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Abstract

I

Abstract

Since the introduction of glucocorticoids (GCs) in the treatment of rheumatoid

arthritis in 1949, GC therapy has been associated with a number of adverse effects.

Long-term use of GCs can result in growth retardation during childhood due to their

actions on growth plate chondrocytes, although the exact mechanisms involved are

unclear. The work of this thesis has investigated the cellular and molecular

mechanisms involved in mediating GC effects at the growth plate.

Affymetrix microarray has been used to identify and characterise the expression of

lipocalin 2, a novel GC-responsive chondrocyte gene which may contribute to GC-

induced growth retardation in the growth plate. In vitro and in vivo studies have also

been used to examine the role of the cell cycle regulator, p21WAF1/CIP1 in GC-induced

growth retardation. Finally, the growth plate sparing effects of a novel GC receptor

modulator, AL-438, have also been identified. AL438, has reduced effects on bone

growth compared to Dex, but maintains similar anti-inflammatory efficacy.

This work has not only determined novel mechanisms of GC-induced growth

retardation, but has also advanced the search for novel GC receptor modulators with

reduced adverse effects.
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Preface

Since the introduction of glucocorticoids (GCs) in the treatment of rheumatoid

arthritis in 1949, their therapeutic applications have broadened to encompass a large

number of non-endocrine and endocrine diseases (Hench et al., 1949). However,

despite the intense efforts made by science and industry to maximise the efficacy and

minimise the side effects of GCs, adverse reactions are still common. Impairment of

childhood growth with long-term GC treatment was described nearly 50 years ago;

however the mechanisms by which GCs cause this growth retardation are still

unknown. With 5-10% of children requiring GC treatment at some point during

childhood, it is vital that we gain a better understanding of these mechanisms to aid

the development of new GCs with reduced side effects.

1.1 Skeletal Growth

Growth takes place at the epiphyseal growth plate of long bones by a finely balanced

cycle of cartilage growth, matrix formation and calcification. This sequence of

cellular events is known as endochondral ossification. An individual's skeletal growth

rate and adult limb bone length are influenced by many factors including circulating

hormones, nutritional intake, mechanical influences and disease, and growth

disturbances result when there is disruption of the normal cellular activity of growth

plate chondrocytes and/or the cells of bone. There is an increasing body of evidence

to demonstrate that factors produced locally in bone and cartilage, or trapped within

hard tissue matrix, may play a critical role in regulating normal and pathological

skeletal growth and remodelling.
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1.2 The Structure and Composition of Bone Tissue

1.2.1 Cortical Bone

Two types of bone structure exist; cortical (compact) and trabecular (spongy) bones

(Figure 1.1A). Cortical bone makes up approximately 80% of the total skeletal mass

(Sambrook et al, 1993), and contains few spaces. It forms the external layer of all

bones in the body and the majority of the diaphyses of long bones, and provides

protection and support by helping the long bones resist the stress of weight placed

upon them (Skedros et al, 1996). Cortical bone is composed of concentric rings of

bone tissue known as osteons (Figure 1.1B). Blood vessels, lymphatic vessels, and

nerves from the periosteum penetrate the cortical bone through perforating

(Volkmann’s) canals. The blood vessels and nerves of these canals connect with

those of the medullary cavity, periosteum, and central (Haversian) canals of the

osteon (Havers, 1961). The central canals run longitudinally through the bone, and

around the canals are concentric lamellae – rings of hard, calcified matrix. Between

the lamellae are small spaces, or lacunae, which contain osteocytes. Radiating in all

directions from the lacunae are minute canals known as canaliculi, which are filled

with extracellular fluid. Inside these canaliculi are slender finger-like processes of

osteocytes. The canaliculi connect lacunae with one another and, eventually, with the

central canals. Thus, there is an intricate branching network of canals which provide

a route for nutrients and oxygen to reach the osteocytes and for wastes to diffuse

away. Osteocytes from neighbouring lacunae form gap junctions with one another,

facilitating easy movement of materials from cell to cell. Each central canal, with its

surrounding lamellae, lacunae, osteocytes and canaliculi, forms an osteon (Haversian

System). Cortical bone tissue is the only connective tissue containing a basic

structural unit – the osteon – associated with it.
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Figure 1.1 Structure and components of long bone. (A) Long bones are longer than
they are wide, consisting of a long shaft (the diaphysis) plus two articular (joint)
surfaces, called epiphyses. They are comprised mostly of compact bone, but are
generally thick enough to contain considerable spongy bone and marrow in the hollow
centre (the medullary cavity). Most bones of the limbs (including the three bones of
the fingers) are long bones, except for the kneecap (patella), and the carpal,
metacarpal, tarsal and metatarsal bones of the wrist and ankle
(training.seer.cancer.gov) (B) A 3D representation of the structure and organisation of
trabecular and compact bone (www.iofbonehealth.org).

1.2.2 Trabecular Bone

In contrast to cortical bone, trabecular (cancellous) bone does not contain true

osteons, but instead consists of lamellae arranged in an irregular latticework of thin

columns of bone called trabeculae. The macroscopic spaces between the trabeculae of

some bones are filled with red bone marrow, which produces blood cells. Within the

trabeculae are osteocytes that lie in lacunae, and radiating from the lacunae are

canaliculi. Blood vessels from the periosteum penetrate through to the trabecular

bone, and osteocytes in the trabeculae receive nourishment directly from the blood

circulating through the marrow cavities. Osteons are not necessary in spongy bone as

osteocytes are not deeply buried as they are in cortical bone, and so have access to

http://www.katrinapetsneedhelp.com/pets/Carpal
http://www.katrinapetsneedhelp.com/pets/Metacarpal
http://www.katrinapetsneedhelp.com/pets/Tarsal
http://www.katrinapetsneedhelp.com/pets/Metatarsal
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nutrients directly from the blood. Trabecular bone constitutes the majority of bone

tissue of short, flat and irregularly shaped bones and most of the epiphyses of long

bones. Trabecular bone tissue in the ribs, sternum, vertebrae and in the ends of some

long bones is the only site of red bone marrow storage, and hence haemopoiesis in

adults.

1.2.3 Osteoblasts

Osteoblasts are bone-forming cells that are derived from multipotent mesenchymal

stem cells (stromal stem cells), are cuboidal in shape and are localised mainly to the

bone surface. The gene expression profile of the osteoblast is very similar to that of a

fibroblast with very few bone specific transcripts being produced. The main

difference in cell function is that osteoblasts have the ability to form an extracellular

matrix (osteoid) which they can subsequently mineralise (Ducy et al, 2000). The un-

mineralised matrix is formed mainly from collagen type 1 (approximately 94%) which

is laid down early in bone formation, with the remainder being taken up with

embedded proteins such as osteocalcin, osteonectin, osteopontin and bone sialoprotein

(Sommerfeldt and Rubin, 2001). This stage of matrix production is under strict

control of growth factors such as fibroblast growth factor (FGF) and insulin like

growth factor-I (IGF-I) (McCarthy et al, 1989; Hurley and Florkiewicz, 1996).

During intramembranous ossification, mesenchymal cells differentiate into osteoblasts

and bone is formed without replacing a cartilaginous model, whereas during

endochondral ossification the cartilage template matrix is calcified and osteoblasts are

recruited to deposit woven bone (and later lamellar bone) on the surface of the

mineralised matrix residues. Following bone formation, osteoblasts can have one of

four different fates: (1) they can become embedded in the bone as osteocytes, (2)
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transform into inactive osteoblasts and become bone lining cells, (3) undergo

apoptosis, or (4) transdifferentiate into cells that deposit chondroid or chondroid bone

(Noble et al., 1997; Jilka et al., 1998;). Once embedded into the bone matrix the

former osteoblasts, now osteocytes, cease their activity.

1.2.4 Osteocytes

Osteocytes are mature bone cells that are derived from osteoblasts, and are by far the

most abundant cellular component of mammalian bones, making up 95% of all bone

cells (Parfitt., 1990; Marotti et al., 1996). An important role of osteocytes and their

network of cell processes are to function as strain and stress sensors, signals that are

vital for maintaining bone structure (Burger et al., 2003). Osteocytes communicate

with one another and with osteoblasts at the bone surface via a meshwork of cell

processes that run through canaliculi in the bone matrix (Franz-Odendaal et al., 2006).

Osteocytes no longer secrete matrix minerals, but maintain daily cellular activities of

bone tissue, such as the exchange of nutrients and wastes with the blood. Another

function of osteocytes within the bone network is the ability to deposit and resorb

bone around the osteocyte lacuna in which they are housed, thus changing the shape

of the lacuna. This process, known as osteocytic osteolysis, is often not regarded as

characteristic of human osteocytes, but has been observed in many vertebrates such as

hamsters (Steinberg et al., 1981), squirrels (Haller and Zimny 1978) and rats

(Belanger 1977; Tazawa et al., 2004). It has recently been proposed that the three-

dimensional network of osteocytes provides the cellular basis for mechanosensing in

bone, leading to adaptive bone remodelling. Mechanotransduction in bone is complex

in nature, and is influenced by many modulators including PTH, prostanoids, and

extracellular Ca2+. It has been postulated that osteocytes transduce signals of
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mechanical loading resulting in anabolic responses such as the expression of c-fos,

IGF-I, and osteocalcin (Mikuni-Takagaki 1999).

1.2.5 Osteoclasts

Osteoclasts are multi-nucleated cells, derived from haematopoietic stem cells, which

resorb mineralised bone at sites known as Howships lacunae (Sommerfeldt and

Rubin, 2001). This is an essential process which allows bone repair and sequestration

of calcium into the blood to maintain ion homeostasis. Bone modelling and re-

modelling are crucial events in skeletal development and repair, and are strictly

controlled by osteoclasts. Defects in these processes lead to diseases such as

hypercalcemia of malignancy and postmenopausal osteoporosis where an increase in

bone resorption is the main pathological episode (Vaananen et al, 2000). Osteoclasts

are closely related to macrophages and dendritic cells with only the final stage of

differentiation altering for each cell type. This differentiation is dependent on whether

the cell is stimulated by exposure to a particular receptor activator of nuclear-factor

kB (NF-kB) ligand i.e. osteoclast differentiation factor, macrophage colony-

stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor

(Vaananen et al, 2000). Osteoclasts create a cavity at the remodelling site through the

secretion of enzymes and acids such as matrix metalloproteases and tartrate resistant

acid phosphatase (TRAP). Osteoblasts are then recruited to this site where they lay

down a matrix which is subsequently mineralised.
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1.3 Bone Growth

1.3.1 Embryonic Bone Formation

Embryonic skeletogenesis involves the sequential events of patterning, cell

differentiation, and morphogenesis to give rise to cartilage and bone. The significant

functional role of the skeletal structures, such as the scaffolding of the vertebrate

animal, requires that skeletogenesis be under stringent regulation at multiple levels.

There are two principle pathways of skeletal development: intramembranous and

endochondral (Hall et al., 1987). Intramembranous ossification involves direct

differentiation of mesenchymal cells into osteoblasts, and is seen predominantly in

craniofacial bones (Langille et al., 1994). During endochondral ossification, (such as

that seen in the long bones and vertebrae), mesenchymal cells condense, undergo

chondrogenesis and form cartilage. This cartilage subsequently matures, undergoes

hypertrophy, and is eventually replaced by bone (Caplan et al., 1994).

1.3.2 Endochondral Ossification

Endochondral ossification is the process responsible for much of the bone growth in

vertebrate skeletons, especially in long bones. As the name might suggest (endo -

within, chondro - cartilage), endochondral ossification occurs by replacement of

hyaline cartilage. Long bones of the skeleton first appear as limb buds and the earliest

observable morphological event in this process (between 10.5 and 12.5 days post-

coitum in the embryonic mouse) is the aggregation of committed, undifferentiated

mesenchymal cells into structures known as condensations. Prechondrogenic

condensation begins the process of endochondral ossification and is required for

subsequent skeletal development. Chondrocytes derive from mesenchymal cells that

migrate into presumptive skeletogenic sites from the cranial neural crest, paraxial

http://en.wikipedia.org/wiki/Vertebrate
http://en.wikipedia.org/wiki/Skeleton
http://en.wikipedia.org/wiki/Hyaline_cartilage
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mesoderm and lateral plate mesoderm. At these skeletogenic sites, the cells become

tightly packed and form cell mass condensations that prefigure the future skeletal

elements (Hall and Miyake 2000). In the centre of these condensations,

prechondrocytes emerge that turn off expression of mesenchymal and condensation

markers, and start to express collagen type 2 (Coll II) and other early cartilage

markers (Figure 1.2). Surrounding these prechondrocytes is the perichondrium, the

outer layer of which becomes a connective tissue sheath while the inner cells remain

pluripotential. This cartilage rudiment grows by interstitial and appositional growth,

and a vascular system develops to invade the perichondrium (Figure 1.3). A collar of

bone is then laid down around the mid-shaft of the bone. This ossification is a result

of the inner perichondrial cells differentiating into bone forming cells, the osteoblasts.

At the same time the osteoblasts, together with capillaries, invade the centre of the

shaft to form a primary or diaphyseal ossification centre at a site where the cartilage

cells and matrix have begun to disintegrate. Trabecular bone is then deposited on

cartilaginous remnants. The embryonic bone increases in width by appositional

growth, and the central cancellous bone core gradually becomes resorbed to form a

marrow cavity (Figure 1.3).



Chapter 1 Introduction and Literature Review

11

Figure 1.2 Coll II Stained Murine Embryos (A) Coll II-GFP murine embryos
The GFP fluorescent reporter is expressed in cells of cartilaginous skeleton in E14.5
(left) and E17.5 (right) mouse embryos. Fluorescence is brightest in structures
exhibiting the highest level of chondrogenesis, such as external ears and long bones of
the extremities of the younger embryo. Some structures in the older embryo, such as
most of the spine, the posterior ribs and central portions of limb bones no longer show
fluorescence as the cartilage has been replaced by bone. (B) Coll II-GFP murine
embryonic tibia Confocal optical sectioning of tibia from E17.5 embryo shows
epiphyseal cartilages and growth plates on the right and a higher magnification of the
proximal growth plate on the left. (www.shcc.org/growth_plate.htm)

In long bones, another centre of ossification appears at the growing cartilaginous

ends, known as the secondary ossification centre (Figure 1.3). This ossification does

not replace the cartilage at the articular end of the model but results in a transverse

plate of cartilage extending across the epiphysis separating the secondary ossification

centre from the diaphysis. This is known as the epiphyseal growth plate. Growth of

cartilage in the epiphyseal plate is continuous, but the plate does not become

thickened because on its diaphyseal side the cartilage matures, is calcified, resorbed

and replaced by bone. This is endochondral ossification, the mechanism responsible

for increasing the length of the bone. During growth this is a site of many complex

cellular events; namely cartilage growth, maturation, resorption and bone formation.

Disturbance of any one of these processes may be reflected in growth retardation.



Chapter 1 Introduction and Literature Review

12

Figure 1.3 The Process of Endochondral Ossification. Following the
development of a cartilage model of chondrocytes derived from mesenchymal cells, a
primary ossification centre is formed in the centre of the diaphysis. This leads to the
formation of the periosteum and the bone collar, and causes the chondrocytes within
the primary ossification centre to hypertrophy, secrete alkaline phosphatase (ALP),
and mineralise the matrix surrounding them. These chondrocytes then undergo
apoptosis, and, in their place, blood vessels, lymph vessels and nerves invade the
cavity they have left behind. This leads to invasion by osteoblasts, osteoclasts and
hoemopoietic cells. Osteoblasts use the calcified matrix as a scaffold and begin to
secrete osteoid, which forms the bone trabecula. The secondary ossification centre is
formed when cartilage is retained in the growth plate, located between the diaphysis
(the shaft) and the epiphysis (end) of the bone. Cartilage cells undergo the same
transformation as above. As growth progresses, the proliferation of cartilage cells in
the growth plate slows and eventually stops (http://training.seer.cancer.gov/
module_anatomy/unit3_3_bone_growth.htm).

1.4 The Growth Plate

1.4.1 Structural Organisation of the Growth Plate

The process of bone growth relies upon chondrocytes produced at the epiphyseal

growth plate, which are progressively synthesised and replaced by bone with

accompanying longitudinal (endochondral) bone growth (Farquharson 2003). The

growth plate is a thin layer of cartilage found near the ends of long bones and

vertebrae (Kronenberg et al., 2003) and it comprises of both chondrocytes and their

extracellular matrix (ECM). A characteristic of endochondral bone growth is the

precise temporal and spatial organisation of chondrocytes within the growth plate

http://en.wikipedia.org/wiki/Epiphyseal_plate
http://en.wikipedia.org/wiki/Diaphysis
http://en.wikipedia.org/wiki/Epiphysis
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where they differentiate through a series of maturational stages whilst remaining in a

spatially fixed location (Hunziker et al., 1987). Histologically, the chondrocytes are

arranged in columns similar to a stack of coins that parallel the longitudinal axis of the

bone (Figure 1.4). Each column and each chondrocyte within a column are

respectively separated by longitudinal and transverse septae made up of a collagenous

and proteoglycan rich ECM. At the most proximal end of the growth plate are the

resting chondrocytes. Directly below the resting chondrocytes are the proliferating

chondrocytes, and then the pre-hypertrophic and hypertrophic chondrocytes (Figure

1.4).

Figure 1.4 The Epiphyseal Growth Plate The growth plate is located at the end of
the long bone and is contained within the epiphysis. Chondrocytes within the growth
plate proceed through stages of proliferation and differentiation, ultimately leading to
hypertrophy and calcification (www.kumc.edu/imstruction/medicine/anatomy/histo
web/bone/small/Bone002s.JPG and www.bu.edu/histology/p02401ooa.htm)

1.4.2 The Resting Zone

At the most proximal end of the growth plate, the reserve zone, or stem cell zone,

contains the resting chondrocytes. Cells in this zone exist singly or in pairs separated

by an abundant extracellular matrix, have low rates of proliferation and synthesise

only low levels of proteoglycans and Coll II (Kember, 1978; Schmidt, Rodergerdts &
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Buddecke, 1978; Sandell et al., in press). Intuitively there is agreement that a zone of

stem cells must exist proximal to the chondrocytes in the columns of the proliferative

zone, and there is a significant body of experimental evidence that these stem cells

can be stimulated to initiate clonal expansion as proliferative cells (Kember et al.,

1993). This is supported both by evidence demonstrating the responsiveness of these

cells to stimulation by circulating hormones such as growth hormone (GH), and by

observations with bromodeoxyuridine (BrdU) labelling that these cells have very long

cell cycle times compared to cells in the proliferative pool (Isaksson et al., 1982;

Farnum et al., 1993).

However, in most descriptions, the reserve cell zone is defined morphologically by

the size and spatial orientation of the cells, and refers to all chondrocytes that do not

align themselves in the columns that are characteristic of the proliferative cell zone

(Seinsheimer et al., 1981; Farnum et al., 1986; Farnum et al., 1987; Farnum et al.,

1993). If defined this way, the reserve zone may, in fact represent a heterogeneous

zone of cells with subpopulations of chondrocytes with different physiologic

functions. The size of the resting zone varies in growth plates from different bones in

the same species, and, for a given growth plate, the proportional size of the resting

zone relative to total growth plate size varies significantly from species to species

(Ishizaki et al., 1994). In humans, Kember and Sissons (1976) showed that, although

the overall width of the growth plate declines as growth rate diminishes, there is no

significant change in the size of the reserve cell zone. In larger species, a sizeable

resting cell zone is present even after formation of the secondary ossification centre is

complete. Therefore, one hypothesis is that the so-called reserve zone might serve as

a mechanical support to the actively growing chondrocytes of the growth plate in



Chapter 1 Introduction and Literature Review

15

species that have relatively slow growth rates over long periods of time (Kember et

al., 1976; Ishizaki et al., 1994).

Recently, the reserve zone chondrocytes have also been shown to be crucial for

orientation of the underlying columns of chondrocytes and therefore unidirectional

bone growth, and it is thought that this is due to the secretion of a growth plate-

orienting factor (Abad et al., 2002). It has also been suggested that resting zone

chondrocytes may produce a morphogen that inhibits terminal differentiation of

nearby proliferative zone chondrocytes, and therefore may be partially responsible for

the organisation of the growth plate into distinct zones of proliferation and

hypertrophy.

1.4.3 The Proliferating Zone

The proliferative zone contains cells from the time clonal expansion begins until the

cell exits the cell cycle and begins terminal differentiation. The epiphyseal (proximal)

side of the proliferative cell pool can be defined using either thymidine or BrdU

labelling (Loveridge and Farquharson 1993). The number of cells in the proliferative

zone correlates positively with the rate of growth, and chondrocytes in this zone are

flattened, thin discs, arranged like a stack of coins (Buckwalter et al., 1985). Cellular

proliferation is required to maintain steady-state kinetics in a given growth plate by

offsetting cellular loss at the chondro-osseous junction (Farnum et al.,1989; Wilsman

et al., 1996a; Wilsman et al., 1996b). However, the number of cells contributing to

the proliferative pool changes over time and is different in growth plates growing at

different rates, although the mechanism by which cellular numbers change over time

is still unclear. Recent studies have shown that in one animal at one point in time,
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cellular cycle times vary in growth plates growing at different rates. Cell cycle times

in the proximal tibia of 4-week-old rats was shown by repeated pulse labelling of

BrdU to be approximately 30 hours, compared to 76 hours in the proximal radius of

the same animals. (Wilsman et al., 1996b). Almost all of the difference in time was

associated with the G1 phase of the cell cycle. Therefore, at one point in time, cell

cycle times have an inverse relationship with the rate of growth.

Multiple mechanisms may exist by which subsets of chondrocytes regulate

proliferation leading to a modulation of growth rates in different bones and in one

bone over time. At separate stages of differentiation, chondrocytes may differentially

respond to the same external or internal cues. One specific example is that

parathyroid hormone (PTH) has different effects on collagen gene expression in

chondrocytes in different maturation stages, and that these effects are exerted by

distinct effector domains of the PTH molecule (Erdmann et al., 1996). At any given

moment, either by a finite number of cell divisions or by changes in exposure to a

local mediator such as GCs, proliferating chondrocytes lose their capacity to divide

and start to differentiate and become prehypertrophic, coinciding with an increase in

size. These chondrocytes then further progress in the differentiation pathway to

become hypertrophic chondrocytes.

1.4.4 The Transition Zone: Proliferation to Hypertrophy

When chondrocytes are examined consecutively within a growth plate column, there

are cells that are spatially distal to the last chondrocytes that incorporate BrdU, but

proximal to cells with a large increase in volume consistent with the hypertrophic

phase. This narrow zone of transition is coordinated by a number of complex
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regulatory mechanisms, and a number of unique genes involved with this transition to

terminal differentiation have been identified (Wang et al., 2004; Wang et al., 2005),

along with specific matrix markers, matrix proteins and specific receptors (Wang et

al., 2004; Han et al., 2005).

1.4.5 The Hypertrophic Zone

The initial work demonstrating that chondrocytic hypertrophy involved a rapid

increase in cell volume and change in shape was carried out by Hunziker (1987) and

Buckwalter (1986). This work led to further quantitative investigations that

demonstrated the strong positive correlation of final hypertrophic cell volume with

rate of growth (Breur et al., 1994). Although the actual rate and efficiency of volume

increase varies in growth plates from different species (Barreto et al., 1994; Kuhn et

al., 1996), the quantitative data supports the hypothesis that volume increase during

hypertrophy is a major contributor to the differential rates of growth occurring in

different growth plates of a given animal. In addition, a directed shape change

accompanies the volume increase, so that chondrocytic height parallel to the direction

of growth is increased disproportionately to width. This directed shape change

accompanying the volume increase is a major determinant of overall growth. The

hypertrophic chondrocytes have a round appearance and secrete large amounts of

matrix proteins, a characteristic which is essential for the propagation of

mineralisation, which occurs at the chondro-osseous junction.

1.4.6 Mineralisation and the Chondro-osseous junction

The chondro-osseous junction represents another transition point and is the most

complex transitional zone within the growth plate. It is, in fact, a true organ-level
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system in which endothelial cells of the metaphyseal vasculature, blood cells,

osteoprogenitor cells, and osteoclasts are separated from the terminal hypertrophic

chondrocytes only by the distance of the last transverse septum of the hypertrophic

cell zone. Terminally differentiated hypertrophic chondrocytes are characterised by

an increase in intracellular calcium concentration. This is essential for the production

of matrix vesicles, which are small membrane-enclosed particles that are released

from chondrocytes (Wang et al., 2002; Anderson et al., 2003). These matrix vesicles

provide an environment permissive for calcium phosphate precipitation into

hydroxyapatite crystals. This mineralisation process takes the form of two distinct

phases; phase one occurring completely within the matrix vesicle. During this phase,

phosphatases associated with the matrix vesicle (such as alkaline phosphatase and

PHOSPHO1) supply the required phosphate (Roberts et al., 2007), whilst calcium is

captured by annexins and phosphatydyl serine, to produce mineral crystals. During

phase two, these mineral crystals pierce the matrix vesicle membrane and enlarge with

the addition of phosphate and calcium ions present in the extravesicular space. This

results in the formation of mineral sphericules which associate closely to collagen

fibrils. The mineralisation process, in combination with low oxygen tension, attracts

blood vessels from the underlying primary spongiosa (Schipani et al., 2001).

Subsequently, the remaining hypertrophic chondrocytes undergo apoptosis, leaving a

scaffold for new bone formation. The apoptotic process is, among other factors,

regulated by elevated intracellular calcium levels (leading to activation of proteases,

lipases and nucleases), retinoic acids and vitamin D. Longitudinal and transverse

septae, which keep the chondrocytes in a columnar orientation in the growth plate, are

resorbed by osteoclasts from the underlying primary spongiosum (Lewinson et al.,

1992; Vu et al., 1998). At the same time, osteoblasts enter the area to lay down new
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trabecular bone (although interestingly, only the longitudinal septae are actually

replaced with trabecular bone; Mitchell et al., 1982). The combination of the rate of

chondrocyte proliferation, the size of the proliferative pool, the enlargement of

maturing chondrocytes in the hypertrophic zone and the production of ECM are the

major contributors to longitudinal bone growth.

In the steady state, chondrocytic turnover at the chondro-osseous junction needs to be

offset literally on a one-to-one basis by cellular proliferation in order to maintain

growth plate width and constant numbers of chondrocytes in the differentiation

cascade that results in longitudinal growth. Turnover not compensated for by

proliferation leads first to a decrease in total cellular numbers and, ultimately, to

growth plate closure. It is known that rates of chondrocytic turnover at the chondro-

osseous junction can be delayed in several kinds of diseases, such as rickets or

osteochondroses (Farnum et al., 1984; Shapiro et al., 1987). Morphologically, this

delay is manifested as an accumulation of hypertrophic chondrocytes with cells

continuing to be added because proliferation is not impaired. In these diseases,

cellular volume increase is initiated, but the turnover events at the chondro-osseous

junction do not progress. In rickets, this situation indicates that events of matrix

calcification are coupled to the final hypertrophic volume increase. However, in

osteochondroses, there is evidence that matrix calcification, although initially delayed,

may ultimately go on and result in hypertrophic chondrocytes of abnormal

morphology surrounded by highly calcified longitudinal septae (Farnum et al., 1984).
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1.4.7 The fate of the terminally differentiated chondrocyte

Despite the agreement on the significance of hypertrophic chondrocytes in regulating

both calcification of the matrix and the final extent of growth achieved, there remains

a controversy about whether the terminal chondrocyte continues to live beyond the

time of erosion of the last transverse septae, or whether its fate is death at the

chondro-osseous junction (Cancedda et al., 1995; Kwan et al., 1997; Shapiro et al.,

2005). There has been significant morphological evidence to suggest that terminal

hypertrophic chondrocytes die by apoptosis (Galotto et al., 1994), and more recently,

TUNEL labelling has supported this hypothesis (Zenmyo et al., 1996). Studies

looking at chondrocyte apoptosis identified a number of ions (such as the Ca2+ and Pi

ion pair), peptides, and secreted matrix metalloproteins present at the chondro-osseous

junction that could act as pro-apoptotic factors (Mansfield et al., 1999; Mansfield et

al., 2003). Interestingly, some evidence has suggested that all chondrocytes have

some level of DNA fragmentation characteristic of apoptosis (Hatori et al., 1995).

However, others have suggested that chondrocytes can transdifferentiate into

osteoblasts (Roach et al., 1995; Adams and Shapiro 2002; Shapiro et al., 2005). The

hypothesis of transdifferentiation has been tested using cultured embryonic explants

from chick femurs which were cut at the hypertrophic zone of the growth plate.

Associated with the change from chondrogenic to osteogenic commitment was an

asymmetric cell division with diverging fates of the two daughter cells, where one

daughter cell remained viable and the other one died. This suggests that the viable

daughter cell then divided and generated osteogenic cells, while the other daughter

cell died by apoptosis (Roach et al., 1995). More recently, the concept of

chondrocyte death by autophagy has been hypothesised (Bohensky et al., 2007). In

this theory, it is suggested that chondrocytes express a survival phenotype in response
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to changes in the cartilage microenvironment. This phenotype causes the

chondrocytes to oxidise their own structural macromolecules to generate ATP,

ultimately leading to tissue damage and cell death.

1.4.8 Extracellular Matrix Proteins

The chondrocytes are embedded in a surrounding ECM, which provides support to the

chondrocytes, and consists of matrix molecules, remodelling enzymes and growth

factors. The first group of matrix molecules are the collagens, of which types II, IX

and X are expressed predominantly in the proliferating, prehypertrophic and

hypertrophic zones, respectively, and are essential for the integrity of the ECM

(Horton et al., 2003). In addition, they play an essential role in sequestering growth

factors involved in the regulation of chondrocyte proliferation and differentiation.

Collagens are the most abundant proteins in mammals, and are structured in the form

of a triple helix with a regular arrangement of amino acids in each of the helices (Gly-

X-Pro or Gly-X-Hyp, where X may be any of various other amino acid residues).

Gene mutations in type II, IX or X collagens have been associated with disturbances

of the cartilage matrix causing spondyloepiphyseal dysplasia and hypochondriasis,

multiple epiphyseal dysplasia, or Schmid metaphyseal chondrodysplasia, respectively

(Spranger et al., 1994; Muragki et al., 1996; Wallis et al., 1996). These dysplasias are

all associated with short stature.

Another group of ECM molecules comprises the proteoglycans, including aggrecan,

biglycan and glypican. Proteoglycans consist of a core protein with one or more

covalently attached glycosaminoglycan chains. These glycosaminoglycan (GAG)

chains are long, linear carbohydrate polymers that are negatively charged under



Chapter 1 Introduction and Literature Review

22

physiological conditions, due to the occurrence of sulphate groups. These groups are

essential for the activation of proteoglycans and for cross-linking of the ECM. A

common GAG chain is chondroitin sulphate, a sulphated GAG which is composed of

a chain of alternating N-acetlygalactosamine and glucuronic acid. Chondroitin

sulphate is a major component of the extracellular matrix, and its function largely

depends on the properties of the overall proteoglycan of which it is part. It has been

shown to be important in maintaining the structural integrity of the tissue, a function

which is typical of the large aggregating proteoglycans such as aggrecan, versican,

brevican and neurocan. As part of aggrecan, chondroitin sulphate is a major

component of cartilage, and the tightly packed, highly charged sulphate groups

generate electrostatic repulsion that provides much of the resistance of cartilage to

compression. Loss of chondroitin sulphate from cartilage is a major cause of

osteoarthritis, and consequently it is widely used as a dietary supplement for the

treatment of this disease (Barnhill et al., 2006; Bruyere et al., 2007). Heparin sulphate

is a linear polysachharide which also occurs in proteoglycans, and in the ECM, the

main heparin sulphate bearing proteoglycans are the multi-domain perlecan, agrin and

collagen type XVIII. Heparin sulphate is also a member of the GAG family, and

consists of a variably sulphated repeating disaccharide unit. Synthesis of under

sulphated GAGs, for example by mutations in the diastrophic dysplasia sulphate

transporter gene, causes several forms of autosomal recessive chondrodysplasias,

including diastrophic dysplasia, atelosteogenesis type II, and achondrogenesis type 1B

(Rossi et al., 2001).

Communication exists between the ECM and cellular responses within the

chondrocyte through cell surface adhesion receptors, known as integrins. They
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mediate the attachment of the chondrocytes to the surrounding ECM macromolecules,

thereby increasing the integrity of the growth plate (Ruoslahti et al., 1991).

Furthermore, there is a group of ECM-remodelling enzymes, known as matrix

metalloproteinases (MMPs) and their inhibitors (tissue inhibitor of MMP; TIMP).

These play a crucial role in the remodelling and degradation of the ECM and are

involved in the preservation of the ECM integrity and the initiation of angiogenesis

(Werb et al., 1997; Ortega et al., 2003). Mice lacking MMP-9 display abnormal

growth plate vascularisation and bone formation (Gerber et al., 1999), whereas

disruption of tissue inhibitor of MMP-1 in mice increases basement membrane

invasiveness of primitive mesenchyme (precursor of chondrocyte) cells in vitro

(Alexander et al., 1992). Moreover, MMP-13 (collagenase-3) has been shown to be

crucial for remodelling of the matrix in the transition zone of the growth plate (Wu et

al., 2002). Inhibition of MMP-13 inhibits degradation of collagen II, which is

predominant in the proliferating zone and suppresses the expression of collagen X,

which is the major collagen of the hypertrophic zone (Wu et al., 2002). The ECM also

functions as a reservoir of various growth factors that may be released and influence

chondrocyte function when the ECM is degraded. Moreover, the ECM may control

the diffusion capacity of growth factors, including fibroblast growth factors (FGFs)

and hedgehogs. The role of the ECM is crucial for the integrity of cartilage and for

normal longitudinal growth, but the interaction between collagens, MMPs, integrins,

and the multitude of growth factors within the ECM is still far from understood.
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1.5 Longitudinal Bone Growth

1.5.1 The Process of Longitudinal Growth

Longitudinal bone growth is the result of chondrocyte proliferation and subsequent

differentiation in the epiphyseal growth plate. As previously discussed, it is regulated

by a multitude of genetic and hormonal factors, growth factors, environment, and

nutrition (Cancedda et al., 1998; Hering et al., 1999; Stevens et al., 1999, Robson et

al., 2002; Kronenberg et al., 2003). All of these factors contribute to establishing the

final height of an individual. There are at least three distinct endocrine phases of

linear growth during postnatal life in man. A high growth rate is observed from foetal

life, with a rapid deceleration up to about 3 years of age. The second phase is

characterised by a period of lower, slowly decelerating growth velocity up to puberty.

The last phase, puberty, is characterised by an increased rate of longitudinal growth

until the age of peak height velocity has been reached. Following this, growth

velocity rapidly decreases due to growth plate maturation in long bones and spine,

leading to fusion of the growth plate and cessation of longitudinal growth (Drop et al.,

1998). Recently, the process and moment of growth plate fusion has been elegantly

studied by Martin and co-workers (Martin et al., 2003), who determined the number

of bony bridges between the epiphysis and metaphysis by microcomputed

tomography in rats between 2 and 25 months of age. Although it is generally believed

that cessation of growth succeeds growth plate fusion, this has recently been disputed

by Parfitt (2002). He observed cessation of growth of a metacarpal in a patient with

pseudohypoparathyroidism, which was followed later by fusion of the growth plate.

In support of this, a recent study in aged rats has shown that, despite cessation of

growth, growth plates still exist with sporadic chondrocyte proliferation (Roach et al.,

2003).
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1.5.2 Growth Disorders

Disturbances of longitudinal bone growth occur frequently with a high diversity in

aetiology. Both short and tall stature disorders are divided into primary (defect

presumed in bone/cartilage), secondary (defect located outside bone/cartilage), or

idiopathic (cause unknown) (Drop et al., 2001). Primary short stature disorders

include chromosomal disorders such as Down and Turner syndromes, genetic

disorders such as achondroplasia, hypochondroplasia and thanatophoric dysplasia,

Jansen’s metaphyseal chondroplasia (defects in the parathyroid hormone type 1

receptor (PTH1R)), and multiple epiphyseal dysplasia (defects in the expression of

type II, IX and X collagen). Primary tall stature disorders include chromosomal

disorders such as Klinefelter syndrome (or 47, XXY), and genetic syndromes such as

Sotos, Marfan and Weaver syndromes. Secondary disorders of short stature include

those related to GH deficiency or resistance (Pit-1, Prop-1, Larson syndrome, IGF-I

deficiency), hypothyroidism, malnutrition or renal failure. Secondary disorders of tall

stature include GH excess, pituitary gigantism, GH-secreting tumours such as

McCune Albright syndrome and pituitary adenomas, hyperinsulinism, sex hormone

resistance or deficiency, and precocious puberty. In addition to the psychological

problems associated with growth retardation, a number of studies have shown that

reduced growth during development can lead to disease in later life. Known at the

Barker hypothesis, it is now known that slow growth during foetal life and infancy is

followed by an increased risk of coronary heart disease, type 2 diabetes and

hypertension during adulthood. Mechanisms underlying this are thought to include

the development of insulin resistance in utero, reduced numbers of nephrons

associated with small body size at birth and altered programming of the micro-
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architecture and function of the liver. Slow foetal growth might also heighten the

body's stress responses and increase vulnerability to poor living conditions in later

life. (Barker et al., 1989; Barker 2002).

1.5.3 Catch-up Growth

Many systemic diseases impair longitudinal bone growth. Interestingly, after

remission, growth often accelerates beyond the normal growth rate for that particular

age, a phenomenon called catch-up growth (Boersma and Wit 1997). This has been

observed in many growth-retarding conditions such as Cushing’s syndrome (Prader et

al., 1963), hypothyroidism (Boersma et al., 1995), celiac disease (Damen et al.,

1997), anorexia nervosa/malnutrition (Prader et al., 1963), and GH deficiency

(Boersma and Wit 1997). To explain catch-up growth, it was originally believed that

a mechanism exists in the brain that compares the actual body size with an age-

appropriate set point and adjusts the growth rate accordingly, and this is termed “sizo-

stat” (Onat et al., 1975). This neuroendocrine hypothesis was challenged by an

experimental study in the rabbit. In this experiment, the GC dexamethasone (Dex)

was infused by an osmotic minipump directly in the tibial growth plate, which slowed

bone growth of the treated leg but not of the contralateral vehicle-treated leg (Baron et

al., 1994). When Dex infusion was stopped, tibial bone growth was not just

normalised but even increased compared with the contralateral leg, thereby

demonstrating catch-up growth (Baron et al., 1994). Based on these findings, Gafni

and Baron (2000) proposed that the underlying mechanism for catch-up growth was

intrinsic to the growth plate. A mechanism explaining catch-up growth may be that a

maximum number of cell divisions exist for growth plate resting chondrocytes and

that at each cell division the proliferation rate decreases, a process known as
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senescence. Growth retardation reduces chondrocyte proliferation and thereby delays

senescence. When remission takes place, the cells within the proliferating zone have

a greater proliferating potential, explaining the increased growth rate compared with

the unaffected growth plate. This was recently supported by intra-muscular oestrogen

injections in rabbits resulting in a more rapid senescence of growth plate

chondrocytes, causing proliferative exhaustion and earlier growth plate fusion

compared with non-treated rabbits (Weise et al., 2001). However, these studies have

been performed in animals, and their pattern of catch-up growth is different from that

of humans. For example, in a child who displays catch-up growth, height velocity can

be four times that of normal growth, whereas in rats and rabbits the growth velocity

increment is minimal. To date, additional studies are required in humans to generate a

more solid and satisfactory hypothesis for the process of catch-up growth (Boersma

and Wit, 1997, Wit and Boersma, 2002).

1.6 Regulation of Longitudinal Bone Growth

1.6.1 Systemic Regulation

The major systemic factors that regulate longitudinal bone growth during childhood

are GH and IGF-I, thyroid hormone, and GCs, whereas during puberty, the sex

steroids (oestrogens and androgens) also contribute to this process. Although the

effects of these factors on longitudinal bone growth have been well reported, the

mechanisms underlying these effects remain largely unknown.

1.6.1.1 GH-IGF-I system

IGF-I and –II are believed to be the key regulators of GH-independent growth before

birth. This is based on findings in knockout mice, and also on the observation that in
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congenital GH deficiency, birth length is only mildly diminished, whereas in

congenital IGF-I deficiency birth length is severely diminished (Mehta et al., 2005).

Following birth, GH is an important modulator of longitudinal bone growth and,

together with IGF-I, plays a major role in the hypothalamus-pituitary (HPA) growth

plate axis (Figure 1.5). GH secretion from the pituitary is stimulated by Growth

Hormone Releasing Hormone (GHRH) and inhibited by somatostatin, which are both

released by the hypothalamus. GH is released in a pulsatile manner which is more

regular and contains higher peak levels in boys, whereas in girls this secretion is more

irregular (Veldhuis et al., 1998). A pituitary adenoma in childhood or adulthood

causes enhanced GH secretion, leading to pituitary gigantism, or acromegaly,

respectively (Daughaday et al., 1992; Ezzat et al., 1997). Conversely, defects in the

formation of GH-secreting cells (i.e. Prop-1 or Pit-1 mutations), synthesis or release

of GH (i.e. by GHTH-receptor or Pit-1 mutations), or GH insensitivity can result in

severe dwarfism (Wit et al., 1989; Pfaffle et al., 1993; Savage et al., 2001).

GH acts on its target tissue directly or through IGF-I and –II. There is now substantial

evidence that both IGFs have a unique and complementary role in regulating bone

growth (Le Roith et al., 2001). In 1957, Salmon and Daughaday postulated the

somatomedin (now called IGF) hypothesis in which the growth plate chondrocytes

response to GH was mediated through the hepatic production of IGF and its release

into the circulation. From there, IGF-I reaches its target tissues (cartilage and bone)

and interacts with its receptors, which convey a growth signal to the cell. This

hypothesis is compatible with an endocrine action of IGF-I and was based on

experimental evidence that the addition of GH to cartilage fragments in culture had

little effect, whereas the addition of serum stimulated cellular processes associated
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with chondrocyte proliferation and differentiation. However, serum from

hypophysectomised animals had a lesser effect and subsequent GH therapy resulted in

a serum with normal growth promoting activities. The somatomedin hypothesis has

been questioned by other experiments showing that low concentrations of GH directly

infused into the growth plate showed stimulated longitudinal growth in comparison to

the contralateral limb (Isaksson et al., 1982). These and similar studies have led to an

alternative hypothesis of GH action in which GH has a direct effect on bone and other

peripheral tissues resulting in the local production of IGF-I (D’Ercole et al., 1984).

This hypothesis was supported by work carried out by Isaksson et al., who used

cultured growth plate chondrocytes to show that GH acts on resting zone

chondrocytes and is responsible for local IGF-I production, stimulating the clonal

expansion of proliferating chondrocytes in an autocrine/paracrine manner (Isaksson et

al., 1987). This hypothesis was named the dual-effector theory in analogy to the

proposed dual-effector theory in adipocytes by Green et al., (1985). Partly supporting

the dual-effector theory, Hunziker et al., (1994) showed that in hypophysectomised

rats, resting cell cycle times were reduced with either GH or IGF-I administration. In

addition, proliferating cell cycle time and duration of the hypertrophic phase were

reduced. From these studies, it was concluded that both GH and IGF-I were capable

of stimulating growth plate resting cells (Ohlsson et al., 1992).

In support of direct effects of circulating GH on the growth plate, GHR has been

detected in rabbit and human growth plate chondrocytes (Barnard et al., 1988), and

recently, both GHR and GH binding protein (GHBP) have been found in rat growth

plate chondrocytes during development (Gevers et al., 2002). Interestingly, the
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expression of GHR and GHBP in the growth plate were shown to be regulated by

thyroid hormone, GH and dexamethasone (Dex), and administration of GH into IGF-I

null mice increased the width of the resting zone, supporting a direct role for GH on

the growth plate. (Wang et al., 1999).

IGF-I also plays an important role in longitudinal bone growth, as IGF-I null mice

display severe dwarfism (Powell-Braxton et al., 1993), and children with a

homozygous IGF-I deletion have extremely short stature (Abuzzahab et al., 2003).

Mice with a double knockout for both GHR and IGF-I are smaller than mice with

either a GHR or IGF-I single knockout, suggesting that both GH and IGF-I contribute

significantly to longitudinal growth. In addition, mice with a double knock-out for

liver IGF-I and the acid-labile subunit displayed reduced linear growth and decreased

bone mineral density (Yakar et al., 2002).

1.6.1.2 Thyroid Hormone

In addition to GH and IGF-I, thyroid hormone (T3), and, to a lesser extent, its

precursor thyroxine (T4), are crucial for normal bone maturation (Shao et al., 2006).

