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Abstract 

 

Some purple bacteria species, such as Rhodopseudomonas palustris 2.1.6, 

produce light harvesting antenna (LH2) with unusual absorption spectra when 

they are grown under low-light intensities. This ability is often related to the 

presence of multiple genes encoding the LH2 apoproteins. This thesis describes 

isolation of pure stable LH2s from Rhodopseudomonas palustris 2.1.6 grown at 

different light intensities, determination of the polypeptide composition of high- 

(HL) and low-light (LL) LH2 complexes and characterisation their spectroscopic 

properties using various optical spectroscopies. The question of whether rings 

with a heterogeneous apoprotein composition exist has been addressed by 

single-molecule spectroscopy. For the first time, direct evidence that individual 

LL LH2 complexes have a heterogeneous αβ-apoprotein composition has been 

found. Such mixed rings feature Bchl a molecules with both B820-like and B850-

like site-energies. This finding was supported by a femtosecond study on the 

energy transfer reactions and exciton relaxations within both HL and LL LH2 

complexes. This thesis also describes attempts to crystallise the HL and LL LH2s. 

Even though three-dimensional crystals of both HL and LL LH2 complexes only 

diffracted to low resolution, it was possible to use molecular replacement to 

obtain structures that suggest both these types of LH2s are nonamers.  
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1 Introduction 

“All that is gold does not glitter, not all those who wander are lost; 
The old that is strong does not wither, deep roots are not reached by 
the frost. From the ashes a fire shall be woken, A LIGHT from the 
shadows shall spring; Renewed shall be blade that was broken, the 
crownless again shall be king.”  

A letter from Gandalf, which the innkeeper gives to Frodo (The Lord 
of the Rings, The Fellowship of the Ring Book 1, Chapter ‘Strider’) 

Life on earth depends on photosynthesis. The process through which the energy 

of light is converted into the biochemical energy needed to sustain all life on 

earth. Long before the oxygenic phototrophs, e.g. green plants, algae and 

cyanobacteria, existed on the surface of the earth, the anoxygenic phototrophs 

evolved photosynthesis (Blankenship, 2002). They used light energy to produce 

ATP and utilized reductants, such as H2, H2S, or organic molecules, as electron 

donors to generate NADH and NADPH. Subsequently bacteria evolved the ability 

to split water and to produce oxygen. A new era then ensued, our atmosphere 

began to fill up with oxygen, and heterotrophic existence based on aerobic 

respiration became possible.  

Early research on photosynthesis tried to understand the exact nature of the 

processes and the basic building blocks of the machinery that catalysed these 

processes. R. Emerson and W. Arnold conducted a clever experiment in 1932 to 

try to understand the basic building blocks (Rabinowitch  et al., 1969). They 

used a suspension of Chlorella cells, exposed them to flashing light (10-5 sec) and 

measured the production of oxygen per flash. This experiment suggested that 

the cooperation of 2500 chlorophyll molecules is needed to produce one 

molecule of O2. This consideration led to the concept of the photosynthetic unit, 

the number of chlorophyll molecules required to work together to produce one 

O2 molecule. The concept of photosynthetic unit has now been revised as the 

average number of (bacterio)chlorophyll molecules per reaction centre (RC) in 

the photosynthetic membrane (Messinger, 2008, Renger, 2008).  
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In the anoxygenic purple bacteria, the light absorbing photosynthetic apparatus 

is located in intracytoplasmic membranes. It consists of two types of pigment-

protein complexes, the light-harvesting (LH) complexes and the reaction centres 

(RC). The LH complexes capture light energy and then transfer the energy 

efficiently to the RC, where the charge separation process is initiated leading to 

the synthesis of ATP. These processes have inspired the development of 

photovoltaic devices that mimic the photosynthetic apparatus (Makarow, 2008).  

1.1 Systematics of purple bacteria 

Anoxygenic phototrophic purple bacteria are photosynthetic gram-negative 

prokaryotes that can grow autotropically with CO2 as sole carbon source 

(Blankenship, 2002). Purple bacteria are currently classified into two main 

groups, purple sulphur bacteria (Gammaproteobacteria) and purple non-sulphur 

bacteria (Alpha- or Betaproteobacteria), according to their tolerance and 

utilisation of sulphide as an electron donor (Madigan, 2009).  

Table 1-1 lists the current recognized genera of purple bacteria. Over 25 genera 

of the sulphur purple and 20 genera of non-sulphur bacteria have been found 

and classified. In nature large masses of purple bacteria can be found in lakes, 

lagoons or even sewage. For example in lakes that contain high concentration of 

sulphide, such as Wintergreen and Burke in southwest Michigan, USA, layers of 

purple sulphur bacteria species such as Thiopedia, Thiospirillum, Thiocystis and 

Chromatium can be found (Caldwell  et al., 1975a, Caldwell  et al., 1975b). Rba. 

sphaeroides, Rps. palustris and Blc. viridis can all be found in the sewage plant 

in Göttingen, Germany, in large numbers (105-106 cells ml-1) (Siefert  et al., 

1978). 
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Table 1-1 Current genera of anoxygenic purple bacteria (taken from (Madigan, 2009)).  
 

Taxonomy/Phylogeny Genus (abb.) Morpho-
logy 

Species (Examples) 

Purple non-sulphur 
bacteria 

Rhodobaca (Rca.) Cocci to 
short rods 

bogoriensis 

  Alphaproteobacteria Rhodobacter (Rba.) Rods capsulatus, 
sphaeroides 

 Rhodovulum (Rdv.) Rods-
Cocci 

sulfidophilum 

 Rhodospeudomonas 
(Rps.) 

Budding 
rods 

acidophila, palustris 

 Rhodoblastus (Rbl.) Budding 
rods 

globiformis 

 Blastochloris (Blc.) Budding 
rods 

sulfoviridis, viridis 

 Rhodomicrobium (Rmi.) Budding 
rods 

vanniellii 

 Rhodobium (Rbi.) Rods marinum 
 Rhodoplanes (Rpl.)  Rods serenus 
 Rhodocista (Rcs.) Spirilla centenaria 
 Rhodospirillum (Rsp.) Spirilla rubrum, 

photometricum 
 Phaeospirillum (Phs.) Spirilla molischianum 
 Rhodopila (Rpi.) Cocci globiformis 
 Rhodospira (Rsa.) Spirilla trueperi 
 Rhodovibrio (Rhv.) Vibrio salinarum 
 Rhodothallasium (Rts.) Spirilla salexigens 
 Roseospira (Ros.) Spirilla mediosalina 
 Roseospirillum (Rss.) Spirilla parvum 
Betaproteobacteria Rhodocyclus (Rcy.) Curled 

vibrios 
tenuis 

 Rhodoferax (Rfx.) Rods, 
vibrios 

antarticus 

 Rubrivivax (Rvi.) Rods, 
curved 
rods 

gelatinosus 

    
Purple sulphur bacteria    
Gammaproteobacteria    
  Family Chromatiaceae Allochromatinum (Alc.) Rods vinosum 
 Amoebobacter (Amb.) Cocci in 

plates or 
clumps 

purpureus 

 Chromatium (Chr.)  Rods okenii, weissei 
 Halochromatium  (Hch.) Rods salexigens 
 Isochromatium (Isc.) Rods buderi 
 Laprobacter (Lpb.) Rods modestohapilophilus 
 Laprocystis (Lpc.) Cocci in 

clusters 
roseopersicina 

 Marichromatium (Mch.) Rods purpuratum 
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 Rhabdochromatium 
(Rbc.) 

Rods marinum 

 Thermochromatium 
(Tch.) 

Rods tepidum 

 Thioalkalicoccus (Tac.) Cocci  
 Thiobaca (Tba.) Rods  
 Thiocapsa (Tca.) Cocci roseopersicina 
 Thiococcus (Tco.) Cocci pfennigii 
 Thiocystis (Tcs.) Cocci to 

short rods 
violacea 

 Thiodictyon (Tdc.) Rods in 
aggregates 

elegans 

 Thioglavicoccus (Tfc.) Cocci  
 Thiohalocapsa (Thc.) Cocci halophila 
 Thiolamprovum (Tlp.) Cocci pedioforme 
 Thiopedia (Tpd.)  Cocci, 

often in 
plates 

rosea 

 Thiorhodococcus (Trc.) Cocci minor 
 Thiohodovibrio (Trv.) Vibrios to 

spirilla 
winogradskyi 

 Thiospirillum (Tsp.) Spirilla jennese 
  Family 
Ectothiorhodospiraceae 

Ectothiodhorospira 
(Ect.) 

Vibrios to 
spirilla 

shaposhnikovii 

 Halorhodospira (Hlr.) Vibrios to 
spirilla 

neutrophilla 

 Thiorhodospira (Trs.) Vibrios to 
spirilla 

sibirica 

 Ectothiorhodosinus 
(Ets.) 

Rods mongolicus 

 

1.2 Photosynthesis in purple bacteria 

Oxygenic phototrophs use H2O as a source of electrons to reduce CO2 into 

organic compounds, for example carbohydrate, and produce oxygen. In 1930 

Cornelis Bernardus van Niel studied the anoxygenic phototrophs, such as purple 

bacteria. He found that purple bacteria, in photoautotrophic growth, utilize H2S, 

other sulphur-containing compounds, or a variety of organic reductants, even H2, 

to assimilate CO2 (Blankenship, 2002). As a result of his study he produced a 

general equation of photosynthesis 

! 

2H
2
A + CO

2
"
hv

2A + (CH
2
O) + H

2
O       (i) 
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Where H2A is e.g. H2S in purple sulphur bacteria or succinic acid in purple non-

sulphur bacteria. This formula is known as van Niel’s equation as a tribute to his 

seminal contribution. This equation can be expanded: 

! 

2H
2
A" 2A + 4e

#
+ 4H

+        (ii) 

! 

CO
2

+ 4e
"

+ 4H
+
# (CH

2
O) + H

2
O      (iii) 

The process of the CO2 fixation is actually driven by adenosine-tri-phosphate 

(ATP) and reduced nicotinamide-adenine-dinucleotide-(phosphate) (NAD(P)H), 

both which are formed during the light-dependent reactions. The light-

dependent reactions in purple bacteria take place in and across intracytoplasmic 

membranes, in which the photosynthetic units embedded (Figure 1-1).  First of 

all the electromagnetic radiation from the sun is captured by the pigments 

bound in the LH2 peripheral antenna (Figure 1-1). The resulting excitation 

energy is transferred from LH2 to LH1 and then on to the RC. The subsequent 

electron transfer within the RC produces a chemical potential gradient across 

the membrane and the resultant trans-membrane proton motive force is used by 

the ATP-synthase to generate ATP. 
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Figure 1-1 Schematic representation of intracytoplasmic membrane of purple bacteria Rba. 
sphaeroides (adapted from Naylor et al. 1999 (Naylor  et al., 1999)).  
 

1.3 Interaction between molecules and light 

The interaction between molecules and light is best understood by the help of 

the Jablonski diagram as shown in Figure 1-2. The Jablonski diagram illustrates 

the electronic and vibrational levels of a molecule and the possible transitions 

between them. When a pigment absorbs light, it is promoted from the ground 

state (S0) to the excited state (e.g. the first singlet excited state, S1, or the 

second singlet excited state, S2). A singlet state is a state of a molecule with 

zero net electron spin (S = 0). For two electrons, a singlet state is one with 

antiparallel (paired) spins, and is denoted by ↑↓. 
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Figure 1-2 The Jablonski diagram displaying processes occurring after a molecule absorbs 
a photon. Abbreviations: A-absorption (black solid arrow); F-fluorescence (black heavy 
solid arrow); P-phosphorescence (black double dashed arrow); IC-internal conversion (red 
dashed arrow); VR-vibrational relaxation (blue arrow); ISC-intersystem crossing (green 
dashed arrow) 
 

There are several processes possible after absorption of a photon by a molecule 

(Figure 1-2). If, after excitation, a higher vibrational level of S1 is reached, the 

excess vibrational energy will be quickly dissipated (10-13-10-12 s) by vibrational 

relaxation, resulting in the population of the lowest vibrational level of S1. The 

internal conversion (IC) is a non-radiative transition between two electronic 

states of the same spin multiplicity (S2-S1 or T2-T1). Internal conversion is also 

possible from S1 to S0. The efficiency of this transition depends on the energy 

gap between the vibrational ground state of S1 and higher vibrational levels of 

S0. A radiative transition from S1 to S0 results in fluorescence. Intersystem 

crossing (ISC) is a non-radiative transition between a vibrational level of a singlet 

state to the isoenergetic vibrational level of a triplet state. ISC involves the flip 

of the spin, the electron spins then become unpaired (parallel, ↑↑) and the total 

spin quantum number, S = 1. ISC can be quite fast (10-7-10-9 s). A radiative 

transition from T1 to S0 is known as phosphorescence. This process is rather slow 

since it is formally forbidden.  

1.3.1 Absorption 

In the excitation process, the probability of photon absorption is given by the 

absorption cross-section (σ), which corresponds to the fraction of the power 

absorbed by the acceptor averaged over all possible absorption dipole 
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orientations and the incident intensity (Valeur, 2001). The relationship between 

the molar extinction coefficient, ε, and the concentration of chromophore (c, in 

mol L-1) is expressed by the Beer-Lambert law: 

! 

A = "log10
I

I0

# 

$ 
% 

& 

' 
( = "log10 e

")lN( ) = *lc       (1.1) 

where A is absorbance, I0 is the intensity of incident light and I is the intensity 

of transmitted light. l denotes the path length of absorbing solution in cm. N is 

number or density of molecules. 

1.3.2 Fluorescence 

Fluorescence emission is a radiative relaxation from the S1 to the electronic 

ground state (Figure 1-2). The fluorescence band is located at higher 

wavelength (lower energy) than the absorption band because of energy loss in 

the excited state due to vibrational relaxation. The gap between the maximum 

of the lowest energy absorption band and the maximum of the fluorescence is 

called the Stokes shift. 

The efficiency of the fluorescence process, the fluorescence quantum yield (Φf), 

is defined as the ratio of the number of photons emitted to the number of 

photons absorbed. It can be described using the rates of excited state decay by 

the formula (Valeur, 2001): 

! 

f" =
kr

kr + knr
         (1.2) 

where kr is the rate of radiative emission (fluorescence) and the  knr is the rate of 

all possible non-radiative processes. The quantum efficiency of 0.9 indicates a 

very efficient fluorescence process, whereas Φf = 0 indicates that the molecule 

does not fluorescence.  



Introduction 9 

1.3.3 Dipole-dipole interaction and energy transfer 

After photoexcitation, the energy absorbed by a molecule, in principle, can be 

transferred efficiently to neighbouring molecules over a distance of several tens 

of angstroms through electronic energy transfer (EET). EET is also known as 

resonance energy transfer (RET), that is a transfer by inductive resonance. This 

process involves an electronic interaction promoting RET via a coupling of the 

transition dipole moments of donor and acceptor molecules due to a Coulombic 

interaction (Scholes, 2003, Turro, 1991). Two limits are distinguished: weak 

interaction, which leads to Förster type energy transfer, and strong interaction, 

leading to the formation of excitons. 

The energy transfer process can be simply understood in a system of two 

interacting molecules n and m. The electronic interaction between the two 

pigments is mainly determined by the Coulombic interaction of the electrons and 

nucleus of one pigment with those of the neighbour and by an exchange 

interaction caused by overlap of molecular orbital of the adjacent pigments. The 

Coulombic interaction is often described by a dipole-dipole interaction between 

molecule n and m, Vnm, that can be given by: 
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Where 

! 

µ
"

 is the transition-dipole moment of the pigment. The magnitudes of 

dipole moments are in debye, D (1 D = 3.33564 × 10-30 C m). The distance 

between the transition-dipoles 

! 

µ
n

"

 and 

! 

µ
m

"

 is 

! 

r
nm

. ε is the dimensionless 

permittivity of the medium. The mutual orientation and distance between the 

transition-dipole moments determines the orientation factor 

! 

"
nm

, which is 

defined in terms of a unit vector. The electronically excited states of the 

pigments can be described by a Hamiltonian (Davydov, 1964)  

! 

H = E
0,n
n n

n=1

N

" +
1

2
V
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m#n

" n m

n=1

N

"       (1.5) 
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where N denotes the number of molecules (N = 2 for dimer). 

! 

n  and 

! 

m  

represent the excitation of the molecules, n and m, respectively. E0,n is the site 

energy of an individual pigment n. Two limiting cases for the dipolar interaction 

can be distinguished. The weak coupling, 

! 

V /"E
nm

<<1, is when the interaction 

between the transition-dipole moments is much smaller than the difference in 

site energies of two molecules (

! 

"E
nm

= E
0,n
# E

0,m
). The result of weak coupling 

is that the excited state wavefunctions are localised on the individual pigments. 

Strong coupling, 

! 

V /"E
nm

>>1, on other hand, occurs when the interaction is 

much stronger than the site energies between two molecules. As a result new 

delocalised exited states, namely excitons, are formed (Figure 1-3). The 

eigenfunctions of the excitons are no longer the eigenfunctions of the 

Hamiltonian (eq. 1.5), but new eigenfunctions are formed from linear 

combinations of the excited state wavefunctions of the pigments. 

 

Figure 1-3 Effect of the strength of interaction (V) and the site energy difference (ΔEnm) on 
the energy level of two molecules 

! 

n  and 

! 

m . A. In the case of weak coupling interaction 
the excitation energy is localised on the individual pigments. B. In the case of strong 
coupling interaction this results two new delocalised exciton states. 
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These Frenkel excitons correspond to the two energy levels indicated in Figure 

1-3. If the site-energies of the two molecule, 

! 

n  and 

! 

m , are equal, the 

wavefunctions (

! 

"
nm

s  and 

! 

"
nm

as ) have equal amplitudes on both pigments. 

(Figure 1-3). Frenkel excitons can generally be described as follows  

! 

k =
1

N
e
i2"k

n

N

n=1

N

# n         (1.6) 

In case of weak coupling, i.e. the two molecules can still be thought as 

essentially independent of each other, it is appropriate to discuss the RET in 

term of the Förster theory. This theory is based on the equilibrium Fermi Golden 

Rule approach, in which the energy-transfer rate can be formulated as below 

(Cogdell  et al., 2006), 

  

! 

kDA =
2"

h
dE DA

~

V D
~

A

2

# E( )$ E f % Ei( )&      (3) 

where 

! 

D

~

A  denotes the initial condition with the donor in the excited state and 

the acceptor in the ground state. An interaction between donor and acceptor, 

V, is required for the energy transfer. In final state 

! 

DA

~

, the donor is in the 

ground state, while the acceptor is in the electronic excited state. 

! 

" E( ) 

represents the density of states. 

! 

" E f # Ei( )  ensures energy conservation for each 

particular energy-transfer process.  

1.3.4 Antenna complexes and reaction centres 

Photosynthesis could have evolved, in principle, only with RCs. However, this 

means, except under very high-light conditions, that there will be a relatively 

long time-gap between two photons reaching the same RC. A major problem will 

then occur because several of the redox reactions that take place within the 

reaction centres require multiple one-electron turnovers. If the RCs have to wait 

too long then back reactions will become favourable, and the whole charge-

separation process becomes inefficient. The increased cross-sectional area for 

photon capture is achieved by LH complexes that enable the RCs to be supplied 
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with sufficient numbers of photons, thus the forward electron-transfer reactions 

take place frequently enough and the back reaction are reduced to a minimum 

(Cogdell  et al., 2008). 

1.4 The pigments 

As part of the building blocks of the LH complexes, the pigments function to 

absorb electromagnetic radiation. The major light-absorbing pigments in purple 

bacteria are bacteriochlorophyll a (Bchl a) or Bchl b and carotenoids. These 

pigments are non-covalently bound to two types of integral membrane proteins 

forming antenna complexes.  

1.4.1 Bacteriochlorophyll 

 

Figure 1-4 Chemical structure of Bchl a according to IUPAC. The grey arrows denote the Qx 
and Qy  dipole moments, respectively. 
 

Bchls are the major pigments found in anoxygenic photosynthetic bacteria. They 

are related to the chlorophyll, which is the primary pigment in plants, alga and 

cyanobacteria. The chemical structure of Bchl is a modified cyclic tetrapyrrole, 

with a structure comparable to that of the prosthetic heme group of 

haemoglobin and cytochromes, and is biosynthetically derived from 
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protoporphyrin IX (Scheer, 2003). The differences in the macrocycle between 

the Bchl and heme can be summarized as follows:  

1. The central metal ion in the Bchl is Mg2+, not Fe2+ or Fe3+, although 

through coordination chemistry it can be replaced by several metal ions 

such as Ni2+, Pd2+, Zn2+, etc.  

2. In the Bchl a, b and g rings B are reduced.  

3. The Bchl has a cyclopentanone ring, usually with an attached carboxylic 

ester group.  

4. The propionyl group on ring D of Bchl a is generally esterified by the long-

chain isoprenoid alcohol phytol.  

There are three types of tetrapyrroles based on the degree of unsaturation of 

the macrocycle. The fully unsaturated porphyrins with an acrylic side chain at C-

17 (porphyrin like system), 17,18-dihydrophorphyrins (chlorin system), and 

7,8,17,18-tetrahydroporphyrins (bacterioporphyrin system) (Scheer, 1991, 

Scheer, 2003). 

As Bchl a is a porphyrin derivative, the main characteristics of its optical 

spectrum can be understood in terms of the 4-orbital theory of Goutermann, by 

a perturbation of those of the porphyrin (Gouterman, 1978, Weiss, 1978). This 

model (Figure 1-5) was developed for the high-symmetry metallo-porphyrins 

(D4h-symmetry) and, then applied, with minor modifications, to chlorin and 

bacteriochlorin structures (Gouterman, 1978, Weiss, 1978). The highest occupied 

molecular orbital (HOMO) consists of a2u(π) and a1u(π) orbitals and the lowest 

unoccupied molecular orbital (LUMO) consists of egx(π*) and egy(π*) orbitals. 

There are 4 transition possibilities (Figure 1-5). Those are the x-polarized 

transitions [a1u(π)→egy(π*) and a2u(π)→egx(π*)], and the y-polarized transitions 

[a1u(π)→egx(π*) and a2u(π)→egy(π*)]. The x and y refers to the B-D and A-C axes, 

respectively (Figure 1-5). The nomenclature of the principal electronic 

transitions are B (Soret) for the high energy transition a2u(π)→egy(π*) denoted as 

By and a1u(π)→egy(π*) denoted as Bx, hence Q for low energy transitions 

a2u(π)→egx(π*) are denoted as Qx, and a1u(π)→egx(π*) denoted as Qy.  
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Figure 1-5 The pattern of the π-frontier orbitals of the porphyrins according to the 
Gouterman four-orbital model are shown in colour (Gouterman, 1978). Orbitals egx and egy: 
LUMO; a2u and a1u: HOMO; classification according to D4h point group. Here the different 
phases of the p orbital are shown in red (+) and in blue (-). The big arrows indicate the x and 
y axes. 
 

 

Figure 1-6 Scheme of energy of molecular orbital for porphyrin, chlorin and bacteriochlorin 
(Hanson, 1991) 
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When pyrrole rings B and/or D of the porphyrin are saturated (Figure 1-6), the 

a1u(π) and egy(π) are raised in energy, whereas the a2u(π) and egx(π*) remain 

unaffected. Consequently, the energy gap between the a1u HOMO and egx LUMO 

becomes smaller, the Qy band shifts to the red and gains oscillator strength 

(Hanson, 1991). Of course, the D4h symmetry is broken by saturation one or two 

of the pyrrole rings and, therefore the x-polarised transition will have 

considerably higher energy than the y-polarised one. Changes due to the 

reduction of the porphyrin-macrocycle at C-17, 18 in the chlorins (650-680 nm), 

and additionally at C-7, 8 the bacteriochlorins (750-800nm) can be seen clearly 

as a bathochromic shift of the lowest-energy absorption band (Figure 1-7).  

 

Figure 1-7 Influence of the conjugation system shown on the room temperature (RT) steady 
state absorption spectra of cyclic conjugated tetrapyrroles in organic solvent. Shown are 
the spectra of the porphyrin type (PChlide a = protochlorophyllide a), the chlorin type (Chl a 
= chlorophyll a) and the bacteriochlorin type (Bchl a = bacteriochlorophyll a) and the 
assignments of the major absorption bands according to the four-orbital model. This figure 
is taken from (Scheer, 2003). 
 

1.4.2 Carotenoid 

Carotenoids (Car) are classically diterpenes that consist of two C20-units 

(originally geranyl-geraniol) joined tail-to-tail to form a chain of 32 carbon 

atoms bearing eight methyl side-chains (Frank, 1993). The photochemistry of Car 

can be traced to the electronic properties of their conjugated π-electron 
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system. The number of the conjugated C=C bonds in naturally occurring Cars 

ranges from 3 (e.g. phytoene) to 13 (e.g. spirilloxanthin). The excited state 

ordering of Cars is classified according to the C2h point symmetry group. Within 

the C2h symmetry group, the S0→S1 transition from the 1Ag
– ground state to the 

2Ag
– lowest electronic state is optically forbidden (Schulten  et al., 1972, Tavan  

et al., 1986). The major optical absorption therefore arises from the allowed 

S0→S2 transition, from the 1Ag
- ground state to the 1Bu

+ state. It is generally split 

into several vibronic transitions, resulting in a series of three closely spaced 

absorption bands (Figure 1-8). Cars show different optical characteristics in 

various solvents, depending on the polarisability of the solvent (Frank, 1993, 

Kuki  et al., 1994, Nagae  et al., 1994). 

 

Figure 1-8 Lycopene: the chemical structure and its steady state RT absorption spectrum in 
MeOH. Taken from (Shinichi, 2004) 
 

Cars have two major functions in photosynthesis: light harvesting and 

photoprotection (Cogdell  et al., 1987, Limantara  et al., 1998, Polli  et al., 

2006). The Car absorption fills the “green gap” (λmax = 450-500 nm), where the 

Bchls do not absorb efficiently and can transfer that absorbed energy to the 

Bchls molecules (Cogdell  et al., 1987, Frank, 1993, Griffiths  et al., 1955, 

Krueger  et al., 1999). The photoprotection function of the Car comes from their 

ability to quench the production of singlet oxygen, which is harmful to the cell 
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(Cogdell  et al., 1987, Foote  et al., 1970, Griffiths  et al., 1955). If cells of 

photosynthetic organism lacking Cars, such as the mutant Rhodobacter (Rba.) 

sphaeroides R26, are illuminated in the presence of oxygen, they sensitise their 

own death (Griffiths  et al., 1955, Hunter  et al., 1994, Lang  et al., 1994).  

The photoprotective function of Cars is related to their ability to neutralise the 

singlet oxygen radical. From the excited singlet state, Bchls can undergo 

intersystem crossing to produce an excited triplet state (Eq. iv and Eq. v). The 

excited triplet state is characterised with a relatively long lifetime, sufficient to 

allow it to react with oxygen (3O2) (in its triplet ground state (3Σg)) resulting in 

the generation of the singlet-excited state (1Δg) of oxygen (Eq. vi). Singlet 

oxygen (1O2*) is a very reactive compound, powerful enough to react with lipids, 

proteins and nucleic acids. The photoprotective function of Car is shown below. 

Due to the low-lying triplet state of Cars, the triplet states of Bchls can be 

efficiently quenched by Car by a triplet-triplet energy transfer (Eq. vii). Thus 

this prevents the formation of singlet oxygen (Frank, 1993). Car can also directly 

interact with the singlet oxygen and scavenge it (Eq. viii). The complete 

photoprotective reaction can be described as follows: 
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1.5 Structures of Light-harvesting complexes 

1.5.1 Structure of LH2 

 

Figure 1-9 The high resolution (2.0 Å) structure of LH2 complex from Rps. acidophila 10050 
(Papiz  et al., 2003). A. Front and side views of the LH2 complex showing nine-membered 
circular module of α- (cyan) and β-( green) polypeptides with B800 Bchl (blue), B850 Bchl 
(red) and the carotenoid (orange) (B). The spatial organisation and distances between the 
Bchl a pigments in LH2. The numbers indicate the size of LH2 and centre-to-centre 
distances between the macrocyles of the Bchl a molecules in Å. The arrows indicate the 
direction of the Qy transition moments. The phytol chain is cropped off for clarity. (SEE 
AVAILABLE MOVIE). C. The room temperature absorption spectrum of LH2 complex. The 
red and blue lines correspond to B850 and B800, respectively.  
 

The high-resolution X-ray structure of the LH2 complexes (McDermott  et al., 

1995, McLuskey  et al., 2001, Papiz  et al., 2003) from Rhodopseudomonas (Rps.) 

acidophila strain 10050 and low-light adapted strain 7050 show a remarkable 

symmetry in the arrangement of the pigments embedded in the protein matrix 

(Figure 1-9). These complexes are modular. Each module consists of a protein 
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heterodimer (αβ), which binds three Bchl a pigments and one carotenoid 

molecule. Nine such modules, αβ-polypeptides, are arranged circularly to form 

the single LH2 complex. In case of Phaeospirillum (Phs. previously 

Rhodospirillum) molischianum the LH2 complexes are octamers (Koepke  et al., 

1996). The α-polypeptide is located inside the ring and the β-polypeptide is on 

the outside (Figure 1-9). Inside the protein matrix the bacteriochlorin rings of 

the Bchl a molecule are organised in two ways (Figure 1-9A). Nine monomeric 

Bchl a molecules have their bacteriochlorin rings oriented parallel to the plane 

of the membrane (blue in Figure 1-9B and C), and absorb the light with 

absorption maximum (λmax) at ~800 nm. They are called B800 Bchl as. These 

monomeric B800 Bchl as are separated by 2.1 nm from each other. A further 

eighteen Bchl a molecules have their bacteriochlorin rings oriented 

perpendicular to the membrane plane. They are responsible for the absorption 

band at about 850 nm. The B850 Bchl as (red in Figure 1-9A and C) sit very close 

to each other (~0.9 nm) and, when viewed from above, superficially resembles 

the blades of a turbine. 

 

Figure 1-10 Diagrams showing the binding pocket of the B850 Bchl as (A) and the B800 Bchl 
a (B).  The coordinates for this figure were taken from the high resolution (2.0 Å) structure of 
the LH2 complex from Rps. acidophila 10050 (PDB: 1NKZ) (Papiz  et al., 2003). 
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In their binding pocket, the B800 Bchl as are stabilised by coordination between 

the Mg+2 of the Bchl a and COO-α-Methionine1, and a H-bond between the acetyl 

group of Bchl a and the guanidinium group of β-Arginine20 (Figure 1-10) (Papiz  

et al., 2003). The B850 Bchl as have their central Mg2+ liganded to the imidazole 

ring sidechain of histidine residues, α-His31 and β-His30 (Figure 1-10) 

(McDermott  et al., 1995, Papiz  et al., 2003). A hydrogen bond is formed 

between the acetyl group in ring A and the phenol sidechain of α-tyrosine44 for 

α-B850 Bchl as and the indole sidechain of α-tryptophan45 for β-B850 Bchl a 

molecules (Figure 1-10) (Papiz  et al., 2003).  

 

Figure 1-11  Diagram showing the interaction of the phytol chain of the B800 Bchl a (blue) 
and β-bound Bchl a (red) (A) and the position of all-trans carotenoid rhodopin-glucoside in 
the heterodimeric pair of αβ-polypeptides. The coordinate is taken from high resolution (2.0 
Å) structure of LH2 complex from Rps. acidophila 10050 (Papiz  et al., 2003). 
 

On a closer inspection, there is an interesting interaction between Bchl a 

molecules of B850 and B800, within an αβ-apoprotein pair, conducted by their 

hydrophobic phytyl chains. The B800 phytyl chain from B800 folds around the 

phytyl chain of β-B850 Bchl, crossing it and passes across the macrocycle ring of 

the β-B850 (Figure 1-11A). The B800 phytyl chain interacts via van der Waals 

contact with rings A and D of the β-B850 macrocycle.  
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The Car found in the Rps. acidophila strain 10050 is rhodopin-glucoside. The X-

ray structure of LH2 from Rps. acidophila also reveals interactions between the 

Car and the polypeptide as well as between Car with the Bchl a molecules 

(Figure 1-11B). In the LH2 complex from Rps. acidophila 10050, the rhodopin-

glucoside passes in close contact (3.4 Å) to the edge of the bacteriochlorin ring 

of the B800 Bchls. The polyene chain then runs perpendicular to the macrocycle 

of the α-B850 Bchl a (Figure1-11B). The glucosyl group of the rhodopin-

glucoside molecule is located in a hydrophilic binding pocket on the cytosolic 

side of the transmembrane-spanning protein. This Car has an extremely 

important structural role in LH2. It holds the αβ-polypeptide pairs together 

(Figure1-11B). In a mutant that lacks Car the LH2 complexes fail to assemble 

(Hunter  et al., 1994).  

