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Abstract

This research deals with several novel aspects of the nonlinear behaviour of thick-walled

cylindrical hyperelastic tubes under external pressure.

Initially, we consider bifurcation from a circular cylindrical deformed configuration of a

thick-walled circular cylindrical tube of incompressible isotropic elastic material subject to

combined axial loading and external pressure. In particular, we examine both axisymmet-

ric and asymmetric modes of bifurcation. The analysis is based on the three-dimensional

incremental equilibrium equations, which are derived and then solved numerically for a

specific material model using the Adams-Moulton method. We assess the effects of wall-

thickness and the ratio of length to (external) radius on the bifurcation behaviour.

The problem of the finite axisymmetric deformation of a thick-walled circular cylindri-

cal elastic tube subject to pressure on its external lateral boundaries and zero displacement

on its ends is formulated for an incompressible isotropic neo-Hookean material. The for-

mulation is fully nonlinear and can accommodate large strains and large displacements.

The governing system of nonlinear partial differential equations is derived and then solved

numerically using the C++ based object-oriented finite element library Libmesh. The

weighted residual-Galerkin method and the Newton-Krylov nonlinear solver are adopted

for solving the governing equations. Since the nonlinear problem is highly sensitive to

small changes in the numerical scheme, convergence was obtained only when the analyt-

ical Jacobian matrix was used. A Lagrangian mesh is used to discretize the governing

partial differential equations. Results are presented for different parameters, such as wall

thickness and aspect ratio, and comparison is made with the corresponding linear elas-

ticity formulation of the problem, the results of which agree with those of the nonlinear

formulation only for small external pressure. Not surprisingly, the nonlinear results depart

significantly from the linear ones for larger values of the pressure and when the strains in

the tube wall become large. Typical nonlinear characteristics exhibited are the “corner
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bulging” of short tubes, and multiple modes of deformation for longer tubes.

Finally the general fully nonlinear governing equations in Lagrangian form for the three

dimensional large deformations of an elastic tube under external pressure are developed.
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Chapter 1

Introduction

In this thesis, we focus on modelling and simulating the collapse of a cylindrical tube

under external pressure. The collapse of a circular tube is of interest not only in many

engineering applications, such as in the design of undersea or underground pipelines and

pressure vessels, particularly submarine structures, but it is also of great interest in the

biomechanics context.

The main motivation for this research comes from the investigation of the behaviour

of physiological conduits within our body subject to external pressure, such as veins and

arteries conveying blood flow and large bronchi conducting air into the lungs. Due to

the high flexibility of the soft biological tissue, these conduits may collapse under certain

conditions of external and internal fluid pressure. For example, intramyocardial arteries

collapse during systole [29]. More generally, the collapse of cardiovascular vessels plays an

important role in the delivery of blood to other organs [30], [63]. A long cylindrical elas-

tic tube when subjected to a transmural (internal minus external) pressure may collapse

into a two-lobed configuration, as illustrated in Fig.1.1. In elastic buckling the collapse is

usually sudden and catastrophic, which is a process involving some nonlinear dynamical

deformations of great complexity. Depending on geometry, material properties, the pres-

sure and boundary conditions, the tubes may collapse differently. In essence, these kinds

of problems involve two physical systems interacting with each other, which are the elastic

wall of the conduit and the biological fluid inside or around the conduit. Such systems are

also known as coupled and such coupling may be weak or strong depending on the degree

of interaction.

A general definition of coupled systems may be given as [80]

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Collapsed tube (from paper by Marzo et al. [52]).

Definition 1.0.1 Coupled systems and formulations are those applicable to multiple do-

mains and dependent variables which usually but not always describe the different physical

phenomena and in which

(a) neither domain can be solved while separated from the other;

(b) neither set of dependent variables can be explicitly eliminated at the differential

equation level.

The topic of flow through collapsible tubes, an obvious coupled problem, has been

studied for several decades. This subject has been reviewed briefly by Kamm and Pedley

[42]. Experiments [14], [12] on a Starling resistor prototype of the system have presented

a rich dynamic behaviour, with various types of self-excited oscillations. One- or two-

dimensional theoretical models has been established by Pedley [61], Luo [49], [50], [51],

Cai [17] and Jensen [41] and much computational work has been carried out to reveal the

mechanisms of such oscillations. Luo and Pedley [49] studied steady flow in a 2-D channel

with one plane rigid wall and the other wall replaced by an elastic segment, which is

treated as a elastic membrane, as illustrated in Fig.1.2. Following their previous work [49]

on steady flow in a two-dimensional fluid-membrane model of the collapsible tube, Luo

and Pedley [50] investigated the instability of the steady solution by developing a time-

dependent simulation of the coupled flow-membrane problem. These studies provided

a detailed picture of the fluid and solid mechanics involved in the large-amplitude self-

excited oscillations in this simplified system and have shown rich dynamical behaviour of

the system.
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Figure 1.2: The geometry of a 2-D collapsible channel (from paper by Luo [48]).

To overcome the inadequacy of the fluid-membrane model on flow in collapsible chan-

nels, Cai and Luo [17] developed a fluid-beam model, which employs a plane strained

elastic beam with large deflection and incrementally linear extension. This model repre-

sents a more realistic and general description of the problem and can be reduced to several

simpler models including the fluid-membrane model under special parameter ranges. Both

asymptotic and numerical approaches are used to study the problem.

Heil investigated the steady deformations of the fully coupled three-dimensional system

in another series of studies [38], [36], [39]. The wall of the tube was modelled as a circular

cylindrical shell and geometrically nonlinear shell theory was used to describe the large non-

axisymmetric post-buckling deformation. The fluid flow was modelled by using lubrication

theory. But some of the assumptions used in the simplification of the fluid equations were

violated, which caused the wall slope at the downstream end to tend to be quite large,

after the buckling, although this model provides a very accurate description of the tube’s

deformation. Heil [37] developed the entirely three-dimensional self-consistent model of the

viscous flow in a collapsible tube by abandoning the small-slope assumption and replacing

the lubrication theory by a solution of the steady three-dimensional Stokes equations which

describe the flow in arbitrary geometries at zero Reynolds number.

In order to develop a more general three-dimensional model requires one ultimately to

extend the Heil model [37] to replace the geometrically nonlinear shell theory by a theory

which can accommodate the large displacements (geometric nonlinearity) and as well as

large strains (material nonlinearity) and also to include the coupling of unsteady, three-

dimensional, nonlinear Navier-Stokes equations for oscillations to arise. Because of the

complexities and large computational requirements for the full three-dimensional solution

of the above problems, such a work, however, is still a daunting task. Although some

attempts have been made, self-excited oscillations are still not yet captured [71], [70], [65].
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To reduce the complexity we simplify the actual physiological problem by replacing the

transmural (internal minus external) pressure due to the flow in and out the tube by the

external hydrostatic pressure P only. This simplification allows us to avoid tackling the

fully coupled fluid-structure interactions and to focus on investigating the material and

geometrical nonlinearity of the tubes. We consider the simplified problem in 3 stages

(1) Bifurcation analysis of thick-walled circular cylindrical elastic tubes under axial

loading and external pressure.

(2) Nonlinear axisymmetric deformations of an elastic tube under external pressure.

(3) Nonlinear three-dimensional deformations of an elastic tube under external pres-

sure.

We give a brief review of the stability analysis here. To gain a full understanding of

this particular area, we refer to the recent review article by Fu and Ogden [26], in which

they summarized the progress of development of the nonlinear stability analysis of thick

elastic bodies subjected to finite elastic deformations. The stability of elastic shells has

been analyzed over the course of the past century since the initial work on the topic by von

Mises [72], who derived an equation for the buckling pressure of a thin-walled elastic tube.

This gives the pressure as proportional to the cube of the ratio of wall thickness to mean

diameter. Since then buckling of circular cylindrical tubes under external pressure based

has been studied extensively, for instance by Batdorf [7], Nash [54] and Flügge [25]. In

these studies, a simple one-term deflection function was used and the problem was solved

under special boundary conditions. More accurate solutions were obtained by Ho [40],

Sobel [66] and Yamaki [75] for a variety of loading and boundary conditions where the

pre-buckling state was given in terms of membrane theory. The same problem was then

treated by Yamaki [76] but with pre-buckling effects. His key finding was that the mode

number of the most unstable mode increases as the tube length is decreased, and for

a sufficiently long tube mode 2 bifurcation is the most unstable mode. The length of

the tube at which the transition between the higher mode and mode 2 occurs, however,

depends on the thickness ratio; the thicker the tube the shorter the length for which mode 2

becomes the most unstable mode [77]. Good agreement between these studies and various

experiments [74] has led to the buckling prediction for a cylindrical tube being regarded

as a solved problem (at least for thin shells).

With different emphases, related extensive studies on stabilities of circular cylindrical
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shells have also been carried out. Some of these, concerning geometrically nonlinear vi-

brations and dynamics of circular cylindrical shells, were reviewed by Amabili [1], with

and without fluid-structure interactions. Other recent advances in post-buckling analysis

of thin-walled structures were reported by Kounadis [46]. With a particular interest in

post-buckling behaviour, Heil and Pedley [39] examined the stability of cylindrical shells

under external pressure using a geometrically non-linear shell theory and confirmed that

the mode number of the most unstable mode increases as the tube length is decreased, as

predicted by Yamaki [77]. Heil and Pedley [39] also found that the bifurcation is not signif-

icantly affected by the presence of a full fluid-solid coupling (as long as the critical loading

is the same), although the subsequent post-buckling behaviour can be very different with

and without the internal flow.

In experimental studies for these kinds of problems the tube wall thickness typically

exceeds that which might be appropriate for thin-shell theories [10, 11, 13]. It is there-

fore reasonable to ask if the bifurcation predictions of the classical theories remain valid.

Bertram [10] studied experimentally the effects of wall thickness on the collapse of tubes

and obtained agreement with the results of [74]. In Bertram’s study, wall thickness ratio

h/R values used were 0.38 and 0.5, where h is the thickness and R is the internal radius.

The thick-walled tube problem was also analyzed by Marzo [52] using the finite element

method, and good agreement with the experiments of [10] and [74] was achieved. However,

in [10] and [52] results were presented only for mode 2 bifurcation and for limited values

of the wall thickness. Therefore, it remains unclear how far the bifurcation predictions

of thin-shell theory can be extended to thick-walled tubes, for which nonlinear elastic

deformations can no longer be neglected.

There is also an extensive literature on plastic buckling of circular tubes. Experimental

and modelling aspects of the compression of steel tubes in the plastic regime have been

reviewed in the recent works by Bardi [5] and [6]. They found that the carbon steel tubes

may buckle into different modes as the increase of the external pressure. Figure 1.3 shows

the plastic buckling of circular tubes under compression with axisymmetric collapse and

non-axisymmetric collapse, with mode 2 and 3. This figure can give the reader directly an

idea of the shape of the tube after axisymmetric or non-axisymmetric buckling. We refer

to these papers for references to the relevant literature.

For problems involving nonlinear elastic deformations, a rigorous bifurcation theory

has been established based on the analysis of infinitesimal deformations superimposed on
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Figure 1.3: (a) Carbon steel tube that developed axisymmetric concertina folding, (b)

mode 2 folding and (c) mode 3 folding of stainless steel tubes (from paper by Bardi [5]).

a known large deformation [28]. Using this theory, Nowinski and Shahinpoor [56] exam-

ined the stability of an infinitely long circular cylinder of neo-Hookean material under

external pressure assuming a plane strain deformation, and Wang and Ertepinar [73] in-

vestigated the stability of infinitely long cylindrical shells and spherical shells subjected to

both internal and external pressure. On the same basis but for different (incompressible,

isotropic) material models Haughton and Ogden [35] examined in some detail the bifur-

cation behaviour of circular cylindrical tubes of finite length under internal pressure and

axial loading.

Bifurcation from a circular cylindrical configuration of a thick-walled tube subject

to combined axial loading and external pressure was investigated on the basis of the

nonlinear theory of elasticity by Zhu et al. [78]. Our work showed that the wall thickness

and aspect ratio play important roles in the occurrence of the most unstable bifurcation

mode. Different from the results based on thin shell theories, which show that higher

modes should occur for shorter tubes, Zhu et al. [78] showed that mode-2 becomes more

persistent for shorter tubes if a suitable nonlinear model is used. This observation was in

agreement with experimental findings on thick-walled tubes subject to external pressure,

in particular those of [10,11] and [13].

However, a limitation of this work is that the bifurcation analysis was initiated from

a deformed circular cylindrical configuration of an elastic tube with rather special incre-

mental boundary conditions imposed on the ends of the tube. Thus, the results only apply

for the initial bifurcation behaviour, and might preclude realistic post-buckling behaviour
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involving large displacements near the ends of the tube.

In many engineering and biomechanical applications cylindrical tubes are subject to

external pressures and as a result undergo large (nonlinear) deformations. In another work

we investigated the behaviour of thick-walled tubes with large deformations including large

strains and large displacements under external pressure by deriving the general differential

equations, free of unnecessary assumptions. This is a challenging work due to the lack of

the good and general numerical methods for solving the final fully nonlinear differential

equations we obtained based on the theory of nonlinear finite deformation and the large

computational requirements for simulation of the full three dimensional problems, so ini-

tially, we assume the deformation is axisymmetric. Then, we will try to move forward to

the full three-dimensional problems.

In early engineering approaches to the analysis of this problem it was typically as-

sumed that the material response is linearly elastic, but this led to predictions which were

inaccurate except for very small deformations. It is well known that for biological ma-

terials deformations of the order 50–100% can occur, and in this case a fully nonlinear

problem formulation is essential. However, fully nonlinear material and geometrical anal-

ysis is challenging due to the difficulty of solving such problems. To facilitate solutions

simplifications are often made, such as the adoption of thin shell theories, which have been

successful for describing thin-walled structures [47,75,77]. Some researchers have focused

on geometrically nonlinear problems, with small strains but large displacements, and this

approach has often proved to be adequate. Erbay and Demiray [23] considered the finite

axisymmetric deformation of a circular cylindrical tube of neo-Hookean material by using

an asymptotic expansion method. Their perturbation solution is based on the smallness

of the ratio of thickness to inner radius of the tube. Normal and tangential tractions were

applied on the inner surface of the tube but no boundary conditions were considered at

the ends of the tube. Heil [38] and Marzo [52] performed a numerical simulation of the

post-buckling behaviour of tubes under external pressure.

Propagation of finite amplitude waves in fluid-filled elastic or viscoelastic thin-walled

tubes has been investigated [64], [2], [53], and [23]. However, for thick-walled tubes there

are few results available in the literature due to the difficulties arising from the variation

of field quantities with the radial coordinate. Demiray studied weakly nonlinear waves in a

fluid filled thick-walled elastic tube, first using an artificial estimated pressure dependence

[20] on the axial coordinate, which was later improved upon [21].
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The ability to predict the bifurcation character of the solutions is also an important

practical problem. Negrón-Marrero [55] studied the bifurcation of the axisymmetric hy-

perelastic cylinders subject to nonlinear mixed boundary conditions and found that the

eigenfunctions can be classified into those that are symmetric about the mid-plane, rep-

resenting either necked or barrelled configurations of the cylinder, and those that break

this symmetry. Finite axisymmetric deformations of thick-walled carbon-black filled rub-

ber tubes were also studied experimentally by Beatty and Dadras [9]. They found that

for aspect ratios less than 5 tubes exhibit radially or axially symmetric bulging modes

of deformation, distinct from the familiar Euler buckling that occurs for longer tubes.

Significantly, they found that the experimentally observed critical compression load is

considerably lower than that predicted on the basis of the linear theory.

In chapter 2, we introduce the theory of nonlinear elasticity, which will be used through-

out the thesis.

In chapter 3, the finite element process and techniques that are used in Chapter 5 are

presented. Particular attention and details are provided to introduce the object-oriented

finite element library libmesh, which will be adopted for solving the nonlinear partial

differential equations in Chapters 5 and 6.

In chapter 4, following the analysis of [35], we consider the bifurcation of incompress-

ible, isotropic thick-walled circular cylindrical tubes of finite length when subject to both

axial loading and external pressure. A new feature of the present work is the combination

of finite deformations of thick-walled tubes of hyperelastic material with external pressure

and axial loading.

For the thinner tubes it is found that under external pressure axisymmetric bifurcation

occurs only for 0 < λz < 1, where λz is the principal stretch in the axial direction of the

finite deformation. Moreover, the trend of the bifurcation curves is very different from

that of a tube under internal pressure. Since externally pressurized tubes are particularly

prone to asymmetric bifurcations, we devote most of our effort to the study of asymmetric

bifurcations. The bifurcation modes are characterized by azimuthal mode number m and

the tube length (which can be taken as a proxy for the axial mode number n). The

bifurcation curves for modes m = 1 to m = 4 are presented, and the effects of wall

thickness and the ratio of tube length to external radius on the buckling pressure are also

examined. For the simpler cases, our results are in agreement with the published results

in [52], [74], [10] and [73], and, in particular, with the von Mises equation [72, 74]. We
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observe that the von Mises equation can only predict the buckling pressure well for thin

shells. By contrast, the general analysis of bifurcation based on 3D finite deformation

elasticity theory presented herein is valid for both thin and thick shells.

In chapter 5, we formulate the fully nonlinear problem of the large axisymmetric de-

formations of thick-walled cylindrical tubes of finite length made of incompressible hy-

perelastic material subject to zero displacements on the ends of the tube and hydrostatic

pressure on the exterior of the lateral surface. The general governing differential equations

that describe the deformation of the tube are derived, with both geometrical and material

nonlinearity included. The corresponding radially symmetric and linear problems are also

examined for the purpose of comparison. The sets of equations are solved numerically

using the object-oriented C++ finite element package Libmesh. Results for tubes with

different aspect ratios are presented to show how the wall thickness and tube length affect

the nonlinear behaviour. The major findings are that for a short tube with smaller aspect

ratio, the nonlinear deformation is characterized by a corner bulging, which changes all

the stress distributions, especially for the shear stress. For longer tubes, the nonlinear

model exhibits higher modes of deformation while for the corresponding linear model only

mode-2 is present. The agreement between the linear and nonlinear models is only good

for small values of the pressure, corresponding to maximum strains of about 5%.

In chapter 6, without any assumptions on the magnitude of the geometrical deforma-

tion or material nonlinearity we derived the general three dimensional governing equations

for the large deformations of a thick-walled tube composed of incompressible isotropic elas-

tic material in both cylindrical polar and Cartesian coordinates. Generally, it is convenient

that we formulate our equations for a circular cylindrical tube based on cylindrical polar

coordinates. However, we note that the expression of deformation gradient F in cylindrical

polar coordinates is much more complex than the one in Cartesian coordinates and this

complexity can be enlarged in the expression of nominal stress S and even the equilibrium

equations. The form of the final equilibrium equations in cylindrical polar coordinates is

also more complicated, with several redundant terms. Both of the complexities will add

difficulty when the numerical discretization of the equation system and computations are

carried out. In order to avoid the complexities in formulation, we prefer to adopt the corre-

sponding Cartesian equation systems, although dealing with the boundary condition may

seem to be not rational compared with an approach based on cylindrical polar coordinates.

The only thing we need do is to get the expression of the unit normal to the internal and
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external surfaces of the cylindrical tube. The corresponding linear equations in Cartesian

coordinates are also presented for the purpose of comparison with the nonlinear ones.

Results from Chapters 4 and 5 have been published in International Journal of Solids

and Structures [78] and European Journal of Mechanics A solids [79], respectively. Further

results from Chapter 6 are still in preparation and will appear soon.



Chapter 2

Basic equations

In this chapter a brief summary of the static theory of nonlinear elasticity is given, includ-

ing the analysis of deformation, strain, stress and the governing equations of equilibrium,

and a short description of the constitutive equations for a Cauchy elastic material. For

more important details we refer to the relevant literature such as the classic book by Og-

den [60], in which a complete and precise account of the mathematical theory of non-linear

elasticity with application to the analysis of the large elastic deformation of hyperelastic

materials is presented and the book by Fu and Ogden [27], which provides not only fun-

damentals of nonlinear elasticity but also modern topics in this field.

2.1 Deformation

We will deal with deformations of elastic material in which both rotations and stretches

are arbitrarily large, the so-called finite strain theory. In this case, a clear distinction is

necessary to be made between undeformed and deformed configurations of an elastic body.

Consider a deformable continuous body for which we take X to be the position vector of

an arbitrary material point in the reference configuration, denoted by Br. Similarly, in

the current configuration, Bt say, let x be the position vector of the same material point.

Suppose that the deformation from Br to Bt is defined by the vector function χ, if

there is no time dependence we have that (see Fig.2.1) x = χ(X). We assume that χ is

twice-continuously differentiable with respect to position here.

The displacement vector u is defined by

x = X + u. (2.1)

11
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O

X x

u

F
dadA

o

(2) Current configuration(1)  Reference configuration

Figure 2.1: Reference and current configurations.