In children, hypothyroidism causes growth arrest, delayed bone matruration and

epipyseal dysgenesis, with thyroxine replacement resulting in catch-up growth (Basset

et al., 2007). Conversely, thyrotoxicosis in children accelerates growth and advances

bone age, but ultimately leads to growth retardation due to premature growth plate

fusion. Many in vitro and in vivo studies have shown that T3 regulates the transition

between proliferation and terminal differentiation in the growth plate and specifically,

the maturation of growth plate chondrocytes into hypertrophic cells (Figure 1.5).
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In organ cultures, T4 has been shown to stimulate chondrocyte differentiation (Miura

et al., 2002), whilst in vitro, T3 decreases chondrocyte proliferation (Ohlsson et al.,

1992; Robson et al., 2000). In addition, many in vitro studies have shown that T3

positively regulates the terminal differentiation of chondrocytes in several different

species (Ohlsson et al., 1992; Bohme et al., 1995; Leboy et al., 1997; Okubo and

Reddi 2003). Interestingly, mechanistic studies have shown that T4 stimulates the

expression of p21, an inhibitor of the cell cycle, in rat epipyseal chondrocytes in vitro

(Ballock et al., 2000), and also inhibits the expression of Sox-9, a transcription factor

that maintains chondrocytes in an undifferentiated state (Okubo and Reddi 2003). In

addition, T3 stimulates fibroblast growth factor (FGF) receptor expression in murine

chondrogenic ATDC5 cells, enhancing FGF signalling (Barnard et al., 2005).

T3 actions are mediated through nuclear T3 receptors (TR), which have been shown to

act as ligand-controlled transcription factors (Yen et al., 2006), and a number of

different isoforms of TR have been detected in the growth plate. TRα1 and TRα2 are

expressed in chondrocytes and osteoblasts, as is the TRβ1 isoform. Mice lacking

functional TRα1 and TRα2 display abnormal growth plate morphology and impaired

mineralisation during endochondral ossification (Gauthier et al., 2001), and this is

associated with reduced FGFR1 and FGFR3 expression in osteoblasts and

chondrocytes (Stevens et al., 2003; Barnard et al., 2005). In contrast, mice with a

mutation in TRβ1 have elevated T4 levels, advanced bone age and short stature,

resulting from a reduced width of the growth plate (O’Shea et al., 2003). A specific

role for TRβ in chondrocytes has also been suggested in studies using the selective

TRβ agonist GC-1 (Freitas et al., 2005). Hypothyroid rats displayed disorganised

chondrocyte columns, reduced hypertrophic chondrocyte differentiation and impaired
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mineralisation. These abnormalities were all rescued by the administration of T3, and

although the agonist GC-1 also rescued differentiation and mineralisation defects,

normal growth plate morphology was not restored.

Figure 1.5 Hormone action in the growth plate. (A) The effects of GH, IGF-I, GC,
and T3 on growth plate chondrocytes. (B) Regions of the growth plate in which IGF-I
and GHR, IGF-IR, GR, and TR are expressed. RZ indicates reserve zone; PZ,
proliferative zone; HZ, hypertrophic zone; PS, primary spongiosum. (C) The
Ihh/PTHrP feedback loop, which regulates the pace of endochondral ossification. Ihh
is secreted by prehypertrophic chondrocytes and acts on perichondrial cells during
development, or on proliferative chondrocytes during postnatal growth, to stimulate
release of PTHrP. PTHrP acts on PTHrP receptors (PTHrPR) that are expressed in
uncommitted prehypertrophic chondrocytes to delay differentiation and maintain cell
proliferation (Robson et al., 2002).

1.6.1.3 Sex Steroids

It has long been established that sex steroids are important for longitudinal growth,

especially during puberty. It was generally assumed that in girls, oestrogen was the

primary sex steroid regulating pubertal growth, whereas in boys this was achieved

primarily by androgen. However, the finding of a male patient with an inactivation

mutation in Oestrogen Receptor ERfundamentally changed this view (Smith et
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al., 1994). This patient, who was resistant to the actions of oestrogens, demonstrated

longitudinal growth well into adulthood, resulting in tall stature due to a lack of

growth plate fusion as well as severe osteoporosis, despite high levels of testosterone

(Smith et al., 1994). This finding led to the assumption that in both boys and girls,

oestrogen is the main determinant for the puberty-associated phenomena related to

longitudinal growth and bone quality (Grumbach 2001; Juul et al., 2001).

In vitro studies have shown that, in the growth plate, oestrogen alters alkaline

phosphatase activity, cell proliferation and proteoglycan synthesis (Schwartz et al.,

2002). Indeed, oestrogen has a biphasic effect on proliferation, which is stimulated by

low levels and inhibited by high levels of oestrogen (Frank et al., 2003). A number

of studies have demonstrated the presence of the androgen receptor and both

oestrogen receptors, ER and ER, in growth plate tissue at the mRNA and protein

level in several species, including rat, rabbit, and human (Chagin and Savendahl

2007), indicating that androgens and oestrogens directly regulate processes in the

growth plate. Furthermore, the growth plate possesses the ability for steroidogenesis

as well as aromatisation (Van der Eerden et al., 2004). However, it has been difficult

to prove whether androgens have direct effects on growth plate cartilage. Non-

aromatisable androgens, such as dihydrotestosterone, have been shown to regulate

both the proliferation and differentiation of cultured human epiphyseal chondrocytes,

probably by promoting local IGF-1 synthesis and increasing IGF-I receptor

expression (Blanchard et al., 1991; Krohn et al., 2003).
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1.6.2 Local Regulation of the Growth Plate

1.6.2.1 Fibroblast growth factor (FGF) signalling

Recent studies have shown that many of the 22 FGF genes and 4 FGF receptor

(FGFR) genes are expressed by chondrocytes at every stage of endochondral bone

formation. Both FGF1 and -2, as well as FGFRs 1-3 are expressed in chondrocytes

(Peters et al., 1992; Jingushi et al., 1995; Leach et al., 1997), and in humans,

mutations in the FGFR3 gene cause achondroplasia, the most common type of human

dwarfism (Vajo et al., 2000). In addition, overexpression of FGF2 has been shown to

slow longitudinal growth (Coffin et al., 1995). Mancilla et al (1998) have also shown

that, in a metatarsal organ culture model, FGF2 decreased growth plate chondrocyte

proliferation, decreased cellular hypertrophy, and at high concentrations, decreased

cartilage matrix production. However, the multiple early effects of FGFs in the

development of bone have made the genetic analysis of the roles of FGF signalling

during bone development a particular challenge. During the early stages of bone

development, FGFs have been shown to stimulate Sox9 expression in a mesenchymal

cell line (Murakami et al., 2000). In proliferating chondrocytes, FGF signalling

through FGFR3 inhibits proliferation (Figure 1.6) (Sahni et al., 1999) by activation of

the Janus kinase-signal transducer and activator of transcription-1 pathway (JAK-

STAT1). In addition, activation of FGFR3 has been shown to decrease Indian

hedgehog (Ihh) expression (Naski et al., 1998), also leading to a decrease in

chondrocyte proliferation (Figure 1.6). Accordingly, FGF signalling shortens

proliferative columns both by decreasing chondrocyte proliferation directly and by

suppressing Ihh expression.
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1.6.2.2 Bone Morphogenic Protein (BMP) and Transforming growth factor 

(TGF) signalling

The family of BMPs is comprised of at least 15 members, which are all part of the

TGF superfamily. BMPs were originally identified as stimulators of bone formation

but are now recognised as important regulators of growth, differentiation, and

morphogenesis during embryology (Reddi et al., 2001). Within the developing limb

cartilage elements, BMP2, -4, and -7 have been detected in the perichondrium,

whereas BMP6 was found in prehypertrophic and hypertrophic chondrocytes (Lyons

et al., 1989; Jones et al., 1991; Macias et al., 1997; Grimsrud et al., 1999; Haaijman

et al., 1999). The effects of BMPs are mediated by two type I receptors, BMPRIA

and -IB, which heterodimerise with the type II receptor, BMPRII. The type I

receptors are differentially localised in embryonic limbs; BMPRIB is detected in early

mesenchymal condensations and is involved in early cartilage formation, whereas

BMPRIA expression is confined to prehypertrophic chondrocytes (Zou et al., 1997).

Constitutive active and/or dominant negative forms of BMPRIA and -IB revealed that

the type IA receptor controls the pace of chondrocyte differentiation, whereas the type

IB receptor is involved in cartilage formation and apoptosis (Zou et al., 1997). Mice

bred with homozygous null mutations in BMP-2 and -4 do not survive (Winnier et al.,

1995), whereas other family members such as growth and differentiation factor 5

(GDF5) and BMP-5 are important mediators of chondrocyte differentiation in

mesenchymal condensations at various sites (Mikic et al., 1996, Storm et al., 1999).

Several mutations in the BMP antagonist noggin result in proximal symphalangism

(fusion of the joints in the carpal and tarsal bones) and multiple synostoses syndrome

(premature fusion of the joints) (Gong et al., 1999). Recently, BMP6 was introduced



Chapter 1 Introduction and Literature Review

36

as a possible mediator in the growth-restraining feedback loop involving Ihh and

PTHrP (Grimsrud et al., 1999). The fact that BMPRIA is expressed in the same region

and that it has been shown to be critical for chondrocyte hypertrophy further

strengthens an autocrine/paracrine role for BMP6 in prehypertrophic chondrocytes

(Zou et al., 1997). It has also been shown that normal chondrocyte proliferation

requires parallel signalling of both Ihh and BMPs and that BMPs are capable of

inhibiting chondrocyte differentiation independently of the Ihh/PTHrP pathway

(Minina et al., 2000) (Figure 1.6).

In humans, only a few mutations in members of the TGF superfamily cause cartilage

disorders. Genomic mutations in the human GDF5 gene have been shown to cause

chondrodysplasia Grebe type, acromesomelic chondrodysplasia Hunter Thompson

type, and brachydactyly type C, all of which are mainly characterised by defects of

the limbs, with increasing severity towards the distal regions (Thomas et al., 1996;

Polinkovsky et al., 1997, Thomas et al., 1997). In another study, inhibition of

chondrocyte differentiation by TGF was shown to be at least partly mediated by

induction of PTHrP expression (Alvarez et al., 2001). These data imply that the

BMPs/ TGF and their receptors act as a signalling system, both dependently and

independently of the Ihh/PTHrP feedback loop, at different levels during embryonic

bone formation.

1.6.2.3 Ihh/PTHrP signalling

Ihh is a major regulator of bone development, controlling chondrocyte proliferation,

chondrocyte differentiation and osteoblast differentiation. Ihh is a member of the

hedgehog family of ligands, and during bone development, is synthesised by
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prehypertrophic chondrocytes and by early hypertrophic chondrocytes. The binding

of Ihh to its receptor (Patched-1), leads to activation of Smoothened, a membrane

protein that is essential for the cellular actions of Ihh. Ihh-/- mice have normal bones

at condensation, but later develop abnormalities of bone growth and a decrease in

chondrocyte proliferation (St Jacques et al., 1999). In addition, the bones of Ihh-/-

mice have an increase in the number of hypertrophic chondrocytes versus

proliferating chondrocytes. This is a result of chondrocytes leaving the proliferative

pool early, and is suggested to be due to the fact that the cartilage in Ihh-/- mice fails to

produce PTHrP.

PTHrP acts upon the G-protein coupled receptor, PTH1R, and its main function

within the growth plate is to keep proliferating chondrocytes in the proliferative pool

and to control the pace of chondrocyte differentiation (Figure 1.6). In PTHrP-/- or

PTH1R-/- mice chondrocytes hypertrophy early and become hypertrophic close to the

ends of bones (Karaplis et al., 1994; Lanske et al., 1996). In contrast, overexpression

of PTHrP in chondrocytes delays the appearance of hypertrophic chondrocytes (Weir

et al., 1996). Interactions between Ihh and PTHrP were suggested when it was

discovered that Ihh can stimulate the expression of PTHrP and consequently delay

chondrocyte hypertrophy (Vortkamp et al., 1996). It has since been hypothesised that

together, Ihh and PTHrP control the decision of chondrocytes to leave the

proliferative pool through a feedback loop (Figure 1.6). In this loop, Ihh is produced

by prehypertrophic chondrocytes committed to hypertrophy and acting through its

receptor (Ptc-1) within the perichondrium, increases the expression of PTHrP in the

periarticular region. PTHrP then binds to PTH1Rs expressed on prehypertrophic

chondrocytes – i.e., prior to their conversion to Ihh expressing cells – and blocks their
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further differentiation. As the population of committed cells progresses to the

hypertrophic phenotype, they stop expressing Ihh, thereby attenuating the negative

feedback loop and allowing the further differentiation of uncommitted

prehypertrophic cells. This feedback loop demonstrates the importance of the

interactions between PTHrP and Ihh to determine the lengths of proliferative columns

in individual bones (Kronenberg et al., 2001).

1.6.2.4 Vascular endothelial growth factor (VEGF)

During chondrocyte hypertrophy, ECM surrounding the hypertrophic cells becomes

calcified, which triggers the invasion of blood vessels from the underlying

metaphyseal bone. This is preceded by the expression of VEGF in hypertrophic

chondrocytes (Haigh et al., 2000). Inactivation of VEGF by systemic administration

of a soluble receptor to 24-d-old mice suppressed blood vessel invasion and trabecular

bone formation concomitant with an increased width of the hypertrophic zone (Gerber

et al., 1999), indicating that VEGF plays an important role in the events that take

place during the end-stage of endochondral bone formation such as terminal

differentiation of chondrocytes, vascular invasion, chondrocyte apoptosis, and their

subsequent replacement by bone (Gerber et al., 1999). Other promoters or inhibitors

of angiogenesis have been described in the literature, including transferrin (promoter)

(Carlevaro et al., 1997), chondromodulin (inhibitor) (Hiraki et al., 1997), and FGFs

(promoters) (Baron et al., 1994). In embryonic growth plates, Schipani et al. (2006)

described the role of hypoxia inducible factor (HIF-1), which is a transcription

factor that regulates VEGF expression (Semenza et al., 1999). Growth plate-specific

targeted deletion of HIF-1 caused increased cell death and reduced VEGF

expression (Schipani et al., 2005). At the same time, cells surrounding the area of
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increased cell death contained enhanced VEGF levels, suggesting that VEGF

expression is regulated in an HIF-1-dependent and –independent manner (Schipani

et al., 2006).

Figure 1.6 Interaction of Ihh, PTHrP, BMP, and FGF signalling in modulating
chondrocyte proliferation and differentiation. Expression of Ihh in
prehypertrophic chondrocytes is up-regulated by BMPs but inhibited by FGFs. Ihh
activates adjacent chondrocytes and diffuses toward the lateral perichondrium, where
it can bind to its receptor Patched. PTHrP production is stimulated in the periarticular
perichondrium and diffuses toward the prehypertrophic zone, which expresses high
levels of PTH/PTHrP receptors and inhibits the differentiation of proliferating
chondrocytes. Besides modulating chondrocyte differentiation, Ihh also stimulates
chondrocyte proliferation, both directly and indirectly through BMP signalling. FGFs
are able to inhibit chondrocyte proliferation independently of the two stimulatory
pathways. BMP signalling inhibits terminal differentiation of chondrocytes, a process
that FGFs can promote. The balance between BMP and FGF signalling is crucial in
regulating proliferation, Ihh expression, and terminal differentiation of chondrocytes.
From Van der Eerden et al., 2003.

1.6.2.5 Sox9

The main role of the transcription factor Sox9 is controlling the conversion of

mesenchymal cells into chondrocytes. However, it also acts on chondrocytes through

every stage of differentiation. Sox9 is expressed in cells of mesenchymal

condensations and in proliferating chondrocytes, but not hypertrophic chondrocytes.
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Sox9-/- mesenchymal cells cannot form condensations or go on to form chondrocytes

(Mori-Akiyama et al., 2003), and when Sox9 was deleted from chondrocytes at later

stages of development, the chondrocytes displayed decreased proliferation, decreased

expression of matrix genes and decreased expression of the Ihh-PTHrP signalling

pathways (Akiyama et al., 2002). Sox9 is crucial for all phases of chondrocyte

development, and is considered the master regulator of chondrocyte formation. Sox9

has an essential role in determining the commitment and differentiation of

mesenchymal cells toward the chondrogenic lineage. Sox9 is expressed in

prechondrocytic and chondrocytic cells during embryonic development, and cells

lacking Sox9 fail to differentiate to a chondrocyte phenotype due to decreased

activation of COL2A1 (Coll II gene), an important element of differentiation

(Lefebvre et al, 1997). This results in campomelic dyschondroplasia, a severe form of

chondrodysplasia which is caused by a decrease in production of Coll II.

Mesenchymal cells from Sox9-/- knockout mice cannot differentiate into chondrocytes

and cartilage cannot be formed from teratomas derived from Sox9-/- embryonic stem

(ES) cells (Mori-Akiyama et al., 2003). Similarly, other studies have shown that the

inactivation of Sox9 in mesenchymal condensations during embryonic development

causes a severe decrease in differentiated chondrocytes, again resulting in severe

dyschondroplasia (Akiyama et al, 2002).

1.7 Cell Cycle Signalling

1.7.1 Control of Cell Cycle Gene Expression

As growth plate function is closely linked to the rates of cell cycle progression and the

timing of cell-cycle exit during differentiation, it has been suggested that cell cycle

genes play a crucial role in the control of longitudinal bone growth (Beier et al.,
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1999a and b). Progression through the eukaryotic cell-cycle is controlled by cyclin-

dependent kinases (CDKs) (Lundberg and Weinberg 1999), and their partner proteins,

the cyclins. The activity of CDKs is highly regulated by the activity of their

respective cyclins; the levels of cyclin-dependent kinase inhibitors (CDKIs) of the

Cip/Kip family (p21, p27, p57), and Ink family (p15, p16, p18, p19); and inhibitory

and stimulatory phosphorylation of various CDK residues. High levels of cyclins

generally stimulate cell-cycle progression and proliferation through activation of

CKDs, whereas high levels of CKDIs antagonise these processes. As previously

mentioned, different growth plates within the same animal grow at different rates

(Wilsman et al., 1996). These differences are largely due to the duration of the G1

phase in proliferating chondrocytes (Wilsman et al., 1996), suggesting that cell-cycle

genes regulating G1 progression are of special importance in regulating endochondral

bone growth. In recent years, several studies have identified G1 cell-cycle genes as

targets of both extracellular signals and intracellular signalling pathways during

cartilage development. Among regulators of the G1 phase of the cell-cycle, the cyclin

D1 and p21Cip1/Waf1 genes have been shown to be regulated by numerous upstream

signals, although other cyclins and CDKIs have also been identified as targets of

mitogenic and anti-mitogenic signals. The D type cyclins (cyclin D1, D2, and D3) are

the first cyclins to be induced in the mammalian cell-cycle and control progression

through the G1 phase in complexes with CDKs 4 and 6 (Bartek and Lukas, 2001;

Hulleman and Boonstra, 2001). Within the growth plate, cyclin D1 expression is

specific for the proliferative zone at the mRNA and protein levels (Beier et al., 2001),

consistent with its role in supporting progression through the G1 phase of the cell-

cycle (Figure 1.7)
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p21Cip1/Waf1 (referred to as p21 from now on) is one of seven CDKIs. Similar to cyclin

D1, expression of the p21 gene in chondrocytes is controlled by several different

pathways. p21 expression is upregulated in postmitotic, differentiating chondrocytes

in vivo (Stewart et al., 1997; Zenmyo et al., 2000). An important role of this gene in

skeletal development was first suggested when it was identified as a target of

activated FGF receptor 3 (FGFR3) in thanatophoric dysplasia, a severe human

chondrodysplasia (Su et al., 1997). Several other studies confirmed that p21

expression in chondrocytes is induced or enhanced by FGF signalling through the

transcription factor STAT1 (Sahni et al., 1999; Weksler et al., 1999; Aikawa et al.,

2001; Benoist-Lasselin et al., 2007). These studies suggest that induction of p21

expression and subsequent cell-cycle withdrawal likely contribute to the dwarfism

caused by mutations in the FGFR3 gene (Ornitz and Marie, 2002). However,

additional target genes are likely involved; for example, one study demonstrated that

overexpression of an activated FGFR3 gene in transgenic mice also induces

expression of the p16, p18, and p19 genes, CDK inhibitors of the INK family (Legeai-

Mallet et al., 2004). In addition, FGF1 induces expression of p27 and p57 in rat

chondrosarcoma cells (Laplantine et al., 2002). Expression of p21 and the related p27

protein in chondrocytes is also enhanced by thyroid hormone, a well-characterised

inducer of chondrocyte hypertrophy (Figure 1.7) (Ballock et al., 2000), and by BMP2

(Carlberg et al., 2001). Finally, Sox9 (Panda et al., 2001) and the c-Raf/MEK/ERK

MAPK signalling cascade (Beier et al., 1999; Stanton et al., 2003) have also been

shown to be important positive regulators of p21 expression, whereas PTH represses

p21 expression in the chondrogenic cell line ATDC5 (Negishi et al., 2001). In

addition, chondrocyte proliferation is enhanced and p57 expression decreased in mice
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with cartilage-specific inactivation of the gene encoding HIF-1a, a transcription factor

involved in the cellular response to hypoxia (Schipani et al., 2001).

Figure 1.7 p21 and cyclin D1 as targets of mitogenic and antimitogenic signals in
chondrocytes. Numerous extra- and intracellular signals target expression of cyclin
D1 and p21 genes in chondrocytes, suggesting that these genes act as integrators of
mitogenic and antimitogenic stimuli, respectively. Adapted from Beier et al., 2005.

1.7.2 Function of cell cycle genes in the growth plate

Gain- and loss-of function experiments have identified roles of multiple cell cycle

genes in endochondral bone growth. Targeted inactivation of the p57Kip2 (p57) gene

results in severe skeletal defects caused by delayed cell-cycle exit and disrupted

hypertrophic differentiation of growth plate chondrocytes (Yan et al., 1997; Zhang et

al., 1997). The endochondral skeleton seems to be the one of the most affected

tissues, indicating that cartilage development is particularly sensitive to changes in the

levels of cell-cycle proteins. Adenoviral overexpression of p57 in primary rat

chondrocytes induces cell-cycle exit, but is not enough to trigger expression of Coll
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X, the classical marker of hypertrophic chondrocytes (Stewart et al., 2004). However,

p57 cooperates with BMP2 in the induction of Coll X expression. While p21-

deficient mice do not display any obvious developmental defects (Deng et al., 1995),

loss of p21 increases the severity of skeletal defects in p57 null mice (Zhang et al.,

1999). Furthermore, chondrocytes from p21 null mice show reduced antimitogenic

response to FGF in organ cultures (Aikawa et al., 2001), and expression of p21

antisense RNA in ATDC5 cells inhibits early chondrogenic differentiation (Negishi et

al., 2001).

In addition to p21, p27 has been detected immunohistochemically in hypertrophic

chondrocytes in foetal and early postnatal mice (Sunters et al., 1998; Horner et al,

2002). p27 has also been detected in cultured rat resting zone chondrocytes where its

expression is up-regulated during thyroid hormone-induced terminal differentiation

(Ballock et al., 2000). Targeted disruption of p27 in mice causes multi-organ

hyperplasia and increased body weight, with all tissues proportionally enlarged and

containing more cells (Drissi et al., 1999; Nagahama et al., 2001; Teixeira et al.,

2001), and Kiyokawa et al., (1996) reported an increased size and width of tibiae and

femora in p27-deficient mice compared with wild-type mice. A recent paper by

Emons et al (2007) has gone on to study the growth plate of p27 null mice in more

detail. Although the absence of p27 caused an increase in the number of proliferating

chondrocytes within the growth plate, there were no obvious differences in growth

plate morphology and no increase in tibial growth rate was observed. These findings

suggest that p27 has modest inhibitory effects on growth plate chondrocyte

proliferation but is not required for the spatial or temporal regulation of proliferation.
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In contrast to the number of publications on the role of inhibitors of cell-cycle

progression, fewer functional studies have been reported for positive regulators of the

cell-cycle. As mentioned above, cyclin D1-deficient mice are dwarfed (Fantl et al.,

1995) with a smaller proliferative zone of the growth plate (Beier et al., 2001). Cyclin

D1 antisense oligonucleotides reduce proliferation and E2F activity, and delay cell

cycle progression in chondrogenic cells (Beier et al., 2001; Beier and LuValle, 2002).

In contrast, defects in cyclin D2 knockout mice appear to be restricted to reproductive

tissues (Sicinski et al., 1996). The last few years have seen both the identification of

novel regulatory mechanisms governing cell-cycle gene expression in the growth

plate and progression in the functional analyses of cell-cycle genes in cartilage

development. Complete elucidation of the signalling and transcriptional events

involved will be necessary to understand how the cell-cycle machinery integrates

multiple inputs and creates a coordinated response to the multitude of intrinsic and

extrinsic signals acting on chondrocytes. In addition, further mechanistic

investigations at the molecular, cellular, tissue and whole animal level will be

required to obtain a comprehensive view of the role of cell-cycle genes in

endochondral bone growth.

1.8 GCs and Growth Retardation

1.8.1 GC Physiology

GCs are synthesised and secreted by the adrenal cortex and are essential for the

function of most systems in the body. In physiological doses, they help the body

adapt to intermittent food intake by regulating blood sugar and electrolytes, promoting

gluconeogenesis, mobilising fats for energy metabolism and depressing inflammatory

and immune responses. Physiological GCs include the most predominant, cortisol,
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cortisone and corticosterone. GCs are commonly known as the stress hormones, and,

under normal circumstances are crucial for the capability of the body to respond and

adapt to stress.

The main physiological stimulus for synthesis and release of GCs is

adrenocorticotrophic hormone, or ACTH, secreted from the anterior pituitary gland.

ACTH secretion is regulated partly by corticotrophin-releasing factor (CRF) derived

from the hypothalamus and partly by the level of GCs in the blood. The release of

CRF in turn is inhibited by the level of GCs and, to a lesser extent, of ACTH in the

blood, and is influenced by input from the central nervous system. There is a basal

release of GCs, and the concentration of endogenous GCs in the blood is higher in the

morning, and low in the evening. The starting substance for the synthesis of GCs is

cholesterol (Figure 1.8), which is obtained mostly from the plasma and is present in

the lipid granules in the zona fasciculata of the adrenal cortex. The first step, the

conversion of cholesterol to pregnenolone, is the rate limiting step and is regulated by

ACTH.
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Figure 1.8 The GC Biosynthetic Pathway The first and rate-limiting step of GC
synthesis is the conversion of cholesterol to pregnenolone, which is stimulated by
ACTH. Pregnenolone is then converted to the GC cortisol through a series of
reactions catalysed by hydroxylase and dehydrogenase enzymes (italics).

The main metabolic effects of GCs are on carbohydrate and protein metabolism. GCs

cause both a decrease in the uptake and utilisation of glucose and an increase in

gluconeogenesis, resulting in a tendency to hyperglycaemia. In addition, GCs cause

decreased protein synthesis and increased protein breakdown, particularly in muscle,

and due to an increase in lipase activation through cAMP, large doses of GCs can also

result in fat redistribution as seen in Cushing’s syndrome.

Both endogenous and exogenous GCs have a negative feedback effect on the

secretion of CRF and ACTH. Administration of exogenous GCs depresses the

secretion of CRF and ACTH, thus inhibiting the secretion of endogenous GCs and
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causing atrophy of the adrenal cortex. When given therapeutically, GCs can also have

powerful anti-inflammatory and immunosuppressive effects. They inhibit both the

early (redness, heat, pain and swelling) and late (wound healing) manifestations of

inflammation, and when used clinically to suppress graft rejection, GCs suppress the

initiation of a ‘new’ immune response. In areas of acute inflammation, GCs cause a

decreased influx and activity of leukocytes, and in areas of chronic inflammation,

GCs are known to cause decreased activity of mononuclear cells, decreased

proliferation of blood vessels and less fibrosis. In addition, in lymphoid tissues, GCs

cause decreased clonal expansion of T and B cells, and decreased activity of cytokine-

secreting T cells. GCs also act directly on inflammatory mediators, and decrease the

production of cytokines including interleukins, TNF-γ and GM-CSF.  These actions 

result in a reduction in chronic inflammation and autoimmune reactions.

1.8.2 GC Mechanisms of Action

GC effects involve interactions between the steroids and intracellular steroid hormone

receptors. GCs, after entering the cell, bind to specific GC receptors (GR) in the

cytoplasm, activating the receptor by causing it to undergo a conformational change

exposing a DNA-binding domain. The receptor is composed of three main domains:

a DNA-binding domain (DBD); a C-terminal ligand binding domain (LBD), which

plays a role in ligand recognition through the ligand-dependent activation function

AF-2; and an N-terminal activation domain, which plays an important role in gene

regulation. The GR is capable of both positive and negative regulation of

transcription, and in the absence of a ligand, is located in the cytoplasm where it is

held in an inactive state by heat shock proteins (HSP). Upon the binding of a ligand,

the HSP dissociate from the GR, allowing it to dimerise and translocate to the
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nucleus. Once in the nucleus, the GR binds to promoters on the gene of interest

known as GC response elements (GRE), resulting in the activation or repression of a

specific set of transcription factors, through coactivators and corepressors,

respectively (Figure 1.9) (Jantzen et al., 1987; Beato et al., 1996). It is thought that

coactivators bind to the LBD of the GR in a ligand-dependent manner, and,

consequently, although coactivators bind readily in the presence of agonists, they fail

to bind in the presence of antagonist ligands, a likely mechanism of action for these

antagonists (Figure 1.9). These coactivators may also play a role in the tissue-specific

activity of GCs, as although many coactivators are expressed widely, some exhibit a

specific tissue expression pattern (Puigserver et al., 1999; Knutti et al., 2001). It has

also been shown that the GR is capable of binding directly to specific transcription

factors such as nuclear factor-B (NFB) and activator protein-1 (AP-1) which are

involved in the up-regulation of inflammatory genes. This mechanism is ligand-

independent and does not require receptor dimerisation, therefore rendering it

genetically separable from transcriptional activation (McKay & Cidlowski 1999)

(Figure 1.9).

In humans, mutations in the GR are known to cause familial GC resistance (FGR)

(Hurley et al., 1991). Patients with FGR often feel fatigue, but other signs of GC

insufficiency are rare as the ACTH-driven increase in cortisol compensates for

receptor insensitivity. However, a consequence of this increase in ACTH is the

elevation of mineralocorticoids and androgens, which can result in hypertension. In

the mouse, two critical transgenic mouse models have been developed. Knockout of

the GR gene in all tissues exerts minimal effects on embryonic development, but

results in perinatal lethality due to underdevelopment of the lungs (Cole et al., 1995).
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A second mutation, GRdim, uncovers an essential duality of GR function. This

mutation prevents dimerisation of the receptor, and consequently prevents DNA

binding. Therefore, transactivation and transrepression that require direct DNA

binding of a dimeric GR are inactive, whilst transrepression involving a direct

interaction between a monomeric GR and transcription factors is unaffected.

Surprisingly, these mice are viable, and have no obvious defects in lung maturation or

anti-inflammatory actions of the receptor, suggesting that homodimer GR-DNA

binding is not essential for survival (Reichardt et al., 1998).
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Figure 1.9 Mechanisms of GC-regulated gene transcription There are at least
three distinct mechanisms by which GCs can regulate gene transcription. First, GCs
bind to a cytosolic GR attached to a heat-shock protein (HSP). The HSP dissociates,
and the GR dimerises and translocates to the nucleus and, in the case of positive
regulation, transactivates through cis-activating palindromic GREs located in the
promoter region of responsive genes. Second, GCs are able to bind to negative GREs
resulting in the repression of gene transcription. There is now evidence to suggest that
GCs may control inflammation predominantly via a third mechanism involving the
transrepression of transcription factors, such as AP-1, NFĸB and NF-AT that regulate 
inflammatory gene expression. (Figure amended from Belvisi et al., 2001)

1.8.3 Systemic Side Effects of GCs

GCs affect most systems within the body. There are several situations when the

carefully balanced physiological production of GCs can become unbalanced.

Chronic, uncontrolled stress leads to long term activation of the HPA axis and
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sustained, high GC levels. Pathological conditions in which activation of the HPA

axis has been demonstrated include depression, obsessive-compulsive disorder,

alcohol and drug abuse, and anorexia nervosa (Chrousos et al., 2000). Imbalances in

cortisol production can also occur in certain conditions that overproduce GCs. These

patients present with a combination of symptoms grouped under the heading

‘Cushing’s syndrome’. The symptoms include central obesity, glucose intolerance,

myopathy and hypertension. However, the most common way in which imbalances in

the stress response system can present themselves is the administration of exogenous

GCs. Exposure to high, sustained levels of corticosteroids by any mechanism

uncouples the normal metabolic processes from autoregulatory feedback mechanisms

and induces a stress response that cannot be maintained in the long term without

severe consequences. The numerous side-effects experienced by patients undergoing

long term GC treatment are a clear testament to this. Complications are time- and

dose-dependent and can occur acutely with high doses or more slowly with chronic

exposure and lower doses. One of the most important side effects resulting from GC

therapy is osteoporosis, and this side effect alone accounts for a large degree of

morbidity in patients receiving GCs. This problem is exacerbated by the fact that

these patients also suffer from decreased muscle mass and are therefore more

susceptible to falling. Increased susceptibility to infection is also a major problem in

patients undergoing GC therapy. An additional side effect which can limit the use of

GCs is hyperglycaemia due to increased gluconeogenesis, insulin resistance and

impaired glucose tolerance, which can lead to diabetes. This side effect is

exacerbated by the fact that, in high doses, many GCs that have affinity for the

mineralocorticoid receptor (MR) can exert a mineralocorticoid effect, resulting in salt

and water retention, hypertension, potassium retention and metabolic alkalosis. In
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physiological GC doses, this mineralocorticoid effect is prevented by the rapid

degradation of GCs by 11-β-hydroxysteroid dehydrogenase type 2 (11βHSD2) in MR

target tissues. GCs have also been known to have psychogenic effects, and

approximately 5% of patients will experience some form of inappropriate euphoria,

psychosis or depression. Fat redistribution and weight gain is also a concern with

many patients, and facial, supraclavical and posterior cervical fat depots are

particularly sensitive to GCs, resulting in the moon-face and buffalo hump

characteristic of long term GC treatment (Baxter et al., 1992).

1.8.4 GC Therapy and Growth During Childhood

GCs are used in the treatment in a number of chronic inflammatory, autoimmune and

neoplastic diseases in children. The impairment of childhood growth with cortisone

was first described over 40 years ago, and since then has been observed with other

commonly used GCs such as Dex and prednisolone (Pred) (Avioli et al., 1993). The

increasing incidence of childhood asthma accounts for the largest group of children

who are chronically exposed to steroids. Oral GC therapy in asthma is associated

with a delay in growth and puberty, and there is some evidence to suggest that final

height may also be compromised (Allen et al., 1994). Although early studies failed to

show a link between inhaled steroids and growth retardation, evidence now suggests

that bone growth and collagen turnover are both reduced in children with mild asthma

who use inhaled steroids (Shaw et al., 1997), an effect that is most pronounced over

the first few weeks of treatment.

In children with inflammatory bowel disease, growth retardation is widely reported,

and seems to be related to disease activity in addition to its treatment (Markowitz et
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al., 1993; Savage et al., 1999), and vertebral fractures have also been described in

children with Crohn’s disease after a short period of steroid treatment (Semeao et al.,

1997). Impaired growth is one of the major complications of childhood renal

disorders and their treatment. Children receiving GC therapy for renal disorders such

as nephrotic syndrome have reduced growth and bone mineralisation (Lettgen et al.,

1994), and post transplantation, the dose of GC therapy is inversely related to the

relative change in height of the child (Saha et al., 1998). It has been suggested that

alternate-day GC therapy is less detrimental to longitudinal growth however, this may

still delay puberty and therefore cause a delayed growth spurt (Polito et al., 1999).

GCs are widely used for treating chronic connective tissue diseases in children, and

there is a considerable overlap between the inflammatory-effects and the steroid-

induced effects on bone growth. A failure to maintain bone mineralisation is common

in children with juvenile idiopathic arthritis (JIA), and is characterised by reduced

bone formation with a subsequent failure to undergo the expected increase in bone

mass during puberty (Polito et al., 1999). This reduction in bone mineral density is

exacerbated if GCs are used as therapy (Kotaniemi et al., 1999).

GCs have consistently been the primary therapy for childhood acute lymphoblastic

leukaemia (ALL). Dex is now replacing Pred as the drug of choice due to the fact that

it has greater lymphocytotoxicity and higher CNS penetration. Recent studies have

shown that bone mineralisation status as assessed by bone mineral density is

adversely affected immediately after completion of GC treatment for ALL (Arikoski

et al., 1999). Previous studies at the University of Glasgow have shown alterations in

bone turnover and short term growth of children during leukaemia treatment. These



Chapter 1 Introduction and Literature Review

55

changes were most marked during periods of intensive chemotherapy and high dose

systemic glucocorticoid administration (Crofton et al., 1998; Ahmed et al., 1999;

Crofton et al., 1999).

1.8.5 GCs and IGF-I signalling in the growth plate

The growth-suppressing effects of GC appear multifactorial, and some GC actions in

bone modify skeletal responses to GH and IGF-I (Figure 1.7). The inhibitory actions

of GCs on longitudinal growth are suggested to be due, in part, to impaired action of

the components of the IGF axis (Klaus et al., 1998), and it has been shown that GCs

reduce IGF-I mRNA in growth plate chondrocytes (Luo et al., 1989). Studies of

linear bone growth have shown that Dex and IGF-1 have opposite effects, with Dex

decreasing and IGF-1 increasing cell proliferation (Mushtaq et al., 2004). IGF-I also

increases collagen synthesis and decreases collagenase 3 expression in bone, whereas

GCs do the opposite. Furthermore, GCs block the activation of GH-Receptor (GHR)

and IGF-I Receptor (IGF-IR) expression by GH and IGF-I in chondrocytes (Jux et al.,

1998), and this may account for the antagonism of the growth promoting actions of

GH by GC (although children with impaired growth due to GC excess can still

respond to pharmacological doses of GH therapy).

Of additional interest is the observation that GH, via IGF-I, inhibits activity of 11-

hydroxysteroid dehydrogense-1 (11HSD1) in human adipose and stromal cells

(Moore et al., 1999). 11HSD1 converts inactive cortisone to active cortisol in

humans to maintain circulating levels of GCs. The type 2 enzyme, 11-

hydroxysteroid dehydrogenase-2 (11HSD2) is a dehydrogenase that catalyses the

inactivation of GCs to protect the nonselective mineralocorticoid receptor from GC
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activation in target tissues such as the kidney. Therefore, local tissue GC

concentrations are modulated by 11HSD2, and both 11HSD1 and 2 have shown to

be active in osteoblasts and osteoclasts (Cooper et al., 2000; Cooper et al., 2003). If

11HSD enzymes are expressed in growth plate chondrocytes, they may act as

significant GH and IGF-I-sensitive regulators of local GC concentrations in the

growth plate.

1.8.6 Direct effects of GCs at the Growth Plate

Evidence for a direct effect of GC in the growth plate came from a study in which

pharmacological levels (approximately 10-6M) of local Dex infusion significantly

decreased tibial growth compared with the contralateral limb (Baron et al., 1992).

The glucocorticoid receptor (GR) has since been identified in proliferating and

hypertrophic chondrocytes in the rat (Silvestrini et al., 1999) and has also been found

in hypertrophic chondrocytes in the human growth plate (Abu et al., 2000). In rats,

GC excess reduces bone growth, probably due to decreased numbers of proliferating

chondrocytes and increased apoptosis of hypertrophic chondrocytes in the growth

plate (Chrysis et al., 2003). These results are also consistent with the Dex-induced

inhibition of chondrocyte proliferation and cartilage matrix production observed in 12

week old rats in vivo (Annefeld et al., 1992), supporting the hypothesis that Dex is a

potent negative regulator of chondrocyte activities.

It is likely, however, that physiological levels of Dex also act as a stimulator of

chondroprogenitor cell recruitment and a supporter of chondrocyte viability

(Grigoriadis et al., 1996). Physiological concentrations of Dex enhance expression of

Sox9 (Sekiya et al., 2001), which regulates expression of genes encoding markers of
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commitment to chondrogenesis, including Coll X and aggrecan, which supports the

hypothesis that Dex may be a maintenance factor for chondrogenic cells.

1.8.7 Glucocorticoids and catch-up growth

It is well established that the effects of GC are transient and that, after their removal,

there is a period of accelerated catch-up growth. It has been proposed that the

mechanism governing catch-up growth after exposure to excess GC resides in the

growth plate (Baron et al., 1992; Nilsson et al., 2005). This proposal was based on

the observation that suppression of growth within a single rabbit growth plate in vivo

by local administration of Dex was followed by catch-up growth restricted to the

affected limb. According to this model, growth inhibiting conditions of excess GC

reduce the growth and maturation of growth plate stem cells (chondroprogenitors),

and conserve their proliferative potential, whilst also slowing the onset of senescence

(where the proliferative capacity of chondroprogenitor cells is gradually exhausted

causing growth to slow and eventually stop) (Nilsson et al., 2005). Studies using the

ATDC5 chondrocyte cell line have also shown that Dex-treated cells retain the

capacity to re-enter chondrogenesis following the withdrawal of GC (Mushtaq et al.,

2002). Therefore it seems that, although Dex arrests growth and differentiation of

chondrocytes, the capacity for cells to undergo chondrogenesis is maintained in the

presence of GC despite the fact that progenitor cells are quiescent.

1.9 Aims and Strategy

The aim of this project was to investigate and identify novel mechanisms involved in

GC-induced growth retardation at the level of the growth plate chondrocyte. As

previously mentioned, it is now well known that GCs reduce longitudinal growth at
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the growth plate by inhibiting chondrocyte proliferation and hypertrophy. Therefore,

a large portion of this project will utilise in vitro models of chondrocyte proliferation

such as chondrocyte cell lines engineered to progress through maturational stages of

chondrogenesis and differentiation, primary chondrocytes, and organ cultures.

However, there are obvious limitations to such in vitro studies, and so murine in vivo

studies will also be used in an attempt to gain a better understanding of the

mechanisms involved in GC-induced growth retardation. My specific aims are to:

1) Identify novel GC-responsive chondrocyte genes using Affymetrix Microarray

technology on GC-treated chondrocyte RNA. Genes identified as novel

targets will then be studied in more detail using in vitro functional

experiments.

2) Further characterise the expression and mechanism of action of the GC-

responsive gene, lipocalin 2 in growth plate chondrocytes.

3) Study the effects of the CDKI p21 on GC-induced growth retardation. In order

to do this, I will first carry out preliminary in vitro experiments to confirm

previously reported data. I then plan to carry out a number of in vivo

experiments, in which I will use p21 knock-out mice to examine the role of

p21 in GC-induced growth retardation.

4) Examine the effects of a novel anti-inflammatory compound, AL-438, on

chondrocyte proliferation and bone growth compared to Dex and Pred. This

will be done through both in vitro and in vivo studies.
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2.6.4 Quantification of DNA Concentration
2.6.5 Restriction Endonuclease Digestion of DNA
2.6.6 DNA Ligation into Linearised Vectors
2.6.7 Isolation of DNA Fragments from Agarose gel
2.6.8 DNA Sequencing
2.6.9 Transformation of bacteria
2.6.10 Liquid Culture of Bacterial Clones
2.6.11 Minipreparation of Plasmid DNA
2.6.12 Endofree Maxipreparation (Qiagen) of Plasmid DNA

2.7 Protein Methods
2.7.1 Protein Concentration Determination – Bradford Assay
2.7.2 SDS Polyacrylamide Gel Electrophoresis
2.7.3 Western Blotting

2.8 Microarray
2.8.1 Hybridisation of RNA to Affymetrix Platform
2.8.2 Microarray Data Analysis

2.9 Cell Proliferation and Differentiation Assays
2.9.1 [3H]-thymidine Incorporation Assay
2.9.2 Alcian Blue Staining of the Cell Monolayer
2.9.3 Alkaline Phosphatase Assay

2.1 Reagents and Solutions

2.1.1 Materials

All chemicals were purchased from Sigma Aldrich (Dorset,

UK) unless otherwise stated. PCR oligonucleotides were purchased from MWG

Biotech (Ebersberg, Germany), and antibodies were purchased from SantaCruz unless

otherwise stated.

