

 King, David Jonathan (1996) Functional programming and graph
algorithms. PhD thesis.

http://theses.gla.ac.uk/1629/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

4ý--l

NI

UNIVERSITY
Of

GLASGOW

Department of
Computing Science

Functional Programming

and
Graph Algorithms

David Jonathan King

A thesis submitted for a Doctor of Philosophy Degree in
Computing Science at the University of Glasgow

March 1996

W.,

ýg
David J. King 1996

BLANK IN

ORIGINAL

Abstract

Functional languages are renowned for their mathematical tractability, clarity of ex-
pression, abstraction powers, and more. There are problem domains, however, that

still present real challenges to functional languages. One notoriously difficult problem
domain is graph algorithms.

Graph algorithms have been studied for a long time with conventional von Neu-

mann languages. The emphasis has primarily been on the efficiency of the algorithm.
Concerns such as clarity of the algorithm have been secondary. Although the un-
derpinnings of algorithms generally have a solid theoretical foundation, there is still
some distance between computer program and proof of correctness.

This thesis is an investigation of graph algorithms in the non-strict purely functional
language Haskell. Emphasis is placed on the importance of achieving an asymptotic
complexity as good as with conventional languages. This is achieved by using the

monadic model for including actions on the state. Work on the monadic. model was

carried out at Glasgow University by Wadler, Peyton Jones, and Launchbury in the

early nineties and has opened up many diverse application areas. One area is the

ability to express data structures that require sharing. Although graphs are not

presented in this style, data structures that graph algorithms use are expressed in

this style. Several examples of stateful algorithms are given including union/find for

disjoint sets, and the linear time sort binsort.

The graph algorithms presented are not new, but are traditional algorithms recast in

a functional setting. Examples include strongly connected components, biconnected

components, Kruskal's minimum cost spanning tree, and Dijkstra's shortest paths.
The presentation is lucid giving more insight than usual. The functional setting
allows for complete calculational style correctness proofs - which is demonstrated

with many examples.

The benefits of using a functional language for expressing graph algorithms are quan-
tified by looking at the issues of execution times, asymptotic complexity, correctness,

and clarity, in comparison with traditional approaches. The intention is to be as

objective as possible, pointing out both the weaknesses and the strengths of using a
functional language.

BLANK IN

ORIGINAL

Contents

Abstract iii

List of algorithms xi

Preface xiii

Precis of thesis Xiii

Contributions of thesis XV

Acknowledgments
............................... XV

I Introduction 1

1.1 Graph algorithms and functional languages
2

1.2 Why graph algorithms can be complex
4

1.3 Traditional approaches
4

1.3.1 English style pseudo-code presentations
4

1.3.2 Functional language presentations
6

1.4 Imperative functional approach
8

2 Literature survey 11

2.1 Graph algorithm design
.........................

11

2.1.1 Mathematical induction
11

2.1.2 Using libraries
...........................

12

2.1.3 Graph languages
.........................

13

V

vi Contents

2.1.4 Program derivation 14

2.1.5 Graph algebras 16

2.1.6 Functional approaches 18
2.2 Algorithm correctness 20

2.3 Complexity analysis of algorithms ý 21ý

3 Functional algorithms 23

3.1 Treesort 24

3.1.1 Transforming the trees out of treesort 25

3.1.2 Treesort is equivalent to functional quicksort 26

3.2 Functional priority queues 28

3.3 Binomial trees 30

3.4 Implementing binomial queues functionally
.............. . 31

3.5 Correctness of functional binomial queues
36

3.5.1 Meld maintains the binomial queue structure 36

3.5.2 Meld maintains the heap-ordering property 40

3.5.3 Meld meets its specification 42

3.6 Implementing decreaseKey and delete 43

3.7 Comparison with other priority queues 44

4 Stateful algorithms 47

4.1 The need for state 47

4.2 Including imperative actions in a functional language
....... .. 48

4.3 State transformers 49

4.3.1 The do notation 49

4.4 Variables
................................ . .. 50

4.5 Explicitly linked lists
...................... .. 51

4.5.1 Queues 53

4.5.2 Hiding the queue 55

Contents vii

4.6 Mutable arrays 56

4.7 Binsort 57

4.8 Disjoint sets (union/find)
.............. 58

4.9 Stateful combinators 62

4.10 Discussion
64

4.11 Related work
66

5 Modelling graphs 69

5.1 Representations of graphs 69

5.2 Cyclic representations 70

5.3 Adjacency lists 71

5.4 Classifying graphs
74

5.4.1 Classifying undirected graphs 75

5.4.2 Generating graphs 76

5.4.3 Generating random graphs
78

5.5 Adjacency matrices
79

5.5.1 Classifying edge labelled graphs
81

5.5.2 Generating edge labelled graphs
81

5.6 Discussion
82

6 Depth-first search based algorithms 83

6.1 Depth-first search
84

6.2 Specification of depth-first search
84

6.3 The generate-prune paradigm
86

6.3.1 Generating
...................

87

6.3.2 Pruning
87

6.4 Correctness of DFS
93

6.4.1 Ordering properties of DFS
96

6.5 Efficient implementation of prune
99

viii Contents,

6.5.1 Equivalence of stateful prune with purely functional prune .. 101

6.6 Depth-first search algorithms 103

6.6.1 Depth-first search numbering 103

6.6.2 Topological sorting 104

6.6.3 Weakly connected components 106

6.6.4 Strongly connected components
108

6.6.5 Classifying edges
110

6.6.6 Detecting rooted graphs
112

6.6.17 Finding reachable vertices 112

6.6.8 Biconnected components
114

6.6.9 Finding'bridges
................

118

7 Gra ph algorithms 119

7.1 Kruskal's minimum spanning forest algorithm 119

7.2- Dijkstra's single-source shortest paths algorithm 121

7.3 Floyd's all shortest paths algorithm 123

7.3.1 Transitive closure 124

7.4 Vertex colouring

-7.5 Breadth-first search based algorithms 126

7.5.1 Implementing BFS
..................... ... 127

7.5.2 Bfs numbering
128

7.5.3 Finding the diameter of a graph
128

7.5.4 Shortest path between two vertices 130

7.5.5 Checking if a graph is bipartite
.............. ... 131

7.6 Discussion
.............................. ... 131

Contents ix

8 Aspects of complexity, efficiency, and style 133

8.1 The complexity of functional algorithms 134

8.1.1 Example: preorder 136

8.2 Standard optimisation techniques 138

8.3 The complexity of stateful algorithms 138

8.3.1 Example: binsort 140

8.4 The complexity of lazy functions
.................. .. 142

8.5 Empirical measurements of some functional algorithms 144

8.5.1 Evidence that we have the right asymptotic complexity 145

8.5.2 The constant factor between Haskell and C.........
.. 147

8.6 The style factor between functional and imperative 148

8.7 Comparing lazy with strict 151

8.8 Discussion
............................... .. 151

9 Conclusion 153

9.1 Original objective 153

9.2 Appraisal
...................

154

9.3 Further work
156

Bibliography 159

BLANK IN

ORIGINAL

List of algorithms

Treesort 24

Quicksort 27
Functional binomial queues 31

Explicitly linked lists 51

Stateful queues 53

Stateful abstract queues 55

Binsort 57

Union/Find
................................... 58

Out-degree table 72

Graph transpose 74

In-degree table 74

Classifying the directed graphs: empty, pseudo, simple, functional, and Eu-
lerian 75

Classifying undirected graphs: regular, Eulerian, and complete 75

Generating graphs: empty, complete, simple* circuit, and functional 76

Generating a random graph
78

Classifying edge labelled graphs: empty, unweighted, undirected, complete 81

Depth-first spanning forest
...........................

86

Depth-first search numbering
103

Topological sorting
104

Weakly connected components
106

xi

xii List of algorithms

Strongly connected components 108

Classifying edges into: tree, back, forward, and cross 110

Detecting rooted graphs 112

Finding reachable vertices 112

Determining if a path exists between vertices 113

Biconnected components 114

Finding bridges
...........................

118

Kruskal's minimum spanning forest
119

Dijkstra's single-source shortest paths algorithm
121

Floyd's all-pairs shortest paths
123

Transitive closure
124

Graph colouring
125

Breadth-first search *
127

Breadth-first search numbering 128

Finding the diameter of a graph 128

Shortest path between two vertices 130

Checking if a graph is bipartite 131

Preface

This thesis is submitted in partial fulfilment of the requirements for a Doctor of
Philosophy Degree at the University of Glasgow. It comprises a study of graph algo-
rithms in a lazy functional language; with the thesis that they may be implemented
in such languages without loss of asymptotic complexity and, furthermore, that the

abstraction powers of these languages allows the algorithms to be expressed so that

their structure is more apparent than is commonly the case.

All the work carried out herein is original material except where otherwise stated.
Chapter 6 is an extension of the work presented by King and Launchbury (1995) at
the 22'nd Conference on Principles of Programming Languages. Preliminary work
on functional binomial queues in Chapter 3 was reported at the seventh Glasgow
Workshop on Functional Programming, see King (1995).

The programs in this thesis are written in standard Haskell, Version 1.2 (Hudak

et al. 1992), and have been executed with the Glasgow Haskell compiler (Peyton

Jones et al. 1993). Knowledge of Haskell is assumed, but most of the concepts should
be familiar to anyone that has a passing knowledge of functional languages, see Hudak

and Fasel (1992) for a comprehensive tutorial on Haskell.

Precis of thesis

The principal issues covered in the thesis are established in Chapter 1. First it

is explained why efficient implementations of graph algorithms have alluded purely
functional programming languages. With examples of graph algorithms, a comparison
is made between the traditional imperative approach and a functional approach, and
then with an imperative functional approach. A major claim of this thesis is that

xiii

xiv Preface

the high-level abstraction powers of functional languages can offer new insights into

algorithms. Chapter 3 justifies this claim with two purely functional examples. First,

program transformation is used to show the equivalence of two well-known sorting
algorithms: treesort and functional quicksort. Then a functional implementation and
correctness proof is given for a priority queue algorithm.

Sometimes purely functional algorithms are not enough. Chapter 4 explains, how the

monadic model may be used to express algorithms that require mutable state for
their efficiency. Several examples of stateful algorithms are given, some of which are
important for later graph algorithms. The chapter concludes with a discussion of
the merits and otherwise of the imperative functional style of programming. Then

returning to the purely functional world, graphs are introduced in Chapter 5. Using
the typical methods of representation many examples of simple functions on graphs
are given.

In Chapter 6 the work of the previous two chapters is brought together as the al-
gorithms that are based on depth-first search are explored in detail. This chapter
epitomises the thesis. Traditional algorithms are expressed in a modular way, which
is good for both code reuse, and program verification. Mutable state is used, but only
where it is essential for efficiency.

More graph algorithms are given in Chapter 7 including Kruskalts minimum cost
spanning forest algorithm, Dijkstra's shortest paths, and Floyd's all-pairs shortest
paths algorithm. Some of these algorithms are ones that seem intrinsically to require
mutable state for their efficiency.

Chapter 8 examines the advantages and drawbacks of expressing graph algorithms
in a purely functional language, compared with traditional approaches. Empirical
comparisons are made between the same algorithms in a functional and an imperative
language. The aspects of analysing the complexity of a functional algorithm are
made, and some examples are given. The differences between the approach taken in
the thesis and conventional approaches are quantified objectively. Finally, Chapter 9

reviews the thesis, and discusses directions for future research.

Contributions of thesis

Contributions of thesis

xv

It is shown how graph algorithms may be expressed in purely functional lan-

guages with no loss of efficiency. Several examples of traditional graph algo-
rithms are presented.

e The high-level abstraction powers for functional languages are shown to offer
insights to the algorithms presented.

Many examples of correctness proofs are given, and shown in all detail. For
example, a functional implementation and correctness proof, of binomial func-
tional queues is given. Moreover, several proofs of graph algorithms are given
in all detail, such as a proof of a strongly connected components algorithm.

Examples of imperative functional algorithms are given, and are shown to be

superior in some ways to conventional imperative approaches.

An extensive survey of numerous approaches for expressing graph algorithms is

given.

A comparison is made between functional and imperative presentations with
regard to expressibility, demonstrating correctness, demonstrating complexity,

, and time and space performance.

Acknowledgements

This work was supported for three years by a studentship from the Engineering and
Physical Sciences Research Council, and was undertaken at the Department of Com-

puting Science, Glasgow University. I am indebted to many people who have helped

me throughout my period of research, and I gratefully thank them all, whether named
here or not.

This thesis has been greatly influenced by my supervisor, John Launchbury. John is

a very encouraging and patient teacher, and is never short of good ideas. I'm very

grateful for his kindness and friendship throughout my studies.

xvi Preface

I would like to thank the examination committee: Chris Reade, John O'Donnell and
David Watt for giving extensive comments which have helped to improve the final

copy of this thesis.

The Glasgow Functional Programming Group is an extremely fruitful and friendly

environment to work in. I have learnt a great deal from the weekly seminars and
annual workshop, not only about other people's work, but how to present my own
material. I'thank Simon Peyton Jones for reading through a draft of this thesis and
giving extensive comments. Phil Wadler for inspiring my interest in many topics.
John O'Donnell for his encouragement and interest in my work. Kieran Clenaghan
for his knowledge of graph! algorithms, and willingness to listen to my ideas. Others
in the group that I would like to thank are the Glasgow Haskell compiler gurus, Will

Partain and Jim Mattson. Both always ready to answer my questions.

Keith Van Rijsbergen deserves credit for his guidance and confidence in me at critical

times during my period of study.

I would also like to thank my fellow students in the Department. Especially my office

mates in G162: Andy Gill, Simon Marlow, and Andre Santos. Life would have been

much duller without them.

Finally, I would like to thank my family, especially my parents for their encourage-

ment, and everlasting faith in'me.

N'larch 1996, Glasgow David J. King

01-1

k-, /,. Lapte. r

Introduction

Computing languages are constantly being designed with the goal that they should aid
the quick and accurate development of diverse software. In the opinion of many lan-

guage designers (for example, John Backus (Backus 1978) and Robin Milner (Frenkel

and Milner 1993)) functional languages have more potential to succeed in meeting
this goal than conventional programming languages. There are two quite strong ar-
guments, however, that can be levelled against functional languages. The first is that

they are too inefficient, and the second is that there are many problem domains that
these languages do not solve well. The latter issue is addressed in this thesis with an
investigation of graph algorithms, which have until now proved to be incompatible

with purely functional languages.

Graph theory has been studied since Euler's (1736) paper on the famous seven bridges

of K6nigsberg problem. The problem is to determine if a tour is possible crossing each
of the seven bridges no more than once. Today graph theory and its algorithms are
widely used in computer software and hardware, but perhaps more importantly they
have many real world applications. A survey of graph theory applications will not be

given here, partly as it is not the topic of the thesis, but also because it has been done

extensively by others. For example, the following three books cover a wide spectrum

of applications: Wilson and Beineke (1979); Temperley (1981); and Walther (1984).

Graph algorithms can be complex, making their implementation difficult to com-

prehend and non-trivial to prove correct. Functional languages are acknowledged
to be good at expressing problems clearly, and for providing a good framework for

correctness proofs. So why have graph algorithms frustrated programmers of purely
functional languages? The reason is fundamental - graphs do not have a recursive

I

Chapter 1. Introduction

data structure. Recursive data structures are tree shaped, and can be recursively
traversed from their root to their leaves. Graphs do not conform to this structure -
there may be a cycle from a vertex to itself. A traversal, therefore, will re-visit old
vertices, and this has to be dealt with.

Our interest is with non-strict, purely functional languages like Haskell, rather than
strict mostly functional languages like Standard ML. There are several advantages
with using a pure language. The lack of side effects makes mathematical reason-
ing about programs more straightforward. Lazy languages also provide for greater
expressiveness which will be illustrated throughout the thesis. Haskell was chosen
because it is the standard non-strict functional language. Besides this, Haskell was
an obvious choice at Glasgow, where research is being undertaken with the language.
Although Haskell is used throughout, many of the points made also apply to other
functional languages, including strict mostly pure languages like Standard ML.

Although all the examples will be expressed in Haskell, there are three minor devia-

tions from the standard: (i), the monad of state transformers requires some functions

to be built into the language (runST, for example); (ii) the do notation is used for

including imperative actions on state; and (iii), pairs are used instead of the Assoc

type. These deviations are expected to exist inýversion 1.3 of Haskell.

The terminology for graphs used he'rý is not completely standard, mainly because

there is no standard terminology for graphs. The term graph will be used to mean a

directed graph (some authors abbreviate this to digraph; and some use the term graph

to refer to an undirected graph). The points will be called vertices andýthe arrows

edges (these are called arcs, by many authors to distinguish them from-undirected

edges). Graphs considered willý_'always be finite in the number of vertices and edges..
Unless otherwise 'stated our graphs do not have multiple edges, multiple vertices, or

self-loops. Nonetheless; such graphs as well as other kinds of graph can be represented,

and are in this thesis.

Graph algorithms and functional languages

Let's start with a simple example: detecting if a graph has a cycle. One algorithm is
to follow graph edges leaving a stone at each vertex that is passed through. When a
dead-end is reached, we retrace our steps picking up the stones until a new path is

1.1. Graph algorithms and functional languages 3

found to follow. If a new path leads to a vertex with a stone, then the graph has a
cycle. On the other hand, if we tour the whole graph without returning to a vertex
with a stone then the graph has no cycles.

To implement this algorithm we have to mimic placing stones on vertices. The most
suitable representation for this is an array mapping vertices to stones. This makes
it easy to access and change the stone component. The algorithm's time complexity
is dependent on these array operations as they will be performed for each vertex.
Writing to an array in constant time is not straightforward in a language without side
effects. This is well known with respect to graph problems, for instance, Zimmermann
(1990) in his book on automatic complexity analysis of functional programs says the
following:

"functional programming is not well suited for algorithms of graph theory

as these usually make frequent use of side effects"

In other words access to some form of mutable state is required in order to achieve a

good asymptotic complexity for implementations of graph algorithms.

In many ways the elegance of a functional language comes from not having access
to mutable state, so it should only be used when there is no alternative. It is a

view strongly held by programming la nguage researchers, that with a von Neumann

machine architecture, access to the state is essential for efficient graph algorithms.
In some ways this is obvious, since information about a vertex needs to be updated
instantly for an efficient algorithm. Nevertheless, even this may be possible by encap-

sulating the updating operations into a special combinator. The combinator would
be purely functional, in the sense that it would take and return purely functional

values. However, the function itself would be implemented in an imperative style. In

this thesis such methods are not dismissed. In Chapter 7 it is shown how breadth-

first search may be expressed with a special combinator. Often, as is the case with
breadth-first search, that the implementation becomes more complex than an imper-

ative implementation.

4 Chapter 1. Introduction

1.2 Why graph algorithms can be complex

The most efficient graph algorithms traverse the graph the fewest number of times.
The fastest linear graph algorithm will traverse the graph once. A linear graph
algorithm is one whose running time is proportional to the size of the graph, that is
to say, the sum of the number of vertices(V) and edges(E), i. e. O(V + E). Most

graph algorithms require many pieces of information to be calculated for each vertex.
For a single pass algorithm many calculations will be performed at once. This is part
of the reason why traditional presentations of graph algorithms are difficult to follow.

1.3 Iýraditional approaches

1.3.1 English style pseudo-code presentations

The traditional way of expressing graph algorithms is to give English style pseudo-

code. This is usually a mixture of English statements and Algol-like imperative code.

The resulting algorithms cannot be executed and usually do not contain enough

detail to make them easy to code. Here's an example of an algorithm for finding
,
the

connected components of an undirected graph. This is taken verbatim from Manber's

(1989) book, p. 192.

Algor ithm'Conn'ected-Componen .
ts(G);

Input: G=(V, E), is, an undirected graph

Output: v. Component is set to the number of the component

'containing
v, for every vertex v.

begin
Component-'Number :=1;

while there is an unmarked vertex v do

Depth-First-Search(G, v);
(using the following preWORK;

v. Component := Component-Number;)
Component-Number := Component-Number +1

end

Figure 1.1 English style pseudo-code description of connected components.

Traditional approaches 5

The algorithm in Figure 1.1 makes use of a depth-first search algorithm augmented
with some code specifically to annotate vertices with their connected component
number. A depth-first search is performed starting at vertex v, and exactly all the

vertices that are in the same component as v will be annotated. The component
number is then incremented, and another depth-first search commences starting with
an unvisited vertex. This process is repeated until all the vertices have been visited,
and hence annotated with a component number. Here is Manber's (1989, p. 191)
description of depth-first search:

Algorithm Depth-First-Search(G, v);
Input: G=(V, E) is an undirected graph, v is a vertex in V
Output: depends on the application

begin

mark v;
perform preWORK on v;
for all edges (v, w) do

if w is unmarked then Depth-First-Search(G, w);

perform postWORK for (v, w) *

end

Figure 1.2 English style pseudo-code description of depth-first search.

The algorithm for depth-first search presented in Figure 1.2 is given as a skeleton
description with'preWORK and postWORK changing for particular algorithms. This is a

useful approach as depth-first search is used for many other graph algorithms. This

programming idiom, however, is not supported by conventional compilers - it is

not possible to pass fragments of code for prewoRK and postWORK to the depth-first

search procedure. Instead the depth-first search fragment has to be re-written for

each algorithm. In a functional language there is no problem: common programming
idioms are just higher-order functions which are passed fragments of code in the form

of functions. The ability to name and reuse programming idioms is one of the great

strengths of functional languages. This is the approach taken here, and these concepts 9
will now be demonstrated with'the above example.