1.5.2 Structure of LH1-RC (Core) complexes 

 

Figure 1-12 A. The room temperature absorption spectrum of LH1-RC “Core” from Rps. 
palustris. B. The crystal structure at 4.8 Å resolution of LH1-RC from Rps. palustris (Roszak  
et al., 2003). C. The recent model of the dimeric LH1-RC from Rba. sphaeroides (Sener  et al., 
2009). 
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The LH1 complexes are constructed on a similar modular principle to that seen 

in the case of the LH2 complexes. LH1 consists of α- and β-polypeptides, which 

are oligomerised and surround the RC (Qian  et al., 2005, Siebert  et al., 2004, 

Stark  et al., 1984). One pair of αβ-polypeptide binds two Bchl a molecules and 

one Car (Law  et al., 2008). The Bchl a molecules are strongly coupled, giving 

rise to the strong Qy absorption band in 870 to 890 nm region (Figure 1-12) 

(Robert, 2003).  

The first structure of LH1-RC resolved from a 3D crystal was reported in 2003 

(Roszak  et al., 2003). The crystal structure at 4.8 Å resolution of the LH1-RC 

complex from Rps. palustris, Figure 1-12 left (Roszak  et al., 2003), shows an 

RC surrounded by open elliptical ring of LH1. The LH1 complex consists of 15 αβ-

polypeptides. The elliptical LH1 complex has the dimensions of approximately 

110 × 95 Å, measured from the outer edges, formed by β-polypeptides, of the 

complex. The longest inside dimension, of the ellipse is about 78 Å, providing 

enough space for the RC to be accommodated (Roszak  et al., 2003). The gap, 

shown in the LH1 complex of Rps. palustris, is introduced by a protein called W 

(Figure 1-12). It has been suggested that the protein W is probably analogous to 

a protein found in Rba. sphaeroides and Rba. capsulatus called PufX (Cogdell  et 

al., 2006).  

PufX is a protein composed of ~80 aminoacids polypeptide found in the core 

complex of Rba. sphaeroides and Rb. capsulatus and also probably in all 

Rhodobacter species (Bullough  et al., 2009). The structure of PufX from Rba. 

sphaeroides has been solved by NMR in organic solvent and modelled as both a 

bent (Tunnicliffe  et al., 2006) and a straight (Wang  et al., 2007) helix. PufX 

plays an essential role in photosynthetic growth. It appears to be required for 

efficient ubiquinone/ubiquinol exchange between RC and the Cytochrome bc1 

complex (Barz  et al., 1995a, Barz  et al., 1995b). Previously, the LH1 structure 

was modelled based on the 8.5 Å cryo-EM projection map of 2D crystals from 

reconstituted LH1 from Rsp. rubrum (Karrasch  et al., 1995). This reconstituted 

LH1 was modelled as a circle of 16 αβ-polypeptides. Quite recently, a structural 

model of LH1-RC from wild-type Rba. sphaeroides containing PufX protein, based 

on the 8.5 Å cryo-EM projection map, has been described (Figure 1-12C) (Qian  

et al., 2005, Sener  et al., 2009). The structural model of this complex features 
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S-shape dimeric Bchl array with the double gap due to two molecule of PufX. In 

a mutant of Rba. sphaeroides without PufX protein, the core complex becomes 

monomeric and forms a closed ring (Francia  et al., 1999, Richter  et al., 2007a, 

Siebert  et al., 2004). 

1.5.3 Variants of LH2 complexes 

Interestingly, in some species of purple bacteria, such as Rps. acidophila or Rps. 

palustris, the Qy absorption band of the Bchl in the LH2 complexes can vary 

depending on the growth conditions. When Rps. acidophila strain 7050 and 7750 

are grown under low-light conditions, a different LH2 complex is formed with 

the Qy absorption bands at 800 and 820 nm (Figure 1-13) (Cogdell  et al., 1985, 

Gardiner  et al., 1993, McLuskey  et al., 2001). The ability to change the type of 

LH2 in response to growth at different light intensities is related to the presence 

of multiple αβ-polypeptides, which are (in the case of Rps. acidophila) encoded 

by at least four different αβ-apoprotein gene pairs (Bissig  et al., 1988, Gardiner  

et al., 1993). In order to distinguish these two types of peripheral LH2 

complexes they are often referred to as B800-850 and B800-820 complexes, or 

LH2 and LH3, respectively. 

 

Figure 1-13 Room temperature (RT) steady state absorption spectra of the B800-850 (black 
line) and the B800-820 (red line) LH2 complexes from Rps. acidophila 7050 (A) (Figure 
courtesy of Dr. Alastair T. Gardiner). (B) The RT absorption spectra of B800-850 (black line) 
and B800-low-850 (red line) LH2 complexes from Rps. palustris 2.1.6. 
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Figure 1-14 Comparisons of the α- and β-bound Bchl a in B850 (green) and B820 (cyan) LH2. 
A.  Diagram showing the interaction of the C3-acetyl group of Bchl a with the key potential 
H-bonding residues. B. Highlighting the twisting of the C3-acetyl group of Bchl a with 
respect to the bacteriochlorin plane. The coordinates used to produce this figure were taken 
from the high resolution (2.0 Å) structure of B800-850 LH2 complex from Rps. acidophila 
10050 (Papiz  et al., 2003) and  the 3.0 Å resolution stucture of the B800-820 LH2 from Rps. 
acidophila 7050 (PDB: 1IJD) (McLuskey  et al., 2001). (SEE AVAILABLE MOVIE) 
 



Introduction 25 

The origin of this spectral variation comes from the fine-tuning of the electronic 

energy levels of the “B850” molecules, by altering the binding site of the Bchl a 

in the protein matrix. In the B800-850 complex, the C3-acetyl group of the α-

bound B850 Bchl a molecule is H-bonded to the αTrp45 residue and the C3-acetyl 

group of the β-bound B850 Bchl a molecule is H-bonded to the αTyr44 residue 

(Figure 1-14A) (McLuskey  et al., 2001). In contrast, in the B800-820 complex, 

the respective residues in these positions, i.e. αPhe44 and αLeu45, are unable to 

form hydrogen bonds (Figure 1-14A). Instead the C3-acetyl group of the αB820 

Bchl a molecules is H-bonded to the αTyr41 residue and this locks the acetyl 

group into an out-of-plane position with respect to the bacteriochlorin plane 

(Figure1-14B). Similarly, the β-bound B820 Bchl a molecule, lacking any 

hydrogen bonds, has its acetyl in an out-of-plane position with respect to the 

bacteriochlorin plane. Rotation of the acetyl group of the Bchl a molecule into 

an out-of-plane position reduces the extent of π-conjugation and results in a 

blue shift of the Bchl a site energies (McLuskey  et al., 2001, Sturgis  et al., 

1995). This then is reflected in the shift of the absorption band from 850 nm to 

820 nm. Conclusions from the structural studies comparing B800-850 with B800-

820 are strongly supportive of the previous conclusion derived from site-directed 

mutagenesis experiments carried out on LH2 from Rba. sphaeroides (Fowler  et 

al., 1994, Olsen  et al., 1997). The importance of the H-bonding residues has 

also been shown in controlling the site-energy of Bchl a molecules (Cogdell  et 

al., 2006, Cogdell  et al., 2002).  

1.6 Excitons 

An exciton is a collective excited state, which is produced due to a strong 

interaction between molecules. The excitons in LH2 complexes are formed by 

the strongly coupled B850 Bchl a molecules. The LH2 complexes from Rps. 

acidophila and Phs. molischianum belong to the pure-rotational point groups C9 

and C8, respectively. The energy scheme of the excited state of the B850 

manifold can then be constructed by the linear combinations of the symmetric 

or antisymmetric wavefunctions of the αβ-dimers, 

! 

"#$

s  and 

! 

"#$

as , in such a way 

that they form bases for the irreducible representation of the C9 and C8 

symmetries. In the case of the C9-point group each symmetric and antisymmetric 

state consists of one non-degenerate and four degenerate states. The excited 
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state wavefunction of the B850 LH2 from Rps. acidophila can be generally 

formulated as, 
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where k represents the quantum number (k= 0, ±1, …, (N-1)/2) with N = 9 for 

the number of dimers in the B850 ring. The subscript j represents the symmetric 

(s) or antisymmetric (as) wavefunctions.  The energy levels are denoted by their 

quantum number and the symmetry species, A (non-degenerate) or E 

(degenerate) of their irreducible representation (Figure 1-15).  

 

Figure 1-15 The energy level scheme of the excited state manifold of the B850 ring of LH2 
(Rps. acidophila) (Matsushita  et al., 2001).  The symmetric and antisymmetric manifolds 
consist of one nondegenerate, A, ( k = 0) and four doubly degenerate, E, (k = ±1, ±2, …, ±4).  
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1.7 Electronic energy transfer in LH2 

 

Figure 1-16 Model for photosynthetic unit (PSU) of purple bacteria showing the light-
harvesting complexes (LHs) and the reaction centre (RC) (adapted from (Law  et al., 2008)). 
The flow energy transfer is also illustrated. (SEE AVAILABLE MOVIE) 
 

The energy transfer processes (B800→B800, B800→B850 and B850→B850) in the 

LH2 complexes have been well reviewed (Sundström, 1995, Sundström  et al., 

1999). The hopping of excitation between B800 monomers occurs in 1.5 ps in the 

case of Rps. acidophila 10050 (Kennis  et al., 1997b) and 1-3 ps for Phs. 

molischianum (Novoderezhkin  et al., 2003). The B800→B850 energy transfer in 

Rps. acidophila takes place with a time constant of 0.7-0.9 ps at room 

temperature (Kennis  et al., 1997b) and only slows down to 1.8-2.4 ps at 1.4K 

(Kennis  et al., 1997a). Exciton relaxation in the B850 ring of the LH2 from Rba. 

sphaeroides has been measured to take place on the 100-200 fs timescale 

(Agarwal  et al., 2002). In Rps. acidophila 10050 the exciton relaxation in B850 
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ring has been recorded to be 160 fs (Mercer  et al., 2009). The LH2→LH1 energy 

transfer has been measured to be 3 ps at 296 K in Rba. sphaeroides (Hess  et al., 

1995b) and LH1→RC transfer has been recorded to be about 20-50 ps in Rba. 

sphaeroides (Visscher  et al., 1989).  

1.8 Regulation of photosynthetic unit 

The transcriptional regulation of the photosynthetic unit in purple bacteria is 

mainly controlled by oxygen tension (Blankenship, 2002). All photosynthetic 

genes responsible for coding LH2 and LH1-RC are repressed in the presence of 

oxygen (Clark  et al., 1984, Hunter  et al., 1987, Zhu  et al., 1986). Under 

anaerobic conditions these genes are activated. The level of expression of these 

genes is then adjusted by the light intensity in order to tune the ratio of the 

amount of the RC to that of the LH complexes (Bauer  et al., 1996, Gregor  et 

al., 1999).  

Figure 1-17 illustrates in more detail the two-component bacterial regulatory 

systems, which are involved in the transcriptional regulation of photosystem 

genes in Rba. sphaeroides. These systems consist of a sensor kinase component 

and phosphorylatable, DNA-binding protein component (Law  et al., 2008). It has 

been shown (Figure 1-17) that the PrrB (photosynthetic response regulator) 

system mediates the transcriptional activation of most of the photosynthetic 

unit genes under the condition of low oxygen tension. This system works in 

response to a signal coming from cbb3/RdxB oxygen-sensing pathway. PrrB is a 

sensor histidine kinase/phosphatase that responds to a low oxygen atmosphere. 

PrrA is a cytosolic response regulator protein. When the PrrA is activated, gene 

expression is initiated. FnrL can also indirectly effect puc operon transcription 

by regulating genes that encode the cbb3/RdxB signal pathway, thus affecting 

the signal that reaches PrrB. Under high oxygen tension, the sensory component 

PpsR represses both the puc operon and Bchl and Car biosynthesis pathway 

genes. 
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Figure 1-17 Schematic diagram of the major known regulatory components of 
photosynthetic unit gene expression in Rba. sphaeroides. Green corresponds to the 
components that act as effectors of gene expression. Red stands for the sensory 
components. The component in blue (PpsR) can function as both sensor and effector. The 
genes are shown in boxes. (+) means enhances expression of target gene; (-) means 
represses expression of target gene; ? indicates putative pathway of regulation; Pi is 
inorganic phosphate. Taken from (Law  et al., 2008). 
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Figure 1-18 The polycistronic puf and puc operons encode the pigment binding proteins of 
Rba. capsulatus and Rba. sphaeroides. Taken from (Klug, 1993). 
 

Figure 1-18 shows a schematic diagram of the photosynthetic puf and puc 

operons that encode for the biosynthesis of the pigment binding proteins. The 

puf operon comprises the genes for the pigment binding proteins of the LH1 

complex (pufB and pufA), the RC (pufL and pufM) and open reading frames pufQ 

and pufX. The puc operon consists of genes pucBA responsible for encoding the 

pigment binding β- and α-apoproteins of the LH2 complexes, respectively 

(Figure 1-18) (Burgess  et al., 1989, Klug, 1993, Youvan  et al., 1985), a 

regulatory gene (pucC) and genes pucDE, which encode proteins for stabilization 

of the LH2 complex (Lee  et al., 1989, Tichy  et al., 1991, Tichy  et al., 1989). 

The genes pucCDE are located downstream from pucA. It has been shown in the 

mutant NK3 from Rba. capsulatus that a lack of the pucC gene has a negative 

effect on the pucB and pucA genes located upstream resulting the absence of 

LH2 complex (Tichy  et al., 1991). The pucD and pucE genes encode the 

production of PucD and PucE proteins, which are important for the stability of 

the LH2 complex. Deficient amounts of PucD and PucE proteins result in the 

degradation of the complex (Tichy  et al., 1991, Tichy  et al., 1989).  
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Figure 1-19 A sequence comparison of selected LH2 α- and β-polypeptides. The Rps. 
palustris (Pal-) sequences have been deduced from gene sequences. Both the Rps. 
acidophila (Ac-) and Phs. molischianum (Molisch-) sequences are from the proteins. The 
amino acid highlighted in the red boxes are the ones that control the spectral shifts of the 
tighly coupled Bchl a molecules. 
 

  
Some purple bacteria such as Rps. acidophila are known to have multiple β- and 

α-polypeptides that are encoded by multiple puc operons. In the case of Rps. 

acidophila from the four pucBA genes (puc1BA through to puc4BA) that have been 

identified so far, only puc4BA is expressed under high-light intensity (Gardiner  

et al., 1993). When Rps. acidophila 7050 is grown under low light, the genes 

responsible for the production of the Ac7050-B800/820 apoproteins are 

expressed rather than of the Ac7050-B800/850 apoproteins (Figure 1-19) 

(McLuskey  et al., 2001). 

This phenomenon of chromatic adaptation is also observed in Rps. palustris. In 

Rps. palustris, the complete genome has been sequenced (Larimer  et al., 
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2004). There are five different pucBA genes present in the Rps. palustris genome 

(pucBA-a, b, c, d, and e) and their expression is regulated by light intensity 

(Tadros  et al., 1993, Tadros  et al., 1989). The regulation of the LH2 complex 

from Rps. palustris is more complicated as 6 bacteriophytochrome (Bph)-like 

genes have also now been identified in the genome (Larimer  et al., 2004). Four 

of these genes are located near to genes coding for photosynthetic LH-

apoproteins or pigment biosynthetic genes. This suggests that these Bphs are 

also involved in the regulation of the PSU. The regulation of the LH2 complex in 

Rps. palustris is, therefore, influenced by the light intensity as well as the light 

quality. The unusual B800-LH2 (LH4) complex, which has Qy absorption band at 

800 nm only, is encoded by pucBd and pucAd, producing LH4 PucBdAd peptides, 

and is regulated by two Bph genes, Rpa3015 (Bph4) and Rpa3016 (Bph5) (Evans  

et al., 2005). These Bph4 and Bph5 genes are activated under low light intensity 

or upon red light illumination. A trial expressing two LH2 gene pairs, which 

encode the high-light (pucBAa) and the low-light (pucBAd) proteins, from Rps. 

palustris in Rba. sphaeroides has been carried out (Fowler  et al., 1996). It was 

shown that the high-light B800-850 LH2 complex (pucBAa) and the low-light 

B800-830 LH2 complex (pucBAd) could be successfully produced in Rba. 

sphaeroides. There is also a B800-low-850 LH2 complex that has been reported 

when Rps. palustris is grown at low-light intensity (Gall  et al., 1999, van Mourik  

et al., 1992). It is likely that bacteriophytochromes will be found in all species 

of purple bacteria and a fuller understanding of their operation will undoubtedly 

cause revision of the present model of PSU gene regulation. 

1.9 Principle of single molecule spectroscopy 

Single molecule spectroscopy (SMS) allows individual molecules in a population 

to be probed, yielding direct information regarding the distribution of their 

molecular properties. Detailed information, e.g. heterogeneity within a single 

complex, which is obscured due to ensemble averaging in ensemble 

spectroscopy, can be revealed by SMS (Xie, 1996). In the last ten years SMS has 

been utilised as a powerful tool to reveal the structural properties of LH 

complexes, such as disorder and the arrangement of the Bchl a molecules 

(Matsushita  et al., 2001, Richter  et al., 2007a, Richter  et al., 2007b, van Oijen  

et al., 1999b).  
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In order to perform SMS, there are two general requirements that must be taken 

into account (Moerner  et al., 2003, Weiss, 1999): (1) guaranteeing that only one 

molecule is in a resonance in the volume probe by the laser, (2) having a signal 

to noise ratio (SNR) of a single molecule signal that is greater than the 

background for reasonable averaging time. The first requirement can be fulfilled 

generally by a combination of the high optical resolution of modern microscopes, 

that allows the spatial selection of a single molecule in a probe of very diluted 

sample (10-10 M in about 10 µm3), and narrow band lasers that can provide 

coherent illumination in many different spectral regions. In order to achieve 

good SNR single molecule microscopy uses the fluorescence from dye molecules 

and, therefore, the molecules can be detected at a wavelength red-shifted 

compared to wavelength of illumination.  

Single molecule detection employs modern high-resolution microscopes that are 

equipped with infinity-corrected objectives of high numerical aperture. The 

objectives set the magnification, the field of view and resolution, and their 

quality determines the light transmission, the contrast and the aberrations of 

the image (Murphy, 2001). Thus it is possible to detect an individual molecule of 

interest. The numerical aperture is a geometrical parameter related to the light-

gathering power of the objective lens. It is the primary determinant of the 

spatial resolution of an objective. 

 

Figure 1-20  Point-spread-function (PSF) at the focal plane (A) and numerical aperture (NA) 
with focal point into PSF (B). Adapted from (Murphy, 2001) 
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The numerical aperture (Figure 1-20), NA, is described as follows (Murphy, 

2001): 

! 

NA = n sin"            (1.8) 

where θ is the half angle of the cone of specimen light accepted by the 

objective lens and n is the refractive index of the medium between the lens and 

the specimen.  

After being focused by the optical system the point-like object is spread into a 

diffraction pattern of finite width. The intensity map of that pattern is 

characterised by a point-spread-function (PSF), which defines the spread of a 

point source (Figure 1-20A). The PSF determines the spatial resolution. The 

narrower the PSF the better is the resolution of the optical system (Murphy, 

2001). The PSF depends on wavelength, λ, NA, magnification as well as 

illumination and detection geometries. The resulting PSF of an optical system 

IPSF(x,y,z) is given by the convolution of the illumination and detection intensity, 

Iill(x,y,z) and Idet(x,y,z) respectively, 

! 

IPSF x,y,z( ) = Iill x,y,z( ) " Idet x,y,z( )         (1.9) 

As most microscope arrangements feature cylindrical symmetry PSF is commonly 

denoted as I(r,z) where r defines an arbitrary direction to the focal plane x,y, 

and z corresponds to optical axis (Webb, 1996). 
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Figure 1-21 Rayleigh criterion for spatial resolution. (a) Profile of a single diffraction pattern: 
The bright Airy disk and 1st- and 2nd-order diffraction rings are visible. (b) Profile of two 
disks separated at the Rayleigh limit such that the maximum of a disk overlaps the first 
minimum of the other disk: The points are now just barely resolved. (c) Profile of two disks 
at a separation distance such that the maximum of each disk overlaps the second minimum 
of the other disk: The points are clearly resolved. Taken from (Murphy, 2001). 
 

The resolving power of the microscope can be estimated according to Ernst Abbe 

(1840-1905) and defined as 

! 

d = 0.61
"

NA
           (1.10) 

where d is the minimum resolved distance in µm, λ is the wavelength of light, 

and NA is the numerical aperture of the objective lens. This equation describes 

the Rayleigh criterion for the resolution of two closely spaced PSF in the image 

plane. The Rayleigh criterion says: “two adjacent object points are defined as 

being resolved when the central diffraction spot (Airy disk) of one point 
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coincides with the first diffraction minimum of the other point in the image 

plane” (Figure 1-21) (Murphy, 2001).  

Practically there are two microscopic techniques used for single molecule 

spectroscopy and detection. They are wide-field and confocal microscopy. The 

wide-field microscope is used to scan for area detection and imaging of many 

molecules at the same time. The confocal microscope is used, in contrast, to 

detect fluorescence spectra from a small diffraction-limited focal volume 

excited in the sample, i.e. one single molecule.  

 

Figure 1-22 Single molecule fluorescence microscopy methods. The laser beam is in green 
and the fluorescence from the sample is in red. In wide-field the molecules spread over an 
area are simultaneously excited by a widened laser beam. In confocal, the laser beam is 
focused into the diffraction limited focal volume. The pinhole assures that only light from 
the focal volume is detected. 
 

Technically in wide-field the laser excitation beam is expanded and focused at 

the back-focal plane of the objective using a lens (Figure 1-22). The objective 

collimates the beam and uniformly illuminates the sample. The excited 

fluorescence is collected by the same objective and residual excitation light is 
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filtered away by appropriate filters. In the confocal microscope the sample is 

irradiated with focused light originating from a point source, or single-mode 

laser beam and the response from the sample is directed into a pinhole (Figure 

1-22). Light not originating from the focal area cannot pass through the 

detection pinhole and hence is not detected. The advantages and limitations of 

confocal and wide-field microscopy are compared in Table 1-2. 

Table 1-2 Comparison of single molecule fluorescence methods 

 

 

1.10 Principles of protein crystallisation 

A detailed understanding of the function of proteins requires knowledge of their 

three-dimensional structure. X-ray crystallography has been recognised to be an 

important tool in resolving detailed structural information of proteins. The 

pioneering studies on the X-ray crystal structures of myoglobin (1950) and 

hemoglobin (1955) were honoured with the Noble Prize in Chemistry in 1962 

(Forster, 1966).  

 Wide-field Confocal 

Advantages 

Imaging with high 

temporal and spatial 

resolution 

Array detection 

Low z-resolution 

Spot scan with high 

temporal resolution 

Spectral information 

High z-resolution 

Limitations 

No spectral information 

Out of focus contribution 

Slow acquisition times 

Limited to one molecule 

at a time 
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Generally proteins crystallise when they are gradually induced to precipitate. 

This is usually achieved by equilibration with precipitants, e.g. ammonium 

sulphate or polyethylene glycols, which influence the solubility of the proteins 

and yet do not denature them. Working with membrane proteins requires an 

appropriate detergent in order to maintain the membrane protein in solution. 

During the process of crystallisation of membrane proteins, very often the 

precipitant reacts with the detergent and causes the detergent to phase 

separate. When phase separation happens the membrane protein usually 

denatures in the oily detergent phase and crystals will never be formed. The 

problem was then overcome when Michel (Michel, 1982a, Michel  et al., 1980) 

and Garavito (Garavito  et al., 1980) independently discovered that addition of 

specific small molecules, e.g. heptane-1,2,3-triol (Michel, 1982b) could alter the 

phase boundaries. This small amphiphile shifts the phase separation point to be 

above the critical precipitation point, so that the crystallisation becomes 

possible. 

 

 

Figure 1-23 Schematic illustration of a protein crystallisation phase diagram, a systematic 
approach in crystallography (Chayen, 2004). Methods used in crystallisation are (i) batch, (ii) 
vapour diffusion, (iii) Dialysis, and (iv) free interface diffusion. The black spot indicates the 
initial condition of the protein. The progress of the protein crystallisation is indicated in 
dashed lines. The arrows indicate the final state. 
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The detailed process of protein crystallisation is systematically illustrated by the 

crystallisation phase diagram in Figure 1-23 (Chayen, 2004, Chayen, 2005, Pusey  

et al., 1986). In this diagram, the crystallisation process can be differentiated 

into two steps: nucleation and crystal growth. The crystal nucleation and growth 

can happen within the supersaturation area (Figure 1-23). Unfortunately, one 

needs a higher degree of supersaturation. The protein has to be brought slowly 

to the nucleation zone and subsequently to the metastable zone, where the 

crystal is able to grow (Figure 1-23). Therefore the different processes of 

crystal nucleation and growth are often difficult to control individually. 

Inappropriate protein/precipitant mixtures lead to the formation of an 

amorphous protein precipitate. Rational design of crystallisation trials using 

knowledge of the phase diagram has been successfully applied for crystallising 

PSI and PSII (Fromme  et al., 2009). However, this approach has not been 

generally applied so far. 

 

Figure 1-24 Typical apparatus used for vapour diffusion crystallisation. For hanging drops 
(A), the protein droplet hangs from the lid (D), whereas for the case of sitting drops (B), the 
protein droplet sits in the bridge well (E). The vapour diffusion plate from EasyXtal 
(QIAGEN) (C) offers 24-well plates easier setup for hanging or sitting drop. Bridges (E) are 
needed for sitting drop. 
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There are four standard methods used in the crystallisation of proteins: batch, 

vapour diffusion, dialysis and free interface diffusion (Figure 1-23). Among them 

the vapour diffusion method is the most widely used and it is proven to be very 

successful in crystallizing proteins (see statistics presented by 

http://www.mpdb.ul.ie/index.asp). There are two common methods in vapour 

diffusion, hanging drops and sitting drops (Figure 1-24). Both entail a droplet 

containing purified protein, buffer, and precipitant being allowed to equilibrate 

with a larger reservoir containing similar buffers and precipitants in higher 

concentrations. Initially, the droplet of protein solution contains a lower 

concentration of precipitant than required to induce precipitation. As water 

vaporises from the drop to the reservoir, the precipitant concentration increases 

to a level optimal for crystallisation (Figure 1-23). Since the system is in 

equilibrium, these optimum conditions are maintained until the crystallisation is 

complete. 

Screening protocols for the crystallisation of new membrane protein plays very 

important role nowadays. From 59277 structures that have been released in the 

Protein Data Bank (PDB, www.rcsb.org/pdb) up to 28th July 2009, only 644 

structures are classified as membrane proteins that have been defined by X-ray 

crystallography. Although crystallisation of membrane proteins still remains a 

challenge, sparse-matrix screens have been formulated based on information 

mined from that available the PDB database. Commercial screening kits, e.g. 

MemSys, MemStr, MemGold from Molecular Dimensions Ltd or MemFac and 

AdditiveScreen HT from Hampton Research, provide 48 or 96 crystallisation 

conditions (varying pH, precipitants, and additives) designed for membrane 

proteins. As detergents must also be tested when working with membrane 

proteins (Prive, 2007), detergent screening kits are available. Such kits contain 

five or twelve popular detergents, e.g. from Anatrace, and are particularly 

useful when searching for appropriate detergent for crystallisation.  

In line with the growth of the number of screening protocols, robots have proved 

useful in automating routine crystal screening. The ThermoFisher robotic 

system, for example, is an integrated crystallisation system able to prepare 

plates, set up drops (nano drop), store plates, image them and then stores the 

data. 



Introduction 41 

1.11 Project background 

A microscopic understanding of the interplay between the organisation of the 

pigments in light harvesting complexes and their spectral properties requires 

high-resolution structural information. This is, unfortunately, available only for 

very few types of peripheral light-harvesting complexes, two B800-850 

complexes (Rps. acidophila 10050 and Rhsp. molischianum) and one B800-820 

complex (Rps. acidophila 7050). In each of these cases the LH2 complexes have 

a well-defined apoprotein composition. 

When cells of Rps. palustris are grown at high-light (HL) intensity they synthesise 

a standard LH2 complex. At low light intensity Rps. palustris strain 216 replaces 

the standard B800-850 with a B800-low-850 LH2 complex (Figure 1-13). This 

ability to adapt and to synthesis LH2 complexes with different NIR absorption 

spectra is related to the presence of the multiple genes encoding LH2 α/β-

polypeptides (Evans  et al., 1990, Larimer  et al., 2004). In Rps. palustris 261, 

the structural explanation of the spectral changes going from B800-850 to B800-

low-850 LH2 is still a matter of debate (Evans  et al., 1990, Fowler  et al., 1996, 

Gall  et al., 1999, Nishimura  et al., 1993). The ability to shift the type of LH2 

allows these bacteria to be able to grow at ten times lower light intensity than 

most species that cannot do this. It is not currently understood how changing the 

types of LH2 allows the bacteria to grow photosynthetically at these lower light 

intensities.  

An unusual B800 LL LH2 complex from Rps. palustris that only contains LH2 

PucBAd proteins has been crystallised. A model based on these low resolution 

crystals (7.5 Å) has been described (Hartigan  et al., 2002). This model suggests 

that this complex is an αβ-octamer and that each of its αβ-apoprotein pairs 

binds an extra Bchl a relative to LH2 from Rps.  acidophila. An AFM study of LL 

membranes from Rps. palustris also suggested that the B800 LL LH2 is 

predominantly octameric (Scheuring  et al., 2006).  

However in Rps. palustris the situation is potentially more complicated since the 

bacteria expresses multiple αβ-polypeptides, PucBAa, PucBAb, PucBAc and 

PucBAd, even under the HL condition (Evans  et al., 1990, Larimer  et al., 2004). 
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The possibility, therefore, exists that there may be more than just two types of 

LH2 in this organism. When this PhD work was started, it was unclear whether 

the LH2 complexes from Rps. palustris had rings with a mixture of apoprotein 

types or whether the preparations contain mixtures of rings where each 

individual ring in the mixture has a homogenous apoprotein composition, but 

where different rings have different compositions. The work in this thesis aimed 

to try and resolve this situation. 

1.12 Thesis aims 

The aims of this thesis are 

1. To isolate and to purify stable LH2 complexes from Rhodopseudomonas 

palustris 2.1.6 grown at different light intensities. 

2. To characterise the arrangement and the binding of the pigments in the 

LH2 complexes from Rhodpseudomonas palustris 2.1.6 grown at different 

light intensities in relation with their optical properties. 

3. To probe and study the energetic heterogeneity of LH2 from 

Rhodopseudomonas palustris 2.1.6 grown at different light intensities by 

single molecule spectroscopy. 

4. To study the energy transfer reaction within the LH2 complexes from 

Rhodopseudomonas palustris 2.1.6 grown at different light intensities. 

5. To set crystallisation trials in order to obtain suitable crystals for 

structural analysis of the LH2 complexes.  



 

 

2 Materials and Methods 

2.1 Culture storage 

The species used in this study is Rps palustris strain 2.1.6. (colloquially termed 

French palustris). The culture was maintained in agar stabs (1.5 g agar in 100 ml 

C-succinate media) on the laboratory shelf until required (Figure 2-1A). The 

cultures were checked regularly by the use of agar plates to ensure their purity. 

2.2 Culture growth and harvest 

Rps. palustris strain 2.1.6. was grown anaerobically photoheterotropic in C-

succinate media (see Appendices). The stab culture was overlaid with the liquid 

media and placed in the growth room at 30° C between rows of incandescent 

bulbs (Figure 2-1B). The intensity of light that illuminated at the bottle was 

measured to be ~220 lx. After the cells reached a sufficient density (OD850 = 0.3 

cm-1), they were transferred to 500 ml flat-sided bottles and incubated in the 

growth room. To minimize any self-shading caused by the cells themselves, the 

cultures were regularly transferred into a fresh media in 500 ml flat-sided 

bottles, thereby ensuring a constant low culture optical density.  At the 

optimum density (OD850 = 0.5 cm-1) the cells can be harvested or further 

transferred. In this study cultures were placed at different distances away from 

the bulb so that the intensity of light that reached the cell culture was able to 

be varied from 220 lx, 90 lx, 20 lx, 10 lx, 6.5 lx to 5.5 lx (Figure 2-1C). In the 

results section, these light intensities have been called high-light (HL), low-light 

intermediate 1 (LL1), low-light intermediate 2 (LL2), low-light (LL), far low-light 

(FLL1) and extreme low-light (FLL2), respectively. The cells were harvested 

after 120 h growth by centrifugation (1,248 g, 30 min) and resuspended in 20 mM 

MES buffer pH 6.8 (Sigma-Aldrich) containing 100 mM KCl. The cells were stored 

at -20 °C until required. 
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Figure 2-1 A. Stab culture of purple bacteria in agar media on the laboratory shelf. B. Liquid 
cell culture in 500 ml flat-sided bottles placed in the high-light area. C. Growing cultures at 
different light intensities by varying the distance of the culture from the light bulb. 
 