Then the deformation gradient tensor F is defined by

F = Gradx. (2.2)

With respect to Cartesian basis vectors Ei in reference configuration and ei in current

configuration, we have

F =
∂(xiei)
∂Xj

⊗Ej =
∂xi

∂Xj
ei ⊗Ej i, j = 1, 2, 3. (2.3)

The local ratio of current to reference volume is

J = detF > 0, (2.4)

and for an incompressible material the constraint

J = detF ≡ 1 (2.5)

must be satisfied for every material point X.

For any non-singular second order tensor F, we note that the tensor can be written

uniquely in the form

F = RU = VR, (2.6)

where R is a proper orthogonal tensor, so that

RRT = RTR = I, (2.7)

where I is the identity tensor. The tensors U and V are positive definite and symmetric,

the so-called right and left stretch tensors, respectively. The eigenvalues of U are the

(strictly positive) principal stretches of the deformation, denoted λi, i = 1, 2, 3. Please

note that λi are also the eigenvalues of V. Then by using (2.7) we can easily get

J = detF = detU = detV, (2.8)
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In 1839, George Green [18] introduced a deformation tensor called the right Cauchy-Green

deformation tensor or Green’s deformation tensor, which is defined as

C = FTF = U2. (2.9)

Physically, the tensor C gives us a measure of local change in length of an line element

due to deformation.

It is also useful to note that the Nanson’s formula is given by

nda = JF−TNdA, (2.10)

where dA is the area element of material surface in Br and da is the corresponding area

element in Bt; See Fig.2.1. n and N are the unit outward normals in the current and

reference configurations, respectively. The connection (2.10) can be used to map from

areas in the current configuration to the corresponding areas in the reference configuration

and vice versa.

2.2 Stress theory and equilibrium

Let t denote surface (contact) force, per unit deformed area, which depend continuously

on x and n.

Theorem 2.2.1 Cauchy’s theorem: if t(x,n) is continuous in x, then there exists a

second-order tensor field σ such that

t(x,n) = σ(x)n, (2.11)

where the tensor σ is also called the Cauchy stress tensor and is independent of n.

The Cauchy stress tensor σ is symmetric, i.e. σT = σ, and satisfies the Eulerian form of

the equilibrium equation, namely

divσ + ρb = ρa, (2.12)

where ρ is the mass density of the material of the body in current configuration Bt and b

is the body forces, measured per unit volume. a is the acceleration.

We can write the surface force on an area element nda in the current configuration as

following by using (2.10) and Cauchy theorem (2.11)

tda = σnda = JσF−TNdA = STNdA, (2.13)
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where the relation of nominal stress tensor S and Cauchy stress tensor σ is given by

S = JF−1σ. (2.14)

The corresponding nominal stress tensor S, also referred to as the engineering stress,

which, in general, is not symmetric, satisfies

FS = STFT. (2.15)

Please note that ST is the first Piola-Kirchhoff stress tensor.

The Lagrangian alternative to the Eulerian equilibrium equation (2.12) is

DivS + ρrb = ρra, (2.16)

where the Div is the divergence operator with respect to X and the mass density ρr is

related to ρ by the mass conservation equation

J = ρr/ρ. (2.17)

Then, in the static case, if there are no body forces the local equilibrium equation for

the body has the (Lagrangian) form

DivS = 0, (2.18)

or, in terms of Cauchy stress,

divσ = 0. (2.19)

2.3 Constitutive law for a Cauchy elastic material

In solid mechanics, a constitutive equation approximates the actual response of a material

to external forces. To be more precise it connects the stresses to strains or stretches.

A simple elastic material is one for which the stress at each material point is dependent

solely on the current state of deformation with respect to an arbitrary reference config-

uration. However, the work done by the stress does in general depend on the path of

deformation and the stress cannot be derived from a scalar potential function.

Neglecting the effect of temperature the constitutive equation for a homogeneous elastic

material can be written as

σ = g(F), (2.20)



CHAPTER 2. BASIC EQUATIONS 15

where g is called response function of the material relative to Br, which is a symmetric

tensor-valued function. We can see that the Cauchy stress σ at an arbitrary material point

X is determined only by the deformation gradient F at this point and doesn’t depend on

the history of deformation.

The principle of objectivity requires that material properties should be independent of

superposed rigid-body motions. This means the constitutive law g must satisfy

g(QF) = Qg(F)QT, (2.21)

for each F and any rotation Q, which is a proper orthogonal second-tensor.

If for all proper orthogonal second-order tensors Q, we have

g(FQ) = g(F), (2.22)

then the material is said to be isotropic relative to Br. In essence, this means the material

properties have no preferred direction.

In equation (2.22), with Q replaced by RT and use of polar composition (2.6), we get

σ = g(F) = g(VRRT) = g(V). (2.23)

Using material objectivity (2.21) combined with the definition of isotropy (2.22) and

(2.23), we obtain

g(QFPT) = Qg(FPT)QT = Qg(F)QT = Qg(V)QT, (2.24)

then choose P = QR, and we have

g(QVQT) = Qg(V)QT, (2.25)

which then shows that g is an isotropic tensor function of V. It can be shown that the

Cauchy stress σ may be written in the form

σ =
3∑

i=1

σiv(i) ⊗ v(i), (2.26)

where

σi = φ0 + φ1λi + φ2λ
2
i i = 1, 2, 3. (2.27)

φi = φi(I1, I2, I3) and the invariants are defined by

I1 = tr(C), I2 =
1
2
[I2

1 − tr(C2)], I3 = detC. (2.28)
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2.4 Green elastic material

A Green elastic or hyperelastic material is an ideal special case of a Cauchy elastic material

for which a strain-energy function exists. The observed material behaviour of rubber, filled

elastomers and biological tissues are often described by the hyperelastic idealization. The

constitutive relation of such a material can be defined as isotropic, incompressible, non-

linearly elastic and generally independent of strain rate.

The strain-energy function W (F) is given by

∂

∂t
W (F) = Jtr(σL), (2.29)

where the velocity gradient tensor L, is defined as

L = gradv, (2.30)

where v is the velocity vector. Physically, W (F) is a measure of the work per unit refer-

ence volume done by stress as a result of deformation and is independent of the path of

deformation.

We also have

∂

∂t
W (F) = tr

(
∂W

∂F
Ḟ

)
, (2.31)

combined with Ḟ = LF, we can get

∂

∂t
W (F) = tr

(
∂W

∂F
LF

)
= tr

(
F

∂W

∂F
L

)
. (2.32)

Comparison of this with (2.29) shows that stress tensor σ can be written in terms of W (F)

as

σ = J−1F
∂W

∂F
, (2.33)

or in component form (Cartesian coordinates),

σij = J−1Fik
∂W

∂Fjk
. (2.34)

Note that the components of ∂W/∂F are defined by the convention
(

∂W

∂F

)

ij

=
∂W

∂Fji
. (2.35)

Using the connection (2.14) between the nominal stress S and the Cauchy stress tensor σ,

it follows that

S =
∂W

∂F
, (2.36)
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and the component form is

Sij =
∂W

∂Fji
. (2.37)

Definition 2.4.1 Since W is a scalar function objectivity requires that it is unaffected by

a superimposed rigid-body rotation after deformation, i.e.

W (QF) = W (F) (2.38)

for all rotations Q and for each deformation gradient F.

Definition 2.4.2 For a hyperelastic material which is isotopic relative to Br, W is un-

affected by rotations in Br(prior to deformation), such that

W (FPT) = W (F) (2.39)

for all rotations P.

Using the definitions of objectivity and isotropy of W (F), we could deduce

W (QVQT) = W (V), (2.40)

for all rotations Q. This means that W is an isotropic scalar function of V. Thus, the strain

energy function W has all the properties associated with the isotropic scalar function, i.e.

it is expressible as a function of the principal invariants I1, I2, I3 or equivalently, as a

symmetric function of the principal stretches λ1, λ2, λ3. So, we have

W (λ1, λ2, λ3) = W (λ1, λ3, λ2) = W (λ3, λ1, λ2). (2.41)

2.4.1 Stress-deformation relations in terms of invariants

We regard W as a function of the invariants I1, I2, I3, defined in equation (2.28), i.e.

W (I1, I2, I3). Then, we could express nominal stress S as

S =
3∑

i=1

∂W

∂Ii

∂Ii

∂F
. (2.42)

Using the connection of (2.14) between the nominal stress S and the Cauchy stress

tensor σ, we could easily get the corresponding Cauchy stress

σ =
3∑

i=1

J−1 ∂W

∂Ii
F

∂Ii

∂F
. (2.43)

where the derivatives are

∂I1

∂F
= 2FT,

∂I2

∂F
= 2I1FT − 2FTFFT,

∂I3

∂F
= 2I3F−1. (2.44)
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2.5 Internal constraints

To simplify the constitutive response models and also represent a good first approximation

to the actual material behaviour, some form of local constraints are used, such as incom-

pressibility or inextensibility. In mathematical theory, the question is how the constraints

influence the evaluation of the stress tensor.

Suppose the deformation is constrained by the single scalar function

C(F) = 0. (2.45)

Differentiation of (2.45) with respect to time gives

Ċ ≡ tr
(

∂C

∂F
Ḟ

)
= 0. (2.46)

Compared with the stress power defined by (2.31), we could accommodate the constraint

in the stress-deformation relation by adding an arbitrary scalar multiple of C(F), without

affecting the stress power i.e.

W (F) + qC(F), (2.47)

where the hydrostatic pressure q functions is a Lagrange multiplier, in general, q is inde-

pendent of F and dependent on X.

The Cauchy stress tensor σ and nominal stress tensor S defined by (2.33) and (2.36)

respectively are modified to

Jσ = F
∂W

∂F
+ qF

∂C

∂F
, (2.48)

and

S =
∂W

∂F
+ q

∂C

∂F
. (2.49)

For a material constrained by incompressibility, we have

C(F) = J − 1 = λ1λ2λ3 − 1 = 0. (2.50)

To ensure the incompressibility of an elastic material, we can replace strain energy function

W (F) by

W (F)− p(detF− 1). (2.51)
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Thus, the nominal stress S and Cauchy stress σ are given by

σ = F
∂W

∂F
− pI, (2.52)

and

S =
∂W

∂F
− pF−1. (2.53)

2.6 Example strain-energy functions for isotropic elastic ma-

terial

The neo-Hookean material model is given by

W (λ1, λ2, λ3) =
1
2
µ(λ2

1 + λ2
2 + λ2

3 − 3), (2.54)

where µ(> 0) is a material constant referred to as the shear modulus of the material. This

is an extension of Hooke’s law for the case of large deformations and can be applied to

plastics and rubber-like substances. However, the neo-Hookean material model usually

provides sufficient accuracy for materials under moderate straining up to 30-70%.

The Mooney-Rivlin material model, a generalization of the neo-Hookean model, is

defined by

W (λ1, λ2, λ3) =
1
2
µ1(λ2

1 + λ2
2 + λ2

3 − 3)− 1
2
µ2(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3), (2.55)

where µ1(≥ 0) and µ1(≤ 0) are material constants such that µ1 − µ2 = µ(> 0).

For complex materials such as rubbers, polymers, and biological tissue subject to even

larger deformation, more sophisticated models are necessary. The Ogden material model,

which was developed by Ray W. Ogden in 1972, like other hyperelastic material models,

assumes that the material behaviour can be described by a strain energy density function,

from which the stress-deformation relationships can be derived.

The Ogden material model is given by

W (λ1, λ2, λ3) =
N∑

n=1

µn

αn
(λαn

1 + λαn
2 + λαn

3 − 3) (2.56)

where µn and αn are material constants and satisfy the constraint as follows

N∑

n=1

µnαn = 2µ, n = 1, 2, 3, ..., N, (2.57)
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where N is a positive number. Note that choosing appropriate material constants µn,

αn and N , the Ogden model can be reduced to Mooney-Rivlin or neo-Hookean material

model.

For more details of strain-energy functions in terms of principle stretches we refer to

Ogden [57], [59].

2.7 Incremental deformations

We now consider a deformation relative to a given reference configuration Br, defined by

x = χ(X), (2.58)

then superimpose an infinitesimal deformation on the known deformation χ(X), such that

x
′
= χ

′
(X). (2.59)

The infinitesimal displacement of the body due to this change is denoted by

δx = x
′ − x. (2.60)

Here we assume the displacement δx is small enough so that the terms of order |δx|2 and

higher order can be neglected in comparison with those of order |δx|. δx is referred to as

an incremental deformation from the configuration described by χ(X).

The corresponding change of deformation gradient due to the incremental displacement

δx is then given by

Gradδx = δGradx = δF. (2.61)

Using the definition of the differentiation of a scalar function of a tensor, described in

Section 4.2.8 in the book by Ogden [60], and the Taylor series, we obtain the change of a

scalar function as

δφ(F) = tr
(

∂φ

∂F
δF

)
+

1
2
tr

((
∂2φ

∂F2
δF

)
δF

)
+ higher orders. (2.62)

In terms of Cartesian components the first term in equation (2.62) is defined by

tr
(

∂φ

∂F
δF

)
=

(
∂φ

∂Fji

)
δFji, (2.63)

and the second term in component form is defined by

1
2
tr

((
∂2φ

∂F2
δF

)
δF

)
=

1
2

∂2φ

∂Fji∂Flk
δFlkδFji. (2.64)
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Let φ = J and neglect the terms of second and higher order in the definition of (2.62),

then δJ , the change in the determinant of deformation gradient can be written as

δJ = Jtr(F−1δF) (2.65)

The increment of a tensor function G can be treated in a similar manner, so that

δG =
∂G
∂F

δF +
1
2

(
∂2G
∂F2

δF
)

δF + higher orders, (2.66)

with Cartesian components
(

∂G
∂F

δF
)

ij

=
∂Gij

∂Fkl
δFkl, (2.67)

and
((

∂2G
∂F2

δF
)

δF
)

ij

=
∂2Gij

∂Fkl∂Fmn
δFmnδFkl. (2.68)

Then the linear approximation of the nominal stress increment may be written in

accordance with (2.66)

δS = AδF (2.69)

where the notation A, referred to as the tensor of first-order elastic moduli associated

with the conjugate pair (S,F), is defined by

A =
∂S
∂F

, (2.70)

which is also called the tensor of fixed-reference moduli.

If we take the reference configuration to coincide with the current configuration Bt,

then the increment of the deformation gradient relative to current configuration takes the

form

δF0 = δFF−1, (2.71)

where the subscript zero indicates a quantity evaluated in Bt.

We also have the corresponding connection

δS0 = J−1FδS, (2.72)

Then the resulting elastic moduli are referred to as the instantaneous moduli and the

relation between instantaneous moduli and fixed-reference moduli is given by (for details,

see [60])

A0ijkl = J−1FiαFkβAαjβl. (2.73)

Please note that we also introduce the alternative notation ẋ = δx = η, Ḟ = δF, Ṡ = δS

and the instantaneous moduli A0 = B in Chapter 4.



Chapter 3

Finite element method, libmesh

library

3.1 Finite element nonlinear analysis in solid mechanics

3.1.1 Introduction

The finite element method, which originated from the need for finding approximate solu-

tions to complicated structural analysis and elasticity problems in civil and aeronautical

engineering, is now an important and indispensable tool in scientific research, engineering

analysis and design, such as in the thermal, electromagnetic, solid, fluid, and structural

working environments.

An alternative way of solving partial differential equations is the finite difference

method. Compared to the finite difference method, the most attractive feature of the

finite element method is its ability to handle complicated geometries with relative ease.

While finite difference methods can be very easy to implement, in general, the accuracy

of a finite element method approximation is often more precise than in the corresponding

finite difference method.

To alleviate difficulties in solving problems with localized features that are not effi-

ciently resolved by mesh refinement, the extended finite element method, also known as

the generalized finite element method was developed in 1999 by Belytschko and collabo-

rators. This method has been used to model the propagation of various discontinuities,

such as cracks and material interfaces.

Over the past 20 years, meshfree methods have been developed to facilitate simulations

22
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in problems where the ability to handle discontinuities and singularities, large deforma-

tions, advanced materials is needed. For example, the melting of a solid or the freezing

process can be simulated using meshfree methods.

3.1.2 Procedure for finite element solution with libmesh

Discussions on the finite element method in detail are obviously beyond the scope of this

work. However, we will summarize the particular techniques and the processes related to

the finite element analysis in Chapter 5.

For discretization of the differential equations, the weighted residual-Galerkin method

has been used. This method is frequently adopted in the finite element literature since it

usually (but by no means always) leads to symmetric matrices [80]. In essence the original

shape functions are used as weighting functions for the approximations used in the integral

formulations (see Appendix 1).

The displacement-based finite element procedures are not sufficiently effective for the

analysis of incompressible materials, and mixed finite element models have therefore been

adopted to obtain good solution accuracy [8], as illustrated in Fig. 3.1. This figure

shows that, for a 6-node triangle element, the displacements are interpolated using the six

nodes and the pressure, which is a Lagrange multiplier coming from the incompressibility

constraint, see equation (2.5), is interpolated by using only three corner nodes. On the

other hand, for 9-node quadrilateral elements, the displacements are interpolated using

nine nodes and the pressure using 4 corner nodes only. Mathematically, the linear and

bilinear pressure interpolations are used respectively for the above two cases, i.e.

p = p0 + p1x + p2y,

p = p0 + p1x + p2y + p3xy. (3.1)

In general, once a mathematical model has been developed, the numerical finite element

procedure can be followed to solve the governing equations approximately. In the following

we summarize the implementation of these procedures with an object-oriented parallel

finite element library, which will be covered in the next section. The procedure is depicted

in Fig. 3.2. Discretization of the governing equations leads to expressions of the element

stiffness matrices Ke. We could obtain the modified element stiffness matrices K̂e using

boundary conditions. Instead of forming all elements first and then assembling them,

we will construct elements one at a time in a loop, and immediately merge them into
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Node with displacement variables

Node with displacement and pressure variables

(a) (b)

Figure 3.1: Mixed elements: (a) 6-node Triangle (b) 9-node Quadrilateral.
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Mathematical model
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Kinematics

Material law

Boundary conditions

Finite element solution

Discretized equations

Element type/Mesh

Global stiffness Matrix

Linear/nonlinear solver
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Figure 3.2: Procedures in a Finite element program.

the Global matrix K̂. The residual vector R can be obtained based on K̂. Then, the

linear/nonlinear solver can be called to solve the final algebra equations. Once we get

the values of the displacements and the pressure, post processing can be carried out to

obtain the stresses or stretches. We could use libmesh to assemble the system and call

the equation solvers to find the approximate solution. However, since libmesh is not a

black box tool and still underdeveloped now, we have to create our own mesh files in 2D

problems or use Tetgen (an open-source tetrahedral mesh generator) to mesh the tube in
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our 3D problem. Also, we have to write code for the purpose of post processing.

3.1.3 Stress recovery

It is very important to evaluate the stresses at each node for all the elements in engineering

application. A quite straightforward approach is to evaluate the stresses at the nodes of a

given element by substituting the natural coordinates of the nodes to the shape functions

then using the connection between stress and displacements. Another approach is to

evaluate the stresses at Gauss integration points and then extrapolate to the element

nodes [22]. The latter approach provides more accurate stress values for quadrilateral

elements, since the best accuracy for gradients and stresses is obtained at the Gauss

points. We will adopt the second approach for the calculation of stresses in Chapter 5.

Other variables such as the principal stresses/stretches are also evaluated in a similar

way; see details in Chapter 5. The detailed explanation of this method is given as below.

However, for triangle elements both of the above approaches give similar results. Note

that this discussion is mainly based on the course materials from the Department of

Aerospace Engineering Sciences, University of Colorado at Boulder; for details, see the

website: http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/.

Taking a 4-node quadrilateral element for example, the four Gauss points, denoted as

1
′
, 2
′
, 3
′
, 4
′

are composed of the “Gauss element”, as illustrated in Fig.3.3. The natural

coordinates of both the nodes of the quadrilateral element and the nodes of Gauss element

are listed in Table 3.1. The “Gauss element”, denoted by (e
′
), is also a 4-node quadrilateral,

with its coordinates denoted by ξ
′
and η

′
. The connections between two sets of coordinates

are

ξ = ξ
′
/
√

3, η = η
′
/
√

3. (3.2)

An arbitrary scalar quantity u can be approximated by

u(ξ
′
, η

′
) =

4∑

i=1

N
(e
′
)

i (ξ
′
, η

′
)u

′
i, (3.3)

where N
(e
′
)

i , i = 1, 2, 3, 4 are the shape functions, defined by

N
(e
′
)

1 =
1
4
(1− ξ

′
)(1− η

′
),

N
(e
′
)

2 =
1
4
(1 + ξ

′
)(1− η

′
),

N
(e
′
)

3 =
1
4
(1 + ξ

′
)(1 + η

′
),

N
(e
′
)

4 =
1
4
(1− ξ

′
)(1 + η

′
). (3.4)
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When the stresses at Gauss element points are evaluated, the extrapolation procedure can

be done. For example, to extrapolate u to node 1, we replace its coordinates (ξ
′
, η

′
) =

(−√3,−√3) into equation (3.3).