6 Chapter 1. Introduction

1.3.2 Functional language presentations

The typical functional programming approach is quite different. Programs are struc-
tured as a sequence of transformations on the input. data. The focus is on what the
intermediate data should be at each stage. For example, the program to separate
vertices that are in different components may be expressed functionally as:

vertex-components :: Graph -> [[Vertex]]

vertex-components g= map flatten (dff 9)

A depth-first search is performed on the graph, returning in this case a depth-first

spanning forest of the graph. This is a list of trees where each tree contains the

vertices of one component. Finally each tree is flattened using : flatten returning a

list of lists. I

Not all the details will be given here (such as the representation used for Graph, Vertex

etc.), since they are described and motivated in later chapters. Instead, just enough
detail is given so that the examples can be used to substantiate some of the claims

made.

The English, style pseudo-code (Figure 1.2) can be mimicked by taking the result of

vertex-components and doing the following:

component-table :: Graph -> UVertex, Int)]

component-table g=[(v, n) I (vs, n)<-ps, v<-vs]

where ps = zip (vertex-components g)

This generates a table (actually a list) mapping each vertex to its component number.
The components could just as easily have been generated the in the form of subgraphs
by the following:

components :: Graph -> [[(Vertex, Vertex)ll

components g=(C (v, w) I v<-vs, w<-g! vl I vs<-vcs]

where, vcs = vertex-components

Instead of augmenting a skeleton algorithm with fragments of code, the algorithm is
0

built by gluing together simpler parts. Structuring programs in this way often allows

1.3. ' Traditional approaches 7

dff Graph -> [Tree Vertex]
dff fst (dfs g0 (vertices g))

dfs :: Graph -> [Vertex] -> [Vertex] -> ([Tree Vertex], [Vertex])
dfs g ms U= (11, ms)
dfs g ms (v: vs) = if v 'elem' ms

then dfs g ms vs
else let (ts, as) = dfs g (v: ms) (g! v)

(us, bs) = dfs g as vs
in (Node v ts: us, bs)

Figure 1.3 Purely functional implementation of depth-first search.

for greater understanding of the algorithm. Figure 1.3 shows a purely functional
implementation of depth-first search.

The function vertices returns a list of all the vertices contained in the graph. The
function df s takes three arguments: the graph; a list of all the vertices that have been

visited before; and an ordering of vertices that are used as positions to start searching.
The expression (g! v) returns a list of all vertices that are adjacent to v in graph g.
For each vertex df s checks to see if it has been visited before by looking it up in the

visited list. Sin
'
ce doing a lookup in a list of length n takes O(n) time, the asymptotic

complexity of df s is 0(V(V+ E)). The English style pseudo-code determines if a

vertex has been visited before by extracting from the field component of the vertex in

constant time. Consequently, for depth-first search, there is an unfortunate disparity
between the complexity of the functional algorithm O(V(V + E)) and the imperative

algorithm 0 (V + E).

One of the main reasons people have persisted with functional languages is provability.
The style shown above of expressing algorithms as the composition of smaller units,
whilst being good for structuring programs, is also helpful in structuring proofs. Pure
functional programs are referentially transparent, which roughly means that the same

expression can be replaced with the'same value. In other words, pure programs
are side effect free. ' This makes the mathematics for reasoning about a program's

execution more tractable, making it realistic to prove a program's correctness in all
detail.

Chapter 1. Introduction

As well as provability, the functional implementation has more potential for oPti-
misations. Again because of the mathematical tractability of the code it makes it

straightforward to apply simple transformations. For instance, the dataflow for the
function vert ex- components which is: Graph -4 Forest -4 List, can be reduced to the
dataflow: Graph -4 List. This is known as code fusion, one of many transformations
that are realistic to include in an optimising functional language compiler.

Another important advantage highlighted in the examples above is code reuse. The
function vert ex- components was reused in the definitions of component -table, and
components. Furthermore, the function df f can be freely reused for expressing many
algorithms. Code reuse is more prevalent in functional languages than conventional
languages, in part because of the transformations on data style of programming.
But more importantly because functions can be polymorphic, meaning that they may
take values of many different types. An example used above, is the function zip, that
zips two lists together regardless of their type. Functional algorithms are commonly
expressed as the composition of simple reusable components like dff. Code reuse
comes hand-in-hand with modularity, which is beneficial for programming and proof.

Referential transparency outlaws destructive updating. For instance, when you exe-
cute x

_:
= 8, in an imperative language, the contents of x is destroyed and replaced

with 8. Unfortunately, efficient implementations of graph algorithms seem inherently
to require some form of destructive updating (Section 1.1). Figure 1.2 illustrates this:
during the course of the depth-first search vertices are marked. Marking is carried out
for each and every vertex so it has a direct impact on the complexity of the algorithm.

There are several excellent exp'ositions on the-merits of functional programming lan-
guages including: Backus (1978); Hughes (1989); and Pountain (1994). Many of the
points made above have been drawn from this material.

1.4 Im '' -rati '' functional approach
'pe

ye

This thesis explores the use of state in a functional language. There are several, ways
of introducing state, some of which are reviewed later (Chapter 4, p. 66). The method
chosen here is to use the monad of state transformers which is fully supported in the
Glasgow Haskell compiler.

1.4. Imperative functional approach 9

Surprisingly, in the depth-first search algorithm presented above, the marking of
vertices is the only place where destructive update is necessary for an O(V + E)
time implementation. So the implementation uses an updatable array (just a normal
imperative array which has 0(l) time array update) to represent the set of visited
vertices (Figure 1.4). Hence the functional implementation has asymptotic complexity
O(V + E).

Introducing state into a functional language, no matter how elegantly, is fraught with
danger. The difference between the provability of functional and imperative functional

code is marginal. The code itself even looks imperative. Here is an example of depth-

first search expressed in a functional language, using the monad of state transformers
(Figure 1.4). This is meant to give you a flavour of what to expect. The details about
introducing state into a functional language are not given until Chapter 4.

dff :: Graph -> [Tree Vertex]
dff g= runST (do marks <- newArr (bounds g) False;

dfs g marks (vertices g)

dfs :: Graph -> ST s (MutArr s Vertex Bool) -> [Vertex] ->ST s [Tree Vertex]
dfs g marks 0= return [I
dfs g marks (v: vs) = do visited <- readArr marks v;

if visited then dfs g marks vs
else do ts <- dfs g marks (g! v);

us <- dfs g marks vs;

return (Node v ts: us)

Figure 1.4 Imperative functional description of depth-first search.

This is a good example of state being encapsulated, purely functional values are taken

and returned. Other algorithms like the functional components algorithm now have

an acceptable time complexity as well as being purely functional. Throughout this

thesis achieving an acceptable asymptotic complexity with respect to conventional
languages is of paramount concern. Nevertheless, as much as possible the algorithms

will be expressed purely functionally, although sometimes this is unavoidable.

BLANK IN

ORIGINAL

OT.,
k-. I. L. Lapter

Literature- survey

Graph theory and its algorithms is a huge topic. This chapter reviews some of the
many diverse methodologies for the design, implementation, and verification of graph
algorithms.

2.1 Graph algorithm design
I

Graph problems are so diverse that a unifying approach to the design of graph al-
gorithms is not feasible. The style of presentation of graph algorithms over the last

twenty years has been to present the final algorithm usually with pseudo-code (see

Section 1.3). Typically, the derivation of the algorithm and intuition as to why it

works are not clear. There has been a potpourri of approaches for expressing graph
algorithms to give more insight, some of which are now reviewed.

2.1.1 Mathematical induction

Mathematical induction is not only useful for proving the correctness of an algorithm,
but can be instrumental in algorithm development. As an example take the problem
of sorting a list of numbers. The base case of an inductive proof is the empty list,

which requires no sorting. Let's assume that n-1 elements are already sorted, then

n elements can be sorted by inserting the nth element in its correct position. We

have proved that n elements can be sorted, by using insertion - thus we have the

algorithm insertion sort. The performance of this 0(nl)'time sort can be improved

11

12 Chapter 2. Literature survey

by using a different inductive principle. Instead of extending a solution of n-1 to
n, a solution of n/2 is extended to a solution for n. The base case is again trivial,
the inductive case is to merge two sets of n/2 numbers together - this leads to the
0 (n log n) algorithm merge sort.

Manber (1989) describes mathematical induction as a general method for developing

combinatorial algorithms. As is clear from the above examples, the philosophy gives
insight and understanding of the algorithms. Graphs, however, are not well suited
to the inductive approach. They do not have-an inductive structure with neat sub-
components. In general it is not possible to derive a graph algorithm by extending a
solution of a small graph to a solution of a larger graph. There are, however, cases
where it is possible to induct on the number of vertices or edges. One example given in

Manber (1989, Chapter 7) is Dijkstra's single-source shortest paths algorithm (further

explained in Section 7.2). The induction hypothesis is: given a graph and a source

vertex v, we know the closest k vertices to v, and the lengths of the shortest paths

to them. So induction is on the vertices whose shortest paths have been computed.
Initially, the first shortest path is the closest vertex from v and this is the base case
for the induction. Having an inductive principle doesn't guarantee a good, or the best,

algorithm, and not all graph problems can be expressed in this way. Nevertheless,

where applicable this offers insight to the algorithm, as well as formally proving it

correct.

2.1.2 Using libraries

With many graph algorithms several efficient routines are essential to achieve the
best asymptotic complexity. An obvious approach to the fast development of graph
algorithms is to maintain a library of highly-tuned, reusable routines. Recently this

approach has been taken by LEDA (Mehlhorn and Naher 1989) and Stanford Graph-
Base (Knuth 1993). In both cases the graph algorithms and related data structures
are implemented imperatively, using C++ for LEDA, and C for GraphBase. Having

such libraries does prevent the re-invention of the wheel; but having them in C is not
ideal. While C is widely used, the language does not provide a good setting for clarity
and proof. Furthermore, it is not feasible to provide a complete set of routines for

every graph problem. For example, different representations of the graph are needed
for different algorithms. With Knuth's GraphBase the style of presentation is a lit-

Graýph algorithm design 13

erate one - documents are written in CWEB which can be translated to C and/or
This style encourages a far better presentation than usual, and is a great aid

to understanding and maintaining the code. GraphBase provides several examples of
non-random graphs, with the intention to provide standards to empirical compare dif-
ferent algorithms. Example non-random graphs used in GraphBase include: graphs
of character acquaintances in classic works of literature; cross references in Roget's
Thesaurus; mileage between North American cities; and many more.

2.1.3 Graph languages

Another approach to the design of graph algorithms is to use a specialised language for

graphs. Examples include GRAMAS (Pape 1979) a graph manipulation system which

provides an Algol-like language; and GRAPL (NagI 1979) which is mainly concerned

with dynamic algorithms. The language GEL (Graph Exploration Language) of Erwig

(1992) provides exploration operators, which give a concise way of expressing many

algorithms. GEL will be discussed in some detail since it is based on a lazy functional

language. In GEL depth-first search and breadth-first search are expressed:

dfs v= explore v: Stack; suc

bfs v= explore v: Queue; suc

Here explore denotes tree exploration, and takes a data structure, an expansion,

and a computation. The data structures have associated get and put operations, for

taking a single element from and inserting multiple elements into the data structure.
In the expressions above the get operation will return an element only if it was not
returned by a previous call of get. The put operation is expressed by (:) above
(note this is an overloaded operator). For stacks, v: Stack means that v is initially

pushed onto the stack. The expansion is expressed by the function suc, which gives
the association list for the current graph element. Computations were not used in

the above; computations are actions taken during graph exploration. The explore

operators work well for many algorithms, reducing the gap between specification and
implementation.

Although'a graph'basedý language can be expressive for some problems, there are
likely to be problems that cannot be expressed well in the language, and it seems
less than ideal to'add new language concepts for every new problem tackled. Ever

14- Chapter 2. Literature survey,

changing languages tend not to be widely used, and having too many special features
tends to make them more difficult to learn.

Mathematica

Mathernatica is an environment/workbench for experimenting with discrete mathe-
matics, and is available on many platforms (Wolfram 1991). It provides a high-level

applicative programming language with an extensive amount of mathematics under
the hood. The language features include list processing, algebraic simplification, pat-
tern matching, and looks like a traditional functional language. A high-level graphics
description language allows graphs to be displayed interactively. The main -draw-
back of XIathernatica-is that the model of computation makes it difficult to get the
right complexity for some traditional algorithms. Skiena (1990) shows how tradi-
tional graph algorithms'may be implemented in Mathernatica. His emphasis is on
conciseness of code rather than efficiency. This is fine for experimentation, but when
considering real problems on a large scale, efficiency becomes crucial. -

2.1.4 Program derivation

The advantages of deriving a program rather than inventing it, then proving it correct,
are quite clear. The derivation gives a correctness proof for free, whereas it may be

extremely difficult'to show the correctness of an arbitrary program. Moreover, the
design decisions are pinpointed during derivation, shedding more light on the resulting
program.

Bird-Meertens's calculational style

The Bird-Meertens formalism (also known as squiggol) embodies the transformational
approach (X1eertens'1986, - Bird (1987,1988), Backhouse 1989). It is particularly
suited to the functional paradigm, although it is claimed not to be language depen-
dent.,, Starting with a mathematical specification, a more efficient algorithm is devel-

oped by successive program transformations. The methodology has been applied and
developed on many diverse problems including some graph problems (Bird 1984a).

2.1. Graph algorithm design 15

But here Bird does not come up with algorithms that have the best asymptotic com-
plexity. For example, he derives an algorithm to test if a graph has a cycle that runs
in 0(V') time whereas this problem is possible in 0(V+ E) time (note E< V').

In the Bird-Meertens formalism, algebraic properties of datatypes are used in the
development of algorithms. Most of the work done so far has been with the datatypes
in the Boom hierarchy, namely: lists, sets, bags, and to a lesser extent trees. See
Jeuring's (1992) thesis or Hoogerwoord's (1989) thesis for an abundance of problems
solved in this style. Examples include finding the minimum sum over all segments
of an integer list, and Eratosthenes's sieve for computing prime numbers. There
has been limited work applying the approach to arrays (Wright 1988, Jeuring 1991).
Gibbons's (1991) thesis is about applying the approach to trees. He used higher-order

combinators, catamorphisms, to express upward and downward accumulations on
trees. Applying an accumulation to a tree replaces every node with some 'accumulated
information' about other tree nodes. An upwards accumulation replaces every node
with some function applied to its descendants; downward accumulations replace every
node with some function applied to its ancestors. An example is an algorithm to label

every node with the smallest and largest elements of the node's subtree; this is simply

expressed using an upward accumulation.

Derivation specifically for efficient graph algorithms was investigated by Reif and
Scherlis (1984). They worked with a high-level specification of an algorithm and
developed a lower-level efficient implementation. Their approach gives insight into

the algorithms they develop; but the development can be long and tedious and relies

somewhat on knowing the final algorithm. To overcome this tedium they propose
to make the development semi-automatic. Their main example is the biconnected

components algorithm of Tarjan (1972).

The transformational approach can work extremely well especially on structures that
have a well known algebra (lists and trees, for example). Graphs, however, do not
have an obvious algebra. Developing a graph algorithm from its specification is a

good way of gaining deeper insight-and understanding into the algorithm; but to do

the development a eureka factor plays a strong r6le. For large graph problems, the

transformational approach can be laborious. Moreover, the transformation rules are

not Complete - new algorithms commonly need new transformations.

16 Chapter 2. Literature survey

Dijkstra's calculational style

The calculational style of programming described by Dijkstra (1976) and others,
that has its origins with the axiomatisation of programs (Hoare 1969) and stepwise-
refinement (Wirth 1971), is loosely analogous in the imperative world to the Bird-
Meertens formalism. Efficient algorithms are derived by using pre-conditions, post-
conditions, and loop invariants of program fragments. Problems tackled by this ap-
proach are often to do with array manipulation, for example: sorting, searching, or
partitioning an array so that sections have certain properties. More recently some

graph problems have been tackled in this style (Gries and Schneider 1993, Chapter

19). Problems that were previously considered hard to solve are derived systemati-

cally from their specification by following the rules of the calculus. This is not purely

mechanical though, occasionally design decisions (eureka steps) are'needed. Again

this approach can be tedious for large problems and often a certain amount of insight

is needed to derive an algorithm.

2.1.5 Graph algebras

Algebras for graphs have been studied in the context of graph rewriting, see Bauderon

and Courcelle (1986), for example. There is no universally accepted graph algebra for

expressing or developing algorithms. It is not obvious how such an algebra should be

expressed. Other common structures such as trees and lists have a well understood

algebra. The reasons are similar to why graph algorithms do not lend themselves

to inductive proofs, and are problematical for lazy functional languages - graphs
do not have a recursive data structure. Recursive data structures are always tree

shaped. Klarlund and Schwartzbach (1993) use graph types to overcome this weak-
ness. Datatypes are extended so that graph structures can be expressed without using
exPlicit pointers, They do this by using routing fields in datatypes, that contain nav-
igation directives which lead to a node in the tree. For example, a directive might be

move tip to a specific child'. The advantages are that graph copying and comparing
can be derived by the compiler, and it becomes easier to verify, and statically anal-
yse programs. The use of directives, however, can make the graph type descriptions

obscure, and several graph shapes cannot be expressed.,

N1,161ler, and Russling (1992), and Mbller (1993a, 1993b), and Russling (1994,1995)
use an algebra of formal languages and relations to model graphs. They show how

Graph algorithm design 17

some traditional graph problems (shortest paths, cycle detection, reachability, and
Hamiltonian paths) are derived using algebraic laws. Their language does not use
predicate calculus (that is, quantifiers), and is therefore more compact than usual
derivations (for example, the Bird-Meertens formalism).

Gibbons (1994) presents an initial-algebra approach for modelling directed acyclic
graphs. Defining an initial algebra for datatypes consists of giving an object construc-
toi-s for building larger objects, and laws for algebraically manipulating the objects.
Gibbons's current Nvork has a number of caveats: for example, he can only represent
directed acyclic graphs, and the edges must be ordered. The notation is also quite
cumbersome for representing graphs. Here's an example of a simple five vertex graph
with six edges:

(2 x verto 9 , 3) 0 (edge 0 ((edge 0 swap,,, 0 edge) - (2 x swapj)) 0 edge) (3 x vert2, o)

Where vert,,,,, is a vertex with m incoming edges and n outgoing edges; edge is a
directed edge; x0y places x beside y, but with no connection; x0y means place 9

x before y, formed by connecting the outgoing edges of x to incoming edges of y;
rn xx produces m copies of x all of which are placed beside each other; swapn, n
consists of m edges connecting the first m outgoing edges with the last m incoming

edges, and connecting the last n outgoing edges with the first n incoming edges.
Although there are difficulties with the work, this seems a reasonable continuation of
the Bird-Meertens formalism for graphs.

18 Chapter 2. Literature survey

Algebras for path problems

An algebra for paths to aid the derivation of path algorithms is a more plausible
proposition. This approach has been explored by Backhouse and Carr6 (1975), Carr6
(1979) and Tarjan (1981), amongst others. In their approach a general algorithm for
solving path problems on directed graphs is defined. Different problems are solved by
using different interpretations of the operators in the path algebra. For example, the
solution to a set of linear equations by Gauss-Jordan elimination may be interpreted

as a version of Floyd's (1962) shortest path algorithm. A shortcoming of this work
is that the emphasis is on manipulating symbols, which are written in a concise
mathematical notation. Thus an insight into an algorithm is not gained.

2.1.6 Functional approaches

Some of the difficulties in the design of graph algorithms can be overcome by using a
functional language. The essentials of an algorithm can*be expressed without so much

of the baggage (such as memory management) that, is typical with an imperative

language. As well as making the development easier, this provides a framework

for reasoning and yields deeper algorithm insight. Some of the typical functional

approaches that have been taken in the past will now be reviewed.

In Standard ML it is common practice (for example, Harrison (1993) or Paulson
(1991)) to represent a graph by a list of pairs. In order to test if a vertex has
been visited before, a list of all visited vertices is held, and a list membership test
performed. This leads to graph traversal algorithms having a quadratic asymptotic
complexity in the number of vertices O(V2) . Holyer (1991), and Thompson (1995)
do just the same in a lazy functional language. Wikstr6m (1987) using Standard ML

notes that the best implementations of graphs use arrays; but at the time Standard
NML didn't have arrays, so he commented that balanced binary trees could be used
instead. Arrays have since been added to Standard ML; but to my knowledge no one
has exploited this for graphs, though their imperative nature would make it quite
possible to do so. Reade (1989) working with Standard NIL uses a more functional
method of representation. He represents a graph by a function which computes the
successors of each vertex. Again a list of visited vertices is maintained to ensure
termination, so the algorithms presented are not optimal.