2.3 Isolation of light-harvesting complexes 

The harvested cells were broken by 3 passages through a French Press (9500 psi) 

in the presence of a little of DNAase and MgCl2. The broken membranes were 

then sedimented by centrifugation at 184,000 g for 2 h. The pellet was 

resuspended and homogenised in 20 mM Tris-HCl pH 8.0 (Fisher Scientific) and 

its concentration adjusted to give an absorption at 850 nm of 70 cm-1. The 

membranes were then solubilised by the addition of 1% v/v lauryldimethylamine 

N-oxide (LDAO) (Fluka). After stirring for 30 min in the dark, at room 

temperature any unsolubilized material was removed by centrifugation at 16,000 

g for 10 min. The supernatant was then layered onto a sucrose step gradient. 

The gradient consisted of 0.8, 0.6, 0.4, 0.2 M sucrose prepared in 20 mM Tris-HCl 

pH 8.0 containing 0.1% v/v LDAO. The gradients were then centrifuged overnight 

at 149,000 g at 4 ºC. The upper-pigmented band contained the LH2 complexes 

and the lower pigmented band the LH1-RC complexes. The band containing LH2 

complexes was collected and purified on a DE-52 cellulose column (Whatman). 

After desalting step through PD-10 column, the LH2 complexes were further 
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purified by chromatography on a Resource-Q column. To ensure high purity, 

fractions of the LH2 complex with a ratio between the absorption maximum at 

~800 nm and the maximum at the protein absorption (A280) above 3.0 were 

collected for spectroscopic analysis, crystallisations, etc. 

2.4 Characterisation of LH2 complexes 

2.4.1 Apoprotein identification by NuPAGE Gels 

The purity and the size of the LH2 apoproteins were assessed by running 12% 

NuPAGE Novex Bis-Tris mini gels (Invitrogen) using SeeBlue Plus2 pre-stained 

standard (Invitrogen) molecular weight markers. Protein (10 µl, OD850 = 40 cm-1) 

sample was mixed with 5 µl 300 mM dithiothreitol (DTT) and 5 µl NuPAGE LDS 

sample Buffer. After heating the sample in the water bath at 70° C for 20 min, 

the mixture was loaded on the NuPAGE gel. NuPAGE SDS 1x running buffer 

(Invitrogen) in deionised water was used for the running buffer. The 

electrophoresis conditions were constant at 200 V for 40 min. The gels were 

stained with SimplyBlue SafeStain (Invitrogen) and destained with deionised 

water overnight. 

2.4.2 Protein identification by mass spectroscopy 

The purified HL and LL LH2 complexes were sent to the FingerPrint Proteomic 

Facility, University of Dundee, for polypeptide identification. The sample was 

first digested with trypsin in-gel prior to analysis by one dimensional nano-liquid 

chromatography coupled to ESI-MS-MS using a 4000 QTRAP (Applied Biosystems) 

tandem MS system. The molecular mass of the fragments of the LH2 peptides 

(m/z [M+H]+) were compared with hypothetical fragment masses predicted from 

their gene sequences published online by UniProtKB/Swiss-Prot, which is based 

on the complete genomic sequence of Rps. palustris reported by Larimer et. al. 

(Larimer  et al., 2004). 

2.4.3 Bacteriochlorophyll assay 

Assay of the concentration of bacteriochlorophyll was carried out in order to 

quantify the molar ratio between LH2 and the core (LH1-RC) complexes in the 
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photosynthetic membrane of Rps. palustris grown at different light intensities. 

The method used was that according to Clayton (Clayton, 1966). This assay was 

carried out in a dark room. The solubilized membrane or complexes were 

extracted using acetone/methanol (7:2 v/v). Any insoluble material was 

removed from the extract by centrifugation. The procedure was repeated two or 

three times until the supernatant was colourless. The “wet” extract was first 

dried with N2 and then redisolved in acetone/methanol. Afterwards the Bchl 

concentration could be determined spectroscopically using the extinction 

coefficient at 772 nm (ε772) of 76 mM-1 cm-1 (Clayton, 1966).  

2.4.4 Carotenoid assay 

The carotenoid assays were carried out in autumn 2008 during my stay with Prof. 

Yasushi Koyama at Kwansei Gakuin University, Sanda, Hyogo, Japan. The 

experimental method was adapted from Qian et al. (2001) (Qian  et al., 2001). 

Carotenoids were extracted from a 5 ml suspension of high- (HL) and low-light 

(LL) LH2 complexes (OD at their near IR absorption maximum = 10 cm-1) isolated 

from Rps. palustris strain 2.1.6 by 15 ml acetone:MeOH (7:2 v/v). Any insoluble 

material was removed from the extract by centrifugation. This procedure was 

repeated two or three times until the supernatant was colourless. The raw 

carotenoid extract was transferred to a separating funnel containing 5 ml 

petroleum-ether, to which some saturated NaCl solution was then added. After 

the aqueous and organic layers separated, the aqueous layer was discarded. The 

organic layer was washed three times with 10 ml of the saturated NaCl solution. 

The organic layer was collected, dried under N2, and the carotenoids were then 

dissolved in benzene. 

The extracted carotenoids were then separated by HPLC, using a silica gel 

column (Lichrosorb Si-60, 4.6×300 mm) and eluted with 2.5% acetone in 

benzene. The flow rate was 0.6 ml min-1 and the detection wavelength was at 

480 nm. Absorption spectra of the Cars were recorded with a photodiode-array 

detector (Waters 996). Each separated Car was identified based on its retention 

time and its absorption spectrum. In order to determine the amount of each Car, 

the area under each peak in the HPLC elution profile was divided by the value of 

ε in eluent (2.5 % acetone in benzene) of the corresponding reference carotenoid 

(Qian  et al., 2001). The following carotenoids (gift from Prof. Y. Koyama) were 
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used as reference: lycopene (N = 11, ε480 = 147900), anhydrovibrin (N = 12, ε480 = 

90560), spirilloxanthin (N = 13 ε480 = 105800) and rhodovibrin (N = 12, ε480 = 

138800). The carotenoids, which have major peaks in the HPLC profile, were 

collected for structural determination using H1-NMR spectroscopy. In order to 

prepare sample for the structural determination of the carotenoid, about 1.5 mg 

of the above collected sample was re-purified by HPLC at the dark. Then H1-NMR 

spectroscopy (Kyoto, Japan) was used to determine the structure of the 

carotenoid.  The purified carotenoids were submitted to the NMR facility, where 

the NMR spectra were recorded and data interpreted. The data and the 

interpretation are shown in Appendices. 

2.4.5 Steady state absorption spectroscopy 

The room temperature absorption spectra were measured in a Shimadzu (UV-

1700 Spectrophotometer) scanning from 250-950 nm. The 10 K absorption 

spectra of LH2 complexes were measured using a Varian Cary E5 double-beam 

scanning spectrophotometer (Varian, Les Ulis, France). The LH2 samples were 

prepared in 60 % (v/v) glycerol in Tris buffer (20 mM Tris-HCl pH 8.0) containing 

0.1% LDAO. LDAO wasn’t used for membrane samples. The temperature of the 

samples was maintained by a Helium bath cryostat (Maico Metriks, Tartu, 

Estonia). In order to ensure the equilibrium between the sample and the helium 

bath, the sample was stabilised at each measured temperature for at least 10 

minutes. The low-temperature absorption measurements were performed at the 

Institut de Biologie et Technologies de Saclay, CEA Saclay, France, together with 

the help of Dr. Andrew Gall. 

2.4.6 Circular dichroism spectroscopy 

The CD measurements were carried out in Departments of Biology and 

Chemistry, Washington University in St. Louis by Aaron Collins. Concentrated LH2 

samples were prepared in 66 % (v/v) glycerol in 20 mM Tris-HCl buffer pH 8.0, 

containing 0.1 % LDAO. The low temperature environment was created using a 

liquid nitrogen cryostat (OptistatDN, Oxford Instruments, Bucks, UK). The CD 

spectra were recorded with a Jasco J-815 spectropolarimeter (JASCO Inc., 

Easton, MD, USA) with a bandwidth to 4 nm. Samples were measured in 1 mm, 
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demountable quartz cuvette (Starna Scientific Limited, Hainault, Essex, 

England). 

 
2.4.7 Raman spectroscopy 

The resonance Raman measurements were carried out during my stay with Dr. 

Andrew Gall, the Institut de Biologie et Technologies de Saclay, CEA Saclay, 

France in summer 2009. Raman spectra, in resonance with the Soret transition of 

Bchl a, were recorded with a Jobin-Yvon U1000 spectrometer equipped with a 

back-thinned CCD camera (Jobin Yvon Spectra ONE). The spectra were recorded 

with a 90º geometry with the samples maintained at 77 K in a SMC-TBT flow 

cryostat (Air Liquide, Sassenage, France) cooled with liquid nitrogen. The 

samples were excited at 363.8 nm with a Coherent Inova 100 Ar+ laser with an 

incident intensity of less than 10 mW at the sample surface.  

2.5 Single molecule spectroscopy 

The single molecule experiments were carried out during my stay with Prof. 

Jürgen Köhler, Universität Bayreuth, Germany, in autumn 2007 and summer 

2008. I would like to thank Ralf Kunz (Phd Student) for assistance with 

measurements and Paul Böhm  (Diplom student) for his helping hand with the 

laser alignment. 

2.5.1 Sample preparation 

For SMS the purified LL LH2 complexes were diluted to less then 10-9 M in 20 mM 

Tris-HCl buffer pH 8.0 containing 0.1% (v/v) LDAO. In the last dilution step 2 % 

(w/w) polyvinyl alcohol (PVA, mw 30,000-70,000 g mol-1) was added to the LL 

LH2 and a drop of the solution was spin-coated onto a quartz substrate for 10 s 

at 500 rpm and 60 s at 2,500 rpm (model P6700, Speciality Coating System). This 

produces thin amorphous polymer films of less than 1 µm thickness in which the 

LH2 complexes were embedded. Then the sample was immediately mounted in a 

helium-bath cryostat and cooled down to 1.4 K. 
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2.5.2 Experimental setup 

 

Figure 2-2 Optical setup for 1.4K single molecule spectroscopy. The objective is a single 
aspheric lens (NA 0.55). 
 

Fluorescence-excitation spectroscopy was performed using a home-built 

microscope that can be operated either in wide-field or confocal mode (Figure 

2-2). The excitation source was a continuous-wave tunable Titanium–Sapphire 

laser (3900S, Spectra Physics, Mountain View, CA, USA) pumped by a frequency-

doubled continuous-wave Neodynium:Yttrium-Vanadate (Nd:YVO4) laser 

(Millennia Vs, Spectra Physics). Well-defined changes of the wavelength of the 

Titanium:Sapphire laser were achieved by rotation of the intracavity birefringent 

filter with a motorized micrometer screw. For calibration purposes, a 

wavemeter was used and accuracy of the laser frequency as well as a 

reproducibility of 1 cm-1 was verified. First, a 50 × 50 µm2 wide-field image of 

the sample was taken by exciting the sample at 800 nm and detecting the 

fluorescence with a back-illuminated CCD camera (512 SB, Roper Scientific 

Princeton Instruments, Trenton, NJ, USA) after passing suitable band pass filters 

(BP893/21, Dr. Hugo Anders, Nabburg, Germany), which blocked the residual 

laser light. Subsequently, a spatially well-isolated complex was selected from 

the wide-field image and a fluorescence-excitation spectrum of this complex 
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was obtained. The setup was switched to the confocal mode and the 

fluorescence detected by a single-photon counting avalanche photodiode (APD) 

(SPCM-AQR-16, EG&G Optoelectronics, Vaudreuil, Canada) while scanning the 

laser repetitively between 784 and 872 nm. The recorded traces were stored 

separately in computer memory. A scan speed of the laser of 3 nm⋅s-1 (≈ 50 cm-1 

s-1) and an acquisition time of 10 ms per data point yields a nominal resolution of 

0.5 cm-1, ensuring that the spectral resolution is limited by the spectral 

bandwidth of the laser (1 cm-1). In order to examine the polarisation dependence 

of the spectra, a λ/2-plate was placed in the confocal excitation path and 

rotated in steps of 3.2° between two successive scans, changing the angle of the 

polarisation of the excitation light by twice this value. The excitation intensity 

was about 50 W cm-2. 

2.6 Transient absorption measurements 

The transient absorption spectra of LH2 complexes from Rps. palustris grown at 

different light intensities were measured by Dr. Vladimira Moulisova and myself 

during our stay with Dr. Larry Luer, CNR/INFM ULTRAS, Department of Physics, 

Politecnico di Milano, Milan, Italy. I would like to thank Sajjad Husheinkhani and 

Dr. Larry Luer for the assistance with measurements, laser alignment and for 

valuable discussions. The transient absorption difference ΔA/A spectra (see 

figures in Chapter 5) were recorded using a conventional pump-probe set-up 

(Polli  et al., 2007). The ultrafast spectroscopic configuration used in these 

experiments started with a regeneratively amplified mode-locked Ti:sapphire 

laser (Clark-MXR Inc., Dexter, Michigan, USA) delivering pulses at 1 kHz 

repetition rate with a 790 nm centre wavelength, 150 fs duration, and 500 µJ 

energy. The pump energy was reduced to 50 nJ (0.03 mJ cm-2). A fraction of the 

pulse energy was focused onto a thin sapphire plate to generate the white light 

broadband probe pulse. The near infra-red (NIR) range from 790 to 950 nm was 

used. The pump beam was modulated at 500 Hz by a mechanical chopper. After 

the probe pulse has traversed the sample, a two dimensional ΔA/A readout as a 

function of pump-probe delay time was measured using an optical multichannel 

analyser in a single shot configuration. The chirp of the white light 

supercontinuum has been corrected for in the displayed spectra as previously 

described (Polli  et al., 2007). 
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2.7 Crystallisation 

The LH2 complex from Rps. palustris was crystallised by a vapour diffusion 

technique (sitting drop) using crystallisation plates (NBS Biologicals, Huntingdon, 

UK). The experimental method was adapted from the conditions used to obtain 

crystals from the B800-850 LH2 from Rps. acidophila 10050 (Howard, 2000, 

McDermott  et al., 1995). After the  RESOURCE-Q column, the LH2 protein was 

washed three to four times with 20 mM Tris-HCl pH 8.0 containing 0.1% (v/v) 

LDAO, concentrated using a Vivaspin concentrator (50,000 MWCO, 

Sartoriusstedim biotech, Surrey, UK) and the concentration adjusted to give an 

OD850 = 100 cm-1. A mixture of the LH2 protein and 4.0 M K2HPO4 (KPi) (3:1 v/v) 

was then centrifuged at 13,000 rpm in an Eppendorf mini-centrifuge for 5 min to 

pellet any solid materials. This prepared protein solution (20 µl) was pipetted in 

to the well on a sitting drop bridge and then was equilibrated against a 1 ml 

reservoir of 2.1 M ammonium sulphate (AMS) pH 9.35. The 24-well crystallisation 

tray was then sealed and kept in the incubator (20° C) 

The crystallisation method when using the commercial screens was as follows: 

after RESOURCE-Q column the LH2 protein was washed three to four times with 

20 mM Tris-HCl pH 8.0 containing 0.1% (v/v) LDAO, concentrated using a Vivaspin 

concentrator (50,000 MWCO, Sartoriusstedim Biotech, Surrey, UK) and the 

concentration of LH2 protein was adjusted to give an OD850 = 80 cm-1. LH2 

protein (10 µl) in 20 mM Tris-HCl buffer pH 8.0 containing 0.1% (v/v) LDAO was 

pipetted onto a sitting drop bridge, while the reservoir chamber contained 1 ml 

of precipitant solution. Precipitant solution (10 µl) of was mixed gently into the 

LH2 drop. The crystallisation tray was then sealed and kept in the temperature-

controlled incubator (10° C or 20° C). Crystallisation trays from NBS Biologicals 

were replaced in the later trials by the 24-well EasyXtall tool trays (QIAGEN, 

Crawley, UK) that have screw-topped lids so allow better and reversible sealing. 

Crystallisation screens (MemSt and MemSys from Molecular Dimension) were used 

for preliminary trials. These screens are a targeted sparse matrix of 1 ml x 96 

conditions allowing the pH range, precipitants and salts used in membrane 

protein crystallisation to be screened with a detergent-containing protein drop. 
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The crystals obtained from the initial screens were first tested for their X-ray 

diffraction with the University of Glasgow X-ray Diffragtometer. More promising 

crystals were then either characterised at the European Synchrotron Radiation 

Facility (ESRF), Grenoble, France or at the Diamond Light Source, Oxfordshire, 

UK. Any condition that produced promising results in the preliminary screens, 

was then optimised by introducing additives or amphiphiles (Hampton Research) 

and/or varying the buffer pH, the concentration of the precipitant or salt.  

 



 

 

3 Isolation, purification and characterisation of 
LH2 complexes 

This chapter is divided into three parts. The first part is about isolation and 

purification protocols to obtain pure and stable LH2 complexes from cells of 

Rhodopseudomonas (Rps.) palustris strain 2.1.6 grown under different light 

intensities. The second part is their spectroscopic characterisation. The third 

part describes the carotenoid compositions of the HL and LL LH2 complexes. 

3.1 Isolation and purification protocols 

3.1.1 Growing cells at different light intensities 

 

Figure 3-1 (A) Room temperature absorption spectra of whole cells from Rps. palustris 
grown at decreasing light intensities: high-light (HL, 220 lx, black line), intermediate 1 low-
light (LL1, 90 lx, red line), intermediate 2 low-light (LL2, 20 lx, green line), low-light (LL, 10 lx, 
blue line), far 1 low-light (FLL1, 6.5 lx, cyan line) and far 2 low-light (FLL2, 5.5 lx, magenta 
line). A magnification of the NIR region is shown (B).  
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Rhodospeudomonas (Rps.) palustris strain 2.1.6. was grown in C-succinate 

medium (Böse, 1963) (Appendices 8.1) at successively decreasing light 

intensities. The light intensities at the surface of culture bottles were varied 

from 220 lx, 90 lx, 20 lx, 10 lx, 6.5 lx to 5.5 lx. The cultures were regularly 

transferred to ensure constant low optical density, thus any self-shading caused 

by the cells themselves could be minimised. Absorption spectra of whole cells 

grown at different light intensities were recorded and are presented in Figure 3-

1. 

The high-light grown cells (Figure 3-1 black line) show an absorption spectrum 

in NIR region that is rather similar to those from Rps. acidophila and Rba. 

sphaeroides, with two strong absorption maxima at 800 nm and 850 nm 

(Gardiner  et al., 1993). The 850 band is the most intense and has a shoulder at 

around 875 nm, indicating the presence of LH1-RC (core) complexes (Figure 3-

1). As the light intensity is decreased, the NIR absorption spectra of the cells 

become markedly different. The 800 nm absorption band is more intense in the 

low-light grown cells, whereas the 850 nm band becomes correspondingly 

weaker. As result, the core 875 band is more apparent in the low-light (LL) 

grown cells (Figure 3-1 blue line). This situation reverses when the Rps. 

palustris cells are grown at the extreme lowest-light intensities, FLL1 and FLL2 

(Figure 3-1 cyan and magenta lines), respectively. Under such extreme 

condition the intensity of 850 nm absorption band recovers toward the intensity 

of the high-light spectrum.  
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3.1.2 Isolation, purification and identification of LH2 proteins  

 

Figure 3-2 (A) Typical results of sucrose gradient centrifugation runs of Rps. palustris 2.1.6 
solubilised membranes. From the left to the right the Rps. palustris 2.1.6 were grown at HL, 
LL1, LL2 and LL, respectively. The solubilised membranes of HL, LL1, LL2 and LL were 
adjusted to have an equal concentration of the Bchl a and then gently layered onto the top 
of the gradients. After high-speed centrifugation (149,000 g at 4°C) for 14 h the two major LH 
complexes were separated. The two complexes have different colour, the LH2 is red and the 
LH1-RC (core) is pink. The low-density cellular materials and denatured complex are yellow. 
(B) Absorption spectra of LH2 and LH1/RC (core) complexes collected from the HL sucrose 
gradient tubes. 
 

Sucrose-density gradient centrifugation of solubilised Rps. palustris membranes 

results in a good separation of the two complexes, LH2 and LH1-RC (core) 

(Figure 3-2). The solubilised membranes from cells of Rps. palustris grown at 

different light intensities were set to have an equal concentration of the Bchl a 

before being layered onto the top of sucrose-density gradient. The bottom pink 

band (Figure 3-2) contains core, whereas the middle red band contains the LH2 

complexes. The two complexes have a different colours as they preferentially 

bind different carotenoids (Cogdell  et al., 2006). The upper yellowish band 

contains low-density cellular materials and denatured complexes. It is apparent 

from the intensity of the colored bands in Figure 3-2 that the ratio between the 

isolated complexes, the LH2 and the core, varies depending on the light 

intensity at which the cells were grown.  
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Figure 3-3 The intensity ratio of bands B850:800 of the whole cell RT absorption spectra (red 
line) and molar ratio of LH2:Core (black) depending on the light intensity at which the cells 
were grown. The bars indicate standard deviations with n = 4. 
 

The intensity ratio of the 850 nm band to the 800 nm band and the relative 

molar ratio of LH2:Core vary depending on the light intensity at what the cells 

were grown. These results are shown in Figure 3-3. This figure suggests that the 

Rps. palustris cells grown at LL intensity have photosynthetic membranes that 

contain relatively more LH2 complexes than the cells grown at HL intensity. This 

chromatic adaptation is consistent with previous reports (Cohen-Bazire, 1966, 

Hunter  et al., 1988, Kaplan, 1978, Sistrom, 1978, Sturgis  et al., 1996, Wassink, 

1939) and from recent AFM studies on the in situ organization of the light 

harvesting complexes from Rps. photometricum (Scheuring  et al., 2005).  

The LH2 complexes, collected from the sucrose-density gradient, were then 

further purified. The purification protocol uses anion-exchange chromatography 

and gel filtration (Superdex 200). In order to follow the purification progress, 

the core and LH2 complexes collected from sucrose gradients were loaded on 

the NuPAGE gel together with DE52 purified LH2 complexes (Figure 3-4). The 

lane ‘core’ records the composition of apoproteins of the core complex. It shows 
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bands at ~7 kDa and at ~17-36 kDa (Figure 3-4A). The LH2 collected directly 

from sucrose gradient has four bands at approximately 6 kDa with some bands at 

~28-62 kDa (which suggest that there are some contaminants present). After 

purification of LH2 complex using DE52 anion exchange, the lane looks cleaner 

and just four bands at ~6kDa can be seen. The smeared bands at the bottom (1-2 

kDa) correspond to the pigments and lipids. After the DE52 column LH2 was 

further purified by gel filtration. The composition of apoproteins of the LH2 was 

compared with the LH2 complex from Rps. acidophila 10050 on the NuPAGE gel 

(Figure 3-4B). The middle lane in Figure 3-4B shows the LH2 from Rps. 

acidophila 10050, having two bands, one at ~ 6 kDa and one at ~4 kDa. Both 

high- and low-light LH2 complexes of Rps. palustris are shown to have four 

bands, two at ~5kDa (H3/H4 and L3/L4) and two at ~6kDa (H1/H2 and L1/L2) 

(Figure 3-4B).  

 

Figure 3-4 Progress in purification of LH2 complexes examined by a NuPAGE 12% Bis-Tris-
Gel. (A) Lane Core and LH2 succ correspond to the two complexes isolated from sucrose-
density gradient. Lane LH2 DE52 indicates the LH2 after DE 52 purification. (B) The LH2 
complexes were further purified by gel filtration. 
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Table 3-1 Peptide identification of the gel bands H1-H4 and L1-L4 (see Figure 3-4) by nLC-
ESI-MS/MS 

 
LH2 Peptide residues [M+H]+ 

Expt 
[M+H]+  

Calc Assignment 

HL     
Band H1 

 
  hypothetical 

protein RPA1495 
Band H2 

 
  hypothetical 

protein RPA1495 
Band H3 

 
  hypothetical 

protein RPA4760 
Band H4 MNQAR 618.5 619.2 PucAa 
 YWNGKAAAIESSVNVG 1663.9 1664.8 PucAa 
 

MNQGR 
604.9 605.2 PucAb, PucAc, 

PucAd, PucAe 

 TLTGLTVEESEELHK 1684.7 1684.9 PucBa 
 ADDPNKVWPTGLTIAESEELHK 2449.3 2449.2 PucBe 

LL     
Band L1    hypothetical 

protein RPA1495 
Band L2    hypothetical 

protein RPA1495 
and  

RPA3011 
Band L3 YWNGK 667.3 667.3 PucAa/ 

PucAe 
Band L4 FMNGK 596.2 596.2 PucAd 
 MNQGR 604.9 605.2 PucAb, PucAc, 

PucAd, PucAe 
 TLTGLTVEESEELHK 1684.7 1684.9 PucBa 
 MVDDPNK 817.5 818.3 PucBd 
 VDDPNKVWPTGLTIAESEELHK 2477.5 2477.2 PucBd 
 ADDPNKVWPTGLTIAESEELHK 2449.3 2449.2 PucBe 

 

In order to identify the apoprotein composition of the antenna complexes, both 

purified HL and LL LH2 complexes were sent to the FingerPrint Proteomic 

Facility, University of Dundee, to be analysed by using nano-scale liquid 

chromatography tandem mass spectroscopy (nLC-ESI-MS/MS). The bands (H1-H4 

and L1-L4) were excised from the gel prior to the trypsin digestion, and then 

followed by the nLC-ESI-MS/MS analysis. The molecular mass of the fragments of 

the LH2 peptides (m/z [M+H]+) were matched to predicted Rps. palustris 

antenna polypeptide masses that have published online by UniProtKB/Swiss-Prot. 

The results from the FingerPrint Proteomic Facility, Dundee, are shown in Table 

3-1. Five peptides, PucAa, PucAe, PucAb, PucBa and PucBe have been identified in 
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band H4 from HL LH2 complexes (Table 3-1). The assignment of the peptide 

residue MNQGR (m/z 604.9, [M+H]+) for the band H4 from HL LH2 was 

inconclusive, because the amino acid sequence (MNQGR) could be found in any 

of the PucAb, PucAc, PucAd and PucAe polypeptides at position 1-5 in their 

sequence. Similar ambiguous results are also found for the assignment of YWNGK 

(m/z = 667.3, [M+H]+) in the band L3 and MNQGR (m/z 604.9, [M+H]+) in the 

band L4 from the LL LH2. The results in Table 3-1 show that only the bands on 

the SDS gel at lower molecular weight (H4, L3 and L4) were identified as the α- 

(PucA) and β- (PucB) polypeptides. While the bands H1, H2 and H3 from the HL 

LH2 as well as the bands L1 and L2 from the LL LH2 (Table 3-1 and Figure 3-4) 

have been identified as putative uncharacterised proteins based on the complete 

genomic sequence of Rps. palustris published by Larimer et. al. (Larimer  et al., 

2004). 

In order to reduce contamination by irrelevant uncharacterised proteins, the 

purification protocol was improved by replacing the gel filtration with 

chromatography on a RESOURCE-Q strong anion-exchange column. The LH2 

complex was first desalted though a PD-10 column, then loaded on the 

RESOURCE Q column. Elution of the bound complex was subsequently achieved 

with a salt gradient 0-100% (1M NaCl in 20 mM Tris-HCl pH 8.0 containing 0.1% 

LDAO) (Figure 3-5). To ensure high purity, only fractions, which are at the 

maximum of the elution profile peak, were used for further analysis. Those 

fractions are fractions #15 and #16 (Figure 3-5A) for the HL LH2 complex, and 

fractions #16 and #17 (Figure 3-5B) for the LL LH2 complex. These factions were 

then also sent for sequencing to the FingerPrint Proteomic Facility, University of 

Dundee. 
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Figure 3-5 Elution profile of HL (A) and LL (B) LH2 complexes from Rps. palustris when 
purified using RESOURCE 15Q 1 ml. The LH2s were desalted using PD10 column prior to 
application. RESOURCE 15Q was connected to AKTA system and equilibrated with Tris-HCl 
(20mM, pH 8.0) containing 0.1% LDAO. Elution of the bound complex was achieved with a 
salt gradient 0-100% (1 M NaCl in Tris-HCl [20mM, pH 8.0] containing 0.1% LDAO). Flow rate 
was 4 ml min-1. The eluting protein was monitored at 280 nm and collected in 0.5 ml 
fractions. The purification experiments were carried out in the temperature-controlled room 
(4°C). 
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Figure 3-6 (A) The purity of the LH2 complexes was monitored using room temperature (RT) 
absorption spectrum. The absorption spectra of HL (top) and LL (bottom) LH2 complexes 
before (black line) and after (red line) purification using RESOURCE-Q are presented. The 
higher the ratio of A850/A280 (for HL) or A800/A280 (for LL), the greater is the purity of the 
LH complex is. (B) A NuPAGE 12% Bis-Tris gel profile of the apoproteins of the HL and LL 
LH2 complexes after their purification using the RESOURCE-Q column. The apoproteins are 
indicated in boxes. The large bands at the bottom correspond to pigments and lipids.  
 

The integrity and the purity of the LH2 complex can be monitored by measuring 

the ratio of the absorption maximum at ~850 or ~800 nm band to that at~280 nm 

band (Cogdell  et al., 1985). The Qy transition bands of Bchl a are at ~800-900 

nm, when the Bchl as are bound to their apoprotein. Therefore any reduction in 

the ratio of A850/A280 (or A800/A280) indicates either a decreased bound Bchl 

a, from denatured complexes, or contamination of extraneous protein. The 

absorption spectra of the LH2 complexes before and after the purification by 

RESOURCE-Q column were recorded from 250 nm to 950 nm regions (Figure 3-

6A). Figure 3-6A shows that after purification using RESOURCE-Q, the band at 

~280 nm in the HL LH2 absorption spectrum is decreased with respect to the 

absorption intensity of the B850 band. In the case of LL LH2 complex fraction 

shown in Figure 3-6A (solid red line), the 850 nm band has lost some of its 

intensity and the 800 nm band is stronger. This suggests that some 

contamination from B800-850 HL LH2 in the B800-low-850 LL LH2 was reduced 

after chromatography on the RESOURCE-Q. The LH2 complexes with the ratio 

above 3.0 were used here for further analysis.  



Isolation, purification and characterisation    62 

The NuPAGE Bis-Tris gel profile, Figure 3-6B, shows the apoprotein composition 

of the purified HL and LL LH2 complexes after the separation on the RESOURCE-

Q column. Unlike the NuPAGE result shown in Figure 3-4B that shows 4 bands for 

both HL and LL LH2, here, the lane HL-B shows that the purified HL LH2 

complexes have two weak bands (H1) and a strong band (H2) (Figure 3-6B). 

Similarly, lane LL-B for the purified LL LH2 complexes also indicates two weak 

bands (L1) and a strong band (L2). 

Table 3-2 Peptide identification of the gel bands H1, H2, L1 and L2 from the RESOURCE-Q 
purified LH2 complexes (Figure 3-6B) by nLC-ESI-MS/MS 
 

LH2 Peptide residues [M+H]+ 
Expt 

[M+H]+  
Calc Assignment 

HL     
Band H1 KAAAIESSVNVG 1016.5 1016.5 PucAa 
 KYWNGATVAAPAAAPAPAAPAAKK 2036.1 2036.1 PucAb 
Band H2 KTLTGLTVEESEELHKH 1684.9 1684.9 PucBa 
 KVWPTGLTIAESEELHKH 1808.9 1808.9 PucBe 
     
LL     
Band L1 KAAAIESSVNVG 1016.5 1016.5 PucAa 
 KAAAIESSIK 889.5 889.5 PucAd 
Band L2 KTLTGLTVEESEELHKH 1684.9 1684.9 PucBa 
 KVWPTGLTIAESEELHKH 1808.9 1808.9 PucBd 
 KHVIDGTRIFGAIAIVAHFLAYVYSPWLH 3165.7 3165.7 PucBe 
 

The results of the nLC-ESI-MS/MS protein sequencing identify that the bands H1, 

H2, L1 and L2 contain multiple type of α- (PucA) and β-(PucB) polypeptides 

(Table3-2). In the case of HL LH2 complexes, two weak bands (H1) can be 

assigned as the PucAa and PucAb apoproteins, while the strong band (H2) can be 

assigned as the PucBa and PucBe apoproteins. In the case of LL LH2 complexes, 

the L1 bands are assigned as the PucAa and PucAd apoproteins, while the strong 

L2 band can be assigned as the PucBa, PucBd and PucBe apoproteins. 
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3.2 Spectroscopic characterisation 

3.2.1 Photosynthetic membrane 

 

Figure 3-7 In situ identification of the LH2 and LH1-RC complexes in the intracytoplasmic 
membrane (ICM) can be directly demonstrated by absorption spectroscopy at cryogenic 
temperatures. Absorption spectra measured at 10 K of the photosynthetic membranes from 
Rps. palustris grown at high- (black line) and low-light (red line) intensities are shown. 
Membranes were prepared in 60% (v/v) glycerol in Tris-HCl (20 mM, pH 8.0). The spectra are 
normalized at Qx. 
 