2.1.2 Buffer Recipes

Cell Culture Buffers

Phosphate Buffered Saline (PBS)

140mM NaCl, 2.5mM KCl, 10mM Na2HPO4, 1.8mM KH2PO4

Cell Freezing Buffer
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60% DMEM, 30% FBS, 10% Dimethyl sulfoxide; DMSO

RIPA Buffer

20mM Tris, 135mM NaCl, 10% glycerol, 1% IGEPAL, 0.1% SDS, 0.5% deoxycholic

acid, 2mM EDTA

Bacterial Culture

Luria Broth (LB) media

1% bacto-tryptone, 0.5% bacto-yeast extract, 150mM NaCl, adjusted to pH 7.5

LB agar

LB supplemented with 1.5% bactoagar

Super Optimal Broth with Catabolite repression (SOC) Media

2% bacto-tryptone, 0.5% bacto-yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM

MgCl2, 10 mM MgSO4, 20 mM glucose

Gel Electrophoresis

Tris-Acetate-EDTA (TAE)

40mM Tris, 1mM EDTA, 0.1% acetic acid

Tris-Boric Acid-EDTA (TBE)

90mM Tris, 2mM EDTA, 90mM boric acid

Agarose Gel Loading Buffer

1.2mM bromophenol blue, 50% (w/v) glycerol, 10% (v/v) 10x TAE/TBE

Qiagen Kit Buffer Compositions

Re-suspension Buffer P1

50 mM Tris-HCl, pH 8.0; 10 mM EDTA; 100 μg/ml RNase A
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Bacterial Lysis BufferP2

200 mM NaOH, 1% SDS

Elution Buffer EB

10 mM Tris-HCl, pH 8.5

Neutralisation Buffer P3

3 M Potassium Acetate, pH 5.5

Equilibration Buffer QBT

750 mM NaCl; 50 mM 3-[N-morpholino] propanesulfonic acid (MOPS), pH 7.0; 15%

isopropanol (v/v); 0.15% Triton X-100 (v/v)

Column Wash Buffer QC

1M NaCl, 50mM MOPS pH7.0, 15% isopropanol (v/v) and 0.15% Triton X-100 (v/v)

Elution Buffer QN

1.6 M NaCl, 50 mM MOPS, pH 7.0, 15 % isopropanol (v/v)

DNA Re-suspension Buffer TE

10 mM Tris HCl, pH 8.0, 1 mM EDTA

PolyAcrylamide Gel Running and Staining Buffers

MOPS Running Buffer

50 mM MOPS pH 7.7, 50 mM Tris, 0.1% SDS, 1mM EDTA

NuPAGE Transfer Buffer

25 mM Bicine pH 7.2 , 25 mM Bis-tris , 1 mM EDTA, 0.05 mM Chlorobutanol

LDS Sample Buffer

10% Glycerol, 141 mM Tris Base, 106 mM Tris HCl, 2% LDS, 0.51 mM EDTA, 0.22

mM SERVA® Blue G250, 0.175 mM Phenol Red, pH 8.5
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Western Blotting

Tris-Buffered Saline with Tween 20 (TBST)

10mM Tris HCl pH8.0, 150mM NaCl, 0.1% Tween-20

Blocking Solution

5% (w/v) dried milk protein (Marvel) in TBST

2.2 Cell Culture

2.2.1 Preparation of Cell Culture Reagents

Dulbecco’s Modified Eagle Medium/Ham’s F12 (DMEM: F12), containing 4500g/L

glucose and L-glutamine, was purchased from Gibco (Gibco BRL, Paisley, UK). All

tissue culture reagents were prepared in a sterile category 2 hood. DMEM: F12 was

supplemented with 0.5% of the antibiotic gentamycin (Gibco) and 10% heat

inactivated foetal bovine serum (FBS) (Gibco) before use. All media was filter-

sterilised through a 0.22μM filter and stored at 4C.

2.2.2 Isolation of Primary Cell Lines

Primary chondrocytes were isolated from the rib cages of 2-day-old Swiss mice culled

by cervical dislocation. Chondrocytes were isolated from the ventral parts of the rib

cage in a sterile environment and incubated in a sterile petri dish in pronase (2mg/ml

in PBS) for 30mins at 37oC whilst shaking. After rinsing in PBS, the rib cage was

incubated in 3mg/ml collagenase in DMEM for 90mins at 37oC, and repeatedly

pipetted until all soft tissues and mineralised tissues were detached from the cartilage

matrix. The cartilage was washed again and incubated until completely digested (up

to 3hrs) in collagenase (3mg/ml), at which point the suspension was filtered. The

chondrocytes were then pelleted by centrifugation, resuspended in DMEM
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supplemented with 50g/ml ascorbic acid, and counted in a haemocytometer

chamber. An average of 1x106 chondrocytes were obtained per mouse.

Figure 2.1 Isolation of Primary Murine Chondrocytes from the Rib Cage of 3-
day-old Swiss Mice (Arrows = Chondrocytes were isolated from the ventral parts of
the rib cage by digestion in pronase and then collagenase; scale bar = 1mm).

2.2.3 Maintenance and Differentiation of ATDC5 Cells

The ATDC5 cell line established by Atsumi et al. (1990) from the mouse

teratocarcinoma cells AT805, mimics many of the events described for differentiation

of epiphyseal chondrocytes. This line has less phenotypic diversity than cell cultures

of primary chondrocytes, and also allows the study of the differentiation of

mesenchymal cells into chondrocytes and the terminal differentiation of proliferating

to hypertrophic chondrocytes (Mushtaq et al., 2002). The ATDC5 chondrocyte cell

line was obtained from the RIKEN cell bank (Ibaraki, Japan), and cells were cultured

at a density of 6000 cells per cm2 in multi-well plates (Costar, High Wycombe, UK).

Maintenance medium (DMEM/Ham’s F12; Invitrogen, Paisley, UK) was

supplemented with 5% FCS (Invitrogen), 3x10-8M sodium selenite and 10g/ml

human transferrin (Sigma, Poole, UK) and cells were grown until confluent. Adherent

cells were passaged by trypsinisation at sub-confluence. The cell culture media was
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removed and the monolayer washed with serum free medium. The cells were then

covered with trypsin/EDTA solution and incubated at 37C until cells became

detached. Growth media containing serum was then added to the cell suspension to

neutralise the trypsin, and the suspension was then pipetted repeatedly to create a

single cell solution, counted using a haemocytometer, and split into fresh flasks.

Differentiation was made by the addition of insulin (10g/ml; Sigma) to the

maintenance medium. Cells were incubated at 37oC in a humidified atmosphere

containing 5% CO2/95% air and the medium was changed every second day.

2.2.4 Freezing/Thawing Cells

To freeze cells a monolayer was stripped as described in 2.2.3 and counted. The cells

were centrifuged at 717 x g for 5 minutes and resuspended in the appropriate volume

of cell freezing buffer to give a cell concentration of between 2-4 x 106 cells per ml.

The cells within a cryovial (Corning, Surrey, UK) were then transferred to a

temperature of -80C for between 4-7 days and then to -150C for longer term

storage. Cells were thawed at 37C and added drop wise to 10ml complete media.

The cell suspension was then mixed and spun at 717 x g for 5 minutes to remove the

DMSO. The cell pellet was resuspended in complete media and transferred to a t175

tissue culture flask.

2.3 In Vivo Methods

2.3.1 Production of Knock-Out Mice

p21-/- mice were purchased from Jackson Laboratories (Massachussets Institute for

Technology, Massachussets, USA). These mice were originally created by Hannon et

al. (1995) at the Howard Hughes Medical Institute in Cambridge Massachussets. The
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method involved generating a null allele in 129/Sv embryonic stem (ES) cells by

replacing the p21 coding sequence with a neomycin-resistance cassette (neor).

Homozygous p21-/- ES cells were produced by subjecting two heterozygous p21+/- cell

lines to selection in an increased concentration of G418. One p21-/- ES cell clone was

recovered from each parental p21+/- line. 129/Sv cells lacking p21 were then injected

into normal B6 blastocysts, creating B6-129/Sv p21-/- chimaeric mice.

2.3.2 Animal Maintenance

Transgenic mice were produced as described (2.3.2) and non-transgenic mice were

supplied by B&K Universal Ltd, UK. All animals were maintained under

conventional housing conditions with a 12h light/dark cycle where the dark cycle

consisted of 2h night light and 10h of complete darkness.

2.3.3 Animal Breeding

Mice identified as being positive for transgene incorporation (identified by PCR;

section 2.6.2), were selected and bred with non-transgenic C57BL6/CBA stock mice

to expand transgenic lines. Offspring carrying the transgene were maintained and

negative littermates were culled. p21 null mice (strain Cdkn1atm1Tyj) were obtained

from the Jackson Laboratory (Maine, USA). Mice identified as being heterozygous

for the p21 null allele were again selected by PCR as described in 2.6.2, and were

bred with other heterozygotes to obtain homozygote null mice for experimental

procedures.
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2.3.4 Tail Biopsy of Animals

Animals requiring tail biopsy for genotyping were anaesthetised using halothane and a

1-2cm portion of the tail was removed using a preheated scalpel. By preheating the

scalpel, upon cutting, blood vessels in the tail become cauterised and bleeding is

prevented.

2.3.5 Isolation and Culture of Embryonic Murine Metatarsals

The foetal mouse metatarsal explant culture provides a more physiological model for

studying bone growth. It maintains cell-cell and cell-matrix interactions and the direct

assessment of bone growth and histological architecture can be determined (Scheven

et al., 1991; Coxam et al, 1996). The middle three metatarsals were aseptically

dissected from 18-day-old embryonic Swiss mice that had been killed by decapitation.

The experimental protocol was approved by Roslin Institute’s Animal Users Committee

and the animals were maintained in accordance with Home Office guidelines for the care

and use of laboratory animals. Bones were individually cultured at 37°C in a humidified

atmosphere of 95% air/5% CO2 in 24-well plates (Costar) for up to 12 days. Each well

contained 300μl of α-MEM without nucleosides (Invitrogen) supplemented with 0.2%

BSA Cohn fraction V (Sigma), 0.1mmo/l β-glycerophosphate (Sigma), 0.05mg/ml L-

absorbic acid phosphate (Wako, Japan), 0.292mg/ml L-glutamine (Invitrogen),

0.05mg/ml gentamicin (Invitrogen) and 1.25μg/ml fungizone (Invitrogen).
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Figure 2.2 Murine Metatarsal Dissection from the hind legs of 18-day-old
embryos. The middle three metatarsals are dissected and cultured for up to 12 days at
37oC.

2.4 Tissue Processing and Analysis

2.4.1 Paraffin Embedded Tissue

Bone tissue was harvested from mice culled by cervical dislocation immediately prior

to use and was trimmed to the required size, before fixation in either 70% ethanol or

4% paraformaldehyde for 24h at room temperature. After removal of the fixative, the

tissue was decalcified in 10% EDTA (pH 7.4) at 4oC for 4 days, with a change of

EDTA on day 2. The tissue was then washed in dH2O, and placed in 70% ethanol

overnight. The following day, fresh 70% ethanol was added for 30mins, and then

replaced with successive 30min incubations of 80% ethanol (twice), and 95% ethanol

(twice). After a further overnight incubation in 95% ethanol, the tissue was placed in

100% ethanol for two 1h incubations, followed by two 1h incubations in xylene under

a fume hood, before being placed into pre-melted wax for two 1h periods.
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Once processed, the tissue was embedded in paraffin wax with a melting point of

60oC using appropriate sized plastic moulds. The wax blocks were allowed to cool,

and excess wax was trimmed away on the microtome to leave the sample surface

exposed for cutting. Once trimmed, the blocks were cooled on ice for 30mins before

sections of 5μm thickness were cut. The sections were transferred to a 40oC water

bath and left to soften for 1min before being transferred to a poly-l-lysine coated

microscope slide (VWR International Ltd, Lutterworth, UK). The slides were then

placed in an oven at 50oC overnight to ensure secure attachment of the sections to the

slide.

2.4.2 RNAse Free Frozen Tissue

2.4.2.1 Preparation of Hexane Freezing Bath

As with paraffin-embedded sections, bone tissue was harvested from mice culled by

cervical dislocation immediately prior to use and was trimmed to the required size

using RNAse free dissection instruments. Tissues were then placed in RNA-later In

order to freeze the tissue, a large glass jar was inserted into a polystyrene base and

filled 1/3 full with 100% ethanol. A small beaker was placed inside the alcohol-filled

jar and dry ice chips were added to the alcohol until a saturated solution was obtained

and the ethanol became viscous. The beaker was then filled with Hexane and the jar

covered for 30mins to allow the hexane bath to cool to -70oC.

2.4.2.4 Preparation on Polyvinyl Alcohol (PVA)

PVA (Sigma) aids the cutting of frozen mineralised tissue. A 5% solution was

prepared by gradually adding 5g of PVA to 100ml of warm DEPC treated H2O on a
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heated magnetic stirrer within an extraction hood. The solution was left stirring at a

low heat for 1h, and then allowed to cool.

2.4.2.5 Freezing and Cutting of Tissue

Bone tissue samples were individually dipped in PVA and then immersed in pre-

cooled hexane for 30secs, at which point they were retrieved using forceps treated

with RNAse zap and pre-cooled in dry ice. Tissues were then placed into pre-cooled

self-sealing bags containing a piece of tissue to absorb any remaining hexane. The

tissue was stored at -80oC until use. Using optimal cutting temperature compound

(Brights, Huntingdon, UK) to attach the tissue to a metal chuck, sections of 10m

were cut at -30oC (Brights, OT model cryostat), and picked up on poly-l-lysine coated

microscope slides. The sections were then air dried at RT.

2.4.2.6 Cutting Undecalcified Frozen Tissue - CryoJane Tape transfer system

The CryoJane tape transfer system (Instrumedics Inc, St Louis, MO, USA) has been

specifically designed for sectioning tissues that are notorious for losing their

morphology or shredding upon cutting. Undecalcified bone tissue is especially

difficult to cut due to the presence of mineralised tissue, and sections often shred upon

cutting. Sections were cut using this technique by capturing the frozen section on a

cold tape window as it was being cut. The tape window attached-section was then

placed onto an adhesive-coated slide and transferred by applying a flash of ultraviolet

(UV) light through the slide. The UV light polymerises the adhesive layer on the

slide into a hard, solvent-resistance plastic, tightly attaching the section to the slide.

The tape was then peeled away leaving the frozen section tightly bonded to the plastic

layer (Figure 2.4.1).
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Figure 2.3 The CryoJane Tape transfer System This system was specifically
designed for cutting tissues such as undecalcified bone which can often tear upon
cutting (www.cryojane.com)

2.4.2.7 Laser Capture Microdissection

Laser capture microdissection (LCM) has been developed to provide a fast one step

method of isolating specific cell populations from a complex heterogeneous tissue.

This technique uses a standard histological tissue section of stained tissue under a

microscope. The section is covered in part by a cap covered with a thermal polymer.

Upon identification of the desired cells a Class IIIb invisible infrared laser is pulsed,

melting the polymer film directly above the cells of interest. The film drips onto the

desired cells in the section, solidifying and retaining the cells when the cap is removed

1. Cutting
After the block is trimmed, a cold
adhesive tape is adhered to the block
face. The tape supports and captures
the section as it is being cut

2. Transfer to Slide
A cold adhesive-coated slide is placed on a
temperature-controlled pad. The adhesive
tape is placed section-side-down on the
adhesive-coated slide, and is laminated to the
adhesive layer using a cold roller.

3. Curing the Adhesive Coating
A flash of ultraviolet light passes through the
slide to polymerize the adhesive layer on the
slide into a hard, solvent-resistant plastic,
tightly anchoring the section to the slide.

4. Removal of Tape
The tape is peeled away leaving the
still frozen section tightly bonded to
the plastic layer.

1

2

3

4
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(Figure 2.4). By repeating this process of cell identification and laser pulsing it is

possible to capture a homogeneous cell population from a tissue section. Using the

PixCell II LCM microscope in combination with Arcturus software and CapSure HS

LCM caps (Arcturus), specific cells within frozen sections were captured and the

RNA extracted. Before LCM commenced, a ‘before manipulation’ picture of the

section was taken. The laser was set to the desired size depending on the cell type to

be captured, and then focused to ensure accurate capture. Desired cells were captured

by pulsing the laser and moving the slide platform with the manipulator to guide the

laser over the relevant cells. The LCM cap was removed and an ‘after manipulation’

picture was taken of both the section and the captured cells. Following capture, each

cap was removed and placed in the incubation block, before attaching the CapSure

adapter and a 0.5ml eppendorf. The samples were then stored in a dry environment

until analysis.

Figure 2.4 The Laser Capture
Microdissection Process. Individual cells
are isolated from frozen tissue sections by
pulsing a laser directly over the required
cells, and collecting the cells on the surface
of a specially designed cap containing an
adhesive polymer. Picture from
www.Arcturus.com.
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2.4.3 Immunohistochemistry

Paraffin sections were dewaxed in xylene and rehydrated through a graded series of

alcohol solutions as follows; 100% xylene, 2x5mins; 100% ethanol, 2x1min; 70%

ethanol, 1x2mins; 50% ethanol, 1x2mins; tap water, 1x30secs; dH2O, 1x5mins. To

obtain antigen retrieval, samples were submerged in 0.1M sodium citrate for 90

minutes at 70 °C and then washed in PBS. Endogenous peroxidases were blocked by

incubating the sections with 3% hydrogen peroxide (in methanol), followed by 3

washes in PBS. Unspecific protein binding was blocked by normal goat serum (1:5)

diluted in PBS for 30 min at RT. Specific primary antibodies were diluted to the

recommended concentration (Appendix 4) in PBS/5% FCS, and sections were

covered with diluted antibody solution and incubated in a humidified chamber

overnight at 4oC. Control sections received a similar dilution of normal serum or IgG

specific to the primary antibody used. Following this the sections were washed in

PBS, and incubated with a 1:100 dilution of secondary antibody for 60 min at RT

(Appendix 4). DAB substrate reagent (0.06% DAB, 0.1% H2O2 in PBS) was

incubated for 8 minutes at RT, rinsed in PBS and counterstained with Meyer’s

haematoxylin (Sigma) for 5 min. The sections were dehydrated through alcohols and

mounted in DePeX (DPX) for visualisation under a light microscope.

2.4.4 Toluidine Blue Staining

Toluidine blue is a metachromatic dye that stains cartilage, and is therefore useful for

staining the growth plate, and in particular, defining the proliferative and hypertrophic

zones. Sections were dewaxed through graded alcohols as previously described

(2.4.3), and sections immersed in 1% Toluidine blue in 50% isopropanol for 2mins at

room temperature (RT). The sections were then rinsed twice with isopropanol, and
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placed in 2 changes of fresh isopropanol for 30secs each, before being cleared in

xylene for 2mins and mounted in DPX.

2.4.5 Histological Assessment of Bromodeoxyuridine (BrdU) Uptake

BrdU was added to the culture medium of metatarsals for the last 6h of culture. At

the end of the incubation period, the tissue was washed in PBS and fixed in 70%

ethanol, dehydrated, and embedded in paraffin wax. Sections 10µm in thickness were

cut along the longitudinal axis, and chondrocyte nuclei with incorporated BrdU were

detected using an indirect immunofluorescence procedure. Briefly, sections were

denatured with 1.5 m HCl for 30 min before incubation with an antibody to BrdU

(DAKO, Ely, UK; Appendix 4) diluted 1:50 in PBS for 1 h. After washing, the

sections were incubated for an additional 1 h in fluorescein isothiocyanate-labeled

(FITC) goat anti-mouse IgG (Sigma) diluted 1:50 in PBS (Appendix 4). The sections

were finally mounted in PBS/glycerol (Citifluor, Agar Scientific, Essex, UK).

Sections were examined using a Leica BMRB fluorescent microscope, and the total

number of BrdU positive chondrocytes within both the proximal and distal growth

regions was counted. To determine the proliferation index, the total number of BrdU

positive cells were divided by the total area of the metatarsal section.

2.4.6 Von Kossa and ALP Staining

Wax sections (10µm in thickness) were reacted for ALP activity for the demarcation

of the hypertrophic and proliferating zones within the growth plate. This procedure is

a simultaneous coupling azo dye method utilising sodium α-naphthyl phosphate as

substrate for ALP in the presence of fast blue RR (a diazonium salt). When the α-

naphthyl phosphate is hydrolysed by ALP the α-naphthyl couples with the diazonium
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salt, forming an insoluble, visible pigment at sites of phosphatase activity. Sections

were dewaxed as previously described (2.4.3), and incubated in sodium barbitone

buffer with fast blue salt for 2mins at 37oC (100ml sodium barbitone; 400µl 10%

MgCl2, 50mg α-napthylphosphate; 100mg fast blue salt). The reaction was stopped

with 0.1M acetic acid and the sections washed twice with distilled water, and mounted

in aqueous mounting solution. Sections were also stained with von Kossa and

haematoxylin and eosin using standard protocols to identify the zone of cartilage

mineralisation (Mushtaq et al., 2004). This stain is used to detect the presence of

calcium salt deposits in cell monolayers. It utilises silver nitrate in the staining

solution (silver ion carries a positive charge) binding with the anionic (negative

charge) region of the salt (in this case phosphate). As the major calcium salt found in

mineralising cells is calcium phosphate this stain will show regions where crystals of

calcium phosphate (hydroxyapatite) are present. The growth media was removed from

the cell monolayer and the cells washed 3x with distilled H2O. The cell monolayer

was then immersed in 5% silver nitrate for 30 minutes under strong light, this actively

reduces the calcium and replaces it with silver thus creating black deposits. The

monolayer was then washed 3x in distilled H2O and incubated with 2.5% sodium

thiosulphate for 5 minutes to remove unreacted silver ions. The monolayer was then

stored under distilled H2O until a digital image was taken. The sections were then

counterstained and mounted as previously described (2.4.3). Images of the stained

metatarsals were captured and the size of the ALP-negative proliferating zone was

determined (proliferating zone = total length – (hypertrophic zone + mineralizing

zone). The size of the hypertrophic zone was determined by subtracting the von

Kossa stained mineralizing zone from the ALP-positive zone, and the size of the

mineralizing zone was determined directly from the von Kossa-stained sections.
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2.5 RNA Methods

2.5.1 Isolation of Total RNA from Cells and Tissues

Ultraspec RNA isolation reagent was used to isolate RNA from both cell monolayers

and tissues. When isolating RNA from a cell monolayer the cells were scraped

directly in ultraspec (1ml per 25cm2) and transferred to a nuclease free universal.

Similarly for tissue the dissected organ was immersed in ultraspec (approx 1ml/g

tissue). The tissue/cells were homogenised using an electric homogeniser in five 10-

second bursts. The universal was returned to ice between each of the bursts to prevent

heat build up. The homogenised lysate was then passed though a 25G needle ten times

to ensure the production of a uniform lysate. Chloroform (200l per ml) was added

and vortexed for 15 seconds, the sample was then incubated on ice for 5 minutes,

before centrifuging at 12,000g (4C) for 15 minutes; this separates the sample into

two phases – the upper, aqueous phase and the lower organic phase. The RNA is

contained in the aqueous phase and proteins/DNA in the organic phase. The aqueous

phase was removed and transferred to a sterile tube, and 0.5x the volume of

isopropanol added to the RNA. 50l RNA Tack resin was added to the RNA and

vortexed for 30 seconds. The mixture was spun for 1 minute at 12,000g and

supernatant discarded. The pellet was then washed twice with 75% ethanol by serial

vortexing and centrifugation. The pellet was then left to air dry for 30 minutes. The

RNA was eluted from the resin pellet by the addition of 100l nuclease free H2O. To

each 100l of RNA, 10l 10x DNase 1 Buffer (Ambion, Huntingdon, UK) was added

along with 2.5l RNase inhibitors (Promega, Southampton, UK). This was vortexed

before 5l DNase (Ambion) was added. The RNA was mixed and incubated at 37C
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for 60 minutes. The DNase was inactivated using 0.2 x the volume of inactivation

reagent (Ambion).

2.5.2 Isolation of RNA from LCM Samples

Using the RNeasy micro extraction kit (Qiagen), 40μl of RLT buffer was placed into

the cap within the eppendorf tube (see section 2.4.2.5) at RT for 30mins. The

cap/eppendorf assembly was then centrifuged at 12000g for 1min, and an additional

35μl RLT buffer added. After addition of 75μl ethanol, the contents were loaded into

an RNeasy MiniElute Spin column (Qiagen),centrifuged at 8000g for 30secs and the

flow-through discarded. The spin column was then washed with 350μl buffer RW1

(Qiagen; 8000g for 30secs) and the flow through discarded. Any contaminating

genomic DNA was removed with the addition of DNase I (80μl; 15mins at RT) to the

spin column. This was then washed through with 350μl buffer RW1 centrifuged at

8000g for 30secs, and the flow through discarded. 500μl of RPE buffer was added to

the spin column and centrifuged (8000g; 30secs), the flow through discarded, and

500μl of 80% ethanol was then passed through the column and discarded (8000g;

2mins). To elute the RNA, 14μl of nuclease-free water was added to the column, and

centrifuged at 12000g for 1min. The RNA was stored at -80oC until analysis.

2.5.3 RNA Amplification

RNA amplification was carried out using the RiboAmp RNA amplification kit

(Ambion, TX, USA). This procedure consists of reverse transcription with an

oligo(dT) primer bearing a T7 promoter and in vitro transcription of the resulting

DNA with T7 polymerase. This generates hundreds to thousands of antisense RNA

copies of each mRNA in a sample. For first strand cDNA synthesis, the RNA was
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mixed with the oligo(dT) primer up to a volume of 12µl and incubated at 70oC, before

being placed on ice. 8 µl of reverse transcription master mix (2µl 10X First Strand

buffer; 1µl Ribonuclease inhibitor; 4µl dNTP mix; 1µl Reverse Transcriptase) was

added to the cDNA/oligo(dT) mix, and incubated at 42oC for 2h. For the second

strand cDNA synthesis, 80µl of second strand master mix (63µl NFW; 10µl 10X

second strand buffer; 4µl dNTP mix; 2µl DNA Polymerase; 1µl RNase H) was added

to each 20µl sample, and incubated for 2h at 16oC. The cDNA was then purified by

equilibrating the cDNA filter cartridge, and adding 250μl of cDNA Binding Buffer to

each cDNA sample. The mixture was applied to an equilibrated cDNA filter

cartridge, and the cartridge washed with 500μl cDNA Wash Buffer. The cDNA was

eluted with 2 x 10μl NFW. To synthesise amplified RNA (aRNA), in vitro

transcription was carried out. Firstly, a 24μl transcription reaction mix was made

containing the following: 4μl T7 ATP solution (75mM); 4μl T7 CTP solution

(75mM); 4μl T7 GTP solution (75mM); 4μl T7 UTP solution (75mM); 4μl T7 10X

reaction buffer; 4μl T7 enzyme mix. This was added to 16μl of the eluted cDNA, and

incubated for 24h at 37 oC. Following this, 2μl DNase I was added to the mix and

incubated for 30min at 37°C, and 60μl of Elution Solution was then added to each

aRNA sample. To purify the aRNA, 350μl of aRNA Binding Buffer and 250μl of

100% ethanol were added to the sample, which was then passed through an aRNA

Filter Cartridge. This was washed with 650μl aRNA Wash Buffer, and the aRNA

eluted with 2 x 50μl 50°C Nuclease-free Water.

2.5.4 Reverse Transcription

Reverse transcriptase is a RNA-dependent DNA polymerase which is encoded by

retroviruses. Their viral function is to copy the viral RNA genome into DNA prior to
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its integration into host cells. This can be exploited to allow production of DNA

(cDNA) from any RNA template and is known as reverse transcription PCR. The

Superscript - First Strand synthesis system for RT-PCR was used for reverse

transcription (Invitrogen) along with Oligo dT (Roche, East Sussex, UK). 5μg RNA

sample and 500ng Oligo dT were mixed and incubated at 70◦C for 10 min to denature

the RNA, this was subsequently incubated on ice for 1 minute. 2μl 10 x RT buffer,

2mM MgCl2, 10mM DTT and 0.5mM dNTP’s were added to each RNA sample and

mixed, finally 200units (u) Superscript enzyme was added and mixed. The following

PCR cycle was used; 25◦C for 10 min, 42◦C for 50 min and 70◦C for 15 min for

annealing, elongation and termination respectively. The cDNA was stored at -20◦C

until required.

2.5.5 Polymerase Chain Reaction (PCR)

PCR was performed on either cDNA produced from reverse transcription or on

genomic DNA, as a diagnostic tool or to allow the amplification of a gene for

functional studies. In a typical 50l PCR reaction the following quantities of

reactants were used; 0.2 mM dNTP mix (Promega), 5l 10x PCR Buffer (Roche), 5

units Taq polymerase (Roche), 0.5M of the forward and reverse primers, 4l DNA

(at appropriate concentration) and nuclease free H2O up to 50l. This was then cycled

in a ThermoHybaid Px2 Thermal Cycler under the following conditions: 94C for 5

minutes for one cycle, thirty cycles of 94C for 30 seconds 55-60C (depending on

the melting temperature of the primers) for 30 seconds and 72C for 1 minute and

finally one step of 72C for 10 minutes. The PCR products were then run on an

agarose gel, as outlined in section 2.6.3. For all PCRs, Classic 18S (Ambion) was
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used as an internal standard (Primer sequences unknown). Because of its invariant

expression across tissues and treatments, 18S ribosomal RNA is an ideal internal

control for RNA analysis.

2.5.6 Quantitative Polymerase Chain Reaction (qPCR)

RNA was isolated by phenol/chloroform extraction and used directly in a quantitative

PCR reaction. The Platinum® SYBR® Green qPCR SuperMix Kit (Invitrogen)

method was utilised to allow quantification by fluorescence during the PCR reaction.

Briefly 40l SYBR green mastermix was added to 10ng RNA along with 0.2M of

the required forward and reverse primers. The qPCR reaction was cycled in a

Stratagene Mx3000P qPCR system as follows: 1 cycle of 50C for 2mins, 95oC for

2mins (RT step), then 45 cycles of 95C for 15secs, 55C for 30secs and 72C for

30secs. Each tissue sample was tested in triplicate and compared to GAPDH RNA

(Primers: forward 5’ TGAGGCCGGTGCTGAGTATGTCG 3’; reverse 5’

CCACAGTCTTCTGGGTGGCAGTG 3’) as an external control which allowed

normalisation of results. An identical PCR was carried out on a dilution series of RNA

using both gene of interest and external to allow estimation of PCR efficiency. The

raw data is in the form of a Ct value which is the cycle number at which the

fluorescence in the tube passed above a predefined threshold. This Ct value is used in

the calculations to show relative differences in gene expression in different samples.

Briefly the difference in Ct values between the gene of interest and the control was

calculated and used to determine relative quantification by expressing the values as 2-

CT.
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2.6 DNA Methods

2.6.1 DNA isolation from mouse tail biopsies

Tail biopsies were carried out on halothane anaesthetised mice, and the tail biopsy

placed into a labelled tube containing 750μl tail digest buffer (0.3M sodium acetate,

10mM TrisHCl pH 7.9, 1mM EDTA pH 8, 1% SDS and 200μg/ml Proteinase K.

Samples were incubated overnight at 37oC and frozen at -20oC for storage until

needed. Prior to PCR analysis, samples were centrifuged at 16000g at 4oC for

15mins, and frozen. This process was repeated twice, and ensured the sodium

dodecyl sulphate (SDS) present in the tail digest buffer was sedimented and did not

interfere with the PCR reaction.

2.6.2 Genotyping Transgenic Mice

PCR reactions were carried out as described in section 2.5.4. Tail digests were spun

at 16000g for 15mins at 4oC and stored on ice to prevent SDS in the digest buffer

from floating in the supernatant. The supernatant was then diluted 1:10 to minimise

the risk of SDS interfering with the PCR reaction. A master mix containing nuclease-

free H2O, 10xPCR buffer, 2mM dNTP, 25mM MgCl2, 10μM primers and Taq was

made, and 18μl of master mix was added to 2μl of 1:10 diluted DNA. This was then

cycled in a ThermoHybaid Px2 Thermal Cycler under the following conditions: 94C

for 5 minutes for one cycle, thirty cycles of 94C for 30 seconds 55-60C (depending

on the melting temperature of the primers) for 30 seconds and 72C for 1 minute and

finally one step of 72C for 10 minutes. The PCR products were then run on an

agarose gel, as outlined in section 2.6.3
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2.6.3 Agarose Gel Electrophoresis

DNA fragments were separated by horizontal agarose gel electrophoresis on 1.5 - 2%

Agarose gels. The gels were produced by dissolving powdered agarose in TAE buffer

by heating to the point of boiling. Ethidium bromide (EtBr) was added to a final

concentration of 0.5g/ml to allow visualisation of the DNA under UV light. The gel

was then poured into a cassette with slot former and allowed to set. The DNA samples

were mixed with loading buffer and loaded onto the submerged gel. The fragments

were separated according to size by applying a voltage of 120V across the gel for 1-2

hours. DNA bands were visualised using a UV transilluminator and photographed

using attached camera.

2.6.4 Quantification of DNA Concentration

DNA concentration was calculated by UV spectroscopy. Readings were taken at

260nm and 280nm. The concentration of DNA was automatically calculated by the

biowave reader using the following equation: A260 x 50 x dilution factor. The ratio of:

A260/ A280 gives an indication to how pure the DNA is, proteins have an absorbance at

around A280 therefore the lower the number the less pure the DNA preparation is.

2.6.5 Restriction Endonuclease Digestion of DNA

Digestion of DNA using restriction endonucleases was carried out both as a

diagnostic tool and to allow the formation of a DNA fragment to engineer into

plasmid DNA. Roche restriction endonucleases were used for this process along with

their optimised buffer. A typical 20l digest contained 1g DNA, 1 unit of the

restriction enzyme and 2l 10x reaction buffer, made up to 20l with distilled H2O.
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The restriction reaction was carried out at 37C for 1-2 hours, and 1 unit of each

enzyme was used per 1g of DNA in a 20l reaction.

2.6.6 DNA Ligation into Linearised Vectors

The vector of choice was linearised by restriction enzyme digestion using enzyme

sites contained within the vector multiple cloning site. The insert will also have

complementary sites at either terminus making “sticky ends” for ligation. A molar

ratio of 3:1 insert to plasmid was used for all ligations of this nature. The Roche rapid

ligation kit was used and manufacturer’s instructions followed. Briefly both insert and

vector were diluted in DNA dilution buffer so that the final volume equalled 10l,

reaction buffer (10l) was then added and mixed. Finally 1l DNA ligase was added

to the reaction which was incubated at 4oC overnight. This ligation mixture was used

directly for transformation of supercompetent SURE 2 cells.

2.6.7 Isolation of DNA Fragments from Agarose gel

DNA was separated as detailed in section 2.6.3. The DNA band was visualised over

UV light (due to EtBr intercalation) and excised using a scalpel blade, taking care to

trim all unstained gel from the slice. The agarose gel slice was weighed and then

subjected to the DNA extraction protocol set out in the QiaQuick gel extraction kit

(Qiagen). Briefly 300l of QG buffer was added per 100mg of agarose and heated to

50C for 10 minutes to dissolve the gel. 100l isopropanol per 100mg agarose was

added to the mixture to help increase the DNA yield. The mixture was then applied to

a spin column and centrifuged at 17,900 x g for 1 minute. This allows the DNA to

bind to the silica membrane of the column. The DNA was then washed with 750l
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wash buffer (PE) by applying it to the spin column and centrifuging at 17,900 x g for

1 minute. The empty spin column was then spun for an additional minute to remove

traces of ethanol. The DNA was eluted by the addition of 50l buffer EB or nuclease

free H2O and centrifuging at 17,900 x g for 1 minute. The DNA was stored at -20C

until needed.

2.6.8 DNA Sequencing

DNA sequencing was carried out commercially at the DNA sequencing facility at

Dundee University.

2.6.9 Transformation of Bacteria

SURE 2 (Stop Unwanted Rearrangement Events) supercompetent Escherichia coli

cells (E.coli) (Stratagene, The Netherlands) were used for transformations in this

study, due to the fact that these cells have been engineered to lack components of

pathways that cause the rearrangement and deletion of non-standard secondary and

tertiary structures. This property makes these cells ideal for the cloning of DNA

segments that are difficult to clone in conventional E.coli strains. For

transformations, 100l SURE 2 cells were incubated with 2l β-mercaptoethanol on

ice for 10mins. Approximately 20ng plasmid DNA was then added to the cells,

mixed, and incubated on ice for 30mins, at which point the cells were subjected to

exactly 30secs heat shock at 42oC, before being placed back on ice for a further

2mins. 900μl SOC (Hanahan, 1983) media (Invitrogen, Paisley, UK) was added to

the cells and incubated at 37C for 1 hour with constant agitation. Aliquots of the
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transformation mixture were spread on LB (Bertani, 2004) agar plates containing

100μg/ml ampicillin and incubated overnight at 37C.

2.6.10 Liquid Culture of Bacterial Clones

Individual colonies were picked from the agar plates of transformed bacteria into a

10ml LB culture media containing 100μg/ml ampicillin. This was incubated overnight

at 37C with constant agitation. 2ml of the bacterial culture was spun at 6,000g and

pelleted bacteria resuspended in 1ml LB containing 50% glycerol. These glycerol

stocks were stored at -20C until required.

2.6.11 Minipreparation of Plasmid DNA

The remaining 8ml of bacterial culture was used for plasmid DNA production

utilising the Qiagen miniprep spin kit (West Sussex, UK). Briefly the 8ml of culture

was spun at 8950 x g for 15 minutes and resuspended in 250μl buffer P1. The cells

were then lysed by addition of 250μl buffer P2, and incubated at room temperature for

5 minutes. The genomic DNA and proteins were precipitated from the lysate by

addition of 350μl buffer N3 and centrifuged at 17,900 x g for 15 minutes to clear the

lysate. The supernatant was centrifuged through a Qiagen column containing a silica

membrane to selectively adsorb plasmid DNA in the high salt buffer. The membrane

was the washed with buffer PE and plasmid DNA eluted by centrifugation at 17,900 x

g with 50μl buffer EB or distilled water.

2.6.12 Endofree Maxipreparation (Qiagen) of Plasmid DNA

Endotoxin-free DNA improves the efficiency of transfection into sensitive or

immunologically active cells, and Endofree Maxi Prep kits remove endotoxin
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generated from gram-negative bacteria such as E. coli. A 10ml liquid culture was set

up as detailed above and grown for 8 hours at 37°C with vigorous shaking. The 10ml

E. coli culture was then transferred into a flask containing 200ml LB (with 100μg/ml

ampicillin) and grown overnight at 37°C with vigorous shaking. The bacterial cells

were harvested by centrifugation at 6000 x g for 15 min at 4°C. The supernatant was

removed and bacterial pellet resuspended in 10ml buffer P1. The cells were then

lysed through addition of 10 ml buffer P2 which was mixed thoroughly by inverting

and incubated at room temperature for 5 minutes. The genomic DNA, proteins, cell

debris, and SDS were precipitated by addition of 10 ml chilled buffer P3, which was

mixed by inverting 4–6 times. The lysate was poured into the barrel of the QIAfilter

cartridge and incubated at room temperature for 10 min. The lysate was then passed

into a sterile tube and 2.5 ml buffer ER was added to remove endotoxin and incubated

on ice for 30 minutes. The filtered lysate was applied to a QIAGEN-tip equilibrated

with buffer QBT and allowed to enter the resin by gravity flow. The QIAGEN-tip

was washed with 2 x 30 ml buffer QC, and the DNA was eluted by addition of 15 ml

buffer QN and precipitated by the addition of 0.7 volumes of room temperature

isopropanol. This was mixed and centrifuged at 15,000 x g for 30 min at 4°C to pellet

the plasmid DNA. The supernatant was decanted and pellet washed with 5 ml of

endotoxin-free 70% ethanol and centrifuged at 15,000 x g for a further 10 min. The

supernatant was decanted and the pellet left to air dry for 10 min. The DNA pellet was

then re-dissolved in 100μl endotoxin-free buffer TE and stored at -20°C until

required.
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2.7 Protein Methods

2.7.1 Protein Concentration Determination – Bradford Assay

The Bio-Rad protein assay kit used is based on the method described by Bradford

(Bradford, 1976). The Bradford protein assay is a simple procedure for determination

of protein concentrations in solutions and utilises the change in absorbance of

Coomassie Blue upon binding to protein. The Bradford protein assay is not sensitive

to interference by chemicals in the lysis buffer, however high concentrations of

detergent do cause anomalies in results. The method employed uses gamma-globulin

as a standard. Nine standards of gamma globulin were prepared ranging from 10μg/ml

to 90μg/ml. 160μl of each standard was pipetted in duplicate into a 96 well plate along

with a buffer blank. The protein that was to be measured was diluted in the same

buffer as gamma-globulin and also added to the individual wells in duplicate. 40μl of

dye reagent concentrate (Bio-Rad, Herts., UK) was added to each well and mixed.

The plate was incubated at room temperature for 5 minutes and the absorbance read at

595 nm. The absorbencies of the samples were compared to a standard curve

generated from the absorbencies from the standards.

2.7.2 SDS Polyacrylamide Gel Electrophoresis (SDS PAGE)

Cells were scraped in RIPA buffer containing 1.6 mg/ml of Complete® protease

inhibitor cocktail (Roche), and proteins were separated according to weight on Novex

Bis-Tris gels (Invitrogen). The comb was removed from the pre-cast gel and the wells

rinsed with distilled water. The gel was then placed in to a tank filled with 1x MOPS

running buffer (Invitrogen), and the centre of the tank was filled with an anti-oxidant

to maintain reduced proteins their reduced state. Protein samples in 1x LDS sample

buffer (containing DTT reducing agent) were heated to 70C for 15 minutes and



Chapter 2 Materials and Methods

88

cooled on ice. The samples were then centrifuged at 17,900 x g for 30 seconds. The

samples (containing 50g lysate protein) and a pre-stained molecular weight marker

(See Blue plus 2; Invitrogen) were loaded onto the gel, and the gel was run at 200V

for 60 minutes.

2.7.3 Western Blotting

Following electrophoresis, the gel was removed from the cassette and immersed in

transfer buffer. An individual sheet of nitrocellulose membrane was washed in dH2O

for 5mins, and then washed in transfer buffer along with two 3M papers, cut slightly

larger than the gel, and four foam pads. The nitrocellulose was laid on top of the gel

and sandwiched between the two 3M papers, ensuring exclusion of any air bubbles.

This sandwich was placed in the X-blot module (Invitrogen) between the four foam

pads. The module was then clamped onto the gel tank and topped up with ice-cold

transfer buffer. The proteins in the gel were electro-blotted on to the nitrocellulose at

30V for 90 minutes on ice. The nitrocellulose was then blocked for 1h in 5% milk

protein (Marvel) in TBST (blocking solution) at RT to reduce non-specific antibody

binding. The primary antibody was added at an appropriate dilution (Appendix 4) in

blocking solution and incubated at 4oC, with gentle agitation overnight. The

nitrocellulose was subsequently washed 3 times in 50ml TBST to remove any

unbound antibody, and then incubated at RT for 60 minutes with anti-IgG-peroxidase

diluted in blocking solution (specificity dependent on primary antibody). The blot was

again washed 3 times in 50ml TBST and the immune complexes then visualised by

enhanced chemiluminescence (ECL) (Amersham, Buckinghamshire, UK). This kit

operates using an acridan-based substrate which when in close proximity to

peroxidase releases light. The position of the immune complexes were visualised by
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exposure of the membrane to ECL film (Amersham), which was subsequently

developed in a Kodak automatic developer. To assess equal loading the proteins on

the blot were stained with Indian ink after alkali pre-treatment, as described by

Sutherland and Skerrit (1986). Briefly the membranes were washed in TBST before

incubation with 0.2M NaOH for 5 minutes. The membrane was then submerged in

10% India ink solution for 120 minutes and finally washed repeatedly in TBST until

only the protein bands were visible.

2.8 Microarray

2.8.1 Hybridisation of RNA to Affymetrix Platform

The fundamental basis of DNA microarrays is the process of hybridisation. Two

DNA strands hybridise if they are complementary to each other, and one or both

strands of the DNA hybrid can be replaced by RNA and hybridisation will still occur.

Affymetrix microarrays use a photolithographic mask to control synthesis of

oligonucleotides on the surface of a chip (Figure 2.5). The masks control the

synthesis of several hundred thousand squares, each containing many copies of an

oligo. For expression analysis, up to 40 oligos are used for the detection of each gene.

From a region of each gene, 11-20 oligos are chosen as perfect matches (PM; i.e.

perfectly complementary to the mRNA of that gene), and another 11-20 oligos are

chosen as mismatch oligos (MM). The MM oligos are identical to the PM oligos

except for at position 13, where one nucleotide has been exchanged to its

complementary nucleotide. The MM oligos will detect non-specific and background

hybridisation, which is important for quantifying weakly expressed mRNAs.

Hybridisation of ATDC5 RNA to the Affymetrix Genechip was carried out at the

Human Genome Mapping Project (HGMP) Gene Service (Cambridge, UK).
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Following extraction of total RNA from ATDC5 cells, mRNA was converted to

cDNA using reverse transcriptase and a poly-T primer. The resulting cDNA was

amplified using T7 RNA polymerase in the presence of biotin-CTP, so each cDNA

produced 50-100 copies of biotin-labelled cRNA. The cRNA was then incubated at

94 degrees in fragmentation buffer to produce cRNA nucleotide fragments of 35 to

200 nucleotides in length. These fragments were hybridised to the Affymetrix chip,

and any non-hybridised material washed away. The hybridised biotin-labelled cRNA

was then stained with Streptavidin-Phycoerythrin and washed, and the chip scanned in

a confocal laser scanner. The signal on the chip was then amplified with goat IgG and

biotinylated antibody, before being scanned again. The absolute expression value for

each transcript was then calculated from the combined PM-MM differences of all the

pairs in the probe set by Affymetrix software
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Figure 2.5 Affymetrix Microarray overview. (A) Affymetrix microarray involves
the reverse transcription of total RNA into cDNA. This cDNA then undergoes in
vitro transcription into cRNA, during which point a biotin label is attached. The
labeled RNA is then fragmented, and hybridised to a GeneChip containing thousands
of oligonucleotide probes for specific genes. The hybrisied chip is then washed and
stained, and can then be scanned for the detection of specific genes. (B) Affymetrix
GeneChip showing a hybridised sample. This chip can then be scanned and analysed
for the expression of genes of interest. Diagram taken from www.affymetrix.com.