2.1. Graph algoritlim design 19

The parallel non-strict functional language Id (Nikhil and Arvind 1990) provides M-

structures which are particularly well suited to express state based computations.
Barth et al. (1991) show how M-structures provide a way of efficiently expressing

graph traversal. An M-structure array has operations take and put. A take operation

will either suspend if there is no value to take; or read the value and reset the position
to empty. A put operation writes a new value to an empty (that is, taken) position. If

there are suspended take operations when doing a put then the value is communicated
to one of them and the array component remains empty. This M-structure array is

particularly suited for holding marks to express whether a vertex has been visited
before or not during a traversal. The disadvantage of using M-structures is that

referential transparency can be lost. Currently a new language is being designed

which combines Id's parallel evaluation strategy and features such as M-structures,

with the syntax and type system of Haskell. The language is to be called pH which
stands for parallel Haskell. It is not clear that there will be any benefits in using pH
for the implementation of graph algorithms.

Meira (1985b) working with the functional language KRC gives three possible rep-

resentations for graphs. The first is to use a list of lists where xss! U represents

vertices adjacent to i. The second is to use a list of pairs, where each pair represents

an edge. The third is to represent the graph by a successor function, from vertex
to its immediate neighbours in the same way as Reade (1989). For marking visited

vertices he again uses a list holding visited vertices.

Launchbury (1989) using Lazy ML gave a succinct implementation of the strongly con-

nected components algorithm of Kosaraju (unpublished), and Sharir (1981). Again

this algorithm wasn't linear; but it was clear where the inefficiency lay -a member-
ship test on a list was used to check if a node had been visited before or not.

Burton and Yang (1990) using a lazy functional language represent their graphs by

heaps. The heaps are implemented with balanced binary trees. The heaps are also

used for holding visited markings on vertices, which leads to having logarithmic time

graph traversal. One drawback of this is that each function must take a heap and

return an updated heap.

Kashiwagi and Wise (1991)'express their graph algorithms in Haskell. To overcome
the problem of requiring side effects they present graph algorithms as the fixed point

of a set of recursive equations. The recursive equations are derived directly from

the formal specification of the problem. This makes the proof of correctness of the

20 Chapter 2. Literature survey

program almost, transparent. Graphs are represented by lists, so the algorithms are
not optimal. Nevertheless, unlike the usual imperative algorithms, these are suitable
for parallel evaluation. Unfortunately, the algorithms presented become long and
unreadable, which makes it hard to gain any insight from them.

Schoenmakers (1992) in his thesis does not cover graphs, but uses a functional nota-
tion with added pointer and array operators to explore the amortised complexity be-
haviour of many data structures. The imperative features such as arrays and pointers
are encapsulated as much as possible by using intermediate algebras. Data structures
covered are: lists, trees, skew heaps, Fibonacci heaps, and more. The emphasis is
firmly on formally showing the amortised behaviour of these structures.

Hartel and Glaser (1994) implement the resource constrained
'
shortest path problem,

which is NP-complete, in the lazy functional language Intermediate.
'
The problem

is to find the shortest path in a network such that certain constraints are satisfied.
They develop three variants of a solution and, give a,, critique on the usefulness of
laziness and functional programming compared to more traditional approaches to the
problem.

2.2 Algorithm correctness

Algorithm correctness can be divided into two categories: program verification, and
program derivation. Verification is done after the program has been written; deriva-
tion from a specification results in a program, and correctness proof. A correctness
proof is a formal demonstration that a program meets its specification; not that it
is guaranteed to execute correctly in all circumstances. Such a guarantee would re-
quire proving the correctness of the hardware and software used in all detail, which
is currently infeasible.

Several methods of program derivation have already been briefly discussed: the Bird-
Meertens formalism (Section 2.1.4); the Dijkstra calculus (Section 2.1.4); and the
algebraic approach (Section 2.1.5). Program derivation can overcome many of the
software development problems: hacking up the solution to a problem is a sure way,
of introducing subtle bugs; it is not obvious from the result, where the important
design decisions were made;, because the program was not written with correctness
in mind, verification is extremely difficult. Program derivation is no panacea, it is

2.3. Complexity analysis of algorithms 21

often an effort to derive the smallest of algorithms. It is not just a mechanical process:
experience and skill play a big part in program derivation, just like with programming.

Program verification is more common; it is generally quicker to write a program, than

to derive it formally. Books on algorithmic graph theory usually do not demonstrate

correctness in all detail. Theorems are stated/proved, but with an informal connec-
tion to the algorithm. Verifying a functional algorithm is far easier because of their
mathematical tractability (see Bird and Wadler (1988) for many examples of reason-
ing about functional programs). Furthermore, functional languages encourage styles
of programming, such as modularity, which is good for both programming and proof.

2.3 Complexity analysis of algorithms

When looking at algorithms, of any sort, one of the most important topics to consider
is complexity analysis. Almost every book on algorithms has a chapter, or more, on
complexity: starting with Knuth (1973a), and continuing with Aho et al. (1983),
Sedgewick (1988), Kingston (1990), and Corman et al. (1990) amongst others. These

all cover the analysis of imperative algorithms, which is in many ways easier than

analYsing functional algorithms. This is because of the close correspondence between
imperative algorithm, and the method of evaluation. Assignments, loops, condition-
als, and arithmetic operations are all compiled to similar machine instructions.

The typical presentation of complexity analysis for imperative algorithms is not done

in all detail. The analysis is often literate and informal, instead of mathematical.
Common sense leaps are made from pseudo-code to the analysis. This is not surprising
as the code is not amenable to mathematical manipulation.

Functional languages are amenable to mathematical manipulation, so showing the

analysis of a functional algorithm in all detail is plausible. The mapping from a func-

tional program to machine instructions, however, is not as direct as with imperative
languages. Lazy functional languages pose further problems as the evaluation order
is not fixed. Sands (1990) in his thesis developed a simple calculus for time analysis
of strict functional languages; and more recently Sands (1995) has extended this for

non-strict functional languages. Bjerner and Holmstr6m (1989) also looked at the

complexity of lazy functional programs, but for a first-order language. Their ap-

proach is compositional, and so requires computing information about context. This

22
,,,,

Cllapter 2.1 Literature survey

becomes impractical for relatively simple problems, and it's not easy to see how it can
be extended usefully to higher-order languages. The analysis of functional programs
will be discussed further in Chapter 8, where some example calculations will be given
for a functional example; a stateful example; and a lazy example.

/"-III

k, iiapter

Functional algorithms

There are several advantages in expressing algorithms in a functional language. They

abstract away from storage details so that little more than the essence of the algorithm
is described. Formally manipulating a functional algorithm is far simpler than the
imperative equivalent. Consequently, the correctness of a functional program with re-
spect to some specification is often straightforward to prove. Typically the functional

program is the specification. Lazy functional programs are not evaluated in a fixed
(sequential) order, so the algorithm has potential for parallel evaluation. Another

pleasant feature of functional languages is the way data structures can be expressed
and manipulated. Dealing with lists and trees is often annoying in an imperative
language, because of the explicit use of pointers.

Conversely, a high level of programming may also be considered disadvantageous.
There is no easy means for expressing storage details. The language is far removed
from machine instructions, so deriving the asymptotic complexity is not as easy as it

may seem. The object code is generally slower than that of a conventional language.
Although once the essence of the algorithm has been designed functionally, with a
little effort it can be refined to a sequential imperative implementation.

This chapter looks at some functional algorithms, and demonstrates typical equational
reasoning on them. The higher level of abstraction is shown to give deeper insight,

as well as making equational reasoning easier.

23

24 Chapter 3. Functional algorithms

3.1 Treesort

Treesort is a good example of an algorithm that is expressed well functionally, and
a presentation can be found in many introductory texts on functional programming
(Field and Harrison 1988, Reade 1989). Treesort works by building intermediate
trees, the following (polymorphic) binary tree representation being typical:

data Tree a= Tip I Node (Tree a) a (Tree a)

A tree is either a tip or a node. A node has three compopents: a left subtree, an
element, and a right subtree. A tree is ordered if at every node the element is greater
than all the elements in the left subtree but less than or equal to all the elements in
the right subtree.

Treesort relies on the property that flattening an ordered tree in in-order produces an
ordered sequence. Thus, each element in the original input sequence is inserted into

an ordered tree, maintaining the ordering property, and the final tree is flattened.

This is specified by the following functions. First ins which inserts a single element
into an ordered tree.

ins :: Ord a => a Tree a -> Tree a
ins y Tip = Node Tip y Tip

ins y (Node 1x r) y<x = Node (ins y 1) xr

Y>=x = Node 1x (ins y r)

The type for ins has the context Ord a which restricts the type a to objects that have

a defined ordering. This function is simply extended to insert a sequence of elements
into an ordered tree:

insSeq :: Ord a => Tree a [a] -> Tree a

insSeq tD=t:
insSeq t (x: xs) = insSeq (ins x t) xs

This function is more concisely expressed with a list fold operation, but for our
purposes the above is more convenient.

Finallyl flattening the tree in-order is done with the following:

3.1. Treesort 25

flatten :: Tree a -> [a]

flatten Tip = 11

flatten (Node 1x r) = flatten 1 ++ [x] ++ flatten r

This implementation of flatten is not the most efficient; it runs in 0 (n log n) time
for the average case, whereas a linear O(n) time algorithm is possible. This has no
bearing on the complexity of the following implementation of treesort, since insSeq
also runs in 0 (n log n) time for the average case.

treesort :: Ord a => [a] -> [a]

treesort xs = flatten (insSeq Tip xs)

3.1.1 M-ansforming the trees out of treesort

As well as being a good example of the abstraction power of functional languages;

treesort is a good example of an algorithm that can be formally manipulated. When

treesort is run many intermediate trees are created, none of which outlive the result
of the sorting process. These trees may be completely removed from the algorithm by

using the unfold1fold transformation strategy well established by Burstall and Dar-

lington (1977). The technique works by unfolding function calls to their definitions,

then the resulting expression is simplified before being folded back into function calls.

Like many of the examples given by Burstall and Darlington a key eureka step is

needed in the simplification phase of the transformation. Eureka steps are just those

transformations that an automatic system, for example, the deforestation algorithm
of Wadler (1988a), could not invent. The following lemma describes our eureka step
which expresses the property that the root of the tree acts as a pivot for the rest of
the input, and that the input could be divided up into two sublists ahead of time.
Throughout these transformations it is assumed that all lists and trees are finite and

contain defined elements only.

Lemma 3.1
For all trees (Node I x. r) and lists xs the following holds,

insSeq (Node 1x r) xs
Node (insSeq I (filter (< x) xs))
x (insSeq r (filter (ý: x) xs))

26, Chapter 3. Functional algorithms

Proof

The proof is by induction on the length of the list. The base, case is almost immediate:

insSeq (Node I, x r)
Node Ixr
Node (insSeq Ix (insSeq r
Node (insSeq I (filter (< x)
x (insSeq r (filter (ý! x) []))

as filter p[]=[j for all predicates p. ýI 11ý

For the inductive case, xg is expressed as y: ys. First assume that y<x.

insSeq (Node 1x r) (y : ys)
insSeq (ins y (Node Ix r)) ys

By assumption
insSeq (Node (ins y 1) x r) Ys

Induction

Node (insSeq (ins y 1) (filter (< x) ys))
x (insSeq r (filter (ý: x) ys))

Node (insSeq I (y : filter (< x) ys))

x (insSeq r (filter (> x) ys))
By assumption,

III

Node (insSeq 1 (filter (< x) (y ys)))
x (insSeq r (filter (ý: x) (y : ys)))

as required. Tile case when y>x is similar.

3.1.2 Treesort is equivalent to functional quicksort

0

With this lemma, the transformation of treesort proceeds as follows. The nil and cons
cases are done separately.

3.1. Treesort 27

Case []-

treesort flatten (insSeq Tip
flatten Tip

Case (x : xs).

treesort (x : xs)
= flatten (insSeq Tip (x : xs))

= flatten (insSeq (ins x Tip) xs)
= flatten (insSeq (Node Tip x Tip) xs)

Lemma 3.1 1

flatten (Node (insSeq Tip (filter (< x) xs))
x (insSeq Tip (filter (ýý x) xs)))

flatten (insSeq Tip (filter (< x) xs))
ý+ 1XI

4+-flatten (insSeq Tip (filter (ý! x) xs))
treesort (filter (< x) xs)

4 [XI
ý+ treesort (filter (> x) xs)

This provides an alternative recursive definition for treesort with no intermediate

trees. The recursion is well founded as the length of the list argument decreases with
each recursive call. Written without the intermediate transformation steps yields,

treesort
treesort (x: xs) = treesort (filter (<x) xs)

++ [X]

++ treesort (filter (>=x) xs)

This is more well-known as functional quicksort. So these two algorithms can be

considered equivalent. But aren't all sorting algorithms equivalent in the sense that
they all have the same specification? Yes, of course, but the notion of equivalence
is stronger here. Both treesort and functional quicksort can be considered as reali-
sations of the same abstract algorithm. This stronger notion of equivalence can be

characterised by the following theorem:

28 Chapter 3. Functional algorithms

Theorem 3.2
Treesort and functional quicksort carry out the same comparisons during the sorting
process.

Sketeli Proof First both sorting algorithms are re-written so that they return the
comparisons undertaken rather than an ordered list. For example, quicksort may be
re-written:

quicksort' Ord a =ý- [a] (a, a)}
quicksort' 0

quick-sort' (x : xs) quicksortc (filter (< x) xs)
Uf (x, k) IkE xs I

U quicksortc (filter (> x) xs)

This function is then shown to be equivalent with a function that returns the compar-
isons carried out during treesort. The proof is similar to the transformations carried
out above. 0

The notion of equivalence of sorts used here concerns comparisons, not the order in
which they are performed. One may define a stronger notion of equivalence which also
compares the order in which comparisons are made. However, treesort and quicksort
do not perform comparisons in the same order.

The, similarity between treesort and quicksort has been observed before, Hibbard
(1962) showed the connection between the analysis of the two sorts. See Knuth
(1973b) for a thorough discussion of both sorts. To the best of my knowledge no one
has formally demonstrated the similarity of the two sorts. Perhaps this is because
one wouldn't consider doing this with imperative code.

3.2 Functional priority queues

A crucial part of many algorithms is the data structure that is used. Frequently,
theýalgorithm needs an abstract datatype providing a number of primitive operations
on a data structure. A priority queue is one such data structure that is used by a
number of algorithms. -

Applications include Dijkstra's (1959) algorithm for single-
source shortest paths (Section 7.2), and the minimum cost spanning tree problem

3.2. Functional priority queues 29

(see Tarjan (1983) for a discussion of minimum spanning tree algorithms). See Knuth
(1973b) and Aho et al. (1983) for many other applications of priority queues.

A priority queue is a set where each element has a key indicating its priority. The

most common primitive operations on priority queues are:

emptyQ Return the empty queue.

isFnpty q Return True if the queue q is empty, otherwise return False.

insertQ iq Insert a new item i into queue q.

f indMin q Return the item with minimum key in queue q.

deleteMin q Delete the item with minimum key in queue q.

meld pq Return the queue formed by taking the union of queues p and q.

In addition, the following two operations are occasionally useful:

delete iq Delete item i from queue q.

decreaseKey iq Decrease the key of item i in queue q.

There are numerous ways of implementing the abstract datatype for priority queues.
Using heap-ordered trees is one of the most common implementations. A tree is heap-

ordered if the item at every node has a smaller key than its descendants. Thus the

entry at the root of a heap has the earliest priority. A variety of different trees have
been used including: heaps (Knuth 1973b), splay trees and skew heaps (Sleator and
Tarjan 1983), 2-3 trees (Aho et al. 1983). In addition, lists (sorted or unsorted) are

another possible implementation of queues, but will be less efficient on large data

sets. For a comparative study of these implementations and others in an imperative

paradigm see Jones (1986).

The literature on priority queues in a functional paradigm is sparse. Heaps are the

most common functional implementation, see Paulson (1991), for example. Often the

disadvantage of using heaps, or balanced trees, is that more bookkeeping is required
for balancing. This extra bookkeeping adds to the amount of storage space needed

30 Chapter 3.
,

Functional algorithms

by the queue, as well as making the implementation of the primitives more complex.
We present a functional implementation of priority queues that is based on trees, but
does not require as much storage space or balancing code as other implementations.
The implementation is far more elegant than a typical imperative implementation,
lending itself well to a formal proof of correctness.

Vuillemin (1978) describes binomial queues which support the full complement of pri-
ority queue operations in 0 (log n) worst-case time. They are based on heap-ordered
trees in that a priority queue is represented by a list of heap-ordered trees (that is,

a forest), where each tree in the forest is a binomial tree. The remaining following

sections present a purely functional implementation of binomial queues expressing
the full complement of priority queue operations in Haskell.

3.3 Binomial trees

Binomial trees are general trees that have a regular shape. They are best presented
diagrammatically, where circles represent nodes:

Bo =0B, =0
B2 = ýo

B3 =

0000
0
0

There are two equally good weývs of expressing the general -case, for n>0.

Br, 0

Bn-l ... Bi Bo n-1

In the rightmost picture the root of a B,, -l tree is linked to the root of another B, '_1
tree, by adding it as the first child.

3.4. Implementing binomial queues functionally 31

In Haskell a general tree may be defined with the following datatype:

data Tree a= Node a [Tree a]

Then using this datatype binomial trees can be defined inductively:

Bo = Node x []
Bn = Node x[Bn-1, ..., BI, Bo for n>0.

Alternatively, the inductive case for n>0 may be defined:

Bn = Node x (Bn-I - XS) i where Node x xs is a Bn-l tree.

Haskell has no way of enforcing the structure for binomial queues, beyond the pro-
grammer using a predicate that verifies it. It is conceivable that a powerful type

system could enforce the binomial structure. The Haskell predicate which verifies the

structure is defined using the second definition of binomial queues from above.

isBinTree :: Int -> Tree a Bool

isBinTree k (Node x [1) k == 0

isBinTree k (Node x (t: ts)) = isBinTree (k-1) t

&& isBinTree (k-1) (Node x ts)

Binomial trees have some pleasing combinatorial properties. For instance, the bino-

mial tree Bk has 2' nodes, and (k) nodes of depth d, hence their name. See Vuillemin d

(1978) and Brown (1978) for more properties.

3.4 Implementing binomial queues functionally

Vuillemin (1978) represents a priority queue with a forest of binomial trees. It is
important that a list of trees is used to represent the forest because the ordering is
important (a set of trees would not do). The firist tree in the binomial queue must
either be a Bo tree or just Zero meaning no tree, and the second a B, tree or just
Zero, this leads to the following structure for a binomial queue:

[TO, Ti, .. -, T,,] where Tk ='Zero I Bki for 0<k<n.

32 Chapter 3. Functional algorithms

Vuillemin (1978) and others use an array to represent the forest; moreover, for simplic-
ity, binary trees are used to represent the binomial trees. Imperative implementations

of linked structures of this kind usually turn out to be clumsy. Instead the primitives
will be expressed as recursive functions on a list of general trees, giving a natural
encoding.

So the following datatypes are used:

type BinQ = [BinQTreel

data BinQTree = Zero I One (Tree Item)

The constructors Zero and One were chosen because the queue primitives are analogous
with binary arithmetic.

Each item is a pair of entry and key:

type Item = (Entry, Key)

Where Key is a type with an ordering, that is, it is an instance of the Haskell Ord

class. The projection functions on items are:

entry, key :: Item Entry

entry = fst

key = snd

The following predicates may be used to verify that a list of trees has the right
structure to be a binomial queue.

isBinQ :: BinQ -> Bool

isBinQ q= isBinQTail 0

isBinQTail :: I: ýt, -> BinQ Bool

isBinQTail kD= Tr'ue

isBinQTail k (q: qs) = isBinQTree kq && isBinQTail (k+l) qs

isBinQTree :: Int -> BinTree Bool

isBinQTree k Zero' = True

isBinQTree k, (One t) = isBinTree kt

t 3.4. Implementing binomial queues functionally 33

Now we can start to express the priority queue operations. Creating a now empty

queue, and testing for the empty queue follow immediately:

emptyQ BinQ

emptyQ 0

isEmpty :: BinQ -> Bool

isEmpty q= null q

Uniting (or melding) two queues together is the most useful of all the primitive

operations, because other primitives are defined in terms of it. There is a strong

analogy between queue melding and binary addition. Given the two binomial queues
[P0, P1, ..., P,,] and [Qo, Q1, ..., Q.. I melding is carried out positionally from left

to right, using the property that two Bk binomial trees can be linked into a Bk+1

binomial tree. First Po is melded with Q0, giving one of four possible results. If both

PO and Q0 contain trees (that is, they are not Zero) they are linked to form a B, tree

so that the heap-order property is maintained. With just one tree and one zero the

result is the tree, and given two Zero's the result is Zero. This process of linking is

carried out on successive trees. If the result of melding Pk with Qk results in a Bk+1

tree then this is carried on (analogous to a carry bit in binary arithmetic) and melded

with Pk+l and Qk+l-

meldC :: BinQ -> BinQ -> BinQTree -> BinQ

meldC 0 qs Zero = qs

meldC D qs c= meld [c] qs

meldC ps Dc= meldC [] ps c

meldC (p: ps) (q: qs) c= sum: meldC ps qs c)

where (sum, c') = addC pqc

addC :: BinQTree -> BinQTree -> Bir'QTree -> (BinQTree, BinQTree)

addC Zero Zero c = (c, Zero)

addC (One (Node x xs)) (One (Node y ys)) c= (c, One t)

where tI key x< key y= Node x (Node y ys: xs)
I otherwise = Node y (Node x xs: ys)

addC pqc= addC qcp

34 Chapter 3. Functional algorithms

meld :: BinQ -> BinQ -> BinQ I
meld pq= meldC pq Zero.