The absorption spectrum of the photosynthetic membrane at cryogenic 

temperature offers the possibility to distinguish optically the absorption bands of 

the LH2 and LH1-RC complexes in situ and gives information concerning the 

stoichiometry ratio of LH2 and LH1-RC complexes in the membrane. The 

membranes in a buffer solution are in solid state at 10K. The low-temperature 

(LT) absorption spectra (Figure 3-7) feature narrower absorption bands 

compared with room temperature (RT) measurement (Figure 3-1). This makes 

the Qy-bands of the LH2 (B800 and B850) and the LH1-RC (B875) clearly 

distinguishable. The absorption spectra of HL and LL membranes (Figure 3-8) 
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are very similar to LT spectra that were reported before (van Mourik  et al., 

1992). The most striking feature in the absorption spectrum of the LL membrane 

is the intense B800 band located at ~804 nm. The maximum of the B850 band is 

blue shifted in the LL membrane (867 nm) compared to the HL membrane (870 

nm). Interestingly, the maximum of the LH1 band is apparently red-shifted from 

894 nm in the LL membrane to about 900 nm in the HL membrane.  

The ratio between the absorption at ~872 nm (for HL) or ~804 nm (for LL), due 

to LH2, and at ~894 nm, due to LH1, quantifies that the relative ratio of LH2 to 

core complex depends on the available light intensity during growth. The HL 

membrane gives an absorption ratio AB850/AB875 of 1.3 (Figure 3-8). While in the 

LL membrane, the absorption ratio AB800/AB875 is 2.5 (Figure 3-8). Given the 

extinction coefficients (εB800 = 226 mM-1cm-1, εB850 = 170 mM-1cm-1
, and εB875 = 118 

mM-1cm-1) from Rba. sphaeroides (Sturgis  et al., 1988) with stoichiometry of 18 

Bchl as per LH2 ring and 32 Bchl as per LH1 ellipse in the core complex, the 

above absorption ratios correspond to a relative LH2 ring/Core ratio of 3.8 and 

6.4, for HL and LL membranes respectively. These results are consistent with the 

results shown in Figure 3-3. 
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3.2.2 LT absorption spectra of LH2 complexes 

 

Figure 3-8 Absorption spectra at 10 K of high-light (HL, black line), low-light intermediate 1 
(LL1, red line), low-light intermediate 2 (LL2, green line) and low-light (LL, blue line) LH2 
complexes. A. The absorption spectra at 350-950 nm regions. B. Magnification at NIR region. 
C. Difference spectra of LL1-HL (red line), LL2-HL (green line) and LL-HL (blue line) recorded 
at NIR region. The spectra are normalised at Qx band. The LH2 complexes were diluted in 60 
% glycerol in Tris-HCl (20 mM, pH 8.0) containing 0.1% LDAO. 
 

The 10 K absorption spectra of HL and LL LH2 complexes are shown in Figure 3-

8. In the HL LH2 complexes, the B800 and B850 bands have maxima at 805 and 

867 nm, respectively (Figure 3-8A and B), which correspond to the absorption of 
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the weakly interacting B800 and strongly interacting B850 Bchl a molecules (see 

LH2 structure in Figure 1-9 of Chapter 1), respectively. Growth of the Rps. 

palustris under reduced light intensity leads to the changes in the intensity of 

the B800 and B850 bands: progressively, the absorption intensity of the B850 

decreases, while the B800 increases. It is also quite clear that the B800 and B850 

bands are slightly blue-shifted in the LL cases (Figure 3-8B). The absorption 

maximum (λmax) of the B800 band of LL LH2 spectrum (803 nm) is blue-shifted 

compared to the HL LH2 (805 nm). The λmax B850 band of the LL LH2s is recorded 

at 864 nm and so is also slightly blue-shifted compared with the HL LH2 

complexes λmax at 865 nm. However the main difference between these two 

complexes is that the B850 band of the LL LH2s is much broader compared to the 

HL LH2s. This broadening corresponds to a difference of the excitonic splitting in 

the strongly coupled B850 Bchl a (presented in Chapter 4 and 5). Modification 

of the Bchl-Bchl interactions and/or the interaction due to the H-bond between 

the Bchl a and the protein residues can alter the position of Qy-transition of the 

B800 and B850 bands (Fowler  et al., 1992, Gall  et al., 1997, Silber  et al., 

2008). These spectra are very similar to those that have been reported before 

(Gall  et al., 1999, van Mourik  et al., 1992). More about the characteristic 

changes in the ground state absorption spectra from HL to LL LH2 complexes will 

be discussed in Chapter 5.  

Figure 3-8C shows the difference spectra of the LL1-HL, LL2-HL and LL-HL in the 

NIR region. It is clearly shown that the intensity of the remaining band at ~800 

nm is progressively increased from LL1 to LL complexes. In addition a band at 

~815 nm is visible in the difference spectrum of LL-HL (Figure 3-8C). The 

additional band at ~815 nm is attributed to the high-energy exciton band of the 

strongly interacting Bchl as (see Chapter 4 and 5). When comparing the 

absorption spectra of HL and LL LH2 complexes, the absorption spectra of LL1 

and LL2 LH2 complexes look as though they could be just a mixture of the HL 

and LL LH2 complexes (Figure 3-8B). If indeed this is true then an isosbestic 

point should be observed. However there is no evidence of isosbestic point in the 

10K absorption spectra (Figure 3-8). This indicates that the intermediate LL1 

and LL2 LH2 complexes are not just mixtures between the HL and LL LH2 

complexes. The difference spectra, therefore, of the LL1-HL, LL2-HL and LL-HL 
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(Figure 3-8C) support the conclusion that there are more than 2 types of LH2 

complexes present. 

 

3.2.3 LT circular dichroism (CD) spectra of LH2 complexes 

 

Figure 3-9 77K NIR Circular Dichroism (CD) spectra of HL (black line), LL1 (red line), LL2 
(green line) and LL (blue line) LH2 complexes. The spectra are normalized at Qx band. 
 

The CD spectra of HL, LL1, LL2 and LL LH2 complexes (Figure 3-9) show some 

common features. There is a negative band at around B800 and an S-shaped 

band with the zero-crossing close to the absorption maximum of the B850 band. 

A detailed inspection of the CD spectrum of HL LH2 complexes shows the 

presence of a negative band (-) at 796 nm and a stronger S-shaped band (855 (+) 

and 880 (-) nm) with a zero-crossing at 869 nm. The circular dichroism spectra 

contain more information on the arrangement of the Bchl as in the LH2 

apoprotein matrix, than the corresponding absorption spectra. For example, the 

sign and the relative magnitude of the Bchl a Qy CD bands depend on both the 
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orientation of the transition dipole moments of the Bchl as and their excitonic 

interactions (Georgakopoulou  et al., 2002, Sauer  et al., 1996a). 

On moving from HL to LL LH2 complexes the CD spectra gradually change. The 

negative B800 band become more intense and shifts to the blue. This negative 

B800 band in the LL LH2 spectrum is located at 789 nm, whereas in the HL LH2 

complexes this band was at 796 nm. The magnitude of the S-shaped band at 

B850 decreases dramatically on going from the LL1 to the LL LH2 complexes. The 

zero-crossing of this S-shaped band in the LL LH2 spectrum is red-shifted to 869 

nm compared to that in the HL LH2. There is additional CD band (804 (+) and 816 

(-) nm) in the CD spectrum of the LL LH2 complexes. Thus, the LL LH2 CD 

spectrum shows 789 (-) nm band and two S-shape bands (804(+)/ 816(-) nm and 

851(+)/881(-) nm). 

The CD spectra (Figure 3-9) of the HL and LL LH2 complexes are comparable 

with those previously reported (Gall  et al., 1999, Georgakopoulou  et al., 2002). 

The S-shape in the B850 band present in the LH2 CD spectra has been attributed 

to the collection of strongly coupled dimers of B850 Bchl as (Koolhaas  et al., 

1997a, Koolhaas  et al., 1997b, Koolhaas  et al., 2000, Sauer  et al., 1996a), 

whereas the negative band (796 nm) in the CD spectrum has been assigned to 

the monomeric B800 Bchl as. 

The CD spectrum of HL LH2 complex is analogous to the case of the B800-850 

LH2 complex from Rps. acidophila 10050 and HL Rps. acidophila 7050 (Alden  et 

al., 1997, Cogdell  et al., 1985, Georgakopoulou  et al., 2002, van Mourik  et al., 

1992). All CD spectra of the LH2 complexes from these species show two 

pronounced bands, one negative (-) band in the 800 nm region, and one S-shape 

(+/-) band around 860 nm. This indicates that the arrangement and the direction 

of the transition moment of Bchl as of HL LH2 complex from Rps. palustris are 

similar to those from Rps. acidophila 10050 and HL Rps. acidophila 7050. In the 

case of B800-820 LL LH2 from Rps. acidophila 7050, the CD spectrum shows a 

shift of the zero-crossing of the S-shape band at ~820 nm (Cogdell  et al., 1985, 

Georgakopoulou  et al., 2002, Koolhaas  et al., 1997b). This shift refers to the 

shift of the excited state energies of the strongly coupled Bchl a dimer and/or a 

change in the orientation of the transition moment of Bchl as, which are caused 

by the breaking of the H-bond between the protein residue and acetyl group of 
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B850 Bchl as in the B800-820 LH2 complex (Koolhaas  et al., 1997a, Koolhaas  et 

al., 1997b).  

The CD spectrum of LL LH2 complex from Rps. palustris is much more 

complicated, since it has one negative band at ~800 nm and two S-shaped (+/-) 

bands with zero-crossing at about ~810 and ~870 nm. It is clear from the single 

molecule spectra of the LL LH2 complexes (presented in Chapter 4) that these 

complexes contain mixtures of apoproteins. The consequence of this is that the 

strongly excitonically coupled ring of Bchl a molecules shows both B820 and B850 

character. This mixing of different exciton bands is seen in the absorption 

spectra as a broadening of the B850 band on the high-energy end. The CD 

spectra shown in Figure 3-9 reinforce this picture. Both the B820 and B850 

exciton bands can be seen in the CD spectrum of the LL LH2 complexes as the 

two S-shaped bands, rather than in the case of HL LH2 complexes, where the 

presence of only B850-like Bchl as results in a single S-shaped band.  
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3.2.4 Resonance raman spectra of LH2 complexes 

 

Figure 3-10 A. Low-temperature UV resonance Raman spectra of the HL (black line), LL1 
(red line), LL2 (green line) and LL (blue line) LH2 complexes. B. The magnification at 
carbonyl region (1640-1710 cm-1). The spectra were normalised at the 1609 cm-1 peak. 
Excitation wavelength of 363.8 nm, T = 77 K. 
 

The LT (77K) resonance Raman (RR) spectra shown in Figure 3-10 provide 

information about the binding interactions between Bchl a and the protein 

residues in the LH2 complexes. Figure 3-10 records the resonance Raman 

spectra of HL, LL1, LL2 and LL LH2 complexes in the high-frequency region 

(1590-1725 cm-1). Common features can be seen in the RR spectra of HL, LL1, 

LL2 and LL LH2 complexes. They all have five discernable bands at 

approximately 1609, 1627, 1658, 1667 and 1697 cm-1 (Figure 3-10A and B). The 

band at 1609 cm-1 is quite stable in each spectrum. This band corresponds to the 

position of the methine bridge (macrocycle ring) stretching mode, indicating 
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that all the Bchl molecules ring are pentacoordinate (Cotton  et al., 1981, 

Fowler  et al., 1994). This band shifts to 1595 cm-1 when the Mg+2 ion binds two 

axial ligands (6-coordination). Bands at 1627, 1658, 1667 cm-1 are attributed to 

the C2-acetyl and C9-keto B850 Bchl a carbonyl stretching modes (Fowler  et al., 

1994, Gall  et al., 1999, Sturgis  et al., 1995, Sturgis  et al., 1997) and the band 

at 1697 cm-1 corresponds to the C9-keto B800 Bchl a carbonyl group (Fowler  et 

al., 1994, Gall  et al., 1999, Sturgis  et al., 1997). 

Variations in the intensity of the B850 Bchl a carbonyl stretching modes (1627, 

1658 and 1667 cm-1) can be seen in Figure 3-10A and B. Looking from the LL1 

spectrum and down to the LL LH2 spectrum there is a strong reduction in the 

intensity of the H-bonded C2-acetyl Bchl a stretching mode (1627 cm-1) (Figure 

3-10A), which is followed by a dramatic increase of the unbound C2-acetyl Bchl 

a stretching mode (1658 cm-1) (Figure 3-10B). An increase of the 1667 cm-1 peak 

intensity is also visible. While for the keto stretching mode of the B800 Bchl 

molecule (1697 cm-1), also minor change can be seen (Figure 3-10C).  

Low-temperature RR spectra (Figure 3-10), especially the HL and LL LH2 

complexes, are similar to those reported before (Gall  et al., 1999). The 

reduction of the intensity of the H-bonded C2-acetyl Bchl a stretching mode 

(1627 cm-1) and the increased of the intensity of the unbound C2-acetyl Bchl a 

stretching mode (1657 cm-1) in the LL LH2 from Rps. palustris is analogous to the 

case of B800-820 LH2 from Rps. acidophila 7050 or the LH2 mutants from Rba. 

sphaeroides and Phs. molischianum. In the B800-820 LH2 from Rps. acidophila 

the replacement of αTyr44 and αTrp45 residues with Phe and Leu breaks the H-

bonding interaction with the acetyl group of Bchl a molecule (Gall  et al., 1999, 

Sturgis  et al., 1995). In the two double mutants of Rba. sphaeroides, the 

replacement of αTyr44 and αTyr45 to Phe-Tyr and Phe-Leu, respectively, 

produced a B800-839 and B800-826 LH2s, respectively (Fowler  et al., 1992). The 

resonance Raman studies of these mutants identified the breakage of one or two 

H-bonds, respectively, between the protein residues and the respective C2-

acetyl carbonyl group of the B850 Bchl a molecules (Fowler  et al., 1994). The 

removal of a H-bond to the acetyl carbonyl group was signalled by a shift of the 

Raman peak expected for interaction-free acetyl carbonyl, i.e. 1635 cm -1 in the 

wild-type LH2 to 1659 cm-1. Similarly it is also observed in the Phs. molischianum 
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mutant, when αTyr43 in the B800-850 LH2 is replaced a Phe in the B800-820 LH2 

(Sauer  et al., 1996b). The B800-820 LH2 mutant from Rs. molischianum shows 

loss of H-bound C2-acetyl RR-stretching mode of B850 Bchl a molecule at 1642 

cm-1 and a dramatic increased of free-from-interaction acetyl carbonyls RR-

stretching mode at 1663 cm-1. 

The LL LH2 from Rps. palustris is however much more complicated, since the H-

bonded C2-acetyl carbonyl stretching mode of Bchl a molecule at 1627 cm-1 is 

only 50% reduced in its intensity. Rps. palustris has been found to expresses 

multiple αβ-polypeptides under high-light as well as low-light intensity 

conditions (Table 3-2). The α-polypeptides LL LH2 from Rps. palustris have been 

identified as a mixture of PucAd and PucAa proteins (Table 3-2). At position 44 

and 45 the PucAa protein has Tyr and Trp, respectively, while the PucAd has Phe 

and Met, respectively. Considering the presence of these multiple polypeptides 

as detected by nLC-ESI-MS/MS (Table 3-2), the hypothesis that has been 

proposed previously (Gall  et al., 1999) is that LH2 complexes from Rps. palustris 

may have a heterogeneous polypeptide composition and so could explain the 

present RR data. This hypothesis suggests that the LL LH2 from Rps. palustris is 

composed of a ring that consists of a heterogeneous mixture of different α-

polypeptides, where some have Tyr/Trp residues able to provide a H-bond with 

the acetyl group of B850 Bchl as, and the others have Phe/Met residues, 

providing no H-bond.  
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3.3 Carotenoid composition 

 

Figure 3-11 HPLC elution profile for the extracts from high- and low-light LH2 from Rps. 
palustris strain 2.1.6 The HPLC analysis was performed by the use of normal-phase 
chromatography using a silica gel column (Lichrosorb Si-60, 4.6×300 nm), the eluent was 
with 2.5% (v/v) acetone in benzene, the flow rate was 0.6 ml/min and the detection was at a 
wavelength of 480 nm.  
 

Car extracts from HL and LL LH2 complexes were injected into a normal-phase 

HPLC column and the Car composition of the eluent was monitored by detection 

at 480 nm. The chromatograms (Figure 3-11) reveal that the HL and LL LH2 

complexes from Rps. palustris produce in total five main Car. These are named 

according to the order of elution, i.e. Car #1-#5 (Figure 3-11). The retention 

time, which is recorded on the chromatogram (Figure 3-11), shows the order in 

which carotenoids elute off from the column. In the normal-phase 

chromatography used here, the most non-polar carotenoids elute first and the 

most polar carotenoids elute last (Britton, 1993). Table 3-3 lists the retention 

times and the absorption maxima 1Ag
-(0)→ 1Bu

+(0) of all five carotenoids, which 

were successfully separated by the Lichrosorb Si-60 column. Carotenoid 
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standards were also injected into the system in order to identify the carotenoids 

#1-#5. 

Table 3-3 Retention times and λmax wavelengths obtained from all five carotenoids identified 
in HL and LL LH2 complexes from Rps. palustris and the carotenoid standards used as 
references. The solvent was 2.5% (v/v) acetone in benzene. 
 

High-light Low-light  Carotenoid Standard Peak# 

In 

HPLC 

RT 

(min) 

1Bu
+(0) 

/nm 

RT 

(min) 

1Bu
+(0) 

/nm 
 Name N 

RT 

(min) 

1Bu
+(0) 

/ nm 

1 3.6 519 3.7 519  Lycopene 11 3.5 519 

2 4.8 532 4.9 532  Anhydrorhodovibrin 12 4.9 532 

3 7.6 544 7.9 545  Rhodovibrin 12 23.7 533 

4 12.1 521 12.3 523  Spirilloxanthin 13 7.6 544 

5 23.7 533 24.2 533      

 

To identify the carotenoids present in the HL and LL LH2 Rps palustris, their 

absorption maximum of 1Ag
-(0)→ 1Bu

+(0) and the retention times were compared 

with those of the carotenoid standards (Table 3-3). The Car #1 (RT = 3.6 min; 

1Bu
+(0) = 519 nm) is assigned to lycopene (RT = 3.5 min; 1Bu

+(0) = 519 nm). 

Correspondingly, Car #2, #3 and #5 for the HL and LLLH2 complexes can be 

identified as anhydrorhodovibrin, spirilloxanthin and rhodovibrin, respectively 

(Table 3-4). The assignment of Car #4 was not possible because a carotenoid 

standard for it was not available. In order to identify Car #4, 1H-NMR 

spectroscopy was used. Most carotenoids have three absorption maxima, the 

positions of which are characteristic of the carotenoid chromophore, although 

the solvent does influence this too (Britton, 1993). The position of λmax, 

especially in 1Ag
-(0)→ 1Bu

+(0), undergoes a bathochromic shift as the degree of 

π-electron conjugation (n) increases (Table 3-3 for carotenoid standards) 

(Britton, 1993, Britton, 2004, Takaichi, 1992). It is clear from in the 

chromatogram that the car #1 and #4 appear to be the major carotenoids in both 

HL and LL LH2 (Figure 3-11). These were collected prior to the chemical 

structure determination using 1H-NMR spectroscopy. The 1H-NMR chemical shifts 

of Car #1 and #4 were compared with references (Appendices 8.2) (Britton, 
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2004). These results confirmed that car #1 and #4 are lycopene and rhodopin, 

respectively.  

Table 3-4 Comparison of the amount (%) of all five carotenoids collected from HL and LL 
LH2 complexes Rps. palustris. 
 

Peak # 

in HPLC 

Assignment # of 

conjugated 

C=C (N) 

HL % LL % 

1 Lycopene 11 15.5 37.7 

2 Anhydrorhodovibrin 12 3.1 8.6 

3 Spirilloxanthin 13 1.6 1.2 

4 Rhodopin 11 72.9 48.9 

5 Rhodovibrin 12 4.9 1.9 

 

 

Table 3-4 records the full assignment of all five carotenoids present in both HL 

and LL LH2 from Rps. palustris. Rhodopin (N = 11) is the most abundant in both 

HL LH2 complex (72.9%) and the LL LH2 complex (48.9%). These results are in 

agreement with the previous determination of the carotenoid composition in the 

LH2 complexes from Rps. palustris using reversed-phase HPLC (Evans, 1989, Gall  

et al., 2005).  

3.4 Conclusions 

LH2 isolated from Rps palustris strain 2.1.6 grown at different light intensities 

have been successfully separated by sucrose-density gradient centrifugation. 

Highly purified stable LH2 complexes were produced by an additional 

purification using a RESOURCE-Q column after a DE-52 anion-exchange column. 

The results of the nLC-ESI-MS/MS protein sequencing identified that both HL and 

LL LH2 complexes contain multiple type of α- (PucA) and β-(PucB) polypeptides. 

Furthermore, the PucAd and PucBd apoprotein pairs were only present in the LL 

LH2 complexes.  
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The absorption spectrum of the photosynthetic membrane at 10 K showed that 

the relative LH2 ring/Core ratio in the LL membranes is higher than that in the 

HL membrane. Spectroscopic characterisations of HL, LL1, LL2 and LL LH2 

complexes reveals that there are more than two types of LH2s that have 

different spectroscopic properties.  The LT (10 K) absorption spectrum of LL LH2 

complexes shows 800 and broad low-850 nm absorbing bands in the NIR region. 

The broadening of the B850 band corresponds to the strongly excitonically 

coupled ring of Bchl a molecules that shows both B820 and B850 character. The 

two S-shape bands with zero-crossing at ~810 and 870 nm in the CD spectrum of 

LL LH2 complex reinforces this picture. LT (77K) resonance Raman (RR) spectra 

provide information about the binding interactions between Bchl a and the 

protein residues in the LH2 complexes. As the PucAd apoprotein is only expressed 

in the LL LH2 complexes, it is hypothesised that the LL LH2 from Rps. palustris is 

composed of a ring consisting of a heterogeneous mixture of different αβ-

polypeptides. Some have Tyr/Trp residues to provide H-bonds with the acetyl 

group of the B850 Bchl as and others have Phe/Met residues, providing no H-

bonding. The major carotenoid in both HL and LL LH2 complexes from Rps. 

palustris is rhodopin. 

 



 

 

4 Single molecule spectroscopy of low-light LH2 
from Rps. palustris 

4.1 Introduction 

It has now been well established that the spatial arrangement of the pigments in 

LH2 determines, to a large extent, the spectroscopic features of the complexes 

and that in these systems collective effects (especially in the case of the B850 

Bchls) have to be considered in order to appropriately describe their 

electronically excited states (Damjanovic  et al., 2002, Hu  et al., 2002, 

Matsushita  et al., 2001, Zigmantas  et al., 2006). This leads to so-called Frenkel 

excitons, which arise from the interactions of the transition-dipole moments of 

the individual pigments, and which correspond to delocalised electronically 

excited states (Davydov, 1971, Knox, 1964). Since the interaction strength 

between the individual pigments can be calculated on the basis of the available 

structural data, information about the pigment arrangement within the LH 

complexes becomes accessible via optical spectroscopy. As high-resolution 

structure of Rps. acidophila has been resolved, the LH2 from Rps. acidophila 

served as a cornerstone for the development of a detailed understanding of 

structure-function relationships in such antenna systems (Cogdell  et al., 1997, 

Georgakopoulou  et al., 2002). 

A question that still remains from the previous chapter is whether the LH2 

complexes from Rps. palustris consist of rings where each ring has a mixture of 

apoprotein types, rather than the homogeneous case as in Rps. acidophila (Gall  

et al., 1999, Nishimura  et al., 1993). It is, however, difficult experimentally to 

distinguish between a mixture of LH2 complexes where each ring is 

homogeneous but there are various types of rings present, and where each 

individual ring has an heterogeneous apoprotein composition. It is interesting to 

consider the possible effect that rings with a heterogeneous population of 

apoproteins might induce spectral changes, especially since some of the Rps. 
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palustris apoproteins have sequences that would change the site energies of the 

‘B850’ Bchls, from the standard high-light ones to those more reminiscent of the 

B820 complex from Rps. acidophila. How would such an energetic heterogeneity 

affect the absorption properties of LH2? Indeed does such heterogeneity actually 

exist? One way to look for this is to use SMS. 

The usefulness of SMS in providing a tool with which to unravel the spectroscopic 

complexities of LH proteins has been well demonstrated (Bopp  et al., 1997, 

Hofmann  et al., 2005, Ketelaars  et al., 2002, Rutkauskas  et al., 2005, Tietz  et 

al., 1999, van Oijen  et al., 1999b, van Oijen  et al., 2000, Wörmke  et al., 

2007). Reviews illustrating single-molecule studies on bacterial LH complexes 

can be found (Berlin  et al., 2007, Cogdell  et al., 2006). In this chapter single 

molecule fluorescence-excitation spectroscopy has been used to investigate 

individual LL LH2 complexes from Rps. palustris. The idea was to investigate 

whether different classes of single complexes exist and to establish if there is 

any evidence for spectral properties that can only be explained by rings with a 

heterogeneous apoprotein composition. 

4.2 Results 

 

Figure 4-1 LT (1.5K) widefield fluorescence images of low-light LH2 complexes from Rps. 
palustris showing the ensemble (A) and single LH2 complexes (B) are obvious after the LH2 
complexes were diluted less then 10-9 M in Tris-HCl buffer (20 mM, pH 8.0) containing 0.1% 
LDAO. Red circles indicate candidates for single LH2 complex. Green circle shows an 
aggregate. 
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Figure 4-1 shows the images of the LH2 complexes from Rps. palustris recorded 

with a widefield fluorescence microscope. It indicates that by adjusting the 

concentration of the probe, individual LH2 complexes can be monitored. In 

Figure 4-1B purified LH2 complexes had been diluted to less than 10-9 M from 

the ensemble level (Figure 4-1A). Here, well-separated small bright spots can 

be seen (red circles) and have been assigned to be single LH2 molecules. A single 

big spot (green circle) corresponds to a cluster, a large colony of single 

complexes. In order to gain spectroscopic information from a particular single 

complex, the system was then switched to the confocal mode, allowing a single 

bright spot to be measured. 

 

Figure 4-2 LT (1.4 K) fluorescence-excitation spectra of LH2 complexes from LL Rps. 
palustris 2.1.6. The top traces show the spectrum from an ensemble (grey line) and the 
spectrum that corresponds to the sum of 31 spectra from individual LH2 complexes (black 
line). The lower three traces display typical fluorescence-excitation spectra from individual 
LH2 complexes. The spectra have been averaged over all polarisations of the incident laser 
field. The bars indicate the spectral positions of the 800, 820 and 850 nm bands, 
respectively. The excitation intensity was 50 W cm-2. The vertical scale is given in counted 
photons per second (cps). 



Single molecule spectroscopy    80 

 

The fluorescence-excitation (absorption) spectra of several individual LL LH2 

complexes from Rps. palustris are shown in Figure 4-2. The top trace shows, for 

comparison, the fluorescence-excitation spectrum taken from an ensemble of LL 

LH2 complexes (grey line, see Figure 4-1A) together with the spectrum that 

results from the summation of the spectra of 31 individual LL LH2 complexes 

(black line). The two spectra are in reasonable agreement indicating that the 

selected individual LL LH2 complexes are a fair statistical representation of the 

ensemble. The ensemble spectrum shows two broad bands centred at 11,684 cm-

1 (856 nm) and 12,524 cm-1 (798 nm) with widths (FWHM) of 353 cm-1 and 174 

cm-1, respectively. The peak intensity of the B850 band is about three times 

lower than that of the B800 band, which agrees with previously published 

absorption spectra that have been taken at both RT and at 77 K (van Mourik  et 

al., 1992). 

By measuring the fluorescence-excitation spectra of the individual complexes, as 

shown for three examples in the lower traces of Figure 4-2, remarkable features 

become visible, which are obscured in the ensemble average. Around 12,500 cm-

1 (800 nm) the spectra show a distribution of narrow absorption bands, with 

linewidths (FWHM) below 10 cm-1, whereas around 11,750 cm-1 (850 nm) a few 

broad bands, with linewidths (FWHM) in the order of 160 cm-1, are present. This 

observation is reminiscent of the situation for LH2 from Rps. acidophila 

(Hofmann  et al., 2004, Ketelaars  et al., 2001). However, in striking contrast to 

the single molecule spectra from LH2 from Rps. acidophila, about 90% of the 

individual LL LH2 complexes from Rps. palustris show an additional broad band 

in the B820 spectral region. The peak position of this band varies between 

12,048 cm-1 (830 nm) and 12,288 cm-1 (813 nm) (centre of mass at 12,206 cm-1 

(819 nm)) and its linewidth covers the range between 31 cm-1 and 158 cm-1 

(average 79 cm-1).  
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Figure 4-3 Fluorescence-excitation spectra from an individual B800-820/850 LH2 complex 
from Rps. palustris as a function of the polarisation of the excitation light. (A) Top: Stack of 
410 individual spectra recorded consecutively. Between two successive spectra the 
polarisation of the incident radiation has been rotated by 6.4°. The horizontal axis 
corresponds to the photon energy; the vertical axis to the scan number or equivalently to 
the polarisation angle and the intensity is given gray coded. The excitation intensity was 50 
W cm-2. Bottom: Spectrum that corresponds to the average of the 410 consecutively 
recorded spectra. B) Top: Expanded view of the fluorescence intensity of the four bands B1 
- B4 marked by the arrows in the lower part as a function of the polarisation of the incident 
radiation (dots) together with cos2-type functions (black) fitted to the data. Bottom: Two 
fluorescence-excitation spectra from the stack that correspond to mutually orthogonal 
polarisation of the excitation light. (SEE AVAILABLE MOVIE) 
 

In order to analyse the spectral bands from the individual LL LH2 complexes in 

more detail, the fluorescence-excitation spectra as a function of the polarisation 

of the incident laser excitation were recorded. The excitation spectra were 

recorded in rapid succession as the polarisation of the excitation light was 

rotated by 6.4° between two consecutive scans. An example of this protocol is 

shown in the top part of Figure 4-3A in a two-dimensional representation where 

410 individual scans are stacked on top of each other. The horizontal axis 

corresponds to excitation energy, the vertical axis to the individual scans, or 

equivalently to the polarisation of the excitation, and the detected fluorescence 

intensity is coded by the grey scale. In spectroscopy, the spectral lines can be 
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understood in quantum theory as reflecting differences between energy levels 

(energy being proportional to wavenumber (cm-1)). Here in Figure 4-3 the 

photon energy is corresponds to a wavenumber. The sum spectrum of these 

scans is presented at the bottom of Figure 4-3A. The pattern shown at the top 

of Figure 4-3A clearly reveals the polarisation dependence of the absorptions in 

the B850 region. This becomes even more evident in Figure 4-3B. In Figure 4-

3B, Φ corresponds to the polarisation angle of the excitation laser beam. At the 

bottom of Figure 4-3B two individual spectra are shown on an expanded energy 

scale. The spectra have been obtained for mutually orthogonal polarisations of 

the excitation light. For simplicity we refer in the following to the absorptions in 

the B820/850 region as B1, B2, B3 and B4, in order of increasing photon energy, 

where B stands for band. The angle of the polarisation that yields the maximum 

intensity for the band B1 has been set arbitrarily to 0° and provides the 

reference point. For this particular complex we find the absorption bands B1, 

B2, B3 and B4 at the peak positions of 11,562 cm-1 (865 nm), 11,727 cm-1 (853 

nm), 11,874 cm-1 (842 nm) and 12,150 cm-1 (823 nm) and linewidths are 174 cm-

1, 125 cm-1, 187 cm-1 and 52 cm-1, respectively. The top part of Figure 4-3B 

shows the fluorescence intensity of the four bands as a function of the 

polarisation of the excitation light (dots). This variation is consistent with a cos2-

dependence (black line). 
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Figure 4-4 Top: Distributions of the energetic separations ΔE observed between A) B1 and 
B2, B) B1 and B3, and C) B1 and B4. Bottom: Distributions of the mutual angles Δα between 
the transition-dipole moments that are associated with D) B1 and B2, E) B1 and B3, and F) 
B1 and B4. 
 

From such experiments the energetic separation (ΔE) can be determined 

between B1 and the other bands as well as the relative angle (Δα) between the 

transition-dipole moments that are associated with them. The distributions of 

these parameters for the full data set of 28 complexes are shown in the 

histograms, Figure 4-4. The energetic separation between the bands B1 and B2 

varies between 62 cm-1 and 342 cm-1 and is centred at about 174 cm-1, Figure 4-

4A. The distribution of the mutual orientation of the transition-dipole moments 

that are associated with the B1 and B2 bands increases to a maximum at about 

90°, Figure 4-4D. The energetic separation between B1 and B3 is distributed 

between 230 cm-1 and 491 cm-1 with a maximum at about 361 cm-1, Figure 4-4B. 

The distribution of relative orientations of the transition-dipole moments that is 

associated with B1 and B3 decreases from a maximum value at about 10° when 

going to larger angles, Figure 4-4E. The distribution of the energetic separation 
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between B1 and B4 is between 430 cm-1 and 670 cm-1 and is centred at about 550 

cm-1, while the distribution of the relative orientations of the transition-dipole 

moments associated with B1 and B4 shows a slow decrease from a maximum 

value at about 20°. 