Table 3.1: Natural coordinates of Quadrilateral nodes.

Corner nodes ξ η ξ
′

η
′

Gauss nodes ξ η ξ
′

η
′

1 −1 −1 −√3 −√3 1
′ −1/

√
3 −1/

√
3 −1 −1

2 +1 −1 +
√

3 −√3 2
′

+1/
√

3 −1/
√

3 +1 −1

3 +1 +1 +
√

3 +
√

3 3
′

+1/
√

3 +1/
√

3 +1 +1

4 −1 +1 −√3 +
√

3 4
′ −1/

√
3 +1/

√
3 −1 +1

Figure 3.3: (a) 4-node quadrilateral element (e); (b) Gauss element (e
′
)

Figure 3.4 shows Gauss elements for 8-node and 9-node quadrilaterals and a 6-node

triangle. Extrapolation in these higher order elements can be evaluated in a similar way

easily. However, it is a process demanding great caution for the implementation of this

stress recovery technique compatibly with libmesh.

In finite element analysis, it is an assumption that the elements must be complete

and compatible. The compatibility condition requires the displacements and their mth

derivatives are continuous across the adjacent element for a Cm variational problem [8]. In

the analysis of a plate bending problem, for example, the transverse displacement u is the

only unknown variable. The transverse displacement u and its derivatives ∂u/∂x, ∂u/∂y

are continuous. This continuity condition can’t guarantee the continuity of the stresses

calculated at the same node of adjacent elements. This indicates some necessary process
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Figure 3.4: Gauss elements for high order quadrilaterals and triangles (a) 9-node element

with 3 × 3 Gauss rule (b) 9-node element with 3× 3 Gauss rule (c) 6-node element with

3-interior rule.

of stress averaging is needed to smooth and improve the accuracy of the stresses. The

stress averaging might be followed in two ways in practice:

1. Unweighted averaging: assign the same weight to all elements that share a common

node.

2. Weighted averaging: the weight assigned to element contributions depends on the

stress component and the element geometry and possibly the element type.

For the problems in Chapter 5 the unweighted averaging is chosen to compute the

averaged nodal stresses σij as well as other nodal variables such as the principal stretches

λi.

3.2 Libmesh library

The open-source finite element library libmesh [44] provides a software framework for

parallel adaptive finite element simulations of partial differential equations using arbitrary

unstructured discretization. It is also integrated with third party software packages such as

(1) PETSc and LASPack for the solution of linear systems on both serial and parallel plat-

forms, (2) METIS and ParMETIS for mesh partitioning, (3) Triangle and Tetgen for mesh

generation. libmesh has been developed at The University of Texas at Austin in the CFD

Lab since March 2002. The libmesh library itself is not tied to any particular application.

The simulations presented in Chapter 5 were performed by the author using application

codes built on top of this framework. The libmesh library is coded by the object-oriented

C++ programming language. In the following section, an overview of Object-Oriented



CHAPTER 3. FINITE ELEMENT METHOD, LIBMESH LIBRARY 28

scientific computing is presented, which is a key to gaining better understanding of the

libmesh framework.

3.2.1 Object-Oriented Scientific Computing

The C++ programming language provides many useful features for simulating complex sci-

entific computing problems [15], [16], [68], such as abstraction, encapsulation, inheritance,

polymorphism. A critical feature missing in Fortran 90 is the template techniques, which

allows C++ programmers to build portable, reusable code and to dramatically improve

the efficiency of the evaluation of complex expressions involving user-defined data types.

In recent years the performance of the C++ programming language has improved. Many

high performance, object-oriented scientific softwares have been developed using C++.

There are two distinct paradigms for implementing software algorithms, namely procedure-

oriented and object-oriented approaches.

The procedural approach has dominated numeric computation and scientific comput-

ing for decades. One of the most popular procedural programming language is Fortran. In

this approach a sequence of algorithmic steps operates on some set of data structures to

implement a given algorithm. In consequence the data storage and procedure implemen-

tation are intimately related. Suppose a standard array were used to store the individual

elements of a vector, for example. If for some reason, a linked-list would be a more efficient

data structure, due to dynamic insertion and removal of elements, for example, then it

would require substantial changes to all codes which use such a vector.

On the other hand, object-oriented approaches provide user-defined classes which define

the attributes and the behaviours of a particular data type. The class concept is a tool

that can be used to create new data types. Within a given class, data and function

members can be declared as either public, protected, or private in order to explicitly enforce

encapsulation. A significant feature of classes is encapsulation. As a result, the actual data

is separated from operations which are performed on the data. Considering the vector

example again, object-oriented programming allows that the specific data structure used

to store the elements of the vector can be completely encapsulated within an object and the

codes which use such an object don’t need to have any access to this data structure. Then,

if the algorithmic implementation or data storage techniques of an object are changed for

some reason, the codes using such an object need not to change. For this and many

other reasons, object-oriented programming has been used widely since the mid-1990s
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to build more maintainable and extensible software. The application of object-oriented

techniques in scientific numerical simulations has been slow but much effort is being made

to implement high performance object-oriented scientific software [3], [4], [44].

3.2.2 libmesh: Adaptive mesh refinement scheme

Figure 3.5: Element refinement hierarchy for a 2D quadrilateral mesh (from PhD thesis

by Kirk [45]).

One of the main features of libmesh is the support for adaptive mesh refinement. In an

adaptive refinement procedure, when a solution on a given mesh is obtained, the error of

this solution will be estimated to get local error indicators which can be used as the criteria

for selective local mesh refinement. Two main categories of procedures for the adaptive

refinement of the finite element solutions are the h-refinement and p-refinement. In h-

refinement the elements are changed in size, as illustrated in Fig. 3.5; some of the elements

are made larger and others are smaller. By contrast, p-refinement keeps the size of the

elements but increases the order of the polynomial used in their definition [19], [80]. Both

of the refinement approaches are provided in the libmesh library. In a refinement process

used by libmesh a new set of children elements is created from the parent elements through

a linear map, which is provide by an “embedding matrix”. On the other hand, in the

coarsening process all the children of a given element are removed and the parent element
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is re-activated. For details of the error indicators and refinement criteria, we refer to the

work done by Kelly [43]. Figure 3.6 shows the solution to the nonlinear model (described

in Chapter 5) for an adapted quadrilateral mesh using the KellyErrorEstimator class in

libmesh.

Figure 3.6: Adaptive mesh refinement on a rectangle domain.

3.2.3 Data structure of libmesh

Most of this section is based on the libmesh web page: http://libmesh.sourceforge.net/,

the paper [44] and the dissertation by Kirk [45].

The Mesh class provides a description of a geometric entity. A mesh is composed of

elements and nodes, which are stored in the mesh. These data are encapsulated by abstract

classes which provide an interface for a variety of possible implementations. To access the

particular subset or all the nodes and elements in the mesh, the user just needs to create a

node/element iterator object. In addition, this class provides functions for implementing

mesh input/output in various formats, including GMV format from Los Alamos National

Labs, TetGen, Tecplot, Exodus II from Sandia National Labs, and GMSH.

The abstract base class Elem provides an interface for implementation of a geometric

element. The derived classes, such as Hex8 support the actual operation and calculations

for a given geometric elements via virtual functions. Figure 3.7 shows a simplified inher-

itance diagram, in which a Cell is an abstract Elem in three-dimensions and a cell could

be a tetrahedron, a pyramid, a prism, or a hexahedron. The concrete subclass Hex8 is
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an element composed of 8 nodes in three dimensions. The user can conveniently obtain

the number of the nodes of all geometric element types by calling the virtual function

n_nodes() on an Elem pointer. These virtual functions allow for defining a new element

type by the user without affecting the external application programming interface; for

example, the original code used to return the number of nodes of a given element type.

Figure 3.7: A simplified inheritance diagram for the DofObject class (from PhD thesis by

Stogner [67]).

In a classic finite element data structure, the element connectivity is usually given in

terms of the node indices, while in the libmesh library the Elem class stores pointers to

the nodes to which the element is connected. This approach can enable the element to

determine the location of its nodes with a single pointer dereference. Elements also contain

pointers to their face neighbours and their parent or child elements. When at least one

side of the element is on the physical boundary of the domain, it means the element has a

Null neighbour with a Null pointer added into the array of the pointers to its neighbour.

It is convenient to apply boundary conditions by finding all the elements with a Null
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pointer neighbour.

The abstract System class contains information related to a set of differential equations

that might be simulated. Several concrete systems are derived, such as LinearImplicitSystem,

NonlinearImplicitSystem which will be used to solve the linear and nonlinear sets of

equations in Chapters 5 and 6. Note that a system is uniquely tied to a particular mesh;

in a simulation multiple meshes are used, and then multiple systems are needed.

The base class NonlinearSolver provides a uniform interface for nonlinear solvers in

packages like PETSc. PETSc, a portable and extensible library for scientific computing,

is the underlying parallel linear solver used in this work, which was developed in the

Mathematics and Computer Science Division at Argonne National Laboratory [4].

Although libmesh offers all the standard geometric element types, such as triangles,

quadrilaterals, tetrahedra, hexahedra, prisms and pyramids, it can’t automatically gener-

ate meshes for complex geometries but is only limited to simple geometries like a rectangle,

a circle and a cube. For the two dimensional problem described in more details in Chapter

5, a symmetric mesh is necessary to obtain the correct solution, since the geometry of

the tube section and the boundary conditions, including pressure on lateral surface of the

tube and zero-displacement end conditions, are all symmetric. We have written several

mesh files (for details, see Appendix) in XDA format to store the coarse symmetric mesh

data and then using uniform refinement loops to obtain the final mesh. For the three

dimensional problems in Chapter 6, we use the mesh generator TetGen [31] to generate

tetrahedral meshes, which then can be read into libmesh. The C++ code used to obtain

the tetrahedral mesh (as illustrated in Fig. 3.8) is provided in Appendix 2.
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Figure 3.8: A 3D tube discretized by tetrahedral element.



Chapter 4

Bifurcation

In this chapter we restrict our attention to buckling of circular cylindrical tubes under

external pressure.

In Section 1 we summarize the necessary constitutive equations that describe finite

elastic deformations, while in Section 2 these are specialized to the circular cylindrical

geometry of a thick-walled tube that maintains its circular cylindrical shape under axial

extension and external pressure. The equations that describe a general (three-dimensional)

incremental deformation superimposed on the deformed circular cylindrical tube are then

given in Section 3. The three coupled partial differential equations governing the in-

cremental displacement components are highlighted in Section 4 along with the relevant

incremental boundary conditions. Based on an appropriate Ansatz for the displacement

components the equations reduce to coupled ordinary differential equations, for the solu-

tion of which a numerical scheme is then described. In Section 5 the numerical method

is used in respect of a specific material model in order to obtain details of the onset of

bifurcation in either an axisymmetric or asymmetric mode.

4.1 The elastic constitutive law and strain-energy function

We consider the material body to be composed of an elastic material, whose properties

are described in terms of a strain-energy function, which we denote by W = W (F) per

unit reference volume. Here we confine attention to incompressible materials, so that the

stress-deformation relation is given by either

S =
∂W

∂F
− pF−1, (4.1)

34
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where p (an arbitrary hydrostatic stress) is a Lagrange multiplier associated with the

constraint (2.5), or

σ = F
∂W

∂F
− pI, (4.2)

where I is the identity tensor.

Here we take the material to be isotropic, so that W depends on F only through

the principal stretches λi, i = 1, 2, 3, and is a symmetric function of the stretches. We

therefore represent W in the form W = W (λ1, λ2, λ3), and, for an incompressible material,

the constraint (2.5) may be written in terms of the stretches as

λ1λ2λ3 = 1. (4.3)

Moreover, (4.2) can be decomposed on principal axes as

σi = λi
∂W

∂λi
− p, i = 1, 2, 3 (no summation), (4.4)

σi, i = 1, 2, 3, being the principal Cauchy stresses.

For subsequent convenience it is useful to regard W as a function of just two indepen-

dent stretches, λ1 and λ2 say, and to introduce the notation Ŵ defined by

Ŵ (λ1, λ2) = W (λ1, λ2, λ
−1
1 λ−1

2 ). (4.5)

It then follows from (4.4) that the principal stress differences can be written

σ1 − σ3 = λ1
∂Ŵ

∂λ1
, σ2 − σ3 = λ2

∂Ŵ

∂λ2
. (4.6)

4.2 The circular cylindrical configuration

We now consider a thick-walled circular cylindrical tube with reference geometry described

by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (4.7)

where R, Θ, Z are cylindrical polar coordinates, A and B are the inner and outer radii,

respectively, and L is the length of the tube. This is depicted in Fig. 4.1(a).

The initial deformed configuration of the tube, under the action of axial loading and

external pressure, is assumed also to be circular cylindrical, with geometry described by

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (4.8)
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Figure 4.1: The circular cylindrical tube in its reference configuration (a) and deformed

configuration when subject to axial load and external pressure (b).

where r, θ, z are cylindrical polar coordinates, a and b are the internal and external radii,

respectively, and l is the length. Since the material is incompressible, the deformation is

described by the equations

r2 = a2 + λ−1
z (R2 −A2), θ = Θ, z = λzZ, (4.9)

where λz is the axial extension ratio (or axial stretch), which is uniform.

We use e1, e2, e3 to denote the unit basis vectors corresponding to the coordinates

θ, z, r, respectively. For the considered deformation, since the material is isotropic, these
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define the principal directions of both the stretch tensor U and the Cauchy stress σ.

Let λ1, λ2, λ3 denote the corresponding principal stretches and σ1, σ2, σ3 the associated

principal Cauchy stresses, which are given by (4.4). From the incompressibility constraint

together with (4.9), we have

λ2 = λz, λ1 =
r

R
≡ λ, λ3 = (λ1λz)−1. (4.10)

For the symmetric configuration considered here, the only equilibrium equation not

satisfied trivially is

r
dσ3

dr
+ σ3 − σ1 = 0, (4.11)

and we have the associated boundary conditions

σ3 =





0 on r = a

−P on r = b.
(4.12)

Using Ŵ , as defined in (4.5), (4.6)1, and the definitions (4.10), integration of (4.11)

and application of the boundary conditions (4.12) yields

P = −
∫ b

a
λŴλ

dr

r
. (4.13)

On application of the connections r = λR and (4.9) this may be re-written with λ as the

integration variable in the form

P =
∫ λb

λa

Ŵλ

(λ2λz − 1)
dλ, (4.14)

where

λa =
a

A
, λb =

b

B
. (4.15)

We note here that if there is, additionally, an internal pressure, Pi > 0 say, then the

left-hand sides of (4.13) and (4.14) are replaced by P −Pi. Thus, the effect of an internal

pressure can be captured by taking P < 0 in the above formulas, this corresponding to a

radial external tension on r = b.

4.3 Incremental equations

Detailed derivation of the incremental equations can be found in [35] for a thick-walled and

[34] for a thin-walled tube (see [32] and [33] for corresponding results for spherical shells).

Here we provide a summary of the main results needed for our analysis. A superposed
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dot signifies an increment in the quantity concerned, and a subscript 0 indicates that the

quantity to which it is attached is calculated with respect to the deformed configuration

as reference configuration. First, let ẋ(X) denote the incremental displacement vector,

and then define u(x) through u(x) = u(χ(X)) = ẋ(X). Note that u was used earlier for

the displacement in equation (2.1) in Chapter 1, which does not appear in this chapter so

there is no conflict of notation. Next, introduce the notation η defined by

η = Ḟ0 ≡ ḞF−1 = gradu. (4.16)

The incremental form of the incompressibility condition can then be written

trη = 0. (4.17)

The increment of the constitutive law (4.1) has the form

Ṡ = AḞ− ṗF−1 + pF−1ḞF−1, (4.18)

where A is the elasticity tensor with components defined by

Aαiβj =
∂2W

∂Fiα∂Fjβ
. (4.19)

When the reference configuration is updated to the current configuration this becomes

Ṡ0 = Bη + pη − ṗI, (4.20)

where I is again the identity tensor and B is the 4th-order tensor of instantaneous elastic

moduli, whose (Cartesian) components are related to those of A by

Bpiqj = FpαFqβAαiβj . (4.21)

For an incompressible isotropic elastic material the non-vanishing components of B
referred to the principal axes of σ can be written (see, for example, [58])

Biijj = Bjjii = λiλjWij , (4.22)

Bijij =
λiWi − λjWj

λ2
i − λ2

j

λ2
i , λi 6= λj , (4.23)

Bijji = Bjiij = Bijij − λiWi, i 6= j, (4.24)

where Wi = ∂W/∂λi, Wij = ∂2W/∂λi∂λj .

The incremental form of the equilibrium equation (2.18) is DivṠ = 0 and when updated

it becomes

divṠ0 = 0, (4.25)
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the incremental counterpart of (2.19).

For the problem to be considered in the following sections we shall be making use of

the pressure boundary condition, which, referred to the original reference configuration,

may be written

STN = −PF−TN, (4.26)

where N is the unit outward normal vector to the boundary of the body in the reference

configuration and P is the pressure on the boundary per unit area of the deformed con-

figuration. On taking the increment of (4.26) and updating to the deformed configuration

we obtain

ṠT
0 n = PηTn− Ṗn, (4.27)

which is the form of incremental boundary condition that we shall use.

We now specialize (4.25) to circular cylindrical coordinates based of the underly-

ing solution discussed in Section 3. The curvilinear coordinates are ordered so that

(x1, x2, x3) = (θ, z, r). Then, we have, in component form,

Ṡ0ji,j + Ṡ0jiek · ej,k + Ṡ0kjei · ej,k = 0, i = 1, 2, 3, (4.28)

with summation over indices j and k from 1 to 3, where the subscript j (= 1, 2, 3) following

a comma represents the derivatives (∂/r∂θ, ∂/∂z, ∂/∂r). The only non-zero components

of ei · ej,k are

e1 · e3,1 =
1
r
, e3 · e1,1 = −1

r
. (4.29)

Referred to the cylindrical polar axes the incremental displacement u is written in

terms of its components (v, w, u) as

u = ve1 + we2 + ue3. (4.30)

Then, from the definition η = gradu we obtain the component matrix of η referred to the

axes in question as

[η] =




(u + vθ)/r vz vr

wθ/r wz wr

(uθ − v)/r uz ur


 , (4.31)

where the square brackets indicate the matrix of components of the enclosed quantity and

the subscripts (r, θ, z) signify standard partial derivatives.

The incompressibility condition (4.17) can now be given explicitly as

trη ≡ ur + (u + vθ)/r + wz = 0. (4.32)
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4.4 Asymmetric bifurcations and numerical methods

We now substitute (4.20), (4.31), (4.32) and the expressions for the components of Bijkl

into (4.28) to obtain

ṗθ = (rB′3131 + B3131)(uθ + rvr − v)/r + (B1111 − B1122 − B2112)(uθ + vθθ)/r

+ B2121rvzz + B3131rvrr + (B1133 − B1122 − B2112 + B3113)urθ, (4.33)

ṗz = (rB′3232 + B3232)(uz + wr)/r + B1212(wθθ − ruz)/r2 + B3232wrr

+ (B2222 − B1221 − B1122)wzz + (B2233 + B3223 − B1221 − B1122)urz, (4.34)

ṗr = (rB′1133 − rB′2233 − B1111 + B1122)(u + vθ)/r2 + B1313(uθθ − vθ)/r2 + B3223wrz

+ (B1331 + B1133 − B2233)vrθ/r + (B3333 − B2233)urr + B2323uzz

+ (rB′3333 + rp′ − rB′2233 + B3333 − 2B2233 + B1122)ur/r. (4.35)

On the cylindrical boundaries we apply the specialization of (4.27) to the present

situation, with the inner boundary free of incremental traction and the outer boundary

subject to pressure P . Taking Ṗ = 0 in (4.27) we then have, for i = 1, 2, 3,

Ṡ03i =





0 on r = a

Pη3i on r = b.
(4.36)

At the ends of the tube we apply the incremental boundary conditions

u = v = 0, Ṡ022 = 0 on z = 0, l. (4.37)

This means that the ends of the tube are constrained so that no incremental rotation or

radial displacement is allowed, while the axial component of traction is of dead-load type.

