesized model modifications.

For example, Garfinkel (Garfinkel 1971) suggested computer simulation of

liver gluconeogenesis as a resolution to elucidate the contradictory results (lower

malate concentration vs. higher malate concentration) observed by two groups

of investigators. A critical computer experiment performed in the work is the

simulation of the second data set using the model developed for the first data

set, which revealed the parameters that caused the apparent discrepancy between

the findings. This in silico experiment shows that the same model with different

parameter values can produce behaviour qualitatively consistent with individual

data sets.
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Model applicability of the polyamine biosynthetic sub-pathway is assessed

by comparison between the model predictions and an independent data set ob-

tained in a distinct dynamic state of the system. The experimental data from

DFMO induction and gene knockdown were collected where the system was

initiated with different conditions3. We use physiological steady-state concen-

trations and DFMO-induced data as inputs to the model validation procedure,

tackled by the multi-objective optimization algorithm, MoPSwarm, proposed in

Chapter 6. Gene-perturbed data (so-called validation data) is used to assess

the model applicability with the parameter estimates in response to different

chemical interventions.

7.9.1 Objective Function

Parameter values are refined by comparing simulation results with experimental

measurements. A modified G-test was used as the objective function to measure

the goodness of fit of the model defined in both conditions – polyamine steady-

state model and polyamine perturbed model. The general formula for the test

statistic G is

G = 2 ·
∑

i

Oi · ln(
Oi

Ei

)

In our study, the term Oi multiplying the natural logarithm in the formula was

removed in order to prevent metabolites with large concentrations dominating

the objective function value. This leads to the following expression

G(p, t) =
∑

t

ln(
O(t)

E(p, t)
) (7.9)

where ln denotes the natural logarithm and the sum is taken over all sampling

points. In the context of optimization of biological pathways, there are discrete

time points. Here, p is the decision vector to be tuned. O(t) and E(p, t) are the

observed data and model simulation, respectively, given at time point t.

As illustrated in Figure 5.3 in Chapter 5, objective functions based on resid-

ual errors are insufficient for parameter estimation problems when the optimiza-

tion performance is measured by more than one criteria. This is the case for

3Large differences in initial conditions of model simulation and experimental settings cause
difficulty in presenting data in the same figure without losing the dynamic trends. A loga-
rithmic axis is used for some metabolites whose initial conditions differ considerably in the
simulations and experimental observations.
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polyamine steady-state model, where the concentrations of model variables are

constrained by two criteria, namely (1) the residual of observed data and sim-

ulation results and (2) the trend of change of concentrations. A feasible set of

solutions should be tuned for the acquisition of both criteria. We propose the

use of a dynamic penalty function to tackle the second criterion – the trend of

change of concentrations.

A general form of distance based penalty method incorporating a dynamic

aspect based on length of search, l, is as follows, according to the description

given by Smith and Coit (Smith and Coit 1997)

fp(x, l) = f(x) +
∑
i=1

Si(l)d
k
i

where Si(l) is a function monotonically non-decreasing in value with l. di is the

distance matric of constraint i (e.g. number of generations or the number of

solutions searched) applied to solution x and k is a user-defined exponent, with

values of k of 1 or 2 often used.

The penalty function proposed in this study is defined as follow:

P (p) =
m∑

n=1

n · ln
(

1+ | E(p, n) − E(p, n + 1)

E(p, n)
|
)

(7.10)

where ln(1+ | · |) is designed to accurately compute (small) absolute values in | · |
that quantify the change in concentration of simulation results calculated at the

boundaries of the time interval. n is the index of the time interval for n = 1 to

m intervals in a time span divided into discrete time points. n is monotonically

non-decreasing, acting as Si(l) in the general expression.

The idea of introducing the penalty function is to incorporate a dynamic as-

pect, which increases the severity of the penalty as the integration or simulation

progresses. The objective function for the polyamine steady-state model with

both criteria is then formulated as below (for a minimization problem):

Gp(p, t) = G(p, t) + P (p) (7.11)

where G(p, t) is the unpenalized objective function and P (p) is the penalty

function.

In practice, penalty functions typically require problem specific tuning to

perform well. A major difficulty of combining all objectives into a single objective
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lies in determining a multi-criteria fitness value to summarize the degree of

satisfaction of all the individual objective. We investigated the appropriateness

of several definitions of the penalty function P (p) differing in the explicit form

of Si(l). The penalty function defined in Equation (7.10) was found to be the

most suitable expression for the problem of interest.

7.9.2 Hill Equation Approximation to Spermidine

In order to evaluate the model predicability, and thus assess its applicability,

interaction of the polyamine biosynthetic module with the rest of the trypan-

othione metabolic system has to be modelled explicitly (polyamine biosynthetic

module is represented as a closed system in the previous phases), which in-

cludes spermidine consumption in GspdSH production and its regeneration from

GspdSH hydrolysis. However, as indicated in the study carried out in the phase

of model reconstruction, the correctness of the current mathematical equations

used to model the bi-functional enzyme trypanothione synthetase is uncertain.

To render predictive power to this module, a black-box structure has to be ap-

plied to the module output – spermidine, to approximate its participation in

other biochemical reactions.

Selecting an appropriate black-box structure to describe non-linear dynamics

is a difficult problem. As introduced in Chapter 2, model structures can take

the form of power series polynomial, fuzzy logic or neural network. We employ

the Hill equation in the form of a regressive function to approximate spermidine

participation in other metabolic functions of the system, as shown below

Vspdout = V spdout
max ·

(
[Spd]

Kspdout
m

)n

1 +

(
[Spd]

Kspdout
m

)n (7.12)

Thereby, spermidine dynamics is modelled by the following differential equation

d[Spd]

dt
= VSpdS − Vspdout

where the rate equation of enzyme VSpdS responsible for spermidine production

is given in Equation (4.16) in Chapter 4.

An advantage of using the Hill equation (Equation (7.12)) to approximate the

non-linear dynamics of spermidine participation is that the parameters involved
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Time-dependent Differential Equations
Variables

[Met] d[Met]
dt

= VMetPt − VMAT + VMetRcy

[AdoMet] d[AdoMet]
dt

= VMAT − VAdoMetDCT − VAdoHcy

[dAdoMet] d[dAdoMet]
dt

= VAdoMetDCT − VSpdS

[Arg] d[Arg]
dt

= VArgPt − VARG

[Orn] d[Orn]
dt

= VARG − VODC

[Put] d[Put]
dt

= VODC − VSpdS

[MTA] d[MTA]
dt

= VSpdS − VMetRcy

[Spd] d[Spd]
dt

= VSpdS − Vspdout

Table 7.1: Differential equations for the different metabolites included in the
polyamine biosynthetic sub-pathway.

in the structure have direct biological meaning: V spdout
max – maximum velocity of

spermidine participation, Kspdout
m – half-saturation constant, and n – hill coeffi-

cient. This avoids the problem of a lack of physical insight in most cases when

black-box structures are used.

The structure of the reaction diagram of polyamine metabolism in T. brucei

is shown in Figure 7.13. The difference between this diagram and Figure 7.3(C)

lies in the aspect that intracellular spermidine is modelled as a time-dependent

variable rather than a given output approximated with measured dynamics.

Table 7.1 gives the differential equations for the different metabolites in the

polyamine biosynthetic sub-pathway.

We first carry out an optimization-based simulation of the polyamine biosyn-

thetic sub-pathway to examine if the black-box structure in the form of a Hill

equation is sufficient to reproduce observed behaviour of intracellular spermi-

dine. The simulation results of spermidine dynamics (see Figure 7.14) show a

good match with the experimental data, supporting the proposed model struc-

ture.
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Figure 7.13: The schematic representation of polyamine biosynthetic sub-
pathway. Metabolites in pink, brown and green ovals represent model compo-
nents that are exogenous, constant and variable, respectively. Edges represent
chemical conversions between model components with arrows indicating reac-
tion directionality. Enzymes included in this sub-pathway are denoted with blue
boxes. Intracellular spermidine is considered as a time-dependent variable. The
red oval – trypanothione biosynthesis stands for the rest of the trypanothione
pathway. The dot-dashed edges represent the regulatory links predicted between
enzymes of ODC, ARG and the arginine transport enzyme in Section 7.6.

7.9.3 Experimental Results

As introduced in Chapter 6, a common approach to model validation involves

a two-step procedure to determine the vector of estimated parameters that can

correctly describe a system’s response to perturbations. This involves fitting

model parameters to experimental data generated by a reference cell type (wild

type) and then testing this model on data generated by a variation (mutant).

The polyamine steady-state model contains, in total, 28 unknown parameters
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Figure 7.14: Simulation profiles for spermidine dynamics of polyamine biosyn-
thetic sub-pathway compared to experimental data. Error bars are presented
where appropriate data was available in the original papers.

including 20 kinetic parameters and a set of 8 parameters for initial concentra-

tions of the model components. Our initial choices of the protein concentrations

for model simulation vary within ±20% of the physiological levels of polyamines

reported by Fairlamb et al. (Fairlamb et al. 1987) and experimentally measured

by the group of Mike Barrett (University of Glasgow). Following the conven-

tional approach, a set of parameters that can satisfy the steady-state constraint

of the sub-pathway was solved using the global optimizer PSwarm for the sim-

ulation study.