4.3 Discussion 

When the single molecule spectra obtained with HL B800-850 complexes from 

both Rps. palustris and Rps. acidophila are compared with those recorded from 

LL LH2 complexes from Rps. palustris there are both common and strikingly 

different features. In the spectral region around 12,500 cm-1 (800 nm) all three 

types of complexes show narrow bands. These narrow bands have been 

previously well explained and arise from essentially monomeric weakly 

interacting Bchl molecules (the B800 manifold) (Cheng  et al., 2006, Hofmann  et 

al., 2003, van Oijen  et al., 1999a, van Oijen  et al., 2000). The single molecule 

spectra in the region from approximately 11,600-12,250 cm-1 (815-860 nm) are 

very different in the LL complexes compared with the HL complexes. The HL 

complexes show two and sometimes three broad bands in the 850 nm region. 

Previous studies have shown that these broad bands arise from the excitonic 

interactions among the strongly coupled B850 Bchls (Ketelaars  et al., 2001, 

Matsushita  et al., 2001, van Oijen  et al., 1999b).  

All of the LL complexes studied here show not only broad bands in the 11,750 

cm-1 (850 nm) region but also broad bands in the 12,200 cm-1 (820 nm) region. 

They appear to have a mixed composition that gives rise to exciton bands in both 

the 850 and 820 nm regions. In an effort to explain these differences a series of 

simulations was undertaken to try to understand the structural features that are 

required to accurately reproduce the experimental data. 

The general approach to describe the electronically excited states of the B850 

LH2 ring is based on a model Hamiltonian using the Heitler-London 

approximation (Hofmann  et al., 2004, Ketelaars  et al., 2001). 
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where N refers to the number of Bchl a molecules. n  and m  correspond to 

excitations localized on molecule “n” and “m”, respectively, and (E0 + ΔEn) 

denotes the site energy of pigment “n”. Due to local variations in the protein 

environment of the Bchl a binding site there is a separation of the individual site 

energies into an average, E0, and a deviation from this average, ΔEn, which is 

commonly termed diagonal disorder. This energetic disorder is usually modelled 

by a Gaussian distribution of site energies. The simplest approach to evaluate 

the dependence of the interaction on the distance and the mutual orientation of 

the pigments is to use a dipole-dipole type function (Sauer  et al., 1996a). 
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where κnm denotes the usual orientation factor, and rnm is the distance between 

pigments “n” and “m”. The coupling strength V0 was set to 135,072 cm-1 Å3 (43). 

Two limiting cases for the dipolar interaction can be distinguished. That is weak, 

1<<!EV , and strong, 1>>!EV , coupling. In the case of the B850 Bchls, 

there is strong coupling due to much larger interaction energy (Vnm) than the 

difference in their site energies (ΔEnm). As a result of this the eigenfunctions of 

the Hamiltonian (Eq. 1) are given by the combinations of the excited state 

wavefunctions of the individual pigments. 

In the case of both the 9-mers (HL LH2s from Rps. acidophila 10050 and Rps. 

palustris) and the 8-mer (LH2 from Phs. molischianum), the energy scheme of 

the excited-state manifold of the B850 ring has been constructed by symmetric 

or antisymmetric linear combinations of the localised wave functions of the αβ-

dimers, in such a way that they form the basis for the irreducible 

representations of the C9 and C8 pure-rotational point groups, respectively 

(Matsushita  et al., 2001). As previously described for the C9-symmetry case the 

symmetric and the antisymmetric manifold consist of one non-degenerate (k= 0) 

and four doubly degenerate (k= ±1, ±2,…, ±4) exciton states (Matsushita  et al., 

2001). The corresponding C8-symmetry case has the (k= 0, ±1, ±2, ±3, 4) exciton 

states. In order to understand which exciton states are involved in giving rise to 

the measured bands B1, B2, B3 and B4 the absorption spectra were calculated by 
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Monte Carlo simulations treating the diagonal disorder as random variable. This 

simulation was carried out for both 9-mer and 8-mer possibilities.  

 

Figure 4-5 Examples for simulated absorption spectra for an individual LH2 complex (solid 
line). The spectra correspond to a single realisation of the disorder. The calculated energies 
of the exciton states have been dressed by a Lorentzian with a width of 5 cm-1 for the k= 0 
state and a width of 130 cm-1 for all other exciton states (dashed lines). The simulations A-C 
(left) are based on a nonameric structure; the simulations D-F (right) are based on an 
octameric structure. The simulations vary with respect to the type of diagonal disorder: A, 
D: random diagonal disorder taken from a Gaussian distribution of width 160 cm-1 (FWHM). 
B, E: random diagonal disorder like for A, D and additionally correlated diagonal disorder. 
C, F: like B, E and additionally using B820-pair (E0(αB820) = 12,860 cm-1, dE = 260 cm-1) and 
B850-pair (E0(αB850) =12,300 cm-1, dE = 240 cm-1) like randomly distributed site energies 
across the ring assembly. For more details see text. 
 

Typical examples for simulated spectra of individual realisations of the disorder 

are shown in Figure 4-5. The first simulated spectrum of an LL LH2 complex was 

obtained by the introduction of diagonal disorder into the circular 9- and 8-mer 

models, Figure 4-5A, D. For simplicity the site energies of B850 Bchl a dimers 

were set according to the previously determined site energies of LH2 from Rps. 

acidophila (E0 (αB850) = 12,300 cm-1 and E0 (βB850) = 12,060 cm-1) (Hofmann  et 

al., 2004). The random diagonal disorder is taken from a Gaussian distribution 

with a width of Γintra= 160 cm-1, where Γintra stands for intracomplex 
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heterogeneity (Ketelaars  et al., 2001). Within each complex the 18 or 16 Bchl a 

molecules will show variations of their site-energies with respect to their 

spectral means.  In the case of a 9-mer ring this simulation produces a sharp 

band from the k= 0 state, broad bands from the k= ±2 states, and broad bands 

from the k= ±1 states, which are split in energy and feature mutually orthogonal 

transition-dipole moments, Figure 4-5A. Whereas in the case of the 8-mer ring 

only a sharp k= 0 band and the two orthogonally polarised k= ±1 bands are 

present, Figure 4-5D. In Figure 4-5B, E this simulation was extended by 

inserting the expression ( )[ ]212cosmod
)0( ++!=! nEEE nn "  for the site energies. 

Here )0(
nE! refers to the random diagonal disorder chosen from the Gaussian 

distribution described above and ( )[ ]212cos
mod

+nE !  introduces an additional 

correlated modulation of C2-type symmetry into the site energies of the 

pigments, where N!" 2=  and N refers to the number of the pigments in the 

ring (Hofmann  et al., 2004). When this modulation is taken into account the 9-

mer model shows a sharp k= 0 band, broad orthogonally polarised k= ±1 bands 

and broad k= ±2 bands. Furthermore the k= ±3 states gain significant oscillator 

strength, but they have no observable splitting. Though the k= ±2 bands do 

contribute, it is apparent that the overall spectrum of the 9-mer model is 

dominated by the contributions of the k= 0, k= ±1 and k= ±3 states. In case of 

the 8-mer model a sharp k= 0 band, broad orthogonally polarised k= ±1 bands, 

broad k= ±2 bands and k= ±3 bands is also present. The splitting of the k= ±3 

bands are clear in the 8-mer model. The overall spectrum of the 8-mer model is 

dominated by the k= 0, k= ±1 and k= ±3 states.  

There is strong evidence from mass spectroscopic analysis of LL LH2 polypeptides 

from Rps. palustris that this LL complex contains multiple types of αβ-

polypeptides (see Chapter 3). The sequence of some of these polypeptides 

features changes in key amino acids shown to be involved in H-bonding to the 

Bchl a macrocycles of the strongly coupled ring of Bchls in LH2. This 

heterogeneity raises a possibility of some of these Bchl a molecules having quite 

different site energies from each other. In other words some may have site 

energies characteristic of B850 and some characteristic of B820. The simulation, 

therefore, was extended to introduce two different site energies, E0 (αB850) = 

12,300 cm-1, E0 (βB850) = 12,060 cm-1 (B850-pair) (Hofmann  et al., 2004) and E0 
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(αB820) = 12,860 cm-1, E0 (βB820) = 12,600 cm-1) (B820-pair) (de Ruijter  et al., 

2007), for the Bchl a-pairs where the B850- and the B820- pairs of Bchl a are 

randomly distributed in the ring, Figure 4-5C, F. In this case the 9-mer model 

shows the gain of the oscillator strength of all of the exciton states, Figure 4-

5C. The bands at 11500 cm-1 (870 nm) and 11700 cm-1 (855 nm) are due to the k= 

+1 and k= −1 states, respectively. The k= ±2 bands are obscured under the k= −1 

band. Although the splitting of the k= ±3 and k= ±4 states are seen, the k= +3 

and k= +4 bands are the most intense. The overall features of the simulated 

spectrum (solid line) from the 9-mer model are dominated by the k= 0, ±1, +3 

and +4 states (dashed lines) and is blue shifted compared to the case shown in 

Figure 4-5B. In the case of 8-mer model, the simulated spectrum is identical to 

that of the 9-mer, Figure 4-5F.  

When the absorption spectra for the simulations are compared with the 

experimental spectrum of the LL LH2 (Figure 4-3) it can be seen that the traces 

in Figure 4-5A, B and D are not consistent with the experimental data. The 

simulations presented in Figure 4-5C, E and F, however, all are in reasonable 

agreement with the experimental spectra. Simulations with a 9-mer model can 

only account for the experimental spectrum if two different site energies for 

Bchl a-pairs are considered, Figure 4-5C. If this model describes the situation 

properly then the experimentally measured bands B1, B2, B3 and B4 can be 

assigned to the k= +1, −1, +3 and +4 states, respectively. Simulations with an 8-

mer model produce agreement with the experimental data both with and 

without taking into account different site energies for the pairs of Bchl a 

molecules. If the model, in Figure 4-5E, provides a proper description of the 

experimentally determined situation then the B1, B2, B3 and B4 bands in the 

experimental data can be assigned to the k= +1, −1, −3 and + 3 states, 

respectively. If on the other hand the model that corresponds to the simulation 

that is shown in Figure 4-5F is appropriate then the B1, B2, B3 and B4 bands can 

be assigned to the k= +1, −1, +3 and 4 states, respectively. Therefore, it is 

unclear at this stage which of the underlying models that led to the simulations 

presented in Figure 4-5 represents a realistic approximation for the description 

of the real structure of the LL LH2. 
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In order to distinguish between the three different options presented in Fig. 4-

5C, E and F one needs to consider the extra experimental spectroscopic 

information that is available and has been presented in Fig. 4-4, i.e. the 

energetic separation of the spectral bands and the mutual orientation of their 

transition-dipole moments. The experimental histograms, therefore, have been 

compared with these parameters calculated from the respective simulations for 

2000 realisations of the energetic disorder (circles, triangles and black squares), 

Fig. 4-6.  

 

Figure 4-6 Comparison of the energetic separation of the bands B1-B4 with those of the 
respective exciton states (left) and the mutual orientation of the associated transition-dipole 
moments (right) as predicted from Monte Carlo simulations for 2000 realisations of the 
disorder (circles, –○–) for the model shown in Figure 4-5E, (triangles, –△–) the model 
shown in Figure 4-5F and (squares, –■–) the model shown in Figure 4-5C. 
 

Using the 8-mer model represented by Figure 4-5E it can be seen that the 

simulated distributions of ΔE and the mutual angle between the transition-dipole 

moments of the k= ±1 states can be reproduced, however, the simulated 

distributions of the energetic separations between k = +1 and k = -3 as well as 

between k = +1 and k = +3 with maxima around 200 cm-1 and around 400 cm-1 are 
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not, Figure 4-6. Moreover the simulated distribution for the mutual angle 

between the transition-dipole moments of the k= +1 and k= −3 states is even 

worse with a broad maximum covering the range from 40° to 60°. Simulations 

based on the 8-mer model represented by Figure 4-5F are able to satisfactorily 

account for the distribution of the simulated mutual angles between the 

transition-dipole moments of the k= ±1 states, Figure 4-6. However these 

simulations also do not satisfactorily reproduce the distributions of the angles 

between the transition-dipole moments of the k= +1 and k= 4 states. Simulations 

based on the 9-mer model represented by Figure 4-5C show quite good 

agreement with the distribution of all three mutual angles, Figure 4-6. There is, 

however, a significant though smaller (than the two 8-mer models) mismatch 

between this simulation and the distribution of energetic separations, ΔE, (k= +1 

and k= +3) and ΔE (k= +1 and k= +4).  

At this stage it appears that the 9-mer model is able to more closely account for 

the experimental data. The low-light LH2 complexes from Rps. palustris have at 

least 4 types of α-polypeptides. One, the αd -polypeptide, has phenylalanine and 

methionine residues at positions 44 and 45 (Evans  et al., 2005, Tadros  et al., 

1989). The other polypeptides have tyrosine and tryptophan residues at these 

positions. The presence of H-bonding residues at positions 44 and 45, such as 

tyrosine and tryptophan, correlates with B850 type site energies, whereas if non-

H-bonding residues, such as phenylalanine and methionine, are present this 

correlates with B820 site energies. Shifting in the site energy of one α-bound 

Bchl a will also effect the nearest-neighbour β-bound Bchl a within a pair. These 

Bchls are associated with new B820-like site energies E0 (αB820-like) = 12,640 

cm-1 and E0 (βB820-like) = 12,400 cm-1, calculated by modelling a 10K ensemble 

absorption spectrum of B850 band of low-light LH2 Rps. palustris (blue line in 

Figure 4-7). The parameters of the coordinate arrangement of the Bchls for this 

simulation were taken by mixing the parameters of the crystal structures of the 

B800-850 and B800-820 LH2 complexes (see Table 4-1 and Figure 4-8). 

According to previous reports the difference of the excitation energies (Eα-Eβ) 

has been estimated about the same as the nearest neighbour interaction (240 

cm-1) (Koolhaas  et al., 2000, Matsushita  et al., 2001, Scholes  et al., 2000).  
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Figure 4-7 Simulations of ensemble spectra of B850 band (black, red and blue lines) were 
overlaid on 10K absorption spectrum (grey line) of low-light LH2 from Rps. palustris. The 
simulations using the site energies of LH2 (B850, black line) [E0 (αB850) = 12,300 cm-1, E0 
(βB850) = 12,060 cm-1 (B850-pair) (Hofmann  et al., 2004)] and LH3 (B820, red line) [E0 
(αB820) = 12,860 cm-1, E0 (βB820) = 12,600 cm-1) (B820-pair) (de Ruijter  et al., 2007)]. The 
blue line shows a simulation using the site-energies of E0 (αB820-like) = 12,640 cm-1 with dE 
= 240 cm-1 and the B850-pair site energy of E0(αB850) = 12,300 cm-1 with dE = 240 cm-1; the 
position of the pairs are randomly distributed. 3000 realisations were carried out in order to 
build the simulated ensemble spectra. 
 

In Figure 4-7, for comparison, the simulated ensemble absorption spectra of 

B850 LH2 (black line) and B820 LH2 (red line) from Rps. acidophila and low-B850 

LH2 from Rps. palustris (blue line) were overlaid on the 10K absorption spectrum 

of B800-low-B850 LH2 from Rps. palustris. In order to reproduce the low-B850 

LH2 spectrum, the site energies of B820-like Bchl a pairs were adjusted as E0 

(αB820-like) = 12,640 cm-1 (ΔE = 240 cm-1) and the site energies of the B850 Bchl 

a pairs were set as E0(αB850) = 12,300 cm-1 with dE = 240 cm-1. Intercomplex 

heterogeneity (Γinter = 160 cm-1) and 3000 realisations were needed to build an 

ensemble spectrum. This resulted in the simulated low-B850 LH2 spectrum, 

shown in Figure 4-7 blue lines, which has a broad band (at ~860 nm) with 

shoulders at 830 nm, being closest to the experimental spectrum (grey line).  
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Figure 4-8 A schematic representation of the transition-dipole moments and the coordinate arrangement of the α- and β-bound Bchl a molecules in the xy-
plane (left) and zy-plane (right). The 

! 

n"  etc. correspond to the wavefunctions of the electronically excited state localised on the α-bound Bchl a molecule 
in dimer n, respectively. The strongest contributions to the interaction result from the matrix elements for the intradimer nearest-neighbour interaction Vn,i, 
the interdimer nearest neighbour interaction Vn,e, the α-next-nearest-neighbour interaction Wα, and the β-next-nearest-neighbour interaction Wβ, 
respectively. The geometrical arrangement of the α - and β-bound Bchl a molecules are defined by the radius of α- and β-unit circle in xy-plane Ru (u = α , β), 
the geometrical angle of the pigment of α- and β-unit in xy-plane Au , the in-plane tilt of the transition-dipole moment of the α- and β-Bchl a from the 
circular tangent in xy-plane Πu, the height differences between the centres of the α- and β-Bchl a in the z-plane dHu, and the out-of-plane tilt of the 
transition-dipole moment of the α- and β-Bchl a in the z-plane Φ . The actual values of these parameters are summarised in Table 4-1 together with the 
respective data for LH2 and LH3 from Rhodopseudomonas acidophila. The circles with the dashed line help to orient our eyes.  
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Table 4-1 The coordinates of the arrangement of Bchl a molecules in an LH2 complex 
according to the x-ray structural data. 
 

 B850* B820§ Mixed† 

Rα (Å) 26.09 26.02 26.02 

Rβ (Å) 26.92 26.95 26.92 

Aα (rad) -0.2043 -0.2015 -0.2015 

Aβ (rad) 0.1566 0.1592 0.1566 

Πα (rad) -3.4957 -3.4598 -3.4598 

Πβ (rad) -0.5058 -0.5620 -0.5058 

Φα (rad) -0.1361 -0.0801 -0.0801 

Φβ (rad) -0.1284 -0.1288 -0.1284 

dH (Å) 0.00725 -0.0785 0.00725 

Vn,i; Vn,e (cm-1) 254a;226a 256b;210b 270c;230c 

Wα; Wβ (cm-1) -35a;-26a -38b;22b -38c;-25c 

Note: Rα and Rβ, radius of α- and β-bound Bchl a circle in xy-plane; Aα and Aβ, geometrical 
angle of the pigment of α- and β- bound Bchl a in xy-plane; Πα and Πβ, in-plane dipole tilt 
from circular tangent of the α- and β- bound Bchl a in xy-plane; Φα and Φβ, out-of-plane 
dipole tilt of the α- and β- bound Bchl a in z-plane; dH, height differences between centres 
α- and β-unit in z-plane. Vn,i and Vn,e, the nearest-neighbour intra- and inter-dimer 
interaction; Wα; Wβ, the α-next-nearest-neighbour interaction and the β-next-nearest-
neighbour interaction 

* McDermott, S.M., et al., 1995, Nature 375, 517-521 and Papiz, M.Z., et al., 2003, J Mol Biol 
326, 1523-1538.§ McLuskey, K., et al., 2001, Biochemistry 40(30), 8783-8789. 

aHofmann, C., et al., 2004, Chem Phys Lett 395, 373-378. bde Ruijter, W.P.F., et al.,2007, 
Chem Phys 341, 320-325.  

†c This work 

Now, having the site energies of the α-bound-B820-like Bchl a molecules (E0 

(αB820) = 12,640 cm-1) and the β-bound-B820-like Bchl a molecule (E0 (βB820) = 

12,400 cm-1), extended single molecule simulations were carried out. The 

position of the B820-like pairs was randomly distributed, Figure 4-9. The 

simulation based on this model, though not perfect, shows closer agreement to 

the experimental distribution of energetic separations ΔE (k= +1 and k= +3) than 

the simulations based on taking the same site energy for all the B850 Bchl as. 
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Again the match to the distributions of the mutual angles of the respective 

transition-dipole moments between (k= +1 and k= +3) and (k= +1 and k= +4) is 

good.  

 

Figure 4-9 Extended simulations based on the model shown in Fig. 4C, i.e. a nonameric 
structure with random- and correlated diagonal disorder and multipolypeptide composition. 
The B820-like-pair site-energies of E0(αB820) = 12,640 cm-1 with dE = 240 cm-1 and the B850-
pair site energy of E0(αB850) = 12,300 cm-1 with dE = 240 cm-1. The position of the B820-like-
pairs are randomly distributed. 

 
This simulation was extended further by systematically setting fewer B820-like 

site energies pairs. In none of these simulations was an improved reproduction of 

the experimental data obtained (Figure 4-10 and Figure 4-11). 
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Figure 4-10 Extended simulations based on the nonameric structure model with random- 
and correlated diagonal disorder and multipolypeptide composition. Top: The model 
structures show variations in positioning the B820-like-pairs (red lines, the dashed red lines 
indicate the α-bound-Bchla). Bottom: Comparison of the experimental data with the Monte 
Carlo simulation (2000 realisations) of model A (squared black lines), model B (squared red 
lines) and model C (squared green lines). B820-like-pair site-energies of E0(αB820) = 12,640 
cm-1 with dE = 240 cm-1 and the B850-pair site energy of E0(αB850) = 12,300 cm-1 with dE = 
240 cm-1.  
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Figure 4-11 Extended simulations from Figure 4-10 showing the model structures with more 
variations in positioning the B820-like-pairs pairs (red lines, the dashed red lines indicate 
the α-bound-Bchla). Bottom: Comparison of the experimental data with the Monte Carlo 
simulation (2000 realisations) of model A (squared black lines), model B (squared red lines) 
and model C (squared green lines). B820-like-pair site-energies of E0(αB820) = 12,640 cm-1 
with dE = 240 cm-1 and the B850-pair site energy of E0(αB850) = 12,300 cm-1 with dE = 240 
cm-1. 
 

Next the effect of a symmetrical arrangement of these B820-like site energies in 

the ring was tested. Six B820-like site energies were distributed symmetrically 

with respect to the 3-fold axis in the ring. The other 12 Bchl a molecules were 

given B850-site energies. This simulation now yields the best agreement 

between the simulations and the experimental data that have been found, 



Single molecule spectroscopy    97 

Figure 4-12, but only when a rather high intracomplex heterogeneity, Γintra, at 

320 cm-1 was introduced. This value is significant higher than those that have 

been reported for the B800-850 LH2 of Rps. acidophila (Γintra is 250 cm-1) 

(Hofmann  et al., 2004, Ketelaars  et al., 2001). This might be a consequence of 

having individual rings with a heterogeneous polypeptide composition. 

 

Figure 4-12 Top: Model structure that features 6 820-like-pair Bchl a molecules pairs (red 
lines, the dashed red lines indicate the α-bound-Bchla) distributed in C3 symmetry around 
the ring. Bottom: Comparison of the experimental data with the results from Monte Carlo 
simulations (2000 realisations) for the nonameric structure as shown in the top part taking 
random- and correlated diagonal disorder into account (black squares). The site energies of 
the pigments have been chosen as detailed in Fig. 6. The intracomplex heterogeneity (Γ intra) 
is 320 cm-1. The full and the dashed lines in the top part of the figure indicate the B820 like 
(dashed) and B850 like (full) site energies. 
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Figure 4-13 Comparison between the experimental data and the summation of Monte Carlo 
simulations (each 2000 realisations) for best 8-mer, 9-mer and 10-mer models (black line), 
the summation for best 8-mer and 9-mer model (red line) and the simulation for best 10-mer 
model only (green line). 
 

It has been suggested that some species of purple bacteria may contain LH2 

complexes where rings of multiple sizes co-exist (Kereiche  et al., 2008, 

Scheuring  et al., 2005). In order to test whether various mixtures of rings of 

different sizes could satisfactorily account for our experimental data we added 

together simulations for the best 8-mer, 9-mer, and 10-mer models in a number 

of different combinations (Figure 4-13 black line). This shows that most of the 

distribution of the relative angles of the transition dipole moments of the 

simulated data could satisfy the experimental data. However the distribution of 

the energetic separation ΔE (k = +1 and k = +3) and ΔE (k = +1 and k = +4) 

(Figure 4-13 black line) does not agree with the experimental histograms. 

Simulations using mixtures of the 8-mer and 9-mer models (Figure 4-13 red 

line) also show mismatch in the ΔE (k = ±1) and ΔE (k = +1 and k = +3) as well as 

the Δα (k = ±1) and Δα (k = +1 and k = +3). Simulations with the best 10-mer 

model shown in (Figure 4-13 green line) indicate that a 10-mer model cannot 
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satisfactorily reproduce the experimental data, especially for Δα (k = +1 and k = 

+3) (Figure 4-13 green line). 

 

Figure 4-14 Comparison of the experimental data with simulations based on octameric 
model structures with symmetrical (A) and unsymetrical (B) distributions for the α-B820-like 
Bchl molecules. The squared black lines and the squared red lines (bottom) correspond to 
the results based on the model A (top left) and on the model B (top right). 
 

In order to be sure of the ring size issue additional simulations with symmetrical 

and unsymmetrical options for the octameric model were re-evaluated and are 

shown in Figure 4-14. In no cases do the results of these simulations agree as 

well with experimental data as shown for nonameric model in Figure 4-12.  
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Though it is not possible to claim that these simulations can provide a definitive 

proof of the structure of the LL LH2 complex from Rps. palustris they do strongly 

favour both a nonameric model and one where the assembly has multiple 

apoprotein types within a single LH ring. It is also worth pointing out that the 

absorption spectrum of the native LL LH2 complex from Rps. palustris studied in 

this thesis is not the same as that of the B800-only LH2 complex used in the 

structural studies mentioned above (de Ruijter  et al., 2004). It is clear that 

additional work will be required before a complete understanding is obtained as 

to why it was not possible to isolate a LL LH2 complex from Rps. palustris that 

has the spectrum described by Hartigan et al. (Hartigan  et al., 2002). 

Photosynthetic bacteria such as Rps. palustris have a very complicated set of 

control mechanisms that can modify which of the multi-gene family of LH2 αβ-

gene pairs are expressed (Evans  et al., 2005, Tadros  et al., 1993, Tadros  et 

al., 1989). These differences, therefore, may reflect variations in the growth 

conditions that the bacteria were cultured in, in the various laboratories, where 

they have been studied. 

4.4 Conclusions 

The single-molecule spectra reported here can only be satisfactorily explained 

by assuming that the individual LL LH2 complexes from Rps. palustris contain a 

heterogeneous polypeptide composition, where multiple types of αβ apoproteins 

co-exist in the same individual complex, producing individual rings with Bchl 

molecules having both B820-like and B850-site energies. The simulations 

described above strongly reinforce this conclusion. The experimental data can 

be modelled best by taking an arrangement of the Bchl a molecules in the mixed 

B820/850 ring of 9 αβ Bchls dimers, where in 6 αβ-pairs the Bchl a molecules 

have B820-like site energies and are distributed around the ring a way that the 

symmetry of the nonameric assembly is reduced to C3. High intracomplex 

disorder reflects the heterogeneity in the polypeptide composition.  

 



 

 

5 Low light adaptation: Energy transfer processes 
in different types of light harvesting complexes 
from Rps. palustris 

5.1 Introduction 

This chapter describes the energy transfer reactions that take place within the 

LH2 complexes from Rps. palustris grown at different light intensities, especially 

the HL and LL LH2 complexes. At the time of writing, few time-resolved studies 

have looked at the energy transfer reactions that take place within the LL LH2 

complexes from Rps. palustris. Hess and co-workers described the energy 

transfer in bacterial membranes isolated from Rps. palustris grown at low light 

conditions measured by picosecond pump probe spectroscopy (Hess  et al., 

1993). A more detailed transient spectroscopic study on extensively purified LL 

LH2 complexes was conducted by Nishimura and colleagues who found a B824 

component and suggested several possible kinetic models for the energy transfer 

pathways present (Nishimura  et al., 1993). This present study is focused on a 

detailed analysis of femtosecond pump-probe spectra obtained from LH2 

samples isolated from Rps. palustris grown at four different light intensities, as 

well as on the analysis of their ground state absorption spectra. In Chapter 4, 

direct evidence has been found for the presence of Bchl a molecules with both 

‘B850’ and ‘B820’ site energies in individual LL LH2 complexes from Rps. 

palustris by use of single molecule spectroscopy. This information has been used 

to help interpret the data from the present study and explain the ongoing 

specific spectral changes in LH2 complexes during low light adaptation. 

5.2 Global analysis 

A global fitting procedure was carried out by minimising the square of the error 

between the measured matrix, ),(exp tEA!  of the spectroscopic data and the 
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(t);i " 1,2,3{ }, while at each iteration step, ),( Ei!  is found by a Gaussian 

elimination. The sheet thickness is given by d. This approach is a generalisation 

of the method described by van Stokkum and colleagues where time-dependent 

rate constants have been included (van Stokkum, 1994).  

5.3 Results and discussion 

5.3.1 Analysis of ground state absorption spectra 

The ground state NIR absorption spectra of the LH2 complexes, were measured 

at 77 K and 293 K (Figure 5-1, left and right column, respectively, also see 

Chapter 3), and these give information about the Qy-transition energies of B800 

and B850 Bchl as from the ground state to the excited states. Common features 

are observed in all spectra. At 1.55 eV (800 nm), there is a relatively sharp 

absorption band with a vibronic replica at 1.62 eV (765 nm).  Both of these can 

be assigned to the Qy band of the Bchl a molecules in the B800 ring (Sauer  et 

al., 1996a). At lower energy, there is a broader transition the position of which 

is clearly temperature dependent: 1.43 eV (867 nm) at 77 K, and 1.45 eV (855 

nm) at 293 K. This transition is labelled Γ1L and can be assigned to the transition 

from the ground state to the low energy one-exciton band of the B850 ring 

(Sauer  et al., 1996a). The thermally induced blue-shift of Γ1L can be explained 

by a temperature-induced weakening of the excitonic interaction, and hence a 

reduction of exciton splitting. Recently, a similar temperature dependence of 

B850 blue-shift was observed in LH2 complexes from other bacteria and has been 

explained within the framework of the modified Redfield theory (Zerlauskiene  

et al., 2008). 
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Figure 5-1 Ground state absorption spectra (thick red lines, normalized to Bchl a Qx band) 
as a function of growth conditions (rows) measured at two different temperatures (left 
column, 77 K; right column, 293 K). Thick green lines: calculated spectra according to the 
model explained in the text; thin red lines: calculated Γ1L, thin blue lines: calculated Γ1H, thin 
black lines: molecular transition of Qy band in B800 molecule including vibronic 
progression. Panel D shows the labelling of the transitions that is used in the text.  
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Growth of the Rps. palustris under reduced illumination leads to characteristic 

changes in the ground state absorption spectra (Chapter 3): Γ1L loses oscillator 

strength, while the B800 band apparently becomes stronger and larger. This 

progression holds for both low and high temperature measurements (compare 

panels A-C-E-G and B-D-F-H in Figure 5-1 for low and high temperature, 

respectively). Furthermore, Γ1L becomes more asymmetric in the samples from 

cells grown at lower light intensities. As discussed below, it is a reasonable 

assumption that the apparent increase of both intensity and width of the B800 

transition is in reality caused by a superposition of the (unchanged) B800 

absorption with changes in the spectral properties in the ‘B850’ ring. 

The absorption spectra of LH2 under all conditions were simulated using the 

following model: the B800 transition is regarded as a molecular transition 

together with its vibronic progression of one prominent normal mode; the B850 

molecules form two excitonic bands, Γ1L close to 1.43 eV (867 nm) and Γ1H at 

1.53 eV (810 nm). Both bands were assumed to be Lorentzians and 

inhomogeneous broadening was introduced by an exponential distribution with 

characteristic distribution energies of t800 for the B800 band and t850 for the one-

exciton bands. Hereby, the distribution of states was assumed to decay 

exponentially towards higher energies.  

Table 5-1 Fitting parameters for the reproduction of ground state absorption spectra (Figure 
5-1) at 293 K (values for 77 K are in brackets). All data are in meV except the ratio r(Γ1H/Γ1L), 
which has no unit. 
 

 HL LL1 LL2 LL 

E(B800) 1539 (1535) 1536 (1536) 1536 (1537) 1539 (1539) 

E(Γ 1L) 1439 (1422) 1437 (1421) 1435 (1419) 1436 (1421) 

E(Γ 1H) 1569 (1562) 1511 (1530) 1511 (1521) 1512 (1515) 

r(Γ 1H/ Γ 1L) 0.20 (0.20) 0.21 (0.73) 0.34 (0.74) 0.90 (0.95) 

t800 6 (9) 24 (10) 21 (10) 14 (9) 

t850 11 (9) 25 (21) 38 (32) 50 (50) 
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The simulated spectra shown in Figure 5-1 (green lines) closely reproduce the 

measured spectra (red). The individual contributions to the calculated spectra 

are shown as thin lines. The best fitting parameters as a function of growth 

conditions are given in Table 5-1. Going from HL to LL, the ratio r(Γ1H/Γ1L) 

increases from 1:5 to nearly 1:1. This is a clear sign of a change in the ‘B850’ 

molecules, leading to a different excitonic splitting. The exponential broadening 

parameter t850 for the B850 excitonic features increases strongly under low light 

conditions, while it is only weakly temperature dependent. In contrast, the 

broadening t800 is not significantly dependent on the growth conditions but 

rather on the temperature. This clearly distinct behaviour of the broadening 

parameters can be related to different broadening mechanisms affecting the 

monomeric and excitonic bands, respectively. According to the available 

literature, the B800 ring seems to be not influenced by growth conditions, so a 

dependence of the broadening parameter t800 on growth conditions is not 

expected (Evans  et al., 1990, Gardiner  et al., 1993, McLuskey  et al., 2001). 