A

B
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2.8.2 Microarray Data Analysis

The data obtained from the Affymetrix hybridisation was pre-processed using the

Robust Multichip Analysis (RMA) algorithm in GeneSpring 7.0 (Silicon Genetics,

CA, USA) The Robust Mutichip Analysis algorithm (RMA; Irizarry et al., 2003) is

commonly used to normalise Affymetrix data, and uses the PM value only, ignoring

the expression value obtained for the MM probe. RMA analysis involves calculating

the average background for the entire chip (*BG), and then subtracting this from the

PM of a given probe. Intensity dependent normalisation of this value (PM-*BG) is

carried out, and then log transformed. RMA normalisation is carried out on all probe

pairs within a given set, and a single value is obtained using Tukey’s median

polishing procedure. RMA normalisation is an effective method for normalising

microarray data, as, by ignoring the MM value, less ‘noise’ is produced, therefore

reducing the chance of false positives. The uploaded data was first separated into 2

groups according to treatment type, and then normalised. Measurements of less than

0.01 were set to 0.01, and each chip (i.e. sample) was normalised to the 50th percentile

(i.e. all of the measurements on each chip were divided by a percentile value of 50%).

Per Chip normalisations control for chip-wide variations in intensity. Such variations

may be due to inconsistent washing, inconsistent sample preparation, or other

microarray production or microfluidics imperfections. Each gene was then

normalised to the control sample. In this normalisation, each gene is divided by the

average intensity of that gene in the control samples. To assess differential gene

expression between treatments, expression values were further filtered by retaining

only those probe sets with a fold change of at least 1.5 in Dex samples compared with

Controls. A two-sample t-test was then carried out, resulting in a list of genes whose

expression was significantly changed by 1.5-fold or more in Dex-treated samples.
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2.9 Cell Proliferation and Differentiation Assays

2.9.1 [3H] Thymidine Incorporation

Chondrocyte proliferation was assessed by incubating the cells with 0.2Ci/ml

[3H]thymidine (37MBq/ml; Amersham Pharmacia Biotech, Bucks, UK) for the last 2h

of the incubation period. Following removal of the [3H]thymidine, the cells were

fixed in ice-cold TCA (5%) for 15mins, washed, and lysed in 0.1M NaOH for up to

30mins. Scintillation fluid was then added, and the amount of radioactivity

incorporated into trichloroacetic acid insoluble precipitates was measured using a

scintillation counter.

2.9.2 Alcian Blue Staining of the Cell Monolayer

Proteoglycan synthesis was evaluated by staining with Alcian Blue. In brief, cells

were washed twice with PBS, fixed in 95% methanol for 20 min and stained with 1%

Alcian Blue 8 GX (Sigma) in 0·1 M HCl overnight and rinsed with distilled water.

Alcian Blue-stained cultures were extracted with 1 ml 6M guanidine-HCl for 6 h at

room temperature and the optical density (O.D.) was measured at 630 nm using a

Jenway 6105 spectrophotometer.

2.9.3 Alkaline Phosphatase Assay

Cell layers were rinsed with PBS and lysed with 0·9% NaCl and 0·2% Triton X-100

and centrifuged at 12000g for 15 min at 4oC. The supernatant was assayed for protein

content and ALP activity as a measure of cell number and chondrocyte differentiation

respectively. The protein content of the supernatant was measured using the Bio-Rad

protein assay reagent (Bio-Rad Laboratories) as previously described (2.7.1). Enzyme
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activity was determined by measuring the cleavage of 10 mM p-nitrophenyl

phosphate (pNPP) at 410 nm. Total ALP activity was expressed as nmoles pNPP

hydrolysed/min/mg protein.
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3.1 Introduction

GCs are used extensively for the treatment of autoimmune and inflammatory diseases,

including arthritis, asthma, multiple sclerosis, inflammatory bowel disease and

chronic active hepatitis. In addition, GCs are also used in combination with other

drugs to reduce inflammation associated with leukaemia, and to suppress the immune

system following transplantation. GCs are also used extensively in paediatric practice

for the treatment of chronic inflammatory, autoimmune and neoplastic diseases, and it

is estimated that 10% of children may require some form of GC therapy during

childhood (Warner 1995).

Impairment of childhood growth with GCs was first described over 40 years ago

(Blodgett et al., 1956), and since then, a number of studies in experimental animal

models have also shown that high levels of GCs have a suppressive effect on

longitudinal bone growth (Rooman et al., 1999; Stevens et al., 1999; Silvestrini et al.,

2000).

Multiple mechanisms have been proposed to explain the growth-suppressing effect of

supraphysiological GCs, and it is now known that GCs act locally to inhibit

longitudinal bone growth, suggesting a mechanism intrinsic to the growth plate

(Baron et al., 1992). In rats, GC excess reduces bone growth, probably due to

decreased numbers of proliferating chondrocytes and increased apoptosis of

hypertrophic chondrocytes in the growth plate (Chrysis et al., 2003). These results

are also consistent with the Dex-induced inhibition of chondrocyte proliferation and

cartilage matrix production observed in 12 week old rats in vivo (Annefeld et al.,

1992), and with in vitro models of chondrocyte growth, which show that
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pharmacological doses of Dex reduce the proliferation of murine chondrogenic

ATDC5 cells (Mushtaq et al., 2002). GCs have also been shown to promote

apoptosis and reduce proliferation through suppression of the phosphatidylinositol 3-

kinase (PI3K) pathway (Chrysis et al., 2003; Chrysis et al., 2005; Macrae et al.,

2007), and down-regulate chondrocyte marker genes Coll II, Coll X and aggrecan

(Owen et al., 2007; also see 6.5.4). Other GC-target genes that have been recently

identified include C-type natriuretic peptide (Agoston et al., 2006) and vascular

endothelial growth factor (VEGF) (Koedam et al., 2002). The IGF-I/GH system is

also thought to play a major role in GC-regulation of the growth plate and it has been

shown that GCs cause antagonism of growth hormone (GH) secretion and action. It

has also been shown that GCs inhibit pulsatile GH release (Wehrenber et al., 1992;

Giustina et al., 1992; Giustina et al., 1998), reduce GH receptor expression, and

inhibit IGF-I activity (Unterman et al., 1985).

Although many of the molecular factors involved in GC-induced growth retardation

have been identified, a comprehensive understanding of the mechanisms governing

GC effects at the growth plate has not been achieved. The advent of functional

genomics in combination with systems biology and integrative physiology approaches

has equipped us with the tools to overcome some of the challenges associated with

understanding these complex interactions. In this study, comprehensive gene

expression profiling of the murine chondrogenic ATDC5 cell line by Affymetrix

microarray has been used to systematically investigate the modulation of factors that

modulate GC-induced growth retardation. This study identified numerous genes that

undergo significant changes in expression with GCs. One of these genes, lipocalin 2,

was then selected for further functional analysis.
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3.2 Hypothesis

The hypothesis of this study was that a pharmacological dose of the commonly used

GC, Dex, would up- or down- regulate genes not previously linked with GC-induced

growth retardation at the growth plate.

3.3 Aims

I. Carry out an Affymetrix microarray on Dex-treated ATDC5 cells and identify

novel genes involved in GC-induced growth retardation by gene ontology

analysis.

II. Identify novel pathways involved in growth retardation by bioinformatics

methods such as Functional Annotation Clustering.

III. Confirm changes in expression of selected genes with q-PCR.

3.4 Materials and Methods

3.4.1 Cell Culture

The ATDC5 chondrocyte cell line was obtained from the RIKEN cell bank (Ibaraki,

Japan), and cells were cultured at a density of 6000 cells per cm2 in differentiation

medium as described in section 2.2.3. ATDC5 cells were differentiated for 15 days,

by which point the cells are considered to be in the chondrocytic phenotype, with the

expression of chondrocyte marker gene aggrecan, and the formation of nodules. At

day 15, the cells were incubated with 10-6M Dex (Sigma; water soluble) (in

differentiation medium), for 24h, and control cells received differentiation medium

only.
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3.4.2 RNA Extraction and Hybridisation to the Affymetrix GeneChip

Total RNA was extracted from duplicate control and Dex-treated cultures at 24h

following treatment using the phenol/chloroform extraction method as described in

section 2.5.1. RNA integrity and quantity was assessed using the Agilent 2000 Bio

analyzer system, and RNA samples were subsequently hybridised to the Affymetrix

Mouse Genome 430 2.0 Gene Chip array for 16h (2.8.1). This GeneChip contains

45101 probe sets, and can analyse the expression level of over 39000 transcripts and

variants from 34000 characterised mouse genes. Following hybridisation, the

GeneChip arrays were stained, washed and scanned. Bio analysis, microarray

hybridisation and scanning were completed at the Human Genome Mapping Resource

Centre (HGMP) in Cambridge. A detailed description of the hybridisation protocol

can be found in section 2.8.1.

3.4.3 Data Normalisation

The data obtained from the Affymetrix hybridisation was pre-processed using the

RMA algorithm in GeneSpring 7.0 (Silicon Genetics, CA, USA) (2.8.2). Each gene

was then normalised to the control sample. In this normalisation, each gene is divided

by the average intensity of that gene in the control samples (Figure 3.1). To assess

differential gene expression between treatments, expression values were further

filtered by retaining only those probe sets with a fold change of at least 1.5 in Dex

samples compared with Controls. Due to the fact that there were only 2 replicates per

treatment, a two-sample t-test was carried out for each sample. This test looks for

differentially expressed genes between each condition, and is applied to the mean of

each of the 2 normalised values for each treatment against the baseline value of 0 (in

log scale). (All genes are centred around 0 after normalisation in GeneSpring, which
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represents the baseline expression level where genes do not show any differential

expression compared to controls). Therefore, genes associated with a p-value lower

than 0.05 were regarded as statistically significant (i.e up- or down-regulated

compared to an expression baseline of 0). This analysis resulted in a gene list of 96

transcripts, whose expression was significantly changed by 1.5-fold or more in Dex-

treated samples.

Figure 3.1 Line graph of Control and Dex sample data loaded into GeneSpring.
Gene expression values were pre-normalised with the RMA algorithm, and log
transformed. Average gene expression values for control (Con) samples are
represented by the left y-axis and values for Dex samples by the right y-axis.
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3.4.4 Gene Ontology Analysis

Probe set lists resulting from the comparison of Control versus Dex samples filtered

using a 1.5-fold cutoff were assigned a molecular function with the NetAffx

annotation programme (http://www.affymetrix.com/analysis).

3.4.5 Gene Ontology Enrichment and Functional Annotation Clustering

Gene sets were created using the Functional Annotation Analysis option on the

Database for Annotation, Visualisation, and Integrated Discovery (DAVID; The

National Institute of Allergy and Infectious Diseases) (Dennis et al., 2003). Gene

ontology (GO) is a method for describing (annotating) gene terms, and the most

significant annotated terms can be found by looking at the probabilities that the terms

are counted by chance. This is done by GO enrichment analysis, which gives an

enrichment score associated to each term. A list of the most significant GO terms can

then be created by ordering the enrichment scores.

3.4.5 Validation of Affymetrix Microarray Data with qPCR

Total RNA was extracted from triplicate control and Dex-treated ATDC5 cultures at

24h following Dex (10-6M) treatment using the phenol/chloroform extraction method

as described in section 2.5.1. RNA quantity and integrity was assessed using the

Bioanalyzer 2000 system (Agilent). RNA samples or blanks (containing nuclease-free

water in place of RNA) were reverse transcribed in 20µl reactions with 200ng random

hexamers and 200U Superscript II reverse transcriptase using the Superscript

preamplification protocol (2.5.4) (Invitrogen). qPCR was performed using the

Stratagene Mx3000P real-time QPCR system (Stratagene, California, USA) as

previously described (2.5.5). Primers were designed using the software programme
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Primer3 (Whitehead Institute for Biomedical Research), and were made to span at

least one intron to prevent any amplification from contaminating genomic DNA by

semi-quantitative PCR. Genes selected for further analysis by qPCR were as follows:

Lipocalin 2, Secreted frizzled-related protein 2 (SFRP2), connective tissue growth

factor (CTGF), IGF-I, Lumican, integrin 10, dentin matrix protein 1 (DMP1) and

serum-glucocorticoid regulated kinase (SGCK). Primer sequences are displayed in

Table 3.1, and amplicon locations in Appendix 5. Fold changes were normalised for

the expression of GAPDH, and calculated using the comparative method as

previously described (section 2.5.5).

Table 3.1 Primer sequences for qPCR confirmation of Microarray data

Gene
Name

Forward (5’-3’) Reverse (5’-3’) Amplicon
Size

Lipocalin
2

CAGAAGGCAGCTTTACGATG CCTGGAGCTTGGAACAAATG 134

SFRP TACCACGGAAGCCTCTAAGC CTCGCTTGCACAGAGATGTT 100
CTGF CCACCCGAGTTACCAATGAC GACAGGCTTGGCGATTTTAG 146
IGF-I GTGGACCGAGGGGCTTTTACTT TTTGCAGCTTCGTTTTCTTGTTTG 246
Lumican TGCTCGAGCTTGATCTCTCC CAGTGGTCCCAGGATCTTACA 156
Integrin
10

CTGAGGCTGGTTCACAATGA CGGGAGGCTTCATTCAGTAG 138

DMP1 AAAGTCAAGCTAGCCCAGAGG CCGGTCCCCGTACTCTTAG 129
SGCK GATGGGCCTGAACGATTTTA GAGGAGAGGGGTTAGCGTTC 111
GAPDH TGAGGCCGGTGCTGAGTATGTCG CCACAGTCTTCTGGGTGGCAGTG 302

3.5 Results

3.5.1 Microarray Analysis

Quality control analysis revealed that all RNA samples were of a suitable quality for

hybridisation to the Affymetrix gene chip. Analysis in GeneSpring 6.0 software

demonstrated that from a total of 45101 probe sets, 614 genes were changed by 1.5-

fold or more (Figure 3.2). Significance testing of these genes with student’s t-test

ANOVA analysis then identified 96 genes whose expression was significantly

changed by 1.5-fold or more with Dex treatment (Table 3.1A and B, and Appendix 1
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for full details of gene ontologies). 82.2% of these genes were significantly up-

regulated with Dex treatment, leaving 17.7% of down-regulated genes in response to

Dex. A distribution of fold differences between Control and Dex samples showed

that the majority of gene expression changes did not exceed 1.5-fold.

Figure 3.2 Scatterplot of Affymetrix micorarray results from GeneSpring
analysis. Analysis in GeneSpring 6.0 software demonstrated that from a total of
45101 probe sets, 614 genes were changed by 1.5-fold or more. Genes to the left of
the outer blue line are up-regulated by 1.5-fold or more, and genes to the right of the
outer blue line are down-regulated by 1.5-fold or more.
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Table 3.2A Genes significantly up-regulated by 1.5-fold or more with Dex treatment.
Affymetrix
ID

Fold Change Gene Name Assoc. with Bone
Growth/Remodelling

Assoc. with GCs

1427747_a_at 14.53 lipocalin 2 * *

1448550_at 7.98 lipopolysaccharide binding protein *

1428942_at 5.064 metallothionein 2 *

1416125_at 3.877 FK506 binding protein 5

1442025_a_at 3.839 similar to promyelotic leukaemia zfp

1434202_a_at 3.607 hypothetical protein MCG58343

1418187_at 3.583 calcitonin receptor activity modifying
protein

*

1448881_at 3.44 haptoglobin acute phase response *

1416953_at 3.324 connective tissue growth factor *

1425281_a_at 3.19 delta sleep inducing peptide

1423233_at 3.131 CCAAT/enhancer binding protein
delta

*

1449851_at 3.035 chemokine ligand 2

1419874_x_at 2.983 promyelotic leukaemia zinc finger
protein

1420772_a_at 2.893 delta sleep inducing peptide

1422557_s_at 2.847 metallothionein 1 *

1418091_at 2.731 transcription factor CP2 like 1

1440235_at 2.69 Integrin alpha 10 *

1422878_at 2.591 synaptotagmin 12

1416041_at 2.56 serum/glucocorticoid regulated
kinase

* *

1428471_at 2.53 sorbin and SH3 domain containing 1

1450826_a_at 2.508 serum amyloid A 3

1455048_at 2.475 immunoglobulin superfamily
member 2

1423274_at 2.365 DEAD-H

1443745_s_at 2.332 dentin matrix protein 1 *

1426236_a_at 2.32 glutamate ammonia ligase

1422573_at 2.108 AMP deaminase 3

1449254_at 2.02 sectreted phosphoprotein 1

1418269_at 2.005 lysyl oxidase-like 3

1448830_at 2.003 dual specificity phosphatase 1

1417507_at 1.999 cytochrome b-561

1434203_at 1.973 hypothetical protein MCG58343

1438953_at 1.935 c-fos induced growth factor

1435943_at 1.905 dipeptidase 1

1434642_at 1.9 dehydrogenase/reductase member 8

1448842_at 1.894 Cysteine dioxygenase 1

1439755_at 1.837 signal-induced proliferation-
associated 1 like 1

1416383_a_at 1.835 pyruvate carboxylase

1451596_a_at 1.834 sphingosine kinase 1

1424051_at 1.823 procollagen type IV *

1436789_at 1.818 similar to FLJ14166 protein

1460011_at 1.793 cytochrome p450
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Table 3.2A Continued

Affymetrix
ID

Fold Change Gene Name Assoc. with Bone
Growth/Remodelling

Assoc. with
GCs

1452141_a_at 1.788 selenoprotein P

1433832_at 1.782 expressed sequence AI551766

1418932_at 1.768 Interleukin 3

1426195_a_at 1.756 Cystatin C

1422620_s_at 1.736 phosphatidic acid phosphatase 2a *

1422478_a_at 1.668 acetyl coenzyme A synthetase 2

1417936_at 1.666 chemokine ligand 9

1454675_at 1.665 nuclear receptor subfamily 1 group D

1449731_s_at 1.657 nuclear factor of kappa light chain
gene enhancer

1448489_at 1.651 platelet activating factor 2

1447602_x_at 1.646 sulfatase 2 metbolism

1424671_at 1.645 pleckstrin homology domain
containing F

1437820_at 1.642 forkhead-like 18

1451939_a_at 1.635 sushi-repeat containing protein

1435254_at 1.627 plexin B1

1456312_x_at 1.62 Gelsolin

1454849_x_at 1.619 Clusterin

1441926_x_at 1.616 transmembrane inner ear

1430388_a_at 1.615 sulfatase 2 metbolism

1459978_x_at 1.6 similar to FLJ14166 protein

1448321_at 1.6 SPARC related modular calcium
binding 1

1455078_at 1.593 protein pdb:1LBG

1416825_at 1.579 synotrophin acidic 1

1450678_at 1.565 Integrin beta 2 *

1425894_at 1.565 cDNA sequence BC019711

1452296_at 1.554 slit homolog 3

1426947_x_at 1.553 procollagen type IV alpha 2

1417872_at 1.544 Sprouty homolog 1

1428164_at 1.531 nudix type motif 9

1415874_at 1.525 period homolog 1

1420834_at 1.522 vesicle-associated membrane protein
2

1455768_at 1.516 Niemann pick type C2

1437865_at 1.507 spermatogenesis associated 13

1455158_at 1.504 Integrin alpha 3 *

1427038_at 1.501 preproenkephalin 1

1421037_at 1.5 neuronal PAS domain protein 2

1421921_at 1.498 Cysteine protease inhibitor
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Table 3.2B Genes significantly down-regulated by 1.5-fold or more with Dex treatment
Affymetrix
ID

Fold
Change

Gene Name Assoc. with Bone
Growth/Remodelling

Assoc. with
GCs

1418174_at 2.681 D site albumin promoter binding
protein

1423607_at 2.232 lumican *

1451191_at 1.984 cellular retinoic acid binding protein
II

1423294_at 1.923 CPG2_Human coatomer gamma 2
subunit

1449855_s_at 1.887 ubiquitin thiolesterase

1449486_at 1.876 carboxylesterase 1

1448201_at 1.718 sectreted frizzled-related sequence
protein 2

*

1450243_a_at 1.692 down syndrome critical region gene 1

1428950_s_at 1.664 nucleolar protein 8

1454888_at 1.639 prefoldin 4

1425357_a_at 1.618 cysteine knot superfamily1

1450756_s_at 1.61 cullin 3

1425806_a_at 1.546 SRB7

1417394_at 1.531 Kruppel-like factor 4 (gut)

1431056_a_at 1.529 lipoprotein lipase

1436993_x_at 1.524 four and a half LIM domains1

1437401_at 1.506 IGF-1 * *

3.5.2 Identification of Trends in Gene Expression

The enrichment score tells users how important a specific gene annotation is in terms

of the results obtained from an individual microarray, and therefore, higher

enrichment scores mean that particular gene annotations are biologically more in

mportant. The enrichment score of a gene group is determined from the minus log

transformation on the geometric mean of p-values from the annotation terms

associating with one or more of the gene group members. Of 79 genes up-regulated

in the presence of Dex, 23% were involved in extracellular signalling (Table 3.2A;

Figure 3.3A), and a relatively high enrichment score of 5.1 displayed that extracellular

matrix proteins are important following GC exposure in chondrocytes

Unsurprisingly, 5% of genes were associated with bone formation and remodelling.

An enrichment score of 2.4 confirmed that these genes played an important role in the

cell’s response to GCs. 7% of genes had links with cell-matrix communication
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(enrichment score = 2.4), and 5% of genes were associated with cell motility and

adhesion. A number of genes involved in differentiation (12%) and proliferation

(5.5%) were also up-regulated (enrichment scores: 1.9 and 1.4, respectively), as were

genes associated with ion binding (13%; 1.2 enrichment) and membrane proteins

(13%; 1.1 enrichment). Interestingly, a number of genes involved in apoptosis were

also up-regulated (6.8%, 1.1 enrichment) (Figure 3.3A). As a smaller number of

genes were down-regulated with Dex treatment, only 4 gene ontologies were

associated with the gene list produced. Again, extracellular signalling was the most

important ontology after Dex treatment, with 24% of down-regulated genes having

some extracellular signalling association (enrichment score: 1.3) (Figure 3.3B; Table

3.2B). Interestingly, 24% of down-regulated genes had some known enzyme actions

(enrichment score = 1.1), and genes associated with cell metabolism were also

important (34%, enrichment score: 0.7). A number of genes involved in the

development process were also down-regulated (17%), although this ontology was the

least important (enrichment score: 0.25).
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Figure 3.3 Functional Annotation of up-regulated (A) and downregulated (B)
genes in ATDC5 cells following Dex treatment. In both groups, extracellular
signalling seems to be the most important gene ontology following Dex treatment.
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Table 3.3A Functional Annotation clustering and enrichment scores for the gene ontology
of genes significantly up-regulated with Dex treatment

Gene Ontology Enrichment Affymetrix ID Gene Name

Extracellular signalling 5.1 1443745_s_at dentin matrix protein 1

1450678_at integrin beta 2

1435254_at plexin b1

1451939_a_at sushi-repeat-containing protein

1423274_at dead/h (asp-glu-ala-asp/his) box polypeptide 26

1427747_a_at lipocalin 2

1448321_at sparc related modular calcium binding 1

1422620_s_at hydrogen peroxide inducible protein 53

1417936_at chemokine (c-c motif) ligand 9

1455768_at niemann pick type c2

1424051_at procollagen, type iv, alpha 2

1430388_a_at sulfatase 2

1418269_at lysyl oxidase-like 3

1448881_at haptoglobin

1455158_at integrin alpha 3

1450826_a_at serum amyloid a 3

1425894_at mas-related gpr, member f

1427038_at preproenkephalin 1

1449254_at osteopontin

1456312_x_at gelsolin

1426195_a_at cystatin c

1454849_x_at clusterin

1438953_at c-fos induced growth factor

1448489_at platelet-activating factor acetylhydrolase 2

1452296_at slit homolog 3 (drosophila)

1416953_at connective tissue growth factor

1426947_x_at procollagen, type vi, alpha 2

1435943_at dipeptidase 1 (renal)

1418187_at receptor calcitonin activity modifying protein 2

1452141_a_at selenoprotein p, plasma, 1

1441926_x_at transmembrane inner ear

Bone formation 2.4 1443745_s_at dentin matrix protein 1

1450678_at integrin beta 2

1448321_at sparc related modular calcium binding 1

1449254_at osteopontin

1416953_at connective tissue growth factor

1424051_at procollagen, type iv, alpha 2

1440235_at integrin, alpha 10

1426947_x_at procollagen, type vi, alpha 2

1428471_at sorbin and sh3 domain containing 1

1438953_at c-fos induced growth factor

1455158_at integrin alpha 3

Cell/ECMcommunication 2.4 1443745_s_at dentin matrix protein 1

1449254_at osteopontin

1452296_at slit homolog 3 (drosophila)

1416953_at connective tissue growth factor

1452141_a_at selenoprotein p, plasma, 1

1438953_at c-fos induced growth factor

1441926_x_at transmembrane inner ear

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9267
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=23787
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=146815
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=3293
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=145153
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=16296
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27108
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=147429
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37134
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=15321
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37654
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=4568
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=19553
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=45488
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=145385
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=3886
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=24673
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=21209
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27689
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=5389
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=147264
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=19348
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=15718
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=4648
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37777
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=39812
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27192
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=145817
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37681
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=3693
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=10901
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9267
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=23787
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27108
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27689
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=39812
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37654
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37497
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27192
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27397
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=15718
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=145385
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9267
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27689
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37777
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=39812
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=3693
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=15718
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=10901
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Table 3.3A continued
Gene Ontology Enrichment Affymetrix ID Gene Name

Cell motility and
adhesion

2.1 1450678_at integrin beta 2

1452296_at slit homolog 3 (drosophila)

1449254_at secreted phosphoprotein 1

1416953_at connective tissue growth factor

1424051_at procollagen, type iv, alpha 2

1440235_at integrin, alpha 10

1426947_x_at procollagen, type vi, alpha 2

Proliferation 1.4 1451596_a_at sphingosine kinase 1

1450678_at integrin beta 2

1435254_at plexin b1

1422620_s_at hydrogen peroxide inducible protein 53

1449254_at secreted phosphoprotein 1

1419874_x_at, zinc finger and btb domain containing 16

1438953_at c-fos induced growth factor

1449731_s_at nuclear factor of kappa light chain gene enhancer in
b-cells inhibitor, alpha

Differentiation 1.9 1460011_at cytochrome p450, family 26, subfamily b,
polypeptide 1

1443745_s_at dentin matrix protein 1

1450678_at integrin beta 2

1435254_at plexin b1

1449254_at secreted phosphoprotein 1

1419874_x_at, zinc finger and btb domain containing 16

1415874_at sprouty homolog 1 (drosophila)

1438953_at c-fos induced growth factor

1449731_s_at nuclear factor of kappa light chain gene enhancer in
b-cells inhibitor, alpha

1451596_a_at sphingosine kinase 1

1416825_at syntrophin, acidic 1

1452296_at slit homolog 3 (drosophila)

1416953_at connective tissue growth factor

1417872_at four and a half lim domains 1

1454675_at thyroid hormone receptor alpha

1452141_a_at selenoprotein p, plasma, 1

1455158_at integrin alpha 3

1441926_x_at transmembrane inner ear

Ion binding 1.2 1460011_at cytochrome p450, family 26, subfamily b,
polypeptide 1

1416383_a_at pyruvate carboxylase

1448842_at cysteine dioxygenase 1, cytosolic

1419874_x_at, zinc finger and btb domain containing 16

1456312_x_at gelsolin

1423274_at dead/h (asp-glu-ala-asp/his) box polypeptide 26

1424671_at pleckstrin homology domain containing, family f
(with fyve domain) member 1

1451596_a_at sphingosine kinase 1

1448321_at sparc related modular calcium binding 1

1452296_at slit homolog 3 (drosophila)

1416825_at syntrophin, acidic 1

1428164_at nudix (nucleoside diphosphate linked moiety x)-
type motif 9

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=23787
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37777
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27689
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=39812
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37654
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37497
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27192
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=11179
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=23787
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=146815
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=147429
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27689
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=149025
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=15718
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144696
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144696
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9519
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9519
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9267
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=23787
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=146815
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27689
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=149025
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=148630
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=15718
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144696
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144696
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=11179
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37545
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37777
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=39812
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=8239
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27605
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=3693
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=145385
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=10901
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9519
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9519
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=6145
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=20393
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=149025
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=5389
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=145153
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=45252
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=45252
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=11179
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27108
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37777
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37545
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=19287
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Table 3.3A continued
Gene Ontology Enrichment Affymetrix ID Gene Name

Ion binding (cont.) 1.2 1417507_at cytochrome b-561

1435943_at dipeptidase 1 (renal)

1418269_at lysyl oxidase-like 3

1417872_at four and a half lim domains 1

1422557_s_at metallothionein 1

1428942_at metallothionein 2

1450678_at integrin beta 2

Membrane protiens 1.1 1425894_at mas-related gpr, member f

1435254_at plexin b1

1449254_at secreted phosphoprotein 1

1419874_x_at zinc finger and btb domain containing 16

1456312_x_at gelsolin

1455078_at slingshot homolog 2 (drosophila)

1437820_at forkhead-like 18 (drosophila)

1440235_at integrin, alpha 10

1448489_at platelet-activating factor acetylhydrolase 2

1422620_s_at hydrogen peroxide inducible protein 53

1416953_at connective tissue growth factor

1424051_at procollagen, type iv, alpha 2

1426947_x_at procollagen, type vi, alpha 2

1418187_at receptor (calcitonin) activity modifying protein 2

1418269_at lysyl oxidase-like 3

1428471_at sorbin and sh3 domain containing 1

1454675_at thyroid hormone receptor alpha

1418091_at transcription factor CP2-like 1

1455158_at integrin alpha 3

1451596_a_at sphingosine kinase 1

Apoptosis 1.1 1435254_at plexin b1

1422620_s_at hydrogen peroxide inducible protein 53

1449254_at osteopontin

1419874_x_at, zinc finger and btb domain containing 16

1454849_x_at clusterin

1420772_a_at tsc22 domain family 3

1449731_s_at nuclear factor of kappa light chain gene enhancer
in b-cells inhibitor, alpha

1424671_at pleckstrin homology domain containing, family f
(with fyve domain) member 1

1416041_at serum/glucocorticoid regulated kinase

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=34449
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=145817
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=19553
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=8239
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144033
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=23787
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=24673
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=146815
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27689
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=149025
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=5389
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=39604
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27578
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37497
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=4648
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=147429
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=39812
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37654
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27192
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37681
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=19553
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27397
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27605
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=145385
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=11179
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=146815
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=147429
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27689
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=149025
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=19348
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=27494
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144696
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144696
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=45252
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=45252
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=4122
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Table 3.3B Functional Annotation clustering and enrichment scores for the gene ontology of
genes significantly down-regulated with Dex treatment

Gene Ontology Enrichment Affymetrix ID Gene Name

Extracellular signalling 1.3 1423607_at lumican

1437401_at insulin-like growth factor 1

1431056_a_at lipoprotein lipase

1423294_at mesoderm specific transcript

1449486_at carboxylesterase 1

1448201_at secreted frizzled-related sequence protein 2
1425357_a_at gremlin 1

Enzyme action 1.1 1436993_x_at profilin 2

1425806_a_at suppressor of RNA polymerase B

1431056_a_at lipoprotein lipase

1423294_at mesoderm specific transcript

1449486_at carboxylesterase 1

1449855_s_at ubiquitin thioloesterase

Cell metabolism 0.7 1454888_at prefoldin 4

1431056_a_at lipoprotein lipase

1425806_a_at suppressor of RNA polymerase B

1451191_at cellular retinoic acid binding protein ii

1423294_at mesoderm specific transcript

1450756_s_at cullin 3

1417394_at kruppel-like factor 4 (gut)

1418174_at d site albumin promoter binding protein

1449855_s_at ubiquitin thioloesterase

Development 0.25 1437401_at insulin-like growth factor 1

1450243_a_at down syndrome critical region gene 1-like 1

1451191_at cellular retinoic acid binding protein ii

1448201_at secreted frizzled-related sequence protein 2

1425357_a_at gremlin 1

3.5.3 Validation of Microarray Expression Data

From a list of 96 genes, a short-list of 8 genes were chosen for further analysis. The

choice of candidates from the short-list that were initially prioritised for future study

were based on reviews of function, likely relationship to GC action and association

with chondrocytes and bone growth (Figure 3.4). Lipocalin 2 was chosen for the

exceptionally large fold change (14-fold) compared to other genes, and for the fact

that it has previously been shown to be expressed in chondrocytes (Ulivi et al., 2006).

Serum GC-regulated kinase (SGCK) was chosen as it is known to be an important

signalling molecule in growth factor and insulin dependent signalling pathways, and

has previously been shown to be up-regulated in osteoblasts in response to Dex

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=143993
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144284
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144445
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=28393
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144720
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=116916
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=148119
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=14920
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144445
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=28393
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144720
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=149145
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144445
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=14840
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=28393
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=16611
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=9018
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=14025
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=144284
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=37493
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=14840
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=116916
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=148119
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(Leclerc et al., 2002). Connective tissue growth factor (CTGF), Lumican, Integrin

α10, and dentin matrix protein 1 (DMP-1) were chosen for their links with growth

plate chondrogenesis, and IGF-I and secreted frizzled-related protein (SFRP) are both

important signalling molecules at the level of the growth plate and in GC actions.

Figure 3.4 GC-responsive chondrocyte genes as determined by Affymetrix microarray
analysis. A short list of 8 genes were chosen for further analysis based on reviews of
function, likely relationship to GC action and association with chondrocytes and bone
growth.

To validate microarray data using independent methods, the genes were analysed for

changes in expression with qPCR. Gene expression patterns for Lipocalin 2, SGCK,

CTGF, IGF-I, Integrin α10, and DMP-1 all mirrored expression patterns observed in

the microarray, with significant fold changes of 42-fold, 2.5-fold, 4.2-fold, -6.5-fold,

4.2-fold and 4.8-fold, respectively (p<0.01) (Figure 3.5). Interestingly, the fold

changes obtained for qPCR analysis were notably higher than those obtained in the

microarray. The expression of Lumican and SFRP were not changed when analysed

by qPCR.
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Figure 3.5 Validation of microarray results with qPCR analysis. Gene expression
patterns for lipocalin 2, SGCK, CTGF, IGF-I, Integrin α10, and DMP-1 all mirrored
expression patterns observed in the microarray, although the fold-changes in
expression were notably larger with qPCR analysis. All data are expressed as mean 
SEM (n=3 replicates each run in triplicate; ***p<0.001 vs. control samples; **p<0.01
vs. control samples; N/Snot significant.

3.6 Discussion

Glucocorticoids are the most effective anti-inflammatory agents known. However, in

children, their long-term use leads to growth retardation through a combination of

systemic effects through the GH/IGF axis, and direct effects on the growth plate

(Baron et al., 1992; Ahmed and Mushtaq, 2002). The exact mechanisms by which

GCs exert their effects at the growth plate are still unclear, but may be related to a

reduction in chondrocyte proliferation combined with an increase in apoptosis, in

addition to alterations in IGF-I signalling mechanisms (Mushtaq et al., 2004, Chrysis

et al., 2005). Murine in vivo studies have demonstrated that after one week of Dex

treatment, the total width of the growth plate in 3-week-old mice is significantly

decreased due to a decrease in the width of the proliferative zone (Smink et al., 2003;

Owen et al., unpublished). In addition the murine chondrogenic ATDC5 cell line has
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previously been used to show that, in vitro, Dex causes a significant reduction

chondrocyte proliferation and an increase in ALP activity, a known marker of

terminally differentiating chondrocytes (Mushtaq et al., 2002; Owen et al., 2007).

This study provides an extensive profile of the alterations in gene expression that

occur in GC-treated chondrocytes. While some of the disclosed genes have

previously been described as GC-responsive in chondrocytes (IGF-I, SGCK, CTGF),

the response of many others, such as lipocalin 2, SFRP2 and DMP-1 are described

here for the first time.

Microarrays are a powerful method for the global analysis of gene or protein content

and expression, however, due to the fact that the technology is so sensitive to change,

and the fact that such large data sets are produced, it is critical that all steps of the

process are accurately and consistently performed, to maximise the reliability and

significance of results. In addition, the experimental design must take into account

the biological question under study, and should include statistical input to permit the

required level of statistical significance to be obtained. Consequently, experiments

should be well controlled and replicated. In this study, two control replicates and two

Dex replicates were used to identify differentially expressed genes in Dex-treated

ATDC5 cells. Although increasing the replicate number or pooling samples may have

improved the statistical power of the results obtained, changes in gene expression

were confirmed by qPCR, suggesting that the results did not contain a large number of

false positives. However, there is a possiblilty that some interesting genes were

overlooked due to the occurrence of false negatives.
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In any gene expression analysis, technological problems and biological variation can

make it difficult to distinguish signal from noise (Vingron et al., 2001). A major

caveat of microarray analysis is the generation of large data sets, and the

quantification of expression levels observed for any given chip (Barash et al., 2004).

There are large variations in PM and MM intensities for a probe set (2.8.1), and the

MM is an extremely complex measure of unspecific hybridisation. In addition,

GeneChips can display expression level independent effects at the probe level.

Therefore, it is important that expression levels are scaled before comparing

expression data between GeneChips and between probes on the same chip. Selecting

the correct normalisation algorithm is critical in obtaining robust data, however,

unfortunately, a consensus has yet to be reached regarding the selection of optimal

normalisation algorithms, and there are many different normalisation algorithms

available. The RMA algorithm (2.8.2) is commonly used to normalise Affymetrix

data, and uses the PM value only, ignoring the expression value obtained for the MM

probe. RMA normalisation is an effective method for normalising microarray data,

as, by ignoring the MM value, less ‘noise’ is produced, therefore reducing the chance

of false positives. In this study, data was normalised with the RMA algorithm using

the microarray data analysis programme GeneSpring, and was then filtered for

significant changes in expression of 1.5-fold or more. Higher stringency

normalisation and filtering reduces the frequency of false positives, but can also limit

the amount of meaningful data obtained. It is therefore important to establish a

balance between excluding biologically meaningful data by using restrictive analysis

criteria and using permissive parameters, which could also reduce the biological value

of the data by increasing the number of artefacts. Consequently, although a two-

sample t-test was carried out to determine significant changes in gene expression
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compared to baseline values in this study, both the cross-gene error model and

multiple testing corrections were considered too stringent and were not used.

From this analysis, a list of 76 up-regulated and 19 down-regulated genes were then

annotated and clustered according to function. Traditional microarray analysis

methods are useful for the identification of probe sets exhibiting transcriptional

responses to Dex-treatment, but are limited in certain capacities. Alternate statistical

methods such as student’s t-tests produce transcript lists that, while effectively

reducing the dimensionality or sample size of the data set, can increase the rate of

false negatives. In addition, Gene Ontology annotations alone are not always

sufficiently robust to detect differences in the representation of specific molecular

categories. Accordingly, it can be difficult to grasp a clear concept of the central

pathways and biological categories affected by Dex treatment. Functional annotation

clustering is an algorithm that is designed to effectively evaluate the effect of a

specific experimental condition on known biological pathways and functional

categories. These analyses show whether a given treatment (e.g. Dex stimulation)

results in enrichment of genes sets involved in the regulation of a specific phenotype.

Enriched gene sets were identified for both up- and down-regulated transcripts.

The highest correlation for both the up- and down-regulated Dex phenotype was

extracellular signalling, which contained 32 and 7 genes, respectively. Interestingly, a

recent paper studying the effect of irradiation on the expression of genes within the

growth plate has also found that extracellular signalling genes are up-regulated in both

the proliferative and hypertrophic zones following irradiation (Zhang et al., 2007).

The authors hypothesise that this is due to the premature terminal differentiation of
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proliferating chondrocytes following irradiation, and results in increased matrix

production. The theory that GCs cause premature differentiation of chondrocytes has

previously been postulated (Mushtaq et al., 2002), and would explain the reduction in

proliferation and increase in alkaline phosphatase activity commonly observed in GC-

treated chondrocytes (Mushtaq et al., 2002; Owen et al., 2007). The finding that a

large number of up-regulated genes were also associated with differentiation also

supports this hypothesis. Not surprisingly, genes involved in bone formation and

remodelling were important in the response to Dex-treatment, and a large number of

genes involved in apoptosis were also up-regulated. A number of previous studies

have shown that GCs increase chondrocyte apoptosis in vitro and in vivo, although

this response seems to vary between cell types. In the HCS2-8 cell line, Dex

increased apoptosis partly by suppression of the Akt-(PI3K) signalling pathway

(Chrysis et al., 2004), and in ATDC5 cells in the terminally differentiated phenotype,

Dex increased apoptosis, although no increases were observed during the proliferative

phase (Mushtaq et al., 2002). In pre-pubertal mice treated daily with Dex for 7 days,

TUNEL staining displayed a significant increase in apoptotic hypertrophic

chondrocytes (Smink et al., 2003). Although functional annotation clustering is a

useful method for extracting meaningful data from microarrays, it does have some

limitations. The enrichment score obtained in functional annotation clustering is a

measure of the importance of a particular annotation term within a gene group,

however, due to the complexity of biological systems, this score is only a guideline

and should be used in combination with the expected biology for the samples in

question.
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Following data analysis, a short-list of 8 genes were chosen for further study based on

links with bone tissue or GC action. The Wnt-antagonist SFRP-2, the proteoglycan

Lumican, and IGF-I were all down-regulated by Dex, although only IGF-I was

confirmed as being down-regulated after qPCR analysis. Variations in results

between microarray and qPCR analysis have been widely reported and is caused by a

number of factors including the microarray normalisation technique used,

measurement of spot intensity in the microarray, and tissue preparation between

experiments (Morey et al., 2006). The IGF-I signalling system is one of the major

regulators of endochondral ossification, and previous studies have shown that GCs

reduce IGF-I mRNA in growth plate chondrocytes (Luo et al., 1989), and inhibit basal

and IGF-I induced DNA synthesis (Itagane et al., 1991). It has been suggested that

some skeletal effects of GCs may be mediated via decreased IGF-I expression, with

reduced expression of IGF-I, IGF-I receptor and growth hormone receptor in GC-

treated chondrocytes (Jux et al., 1998, Klaus et al., 2000). Interestingly however,

work at the Roslin Institute previously shown that IGF-I ameliorates Dex-induced

growth retardation in murine metatarsal cultures (Mushtaq et al., 2004), suggesting

that IGF-I may in fact have a protective role against GC in the growth plate.

Up-regulated genes included CTGF, integrin α10, lipocalin 2, SGCK, and DMP1.

CTGF is a secreted, extracellular matrix-associated protein that regulates diverse

cellular functions in different cell types, and is a critical growth factor for chondrocyte

proliferation and differentiation. Endogenous overexpression of CTGF in human

chondrocytic HCS-2/8 cells, achieved by using recombinant adenoviruses that

generated CTGF mRNA, resulted in enhanced cellular proliferation and expression of

aggrecan and type X collagen (Nakanishi et al., 2000). It also increased the
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proteoglycan synthesis and gene expressions of aggrecan and collagen type II, in

maturing HCS-2/8 cells. Furthermore, CTGF overexpression effectively stimulated

the gene expression of collagen type X, a marker of chondrocyte hypertrophy, in RGC

cells in over-confluent culture where the cells were in the prehypertrophic stage

(Nakanishi et al., 2000). Moreover, the CTGF overexpressing HCS-2/8 cells

stimulated ALP activity, a marker of calcification, and indeed induced matrix

calcification of HCS-2/8 cells in culture (Nishida et al., 2002). In another study,

during the healing of experimental bone fracture, CTGF was expressed in periosteal

cells and hypertrophic chondrocytes (Kanaan et al., 2006). These results indicate that

CTGF directly promotes the proliferation and differentiation of growth cartilage cells

toward endochondral ossification. Interestingly, in this study, CTGF expression was

increased with Dex, which is a known inhibitor of chondrocyte proliferation both in

vitro and in vivo, a finding which contradicts the hypothesis that CTGF is a promoter

of chondrocyte proliferation. However, CTGF has previously been shown to be

upregulated by Dex in both the chondrocytic HCS-2.8 cell line (Kubota et al., 2003),

and in primary chondrocytes (James et al., 2007), and interestingly, a recent study has

shown that CTGF is upregulated in growth plate chondrocytes undergoing recovery

following irradiation (Wang et al., 2007). This finding, along with the fact that both

Dex and irradiation cause an increase in the expression of other ECM components,

suggests that both treatments are working in a similar way to cause growth retardation

at the level of the growth plate.

Chondrocyte function crucially depends on the interaction of chondrocytes with the

surrounding ECM. These interactions are primarily mediated by members of the

integrin family of cell surface receptors. The up-regulation of integrin α10 suggests
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that these receptors in particular are important in the chondrocyte response to GCs.

Expression of integrin alpha10 is initiated at the beginning of chondrogenesis and

continues throughout cartilage development in adult cartilage (Wenke et al., 2006). It

has recently been shown that Integrin 10 null mice display growth retardation due to

increased apoptosis of growth plate chondrocytes (Bengtsson et al., 2005). The

finding that Dex induces Integrin 10 expression has previously been unreported, and

provides a novel target for investigation in GC-induced effects.

Closer examination of the genes contributing to the enrichment scores for the

extracellular signalling gene set revealed that DMP1 was the top ranking gene.