Two hundred runs of the steady-state optimization were executed in Matlab.

Each run starts with a different initial population of particles and is computed

over a simulated time span of 96 hrs (5760 minutes). The set of parameters that

gives the minimum of the objective function, Gp in Equation (7.11), is retained

for testing on DFMO inhibition data in the second step. To perform computa-

tional simulations of DFMO treatment, the time-independent parameter of ODC

concentration in the steady-state model is replaced with the exponential decay

function defined in Equation (7.4). Computational simulation of the perturbed

model failed to produce results consistent with the true perturbation data, even

with the ‘best’ set of parameters estimated from the steady state.
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The failure in model validation of the polyamine sub-pathway demonstrates

that the conventional approach is incapable of tackling the problem of interest,

which is characterized by complex non-linearity of kinetics and high-dimentional

parameter space. The critical challenge of relying on the parameter estimates

solved from the steady state, serving as the first step of the conventional model

validation procedure, carries with it an important message that fitting a steady

state model is a weaker criterion than that of a model of time dependent pro-

cesses describing the temporal behaviour of the model components.

We chose to apply the proposed approach – MoPSwarm – to model valida-

tion of the polyamine biosynthetic sub-pathway. Of 28 unknown parameters, 20

kinetic parameters (k1 to k20) are common to both steady-state and perturbed

model. The set of 8 parameters of initial concentrations (k21 to k28) is specific to

the steady-state model, assumed to vary within ±20% of the reported physiolog-

ical levels. In terms of the mathematical representation, ODC concentration is

a time-invariant parameter for the steady-state model and expressed as a time-

dependent exponential decay for the perturbed model. This aims to mimic the

time-dependent behaviour of DFMO transport across the cell membrane and

into the cell to react with ODC.

Trade-off solutions between the two objectives, defined by Equation (7.11)

for the steady state and Equation (7.9) for the perturbed state, are solved with

MoPSwarm and presented in Figure 7.15. The maximum number of iterations

was set to 1000 and 20 particles were used in the initial population. The search

process of the algorithm terminated at 807 iterations due to there being only a

single particle remaining. Ten optimization runs with different initial random

populations seeds were performed with MoPSwarm.

The selection of good parameter sets is conducted according to a quantitative

comparison method. This type of comparison method is based on a goodness-

of-fit criterion, which is generally applied in the optimization problems where

the emphasis is on the accuracy of the results. We employed the Root Mean

Square (also known as the quadratic mean) to rank the solutions from all ten

simulations. This measure is a common method of defining the importance of

solutions with respect to satisfying both objectives, and is given as

Rms =

√√√√( Objiss
max(Objiss)

)2

+

(
Objiptb

max(Objiptb)

)2

(7.13)
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Figure 7.15: Trade-off solutions of the polyamine model solved by MoPSwarm.
The solutions show a good diversity covering a wide range of the fitness land-
scape, and the corresponding Pareto front is discontinuous. The point denoted
with a filled circle is the ‘best’ solution of all ten runs as defined by Equa-
tion (7.13).

where Objss and Objptb are the values of objective functions responsible for the

steady state and perturbed state given by individual solution i. Note that the

objective function values have been normalized so that they fall in the range

of 0–1, which prevents large absolute values from skewing the metric and gives

equal weighting to both objectives.

The ‘best’ solution from all ten runs, as defined by the above measure, is

selected for investigation and the Pareto front shown in Figure 7.15 corresponds

to the simulation that yielded this solution. Table 7.2 provides the predicted

values for the unknown kinetic parameters common to both objectives, obtained

from this solution (denoted with a filled circle in Figure 7.15). Rate equations

of the corresponding pathway enzymes are indicated explicitly in the table.

It is noteworthy that our model predications of the unknown parameters

are consistent with the qualitative biological information about the system,

which was detailed in Chapter 4 (Section 4.3.1). The predicated value of 778

μM for KAdoMetDCO

idAdoMet confirms the postulation by Pegg and Jacobs (Pegg and
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Jacobs 1983) that T. brucei AdoMetDC is insensitive to the reaction product

dAdoMet. A value of 2.9 μmol/min/mg for V SpdS
max indicates that the maxi-

mum velocity of T. brucei SpdS is comparable to the enzyme activity in mam-

mals as argued by Bitonti et al. (Bitonti et al. 1984) (between 0.43 and 10.95

μmol/min/mg) and disagrees with the value reported by Taylor et al. (Taylor

et al. 2008). Additionally, a large value of 40 μmol/min/mg for V MetRcy
max reflects

the observation that the recycling path from MTA to methionine is an important

source of this amino acid.

Predictions on the unknown kinetic parameters
Enzymes – Rate Equations Parameters Estimated Values
ODC – Equation (7.5) [ODC] 0.012 μM

AdoMetDC – Equation (7.1) & (7.2)
[AdoMetDCL] 1 μM

KAdoMetDCO

idAdoMet 778 μM
β 0.94

MAT – Equation (4.14) V MAT
max 1.46 μmol/min/mg

SpdS – Equation (4.16)
V SpdS

max 2.9 μmol/min/mg

KSpdS
iMTA 10 μM

MetRcy – Equation (4.17)
V MetRcy

max 40 μmol/min/mg

KMetRcy
mMTA 959 μM

AHS – Equation (4.18)
V AHS

max 38.9 μmol/min/mg
KAHS

mAdoMet 1000 μM

ArgPt – Equation (7.7)

V ArgPt
max 0.75 μmol/min/mg

KArgPt
m 1 μM

KArgPt
aODC 1e-4 μM

γ2 0.21

ARG – Equation (7.6)
KARG

aODC 1e-4 μM
γ1 9.94

Spdout – Equation (7.12)
V spdout

max 3.73 μmol/min/mg
Kspdout

m 1000 μM
n 3

Table 7.2: Estimated values of unknown parameters of the polyamine biosyn-
thetic sub-pathway.

Computational simulation of the model described in Table 7.1 using the pa-

rameter estimates in Table 7.2 thus yielded the steady state shown in Figure 7.16.

The model achieved steady state in less than two days and maintained it until

day 6 (8760 minutes). The initial condition of the steady-state model predicted
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Figure 7.16: Predicted concentration profiles of the steady-state model of the
polyamine biosynthetic sub-pathway. All the metabolites reach a steady state
within 2 days and maintain this over the next 4 days. Figure 7.16(a): AdoMet
(continuous line), dAdoMet (dashed line) and ornithine (dashed-dotted line)
and Figure 7.16(b): arginine (continuous line), putrescine (dashed line) and
spermidine (dashed-dotted line).

with MoPSwarm is given below:

[Met]t=0 = 4557.6 μM, [AdoMet]t=0 = 16.1 μM, [dAdoMet]t=0 = 10.8 μM,

[Arg]t=0 = 560 μM, [Orn]t=0 = 34.4 μM, [Put]t=0 = 413.6 μM,

[MTA]t=0 = 16 μM, [Spd]t=0 = 2482.8 μM.

We call the resulting steady state acquired by the model a basal condition.

Table 7.3 shows that concentrations of polyamine metabolites in this basal con-

dition fit well with actual values observed from experimentally available data.

Deviations of the basal condition from the observed values can be ascribed to

the fact that polyamines are distributed among free and non-covalently bound

polyamine pools in vivo (Shim and Fairlamb 1988) and experimentally measured

data normally corresponds to total intracellular concentrations. In this study,

the model was tuned to respond to free polyamines, and total polyamine concen-

trations can be derived when the ratio of free polyamine concentration to total

polyamine concentration is known.

Computational simulations of the perturbed model shows an agreement with

experimental data on ODC suppression, in which case, the basal condition acts

as the initial model condition for simulation. The predicted concentration profile

of intracellular metabolites of the sub-pathway in response to DFMO treatment
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Polyamine Concentrations (μM)

Met AdoMet dAdoMet Arg Orn Put MTA Spd

from Model 1957 18.3 3.6 118 146 785 17 614
from refs. 3978 19 9 700 43 517 20 2069

Table 7.3: Polyamine concentrations considered as the basal conditions of the
polyamine model compared with those reported by Fairlamb et al. and experi-
mentally measured by Mike Barrett.

is presented in Figure 7.17. Our simulations using the ‘best’ solution over an

interval of 48 hours predict well the real experimental responses, with a drastic

decrease of putrescine that caused a significant increase of dAdoMet level and a

decrease of spermidine. As expected, AdoMet is almost unchanged with a slight

decrease of the concentration level at the end of the time period. An increase of

ornithine and arginine was observed within first 12 hours of DFMO inhibition,

followed by realization of a different steady state (the arginine concentration

level stabilizes at 825 μM within a simulation interval of 72 hours).