The temperature dependence of t800 can be assigned to dynamic disorder, 

caused by temperature-induced occupation of low-energetic intramolecular 

vibrational modes. The thermal occupation is governed by Boltzmann's law, 

hence the exponential broadening (Gierschner  et al., 2002). 

5.3.2 Transition absorption spectra measurements 

Transient absorption spectra of HL, LL, and two intermediate (LL1, LL2) samples 

of LH2 complexes from Rps. palustris were measured in the NIR region to trace 

energy transfer and relaxation processes. Excited states in B800 were created by 

pumping at 795 nm (1.6 eV). An overall view of the pump probe spectra of LH2 

samples (HL, LL1, LL2, and LL) is shown in the contour plots in Figure 5-2A, B, C 

and D, respectively. Photoinduced absorption (positive values, red colour) 

progressively disappears when going from HL to LL samples; at the same time, 

the transient bleach (green and blue) of Γ1L broadens. The changes in the higher 

energy region of pump-probe spectra point to the presence of a higher excitonic 

band in the LL LH2 exciton manifold. 
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Figure 5-2 Contour plots of measured transient absorption spectra of LH2 complexes from 
Rps. palustris grown at four different illumination; changes in differential absorption (colour 
scale is identical in all four panels) is dependent on pump probe delay and probe energy are 
shown in high light (HL), two intermediate (LL1, LL2), and low light (LL) sample (A, B, C, and 
D, resp.); red colour, photoinduced absorption; green and blue, transient bleach. 
 

Figure 5-3 and 5-4 show vertical and horizontal cuts of the contour plots from 

Figure 5-2. Figure 5-3 shows pump-probe spectra at different pump-probe delay 

times, coded by colour. In the case of the HL LH2 complexes (Figure 5-3A), at t 

= 0 (during the pump pulse), the spectrum shows the presence of a transient 

bleaching of both B800 and the Γ1L ground state absorption bands, together with 

the excitonic state transition ΓL2, i.e., from the lowest one-exciton level to the 

two-exciton level (Novoderezhkin  et al., 1999). The presence of excitonic B850-

related features prior to energy transfer from B800 to B850 can be explained by 

a resonant generation of B850 excited states by the 1.6 eV pump pulse (black 

line in Figure 5-3A). Within 3 ps, the photobleaching signal from excited B800 

completely disappears, while the photoinduced absorption (ΓL2) and ground state 

bleaching (Γ1L) of B850 increase strongly. This is a well-known process and is due 

to energy transfer from B800B850. It is important to note that during this 

energy transfer (ET) process, the increase of Γ1L is much stronger than the 



Energy transfer processes 107 

concomitant bleaching recovery of B800. This clearly shows the excitonic nature 

of the B850. After 3 ps, no further spectral changes are observed in the HL 

sample until much longer times (magenta, yellow and green curves in Figure 5-

3A are almost identical). All the curves in Figure 5-3A show a very clear 

isosbestic point at 1.44 eV (862 nm). This reflects the simple AB reaction for 

ET from B800 to B850 in the absence of further spectral changes. 

 

Figure 5-3 Difference absorption spectra of LH2 complexes at individual pump-probe 
delays; HL complex (A) shows Γ1L transition, there is no change after 3.2 ps (pink curve), LL 
complex (D) presents an additional transition Γ1H changing till ~10 ps (yellow and olive 
curves); panels of intermediate samples LL1 and LL2 (B, and C, respectively) represent 
increasing contribution of Γ1H band to the spectra. In all panels: solid lines, measured 
values; dashed lines, global fit. The difference spectra (ΔA) is the absorption spectrum of 
the excited molecule minus the absorption spectrum of the molecule in the ground state. 
 

Pump-probe spectra of the LL samples at t = 0 are similar to those of the HL 

sample; compare Figure 5-3B, C and D to Figure 5-3A, respectively. The 

spectral evolution after the pump pulse is, however, dramatically different for 

the LL samples. The positive ΔA band at t = 3 ps decreases on going from LL1 to 

LL2, and no positive signal can be observed at all in the fully LL sample 
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(magenta curves in Figure 5-3). This loss of the positive band can be explained 

by superposition of positive and negative bands in close proximity. There is a 

positive ΓL2 band at 1.48 eV (840 nm) and a negative signal from the Γ1H band, 

resulting in a local minimum at 1.53 eV (813 nm).  This provides evidence of a 

second, higher excitonic band of B850 in LL LH2 complexes in the region of 810 

nm (Figure 5-3D). These findings are in agreement with the spectral assignment 

of the room temperature ground state absorption spectra; see Figure 5-1 and 

Chapter 3. Finally, the positive (ΔA) band for the transition from the high-

energy one-exciton band to the two-exciton band ΓH2 can be observed at 1.56 eV 

(794 nm). In the lower light samples the presence of delayed kinetics is observed 

on the high energy side of the Γ1H bleach (1.53 and 1.48 eV) (magenta and olive 

curves in Figure 5-3B, C and D). The shapes of the spectra on the low energy 

side are very similar for individual pump-probe delays (Figure 5-3).  

 

Figure 5-4 Time traces of differential absorption spectra of LH2 complexes from HL (A), LL1 
(B), LL2 (C) and LL (D) samples at three representative probe energies: 1.54 eV (805 nm), 
1.48 eV (838 nm), and 1.35 eV (918 nm) (green, red, and black lines, resp.). Panels show 
processes from t = 0 until 20 ps, inserts processes until 200 ps. In all panels: solid lines, 
measured values; dashed lines, global fit. 
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To illustrate more clearly the kinetics of the spectral evolutions in the LL 

samples, Figure 5-4 presents time traces obtained as horizontal cuts through 

Figure 5-2 at following probe energies: 1.35, 1.48, and 1.54 eV. In the HL 

sample, all time traces show mono-exponential behaviour. In contrast, the LL 

samples show a clearly delayed contribution in the range from 1.48 to 1.54 eV, 

where several photoinduced features are superposed, namely B800, ΓL2 and Γ1H. 

In principle, the observed slow kinetics could be due to delayed ET from B800 to 

B850, causing a slow decrease of B800 and a concomitant slow build-up of the 

ΓL2 and Γ1H transitions. However, no corresponding slow kinetic phase in the 

build-up of the Γ1L bleach can be observed in time traces at 1.35 eV, where the 

signal is caused nearly exclusively by the Γ1L transition (Figure 5-4, black lines). 

Instead there is mono-exponential behaviour for all samples. The picosecond 

spectral evolutions of B850 in the LL samples should therefore be associated 

with B850 exciton relaxation dynamics after B800B850 energy transfer. This 

picture is confirmed by a global fitting procedure (see below). 

In the insets of Figure 5-4, the same time traces are shown but on a longer time 

scale. It is evident that the decay of the B850 excitons to the ground state 

occurs significantly faster in the LL samples than in the HL sample. This 

difference is not due to exciton annihilation since in both cases the kinetics have 

been shown to be independent of the pump energy at pump intensities used here 

(data not shown). In LL samples, the forbidden transition from the B850 exciton 

back to the ground state is more allowed probably because of a disorder 

introduced into the LL LH2 structure due to the presence of different 

apoproteins (see Chapter 3 and 4) (Tharia  et al., 1999).   
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Figure 5-5 Photophysical model of energy transfer paths and associated rate constants 
between Bchl a molecules in the B800 and the B850 ring. Processes for HL and LL samples 
are given as solid and dashed arrows, and the population probes that can be detected in 
transient absorption are given as dot-dashed and dotted lines. 
 

 

Figure 5-6 Photoexcitation spectra of LH2 complexes calculated by global fitting of pump 
probe spectra. Absolute absorption cross-section spectra are given for the initial, 
intermediate and final photoexcitation (dotted, solid, and dashed lines, resp.) of HL, LL1, 
LL2, and LL complexes (A, B, C, and D, respectively). 
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5.3.3 ET rate constants for HL from global fitting 

A global fitting procedure has been performed to properly characterise the time-

resolved measurements (see section 5.2). Perfect fits have been obtained for all 

measurements; see dashed lines in Figure 5-3 and 5-4. The fits are rationalised 

by a photophysical model that is shown in Figure 5-5. For the HL sample, two 

basis spectra and two simple exponential rate constants are required. The first 

basis spectrum (dotted curve in Figure 5-6A) is assigned to the B800 excited 

state, created by resonant excitation by the pump pulse. The negative 

absorption feature at 1.55 eV is caused by transient bleaching of the respective 

ground state transition. The fitted absorption cross-section of this band is about 
2

cm
16

103
!

" , which is close to the literature value of 2
cm

16
102.3

!
" for this ground 

state transition (Connolly, 1982). The first spectrum converts into the second 

spectrum in the process assigned to B800B850 energy transfer with decay 

constant k1. The second basis spectrum (solid curve in Figure 5-6A) represents 

the excited state spectrum of the B850 exciton that decays with the rate 

constant k3 to the ground state. It is characterised by a negative absorption 

band, centred at 1.42 eV, and a positive absorption band at 1.47 eV. The 

observed transfer times 
ii
k=ô /1  are in line with literature data where 

B800B850 transfer times of around 0.9 ps have been widely published for a 

variety of purple bacterial LH2 complexes (Herek  et al., 2000, Hess  et al., 

1995a, Ihalainen  et al., 2001, Kennis  et al., 1997b, Ma  et al., 1997, Ma  et al., 

1998). The shape of this second basis spectrum can be represented by a 

superposition of two Lorentzian bands of equal integral area, where the negative 

Lorentzian is centred at 1.45 eV, and the positive one at 1.46 eV (fit not shown). 

They are assigned to the Γ1L and ΓL2 transitions, respectively. The slight blue-

shift of the two-exciton transition vs. the one-exciton transition is typical for 

strongly delocalised molecular excitons. From the lowest one-exciton state, the 

transition strength into higher exciton states is negligible because both 

transitions have equal oscillator strengths. This behaviour is predicted for the k 

= 0 exciton (Novoderezhkin  et al., 2002). Since the resonance energy transfer 

from the B800 state should result in the creation of a “hot”, 0!k , exciton, it 

can be concluded that exciton relaxation is much faster than the B800B850 

transfer rate, and cannot be observed in the present time-resolved spectra. The 
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values of the rate constants are summarised in Table 5-2. Interestingly, in 

Figure 5-5, the dotted spectrum contains the same features as the solid one in 

the B850 region, compressed by roughly a factor of 3. It is possible to conclude 

that under current experimental conditions approximately 25% of the total B850 

population is not created by energy transfer but by direct excitation. 

Table 5-2 Rate constants from global fitting of transient absorption spectra; k1 for energy 
transfer B800B850 is not dispersive, k2 for the process of exciton relaxation has the 
dispersive parameter γ2; k3 for exciton decay to the ground state with dispersive parameter 
γ3. 
 

Sample 1/k1 (ps) 1/k2 (ps) γ2 1/k3 (ps) γ3 

HL 0.91 - - 1 250 0* 

LL1 1.10 2.00 -1.00 280 -0.16 

LL2 1.00 1.60 -0.93 300 -0.16 

LL 1.00 2.10 -0.94 220 -0.16 

(-)  Process not considered. Perfect fit obtained without this process, so inclusion was not 
justified. (*) Value fixed 

 

5.3.4 Relaxation and dispersive decay of B850 excited states in LL samples 

The absence of isosbestic points in Figure 5-3, which are apparent in the high 

resolution spectra (or see Figure 5-6) and the presence of slow transients in 

Figure 5-4 suggest that more than two states are necessary for the global fit of 

the low light samples LL1, LL2, and LL. Indeed, for a good fit one needs three 

basis spectra, coupled with three processes out of which the second and third 

ones are dispersive with time-dependent rate coefficients of the form 

( ) ( ) ( ) { } ps=t;i;ttk=tk 0

iã0

ii 12,3/ 0 !" . The fitted values are in Table 5-2. The basis 

spectra for the first photoexcitation (k1, ET from B800-B850) are similar for LL 

and HL samples, containing contributions of both B800 bleach and B850 excitonic 

features (dotted curves in Figure 5-6). In analogy to the HL sample, the first 

process is assigned with the rate constant k1 to B800B850 ET, and therefore, 

the second basis spectrum represents the B850 exciton. Interestingly, the ET 

rate constant k1 is only reduced by about 10 % in LL samples with respect to the 
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HL sample, see Table 5-2. Since spectral overlap changes dramatically, this is 

strong evidence for a non Förster type mechanism governing energy transfer 

(Beljonne  et al., 2009). 

 

Figure 5-7 Differential spectra for LL, LL2, and LL1 samples (solid, dashed, and dotted line, 
respectively), calculated from second and third photoexcitation spectra. A clear signature of 
Γ1H band in each LL sample and no change in B800 bleach contribution (no sign of delayed 
B800B850 ET) suggesting B850 exciton relaxation. 
 

By comparing the second and the third basis spectra, it is possible to 

characterise the slow spectral changes typical for low light samples. In contrast 

to the HL sample, the low light samples show a negative band at 1.53 eV. In 

agreement with Figure 5-1, this band can be assigned to the Γ1H transition, 

increasing in the order LL1→LL2→LL in both Figure 5-1 and 5-6. The transition 

from the second to the third basis spectrum (dashed curves in Figure 5-6) is 

characterised by a strong decrease of this Γ1H transition, accompanied by a slight 

red-shift of the Γ 1L transition. The respective difference spectra are shown in 

Figure 5-7 to show the differences between the second and third 

photoexcitation more clearly. In all cases, it is clear that the Γ1H transition is 

weakened, and that there is no contribution of the B800 bleach to the observed 
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spectral changes. This excludes the assignment of this process to a delayed ET 

from B800B850. According to the photophysical model suggested here and 

used for this analysis (Figure 5-5), this process can be assigned to slow exciton 

relaxation from the initially populated higher exciton band (which is in 

resonance with B800 emission) to the lower one. If this is correct then it should 

be possible to observe the population transfer by a decrease of stimulated 

emission (SE) from the higher exciton, correlated with an increase of SE from the 

lower exciton. This is exactly what is observed in Figure 5-6D. The SE features 

occur slightly red-shifted against the bleaching due to a small Stokes shift.  

The observation of a time-dependent (dispersive) rate coefficient k2(t) in the 

low light samples supports its assignment to an exciton relaxation. The k=0 

exciton is reached via a cascade of intermediate steps, additionally superposed 

by vibronic relaxation (Novoderezhkin  et al., 2002). This sequence of 

elementary transfer steps with progressively increasing transfer times is the 

reason for the observed time-dependent relaxation coefficient.  A possible 

reason for a much slower exciton relaxation in LL than in HL samples could be 

weaker electronic coupling between Bchl a molecules in the LL B850 ring, where 

some of these molecules have "B850-like" and some others "B820-like" spectral 

properties due to a more complex apoprotein composition. In the LH2 complexes 

in general, the pigment binding apoproteins provide a quasi-continuum ("bath") 

of states and the coupling of the Bchl a to this bath causes fluctuations in the 

exciton energy. It has been pointed out that the coupling parameter (the 

amplitude of the bath-induced fluctuations of the Bchl a molecules) determines 

the time of exciton relaxation in different light harvesting systems. For LH1 

complexes in Blastochloris viridis, a value of 490 cm-1 for this parameter has 

been obtained, resulting in a relaxation time below 100 fs (Novoderezhkin  et 

al., 2002). The loss of excitonic coherence in HL LH2 samples of Rps. acidophila 

strain 10050 has been measured to be 160 fs (Mercer  et al., 2009). Justifying 

relaxation times in the picosecond time regime, as obtained here, requires a 

coupling term of less than 50 cm-1. The “bath” in the case of the LH2 complexes 

consists of the many degrees of freedom of the binding apoproteins; the 

resulting dynamic fluctuations of atomic positions lead to a change in exciton 

splitting and/or site energies for the single Bchl a molecules.  
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5.3.5 LH2 apoproteins vs. spectral properties of B850 Bchl a in LL 

Previous studies have identified two key amino acid residues in LH2 α-apoprotein 

that are associated with the blue spectral shift of the B850 absorption band 

depending on light intensity during bacterial growth (Cogdell  et al., 2002, 

McLuskey  et al., 2001). In HL Rps. acidophila, Tyr-44 and Trp-45 form two 

hydrogen bonds that hold two carbonyl oxygen atoms in planar orientation with 

respect to the two B850 bacteriochlorin rings. In LH2 complexes isolated from 

Rps. acidophila strain 7050 grown at LL conditions, Tyr-44 and Trp-45 are 

replaced by Phe and Leu, respectively. Phe and Leu do not form hydrogen bonds 

with the carbonyl oxygens, leaving them out of the plane of the bacteriochlorin 

rings. This reorientation of the carbonyl groups results in a lower degree of 

conjugation in the bacteriochlorin rings followed by the blue-shift of B850 band 

from 850 nm to 820 nm. When Rps. palustris is grown at LL one of the LH2 α-

apoproteins that is expressed also has these ‘key’ amino acid residues replaced 

by Phe and Met (Tharia  et al., 1999). Under LL conditions, HL-type α-

apoproteins are also expressed. This suggests that LL LH2 complexes could have 

Bchl a molecules with mixed site-energies (both ‘B820-like’ and ‘B850-like’) in 

the same individual LL LH2 complex. Indeed, in our experiments with LL LH2, 

both a higher exciton state Γ1H and a lower exciton state Γ1L have been 

observed. This result fits well with previous spectroscopic data that have been 

published suggesting the presence of mixtures of Bchl a molecules with ‘B820-

like’ and ‘B850-like’ site energies in one LH2 ring (see also Chapter 4) (Gall  et 

al., 1999, Georgakopoulou  et al., 2002, Tadros  et al., 1989, van Mourik  et al., 

1992). Formally, this spectroscopic data does not distinguish between mixed 

rings and mixtures of different but homogenous B850 rings. However, single 

molecule spectroscopic study on individual LL LH2 isolated from Rps. palustris, 

described in Chapter 4, provides data that are consistent with the existence 

that there are single LL LH2 complexes from Rps. palustris that do contain mixed 

rings. In the chapter of single molecule spectroscopy, it was shown that in HL 

LH2 complexes, all exciton states where 2>k  are optically forbidden. In the 

case of LL LH2 complexes, the 3=k exciton was significantly allowed, which 

explains the redistribution of oscillator strength towards higher energies seen in 

the absorption spectra of the LL complexes (Chapter 4). In the present analysis, 

the measurements represent an ensemble of energy bands, the single (k = 1, 2, 
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and 3) exciton bands cannot be observed individually. Therefore, the decrease 

of oscillator strength towards higher energies is smooth and can be 

approximated by an exponential function that has been used in the kinetic 

model described above. It is not yet clear whether all the LL LH2 complexes 

have the same internal organisation of the different antenna apoproteins that 

are present in the ensemble population. To help to answer this question more 

detailed quantitative analyses of the apoprotein composition are required.  

5.4 Conclusions 

This study of LH2 complexes isolated from Rps. palustris grown at different light 

conditions has revealed novel characteristics of the ring of strongly coupled Bchl 

a molecules in LL samples. In the case of HL LH2 complexes the spectroscopic 

properties of the B850 ring can be satisfactorily accounted for by assuming the 

presence of one major exciton band Γ1L. In contrast, a second, higher energy 

exciton band Γ1H is required to account for the properties of the LL LH2 

complexes. The presence of the Γ1H feature in the LL case is also supported by 

the decomposition analysis of the ground state absorption spectra of the LL 

samples. 

The mono-exponential rate constant k1 for ET from B800 to ‘B850’ is only slightly 

reduced (by about 10%) in LL samples in comparison to HL ones. The rate 

constant k2 for the exciton relaxation from Γ1H to Γ1L is only seen in LL samples 

and is strongly dispersive. The decay of the ‘B850’ exciton back to ground state 

is faster in the LL samples by about a factor of 5, however, the decay is still very 

slow. The rate constant k3 for this process is mono-exponential in the case of the 

HL complexes but is weakly dispersive in the LL ones. A simple photophysical 

model has been used to fully reproduce the transient absorption spectra of LH2 

complexes.  

 



 

 

6 B800-850 HL and B800-low-850 LL LH2 
complexes from Rps. palustris: crystallisation 
trials and low-resolution model structures 

This chapter describes attempts to produce 3D crystals from HL and LL LH2 

complexes from Rps. palustris that are suitable for an X-ray structure 

determination. Crystallisation protocols used for producing crystals of the B800-

850 LH complexes from Rhodopseudomonas acidophila strain 10050 and the 

commercial crystals screen protocols, e.g. from Molecular Dimension and 

Hampton Research, were used. The optimised conditions for the HL and LL LH2 

complexes successfully produced bigger crystals, though still disappointingly 

with only low-resolution diffraction (4.5 Å). 

6.1 Crystallisation trials 

Table 6-1 Initial crystallisation conditions tested with the LH2 complexes from Rps. 
palustris. 

 
Parameter Unit Values In steps of 

Detergent: Lauryl-DimethylAmine N-Oxide (LDAO) % 0.1 n/a 

Protein absorption at 850 nm (HL) or 800 nm (LL) cm-1 30-110 20 

Precipitant: K2HPO4 (KPi) pH 9.7 M 0.5-1.2 0.1 

Reservoir solution: (NH4)2SO4 pH 9.35 (AMS) M 1.5-2.0 0.1 

LH2 drop size µl 20 n/a 

pH in the drop - 8.15 n/a 
Volume reservoir ml 1 n/a 
Incubation temperature °C 20 n/a 

 

In the initial screening, crystallisation of HL LH2 from Rps. palustris was 

attempted using the protocols described for the crystallisation of B800-850 LH2s 

from Rps. acidophila 10050 as they were reported by Howard et. al. (Howard, 
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2000), but without an additive (i.e. Benzamidine). These conditions use KPi as a 

precipitant and AMS as the salt in the reservoir solution. The details of the initial 

parameters used are listed in Table 6-1. Many of these initial trials resulted in 

phase separation, amorphous precipitation, and the LH2 protein was often 

denatured (Figure 6-1G and H). However, in some of these initially tested 

conditions there were crystals formed. The HL LH2 complex produces large 

tetragonal crystals (~0.25×0.4 mm) (Figure 6-1A) and cubic crystal (~0.7 mm 

long) (Figure 6-1B), but only after extended periods such as 6 months. These 

crystals were obtained from the following conditions: protein at an OD850 of 50 

cm-1 0.1% (v/v) LDAO and 1.0 M KPi pH 9.7 in the droplet and 1.9 M AMS pH 9.35 

in the reservoir (Figure 6-1A) and with the concentration of phosphate reduced 

to 0.7 M pH 9.7 in the droplet and 1.8 M AMS pH 9.35 in the reservoir (Figure 6-

1B). These crystals only diffracted poorly (9-10 Å) at the synchrotron beam 

(ESRF, Grenoble, France).  

 

Figure 6-1 Typical results of initial crystallisation screens from HL and LL LH2 Rps. 
palustris grown at 20°C :  

A. HL LH2 crystals grown with  1.0 M KPi pH 9.7 in the droplet and 1.9 M AMS pH 9.35 in the 
reservoir;  

B. HL LH2 crystal grown with 0.6 M KPi pH 9.7 in the droplet and 1.8 M AMS pH 9.35 in the 
reservoir;  

C. HL LH2 crystals grown with 0.8 M KPi pH 9.7, CsCl [0.1M] and 2% Benzamidine-HCl in the 
droplet and 1.8 M AMS pH 9.35 in the reservoir; 

D. HL LH2 crystals grown with 0.1M Tris-HCl pH9.5, 0.1 M NaCl, 0.1 M MgCl2 and 30% PEG 
400 in the reservoir; 

E. LL LH2 crystals grown with 1.2 M KPi pH 9.7 in the droplet and 1.6 M AMS pH 9.35 in the 
reservoir; 

F. LL LH2 crystals grown with 0.1 M Tris-HCl pH9.5, 0.1 M NaCl, 0.1 M MgCl2 and 30 %  PEG 
400 in the reservoir; 

G. Example of phase separation;  

H. Example of precipitate. 
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Table 6-2 Optimisation of the initial crystallisation conditions of LH2 complexes from Rps. 
palustris. 

 
Parameter Unit Values In steps of 

Detergent: Lauryl-DimethylAmine N-Oxide (LDAO) % (v/v) 0.1 n/a 

Protein absorption at 850 nm (HL) or 800 nm (LL) cm-1 30-110 20 

Precipitant: K2HPO4 (KPi) pH 9.7 M 0.5-1.2 0.1 

Reservoir solution (1 ml): (NH4)2SO4 pH 9.35 (AMS) M 1.5-2.0 0.1 

LH2 drop size µl 20 n/a 
pH in the drop - 8.15 n/a 
Incubation temperature °C 20 n/a 
    
Additional salt: NaCl or (KCl, CsCl, CaCl2 or MgCl2) mM 0-100 10 
Amphiphile: Benzamidine-HCl or (1,2,3-

Heptanetriol or Spermidine) 

% (w/v 

or v/v) 
0-20 2 

 

Optimisations around the initial conditions were carried out by varying the type 

of salt at different concentrations and with an addition of small amphiphiles, 

e.g. 1,2,3-Heptanetriol, Benzamidine or Spermidine (Table 6-2) and by using a 

commercial additive screen (see Appendix 6). Many of the optimisation trials, 

unfortunately, also produced amorphous precipitation or phase separation and 

denatured proteins. The only crystals observed in these trials were from the HL 

LH2 protein, which crystallised with 0.8 M KPi pH 9.7 with 100 mM CsCl and 2% 

(w/v) Benzamidine-HCl as the additives in the droplet and 1.8 M AMS pH 9.35 in 

the reservoir solution (Figure 6-1C). This crystal was however not a single 

crystal and give very poor diffraction (22 Å) at our home X-ray source.  

LL LH2 crystals were obtained with the same initial conditions used for the HL 

complexes but with a higher concentration of protein, OD800 = 110 cm-1. These 

were small crystals that had tetragonal shapes (~0.2-0.3 mm, Figure 6-1E) and 

gave diffraction up to 10 Å resolution at the ESRF. Trials to optimise the initial 

conditions (Table 6-2) unfortunately only gave amorphous precipitation and 

phase separation. 

In the case of phase separation, the concentration of the precipitant at which 

these phase separations occur was below that required to precipitate the 

protein. Under these conditions the LH2 complexes denature in the oily 
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detergent phase (Figure 6-1G). In the case of amorphous precipitation, the 

concentration of the precipitant is too high and the protein precipitates too 

quickly (Figure 6-1H). The most challenging problem of using the ‘standard’ 

Rps. acidophila conditions for the LH2 from Rps. palustris was the 

irreproducibility of the shape and size of the crystals shown in Figure 6-1. Very 

often, even, successful initial crystallisation conditions did not give crystals in 

subsequent attempts. 

Therefore commercial screens, i.e. MemSys and MemStr from Molecular 

Dimensions (Appendix 3 and 4), were tried. These screens consist of a targeted 

sparse matrix set of 1 ml x 96 conditions allowing the pH range, precipitants and 

salts used in membrane protein crystallisation to be screened with the 

detergent-containing protein drop. These screens produced promising hits with 

crystallisation conditions containing polyethylene glycol (PEG) 400 (Figure 6-1D 

and F). The crystals from these conditions diffracted in our home X-ray system 

up to 15 Å and 9 Å for HL and LL LH2, respectively.  

 

Figure 6-2 Monitoring the crystallisation process using a visualisation robot. In this 
example, the HL LH2 complex from Rps. palustris was crystallised using a condition from 
the MemGold screen containing 0.1 M Tris-HCl pH9.5, 0.1 M NaCl, 0.1 M MgCl2 and 30% PEG 
400. The reservoir volume was 50 µ l, while the sample drop size was 1 µ l (0.5 µl LH2 
protein:0.5 µ l precipitant). Temperature for the crystal growth was 20°C. (SEE AVAILABLE 
MOVIE) 
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In order to search more comprehensively, different commercial screens, i.e. 

MemGold, PEG/ION screen and JCSG screen (Appendix 5, 7 and 8), were tried. 

All these screens are optimised sparse-matrix polyethylene glycol (PEG)-based 

screens. Each screen contains crystallisation conditions with different PEGs, pH, 

salts and additives. In trying these screens, the crystallisation robots (Hamilton 

liquid dispensing robot and Cartesian Honeybee 8+1 nanodrop robot) were used 

to speed up the tedious process of screening many conditions for crystallisation. 

These robots are able to accurately dispense small volume, e.g. 0.5 µl, and so 

allow many more conditions to be tested with the same amount of protein. In 

these screens, micro-crystals were observed from the crystallisation condition 

containing 0.1 M Tris-HCl pH9.5, 0.1 M NaCl, 0.1 M MgCl2, 30% PEG 400 in the 

reservoir (this solution was diluted 1:1 with the protein to form the droplet) 

(Figure 6-2). The time course of the nucleation process and the crystal growth 

of HL LH2 complexes in this crystallisation condition were followed by crystal 

plate (Themo Electron) visualisation robot (Figure 6-2). The nucleation starts on 

the 22nd day and the crystallisation growth is completed within 75 days.  

 

Figure 6-3 HL and LL LH2 crystals of Rps. palustris grown in 0.1 M Tris-HCl pH9.5, 0.1 M 
NaCl, 0.1 M MgCl2 containing different PEG 400 concentration. 0.1 % LDAO was as the 
detergent. Temperature in the incubator was kept constant at 10°C.  
 

Attempts to improve the size and quality of these crystals were then made by 

varying the concentration of PEG 400 (Figure 6-3). Furthermore, the 

crystallisation plates were incubated at lower temperature (10°C) in order to 
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speed up the nucleation process. Figure 6-3 shows that the HL LH2 crystals can 

be grown systematically and reproducibly under these conditions. The crystals 

grew larger and thicker as the concentration of PEG 400 decreased, but longer 

nucleation times were needed. The size of the HL LH2 crystals could be 

enhanced to about 0.2×0.4 mm large with 35 % PEG 400 in the reservoir and 

even more (about 0.4×0.6 mm) with 34% PEG 400 in the reservoir. The HL LH2 

crystals grown with 35% PEG 400 at 10°C gave the best diffraction to 5.5 Å at the 

synchrotron beam (ESRF). In the case of LL LH2 complexes, the crystals were 

also obtained in the same systematic manner as described above for the HL LH2. 

However, the LL LH2 crystals grown at 10°C were very small and thin (Figure 6-

4). Larger LL LH2 crystals were successfully grown by increasing the incubation 

temperature to 19° C (Figure 6-4). However, longer times (~45 days for 37% PEG 

400 in the reservoir) were needed in order to complete the growth of the 

crystals at this temperature. The crystals that grew with 37% PEG 400 in the 

reservoir gave the best diffraction, up to 6 Å resolution at Glasgow University X-

ray Diffractometer and to 4.5 Å at the synchrotron (Diamond Light Source, 

Oxford, UK). There are also crystals observed from the MemGold crystallisation 

condition containing 20 mM glycine pH 10, 33% PEG 1000 and 50 mM NaCl in the 

reservoir. Further attempts to optimise the diffraction quality of these crystals 

under this particular condition were carried out using the 48 additives screen 

(Hampton Research Ltd.) as well as using different detergents, e.g. β-octyl-

glucopyranoside (β-OG) or dodecyl-β-D-maltoside (DDM). So far unfortunately no 

improved resolution has been obtained.  

 

Figure 6-4 LL LH2 crystals of Rps. palustris grown in 0.1 M Tris-HCl pH9.5, 0.1 M NaCl, 0.1 M  
MgCl2 containing different PEG 400 concentration. 0.1 % LDAO was used as detergent. 
Temperature in the incubator was kept constant at 19°C. 
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In order to be sure that the LH2 complexes in the crystals were still fully native, 

the room temperature absorption spectra of re-dissolved HL and LL LH2 crystals 

(Figure 6-5) were recorded. A single large crystal from the condition that 

produced the best diffracting LH2 crystals was dissolved in 20 mM Tris-HCL pH 

8.0 containing 0.1% LDAO and its absorption spectrum was recorded. Figure 6-5 

shows that the absorption spectrum of B800-850 HL LH2 complexes from a re-

dissolved crystal is identical to the absorption spectrum of the purified B800-850 

HL LH2 complexes shown in Figure 3-6A (see Chapter 3). The absorption 

spectrum of a dissolved LL LH2 crystal (Figure 6-5) was also identical to its 

absorption spectrum prior to crystallisation (Figure 3-6A). 

 

 
Figure 6-5 RT absorption spectra of a dissolved single crystal of HL (35% PEG 400, black 
line) and LL (37% PEG 400, red line) LH2.  
 