Points to note about this definition of meld are: that the third argument to meldC
behaves like a carry; and the function meld calls meldC with the initial carry of Zero;
also the third case in addC rotates the arguments until the first two are in the same
form.

The asymptotic complexity of meld is O(log n) (where n is the number of items in
the larger queue). We arrive at this by observing that two Bk trees can be linked in
constant time, and the number of these linking operations will be equal to the size of
the longest queue, that is 0 (log n) . 'For a more detailed analysis of the complexity of
meld and the other queue operations see Brown (1978).

Inserting an item into the queue is expressed by melding a BO tree holding the item,
into the binomial queue.

insertQ :: Iteml-> BinQ -> BinQ
insertQ i qs = meld [one (Node i EDI qs

inýertMany,:: [Item] -> BinQ
insertMany is = foldr insertQ 0 is

Since each binomial tree is heap-ordered the item with the minimum key will be
root of one of the trees. This is found by scanning the list of trees. The item

with minimum key is deleted by first extracting the tree that it is the root of, then
melding the subtrees back into the binomial queue. This melding is easy as the
subtrees themselves form a binomial queue, in reverse order. These subtrees could
be stored in this order, which would save doing a reversal, but this would make meld
slightly more difficult to define.

First the forest is traversed returning the required tree, and replacing it with a Zero.

removeMinT :: BinQ -> (BinQTree, BinQ)

removeMinT Ctl = (t, [1)

removeMinT (t: ts) I t<mt = (t, Zero: ts)

I otherwise = (mt, t: mts)
where (mt, mts) = removeMinT ts

3.4. Implementing binomial queues functionally 35

The ordering on binomial queue trees used here is defined:

instance Ord BinQTree where

Zero <t= False

< Zero = True

One (Node x xs) < One (Node y ys) = key x< key y

After this the subtrees of the extracted tree are melded back into the queue:

deleteMin :: BinQ -> BinQ
deleteMin qs = meld (map One (reverse ts)) qs'

where
(One (Node i ts), qsl) = removeMinT qs

If two tree roots have the same key value, then the latest one occurring in the list is

chosen by removeMinT.

The total running time of removeMinT is 0 (log n), since it traverses a list of length

log n carrying out constant time operations. The deleteMin operation carries out a

meld, as well as removeMinT. Since the subtrees being melding back into the queue are

smaller, the melding will take O(log n) time. Hence deleteMin will run in O(log n)
time.

The function removeMinT may also be used to express f indMin which again runs in

0 (log n) time.

findMin :: BinQ -> Item

f indMin q=i

where
One (Node i ts) = fst (removeMinT

The two pass algorithm for deleteMin can be performed in one pass over the binomial

queue (giving a constant time speed-up)'by using the standard cyclic programming
technique', 'see Bird (1984b). A function is used that both takes the item to be removed

as an argument and returns the item with minimum key, as well as the binomial

queue without the item. As usual, the efficient algorithm has a more cumbersome
implementation, and so is ornitted'here.

36 Chapter 3. Functional algorithms

3.5 Correctness of functional binomial queues

To show the correctness of the primitive operations, three properties must be shown:
(i) that the binomial queue structure is maintained; (ii) the heap-ordering property is
maintained; and (iii) that the primitives satisfy their specification. We may show that
the queue primitives maintain the binomial queue structure by using the previously
defined functions isBinQ, isBinTree, isBinQTail, and isBinQTree. Here we show that
meld maintains the queue structure, by first proving a property about meldC.

3.5.1 Meld maintains the binomial queue structure

Theorem 3.3 (meld maintains Ole binomial queue structure)
After a meld operation the resulting queue is a binomial queue, if and only if meld is

given two binomial queues.

Vp, q. isBinQ (meld p'q) isBinQ pA isBinQ q

Proof

Using Lemma 3.4, instantiating n with 0, and c with Zero. 0

Lemma 3.4 (meldC)
For all n>0, and assuming that ps, qs and c are well-defined,

Vps, qs, c. isBinQTail n (meldC ps qs c)
4=* isBinQTail n ps A isBinQTail n qs A isBinQTree nc

Proof - By induction. If length ps = length qs there would be fewer cases to show.
Furthermore, the melding implementation coul& be changed so that these lists are
always equal in size by appending zeros onto the end of the shorter list. This would
make the program less efficient, however, and the extra code would be superfluous.
Here we show the correctness of the actual implementation.

3.5. Correctness of functional binomial queues

Case ps=[], qs= [1, any c.

isBinQTazl n (meldC [] [I c)
meldC showing for c Zero and c= One t

isBinQTail n (meldC [] Zero)
A isBinQTail n (meldC (One t))
I meldC I

isBinQTail nA isBinQTail n (meldC [One t Zero)
meldC

zsBinQTail nA isBinQTail n [One t
isBinQTail, isBinQTree I

isBinQTail n [] A isBinQTail n [] A isBinQTree n (One t)
As isBinQTree n Zero is true for n>01

isBinQTail n [] A isBinQTail n [] A isBinQTree nc

Case ps = [1, (q : qs), any c.

37

This is shown by induction on the length of qs, that is, we assume for qs and show
for (q : qs). The previous case is the base case for the induction.

isBinQTail n (meldC [I (q: qs) c)
meldC showing for c= Zero and c= One t

isBinQTail n (meldC [] (q : qs) Zero)
A isBinQTail n (meldC [] (q: qs) (One

I
meldC

I

isBinQTail n (q: qs)
A isBinQTail n (meldC [One t] (q : qs) Zero)

meldC
I

isBinQTail n (q: qs) A isBinQTail n (sum: meldC qs c')
A (sum, c) = addC (One t) q Zero

I isBinQTail II

isBinQTail n (q: qs) A isBinQTree n sum
A isBinQTail (n + 1) (meldC [] qs c')
A (sum, c') = addC (One t) q Zero

38 Chapter 3. Functional algorithms

I Inductive hypothesis I

isBinQTail n (q: qs) A isBinQTree n sum
A isBin Q Tail (n + 1) []A isBin Q Tail (n + 1) qs'
A isBinQTree (n + 1) c' A (sum, c) = addC (One t) q Zero

f Lemma 3.5 1

isBin Q Tail n (q : qs) A isBin Q Tail (n + 1)
A isBinQTail (n + 1) qs A isBinQTree n (One t)
A isBinQTree nqA isBinQTree n Zero

f isBinQTail, isBinQTree, c= Zero or c= One t
isBinQTail n [] A isBinQTail n (q: qs) A isBinQTree nc

Case (p : ps), qs =[], any c.

isBinQTail n (meldC (p: pq) [I c)
f

meldC
I

isBinQTail n (meldC [] (p: ps) c)
f Previous case

J

isBinQTail n (p: ps) A isBinQTail n [] A isBinQTree nc

Case (p : ps), (q : qs), any c.

This case is also shown by induction, but this time on the length of ps and qs simul-
taneously. that is. assume for ps and qs and show for (p : ps) and (q : qs). The cases
shown above are the base cases.

isBinQTail n (meldC (p: ps) (q: qs) c)
f

meldC
I

isBinQTail n (sum : meldC ps qs c)
I isBinQTail I

(sum, c') = addC pqc

isBinQTree n sum A isBinQTail (n + 1) (meldC ps qs c')
(sum, c') = addC pqc

3.5. Correctness of functional binomial queues 39

Inductive hypothesis I

isBinQTree n sum A isBinQTail (n + 1) ps
A isBinQTail (n + 1) qs A isBinQTree (n + 1) c'
A (sum, c') = addC pqc

1 Lemma 3.5 1

isBinQTree npA isBinQTail (n + 1) ps
A isBinQTree nqA isBinQTail (n + 1) qs /\ isBinQTree nc

f isBinQTail I

isBinQTail n (p: ps) A isBinQTail n (q: qs) A isBinQT7-ee nc

In the original implementation the function addC was not used. It was only later

when meld was verified that it was introduced as a means of simplifying the proof.
Splitting the function in two does make the algorithm more understandable; hence

formally proving a program, is not only useful in convincing us that it works, but can
improve the program.

Lemma 3.5 (addC maintains binomial tree structure)

For all n >- 0, and assuming that p, q, and c are well defined,

Vp, q, c. isBinQTree n sum A isBinQTree (n + 1) c'
A (sum, c') = addC, pqc

4=-=> isBinQTree ncA isBinQTree npA isBinQTree nq

Proof

By case analysis on p, q, and c. There are several cases in the proof, the most
interesting being where p and q both contain trees.

40
11,

Chapter 3. Functional algorithms

Case p= One (Node x xs), q= One (Node y ys), any c.

isBinQTail n (addC (One (Node x xs)) (One (Node y ys)))
A (sum, c') = addC (One (Node x xs)) (One (Node y ys)) c

addC
I

isBinQTree nc
A (isBinQTree (n + 1) (One (Node x (Node Y'ys xs)))
V isBinQTree (n + 1) (One (Node y (Node x xs ys))))

isBinQTree, isBinTree

isBinQTree ncA isBinQTree n (One (Node x xs))
A isBinQTree n (One (Node y ys))

Completing the case. The other cases are similar. 0

3.5.2 Meld maintains the heap-ordering property

A tree is heap-ordered if the item at every node has a smaller key than its descendants.
Formally, a general tree t is heap-ordered if and only if:

Vx, yEt. x0yA key x< key yAx --+t y

where x --+t y represents a path in t from x to y (a path consists of zero or more
edges). The heap-ordering predicate may be expressed with the following recursive
function:

heapOrdT :: Tree Item -> Bool

heapOrdT (N
,
ode x [1) = True

heapOrdT (Node x (Node y ys: xs)) = key x< key y
heapOrdT (Node x xs)
heapOrdT (Node y ys)

Since we are dealing with binomial trees it is convenient to use a function that deals
directly with them:

heapOrd :: BinQTree -> Bool

heapOrd Zero = True

heapOrd (One t) = heapOrdT t

Correctness of functional binomial queues 41

This function is then generalised for binomial queues, by using the following recursive
definition (it is slightly easier for proof purposes to use this definition rather than a
higher-order one).

heapOrdQ BinQ -> Bool

heapOrdQ = True

heapOrdQ (t: ts) = heapOrd t && heapOrdQ ts

TIleorern 3.6 (Heap-ordering property of meld)
Assuming that p, and q are well defined then:

Vps, qs . heapOrdQ (meld ps qs) . ý=#. heapOrdQ ps A heapOrdQ qs

Sketch Proof

The proof follows the same course of procedure as the proof for Theorem 3.3 and

relies upon the following lemma for addC. 13

Lemma 3.7 (Heap-ordering property of addC)
Assuming that p, q, and c are well defined:

Vp, q, c. heapOrd sum A heapOrd c' A (sum, c') = addC pqc
4==* heapOrd pA heapOrd qA heapOrd c

Proof

By case analysis. There are several cases to consider, but here only the most inter-

esting case will be given.

42 Chapter 3. Functional algorithms

Case p= One p, q= One q', any c, where p'= Node x xs and q'= Node, y ys.

heapOrd sum A heapOrd c' A (sum, c') = addC (One p') (One ql) c
I

addC
I

heapOrd sum A heapOrd c' A (sum, c') = (c, One t)
A ((t = Node x (q' xs) A key x< key y)
V (t = Node y (p' ys), A key x> key y))

f Substituting for sum and c'
heapOrd c
A ((heapOrd (One (Node x (q': xs))) A key x< key y)
v (heapOrd (One (Node y (p' : ys))) A key x> key y))

f heapOrd, heapOrdT

heapOrd c
A ((key x< key yA heapOrdT p' A heapOrdT q')
V (key y< key xA heapOrdT q' A heapOrdT p'))

heapOrd cA heapOrdT p' A heapOrdT ql
heapOrd (One p') A heapOrd (One q') A heapOrd c

Establishing tile case. The other cases are no more difficult than this one. 0

3.5.3 Meld meets its specification

The third property required to show the correctness of meld is that it does a real
union of elements:

TIleorem 3.8
Assuming that x, p, and q are well defined then:

Vx, p, q. xE meld pqxEpVx

Sketcli Proof The proof follows the same structure as the proof for Theorem 3.3
(the proof that meld returns a binomial queue structure). Similarly, a lemma that
addC does a true addition of trees is shown by case analysis. 0

3.6. Implementing decreaseKey and delete 43

3.6 Implementing decreaseKey and delete

The usual way in imperative languages to implement decreaseKey and delete is

to maintain an auxiliary data structure which supporbs direct access, in constant
time, to each item. Usually this is specified by having pointers into the middle

of the queue, but this is awkward in a functional setting. One way to achieve a

reasonable complexity whilst remaining purely functional is to maintain a set of all
items currently in the queue. Instead of physically removing the item from the queue,
it is just removed from the set. So binomial queues are extended to a pair containing
the queue and a set.

type BinQExt = (BinQ, Set Entry)

All the priority queue operations must do some extra bookkeeping to maintain the

set.

emptyPQ BinQExt

emptyPQ (emptyQ, emptySet)

isEmptyPQ :: BinQExt -> Bool

isEmptyPQ (q, s) = isEmptySet s

ýVhen inserting a new item, it must be inserted into the set. Similarly, when two

queues are melded, the union of their sets must be taken:

insertPQ :: Item BinQExt -> BinQExt
insertPQ i (q, s) (insertQ i q, insSet (entry i) s)

meldPQ :: BinQExt BinQExt -> BinQExt

meldPQ (p, s) (q, t) (meld p q, unionset's t)

Deleting the minimum item must also delete it from the set:

deleteMinPQ :: BinQExt -> BinQExt

deleteMinPQ (p, s) I not UsEmptySet s)'= (q, delSet (entry i) s)

where
(i, q) ='(findMin p, deleteMin

44 Chapter 3. Functional algorithms

The f indMinPQ operation makes no change to the set and is just expressed in terms of
f indMin. When decreasing the key for an item, the item is re-inserted into the queue
with its new key. When deleting an item it is removed from the set.

decreaseKey :: Item -> BinQExt -> BinQExt

decreaseKey i pq (entry i) 'elemSet' (snd pq) insertPQ i pq
otherwise pq

delete :: Item BinQExt -> BinQExt

delete i (q, s) (q, delSet (entrY i) s)

Of course, maintaining a set has an impact on the time and space complexity of the

priority queue operations. The set operations may be implemented with balanced

trees for a reasonable complexity. The running times of decreaseKey and delete
is 0 (log n), both running times being dominated by the set operations. The other
operations have the same worst-case complexity as before 0 (log n), except meldPQ
which is now dominated by the complexity of the set union operation 0(n + m)
(where n and m are the sizes of the two sets). Furthermore, because items are"never
physically removed from the queue the complexity of the operations is governed bv

the total number of inserts made. Constant factors may be improved by doing some
garbage collection, that is, physically removing items that percolate to the roots of
trees.

3.7 Comparison'with other priority queues

In an imperative language binomial queues perform better than most other priority
queue implementations, see Jones (1986) for an empirical comparison. More recently
Fredman and Tarjan (1987) have developed Fibonacci heaps which are based on
binomial queues. Fibonacci heaps, have a better amortised complexity for many of
the operations. Unfortunately, they make heavy usage of pointers, so do not lend

themselves to a natural functional encoding.

The usual functional implementation of priority queues is to use heaps, see Paulson
(1991), for example. The advantage of binomial queues over heaps is that the meld
operation is more efficient (Table 3.1). Joues (1986) reports that in an imperative

setting, binomial queues are one of the most complex implementations. In Haskell

3.7. Comparison with other priority queues

Queue insertQ deleteMin meld
Lines Time Lines Time Lines Time

Binomial 1 0 (log n) 6 0 (log n) 11 0 (log n)
2-3 trees 16 0 (log n) 41 0 (log n) 26 0 (n)
Sorted list 5 O(n) 1 0(l) 6 O(n)
Heaps 7 0 (log n) 17 10 (log n) 21 0 (n)

45

Table 3.1 Differences between some Haskell implementations of priority queues.

the operations on tree and list data structures are far cleaner than in an imperative

language. Functionally, binomial queues are in many ways more elegant than heaps.

They are easier to program and understand, as well as being programmed in fewer
lines of code. Similarly binomial queues have the same advantages over 2-3 trees, see
Reade (1992) for a functional implementation of 2-3 trees, and Aho et al. (1983) for a
description of how they may be used for implementing priority queues. Sorted lists are
the simplest of all implementations, and give the best performance for small queues.
In spite of this, they have the worst complexity, and will give slower running times for

larger queues. Table 3.1 summarises the running times and lines of Haskell code for

four different implementations. It should be noted that the asymptotic complexities
for the binomial queue operations are all worst-case times. Okasaki (1996) has shown

the implementation of binomial queue insertion given here runs in 0(1) amortised

time.

Independently Fourman (1994) gives a similar implementation of Vuillemin's queues
in Standard NIL. Unpublished work by Brodal and Okasaki (1995) give a purely
functional implementation of optimal priority queues. This together with some other

purely functional implementation techniques for data structures are surnmarised in

Table 3.2.

46 Chapter 3. Functional algorithms

7, -ucture/autil ription
_ Queues The queue is represented by a pair of lists (xs, ys)

(Hood and Melville 1981, where xs is the front of the queue and ys is the end
Gries 1981, Burton 1982) of the queue in reverse order.
Deques The implementation uses a pair of lists together with
Chuang and Goldberg tlýeir lengths. The heads of the lists represent the two
(1993) ends of the dequ e, and the length information is used

to achieve a balanced structure.
Deques The implementation uses a quadruple (xs, ys,: is, ýs)t
Okasaki (1994) where xs and ys are as with queues, and Ys and ýs

are the tails of xs and ys, indicating which portions
of xs and ys have been pre-evaluated. The reverse
list operation is done incrementally with laziness. All

o 'erations'run in 0(1) w'orst-case time. p
Priority queues The implementation is an extension of binomial
Brodal and Okasaki (1995) queues. The f indMin operation is improved to 0 (1)

by maintaining a global root; insertQ is improved
to 0(1) by eliminating cascading carries; and finally

meld is improved to 0(1) by allowing priority queues
to contain other priority queues.

Sets There are several good implementations of sets, all
Reade (1992) of which use a tree data structure. For efficiency,
Adams (1993) balanced trees are used, for instance, Reade uses 2-3

trees, and Adams uses balanced binary trees.

Thble 3.2 Summary of some purely functional data structures.

(3/11-11apter

Stateful algorithms

A stateful algorithm is one in which access is made to the state. Conventional im-

perative algorithms are stateful, but purely functional algorithms are not. Many of
the advantages of functional algorithms come from not having access to the state,
however, some algorithms seem inherently to require access to the state in order to

reduce their complexity.

This chapter describes the monad of state transformers and with it introduces mutable
arrays and mutable variables. This is not new; the approach taken follows closely the

work of Launchbury and Peyton Jones (1994,1996). One difference is the use of the do
notation to express stateful algorithms. The examples were chosen to illustrate the use
of mutable arrays and mutable variables, and because they are useful for later graph
algorithms. The chapter finishes with a discussion on the merits and otherwise of the
imperative functional approach compared with a traditional imperative approach.

4.1 The need for state

Once we move to data structures that explicitly require sharing to achieve an efficient
implementation, then the purely functional world becomes less appealing. In this
type of structure, the ability of local actions to make global changes on the structure
becomes vital. For example, the operations of a deque (double-ended queue) are
usually implemented with doubly-linked lists (Knuth 1973a), and this method of
implementation cannot easily be mimicked in the purely functional world.

Sometimes, as in the case of deques, functional solutions exist. For example, Chuang

47

48 Chapter 4. Stateful algorithms

and Goldberg (1993) and Okasaki (1994) both give purely functional implementations

of deques, see Table 3.2. While such applicative methods are important (and to a
wider community than just functional programmers), they can be extremely devious

or complex, arid there are still a number of problems that have been resistant to

efficient functional solutions. Ponder et al. (1988) describe seven such problems,
including RAM simulation.

4.2 Including imperative actions in a functional

language

Functional languages like Standard ML and Scheme have allowed imperative actions
since their conception. In both languages destructive updates can occur as a side effect
of evaluation. This forces the evaluation order to be fixed and statically determined
(otherwise the program's meaning becomes h' ard to predict). Amongst other things,
this rules out lazy evaluation, or even opportunities for parallel evaluation.

Over the last few years many people have explored various methods of including
imperative features in functional languages, culminating in the monadic approach
advocated in turn by Moggi (1989), Wadler (1990a, 1992), Peyton Jones and Wadler
(1993), Launchbury (1993), and LaU'nchbury and Peyton Jones (1994,1996). This

approach has a clear semantics, and can be cleanly combined with lazy functional
languages such as Haskell.

In the monadic approach that is explored here)'imperaiive actions are specified as
state-transforming functions. In one sense, therefore, adding imperative features pro-
vides nothing new: every program presented in this thesis can be written in any purely
function al program by simulating the state. The only thing that the imperative fea-

tures provide is a possible improvement of the complexity of the implementation.
That'is. rather'than representing state changes by replacement of one value with a
completely fresh one, true destructive update is used. On the other hand, the laws for

reasoning are just those that would be requii-ed if the purely functional specification
of state provided here were used in reality.