To summarize the results of model validation with MoPSwarm, predictions

of the steady-state model and the perturbed model made using the ‘best’ so-

lution computed from the algorithm describe sufficiently well the physiological

steady-state concentrations and DFMO inhibition data. Our in silico investi-

gation further supports the biological postulation that dramatic changes in the

concentration levels of putrescine and dAdoMet are not accompanied by simi-

lar changes in AdoMet within the given time span, and arginine concentration

may not be significantly changed under the DFMO treatment. Next, we assess

the model applicability of the polyamine biosynthetic sub-pathway by examin-

ing responses to independent data sets obtained in distinct dynamic states of

the system. To the end, data from available gene perturbation experiments on

prozyme, ODC and AdoMetDC are used as validation data. In silico analysis

on some parameters of interest is also presented.

Model predictions on the effects of in vivo ODC knockdown

The similar tendencies in polyamine levels induced by DFMO inhibition are also

observed by a 90% ODC activity down-regulation. The simulation results, shown

in Figure 7.18, accurately capture the transient changes of the metabolite con-

centrations. In all figures, the experimental data measured by Xiao et al. (Xiao

et al. 2009) have been normalized to the initial concentration of the simulation
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Figure 7.17: Predicted concentration profile of the perturbed model of the
polyamine biosynthetic sub-pathway. DFMO effects on polyamine levels in time-
response simulations (continuous lines) are compared with experimental data
(red dots). ODC concentration was modelled as a time-dependent variable. In
Figure 7.17(a), AdoMet dynamics observed by Xiao et al. were adopted as
experimental data. Logarithmic axis is used for spermidine in order to better
present the data. Error bars are presented where appropriate data was available
in the original papers.
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data in order to better show the dynamic trend. Effects on the polyamine levels

caused by ODC activity down-regulation are smaller compared to DFMO inhi-

bition. In particular, when simulated with a DFMO treatment versus the ODC

activity down-regulation, putrescine is reduced to 0.2% versus 11% of the basal

condition, and spermidine is reduced to 49% versus 67% of the basal condition,

respectively.
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Figure 7.18: Effects of ODC knockdown on polyamine levels in time-dependent
model simulations. In this case, ODC activity is considered a time-independent
parameter. Logarithmic axis is used for dAdoMet and putrescine in order to
better present the data. Error bars are presented where appropriate data was
available in the original papers.

Model predictions on the effects of in vivo AdoMetDC knockdown

and prozyme knockout

Willert and Phillips (Willert and Phillips 2008) studied the potential for prozyme

and AdoMetDC to function as regulators in polyamine biosynthesis. The authors

observed that loss of AdoMetDC or prozyme leads to decreases in spermidine and
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Figure 7.19: Effects on polyamine levels in time-dependent simulations induced
by AdoMetDC knockdown. In this case, AdoMetDC activity is considered a
time-independent parameter. Error bars are presented where appropriate data
was available in the original papers.

trypanothione and to cell death. When a 70% AdoMet activity down-regulation

and prozyme knockout were applied, simulations of the polyamine model show

a dramatic increase of putrescine and a decrease of spermidine, which is in good

agreement with the tendencies described in the real experimental observations

reported by Willert and Phillips.

Simulation of the time-dependent effects on polyamine levels, putrescine

and spermidine, induced by AdoMetDC knockdown and prozyme knockout are

shown in Figure 7.19 and Figure 7.20. In both figures, the experimental data

has been normalized to the initial concentration of the simulation data in order

to better show the dynamic trend.

In our model, simulations of prozyme knockout and AdoMetDC knockdown

both resulted in a large increase in putrescine levels (approximately 7-fold in-

crease versus the 10-fold increase observed in vivo), whereas prozyme knockout

leads to a more substantial reduction in spermidine than AdoMetDC knock-

down – a 75% reduction due to prozyme knockout versus 55% reduction from

AdoMetDC knockdown. This matches well with the biological observations by

Willert and Phillips regarding the essentiality of prozyme for growth in T. brucei.

In silico simulation also indicates that an increase of putrescine as a consequence

of a 70% AdoMetDC knockdown or prozyme knockout may lead to a concomi-

tant decrease of dAdoMet and methionine; however the concentration levels of

AdoMet and arginine are largely unchanged. These model predictions can be

verified when the relevant experimental data is available.
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Figure 7.20: Effects on polyamine levels in time-dependent simulations induced
by prozyme knockout. In this case, the factor 1 − β representing the percent
of the complex AdoMetDC|prozyme taking up the total enzyme AdoMetDC is
given zero. Error bars are presented where appropriate data was available in the
original papers.

To further investigate the role that prozyme plays in the regulation of polyamine

metabolism, we performed simulations of polyamine levels with variations in the

value of β (used in Equation (7.1) and Equation (7.2)). In the model, 1 − β

accounts for the percentage of the complex compound AdoMetDC|prozyme tak-

ing up the total enzyme concentration. The value of β was assumed to vary

between 0.5 and 1 in order to reflect experimental observation and still allow

the compound to change within a physiologically feasible range. When β is

close to 1, the AdoMetDC|prozyme compound taking up the total AdoMetDC

concentration is minimal.

Figure 7.21 plots the polyamine levels obtained at the end of the simulated

time span (2880 minutes) using different values of β taken from the range [0.5, 1].

The results show that there is little effect on the polyamine levels for values of

β between 0.5 and 0.9. Significant changes in the polyamine concentrations

were observed as β approaches 1, however. The simulations indicate that the

compound AdoMetDC|prozyme accounts for a limited quantity of the total en-

zyme AdoMetDC, as the percentage of the compound taking up AdoMetDC

concentration is approximated by 1− β, where the estimated value of β is 0.94.

Prozyme reacting with AdoMetDC is a limiting factor on the AdoMetDC ac-

tivity and polyamine biosynthesis, since significant changes in polyamine levels

were only observed when the value of β falls into a small sub-range.
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Figure 7.21: Effects of changes in parameter β on polyamine levels computed at
the end of simulation (2880 minutes): putrescine (continuous line) and spermi-
dine (dashed line).

Model predictions on the effects of ‘Methylation index’

The ratio of AdoMet to AdoHcy, termed the ‘Methylation index’ indicates the

transmethylation potential of a cell (refer to Section 4.3.1 in Chapter 4). Nor-

mal methylation was shown to range from 2:1 to 9:1 (Bacchi et al. 1995). A

substantial flow from AdoMet to AdoHcy was observed in our model, with a

value of 38.9 μmol/min/mg estimated for the maximum velocity of the enzyme

AHS, which catalyzes the chemical conversion between the metabolites. Over

the simulated 48 hours of DFMO inhibition, AdoMet concentration level does

not change significantly, resulting in a constant ‘Methylation index’ (AdoHcy is

a constant model component). Our model predictions differ from the experimen-

tal observations given by Yarlett et al. (Yarlett and Bacchi 1988), which showed

that the ratio increased from 6.5 to 114 within 24 hours of DFMO treatment,

due to a large increase in AdoMet. This disagreement results from the differing

observations on the concentration of AdoMet, as observed by Xiao et al. (Xiao

et al. 2009).

Under normal conditions, a decline in the Methylation index can induce the
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so-called hypermethylation status leading to cell death (Reguera et al. 2007).

In our model, the use of AdoMet for AdoHcy production is controlled by the

maximum velocity of the enzyme AHS (V AHS
max ). Simulations of a three-fold AHS

activity up-regulation, as shown in Figure 7.22, result in a significant deple-

tion of AdoMet, dAdoMet and spermidine, accompanied by a large increase of

putrescine. The model predictions are in a good agreement with biological ob-

servations (Reguera et al. 2007) that a decline of the index reduces intracellular

spermidine level, thus leading to cell death.
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Figure 7.22: Effects of a three-fold AHS activity up-regulation on polyamine
levels in time-dependent model simulations.

Yarlett et al. (Yarlett et al. 1991) found that in T. brucei, transmethylation

reactions were very sensitive to AdoHcy inhibition. Figure 7.23 shows the effect

of apparent inhibition value KAHS
iAdoHcy (representing the AdoHcy inhibition on the

enzyme AHS) on AdoMet and dAdoMet intracellular concentrations. AdoMet

concentrations simulated at the final time point of the time span 0 to 48 hours

were plotted. These are calculated using values of KAHS
iAdoHcy taken from the range

0.01–2 fold the observed value of 12.9 μM. Our model predicts a gradual reduc-
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Figure 7.23: Effects of changes in AHS enzyme related apparent coefficient on the
concentration levels of AdoMet and dAdoMet computed at the end of simulation
(2880 minutes). The coefficient varies in the range of 0.01–2 fold of the observed
value.

tion in the final AdoMet level as the apparent inhibition coefficient increases,

followed by a rapid depletion of dAdoMet. There is, however, no experimental

data available to verify the predictions.

7.9.4 Remarks on the Mathematical Model

We have demonstrated in this section that the proposed mathematical model is

an adequate representation of the system of polyamine metabolism. This allows

various types of analysis methods to be applied to the model. For example,

Metabolic Control Analysis (MCA), as defined by Cascante et al. (Cascante

et al. 2002), provides a quantitative description of system variables (i.e. fluxes

and metabolite concentrations) in response to changes in system parameters.