6.2 Low resolution model structure  

6.2.1 HL LH2 complex 

Promising 0.2×0.4 mm large HL LH2 crystals were obtained using 0.1 M Tris-HCl 

pH 9.5, 35% PEG 400, 0.1 M NaCl  and 0.1 M MgCl2 in the reservoir. Loop-

mounted crystals were flash-cooled to 100K. Since 35% PEG 400 is a 

cryoprotectant, the crystals could be directly taken from the crystallisation 

well. Upon exposure at beamline ID14-4 at the European Synchrotron Radiation 
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Facility (ESRF), Grenoble, France, this crystal diffracted X-rays to beyond 

resolution of 5.5 Å. A full 360° data set was collected using the oscillation 

method and Q315r ADSC CCD X-ray detector. Intensity data were processed by 

the data processing program d*TREK (Pflugrath, 1999). In the first stage called 

the indexing, the program identifies the cell dimensions and the symmetry of 

the crystal lattice. In the next stage, the program performs an integration of the 

intensities detected in individual pixels of the CCD image. In the final stage, 

scaling of data between images and merging of intensities - by averaging 

intensities of multiply measured reflections and their symmetry related 

equivalents - is performed.  

Summary of data indexing and processing statistics calculated by d*TREK 

program is presented in Table 6-3. 

Table 6-3 Summary of data-processing statistics for a HL LH2 crystal 

 
Space group P 21 

Unit cell dimension  

a/ b/ c (Å) 94.62/ 124.28/ 95.07 

α/ β/ γ (°) 90.00 /111.20/ 90.00 

Resolution range (Å) 39.13-6.30 (6.52-6.30) 

Total number of reflections 24299 

Number of unique reflections 4457 

Average redundancy 5.45 (5.76) 

% Completeness 99.2 (100.0) 

Rmerge 0.057 (0.400) 

Output signal to noise 

ratio

! 

I /"I  
14.4 (1.7) 

Note: Values in parenthesis are for the last resolution shell. 

 

Table 6-3 summary data processing statistics for these HL LH2 crystals. The 

completeness of the data set was good and the Rmerge was satisfactory. 

Unfortunately, the diffraction was anisotropic, i.e. the diffraction limits were 

different in different spatial directions. As a result of this a satisfactory merging 
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of diffraction data was only obtained to resolution 6.3 Å in the case of the 

crystal with the P21 space-group. Diffraction data provide both the intensities of 

the spots and their positions. However, in order to use this information to 

calculate an electron density map the phases must be determined. Phases can 

be deduced by various methods. In this case the molecular replacement (MR) 

method has been used. In the MR method, a protein model, called a search 

model, that has high homology in sequence and folding to the unknown structure 

is needed. This model is oriented and positioned within the asymmetric unit of 

the crystal cell to achieve highest correlation between the Patterson function 

calculated for the model and the Patterson function of the experimental data. 

The Patterson function is a Fourier synthesis that uses the indices and the square 

of the structure factor amplitude, i.e. intensities of each diffracted beam. 

Subsequently the packing of this protein model within the crystal lattice was 

examined. If this packing is satisfactory then the phases produced by the model 

(in the correct orientation and position) can be used with the amplitudes from 

the diffraction pattern of the unknown structure to generate an initial electron 

density map. The program PHASER (McCoy  et al., 2007, McCoy  et al., 2005) was 

used for phasing of the HL LH2 diffraction data. Search models consisting of the 

structure of the whole ring of the B800-850 LH2s from both Rps. acidophila 

10050 (McDermott  et al., 1995) and Phs. molischianum (Koepke  et al., 1996) 

were tested. In these tests, the models were stripped of the surface solvent 

molecules before being used to obtain a MR solution. The whole LH2 ring was 

assumed to be present in the asymmetric unit based on the assumption of similar 

content of solvent as it was found for the Rps. acidophila crystals. The PHASER 

solutions were tested by rigid-body refinement with the use of the program 

REFMAC (Murshudov  et al., 1997). The MR solution figures of merit and the 

refinement R factors (REFMAC) for the crystal data indicate much more 

satisfactory agreement for the acidophila model compared to that with the 

molischianum model (see Appendix for details). For example the electron 

density maps generated using the molischianum model do not reproduce as 

satisfactory density for the Bchl a pigments as with the acidophila model. The 

limited resolution of the diffraction data, however, does not allow for detailed 

modelling of the unknown structure. 
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Figure 6-6 shows an overlay of the electron density map generated from the HL 

LH2 data using the acidophila model. The electron density is shown in red. 

Looking down the long axis of the molecule (Figure 6-6A) it is clear that the 

electron density covers α- and β-helices rather well. This is confirmed in the 

side view where it can be again seen that the electron density corresponding 

these helices is quite good (Figure 6-6B). There is also electron density, seen as 

a belt between the α- and β-helices, that can accommodate the bacteriochlorin 

rings of the strong coupled Bchl as (Figure 6-6B). This MR solution also produces 

clear electron density for the bacteriochlorin rings of the monomeric Bchl a 

molecules (Figure 6-6A). This suggests that the HL LH2 complexes from Rps. 

palustris are structurally very similar to the LH2 complexes from Rps. acidophila 

10050. It must be borne in mind that at this low resolution these conclusions are 

still tentative. 

 

Figure 6-6 Axial view (A) and side view (B) of the low resolution (6.5 Å) electron density map 
(at 1.5 sigma) of HL LH2 complex Rps. palustris generated by molecular replacement 
solution using B800-850 LH2 complex from Rps. acidophila 10050 as a model for the HL LH2 
P21 crystal. Viewed by Coot Program (Emsley  et al., 2004). 
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6.2.2 LL LH2 complex 

A LL LH2 crystal, obtained from the crystallisation solution containing 

precipitant 37% PEG 400, salts 0.1M NaCl and 0.1M MgCl2, and buffer 0.1M Tris-

HCl pH 9.5 in the reservoir, produced diffraction spots up to 5 Å resolution at 

the synchrotron beamline I04 of the Diamond Light Source, Oxford, UK. 

Recently, another LL LH2 crystal, obtained from different crystallisation 

conditions (a solution containing precipitant 33% PEG 1000, salt 50 mM NaCl and 

buffer 50 mM glycine pH 10 in the reservoir) was found to diffract to resolution 

beyond 4.65 Å at the beamline ID23-1 of the European Synchrotron Radiation 

Facility, Grenoble, France. Full data sets were collected for each crystal. The 

first crystal belonged to space-group C2, while the second one belonged to 

space-group P21. In each case the completeness of the data and the value of 

Rmerge was satisfactory. A summary of data processing from LL LH2 crystals is 

listed in Table 6-4. 

Table 6-4 Summary of data-processing statistics for the LL LH2 crystals 

 
Space group (symmetry) C 2 P 21 

Unit cell dimension   

a/ b/ c (Å) 157.78/ 114.00/ 146.79 98.37/ 129.67/ 98.37 

α/ β/ γ (°) 90.00 /114.58/ 90.00 90/ 110.12/ 90.00 

Resolution range (Å) 44.71-6.50 (6.73-6.50) 42.53-6.20 (6.42-6.20) 

Total number of reflections 23297 31357 

Number of unique reflections 4690 5257 

Average redundancy 4.97 (5.33) 5.96 (6.22) 

% Completeness 98.6 (100.0) 98.5 (99.8) 

Rmerge 0.046 (0.479) 0.057 (0.558) 

Output signal to noise 

ratio

! 

I /"I  
15.1 (1.9) 11.1 (2.0) 

Note: Values in () are for the last resolution shell. 
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Unfortunately as in the case of the HL LH2 crystals, the diffraction from LL LH2 

crystals was also anisotropic. The crystal with C2 symmetry gave diffraction in 

the range of 5 to 6.5 Å, while diffraction of the crystal with symmetry P21 was in 

the range of 5.7 to 6.0 Å. Special anisotropic scaling and ellipsoidal truncation 

with the use of the Diffraction Anisotropic Server (Strong  et al., 2006) was 

applied to both data sets in an attempt to correct for these anisotropic effects.  

Again MR was used to try to obtain a structure solution. The structures of the 

LH2 from Rps. acidophila 10050 and from Phs. molischianum were again used as 

search models. Both search models gave possible solutions. At this low resolution 

it is problematic to determine which of these two solutions is the correct one. 

The MR solution figures of merit and the refinement R factors (REFMAC) of the 

structural solutions for LL LH2 crystal data show much better agreement with 

the acidophila model compared to with the molischianum model (see Appendix 

for details). Both models are able to give some electron density that 

corresponds to the αβ-helices (Figure 6-7). 

 

Figure 6-7 Low resolution (6.7 Å) electron density map (at 1.5 sigma) of LL LH2 complex 
Rps. palustris generated by molecular replacement solution using model from B800-850 
LH2 complex from Rps. acidophila 10050 (A and B) and from Phs. molischianum (C and D). 
Image generated using the Coot Program (Emsley  et al., 2004). 
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The electron density for the β-helices calculated using the acidophila model is 

more complete than that calculated using the molischanum model. The 

structural solution using the molischanum model does not reveal any electron 

density that would correspond to the bacteriochlorin rings of the tightly coupled 

Bchl a molecules. In the corresponding region of the structure calculated from 

the acidophila model there is a ring of electron density for these bacteriochlorin 

rings (Figure 6-7B). Moreover, the solution using the acidophila model also 

produces electron density for the bacteriochlorin rings of the monomeric Bchl as 

(Figure 6-7B). The electron density for these bacteriochlorins is shown more 

clearly in the detailed view shown in Figure 6-8. At this point these MR solutions 

suggest that the most probable structure for the LL LH2 complex from Rps. 

palustris is a nonamer. Higher resolution is now required in order to test this 

hypothesis and to allow the full details of the structure to be determined. 

 

Figure 6-8 Detailed view of the low resolution (6.7 Å) electron density map (at 1.5 sigma) of 
LL LH2 complex Rps. palustris, generated by molecular replacement solution using model 
from B800-850 LH2 complex from Rps. acidophila 10050, shows the occupancy of the 
electron density in αβ-polypeptides as well as the B800 and B850 Bchl a molecules. 
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6.3 Conclusions 

The B800-850 HL and B800-low-850 LL LH2 complexes from Rps. palustris have 

been crystallised by the sitting-drop vapor-diffussion method. A promising 

monoclinic (P21) HL LH2 crystal, obtained from 0.1 M Tris-HCl pH 9.5, 35% PEG 

400, 0.1 M NaCl and 0.1 M MgCl2 in the reservoir, diffracted to beyond 5.5 Å 

resolution. The LL LH2 complexes were also crystallised using the same method. 

A promising crystal was obtained from the condition containing 0.1 M Tris-HCl pH 

9.5, 37% PEG 400, 0.1 M NaCl and 0.1 M MgCl2 in the reservoir. This monoclinic 

(C21) crystal diffracted to beyond 4.7 Å resolution. Promising LL crystals were 

also obtained from the condition containing 50 mM glycine pH 10, 33% PEG 1000 

and 50 mM NaCl in the reservoir. However, because these crystals were strongly 

anisotropic the diffraction data was only useful at significantly lower resolution. 

In both cases MR solutions suggest that these LH2 complexes are nonamers. At 

this point these results conflict with the AFM pictures seen in (Scheuring  et al., 

2006).  

MR solutions on data sets at such low resolution must always be treated with 

caution. Further work is now required to produce crystals that are both better 

ordered and more isotropic in their diffraction properties. It will very interesting 

when it is possible to see real high resolution structures of both HL and LL LH2 

complexes from Rps. palustris and be able to understand structural bases the 

different spectroscopic properties.  

 



 

7 Summary and outlook 

Photosynthesis provides an example of a natural process that has been optimised 

over billions of years of evolution to harness the energy of sunlight efficiently 

and safely and finally to use it to produce a carbon-based fuel. The light 

harvesting antenna systems are very important not only for capturing the energy 

of sunlight but also for funnelling that energy downhill to the RC. A molecular 

understanding of these energy transfer processes will be very helpful for 

providing a “natural blueprint” for use in the construction of an artificial leaf 

design to use solar energy to produce fuels.  

Some purple bacteria species, such as Rps. palustris strain 2.1.6, produce LH 

antennas with unusual absorption spectra when they are grown under low light 

intensities. Under these conditions, Rps. palustris strain 2.1.6 replaces the B800-

850 LH2 complexes with the B800-low-850 LH2 complex. This ability to adapt is 

often related to the presence of the multiple LH2 αβ-polypeptides, which are 

encoded by multiple gene pairs. 

In this PhD work, pure stable LH2 complexes from Rps palustris strain 2.1.6 

grown at different light intensities have been successfully isolated. The 

polypeptide composition of the HL and LL LH2 complexes has been characterised 

by mass spectroscopy. Both the high- (HL) and low-light (LL) LH2 complexes 

contain multiple types of α-(PucA) and β-(PucB) polypeptides, i.e. the HL LH2 

complex contains the PucAa, PucAb, PucBa and PucBe polypeptides, while the LL 

LH2 complex contains the PucAa, PucAd, PucBa, PucBd and PucBe polypeptides. 

When this thesis work was started, it was not clear whether the LH2 complexes 

consisted of rings where each ring has a mixture of apoprotein types or whether 

the preparation contains a mixture where each individual ring in the mixture has 

a homogeneous apoprotein composition, but where different rings have different 

compositions.  

Various spectroscopic methods, i.e. absorption, circular dichroism, resonance 

Raman and single-molecule spectroscopy, have been used to characterise the 
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spectroscopic properties of both types of LH2 complexes. The question of 

whether rings with a heterogeneous apoprotein composition do exist were tested 

with the use of the SMS. In the case of individual LL LH2 complexes the single-

molecule spectra could only be satisfactory explained by assuming the presence 

of both B820-like energies and B850-like site energies within single rings.  

The ET from the B800 to the B850 ring and exciton relaxation in the B850 ring for 

both HL and LL LH2 complexes were studied by femtosecond transient 

absorption spectroscopy. All the ET data could be explained with a simple 

kinetic model. One important feature of this model for the LL LH2 complexes 

was the presence of a high-energy exciton state in the region of 820 nm. This 

finding nicely and confirms the conclusion of the single-molecule studies.  

Attempts to crystallise the HL and LL LH2 complexes from Rps. palustris resulted 

in promising crystals, but with rather low-resolution diffraction. In both cases 

the best molecular replacement (MR) solutions suggest that these complexes are 

nonameric. However, definite conclusions must await better quality crystals. 

Hopefully high resolution structures will provide an explanation of why the data 

shown in this thesis do not agree with the AFM results of Scheuring et al. 

(Scheuring  et al., 2006). 

As well as the need in the future to produce better crystals it will be interesting 

to try to characterise more systematically the types of LH2 complexes that are 

present when cells of Rps. palustris are grown at intermediate light intensities. 

Spectroscopic data presented in this thesis clearly show that there must be more 

than two types of LH2 present in these intermediate cases. 

 



 

8 Appendices 

8.1 Composition growth media 

8.1.1 C-succinate media (Bose, 1969) per litre 

Concentrated Base    20 ml 
1M K2HPO4     10 ml 
1M KH2PO4     10 ml 
10% (NH4)2SO4    5 ml 
1M Na or K succinate (pH 6.8)  10 ml 
Growth Factors    1ml 
Casamino Acids    1 g 
 
8.1.2 Concentrated base per 5 litre 

Nitrilotriacetic Acid (C6H9NO6)  50 g 
MgSO4.7H2O     25 g 
CaCl2.2H2O     17 g 
(NH4)6Mo7O24.4H2O    0.0462 g 
FeSO4.7H2O     0.495 g 
Thiamine hydrochloride   0.125 g 
Biotin      0.0025 g 
Nicotinic acid    0.25 g 
Metos 44     250 ml 
Adjust the final pH to 6.8 with 5N KOH 

8.1.3 Metos 44 per litre 

EDTA      2.5 g 
Zn(II)SO4     10.95 g 
Mn(II)SO4.4H2O    1.54 g 
Cu(II)SO4.5H2O    0.392 g 
CoNO3.6H2O     0.248 g 
FeSO4.7H2O     5.5 g 
Na2B4O7.10H2O    0.177 g 
add 20 drops of conc. H2SO4    
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8.1.4 Growth factor per 100 ml 

Biotin      0.002 g 
NaHCO3     0.05 g 
Then add water to disolved 
Nicotinic Acid    0.1 g 
Aneurine HCl     0.05 g 
NH2.C6H4COOH 
(4-aminobenzoicsäure)   0.1 g 
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8.2 Identification of major carotenoid isolated from HL 

and LL LH2 Rps. palustris by 1H-NMR 

The Chemical Structure of the Lycopene (top) and Rhodopin (bottom). 
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1H chemical shifts (δ  in ppm) in chloroform solution for carotenoid (peak #1 and #5) isolated 
from Rps. palustris. 
 

Peak #1 Lycopene  Peak #5  Rhodopin 

Measurement  Reference  Measurement  Reference 

Proton 

Atom 
δ(ppm) 

 Proton 

Atom 
δ(ppm) 

 Proton 

Atom 
δ(ppm) 

 Proton 

Atom 

δ(pp

m) 

2-H 5.11f 
 

2-H 5.11 
 

2-H 
1.435  

2-H 
1.4-

1.5 

3-H 2.118a  3-H 2.11  3-H 2.118a  3-H - 

4-H 2.118a  4-H 2.11  4-H 2.118a  4-H 2.11 

6-H 5.96(d)  6-H 5.95  6-H 5.96(d)  6-H 5.96 

7-H 6.50(dd)  7-H 6.49  7-H 6.48(dd)  7-H 6.49 

8-H 5.25(d)  8-H 6.25  8-H 6.25(d)  8-H 6.25 

10-H 6.19(d)  10-H 6.19  10-H 6.19(d)  10-H - 

11-H 6.63(dd)  11-H 6.64  11-H 6.63(dd)  11-H - 

12-H 6.36(d)  12-H 6.35  12-H 6.36(d)  12-H - 

14-H 6.24(m)  14-H 6.23  14-H 6.24(m)  14-H 5.88 

15-H 6.63(m)  15-H 6.63  15-H 6.65(m)  15-H 6.32 

16-CH3 1.691b  16-CH3 1.62  16-CH3 1.219  16-CH3 1.22 

17-CH3 1.617c  17-CH3 1.69  17-CH3 1.120  17-CH3 1.22 

18-CH3 1.822d  18-CH3 1.82  18-CH3 1.821b  18-CH3 1.81 

19-CH3 1.972e  19-CH3 1.97  19-CH3 1.972c  19-CH3 1.97 

20-CH3 1.972e  20-CH3 1.97  20-CH3 1.972c  20-CH3 - 
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21-H 5.11f 
 

21-H - 
 

21-H 
5.11  

21-H 
1.4-

1.5 

31-H 2.118a  31-H 2.11  31-H 2.118a  31-H - 

41-H 2.118a  41-H 2.11  41-H 2.118a  41-H 2.11 

61-H 5.96(d)  61-H 5.95  61-H 5.96(d)  61-H 5.96 

71-H 6.50(dd)  71-H 6.49  71-H 6.48(dd)  71-H 6.49 

81-H 5.25(d)  81-H 6.25  81-H 6.25(d)  81-H 6.25 

101-H 6.19(d)  101-H 6.19  101-H 6.19(d)  101-H - 

111-H 6.63(dd)  111-H 6.64  111-H 6.63(dd)  111-H - 

121-H 6.36(d)  121-H 6.35  121-H 6.36(d)  121-H - 

141-H 6.24(m)  141-H 6.23  141-H 6.24(m)  141-H 5.88 

151-H 6.63(m)  151-H 6.63  151-H 6.65(m)  151-H 6.32 

161-CH3 1.691b  161-CH3 1.62  161-CH3 1.616  161-CH3 1.22 

171-CH3 1.617c  171-CH3 1.69  171-CH3 1.691  171-CH3 1.22 

181-CH3 1.822d  181-CH3 1.82  181-CH3 1.821b  181-CH3 1.81 

191-CH3 1.972e  191-CH3 1.97  191-CH3 1.972c  191-CH3 1.97 

201-CH3 1.972e  201-CH3 1.97  201-CH3 1.972c  201-CH3 - 
a,b,c,d,e,fOverlapping each other; d, doublet; d, doublet doublet; m, multiplet 

Reference: A. Young and G. Britton, 1993, Carotenoids in Photosynthesis, Chapman & Hall, 
London 
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8.3 MemStart screen (Molecular Dimension, UK) 

 
Tube 
# 

Salt Buffer pH Precipitant 

1 None 0.1 M sodium acetate 4.6 2 M ammonium sulfate 
2 None 0,1 M ADA 6.5 1 M ammonium sulfate 
3 None None - 2 M ammonium sulfate 
4 None 0.1 M Tris 8.5 2 M ammonium sulfate 
5 None 0.1 M Na HEPES 7.5 1.5 M lithium sulfate 
6 None 0.1 M sodium acetate 4.6 1 M magnesium sulfate 
7 None 0.1 M tri-sodium citrate 5.6 1 M magnesium sulfate 
8 0.1 M lithium sulfate 0.1 M ADA 6.5 1 M magnesium sulfate 
9 None 0.1 M ammonium dihydrogen 

phosphate 
6.5 None 

10 0.1 M ammonium sulfate 0.5 M di-potassium hydrogen 
phosphate/ 0.5 M di-sodium 
hydrogen phosphate 

7.5 None 

11 0.1 M lithium sulfate 0.1 M sodium acetate 4.6 1 M ammonium dihydrogen 
phosphate 

12 None 0.1 M tri-sodium citrate 5.6 1 M ammonium dihydrogen 
phosphate 

13 None 0.1 M Tris 8.5 2 M ammonium dihydrogen 
phosphate 

14 None None 4.6 2 M sodium formate 
15 None None - 4 M sodium formate 
16 None 0.1 M MES 6.5 1.4 M sodium acetate 
17 None 0.1 M Na HEPES 7.5 1.4 M tri-sodium citrate 
18 None 0.1 M Na HEPES 7.5 1 M potassium sodium tartrate 
19 None 0.1 M Na HEPES 7.5 2 % v/v PEG 200/ 2 M 

ammonium sulfate 
20 0.1 M magnesium chloride 0.1 M sodium acetate 4.6 30 % v/v PEG 400 
21 0.1 M sodium chloride 0.1 M tri-sodium citrate 5.6 30 % v/v PEG 400 
22 0.1 M lithium sulfate 0.1 M tri-sodium citrate 5.6 30 % v/v PEG 400 
23 0.3 M lithium sulfate 0.1 M ADA 6.5 30 % v/v PEG 400 
24 0.1 M magnesium chloride 0.1 M Na HEPES 7.5 30 % v/v PEG 400 
25 0.1 M ammonium sulfate 0.1 M Na HEPES 7.5 30 % v/v PEG 400 
26 0.2 M tri-sodium citrate 0.1 M Tris 8.5 30 % v/v PEG 400 
27 0.1 M zinc acetate 0.1 M sodium acetate 4.6 12 % v/v PEG 4K 
28 0.2 M ammonium sulfate 0.1 M sodium acetate 4.6 12 % v/v PEG 4K 
29 None 0.1 M sodium acetate 4.6  12 % v/v PEG 4K 
30 0.1 M lithium sulfate 0.1 M tri-sodium citrate 5.6 12 % v/v PEG 4K 
31 0.1 M sodium chloride 0.1 M tri-sodium citrate  5.6 12 % v/v PEG 4K 
32 0.1 M lithium sulfate 0.1 M ADA 6.5 12 % v/v PEG 4K 
33 0.1 M sodium chloride 0.1 M Na HEPES 7.5  12 % v/v PEG 4K 
34 0.1 M ammonium sulfate 0.1 M Na HEPES 7.5 12 % v/v PEG 4K 
35 0.2 M magnesium chloride 0.1 M Tris 8.5 12 % v/v PEG 4K 
36 0.2 M lithium sulfate hydrate 0.1 M Tris 8.5 12 % v/v PEG 4K 
37 0.2 M ammonium sulfate None - 12 % v/v PEG 4K 
38 0.1 M sodium chloride 0.1 M sodium acetate 4.6 12 % v/v PEG 6K 
39 0.1 M magnesium chloride 0.1 M sodium acetate 4.6 12 % v/v PEG 6K 
40 0.1 M magnesium chloride 0.1 M ADA 6.5 12 % v/v PEG 6K 
41 0.1 M di-ammonium hydrogen 

phosphate 
0.1 M Tris 8.5 12 % v/v PEG 6K 

42 1 M lithium sulfate None - 2 % w/v PEG 8K 
43 0.2 M sodium acetate 0.1 M MES 6.5 10 % w/v PEG 8K 
44 0.2 M zinc acetate 0.1 M MES 6.5 10 % w/v PEG 8K 
45 0.2 M calcium acetate 0.1 M MES 6.5 10 % w/v PEG 8K 
46 None 0.1 M Tris 8.5 10 % w/v PEG 8K 
47 0.2 M ammonium sulfate None - 10 % w/v PEG 8K 
48 0.5 M lithium sulfate  None - 10 % w/v PEG 8K 

Abbreviations:  

ADA; N-(2-Acetamido)iminodiacetic Acid, HEPES; N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, MES; 2-
(N-morpholino)ethanesulfonic acid, MME; Monomethylether, PEG; Polyethylene glycol (4K, 6K and 8K correspond 
to the molecular weight, in thousands of Daltons, of PEG), Tris; 2-Amino-2-(hydroxymethyl)propane-1,3-diol. 
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8.4 MemSys screen (Molecular Dimension, UK) 

 
Tube 
#  

Salt 1 Salt 2 Buffer pH Precipitant 

1 None None 0.1 M Na citrate 5.5 2.5 M ammonium sulfate 
2 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na citrate 3.5 30 % v/v PEG 400 
3 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na acetate 4.5 30 % v/v PEG 400 
4 0.1 M sodium chloride None 0.1 M Na citrate 5.5 30 % v/v PEG 400 
5 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na citrate 6.5 30 % v/v PEG 400 
6 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na citrate 5.5 30 % v/v PEG 400 
7 None None 0.1 M MES 6.5 2.5 M ammonium sulfate 
8 None None 0.1 M MES 6.5 30 % v/v PEG 400 
9 0.1 M sodium chloride None 0.1 M MES 6.5 30 % v/v PEG 400 
10 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M MES 6.5 30 % v/v PEG 400 
11 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M MES 6.5 30 % v/v PEG 400 
12 None None 0.1 M MOPS 7.0 2.5 M ammonium sulfate 
13 None None 0.1 M Na HEPES 7.5 30 % v/v PEG 400 
14 0.1 M sodium chloride None 0.1 M MOPS 7.0 30 % v/v PEG 400 
15 None None 0.1 M Na HEPES 7.5 30 % v/v PEG 400 
16 0.1 M sodium chloride None 0.1 M Na HEPES 7.5 30 % v/v PEG 400 
17 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na HEPES 7.5 30 % v/v PEG 400 
18 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na HEPES 7.5 30 % v/v PEG 400 
19 None None 0.1 M Tris 8.5 1.5 M lithium sulfate 
20 0.1 M sodium chloride None 0.1 M Tris 8.5 30 % v/v PEG 400 
21 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Tris 8.5 30 % v/v PEG 400 
22 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Tris 8.5 30 % v/v PEG 400 
23 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M CAPSO 9.5 30 % v/v PEG 400 
24 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M CAPSO 9.5 30 % v/v PEG 400 
25 None None 0.1 M Na citrate 5.5 1.5 M sodium phosphate 
26 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na citrate 3.5 12 % w/v PEG 4K 
27 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na acetate 4.5 12 % w/v PEG 4K 
28 0.1 M sodium chloride None 0.1 M Na citrate 5.5 12 % w/v PEG 4K 
29 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na citrate 5.5 12 % w/v PEG 4K 
30 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na citrate 5.5 12 % w/v PEG 4K 
31 None None 0.1 M MES 6.5 1.5 M sodium phosphate 
32 None None 0.1 M MES 6.5 12 % w/v PEG 4K 
33 0.1 M sodium chloride None 0.1 M MES 6.5 12 % w/v PEG 4K 
34 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M MES 6.5 12 % w/v PEG 4K 
35 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M MES 6.5 12 % w/v PEG 4K 
36 None None 0.1 M MOPS 7.0 12 % w/v PEG 4K 
37 None None 0.1 M Na HEPES 7.5 1.5 M potassium 

phosphate 
38 0.1 M sodium chloride None 0.1 M MOPS 7.0 12 % w/v PEG 4K 
39 None None 0.1 M Na HEPES 7.5 12 % w/v PEG 4K 
40 0.1 M sodium chloride None 0.1 M Na HEPES 7.5 12 % w/v PEG 4K 
41 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Na HEPES 7.5 12 % w/v PEG 4K 
42 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Na HEPES 7.5 12 % w/v PEG 4K 
43 None None 0.1 M Tris 8.5 1.5 M potassium 

phosphate 
44 0.1 M sodium chloride None 0.1 M Tris 8.5 12 % w/v PEG 4K 
45 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M Tris 8.5 12 % w/v PEG 4K 
46 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M Tris 8.5 12 % w/v PEG 4K 
47 0.1 M sodium chloride 0.1 M lithium sulfate 0.1 M CAPSO 8.5 12 % w/v PEG 4K 
48 0.1 M sodium chloride 0.1 M magnesium chloride 0.1 M CAPSO 8.5 12 % w/v PEG 4K 
 

Abbreviations: 

CAPSO; 3-(Cyclohexylamino)-2-hydroxy-1-propanesulfonic Acid Sodium Salt, Na HEPES; N-(2-hydroxyethyl)-
piperazine- N'-2-ethanesulfonic acid sodium salt, MES; 2-(N-morpholino)ethanesulfonic acid, MOPS; 3-(N-
Morpholino)- propanesulfonic acid, PEG; Polyethylene glycol (4K correspondS to the molecular weight, in 
thousands of Daltons, of PEG), Tris; 2-Amino-2-(hydroxymethyl)propane-1,3-diol   
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8.5 MemGold screen (Molecular Dimension, UK) 

 
Tube # Salt Buffer pH Precipitant 
1 None 0.8 M sodium citrate 5.2 2.2 M ammonium sulfate 
2 None 0.1 M tris 8.0 1.2 M tri-sodium citrate 
3 None 0.015 M tricine 8.5 24 % w/v PEG 4000 
4 0.36 M sodium chloride/ 0.1 % 

w/v sodium azide 
0.015 M sodium phosphate 7.0 9.9 % w//v PEG 4000 

5 0.3 M sodium chloride 0.01 M tris 8.0 27.5 % w/v PEG 4000 
6 None 0.225 M MES/bis-tris 6.6 6.6 % w/v PEG 4000 
7 0.1 M ammonium sulfate 0.1 M HEPES 7.5 12.0 % w/v PEG 4000/ 22 % v/v 

glycerol 
8 0.02 M calcium chloride/ 0.01 M 

magnesium sulfate/ 0.02 M 
sodium chloride 

0.02 M MES 6.5 7.7 % w/v PEG 1500 

9 None 0.05 M HEPES 7.5 2.5 M ammonium sulfate 
10 None 0.0665 M HEPES 7.5 1.1 M tri-sodium citrate 
11 None 0.15 M potassium phospate 6.5 3.3 M ammonium sulfate 
12 0.1 M magnesium acetate 0.1 M sodium citrate 5.8 14 % w/v PEG 5000 MME 
13 0.1 M sodium chloride 0.02 M sodium citrate 5.6 11 % w/v PEG 3350 
14 0.1 M sodium chloride 0.02 M sodium citrate 5.6 5.5 % w/v PEG 3350 
15 0.05 M calcium chloride/ 0.05 M 

barium chloride 
0.1 M tris 8.2 32 % v/v PEG 400 

16 0.05 M sodium chloride 0.1 M sodium phosphate 6.2 16 % w/v PEG 4000 
17 0.1 M magnesium chloride 0.03 M tris-hydrochloride 8.2 19 % w/v PEG 4000 
18 0.2 M sodium chloride 0.025 M HEPES 7.5 13 % w/v PEG 4000 
19 None 0.1 M HEPES 7.5 11 % w/v PEG 3350 
20 0.1 M sodium chloride 0.02 M KMES 6.7 6.6 % w/v PEG 4000 
21 0.1 M potassium chloride 0.02 M tris 7.0 20 % w/v PEG 4000 
22 0.05 M magnesium chloride/ 0.1 % 

w/v sodium azide 
0.1 M sodium cacodylate 6.7 6.6 % w/v PEG 3350 

23 0.2 M potassium chloride 0.1 M sodium citrate 5.5 37 % v/v pentaerythritol 
propoxylate (5/4 PO/OH) 