4.3. State transformers 49

4.3 State transformers

Imperative actions are specified by using (purely functional) state transformers, ex-

cept that the state argument is implemented by destructive update in the underlying
state. For the purposes of this thesis, the implementation of state will be ignored, for
details see Launchbury (1993).

State transformers should be viewed as an abstract type defined as follows.

type ST sa=s -> (a, s)

return :: a -> ST sa

return as= (a, s)

thenST :: ST sa -> (a -> ST s b) -> ST sb
(m. 'thenST' k) s=kat where (a, t) =ms

Elements of type ST are functions which, when given a state, produce a value together

with a new state. These may be sequenced together using thenST. The state argument

s is given to m which produces a value a and a new state t. These are both passed
to k, and the result that k produces is the result of the whole thing. The function

return turns a value into a trivial state transformer.

4.3.1 The do notation

For conciseness and clarity the following syntax will be used for sequences of state
transformers. Haskell is extended with the syntactic form do Q, first used in Launch-
bury (1993), and implemented in Cofer 2.30 (Jones 1994). The keyword do introduces
layout, so the following braces and semi-colons can be omitted and inferred automat-
ically (just like in where and case clauses). Nevertheless, braces and semi-colons will
be retained here, to prevent confusion.

EE

EE 'thenST' do

P <- EE 'thenSTI \P do

let D in Q let D in do Q

50 Chapter 4. Stateful algorithms

So, for example, we might write the code: -I1 11 1

do x <- actionl;
let y= x*x in

action2 (2+y),

action3 y

which expands to:

.. (actionl 'thenST' (\x->

let y= x*x in

action2 (2+y) 'thenST'

action3 y)))

What we have so far only allows us to build state transformers. We have not seen
how to apply them to an actual state (that is to run them). Recall that the type
ST is intended to be abstract, so the programmer cannot merely apply it to a state
argument. Hence, for running state threads we use:

runST :: (Vs. ST s a) -> a

This function takes a state transformer, applies it to an initial (theoretically empty)
state, and returns the final value, discarding the state. The type of runST is not
a Hindley-IN-lilner type, so runST must be built in as a language construct. The

nested quantifier is sufficient to ensure that the state transformer does not attempt
to dereference variables allocated in other, independent, state threads (that is, no
segmentation faults)'. '' See Launchbury and Peyton Jones (1994,1996) for details.

4.4 Variables

Variables are references into the state. The reference itself is unchanging and un-
changeable. The state to which it refers, however, is subject to change by state
transformers.

4.5. Explicitly linked lists 51

Mutable variables come with the following operations:

newVar a -> ST s (MutVar s a)

readVar MutVar sa -> ST sa

writeVar :: MutVar sa -> a -> ST s ()

:: MutVar sa -> MutVar sa -> Bool

The function newVar is a state transformer which creates a new variable, initialises
it, and returns a reference to it. The reference type MutVar is abstract. The only
operations defined on it are those listed above.

Reference types record not only the type of value they store, but also the state in

which they were created. This works together with the type of runST to allow the
typechecker to guarantee that references are only dereferenced in the state thread in

which they were created (again, see Launchbury and Peyton Jones (1994,1996) for

the details).

The function readVar is used to extract the value of a variable and writeVar to assign
a new value to a variable. Variables are compared for equality of their values with
the overloaded (==) operator (that is, MutVar is made a member of the equality class
Eq) -
To see this in action, consider the following procedure becomes. It is a polymorphic
copying function for variables, which reads the value of its second argument and writes
it into the location referenced by its first argument.

becomes :: MutVar sa -> MutVar sa -> ST s ()

v 'becomes' w= do f val <- readVar w;

writeVar v val
I

The state transformer returns no value of interest, indicated by the type (). An

example of the use of becomes will be given in the next section.

4.5 Explicitly linked lists

Mutable variables can be used to implement explicitly linked lists, that is lists whose
links may be changed at will. One way of doing this is to define the following:

52 Chapter 4. Stateful algoritlims

type LinkedList sa= MutVar s, (Link s a)
data Link sa= Nil

I Item a (LinkedList s a)

A linked list is a variable which stores a link. A link is either Nil, representing an
empty list, or it is an Item containing two components: the element stored at this
point in the list, and a linked list tail. The definition is like the usual recursive
definition of lists except for two aspects. First, the tail of the Item node is a variable
in which another'item is stored, rather than the item itself. Second, the type contains
an explicit state parameter indicating the presence of state references.

A recursive procedure for (destructively) appending two such lists could be defined
as follows.

appendL :: LinkedList sa -> LinkedList sa -> ST s

appendL vw= do ý xs <- readVar v;

case xs of
Nil v 'becomes' w
Item xu appendL uw

I

From the type, we see that appendL takes two linked lists that (a) must both be in
the same state thread, and (b) must contain elements of the same type. Given two
such lists, appendL returns a state ý transformer which returns no interesting value -
its behaviour is in the state transformations it would enact. That is, it is a procedure.

Similarly, accessing functions headL and tailL can be defined, the latter destructively
chops off the front of the list.

headL :: LinkedList sa -> ST sa

headL v= do ý Item xw <- readVar v;

return x
I

tailL :: LinkedList sa -> ST s () ,I

tailL v= do Item xw <- readVar v;

v 'becomes' w

4.5. Explicitly linked lists 53

The Link type provides a pointer-like capability. The variable may contain only Nil,

or it may contain something more interesting, namely an item with its components.

4.5.1 Queues

Queues are a traditional application of linked lists. They are often implemented using
a linked list, together with a pointer to the end of the list to allow for constant time

update.

It has been shown by Hood and Melville (1981) that the queue operations can be
implemented efficiently without using pointers. This is done by maintaining a pair
of lists which contain an initial segment of the queue, and the remaining segment
reversed. The head of the reversed segment contains the last item in the queue,
therefore it can be accessed in constant time. The amortised time complexity for

the complement of queue operations is 0(1). This is only an amortised complexity
because every so often the reversed segment will become empty, and the other segment

will become the reversed segment after a reversal. Okasaki (1994) achieves an 0(1)

worst case time complexity for the queue operations by using an incremental approach

which exploits lazy lists.

While there is no necessity to implement a queue with explicit pointer operations, this

will be done here for illustrative purposes. Once it is clear how to express one data

structure with pointers it is relatively straightforward to express any data structure
in this way. Other examples, such as deques, were implemented in this style, but will

not be presented here.

Two alternative implementations will be presented, the first following traditional

methods, the second taking advantage of Haskell's ability to return functions as the

result of applying a function.

In the first implementation, the queue is a variable containing a pair.

type Queue sa= MutVar s (LinkedList s a, LinkedList s a)

The first component is a variable containing the first item of a linked list (that is, it

points to head of the queue), and the second component is a variable which holds the
final Nil of the list (that is, it points to the end of the queue).

54 Chapter 4. Stateful algorithms

An empty queue is generated by the state transformer makeQ which generates two
variables: v, initially containing the empty list, and the queue itself containing v as
both the front and rear ends.

makeQ ST s (Queue s a)
makeQ do v <- newVar Nil;

newVar (v, v)

A queue is empty if the front and rear variables (pointers) are the same (or, equiva-
lently if both contain Nil). Ef lements, are added and removed destructively.

insert :: Queue sa -> a -> ST s0
insert qx do f (f, r) <-'readVar q;

w <- newVar Nil;

writeVar r (Item x w); '

writeVar q (f, w)

remove :: Queue sa -> ST sa

remove q do f (f, r) <- readVar q;

x headL f;

tailL f;

return x

empty :: Queue sa -> ST s Bool

empty q= do ý'(f, r) <- readVar

return (f==r)

4.5. * Explicitly linked lists 55

Queues can now be used within any state thread as follows.

.. do

qI <- makeQ;

insert q1 5;

q2 <- makeQ;

y <- remove q1;
insert q2 "hello";

Each use of makeQ generates a new queue which may be used at any type. In the

example above, q1 is a queue of integers, whereas q2 is a queue of strings. The two

queues are independent of each other.

4.5.2 Hiding the'queue

The problem with the previous implementation is that the queue is explicit and its

structure known. There is nothing to prevent non queue-like operations being applied.
This structure may all be hidden from the programmer as follows.

ý type AbsQueue sa= (a -> ST s (), ST s a, ST s Bool)

An abstract queue is a triple of operations, corresponding precisely to the three

abstract operations on queues: insertion, deletion, and testing for being empty. The

only thing the user of the queue sees are these operations, no handle on the internal

queue structure is given.

The implementation in terms of the previous operations is straightforward.

makeP. b: 3Q ST s (AbsQueue s a)

makeAbsQ do (q <- makeQ;

return (insert q, remove q, empty q)
I

56 Chapter 4. Stateful algorithms

Abstract queues can now be used as follows.

.. do

(insA, remA, emPA) <- makeAbsQ;

insA 5;

(insB, remB, empB) <- makeAbsQ;

y <- remA;
insB "hello";

Each time a new queue is generated, -; names for its operations are provided. These

"procedures" access their mutually shared data structure, but do not expose it for

unregulated tampering.

It is interesting to observe that this form of encapsulation only becomes viable because

we are working with state transformers. Otherwise, each use of the queue operations

would have to return a triple of the new operations for future use.

4.6 Mutable arrays,

For numerous algorithms it is convenient to have arrays which can be updated in

constant time. They can be provided by a similar scheme to mutable variables.

newArr ix i =>*(i, i), -> aýý->ST s (MutArr si a)

readArr Ix i =>, MutArr sýiýa -> i -> ST sa

writeArr Ix i => MutArr sia -> i -> a -> ST s

Haskell providesý a class' Ix'of, types that can be used as array indices. The type i is

constrained to be in this index class (which includes Int, Char, pairs of indices, and

others).

Like newVar, the function newArr returns a reference to newly allocated store, only
this time it is an initialised array. The index range is given by the pair. of values of

4''' Binsort . 7.57

type i, and the initialisation value by the argument of type a. The type of the "array

variable" which is returned records the state thread in which it was created, together

with the index and element types. Initialisation takes time proportional to the size

of the array, the other two operations (for reading and writing) are constant time.

4.7 Binsort

To illustrate the array operations binsort will be expressed which takes O(n + M)
time (given n elements to sort which are in a range of size m). With binsort, an array
of bins is used to sort elements. Each element to be sorted has an associated index
in the array. This association is described by the function key which takes values to
their index position. For example, the function:

truncate :: Float -> Int

could be used as a key function, to sort floating point numbers with respect to their
integer part.

Binsort works by placing elements in the array at an index determined by the key
function, after which the array is traversed, from the first index to the last, giving
the sorted list with respect to the key function.

binsort :: Ix i => (i, i) -> (a -> i) -> [a] -> [a]

binsort (1, u) key xs = runST (do f bin <- newArr (1, u) [];

insert bin key xs;
extract bin [l.. ul

1)

First an array of bins is created with the indices in the range 1. u. All bins are
initialised to the empty list (using lists allows us to handle duplicate elements). Then

the insert and extract "procedures" are called (both state transformers, of course),
the latter returning a list corresponding to the contents of the array.

58 Chapter 4. Stateful algoritlims

insert :: Ix i => MutArF si [a] 7->, (a [a] -> ST s
insert bin key return
insert bin key (x: xs) do f let i key x in

ys <- readArr bin i;

writeArr bin i (x: ys);
insert bin xs

extract :: Ai => MutArr si [b] -> [il ST s (b]

extract bin return

extract bin (i: is) do xs <- readArr i bin;

ys <- extract bin is;

return (xs++Ys)

Studying the type of binsort shows it to be a pure function. For example,

binsort (1,5) id [5,2,1,4,21

will return [1,2,2,4,51.

All the state operations are encapsulated within a state thread produced by, runST.
Later in Section 4.9 it is shown how all of the state actions for binsort may be
encapsulated using the accumArray combinator.

4.8 Disjoint sets

Disjoint sets are useful for many algorithms: Tarjan (1974), for example, uses them
as part of an algorithm to detect dominators in graphs, and they can be used in the
well-known minimum spanning tree algorithm of Kruskal Jr. (1956). Disjoint sets
are sets with no elements in common. The operations required are set union and
set find operations. When given an element, set find will return the name of the
set it is contained in. Each set therefore needs to have a distinct name. The union
operation takes the names of two sets and a new name and returns the computed
union labelled with tile now name. It is crucial to many algorithms to have the

4.8. Disjoint sets (union/find) 59

union/find operations computed in near constant time (that is, the complexity is

virtually linear in the number of operations).

The most commonly used method of representing disjoint sets is to use up-trees, as

described by Galler and Fisher (1964)-. In an up-tree children point to their parents.
Each set is represented by an up-tree, where the-root node stores the set name.

type Set sa= MutArr sa (Node a)

data Node a= Empty

Root Name Int

Parent a

Mutable arrays are used to store tree nodes, where the set elements are the indices

of the array. This restricts us to knowing that the elements are in a certain range,
but this is normally the case with the algorithms that use disjoint sets. As well as

storing the set ýname in the root node, the root 'node also stores the set size, whiclý is

useful for the union operation described later.

123

F igure 4.1 The disj oint sets a, b c, d, e, fg }2, {h 13 } represented by up-
trees. The numerical superscripts are set names.

The f ind operation will, follow parent pointers to a tree root, where the set name is

contained. For example,, in Figure 4 4, find of c will follow the pointers up to the root

e, and the set name 2 will be returned.

'o- r or the efficiency of later calls ý to f ind path compression is also carried out. This

collapses the path to the root by redirecting every node on the path to point to

the root. Path compression is implemented using the f ixST combinator, which takes

advantage of laziness:

fixST :: (a -> ST s a), -> ST sa

fixST ks= (x, t) where (x, t) =kxs

60 Chapter 4. Stateful algorithms

find :: Ix a => Set saa->, ST sa
find set x= fixST (\p compress set x P)

compress :: Ix a => Set sa -> a. ->, a ->, ST, s a,,

compress set xp do node <- readArr set X;
case node of

Root a's -> return x
Parent a -> writeArr set x (Parent P);

compress seta p

Figure 4.2 Imperative functional find using path compression.

This provides us with a neat functional way of expressing path compression in one
traversal up the tree. The function compress, takes and returns the pointer to the root.
Although this is elegant, it is not essential to use f ixST here, since the order of the

recursive call and writeArr could be rearranged to get the same effect. Nonetheless,

there are other examples where f ixST has proved to be extremely useful.

When performing a set'Union the sizes of each set are compared and the smaller set
is linked to the larger. This is knownas uni , on by size and gives more balanced trees.
Again this makes later finds more efficient... -"

union :: Ix a=> Set's a, -> a-> a->Name -7>STs a .. -
union set px py nz do Root nx sx <- readArr set px;

Root ny sy <- readArr set py;
if sx>sy

then do ý7writeArr set px (Root nz (sx+sy));

writeArr set py (Parent px);
return Px

else do ý. writeArr set px-(Parent py);
writeArr set py (Root nz (sx+sy));

return py

Figure 4.3 Imperative functional union using union-by-size.

4.8. Disjoint sets (union/find) 61

Di I sjoint sets can be constructed with the function insElem which creates one set and
inserts it into the set of disjoint sets.

insElem :: Ix a => Set sa -> Name -> [a] -> ST s ()

insElem ar nD= return ()

insElem ar n (v: vs) = do ý writeArr ar v (Root n (I+length vs));

applyST ptrRoot vs
I

where

ptrRoot x= writeArr ar x (Parent v)

This uses the function applyST which has the following definition:

applyST :: (a -> ST s b) [a] -> ST s

applyST fU= return

applyST f (x: xs) = do ýfx; applyST f xs

For a comparison with traditional imperative code, here's a Pascal implementation of
f ind using path compression (Figure 4.4). This was taken verbatim from Kingston's
(1990) book, p. 218.

procedure Find(x: Entry; var D: DisjointSets): SetType;

var y, z, tmp: Entry;
begin

y :=X;
while y^. parent 0 nil do

y := y-. parent;
end;
z :=X;
while z-. parent: A nil do

tmp := z-. parent;
z-. parent :=y;
z := tmp;

end;
return CAST(SetType, y);

end Find;

Figure 4.4 Imperative version of f ind using path compression.

62 'Chapter. A. ,, Stateful algorithms

This implementation of f ind (Figure 4.4) differs from the Haskell implementation in
that it is a two pass algorithm. First the root node is found by chasing pointers, then
in the second traversal pointers are made from each node to the known root.

4.9 Stateful combinators

State transformers are first class values, and as with other first class values - lists
and trees, for example - there are several useful combining forms. Some of the most
useful combinators are now described, which are used in later examples.

There are two obvious ways of combining a list of state transformers. The first listST

gathers the results of'each stateactibn and retuirns'the'result in list form; the second
seqST applies each state action'in a list, ', ignoring the results, and returns the unit I-
state type.

listST [ST s a] -> ST s [a]

listST foldr consST nilST

where

nilST ST 's [a]

nilST return, []

consST :: ST s`aý-XST s-Eal -> ST sa

consST x xs = do ýa <- x;

as <- xs;
return Was),

I

seqST EST s a] -> ST s ()

seqST foldr (;) (return 0)

. Just ,,, is map is useful for lists, mapST is useful for state transformers.

mapST :: (a -> ST s b) -> [a] -> ST s [b]

mapST f xs = listST (map f xs)

Sometimes it is possible to fully, encapsulate the state actions in a combinator. Func-
tions like ac cumArray and iazyArray' do this, and usually give a more appropriate way

4.9. 'Stat4ul combinators' " 63

of expressing algorithms. For example, the binsort algorithm presented earlier, is far

better expressed using accumArray.

binsort :: Ix i => (i, i) -> (a i) -> [a] -> [a]

binsort bnds key xs = flattenArray (accumArray (flip bnds

E (key x, x) I x<-xsl)

where flattenArray = concat . elems

The accumArray function has the type:

accumArray :: Ix i => (a -> b -> a) -> a -> (i, i) -> E(i, b)] -> Array ia

The call accumArray fe bnds xs builds an array with bounds bnds from a list if

index/value pairs xs. In this list all the values with the same index are combined with

a fold to the left operation, using f, starting with the value e. An implementation is

given in Launchbury and Peyton Jones (1996) which is as follows,

accumArray fe bnds xs = runST (do ýa <- newArr bnds e;

mapST (update a) xs;
freezeArr a

1)
where

update :: MutArr sib -> (i, b) -> ST s

update a (i, v) do x <- readArr a i;

writeArr ai (f x v)

This definitiqn uses the combinator f reezeArr which simply takes a mutable array,

and returns a standard Haskell monolithic array; it has the type;

freezeArr :: Ix i => MutArr sia -> ST s (Array i a)

Haskell arrays are strict in the list of index/value pairs, and in the indices. Johnsson
(1995) describes the function lazyArray, which has the following specification:

lazyArray :: Ix i => (i, i) -> [(i, a)] -> Array i [a]

lazyArray bnds xs = array bnds (i, EvI (j, v)<-xs,
i<-range bnds]

64 Chapter 4,., Stateful algorithms

This is similar to array except that the arr4y-is created immediately, even before xs
is evaluated. It is only when the array is indexed that. xs is searched.

The combinator lazyArray will be seen later in an implementation of breadth-first
search (Section 7.5).

4.10 Discussion

This chapter presented a number of examples of programming in Haskell with state
transformers. Tile style of programs obtained is anýintriguing mix of functional and
imperative. This section tries to clarify some of the issues that have been exposed.

The first point is that having imperative features. trtlly increases the power of the lan-
guage. Any multi-linked data, structure can be, implemented giving the same as mp- y
totic complexity as in the (sequential) imperative case. This is a big step forward, as
previously there were problems for which no efficient solutions were known in Haskell.
The big question is, however, whether incorporating the opportunities for imperative
actions intoa lazy functional language destroys the advantages of the language? Has
the babv been thrown out with the bath water?

The example of binsort described earlier in Section 4.7 is interesting in this respect.
The algorithin itself seems to

'
requ

'
ire destructive update to be efficient, but its in-

put/output behaviour can be expressed purely functionally. That is, binsort is a
function which takes a list and returns a list. It has no externally visible state be-
haviour, and may be treated like a pure function. Thus it is possible to completely
encapsulate imperative actions: elsewhere, where imperative actions are not explicitly
required, purely functional code may be used.

The reverse inclusion happens all over the place as well. Many of the state-based
examples use purely functional values and data structures within the state thread.
One concrete effect of this is that even though the structure of a given piece of code
may mimic imperative code, the details may be quite different. With a number of the
examples, an implementation was presented at a much higher level than is typical of
completely imperative implementations. The code here is more at the level that one
expects from pseudo-code.

4.10. Discus'Sion ' 65

What of the other features'typical in modern functional languages? Again, many of
these carry over:

Almost all of the examples are polymorphic, not in the weak sense of C pointers,
but with all the usual guarantees of strong, static typing. This was explicitly
drawn out in the case of queues, but it is also there in binsort and in union/find.

Higher-order programming is used to good effect in encapsulating the queues
(quite apart from defining state transformers in the first place!). The value
returned by makeAbsQ is a triple of functions, each function defined by partial
application.