With this method, the relative control exerted by each step (enzyme) in the

polyamine pathway on the system variables can be assessed and the enzymatic

reactions that have the greatest influence on the regulation of polyamine func-

tion and metabolism can be identified. Our mathematical model also offers

opportunities to investigate different strategies for targeting this pathway in

anti-trypanosomal drug design. For instance, an effective treatment of human

African trypanosomiasis could be achieved by enhancing polyamine depletion via

combined blockage of polyamine synthesis. With such information, promising

targets for anti-protozoal agents can be proposed or less promising possibilities

can be eliminated. The details of such analyses are beyond the scope of the

thesis.
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7.9.5 Structural Modelling vs. Kinetic Modelling

One of the aims of structural modelling is to predict the relative fluxes of all

internal reactions in the system via optimization of a specific objective function

(see Section 3.5.1 in Chapter 3). The steady-state reaction flux distribution

in a metabolic pathway predicted by the mass-balance model can be compared

quantitatively to the fluxes predicted by the kinetic model.

Table 7.4 reports the steady-state flux distribution in the polyamine biosyn-

thetic sub-pathway computed by both approaches. The fluxes going though the

reactions determined by the kinetic model (the corresponding rate equations are

given in Table 7.2) are approximated with the ‘best’ set of parameters. Note

that the flux through the reaction step of exogenous methionine assimilation

has a known value of 0.122 μmol per min per mg of cell protein, calculated by

Equation (4.19) in Chapter 4.

The structural model of the polyamine biosynthetic sub-pathway can be ex-

tracted from matrix (3.12) (defined in Chapter 3). Irrelevant metabolites and

reactions to this sub-pathway are removed, which causes the accidental removal

of an essential reaction step concerned with AdoMet-dependent transmethyla-

tion. To make the model consistent with the schematic representation of the

sub-pathway (see Figure 7.13), the reaction step of AdoHcy production from

AdoMet is introduced (AdoHcy is set as an additional external metabolite) and

a new output reaction describing the conversion of spermidine into trypanoth-

ione biosynthesis (catalyzed by Spdout) is also added.

The reaction flux going through the step of spermidine consumption into try-

panothione biosynthesis is defined as the objective function, in order to allow the

two modelling approaches to be compared. The steady-state flux distribution of

the sub-pathway via structural modelling is obtained by maximizing this objec-

tive function. The flux of the input reaction – exogenous arginine assimilation

– is not available from the literature, and the value approximated by the kinetic

model is assigned to this reaction flux. The flux of the other input reaction –

exogenous methionine assimilation – is fixed as given above. All the internal

reaction fluxes are assumed to vary between 0 and 2, with units of μmol per

min per mg of cell protein. The maximum flux through the objective function

(reaction index 10 in Table 7.4) is constrained with the corresponding flux value

predicted by the kinetic model.

Table 7.4 shows a good match between the predictions from structural mod-

elling and kinetic modelling. The internal fluxes predicted by optimizing the
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Index Reaction Name Stoichiometry SM KM
1 Arginase arginine → ornithine 0.7275 0.7275
2 Ornithine decarboxylase ornithine → putrescine 0.7275 0.7280
3 AdoMet synthase methionine → AdoMet 0.8500 1.1584
4 AdoMet decarboxylase AdoMet → dAdoMet 0.7275 0.7280
5 AdoMet-dependent AdoMet → AdoHcy 0.1220 0.4287

transmethylation
6 Spermidine synthase putrescine+dAdoMet 0.7275 0.7301

→ spermidine+MTA
7 MTA recycling MTA → methionine 0.7275 0.7301
8 Arginine assimilation Extarg → arginine 0.7275 0.7275
9 Methionine assimilation Extmet → methionine 0.1220 0.1220
10 Spermidine consumption spermidine → 0.7275 0.7386

trypanothione biosynthesis

Table 7.4: Comparison of the steady-state flux distributions in the polyamine
biosynthetic sub-pathway predicted via structural modelling and kinetic mod-
elling. All the values are expressed in the units of μmol per min per mg of
cell protein. SM and KM stand for the structural model and kinetic model,
respectively.

structural model are almost identical to the fluxes computed with the kinetic

model and the objective function is optimized sufficiently close to the maximum

value (0.7275 versus 0.7386).

Fluxes going through the reaction steps – AdoMet synthase and AdoMet-

dependent transmethylation – were solved with different values. This can be

explained from numerical aspects. AdoMet is a branching point in the polyamine

biosynthetic sub-pathway, where one incoming reaction (reaction 3) is split into

two outgoing reactions (reaction 4 and 5). In this case, when only one flux is

known, in theory, there will be many combinations of flux values to be computed

for the other two reactions, and therefore values of these fluxes can only be

determined based on constraints imposed by other fluxes.

When solving both models, the reaction step describing the conversion of

methionine into AdoMet (reaction index 3 in Table 7.4) is predicted to carry the

maximum flux value of all the internal reactions, indicating the significant role

that this reaction step plays in satisfying the objective function. This observation

is consistent with the analysis results of control-coefficient fluxes representing

the importance of each reaction for efficient and flexible operation of the entire

pathway. As shown in Figure 3.10 in Chapter 3, of all the polyamine reactions,



CHAPTER 7. A PROPOSED METHODOLOGICAL FRAMEWORK 256

the reaction of interest (reaction 3) is calculated with the highest control-effective

flux (Note that in the figure reactions 1–7 and 15–16 correspond to reactions 1–9

in Table 7.4).

In summary, with appropriate constraints, a good interpretation of the metabolic

capacities of the polyamine biosynthetic sub-pathway can be obtained by opti-

mizing the structural model with respect to a specific objective function. The

consistency of predictions of internal reaction fluxes in both types of models

gives confidence that the models are an adequate reflection of the real system,

given the absence of experimental data. With the predicted metabolic fluxes, an

adequate measure of the degree of participation of the polyamine biosynthetic re-

actions in the process of spermidine participation in trypanothione biosynthesis

is obtained.

7.9.6 Computational Issues

MoPSwarm is a reliable and efficient multi-objective optimization algorithm.

From the modelling point of view, model validation with MoPSwarm is a promis-

ing strategy. The present model structure combined with estimated parameter

values is able to consistently interpret the underlying biological processes. This

is ascribed to the fact that MoPSwarm allows an integrated study of different

states of the polyamine biosynthetic sub-pathway, which is an essential condition

for the elucidation of regulatory principles. In the context of parameter estima-

tion, MoPSwarm enables non-dominated solutions covering a well-distributed

Pareto front to be found with a small population of particles (20 initial parti-

cles) and with a small number of generations (less than 1000 generations). The

proposed algorithm is not only able to optimize problems exhibiting straight-

forward convex tradeoffs but also addresses problems resulting discontinuous

Pareto fronts.

Due to the sparse nature of the problem, it is frequently difficult for the

ODE solver to integrate the differential equations. Some regions of the param-

eter space are numerically unstable and the solver may stall or produce invalid

results, such as NaNs (Not a Number) and integration failures. It is necessary to

implement error handlers in MoPSwarm to deal with these problems; the Matlab

solver ode15s was modified to include an extra error handler to prevent stalling

due to invalid results. For a difficult optimization problem, such as this, we

replaced ‘2× fi(x)’ with ‘10× fi(x)’ in the mathematical definition of ‘Partially
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Dominated Solutions’ (see Definition 6.5 in Chapter 6); that is, a particle may

be up to 10x as bad in any one objective if there is any improvement in the other.

This was designed to prompt a good diversity in the Pareto-optimal solutions

by easing the strict constraint imposed on the selection of ‘good’ particles.

During the search process, MoPSwarm was frequently confronted with diffi-

cult search regions with many invalid positions found for both the steady-state

and perturbed model. For example, in the course of identifying the Pareto front

shown in Figure 7.15, MoPSwarm retrieved only 28 trade-off solutions in the pa-

rameter search space with variations in the parameter values covering 5 orders of

magnitude, with 3145 and 2441 invalid results found for the steady-state model

and the perturbed model, respectively. This may explain why the resulting ap-

proximate Pareto-optimal front is concave and discontinuous, being comprised

of four disconnected Pareto-optimal sets and a single point.

Despite the good results achieved by MoPSwarm, the number of fitness func-

tion evaluations may be very large, and the computational cost of using this

approach can vary significantly when solving other systems. The most likely

cause of this is from variations in the time taken to evaluate the model in order

to determine the objective function value. In our case, the average computation

time over ten simulation runs of model validation is approximately 19 hours on

AMD Opteron 2000-based cluster nodes.

7.10 Conclusions

Mathematical modelling of biological systems involves the identification of chem-

ical relations between system components and the formulation of kinetic mecha-

nisms representing the enzymatic catalysis. Constructing a detailed mechanistic

model for the trypanothione metabolic pathway is a challenging task for several

reasons:

• First, the system is ambiguously determined in terms of both network

topology (chemical relations between system components) and kinetic char-

acters (rate laws governing the reaction velocities). A systematic identifi-

cation procedure for model structure correctness is necessary.