DMP1 belongs to the SIBLING family of matrix molecules and has been linked to

chondrocyte differentiation. A study analysing the skeletal phenotype of DMP(-/-)

mice found that their long bones were shorter and wider, with highly expanded

growth plates (Ye et al., 2005). This phenotype appeared to be due to increased cell

proliferation in the proliferating zone and reduced apoptosis in the hypertrophic zone.

Interestingly, a recent paper documenting an Affymetrix microarray of GC-treated

primary chondrocytes also found that DMP-1 was the top ranking gene when

analysing gene enrichment for extracellular signalling (James et al., 2007), suggesting

that DMP1 plays an important role in GC-induced growth retardation.

SGCK is a serine kinase that has a catalytic domain homologous to that of Akt, and

can be activated by PI3 Kinase, making it an important signalling molecule in growth

factor and insulin dependent signalling pathways. SGCK has been shown to play an

important role in the maintenance of cells within the cell cycle, by phosphorylating

and consequently inhibiting the activation of Foxo3a, a member of the Forkhead
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family of transcription factors (Brunet et al., 2001). Under normal circumstances,

Foxo3a targets the activation of the CDKI p27, causing cells to exit the cell cycle and

progress towards terminal differentiation and apoptosis. By inhibiting Foxo3a

activity, SGCK causes the cells to continue proliferating, indicating that SGCK is a

regulator of cell survival (Tessier et al., 2006). The role of SGCK as a stress response

protein has been widely reported. A variety of environmental stresses such as UV

irradiation, heat shock, oxidative stress, and hyper-osmotic stress induce SGCK

protein levels through the p38/MAPK pathway and SGCK phosphorylation through

the PI3K pathway in non-tumourigenic mammary epithelial cells (Leong et al., 2003).

SGCK has previously been shown to be upregulated in osteoblasts in response to Dex

(Leclerc et al., 2004), however, there have been no previous reports of SGCK

expression within the growth plate. The fact that SGCK expression is increased in

response to environmental and toxicological stresses, and inactivates proteins

involved in the exit from the cell cycle, suggests that SGCK may be acting as a

survival factor in response to Dex in this study.

From a list of 79 genes up-regulated following Dex treatment, lipocalin 2 expression

was increased by the greatest amount in this study (14-fold microarray response and

40-fold qPCR response). Lipocalin 2, also known as Neutrophil-associated gelatinase

lipocalin (NGAL), was originally identified as a 25kDa protein which binds to small

lipophillic substances such as bacteria-derived lipopolysaccharide (LPS), and is

thought to act as a modulator of inflammation. It has been shown to be expressed in

the liver, spleen, lung, muscle, heart and tibia of embryonic mice (Garay-Rojas et al.,

1996; Ulivi et al., 2006). Within the tibia of embryonic rats, the rat homologue of

lipocalin 2, neu-related lipocalin (NRL) is localised to the prehypertophic
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chondrocytes (Zerega et al., 2000). Differences in lipocalin 2 expression between

adult and foetal tissue have previously been described (Garay-Rojas et al., 1996) and,

as lipocalin 2 is known to induce the differentiation of mesenchymal cells to epithelial

cells (Yang et al., 2002), a role for lipocalin 2 in the control of cellular differentiation

has been proposed (Ulivi et al., 2006).

3.7 Conclusions

As previously mentioned, it has been hypothesised that Dex may cause growth

retardation by causing premature differentiation of proliferative chondrocytes within

the growth plate. This hypothesis is supported by the finding that Dex causes an

increase in the expression of ECM genes, such as CTGF and DMP1, and an increase

in ALP activity (Mushtaq et al., 2002; Owen et al., 2007). The fact that lipocalin 2 is

known to induce differentiation and reduce proliferation (Yang et al., 2002;

Devireddy et al., 2001) suggests that increased lipocalin 2 expression is a possible

mechanism for GC-induced growth retardation. The expression of lipocalin 2 in

response to Dex, and the effect of lipocalin 2 on chondrocyte dynamics requires

further study.
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4.1 Introduction

The mechanisms by which GCs exert control over chondrocyte dynamics are

presently unclear. It is likely that GCs affect a wide range of complex regulatory and

signalling networks involving cell-matrix and intercellular interactions to mediate

chondrocyte proliferation and differentiation. In Chapter 3, Affymetrix Microarray

gene expression profiling of ATDC5 cells was used to identify novel glucocorticoid-

responsive chondrocyte genes in an attempt to further our understanding of the

processes involved in GC-induced growth retardation. It was confirmed that CTGF,

Integrin 10, DMP-1, SGCK, and lipocalin 2 were upregulated by Dex in ATDC5

cells. One gene in particular, lipocalin 2, stood out due to the fact that it was up-

regulated by 40-fold in the presence of Dex, and was therefore selected for further

analysis.

Lipocalin 2 was originally identified as an acute phase protein released in the immune

response, and is a member of the lipocalin family of binding proteins. Members of

this family are typically small secreted proteins which are characterised by a range of

different molecular-recognition properties: their ability to bind small, principally

hydrophobic molecules (such as retinol); their binding to specific cell-surface

receptors and their formation of macromolecular complexes. The lipocalins are a large

and ever-expanding group of proteins exhibiting great structural and functional

diversity, both within and between species. Although they have, in the past, been

classified primarily as transport proteins, it is now clear that members of the lipocalin

family fulfil a variety of different functions (Table 4.1) These include roles in retinol

transport, olfaction, pheromone transport, immune responses and the enzymatic
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synthesis of prostaglandins. In addition the lipocalins have also been implicated in

the regulation of the immune response and the mediation of cell homoeostasis.

Table 4.1 Lipocalin protein family members and known functions

Name Abbreviation Common Names and
Acronyms

Known Functions References

Extracellular
fatty acid-
binding lipocalin

Ex-FABP Ch21, P20K, quiescence-
specific protein

Mediator of cell cycle
regulation

Bedard et al., 1989;
Flower 1994

Retinol-binding
protein

RBP serum retinol binding
protein

Sole retinol transporter in
plasma from liver to
peripheral tissues

Blomhoff et al.,
1990

β-Lactoglobulin Βlg BLG Major component of whey 
from milk, may be a carrier of
insoluble molecules from
mother to child

Said et al., 1989;
Hambling et al.,
1992

Glycodelin Glc pregnancy protein 14,
human pregnancy-
associated endometrial
protein, α2-globulin, α-
uterine protein

Major component of rat urine;
pheromone transporter

Roy et al., 1966;
Roy et al., 1983

Apoplipoprotein
D

apoD apocrine secretion
odour-binding protein
(ASOB2)

Cholesterol metabolism;
mediator of proliferation and
differentiation

Francone et al.,
1989; Lopez-
Boado et al., 1994

Epididymal
retinoic acid-
binding protein

E-RABP B/C protein, epididymal
secretory protein (ESP1),
lipocalin 5

Sperm maturation, epididymal
function

Ong et al., 2000;
Fouchecourt et al.,
2003

Odourant
binding protein

OBP frog Bowman's gland
protein

Odour molecule transporter Lee et al., 1987;
Cavaggionni et al.,
1987; Snyder et al.,
1988

Tear prealbumin TP protein migrating faster
than albumin, specific
tearalbumin, tear
lipocalin, lipocalin 1,
LCN1

Scavenger of hydrophobic
harmful molecules and
bacterial growth inhibitor;
present in tears

Fluckinger et al.,
2004

Probasin PB pM-40 Cell cycle regulation Matuo et al., 1984;
Spence et al., 1989

Prostaglandin D
synthase

PGDS β-trace Synthesises prostaglandin D2
(major neuromodulator) in the
brain

Urade et al., 1989;
Nagata et al., 1991

Neutrophil
gelatinase-
associated
lipocalin

NGAL SIP24, 24p3,
uterocalin, Neu-related
lipocalin, lipocalin 2

Acute phase protein released
in the immune response and
after partuition

Hraba-Renevey et
al., 1989; Meheus
et al., 1993; Lui et
al., 1995
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Despite common characteristics and common functions, the lipocalin family has been

defined largely on the basis of structure and sequence. In contrast with their low

conservation at the sequence level, analysis of available lipocalin crystal structures

shows that the overall folding pattern common to the lipocalins is highly conserved

(Figure 4.1). The lipocalin fold is a highly symmetrical all-β protein dominated by a

single eight-stranded antiparallel β-sheet closed back on itself to form a continuously

hydrogen-bonded β-barrel, which, in cross-section, has a flattened or elliptical shape

and encloses an internal ligand-binding site (Goetz et al., 2000). The eight β-strands

of the barrel are linked by a succession of loops. These seven loops, are all typical of

short β-hairpins, except loop L1 which is a large Ω loop which forms a lid folded back

to partially close the internal ligand-binding site found inside the closed barrel (Figure

4.2).

Figure 4.1 Crystal structure of the human homologue of lipocalin 2, neutrophil
gelatinase associated lipocalin (NGAL). The crystal structure of NGAL displays a
single eight-stranded continuously hydrogen-bonded antiparallel β-barrel, which
encloses an internal ligand-binding site. β-strands are shown as smoothly curving
arrows, and α-helices are shown as spiral ribbons. Fatty acid ligand molecules are
shown using a coloured all-atom representation. From Goetz et al., 2000
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Figure 4.2 Characteristic features of the lipocalin fold. An unwound view of the
lipocalin fold orthogonal to the axis of the barrel. The eight β-strands of the
antiparallel β-sheet are shown as arrows and labelled A-H. The N-terminal helix (N)
and C-terminal α-helix (labelled A1) are also marked. The hydrogen-bonded
connection of two strands is indicated by a pair of dotted lines between them.
Connecting loops are shown as solid lines and labelled L1-L7. The two ends of the β-
barrel are topologically distinct. One end has four β-hairpins (L1, L3, L5 and L7) and
is called the ‘open end’ as the internal ligand-binding site is located here. The other
has three β-hairpin loops (L2, L4 and L6). At this section, the N-terminal polypeptide
chain crosses the end of the barrel to close it, and is therefore termed the closed end of
the molecule. Adapted from Flower et al., 1996.
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Lipocalin 2 is a secreted glycoprotein that was identified and characterised in

quiescent Balb/c3T3 cells in the late 1980’s. Originally known as superinducible

protein 24 (SIP24), its expression can be induced by a number of factors including

serum, FGF, prostaglandin F2a, phorbol ester, and Dex. It is also a major secretory

protein of cultured mouse macrophages which have been stimulated with

lipopolysaccharide (LPS) (Meheus et al., 1993). Lipocalin 2 is the protein product

of the murine gene named 24p3, whose cDNA was originally cloned from mouse

kidney primary cell cultures (Hraba-Renevey et al., 1989). The role of Lipocalin 2 in

inflammation was further hypothesised when it was discovered that lipocalin 2 knock-

out mice had increased susceptibility to infection (Berger et al., 2006) and as lipocalin

2 is known to induce the differentiation of mesenchymal cells to epithelial cells (Yang

et al., 2002), a role for lipocalin in the control of cellular differentiation has also been

proposed (Ulivi et al., 2006).

The tissue expression of lipocalin 2 has been well documented, and it has been shown

to be expressed in the liver, spleen, lung, muscle, heart and tibia of embryonic mice

(Garay-Rojas et al., 1996; Ulivi et al., 2006). Within the tibia of embryonic rats, the

rat homologue of lipocalin 2, neu-related lipocalin (NRL), is localised to the

prehypertophic chondrocytes (Zerega et al., 2000), and in cultured MC615

chondrocytes, lipocalin 2 expression is detected in hypertrophic chondrocytes only

(Ulivi et al., 2006). Lipocalin 2 has previously been shown to be regulated by Dex in

a number of cell types (Garay-Rojas et al., 1996; Vizzardelli et al., 2006), however,

it’s stimulation in ATDC5 cells has not previously been reported, and may provide a

novel mechanism for GC-induced growth retardation in chondrocytes.



Chapter 4 Lipocalin 2 and GC-Induced Growth Retardation

130

4.2 Hypothesis

The hypothesis of this study was that the acute-phase binding protein lipocalin 2 could

mediate the effects of Dex on growth plate chondrocytes, therefore providing a

potential novel mechanism for GC-induced growth retardation.

.

4.3 Aims

I. Characterise lipocalin 2 expression in ATDC5 cells and primary

chondrocytes through timecourse and dose response experiments.

II. Confirm increases in lipocalin 2 expression are GR dependent and do not

involve the synthesis of other proteins.

III. Investigate the involvement of the p38 and NFκB signalling pathways in 

Dex-induced lipocalin 2 expression.

IV. Analyse the effect of lipocalin 2 over-expression on chondrocyte dynamics

through stable transfection of ATDC5 cells.
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4.4 Materials and Methods

4.4.1 Cell Culture

The ATDC5 chondrocyte cell line was maintained and differentiated as previously

described (Section 2.2.3) for 8 days, at which point Dex (final concentration 10-6M)

was added to the cells for the stated period. Control cells received vehicle only. Total

RNA was extracted from chondrocytes as previously described (2.5.2). The protein

synthesis blocker, cycloheximide (CHX; 8g/ml), and the GC-receptor antagonist

RU486 (10-5M) were added to ATDC5 cells to investigate the mechanisms involved

in Dex-induced lipocalin 2 expression, and the involvement of the p38/NFB pathway

was assessed using specific inhibitors of p38 (SB203580; 20M; Calbiochem, CA,

UAS) and NFB (TLCK; 0.5 - 50M (Sigma); SN50; 18μM, Calbiochem).

Recombinant lipocalin 2 was added to the cells at a range of concentrations (5-

20g/ml; R&D Systems, Abingdon, UK) to analyze the effect of lipocalin 2 on cell

proliferation.

4.4.2 QPCR

QPCR was used to confirm changes in the expression of selected genes. ATDC5 cells

at day 8 of culture were incubated with 10-6M Dex for 1h to 7-days and RNA

extracted as previously described (2.5.2). RNA samples or blanks (containing

nuclease-free water in place of RNA) were reverse transcribed in 20µl reactions with

200ng random hexamers and 200U Superscript II reverse transcriptase using the

Superscript preamplification protocol as previously described (2.5.4) (Invitrogen).

qPCR was performed using the Stratagene Mx3000P real-time QPCR system as

previously described (2.5.6) (Stratagene, California, USA). Primers were designed

using the software programe Primer3 (Whitehead Institute for Biomedical Research),
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and were made to span at least one intron to identify any amplification from

contaminating genomic DNA by semi-quantitive PCR (See Appendix 5). cDNA (10ng)

derived from each of 3 control and 3 Dex treated cultures at each time point was

amplified in triplicate using the Platinum SYBR Green qPCR SuperMix (Invitrogen,

Paisley, UK) under the following conditions: cDNA was denatured for 2 minutes at

95 oC, followed by 40 cycles consisting of 15 s at 95oC and 30 s at 60oC and 1 cycle

consisting of 1 min at 95oC and 30 s at 60 oC. Each reaction contained 10l cDNA,

25l Platinum SYBR Green qPCR Super-Mix, 1l ROX Reference Dye, and 250nM

primer in a total volume of 50l. A dilution series of both gene of interest and external

control (GAPDH) were carried out and subjected to an identical PCR to allow estimation

of PCR efficiency, and fold changes normalised for the expression of GAPDH, were

calculated using the comparative method (Livak et al., 2001).

4.4.3 p38 MAP Kinase Assay

The nonradioactive p38 MAPK assay (Cell Signalling Technology, Boston, USA)

was used to determine the level of active p38 in SB203580 treated ATDC5 cells

according to the manufacturer’s instructions. Briefly, treated cells were lysed and p38

MAPK was immunoprecipitated from the lysate using beads coated with phospho-p38

MAPK (Thr-180/Tyr-182) monoclonal antibody overnight at 4oC with constant

agitation. After washing in the lysis buffer and kinase buffer provided, the

immunoprecipitated p38 MAPK was incubated for 30min at 30 oC in kinase buffer

containing 200M ATP and 2g of GST-ATF-2 fusion protein as substrate. The

reaction was terminated by adding 2x Laemmli buffer and heating the samples to

95oC for 5min. The samples were separated on a 4-12% SDS-PAGE gel and
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immunoblotted for phosphorylated ATF-2 and total p38 MAPK (Cell Signalling

Technology).

4.4.4 Western Blotting

Cells were lysed in RIPA buffer as previously described and amount of protein

quantified using the Bradford assay as previously described (2.7.1). Protein lysates

(15g) were loaded onto 10% Bis-Tris Gels, fractionated and electroblotted onto

nitrocellulose membranes (2.7.2). After blocking with 5% non-fat milk powder and

0.1% Tween, the membranes were incubated overnight with Anti-Lipocalin 2 primary

antibody (1:500; R&D Systems) at 4oC, washed and incubated at room temperature

for 1h with rabbit anti-goat peroxidase labelled secondary antibody (1:2000; DAKO,

Cambridge, UK). Beta-actin expression was also measured as a loading control (anti

beta-actin clone AC15; Sigma A5441; 1:5000) on membranes stripped with Stripping

Reagent (Pierce, IL, USA) for 1.5h at RT. The immune complexes were then

visualised by enhanced chemiluminescence (ECL) (GE Healthcare, Buckinghamshire,

UK) (2.7.3).

4.4.5 Histological Analysis of Lipocalin 2 Expression in the Growth Plate

Tibiae were dissected from 10-day-old and 5-week-old saline and Dex treated mice

(5mg/kg Dex daily for 7 days), that had been euthanised by cervical dislocation.

Metatarsals were dissected from 17-day-old normal foetal mice euthanised by cervical

dislocation. The tissues were then processed as previously described (2.4.1), and

sections cut at 6μm. For histological analysis, sections were dewaxed and demasked

for 30min in 10mM citrate buffer, and immunohistochemistry carried out (2.4.3) with

an overnight incubation at 4oC of 2μg/ml goat anti-lipocalin 2 (R & D systems)
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followed by rabbit anti-goat IgG peroxidase (1:100 dilution; DAKO) for 60 min.

Specific background staining was inhibited by incubating control sections with

0.2mg/ml Goat IgG (concentration if IgG content in primary antibody) in place of

goat anti-lipocalin 2 under the same conditions. Ideally, specific background staining

should also be blocked by the adsorption of a primary antibody with the purified

antigen prior to use, however, at this time, no purified lipocalin 2 antigen was

available. Another useful negative control in this study would have been growth

plates from lipocalin 2 null mice, however, again, these mice were not readily

available and so could not be used.

4.4.6 Isolation of Primary Murine Chondrocytes

Primary cultures of chondrocytes from rib growth plates of 1-day-old mice were

prepared using the isolation procedure and culture system developed by Lefebvre et

al. (1994), as detailed in section 2.2.2. Chondrocytes were seeded in 6-well plates at a

density of 100,000 cells per well in DMEM with antibiotics, ascorbic acid, and 10%

FBS, and were grown for 24h, at which point Dex was added (10-6M; 6h, 24h, or 72h

incubation).

4.4.7 Production of a Lipocalin 2 Expression Construct

Lipocalin 2 cDNA (see Appendix 3 for sequence details) was first ligated into the

pGEM-T Easy vector (Promega, WI, USA) for cloning as detailed in sections 2.6.5-

2.6.12, inclusive (see Appendix 2 for vector details). The digested pGEM-Lipocalin 2

clone was run on a 1.5% agarose gel, and the lipocalin 2 fragment purified using the

Qiagen QiaQuick gel extraction kit as outlined in 2.6.7. Amplified lipocalin 2 cDNA

was then inserted into the EcoRI site of the pWGB10 overexpression vector
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(Appendix 2) as described in sections 2.6.5 – 2.6.12 (a kind gift from Dr. Wei Cui,

Imperial College, London). pWGB10 contains a phosphoglycerate kinase (PGK)

promoter, which drives recombinant protein expression, and a simian virus 40 (SV40)

small t intro/polyA, and SV40/Puromycin to allow cell selection. To stop re-

circularisation of the empty vector, the pWGB10 plasmid was first dephosphorylated

with shrimp alkaline phosphatase (SAP) in a reaction containing 100ng vector DNA,

2 units SAP (Roche), and 1x reaction buffer for 10mins at 37oC. This was then heat

killed at 70oC for 15mins. Following lipocalin 2 ligation into the linearised pWGB10

vector, the ligation reaction was used to transform SURE2 competent cells as

described in 2.6.9. Liquid cultures and plasmid minipreparations of individual clones

were subsequently carried out (2.6.10 and 2.6.11, respectively). The clones were then

analysed by multiple restriction digestions with enzymes EcoRI, NcoI and PstI to

assess insert orientation. A clone containing the insert in the correct orientation (in

respoect to the PGK promoter) was then purified as detailed in 2.6.12.

4.4.8 Generation of ATDC5 Stable Transfections

1g of pWGB10/Lipocalin2 was transfected into 80% confluent ATDC5 cells using

FuGene6 according to the manufacturer’s instructions (Roche Diagnostics, Basel,

Switzerland). Control cell lines were generated using the same procedure after

transfection of an empty pWGB10 vector. After 48 hours, cells were selected in

media containing 2g/ml puromycin, and after 2 weeks, when no sign of cellular

death was evident, clones were isolated and lipocalin 2 expression evaluated by PCR

and Western blotting (2.5.4 and 2.7.3).
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4.4.9 Effect of Lipocalin 2 Overexpression on Chondrocyte Proliferation and

Differentiation

To understand more fully the functional effects of lipocalin 2 overexpression on

chondrocyte function, chondrocyte proliferation ([3H]thymidine uptake) and

chondrocyte differentiation (Coll X expression) was assessed as previously described

(2.9.1 and 2.5.5, respectively) . Additional experiments determined if the response of

ATDC5 cells to Dex treatment (10-6M for 48h) was modified in the presence of

lipocalin 2 overexpression.

4.4.9 Statistical Analysis

Analysis of variance (ANOVA) was performed to determine the significance of a

given result. General Linear Model analysis incorporating pair-wise comparisons

using Tukeys test was used to compare groups within the ANOVA models. All data

are expressed as the mean +/- SEM. Statistical analysis was performed using Minitab

14. Statistical significance was accepted at p<0.05.

4.5 Results

4.5.1 Characterisation of Dex-induced Lipocalin 2 Expression in Chondrocytes

The temporal effect of 10-6M Dex on lipocalin 2 expression was studied, and although

no effect was seen at 1h, Dex significantly (p<0.001) increased lipocalin 2 expression

at all other time points studied (6-168h), with an apparent plateau at 48h (75-fold)

(Figure 4.3; Ct values in Table 4.2). Consequently, 48h Dex incubation was used for

all future ATDC5 experiments. Dex-induced lipocalin 2 expression in ATDC5 cells

was also found to be concentration-dependent (Figure 4.4A-C). At 10-6M Dex,

lipocalin 2 expression was 71-fold higher than control samples. This response was



Chapter 4 Lipocalin 2 and GC-Induced Growth Retardation

137

reduced to 44-fold and 13-fold at 10-7 and 10-8 Dex, respectively (p<0.001), whereas

no response was observed with 10-9M Dex (Ct values in Table 4.3) Western blotting

confirmed that 10-6M Dex increased lipocalin 2 protein expression at 48h in ATDC5

cells (Figure 4.5). Primary chondrocytes also expressed lipocalin 2 and this expression

was increased with 10-6M Dex treatment (3-fold at 6h, P<0.001), and this increased

expression was maintained for up to 72h (Figure 4.3C). Taken together, the results

indicate that Dex regulates chondrocyte lipocalin 2 expression at both the mRNA and

protein level and that the regulation of gene expression is both time and concentration

dependent.
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Table 4.2 Ct values and corresponding fold change in expression of Lipocalin 2
following exposure to 10-6M Dex for varying timecourses
Sample Lipocalin 2 Ct GAPDH Ct Change in Ct 2

change in Ct
Fold
Change

Control 1h 33.47 15.2 -18.27 3.16E-06
Dex 1h 32.1 14.9 -17.2 6.64E-06 2.1 ± 0.24

Control 6h 32.29 15.34 -16.95 7.90E-06
Dex 6h 26.85 15.29 -11.56 3.31E-04 41.8 ± 1.45

Control 24h 32.12 15.06 -17.06 7.32E-06
Dex 24h 26.25 14.55 -11.7 3.01E-04 41.1 ± 1.67

Control 48h 32,19 14.62 -17.57 5.14E-06
Dex 48h 26.58 15.24 -11.34 3.86E-04 75.1 ± 3.1

Control 96h 31.41 15.01 -16.4 1.16E-05
Dex 96h 25.5 15.46 -10.04 9.50E-04 81.9 ± 2.7

Control 168h 29.33 16.19 -13.14 1.11E-04
Dex 168h 24.2 17.19 -7.01 7.76E-03 69.9 ± 1.78

Figure 4.3 Lipocalin 2 Expression following Dex exposure over time A) Lipocalin 2
amplification in ATDC5 cells treated with 10-6M Dex for 1-168h (1h control, blue circles,
Dex, purple open squares; 6h control, green triangles, Dex, grey diamonds; 24h control,
purple open squares, Dex, blue open diamonds; 48h control, red squares, Dex, orange inverted
triangles; 96h, control, blue crosses, Dex, red triangles; 168h control, green open triangles,
Dex, grey circles). C) GADPH amplification in ATDC5 cells treated with 10-6M Dex for 1-
168h. D) Fold change in lipocalin 2 expression with Dex (10-6M) over time (data are
expressed as mean  SEM). For all data, n=3 cell culture replicates run in triplicate.
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Table 4.3 Ct values and corresponding fold change in expression of Lipocalin 2
following exposure to varying concentrations of Dex for 48h.
Sample Lipocalin 2 Ct GAPDH Ct Change in Ct 2

change in Ct
Fold
Change

Control 32.38 16.61 -15.77 1.79E-05

Dex
-6

M 27.32 17.68 -9.64 1.25E-03 69.8 ± 5.5

Dex
-7

M 28.34 17.99 -10.35 7.66E-04 42.7 ± 6.7

Dex
-8

M 30.29 18.21 -12.08 2.31E-04 12.9 ± 1.27

Dex
-9

M 32.03 17.54 -14.49 4.35E-05 2.4 ± 0.25

Figure 4.4 Dose-responsive change in lipocalin 2 expression in ATDC5 cells with
Dex over 48h. A) Amplification of lipocalin 2 treated with 10-6M (red closed
squares), 10-7M (green closed triangles), 10-8M (grey diamonds) and 10-9M (blue
circles) Dex for 48h (controls = yellow asterisk). B) Amplification of GAPDH
following exposure to Dex (10-6M-10-9M) for 48h. C) Dose-responsive change in
lipocalin 2 expression following exposure to Dex (data are expressed as mean 
SEM). For all data, n=3 cell culture replicates run in triplicate.
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Figure 4.5 Lipocalin 2 Expression in Chondrocytes A) Primary murine
chondrocytes treated with 10-6M Dex for 6, 24 or 72h. B) Lipocalin 2 protein
expression in ATDC5 cells as analysed by Western blotting, after exposure to 10-6M
Dex for 48h.

4.5.2 Immunolocalisation of Lipocalin 2 Expression in the Murine Growth Plate

Immunohistochemistry revealed that in metatarsals from 17-day old foetal mice,

lipocalin 2 was poorly expressed in both the proliferating and mineralising

chondrocytes, situated on either side of the strongly positive staining

prehypertrophic/hypertrophic chondrocytes (Figure 4.6A). The pattern of lipocalin

distribution appeared to change in the post-natal growth plate. In the 10-day-old

epiphysis, greater lipocalin 2 expression was localised to the proliferating

chondrocytes (Figure 4.6B) and this was more clearly seen in the 5-week-old growth

plate where intense lipocalin 2 staining was observed in both the proliferating and

hypertrophic zones (Figure 4.6C). No obvious difference in lipocalin 2 localisation or

staining intensity was observed between the growth plates of 5-week-old Dex-treated

and control mice (data not shown). High levels of expression were also observed in

the articular chondrocytes, and within the hypertrophic chondrocytes of the

developing secondary ossification centre (Figure 4.6D) of the 10-day-old tibias. All

control sections incubated with pre-immune serum were negative (Figure 4.6E). The

immunolocalisation results clearly show that lipocalin 2 is expressed by murine
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growth plate chondrocytes and this confirms our qPCR data (Figure 4.5A). In the

epiphyses from older animals lipocalin 2 appears to be present in all growth plate

maturational zones whereas in the younger growth plates it is more restricted to the

maturing hypertrophic cells.

Figure 4.6 Lipocalin 2 localisation in the murine proximal tibia and metatarsal.
(A) In metatarsals from 17-day old foetal mice, lipocalin 2 is poorly expressed in the
proliferating and mineralising chondrocytes (arrowheads), however strong positive
staining is present in the prehypertrophic and hypertrophic chondrocytes (arrows)
(scale bar = 400m) . (B) In the 10-day-old lipocalin 2 expression is localised to the
proliferating chondrocytes and this can also be seen in the 5-week-old growth plate
(scale bar = 200m) (arrows) (C), where intense lipocalin 2 staining is present in both
the proliferating and hypertrophic zones (arrows). (D) Lipocalin is also present in the
chondrocytes of the developing secondary ossification centre (*) (scale bar = 200m).
(E) All control sections incubated with Goat IgG are negative.
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4.5.3 Mechanism of Dex-induced Lipocalin 2 Expression in Chondrocytes

Incubating ATDC5 cells with CHX did not block Dex-induced lipocalin expression

(Figure 4.7A), but instead caused a further significant increase in lipocalin 2

expression. RU486 caused lipocalin 2 expression to return to basal levels in the

presence of Dex (Figure 4.7B) (13-fold change in the presence of RU486 and Dex

compared to 39-fold change with Dex alone; p<0.01). As with most steroidal

competitive antagonists, RU486 exhibits partial agonist properties under certain

conditions (Leonhardt and Edwards, 2002), and this could explain the small 13-fold

increase in lipocalin 2 expression with RU486 alone (Figure 4.7B).

Figure 4.7 Involvement of the GR in GC-induced Lipocalin 2 expression in
ATDC5 cells. (A) Lipocalin 2 expression with Dex plus the protein synthesis blocker
CHX. ATDC5 cells were incubated with 10-6M Dex for 6h, with CHX (8g/ml)
added 30mins before the addition of Dex. (B) Lipocalin 2 expression with Dex plus
the GR antagonist, RU486. ATDC5 cells were incubated with 10-6M Dex plus
RU486 (10-5M) for 48h. All data are expressed as mean  SEM (n=3 cell culture
replicates run in triplicate; ***p<0.001 vs. control; p<0.05 vs. Dex).
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4.5.4 Involvement of the NFkB and p38 pathways in Dex-induced Lipocalin 2

Expression

The addition of SB203580 blocked p38 activity but did not block the increase in

lipocalin 2 expression observed with Dex (Figures 4.8A and 4.8B). However, TLCK

caused a concentration-dependent reduction in lipocalin 2 expression compared to

Dex alone (Figures 4.9A and 4.9B). Both 5 and 50M TLCK significantly reduced

Dex induced lipocalin 2 expression but only 50M TLCK brought lipocalin 2

expression back to non-induced levels (Figure 4.9B). It was next determined if TLCK

could, in part, inhibit the antiproliferative effects of Dex on ATDC5 proliferation

(Mushtaq et al 2002; Owen et al. 2007). Dex (10-6M) caused a significant reduction

(46.5%; p<0.001) which was partly reversed by co-incubation with 50M TLCK

(Figure 4.7C). Co-incubation, however, only increased proliferation by 20% (p<0.05)

compared to cells incubated with Dex alone, and this proliferation remained

significantly lower (p<0.001) lower than control cells. These data indicate that the

Dex effects on lipocalin 2 expression are not dependent on protein synthesis or p38

activity. The transcription factor, NFB, however appeared to mediate the Dex

effects on chondrocyte lipocalin 2 expression. To confirm that this was, in fact the

case, a specific peptide inhibitor for NFB, SN50, was also incubated in the presence

of Dex in ATDC5 cells. Interestingly, this inhibitor had no effect on Dex-induced

lipocalin 2 expression, suggesting that the inhibitory effects seen with TLCK were not

specific to NFB (Figure 4.9D).
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Figure 4.8 The p38 signalling pathway and GC-induced Lipocalin 2 expression.
(A) Lipocalin 2 expression with Dex (10-6M) and the p38 inhibitor SB203580
(20μM). ATDC5 cells were incubated with SB203580 for 2h, before the addition of
Dex for the remaining 48h. All data are expressed as mean  SEM (n=3 separate cell
culture replicates run in triplicate; ***p<0.001 vs. control. (B) p38 activity in
SB203580 treated ATDC5 cells. A kinase assay for p38 MAPK activity was carried
out using ATF-2 fusion protein as phosphorylation substrate. Total p38 protein was
determined by Western blotting.
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Figure 4.9 The NFkB signalling pathway and GC-induced Lipocalin 2
expression. The NFkB inhibitor TLCK (50μM) TLCK was incubated with ATDC5
cells for an initial period of 4h before the addition of Dex for another 48h. (B)
Lipocalin expression with varying concentrations of TLCK. ATDC5 cells were
incubated with 50, 5 or 0.5μM TLCK for 4h before the addition of 10-6M Dex for the
remaining 48h. (C) Proliferation of ATDC5 cells treated with TLCK (50μM) and/or
Dex (10-6M) for 48h. (D) Lipocalin 2 expression with Dex (10-6M) and the selective
NFB inhibitor SN50 (18μM). ATDC5 cells were incubated with SN50 for 2h,
before the addition of Dex for the remaining 48h. All data are expressed as mean 
SEM (n=3 separate cell culture replicates run in triplicate; ***p<0.001 vs. control;
p<0.05 vs. Dex, p<0.01 vs. TLCK).
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4.5.5 Functional Effects of Lipocalin 2 on ATDC5 Cell Dynamics

To identify the possible physiological effect of Dex-induced lipocalin 2 expression on

chondrocyte dynamics, in initial studies, the effects of both lipocalin 2 overexpression

(Figure 4.10A) and recombinant lipocalin 2 on ATDC5 proliferation was analysed.

Proliferation was significantly reduced (p<0.001) in overexpressing cells (Figure

4.10B) and those treated with recombinant lipocalin 2 (Figure 4.10C). The reduction

in proliferation by recombinant lipocalin 2 was modest (23.1% at 10g/ml) and

similar at all concentrations tested, whereas a more dramatic effect (49.1%) was noted

in the overexpressing cells. This difference is likely to be due to the unstable nature

of synthetic recombinant proteins, and therefore over-expressing cells were used for

further analysis.
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Figure 4.10 The effect of increased lipocalin 2 expression on chondrocyte
dynamics. (A) Lipocalin 2 over-expression in ATDC5 cells was confirmed by (I)
PCR of Lipocalin 2, puromycin resistance gene, and GAPDH; and (II) Western
blotting for lipocalin 2 and beta-actin loading control. (OE = Lipocalin over-
expressing; C = Control cells containing empty vector only). (B) Proliferation of
lipocalin 2 over-expressing cells as measured by [3H]-thymidine incorporation.
Transfected ATDC5 cells were incubated with or without 10-6M Dex for 24h. (n=3
cell culture replicates; ***p<0.001 vs. control; **p<0.01 vs. control; p<0.05 vs. Dex,
p<0.01 vs. Lipocalin). (C) ATDC5 proliferation as measured by [3H]thymidine
incorporation following 48h incubation with recombinant lipocalin 2 protein (5-
20g/ml; R&D systems) (n = 6 cell culture replicates; ***p<0.001 vs. control).

4.5.6 The Combined Effect of Lipocalin 2 and Dex on ATDC5 Cells

Lipocalin-2 overexpression caused an increase in collagen type-X expression (4-fold,

p<0.001; Figure 4.11A). The effects of lipocalin-2 overexpression on chondrocyte

proliferation (64% reduction vs. control cells, p<0.001) and collagen type-X
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expression (8-fold increase vs. control, p<0.001) were further amplified by the

addition of 10-6M Dex (Figures 4.11A and 4.11). This apparent synergistic effect of

Dex and lipocalin 2 on proliferation and collagen type X expression may be in

response to the further increase in lipocalin 2 expression (140-fold, p<0.001) noted in

the Dex treated overexpressing cells (Figure 4.11B).

Figure 4.11 The combined effect of lipocalin 2 and Dex on ATDC5 cells. (A)
Type X collagen expression in lipocalin 2 over-expressing ATDC5 cells incubated
with or without 10-6M Dex for 48h. (B) Effect of Dex on lipocalin 2 expression in
ATDC5 cells over-expressing lipocalin 2. Cells were incubated with 10-6M Dex for
48h, and lipocalin 2 expression was measured by qPCR (n=3-6 cell culture replicates
run in triplicate; ***p<0.001 vs. control; p<0.05 vs. Dex Empty; p<0.05 vs.
lipocalin only). All data are expressed as mean  SEM.
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4.6 Discussion

Lipocalin 2, also known as Neutrophil-associated gelatinase lipocalin (NGAL), was

originally identified as a 25kDa protein which binds to small lipophillic substances

such as bacteria-derived lipopolysaccharide (LPS). Since then, the known actions of

lipocalin 2 have sprialled, and lipocalin 2 has now been linked with a wide range of

different functions, including partuition, inflammation, differentiation, apoptosis and

acute phase immunity. Originally termed SIP24 (Superinducible-protein 24),

lipocalin 2 is known to be induced by a number of factors and conditions, such as

LPS, CHX, serum, FGF2, prostaglandin F2α, oxidative stress, partuition, and, of

course, Dex (Meheus et al., 1993; Lui et al., 1995).

In this study, it has been shown that lipocalin 2 expression is significantly increased

with Dex treatment in murine chondrogenic ATDC5 cells. This increased expression

was Dex-concentration dependent, and reached a plateau after 48h Dex. In primary

murine costochondral chondrocytes isolated from the rib cages of 2-day-old mice, an

increase in lipocalin 2 expression was also observed, and although significant, this

increase was smaller than seen in ATDC5 cells. ATDC5 cells were originally isolated

from a differentiating culture of AT805 teratocarcinoma cells, which display a

fibroblast-like phenotype until the addition of insulin, which promotes their

differentiation into chondrocytes (Atsumi et al., 1990). These cells are a useful model

for studying chondrogenesis due to the fact that their temporal sequence of maturation

directly mirrors the maturational phases within the growth plate. In addition, the cell

population differentiates collectively, so that all the cells are at the same stage of

differentiation at the same time. However, because of this, they cannot be compared

directly to primary costochondral chondrocytes, which are isolated as a population of
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chondrocytes at all stages of differentiation. The fact that ATDC5 cells and primary

costochondral chondrocytes comprise of 2 different phenotypes could explain the

differences in the magnitude of lipocalin 2 expression observed in this study.

The expression of lipocalin 2 in primary chondrocytes was supported by the finding

that lipocalin 2 was expressed in the metatarsals of embryonic mice. Lipocalin 2 has

previously shown to be expressed in the liver, spleen, lung, muscle, heart and tibia of

embryonic mice (Garay-Rojas et al., 1996; Ulivi et al., 2006), and within the tibia of

embryonic rats, the rat homologue of lipocalin 2 neu-related lipocalin (NRL) is

localised to the prehypertophic chondrocytes (Zerega et al., 2000), supporting the

findings of this study. It has previously been found that ALP has a similar pattern of

localisation within the growth plate (Maio and Scutt, 2002; Mushtaq et al., 2004),

suggesting that, like ALP, lipocalin 2 may be a marker for chondrocyte

differentiation. Interestingly, in 10-day-old and 5-week-old mice in this study, it has

been shown that lipocalin 2 is more prominent in the proliferative chondrocytes,

suggesting the localisation of lipocalin 2 expression within the growth plate is age-

dependent. Differences in lipocalin 2 expression between adult and foetal tissue have

previously been described, with a general decline in expression in conjunction with

ageing (Garay-Rojas et al., 1996). This, together with similarities in expression to

ALP, and previous studies showing the pro-differentiating effects of lipocalin 2 in

epithelial cells (Yang et al., 2002), further supports the hypothesis that lipocalin 2

may have a role in the regulation of chondrocyte differentiation. Interestingly, it has

been shown that lipocalin 2 knock-out mice have no skeletal defects, the only obvious

phenotype being an increased susceptibility to infection (Berger et al., 2006). To

date, there have been no studies documenting skeletal growth in these mice following
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Dex treatment, and, it is possible that growth retardation in these mice could be

reduced.

In an attempt to identifiy some of the mechanisms involved in Dex-induced lipocalin

2 expression, the GR antagonist RU486 was incubated alone or with Dex in ATDC5

cells. Results showed that, in the presence of RU486 alone, lipocalin 2 expression

was increased to some extent. RU486 is a competitive antagonist for the GR, and, by

nature, such antagonists often display some agonist activity at the receptor they

competitively bind to, accounting for the increases in lipocalin 2 expression observed

here. When RU486 and Dex were incubated together, lipocalin 2 expression could no

longer be induced with Dex. Analysis of the lipocalin 2 sequence with ‘MatInspector’

(www.genomatix.de) confirmed previous reports of two GC response elements (GRE)

in the 5’ regulatory region of the lipocalin 2 promoter (Garay Rojas et al., 1996;

Cartharius et al., 2005) (Figure 4.11). The presence of GRE in the promoter region of

lipocalin 2 suggested that this gene could be a direct target of the GR complex. This

was supported by the fact that the Dex-induced increase in lipocalin 2 mRNA levels

was not inhibited by CHX, a protein synthesis inhibitor. Interestingly, CHX in fact

caused a further increase in lipocalin 2 expression. This finding has been previously

reported (Davis et al., 1991) and could be due to CHX blocking the synthesis of a

lipocalin 2 or Dex repressor.
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Figure 4.12 The Lipocalin 2 Promoter Analysis of the lipocalin 2 promoter
sequence with ‘MatInspector’ (www.genomatix.de) confirmed previous reports of two
GC response elements (GREs), suggesting that this gene could be a direct target of the
GR complex. Other interesting binding sites include the estrogen reponse element
(ERE), an NFκB binding site, Vitamin D receptor site, and binding sites for the pro-
inflammatory transcription factors STAT1 and STAT3.

In addition to several GRE’s, the lipocalin 2 promoter region also contains a number

of NFkB binding sites. Previous studies have reported IL-1-induced lipocalin 2

expression through NFkB signalling (Cowland et al., 2006), and the presence of an

NFB binding site on the lipocalin 2 promoter supports a putitative role for NFB in

this study (Figure 4.10). The NFkB/p38 pathway is suggested to be involved in LPS-

induced lipocalin 2 expression in chondrocytes (Ulivi et al., 2006), and is also

involved in chondrocyte differentiation (Wen et al., 2006), and in an attempt to

further define the mechanisms by which Dex induces lipocalin 2 expression, the role

of the p38/NFkB pathway was examined. The p38 inhibitor SB203580 had no effect

on lipocalin 2 expression, although its activity was confirmed by a p38 MAPK assay,

suggesting that p38 had no role in lipocalin 2 induction in this study. The NFB

inhibitor TLCK, a serine protease inhibitor, blocked Dex-induced lipocalin 2

expression and partly blocked the Dex effects on ATDC5 proliferation, initially
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suggesting that NFB was involved in the Dex effects on lipocalin 2. To confirm this

result, the experiment was repeated using another NFB inhbitor, SN50, a peptide

inhibitor which selectively inhibits the translocation of NFB to the nucleus. Results

using this inhibitor showed that blocking NFB activity had no effect on lipocalin 2

expression, suggesting that the initial results obtained with TLCK were due to the

inhibition of other factors such as protein kinase C (PKC) (Solomon et al., 1985), or

cell cycle regulators such as pp70s6k (Grammer et al., 1996). Consequently, the

exact mechanisms by which Dex increases lipocalin 2 expression in ATDC5 cells are

still unknown.

Interestingly, a recent study has found that there is a marked increase in lipocalin 2 in

obese humans (Wang et al., 2006). In addition, this study displayed a significant

positive correlation between lipocalin 2 expression and several variables associated

with obesity-related metabolic disorders, including hyperinsulinemia and fasting

glucose concentrations. It is known that at pharmacological doses, Dex can cause an

increase in fasting glucose concentrations, and due to the fact that lipocalin 2

expression is increased following exposure to insulin-resistance-inducing and

inflammatory adipokines such as TNFα, IL6 and resistin (Berg et al., 2005; Wellen et

al., 2005), it is possible that Dex is increasing lipocalin 2 expression through

alterations the gluconeogenesis pathway.

The importance of lipocalin 2 in GC-induced growth retardation was further

supported with the finding that its overexpression caused a reduction in ATDC5

proliferation and an increase in differentiation, an effect which is similar to that seen

with GC-treated ATDC5 cells (Mushtaq et al., 2002; Owen et al., 2007). The effects
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protein, supporting the hypothesis that lipocalin 2 is influencing chondrocyte

dynamics in a similar way to GCs. Interestingly, the effects of lipocalin 2

overexpression on proliferation and differentiation were exacerbated with Dex, and

lipocalin 2 expression in transfected cells was increased more than would be expected

from the additive effects of Dex and lipocalin 2 expression alone. The synergistic

effect of Dex and LPS on lipocalin 2 expression has previously been described

(Vizzardelli et al., 2006), however, these findings suggest that lipocalin 2 itself may

play a role in mediating the effects of Dex. It is therefore possible that lipocalin 2

could be exacerbating Dex-induced growth retardation by interacting directly with

Dex to inhibit chondrocyte proliferation and increase differentiation. As previously

discussed, it has been reported that lipocalin 2 contains 2 GREs on the promoter. Due

to this fact, it would be interesting to study the behaviour of Dex-treated ATDC5 cells

transfected with a lipocalin 2 promoter, constructed with a GRE knock-out element.