To solve the equations, we assume that the solution takes the form

u = f(r) cos mθ sinαz, v = g(r) sin mθ sinαz,

w = h(r) cos mθ cosαz, ṗ = k(r) cos mθ sinαz,





(4.38)

where m = 0, 1, 2, 3, . . . is the azimuthal mode number, m = 0 corresponding to an

axisymmetric solution. Substitution into the incompressibility condition (4.32) then yields

rf ′(r) + f(r) + mg(r)− αrh(r) = 0. (4.39)

Also, on inserting (4.38) into (4.33)–(4.35) and using (4.39) to eliminate h(r), we obtain
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three coupled equations for f(r), g(r) and k(r), namely

(rB′3131 + B3131 + B1111 − B1122 − B2112)mf(r) + (B1133 − B1122 + B3113 − B2112)mrf ′(r)

+ [rB′3131 + B3131 + m2(B1111 − B1122 − B2112) + α2r2B2121]g(r)

− (rB′3131 + B3131)rg′(r)− B3131r
2g′′(r)−mrk(r) = 0, (4.40)

[rB′3232 − B3232 + m2B1212 − α2r2(rB′3232 + B3232 − B1212 + B1122 + B1221 − B2222)]f(r)

− [rB′3232 − B3232 −m2B1212 − α2r2(B2222 − B2233 − B3223)]rf ′(r)

− (rB′3232 + 2B3232)r2f ′′(r)− B3232r
3f ′′′(r)

+ [rB′3232 − B3232 + m2B1212 + α2r2(B2222 − B1122 − B1221)]mg(r)

− (rB′3232 − B3232)mrg′(r)− B3232mr2g′′(r) + α2r3k(r) = 0, (4.41)

(rB′1133 − rB′2233 − B1111 + B1122 + B3223 −m2B1313 − α2r2B2323)f(r)

+ (rB′3333 + rp′ − rB′2233 + B3333 − 2B2233 + B1122 − B3223)rf ′(r)

+ (B3333 − B2233 − B3223)r2f ′′(r)

+ (rB′1133 − rB′2233 − B1111 + B1122 + B3223 − B1313)mg(r)

+ (B1133 − B2233 + B1331 − B3223)mrg′(r)− r2k′(r) = 0. (4.42)

Next, on substituting the expression for u from (4.38) in the boundary condition

(4.37)1, we deduce that

α = nπ/(λ2L), (4.43)

where n = 1, 2, 3, . . . is the axial mode number. The boundary conditions for v are then

automatically satisfied. It is therefore clear that the behaviour for different mode numbers

n can be captured, equivalently, by varying the length L. Thus, in what follows it suffices

to set n = 1 and to consider L as a parameter that reflects either changes in the axial

mode number or changes in length.

¿From equations (4.40)–(4.42), we can express f ′′′(r), g′′(r) and k′(r) in terms of f(r),

f ′(r), f ′′(r), g(r), g′(r) and k(r), and hence we write the equations as a first-order system

in the compact form
dy
dr

= G(y, r), (4.44)

where y = (y1, y2, y3, y4, y5, y6)T, G = (G1, G2, G3, G4, G5, G6)T,

y1 = f(r), y2 = f ′(r), y3 = f ′′(r), y4 = g(r), y5 = g′(r), y6 = k(r), (4.45)

and

G1 = y2, G2 = y3, G4 = y5, (4.46)



CHAPTER 4. BIFURCATION 42

while G3, G5, G6 are lengthy expressions obtained by rearranging equations (4.40)–(4.42)

and are not listed here.

In the same notation, the components of the incremental pressure boundary condition

(4.27) are given as

my1 + y4 − ry5 = 0,

(α2r2 + m2 − 1)y1 + ry2 + r2y3 = 0,

(B1133 − B2233)(y1 + my4) + (B3333 − B2233 + λ3W3)ry2 − ry6 = 0,





(4.47)

each of which must hold on both r = a and r = b. To obtain these use has been made of

the conditions σ3 = λ3W3 − p = 0 on r = a and σ3 = λ3W3 − p = −P on r = b, and we

have set Ṗ = 0 on r = b.

To solve the system of first-order ordinary differential equations (with three indepen-

dent solutions), we choose starting values at r = a for three independent solutions given

by 


y1
1(a) y2

1(a) y3
1(a)

y1
4(a) y2

4(a) y3
4(a)

y1
6(a) y2

6(a) y3
6(a)


 =




1 0 0

0 1 0

0 0 1


 , (4.48)

where, for each entry yj
i (a) in (4.48), subscripts i = 1, 4, 6, correspond to dependent

variables in (4.44) while the superscript j refers to the jth set of initial values (j = 1, 2, 3).

Substituting each set of the initial values, that is each column of the matrix (4.48),

into the boundary conditions (4.47) for r = a, we obtain



y1
2(a) y2

2(a) y3
2(a)

y1
3(a) y2

3(a) y3
3(a)

y1
5(a) y2

5(a) y3
5(a)


 =




a11 my1
2(a) a13

a21 −my1
2(a)/a −y3

2(a)/a

m/a 1/a 0


 , (4.49)

where, for conciseness, we have introduced the notations

a11 =
B2233 − B1133

a(B3333 − B2233 + λ3W3)
, a13 =

1
B3333 − B2233 + λ3W3

,

a21 =
1−m2 − a2α2 − ay1

2(a)
a2

,

all terms being evaluated for r = a.

Equations (4.48) and (4.49) together give the initial values for equations (4.44). This

initial value problem is solved numerically using the Adams-Moulton method (Gerald and

Wheatley, 1984), with Predictor and Corrector given by

Predictor: yn+1 = yn +
h

24
(55Gn − 59Gn−1 + 37Gn−2 − 9Gn−3), (4.50)
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Corrector: yn+1 = yn +
h

24
(9Gn+1 + 19Gn − 5Gn−1 + Gn−2), (4.51)

where h = (b− a)/ω is the step size and ω is the iteration number. Note that the Adams-

Moulton method requires four sets of initial values at previous steps. These are calculated

using the fourth-order Runge-Kutta method. Each method has local errors of O(h5).

The solutions can be expressed as a linear combination of the three independent solutions

y1,y2,y3. Thus,

y = C1y1 + C2y2 + C3y3, (4.52)

where yi = (yi
1, y

i
2, y

i
3, y

i
4, y

i
5, y

i
6)

T, i = 1, 2, 3.

Bifurcation may occur if there exist constants C1, C2, C3, at least one of which is non-

zero. For purposes of numerical computation in Section 6 we shall specialize to a particular

strain-energy function, for which B1133 = B2233 = 0. On introducing this specialization

and substituting (4.52) into the boundary conditions (4.47), we obtain three equations for

C1, C2, C3, namely

[myi
1(b) + yi

4(b)− byi
5(b)]Ci = 0,

[(m2 + α2b2 − 1)yi
1(b) + b(yi

2(b) + byi
3(b))]Ci = 0,

[b(B3333 + λ3W3)yi
2(b)− byi

6(b)]Ci = 0,





(4.53)

evaluated for r = b, in each of which there is summation over the index i from 1 to 3. Thus,

the bifurcation criterion is obtained by the vanishing of the determinant of coefficients of

C1, C2, C3, viz.
∣∣∣∣∣∣∣∣∣

my1
1(b) + y1

4(b)− by1
5(b) my2

1(b) + y2
4(b)− by2

5(b) my3
1(b) + y3

4(b)− by3
5(b)

My1
1(b) + by1

2(b) + b2y1
3(b) My2

1(b) + by2
2(b) + b2y2

3(b) My3
1(b) + by3

2(b) + b2y3
3(b)

bNy1
2(b)− by1

6(b) bNy2
2(b)− by2

6(b) bNy3
2(b)− by3

6(b)

∣∣∣∣∣∣∣∣∣
= 0,

(4.54)

again with all terms evaluated for r = b, where M = m2 +α2b2−1 and N = B3333 +λ3W3.

Substituting the equation

b2 = a2 + λ−1
z (B2 −A2), (4.55)

i.e. equation (4.9)1 with R = B, into (4.54), we obtain an equation for the value of a that

satisfies the bifurcation criterion (4.54). The corresponding bifurcation pressure can be

obtained from (4.14).
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4.5 Numerical results and discussion

In the experiments of [74] and [10] silicone rubber tubes were used, and the numerical

results of [52] were compared with experimental data for two thick-walled collapsible tubes

reported by [10]. It is therefore appropriate to employ a strain-energy function that has

been used extensively for fitting data on experiments for a wide range of rubberlike solids.

Specifically, we apply the foregoing theory to the strain-energy function given by

W =
3∑

r=1

µr(λαr
1 + λαr

2 + λαr
3 − 3)/αr, (4.56)

where µr and αr, r = 1, 2, 3, are material constants (see, for example, [60]). Using the

incompressibility condition (4.3) and the energy function Ŵ (λ1, λ2) defined by (4.5), we

have

Ŵ (λ1, λ2) =
3∑

r=1

µr(λαr
1 + λαr

2 + (λ1λ2)−αr − 3)/αr. (4.57)

For the numerical calculations we use the material constants given by

α1 = 1.3, α2 = 5.0, α3 = −2.0,

µ∗1 = 1.491, µ∗2 = 0.003, µ∗3 = −0.023, (4.58)

as in [33], where µ∗r = µr/µ, r = 1, 2, 3, and µ is the shear modulus of the material in the

reference configuration given by (see, for example, [57])

2µ =
3∑

r=1

µrαr. (4.59)

Representative values of the aspect ratios of the tube are taken as L/B = 1, 2.5, 5, 10,

and for numerical purposes, without loss of generality, we set B = 1 and change the value

of the inner radius A to vary the thickness of the tube. Two thickness ratios are considered,

namely, A/B = 0.85 (thinner tube) and A/B = 0.5 (thicker tube).

The qualitative nature of the results presented below are not unduly sensitive to the

choice of material parameters in (4.56), and there are also many other forms of strain-

energy function that could equally well be used to produce similar qualitative behaviour.

4.5.1 Equilibrium pressure curves

The dependence of the non-dimensional pressure P ∗ = P/µ on the circumferential stretch

λa is illustrated in Fig. 4.2(a) in respect of the strain-energy function (4.57) with material

constants (4.58) and for A/B = 0.85 and several values of λz. Figure 4.2(a) shows that
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initially the external pressure increases slowly in order to compress the tube radially as λa

is reduced from 1. Thereafter, there is a plateau where a significant increase in pressure

does not produce significant further radial deformation of the tube. This trend becomes

more pronounced as the value of λz increases. This graph should be compared with the

pressure-area (internal cross sectional area of the tube) diagram, also known as the “tube

law” and most commonly used for collapsible tubes [24]. Although the tube law is based

on the post-buckling behaviour of tubes it doesn’t take account of axial forces and bending

moments.

The equal pressure curves corresponding to P ∗ = 0, 0.5, 1 are plotted in (λz, λa) space

for A/B = 0.5 and 0.85 in Fig. 4.2(b), again using equation (4.14), except for P ∗ = 0, for

which we have the connection

λ2
aλz = 1, (4.60)

which is independent of the wall thickness ratio A/B. We observe that at least for the

range of values of λz and λa considered, the equal pressure curves for the thicker tube

(A/B = 0.5) lie above those for the thinner one (A/B = 0.85), indicating that to obtain

the same deformation more pressure is required for the thicker tube, as should be expected.

4.5.2 Axisymmetric bifurcation

First, we consider axisymmetric modes of bifurcation, corresponding to m = 0 in (4.38).

We set the longitudinal mode number n to be 1 and in Fig. 4.3 we plot axisymmetric

bifurcation curves for L/B = 2.5, 5, 10 and 20 and A/B = 0.85. In this case, as well

as curves for an external pressure, curves for an internal pressure are shown in order

to compare with the results of [35]. With reference to the remarks on internal pressure

following equation (4.14), we recall that the effect of internal pressure is captured by

taking P ∗ < 0 here. It can then be seen that for a tube subjected to internal pressure our

results coincide with those in [35] except for a factor 2, which means the curves in [35] for

L/B = 2x are the same for those here with L/B = x.1

When the tube is under external pressure (P ∗ > 0), we note that the axisymmetric

bifurcation curves all intersect the curve P ∗ = 0 in the region 0 < λz < 1, which means that

axisymmetric bifurcation cannot occur for tubes with A/B = 0.85 subjected to external

pressure and axial extension (i.e. when λz > 1). In other words, under external pressure,
1Private communication with Dr. Haughton confirms that there is a factor of 2 missing in eq. (61)

of [35].
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Figure 4.2: Plot of (a) the dimensionless pressure P ∗ = P/µ against λa for A/B = 0.85

and λz = 1, 2, 3, 4, 5, and (b) equal pressure curves in (λz, λa) space for P ∗ = 0, 0.5, 1, with

A/B = 0.85 (dashed curves) and A/B = 0.5 (continuous curves).

axisymmetric bifurcation only occurs when a tube is axially compressed. This is not the

case for tubes under internal pressure [35].

4.5.3 Asymmetric bifurcation

Since for tubes under external pressure, axisymmetric bifurcations do not occur when the

tube is extended, we focus on asymmetric bifurcations henceforth.
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Figure 4.3: Plots of the axisymmetric bifurcation curves for mode n = 1 with aspect ratios

L/B = 2.5, 5, 10, 20 and A/B = 0.85. The dashed curve corresponds to the zero pressure

curve P ∗ = 0.

Thinner tube

In this section, all results are for the thinner tube A/B = 0.85. ¿From equation (4.43),

we recall that either axial mode number n or length of the tube L can be varied to obtain

equivalent results. We therefore set n = 1 and choose different values of the length L,

and only azimuthal modes corresponding to m = 1, 2, 3, 4 are considered. Therefore, in

the following, the mode number referred to is always the azimuthal mode number m. We

restrict attention to m 6 4 because higher mode number bifurcations are not usually

observed in collapsible tube experiments. In any case, we have found that higher modes

produce results very similar to those for m = 4. The asymmetric bifurcation curves

are plotted using the bifurcation criterion (4.54) and the numerical method discussed in

Section 5.

Figure 4.4 shows the mode 1 asymmetric bifurcation curves for L/B = 1, 2.5, 5, 10 and

both internal and external pressure. For P ∗ < 0 (tubes under internal pressure), the results

here are again in agreement with those of [35], with the factor 2 difference indicated earlier,

and we do not discuss this case further. For P ∗ > 0 (tubes under external pressure), we see

that as the axial stretch λz is increased towards 1, along the equal pressure curve P ∗ = 0

the value of λa at bifurcation decreases as the value of L/B increases from 2.5 to 10. This

confirms the intuitive expectation that longer tubes buckle more easily than shorter ones.
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Figure 4.4: Mode m = 1 asymmetric bifurcation curves for L/B = 1, 2.5, 5, 10 and A/B =

0.85 in (λz, λa) space. The dashed curve is the equal pressure curve P ∗ = 0.
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Figure 4.5: As in Fig. 4.4 but for azimuthal mode number m = 2.

In the region of axial extension, the tube with L/B = 1 bifurcates slightly more readily

into mode 1 than the longer tubes. Figure 4.4 also shows that the tube can bifurcate into

mode 1 for small axial compression (values of λz less than, but close to, 1). The value of

λa at bifurcation seems to increase rapidly for λz below 1 (i.e. when the tube is axially

compressed). However, under axial extension (λz > 1), bifurcation into mode 1 requires

a relatively larger pressure than in axial compression and the corresponding value of λa

becomes very small, as does the internal radius of the tube.

The mode 2 asymmetric bifurcation curves are shown in Fig. 4.5. It is interesting
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Figure 4.6: As in Fig. 4.4 but for (a) m = 3 and (b) m = 4.

to see that the bifurcation pressure for longer tubes (L/B > 5) approaches zero. Thus,

although the bifurcation pressures required in the region of axial compression are similar

for mode 1 and mode 2, much less pressure is required to achieve the mode 2 bifurcation

in the region of axial extension. Figure 4.5 also shows that the mode 2 bifurcation does

not depend significantly on the length of the tube unless the tube is very short (with L/B

about 1).

Similar bifurcation behaviour is found for modes m = 3 and m = 4, as illustrated in

Fig. 4.6. Compared with mode 2, the mode 3 and mode 4 curves are closer to (further

from) the equal pressure line P ∗ = 0 for tubes with L/B = 1 (L/B = 10), and hence



CHAPTER 4. BIFURCATION 50

1

2
3
4

1 m=1

2 m=2

3 m=3

4 m=4

P*=0

0 1 2 3 4 5 6
Λz0.0

0.2

0.4

0.6

0.8

1.0

1.2
Λa

(a)

1

4
3
2

1 m=1

2 m=2

3 m=3

4 m=4

P*=0

0 1 2 3 4 5 6
Λz0.0

0.2

0.4

0.6

0.8

1.0

1.2
Λa

(b)

Figure 4.7: Asymmetric bifurcation curves for m = 1, 2, 3, 4 and A/B = 0.85 in (λz, λa)

space: (a) L/B = 1; (b) L/B = 5.

the shorter tubes become more sensitive to a change in the external pressure for higher

mode numbers, while for longer tubes, mode 2 become the most unstable mode. The

differences in these modes can be seen more clearly in Fig. 4.7. Note that compared with

higher modes, the mode 1 curve is much further from the P ∗ = 0 curve, especially as axial

extension is increased. This means that unless the tube is slightly compressed, a much

greater pressure is required for a tube to buckle into mode 1 than into higher modes. This

trend is even stronger for the longer tubes.
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Thicker tube

To illustrate the influence of different mode numbers on the behaviour of thicker tubes,

we plot the bifurcation curves for m = 1, 2, 3, 4 in Fig. 4.8 for A/B = 0.5 separately for

each value L/B = 1 and L/B = 5. In Fig. 4.8(a), for L/B = 1, it can be seen that the

bifurcation behaviour for the thicker tube is similar to that for thinner tube, i.e. curves of

modes 2, 3, 4 are closer to each other than that for mode 1. Thus, under extension the tube

may bifurcate into any of the modes 2, 3, 4 but a relatively larger pressure is needed for

mode 1 to be activated. Two major differences are observed between thinner and thicker

tubes. One is that the mode 2, 3, 4 curves are more separated for the thicker tube, the

other is that for axial compression (λz < 1) the lower modes occur first, while for axial

extension, mode 2 becomes the preferred mode for all values of λz. This is consistent with

experimental observations and classical thin shell theory but is not so obvious for thinner

tubes.

Figure 4.8(b) shows corresponding results for L/B = 5. The curves for modes 2, 3, 4

do not intersect. Compared with the L/B = 1 tube, the separations of the curves for

m = 2, 3, 4 are relatively large. The mode 1 curve has one point of intersection with each

of the other higher mode curves. In the region of axial extension, as the external pressure

increases, bifurcation occurs first in mode 2, followed by modes 3, 4 and 1 successively.

For modes 3 and 4, the bifurcation values of λa (larger than 1) along the equal pressure

curve P ∗ = 0 for L/B = 5 are larger than those for L/B = 1.

Bifurcation pressure

Since mode 2 is the most widely observed mode in tube collapse experiments (Bertram,

1987), we show the mode 2 bifurcation pressure against L/B in Fig. 4.9 for both A/B = 0.5

and A/B = 0.85 for comparison, with λz = 1 in each case. It can be seen that the

curves tend to flatten when L/B > 4. This suggests that, for longer tubes, wall thickness

rather than tube length is more important in determining the magnitude of the bifurcation

pressure. As a result, the value of the bifurcation pressure P ∗ for A/B = 0.85 is much

smaller than that for A/B = 0.5, and this will be discussed further later in this section.

It should be noted that different vertical scales are used for the two plots.

To see the change of the bifurcation pressure with wall thickness and to compare our

results with those in the literature (Bertram, 1987; Marzo et al, 2005; Weissman and

Mockros, 1967) we use the reference wall thickness H = B −A and the parameters D, Q
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Figure 4.8: Asymmetric bifurcation curves for m = 1, 2, 3, 4 and A/B = 0.5 in (λz, λa)

space: (a) L/B = 1; (b) L/B = 5.
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Figure 4.9: Plot of P ∗ = P/µ at bifurcation (mode m = 2) against L/B for A/B = 0.5

(continuous curve, left-hand scale) and A/B = 0.85 (dash-dot curve, right-hand scale) and

λz = 1.

and Pk, defined by

D =
2(B −A)
ln(B/A)

, Q =
EH3

12(1− ν2)
, (4.61)

and

Pk =
Q

(D/2)3
=

2E

3(1− ν2)

(
H

D

)3

, (4.62)
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Figure 4.10: Mode 2 bifurcation pressure plotted in dimensionless form as P/Pk against

H/D for L/B = 10 (dashed curve) and L/B = 34 (continuous curve) and λz = 1.005.

where, in the context of classical elasticity, E is Young’s modulus and ν is Poisson’s ratio.

Here, D denotes the logarithmic mean diameter and Q is the flexural rigidity of the tube

wall. The pressure P is non-dimensionalized by dividing by Pk.

Using the bifurcation criterion (4.54) combined with equations (4.14), (4.61)1 and

(4.62), we obtain the mode 2 bifurcation pressure shown in Fig. 4.10, plotted with P/Pk

against H/D. We see that the thinner tube begins to bifurcate at a pressure close to

the theoretical value P/Pk = 3 in the thickness range of 0.05 ∼ 0.4 in agreement with

von Mises’ prediction obtained from classical linear elasticity thin shell theory (von Mises,

1914). We emphasize again that our results are obtained from the incremental equations

based on the full 3D theory of nonlinear elasticity, which provide the exact linearized

bifurcation theory of elasticity, and our calculations are valid for underlying finite elastic

deformations. To compare with Bertram’s experimental results [10] and the numerical

results of [52], the parameter L/B = 34 was used here. In fact, our results indicate that,

for tubes with L/B = 10 and L/B = 34, when 0.05 < H/D < 0.4 the values of P/Pk

are in the range 2.9 ∼ 3.2. This explains why von Mises’ prediction is confirmed by

many different experiments and numerical simulations (Bertram, 1987; Marzo et al., 2005;

Weissman and Mockros, 1967). In [10] and [52], only some limited values of P/Pk were

presented for a set of given values of H/D. Likewise, in [74], results were only presented

for 0 < H/D < 0.25. Here, the bifurcation pressure is shown for a much wider range of

H/D. It is interesting to note that the bifurcation pressure does not change significantly
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for tubes with thickness ratio 0.05 < H/D < 0.4.