• Second, the search space is very complex in terms of both scale and di-

mensionality. Feasible region(s) – where optimal solutions are located in

the search space can be very small and the search can be complicated by
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the existence of infeasible region(s) where no solutions can be achieved and

the system may be numerically unstable.

• Third, the very limited number of experimental observations imposes a

significant challenge to optimization methods. Parameter estimation is

particularly difficult when the dimensionality of parameters to be resolved

is much larger than the number of measurement samples.

In this chapter, we proposed a methodological framework (Figure 7.1) in or-

der to tackle the challenge imposed by data sparsity and incompleteness of prior

knowledge of the system. The purpose of the proposed framework is to reduce

the whole system into sub-systems through an iterative process and then study

the sub-systems in a modular manner, which supports the model refinement

in a functionally independent manner. Module-based representation allows the

understanding of the entire system through parsing the sub-systems that are

smaller in terms of both the number of state variables and kinetic parameters,

by means of which complexity of the original system can be largely reduced.

Module-based representation is thereby a very useful strategy in the develop-

ment of mathematical models for large-scale non-linear dynamic systems.

One major difficulty of system identification lies in the design of correct

model structures to consistently interpret the underlying processes, which in-

volves seeking missing reactions or refining ill-characterized kinetic mechanisms.

When no or limited biological evidence is given, it is almost impossible to make

biologically meaningful assumptions about suitable model structures. The de-

sign principle of model decomposition in the proposed methodological framework

is to direct the search for ill-characterized kinetic characters of the pathway in

an efficient manner. This methodological framework has the potential to solve a

wide range of cellular processes, including gene regulatory pathways, signalling

pathways and metabolic pathways.

The procedure for model structure exploration does not lead to verification of

models; rather to their falsification. Given conflicting experimental data, differ-

ent mathematical models are expected, which may also show major variations

due to imprecise measurements. It of course must also be remembered that

proposed model structures are consistent in describing the biological data only

within limits of experimental noise and the biological phenomena modelled.

By applying the proposed methodological framework, a novel kinetic model of

the polyamine biosynthetic sub-pathway is successfully constructed. The module
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predicability is preserved by using the Hill function to approximate the mod-

ule interaction with the rest of the pathway. The regulatory principles of the

polyamine biosynthetic sub-pathway were elucidated by studying the system in

different physiological states. The agreement between model simulation with the

estimated parameter values and measured data reported in various experimental

conditions shows the good applicability of the kinetic model of the sub-pathway.

The system behaviour that has not yet been observed was also predicted by in

silico model simulations. We observed an abrupt change on the polyamine levels

in response to a gradual decrease of the complex compound – AdoMetDC|prozyme

within a physiological range of the AdoMetDC concentration. A regulatory link

between the polyamine enzymes was predicted to be an essential feature for

arginine metabolism, as inferred from model simulation. An enzyme assay could

be designed to verify the prediction by determining the arginine transport rate

and arginase activity in T. brucei mutants that lack or are deficient in ODC.

The regulatory link can be verified if suppression of arginine transport rate and

arginine activity is observed.



Chapter 8

Conclusions and Future Work

In this thesis, the challenges associated with the computational modelling of

complex biological systems when prior knowledge was restricted by sparse quan-

titative information and incomplete physical descriptions of the underlying pro-

cesses have been investigated. In this chapter we summarize the main points

of the work and reiterate the contributions drawn. We also discuss interesting

future work directions, including possible improvements and extensions on the

proposed approaches.

8.1 Conclusions

A systematic approach is necessary to elucidate the complex relationships involv-

ing multiple system components governed by non-linear kinetics. The emerging

field of Systems Biology provides a powerful foundation and established scientific

methods to enable the study of biological pathways at the system level.

In biology, the identification and understanding of system behaviour is not an

easy task. The difficulty in achieving a system-level understanding stems from

the intrinsic complexity of biological systems where large numbers of functionally

diverse components interact non-linearly. It has been widely accepted that the

best way to understand complex networks of biological pathways is via the use

of computational modelling. However, this is often complicated by incomplete

prior knowledge of the system. Inconsistent and sparse experimental data of the

network also creates a multitude of problems for the modelling process.

Constructing a sound mathematical model to understand biological systems

is a challenging endeavor. Mathematical models with a high degree of precision

and quality are necessary for drug discovery and treatment optimization, where

260
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multiple aspects of the biological processes have to be integrated and the model

predictions must be validated with the experimental observations. Mathematical

modelling is also a useful tool for the development of new processes and in this

case has allowed disparate information about the system to be organized and

represented in a coherent manner.

Chapter 4 contributes to knowledge of the first detailed kinetic model of an

important biological system – the trypanothione metabolic pathway in the proto-

zoan parasite Trypanosoma brucei. We focused on continuous and deterministic

descriptions of the trypanothione metabolism by using non-linear ordinary dif-

ferential equations. We took into account the essential information in order to

build a useful mathematical model. An extensive literature search about the

metabolic pathway was conducted, where scientific papers relevant to individual

enzyme kinetic properties were critically reviewed.

We have proposed a new methodological framework to address the mod-

elling challenges and illustrated the feasibility of the framework by studying the

trypanothione metabolic pathway in Trypanosoma brucei. Metabolism in this

parasitic organism is the focus of several investigations for anti-trypanosomal

therapeutics, as Trypanosoma brucei remains a major problem in developing

countries despite the availability of several drugs. To achieve the goals, some

existing scientific methods have been reviewed and then adapted and extended

in an appropriate way for use in solving the problem of interest.

8.1.1 Metabolic Modelling

As stated in Chapter 1, the type of model should depend on the biological sys-

tem in question, the type/amount of information available and the intended use

of the model. A system-level understanding of the trypanothoine metabolism

has been attempted through structural and kinetic modelling approaches. Both

approaches are essential to understand the metabolic properties of the path-

way and focus on topological and regulatory properties, respectively. Structural

modelling and kinetic modelling are complementary approaches, and one enables

a determination of a variety of model properties that could not be allowed by

the other.

Knowledge about the trypanothione metabolic pathway is currently restricted

to a qualitative view and the network topology is better understood than its nu-

merical aspects. Most of the cellular enzymes, such as regulatory mechanisms
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are, at best, qualitatively known; detailed enzyme-kinetic models are lacking.

This creates severe difficulties for kinetic modelling of the pathway in order to

comprehend the trypanothione metabolism in its entirety, which was demon-

strated in Chapter 7. In the absence of enough kinetic information, structural

modelling is one promising approach for the understanding the trypanothione

metabolism as a whole.

Chapter 3 reported the first structural model of the trypanothione metabolic

pathway. In this chapter, we applied a theoretical structural modelling approach

to study the network metabolism even in the absence of sufficient quantitative

information of target enzymes. This structural modelling approach is based on

the stoichiometry and the reversibility of the metabolic reactions, which is a

structural invariant of the pathway, and uses theoretical tools to investigate the

model. Topological properties and metabolic capabilities of the trypanothione

pathway to support cell growth were investigated with this approach. Essential

genes were predicted by optimizing the mass-balance model of the pathway with

respect to given objective functions (biomass yield and H2O2 residual).

By structural modelling, we computationally tested the completeness of avail-

able topological information based on the elementary mode analysis. When the

metabolic flux measurements become available and adequate, the postulated ad-

ditional reactions of the pathway can be verified. We examined the consistency of

given objective functions for linear programming with experimentally observed

genotypes. Wrong predictions revealed an incorrect definition of the objective

functions, improving our understanding of the growth control of trypanosomes.

Two constituting factors of the trypanosomal growth are characterized with two

topological modules carrying out specific metabolic functions – the trypanoth-

ione biosynthetic system and the trypanothione redox system.

Although the structural model was not used for simulation, it still helped

us focus on the essential features of the system and facilitated the construction

and simplification of the kinetic model of the pathway. This type of modelling

enabled an establishment of the correlation between topological modules (spa-

tially isolated) and functional modules (carrying out a monotonous metabolic

function), which is otherwise not easy to achieve. This information was used to

aid the initialization of model decomposition in the methodological framework

proposed in Chapter 7.

Application of structural modelling to the trypanothione metabolic pathway

provided us a relatively simple starting point to understanding the approach.
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The work performed demonstrates the feasibility of structural modelling for un-

derstanding the system when it extends to the genome level. The predictions

of the steady-state flux distribution in the polyamine biosynthetic sub-pathway

from structural modelling and kinetic modelling were compared with appropriate

constraints. Since the measurement of fluxes is a tedious task, the good agree-

ment of both models indicates that the models are adequate representations of

the real system.

However, flux distributions under steady-state conditions do not explain any-

thing about the regulatory principles of the system and the disadvantage of

structural modelling is that dynamical aspects of the systems are left implicit.

We have demonstrated in Chapter 4 and further discussed in Chapter 7 that a

realistic metabolic model, using coupled enzymatic reactions, can only be de-

scribed by a system of non-linear equations for which no analytical solutions can

be easily obtained.