4.7 Conclusions
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5.1 Introduction

Despite recent advances in the understanding of how GCs regulate growth and

differentiation in a number of target tissues, the molecular mechanisms by which they

exert these profound effects on bone growth and development have remained a

mystery. It is generally accepted that proliferation and differentiation are mutually

exclusive biological processes; therefore, a required step in the progression towards

terminal differentiation is the withdrawal of a cell from the cell proliferation cycle. A

growing body of evidence suggests that GCs may exert their effects on cell growth

and differentiation in chondrocytes partly through regulation of this cell cycle

(Robson et al., 1998; Sanchez and He 2002; Mushtaq et al., 2002; Siebler et al., 2002;

Schrier et al., 2006).

Progression of the cell cycle is controlled primarily by cyclin dependent kinases

(CDKs), and their repressors, the cyclin dependent kinase inhibitors (CDKIs). In

mammals, there are two families of CDKIs; the CIP/KIP family composed of

p21WAF1/CIP1, p27KIP1, and p57KIP1, which bind to and inhibit G1 CDKs, and the INK4

proteins p16INK4A, p15INK4B, p18INK4C and p19INK4D, which inhibit CDK4 and to a lesser extent

CDK6. The Cip/Kip family can act on most cyclin/CDK complexes and are essential

for G1 progression and S1 entry (Johnson and Walker 1999). Increasing evidence
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from murine gene knockout experiments, analysis of human dyschondroplasias, and

in vitro studies suggest that these CDKIs play an important role in the control of bone

growth at the level of the growth plate.

Disruption of the p57 gene has been shown to cause delayed chondrocyte

differentiation, resulting in skeletal deformations and shortened limbs (Yan et al.,

1997; Zhang et al., 1997). In these studies, chondrocytes showed increased

proliferation and reduced expression of Coll X, suggesting that p57 may be required

for chondrocyte differentiation. In contrast, however, mice deficient for p27 or p21

do not show any obvious skeletal phenotypes. However, p27-null mice are larger than

wild-type mice (Fero et al., 1996; Kiyokawa et al., 1996; Nakayama et al., 1996), and

this increase in size appears to affect growth of all organs, suggesting that some

growth plate effects are likely. p21 deficient mice do not display any developmental

defects, although isolated cells do show altered cell cycle kinetics (Deng et al., 1995;

Missero et al., 1996). Expression of p21 in differentiating rat growth plate

chondrocytes has been examined in cells cultured as three-dimensional pellets

(Ballock et al., 2000), and has also been detected in rat costochondral growth plate

chondrocytes and articular chondrocytes in pellet culture (Stewart et al., 1997) (Figure

5.1). In addition, upregulation of Coll X and ALP activity in hypertrophic

chondrocytes has been associated with increased expression of p21 but not p27

(Stewart et al., 1997).
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Figure 5.1 Immunohistochemical localisation of p21 in the rat growth plate.
Sections (5 µm) were incubated with polyclonal, rodent-specific rabbit antibody to
p21 (A), or to an equal concentration of ammonium acetate-precipitated rabbit non-
immune serum (B). Reactive cells are dark red. Although staining is evident in a few
proliferative cells, expression of p21 appears substantially increased in cells at the
transition between the proliferative and hypertrophic zones, in hypertrophic cells, and
in cells adjacent the epiphyseal ossification front. E = epiphyseal ossification front, P
= proliferative zone, H = hypertrophic zone. From Stewart et al., 1997.

Other studies have also suggested that p21 may play a role in the regulation of growth

plate chondrocyte proliferation and differentiation. Increased expression of p21 in

cartilage has been demonstrated in thanatophoric dysplasia human embryos (a form of

short-limbed dwarfism that usually causes death within the first few hours after birth)

(Su et al., 1997). In addition, in ATDC5 cells, p21 expression increases as the cells

progress towards terminal differentiation, and this expression is blocked by p38 and

MAPK inhibitors, suggesting that, in chondrocytes, p21 expression is p38/MAPK

dependent (Negishi et al., 2001; Nakajima et al., 2004).

p21 expression is usually controlled at the transcriptional level by both p53-dependent

and –independent mechanisms. The p53 tumour suppressor protein is a transcription

factor required for the activation of a number of genes involved in growth control, and

results from the γ-irradiation of p53-knockout and wild-type mice suggested that p53 
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dependent regulation of p21 is critical for the response to DNA damage (Macleod et

al., 1995). However, a variety of agents that promote differentiation activate p21

transcription by p53-independent mechanisms, primarily through transcription factors

which bind to specific cis-acting elements located within the p21 promoter. Dex has

been shown to induce the expression of p21 by acting through the CCAAT/enhancer

binding protein-α (C/EBPα) transcription factor, which regulates p21 expression at the

transcriptional level (Timchenko et al., 1996; Cha et al., 1998; Cram et al., 1998). In

osteoblasts, pharmacological concentrations of Dex induce p21 expression (Leclerc et

al., 2004), resulting in reduced osteoblast development. In addition, studies using rat

hepatoma cells have shown that Dex causes a p53-independent increase in p21 mRNA

and protein expression, whereas the expression of other CDKIs such as p27 remain

unchanged (Cha et al., 1998).
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5.2 Hypothesis

In Chapter 3, microarray analysis suggested that Dex may cause growth retardation by

causing premature differentiation of proliferative chondrocytes within the growth

plate. Due to the previous finding that increased p21 expression is linked with

chondrocyte differentiation, it is possible that Dex may promote p21 expression to

cause a reduced proliferation in growth plate chondrocytes.

5.3 Aims

I. Confirm p21 expression is increased in terminally differentiating ATDC5

cells through Western Blotting and qPCR.

II. Analyse the effect of Dex on p21 expression in ATDC5 cells by Western

Blotting and qPCR.

III. Develop an effective in vivo protocol for measuring GC-induced growth

retardation in mice.

IV. Analyse the role of p21 in GC-induced growth retardation with p21-/- mice

using physiological and histological measures of bone growth.
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5.4 Materials and Methods

5.4.1 In Vitro Studies

5.4.1.1 Cell Culture

For experiments measuring the role of p21 in chondrocyte differentiation, the ATDC5

chondrocyte cell line was maintained and differentiated as previously described

(Section 2.2.3) for up to 15 days. For studies examining p21 expression with GCs,

Dex (final concentration 10-6M) was added to both chondrogenic and terminally

differentiating cells for 6, 12, or 24h. Control cells received differentiation medium

only.

5.4.1.2 Cell Counting

In order to measure the growth of ATDC5 cells progressing towards terminal

differentiation, cells were trypsinised and counted on days 0, 3, 7, 11, 14, and 18 of

differentiation as described in section 2.2.3. Six replicates were used for each

timepoint.

5.4.1.3 PCR

To measure the expression of CDKIs during ATDC5 differentiation, RNA was

isolated from the cells at days 0, 2, 4, 7, 9, 11 and 15, and extracted as previously

described (2.5.1). For analysis of p21 expression following Dex treatment, RNA was

isolated by the same method. All samples were then reverse transcribed (2.5.3), and

both qPCR and Endpoint-PCR reactions were carried out as detailed in sections 2.5.4

and 2.5.5, respectively. The primers for the endpoint PCR analysis of different

CDKIs and chondrocyte marker genes during ATDC5 differentiation were as detailed

in Table 5.1. The cycling reaction for all primers was as follows: 1 cycle of 92oC for
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2mins, 55oC for 1min and 72oC for 1min, followed by 30 cycles of 92oC for 1min,

55oC for 1min and 72oC for 1min.

Table 5.1 Primer Sequences and product sizes for CDKIs and chondrocyte marker
genes analysed by PCR
Gene Name Primer Sequences (5’ – 3’) Product Size

(bp)
p21 F AATCCTGGTGATGTCCGACC

R TTGCAGAAGACCAATCTGCG
460

p27 F TATGGAAGAAGCGAGTCAGC
R GCGAAGAAGAATCTTCTGCAG

334

p57 F GGATTGTGGAGGCTTTCTCC
R CTTGGCGATCATGTCCTCAAAG

309

p18 F GGACACTGTACAGGCTTTGC
R TTCCATAGAACCTGGCCAAG

197

p19 F GCGACGTGCAAGAGGTCCG
R GCTGACCACGGAGCTATGGC

318

Coll X F AGGCAAGCCAGGCTATGGAA
R GCTGTCCTGGAAAGCCGTTT

583

Aggrecan F CGAGAATGACACCTGCTAGG
R AAGAAGACAGGACCAGGAAGG

218

18S Unknown, purchased from Ambion 488

p21 qPCR F TTGCACTCTGGTGTCTGAGC R
F TCTGCGCTTGGAGTGATAGA R

112

Coll II qPCR F GCCAAGACCTGAAACTCTGC R
F GGTTGGGGTAGACGCAAGTC R

123

5.4.1.4 Western Blotting

For analysis of p21 protein expression, ATDC5 cells were scraped at days 0, 2, 4, 7,

9, 11 and 15, or after 6h Dex treatment (10-6M) in PBS containing 1.6 mg/ml of

Complete® protease inhibitor cocktail, and protein concentration measured as

previously described (2.7.1). Proteins were then separated on a 4-12% Bis-Tris Gel

(Invitrogen) by SDS-PAGE (2.7.2), and Western blotting carried out as previously

described (2.7.3). For analysis of p21 expression, monoclonal mouse anti-p21 (BD

Pharmingen; Appendix 4) was used at a 1:250 dilution, and this was detected with a

goat anti-mouse IgG peroxidase secondary antibody, at a dilution of 1:8000 (Sigma;
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Appendix 4). Beta-actin expression was also measured as a loading control (Anti

beta-actin clone AC15; Sigma; 1:5000 dilution).

5.4.2 In Vivo Studies

5.4.2.1 p21 Null Mice Genotyping

Genotyping for transgenic mice was carried out on tail clippings from mice no

younger than 3 weeks of age, as detailed in section 2.6.2. Heterozygous p21 null mice

were identified by bands at 872bp and 700bp, wildtype mice by one band at 700bp,

and mice homozygous for the p21-/- allele by one band at 872bp (Figure 5.2)

Figure 5.2 Genotyping of p21 null homozygous and heterozygous mice.
Heterozygous p21 null mice were identified by bands at 872bp and 700bp, wildtype
mice by one band at 700bp, and mice homozygous for the p21-/- allele by one band at
872bp. Amplified products were loaded onto a 1.5% tris-acetate gel.

5.4.2.2 In Vivo Treatment of Mice with Dex

For all GC-growth retardation studies, 4-week-old mice underwent an injection

regime of 5mg/kg subcutaneous (sc) Dex daily for 7 days (water soluble Dex; Sigma

lot 105K1411; dissolved in 0.9% saline (NaCl)). Control mice received an equal

volume of 0.9% NaCl. In addition, all mice received a single intra-peritoneal (ip)

injection of calcein (10mg/kg in sodium bicarbonate (NaHCO3)) on day 1, and BrdU

(25mg/kg in NaCl; sc) exactly 1h before being culled. Although double calcein

labelling (with one injection of calcein at the start of an experiment, and another just
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before culling) is more common when measuring mineral apposition in skeletal tissue

this was not necessary in this study due to the obvious demarcation of the chondro-

osseous junction at the distal end of the growth plate. During the 7-day treatment

period, mice were weighed daily, and crown-rump body lengths measured on days 1

and 7. Mice involved in the p21-/- study also received x-rays at days 0, 3, and 6 of

Dex treatment. In order to take the x-rays, the mice where placed into a Vet-Tech box

where they where given Halothane gas. Once anaesthetised sufficiently, the mice

were placed under the x-ray beam, and the x-ray taken at a setting of 5.0mas and

50Kv. All mice were culled by cervical dislocation at the end of the experiment.

5.4.2.3 Measurement of Organ Weights and Lengths

Directly following culling, left and right tibia were dissected, weighed, and measured

using digital calipers. In addition, the spleen, heart, kidneys, and liver were also

removed and weighed to analyse the effect of Dex.

5.4.2.4 Tissue Processing

As described above, both the left and right proximal tibiae were dissected from each

mouse. The left tibia was decalcified and processed for embedding in paraffin wax

and sectioned as described in section 2.4.1. The right tibia was left undecalcified, and

frozen in a hexane freezing bath, before sections were cut using the CryoJane tape

transfer system as previously described (2.4.2.1 – 2.4.2.4).

5.4.2.5 Toluidine Blue Analysis of Growth Plate Morphology

Paraffin sections of the proximal tibia were dewaxed through graded alcohol solutions

as described in section 2.4.3, and stained for Toluidine blue as described in section
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2.4.4. Stained sections were then examined under a Nikon Eclispe TE300

microscope, and the lengths of the proliferating and hypertrophic zones measured at

10 different sites along the length of the growth plate. The identification of sections

were hidden with masking tape during analysis to avoid bias. However, it should be

noted that this type of analysis is dependent on the angle at which tissues are

embedded into the paraffin wax, as variations in the angle at which sections are cut

can significantly alter the observed growth plate width. Consequently, when

embedding, care was taken to ensure all tissues were embedded and cut at

approximately the same angle.

5.4.2.6 Analysis of X-rays

X-rays of p21-/- and wildype mice were taken at days 0, 3, and 6 of Dex treatment as

previously described (5.4.6). X-rays were scanned using the Kodak LS-75 film

scanner, and images converted from DICOM to TIFF files using the programme

IrfanView (www.irfanview.com). ImageJ was then used to measure the lengths of

tibiae, femur, and tails from the TIFF x-ray files.

5.4.2.7 Measurement of Mineral Apposition Rate (MAR) with Calcein Labelling

Calcein labelling was used to measure the rate of bone formation in control and Dex

treated mice during the 7-day treatment period. Mice were injected with a single dose

of 10mg/kg Calcein fluorochrome on day 1 of Dex treatment as previously described

(5.4.2.2). Tibia were dissected and frozen sections cut as previously described

(2.4.2.1-2.4.2.4), and sections were examined for fluorescence using the Nikon

Eclispse TE300 microscope. The distance between the chondro-osseous junction at

the distal end of the growth plate and the fluorescing mineralisation front was
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measured at 10 different points along the section, and an average taken. This was

then divided by the number of days of treatment, to obtain a MAR for each section.

Four sections per tibia were measured from 6 mice per treatment.

5.4.2.8 Laser Capture Microscopy

In an attempt to measure p21 gene expression within the proliferative and

hypertrophic zones of the growth plate, sections (10µm) from undecalcified frozen

proximal tibiae were cut using the CryoJane tape transfer system (2.4.2.6), and

chondrocytes from both the proliferative and hypertrophic zones of 12 sections per

mouse were isolated using LCM as previously described (2.4.2.7) (Figure 5.3). RNA

was pooled, extracted from the chondrocytes (2.5.2), and amplified using the

MessageAmp RNA amplification kit (2.5.3). The aRNA was then reverse transcribed,

and qPCR for chondrocyte marker genes aggrecan and Coll II, and p21 carried out as

previously described (2.5.4 and 2.5.6; primer details section 5.4.1.3).

Figure 5.3 Laser Capture Microscopy (LCM) of proliferating and hypertrophic
chondrocytes. (A) Proximal tibia growth plate section before LCM highlighting the
proliferative (P) and hypertrophic (H) zones. (B) Proximal tibia growth plate section
after LCM highlighting the removal of both zones, with only the prehypertrophic
chondrocytes remaining.
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5.5 Results

5.5.1 In Vitro Studies

5.5.1.1 Analysis of p21 Expression During ATDC5 Differentiation

During the 15 days of ATDC5 differentiation, expression of the hypertrophic

chondrocyte marker gene aggrecan increase, as expected (Figure 5.4A). Of all the

CDKIs analysed, only the expression of p21 increased as the cells progressed towards

differentiation. The expression of p27, p27, p15 and p19 remained unchanged (Figure

5.4A). The increase in p21 expression during differentiation was confirmed by qPCR,

with a 4-fold increase in expression by day 11 (p<0.01; Figure 5.4B). p21 protein

expression was also increased in ATDC5 cells at days 9 and 15 of differentiation

(Figure 5.4C), at which point cell proliferation had ceased (Figure 5.4D).
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Figure 5.4 Expression of CDKIs during ATDC5 differentiation. (A) Of the
CDKIs tested, only p21 expression increased as the cells progressed towards terminal
differentiation. Expression of the chondrocyte marker gene, aggrecan, also increased.
Samples were run on a 1.5% Tris-acetate gel. (B) p21 fold change in differentiating
ATDC5 cells as measured by qPCR. (**p<0.01; *p<0.05 n = 3 separate cell replicates
run in triplicate; all data are expressed as mean  SEM). (C) p21 protein expression
in ATDC5 cells. β-actin was used as a loading control. (D) Proliferation in ATDC5
cells as measured by directly counting in a haemocytometer chamber.

5.5.1.2 p21 Expression in ATDC5 Cells Following Dex Treatment

Both p21 gene and protein expression were increased in ATDC5 cells following 1h

and 6h Dex treatment, as measured by qPCR and Western Blotting, respectively

(Figures 5.5A and B). qPCR revealed a 3.8-fold and 2-fold increase in p21 expression

with 1h and 6h Dex treatment, respectively (p<0.01; Figure 5.5A), although no

change in expression was observed at 24h.
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Figure 5.5 p21 expression with Dex treatment in ATDC5 cells. (A) qPCR analysis
revealed a significant increase in p21 expression at 1h, and 6h Dex treatment. No
change in expression was observed at 24h. (***p<0.001; **p<0.01; n = 3 cell
replicates run in triplicate; all data are expressed as mean  SEM). (B) p21 protein
expression was also increased following 1h and 6h Dex treatment, but not at 24h.
Expression of β-actin loading control remained unchanged.

5.5.2 In Vivo Studies

5.5.2.1 Growth in Dex-Treated Mice

In order to establish a dosing regime for future in vivo experiments, saline and Dex-

treated mice were weighed daily for 7 days and crown-rump lengths measured. Dex-

treated mice were significantly lighter than control mice from day 3 of treatment

(14.5g and 17g, respectively; p<0.001; Figure 5.6A), and by day 7, the body lengths

of Dex-treated mice were also significantly shorter than control mice (7.6cm and

8.2cm, respectively; p<0.001; Figure 5.6B)
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Figure 5.6 Skeletal growth in Dex-treated mice (A) 4-week-old mice were
injected daily for 7 days with 5mg/kg Dex or 0.9% NaCl, and weighed each day.
Dex-treated mice were significantly smaller from day 3 of treatment. (B) Dex-treated
and control mice were measured from crown to rump at days 1 and 7 of treatment.
The body lengths of Dex-treated mice were significantly shorter after 7 days
(***p<0.001; n = 8 mice; all data are expressed as mean  SEM).

5.5.2.2 Effect of Dex on Organ Weight

Organ weights were first normalised to the overall body weight for each mouse, and

multiplied by 1000 for ease of data analysis. The weight of the liver and spleen were

significantly reduced in Dex-treated mice compared to their control littermates

(p<0.01; Figure 5.7). Tibiae were also dissected from control and Dex-treated mice,

and when weighed, the weights of Dex-tibiae were significantly reduced (39mg for
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Dex-treated mice compared to 50mg for control mice; p<0.05; Figure 5.7). Dex had

no effect on the weight of the kidney or heart compared to control mice.

Figure 5.7 Effect of Dex on mouse organ weights. Organs were dissected,
weighed, and normalised to the overall body weight for each mouse. Weights of the
spleen, liver and tibia were significantly reduced with Dex treatment, whilst weights
of the kidney and heart were unaffected (***p<0.01; **p<0.01; *p<0.05; n = 8
organs; all data are expressed as mean  SEM).

5.5.2.3 Effect of Dex on Growth Plate Morphology

To analyse the effect of Dex on the growth plate, proximal tibia growth plate sections

from control and Dex-treated mice were stained for Toluidine blue (Figure 5.8A and

B, respectively). Dex significantly reduced the overall width of the growth plate, due

to a reduction in the width of both the proliferative and hypertrophic zones (p<0.001;

Figure 5.8C).
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Figure 5.8 Toluidine Blue staining of the Growth Plate in Dex-treated mice
Proximal tibia growth plate sections from control (A) and Dex-treated (B) mice were
stained with toluidine blue for analysis of growth plate morphology and zone width.
Scale bar = 200µm (C) The widths of both the proliferating and hypertrophic zones
were significantly reduced in Dex-treated mice, resulting in a reduction in the overall
growth plate width. (PZ = proliferating zone; HZ = hypertrophic zone) (***p<0.01
versus control; n = 8; all data are expressed as mean  SEM).

5.5.2.4 Analysis of p21 Expression in the Growth Plate

Due to the fact that p21 has previously been shown to be expressed at high levels in

the hypertrophic zone of the growth plate (Stewart et al., 1997), numerous attempts

were made to confirm these findings, and to analyse the expression of p21 in the

growth plate of Dex-treated mice. However, despite using various different

antibodies against p21, I failed to show staining that was consistent with previous

studies. Consequently, an attempt was made to compare the relative expression of

p21 in the proliferative and hypertrophic zones in Dex-treated mice by qPCR.

Chondrocytes were isolated from each zone by LCM, and the RNA was extracted and



Chapter 5 The Role of p21 in GC-Induced Growth Retardation

173

amplified as described previously (5.4.2.8). Although chondrocytes were successfully

isolated from each zone (Figure 5.3), the RNA obtained was of very poor quality, with

260/280 ratios varying between 0.29 and 2.42, and average total RNA yields of 20ng.

In order for amplification to perform effectively, it is vital that the RNA is of good

quality. Consequently, when amplification was carried out, although some samples

were amplified successfully, others were not, making it impossible to analyse the

expression of chondrocyte marker genes or p21 by endpoint or qPCR.

5.5.2.5 Growth in Dex-treated p21-/- Mice

In order to study the role of p21 in GC-induced growth retardation, mice lacking the

p21 gene were injected daily for 7 days with 5mg/kg Dex or 0.9% NaCl as previously

described (5.4.2.2). Wildtype mice received identical treatments. By day 4, the

growth of both p21-/- and wildtype mice undergoing Dex treatment was significantly

reduced compared to their control littermates (p<0.001; Figure 5.9). This growth

retardation was maintained until day 7.
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Figure 5.9 Growth in p21-/- Dex-treated mice p21-/- and wildtype mice were treated
with 5mg/kg Dex for 7 days, and weighed daily. By day 4, the weights of both null
and wildtype mice treated with Dex were significantly reduced compared to NaCl
controls. (***p<0.01; n = 8; all data are expressed as mean  SEM).

5.5.2.6 Skeletal Growth of Dex-treated p21-/- mice – X-ray Analysis

X-rays of p21-/- and wildtype mice treated with 5mg/kg Dex were taken on days 0, 3

and 6 as described previously (5.4.2.2; Figure 5.10A). Lengths of the tibiae, femurs

and tails for each day were measured with ImageJ (5.4.2.6). Tibia lengths in Dex-

treated null and wildtype mice were slightly shorter than their respective controls,

however this was not a significant change (Figure 5.10B). Similarly, when the

lengths of the tibiae, femurs, and tails from each of the groups were combined, there

did seem to be a reduction in bone growth in Dex-treated null and wildtype mice.

However, this reduction was not significantly different (Figure 5.10C).
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Figure 5.10 Skeletal growth of Dex-treated p21 null mice (A) Representative x-
rays from (I) wildtype control, (II) wildtype Dex-treated, (III) p21-/- control and (IV)
p21-/- Dex-treated mice on day 6. Scale bar = 2cm. (B) Percentage tibial growth
from day 0 for p21-/- and wildtype mice treated with or without Dex (C) Percentage
growth of combined values from tibiae, femurs and tails of Dex-treated p21 null and
wildtype mice (n = 8; all data are expressed as mean  SEM).

5.5.2.7 Growth Plate Morphology in Dex-treated p21 Null Mice

As before, Dex significantly reduced the width of the growth plate in wildtype mice,

due to a reduction in the width of both the proliferative and hypertrophic zones

(p<0.001; Figure 5.11A I and II; Figure 5.11B). A similar response to Dex was

observed in the growth plates of p21-/- mice, with a significant reduction in the width

of the proliferating and hypertrophic zones, leading to a reduction in overall growth

plate width (p<0.001; Figure 5.11A III and IV; Figure 5.11B). Interestingly, the

hypertrophic zone in p21-/- control mice was also significantly smaller than the
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hypertrophic zone in control wildtypes (p<0.05; Figure 5.11A I and III; Figure

5.11B).

Figure 5.11 Toluidine Blue staining of growth plates from Dex-treated p21 null
mice. (A) Proximal tibia growth plate sections from control wildtype (I), Dex-treated
wildtype (II), p21 null control (III) and Dex-treated p21 null (IV) mice stained with
toluidine blue for analysis of growth plate morphology and zone width. Scale bar =
200µm (B) The widths of both the proliferating and hypertrophic zones were
significantly reduced in Dex-treated mice from both wildtype and p21 null strains,
resulting in a reduction in the overall growth plate width. (PZ = proliferating zone;
HZ = hypertrophic zone) (***p<0.001 versus respective control group; *p<0.05
versus respective control group; αp<0.05 versus wildtype control HZ; n = 8; all data
are expressed as mean  SEM).
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5.5.2.8 Effect of Dex on Mineral Apposition in p21-/- Mice

The daily rate of mineral formation (MAR) was measured using a Calcein

fluorochrome label as previously described (5.4.2.7). The MAR in proximal tibiae

from Dex-treated wildtype and null mice was significantly reduced compared to

control mice (51% and 27% reduction, respectively; p<0.05; Figure 5.12A and B).

Interestingly, the MAR in p21-/- control mice was also significantly reduced

compared to wildtype controls (38%; p<0.05; Figure 5.12A).



Chapter 5 The Role of p21 in GC-Induced Growth Retardation

178

Figure 5.12 Calcein labelling in Dex-treated p21-/- mice (A) Proximal tibia
sections from control wildtype (I), Dex-treated wildtype (II), p21 null control (III) and
Dex-treated p21 null (IV) mice examined under fluorescence for analysis of the
mineral apposition rate. The MAR was calculated by measuring the distance between
the distal end of the growth plate and the mineralisation front (green fluorescence),
and dividing this by the number of treatment days. Scale bar = 500µm (B) MAR in
wildtype and p21 null mice treated with Dex. The MAR was significantly reduced
with Dex treatment in both wildtype and null mice (***p<0.01, *p<0.05 vs. WT
control; αp<0.05 vs. p21-/- control; all data are expressed as mean  SEM).
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5.6 Discussion

Previous findings by us, and others, have suggested that GCs may act to inhibit bone

growth by causing premature differentiation of growth plate chondrocytes (Mushtaq

et al., 2002; James et al., 2007; Chapters 3 and 4). p21 is a CDKI that has previously

been shown to increase in expression in differentiating chondrocytes (Negishi et al.,

2001; Stewart et al., 1997), a finding that has been supported in this study. In ATDC5

cells, p21 gene and protein expression increased throughout the differentiation

process, whereas the expression of all other CDKIs tested remained unchanged. As a

CDKI, p21 controls the cell cycle by blocking the formation of Cyclin/CDK

complexes which promote cell cycle progression through the phosphorylation of

pocket proteins pRb (Retinoblastoma protein), p107 and p130. Once phosphorylated,

these pocket proteins form complexes with E2F transcription factors, leading to the

transcription of genes necessary for cell cycle progression and DNA replication.

Consequently, it is thought that the main function of p21 is the inhibition of cell

proliferation and promotion of differentiation (Harper et al., 1995). At high

concentrations, p21 also acts as an inhibitor of proliferating cell nuclear antigen

(PCNA) activity, a characteristic which is unique to p21, distinguishing it from other

CDKIs (Luo et al., 1995). A number of studies have correlated the expression of p21

with cell cycle arrest and/or differentiation in many cell types after treatment with

extracellular growth regulators, exposure to particular environmental conditions, or by

ectopic expression of intracellular modulators of the cell cycle (Sherr 1995; Harper

and Elledge 1996). p21 is under transcriptional control by the p53 tumour suppressor

gene, and the p21 promoter contains two p53 binding sites that are conserved in

several species. For p53-dependent activation, at least one of these sites must be
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functioning (El-Deiry et al., 1995). p53 dependent activation of p21 has been shown

to be critical in response to DNA damage, although during development, p21

expression is normal in p53-/- mice. p21 activation can also occur independently of

p53, and there are many factors involved in the activation of p21 at the transcriptional

level. These include vitamin D receptor (Liu et al., 1996), retinoic acid receptor (Liu

et al., 1996), TGF-β1 and the AP2 (Zeng et al., 1997), E2A (Prabhu et al., 1997), Sp1,

Sp3 and STAT1 transcription factors through their respective response elements on

the p21 promoter (Figure 5.13) (El-Deiry et al., 1993, 1994, 1995; Michieli et al.,

1994). Other factors include nerve growth factor (Erhardt et al., 1998), platelet-

derived-growth factor (Michieli et al., 1994), progesterone (Owen et al., 1998), and

steroid hormones (Jiang et al., 1994). In specific osteosarcoma and fibroblast cell

lines, GCs have been shown to increase p21 expression through unknown

mechanisms. GC inhibition of L929 mouse fibroblast proliferation was associated

with an induction of p21 expression (Ramalingam et al., 1997), and GCs were also

shown to inhibit the entry of alveolar epithelial cells into the S-phase by inducing p21

expression (Corroyer et al., 1997).

In this study, Dex significantly increased p21 gene and protein expression after 1 and

6 hours in ATDC5 cells. The rapid response in p21 expression with Dex is not

surprising, as it has previously been shown that GCs stimulate p21 promoter activity.

Although no GREs have been detected on the p21 promoter, it is thought that Dex

acts through the C/EBPα transcription factor to directly increase p21 transcription

(Figure 5.13) (Cha et al., 1998; Cram et al., 1998). It is possible that this increase in

p21 expression with Dex-treatment could contribute to GC-induced growth

retardation. In order to test this hypothesis, the effect of Dex on skeletal growth was
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analysed in mice lacking the p21 gene. Before this, however, it was necessary to

develop a Dex dosing regime that effectively caused growth retardation in 4-week-old

mice.

Figure 5.13 Factors acting on the p21 promoter A number of factors act to
transcriptionally activate or repress p21 expression. The two p53 binding sites at
positions 2301 and 1324 are critical for p21 expression during DNA damage and
irradiation. Dex increases p21 expression through the transcription factor C/EBP at
position 1263. Figure adapted from Gartel et al., 1999.

Injecting mice with 5mg/kg Dex daily for 7 days caused a significant reduction in

growth by day 3 of treatment. The weights of the tibia, liver and spleen were

significantly reduced in Dex treated mice, a finding that has previously been reported

(Smink et al., 2003a; Van Buul-Offers et al., 2005). The reduction in spleen weight is

most likely due to its known role in the immune response, and the effects on the liver

may be due to its roles in drug metabolism. The reduction in weight of the tibia

suggests that tibial growth was reduced, possibly due to a reduction in the width of the
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proliferative and hypertrophic zones within the growth plate. This effect on the

growth plate has been widely reported, (Smink et al., 2003a; Smink et al., 2003b; Van

Buul-Offers et al., 2005) and is probably due to a reduction in chondrocyte

proliferation, as shown in Chapter 4, and by previous studies (Robson et al., 1998;

Klaus et al., 2000; Mushtaq et al., 2002; Owen et al., 2007), in addition to an increase

in chondrocyte apoptosis, and possibly a reduction in IGF-I expression (Smink et al,

2003).

When this dosing regime was implemented in 4-week old mice lacking the p21 gene,

significant growth retardation was still observed. As previously reported, p21-/- mice

have no obvious skeletal phenotype (Deng et al., 1995), an interesting finding which

has also been shown in mice lacking the p27 gene (Emons et al., 2006). Although

p21-/- generally seemed smaller than their wildtype littermates, the width of the

proliferating and hypertrophic zones within the growth plate were not significantly

different. Interestingly, however, the MAR in p21-/- control tibiae was significantly

lower than wildtypes, suggesting that p21 may act on other factors involved in

mineralisation. These findings suggest that p21 alone does not play a major role in

longitudinal bone growth and endochondral ossification. It is possible that there may

be considerable redundancy between the CDKIs, and that a number of CDKIs may act

together to control chondrocyte dynamics in the growth plate. It would therefore be

interesting to study skeletal growth in mice with numerous CDKI null mutations, such

as p27-/- and p21-/- together.

When treated with Dex, the growth plate widths of p21-/- mice were significantly

reduced, due to a reduction in the width of both the proliferative and hypertrophic
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zones, as observed in wildtype mice. Interestingly, when measuring longitudinal bone

growth by x-rays throughout the treatment period, no significant changes in growth

were observed in either mouse strain with Dex treatment. Previous studies have

suggested that obvious skeletal differences are only observed after long-term GC

treatment of up to 1 month (Smink et al., 2003), although morphological cell changes

within the growth plate are observed much earlier. Due to the size of the mice and the

x-ray, it was difficult to accurately determine the beginning and end of the bone in

question. Measuring skeletal growth using x-ray technology is also limited due to the

large amount of varation in results that can arise from the distance between the mouse

and the x-ray apparatus, differences in exposure between days, and similarly,

differences in experimental procedure between the staff of the small animal unit

between different days. An alternative measurement of skeletal growth during Dex

treatment, such as tail length, may have highlighted changes between treatment

groups, due to the large number of long bones, and hence growth plates present in

murine tails. The mineral apposition rate was also reduced in Dex-treated mice from

wildtype and p21-/- groups, which is unsurprising when the reduction in growth plate

width is taken into account. This finding has previously been shown (Fritz et al.,

1998), and an additional contributing factor is likely to be increased osteoblast

apoptosis and increased survival of osteoblasts (Kim et al., 2006).

5.7 Conclusions

The role of p21 in GC-induced growth retardation was studied due to the findings

from this, and previous studies that p21 expression is increased in chondrocyte

differentiation, and that p21 expression is increased with Dex. Findings from this

study suggest that, although p21 seems to play a role in GC effects in ATDC5 cells, it
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does not seem to be important in GC-induced growth retardation in vivo. A number

of other cell cycle regulators have also been shown to be important in chondrocyte

growth in vitro, such as p57 and p27, although their effects on skeletal growth in vivo

are minimal. Although the cell cycle does play some role in the control of

endochondral ossification, it is clear that a number of other factors are involved.
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6.1 Introduction

Glucocorticoids (GC) are commonly used as anti-inflammatory or

immunosuppressive treatments, and it has been estimated that 5-10% of children may

require some form of GC therapy at some time in childhood (Warner 1995). Since the

introduction of GCs in the treatment of rheumatoid arthritis over 50 years ago, the

therapeutic applications of these drugs have greatly broadened to encompass a large

number of non-endocrine and endocrine diseases (Hench et al., 1949). Despite

intense efforts in optimising therapy, adverse effects of GC medication are still

common with growth impairment being one of the commonest in childhood (Mushtaq

and Ahmed 2002).

Over the last several decades, attempts to improve the therapeutic window of GCs

have focused on methods of limiting systemic exposure. These include the

development of topical or inhaled agents such as budesonide, or the development of

"antedrugs" such as fluticasone propionate that act at the site of administration but are

transformed to inactive metabolites upon entry to the systemic circulation. Much

effort has also been spent on modifying the steroid backbone of GCs in an attempt to

reduce the side effect profile; however, these efforts have been met with little success.

Deflazacort, a D-ring-substituted steroid otherwise similar to cortisol, was originally

hyped as a powerful anti-inflammatory molecule exhibiting more selective activity,

and therefore reduced adverse effects on bone and glucose metabolism. Initially,

clinical data supported this notion (Markham et al., 1995; Canalis et al., 1992).

However, subsequent trials that adjusted the steroid dose to maintain equivalent anti-

inflammatory efficacy needed higher doses of Deflazacort that resulted in the re-

occurrence of side effects (Markham et al., 1995).



Chapter 6 The Growth Plate Sparing Effects of the Novel GR Ligand, AL-438

187

It has only been in the last 5-10 years, however, that an understanding of the

molecular mechanism by which GCs elicit their biological effects has led to the

development of structurally novel small molecule GR modulators that differentiate the

anti-inflammatory properties from the metabolic side effects of GCs. The field was

re-energised by the discovery that the likely mechanism of GR-mediated repression of

pro-inflammatory genes involved the receptor binding directly to specific

transcription factors (AP-1 and NFκB) involved in up-regulating inflammatory genes.  

This mechanism was genetically separable from transcriptional activation and lead to

the search of ligands that could induce transcriptional repression but impede

transcriptional activation. In 1997, the first compounds that separated transactivation

from transrepression were reported (Vayssiere et al., 1997). These compounds

(RU24858, RU40066 and RU24782) were steroidal in nature, were very efficient

inhibitors of both AP-1 and NFκB-mediated gene induction, and were strong anti-

inflammatory agents in vivo. However, subsequent in vivo studies revealed that,

despite their promising in vitro profile, no therapeutic advantage could be

demonstrated for these molecules. It was found that they were no better than Pred

when side effects such as body weight, thymic involution and inhibitory effects at the

growth plate of the femoral head were measured (Belvisi et al., 2001).

The activation-repression hypothesis has also been used as an approach to discovering

selective GR modulators. One such ligand discovered in this way was a compound

created during a collaborative effort between Abbott Laboratories and Ligand

Pharmaceuticals, named AL-438 (Abbott-Ligand 438) (Coghlan et al., 2003). This

ligand was shown to be a specific, non-steroidal ligand for the GR that exhibited a

unique profile both in vitro and in vivo.
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Although AL-438 possesses a tetracyclic core similar to classic GCs, there are several

key structural differences that alter its functional activity. These include: the lack of

a C-11-hydroxyl group mandatory for function in steroidal GR ligands; the absence of

a C-3 ketone typically found in corticosteroids; the addition of a secondary amine

function in AL-438 and the presence of a methoxy group in needed for GR selectivity

and functional activity (Zhi et al., 1998). These structural differences significantly

alter the functional activity of AL-438 compared to other GCs such as Dex, allowing

the activational properties to be separated from repression (Figure 6.1).

Figure 6.1 Structural differences between AL-438 and Dexamethasone Although
AL-438 possesses a tetracyclic core similar to classic GCs, there are several key
structural differences that alter its functional activity. (1) The lack of a C-11-hydroxyl
group mandatory for function in steroidal GR ligands; (2) the absence of a C-3 ketone
typically found in corticosteroids; (3) the addition of a secondary amine function in
AL-438 and (4) the presence of a methoxy group in needed for GR selectivity and
functional activity

AL-438 displayed similar affinity to Pred at the GR (Ki = 2.5nM and 2.4nM,

respectively), and was fully efficacious when repressing E-selectin activity compared

to Dex (94% repression of activity compared to Dex). AL-438 is fully efficacious at

the transcriptional repression of certain genes related to the anti-inflammatory aspect

of GC activity (E-selectin and interleukin-6 (IL-6)), but is weaker (a partial agonist)

for the transcriptional activation of certain genes linked to adverse side effects. This
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activity seems to be cell-type specific, as, using other promoters in different cell

backgrounds, AL-438 becomes more active as a transcriptional activator In animal

models, AL-438 was as efficacious as Pred at inhibiting inflammation, and

importantly, AL-438 exhibited significantly reduced impact on fasting glucose levels

compared with Pred, suggesting that this compound might not cause the diabetogenic

effects of steroidal GCs (Coghlan et al., 2003). Studies with AL-438 using the

carrageenan-induced paw edema assay and the adjuvant arthritis models in rats have

shown that it retains full anti-inflammatory efficacy but has reduced negative effects

on bone compared to those elicited by Pred (Elmore et al., 2001; Coghlan et al., 2003,

6.2 Hypothesis

Due to the bone-sparing properties of AL-438 in osteoblasts, it is hypothesised that

AL-438 will have reduced deleterious effects on growth plate chondrocyte dynamics

compared with the effects of other commonly used GCs such as Dex and Pred.

6.3 Aims

I. Compare the effect of AL-438 on chondrocyte proliferation and differentiation

in ATDC5 cells with the commonly used GCs, Dex and Pred.

II. Analyse the effect of AL-438 on longitudinal bone growth in vitro compared

to Dex using the foetal mouse metatarsal culture model.

III. Determine the anti-inflammatory efficacy of AL-438 in ATDC5 cells

compared to Dex.
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6.4 Materials and Methods

6.4.1 ATDC5 Proliferation in AL-438 Treated Cells

ATDC5 cells were maintained as previously described (2.2.3). Dex, Pred, AL-438 or

0.01% dimethyl sulphoxide (DMSO) (10-6M, 10-7M or 10-8M) were added to the cells

during both chondrogenesis (day 6) and terminal differentiation (day 13), and were

incubated for 24h. Chondrocyte proliferation was measured using the [3H]thymidine

incorporation assay as previously described (2.9.1).

6.4.2 Effect of AL-438 on Proteoglycan production in ATDC5 cells

Dex, Pred and AL-438 (10-6M) or 0.01% DMSO were added to ATDC5 cells at day 6

or day 13 for 96h. For analysis of proteoglycan production, ATDC5 cells were

measured for alcian blue incorporation onto the monolayer as previously described

(2.9.2).

6.4.3 Effect of AL-438 on Alkaline Phosphatase Activity

Dex, Pred and AL-438 (10-6M) or 0.01% DMSO were added to ATDC5 cells at day 6

or day 13 for 96h. To measure ALP activity, cells were scraped and the supernatant

was assayed for protein content and ALP activity as previously described (2.9.3).

6.4.4 Expression of Chondrocyte Marker Genes with AL-438

In order to study and compare the effects of AL-438 on chondrocyte marker gene

expression, Dex, Pred and AL-438 were added to the cells during both

chondrogenesis (day 6) and terminal differentiation phases (day 13) at a final

concentration of 10-6M in 0.01% (DMSO). Control cultures contained 0.01% DMSO

only. Cells were grown in the presence of the compounds for 4 days, at which point
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RNA was extracted, reverse transcribed and analysed for aggrecan gene expression by

qPCR as previously described (2.5.5). Primers for aggrecan were obtained from

SuperArray Bioscience (Maryland, USA; sequence unknown) and primers for GAPDH

were designed using the software programme Primer3 (Whitehead Institute for

Biomedical Research) (forward 5’ TGAGGCCGGTGCTGAGTATGTCG 3’, reverse

5’CCACAGTCTTCTGGGTGGCAGTG 3’). Briefly, cDNA (5ng) was amplified in

triplicate using the Platinum SYBR Green qPCR SuperMix (Invitrogen, Paisley, UK)

under the following conditions: cDNA was denatured for 2 minutes at 95 oC,

followed by 40 cycles consisting of 15 s at 95oC and 30 s at 60oC and 1 cycle

consisting of 1 min at 95oC and 30 s at 60 oC. Each reaction contained 10l cDNA,

25l Platinum SYBR Green qPCR Super-Mix, 1l ROX Reference Dye, and 250nM

primer in a total volume of 40l. Fold changes, normalised for the expression of

GAPDH, were calculated using the comparative method as previously described

(2.5.5) (Livak et al., 2001).

6.4.5 Apoptosis in AL-438 Treated ATDC5 Cells

Dex, Pred and AL-438 (10-6M) were added to ATDC5 cells in a 6-well plate during

chondrogenesis or terminal differentiation periods for 24h. As a positive control, cells

were incubated as above with 10ng/ml TNFα (Autogen Bioclear, Wiltshire, UK).

Apoptosis was then measured using the Caspase-3 Apoptosis assay, which was used

according to the manufacturer’s instructions (R&D Systems, Minneapolis, MN,

USA). Caspase-3 is a cysteine protease that exists as a proenzyme, and is activated

during apoptosis. Briefly, cells were scraped in their own medium and transferred to

Eppendorfs. The cells were then centrifuged at 17,900 x g for 2mins, the supernatant

removed and 75l of lysis buffer added to the pellet. This was incubated for 10mins
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at 4oC, and centrifuged again at 10000g for 1min. The supernatant was then

transferred to a fresh Eppendorf and kept on ice. 50l of this supernatant was added

to wells in duplicate in a 96-well plate, along with 50l reaction buffer plus DTT

(10l) per 1ml reaction buffer), and 5l substrate. The 96-well plate was then

incubated for 2h at 37 oC and read at 405nm. Following this, the protein content of

the cell lysates was measured as previously described (2.7.1).

6.4.6 Determination of Anti-inflammatory Efficacy of AL-438 in ATDC5 Cells

ATDC5 cells were grown in 10µg/ml LPS (Lot 104K4036; from EColi 0127:B8;

Sigma) with or without Dex or AL-438 (10-6M) for 24h. The medium was removed

and analysed for levels of IL-1, IL-6 and TNF-α by Luminex technology (assay

completed by Dr Alistair Gracie, Division of Immunology, Infection and

Inflammation, University of Glasgow). Luminex technology utilises patented pre-

dyed microsphere bead sets allowing up to 100 cytokines to be measured

simultaneously in the one biological sample. By utilising the theory of a sandwich

ELISA, a specific antibody against a cytokine of choice is coupled to an individual

bead set. Combinations of these bead sets are then incubated with the sample and

thereafter a cocktail of detection antibodies are labelled with a reporter fluorochrome.