24 None 0.1 M tris 8.0 5.5 % w/v PEG 4000 
25 0.1 M sodium chloride 0.02 M tris 7.0 7.7 % w/v PEG 4000 
26 0.1 M magnesium chloride 0.1 M tris 7.5 22 % v/v PEG 400 
27 0.04 M sodium chloride 0.04 M tris 8.0 27 % v/v PEG 350 MME 
28 0.05 M sodium chloride/ 0.02 M 

magnesium chloride 
0.1 M sodium citrate 6.0 22 % v/v PEG 400 

29 None 0.1 M sodium acetate 5.5 8.8 % w/v PEG 2000 MME 
30 None 0.4 M ammonium acetate 8.0 13 % w/v PEG 2000 MME 
31 None 0.02 M bis tris 7.0 15 % w/v PEG 2000 
32 0.1 M sodium chloride/ 0.1 M 

magnesium chloride 
0.02 M tris 7.5 11 % w/v PEG 1500 

33 0.1 M sodium chloride/ 0.1 M 
magnesium chloride 

0.1 M HEPES 8.0 11 % w/v PEG 1500 

34 0.2 M sodium acetate/ 0.2 M 
potassium chloride 

0.1 M HEPES 7.0 22 % w/v PEG 3000 

35 0.02 M nickel sulfate 0.01 M HEPES 7.0 33% v/v jeffamine-M600 
36 0.15 M sodium chloride 0.1 M tris 8.0 13 % % v/v PEG 6000 
37 0.2 M calcium chloride 0.1 M HEPES 7.5 53 % v/v PEG 400 
38 0.05 M magnesium acetate 0.05 M sodium acetate 5.0 28 % v/v PEG 400 
39 None 0.05 M HEPES 7.5 22 % v/v PEG 4000 
40 0.2 M calcium chloride 0.1 M tris hydrochloride 8.0 44 % v/v PEG 400 
41 0.05 M magnesium acetate 0.05 M sodium acetate 5.4 24 % v/v PEG 400 
42 0.2 M calcium chloride 0.1 M MES 6.5 26 % v/v PEG 350 MME 
43 0.1 M potassium chloride 0.1 M tris 8.5 39 % v/v PEG 400 
44 0.05 M magnesium chloride 0.1 M glycine 9.0 22 % v/v PEG 400 
45 0.1 M ammonium sulfate 0.1 M glycine 3.8 28 % w/v tri-ethylene glycol 
46 0.15 M sodium formate 0.1 M HEPES 7.2 18 % w/v PEG 3500 
47 None 0.2 M sodium acetate 6.8 8.8 % w/v PEG 6000 
48 0.2 M potassium chloride 0.1 M MES 6.5 18 % w/v PEG 6000 
49 0.22 M sodium citrate 0.1 M tris 8.0 35 % v/v PEG 400 
50 None 0.1 M sodium acetate 4.5 17 % v/v PEG 400 
51 None 0.02 M tris 8.5 1.0 M lithium sulfate/ 1.8 % 

w/v PEG 8000 
52 None 0.02 M tris 7.5 22 % v/v PEG 550 MME 
53 0.05 M sodium chloride 0.02 M glycine 10 33 % w/w PEG 1000 
54 0.2 M magnesium chloride 0.1 M tris 8.5 25 % w/v PEG 4000 
55 0.2 M magnesium chloride 0.1 M sodium cacodylate 6.5 31 % w/v PEG 2000 
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56 None 0.64 M sodium acetate 4.6 18 % v/v PEG 3350 
57 0.1 M sodium chloride/ 0.1 M 

cadmium sulfate 
0.1 M tris hydrochloride 8.0 33 % v/v PEG 400 

58 None 0.1 M bicine 8.9 31 % PEG 2000 
59 0.05 M sodium sulfate/ 0.05 M 

lithium sulfate 
0.05 M tris 8.5 35 % v/v PEG 400 

60 0.1 M sodium chloride 0.05 M glycine 9.5 33 % v/v PEG 300 
61 0.3 M magnesium nitrate 0.1 M tris 8.0 23 % w/v PEG 2000 
62 0.12 M lithium sulfate 0.02 M tris/ 0.1 M sodium 

citrate 
7.5/ 
5.0 

20 % v/v PEG 300 

63 0.1 M sodium chloride 0.12 M tris 9.4 20 % v/v PEG 400 
64 0.2 M sodium chloride 0.1 M HEPES 7.0 22 % v/v PEG 550 MME 
65 0.1 M sodium chloride/ 0.325 M 

sodium acetate 
0.1 M tris 8.0 21 % v/v PEG 400 

66 0.02 M sodium citrate 0.08 M sodium phosphate 6.2 18 % w/v PEG 2000 
67 0.02 M potassium nitrate 0.03 M potassium citrate 6.5 7.7 % w/v PEG 4000 
68 0.1 M sodium chloride/ 0.005 M 

magnesium chloride 
0.1 M tris 8.5 30 % w/v PEG 2000 MME 

69 0.2 M calcium chloride 0.1 M HEPES 7.0 33 % v/v PEG 400 
70 0.1 M calcium chloride 0.1 M tris 6.5 13 % w/v PEG 2000 MME 
71 0.2 M ammonium sulfate/ 0.02 M 

sodium chloride 
0.02 M sodium acetate 4.0 33 % v/v PEG 200 

72 0.07 M sodium chloride 0.05 M sodium citrate 4.5 22 % v/v PEG 400 
73 0.2 M ammonium sulfate 0.1 M sodium acetate 4.6 28 % PEG 550 MME 
74 None 0.05 M glycine 9.0 55 % v/v PEG 400 
75 0.1 M magnesium chloride/ 0.1 M 

sodium chloride 
0.1 M tris 8.5 33 % v/v PEG 400 

76 0.1 M lithium sulfate/ 0.05 M 
disodium hydrogen phosphate 

0.05 M citric acid None 19 % w/v PEG 1000 

77 0.2 M magnesium chloride/ 0.1 M 
potassium chloride 

0.025 M sodium citrate 4.0 33 % v/v PEG 400 

78 0.05 M zinc acetate 0.05 M MES 6.1 11 % w/v PEG 8000 
79 0.3 M magnesium nitrate 0.1 M tris 8.0 22 % w/v PEG 8000 
80 0.1 M sodium chloride/ 4 % v/v 

ethylene glycol 
0.1 MES 6.5 33 % v/v PEG 400 

81 0.05 M sodium chloride 0.1 M sodium citrate 5.5 26 % v/v PEG 400 
82 0.1 M lithium sulfate 0.1 M glycine 9.3 30 % v/v PEG 400 
83 0.15 M potassium citrate/ 0.05 M 

lithium citrate 
0.1 M sodium phosphate - 22 % w/v PEG 6000 

84 0.001 M zinc sulphate 0.05 M HEPES 7.8 28 % v/v PEG 600 
85 0.1 M sodium chloride 0.1 M sodium phosphate 7.0 33 % v/v PEG 300 
86 0.1 M sodium chloride 0.05 M Bicine 9.0 33 % v/v PEG 300 
87 0.05 M zinc acetate/ 6 % v/v 

ethylene glycol 
0.1 M sodium cacodylate 6.0 6.6 % w/v PEG 8000 

88 0.2 M lithium sulfate 0.1 M sodium citrate 3.5 28 % v/v PEG 400 
89 0.1 M sodium chloride 0.1 M tris 7.5 11 % w/v PEG 4000 
90 0.05 M lithium sulfate 0.1 M tricine 7.4 7 % w/v PEG 3000 
91 0.2 M calcium chloride 0.1 M MES 6.5 33 % v/v PEG 400 
92 1 M sodium chloride 0.1 M sodium citrate 6.0 28 % w/v PEG 4000 
93 None 0.1 M HEPES 7.5 11 % w/v PEG 4000 
94 0.002 M zinc sulfate 0.08 M HEPES 7.0 25 % v/v/ Jeffamine ED2001 
95 0.001 M cadmium chloride/ 0.03 

M magnesium chloride 
0.1 M MES 6.5 30 % v/v PEG 400 

96 None 0.1 M bis-tris-propane 7.0 3.0 M sodium chloride 
 

Abbreviations:  

ADA; N-(2-Acetamido)iminodiacetic Acid, Bicine; N,N-Bis(2-hydroxyethyl)glycine, CHES; 2-(N-
Cyclohexylamino)ethane sulfonic Acid, HEPES; N- (2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, KMES; 2-
(N-morpholino)ethanesulfonic acid potassium salt, MES; 2-(N- morpholino)ethanesulfonic acid, MME; 
Monomethylether, PEG; Polyethylene glycol, Tricine; N-[Tris(hydroxymethyl)methyl]glycine, Tris; 2- Amino-2-
(hydroxymethyl)propane-1,3-diol, Tris HCl; 2-Amino-2-(hydroxymethyl)propane-1,3-diol, hydrochloride.] 
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8.6 Additive Screen (Hampton Research) 

 
Tube 
# 

Additive 

1 0.1 M barium chloride 
2 0.1 M cadmium 
3 0.1 M calcium chloride 
4 0.1 M cobaltous chloride 
5 0.1 M cupric chloride 
6 0.1 M magnesium chloride 
7 0.1 M manganese (II) chloride 
8 0.1 M strontium chloride 
9 0.1 M Yttrium chloride 
10 0.1 M Zinc chloride 
11 30 % v/v ethylene glycol 
12 30 % v/v glycerol 
13 30 % w/v 1,6 hexanediol 
14 30 % v/v 2-methyl-2,4-pentanediol 
15 40 % v/v polypropylene glycol P400 
16 0.1 M trimetylamine HCl 
17 0.1 M guanidine HCl 
18 0.1 M urea 
19 15 % w/v 1,2,3-heptanetriol 
20 20 % w/v benzamidine HCl 
21 30 % v/v dioxane 
22 30 % v/v ethanol 
23 30 % v/v iso-propanol 
24 30 % v/v methanol 
  
25 1.0 M sodium iodide 
26 1.0 M l-cysteine 
27 0.1 M EDTA sodium salt 
28 0.1 M nicotinamide adenine 

dinucleotide 
29 0.1 M adenosine-5-triphosphate 

disodium salt 
30 30 % w/v D(+)-glucose 
31 30 % w/v D(+)-succrose 
32 0.1 M spermidine 
33 0.1 M spermine tetra-HCl 
34 30 % w/v 6-aminocaproid di-HCl 
35 30 % w/v 1,5-diaminopentane di-HCl 
36 30 % w/v 1,6-diaminohexane 
37 30 % w/v 1,8-diaminooctane 
38 1.0 M glycine 
39 0.3 M glycyl-glycyl-glycine 
40 0.1 M hexamine cobalt (III) chloride 
41 0.1 M taurine 
42 0.1 M betaine monohydrate 
43 5 % w/v polyvinylpyrrolidone K15 
44 3.0 M NDSB-195 
45 2.0 M NDSB-201 
46 30 % dimethyl sulfoxide 
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47 0.1 M phenol 
  
48 1.0 M ammonium sulfate 
49 1.0 M cessium chloride 
50 1.0 M potassium chloride 
51 1.0 M lithium chloride 
52 1.0 M sodium chloride 
53 0.5 M sodium fluoride 
54 2.0 M sodium thiocyanate 
55 30 % dextran sulfato-sodium salt 
56 50 % jefframine M-600 pH 7.0 
57 40 % 2,5-hexanediol 
58 40 % ± 1,3-butanediol 
59 40 % polypropylene glycol 
60 40 % 1,4-butanediol 
61 40 % tert-butanol 
62 40 % 1,3-propanediol 
63 40 % Accetonitrile 
64 5 % ethyl acetate 
65 40 % acetone 
66 0.25 % dichloromethane 
67 7 % n-butanol 
68 40 % 2,2,2-trifluoroethanol 
69 0.1 M 1,4-dithio-DL-threitol 
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8.7 PEG /ION Screen (Hampton Research) 

Reagent [Salt] [Salt] Salt pH [Buffer] [Buffer] Buffer pH [Ppt ] [Ppt ] Precipitant 
#   units       units       units   

1 0.2 M Sodium fluoride      20 % w/v Polyethylene glycol 3,350 
2 0.2 M Potassium fluoride      20 % w/v Polyethylene glycol 3,350 
3 0.2 M Ammonium fluoride      20 % w/v Polyethylene glycol 3,350 
4 0.2 M Lithium chloride      20 % w/v Polyethylene glycol 3,350 
5 0.2 M Magnesium chloride hexahydrate      20 % w/v Polyethylene glycol 3,350 
6 0.2 M Sodium chloride      20 % w/v Polyethylene glycol 3,350 
7 0.2 M Calcium chloride dihydrate      20 % w/v Polyethylene glycol 3,350 
8 0.2 M Potassium chloride      20 % w/v Polyethylene glycol 3,350 
9 0.2 M Ammonium chloride      20 % w/v Polyethylene glycol 3,350 

10 0.2 M Sodium iodide      20 % w/v Polyethylene glycol 3,350 
11 0.2 M Potassium iodide      20 % w/v Polyethylene glycol 3,350 
12 0.2 M Ammonium iodide      20 % w/v Polyethylene glycol 3,350 
13 0.2 M Sodium thiocyanate      20 % w/v Polyethylene glycol 3,350 
14 0.2 M Potassium thiocyanate      20 % w/v Polyethylene glycol 3,350 
15 0.2 M Lithium nitrate      20 % w/v Polyethylene glycol 3,350 
16 0.2 M Magnesium nitrate hexahydrate      20 % w/v Polyethylene glycol 3,350 
17 0.2 M Sodium nitrate      20 % w/v Polyethylene glycol 3,350 
18 0.2 M Potassium nitrate      20 % w/v Polyethylene glycol 3,350 
19 0.2 M Ammonium nitrate      20 % w/v Polyethylene glycol 3,350 
20 0.2 M Magnesium formate dihydrate      20 % w/v Polyethylene glycol 3,350 
21 0.2 M Sodium formate      20 % w/v Polyethylene glycol 3,350 
22 0.2 M Potassium formate      20 % w/v Polyethylene glycol 3,350 
23 0.2 M Ammonium formate      20 % w/v Polyethylene glycol 3,350 
24 0.2 M Lithium acetate dihydrate      20 % w/v Polyethylene glycol 3,350 
25 0.2 M Magnesium acetate tetrahydrate      20 % w/v Polyethylene glycol 3,350 
26 0.2 M Zinc acetate dihydrate      20 % w/v Polyethylene glycol 3,350 
27 0.2 M Sodium acetate trihydrate      20 % w/v Polyethylene glycol 3,350 
28 0.2 M Calcium acetate hydrate      20 % w/v Polyethylene glycol 3,350 



 144 

29 0.2 M Potassium acetate      20 % w/v Polyethylene glycol 3,350 
30 0.2 M Ammonium acetate      20 % w/v Polyethylene glycol 3,350 
31 0.2 M Lithium sulfate monohydrate      20 % w/v Polyethylene glycol 3,350 
32 0.2 M Magnesium sulfate heptahydrate      20 % w/v Polyethylene glycol 3,350 
33 0.2 M Sodium sulfate decahydrate      20 % w/v Polyethylene glycol 3,350 
34 0.2 M Potassium sulfate      20 % w/v Polyethylene glycol 3,350 
35 0.2 M Ammonium sulfate      20 % w/v Polyethylene glycol 3,350 
36 0.2 M Sodium tartrate dibasic dihydrate      20 % w/v Polyethylene glycol 3,350 

37 0.2 M 
Potassium sodium tartrate 
tetrahydrate      20 % w/v Polyethylene glycol 3,350 

38 0.2 M Ammonium tartrate dibasic      20 % w/v Polyethylene glycol 3,350 

39 0.2 M 
Sodium phosphate monobasic 
monohydrate       20 % w/v Polyethylene glycol 3,350 

40 0.2 M Sodium phosphate dibasic dihydrate      20 % w/v Polyethylene glycol 3,350 
41 0.2 M Potassium phosphate monobasic      20 % w/v Polyethylene glycol 3,350 
42 0.2 M Potassium phosphate dibasic      20 % w/v Polyethylene glycol 3,350 
43 0.2 M Ammonium phosphate monobasic      20 % w/v Polyethylene glycol 3,350 
44 0.2 M Ammonium phosphate dibasic      20 % w/v Polyethylene glycol 3,350 
45 0.2 M Lithium citrate tribasic tetrahydrate      20 % w/v Polyethylene glycol 3,350 
46 0.2 M Sodium citrate tribasic dihydrate      20 % w/v Polyethylene glycol 3,350 

47 0.2 M 
Potassium citrate tribasic 
monohydrate      20 % w/v Polyethylene glycol 3,350 

48 0.2 M Ammonium citrate dibasic      20 % w/v Polyethylene glycol 3,350 
49 0.1 M Sodium malonate 4.0     12 % w/v Polyethylene glycol 3,350 
50 0.2 M Sodium malonate 4.0     20 % w/v Polyethylene glycol 3,350 
51 0.1 M Sodium malonate 5.0     12 % w/v Polyethylene glycol 3,350 
52 0.2 M Sodium malonate 5.0     20 % w/v Polyethylene glycol 3,350 
53 0.1 M Sodium malonate 6.0     12 % w/v Polyethylene glycol 3,350 
54 0.2 M Sodium malonate 6.0     20 % w/v Polyethylene glycol 3,350 
55 0.1 M Sodium malonate 7.0     12 % w/v Polyethylene glycol 3,350 
56 0.2 M Sodium malonate 7.0     20 % w/v Polyethylene glycol 3,350 
57 4 % v/v Tacsimate 4.0     12 % w/v Polyethylene glycol 3,350 
58 8 % v/v Tacsimate 4.0     20 % w/v Polyethylene glycol 3,350 
59 4 % v/v Tacsimate 5.0     12 % w/v Polyethylene glycol 3,350 
60 8 % v/v Tacsimate 5.0     20 % w/v Polyethylene glycol 3,350 
61 4 % v/v Tacsimate 6.0     12 % w/v Polyethylene glycol 3,350 
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62 8 % v/v Tacsimate 6.0     20 % w/v Polyethylene glycol 3,350 
63 4 % v/v Tacsimate 7.0     12 % w/v Polyethylene glycol 3,350 
64 8 % v/v Tacsimate 7.0     20 % w/v Polyethylene glycol 3,350 
65 4 % v/v Tacsimate 8.0     12 % w/v Polyethylene glycol 3,350 
66 8 % v/v Tacsimate 8.0     20 % w/v Polyethylene glycol 3,350 
67 0.1 M Succinic acid 7.0     12 % w/v Polyethylene glycol 3,350 
68 0.2 M Succinic acid 7.0     20 % w/v Polyethylene glycol 3,350 
69 0.1 M Ammonium citrate tribasic 7.0     12 % w/v Polyethylene glycol 3,350 
70 0.2 M Ammonium citrate tribasic 7.0     20 % w/v Polyethylene glycol 3,350 
71 0.1 M DL-Malic acid 7.0     12 % w/v Polyethylene glycol 3,350 
72 0.2 M DL-Malic acid 7.0     20 % w/v Polyethylene glycol 3,350 
73 0.1 M Sodium acetate trihydrate 7.0     12 % w/v Polyethylene glycol 3,350 
74 0.2 M Sodium acetate trihydrate 7.0     20 % w/v Polyethylene glycol 3,350 
75 0.1 M Sodium formate 7.0     12 % w/v Polyethylene glycol 3,350 
76 0.2 M Sodium formate 7.0     20 % w/v Polyethylene glycol 3,350 
77 0.1 M Ammonium tartrate dibasic 7.0     12 % w/v Polyethylene glycol 3,350 
78 0.2 M Ammonium tartrate dibasic 7.0     20 % w/v Polyethylene glycol 3,350 
79 2 % v/v Tacsimate 4.0 0.1 M Sodium acetate trihydrate 4.6 16 % w/v Polyethylene glycol 3,350 
80 2 % v/v Tacsimate 5.0 0.1 M Sodium citrate tribasic dihydrate 5.6 16 % w/v Polyethylene glycol 3,350 
81 2 % v/v Tacsimate 6.0 0.1 M BIS-TRIS 6.5 20 % w/v Polyethylene glycol 3,350 
82 2 % v/v Tacsimate 7.0 0.1 M HEPES 7.5 20 % w/v Polyethylene glycol 3,350 
83 2 % v/v Tacsimate 8.0 0.1 M Tris   8.5 16 % w/v Polyethylene glycol 3,350 
84     0.07 M Citric acid, 16 % w/v Polyethylene glycol 3,350 

     0.03 M BIS-TRIS propane 
3.4 

   
85     0.06 M Citric acid, 16 % w/v Polyethylene glycol 3,350 

     0.04 M BIS-TRIS propane 
4.1 

   
86     0.05 M Citric acid, 16 % w/v Polyethylene glycol 3,350 

     0.05 M BIS-TRIS propane 
5.0 

   
87     0.04 M Citric acid, 20 % w/v Polyethylene glycol 3,350 

     0.06 M BIS-TRIS propane 
6.4 

   
88     0.03 M Citric acid, 20 % w/v Polyethylene glycol 3,350 

     0.07 M BIS-TRIS propane 
7.6 

   
89     0.02 M Citric acid, 16 % w/v Polyethylene glycol 3,350 

     0.08 M BIS-TRIS propane 
8.8 

   
90 0.02 M Calcium chloride dihydrate      20 % w/v Polyethylene glycol 3,350 
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 0.02 M Cadmium chloride hydrate         
 0.02 M Cobalt(II) chloride hexahydrate         

91 0.01 M Magnesium chloride hexahydrate  0.1 M HEPES sodium 7.0 15 % w/v Polyethylene glycol 3,350 
 0.005 M Nickel(II) chloride hexahydrate         

92 0.02 M Zinc chloride      20 % w/v Polyethylene glycol 3,350 
93 0.15 M Cesium chloride      15 % w/v Polyethylene glycol 3,350 
94 0.2 M Sodium bromide      20 % w/v Polyethylene glycol 3,350 
95 1 % w/v Tryptone  0.05 M HEPES sodium 7.0 12 % w/v Polyethylene glycol 3,350 
96 1 % w/v Tryptone  0.05 M HEPES sodium 7.0 20 % w/v Polyethylene glycol 3,350 
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8.8 JCSG-Plus Screen (Molecular Dimension) 

Reag
ent pH 

Conc 
[M] Salt 

Con 
[M] Salt 

Con 
[M] Salt 

Con 
[M] Salt 

Con 
[M] Buffer 

Con 
[M] Buffer 

Con 
[M] Units Precipitant 

Con 
[M] 

Un
its Precipitant 

A1 4.5 0.2 lithium sulfate       0.1 sodium acetate    50 % v/v PEG 400    

A2 5.5         0.1 citrate    20 % w/v PEG 3K    

A3  0.2 

di-ammonium 
hydrogen 
citrate            20 % w/v PEG 3350    

A4 4.6 0.02 
calcium 
chloride       0.1 sodium acetate    30 % v/v MPD    

A5  0.2 
magnesium 
formate            20 % w/v PEG 3350    

A6 4.2 0.2 lithium sulfate       0.1 phosphate 0.1 citrate 20 % w/v PEG 1K    

A7 9.5         0.1 CHES    20 % w/v PEG 8K    

A8  0.2 
ammonium 
formate            20 % w/v PEG 3350    

A9  0.2 
ammonium 
chloride            20 % w/v PEG 3350    

A10  0.2 
potassium 
formate            20 % w/v PEG 3350    

A11 8.5 0.2 

ammonium 
dihydrogen 
phosphate       0.1 tris    50 % v/v MPD    

A12  0.2 
potassium 
nitrate            20 % w/v PEG 3350    

B1 4         0.1 sodium citrate    0.8 M 
ammonium 
sulfate    

B2  0.2 
sodium 
thiocyanate            20 % w/v PEG 3350    

B3 9         0.1 bicine    20 % w/v  PEG 6K    

B4 7.5         0.1 HEPES    10 % w/v PEG 8K 8 
% 
v/v 

Ethylene 
glycol 

B5 6.5         0.1 
sodium 
cacodylate    40 % v/v MPD 5 

% 
w/
v PEG 8K 

B6 4.2         0.1 phosphate 0.1 citrate 40 % v/v Ethanol 5 

% 
w/
v PEG 1K 

B7 4.6         0.1 sodium acetate    8 % w/v PEG 4K    

B8 7 0.2 
magnesium 
chloride       0.1 tris    10 % w/v PEG 8K    

B9 5         0.1 sodium citrate    20 % w/v PEG 6K    
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B10 6.5 0.2 
magnesium 
chloride       0.1 

sodium 
cacodylate    50 % v/v PEG 200    

B11 6.5             1.6 M 
tri-sodium 
citrate     

B12  0.2 
tri-potassium 
citrate            20 % w/v PEG 3350    

C1 4.2 0.2 
sodium 
chloride       0.1 phosphate 0.1 citrate 20 % w/v PEG 8K    

C2 4 1 
lithium 
chloride       0.1 Na citrate    20 % w/v PEG 6K    

C3  0.2 
ammonium 
nitrate            20 % w/v PEG 3350    

C4 7         0.1 HEPES    10 % w/v PEG 6K    

C5 7.5         0.1 sodium HEPES    0.8 M 

sodium 
dihydrogen 
phosphate    

C6 4.2         0.1 phosphate 0.1 citrate 0.8 M 

potassium 
dihydrogen 
phosphate    

C7 4.5 0.2 zinc acetate       0.1 sodium acetate    40 % v/v PEG 300    

C8 8.5         0.1 tris    10 % w/v PEG 3K    

C9 6.2         0.1 
sodium 
phosphate  0.1 

potassium 
phosphate 20 % v/v Ethanol    

C10 9         0.1 bicine    25 % v/v 
1,2-
propanediol    

C11 4.6         0.1 sodium acetate    10 % v/v Glycerol    

C12              10 % w/v PEG 20K 2 
% 
v/v Dioxane 

D1              2 M 
ammonium 
sulfate    

D2 7.5 0.2 
magnesium 
chloride       0.1 sodium HEPES    10 % w/v PEG 1K 10 

% 
w/
v PEG 8K 

D3 6.2 0.2 
sodium 
chloride       0.1 

sodium 
phosphate  0.1 

potassium 
phosphate 24 % w/v PEG 1.5K 20 

% 
v/v Glycerol 

D4 4.5 0.2 lithium sulfate       0.1 sodium acetate    30 % v/v PEG 400    

D5 7.5         0.1 HEPES    50 % v/v PEG 200    

D6 8.5 0.2 
magnesium 
chloride       0.1 tris    30 % w/v PEG 8K    

D7 8.5 0.2 lithium sulfate       0.1 tris    70 % v/v MPD    

D8 8         0.1 tris    20 % w/v PEG 8K    

D9  0.17 
ammonium 
sulfate           40 % v/v PEG 400    

D10 6.5 0.2 
calcium 
acetate       0.1 

sodium 
cacodylate    40 % v/v MPD    
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D11 4.6 0.14 
calcium 
chloride       0.1 sodium acetate    25.5 % w/v PEG 4K 15 

% 
v/v Glycerol 

D12  0.04 

potassium 
dihydrogen 
phosphate           40 % v/v PEG 300    

E1 6.5         0.1 
sodium 
cacodylate    14 % v/v 2-propanol 30 

% 
v/v Glycerol 

E2 6.5 0.2 
sodium 
chloride       0.1 

sodium 
cacodylate    16 % w/v PEG 8K 20 

% 
v/v Glycerol 

E3 7.5 0.2 
sodium 
chloride       0.1 HEPES    1 M 

tri-sodium 
citrate    

E4 8.5 0.2 lithium sulfate       0.1 tris    2 M 
ammonium 
sulfate    

E5 10.5         0.1 CAPS    10 % v/v 2-propanol    

E6 8 0.2 zinc acetate       0.1 imidazole    1.26 M 
ammonium 
sulfate    

E7 6.5 0.2 zinc acetate       0.1 
sodium 
cacodylate    40 % v/v MPD    

E8 4.5         0.1 sodium acetate    20 % w/v PEG 3K    

E9 6.5         0.1 MES    10 % v/v 2-propanol    

E10 9         0.1 bicine    1 M 

di-ammonium 
hydrogen 
phosphate    

E11 6.5 0.16 
calcium 
acetate       0.08 

sodium 
cacodylate    1.6 M 

magnesium 
sulfate    

E12 8         0.1 imidazole    10 % w/v PEG 6K    

F1 6.5  
caesium 
chloride       0.1 MES    14.4 % w/v PEG 8K 20 

% 
v/v glycerol 

F2 5         0.1 sodium citrate    10 % w/v PEG 8K    

F3 8         0.1 tris    30 % v/v 
Jeffamine M-
600     

F4 7.5         0.1 HEPES    3.2 M 
ammonium 
sulfate    

F5 8.5 0.2 
magnesium 
chloride       0.1 tris    20 % v/v MPD    

F6 9         0.1 bicine    20 % v/v 
Jeffamine M-
600     

F7 7             50 % v/v ethylene glycol    

F8 7             10 % v/v MPD    

F9 7             0.8 M succinic acid     

F10 7 1.1 
sodium 
malonate        0.1 HEPES    2.1 M DL-malic acid     

F11 7 1 succinic acid        0.1 HEPES    2.4 M 
sodium 
malonate    

F12 7         0.1 HEPES    0.5 % v/v 
Jeffamine ED-
2001     
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G1 7         0.1 HEPES    1 % w/v PEG 2K MME    

G2 7.5 0.02 
magnesium 
chloride       0.1 HEPES    30 % v/v 

Jeffamine M-
600     

G3 8.5 0.01 cobalt chloride       0.1 tris    30 % v/v 
Jeffamine ED-
2001     

                    

G4 8.5 0.2 

tri-
methylamine 
N-oxide       0.1 tris    22 % w/v 

polyacrylic acid 
5100 sodium 
salt    

G5 7.5 0.005 cobalt chloride 0.005 
cadmium 
chloride 0.005 

Magne-
sium 
chloride 0.005 

nickel 
chloride 0.1 HEPES    20 % w/v 

polyvinylpyrroli
done K15    

G6 7 0.2 
sodium 
malonate            20 % w/v PEG 2K MME    

G7 7 0.1 succinic acid            12 % w/v PEG 3350    

G8 7 0.15 DL- malic acid           20 % w/v PEG 3350    

G9  0.1 
potassium 
thiocyanate           15 % w/v PEG 3350    

G10  0.15 
potassium 
bromide           20 % w/v PEG 3350    

G11 5.5         0.1 Bis Tris    30 % w/v PEG 2K MME    

G12 5.5         0.1 Bis Tris    30 % w/v PEG 2K MME    

H1 5.5         0.1 Bis Tris    2 M 
ammonium 
sulfate    

H2 5.5 1 
ammonium 
sulfate       0.1 Bis Tris    3 M 

sodium 
chloride    

H3 5.5         0.1 Bis Tris    0.3 M 
magnesium 
formate    

H4 5.5 0.2 
calcium 
chloride       0.1 Bis Tris    1 % w/v PEG 3350    

H5 5.5 0.2 
ammonium 
acetate       0.1 Bis Tris    25 % w/v PEG 3350    

H6 5.5 0.1 
ammonium 
acetate       0.1 Bis Tris    45 % v/v MPD    

H7 5.5 0.2 
ammonium 
sulfate       0.1 Bis Tris    45 % v/v MPD    

H8 5.5 0.2 
sodium 
chloride       0.1 Bis Tris    17 % w/v PEG 10K    

H9 5.5 0.2 lithium sulfate       0.1 Bis Tris    25 % w/v PEG 3350    

H10 5.5 0.2 
ammonium 
acetate       0.1 Bis Tris    25 % w/v PEG 3350    

H11 5.5 0.2 
magnesium 
chloride       0.1 Bis Tris    25 % w/v PEG 3350    

H12 7.5 0.2 
ammonium 
acetate       0.1 HEPES    25 % w/v PEG 3350    
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8.9 Figure of merit from the molecular replacement 

solutions and the refinement REFMAC 

8.9.1 HL LH2 crystal P21 

Search Model RFZ TFZ LLG R-factor 

LH2 acidophila pruned 5.4 6.6 201 0.496 

LH2 molischianum pruned 3.8 3.5 83 0.581 

Octamer builded from LH2 

acidophila 
4.1 2.5 56 0.606 

 

8.9.2 LL LH2 crystal C2 

Standard processing (6.5 Å) 

Search Model RFZ TFZ LLG R-factor 

LH2 acidophila pruned 6.1 7.6 326 0.581 

LH2 molischianum pruned 5.9 5.5 221 0.603 

Octamer builded from LH2 

acidophila 
5.0 5.4 130 0.631 

 

Anisotropic processing (5.0 Å) 

Search Model RFZ TFZ LLG R-factor 

LH2 acidophila pruned 6.6 7.5 404 0.584 

LH2 molischianum pruned 6.3 5.5 235 0.598 

Octamer builded from LH2 

acidophila 
5.1 4.6 155 0.605 
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8.9.3 LL LH2 crystal P21 

Standard processing (6.2 Å) 

Search Model RFZ TFZ LLG R-factor 

LH2 acidophila pruned 4.9 7.7 262 0.479 

LH2 molischianum pruned 3.4 4.0 93 0.537 

Octamer builded from LH2 

acidophila 
3.2 3.4 66 0.545 

 

Anisotropic processing (5.6 Å) 

Search Model RFZ TFZ LLG R-factor 

LH2 acidophila pruned 5.5 6.6 293 0.499 

LH2 molischianum pruned 3.3 2.8 46 0.569 

Octamer builded from LH2 

acidophila 
3.2 4.7 63 0.550 

 

Note: 

RFZ and TFZ give the scores from the PHASER rotational and translational 

functions. LLG stands for log likelihood gain and compares the Patterson maps 

for the solution model and for the experimental data. R-factor is the reliability 

factor expressing the agreement between the refined model and the 

experimental data. The lower R-factor value the better is the agreement with 

experimental data. 

The polypeptides of the LH2 models from Rps. acidophila 10050 and Phs. 

molischianum were pruned at the C and N termini, which were assumed to be 

possibly flexible. The molecular surface solvents were also removed. 
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