8.1.2 Optimization of Computational Models

Chapter 5 laid the foundation for the optimization-based study, which played

an essential role in the methodological framework proposed in Chapter 7. This

chapter reviewed some of the basic theory associated with optimization and dis-

cussed Particle Swarm global optimization and the derived PSwarm algorithm.

PSwarm is a recently developed population-based optimization method and has

not yet been widely applied to biological problems. This chapter investigated the

performance of the algorithm, which demonstrated that PSwarm is capable and

efficient in tackling the inverse problem of complex biological systems. PSwarm

was employed as the search engine during the examination of model structural

correctness. The problem of parameter estimation suffering from missing exper-

imental measurements and lack of information content was illustrated using the

ERK signalling pathway.

Chapter 6 proposed a novel approach MoPSwarm for applying a multi-

objective optimization to the validation of perturbation-based models of bio-

logical systems. MoPSwarm is a generalized pattern search algorithm, defined

by a Search-and-Poll framework, where the standard particle swarm optimiza-

tion is employed in the search step and the poll step is only activated when the

search step failed. Satisfactory simulation results of the ERK signalling path-

way using the proposed validation approach demonstrated the reliability and



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 264

utility of the proposed algorithm for model validation in comparison with the

conventional approach. This chapter, combined with the work on the algorithm

presented in Chapter 7, indicated that model validation is the most difficult

problem in the modelling process, particularly when the model predicability is

reliant on accurate and reliable quantification of parameters.

Despite the great challenge in solving the real-world applications (includ-

ing the ERK signalling pathway and the polyamine biosynthetic sub-pathway)

due to their non-linear nature, MoPSwarm has shown good performance in tack-

ling multi-objective optimization problems characterized with various properties.

Experimental results from model simulation of both biological pathways demon-

strated that MoPSwarm enables us to find non-dominated solutions covering a

wide-spread Pareto front with a small number of population (20 initial particles)

and with a small number of generations (less than 1000 generations).

Multi-objective optimization simultaneously takes several, possibly conflict-

ing aspects into consideration. We have demonstrated that with the multi-

objective optimization scheme, a population of solutions results from a single

run of the algorithm owing to the contradictory objectives and several parts of

the objective space can be explored simultaneously. A practical interpretation

of the Pareto-optimal front is that different solutions can be selected to describe

the system according to the degree of confidence ascribed to individual objective.

We have performed a comparative study investigating some of the factors

important to the performance of MoPSwarm in solving multi-objective opti-

mization problems. We have found that the choice of selection scheme for global

best guide and the mechanism for updating the archive is critical for the Pareto-

based approach, from the perspective of promoting an effective search towards

the Pareto front and maintaining diversity in the population. Experimental

investigation indicated that MoPSwarm is capable of tackling the multi-modal

objective function space. The proposed algorithm is not only able to detect solu-

tion spaces exhibiting straightforward convex tradeoffs but also address concave

and discontinuous Pareto fronts. By simultaneously optimizing the steady-state

and perturbed model, the difficulty of potentially large steady-state degrees of

freedom can be relieved by incorporating time-depedent system dynamics. Com-

putational investigations of MoPSwarm underlined the necessity of considering

more than one state of the system for reliable parameter estimation.
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8.1.3 Computational Modelling

The proposed methodological framework is envisioned as an important contribu-

tion to the mechanism-based mathematical modelling of complex biological sys-

tems. The novelty lies in the integration of mathematical modelling (analytical

approach) and system identification (experimental approach) to enable physical

insights about the system to be accounted for in the modelling procedure, partic-

ularly when our prior knowledge is restricted. By means of the methodological

framework, the mathematical model of the trypanothione metabolic pathway

initially described in Chapter 4 was explored strategically.

We have carried out in this thesis one of the few works on studying model

inappropriateness. Mismatch between the model responses given a certain struc-

ture and experimental observations via the optimization-based study with PSwarm

has uncovered the inappropriateness in the model representation.

A major biological use of this work would be to generate predictions about

enzyme kinetics and regulatory mechanisms to be tested by in vivo approaches.

Since mathematical models are manipulable, the basic principles of metabolic

regulations via different kinetic characters can be evaluated. Data produced in

silico combined with collections of in vivo experiments motivate the formula-

tion of new hypotheses to be placed in computational experiments for testing

and validation. The regulatory link between the polyamine enzymes, includ-

ing exogenous arginine transporter, arginase and ODC has been hypothesized

and validated via in silico model simulation that is amenable to further biolog-

ical studies. After biological experiments have been performed for hypothesis

verification, models can be iteratively improved and new insights can be gained.

The significance of model decomposition in the early stage of computational

modelling has been underlined. The module-based model presentation has al-

lowed us to focus on comparatively well-characterized modules and to study

the poorly-defined sub-systems when the relevant biological information is ade-

quate for a mechanism-based model construction. The model decompositional

approach assisted in an effective identification of the possible ill-characterized

reactions without detailed biological information being available.

In terms of computational modelling, the module-dependent study allowed

the selection of appropriate model representations to elaborate the underlying

processes of the system described by different amounts of relevant prior knowl-

edge. The usefulness of characterizing different parts of the system with different

mathematical model representations has been demonstrated in the computa-
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tional modelling of the polyamine biosynthetic sub-pathway in Chapter 7 – the

enzymatic reactions for spermidine production were modelled based on detailed

physical insights and spermidine participation in the rest of the trypanothione

metabolic system was approximated with a non-linear regression function. From

the optimization point of view, module-based representation simplified the math-

ematical description of the system by approximating ambiguously-characterized

sub-systems with a parametric function, reducing the degrees of freedom of the

parameters to be estimated.

Understanding complex biological systems on the basis of functional modules

enables flexible system models to be built from reusable components and allows

different calculations to be employed for these components. Module-based mod-

els can also assist the analysis of similar modules in related species (e.g. in T.

brucei, Leishmania and T. cruzi) to identify mutually-shared or species-specific

functions.

The model of polyamine biosynthetic sub-pathway developed in this thesis

has enabled a scientific explanation of measured data and a consistent interpre-

tation of the underlying biological processes. We have shown that our model

of polyamine interconversion reflects some critical features observed in experi-

mental approaches, such as ODC knockdown, AdoMetDC knockdown, prozyme

knockout and variations in the Methlyation index. The modelling activities per-

formed on the trypanothione metabolic pathway have great potential to help

experimentalists clarify conceptual ambiguities and to provide a platform for

rational identification of potential anti-trypanosomal druge targets.

8.2 Future Work

There are several areas for possible improvements and extensions on the work

presented in this thesis.

The first suggestion for future research work is the investigation of

the trypanothione metabolism in Trypanosoma brucei on the genomic

scale. Reconstruction of the metabolic network of the parasite Leishmaina ma-

jor has recently been reported by Chavali et al. (Chavali et al. 2008). The

work in Chapter 3 and Chapter 4 provides an opportunity for the genome-scale

construction of the metabolic network in the parasite Trypanosoma brucei. To

achieve the goal, a variety of data sources must be integrated in order to ex-

pand the existing structural model, including available genomic, proteomic and
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metabolomic data. The computational modelling and systems analysis meth-

ods described in Chapter 3 could be readily applied to the future study of this

parasitic organism.

The second suggestion for future research work is the integration

of structural model and kinetic model of the trypanothione metabolic

pathway in order to build a whole-cell model. We have emphasized the

importance of structural modelling and kinetic modelling as individual mod-

elling approach for studying metabolic pathways. A strategy of integrating the

structural and kinetic models appears to be prevalent in practice. Recently, a

framework that combines models of different types of biological processes (e.g.

metabolic and regulatory processes ) was developed by Covert et al. (Covert

et al. 2008) for building whole-cell models. Their framework requires the avail-

ability of different models (e.g. structural model and kinetic models) of the same

system in order to create an integrated model. Our work in Chapter 3, Chapter 4

and Chapter 7 developed the structural model and tackled the construction of

kinetic model for T. brucei, making the proposed framework by Covert et al.

suitable for application to the development of a whole-cell model in T. brucei.

As their approach demands a complete description of the initial conditions

of biomass, enzymes and metabolites of the system, a number of in vivo ex-

periments must be performed in order for their approach to be useful. A good

starting point of future research would concentrate on the model of polyamine

biosynthetic sub-pathway, for which some unknown parameters have already

been estimated with MoPSwarm. An interesting question to address could be

concerned with studying the regulation between AdoMetDC and prozyme of

the polyamine sub-pathway. The regulatory mechanism of the two enzymes has

been postulated via the kinetic modelling in Chapter 4. However, the postulated

mechanism cannot be tested due to the lack of measured dynamics essential for

the purpose. We expect that by integrating the kinetic model with the struc-

tural model of the polyamine biosynthetic sub-pathway, more knowledge could

be gained for this regulatory mechanism.