However, our results show that towards the two ends of the H/D axis, the values of

the bifurcation pressure for mode 2 differ from the classical prediction. For H/D < 0.05,

the values of P/Pk are larger than 3. The shorter the tube, the greater the increase. For

L/B = 34, P/Pk = 3.24 at H/D = 0.01 and for L/B = 10, it increases to 11.5 (see Fig.

4.10 and the B/H = 50 curve in Fig. 4.12). This discrepancy may be because in classical

thin shell theory (Yamaki, 1984) the prebuckling state was assumed to be a membrane

stress state. When H/D < 0.05 and L/B < 34, neglect of the curvature of the deflected

surface caused by external pressure can lead to serious error (von Mises, 1914). However,

von Mises’ formula Pcollapse = 3Pk is sufficiently accurate for shells with L/B > 34 (see

page 73 in Yamaki, 1984). For H/D > 0.4, the curves for L/B = 10 and L/B = 34 almost

coincide. The bifurcation pressure P/Pk drops below 3 as H/D increases, and decreases

to 1 when H/D = 0.8. Caution is required with the physical interpretation of this result,

since Pk is cubic H/D, which increases much faster than P as H/D is increased from 0.4.

This trend can also be seen clearly in Fig. 4.13(a). In physical terms, a greater bifurcation

pressure is still required to buckle the thicker tube, as expected, even though the ratio

P/Pk is smaller.

Very short tubes

To illustrate further the dependence on tube length we now investigate briefly bifurcation

of very short cylinders under axial compression and tension. Figure 4.11(a) presents bi-

furcation curves in (λz, λa) space for tubes with L/B = 0.5 and A/B = 0.5. Transition

from low to high mode occurs in the range of axial compression at an intersection point

where λz ≈ 0.62. When λz < 0.62, modes 1, 2, 3 occur first, while for λz > 0.62, the mode

m = 4 becomes the most unstable one. Referring back to Fig. 4.8(b) for L/B = 5 we

see that, by contrast, there is no intersection point among curves for m = 2, 3, 4 and the

mode 2 curve is above the others in the whole range of λz except in the short interval

0.90 < λz < 0.95 where the mode 2 curve is below that for mode 1. Axial extension does

not affect the order of the bifurcation modes for either of the tubes with L/B = 1 and

L/B = 5. The parameter L/B therefore plays a major role in the transition from high

to low modes, which is also found for tubes with A/B = 0.85. The results represented

in Fig. 4.11(a) are converted into the plots of P/Pk against λz in Fig. 4.11(b) by use of

(4.61) and (4.62). Figure 4.11(b) shows that the P/Pk curve for mode 1 increases rapidly
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Figure 4.11: Asymmetric bifurcation curves for m = 1, 2, 3, 4, L/B = 0.5 and A/B = 0.5

(a): in (λz, λa) space; (b) in (λz, P/Pk) space;

and monotonically, while for each mode 2, 3, 4 there is a pressure maximum, occurring at

λz = 1.05, 0.90, 0.80, respectively. Tubes subjected to sufficiently large axial compression

or tension tend to bifurcate easily, while for 0.8 < λz < 1.05 bifurcation requires a larger

pressure. We can therefore conclude that either a large axial compression or axial tension

reduces the axial stiffness of the cylinders.

The most unstable mode

To find the most unstable modes for different lengths and wall thicknesses, similarly to the

predictions of classical thin shell theory (Yamaki, 1984), we plot the critical bifurcation

curves in Fig. 4.12. It is seen that for a thin shell, B/H = 50, the results are in excellent

quantitative agreement with those of Yamaki (1984, figure 2.12, for boundary condition

S4). There exists only a small discrepancy due to the slightly different boundary conditions

used here. In other words, if the wall is thin, then higher modes are more unstable for

shorter tubes. However, as the wall thickness is increased, the critical higher modes

become fewer, and mode 2 becomes more and more dominant. Eventually, for B/H < 2

and L/B > 1.2 it remains the only bifurcation mode. For instance, in the range of

4 < L/B < 10, a thin tube with B/H = 50, bifurcates into the m = 2 mode, whereas

thick-walled tube with B/H = 6.67, bifurcates into the m = 3 mode. In the context of axial

compression of steel cylinders undergoing plastic deformation a very similar distribution
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Figure 4.12: Bifurcation pressure plotted in dimensionless form as P/Pk against L/B

for B/H = 50 (black curves), B/H = 6.67 (red curves), B/H = 2 (dashed curves),

B/H = 1.58 (blue curves) with different mode numbers and λz = 1.

of bifurcation modes was found by [5] experimentally and [6] analytically. Apart from the

type of material behaviour, this differs from the present analysis since we are considering

external pressure rather than axial compression and we have fixed λz = 1 in Fig. 4.12.

Figure 4.7(a) shows that for tubes with A/B = 0.85 (equivalent to B/H = 6.67) under

external pressure and axial extension, the higher modes are more unstable. Another

interesting phenomenon is that the thicker the tube the smaller the value of L/B at which

the curve flattens. The curves for tubes with B/H = 50, 6.67, 2 show that as L/B → ∞,

P/Pk approaches 3.0, which is in agreement with the thin shell theory prediction. But for

the very thick tube with B/H = 1.58, P/Pk approaches 2.43. The bifurcation pressure for

thick tubes with H/D > 0.4 drops below 3.0 (see also Fig. 4.10).

4.5.4 Discussion

In this chapter, we have investigated the nonlinear buckling behaviour of thick-walled

circular cylinder tubes under external pressure combined with axial loading. Our study is

particularly useful in determining the buckling of thick-walled tubes, which is beyond the

limit of validity of thin shell theory. This work has been conducted with a background in

mind of the bifurcation behaviour of collapsible tubes conveying internal flow. Although
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we note that the essential difference between this study and studies by the collapsible

tube flow community [36, 39] [13] is that no fluid-structure interactions are considered.

Here, the (external) pressure is acting as a (prescribed) static load, which contrasts with

the strong viscous pressure when an internal flow is present. However, in the context of

critical buckling, it has been found that these different mechanisms (static pressure load

or flow-induced pressure load) lead to similar results except that a substantially higher

pressure drop is required to achieve the same level of collapse for the static load case [39].

The most interesting finding is that for wall thickness ratios A/B greater than about

0.5, mode 2 seems to be the dominant critical buckling mode unless the tubes are extremely

short (e.g., L/B . 1.2). This is different from the predictions of classical thin shell theory

[77], but agrees with the fact that in many thick-walled tube experiments, in particular

those of [10, 11] and [13], only mode 2 buckling has been observed regardless of the tube

length used. The fact that in experiments the prevailing mode is mode 2 cannot be

fully explained by thin shell theory. This is because when fluid-structure interaction is

involved, the effect of the fluid flow is to increase the viscous pressure drop, which induces

an additional compressive load at the downstream end of the tube. As a result, only the

compressed downstream part of the tube actually participates in the buckling, which is

then similar to the buckling of a short tube [39]. If the thin shell theory were to be valid,

this would induce the buckling to occur in a higher mode. The reason why this didn’t

happen in the experiments is that, for thicker tubes, mode changes no longer happen, and

long thick tubes were used in experiments [11, 13]. As illustrated in Fig. 4.12, for long

thick tubes, only mode 2 occurs. As indicated above, our study shows that if A/B is

greater than about 0.5, then the critical buckling mode will remain as mode 2 except for

very short tubes.

Although the von Mises formula is derived for thin-walled tubes, experimental mea-

surements have shown that it also predicts the bifurcation pressure for thick-walled tubes

reasonably well [74]. Our results show that this is because the bifurcation pressure P/Pk

is insensitive to the change of wall thickness H/D for the range of 0.05 < H/D < 0.4. If

the tube is sufficiently thin or sufficiently thick, then the von Mises formula is no longer

accurate, and P/Pk actually increases in the thin wall extreme, and decreases in the thicker

wall region.

In order to have a more direct comparison with the Weissman and Mockros experi-

ments, we plot the bifurcation pressure in terms of P against H/D in Fig. 4.13. This
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is obtained using the bifurcation criterion (4.54) combined with equation (4.14) and the

equation

µ =
E

2(1 + ν)
, (4.63)

where (for an incompressible material) ν = 0.5. The value E = 300 psi (= 2.07MPa)

adopted by [74] then gives µ = 0.69MPa, which is used to calculate the bifurcation pres-

sure.

It can be seen that for a very thin tube (0 < H/D < 0.1), bifurcation occurs at

a small external pressure. For tubes with larger wall thickness, when H/D > 0.1, the

bifurcation pressure increases rapidly. For 0 < H/D < 0.4, our results are in accord with

the experimental results of [74] and von Mises’ formula. When H/D > 0.4, the latter

curve increases more rapidly than our results.

Although we have considered a tube of finite length, a limitation of the present study

is that we have initiated the bifurcation analysis from a deformed circular cylindrical con-

figuration and adopted rather special incremental boundary conditions on the ends of the

tube. These might prevent realistic post-buckling behaviour for which large deformations

can occur in either the axial or azimuthal direction near the ends. Thus, our results only

apply for the initial bifurcation behaviour. Many interesting phenomena, such as self-

exited oscillations in collapsible tubes conveying fluid, occur in the post-buckling phase,

where the cross-sectional area typically takes on an elliptical or dumbbell shape. These

are excluded in the present analysis.

4.6 Conclusion

Axisymmetric and asymmetric bifurcations of circular cylinders under external pressure

combined with axial loading have been analyzed in detail using a particular model strain-

energy function appropriate for nonlinear elastic deformations of rubberlike materials.

Unlike the models used by [72] and [77], which are applicable only for thin-walled tubes,

this study presents results for a wide range of tube wall thickness on the basis of the exact

3D theory of finite elasticity. A more general description of the bifurcation behaviour of

thick-walled tubes subject to external pressure combined with axial loading, including axial

compression and extension, has been presented. Good agreement with previous studies has

been found, and extensive comparisons with results for thin-shell theory are made. Our

results show that the critical bifurcation pressure deviates from the thin shell prediction
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Figure 4.13: (a) Mode m = 2 bifurcation pressures P vs. H/D for silicone rubber tubes

for λz = 1.005; the continuous curve is for L/B = 10, and dash-dot curve is for L/B = 5.

The dashed curve corresponds to von Mises’ theoretical result. (b) the enlarged area

indicated in (a). The symbols are from the Weissman and Mockros experimental results:

∇ represents bifurcation points at 50% volume collapse and 4 at 70%.

in both the very thin and thick-walled regimes. For very short and sufficiently thick

tubes, transition from lower to higher modes occurs in the range of axial compression. We

have also shown that, contrary to thin-shell theory, for sufficiently thick tubes, transition

from lower to higher modes does not occur for sufficiently short tubes. Instead, mode 2

bifurcation becomes the sole dominant mode.



Chapter 5

Nonlinear axisymmetric

deformations

In this chapter, we restrict our attention to the nonlinear axisymmetric deformations of

elastic tubes under external pressure.

5.1 Basic equations

We consider an initially stress-free thick-walled circular cylindrical tube. In this reference

configuration the geometry of the tube is described in terms of cylindrical polar coordinates

R, Θ, Z by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (5.1)

where A and B, respectively, are the inner and outer radii and L is the length of the

tube. Let ER,EΘ,EZ denote the associated unit basis vectors. The deformed geometry

is described in terms of cylindrical polar coordinates r, θ, z with corresponding unit basis

vectors er, eθ, ez. In what follows we shall consider axisymmetric deformations of the tube.

5.1.1 Deformation

Let u denote the displacement vector, which, for axisymmetric deformations, may be

expressed in the form

u = u(R, Z)er + w(R, Z)ez. (5.2)

60
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The deformation gradient tensor F is given by

F = (1 + uR)er ⊗ER + uZer ⊗EZ + (1 +
u

R
)eθ ⊗EΘ

+wRez ⊗ER + (1 + wZ)ez ⊗EZ , (5.3)

where the subscripts R and Z on u and w indicate the partial derivatives ∂/∂R and ∂/∂Z,

respectively. The matrix representation of (5.3) with respect to both sets of cylindrical

polar coordinates is

F =




1 + uR 0 uZ

0 1 + u/R 0

wR 0 1 + wZ


 .

Using (5.3), we may calculate the right Cauchy-Green deformation tensor, defined by

C = FTF, where T denotes the transpose. This yields

C = [(1 + uR)2 + w2
R]ER ⊗ER + (1 + u/R)2EΘ ⊗EΘ + [u2

Z + (1 + wZ)2]EZ ⊗EZ

+ [uZ(1 + uR) + (1 + wZ)wR](ER ⊗EZ + EZ ⊗ER). (5.4)

We also note the polar decomposition (2.6) discussed in Chapter 1, where R is a proper

orthogonal tensor and U is the right stretch tensor, which is positive definite and symmet-

ric. Thus, C = U2. The eigenvalues of U are the principal stretches of the deformation,

denoted λi, i = 1, 2, 3. The principal axes of C and U coincide and we can see immediately

from (5.4) that EΘ is a (Lagrangian) principal axis, which corresponds to the principal

stretch λ2 = 1 + u/R. The other two principal axes lie parallel to the (R, Z) plane and

can be defined in terms of an angle ψ via

E′R = cosψER + sin ψEZ , E′Z = − sinψER + cosψEZ . (5.5)

The connection between principal and reference axes can be seen clearly in Fig. 5.1.

The corresponding principal stretches are taken as λ1 and λ3, respectively. Then, we

have

C = λ2
1E

′
R ⊗E′R + λ2

2EΘ ⊗EΘ + λ2
3E

′
Z ⊗E′Z . (5.6)

5.1.2 Material properties and equilibrium

The material of the tube is considered to be incompressible, so that the constraint

J = detF = detU = λ1λ2λ3 ≡ 1 (5.7)



CHAPTER 5. NONLINEAR AXISYMMETRIC DEFORMATIONS 62

ER

E
′

RE
′

Θ
= EΘ

EZ

E
′

Z

ψ

Figure 5.1: The connection between principal and reference axes.

must be satisfied for every material point X. Subject to this constraint, the elastic proper-

ties of the material can be described in terms of a strain-energy function W (F), defined per

unit volume. By objectivity W (F) = W (U). The associated Biot stress tensor, denoted

here by T, is then given by

T =
∂W

∂U
− pU−1, (5.8)

where p is a Lagrange multiplier associated with the constraint (5.7). For details of the

Biot stress tensor we refer to [60]. For the considered deformation p is a function only of

R and Z.

Now, for an isotropic material W is a function only of the principal stretches λ1, λ2, λ3,

again subject to (5.7), and T has the same principal axes as U. The principal Biot stresses

are then simply

ti =
∂W

∂λi
− pλ−1

i , i = 1, 2, 3. (5.9)

Let S denote the nominal stress tensor. Then, since the material is isotropic, we have

S = TRT, (5.10)

where R is obtained from the polar decomposition as R = FU−1. As mentioned in

Chapter 1, in the absence of body forces the equilibrium equation is expressed in terms of

the nominal stress as

DivS = 0, (5.11)
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where Div is the divergence operator with respect to X. Alternatively, in terms of the

Cauchy stress tensor, denoted σ and given by σ = J−1FS, the equilibrium equation may

be written equivalently as

divσ = 0. (5.12)

The principal Cauchy stresses are given by

σi = λi
∂W

∂λi
− p, i = 1, 2, 3. (5.13)

On the external lateral surface of the tube a pressure P , per unit deformed area, is

applied, while the inner surface is kept free of traction. The boundary conditions on these

surfaces may then be given as

STN =




−PF−TN on R = B

0 on R = A,
(5.14)

where N is the unit outward normal to the lateral surface of the tube in the reference

configuration, i.e. N = ER on R = B and N = −ER on R = A.

On the ends of the tube the displacement is taken to vanish except for the special case

in which we consider the deformation to maintain circular symmetry. Thus,

u = w = 0 on Z = 0, L. (5.15)

For the linear and nonlinear cases, the boundary conditions are illustrated in Fig. 5.2.

For the specific calculations we make use of the neo-Hookean strain-energy function,

which is given by (2.54).

5.2 Linear and nonlinear equations

We consider the nonlinear formulation with the boundary conditions specified above to-

gether with two special cases: the first is nonlinear but assumes that the deformation is

radially symmetric, for which an analytical solution is obtained, while the second is based

on the linear theory of elasticity. These special cases serve to verify our C++ code and to

highlight, in particular, the differences between the linear and nonlinear results.

5.2.1 Radially symmetric case

If the deformation is radially symmetric then the deformed geometry has the form

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (5.16)
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Figure 5.2: Boundary conditions for linear and nonlinear cases (a) in Reference configu-

ration (b) in current configuration.

where a and b, respectively, are the deformed inner and outer radii of the tube and l is its

length.

For this special case, we assume that the displacement is given by u = u(R)er, so that

there is no dependence on Z and w is identically zero. Then the deformation gradient

tensor F in (5.3) specializes accordingly, and the right Cauchy-Green deformation tensor

in (5.4) reduces to

C = (1 + uR)2ER ⊗ER + (1 + u/R)2EΘ ⊗EΘ + EZ ⊗EZ . (5.17)

It follows that the Lagrangian principal axes coincide with the basis vectors ER,EΘ,EZ

and the principal stretches are

λ1 = 1 + uR, λ2 = 1 +
u

R
, λ3 = 1. (5.18)

Furthermore, S = T and hence

S = t1ER ⊗ER + t2EΘ ⊗EΘ + t3EZ ⊗EZ . (5.19)

The equilibrium equation (5.11) specializes to the single component

SRr,R +
1
R

(SRr − SΘθ) = 0, (5.20)
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where SRr = t1, SΘθ = t2 and ,R ≡ d/dR. For the neo-Hookean material (2.54) we then

obtain, on use of (5.18),

t1 = µλ1 − pλ2, t2 = µλ2 − pλ1, t3 = µ− p, (5.21)

where the incompressibility condition λ1λ2 = 1, or equivalently

u + (R + u)uR = 0, (5.22)

has been used. The latter can be integrated to give r = R + u in the form

r2 = R2 + a2 −A2. (5.23)

The component form of the boundary condition (5.14) may now be written

SRr ≡ t1 =




−Pλ2 on R = B

0 on R = A.
(5.24)

Using (5.21) and noting that Rλ2,R = λ1 − λ2 we may integrate (5.20) and use the

boundary conditions (5.24) to obtain

P = µ ln
(

Ab

Ba

)
+

1
2
µ

(
A2

a2
− B2

b2

)
. (5.25)

5.2.2 The linear case

In the linear theory of incompressible isotropic elasticity the (Cauchy) stress tensor is given

by

σ = −pI + µ[gradu + (gradu)T], (5.26)

where I is the identity tensor.

Then, for the axisymmetric situation, the equilibrium equation (5.12) has two compo-

nents that are not satisfied trivially, namely

σrr,r + σzr,z +
1
r
(σrr − σθθ) = 0, (5.27)

σrz,r + σzz,z +
1
r
σrz = 0, (5.28)

and the incompressibility constraint is

ur +
u

r
+ wz = 0. (5.29)

The boundary conditions (5.15) are unchanged, but (5.14) may be reduced to

σn =




−Pn on R = B

0 on R = A,
(5.30)

there being no distinction between the deformed and reference configurations.
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5.2.3 The nonlinear case

Comparing (5.4) and (5.6) and using (5.5), we obtain

λ2
1 cosψ2 + λ2

3 sinψ2 = (1 + uR)2 + w2
R, (5.31)

λ2
1 sinψ2 + λ2

3 cosψ2 = u2
Z + (1 + wZ)2, (5.32)

(λ2
1 − λ2

3) sin ψ cosψ = uZ(1 + uR) + wR(1 + wZ), (5.33)

and λ2 = 1 + u/R. From (5.31)–(5.33), it follows that

(λ2
1 − λ2

3) cos 2ψ = w2
R − u2

Z + (1 + uR)2 − (1 + wZ)2, (5.34)

(λ2
1 − λ2

3) sin 2ψ = 2[uZ(1 + uR) + wR(1 + wZ)]. (5.35)

It turns out that we must take λ1 > λ3, and hence we obtain

2λ1 =
√

(uZ − wR)2 + (uR + wZ + 2)2 +
√

(uZ + wR)2 + (uR − wZ)2, (5.36)

2λ3 =
√

(uZ − wR)2 + (uR + wZ + 2)2 −
√

(uZ + wR)2 + (uR − wZ)2. (5.37)

Recalling that the Biot stress tensor has the same principal axes as U we may write

T = t1E′R ⊗E′R + t2EΘ ⊗EΘ + t3E′Z ⊗E′Z , (5.38)

and hence from (5.10) with R = FU−1, we obtain the components of the nominal stress

tensor in the form

SRr = (λ−1
1 t1 − λ−1

3 t3)uZ sinψ cosψ + (1 + uR)(λ−1
1 t1 cos2 ψ + λ−1

3 t3 sin2 ψ),

SRz = (λ−1
1 t1 − λ−1

3 t3)(1 + wZ) sinψ cosψ + wR(λ−1
1 t1 cos2 ψ + λ−1

3 t3 sin2 ψ),

SZr = (λ−1
1 t1 − λ−1

3 t3)(1 + uR) sinψ cosψ + uZ(λ−1
1 t1 sin2 ψ + λ−1

3 t3 cos2 ψ),

SZz = (λ−1
1 t1 − λ−1

3 t3)wR sinψ cosψ + (1 + wZ)(λ−1
1 t1 sin2 ψ + λ−1

3 t3 cos2 ψ), (5.39)

together with SΘθ = t2.