Detection of the beads and quantification of cytokines was then performed using a

Multiplex system and Bio-Plex software (Bio-Rad Laboratories, Inc., Hemel

Hempstead, Herts, UK). This technique has the advantage of allowing detection of

multiple cytokines from a single small sample volume (typically 50μl). In addition,

unlike a standard ELISA which gives one optical density value for each sample,

Luminex will give the average value of at least 100 individual measurements per

cytokine in each sample. All samples were assayed in duplicate and values determined
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by comparison to standard curves run in parallel. Analysis was carried out as per

manufacturer’s instruction using preconfigured multiplex cytokine kits (Biosource,

Nivelles, Belgium).

6.4.7 Foetal Metatarsal Organ Culture

The middle three metatarsals were aseptically dissected from 18-day-old embryonic

Swiss mice that had been killed by decapitation (2.3.6). The experimental protocol

was approved by Roslin Institute’s Animal Users Committee and the animals were

maintained in accordance with Home Office guidelines for the care and use of

laboratory animals. Bones were individually cultured at 37°C in a humidified

atmosphere in the conditions described in section 2.3.6. Dex or AL-438 were added

at a final concentration of 10-6M in 0.01% DMSO to the bones and the medium was

changed every second or third day. The control groups (0.01% DMSO only) and

experimental groups contained 6 metatarsals each.

Figure 6.2 Murine foetal metatarsal culture model. (A) Metatarsals were dissected
from the hind legs of 18-day-old foetal mice, and cultured for up to 10 days in the
presence of Dex or AL-438. (B) Metatarsal after 10 days of culture (Scale bar =
1mm).
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6.4.8 Morphometric Analysis

Images were taken of the metatarsals every second or third day of culture using a

digital camera attached to a Nikon TE300 microscope. The total length of the bone

was determined using Image Tool (Image Tool version 3.00, University of Texas

Health Life Science Centre, San Antonio, TX). All results are expressed as a

percentage change from harvesting length, which was regarded as baseline to

demonstrate the rate of growth over time. For the determination of the size (in the

direction of longitudinal growth) within the growth region of the distinct chondrocyte

maturational zones, the 12-day-old metatarsals were fixed in 70% ethanol,

dehydrated, and embedded in paraffin wax (Mushtaq et al., 2004). Wax sections

(10µm in thickness) were reacted for ALP activity for the demarcation of the

hypertrophic and proliferating zones. Sections were also stained with von Kossa and

haematoxylin and eosin using standard protocols to identify the zone of cartilage

mineralisation (Mushtaq et al., 2004). Images of the stained metatarsals were

captured and the size of the ALP-negative proliferating zone was determined

(proliferating zone = total length – (hypertrophic zone + mineralising zone). The size

of the hypertrophic zone was determined by subtracting the von Kossa stained

mineralising zone from the ALP-positive zone, and the size of the mineralising zone

was determined directly from the von Kossa-stained sections.

6.4.9 Histological Assessment of Bromodeoxyuridine (BrdU) Uptake

BrdU was added to the culture medium of the metatarsals at a final concentration of

1mg/ml for the last 6h of culture on day 12. At the end of the incubation period, the

tissue was washed in PBS and fixed in 70% ethanol, dehydrated, and embedded in

paraffin wax. Sections 10µm in thickness were cut along the longitudinal axis, and
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chondrocyte nuclei with incorporated BrdU were detected as described in section

2.4.5. To determine the proliferation index, the total number of BrdU positive cells

was divided by the total area of the metatarsal section. Three sections from each of

six bones from each treatment group were examined to obtain an aggregate value.

6.4.10 Statistical Analysis

Data were analysed by one-way analysis of variance. All data are expressed as the

mean ± S.E.M of at least 6 replicates within each experiment, and statistical analysis

was performed using Minitab (Minitab 14; PA, USA). P<0.05 was considered to be

significant.

6.5 Results

6.5.1 Effect of AL-438 on ATDC5 Cell Number and Proliferation

During chondrogenesis exposure to Dex or Pred for 24h led to a concentration-

dependent reduction in [3H]-thymidine incorporation (54.5% and 29.2%, respectively,

at 10-6M (p<0.05)), whereas exposure to AL-438 had no significant effect at any

concentration tested (Figure 6.3A and 6.3B). Therefore, based on these data and

previous observations that the affinity of AL-438 and Pred for the GC-receptor is

similar (Elmore et al., 2001), a saturating dose of 10-6M was used for all compounds

in future experiments. Counting the cells directly in a haemocytometer chamber

supported these results, with Dex and Pred causing a significant reduction in cell

number at 10-6M (36.2% and 36.8% respectively (p<0.05)), and AL-438 having no

significant effect (Figure 6.3C). During the terminal differentiation phase (days 13-

17), no compounds significantly altered chondrocyte proliferation or cell number

(data not shown).
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Figure 6.3 Effect of Dex, Pred and AL-438 on cell proliferation as assessed by
[3H]-thymidine uptake. (A) Dex (and solid line) and Pred ( and dashed lines)
caused a dose-dependent decrease in ATDC5 chondrocyte proliferation, whereas AL-
438 (▲ and solid line) had no effect.  (B) ATDC5 proliferation with 10-6M Dex, Pred
and AL-438. (C) Cell proliferation as measured by counting the cells directly in a
haemocytometer. Data are expressed as means ± SEM. (n = 6 separate cell culture
replicates). ***p< 0.001 compared with control treated cells.
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6.5.2 Differentiation in AL-438-treated Chondrocytes

In comparison with control cultures during the chondrogenesis period, exposure to

10-6M Dex and Pred for 96h caused a significant reduction in proteoglycan synthesis,

as measured by Alcian Blue staining of the ATDC5 cell monolayer (56% and 54%,

respectively; p<0.001), whereas exposure to AL-438 had no significant effect (Figure

6.4A). No significant differences between treatments were noted during terminal

differentiation (data not shown). The effect of AL-438 on terminal chondrocyte

differentiation was assessed by ALP activity. During chondrogenesis, ALP activity

was significantly increased after exposure to Dex, Pred and AL-438 (p<0.001) (Figure

6.4B), but no significant differences were observed during terminal differentiation

(data not shown).

Figure 6.4 Effect of AL-438 on ATDC5 differentiation. A) Effect of Dex, Pred and
AL-438 (all 10-6M) on proteoglycan production as assessed by Alcian Blue staining in
ATDC5 cells during chondrogenesis. Data are expressed as means ± SEM (n = 6 cell
culture replicates). ***p<0.001 compared with control and AL-438 treated cells. B)
Effect of Dex, Pred and AL-438 (all 10-6M) on ALP activity in ATDC5 cells during
chondrogenesis. Data are expressed as means ± SEM (n = 6). ***p<0.001 compared with
control treated cells.
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6.5.3 Effect of AL-438 on Apoptosis in ATDC5 Cells

Caspase-3 activity was unchanged in Dex, Pred and AL-438 treated cells compared to

controls during both chondrogenesis and terminal differentiation, but TNF- led to a

significant increase in Caspase-3 activity, as expected (93% increase in Caspase-3

activity compared to control samples; p<0.001) (Figure 6.5).

Figure 6.5 Effect of AL-438 on apoptosis in ATDC5 cells during chondrogenesis.
Dex, Pred, AL-438 (10-6M) and TNF (10ng/ml) were added to ATDC5 cells for 24h
and Caspase-3 activity measured at 405nm. Absorbances were then normalised to
amount of protein per sample. Data are expressed as means ± SEM (n = 6 cell culture
replicates). *P<0.001 compared with control and AL-438 treated cells.
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6.5.4 Chondrocyte Marker Gene Expression in AL-438 treated ATDC5 Cells

Endpoint PCR of ATDC5 cDNA from Dex, Pred, and AL-438 treated cells revealed

that the expression of chondrocyte marker genes Coll II, Coll X and aggrecan was

reduced by Dex. Pred caused a small reduction in aggrecan expression, but no

changes in expression were observed in AL-438 treated cells. Analysis by qPCR

confirmed a significant reduction in aggrecan expression with Dex (3.5-fold

reduction; p<0.001), and with Pred (1.36-fold; p<0.001), but no effect on aggrecan

expression by AL-438 (Figure 6.6).

Figure 6.6 Chondrocyte marker gene expression in ATDC5 cells. A) RT-PCR
of Coll II, Coll X, and aggrecan in ATDC5 cells treated with Dex, Pred or AL-438
(10-6M) for 96h. (B) qRT-PCR of aggrecan gene expression in ATDC5 cells treated
with Dex, Pred or AL-438 (10-6M) for 96h. All data are shown as the mean relative
gene expression ± SEM (n=6 cell culture replicates run in triplicate) and normalised to
GAPDH mRNA levels. ***p<0.001; **p<0.01 compared with control treated cells.
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6.5.5 Anti-inflammatory Efficacy of AL-438 in ATDC5 Cells

LPS induced IL-6 production in ATDC5 cells and this induction was reduced by the

co-incubation of Dex or AL-438 by 58.1% and 55.4%, respectively. These results

were significantly different from IL-6 levels in LPS-only treated cells (p<0.001), but

not significantly different from each other (Figure 6.7). Interestingly, levels of IL-1β

and TNF- were undetected in control and test samples (data not shown). These

results demonstrate that AL-438 has a similar anti-inflammatory efficacy to Dex in

ATDC5 cells.

Figure 6.7 LPS-induced IL-6 production in ATDC5 cells. ATDC5 cells were
grown in 10µg/ml lipopolysaccharide (LPS) (Lot 104K4036; from EColi 0127:B8;
Sigma) with or without Dex or AL-438 (10-6M) for 24h. The medium was removed
and analysed for levels of IL-1, IL-6 and TNF-α by Luminex technology. Data are
expressed as means ±S.E.M. (n = 6). ***p < 0.001 compared with LPS treated cells.
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6.5.6 Longitudinal Bone Growth and Assessment of Maturational Zones

Until day 7 of culture, foetal mouse metatarsals treated with Dex or AL-438 grew at a

similar rate to controls. After day 7, Dex treated metatarsals were significantly shorter

than controls (18.5% shorter at day 10 (p<0.05) and 22.2% shorter at day 12

(p<0.01)), whereas the growth of the AL-438 treated metatarsals continued to parallel

the growth of the controls (Figure 6.8A). The lengths of the proliferating,

hypertrophic and mineralising zones were measured on histological sections of 12-

day-old metatarsals (Table 6.1), using Von Kossa staining to identify mineralisation,

and ALP staining to identify the hypertrophic and proliferating regions (Figure 6.8B

and C). The lengths of the proliferating and hypertrophic zones did not significantly

change between treatments, however, Dex significantly reduced the length of the

mineralising zone (57% of control; p<0.05).
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Figure 6.8 Effect of AL-438 on the growth of murine metatarsals (A) Effect of
Dex or AL-438 (10-6M) on the growth of metatarsals isolated from the hind legs of
18-day old foetal Swiss mice and cultured over a 12-day period ( = Control; ♦ = 
AL-438; ■ = Dex) Data are expressed as mean ± SEM (n = 6). **p<0.01 compared
with controls; *p<0.05 compared with controls. (B) The mineralisation zone was
measured by Von Kossa staining of 12-day old metatarsal sections. (C) The length of
the hypertrophic and mineralising zone was defined by ALP staining, and the
proliferating zone was deduced by subtracting the total length of ALP staining from
the entire length of the bone (Scale bars = 200µm).

Treatment Mineralising zone Hypertrophic zone Proliferating zone

Control 1.29 +/- 0.08 0.68 +/- 0.09 0.84 +/- 0.02

Dexamethasone 0.74 +/- 0.19 * 0.77 +/- 0.12 0.71 +/- 0.05 a

AL-438 1.30 +/- 0.07 0.56 +/- 0.06 0.80 +/- 0.03

Table 6.1 – Lengths of the proliferating, mineralising and hypertrophic zones in
murine metatarsals treated with Dex or AL-438. Data are expressed in mm ± SEM
(n = 6). *P<0.05 compared with controls; aP = 0.06 compared with controls.
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6.5.7 Effect of AL-438 on Chondrocyte Proliferation in Metatarsals

To study the effect of AL-438 on chondrocyte proliferation on a more physiological

level, the number of proliferating cells in murine metatarsals was determined by BrdU

incorporation analysis (Figure 6.9) The proliferation index in control metatarsals was

significantly higher than metatarsals treated with either Dex (76%; p<0.001) or AL-

438 (80%; p<0.001).

Figure 6.9 Histological assessment of chondrocyte proliferation in metatarsals
treated with Dex or AL-438 BrdU-labeled cells in control, Dex-treated and AL-438-
treated metatarsals cultured for 12d. Note the decreased number of proliferating cells
in the Dex- and AL-438 treated metatarsals. The proliferation Index was calculated
by dividing the total number of BrdU positive cells by the total section area in mm2.
***p<0.001 compared with controls.

6.6 Discussion

Glucocorticoids are the most effective anti-inflammatory agents known. However, in

children, their long-term use leads to growth retardation through a combination of

GC-mediated effects on the systemic GH/IGF-1 axis as well as direct effects on the

growth plate (Ahmed & Mushtaq, 2002). Infusion of GC directly into the growth

plate results in a decrease in the ipsilateral tibial growth rate with no effects on the

contralateral limb, suggest the possibility of a mechanism intrinsic to the epiphyseal

growth plate (Baron et al., 1992).
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The search for a novel GC that has the anti-inflammatory properties of conventional

steroids without one or more of the side-effects has been a long-standing goal.

Previous efforts have concentrated primarily on modifying the steroid backbone,

albeit with little success. Deflazacort, a D-ring substituted steroid, was originally

hailed as a powerful anti-inflammatory molecule exhibiting reduced activity in bone

and glucose metabolism (Miner 2002). Although, initial clinical data supported this

notion (Canalis et al, 1992), subsequent trials that adjusted the steroid dose to

maintain equivalent anti-inflammatory efficacy resulted in the need for higher levels

of deflazacort at which the advantages of deflazacort disappeared (Markham et al.,

1995). The discovery of specific transcription factors (NFB and AP-1) that bind to

the GR and which can up- or down-regulate specific inflammatory genes initiated the

search for ligands that could induce selective transcription (Diamond et al., 1990;

Jonat et al., 1990).

AL-438 is a specific, non-steroidal ligand for the GR that exhibits a unique profile,

both in vivo and in vitro. It retains full anti-inflammatory activity but has reduced

negative effects on osteoblasts compared to Pred (Miner 2002; Coghlan et al., 2003;

Rosen and Miner, 2005). In this study, incubating ATDC5 cells with AL-438 had no

effect on cell proliferation, cell number or proteoglycan synthesis, whereas, as found

in previous studies, these factors were significantly reduced by both Dex and Pred

(Mushtaq et al., 2002; Fujita et al., 2004). The finding that Dex and Pred promoted

ALP activity is in concordance with the pro differentiating effects of Dex and Pred,

and has previously been reported by us (Mushtaq et al., 2002). The increase in ALP

activity observed with AL-438 suggests that the bone-sparing effects seen with AL-
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438 are not due to direct effects on chondrocyte differentiation, but may be due to

reduced effects on chondrocyte proliferation compared to Dex and Pred. The lack of

effect of Dex on ATDC5 apoptosis is in agreement with previous studies (Mushtaq et

al., 2002) but at variance with other chondrocyte studies (Chrysis et al., 2005),

suggesting a cell type dependent effect. Studies measuring the bone turnover marker

osteocalcin in the human osteoblast-like cell line MG-63 have shown that AL-438 is

unable to inhibit osteocalcin expression as efficiently as Pred (Coxam et al., 1996). In

addition, AL-438 has been shown to exhibit a weak inhibition of osteoprotegerin in

MG-63 cells compared to other GCs (Coghlan et al., 2003). The differential effect on

ATDC5 cell progression between AL-438 and Dex and Pred may be due to the fact

that AL-438 is qualitatively different in terms of its ability to activate or repress gene

expression. Interestingly, none of the compounds had an effect on ATDC5

maturation in terms of proliferation, ALP activity or proteoglycan production during

the terminal differentiation period, a finding that has been reported previously

(Mushtaq et al., 2002).

There are at least three distinct mechanisms by which GCs can regulate gene

transcription. Firstly, GCs can bind to a cytosolic GR which translocates to the

nucleus and, in the case of positive regulation, transactivates through cis-activating

palindromic glucocorticoid response elements (GREs) located in the promoter region

of responsive genes. Secondly, GCs are able to bind to negative GREs resulting in the

repression of gene transcription. However, GCs decrease the transcription of genes

involved in the inflammatory process that have no identifiable GREs in their promoter

regions, suggesting that an alternative mechanism must mediate this inhibitory effect.

There is now evidence to suggest that GCs may control inflammation predominantly



Chapter 6 The Growth Plate Sparing Effects of the Novel GR Ligand, AL-438

206

through the trans-repression of transcription factors that regulate inflammatory gene

repression, such as activator protein-1 (AP-1), NFĸB, and nuclear factor of activated 

T-cells (NF-AT) (Belvisi et al., 2001).

There is now increasing acceptance of the hypothesis that the side effects of steroids

are likely to be due to the transactivation of genes (such as those involved in lipid and

muscle metabolism) through binding of the GR dimers to DNA, whereas the anti-

inflammatory effects may be due to the binding of a single GR to transcription factors

or corepressors, resulting in the repression of pro-inflammatory genes such as IL-1,

IL-6 and TNF-α (Figure 6.9). The proposed mechanism of action of AL-438 is based

on this hypothesis, and is thought to result from changes in the interaction of the GR

with gene-specific transcriptional cofactors.

Upon binding to the GR, AL-438 induces a unique change to its structural

conformation, which is completely different than those induced by steroids such as

Pred or Dex (Coghlan et al., 2003). These structural changes lead to a reduction in

co-factor interactions between the GR and co-factors such as PGC-1, which is

involved in hepatic glucose production (Herzig et al., 2001; Yoon et al., 2001), but do

not change the interactions between GR and GRIP-1, a co-factor which plays a role in

the repression of pro-inflammatory genes (Rogastsky et al., 2001; Coghlan et al.,

2003) (Figure 6.9). This hypothesis may explain the reported maintenance of anti-

inflammatory activity with AL-438 but also its reduced effects on ATDC5 cells as

found in this study.
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Figure 6.9 Proposed mechanism of action of AL-438 Upon binding to the GR,
AL-438 induces a unique change to its structural conformation, which is different than
that induced by Dex. These structural changes lead to a reduction in co-factor
interactions between the GR and co-factors such as PGC-1, which is involved in
hepatic glucose production, but do not change the interactions between the GR and
cofactors involved in the inflammatory response, such as GRIP-1, a co-factor which
plays a role in the repression of pro-inflammatory genes.

The proposed mechanism of action of AL-438 is also supported by the finding that as

opposed to Dex, AL-438 does not have a detrimental effect on metatarsal bone

growth. This finding confirms bone-sparing results from previous studies which used

calcein and tetracycline labelling in rats to show that AL-438 treatment was not

associated with the level of reduction in bone formation that was associated with Pred
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(Coghlan et al., 2003). This study also measured the expression of bone formation

markers osteocalcin and osteoprotegerin, and found that these genes were not, or only

weakly repressed by AL-438 compared to Pred. The fact that the length of the

mineralising zone, but not the proliferating or hypertrophic zones, was significantly

shorter in Dex treated bones suggests that Dex is acting directly on the terminally

differentiated chondrocytes to reduce overall bone length. A similar finding has

previously been found by our group (Mushtaq et al., 2004) and others (Picherit et al.,

2000), and may be caused by Dex interfering with genes involved in the

mineralisation process.

The finding that AL-438 maintains a similar anti-inflammatory efficacy to Dex in

ATDC5 cells was important, as it proved that AL-438 was still fully efficacious as an

anti-inflammatory agent in chondrocytes despite the fact that it was much less harmful

than Dex or Pred. The anti-inflammatory efficacy of AL-438 has previously been

demonstrated both in vivo using the rat carrageenan-induced paw edema assay and the

adjuvant arthritis model in rats, and in vitro in HepG2 cells and human skin

fibroblasts (Coghlan et al., 2003). In these studies, AL-438 and Pred were equally

effective at inhibiting an inflammatory response, although Pred was slightly more

potent, with an ED50 of 1mg/kg compared to 9mg/kg for AL-438 in the adjuvant

arthritis model.

To compensate for the fact that AL-438 is slightly less potent than Pred, a saturating

dose of 10-6M was used for all compounds in this study. In addition, this

pharmacological concentration of Dex and Pred is similar to that found in chronic GC

therapy and has been shown previously by us, and others, to inhibit both chondrocyte
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proliferation and longitudinal bone growth (Mushtaq et al., 2002 and 2004). At 10-

6M the compounds fully occupied the receptor (Elmore et al., 2001; Coghlan et al.,

2003), therefore, allowing their full efficacy as anti-inflammatory agents to be

measured. Although AL-438 has been shown to have similar affinity for the GC-

receptor across a wide array of tested cell types (Elmore et al., 2001; Coghlan et al.,

2003; plus unpublished data) it also exhibits some affinity for the mineralocorticoid

receptor at this concentration. This affinity is comparable to that of 10-6M Pred, and

when tested against a variety of other nuclear and non-nuclear receptors, kinases and

enzymes, AL-438 displayed no affinity up to a concentration of 10M (Coghlan et al.,

unpublished). In addition to interactions with its receptor, GCs are also known to

have non–genomic effects that are not mediated by the GC-receptor (Song et al.,

2005). Although all indications are that AL-438 acts exclusively through the GC-

receptor (Coghlan et al., 2003), further studies are required to establish the precise

cellular events involved in AL-438 actions. Nevertheless, the data from this study

suggest that, when studied at a concentration (10-6M) that fully occupies the GC-

receptor, allowing its full efficacy as a GC-receptor agonist, AL-438 may separate

anti-inflammatory activity from a number of bone growth-related side effects,

including chondrocyte proliferation and longitudinal bone growth.

6.7 Conclusions

This study has used a well-established model of longitudinal bone growth to show

that the non-steroidal anti-inflammatory agent, AL-438 is less detrimental to

chondrocyte proliferation and bone growth at the level of the growth plate.

Importantly, it has also been shown that AL-438 maintains a similar anti-

inflammatory efficacy to Dex, thereby confirming that a non-steroidal anti-
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inflammatory agent is capable of selectively maintaining its anti-inflammatory effects

without negatively affecting bone growth. The reduced skeletal side-effect profile of

this novel ligand could prove important in the search for new anti-inflammatory

treatments for children, however, it should be emphasised that these studies are based

on in vitro analysis in mouse, and it still remains to be shown whether these results

will translate into the human.
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7.1 General Discussion

GCs have been used in the treatment of inflammatory and autoimmune conditions for

over 50 years. However, their use is limited by the wide range of side effects

associated with long term therapy. These can include hyperglycaemia, behavioural

changes, weight redistribution, osteoporosis, and, in children, growth retardation. The

precise mechanisms by which GCs cause growth retardation in the developing

skeleton are still unclear, however, it is thought that they may act directly upon the

chondrocytes of the epiphyseal growth plate to delay the process of endochondral

ossification (Baron et al., 1994), and consequently longitudinal bone growth.

The work within this thesis has attempted to further our understanding of the

mechanisms by which GCs alter chondrocyte dynamics within the growth plate,

through a range of in vitro and in vivo studies. Microarray analysis of the murine

chondrogenic ATDC5 cell line treated with Dex highlighted the importance of ECM

genes in the chondrocyte response to GCs. An interesting finding was the

upregulation of SGCK following Dex treatment. SGCK has been shown to play an

important role in the maintenance of cells within the cell cycle, by phosphorylating

and consequently inhibiting the activation of Foxo3a, a member of the Forkhead

family of transcription factors (Brunet et al., 2001). Under normal circumstances,

Foxo3a targets the activation of the CDKI p27, causing cells to exit the cell cycle and

progress towards terminal differentiation and apoptosis. By inhibiting Foxo3a

activity, SGCK causes the cells to continue proliferating, indicating that SGCK is a

regulator of cell survival (Tessier et al., 2006). SGCK has previously been shown to

be upregulated in osteoblasts in response to Dex (Leclerc et al., 2004), however, there

have been no previous reports of SGCK expression within the growth plate. The fact
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that SGCK expression is increased in response to environmental and toxicological

stresses, and inactivates proteins involved in the exit from the cell cycle, suggests that

SGCK may be acting as a survival factor in response to Dex in this study.

A number of ECM genes were significantly upregulated following Dex treatment, a

finding which has previously been reported in Dex-treated primary chondrocytes

(James et al., 2007). This finding supports the recent hypothesis that GCs may be

causing premature differentiation of proliferating chondrocytes, therefore preventing

the accumulation of a sufficient proliferative pool of chondrocytes available for

differentiation and subsequent hypertrophy (Mustaq et al., 2002). The fact that

expression of the binding protein lipocalin 2 was also increased after Dex treatment

also supports this hypothesis.

In this study, lipocalin 2 expression was significantly increased in proliferating

ATDC5 cells treated with Dex. Lipocalin 2 has previously been shown to be

expressed at high levels in hypertrophic chondrocytes, and is known to be induced by

a number of factors including LPS, FGF, PGE2, and Dex (Ulivi et al., 2006). This

study confirmed that Dex was acting directly at the GRE on the lipocalin 2 promoter

to increase lipocalin 2 expression and reduce chondrocyte proliferation. These

findings, along with the fact that lipocalin 2 increased expression of the hypertrophic

chondrocyte marker Coll X, suggests that lipocalin 2 could also be causing premature

differentiation in chondrocytes. Interestingly, this effect was amplified synergistically

with the addition of Dex, indicating the possibility that Dex may be acting through

lipocalin 2 to reduce chondrocyte proliferation and cause growth retardation through

the premature differentiation of proliferative chondrocytes.
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The proliferation and differentiation of growth plate chondrocytes is ultimately under

control of cell cycle regulators such as cyclins and CDKs, and their inhibitors, the

CDKIs. The rate of chondrocyte proliferation and the size of the proliferative pool in

the growth plate can vary widely between species at the same stage of development,

between bones within a single animal, and even between the proximal and distal ends

of the same bone (Beier et al., 1999). In order to test the hypothesis that GCs reduced

chondrocyte proliferation by causing them to differentiate prematurely, the expression

of a number of CDKIs was analysed. Of all the CDKIs tested, only p21 expression

increased during ATDC5 differentiation, and so was chosen for further analysis. As a

CDKI, increased p21 expression causes cells to exit the cell cycle at the G1/S

checkpoint, and progress towards terminal differentiation (Negishi et al., 2001).

Consequently, if the theory was correct, Dex should have caused an increase in p21

expression. In ATDC5 cells, both p21 protein and gene expression was increased

following Dex treatment, adding further evidence to the theory that one possible

mechanism of GC-induced growth retardation is an increase in chondrocyte

differentiation. However, this hypothesis was not transferable to an in vivo model of

growth in mice lacking a functional p21 gene, and p21-/- mice injected with Dex

experienced comparable growth retardation to their wildtype littermates. A similar

finding has previously been reported in p27-/- mice (Emons et al., 2006), and suggests

that, although control of the cell cycle may play an important role in GC effects at the

cellular level, it is likely that many other factors are involved.

Although a number of mechanisms have been postulated for GC induced growth

retardation, there are still many questions which must be answered before novel bone-
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sparing therapies are clinically available. Over the last 20 years, however, an intense

effort has been made by both science and industry to develop new drugs that maintain

the efficacy of commonly used GCs such as Pred and Dex, but display reduced

adverse effects. In the late 1990’s, hopes were raised with the discovery of the steroid

Deflazacort, which displayed reduced effects on bone and glucose metabolism both in

vitro and in vivo (Canalis et al., 1992). However, when used at a dose that displayed

equal anti-inflammatory efficacy to Dex and Pred, these side-effects re-appeared.

Since then, our increased knowledge of GR pharmacology has allowed us to develop

more sophisticated ligands that are able to separate anti-inflammatory properties from

adverse side effects. AL-438 is a selective glucocorticoid receptor modulator with a

similar anti-inflammatory efficacy to Dex and Pred in vivo and in vitro, but with

reduced negative effects on glucose metabolism, bone turnover, and as found in this

study, bone growth (Coghlan et al., 2003). The growth-sparing effects of AL-438

seemed to be due to reduced effects on chondrocyte proliferation and proteoglycan

production, and were observed in both in vivo and organ culture models of bone

growth. The mechanism of action of AL-438 is based on the theory that most GCs

exert their anti-inflammatory properties through the repression of pro-inflammatory

genes such as TNF- and IL-1, and their negative properties through the activation of

genes such as PGC-1, which is involved in glucose production. AL-438 causes a

unique conformational change in the GR which permits the binding of co-repressors,

but not co-activators. Consequently, AL-438 can successfully inhibit pro-

inflammatory genes, but cannot activate many genes that are associated with the

adverse effects of other GCs.
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As discussed in this thesis, the effects of Dex on endochondral ossification and

growth plate dynamics are severe. Long-term therapy in juveniles can ultimately lead

to growth retardation, due to a reduction in growth plate width caused by decreased

chondrocyte proliferation and possible premature differentiation of proliferative

chondrocytes. Due to these effects, a concerted effort has been made to develop new

anti-inflammatory agents with reduced effects on bone growth. As outlined herein,

AL438, has reduced effects on bone growth compared to Dex, but maintains similar

anti-inflammatory efficacy. However, AL-438 has not yet progressed to be clinically

available, and therefore there is still a pressing need for novel ligands that maintain

anti-inflammatory efficacy but have minimal effects on growth plate dynamics and

longitudinal bone growth.

7.2 Future Directions

The results presented within this thesis suggest possible mechanisms by which GCs

cause growth retardation at the level of the growth plate. However, much further

work is necessary if these mechanisms are to be confirmed. The upregulation of ECM

genes such as DMP1 and CTGF was an interesting finding, and suggests that GCs

could inhibit skeletal growth through an increase in the differentiation of proliferative

chondrocytes. Although this finding has previously been reported at the gene

expression level (James et al., 2007), the upregulation of DMP1 and CTGF protein

has not yet been described. In addition, it is important to study the effects of

increased DMP1/CTGF expression in chondrocytes, possibly through stable

transfection techniques, and equally, the knock-down of DMP or CTGF by siRNA

could give an insight into the role of these genes in mediating GC-effects in

chondrocytes. The up-regulation of SGCK was also an interesting finding, and could
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warrant further investigation, particularly due to the fact that the downstream target of

SGCK, Foxo3a, has been linked to CDKI inhibition and cell survival. A potential

future study would be to analyse Foxo3a and SGCK expression in ATDC5 cells and

primary chondrocytes, both at different stages of differentiation, and following Dex

treatment. The up-regulation of SGCK should cause an inhibition in Foxo3a

expression, and provides a potential survival mechanism for chondrocytes following

Dex treatment.

The role of lipocalin 2 in GC-induced growth retardation is also an interesting issue

which requires further investigation. An obvious question is whether Dex maintains

its anti-proliferative effects in ATDC5 cells lacking a functional lipocalin 2 gene.

This could be addressed by siRNA knock-down studies, and if the hypothesis was

correct, Dex-effects would be reduced in ATDC5 cells in the absence of lipocalin 2.

Another area which should be investigated are the signalling mechanisms involved in

lipocalin 2 induction.  Work in this thesis has shown that p38 and NFκB signalling do 

not play a role in Dex-induced lipocalin 2 expression, but the finding that the serine

protease inhibitor TLCK blocks lipocalin 2 induction suggests that other signalling

pathways such as PI3-Kinase may be involved. Although lipocalin 2 seems be

important for GC effects on chondrocytes in vitro, it may also be interesting to

analyse its role in growth retardation on a more physiological level. The murine

foetal metatarsal model could be used to study the effects of recombinant lipocalin 2

on Dex-induced growth retardation, and following growth studies, histological

analysis of chondrocyte dynamics and mineralisation could be carried out. If

successful, these studies could be extended into an in vivo model of GC-induced

growth retardation in lipocalin 2-/- mice.
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The lack of involvement of p21 in reduced skeletal growth was disappointing, and

suggests that there may be considerable redundancy between the CDKIs. It is

possible that a number of CDKIs and other cell cycle regulators may act together to

control chondrocyte proliferation, and it would therefore be interesting to study the

growth of mice with multiple null mutations such as p21-/-/p27-/-. Due to the

importance of cell cycle regulation in the control of endochondral ossification it

would be interesting to analyse the expression of other factors involved in the cell

cycle, such as CDKs, which should be down-regulated following Dex treatment in

chondrocytes.
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Appendix 1

Gene Ontology of Dex-Responsive Chondrocyte Genes

Table 1 Up-regulated Genes

Affymetrix ID Gene Name Gene Ontology Fold
Change

1427747_a_at lipocalin 2 transporter activity, binding 14.5
1448550_at lipopolysaccharide binding

protein
Transport, lipid transport, defense
response to bacterium; LPS
binding
lipid binding; extracellular space
membrane, integral to membrane

7.9

1428942_at metallothionein 2 zinc ion homeostasis, nitric oxide
mediated signal transduction,
detoxification of copper ion; zinc
ion binding, metal ion binding

5.1

1416125_at FK506 binding protein 5 protein folding; peptidyl-prolyl cis-
trans isomerase activity binding,
protein binding, isomerase activity;
cytoplasm, mitochondrial inner
membrane

3.8

1442025_a_at similar to promyelotic
leukemia zfp

3.8

1434202_a_at hypothetical protein
MCG58343 (cDNA sequence
BC055107)

3.6

1418187_at calcitonin receptor activity
modifying protein

intracellular protein transport,
regulation of G-protein coupled
receptor protein signalling
pathway; receptor activity, protein
transporter activity, coreceptor,
soluble ligand activity;
extracellular space,
integral to membrane

3.5

1448881_at haptoglobin Proteolysis, acute-phase response;
serine-type endopeptidase activity
chymotrypsin activity, trypsin
activity, hemoglobin binding;
extracellular space

3.4

1416953_at connective tissue growth
factor

cartilage condensation, ossification,
angiogenesis, regulation of cell
growth, DNA replication, cell
adhesion, cell-matrix adhesion,
integrin-mediated signalling,
pathway, fibroblast growth factor
receptor signalling pathway, cell
migration, cell differentiation;
integrin binding, protein binding,
insulin-like growth factor binding,
heparin binding; extracellular
region
proteinaceous extracellular matrix

3.3

1425281_a_at delta sleep inducing peptide
(TSC22 domain family 3)

regulation of transcription, DNA-
dependent anti-apoptosis;
transcription factor activity;

3.1

1423233_at CCAAT/enhancer binding Transcription, regulation of 3.1
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protein delta transcription, DNA-dependent;
DNA binding, transcription factor
activity
protein binding, protein
homodimerization activity
sequence-specific DNA binding
protein heterodimerization activity
protein dimerization activity;
nucleus

1449851_at chemokine ligand 2 (Period
homolog 1)

two-component signal transduction
system (phosphorelay)
transcription
regulation of transcription, DNA-
dependent signal transduction,
circadian rhythm, negative
regulation of transcription,
rhythmic process; signal transducer
activity
protein binding; nucleus

3.0

1419874_x_at promyelotic leukaemia zinc
finger protein

skeletal development, mesonephros
development, regulation of
transcription, DNA-dependent
central nervous system
development, negative regulation
of cell proliferation, embryonic
pattern specification,
anterior/posterior pattern
formation, hemopoiesis
myeloid cell differentiation,
embryonic limb morphogenesis,
leg morphogenesis, embryonic
hindlimb/forelimb morphogenesis,
positive regulation of apoptosis,
regulation of transcription, negative
regulation of myeloid cell
differentiation, negative regulation
of transcription, DNA-dependent
male germ-line stem cell division;
nucleic acid binding, DNA binding
protein binding, zinc ion binding
specific transcriptional repressor
activity, protein homodimerization
activity, metal ion binding;
intracellular, nucleus, nuclear
speck
transcriptional repressor complex

2.9

1422557_s_at metallothionein 1 zinc ion homeostasis, nitric oxide
mediated signal transduction,
detoxification of copper ion; zinc
ion binding, metal ion binding;
lysosome, cytosol

2.8

1418091_at transcription factor CP2 like 1 negative regulation of transcription,
from RNA polymerase II promoter,
cell morphogenesis, epithelial cell
maturation, regulation of
transcription, DNA-dependent
cytoplasm organization and
biogenesis, salivary gland
development determination of adult
life span positive regulation of

2.7
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growth; DNA binding, general
transcriptional repressor activity;
nucleus, transcription factor
complex, cytoplasm, membrane

1440235_at Integrin alpha 10 cell adhesion, integrin-mediated
signalling pathway; integrin
complex

2.6

1422878_at synaptotagmin 12 transport; transporter activity;
synaptic vesicle, membrane,
integral to membrane, synapse

2.5

1416041_at serum/glucocorticoid
regulated kinase

protein amino acid
phosphorylation, apoptosis,
response to DNA damage stimulus;
nucleotide binding, protein kinase
activity
protein kinase activity, protein
serine/threonine kinase activity,
protein binding, ATP binding,
kinase activity, transferase activity;
nucleus, endoplasmic reticulum

2.5

1428471_at sorbin and SH3 domain
containing 1

Transport, insulin receptor
signalling pathway, glucose
transport, stress fiber formation,
focal adhesion formation; insulin
receptor binding
protein binding, protein kinase
binding; stress fiber nucleus, cell-
cell adherens junction, cell-
substrate adherens junction,
membrane, lipid raft

2.5

1450826_a_at serum amyloid A 3 acute-phase response; lipid
transporter activity; extracellular
space

2.5

1455048_at immunoglobulin superfamily
member 2

integral to membrane 2.4

1423274_at integrator complex subunit 6 snRNA processing; nucleic acid
binding, protein binding, ATP
binding, ATP-dependent helicase
activity; extracellular space,
nucleus, integrator complex

2.3

1443745_s_at dentin matrix protein 1 Ossification, extracellular matrix
organization and biogenesis;
proteinaceous extracellular matrix,
extracellular space, nucleus

2.3

1426236_a_at glutamate ammonia ligase glutamine biosynthetic process
nitrogen compound metabolic
process; catalytic activity
glutamate-ammonia ligase activity
ligase activity; mitochondrion

2.3

1422573_at AMP deaminase 3 nucleotide metabolic process,
purine ribonucleoside,
monophosphate biosynthetic
process; AMP deaminase activity
hydrolase activity, deaminase
activity

2.1

1449254_at sectreted phosphoprotein 1 Ossification, anti-apoptosis,
inflammatory response, cell
adhesion, cell-matrix adhesion.
negative regulation of bone
mineralisation, leukocyte

2.0
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chemotaxis, T-helper 1 type
immune response, positive
regulation of T cell proliferation,
regulation of myeloid cell
differentiation, induction of
positive chemotaxis; cytokine
activity, integrin binding, protein
binding
growth factor activity; extracellular
region proteinaceous extracellular
matrix, extracellular space,
cytoplasm, apical part of cell

1418269_at lysyl oxidase-like 3 protein-lysine 6-oxidase activity,
scavenger receptor activity, copper
ion binding, oxidoreductase
activity,
metal ion binding; extracellular
space, membrane

2.0

1448830_at dual specificity phosphatase 1 protein amino acid
dephosphorylation, cell cycle
dephosphorylation; phosphoprotein
phosphatase activity protein
tyrosine phosphatase activity,
protein binding, protein
tyrosine/serine/threonine,
phosphatase activity, hydrolase
activity, phosphoric monoester,
hydrolase activity, MAP kinase
phosphatase activity;

2.0

1417507_at cytochrome b-561 electron transport; ferric-chelate
reductase activity, transporter
activity, iron ion binding, metal ion
binding; nucleus

1.9

1434203_at hypothetical protein
MCG58343 (cDNA sequence
BC055107)

1.9

1438953_at c-fos induced growth factor 1.9
1435943_at dipeptidase 1 Proteolysis; membrane dipeptidase

activity, peptidase activity,
metallopeptidase activity,
dipeptidyl-peptidase activity, zinc
ion binding, hydrolase activity,
dipeptidase activity, metal ion
binding, GPI anchor binding;
extracellular space, endoplasmic
reticulum, microsome membrane

1.9

1434642_at hydroxysteroid (17-beta)
dehydrogenase 11

steroid biosynthetic process,
metabolic process, lipid
biosynthetic process;
oxidoreductase activity;

1.9

1448842_at Cysteine dioxygenase 1 L-cysteine catabolic process to
taurine, taurine metabolic process,
L-cysteine metabolic process; iron
ion binding, electron carrier
activity
oxidoreductase activity,
oxidoreductase activity, acting on
single donors with incorporation of
molecular oxygen, incorporation of
two atoms of oxygen, cysteine

1.8
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dioxygenase activity; cytosol
1439755_at signal-induced proliferation-

associated 1 like 1
1.8

1416383_a_at pyruvate carboxylase Gluconeogenesis, metabolic
process, lipid biosynthetic process;
nucleotide binding, catalytic
activity,
pyruvate carboxylase activity, ATP
binding, biotin binding, ligase
activity, manganese ion binding;
cytoplasm, mitochondrion,
mitochondrial inner membrane

1.8

1451596_a_at sphingosine kinase 1 blood vessel development, protein
kinase C activation, intracellular
signalling cascade, brain
development, positive regulation of
cell proliferation, negative
regulation of apoptosis, sphingoid
catabolic process, positive
regulation of fibroblast
proliferation; magnesium ion
binding, DNA binding,
diacylglycerol kinase activity,
protein binding, calmodulin
binding, sphinganine kinase
activity, kinase activity, D-erythro-
sphingosine kinase activity;
membrane fraction, soluble
fraction, cytoplasm, cytosol

1.8

1424051_at procollagen type IV phosphate transport, cell adhesion,
negative regulation of
angiogenesis; structural molecule
activity, extracellular matrix
structural constituent, conferring
tensile strength; proteinaceous
extracellular matrix, collagen type
IV, baSEMent membrane,
extracellular space, cytoplasm

1.8

1436789_at cyclin J-like regulation of progression through
cell cycle; nucleus

1.8

1460011_at cytochrome p450 cell fate determination, electron
transport, male meiosis,
spermatogenesis, proximal/distal
pattern formation, embryonic limb
morphogenesis, retinoic acid
metabolic process, retinoic acid
receptor signalling pathway;
monooxygenase activity, iron ion
binding, oxidoreductase activity,
heme binding, metal ion binding;
endoplasmic reticulum, microsome,
membrane

1.7

1452141_a_at selenoprotein P selenium metabolic process, brain
development, locomotory
behaviour, post-embryonic
development, sexual reproduction
growth; selenium binding;
extracellular space

1.7

1433832_at unc-84 homolog B (C.
elegans)

nuclear membrane organization
and biogenesis; nuclear membrane

1.7
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organization and biogenesis;
nuclear chromosome, telomeric
region, nuclear chromosome,
telomeric region, condensed
nuclear chromosome, condensed
nuclear chromosome, nucleus,
nuclear envelope, nuclear envelope
membrane, integral to membrane

1418932_at nuclear factor, interleukin 3,
regulated

regulation of transcription, DNA-
dependent regulation of
transcription, DNA-dependent;
DNA binding, transcription factor
activity, sequence-specific DNA
binding, protein dimerization
activity; nucleus

1.7

1426195_a_at Cystatin C endopeptidase inhibitor activity,
cysteine protease inhibitor activity;
extracellular space;

1.7

1422620_s_at phosphatidic acid phosphatase
2a

protein amino acid
dephosphorylation, diacylglycerol
biosynthetic process, sphingosine
metabolic process, ceramide
metabolic process, signal
transduction, protein kinase C
activation, negative regulation of
cell proliferation, regulation of
lipid metabolic process, androgen
receptor signalling pathway,
phospholipid dephosphorylation;
phosphatidate phosphatase activity
hydrolase activity; membrane
fraction, plasma membrane
integral to plasma membrane

1.7

1422478_a_at acetyl coenzyme A synthetase
2

acetyl-CoA biosynthetic process,
metabolic process; catalytic
activity,
acetate-CoA ligase activity, AMP
binding, ligase activity; cytoplasm
integral to membrane

1.6

1417936_at chemokine ligand 9 Chemotaxis, immune response,
signal transduction; cytokine
activity
chemokine activity; extracellular
region, extracellular space

1.6

1454675_at thyroid hormone receptor
alpha

cartilage condensation, ossification,
regulation of transcription, DNA-
dependent regulation of heart
contraction, organ morphogenesis,
negative regulation of
transcription; DNA binding,
transcription factor activity, steroid
hormone receptor activity, receptor
activity, ligand-dependent nuclear
receptor activity,
ligand-dependent nuclear receptor
activity, thyroid hormone receptor
activity, thyroid hormone receptor
activity, protein binding, zinc ion
binding, transcriptional repressor
activity, transcription regulator

1.6
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activity, sequence-specific DNA
binding, metal ion binding; nucleus

1449731_s_at nuclear factor of kappa light
chain gene enhancer

protein import into nucleus,
translocation, lipopolysaccharide-
mediated signalling pathway,
response to lipopolysaccharide,
regulation of cell proliferation,
response to exogenous dsRNA,
negative regulation of myeloid cell
differentiation, negative regulation
of Notch signalling pathway;
protein binding, nuclear
localisation sequence binding,
ubiquitin protein ligase binding,
NF-kappaB binding; nucleus,
cytoplasm, cytosol