The third suggestion for future research work is a parallel imple-

mentation of the multi-objective optimization algorithm MoPSwarm

for increased computational speed. To increase the usefulness of the MoP-

Swarm proposed in this thesis, a potential enhancement to the computational

efficiency of the algorithm is suggested. The Poll step is an important strategy

adopted in the algorithm to guarantee satisfactory convergence to stationary
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points and a good diversity of the Pareto-optimal solutions. However, the num-

ber of evaluations of fitness functions in the Poll step may be very large and the

computational cost of using this approach can vary significantly when solving

other systems.

A parallel implementation of the algorithm would be a good solution for

improving the computational speed. An attempt has been made to parallelize

Particle Swarm for application to computationally demanding single-objective

optimization problems (Schutte et al. 2003). Other general strategies could be

parallelization onto multiple processors using an interface such as MPI (message

passing interface – http://www.open-mpi.org/) or parallelization onto hardware

accelerated platform such as GPUs.

The fourth suggestion for future research work is the enhancement

of the algorithm MoPSwarm for tackling multi-objective optimization

problems. Although MoPSwarm as designed in this thesis in general aims at

solving optimization problems constrained by multiple objectives (more than two

objectives), the focus has been given to solving problems with two objectives.

The requirement to enhance the generalization of MoPSwarm mandates further

work on designing appropriate mechanisms in selecting trade-off solutions among

objective functions. This may involve assigning different ‘weights’ to individual

objective as importance factors when they are simultaneously solved. MoP-

Swarm is a stand-alone algorithm and only requires mathematical model (e.g

ODEs) and objective functions (e.g. least squares) as inputs, which facilitates

future enhancement of the algorithm.

The final suggestion for future research work is the adaptation

of the methodological framework for automatic computational mod-

elling. The methodological framework proposed in Chapter 7 intends to tackle

the problem of structure identification caused by ill-defined kinetic mechanisms

of reaction enzymes, since in most cases the network topology is better under-

stood than regulatory mechanisms. This framework is fundamentally a heuristic

approach, where modeller’s interactions with the framework in each phase are

necessary. Automatic modelling procedure would be appealing in practice, par-

ticularly for extreme cases, where no biological information concerning either

network topology or kinetic mechanisms is obtainable for in silico investigation

of system identification problems.

We envision that automation of the modelling methodology could be achieved

via a bilevel architecture. The outer level searches through a library of reactions
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and/or enzyme kinetics to include so that model simulation can agree with ex-

perimental data given a particular model structure. An appropriate (qualitative

or quantitative) measure of the level of agreement between model simulation and

system responses is crucial for determining ‘good’ structures. The inner level

deals with the problem of model validation for the structure(s) that passed the

outer level examination, in which case MoPSwarm can be employed.

However, to make the automated procedure useful, certain issues should be

taken into account. One issue is that models without biological interpretation

could be derived. Much attention has to be paid in the selection of suitable

model structures and models without biological support should not be included

in the set of candidate models. Another issue is that computational cost can be

enormous with increasing model complexity. This difficulty could be relieved by

incorporating expert knowledge about ‘good’ parts of the model structure, and

focusing on only suspected system characteristics during the procedure.



Appendix A

Experimental Data

This section reports the experimental observations that are used for the study

in Chapter 7. This data includes DFMO-treated drug responses and single-gene

knockdown profiles. Intracellular concentrations of the metabolites are given in

μM that are caculated based on a volume of 58 μL/109 trypanosomes (Opperdoes

et al. 1984).

A.1 DFMO-treated Drug Responses

Table A.1 summarizes the effect of DFMO on bloodstream-form T. brucei (Fairlamb

et al. 1987) and Table A.2 the effect on procyclic form T. brucei (Bellofatto

et al. 1987).

Metabolites Wt Wt+DFMO Wt+DFMO Wt+DFMO
12hrs 36hrs 48hrs

ornithine 43 759 759 569
putrescine 517 3.3 3.3 3.3
AdoMet 19 34 1069 1431
dAdoMet 9 34 397 793
Spermidine 2069 948 845 517
GspdSH 48 34 31 29
glutathione 234 397 414 397
trypanothione 340 257 207 116

Table A.1: Dynamic responses of the intracellular metabolite concentrations in
bloodstream-form T. brucei. Wt (wild-type) and Wt+DFMO stand for intra-
cellular concentrations at the steady state and under drug inhibition.
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Metabolites Wt Wt+DFMO Wt+DFMO Wt+DFMO
12hrs 36hrs 48hrs

arginine 603 862 1293 1896
ornithine 43 2069 2069 2069
putrescine 2931 258 0 0
dAdoMet 0 172 431 603
Spermidine 3793 2758 1465 1034
GspdSH 77 34 34 34
glutathione 465 552 862 1000
trypanothione 672 431 379 310

Table A.2: Dynamic responses of the intracellular metabolite concentrations in
procyclic-form T. brucei. Wt (wild-type) and Wt+DFMO stand for intracellular
concentrations at the steady state and under drug inhibition.

A.2 Single-gene Knockdown Profiles

Table A.3 summarizes the effects of SpdS (spermidine synthase) knockdown on

the intracellular metabolite concentrations in T. brucei (Xiao et al. 2009).

Metabolites Wt Wt+Tet Wt+Tet Wt+Tet
12hrs 36hrs 48hrs

putrescine 869 517 445 245
dAdoMet 0.07 2.24 7.07 10.7
Spermidine 1548 881 407 366
GspdSH 11.2 1.2 3 1e-3
glutathione 164 188 198 210
trypanothione 2.6 2.2 2.6 3.4e-2

Table A.3: The effects of SpdS knockdown on the intracellular metabolic concen-
trations in bloodstream-form T. brucei. Wt and Wt+Tet stand for intracellular
concentrations at the steady state and after Tet induction. The addition of Tet
(tetracycline) degrades the target enzyme, essentially knocking it down by a
given fraction.



Appendix B

Structural Analysis

B.1 The Computational Approach for Detect-

ing Network Gaps

The main idea of the computational investigation is to examine, after adding

new branches to one metabolite at a time, whether the elementary modes of

the new topology can cover all the enzymatic reactions. Elementary modes are

computed with the package METATOOL, where the stoichiometric matrix is

used as a direct input.

With the assumption that additional reactions occur in isolation, the num-

ber of structural topologies to be examined is equal to the number of internal

metabolites. Computationally, additional reactions are embodied in the last col-

umn of the original stoichiometric matrix, where a non-zero entry in the column

represents the involvement of the metabolite in the corresponding reaction.

By way of example, let’s assume that the internal metabolite arginine has an

additional outgoing branch. Accordingly, the original matrix is expanded with

an additional column. There are no changes to the rows as no new metabolites

are included. The last column of the expanded matrix is given by the following

vector [
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
where the non-zero entry ‘-1’ represents the consumption of arginine in the

additional reaction. As we assume that the additional reactions take place in

isolation–one reaction at a time, there is only one non-zero entry in the vector.

We also examined the structural topology when the additional reactions of

the internal metabolites are assumed to take place in pairs. In this case, two ad-
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ditional branches are appended to the end of the original stoichiometric matrix

(Stb). The number of scenarios to be examined for network gaps is the number

of possible combinations for the selection of 2 metabolites from n pairs, which is
n!

k!·(n−k)!
, where n! denotes the factorial of n, the number of internal metabolites

and k is the number of components selected (i.e. 2). When selecting any two

from 18 internal metabolites, there are 153 possible pairings to examine. Com-

putational results of this examination are detailed in the section ‘Network Gaps

Identification’ in Chapter 3.

B.2 Mass-balance Model of the Trypanothione

Pathway in ST1

This section presents the mass-balance model and the stoichiometric matrix of

the trypanothione metabolic pathway represented by structural topology ST1.

Refer to texts in Section 3.4 for a detailed description. Structural topology

ST1 introduced a new reaction concerning trypanothione consumption in other

metabolic functions to Table 3.1, written as

No. Label Reaction Name Stochiometry
22 υtshout TSH Consumption TSH → tsh end
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X1 = d[Arg]
dt = 0 = barg − υ1

X2 = d[Orn]
dt = 0 = υ1 − υ2

X3 = d[Met]
dt = 0 = bmet − υ3 + υ7

X4 = d[AdoMet]
dt = 0 = υ3 − υ4 − υ5

X5 = d[Put]
dt = 0 = υ2 − υ6

X6 = d[dAdoMet]
dt = 0 = υ4 − υ6

X7 = d[Spd]
dt = 0 = υ6 − υ10 + υ11

X8 = d[MTA]
dt = 0 = υ6 − υ7

X9 = d[Cys]
dt = 0 = bcys − befcys + υ5 − υ8

X10 = d[Glu]
dt = 0 = bglu − υ8

X11 = d[Gly]
dt = 0 = bgly − υ9

X12 = d[gGluCys]
dt = 0 = υ8 − υ9

X13 = d[GSH]
dt = 0 = υ9 − 2 · υ10 + 2 · υ11

X14 = d[TSH]
dt = 0 = υ10 − υ11 − υ12 + υ13 − υtshout

X15 = d[TS2]
dt = 0 = υ12 − υ13

X16 = d[G6P ]
dt = 0 = bglc − υ14

X17 = d[NADPH]
dt = 0 = −υ13 + υ14

X18 = d[NADP ]
dt = 0 = υ13 − υ14

(B.1)

[d[Arg]
dt

d[Orn]
dt

d[Met]
dt

d[AdoMet]
dt

d[Put]
dt

d[dAdoMet]
dt

d[Spd]
dt

d[MTA]
dt

d[Cys]
dt

d[Glu]
dt

d[Gly]
dt

d[gGluCys]
dt

d[GSH]
dt

d[TSH]
dt

d[TS2]
dt

d[G6P ]
dt

d[NADPH]
dt

d[NADP ]
dt ]T =

Stb · [υ1 υ2 υ3 υ4 υ5 υ6 υ7 υ8 υ9 υ10 υ11 υ12 υ13 υ14

barg bmet bcys beff bglu bgly bglc υtshout]T

where
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Stb =

2
666666666666666666666666666664

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

3
777777777777777777777777777775

(B.2)

B.3 LP Optimization for Maximum Growth Rate

When the mass-balance model in Equation (B.1) is used for the maximization of

growth yield, the reaction labelled as υtshout is replaced with the growth rate υgr.