The appropriate specialization of the equilibrium equation (5.11) then yields the two

equations

SRr,R + SZr,Z +
1
R

(SRr − SΘθ) = 0, (5.40)

SRz,R + SZz,Z +
1
R

SRz = 0, (5.41)

the incompressible condition is

(1 + u/R)[(1 + uR)(1 + wZ)− uZwR] = 1, (5.42)
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and the boundary condition (5.14) specializes to

SRr =




−P (1 + u/R)(1 + wZ) on R = B

0 on R = A,
(5.43)

with

SRz =





P (1 + u/R)uZ on R = B

0 on R = A.
(5.44)

5.3 Finite element algorithm

To solve the nonlinear partial differential equations, the object-oriented package Libmesh

[44] is used, which is a framework for solving and analyzing systems of nonlinear equations

using the finite element method. It is also an interface to the high quality software PETSc,

which is used to solve linear systems on both serial and parallel platforms.

5.3.1 Discretization

We discretize the governing PDEs (5.11) with the constraint (5.7) using the weighted

residual-Galerkin method. The elastic domain is divided into a set of sub-domains.

Libmesh offers the options of quadratic elements of 9-node quadrilateral and 6-node trian-

gle type. Using a mixed interpolation approach, the displacement components u,w and the

radial coordinate R are interpolated by quadratic shape functions Ni, while the Lagrange

multiplier p is interpolated by linear shape functions Li, i.e.

u =
n1∑

k=1

Nk(ξ, η)uk, w =
n1∑

k=1

Nk(ξ, η)wk,

R =
n1∑

k=1

Nk(ξ, η)Rk, p =
n2∑

k=1

Lk(ξ, η)pk,

where n1, n2 are the element node numbers, which are dependent on the element type

chosen, and ξ and η are natural coordinate variables, corresponding to isoparametric finite

elements.

This allows us to write the discretized nonlinear governing equations as

< = K(U)U− F(U) = 0, (5.45)

where U is the global vector of unknowns, K(U) is the global stiffness matrix, F(U)

denotes the force vector, which is also dependent on U, and < is the global residual
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vector, which should be 0 for an exact solution. Note that U was used earlier for the right

stretch tensor, which does not appear hereon so there is no conflict of notation. Numerical

simulations show that the 6-node triangle is more efficient than the 9-node quadrilateral

element for large distortions. The formulation of the finite element matrices is problem

dependent, as shown in Section 4.3 below.

5.3.2 Newton’s method

To solve systems of nonlinear equations such as (5.45), the SNES library of PETSc [4] is

called by Libmesh. The SNES library provides a powerful suite of numerical routines, and

Newton-Krylov methods provide the core of the package, including line search and trust

region techniques. Newton’s iteration may be implemented by

Ur+1 = Ur − J−1(Ur)<(Ur), (5.46)

where r is the iteration number and J is the Jacobian matrix, which, by using (5.45), is

defined by

J(Ur) =
∂<(Ur)

∂U
= K(Ur) +

∂K(Ur)
∂U

Ur − ∂F(Ur)
∂U

. (5.47)

Convergence is achieved when the relative residual tolerance ||<(Ur)||/||<(U0)|| (in the

l2 norm) is less than 10−8 or the absolute tolerance ||<(Ur)|| is less than 10−12, where

<(U0) is the initial residual.

5.3.3 Detailed discretizing integrations

Radially symmetric case

Applying Galerkin’s method to equation (5.20), we obtain
∫

Ω
NiSRr,RdΩ +

∫

Ω
Ni

1
R

(SRr − SΘθ)dΩ = 0, (5.48)

where Ω is the integration domain. The domain of integration Ω is the physical domain

in the reference configuration corresponding to the (R, Z) tube section. For each element,

(5.48) can be integrated by parts to give

−
n1∑

j=1

∫

R

∫

Z
(
1
R

NiNj + RNi,RNj,R)dRdZuj

+
n2∑

j=1

∫

R

∫

Z
Lj [(1 +

n1∑

k=1

Nk,Ruk)Ni + (R +
n1∑

k=1

Nkuk)Ni,R]dRdZpj

= −
∫

Z
(RNiSRr)|R2

R1
dZ +

∫

R

∫

Z
(Ni + RNi,R)dRdZ. (5.49)
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Equation (5.22) may be discretized similarly to give

n1∑

j=1

∫

R

∫

Z
RLi[Nj + (R +

n1∑

k=1

Nkuk)Nj,R]dRdZuj = 0. (5.50)

Here we have adopted 9-node quadrilateral elements in order to achieve better accuracy,

so that n1 = 9, n2 = 4. Note that when assembled globally the boundary integrals in

(5.49) cancel out except at the boundaries of the tube.

The linear case

The discretized equations for the linear case can be obtained by using a similar procedure

to that used for the radially symmetric case. This yields

n1∑

j=1

∫

r

∫

z
µr(2Ni,rNj,r + Ni,zNj,z) + 2

µ

r
NiNjdrdzuj +

n1∑

j=1

∫

r

∫

z
µrNi,zNj,rdrdzwj

−
n2∑

j=1

∫

r

∫

z
(rNi,r + Ni)Ljdrdzpj =

∫

z
(rNiσrr)|r2

r1
dz +

∫

r
r(Niσzr)|z2

z1
dr,(5.51)

n1∑

j=1

∫

r

∫

z
µrNi,rNj,zdrdzuj +

n1∑

j=1

∫

r

∫

z
µr(Ni,rNj,r + 2Ni,zNj,z)drdzwj

−
n2∑

j=1

∫

r

∫

z
rNi,zLjdrdzpj =

∫

z
(rNiσrz)|r2

r1
dz +

∫

r
r(Niσzz)|z2

z1
dr, (5.52)

n1∑

j=1

∫

r

∫

z
rLi(Nj,r +

1
r
Nj)drdzuj +

n1∑

j=1

∫

r

∫

z
rLiNj,zdrdzwj = 0. (5.53)

For the linear case, the 6-node triangle is used, so that n1 = 6, n2 = 3. This is also used

for the following nonlinear case since for large distortions the triangular element shows its

superiority over the rectangular element.

The nonlinear case

On applying Galerkin’s method to equations (5.40)–(5.42) and integrating by parts, we ob-

tain the stiffness matrix, which can be written in many different ways since the dependent

variables are nonlinearly coupled in each of the terms of the stiffness matrix. In general,

in the nonlinear case we obtain the discretization by separating off the terms that also

appear in the radially-symmetric and linear cases so that the final equations in the non-

linear case can be taken as the corresponding linear ones multiplied by some complicated
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higher order coefficients. The final forms of the discretized equilibrium equations and the

incompressibility condition are

n1∑

j=1

∫

R

∫

Z

µ

R
NiNj + RNi,R

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
Nj,R +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,Z

}

+ RNi,Z

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,R +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
Nj,Z

}
dRdZuj

−
n2∑

j=1

∫

R

∫

Z
R

[
1

R + u
Ni +

1 + cos 2ψ
2

λ−2
1 Ni,R

]
LjdRdZpj = −

∫

R

∫

Z
µNidRdZ

−
∫

R

∫

Z
RNi,R

[
µ

1 + cos 2ψ
2

+
(1− cos 2ψ)t3

2λ3

]
dRdZ −

∫

R

∫

Z

1
2
RNi,Z sin 2ψ(

t1
λ1
− t3

λ3
)dRdZ

+
∫

Z
(RNiSRr)|R2

R1
dZ +

∫

R
R(NiSZr)|Z2

Z1
dR,

(5.54)

n1∑

j=1

∫

R

∫

Z
RNi,R

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
Nj,R +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,Z

}

+ RNi,Z

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,R +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
Nj,Z

}
dRdZwj

−
n2∑

j=1

∫

R

∫

Z
R

1 + cos 2ψ
2

λ−2
3 Ni,ZLjdRdZpj = −

∫

R

∫

Z
RNi,R

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)dRdZ

−
∫

R

∫

Z
RNi,Z

[
(1− cos 2ψ)t1

2λ1
+ µ

1 + cos 2ψ
2

]
dRdZ +

∫

Z
(RNiSRz)|R2

R1
dZ +

∫

R
R(NiSZz)|Z2

Z1
dR,

(5.55)

n1∑

j=1

∫

R

∫

Z
RLi

(
1

R + u
Nj + Nj,R

)
dRdZuj

+
n1∑

j=1

∫

R

∫

Z
RLi [(1 + uR)Nj,Z − uZNj,R] dRdZwj = 0. (5.56)

Using equations (5.54)–(5.56), we obtain the stiffness matrix K. It is worth mentioning

that in order to achieve convergence of the solutions J needs to be computed analytically

from (5.47). Although a much simpler approach to estimating the true Jacobian matrix J is

commonly used by using the stiffness matrix K this does not work for our nonlinear model.

This indicates that the second and third terms in the expression (5.47) are important and

cannot be neglected.

5.4 Numerical algorithms

The work for the numerical processes are summarized as follows:

1. write the file mesh.xda for symmetric mesh generation.
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2. write the main programme to call the linear/nonlinear solvers to solve the equation

systems by applying the external pressure as a sequence of increments.

3. write the subfunction void compute_jacobian to evaluate the true global Jacobian

matrix J.

4. write the subfunction void compute_residual to evaluate the global residual vector

<.

5. write the subfunction struct stress_vector cauchy_stress to evaluate the stresses

and principal stresses.

6. write the subfunction std::vector<Real>& stretch to evaluate the principal stretches.

The algorithms for nonlinear case including the main programme and a sub-programme

for constructing the global Jacobian matrix J are presented by the flowcharts as follows.

The algorithms for the main programme are illustrated in Figs. 5.3–5.5 and the algorithms

for constructing the global Jacobian matrix are shown in Figs. 5.6–5.10. We don’t provide

the algorithms for the radially symmetric and linear case since they are similar and simpler

than those for the nonlinear case.

5.5 Numerical results

To demonstrate the differences between the nonlinear and linear cases, three options will be

considered for the tube geometry: thick-walled short tubes with A/B = 0.5 and L/B = 1,

thick-walled longer tubes with A/B = 0.5 and L/B = 5, and thin-walled longer tubes

with A/B = 0.8 and L/B = 5.

Henceforth, all the variables are used in dimensionless form, but without change of

notation. The radial coordinates R and r and the displacement components u and w are

non-dimensionalized with B; the axial coordinates Z and z with L; the pressure P and

the stress components σij with the shear modulus µ.

5.5.1 Thick-walled short tubes: A/B = 0.5 and L/B = 1

Displacements and stretches

As both the linear and nonlinear models should agree when deformation is small, to

validate the numerical approach, a comparison of the nonlinear and linear models for
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Convert a mesh with linear elements (TRI3) into 

a mesh with second-order elements (TRI6)

Read in control parameters from 

command lines and file nonlinear.in

Read in mesh (TRI3) from mesh 

file “mesh.xda” 

Initialize libmesh 

Main Program

Create a nonlinear implicit system namely “nonlinear” 

and add the variables (u, w, p) to the system 

Give the system a pointer to the sub-functions 

that update the residual R and Jacobian K

Give the system a pointer to the

initialization function

Initialize equation system 

data structure

Figure 5.3: Flowchart for for nonlinear case, part 1.
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Reset flags of both linear and nonlinear solvers 

Initialize the data structures for the 

equation system

Preparations for post processing 

Refine the coarse mesh and 

reinitialize the equation system  

Assemble and solve the "nonlinear" system

Is the 
post_processing

true? 

Yes

No

Nonlinear pressure loops 

Figure 5.4: Flowchart for for nonlinear case, part 2.
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Call the sub-function: 
stretch(equation_systems,*nonlinear_sys

tem.solution, p_step) 

to get the principle stretches 

get the displacements, stresses, principle 

stresses and principle stretches at a 

particular point at each pressure step 

Output the displacements into GMV or 

Tecplot format 

Call the sub-function: 
cauchy_stress(equation_systems,*nonlin

ear_system.solution, p_step)

to get the stresses and principle stresses 

Increase pressure: pressure

End the pressure loops 

End Main Program

Figure 5.5: Flowchart for for nonlinear case, part 3.
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Get pressure 

Get a reference to the equation system 

Matrix assembly function 
void compute_jacobian (const 

NumericVector<Number>& soln, 

           

SparseMatrix<Number>&  jacobian)

Get const reference to the 

mesh 

Get a reference to the  

"nonlinear" system 

Get numerical ids for each 

variable

Get the Finite Element 

types for variables

Build finite element objects of the 

unknown variables and a special finite 

element object for boundary 

integration 

Figure 5.6: Flowchart for the Global stiffness matrix, part 1.
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Define the Gauss quadrature rule

Define Jacobian*quadrature weight :JxW,

element shape functions and shape 

function gradients. 

Define vectors to contain the DOF 

for the element and variables 

Loop over all the elements in the mesh.
(This involves compute element matrix and right-

hand-side contribution.)

Define the data structures to contain 

element matrices 

Fill the DOF vectors with global degree of 

freedom indices for the element. 

Figure 5.7: Flowchart for the Global stiffness matrix, part 2.
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Compute element data for the current 

element. This involves computing the location 

of quadrature points  and the shape functions 

(phi, dphi)

Zero the element matrices before 

summing them. 

Define values to hold the solution & its 

gradient at the previous pressure iterate and 

Compute the variables and their gradient from 

the previous pressure iterate. 

Quadrature point loops

Reposition the sub-matrices

Compute sub-matrices for 

current element 

Figure 5.8: Flowchart for the Global stiffness matrix, part 3.
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Impose boundary condition 

Define shape function (phi_face, 

dphi_face) and 

Jacobin*quadrature weight 

(JxW_face) on the face of the 

element

Yes

No
Nothing

need do

Define penalty value 

Dose the current 

element has no 

neighbour on a side? 

Impose top and bottom boundary 

condition using penalty method

End quadrature point loops 

Boundary id==1? 

(1=right side of element)

Yes

Figure 5.9: Flowchart for the Global stiffness matrix, part 4.
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Define and compute values to hold solution 

and its gradient at previous pressure iteration  

Quadrature point loops on 

the face of the element 

End boundary condition 

Add the element matrix to the global matrix 

End of element loop 

End quadrature point loops on the 

face of the element

End of program 

Modify the element matrix 

contribution

Figure 5.10: Flowchart for the Global stiffness matrix, part 5.
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small pressure (P = 0.05) has been made, as shown in Fig. 5.11, in which contour plots

of the values of u and w for each case are illustrated, superimposed on the deformed (r, z)

section 1 of the tube. As expected, the distributions of the displacement components u

and w for these two cases are virtually indistinguishable. However, the difference between

the nonlinear and linear models increases as the pressure increases. This is highlighted in

Fig. 5.12(a), where the displacement u in the radial direction versus the external loading

P at point (R,Z) = (0.5, 0.5) is shown.

Figure 5.12(a) shows that the linear theory overestimates the displacement u, espe-

cially for large external pressure (P & 1.5). For example, for P = 2, the predictions of

u for the linear and nonlinear cases are 0.416 and 0.291, respectively, an overestimate of

43%. Further validation of our numerical code can be made by comparing the analyti-

cal and numerical solutions for the radially-symmetric case shown in Fig. 5.12(a). The

curves are indistinguishable in this figure. Note that the radially-symmetric and nonlin-

ear curves intersect at P ≈ 1.15. For P & 1.15, u increases with P more slowly for the

radially-symmetric case than for the nonlinear one, thus significantly underestimating the

displacement in the radial direction. The linear theory predicts a smaller axial displace-

ment w than the nonlinear theory, while for the radially-symmetric case w = 0; see Fig.

5.12(b). The differences in the results for the considered point are representative of those

seen at other points, details for which are not shown here.

The deformation, as distinct from the displacement, can be characterized in terms of

the stretches, and this is illustrated in Fig. 5.13, which shows how the principal stretches at

the point R = 0.5, Z = 0.5 vary with the pressure P . It can be seen that at this point λ1 >

λ3 > 1 and λ2 < 1. Again, for smaller pressure (P . 0.4), the principal stretches are almost

the same for the linear and nonlinear cases. It is clear, and of course not surprising, that the

linear theory provides an accurate prediction only for small deformations, corresponding

to the maximum principal stretch λ1 less than about 1.1. However, as we shall see in

the next section, the linear–nonlinear correspondence reduces to λ1 less that about 1.05,

i.e. to a strain of about 5%, when the stress components are considered. As the pressure

increases the nonlinear theory predicts larger values of λ1, λ2 and λ3 than the linear theory.

It should be remarked that the incompressibility condition λ1λ2λ3 = 1 is violated for the

principal stretches calculated for the linear theory except for very small values of P . This

just emphasizes that the linear theory cannot be expected to be valid except for small
1Note that the displacements u and w are too small to be seen in Fig. 5.11.
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Figure 5.11: Deformed profiles of the tube section in (r, z) space for a tube with A/B =

0.5, L/B = 1 subject to external pressure P = 0.05 with the displacement distributions

u and w superimposed: (a) linear u; (b) nonlinear u; (c) linear w; (d) nonlinear w. The

plots correspond to R ∈ [0.5, 1], Z ∈ [0, 1].

pressures and the accompanying small deformations.

To better understand the effect of the nonlinear contributions in equations (5.40)–

(5.42), the displacement distributions are plotted for a relatively large value 2.3 of the

pressure P in Fig. 5.14. For the purpose of comparison, the corresponding linear results

are also shown. Some significant differences between the linear and nonlinear models can

be observed in Fig. 5.14. The displacement in the radial direction is so large in the linear
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Figure 5.12: Plots of displacement against pressure for a tube with A/B = 0.5, L/B = 1 at

specific points: (a) u versus P at point (R,Z) = (0.5, 0.5); radially symmetric (dash-dotted

curve); linear (dashed line); nonlinear (solid curve): (b) w versus P at point (R, Z) =

(0.5, 0.75); linear (dashed line); nonlinear (solid curve).
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Figure 5.13: Plots of λ1, λ2 and λ3 (labelled 1, 2, 3, respectively) versus P calculated at

the point (R,Z) = (0.5, 0.5) for a tube with A/B = 0.5, L/B = 1: linear (dashed lines);

nonlinear (solid curves).
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case that the middle section of the tube almost comes into self contact on the axis R = 0.

For the nonlinear case, the most striking feature is the bulging out at the corners, which

is barely visible in the linear case. This causes the displacement pattern and magnitude

to change. The radial displacement u changes between −0.47 and 0 in the linear case,

and between −0.31 and 0.0145 in nonlinear case. The axial displacement w has the range

−0.095 to 0.095 (linear case) and −0.15 to 0.15 (nonlinear case). This is consistent with

the corner bulging at R = 0.5 on the ends of the tube, which stretches the tube section in

two opposite axial directions.
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Figure 5.14: Deformed profiles of the tube section in (r, z) space for a tube with A/B =

0.5, L/B = 1 subject to external pressure P = 2.3, with distributions of the displacement

components superimposed: (a) linear u; (b) nonlinear u; (c) linear w; (d) nonlinear w.
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Cauchy stresses

The stress distributions for the linear and nonlinear cases are again almost the same for

very small external pressure, but as expected they depart significantly for large pressures.

Figures 5.15 and 5.16 show the distributions of components of Cauchy stress for P = 2.3

for the linear and nonlinear cases, respectively. Negative values of the stresses are shown

with dashed curves. In all cases, the normal stress distributions in the upper half section

have mirror symmetry with the lower half, while the distribution of shear stress is anti-

symmetric.
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Figure 5.15: Deformed profiles of the tube section in (r, z) space for a tube with A/B =

0.5, L/B = 1 subject to external pressure P = 2.3, with distributions of the Cauchy stress

components superimposed. Linear case with positive contours (solid), negative contours

(dashed): (a) σ11, (b) σ22, (c) σ33, (d) σ13.
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Figure 5.16: Deformed profiles of the tube section in (r, z) space for a tube with A/B =

0.5, L/B = 1 subject to external pressure P = 2.3, with distributions of the Cauchy

stress components superimposed. Nonlinear case with positive contours (solid), negative

contours (dashed): (a) σ11, (b) σ22, (c) σ33, (d) σ13.