Laziness shows up in the examples of cyclic programming. This is used in
the function find from union/find where the well-known technique of cyclic
programming is used to reduce a multi-pass algorithm to a single pass.

In many (though by no means all) imperative languages there is no underlying
garbage collection - the programmer has to free space explicitly if there is a
high turnover. This is tedious and error prone. In the programs here unreach-
able storage can simply be ignored, relying on the garbage collector to reclaim

Despite all this, using state transformers is no panacea. There are some serious conse-

quences. First of all, we lose much of the structural simplicity common to many purely
functional algorithms. Equational reasoning becomes much more complex because of
the underlying state - similar techniques that are required for imperative reasoning
'are required here. Nevertheless, if a program needs state operations, then there is no

choice. In particular, some programs really are naturally state manipulators in that

even functional solutions will plumb extra values through the computation (name-

supply programs often have this form). With these nothing is lost by being explicit

about state, indeed a better structure may be obtained by so doing.

Because of this it turns out that we are unable to encapsulate state operations as
tightly as we might like. Queues and union/find are examples of this. Since their

access has an implicit'implication for future accesses (i. e. they are state transformers),

they have to be used within a state transformer thread, so making the thread quite

pervasive, affecting the structure of a large part of the program.

66. Chapter 4. Stateful algorithms

One major difference between traditional imperative languages -and the imperative

actions described here is in syntax. This is not simply a lexical issue, but intimately
involves semantics. In a traditional language the references to x in a statement like

x x+1 have two different meanings. The reference on the left refers to the location
to which x refers, whereas the. reference on the right refers to the value stored in
that location. This lack of distinction is not present in the state transformer idiom.
Every reference to a variable refers to its location, making variables first-class (that is

pointers, which are not truly first-class in imperative languages). A variable's value
can only be accessed by using the "procedure" readVan Unfortunately it seems as
though there is no way of avoiding this, without making the state strict in the values
it stores. It is of some comfort that despite the syntax being clumsy on occasion, it
does at least make the order of state accesses explicit.

A more serious implication of using a state transformer is the sequentialisation of the

program (fragment). One of the strengths,. of non-strict languages is their potential
for parallel evaluation, but the more state is used the more potential parallelism is
lo St.

Finally we ought to refer to the state arguments, s, that seem to pervade the types of
state transformers. They are present for technical reasons in order to make encapsu-
lation of state transformers referentially transparent. Nevertheless, they do also Wav

a useful role in alerting the programmer to the existence of state components within
data structures.

RelatO"worý,

Currently there is no final consensus in the purely functional language community on
how arrays should be implemented, but there, does seem to be agreement that some
problems require constant time update to, achieve the same asymptotic efficiency as
imperative solutions.,

Burton and Yang (1990) expqrimented with multi-lýnked data structures lin a lazy
functional language. The data structures are implemented by using heaps which in
turn are implemented by using arrays; and the arrays are implemented using balanced

trees. So an imperative efficiency wasn't possible, but it would be if the arrays were
implemented to provide an, update operation in constant time. With their approach

4.11. Related work 67

functions are passed a heap and return an updated heap as a result.

A drawback of the imperative functional approach is that it imposes sequentiality on
the imperative actions. The dataflow language Id (Nikhil 1991) provides I-structures

and more recently M-structures (Barth-et al. 1991) which can be updated in constant
time whilst fitting well with the parallel evaluation strategy of Id. Although these

structures may be the way forward for parallel implementations, they would make a
sequential implementation more complex. Moreover, they destroy the semantics of
the language - the results of a program which uses M-structures call vary depending

on evaluation order.

A shortcoming of using explicit state transformers for state based computations is

that we have to be explicit about when state is present, and it is not always possible
to encapsulate the state part into one small component. An alternative is somehow
to determine when it is safe to do a destructive update. Meira (1985a) discusses

changing the evaluation scheme for the lazy functional language KRC to determine

when it is safe to update objects by overwriting. He then implements a linear time

solution to the set union problem.

Gifford and Lucassen (1986) showed how to integrate functional and imperative pro-

gramming into a single language. They introduced an effect system which statically

checks for side-effect invariants in a similar manner to type checking. The side-effect
invariants are: the ability to read, write, and allocate memory. In essence, the effects

system restricts the use of side effects. Advantages are that it's easy to combine

programs with different effects, and the programs are suitable for parallel execution.
Disadvantages are that equational reasoning may not be used on the program frag-

ments that have side effects, and a predictable order of evaluation is necessary.

There has been an abundance of work on elaborate type systems that reject programs

where safe state manipulations cannot be guaranteed. Examples include linear type

svstems (NVadler 1990c); the single-threaded type systems (Guzmdn and Hudak 1990);

and the stratified type systems (Swarup et al. 1991). With all of these approaches
the resulting type system becomes complex, and they have not been fully tested in

practice. One type system that has been tested in practice is the unique type system

of Smetsers et al. (1993). Their system has been implemented in the lazy functional

graph rewriting language Concurrent Clean. If the type of an object is unique then

there is a guarantee that it will only be accessed once. Hence, destructive updates

are safely performed on an object with such a type.

BLANK IN

ORIGINAL

,,, -, apter

MO*delling 'graphs

This'chapter considers various means of modelling a graph in computer store. The

particular representation chosen is of great importance, since it can have a profound
effect on the complexity of an algorithm. The models chosen here are traditional

ones, that is, adjacency lists, and adjacency matrices. Using these representations
functions are provided for constructing various types of graph, these functions are

useful for testing algorithms. Graph classification functions are also given; most

graph algorithms only work on certain types of graph, so it is useful to determine
0
what kind of graph we have.

5.1 Representations of graphs

The most widely-used representations of graphs are adjacency lists and adjacency
matrices. Both are typically represented with arrays. In Haskell there are many
choices of representation to consider, for example:

Use a list of pairs to represent the graph edges. This is often chosen in the
functional programming literature (for example, Paulson (1991), Holyer (1991)),
because it is the, simplest. The main shortcoming with this representation is

that algorithms do not have the optimal asymptotic complexity.

Use a function from vertices to their adjacent vertices (see'Reade (1989)). The

efficiency of algorithms using this representation depends upon the underlying
implementation of functions. A shortcoming with this representation is that it
is hard to construct arbitrary graphs efficiently during run-time.

69

70 Chapter 5. Modelling graphs

41 Use a purely functional algebraic datatype utilising laziness to express cycles
(Section 5.2).

Use immutable arrays to represent adjacency lists (Section 5.3) or adjacency
inatrices (Section 5.5). These are fine as iong as we don't need to dynamically
change a graph during an algorithm.

Mimic the conventional approach with the state monad, that is, have explicit
pointers in the heap. This representation results in', imperative style algorithms.
Nevertheless, if parts of a graph need to be dynamically modified, then this is
more appropriate than the above purely functional representations.

In other functional languages, one could consider: version arrays (Morrisett (1993)
in Standard , NIL); using reference types in Standard NIL; M-structures (Barth et al.
(1991) in Id), or using unique types (Smetsers et al. (1993) in Clean). None of these
are considered here.

5.2 Cyclic representations ,

In a lazy language the cyclic nature of a graph can be represented by a cyclic structure.
For example, the following cyclic expression is a graph, with one vertex, and one self-
looping edge:

01 ýý-

ones :: [Intl

ones = I: ones

This could be generalised to any directed graph by using a list of vertices (Figure
5.1).

graph --: [a, b, c, d]

where a= Vertex "all [d]
b= Vertex "b" [a, cl
c= Vertex 11 c0
d= Vertex "d" [b]

Figure 5.1 A cyclic expression representing a cyclic graph.

5.3. Adjacency lists 71

As an example the complete graph with vertices in the range described bY the bnds

pair could be constructed by:

completeG bnds =

where g= map constructG-vertices

constructG u= Vertex u[g!! w I w<-vertices, w/=ul
vertices = range bnds

The function complet eG creates a cycle by using list lookup (! !) on g, and this method

may be used to create arbitrary graphs on-the-fly at run-time, see Clack et al. (1995)

for an implementation. List lookup is not a constant time operation, so the graph

construction algorithm doesn't have linear time complexity. Another difficulty with
the cyclic structure is that operationally it's an infinite tree, so care is needed not
to loop indefinitely. Try printing out the result of compieteG bnds and the structure

will unravel printing out the same vertices endlessly. The functional programming

solution to prevent this endless unravelling, is to label each vertex with a unique

name. Then traversal functions will maintain a set of unique names indicating which

vertices have been visited before.

5.3 Adjacency -lists

For many algorithms the best representation is an array of adjacency lists. The array
is indexed by vertices, and each component of the array is a list of those vertices

reachable along a single edge. This adjacency structure is linear in the size of tile

, graph. The indexed structure allows us to be explicit about the sharing that occurs
in the graph. Thus standard Haskell immutable arrays are chosen here. This gives

constant time access (but not update - these arrays may be shared arbitrarily).

The same structure may be used to represent undirected graphs as well, simply by

ensuring that there are edges in both directions. An undirected graph can be viewed

as a symmetric directed graph. Multi-edged graphs may also be represented by a

simple extension, but these are not considered here.

Graphs, therefore, may be thought of as a table indexed by vertices.

type Table a= Array Vertex a

type Graph = Table [Vertex]

72 Chapter 5. Modelling graphs

The type vertex may be any type belonging to the Haskel
*I

index class Ix, which
includes Int, Char, tuples of indices, and more. Haskell arrays come with indexing
(!) and the functions indices (returning a list of the indices) and bounds (returning
a pair of the least and greatest indices). The function vertices is provided as an
alternative for indices, which returns a list of all the'vertices in a graph.

vertices Graph -> [Vertex]

vertices indices

Sometimes it is convenient to extract a list of edges from the graph, this is done with
the function edges. An edge is a pair of vertices.

type Edge = (Vertex, Vertex)

edges :: Graph -> [Edge] O(V+E)

edges g (v, w) v<-vertices g, w<-g! vl

To manipulate tables (and graphs) the generic function mapA is provided which applies
its function argument to every array index/entry pair, and builds a new array.

mapA :: Ix a => (a -> b -> c) -> Array ab -> Array ac

mapA fa= array (bounds a) [(i, fi (a! i)) -I-, i<-7indices a]

The Haskell function array takes low and high bounds and a list of index/value pairs,
and builds the corresponding array in linear time. Because we are using an array-
based implementation we often need to provide a pair of vertices as array bounds. So
for convenience weý define,,

type Bounds = (Vertex, Vertex) ',:

Using mapA we could define,

outdegree :: Graph -> Table Int -- O(V+E)

outdegree g= mapA numEdges g

where numEdges v ws = length ws

which builds a table detailing the number of edges leaving each vertex.
It is often useful to build up a graph from a list of edges, buildG is provided for this
purpose:

5.3. Adjacency lists 73

buildG, :: Bounds -> [Edge] -> Graph -- O(V+E)

buildG bnds es -= accumArray (flip (:)) U bnds es

using accumArray described in Section 4.9. Lists are built of all the values associated

with each index. Again, constructing the array takes linear time with respect to the
length of the adjacency list. So in linear time, a graph defined in terms of edges can
be converted to the vertex table based graph. For example,

graph = buildG (Ial, lnl)

(reverse Ulal, lb)),

(Iel,)f)),

Ch'

('k'

(lal, ld'), (Ibll lel), (lel, ld'),

will produce the array representation for the graph shown in Figure 5.2. The function

reverse is used so that earlier entries will occur earlier in the adjacency list.

3- b

e ---------- 0. f

Figure 5.2 A directed graph.

Then, the immediate successors to I el are found by computing:

graph ! 'e'

which returns [Idl , If I, IgIl.

Combining the functions edges and buildG gives us a way to reverse all the edges in

a graph giving the transpose of the graph:

74, Chapter 5. Modelling graphs

transposeG :: Graph -> Graph -- ýO(V+E)ý
transposeG g= buildG (bounds g) (map reverseE-(edges g))

reverseE :: Edge -> Edge

reverseE (v, w) = (w, v)

Edges are extracted from the original-graph, their direction reversed, and the graph
is rebuilt with the new edges. Then, for example,

(transposeG graph) ! ! el

will return [IbIl. Now by using transposeG, an in-degree table for vertices may
immediately be defined:

indegree :: Graph Table Int O(V+E)

indegree g= outdegree (transposeG g)

5.4 Classifying graphs

It is important to classifv graph
's

for efficient algorithm design. IMany algorithms will
only work on certain types of graph. Several different classes of graph will now be
considered. The null graph has no vertices or edges, and the empty graph has vertices
but no edges. A simple graph is one with no self-loops; a pseudo-graph contains at
least one self-loop. In a functional graph, each vertex has out-degree one as the graph
is modelling a real function. A graph is Eulerian-if it is connected and the in-degree
and out-degree are the same for every vertex, meaning that there exists a tour which
includes each edge exactly once.

These functions are all neatly expressed as one-liners in Haskell and are presented in
Figure 5.3. They are expressed with no loss of efficiency, their asymptotic complexity
is given as a comment along with their type. Null graphs cannot be modelled with the
representation used here, since standard Haskell arrays must have at least one index.
Although, it would be quite straightforward to extend our representation to handle
null graphs. '

The function isEulerian makes use of isConnected; an implementation
of isConnected will be given later in Section 6.6-3.

5.4. Classifying graphs 75

isEmptyG :: Graph -> Bool -- OM
isEmptyG g= null (edges g)

isPseudoG :: Graph -> Bool -- O(V+E)
isPseudoG g= or E v==w I (v, w)<ýedges g]

isSimpleG :: Graph -> Bool -- O(V+E)
isSimpleG g= not UsPseudoG g)

isFunctionalG :: Graph -> Bool -- O(V)
isFunctionalG g= and [length (g! v) == 11 v<-vertices g]

isEulerian :: Graph -> Bool -- O(V+E)
isEulerian g= isConnected g && Undegree g == outdegree g)

Figure 5.3 Some graph classifications.

5.4.1 Classifying undirected graphs

Although the functions above may be applied to undirected graphs; undirected graphs
have different properties, and other means of classification. An undirected graph is

r-egular if all vertices in the graph have the same, degree. An undirected graph is

Eulerian if it is connected and the degree of each vertex is even. A graph is complete
if there is an edge between every pair of vertices, the graph must also be simple.

Since undirected edges are represented by two directed edges, the in-degree and out-
degree for each vertex in an undirected graph will be equal; here outdegree is used

as it is more efficient. The function degreeSeq sorts all the vertex degree's into

ascending order. The function degreeord orders the vertices in descending order of

their put-degrees.

The function isCompleteG utilises binsort (Section 4.7) for efficiency. The adjacency
list for each vertex is ordered and compared with a list of all vertices, except the

vertex itself which would form a self-loop. Comparing two lists of size V-I for

equality is O(V), and binsort on a list of size V-I with index range of size V is

O(V) , therefore, the algorithm for isCompieteG will run in O(V2) time.

76 Chapter
.
5. Modelling graphs

isRegularG :: Graph -> Bool -- O(V+E)
isRegularG g= all (==d) ds

where (d: ds) = degree g

isEulerianU :: Graph -> Bool -- ýO(V+E)
isEulerianU g= isConnected g && all even (degree g)

degree :: Graph -> Table Int -- O(V+E)
degree g= outdegree g

degreeSeq :: Graph -> [Intl -- O(V. (log V)+E)
degreeSeq g= quicksort (elems (degree g))

degree0rd :: Graph -> [Vertex] O(V. (log V)+E)
degree0rd g= (reverse map snd quicksort)

(length, (g! v), v). ýj v<-vertices gl

isCompleteG Graph -> Bool -- O(V-2)

isCompleteG g and E binsort (bounds g) id (g! v)
wI 'W<-ýverticeis g, v/--w'] I v<-vertices g]

Figure 5.4 Some classifications of undirected graphs.

5.4.2, Generating graphs,

It is useful to construct different types of graphs to test algorithms and invariants.
The function buildG described earlier proves to be invaluable for generating various
graphs.

A simple circuit is a cyclic path where each vertex appears exactly once except the
first and last vertices. In Figure 5.5 the function siiýieCircuit creates a list of
vertices, and generates a graph where each vertex in the list has an edge to the next
vertex in the list. The last vertex in the list has an edge in the graph to the first

vertex in the list.

The graph in F igure 5.6 is generated by the following function call:

functionalG (\x -> I+ ((x+3) 'mod' 12))

5A. Classifying graphs 77

emptyG :: Bounds -> Graph -- O(V)

emptyG bnds = buildG bnds 0

completeG :: Bounds -> Graph -- O(V-2)

completeG bnds = buildG, bnds E (v, w) I v<-range bnds, w<-range bnds, v/=w]

simpleCircuit :: Bounds -> Graph -- O(V)

simpleCircuit (1, u) = buildG U, u) ((u, l): zip rs (tail rs))
where rs = range U, u)

functionalG :: (Vertex -> Vertex) -> Bounds -> Graph -- O(V)
functionalG f bnds = buildG bnds E (i, f j) I i<-range bnds]

Figure 5.5 Generating graphs.

12

9

6

3

Figure 5.6 An example of a functional graph.

78 Chapter 5. Modelling, graphs

This graph represents an eight hour time difference, for example, between British
Summer Time and Pacific Daylight Time.

It is sometimes useful to be able to generate an undirected graph from a directed one.
This is done most succinctly by taking the union of a graph with its transpose: -

undirected :: Graph -> Graph

undirected g= buildG (bounds'g) (edges'g ++'edges (transposeG g))

This will introduce extra edges between vertices v and w if there is already a directed
edge from v to w, and from w to v.

5.4.3 Generating ran. dom, graphs,, ',,

For measuring the running times of, some algorithms, it's convenient to have a large
randomly generated graph. There are several ways of constructing a graph randomly.
The number of edges and vertices could be chosen at random, but it is usually more
practical to have control over these values. Here's a straightforward way of generating
a random graph where the vertices are integers: first we need a random number
generator randomList that returns a list of random numbers in a given range. There
are several good ways of generating random numbers, a specific implementation is
not included her(-,:

randomList :: Int -> [Intl

A random permutation is generated by constructing an array of integers, and swap-
ping each index once with a random index value. For efficiency, a stateful algorithm
is used, which runs in O(n) time. ý'A purely functional solution is not known for this
problem (Ponder et al. 1988).

randomPerm :: Int -> [Intl

randomPerm n

= runST (do fr <- newArr (1, n) 0

applyST (\i -> writeArr ri i) [l.. nj;
applyST (swapArr r) (zip [1.. nl (randomList n));
mapST (readArr r) [l.. nl

1)

5.5. 'Adjacency matrices 79

where swapArr :: Ix a => MutArr sab -> (b, b) -> ST s

swapArr r (x, y) = do fa <- readArr r x;
b <- readArr r

writeArr rxb;

writeArr rya

A permutation of the integers from 1 to V2ý is constructed, and we use the property
that there is a one-to-one mapping with graph edges. The function randomE takes
the number of vertices v and edges e, and returns a list of e edges. These are then
converted to a graph with the function randomG.

randomE :: Int -> Int -> [Edge]

randomE ve= take e [(x+l, y+l) I r<-randomPerm (v*v)

(x, y)<-[r 'divMod' v], X/=yl

randomG :: Int -> Int -> Graph

randomG ve= buildG (l, v) (randomE v e)

5.5 Adjacency matrices

An adjacency matrix is a (V x V) matrix, where the edge (v, w) is in the graph,
if and only if, row v and column w contains the entry 1. Adjacency matrices are
typically represented with a two dimensional array. The advantage over adjacency
lists is that we can determine if we havean edge (v, w) in constant time. Adjacency

matrices are easily generalised to weighted graphs by storing the weight at the array
entry. Like adjacency lists a standard Haskell immutable array is used to represent
the matrix.

type Matrix a= Array Edge a

type Edge = (Vertex, Vertex)

A graph is now a matrix with labelled entries. This allows multi-edged graphs to be

represented, by storing the number of edges in the label. The name LGraph will be

80 Chapter 5.
,

Modelling graphs

used for the type of labelled graphs, and functions will be suffixed with L to distinguish
from graphs represented with adjacency lists.

type LGraph = Matrix Label,

type Label = Maybe Value

Here the Maybe datatype is used for labels, a label of Nothing means there is no edge,
and a label of Just v is an edge with a label value v. Label values may be of any
type, but sorne functions may require equality on the type.

verticesL :: LGraph -> [Vertex] ý-- O(V)

verticesL g= range (limitsL g)

edgesL :: LGraph -> [Edge] -- O(V-2)

edgesL g=[eI e<-indices g, isEdge g el

limitsL :: LGraph -> (Vertex, Vertex) -- 0(l)

limitsL g= (1, u) where = bounds g

isEdge :: LGraph -> Edge Bool -- 0(l)

isEdge ge= weight ge Nothing

weight :: LGraph -> Edge -> Label -- 0(1)

weight ge=g! e

Although with adjacency lists it takes 0(1) time to return a vertex's successors, with
adjacency matrices it takes O(V) time to return all the successors, and predecessor
of a vertex.

succL LGraph Vertex -> [Vertex] -- O(V)

succL v=Cw w<-verticesL g, isEdge g (v, w)]

predL :: LGraph Vertex -> [Vertex] -- O(V)

predL gv=Cw w<-verticesL g, isEdge g (w, v)]

5.5. Adjacency matrices 81

5.5.1 Classifying edge labelled graphs

Since a different representation is used for edge labelled graphs, most of tile classifi-
cation functions will have different implementations, and different running times. For

example, isEmptyL has a running time of O(V2) compared with isEmptyG which runs
in O(V) time.

isEmptyL :: LGraph -> Bool -- O(V^2)
isEmptyL g= and E not (isEdge g e) I e<-indices g]

isUnweightedL :: LGraph -> Bool -- O(V^2)
isUnweightedL g= and E not (isEdge g e) 11 g! e==Just 11 e<-indices g]

isUndirectedL LGraph -> Bool -- O(V-2)
isUndirectedL g= and C g! (v, w)==g! (w, v) I (v, w)<-indices g]

isCompleteL :: LGraph -> Bool -- O(V-2)
isCompleteL g= and [isEdge g (v, w) I (v, w)<-indices g, v/=wl

I
F, igure 5.7 Classifying edge labelled graphs.