The stoichiometric matrix formulated in (B.2) is used for the task of interest.

From the biological point of view, the last column in this matrix represents the

reaction flux converting the metabolite precursor into biomass components.

B.4 LP Optimization for Minimum Residual Er-

ror with Respect to H2O2 Production Rate

The following mass-balance model is employed for the prediction of gene essen-

tiality, expressing the residual error between the calculated and measured rate of

H2O2 production as an objective. The optimal steady-state fluxes of individual

reactions are calculated by minimizing the error.

The mass-balance model for LP optimization of the minimum residual er-

ror below is based on Equation (B.1) given in Appendix B.2. To enable the

H2O2 production rate to be computationally simulated, H2O2 is considered as

a variable metabolite and the corresponding mass-balance equation is formu-

lated, which is specified by X16. This introduces a new reaction flux to the

mass-balance model in Equation (B.1), written as below
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No. Label Reaction Name Stochiometry
23 rH2O2 H2O2 production H2O2 Source → H2O2

X1 = d[Arg]
dt = 0 = barg − υ1

X2 = d[Orn]
dt = 0 = υ1 − υ2

X3 = d[Met]
dt = 0 = bmet − υ3 + υ7

X4 = d[AdoMet]
dt = 0 = υ3 − υ4 − υ5

X5 = d[Put]
dt = 0 = υ2 − υ6

X6 = d[dAdoMet]
dt = 0 = υ4 − υ6

X7 = d[Spd]
dt = 0 = υ6 − υ10 + υ11

X8 = d[MTA]
dt = 0 = υ6 − υ7

X9 = d[Cys]
dt = 0 = bcys − befcys + υ5 − υ8

X10 = d[Glu]
dt = 0 = bglu − υ8

X11 = d[Gly]
dt = 0 = bgly − υ9

X12 = d[gGluCys]
dt = 0 = υ8 − υ9

X13 = d[GSH]
dt = 0 = υ9 − 2 · υ10 + 2 · υ11

X14 = d[TSH]
dt = 0 = υ10 − υ11 − υ12 + υ13 − υtshout

X15 = d[TS2]
dt = 0 = υ12 − υ13

X16 = d[G6P ]
dt = 0 = bglc − υ14

X17 = d[NADPH]
dt = 0 = −υ13 + υ14

X18 = d[NADP ]
dt = 0 = υ13 − υ14

X19 = d[H2O2]
dt = 0 = rH2O2 − υ12

(B.3)



Appendix C

System Identifiability

In this appendix we detail the mathematical concepts behind the computational

procedures developed for identifiability analysis, including the details for the

numerical computation of Jacobian matrix, Fisher information matrix, covari-

ance and correlation matrices, confidence intervals and other related statistical

measures.

C.1 A Priori Structural Identifiability

Structural identifiability analysis is performed to investigate whether all model

parameters can be estimated given the available knowledge of the system. Out-

put sensitivity functions are central to the evaluation of a priori local identifiabil-

ity. Linearly dependent sensitivity functions result in parameter estimates that

are correlated. In our study, the numerical method for checking local structural

identifiability is based on the description given by Zak et al. (Zak et al. 2003).

Suppose the system is expressed as a set of Nx differential equations with Nx

states (x) and Np parameters (p). Taking p̂ as ‘true values’ of the parameter

set, the Nx × Np sensitivity matrices of the measured states are calculated at a

large enough number of points N where:

Sx(i,j) =

(
∂xi

∂pj

)
x=x(t,p̂), p=p̂

The correlation matrix of the parameters (Mc) was calculated:

Mc = correlation(G)

277
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where

G =

⎡
⎢⎢⎢⎢⎣

Sx(t1)

Sx(t2)
...

Sx(tN)

⎤
⎥⎥⎥⎥⎦

Parameters that are locally identifiable have correlations with all other pa-

rameters between -1 and +1. Parameters that are not locally identifiable have

correlations of exactly -1 or +1 with at least one other parameter.

Sensitivity matrices Sxij have to be calculated for the measured states at a

large number of time points to diminish the numerical bias introduced from the

lack of points.

Computing the sensitivity matrix involves calculating the gradient of each

component of the gradient vector of the system output. One possibility is to

evaluate these gradients using finite differences: perturbing each independent

parameter p in turn, calculating the perturbed gradient of each system state

x, subtracting the unperturbed gradient, and dividing by the magnitude of the

perturbation (Dennis and Schnabel 1983).

The method of finite difference approximation is straightforward in that only

the calculation of xi is required with nominal and perturbed parameters. How-

ever, the numerical values obtained may vary significantly with Δθj, and re-

peated solutions of the model are required for each parameter. The central

finite difference is used in the computation of sensitivity matrix with the form

below. This method, compared with the forward and backward finite difference

approximation, gives rise to the smallest round-off error.

si,j(t) =
∂xi(t)

∂θi

=
xi(θj + Δθj, t) − xi(θj − Δθj, t)

2 ∗ Δθj

(C.1)

C.2 Practical Identifiability with Hessian Ma-

trix

A unified formalism for constructing the Hessian matrix is given in this section.

A Hessian matrix is the second derivative of the objective function G with

respect to the parameters. Let Δ = (Δθ1, . . . , Δθi) be the estimates of Δθ, and

G = (G1, . . . , Gj) be the objective function values calculated for each of system
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states. The Hessian matrix is defined as follows⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂θ1

∂G2

∂θ1
. . .

∂Gj

∂θ1

∂G1

∂θ2

∂G2

∂θ2
. . .

∂Gj

∂θ2

...
...

. . .
...

∂Gj

∂θi

∂Gj

∂θi
. . .

∂Gj

∂θi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To investigate the practical identifiability, a Hessian matrix (Hij) of partial

derivatives of the objective function with respect to the parameter vector has to

be formulated.

Hij = (JTJ)ij +
n∑

i=1

rl · ∂2Gij

∂θi∂θj

where J is the Jacobian or gradient matrix of the objective function with respect

to the parameter vector in the form of

Jij =
∂Gij(θ)

∂θj

(C.2)

In the presence of small residuals, the Gauss-Newton approximation to the

Hessian states that the terms containing the residuals can be ignored, thus giving

the following equation:

Hij = (JTJ)ij (C.3)

The Jacobian matrix J records the absolute difference between the objective

function calculated with the nominal value of θj in the parameter vector θ and

the perturbed value, which can be computed with the central finite difference in

Equation (C.1).

The Hessian matrix is often called the Fisher information matrix. Inverting

the Hessian matrix gives the approximate Variance-Covariance matrix as follow

Mvc =

⎛
⎜⎜⎜⎜⎝

σ2
i=1,i=1 σi=1,i=2 . . . σi=1,i=i

σi=2,i=1 σ2
i=2,i=2 . . . σi=2,i=i

...
...

. . .
...

σi=i,i=1 σi=i,i=2 . . . σ2
i=i,i=i

⎞
⎟⎟⎟⎟⎠ (C.4)

The diagonal elements of the Variance-Covariance matrix are the variances,



APPENDIX C. SYSTEM IDENTIFIABILITY 280

which can be used to construct confidence intervals for the parameters. The

correlation coefficients between parameters pi and the pj are approximated by:

Rpi,pj
=

Cpi,pj√
Cpi,piCpj,pj

, pi �= pj

Rpi,pj
= 1, pi = pj

The correlation matrix measures the relationship between the parameters

and indicates pairs of parameters where changes in the model output due to a

change in one parameter value can be compensated by an appropriate change in

an other parameter value.

With the Variance-Covariance matrix, 95% confidence intervals can be cal-

culated for any identifiable parameters, which are given as:

CI = p̂i ± 1.96σ(pi)

where p̂i denotes the nominal parameter value. Here, symmetry of the confidence

region about the nominal values is assumed.
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Söderström, T. and Stoica, P.: 1989, System Identification, Prentice Hall.
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