It can be seen from Fig. 5.15 and Fig. 5.16 that in both the linear and nonlinear cases,

the areas of stress concentration are located at the four corners. However, for the linear

case, the normal stresses σ11, σ22, σ33 are mostly negative, with the peak negative stresses

occurring at the two inner corners. The peak positive stresses are at the two outer corners,

and in the radial direction (i.e. for σ11). On the inner surface the stress σ11 is positive only

near the ends. This shows that most of the section is under compression when subject

to an external pressure. For the nonlinear case, on the other hand, all the peak stresses
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(positive and negative) occur at the inner corners. This is directly due to the fact that

the inner corners are significantly squeezed out, which causes both significant compression

and tension there. The shear stress distribution σ13 is most interesting; for the linear case,

σ13 is entirely positive in the upper half and entirely negative in the lower half, with the

zero stress line at Z = 0.5. However, in the nonlinear case, because of the corner bulging,

each half section is divided into four zones between which the shear stress changes sign.

In the upper half, the innermost section is sheared upwards, while different parts of the

outermost section are subject to either positive or negative shear stress. The opposite is

true in the lower half. The general trend for short tubes is that the magnitudes of the

stresses in the nonlinear case are smaller than the corresponding linear magnitudes, with

σ11 between −4.7 and 2.11, σ22 between −7.54 and 1.52, σ33 between −8.86 and 2.02, and

σ13 between −2.87 and 2.87. These are to be compared with the linear case: σ11 from

−5.44 to 2.04, σ22 from −7.18 to 2.03, σ33 from −10 to 2.69, and σ13 from −3.74 to 3.74.

To show how the stresses change with the external pressure at a particular location, we

plot the variation of the stress components σij with the pressure at point (R = 0.75, Z =

0.75) in Fig. 5.17. Again, the differences between the results for the linear and nonlinear

models are small if P is small enough, in this case P . 0.5 for the normal stress components

and P . 0.3 for σ13. However, significant differences are found between the linear and

nonlinear predictions as P increases, especially in the stress components σ11 and σ13. The

nonlinear model exhibits much smaller stress magnitudes for the same applied pressure.

It is interesting that σ13 first increases rapidly with P , but reaches a maximum around

P = 1.8 and then decreases with further increase in P , as shown in Fig. 5.17(b). This is

because as the pressure increases beyond a certain level, the corners bulge out more and

more and the second left (negative) shear zone in Fig. 5.16(d) increases in size, while the

third (positive) shear zone (where the point is located) shrinks. As a result, the positive

shear stress at this point decreases for P & 1.8.

To illustrate the response of the material locally to the external forces, plots of principal

stress versus principal stretch are shown in Fig. 5.18 for the point (R = 0.75, Z = 0.75).

We note that λ1 > 1, λ2 < 1 and λ3 < 1 at the point in question. Compared with the

linear results, the nonlinear model predicts larger magnitudes of the principal stresses for

the same principal stretches. This means the stiffness of the material at this special point

becomes larger. Note that as P increases the relationship between the principal stress σ3

and the stretch λ3 loses monotonicity. It is also noted that at the point (R = 0.75, Z =
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Figure 5.17: (a) Plots of σ11, σ22, σ33 (labelled as 1, 2, 3, respectively) versus P for a tube

with A/B = 0.5, L/B = 1 at point (R,Z) = (0.75, 0.75). (b) Plots of σ13 versus P . Linear

(dashed lines); nonlinear (solid curves).

0.75), the angle ψ which defines the principal directions has the constant value 31.6◦ for

the linear case, while it varies in the range 29.8◦ < ψ < 32.6◦ for the nonlinear case.
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Figure 5.18: Plots of the principal stresses versus the corresponding principal stretches for

a tube with A/B = 0.5, L/B = 1 at the point (R, Z) = (0.75, 0.75): (a) σ1 vs λ1; (b) σ2

vs λ2; (c) σ3 vs λ3. Linear results (dashed lines); nonlinear results (solid curves).

5.5.2 Thick-walled longer tubes: A/B = 0.5 and L/B = 5

Next, we consider a tube with the same thickness but five times longer. In this case we

find that the u and w versus P curves are similar to those for the shorter tube observed
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above. The only difference is that for both the linear and nonlinear cases the deformations

of longer tubes tend to have two humps instead of one, as suggested in Fig. 5.19, i.e.

the longer tube favours mode-2 deformations for the range of the pressure applied, while

mode-1 is preferred for the shorter tubes. Figure 5.20 shows that the differences in the

stress–pressure plots between the linear and nonlinear cases are smaller than for shorter

tubes. However, the change in σ13 for the nonlinear case is interesting. As in Fig. 5.17(b),

it follows the linear curve for small P but the range of values of P for which σ13 is positive

is much smaller in this case, and it bends downwards sharply as soon as P exceeds about

0.1.
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Figure 5.19: Distributions of the shear stress σ13 for a tube with A/B = 0.5, L/B = 5 at

pressure P = 1.01, superimposed on the deformed profile of tube section in (r, z) space:

positive values are indicated by solid contours and negative values by dashed contours.

(a) nonlinear (b) linear.

The corresponding principal stress–stretch plots are shown in Fig. 5.21. The features

of Fig. 5.21(a, b) are similar to those for the shorter tube. However, an interesting change

in the σ3–λ3 plot is shown in Fig. 5.21(c), where an S-shaped curve is observed. This is

associated with the complicated pattern of change in the shear zones shown in Fig. 5.19(a).

The nonlinear tube tends to bulge at the two inner corners, which, when combined with

the mode-2 humps, creates a much larger negative shear zone in the upper half of the

cylinder. The smaller bulge at the corners also causes the shear stress to be split into

negative and positive regions within each half cylinder, and the negative regions emerge
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Figure 5.20: (a) Plots of σ11, σ22, σ33 (labelled 1, 2, 3, respectively) versus P for a tube

with A/B = 0.5, L/B = 5 at point (R,Z) = (0.75, 4.5). (b) Plots of σ13 versus P . Linear

(dashed lines); nonlinear (solid curves).
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Figure 5.21: Plots of the principal stresses versus the corresponding principal stretches for

a tube with A/B = 0.5, L/B = 5, at the point (R, Z) = (0.75, 4.5): nonlinear case. (a) σ1

vs λ1, (b) σ2 vs λ2, (c) σ3 vs λ3.

and expand as the external pressure increases. The linear case shown in Fig. 5.19(b) fails

to predict the bulging at the corners at all for this case, as a result of which there is no

shear splitting zone towards the ends, although the shear zone adjacent to the boundary

region changes its sign, presumably due to the mode-2 deformation.
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5.5.3 Thinner and longer tubes: A/B = 0.8 and L/B = 5

For longer and thinner tubes with A/B = 0.8 and L/B = 5, the most interesting feature is

the occurrence of higher modes (multiple humps in the deformation) in the nonlinear case.

Four modes from mode-1 to mode-4 are observed as the external pressure P increases from

0 to about 0.66, as shown in Fig. 5.22. Mode-1 occurs for 0 < P . 0.01, transitions to

mode-2 for 0.01 . P . 0.16, to mode-3 for 0.16 . P . 0.41 and mode-4 for 0.41 . P .

0.66. For larger P modes 5, 6 and 7 were obtained, although the solution for large P that

gives rise to the higher modes is more demanding on the mesh qualities. No higher modes

except mode-2 were found for the linear model.

(a) (b) (c) (d)

Figure 5.22: (Not to scale) Nonlinear modes of deformation for a tube with A/B =

0.8, L/B = 5: (a) mode-1, at P = 0.01, (b) mode-2, at P = 0.11, (c) mode-3, at P =

0.41, (d) mode-4, at P = 0.61. The contours shown are for the radial displacement u

superimposed on the (r, z) deformed profile.

Figure 5.23 shows the distributions of all the Cauchy stress components for the non-

linear case at P = 0.22. Again, there are two major differences when compared with the

corresponding linear case (not shown). One is that the nonlinear model presents a higher

mode (mode-4 in this case), where the corresponding linear case exhibits only mode-2.

The other is the shear splitting pattern in the nonlinear model, which expands from the

two ends towards the middle section. Although this is not shown here we note that the

boundary effect is more limited to near the two ends in the linear model, with the same

sign of σ13 ≥ 0 near the upper end, and σ13 ≤ 0 near the lower end. The patterns of σ22

and σ33 are also quite interesting, with the nonlinear effects more clearly focused on the

boundaries.
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Figure 5.23: Cauchy stress distributions for the nonlinear case for a tube with A/B =

0.8, L/B = 5 at pressure P = 0.22 superimposed on the deformed tube section in (r, z)

space: positive values are indicated by solid contours and negative values by dashed con-

tours. (a) σ11, (b) σ22, (c) σ33, (d) σ13.

5.6 Discussion and conclusions

We have derived the general partial differential equations in Lagrangian form governing

the large axisymmetric deformations of a thick-walled tube composed of incompressible

isotropic elastic material, without any assumptions limiting the magnitude of the defor-

mation or material nonlinearity. Comparison has been made with the corresponding linear
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model for tubes with different wall-thickness and length ratios.

For small deformation the linear and nonlinear models give very similar results. How-

ever, the predictions of the linear and nonlinear models are very different under large

external pressure, and the dominant nonlinear features are the corner bulging, and, for

longer tubes, the occurrence of higher modes of deformation. Note, however, that the

higher modes for longer and thinner tubes can be associated with geometrical nonlinearity

and are not features unique to material nonlinearity [38], [36]. Although we don’t dis-

tinguish the material and geometric nonlinearities in the present study, we have observed

that material nonlinearity is more important in the shorter and thicker tubes, for which

the strains computed are larger, while geometrical nonlinearity seems to dominate in the

longer and thinner tubes, for which the strains are much smaller. The Cauchy stresses,

especially the shear stress, exhibit the greatest differences between the predictions of the

linear and nonlinear theories. Shear splitting, with alternating signs of the shear stress in

different regions is a unique nonlinear feature. As a result, the end boundary constraints

have a much stronger influence on the deformation and stresses in the rest of the tube for

the nonlinear model. This is the first systematic nonlinear treatment of externally pres-

surized thick-walled elastic tubes, albeit using the simple neo-Hookean material, and the

results may have significant implications for certain physiological applications involving

soft vessels undergoing large deformation.

The nonlinear system of equations has been solved by using the C++ based finite

element package Libmesh. It should be noted that due to the complex nature of the non-

linear equations, it was extremely difficult to obtain converged solutions numerically using

approximate Newton solvers and it was necessary to derive the Jacobian matrix J analyt-

ically, and to use the corresponding linear solution as an initial solution in order to obtain

convergence. In addition, since the geometry of the tube in the reference configuration

and the boundary conditions and external pressure condition are all symmetric about the

mid-plane of the tube, a symmetric mesh needs to be used to achieve perfectly symmetric

solutions.

We have noted that the nonlinear effects for long, thin tubes are limited to a layer

of width
√

(B −A)A (see [47]) near the boundaries; see Fig. 5.22. This agrees broadly

with the examples given by [47] on the behaviour of nonlinear shell-membrane materials.

No direct results can be found in [47] for a neo-Hookean cylindrical shell under external

pressure. However, qualitative comparison is possible with the results of [69] who studied
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the deformation of a neo-Hookean cylindrical membrane under twist. They found that at

larger values of the prescribed twist, wrinkling occurs in the interior and the membrane

remains tense near the boundaries. Although these are obtained for different boundary

conditions, the nonlinear effects such as the presence of the boundary layer and multi-

modes are similar to these shown in Fig. 5.22.



Chapter 6

Three-dimensional large

deformations

In this chapter we formulate the differential equations governing the large deformation of

the cylindrical tube subject to pressure on its external lateral surface and the end condi-

tions are zero displacement. The material is assumed to be an incompressible isotropic

neo-Hookean one. The nonlinear set of equations were derived using both cylindrical and

Cartesian coordinates. For the purpose of comparison the corresponding linear equations

are also presented (using Cartesian coordinates).

6.1 Nonlinear case: cylindrical polar coordinates

Considering the special geometry of the tube, it is natural to formulate the differential

equations based on the cylindrical coordinates. This is convenient, especially, when we

impose the hydrostatic pressure on the external lateral surface of the tube.

6.1.1 Deformation gradient

Using the basic kinematic concepts described in Chapter 2 and we have the position vectors

X,x and displacement vector u (in cylindrical coordinates) in the form

x = rer + zez, (6.1)

X = RER + ZEZ , (6.2)

x = X + u, (6.3)

94
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where displacement vector is given by

u = uer + veθ + wez. (6.4)

Note that r, θ, z are functions of R, Θ, Z.

r = r(R, Θ, Z), θ = Θ(R, Θ, Z), z = Z(R, Θ, Z), (6.5)

u = u(R, Θ, Z), v = v(R, Θ, Z), w = w(R, Θ, Z), (6.6)

and the relation between bases of cylindrical coordinates and bases of Cartesian coordinates

gives

er = cos θe1 + sin θe2, eθ = − sin θe1 + cos θe2, ez = e3,

ER = cos ΘE1 + sin ΘE2, EΘ = − sinΘE1 + cos ΘE2, EZ = E3. (6.7)

Here we have

ei = Ei, i = 1, 2, 3. (6.8)

The gradient in cylindrical coordinate system gives

Gradx =
∂x
∂R

⊗ER +
1
R

∂x
∂Θ

⊗EΘ +
∂x
∂Z

⊗EZ . (6.9)

We specialize the deformation gradient (2.2) and combined with (6.9), then

F = Gradx

=
∂r

∂R
er ⊗ER +

1
R

∂r

∂Θ
er ⊗EΘ +

∂r

∂Z
er ⊗EZ + r

∂θ

∂R
eθ ⊗ER +

r

R

∂θ

∂Θ
eθ ⊗EΘ

+ r
∂θ

∂Z
eθ ⊗EZ +

∂z

∂R
ez ⊗ER +

1
R

∂z

∂Θ
ez ⊗EΘ +

∂z

∂Z
ez ⊗EZ . (6.10)

Or by using u, v, w, we get the deformation gradient as follows

F = Gradx = Gradu + I, (6.11)

and Gradu gives

Gradu = (
∂u

∂R
− v

∂θ

∂R
)er ⊗ER + (

1
R

∂u

∂Θ
− v

R

∂θ

∂Θ
)er ⊗EΘ + (

∂u

∂Z
− v

∂θ

∂Z
)er ⊗EZ

+ (u
∂θ

∂R
+

∂v

∂R
)eθ ⊗ER + (

u

R

∂θ

∂Θ
+

1
R

∂v

∂Θ
)eθ ⊗EΘ + (u

∂θ

∂Z
+

∂v

∂Z
)eθ ⊗EZ

+
∂w

∂R
ez ⊗ER +

1
R

∂w

∂Θ
ez ⊗EΘ +

∂w

∂Z
ez ⊗EZ . (6.12)
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¿From (6.22), we have connections between the coordinates in current and reference con-

figurations in the form




r cos θ = R cosΘ + u cos θ − v sin θ,

r sin θ = R sinΘ + u sin θ + v cos θ,

z = Z + w.

(6.13)

¿From the first two equations in (6.13), we obtain the important relation

θ = Θ± arccos
r − u

R
+ 2kπ, k = 1, 2, 3... (6.14)

Then we could easily get ∂θ
∂R , ∂θ

∂Θ , ∂θ
∂Z , but we don’t want to express these derivatives ex-

plicitly due to the complexity of the expressions.

6.1.2 Nominal stress and Cauchy stress

The strain-energy function for neo-Hookean material is

W (I1) =
1
2
µ(I1 − 3). (6.15)

Using the definition (2.53) the nominal stress for incompressible elastic material is spe-

cialized accordingly

S =
∂W

∂F
− pF−1 = µFT − pF−1. (6.16)

For this case, the Cauchy stress tensor could be written

σ = F
∂W

∂F
− pI = µFFT − pI. (6.17)

The inverse of the deformation gradient F is given by

F−1 =





r
R( ∂θ

∂Θ
∂z
∂Z − ∂θ

∂Z
∂z
∂Θ) − 1

R( ∂r
∂Θ

∂z
∂Z − ∂r

∂Z
∂z
∂Θ) r

R( ∂r
∂Θ

∂θ
∂Z − ∂r

∂Z
∂θ
∂Θ)

−r( ∂θ
∂R

∂z
∂Z − ∂θ

∂Z
∂z
∂R) ∂r

∂R
∂z
∂Z − ∂r

∂Z
∂z
∂R −r( ∂r

∂R
∂θ
∂Z − ∂r

∂Z
∂θ
∂R)

r
R( ∂θ

∂R
∂z
∂Θ − ∂θ

∂Θ
∂z
∂R) − 1

R( ∂r
∂R

∂z
∂Θ − ∂r

∂Θ
∂z
∂R) r

R( ∂r
∂R

∂θ
∂Θ − ∂r

∂Θ
∂θ
∂R)





(6.18)

So, the nominal stress is given by in component form

S = µ





∂r
∂R r ∂θ

∂R
∂z
∂R

1
R

∂r
∂Θ

r
R

∂θ
∂Θ

1
R

∂z
∂Θ

∂r
∂Z r ∂θ

∂Z
∂z
∂Z





− p





r
R( ∂θ

∂Θ
∂z
∂Z − ∂θ

∂Z
∂z
∂Θ) − 1

R( ∂r
∂Θ

∂z
∂Z − ∂r

∂Z
∂z
∂Θ) r

R( ∂r
∂Θ

∂θ
∂Z − ∂r

∂Z
∂θ
∂Θ)

−r( ∂θ
∂R

∂z
∂Z − ∂θ

∂Z
∂z
∂R) ∂r

∂R
∂z
∂Z − ∂r

∂Z
∂z
∂R −r( ∂r

∂R
∂θ
∂Z − ∂r

∂Z
∂θ
∂R)

r
R( ∂θ

∂R
∂z
∂Θ − ∂θ

∂Θ
∂z
∂R) − 1

R( ∂r
∂R

∂z
∂Θ − ∂r

∂Θ
∂z
∂R) r

R( ∂r
∂R

∂θ
∂Θ − ∂r

∂Θ
∂θ
∂R)





.
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6.1.3 Equilibrium equations

Using the Lagrangean equilibrium equation (2.18) we have

DivS =
∂Sij

∂Xk
Ek ·Ei ⊗ ej + SijEk · ∂Ei

Xk
⊗ ej + SijEk ·Ei ⊗ ∂ej

Xk

=
∂Sij

∂Xi
ej + SijEk · ∂Ei

∂Xk
ej + Sij

∂ej

∂Xi
= 0 i, j = 1, 2, 3. (6.19)

Non-zero components of Ek ·Ei,k in cylindrical coordinate system are

E2 ·E1,2 =
1
R

EΘ ·ER,Θ =
1
R

. (6.20)

The final equilibrium equations could be written as

∂S11

∂R
+

1
R

∂S21

∂Θ
+

∂S31

∂Z
+

1
R

S11 − (S12
∂θ

∂R
+

1
R

S22
∂θ

∂Θ
+ S32

∂θ

∂Z
) = 0,

∂S12

∂R
+

1
R

∂S22

∂Θ
+

∂S32

∂Z
+

1
R

S12 + (S11
∂θ

∂R
+

1
R

S21
∂θ

∂Θ
+ S31

∂θ

∂Z
) = 0,

∂S13

∂R
+

1
R

∂S23

∂Θ
+

∂S33

∂Z
+

1
R

S13 = 0. (6.21)

Considering the complicated connections in (6.13), (6.14) and the components of nominal

stress tensor, we can easily imagine the final form of the equilibrium equations (6.21) would

be very lengthy, which will add much difficulty in the procedure of numerical simulations.

6.2 Nonlinear case: cartesian coordinates

In order to avoid the complexity of the equilibrium equations (6.21), we obtain the corre-

sponding equation system in Cartesian coordinates as follows.