5.5.2 Generating'edge labelled graphs

just like with
,
adjacency lists it is convenient to have a function that builds a graph

from a list of edges:

buildL :: Bounds -> [Edge] -> LGraph -- O(V-2)

buildL (1, u) es = (array i (e, Nothing) I e<-range
// (e, Just 1) 1 e<-es]

where i= ((1,1), (u, u))

If there is an edge between two vertices it is given the label Just 1 otherwise it is

given the label Nothing. The operator (//) takes an array and a list of index/value

pairs, and returns the array from the left argument after it has been updated with
the index/value pairs in the right argument. Sometimes it is necessary to specify the

edge weights:

82 Chapter 5.1 Modelling graphs

mkLGraph :: [(Edge, Label)], ->ý Bounds, 7>, LGraph,, -- O(V-2)

mkLGraph els U, u) = (array i (e, Nothing) e<-range il) els
where i, = ((1,1), (u, u))

The functions for generating edge labelled graphs' (emptyL, completeL, simpieCircuitLl
functionalL) are now identical to the functions for graphs modulo buildL. Code du-
plication may be avoided by defining an abstract datatype for graphs that includes
functions like buildL.

5.6 Discussion

The principal differences between the two graph representations, adjacency lists and
adj, acency matrices, are surnmarised in Table 5.1. These differences have an impact on
the complexity of graph algorithms. For example, the functions to create degree tables
indegree and outdegree run in O(V + E) time with adjacency lists, but run in O(V2)
time with adjacency matrices (note E

-<
V'). With these examples adjacency lists are

better suited. and there are several examples where this is the case (another example
covered in Chapter 6 is depth-first search). Nevertheless, there are several cases where
adjacency matrices are more efficient than adjacency lists. With adjacency matrices,
the existence of an edge is determined in 0(l) time, hence the representation is more
convenient for weighted graph pro blems - where the edges are annotated. Some
examples of weighted graph algorithms are given in Chapter 7.

1 1 Adjacency list Adjacency m
Space to represent
graph O(V +-E) O(V2)

Time taken to dis-
cover the existence of O(V) 0(i)
an ecle
Time taken to return
all neighbours of a 0(i) O(V)
vertex

Table 5.1 Summary of differences between adjacency lists and adjacency matrices.

11-f T,
, -, mpter

Depth-first search based algorithms

Depth-first search (DFS) is a recipe for graph traversal. The recipe being to follow

edges deep into the graph before fanning out to other edges. This simple method
of traversal is the basis for several algorithms. Tarjan (1972), and Hopcroft and
Tarjan (1973) were the first to discover this more than twenty years ago. In their

work, and other work since, the DFS algorithm is viewed as a skeleton upon which

code fragments are embedded. These code fragments compute information during the

traversal process which is
-
relevant to the particular algorithm being expressed. This

has proved to be a successful method of designing efficient graph algorithms, but it

has a number of drawbacks.

So many calculations are performed during the course of a graph traversal, that it
becomes extremely difficult to understand and reason about what is going on. The
DFS algorithm is lost as it is intertwined with other code fragments. It cannot be

reused without having to duplicate the code. The alternative approach is one that is

taken frequently in functional languages: to express the algorithm as the composition

of several reusable components.

Given a graph we return a depth-first spanning forest, algorithms that use DFS are

expressed in terms of this forest. A constant factor in complexity time is lost by doing

this, but the gains far out-weigh this slow-down. Algorithms become more lucid, the

code for DFS is reused for new algorithms. Since this is good for programming it is

also good for reasoning. Static values like the depth-first spanning forest are easier
to reason about, rather than dynamic values processed (luring a traversal.

83

84 Chapter 6. Depth-first search based algorithms

6.1 Depth-first search

Depth-first search is often viewed as ýa process which may loosely be described as
follows. Initially, all the vertices of the graph are deemed "unvisited", so we choose
one and explore an edge leading to a new vertex. Now we start at this vertex and
explore an edge leading to another new vertex. We continue like this until we reach
a vertex that has no edges leading to unvisited vertices. At this point we backtrack,

and continue from the latest vertex that does lead to new unvisited vertices.

Eventually we will reach a p, oint_,,, where, every, vertex'reachable from 'theiinitial vertex
has been visited. If there are any unvisited vertices left, one is chosen and the search
commences again, until finally every vertex has been visited once, and every edge has
been examined.

The graph in Figure 6.1 shows a'depth-first- traversal starting at vertex a. If at
any vertex there is a choice of edges to follow, 'the selection is made by using the
alphabetical ordering of'vertices.

/d_e\b,

��/ >1:. k4 g >1 m

Figure 6.1 A directed graph: bold edges give a depth-first traversal.

6.2 Specificationof depth-first search

IN"e will concentrate " on depth first search as a specification for a value, namely the
spanning forest defined, by aý depth-first traversal of a graph. Such a forest for the
graph in Figure 6.1 is depicted in Figure 6.2. The (solid) tree edges are those graph

6.2. Specification of depth-first search 85

edges that lead to unvisited vertices. The remaining graph edges are also shown,
but in dashed lines. These edges are classified according to their relationship with
the tree, namely, forward edges (which connect ancestors in the tree to descendants),
back edges (the reverse), and cross edges (which connect nodes across the forest, but

always from right to left). This standard classification is useful for thinking about a
number of algorithms and later, in Section 6.6.5, an algorithm for classifying edges in
this way is given.

a

C
Back

9h

k Cross

Forward

e
Cross

Figure 6.2 A depth-first spanning forest. The dashed lines represent graph edges
that are not included in the forest.

Since the approach explored here is to manipulate the depth-first forest explicitly, the
first step, therefore, is to construct the depth-first forest from a graph. To do this an
appropriate definition of trees and forests is needed.

A forest is a list of trees, and a tree is a node containing some value, together with a
forest of sub-trees. Both trees and fores ,t, s are'p olymorphic in the type of data they
may contain.

data Tree a= Node a (Forest a),

type Forest a= [Tree a]

A depth-first search of aJ graph takes a graph and an initial ordering of vertices. All

graph vertices in the initial ordering will be in the returned forest.

dfs :: Graph -> [Vertex] -> Forest'Vertex

This function is the key component to all the DFS algorithms that are expressed
here. For now we restrict ourselves to considering its properties, and leave its efficient
Haskell implementation until Section 6.5.

86 Chapter 6., Depth-first search based algorithms

Sometimes the initial ordering of vertices is not important. When this is the case the
following related function is used:

dff :: Graph -> Forest Vertex

dff g= dfs g (vertices g)

What are the properties of depth-first forests? They can be completely characterised
by the following two properties.

Property 6.1 (Spanning subgraph)
The depth-first forest of a graph is a spanning subgraph, that is, it has the same
vertex set, and the edge set is ý subset of the grapfi edge set. The subgraph does not
contain multi vertices or multi edges.

Property 6.2 (No left-riglit croSs-edges)
The graph contains no left-right cross-edges with respect to the forest.

These two properties are satisfied by every depth-first forest, consequently several
functions would satisfy these properties. The next property describes, togetherýwith
the above two properties, one implementation of depth-first search.

Property 6.3 (Initial ordering)
Given the depth-first spanni

'
ng forest, every descendant of a root or later node, appears

later in the initial ordering than'the root. '1

6.3 The generate-prune paradigm

In order to translate a graph into a depth-first spanning forest we make use of a
technique common in lazy functional programming: - generate then prune. Given a
graph and a list of vertices (a root set), we first generate a (potentially infinite) forest
consisting of all the ver '

tices and edges in
'
the graph, and then prune this forest in

order to remove repeats. The choice of pruning pattern determines whether the forest
ends up being depth-first (traverse in a left-most, tOP-most fashion) or breadth-first
(top-most, left-most), or perhaps some combination of the two.

Definitioii (--ý)
For reasoning purpo

,
ses, it is convenient to use a notion of paths rather than single

edges: a path being made up of zero or more edges joined end-to-end. The notation

6.3. The generate-prune paradigm 87

v ---49 w will be used to mean that there is a path from v to w in the graph g. Where

there is no confusion the graph subscript will be dropped.

6.3.1 Generating

We define'a function generate which, given a graph g and a vertex v builds a tree

rooted at v containing all the vertices in g reachable from v.

generate :: Graph -> Vertex -> Tree Vertex

generate gv= Node v (generates g (g! v))

generates :: Graph -> [Vertex] -> [Tree Vertex]

generates g vs = map (generate g) vs

Unless g happens to be a tree anyway, the generated tree will contain repeated sub-
trees. Further, if g is cyclic, the generated tree will be infinite (though rational).

Of course, as the tree is generated on demand, only a finite portion will be generated.
The parts that prune discards will never be constructed.

ab

/\ bCa

/\ bC

/\ bCa
',,,

C dI

�Th ab

cd

Figure 6.3 A generated forest, for the graph shown in the box.

6.3.2 Pruning

The goal of pruning the (infinite) forest is to discard subtrees whose roots have oc- b
curred previously. Thus we need to maintain a set of vertices (traditionally called

88 Chapter 6. Depth-first,, searcil based algorithms

"marks") of those vertices to be discarded, The depth-first pruning may be defined

as follows where P represents the set of,, vertices previously visited (or marked). This
specification is convenient for reasoning. Specifications will be distinguished from
programs by an italic font. Section 6.5 gives an efficient implementation of prune.

prune :: Set Vertex Forest Vertex -4 Forest Vertex

prune P

prune P [Node x ts] E, P

xVP [Node x (prune Qxj U P) ts)

prune P (ts 4+- us) prune F ts,
ý; -ý

4+- prune .
(P, UY (prune P ts)) us

Flatten (, F) maps forests to sets and mayl be defined:

Definition (Flatteii)
Flattening transforms a tree to the set of all nodes contained in the tree.

-77
t'g

I=
UtE7-ts 7'tl 77 (Node x ts) =IxIU.. F ts

,

The set definitions of (. F) and (T) are only applied to finite objects, and are therefore
computable in those cases. Generally, (. F) is applied to expressions of the form

prune P ts which always terminates with a finite tree when ts is a rational tree, that
is, it has been generated with generates, and P is a finite set. 0
Note that in this chapter the symbol E is heavily overloaded. In the expression xEy,
y may be a set, list, tree, or forest, but x will always be a unitary object. For example,
if y is a tree of integers then*_x is an integer. The notation x E, y is used to signify
that x is of type tree, and x Er y to signify that x is of type forest.

Now (Ifs can be defined in terms of generates and prune:

Definitioii (Deptli-first search)
dfs g vs prun. e 0, (generate, S g ys)

This definition, although more verbose, is superior to the implementation of DFS
given in Chapter 1 because of its modularity (Hughes 1989). It is not only easier to
understand, but allows the proofs to be modular. Instead of having properties about
one function dfs, separate properties can be stated for generates and prune. This
makes inventing properties'and proving them easier than would be the case with just
dfs. ýIIIIII

6.3. The generate-prune paradigm 89

Deforestation of a flattened dfs

rrequently a flattened version of dfs is useful, this may be deforested into a recursive
definition reaches.

reaches gP xs = 17 (prune P (generates g xs))

Case []-

Y (prune P (generates g
Definitions of Y, prune, and generates

Case [xl, where xEP.

(prune P (generates g [xl))

Y (prune P [Node x (generates g (g! x))
0

Case [xl, where xý

(prune P (generates g [x]))

=Y (prune P [Node x (generates g (g! x))

=Y[Node x (prune (fx} U P) (generates g (g! x)))

= jxj UY (prune (fx} UP) (generates g (g! x)))

= jx} U reaches 9 ({x} U P) (g! x)

Case xs 41- Ys.

(prune P (generates g (xs * ys)))
Y (prune P (generates g xs))

UY (prune (P U. F (prune P (generates g xs))) (generates g ys))
reaches gP xs U reaches g (P U reaches gP xs) ys

90 Chapter 6. Depth-first search based algorithms,

Hence, this yields the following recursive definition for reaches:

reaches :: Graph Set Vertex -* [yertex] 7-+ Set Vertex

reaches gP
reaches gP [x] xEP=

1XýP= jx} U reaches g (fx} U P) (g! x)
reaches gP (xs -++- ys) = reaches gP xs

U reaches g (P U reaches gP xs) ys

Deffilition (Reaclies)
The notation vý, will be used to denote the set of all vertices in the graph g that can
be reached by traversing paths from vertex v. Similarly all the vertices that can be

''denoted by vs4g. I Formally, reached from the list of vertices vs are

Vý, fwIv ---+g w
VS49 UVEVS V4

Theorem 6.4 (Reaclies)
The recursive function reaches terminates when'given well-defined arguments, and
tile call reaches g0 vs for some graph'g and list of vertices vs'will return a set of all
the vertices in g that are reached by paths from elements in vs.

Vx .xE reaches y0 vs -#ý xE vs4

Proof A proof is given in M61ler (1993b) and in Clenaghan (1995). 1 ED

Leinina 6.5 (Prune)
The function call prune P ts for a, finite set of vertices P and rational forest ts returns
a subforest (g,) of ts. Formally,

VP. ts . prune P ts 9. r ts

Sketcli Proof By well-founded induction. The well-ordering is defined on the
visited set and the forest:

us) < (P, ts) =IQI<IPIV (size us < size ts

where size is the number of nodes in a forest. The ordering says that either the
subsequent visited sets are becoming larger or subsequent trees are becoming smaller.

6.3. The generate-prune paradigm 91

Then the following property is shown:

VQ, us, Pý ts
((Q, us) < (P, ts) =ý- prune Q us C, us) =* prune P ts C., ts

When the visited set P contains all nodes from ts then prune P ts this is easily
shown. 0

Lemma 6.6
If a node is in the result of a prune for a rational forest ts then it cannot have been
in the finite set P passed to prune.

Vx, P -xE prune P ts =: >. xVP

Proof By well founded induction. The well-ordering is defined on the size of forests

and visited sets as before, and so the inductive formula is:

VQ, us, P, tS7 x-0, us) < (P, ts) =* (x i E prune Q us =: ý* xE us))
(x E prune P ts =ý- xE ts)

Case [I-

xE prune P

xE
False

xP

Case [to
i

tn for n>0.

x (=- prune P [to,..., tnj
I Definition of prune

xE prune Po [to] ý+ prune P, [ti] -4+ --- -+ prune Pn (tnj

where PO =P and Pi = Pi-1 UT (prune Po t to,..., ti-1 1) for i>0. Without loss of
generality there will exist some 0 *-' i<n such that:

xE prune Pi [ti]

Consider tj = Node v ts

xE prune Pi (Node v ts]

92, Chapter 6. I? eptli-first search based algoritlinis

By definition of prune
(v E Pi AxE
V (v V Pi AxE Node v (prune Q V} U Pi-1) ts))

Since x

vVPj A xENode v (prune-
ý(Iv} U Pi -lYts)

v Pi A (x =vVxE prune (lv} U Pi-1) ts)
By induction hypothesis

x Pi AxV {v} U Pj. ý.,
Since xV fv}UPi-, UPi and P C, Pi, li

xVP

The following lemma says that if the result of a can be partitioned then each
partitioning can be defined in terms of a prune.
Lemma 6.7
For sorne graph y and vertices vs then the following holds,

Vts. us . ts +F us = dfs g vs =>. 3xs, ys . vs = xs * ys
A ts prune 0 (generates g xs)
A us prune (xs4) (generates g ys)

Proof

ts 4+ us df3 9 vs
By unfolding dfs and letting vs vo, v, for some n>0

ts -+j- us = prune 0 (generates g[vo, Vn
By prune and generates

I

ts * us = prune Po (generates g [vo])

prune P, (generates g [vl])

, 4+- prune, P, (generates y [v,,])

where PO 0 and Pi =. F (prune ('generates g [vO,..., vi'-l])) for some 0<i<n.
Furthermore, by using the definition of reaches and by using Theorem 6.4 we have
Pi =[VO, ..., vi- I]4. Now each element prune Pi (generates, g [vi]) is either a single-
toil list holding one tree or it is the empty list. Whence, we are able to choose as

6.4. Correctness of DFS 93

much of vs as is necessary (call this amount xs) in order to construct ts. From this,

and using the name ys for the remaining segment, then we have

3xs, ys vs = xs * ys
A ts prune 0 (generates g xs)
A us prune (xs4) (generates g ys)

0

6.4 Correctness of DFS

Now the correctness of DFS may be shown by using the above properties of prune
and generates.

Tlleorem 6.8 (Tlie function dff satisfies Property 6.1)
The function call dff g returns a spanning subgraph of the graph g.

Proof There are two parts to this proof, first all the vertices in the graph g must
be shown to be in dff g, that is:

(i) Vv
.vE':

(dff g) <-==> vE vertices

and second it must be shown that all tree edges in the dff g are graph edges in g,

that is:

Ve .e (-= edgesF (dff g) => eE edges g

Since sets'have been used throughout, parts (i) and (ii) are not strong enough to

show that multiple vertices or multiple edges do not appear in the depth-first forest.

Nevertheless, it is straightforward to reformulate everYthing with lists and verif. v this.
0

Proof WI

Vv .VEY
(dff g) VEY (prune 0 (generates g (vertices g)))

vE reaches g0 (vertices g)

vE vertices' g
0

94 Chapter 6. Depth-first search basea algorithms

Before verfting part (ii) we introduce set definitions for edgesT and edgesF.

Definition (Edges of trees and forests)
The expression edges Tt is the set of all edges in the tree t, and edgesF ts is the set
of all edges contained in the forest ts. Formally,

edges T (Node x ts)

edjesF ts

Proof (ii)

Since,

I(x, y) I Node y ts+-ts}
U edgesF ts

Utert, edgesT t

dff g prune 0 (generates g (vertices g))
generates g (vertices 9)

the theorem is proved týy showing the following

Ve
.eE edgesF (generates g (vertices 9)) =ý- eE edges g

this is shown by straightforward equational reasoning. 0

Proposition 6.9 (The function dff satisfies Property 6.2)
The function call dff y returns a forest where there are no graph edges between left
and right subtrees. In the following ts +ý us is a subforest occurring anywhere within
dff g.

Vts 4+- us E., dff gAvE ts AwE us =:: >. (v, w) V edges g

The ban on left-right cross edges translates into paths, and is expressed with the
following two lemmas. At the top level, it implies that there is no path from any
vertex in one tree to any vertex in a tree that occurs later in the forest.

Lemma 6.10 (No left-right paths between top-level trees)
If (ts 4+- us = dfs g vs), then Vv E ts . Vw E us .v -i-+ w

6.4. Correctness of DFS 95

Proof

ts +F us dfs 9 vs AvE ts AWE us
Definition of dfs I

ts * us = prune 0 (generates g vs) AvE ts AWE us
Using Lemma 6.7 partition vs into two lists vs = xs ys

choosing xs such that ts = prune 0 (generates g xs)
ts prune 0 (generates g xs)
A us = prune (xs4) (generates g ys)
AvE ts AwE us

vE prune 0 (generates g xs) AwE prune (xs4) (generates g ys)
I By Theorem 6.4 and Lemma 6.6

vE xs4 AwV xs4
Definition of 4

v --/-+ W
m

Deeper within each tree of the forest, there can be paths that traverse a tree from
left to right, but the absence of any graph edges which cross the tree structure from
left to right implies that the path has to follow the tree structure. In other words the
only way to get from v to w is via (an ancestor of) x, the point at which the forests

that contain v and w are combined (otherwise there would be a left-right cross edge).
Thus there is also a path from v to x. This may be formally expressed:

Lemma 6.11

If the tree (Node x (ts *- us)) is a subtree occurring anywhere within dff g, then

Vv E ts
-

Vw E us -v --4 w =: e v --4 x

Unfortunately we don't have a calculational style proof of this lemma. It turns out
to be difficult because the proof requires knowledge of the depth-first forest creation
process. Nevertheless, the lemma may be shown by reasoning about a process, which
is a common style of proof given in traditional texts. An informal argument ii. this
style is now given.

Since w is in us and only one w can exist in dff g, w is not in ts. If there is a path
from v to w, w would become a descendant of v unless the path from v to w contains

96 Chapter 6. Depth-first search based algorithms

a vertex that has been visited before (call it p). Vertex p will either be an ancestor
of v or in a previously visited tree. If p is in a previously visited tree then w would
also be in a previously visited tree, since p -+ w. But w is in us which occurs to the
right of ts. On the other hand, it is possible for p to be an ancestor of v, and w to be

a descendant of p. Hence v --4 p where (Node p (ts 44- us)) is a subtree occurring
anywhere within dff g.