1.6

1448489_at platelet activating factor 2 lipid catabolic process; catalytic
activity, 1-alkyl-2-
acetylglycerophosphocholine
esterase activity, hydrolase activity;
2-acetyl-1
alkylglycerophosphocholine
esterase complex

1.6

1447602_x_at sulfatase 2 sulfur metabolic process, metabolic
process, heparan sulfate
proteoglycan metabolic process;
arylsulfatase activity, calcium ion
binding, N-acetylglucosamine-6-
sulfatase activity, sulfuric ester
hydrolase activity, hydrolase
activity
metal ion binding; extracellular
space, endoplasmic reticulum
cell surface

1.6

1424671_at pleckstrin homology domain
containing F

Apoptosis, ,induction of apoptosis,
regulation of mitochondrial,
membrane permeability; zinc ion
binding, metal ion binding; nucleus
lysosome

1.6

1437820_at forkhead-like 18 Transcription, regulation of
transcription, DNA-dependent
positive regulation of body size,
regulation of balance; DNA
binding
transcription factor activity,
sequence-specific DNA binding;
nucleus, transcription factor
complex

1.6

1451939_a_at sushi-repeat containing
protein

extracellular space 1.6

1435254_at plexin B1 multicellular organismal
development, positive regulation of
axonogenesis; receptor activity
protein binding; membrane
integral

1.6

1456312_x_at Gelsolin vesicle-mediated transport, actin
filament polymerization, actin
filament severing; actin binding
structural molecule activity,
calcium ion binding, protein

1.6
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binding; extracellular space,
cytoplasm, cytosol, cytoskeleton,
actin cytoskeleton, actin
cytoskeleton,
lamellipodium

1454849_x_at clusterin cell death; protein binding;
extracellular space

1.6

1441926_x_at transmembrane inner ear sensory perception of sound, inner
ear morphogenesis; membrane,
integral to membrane

1.6

1448321_at SPARC related modular
calcium binding 1

calcium ion binding; proteinaceous
extracellular matrix, baSEMent
membrane

1.6

1455078_at slingshot homolog 2 protein amino acid
dephosphorylation; actin binding,
phosphoprotein phosphatase
activity, protein tyrosine
phosphatase activity, protein
tyrosine/serine/threonine
phosphatase activity, hydrolase
activity, phosphoric monoester
hydrolase activity; cytoskeleton

1.6

1416825_at synotrophin acidic 1 neuromuscular junction
development; actin binding,
calcium ion binding, protein
binding,
calmodulin binding

1.6

1450678_at Integrin beta 2 cell adhesion, cell-matrix adhesion
integrin-mediated signalling,
pathway, integrin-mediated
signalling pathway, multicellular
organismal development,
neutrophil chemotaxis, cellular
extravasation
activated T cell proliferation;

1.5

1425894_at MAS-related GPR, member F signal transduction, G-protein
coupled receptor protein signalling
pathway; rhodopsin-like receptor
activity, signal transducer activity
receptor activity, G-protein coupled
receptor activity; membrane,
integral to membrane

1.5

1452296_at slit homolog 3 multicellular organismal
development, nervous system
development, axon guidance, organ
morphogenesis, organ
morphogenesis, cell differentiation;
receptor binding, calcium ion
binding, protein binding;
extracellular space

1.5

1426947_x_at procollagen type IV alpha 2 phosphate transport, cell adhesion;
structural molecule activity,
extracellular matrix structural,
constituent, protein binding
extracellular matrix structural
constituent conferring tensile
strength; proteinaceous
extracellular matrix, collagen
extracellular space, cytoplasm

1.5

1417872_at four and a half LIM domains multicellular organismal 1.5



Appendix

255

1 development, cell differentiation;
zinc ion binding, heme binding,
metal ion binding; nucleus

1428164_at nudix type motif 9 cation transport, ADP catabolic
process, IDP catabolic process;
magnesium ion binding, calcium
activated cation channel activity,
hydrolase activity, nucleoside-
diphosphatase activity, ADP-sugar
diphosphatase activity, manganese
ion binding, ADP-ribose
diphosphatase activity

1.5

1415874_at sprouty homolog 1 ureteric bud development,
induction of an organ, multicellular
organismal development,
regulation of signal transduction,
negative regulation of MAPK
activity, protein binding;
membrane

1.5

1420834_at vesicle-associated membrane
protein 2

membrane fusion, synaptic vesicle
exocytosis, vesicle-mediated
transport, calcium ion-dependent
exocytosis, calcium ion-dependent
exocytosis, regulation of
exocytosis; SNARE binding,
protein binding, calmodulin
binding, phospholipid binding;
synaptic vesicle membrane,
integral to membrane, integral to
membrane
synaptosome, secretory granule
synaptic vesicle membrane,
zymogen granule membrane
synapse

1.5

1455768_at Niemann pick type C2 cholesterol homeostasis; enzyme
binding; extracellular space

1.5

1437865_at spermatogenesis associated 13 intracellular signalling cascade,
regulation of Rho protein signal
transduction; guanyl-nucleotide
exchange factor activity, Rho
guanyl-nucleotide exchange factor
activity; intracellular

1.5

1455158_at Integrin alpha 3 neuron migration, cell adhesion
integrin-mediated signalling
pathway, fusion of sperm to egg,
plasma membrane memory;
receptor activity, protein binding;
integrin complex membrane,
integral to membrane, basolateral
plasma membrane, synaptosome

1.5

1427038_at preproenkephalin 1 behavioral fear response,
neuropeptide signalling pathway,
behaviour, sensory perception of
pain; opioid peptide activity

1.5

1421037_at neuronal PAS domain protein
2

two-component signal transduction
system
(phosphorelay)transcription,
regulation of transcription, DNA-
dependent signal transduction,
circadian sleep/wake cycle,

1.5
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regulation of transcription,
locomotor rhythm, rhythmic
process; two-component sensor
activity, DNA binding,
transcription factor activity, signal
transducer activity, transcription
regulator activity; nucleus

1421921_at Cysteine protease inhibitor endopeptidase inhibitor activity
serine-type endopeptidase inhibitor
activity

1.5
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Table 2 Down-Regulated Genes

Affmetrix ID Gene Name Gene Ontology Fold
Change

1418174_at D site albumin promoter
binding protein

Transcription, regulation of
transcription, DNA-dependent
regulation of transcription, DNA-
dependent, circadian rhythm,
rhythmic process; DNA binding
transcription factor activity,
sequence-specific DNA binding,
protein dimerization activity;
nucleus

2.6

1423607_at lumican protein binding, collagen binding;
proteinaceous extracellular matrix,
fibrillar collagen, extracellular
space

2.2

1451191_at cellular retinoic acid binding
protein II

Transport, embryonic forelimb
morphogenesis, retinoic acid
metabolic process; retinoic acid
binding, lipid binding, retinal
binding, cyclin binding; nucleus
cytoplasm

1.9

1423294_at mesoderm specific transcript proteolysis 1.9
1449855_s_at ubiquitin thiolesterase ubiquitin-dependent protein,

catabolic process, ubiquitin cycle,
adult walking behaviour, protein
deubiquitination, eating behaviour;
ubiquitin thiolesterase activity,
peptidase activity, cysteine-type,
peptidase activity, hydrolase
activity; intracellular

1.8

1449486_at carboxylesterase 1 catalytic activity, carboxylesterase
activity, serine esterase activity,
hydrolase activity, carboxylic ester
hydrolase activity; extracellular
space, endoplasmic reticulum

1.8

1448201_at sectreted frizzled-related
sequence protein 2

Somitogenesis, multicellular
organismal development,
multicellular organismal
development, anterior/posterior
pattern formation, Wnt receptor
signalling pathway, cell
differentiation; transmembrane
receptor activity; membrane

1.7

1450243_a_at down syndrome critical region
gene 1

calcium-mediated signalling 1.6

1428950_s_at nucleolar protein 8 nucleotide binding, nucleic acid
binding, RNA binding, protein
binding; nucleus, nucleolus

1.6

1454888_at prefoldin 4 protein folding, chaperonin-
mediated tubulin folding; protein
binding, unfolded protein binding;
cytosol, prefoldin complex

1.6

1425357_a_at gremlin 1 cell-cell signalling, organ
morphogenesis, proximal/distal
pattern formation, embryonic limb
morphogenesis; cytokine activity;
extracellular space

1.6
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1450756_s_at cullin 3 ubiquitin cycle, cell cycle; nucleus 1.6
1425806_a_at SRB7(suppressor of RNA

polymerase B)
regulation of transcription, DNA-
dependent regulation of
transcription from RNA
polymerase II promoter, positive
regulation of transcription from
RNA polymerase II promoter;
RNA polymerase II transcription
factor activity
transcription coactivator activity
DNA-directed RNA polymerase
activity, protein binding; mediator
complex, nucleus DNA-directed
RNA polymerase II, core complex

1.5

1417394_at Kruppel-like factor 4 (gut) Transcription, regulation of
transcription, DNA-dependent
negative regulation of
transcription; nucleic acid binding,
DNA binding,
transcription factor activity, zinc
ion binding, transcriptional
activator activity, transcriptional
repressor activity, metal ion
binding; intracellular, nucleus

1.5

1431056_a_at lipoprotein lipase lipid metabolic process; catalytic
activity, lipoprotein lipase activity,
lipid transporter activity, heparin
binding, hydrolase activity, GPI
anchor binding; extracellular space
membrane, chylomicron

1.5

1436993_x_at profilin 2 cytoskeleton organization and
biogenesis; actin cytoskeleton
organization and biogenesis; actin
binding, protein binding;
cytoskeleton, actin cytoskeleton

1.5

1437401_at IGF-1 Growth factor activity, hormone
activity, IGF-IR activity, protein
binding; anti-apoptosis, cell
development, glial cell
differentiation, IGF-IR pathway;
nervous system development;
organ morphogenesis; extracellular
region, extracellular space, IGF-IR
binding protein complex

1.5
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Appendix 2 - Vector Diagrams

pGEM-T-Easy Vector (Promega)

Vector Features

T7 RNA Polymerase transcription initiation site: 1
SP6 RNA Polymerase transcription initiation site: 141
T7 RNA Polymerase promoter (-17 to +3): 2999-3
SP6 RNA Polymerase promoter (-17 to +3): 139-158
Multiple cloning region: 10-128
LacZ start codon: 180
Lac operon sequences: 2996, 166-395
Lac operator: 200-216
Beta-lactamase coding region: 1337-2197
Phage f1 region: 2380-2835
Binding site of pUC/M13 Forward Sequencing Primer: 2956-2972
Binding site of pUC/M13 Reverse Sequencing Primer: 176-192
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pWGB10/Lipocalin 2 Expression Construct

Vector Features

pWGB10 contains a phosphoglycerate kinase (PGK) promoter to drive Lipocalin 2

expression, simian virus 40 (SV40) small t intron/polyA and SV40/Puromycin to

allow cell selection. The plasmid Backbone is composed of pBluescript.
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Appendix 3 - Antibodies Used

A - Primary Antibodies

Antibody Source Catalogue ID Dilution
phospho-p38 MAPK
(Thr-180/Tyr-182)

Cell Signalling
Technology

9211 1:50 (IP)

total-p38 MAPK Cell Signalling
Technology

9212 1:1000 (WB)

Phospho-ATF2
(Thr76)

Cell Signalling
Technology

9820 1:1000 (WB)

goat anti-lipocalin 2 R & D Systems AF1857 1:500 (WB)
1:50 (IHC)

mouse anti beta-
actin

Sigma A5441 1:5000 (WB)

mouse anti-p21 BD Pharmingen 556431 1:250 (WB)
mouse anti-BrdU DAKO M0744 1:100 (IHC)

B - Secondary Antibodies

Antibody Source Catalogue ID Dilution
Rabbit anti-goat
peroxidise

DAKO P0449 1:2000 (WB)
1:100 (IHC)

goat anti-mouse IgG
peroxidise

Sigma A9917 1:8000 (WB)

goat anti-mouse IgG
FITC

Sigma F0257 1:50 (IHC)
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Appendix 4 - Primer Locations

Murine GAPDH

CCTCCCTGTTCCAGAGACGGCCGCATCTTCTTGTGCAGTGCCAGCTCGTCCCGTAGACAAAATGGTGAA
GGTCGGTGTGAACGGATTTGGCCGTATTGGGCGCCTGGTCACCAGGGCTGCCATTTGCAGTGGCAAAGT
GGAGATTGTTGCCATCAACGACCCCTTCATTGACCTCAACTACATGGTCTACATGTTCCAGTATGACTC
CACTCACGGCAAATTCAACGGCACAGTCAAGGCCGAGAATGGGAAGCTTGTCATCAACGGGAAGCCCAT
CACCATCTTCCAGGAGCGAGACCCCACTAACATCAAATGGGGTGAGGCCGGTGCTGAGTATGTCGTGGA
GTCTACTGGTGTCTTCACCACCATGGAGAAGGCCGGGGCCCACTTGAAGGGTGGAGCCAAAAGGGTCAT
CATCTCCGCCCCTTCTGCCGATGCCCCCATGTTTGTGATGGGTGTGAACCACGAGAAATATGACAACTC
ACTCAAGATTGTCAGCAATGCATCCTGCACCACCAACTGCTTAGCCCCCCTGGCCAAGGTCATCCATGA
CAACTTTGGCATTGTGGAAGGGCTCATGACCACAGTCCATGCCATCACTGCCACCCAGAAGACTGTGGA
TGGCCCCTCTGGAAAGCTGTGGCGTGATGGCCGTGGGGCTGCCCAGAACATCATCCCTGCATCCACTGG
TGCTGCCAAGGCTGTGGGCAAGGTCATCCCAGAGCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGT
TCCTACCCCCAATGTGTCCGTCGTGGATCTGACGTGCCGCCTGGAGAAACCTGCCAAGTATGATGACAT
CAAGAAGGTGGTGAAGCAGGCATCTGAGGGCCCACTGAAGGGCATCTTGGGCTACACTGAGGACCAGGT
TGTCTCCTGCGACTTCAACAGCAACTCCCACTCTTCCACCTTCGATGCCGGGGCTGGCATTGCTCTCAA
TGACAACTTTGTCAAGCTCATTTCCTGGTATGACAATGAATACGGCTACAGCAACAGGGTGGTGGACCT
CATGGCCTACATGGCCTCCAAGGAGTAAGAAACCCTGGACCACCCACCCCAGCAAGGACACTGAGCAAG
AGAGGCCCTATCCCAACTCGGCCCCCAACACTGAGCATCTCCCTCACAATTTCCATCCCAGACCCCCAT
AATAACAGGAGGGGCCTAGGGAGCCCTCCCTACTCTCTTGAATACCATCAATAAAGTTCGCTGCACCC

Accession number: NM_008084
Green highlights: Primers for qPCRs (302bp)
Yellow highlights: Location of introns 3 and 4

Lipocalin 2

CCATGGCCCTGAGTGTCATGTGTCTGGGCCTTGCCCTGCTTGGGGTCCTGCAGAGCCAGGCCCAGGACT
CACTCAGAACTTGATCCCTGCCCCATCTCTGCTCACTGTCCCCCTGCAGCCAGACTTCCGGAGCGATCA
GTTCCGGGGCAGGTGGTACGTTGTGGGCCTGGCAGGCAATGCGGTCCAGAAAAAAACAGAAGGCAGCTT
TACGATGTACAGCACCATCTATGAGCTACAAGAGAACAATAGCTACAATGTCACCTCCATCCTGGTCAG
GGACCAGGACCAGGGCTGTCGCTACTGGATCAGAACATTTGTTCCAAGCTCCAGGGCTGGCCAGTTCAC
TCTGGGAAATATGCACAGGTATCCTCAGGTACAGAGCTACAATGTGCAAGTGGCCACCACGGACTACAA
CCAGTTCGCCATGGTATTTTTCCGAAAGACTTCTGAAAACAAGCAATACTTCAAAATTACCCTGTATGG
AGAACCAAGGAGCTGTCCCCTGAACTGAAGGAACGTTTCACCCGCTTTGCCAAGTCTCTGGGCCTCAAG
GACGACAACATCATCTTCTCTGTCCCCACCGACCAATGCATTGACAACTGAATGGGTGGTGAGTGTGGC
TGACTGGGATGCGCAGAGACCCAATGGTTCAGGCGCTGCCTGTCTGTCTGCCACTCCATCTTTCCTGTT
GCCAGAGAGCCACCTGGCTGCCCCACCAGCCACCATACCAAGGAGCATCTGGAGCCTCTTCTTATTTGG
CCAGCACTCCCCATCCACCTGTCTTAACACCACCAATGGCGTCCCCTTTCTGCTGAATAAATACATGCC
CAAGCTCGAC

Red highlights: Primers for cDNA amplification for cloning (834bp)
Yellow highlights: Primers for qPCR analysis (137bp)
Green highlights: Location of intron 2-3
Accession number: X81627
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CTGF

ATGCTCGCCTCCGTCGCAGGTCCCATCAGCCTCGCCTTGGTGCTCCTCGCTCTCTGCACCCGGCCTGCT
ATGGGCCAGGACTGCAGCGCGCAATGTCAGTGCGCAGCCGAAGCAGCGCCGCACTGCCCCGCCGGCGTG
AGCCTGGTGCTGGACGGCTGCGGCTGCTGCCGCGTCTGCGCCAAGCAGCTGGGAGAACTGTGTACGGAG
CGTGACCCCTGCGACCCACACAAGGGCCTCTTCTGCGATTTCGGCTCCCCCGCCAACCGCAAGATCGGA
GTGTGCACTGCCAAAGATGGTGCACCCTGTGTCTTCGGTGGGTCGGTGTACCGCAGCGGTGAGTCCTTC
CAAAGCAGCTGCAAATACCAATGCACTTGCCTGGATGGGGCCGTGGGCTGCGTGCCCCTGTGCAGCATG
GACGTGCGCCTGCCCAGCCCTGACTGCCCCTTCCCGAGAAGGGTCAAGCTGCCTGGGAAATGCTGCGAG
GAGTGGGTGTGTGACGAGCCCAAGGACCGCACAGCAGTTGGCCCTGCCCTAGCTGCCTACCGACTGGAA
GACACATTTGGCCCAGACCCAACTATGATGCGAGCCAACTGCCTGGTCCAGACCACAGAGTGGAGCGCC
TGTTCTAAGACCTGTGGGATGGGCATCTCCACCCGAGTTACCAATGACAATACCTTCTGCAGACTGGAG
AAGCAGAGCCGCCTCTGCATGGTCAGGCCCTGCGAAGCTGACCTGGAGGAAAACATTAAGAAGGGCAAA
AAGTGCATCCGGACACCTAAAATCGCCAAGCCTGTCAAGTTTGAGCTTTCTGGCTGCACCAGTGTGAAG
ACATACAGGGCTAAGTTCTGCGGGGTGTGCACAGACGGCCGCTGCTGCACACCGCACAGAACCACCACT
CTGCCAGTGGAGTTCAAATGCCCCGATGGCGAGATCATGAAAAAGAATATGATGTTCATCAAGACCTGT
GCCTGCCATTACAACTGTCCTGGGGACAATGACATCTTTGAGTCCCTGTACTACAGGAAGATGTACGGA
GACATGGCGTAA

Yellow highlights: Primers for qPCR analysis (146bp)
Green highlights: Location of intron 4-5
Accession number: NM_010217

IGF-I

ATGACCGCACCTGCAATAAAGATACACATCATGTCGTCTTCACACCTCTTCTACCTGGCGCTCTGCTTC
TCACCTTCACCAGCTCCACCACAGCTGGACCAGAGACCCTTTGCGGGGCTGAGCTGGTGGATGCTCTTA
GTTCGTGTGTGGACCGAGGGGCTTTTACTTCAACAAGCCCACAGGCTATGGCTCCAGCATTCGGAGGA
CCTCAGACAGGCATTGTGGATGAGTGTTGCTTCCGGAGCTGTGATCTGAGGAGACTGGAGATGTACTGG
CCCCACTGAAGCCTACAAAAGCAGCCCGCTCTATCCGTGCCCAGCGCCACACTGACATGCCCAAGACTA
GAAGTCCCCGTCCCTATCGACAAACAAGAAAACGAAGCTGCAAAGGAGAAGGAAAGGTGAGCCAAAGAA
CACCCAGAAGGGGAACAGGAGGAGGTAACGGAGGCAACTCGGAAAATCAGAGGTCCCAGAGAAAAAAGC
TGGGCTAG

Yellow highlights: Primers for qPCR analysis (242bp)
Green highlights: Location of intron 3-4
Accession number: NM_010512
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SFRP2

ATGCCGCGGGGCCCTGCCTCGCTGCTGCTGCTAGTCCTCGCCTCGCACTGCTGCCTGGGCTCGGCGCGG
GGCTCTTCCTCTTCGGCCAGCCCGACTTCTCCTACAAGCGCAGCAACTGCAAGCCCATCCCCGCCAACT
GCAGCTGTGCCACGGCATCGAGTACCAGAACATGCGGCTGCCCAACCTGCTGGGCCACGAGACCATGAG
GAGGTGCTGGAGCAGGCGGGCGCCTGGATTCCGCTGGTCATGAAGCAGTGCCACCCGGACACCAAGAAT
TCCTGTGCTCGCTCTTCGCCCCTGTCTGTCTCGACGACCTAGATGAGACCATCCAGCCGTGTCACTCGT
CTGCGTGCAGGTGAAGGACCGCTGCGCCCCGGTCATGTCCGCCTTCGGCTTCCCCTGGCCAGACATGCG
GAGTGCGACCGTTTCCCGCAGGACAACGACCTCTGCATCCCCCTCGCTAGTAGCGACCACCTCCTGCCG
CCACAGAGGAAGCTCCCAAGGTGTGTGAAGCCTGCAAAACCAAGAATGAGGACGACAACGACATCATGA
AACCCTTTGTAAAAATGACTTCGCACTGAAAATCAAAGTGAAGGAGATAACGTACATCAACAGAGACAC
AAGATCATCCTGGAGACAAAGAGCAAGACCATTTACAAGCTGAACGGCGTGTCCGAAAGGGACCTGAAA
AATCCGTGCTGTGGCTCAAAGACAGCCTGCAGTGCACCTGTGAGGAGATGAACGACATCAACGCTCCGA
TCTGGTCATGGGACAGAAGCAGGGCGGCGAGCTGGTGATCACCTCCGTGAAACGGTGGCAGAAGGGCCG
AGAGAGTTCAAGCGCATCTCCCGCAGCATCCGCAAGCTGCAATGCTAG

Yellow highlights: Primers for qPCR analysis (97bp)
Green highlights: Location of intron 1-2
Accession number: NM_009144

Lumican

ATGAATGTATGTGCGTTCTCTCTTGCCTTGGCATTAGTCGGTAGTGTCAGTGGCCAATACTACGATTAG
ACATCCCTCTCTTCATGTATGGGCAAATATCACCCAACTGTGCACCAGAATGTAACTGCCCCCACAGCA
CCCAACTGCCATGTACTGTGATGACCTCAAGTTGAAGAGTGTGCCAATGGTTCCTCCTGGCATCAAGTC
CTTTACCTGAGGAATAACCAAATCGACCATATTGATGAGAAGGCCTTTGAGAACGTCACAGACCTGCAT
GGCTCATTCTTGACCACAACCTTCTAGAAAACTCCAAGATCAAAGGAAAGGTTTTCTCTAAGCTGAAAA
ACTGAAGAAACTGCATATAAACTACAACAACCTGACCGAGTCCGTCGGTCCACTTCCAAAGTCCCTGCA
GACCTACAGCTGACCAATAATAAAATCAGCAAGCTCGGCTCCTTCGACGGGCTGGTCAACTTGACCTTA
TTTATCTTCAACACAACCAGCTCAAAGAGGATGCTGTCTCGGCTTCTCTGAAAGGTCTCAAATCACTAA
GTACCTGGATTTGAGCTTCAATCAGATGAGCAAGCTGCCTGCTGGTCTACCTACATCTCTTCTAACTCC
TACCTAGACAATAATAAGATCAGCAACATTCCGGATGAGTACTTCAAGCGCTTCACTGGGCTGCAATAC
TGCGTTTATCTCACAATGAACTGGCTGATAGTGGGGTACCTGGAAACTCGTTTAATATATCATCCTTGT
CGAGCTTGATCTCTCCTATAATAAGCTTAAGAGTATACCAACAGTTAATGAAAATCTTGAAAATTATTC
CTGGAGGTCAATGAACTTGAAAAGTTTGATGTGAAGAGCTTCTGTAAGATCCTGGGACCACTGTCTTAT
CCAAGATCAAGCATCTGCGCTTGGATGGCAATCCTCTCACTCAGAGCAGTCTGCCTCCTGACATGTATA
GTGTCTACGTGTAGCAAATGAAATCACCGTTAACTAA

Yellow highlights: Primers for qPCR analysis (135bp)
Green highlights: Location of intron 2-3
Accession number: NM_008524
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Integrin alpha 10

ATGGAGTCTCTCTCCATCCCTCACCTGCTCCTGCCCCTGGCGTTGCTGACAGGTCTCTGCTCCTCCTTT
AATCTGGATGAACACCACCCACGACTCTTCACAGGGCCACCAGAGGCCGAATTTGGATACAGTGTCTTA
CAGCATGTTGGGGGTGGACAGCGATGGATGCTGGTGGGTGCCCCCTGGGATGGGCCATCAGGTGACCGG
AGAGGGGATGTTTATCGTTGCTCTATAGGGGGATTCCACAGTGCTCCATGTACCAAAGGCCACCTGGGT
GACTATCAACTTGGAAATTCCTCTCAGCCTGCTGTGAATATGCACCTAGGGATGTCTCTACTAGAGACA
GATGCTGATGGGGGATTCATGGCCTGTGCCCCTCTTTGGTCTCGTGCCTGCGGCAGCTCTGTCTTCAGT
TCTGGAATATGTGCCCGTGTGGATGCTTCATTCCGGCCCCAGGGAAGCCTGGCACCCACCGCCCAACGC
TGTCCCACATACATGGATGTCGTCATTGTTTTGGATGGCTCCAACAGTATCTATCCCTGGTCAGAAGTT
CAGACTTTCCTTCGGAGGCTGGTAGGAAGACTGTTCATCGATCCGGAGCAGATACAGGTAGGACTGGTA
CAGTACGGGGAGAACCCTGTGCATGAGTGGTCCCTGGGAGACTTCCGAACAAAGGAAGAAGTTGTGAGA
GCAGCAAGGAACCTAAGTCGGAGGGAAGGGCGAGAAACGAGAACCGCCCAAGCGATCATGGTGGCATGC
ACAGAAGGGTTCAGTCAGTCCCGGGGGGGACGACCAGAGGCCGCTAGGCTGCTGGTAGTTGTCACTGAT
GGAGAGTCCCATGATGGAGAGGAACTTCCAGCAGCGCTAAAGGCCTGTGAGGCTGGCAGAGTGACACGT
TATGGGATTGCGGTCCTTGGTCACTATCTCCGGCGACAGAGAGACCCCAGCTCTTTTCTTCGGGAAATC
AGAGCTATTGCTAGTGATCCAGATGAGCGATTCTTCTTCAATGTCACCGATGAAGCTGCGCTGACAGAC
ATTGTGGATGCACTGGGGGACCGAATTTTTGGTCTTGAAGGGTCCCGTGGAGAAAATGAAAGCTCCTTT
GGGCTAGAAATGTCTGAGATTGGCTTCTCCATCCACCGACTACAGGATGGGATTCTCTTTGGGATGGTG
GGGGCCTATGACTGGGGGGGCTCCGTGCTATGGCTTGAAGAAGGTCGCCGCCTTTTCCCACCACAAGCT
GCCCTGGAAGATGAGTTCCCCCCTGCGTTGCAGAACCATGCGGCCTACCTGGGTTACTCTGTTTCCTCC
ATGCTTCTTCCCGGTGGACGCCGCCTCTTTCTCTCAGGGGCACCGAGGTTTAGACATCGAGGAAAAGTT
ATCGCCTTCCAGCTAAAGAAAGATGGGGTTGTGAGGGTCGCCCAGAGCCTCCAGGGGGATCAGATTGGC
TCATACTTTGGCAGCGAGCTCTGCCCGTTGGATACAGATAAGGACGGAATAACTAATATCTTACTTGTG
GCGGCTCCCATGTTCCTGGGTCCCCAGAACAAGGAGACCGGACGCGTTTATGTGTACATGGTGGGCCAG
CAAAATTTGCTAATGCTCCAAGGAACCCTTCAGCCAGACCGTTCCCAGGATTCTCGGTTTGGCTTTGCC
ATGGCTGCTCTTCCTGATCTGAACCATGATGGTTTCACTGATGTAGCGGTGGGGGCACCCCTGGAGGAT
GGACACCGGGGAGCGTTGTACCTGTATCATGGAACCCAGACTGGAATCAGGCCGCATCCTACCCAGAGG
ATTGCTGCTGTCTCCATGCCACAGGCCCTCCGATACTTCGGCCGAAGTGTGGATGGCCGCTTAGATCTG
GATGGAGATGATCTTGTAGATGTTGCCGTGGGTGCCCACGGGGCAGCCGTTCTGTTCAGCTCCCAGCCC
ATCATCCACCTGATTCCAACCCTGGATGTGATGCCTCCCCACATCAGTGTGGTTCAGAAGGACTGTAAA
AGACGAGGCCAGGAAGCAGCCTGTCTGACCGCAGCCCTTTGCTTCCAAGTAGTGTCTCAAACTCCTGGG
CGTTGGGATAGAAGATTCTACATAAGATTCTCAGCATCACTGGATGAGTGGACCGCTGGGGCACGTGCA
GTATTCGATGGCTCTGGTCAGCGCCTGTCCCCTCGGCAGCTCCAGCTTAGTGTTGGCAATGTCACTTGT
GAACAGCTGCACTTCCATGCACTGGATACATCGGATTACCTCCGGCCAGTGGCCTTGACTGTGACTTTT
GCTTTGGACAACACCACGAAGCCAGGGCCTGTGCTGGCGGAAGGATCCTCTACGACTATACGGAAGCTG
ATCCCCTTCTCAAAGGACTGTGGCCCTGACAATGAATGTGTCACAGACCTGGTGCTTCAAGCTGACATG
GACATCAGAGGCTCCAGGAAGTCCCCATTTGTGGTTCAAGGTGGACGACAGAAAGTGCTGGTGTCTGCG
ACCCTGGAGAACAAGAAGGAGAATGCCTACAACACTAGCCTGAGTCTCAGCTTTTCTAGAAACCTCCAC
CTGGCCAGTCTTACTCCTCAGAAGGCCAAATCAGTGAAGGTGGAGTGCGCAGTCCCTTCCCCCCATACC
CGGCTCTGCACCGTGGGGCATCCGGTCTTCCAGACTGGGGCCAAGGTGAGCTTCCTGTTAGAGTTTGAA
TTTAGCTGCACCTTCCTCCTGAGCCAGGTCTTTGTGAGGCTGACTGCCAGTAGCAGTAGCCTAGAGATG
AATGAGACCCTTCAAGATAACACAGCTCAGACCTCTGCCTACATCCGGTACGAACCTCACCTCGTGTTC
TCCAGTGAGTCCACTCTGCATCGGTATGAGGTTCACCCTTATAGGACTCTCCCAATGGGTCCTGGCCCT
GAATTCAAGACCACTCTTAGGGTTCAGAATCTTGGTTGCCATGTGGTCAGTGGTCTCGTCATCTCCGCC
CTCCTTCCAGCTGTAGCCCATGGGGGTAACTACTTCCTGTCACTATCTCAAGTCATCTCTGGCAATGCA
AGCTGCACGGTGCAGAACCTGACTGAGCCCCCGGGCTTCCCTGTGCACCCAGAGGAGCTTCAGCATGCA
AGCAGACTGAATGGGAGTAACAGTCGATGTCAGGTGGTAAGGTGCCACCTTGGACTGCTGGCAAAGGGG
ACTGAGATCTCTGTCAGGCTGCTGAGGCTGGTTCACAATGAATTCTTTCGGAGGGCCAAGTTCAAGTCT
GTGACAGTGGTCAGCACCTTCAAGTTAGGAACTGAGGAGGGCAGTGTCCTACTACTGAATGAAGCCTCC
CGCTCGAGTGAGAGTCACTTGGAGGTGATTCAGACCCACCCGACCCTCATCTCCCTGTGGATCCTCGTT
GGCAGTGTCCTGGGGGGGCTGCTCCTGCTTGCTCTCCTTGTCTTCTGCCTGTGGAAGCTTGGCTTCTTT
ACCCGTAAGAAAATCCCCAAAGAAGAGAAAGTGAGGAGAAGTTGGAGCAGTGA

Yellow highlights: Primers for qPCR analysis (119bp)
Green highlights: Location of intron 27-28
Accession number: NM_001081053
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Dentin Matrix Protein 1

ATGAAGACTGTCATTCTCCTTGTGTTCCTTTGGGGGCTGTCCTGTGCTCTCCCAGTTGCCAGATACCAA
ATACTGAATCTGAAAGCTCTGAAGAGAGGACGGGTGATTTGGCTGGGTCACCACCACCACCCACGAACG
TGAGTCATCAGAAGAAAGTCAAGCTAGCCCAGAGGGACAGGCAAATAGTGACCACACGGACAGCAGTGA
TCTGGAGAGGAGCTGGGCTACGACAGAGGCCAGTACAGACCGGCTGGTGGACTCTCTAAGAGTACGGGA
CCGGCGCCGATAAGGAGGATGATGAAGACGACAGTGGAGATGATACCTTTGGCGATGAGGACAATGATT
AGGGCCCGAAGAAGGACAGTGGGGAGGACCCTCCAAACTGGACAGTGATGAGGACTCCACAGACACCAA
CAGTCCAGTGAAGACAGCACCTCTCAAGAAAACAGTGCCCAAGATACCCCCAGCGACAGCAAAGACCAG
ACAGTGAGGATGAGGCAGACAGCCGGCCTGAGGCAGGCGACTCCACTCAGGACAGTGAGAGTGAGGAAA
GCGGGTGGGAGGTGGCAGCGAGGGGGAGAGTAGCCACGGGGACGGTTCTGAGTTCGATGATGAAGGGAG
CAGAGCGACGACCCCGAGAGTACCAGGAGCGATCGAGGCCACGCCAGAATGAGCAGCGCTGGTATCAGT
CGGAAGAATCTAAAGGGGACCACGAGCCCACGAGCACTCAGGATTCAGATGACAGCCAGTCTGTGGAAT
TTCAAGCAGGAAGTCCTTCAGAAGGTCCCACGTCTCTGAGGAAGACTACAGAGGTGAGCTTACTGACAC
AACAGCAGGGAAACCCAGAGCGACTCCACGGAGGATACGGCCTCCAAGGAGGAAAGCAGGAGCGAGTCC
AGGAGGACACAGCCGAGAGCCAGTCCCAGGAAGATAGCCCAGAGGGGCAAGACCCCAGCAGTGAGTCCG
CGAAGAGGCTGGTGAGCCATCCCAGGAAAGCAGCAGCGAATCTCAGGAAGGGGTGACCAGCGAGTCCAG
GGTGACAACCCAGATAACACAAGTCAGGCAGGAGACCAAGAAGACAGTGAGTCCAGTGAGGAGGACAGC
TGAACACATTCTCCAGCTCAGAAAGCCAGTCCACCGAGGAGCAAGCTGACAGCGAGTCCAACGAGAGCT
CAGCCTCTCCGAGGAGAGTCAGGAGTCGGCCCAGGATGGTGACAGCTCCAGCCAGGAAGGCCTGCAGTC
CAGAGCGCATCCACTGAGAGCAGGAGCCAGGAGAGCCAGTCTGAGCAGGACAGCCGTTCTGAGGAAGAA
GTGACTCTCAGGACAGTAGCCGATCCAAAGAAGAGAGCAACTCCACAGGGAGCGCTTCCAGCAGCGAGA
GGACATCCGTCCCAAGAACATGGAAGCTGACAGTAGGAAACTAATAGTTGATGCTTACCACAACAAACC
ATCGGGGACCAAGATGACAATGACTGTCAGGACGGCTACTAG

Yellow highlights: Primers for qPCR analysis (120bp)
Green highlights: Location of intron 5-6
Accession number: NM_94910

SGCK

ATGACCGTCAAAGCCGAGGCTGCTCGAAGCACCCTTACCTACTCCAGAATGAGGGGAATGGTAGCGATC
TCATCGCTTTTATGAAACAGAGAAGGATGGGCCTGAACGATTTTATTCAGAAGATTGCCAGCAACACCA
TGCATGCAAACACGCTGAAGTTCAGTCCATTTTGAAAATGTCCCATCCTCAGGAGCCGGAGCTTATGAC
GCTAACCCCTCTCCTCCGCCAAGTCCCTCTCAACAAATCAACCTGGGTCCGTCCTCCAACCCTCACGCA
AACCCTCCGACTTTCACTTCTTGAAAGTGATCGGAAAGGGCAGTTTTGGAAAGGTTCTTCTGGCTAGGA
CAAGGCAGAAGAAGTATTCTATGCAGTCAAAGTTTTACAGAAGAAAGCCATCCTGAAGAAGAAAGAGGG
AAGCATATTATGTCAGAGCGGAATGTTCTGTTGAAGAATGTGAAGCACCCTTTCCTGGTGGGCCTTCAT
TCTCATTCCAGACCGCTGACAAGCTCTACTTTGTCCTGGACTACATTAATGGTGGAGAGCTGTTCTACA
TCTCCAGAGGGAGCGCTGCTTCCTGGAACCACGGGCTCGATTCTACGCAGCTGAAATAGCCAGTGCCCG
GGCTATCTGCACTCCCTAAACATCGTTTATAGAGACTTAAAACCTGAGAATATTCTCCTAGACTCCCAG
GGCACATCGTCCTCACTGACTTTGGGCTCTGCAAAGAGAATATTGAGCATAACGGGACAACATCTACCT
CTGTGGCACGCCTGAGTATCTGGCTCCTGAGGTCCTCCATAAGCAGCCGTATGACCGGACGGTGGACTG
TGGTGTCTTGGGGCTGTCCTGTATGAGATGCTCTACGGCCTGCCCCCGTTTTATAGCCGGAACACGGCG
AGATGTACGACAATATTCTGAACAAGCCTCTCCAGTTGAAACCAAATATTACAAACTCGGCAAGGCACT
CCTGGAAGGCCTCCTGCAGAAGGACCGGACCAAGAGGCTGGGTGCCAAGGATGACTTTATGGAGATTAG
AGTCATATTTTCTTCTCTTTAATTAACTGGGATGATCTCATCAATAAGAAGATTACACCCCCATTTAAC
CAAATGTGAGTGGGCCCAGTGACCTTCGGCACTTCGATCCCGAGTTTACCGAGGAGCCGGTCCCCAGCC
CATCGGCAGGTCCCCTGACAGCATCCTTGTCACGGCCAGTGTGAAGGAAGCAGCAGAAGCCTTCCTCGC
TTCTCCTATGCACCTCCTGTGGATTCCTTCCTCTGA

Yellow highlights: Primers for qPCR analysis (129bp)
Green highlights: Location of intron 2-3
Accession number: NM_340062
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Collagen type X

ATGCTGCCTCAAATACCCTTTCTGCTGCTAATGTTCTTGACCCTGGTTCATGGGATGTTTTATGCTGAC
GGTACCAAACGCCCACAGGCATAAAGGGCCCACTTGCTAGCCCCAAGACACAATACTTCATCCCATACC
CATAAAGAGTAAAGGGATTCCAGTAAGAGGAGAACAAGGCATTCCTGGTCCACCAGGCCCAACCGGACT
CGAGGACACCCAGGTCCCTCAGGACCGCCAGGCAAGCCAGGCTATGGAAGTCCTGGACTCCAAGGAGAC
CAGGGTTGCCAGGACCACCAGGAATATCAGCCACGGGGAAGCCAGGCCTGCCAGGCCCGCCAGGCAAAC
AGGGGAGAGAGGACCATATGGACACAAAGGAGATATTGGCCCAGCTGGCTTACCCGGACCTCGGGGCCT
CCAGGGCCCCCTGGAATTCCTGGCCCAGCTGGAATTTCTGTGCCAGGAAAACCTGGACAGCAGGGACTA
CAGGTGCCCCAGGACCTAGGGGCTTTCCTGGAGAGAAGGGTGCACAAGGAGCCCCTGGTGTGAATGGGG
GAAAGGGGAAACAGGATATGGCTCTCCTGGCCGTCCAGGTGAGAGGGGTCTTCCAGGCCCTCAAGGTCC
ATAGGACCCCCTGGCCCCTCTGGAGTGGGAAGAAGAGGTGAAAACGGCTTTCCAGGACAGCCGGGCATA
AAGGTGACCGGGGTTTCCCAGGAGAAATGGGACCATCAGGTCCACCAGGTCCCCAAGGTCCTCCCGGGA
GCAAGGACGAGAAGGTATTGGGAAGCCAGGAGCCATTGGATCCCCTGGTCAGCCAGGTATCCCAGGAGA
AAAGGCCACCCAGGGGCTCCAGGAATAGCTGGTCCTCCAGGAGCTCCTGGCTTTGGAAAACAAGGCTTC
CAGGTTTGAGGGGACAAAGGGGACCTGCTGGTCTTCCTGGGGCTCCAGGTGCCAAAGGGGAACGAGGGC
AGCAGGTCATCCTGGAGAACCGGGTCTGCCTGGATCCCCTGGGAATATGGGACCCCAAGGACCTAAAGA
ATCCCAGGGAACCATGGCATTCCAGGCGCTAAAGGTGAGATAGGTCTAGTTGGGCCTGCAGGCCCCCCG
GGGCTAGAGGAGCAAGGGGTCCACCTGGGTTAGATGGAAAAACAGGGTATCCTGGGGAGCCAGGTCTCA
TGGTCCTAAGGGTAACCCAGGGTTACCAGGACAAAAAGGTGATCCTGGAGTGGGAGGAACCCCTGGTCT
CGAGGTCCTGTTGGCCCTGTAGGAGCTAAAGGAGTGCCTGGACACAATGGTGAGGCAGGTCCAAGAGGG
AACCTGGAATACCAGGTACCAGGGGCCCCACTGGGCCACCAGGTGTCCCAGGATTCCCTGGATCTAAGG
TGACCCTGGAAACCCAGGTGCTCCAGGCCCAGCTGGCATAGCAACTAAGGGCCTCAATGGGCCCACTGT
CCTCCAGGCCCTCCTGGTCCAAGAGGCCACAGTGGAGAACCTGGTCTCCCAGGTCCTCCGGGTCCCCCG
GACCCCCCGGCCAAGCAGTCATGCCTGATGGCTTCATAAAGGCAGGCCAGAGGCCCAGGCTTTCTGGGT
GCCGCTTGTCAGTGCTAACCACGGGGTAACAGGTATGCCCGTGTCTGCTTTTACTGTCATTCTCTCTAA
GCTTACCCAGCAGTAGGTGCCCCCATCCCATTTGATGAGATTCTGTACAATAGGCAGCAGCATTACGAC
CAAGATCTGGTATCTTTACCTGTAAGATCCCAGGCATATACTATTTCTCCTACCACGTGCATGTGAAAG
GACTCACGTTTGGGTAGGCCTGTATAAGAACGGCACGCCTACGATGTACACGTATGATGAGTACAGCAA
GGCTACCTGGATCAGGCTTCAGGGAGTGCAATCATGGAGCTCACAGAAAATGACCAGGTATGGCTCCAT
TGCCCAATGCAGAATCAAACGGCCTCTACTCCTCTGAGTACGTCCACTCGTCCTTCTCAGGATTCCTAT
GGCTCCCATGTGA

Yellow highlights: Primers for qPCR analysis (97bp)
Green highlights: Location of intron 1-2
Accession number: NM_84455

p21

ATGTCCAATCCTGGTGATGTCCGACCTGTTCCGCACAGGAGCAAAGTGTGCCGTTGTCTCTTCGGTCCG
TGGACAGTGAGCAGTTGCGCCGTGATTGCGATGCGCTCATGGCGGGCTGTCTCCAGGAGGCCCGAGAAG
GTGGAACTTTGACTTCGTCACGGAGACGCCGCTGGAGGGCAACTTCGTCTGGGAGCGCGTTCGGAGCCT
AGGGCTGCCCAAGGTCTACCTGAGCCCTGGGTCCCGCAGCCGTGACGACCTGGGAGGGGACAAGAGGCC
AGTACTTCCTCTGCCCTGCTGCAGGGGCCAGCTCCGGAGGACCACGTGGCCTTGTCGCTGTCTTGCACC
TGGTGTCTGAGCGGCCTGAAGATTCCCCGGGTGGGCCCGGAACATCTCAGGGCCGAAAACGGAGGCAGC
CAGCCTGACAGATTTCTATCACTCCAAGCGCAGATTGGTCTTCTGCAAGAGAAAACCCTGA

Yellow highlights: Primers for qPCR analysis (113bp)
Green highlights: Location of intron 1-2
Accession number: NM_104556