6.2.1 Deformation gradient

The position vectors of an arbitral particle of the body are denoted by

x = xiei, X = XiEi, x = X + u. (6.22)

where i = 1, 2, 3 and the displacement vector is given by

u = ue1 + ve2 + we3. (6.23)

The deformation gradient (2.2) in Cartesian coordinates is given by

F = Gradx =
∂xi

∂Xj
ei ⊗Ej i, j = 1, 2, 3. (6.24)



CHAPTER 6. THREE-DIMENSIONAL LARGE DEFORMATIONS 98

alternatively, which is

F =
∂x1

∂X1
e1 ⊗E1 +

∂x1

∂X2
e1 ⊗E2 +

∂x1

∂X3
e1 ⊗E3 +

∂x2

∂X1
e2 ⊗E1 +

∂x2

∂X2
e2 ⊗E2 +

∂x2

∂X3
e2 ⊗E3 +

∂x3

∂X1
e3 ⊗E1 +

∂x3

∂X2
e3 ⊗E2 +

∂x3

∂X3
e3 ⊗E3. (6.25)

6.2.2 Nominal stress and Cauchy stress

The inverse of the deformation gradient F is given by

F−1 =





∂x2
∂X2

∂x3
∂X3

− ∂x2
∂X3

∂x3
∂X2

∂x1
∂X3

∂x3
∂X2

− ∂x1
∂X2

∂x3
∂X3

∂x1
∂X2

∂x2
∂X3

− ∂x1
∂X3

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

− ∂x2
∂X1

∂x3
∂X3

∂x1
∂X1

∂x3
∂X3

− ∂x1
∂X3

∂x3
∂X1

∂x1
∂X3

∂x2
∂X1

− ∂x1
∂X1

∂x2
∂X3

∂x2
∂X1

∂x3
∂X2

− ∂x2
∂X2

∂x3
∂X1

∂x1
∂X2

∂x3
∂X1

− ∂x1
∂X1

∂x3
∂X2

∂x1
∂X1

∂x2
∂X2

− ∂x1
∂X2

∂x2
∂X1





(6.26)

We now substitute the strain-energy function for neo-Hookean material (6.15) and

(6.26) into the the nominal stress (6.16) for incompressible elastic material to obtain

S = µ





∂x1
∂X1

∂x2
∂X1

∂x3
∂X1

∂x1
∂X2

∂x2
∂X2

∂x3
∂X2

∂x1
∂X3

∂x2
∂X3

∂x3
∂X3





− p





∂x2
∂X2

∂x3
∂X3

− ∂x2
∂X3

∂x3
∂X2

∂x1
∂X3

∂x3
∂X2

− ∂x1
∂X2

∂x3
∂X3

∂x1
∂X2

∂x2
∂X3

− ∂x1
∂X3

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

− ∂x2
∂X1

∂x3
∂X3

∂x1
∂X1

∂x3
∂X3

− ∂x1
∂X3

∂x3
∂X1

∂x1
∂X3

∂x2
∂X1

− ∂x1
∂X1

∂x2
∂X3

∂x2
∂X1

∂x3
∂X2

− ∂x2
∂X2

∂x3
∂X1

∂x1
∂X2

∂x3
∂X1

− ∂x1
∂X1

∂x3
∂X2

∂x1
∂X1

∂x2
∂X2

− ∂x1
∂X2

∂x2
∂X1





.

6.2.3 Governing equations

Using (2.18) we have the equilibrium equations

DivS =
∂Sij

∂Xk
Ek ·Ei ⊗ ej

=
∂Sij

∂Xi
ej = 0 i, j = 1, 2, 3. (6.27)

The final equilibrium equations in component form could be written as

∂S11

∂X1
+

∂S21

∂X2
+

∂S31

∂X3
= 0, (6.28)

∂S12

∂X1
+

∂S22

∂X2
+

∂S32

∂X3
= 0, (6.29)

∂S13

∂X1
+

∂S23

∂X2
+

∂S33

∂X3
= 0. (6.30)

The pressure boundary conditions are given as

STN =




−PF−TN on R = B

0 on R = A,
(6.31)
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In component form which are




S11N1 + S21N2 = −P (F−1
11 N1 + F−1

21 N2),

S12N1 + S22N2 = −P (F−1
12 N1 + F−1

22 N2),

S13N1 + S23N2 = −P (F−1
13 N1 + F−1

23 N2).

(6.32)

The end conditions are zero displacements i.e.

u = v = w = 0. (6.33)

And the incompressible condition is

J = detF = 1 (6.34)

and J is

J =
∂x1

∂X1
(
∂x2

∂X2

∂x3

∂X3
− ∂x2

∂X3

∂x3

∂X2
) +

∂x1

∂X2
(
∂x2

∂X3

∂x3

∂X1
− ∂x2

∂X1

∂x3

∂X3
)

+
∂x1

∂X3
(
∂x2

∂X1

∂x3

∂X2
− ∂x2

∂X2

∂x3

∂X1
). (6.35)

6.2.4 Unit outward normal to the outer surface

Let P be the arbitrary point on the outer surface, O be the original point located on the

center of the bottom of the cylinder. We choose the outer radius of the cylinder B = 1.

We use R denoting the position vector
−−→
OP which is given by

R = B cosΘE1 + B sinΘE2 + ZE3 (6.36)

The unit outward normal to the outer surface is given by

N =
RΘ ×RZ

‖ RΘ ×RZ ‖
= cos ΘE1 + sinΘE2

= X1E1 + X2E2. (6.37)

6.3 Linear case

The linear case is presented for comparison with the above nonlinear one.
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6.3.1 Deformation gradient and Cauchy stress

The deformation gradient in matrix form,

F =





∂u1
∂x1

+ 1 ∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

+ 1 ∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

+ 1





. (6.38)

We have the Cauchy stress tensor for isotropic incompressible material in the form

σ = −pI + µ[gradu + (gradu)T], (6.39)

where

gradu =
∂ui

∂xj
ei ⊗ ej i, j = 1, 2, 3. (6.40)

The final component form of Cauchy stress is given by

σ = µ





2∂u1
∂x1

− p
µ

∂u1
∂x2

+ ∂u2
∂x1

∂u1
∂x3

+ ∂u3
∂x1

∂u1
∂x2

+ ∂u2
∂x1

2∂u2
∂x2

− p
µ

∂u2
∂x3

+ ∂u3
∂x2

∂u1
∂x3

+ ∂u3
∂x1

∂u2
∂x3

+ ∂u3
∂x2

2∂u3
∂x3

− p
µ





(6.41)

6.3.2 Governing equations

Using the equilibrium equation (2.19) we obtain

∂σ11

∂x1
+

∂σ21

∂x2
+

∂σ31

∂x3
= 0, (6.42)

∂σ12

∂x1
+

∂σ22

∂x2
+

∂σ32

∂x3
= 0, (6.43)

∂σ13

∂x1
+

∂σ23

∂x2
+

∂σ33

∂x3
= 0. (6.44)

And the incompressible condition is

divu =
∂ui

∂xi
=

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0, (6.45)

where u is the displacement vector.

The pressure boundary conditions are

σn =




−Pn on R = B

0 on R = A,
(6.46)
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where n the unit outer normal to the external lateral surface of the tube. The component

form is given by




σ11n1 + σ12n2 = −Pn1,

σ21n1 + σ22n2 = −Pn2,

σ31n1 + σ32n2 = 0.

(6.47)

The end conditions are zero displacement i.e.

u = v = w = 0. (6.48)



Chapter 7

Conclusions

The main contributions of this research are the investigation of both the axisymmetric

and asymmetric bifurcations of thick-walled circular cylindrical elastic tubes under axial

loading and external pressure based on the work of Haughton and Ogden [35] and the

nonlinear analysis of the finite axisymmetric deformations of an elastic tube under external

pressure based on the general fully nonlinear governing equations in Lagrangian form, and

finally, the development of the partial differential equations for the three dimensional large

deformations of an elastic tube under external pressure.

As stated in the discussion and conclusion in Chapters 4 and 5, we summarize our

main results here.

In the work [78] (in Chapter 4), we found that the mode-2 bifurcation pressure is

insensitive to the variation of the wall thickness and deviate from the thin shell prediction

in both the very thin and thick-walled regimes. The mode transition from lower to higher

ones occurs in the range of axial compression, for very short and sufficiently thick tubes.

We have also shown that, contrary to thin-shell theory, for sufficiently thick tubes, mode

2 bifurcation becomes the only dominant mode, without transition from lower to higher

modes for sufficiently short tubes.

In the work [79] (in Chapter 5), as expected, the linear and nonlinear models represent

nearly the same results for small deformation. However, large differences have been found

in the predictions of the linear and nonlinear models under large external pressure, and

the dominant nonlinear features are the corner bulging, for relatively short tubes and,

the occurrence of higher mode deformations for longer tubes. It has been observed that

material nonlinearity dominates the deformations in the shorter and thicker tubes, for

which the strains computed are larger, while geometrical nonlinearity seems to provide

102
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more influence on the deformations in the longer and thinner tubes, for which the strains

are much smaller. The shear components of Cauchy stress exhibits the greatest differences

between the results of the linear and nonlinear theories. Shear splitting, with variation

in signs of the shear stress in neighbouring regions is a unique nonlinear feature. The

boundary layer formation at the ends of the long, thin tubes, which is a hallmark of classical

shell theory, is also represented in the nonlinear analysis. This is the first systematic

nonlinear analysis of externally pressurized thick-walled elastic tubes, although the simple

neo-Hookean material has been adopted, and the results may have significant implications

for certain physiological problems involving soft vessels undergoing large deformation.

Regarding future projects, there are several possibilities as follows.

In the next phase of the work in Chapter 4 we shall investigate the post-buckling

behaviour of elastic tubes under external pressure and axial loading. In particular, the

effect of wall-thickness on compliance of the tubes between buckling and self contact will

be studied in order to interpret the puzzling phenomenon that for tubes subjected to

external pressure, after a certain degree of collapse, thick tubes may be more compliant

than thinner ones [11,52].

Since we have dealt with axisymmetric problems in Chapter 5, we can only simu-

late the necked or barrelled states of a cylinder. In addition, we have not carried out

any bifurcation analysis and it remains to ascertain the stability status of the solutions

obtained, although previous studies on similar nonlinear problems, albeit with different

boundary conditions [55], have shown that there exist nontrivial axisymmetric stable (half

neck or multiple-neck) solutions. However, in many physiological situations, nonlinear

deformations that break this symmetry (both for the original deformation or the bifur-

cation analysis) could be more significant. We shall continue to pursue this problem in

subsequent work based on the results of Chapter 5. Considering the fully nonlinear struc-

tures of the system of the equations governing the three dimensional deformations, in the

numerical solution, resulting in a dense and nonsymmetric coefficient matrix it is still not

sure that the numerical simulation could be carried out successfully using the present finite

element method and the algorithms for solving nonlinear sets of equations. (see details

in section 9 in the book [62]). In order to avoid the difficulty of solving the nonlinear

systems directly, we note that a more natural and effective analysis approach has been

developed by Bathe [8] by referring all variables to a previously known calculated equi-

librium configuration and linearizing the resulting equations to obtain an approximate
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solution. Once the above questions are answered, a natural next step would be to replace

the zero-displacement end boundary condition by axial loading including both compres-

sion and extension to provide a better approximation of the real physiological problem as

mentioned in the Introduction.

Another very interesting but difficult future line of research would be to extend the

formulations of all the above problems in Chapter 4-6 to the corresponding dynamics cases.
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Appendix A

In this appendix we represent the derivation of discretizing integrations for the nonlinear

axisymmetric case in Chapter 5. Note that the subscripts of components of nominal stress

tensor S are changed. The connection between the alternative notations and the one used

in Chapter 5 are S11 = SRr, S31 = SZr, S13 = SRz, S33 = SZz, S22 = SΘθ.

A.1 Integration of the equilibrium equations by parts

Applying Galerkin’s method to the differential equilibrium equations,
∫

Ω
Ni[S11,1 + S31,3 +

1
R

(S11 − S22)]dΩ = 0 (A.1)
∫

Ω
Ni(S13,1 + S33,3 +

1
R

S13)dΩ = 0 (A.2)

where Ni is the i th shape function and Ω is the volume of the cylinder in reference

configuration.

For axisymmetric deformations, the nominal stress components and shape functions

are independent of the coordinate Θ, we can decompose the integral above as follows,
∫

R,Z
RNi[S11,1 + S31,3 +

1
R

(S11 − S22)]dRdZ = 0 (A.3)
∫

R,Z
RNi(S13,1 + S33,3 +

1
R

S13)dRdZ = 0 (A.4)

Integration by parts, the first term of (A.3) can be written as
∫

R,Z
RNiS11,1dRdZ = −

∫

R,Z
(RNi),1S11dRdZ +

∫

Z
(RNiS11)|R2

R1
dZ

The second term of (A.3) can be written as
∫

R,Z
RNiS31,3dRdZ = −

∫

R,Z
RNi,3S31dRdZ +

∫

R
R(NiS31)|Z2

Z1
dR
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and hence we obtain from (A.3),
∫

R,Z
[R(Ni,1S11 + Ni,3S31) + NiS22]dRdZ =

∫

Z
(RNiS11)|R2

R1
dZ +

∫

R
R(NiS31)|Z2

Z1
dR(A.5)

The similar techniques operate on (A.4), we have
∫

R,Z
R(Ni,1S13 + Ni,3S33)dRdZ =

∫

Z
(RNiS13)|R2

R1
dZ +

∫

R
R(NiS33)|Z2

Z1
dR (A.6)

We use notations int1 and int2 to denote the two integrands in (A.5) and (A.6),

respectively,

int1 = R(Ni,1S11 + Ni,3S31) + NiS22

int2 = R(Ni,1S13 + Ni,3S33)

By the help of mathematica, we obtain

int1 = t2Ni

+ RNi,1

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
(1 + uR) +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)uZ

}

+ RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)(1 + uR)

+
[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
uZ

}
(A.7)

First term of (A.7),
∫

R,Z
t2NidRdZ =

∫

R,Z
Ni(µλ2 − pλ−1

2 )dRdZ

=
∫

R,Z
Ni(µ(1 +

u

R
)− R

R + u
p)dRdZ

=
∫

R,Z
µNidRdZ +

∫

R,Z

µ

R
NiNjdRdZuj −

∫

R,Z

R

R + u
NiN

′
jdRdZpj

Using t1
λ1

= µ− pλ−2
1 , second term of (A.7),

∫

R,Z
RNi,1

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
(1 + uR) +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)uZ

}
dRdZ

=
∫

R,Z
RNi,1

[
(1 + cos 2ψ)

2
(µ− λ−2

1 p) +
(1− cos 2ψ)t3

2λ3

]
dRdZ

+
∫

R,Z
RNi,1

[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
uRdRdZ +

∫

R,Z
RNi,1

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)uZdRdZ

=
∫

R,Z
RNi,1

[
1 + cos 2ψ

2
µ +

(1− cos 2ψ)t3
2λ3

]
dRdZ

+
∫

R,Z
RNi,1

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
Nj,1 +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,3

}
dRdZuj

−
∫

R,Z
R

1 + cos 2ψ
2

λ−2
1 Ni,1N

′
jdRdZpj
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Third term of (A.7),
∫

R,Z
RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)(1 + uR) +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
uZ

}
dRdZ

=
∫

R,Z

1
2
RNi,3 sin 2ψ(

t1
λ1
− t3

λ3
)dRdZ

+
∫

R,Z
RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,1 +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
Nj,3

}
dRdZuj

Hence from equation (A.5), we obtain
∫

R,Z

µ

R
NiNj + RNi,1

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
Nj,1 +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,3

}

+ RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,1 +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
Nj,3

}
dRdZuj

−
∫

R,Z
R

[
1

R + u
Ni +

1 + cos 2ψ
2

λ−2
1 Ni,1

]
N
′
jdRdZpj = −

∫

R,Z
µNidRdZ

−
∫

R,Z
RNi,1

[
1 + cos 2ψ

2
µ +

(1− cos 2ψ)t3
2λ3

]
dRdZ −

∫

R,Z

1
2
RNi,3 sin 2ψ(

t1
λ1
− t3

λ3
)dRdZ

+
∫

Z
(RNiS11)|R2

R1
dZ +

∫

R
R(NiS31)|Z2

Z1
dR

(A.8)

And the integrand of (A.6),

int2 = RNi,1

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
wR +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)(1 + wZ)

}

+ RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)wR +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
(1 + wZ)

}
(A.9)

First term of (A.9),
∫

R,Z
RNi,1

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
wR +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)(1 + wZ)

}
dRdZ

=
∫

R,Z
RNi,1

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)dRdZ

+
∫

R,Z
RNi,1

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
Nj,1 +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,3

}
dRdZwj

Using t3
λ3

= µ− pλ−2
3 , second term of (A.9),

∫

R,Z
RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)wR +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
(1 + wZ)

}
dRdZ

=
∫

R,Z
RNi,3

[
(1− cos 2ψ)t1

2λ1
+

1 + cos 2ψ
2

(µ− λ−2
3 p)

]
dRdZ

+
∫

R,Z
RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,1 +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
Nj,3

}
dRdZwj

=
∫

R,Z
RNi,3

[
(1− cos 2ψ)t1

2λ1
+

1 + cos 2ψ
2

µ

]
dRdZ

+
∫

R,Z
RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,1 +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
Nj,3

}
dRdZwj

−
∫

R,Z
R

(1 + cos 2ψ)
2

λ−2
3 Nj,3N

′
jdRdZpj
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Hence from (A.6), we obtain
∫

R,Z
RNi,1

{[
(1 + cos 2ψ)t1

2λ1
+

(1− cos 2ψ)t3
2λ3

]
Nj,1 +

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,3

}

+ RNi,3

{
1
2

sin 2ψ(
t1
λ1
− t3

λ3
)Nj,1 +

[
(1− cos 2ψ)t1

2λ1
+

(1 + cos 2ψ)t3
2λ3

]
Nj,3

}
dRdZwj

−
∫

R,Z
R

1 + cos 2ψ
2

λ−2
3 Ni,3N

′
jdRdZpj = −

∫

R,Z
RNi,1

1
2

sin 2ψ(
t1
λ1
− t3

λ3
)dRdZ

−
∫

R,Z
RNi,3

[
(1− cos 2ψ)t1

2λ1
+

1 + cos 2ψ
2

µ

]
dRdZ +

∫

Z
(RNiS13)|R2

R1
dZ +

∫

R
R(NiS33)|Z2

Z1
dR

(A.10)

Incompressible condition

λ1λ3 = λ−1
2

expanding incompressible condition above, we have

1
R + u

u + uR + (1 + uR)wZ − uZwR = 0 (A.11)

Integration (A.11), we obtain
∫

R,Z
RN

′
i

[
1

R + u
u + uR + (1 + uR)wZ − uZwR

]
dRdZ

=
∫

R,Z
RN

′
i

(
1

R + u
Nj + Nj,1

)
dRdZuj +

∫

R,Z
RN

′
i [(1 + uR)Nj,3 − uZNj,1] dRdZwj

Finally, we have
∫

R,Z
RN

′
i

(
1

R + u
Nj + Nj,1

)
dRdZuj (A.12)

+
∫

R,Z
RN

′
i [(1 + uR)Nj,3 − uZNj,1] dRdZwj = 0
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In this appendix we present the mesh files used in Chapter 5. For details of the format of

these files, we refer to the web page of libmesh: http://libmesh.sourceforge.net/publications.php.

B.1 Mesh files

The file mesh.xda for a tube with A/B = 0.5, L/B = 1 is give by

LIBM 0

4 # Num. of elements

6 # Num. nodes

20 # length of connectivity vector

6 # Num. boundary conds

65536 # string size

1 # Num. elements blocks

3 # Element types in each block

4 # Num. of elements in each block at each level

Id String

Title String

0 1 2 0 -1

0 2 3 1 -1

3 2 5 2 -1

2 4 5 3 -1
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0.5 0 0

1 0 0

1 0.5 0

0.5 0.5 0

1 1 0

0.5 1 0

0 0 0

0 1 1

1 2 2

2 2 2

3 0 1

3 1 3

The file mesh.xda for a tube with A/B = 0.5, L/B = 5 is give by

LIBM 0

20 # Num. of elements

22 # Num. nodes

100 # length of connectivity vector

22 # Num. boundary conds

65536 # string size

1 # Num. elements blocks

3 # Element types in each block

20 # Num. of elements in each block at each level

Id String

Title String

0 1 2 0 -1

0 2 3 1 -1

3 2 4 2 -1

3 4 5 3 -1

5 4 6 4 -1

5 6 7 5 -1
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7 6 8 6 -1

7 8 9 7 -1

9 8 10 8 -1

9 10 11 9 -1

11 10 13 10 -1

10 12 13 11 -1

13 12 15 12 -1

12 14 15 13 -1

15 14 17 14 -1

14 16 17 15 -1

17 16 19 16 -1

16 18 19 17 -1

19 18 21 18 -1

18 20 21 19 -1

0.5 0 0

1 0 0

1 0.5 0

0.5 0.5 0

1 1 0

0.5 1 0

1 1.5 0

0.5 1.5 0

1 2 0

0.5 2 0

1 2.5 0

0.5 2.5 0

1 3 0

0.5 3 0

1 3.5 0

0.5 3.5 0

1 4 0

0.5 4 0
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1 4.5 0

0.5 4.5 0

1 5 0

0.5 5 0

0 0 0

0 1 1

1 2 2

2 1 1

3 2 2

4 1 1

5 2 2

6 1 1

7 2 2

8 1 1

9 2 2

10 2 2

11 0 1

12 2 2

13 0 1

14 2 2

15 0 1

16 2 2

17 0 1

18 2 2

19 0 1

19 1 3
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