6.4.1 Ordering properties of DFS

Now two ordering properties are given that show the relationship between the initial

order of vertices given to dfs, and the structure of the forest.

Lemma 6.12 (Initial ordering property)
The function dfs satisfies Property 6.3.

as-+[Node a bs]-Wcs=dfsg vs =ý, VbE [Node a bs]+Fcs . a<,, b

for a and b in vs. The notation <,, is used for the ordering induced by the list of
vertices vs. that is. v <,, w if v=w or if v occurs earlier in vs than w.

Proof First the left part of the implication is transformed:

as +F [Node a bs I -* cs = dfs g vs
Definition of dfs

as 4+- [Node a bs] 41- cs = prune 0 (generates g vs)

Now we use Lemma 6.7 twice. First partitioning vs into vs = (xs -i+ [z]) 41- ys such
that as +ý [Node a bs]= prune 0 (generates g (xs +ý [z])). Then partitioning xs +F (z)

such that as = prune 0 (generates g xs), clearly z=a and we have,

as prune 0 (generates g xs)
A Node a bs]= prune P, (generates g [a])

A cs = prune P2 (generates g ys)

where P, = reaches g0 xs and P2 = P, U reaches g P, [a].

6.4. '' Correctness of DFS 97

Now,

bE [Node a bs]-fFcs
bE prune P, (generates g [a]) 44- prune P2 (generates g ys)

By Lemma 6.6

b P, U P2

Theorem 6.4

b XS4

=> As bV xs and bE xs +ý [a] -++- ys
bE [a] +ý ys

=> a <,, b
11

This second property is used in a proof of the strongly connected components algo-
rithm given later.

Lemma 6.13

Let a and b be any two vertices. Write --+ for paths in the graph g, and < for the

ordering induced by the list of vertices vs. Then

t Er dfs g vs -aEtAbEt
3c .c -4 aAc --4 b

(V d. d --ý avd --+ b =* c< d)

This Lemma says that:

given two vertices that occur within a single depth-first tree (taken from the
forest), then there is a predecessor of both (with respect to --*) that occurs
earlier in vs than any other predecessor of either. (If this were not the case,
then a and b would end up in different trees).

if the earliest predecessor of either a or b is a predecessor of them both, then

they will end up in the same tree (rooted by this predecessor).

98 Chapter 6. Depth-first search based algorithms -

Proof

(=)
3tE dfs g vs . a, bEt

3ts, us, xs, c . ts4+-[Node c x-5]+Fus= dfs g vs A a, b E Node c xs
Theorem 6.8, and excluded middle

I

A (c -+ aAc --+ b) A (Vd .d -1-4 aVd --+ a)
Lemma 6.10, aE Icl U Yxs UY us

A (c --+ aAc -+ b)

A (Vd
.d -ý-+ aVdEfc}U 37 xs UY us)

Lemma 6.12 1

A (c -4 aAc --4 b) A (Vd
-daVc< d)

Similarly for b as for a

A (c -+ aAc ---+ b)

A (Vd .
(d --ý4 aVc< d) A (d -i-+ bvc< d))

3c .c -4 aAc --+ bA (Vd
-d -+ aVd --+ b =ý, c< d)

I
()

3c caAc --ý bA (Vd .d --* aVd -+ b =: ý c< d)

BY spanning property, a, b, c E, dfs g vs, consider CEt
A ts +- [t] 4+- us = dfs g vs AcEt

A (a E ts VaEtVaE us)
BY no left-right edges (Lemma 6.10) c ---+ aAcEt=: ý* aý us
A ts 4+- [t] 4+- us = dfs g vs AcEtA (a E ts VaE t)

Assume a E, ts, and c on sider aE Node e bs I

A as +F [Node e bs cs -+ [t) -++- us = dfs g vs AcEt
AaE Node, e bs

By initial ordering (Lemma 6.12)

A ((a E ts A (3e
.e ---+ aAe <- c)) VaE t)

(V d. d ---+ a =* c< d)

A ((a E ts A '('-nVe
.e --+ a => c< e)) VaE t)

AaEt

Similarly for b as for a

3t, ts, us . a, bEtA ts 4+- [t] 4+- us = dfs g vs
0

6.5. Efficient implementation of p'rune 99

6.5 Efficient implementation of prune

The easiest way to achieve an efficient implementation of prune is to make use of

state transformers, and mimic the imperative technique of maintaining an array of
booleans, indexed by the set elements. This is what is done here.

If paying an extra logarithmic factor is acceptable, then it is possible to dispense

completely with the imperative features used in prune, and to use an implementation

of sets based upon balanced trees, for example.

The set-operations required are initialisation (the empty set), membership test, and
addition of a singleton. While it is acceptable to spend linear time in generating
the empty set (as it is only done once), it is essential that the other operations are
performed in constant time.

The implementation of vertex sets is easy:

type Set s= MutArr s Vertex Bool

mkEmpty :: Bounds -> ST s (Set s)

mkEmpty bnds = newArr bnds False

contains :: Set s -> Vertex -> ST s Bool

contains mv= readArr mv

include :: Set s -> Vertex -> ST s ()

include mv= writeArr mv True

Using these, prune is therefore defined as:

prune :: Bounds Forest Vertex -> Forest Vertex

prune bnds ts runST (do ým <- mkEmpty bnds;

chop m ts

1)

The prune function begins by introducing a fresh state thread, then generates an

empty set within that thread and calls chop. The final result of prune is the value

generated by chop, the final state being discarded.

100 Chapter 6. Deptli-first search, based algoritlims

chop :: Set s -> Forest Vertex -> ST s (F'orest Vertex)

chop mD= return

chop m (Node v ts : us) = do ý visited <- contains m v;
if visited then

chop m us
else do ý include m v;

as <- chop m ts;

bs <- chop m us;

return (Node v as: bs)
I

I

When chopping a list of trees, the root of the first is examined. If it has occurred
before, the whole tree is discarded. If not, the vertex is added to the set represented
by m, and two further calls to chop are made in sequence.

The first, namely, chop m ts, prunes the forest of descendants of v, adding all these
to the set of marked vertices. Once this is complete, the pruned subf6rest is named

as, and the remainder of the original forest is chopped. The result of this is, in turn,

named bs, and the resulting forest is constructed from the two.

All this is done lazily, on demand. The state combinators force the computation
to follow a predetermined linear sequence, but exactly where in that sequence the

computation is, is determined by external demand. Thus if only the top-most left-

most vertex were demanded then that is all that would be produced. On the other
hand, if only the final tree of the forest is demanded, then because the set of marks is

singIC-threaded, all the previous trees will be produced. This is not as restrictive as
it may at first seem, however, since all the trees must be computed by DFS, anyway,
in order to produce the last one.

At this point one, may wonder whether any benefit has been gained by using a fu-nc-

tional language. After all, the code looks fairly imperative. To some extent such a
comment would be justified, but it is important to note that this is the only place
in the development that destructive operations have to be used to gain efficiency.
The flexibility is there to gain the best of both worlds: destructive update, is only
used where it is vital, everywhere else we may use the powerful modularity options
provided by lazy functional languages.

6.5. Efficient implementation of prune 101

6.5.1 Equivalence of stateful prune with purely functional

prune

An equivalence is now shown of the specification of prune (p. 88) with the imperative

implementation of prune given in the last section. Equivalent in the sense that, if the

two functions are given the same arguments, they will return the same value. First

another version of prune is derived from the specification:

sprune Forest Vertex -+ Set Vertex -+ (Forest Vertex, Set Vertex)

sprune P= (HIP)

sprune(Nodexts: us)P JxEP = spruneusP
XýP= (Node x as : bs, R)

where
(as, Q) = sprune ts (lx} U P)
(bs, R) = sprune us Q

Theorem 6.14
For a list of trees ts and a set of vertices P:

prune P ts = fst(sprune ts P)

Sketch Proof

The proof uses the transformation technique known as tupling (Burstall and Darlington

1977). The function sprune is derived from prune by using the following tuple struc-
ture:

sprune ts P= (prune P ts, PUF (prune P ts))

Ur sing case analysis prune is unfolded until we have an instance of the above property.
When an instance occurs we fold back, giving the above recursive definition of sprune.

0

The function sprune, although purely functional, is a state manipulator. The state

in sprune being the set of visited vertices. By using the definitions of (;) and return,

102 Chapter 6. Depth-first search based algorithms

sprune may, be rewritten as follows:

sprune Forest Vertex ST s (Forest Vertex)

sprune return []

sprune (Node v ts : us) do I visited +- contains v;
if visited then

sprune us

else do I include v;
as 4-- sprune ts;
bs +- sprune us;
return (Node v as : bs)

I

where

contains :: Vertex -ý ST 8 Bool

contains v= \P -4 (v E P, P)

include :: Vertex -+ ST s ()

include v= \P -4 ((), JVJ U P)

Theorem 6.15
For a list of trees ts:

sprune ts 0= prune bnds ts

where bnds defines the range of vertices used. This version of prune refers to 'the

implementation given on page 99.

Sketcli Proof The definition of chop is visibly the same as sprune modulo chop
taking a re

'
ference argument. The chief difference is in the way sets are represented,

i. e. the definitions of contains and include. The formal proof relies on showing that

arrays can be used to represent sets, which is well-known (Aho et al, 1983). The
details of this are left out here. Proposition 6.16 is the critical transformation, that

converts between a functional and an imperative program. 0

6.6. Depth-first search algorithms 103

Proposition 6.16 (runST-introduction)

Given a functional expression e, the following holds:

e= runST (return e)

6.6 Depth-first search algorithms

6.6.1 Depth-first search numbering

Having specified and implemented DFS we turn to consider how it may be used. The
first algorithm is straightforward. We wish to assign to each vertex a number which
indicates where that vertex came in the search. A number of other algorithms make
use of this depth-first search number, including the biconnected components algorithm
that appears later, for example.

Depth-first ordering of a graph is expressed most simply by flattening the depth-first

forest in preorder. Preorder on trees and forests places ancestors before descendants

and left subtrees before right subtrees. The use of repeated appends (++) caused by

concat introduces an extra logarithmic factor here for the average case, but this is

easily removed using standard transformations.

preorder :: Tree a -> [a]

preorder (Node a ts) = [a] ++ preorderF ts

preorderF :: Forest a -> [a]

preorderF ts = concat (map preorder ts)

Now obtaining a list of vertices in depth-first order is easy:

preOrd :: Graph -> [Vertex]

preOrd g= preorderF (dff g)

It is often convenient, however, to translate such an ordered list into actual numbers.
For this the function tabulate could be used:

tabulate :: Bounds -> [Vertex] -> Table Int

tabulate bnds vs = array bnds (zip vs [I..])

104 Chapter 6. Depth-first search based algorithms

which zips the vertices together with the positive integers 1,2,3, ...,, and (in linear
time) builds an array of these numbers, indexed by the vertices.

These can be packaged up into a function as follows:

preArr :: Bounds -> Forest Vertex -> Table Int

preArr bnds ts = tabulate bnds (preorderF ts)

(it turns out to be convenient for later algorithms if such functions take the depth-first
forest as an argument, rather than construct the forest themselves.)

6.6.2 Topological sorting

The converse to preorder is postorder, and unsurprisingly this turns out to be useful in
its own right. Postorder places descendants before ancestors and left subtrees before

right subtrees:

postorder :: Tree a -> [a]

postorder (Node a ts) = postorderF ts ++ (a]

postorderF :: Forest a ->-[a]

postorderF ts = concat (map postorder ts)

So, like with preorder, postorder is define

postOrd :: Graph -> [Vertex]

postOrd g= postorderF (dff g)

The lack of left-right cross edges in DFS forests leads to a pleasant property when a
DFS forest is flattened in postorder. This is expressed with the following definition.

Definition (Post-ordering)
A linear ordering < on vertices is a post-ordering with respect to a graph g exactly
when,

v<w A V-4w =: ý- 3u. v+--4u A w<u

(where v()u means v ---+ u and u --4 v). In words, this definition states that,
if from some vertex v there is a path to a vertex later in the ordering, then there is

6.6. Depth-first search algorithms 105

also a vertex u which occurs no earlier than w and which, like w is also reachable by

a path from v. In addition, however, there is also a path from u to v.

This property is so-named because post order flattening of depth first forests have

this property.

Theorem 6.17
If vs = postOrd g, then the order in which the vertices appear in vs is a post-ordering
with respect to g.

Proof If v comes before w in a post order flattening of a forest, then either w is

an ancestor of v, or w is to the right of v in the forest. In the first case, take w as u.
For the second, note that as v -+ w, by Lemma 6.10, v and w cannot be in different

trees of the forest. Then by Lemma 6.11, the lowest common ancestor of v and w
will do. 11

All this can be applied to topological sorting. A topological sort is an arrangement
of the vertices of a directed acyclic graph into a linear sequence vl,. .., v,, such that
there are no edges from vj to vi where i<j. This problem arises quite frequently,

where a set of tasks need to be scheduled, such that every task can only be performed

after the tasks it depends on are performed.

Ný, e define,

topSort :: Graph -> [Vertex]

topSort g= reverse (postOrd g)

Tlieorem 6.18 (Topological sort)
Given an acyclic directed graph g,

Va, bE topSort g. a -+ b =* a

106 Chapter 6. Depth-first search based algorithms

Proof

Va, bE topSort g. a --* b
I Excluded middle, (: ýp) is defined by postOrd

a<pb v b<pa
ý (5p) is a post-ordering, Theorem 6.17

(3c. a()cA b<pc) V b<pa

As g is acyclic, the first disjunct is false when a0b

a= bV b<Pa
(: 5p)

a<b
0

6.6.3 Weakly connected components

Two vertices in an undirected graph are connected if there is a path from the one
to the other. In a directed graph, two vertices are weakly connected if they would
be connected in the graph made by viewing each edge as undirected. Finally, with
an undirected graph, each tree in the depth-first spanning forest will contain exactly
those vertices which constitute a single component.

This is translated directly into a program. The function components takes a graph
and produces a forest, where each tree represents a connected component.

components :: Graph -> Forest Vertex

components g= dff (undirected g)

A graph is connected if there is exactly one component:

isConnected :: Graph -> Bool

isConnected g= length (components g)

Theorem 6.19 (Connected components)
Given a directed graph g,

t Er components g. a, bEt -4=4* a()gu

6.6. Depth-first search algorithms 107

The notation gu is the undirected graph such that all directed edges in g are undi-
rected edges in g U.

Proof

(=)

3t Er components g. a, bEt

Definition of components
3t Er dff (undirected g) . a, bEt

Take a common ancestor x of a and b

x --4t aAx --+t b

Lemma tree edges --4t are graph edges)9U

xyaAxyb
Transitivity

a ý--+, u b

(=)

abU
By spanning Property 6.1 a, bE dff g

a, bE dff (undirected g)
Choose t E,. dff (undirected g) such that aEt

as -H- [t] +ý bs = dff (undirected g) AaEt
I By excluded middle

I

(b E as VbEtVbE bs) AaEt
I By no left-right cross edges (Lemma 6.10) bý bs

(b E as VbE t) AaEt
I Contradiction if bE as, as b --*, u a, by Lemma 6.10, aE as

aEtAbEt
0

108 Chapter 6. Depth-first search based algorithms

6.6.4 Strongly connected components

Two vertices in a directed graph are said to be strongly connected if each is reachable
from the other. A strongly connected component is a maximal subgraph, where all the
vertices are strongly connected with each other. This problem is well known to com-
piler writers as the dependency analysis problem - separating procedures/functions
into mutually recursive groups. We implement the double depth-first search algorithm
of Kosaraju (unpublished), and Sharir (1981).

scc :: Graph -> Forest Vertex

scc g= dfs (transposeG g) (reverse (postOrd g))

The vertices of a graph are ordered using postord. The reverse of this ordering is
used as the initial vertex order for a depth-first traversal on the transpose of the
graph. The result is a forest, where each tree constitutes a single strongly connected
component.

The algorithm is simply stated, but its correctness is not at all obvious. Nonetheless, 0
it may be proved as follows.

Tlieorern 6.20 (Strongly connected components)
Let a and b be any two vertices of g. Then

(I tEr8 cc 9. aEtAbE t) -##- a +--+

Proof

The proof proceeds by calculation. The notation gT will be used for the transpose
of g. Edges ---+ in gT will be edge

"s
+-- in g. Further, let <- be the post-ordering

defined by postOrd g. Then its reversal induces the ordering ý!. Now,

3t E7 scc 9. aEtAbEt

Definition of scc
1

3t Er dfs
-q

T (reverse (postOrd g)) . a, bEt
ý By Lemma 6.13 1

3c, c ý-- aAc ý-- b
(Vd .d ý- avd ý- b =: ý c> d)

4=#- ýc. a --+ c
(Vd .a ---> dVb --4 d =: ý <

6.6. Depth-first search algorithms 109

From here on are loop of implications is constructed.

3c. a--+c A b-+c

A (Vd
.a ---+ dVb -+ d =: ý d< c)

Consider d=a and d=bI

3c -a -4 cAa<cAb --ý cAb<c
A (V d-a --+ dVb -+ d =* d< c)

1
:5 is a post-ordering

I

3c .
(3e a)eAc< e) A (3f

.b +--+ fAc< f)
A (V dadVb --+ d =ý d< c)

fec
and f=c using (Vd

...
3c .a)cAbc

Transitivity

a)b

which gives us one direction. But to complete the loop:

a
+- b

There is a latest vertex reachable from a or b

abA3c. (a ---ý cVb --+ c)
A (V d. a ---+ dVbd =ý, d< c)

Transitivity of
3ca ---ý cAb --+ c

(Vd .a -* dvb ---+ d =* d

as required, and so the theorem is proved. 0

To the best of our knowledge, this is the first calculational proof of this algorithm.
Traditional proofs (see Corman et al. (1990), for example) typically take many pages
of wordy argument. In contrast, because an earlier algorithm is reused, its properties
can also be reused, giving a compact proof. Similarly, we believe that it is because

we are using the DFS forest as the basis of our program that our proofs are simplified
as they are proofs about values rather than about processes.

A minor variation on this algorithm is to reverse, the roles of the original and trans-
posed graphs:

110 Chapter 6. Depth-first search based algoritlinis

sccl :: Graph -> Forest Vertex

sccl g= dfs g (reverse (postOrd (transposeG

The advantage now is that not only does the result express the strongly connected
components, but it is also a valid depth-first forest for the original graph (rather
than for the transposed graph). This alternative works as the strongly connected
components in a graph are the same as the strongly connected components in the
transpose of the graph.

To determine if a graph is strongly-connected, the function scc is used to check if a
single component is returned:

isScc :: Graph -> Bool

isScc g= length (scc g)

6.6.5 Classifying edges

We have already seen the value of classifying the graph edges with respect to a given
depth-first search. This idea is coded by building subgraphs of the original containing
all the same vertices, but only a particular kind of edge.

Tree edges are easiest, these are just the edges that appear exp licitly in the spanning
forest. The other edges may be distinguished by comparing preorder and/or postorder
numbers of the vertices of an edge. The situation is summarised in the following
diagram:

'ftee, Forward

preorder: v W

Back, Cross

Back

postorder: v W

71ýree, Forward, Cross

6.6. Depth-first search algorithms ill

The above diagram expresses the relationship between the four types of edge (tree

edges, forward edges, back edges, and cross edges) and the preorder and postorder
numbers. Only back edges go from lower postorder numbers to higher, whereas only
cross edges go from higher to lower in both orderings. Forward edges, which are the
composition of tree edges, cannot be distinguished from tree edges by this means -
both tree edges and forward edges go from lower preorder numbers to higher (and
conversely in postorder) - but since we can already determine which are tree edges
there is no problem. The implementation of these principles is now immediate and
presented in Figure 6.4.

tree :: Bounds -> Forest Vertex -> Graph
tree bnds ts = buildG bnds (edgesF ts)

where
edgesF ts = concat (map edgesT ts)
edgesT (Node v ts) =[(v, w) I Node w us<-ts] ++ edgesF ts

back :: Graph -> Table Int Graph -- O(V+E)
back g post = mapA select g

where select v ws =[w w<-ws, post! v<post! w]

cross :: Graph -> Table Int -> Table Int -> Graph -- O(V+E)
cross g pre post = mapA select g

where select v ws =IwI w<-ws, post! v>post! w, pre! v>pre! wl

forward :: Graph -> Graph -> Table Int -> Graph
forward g tree pre = mapA ,, elect g

where select v ws =[wI w<-ws, pre! v<pre! wl \\ tree! v

Figure 6.4 Classification of graph edges.

To classify an edge the depth-first spanning forest is generated, and used to produce
preorder and postorder numbers. These numbers give all the information required to
construct the appropriate subgraph. We have been slack with the implementations

of tree, and forward. Neither of these implementations is linear-time. The function

tree can be made to run in linear-time by making edgesF linear, this is achieved by

using standard transformation techniques (Section 8.2). The function f orward is not
linear-time because of the quadratic list difference function. This inefficiency can be

removed by ordering both lists, and using another list difference operator which takes

112 Chapter 6. Depth-first search based algorithms

advantage of the ordering.

6.6.6 Detecting rooted graphs

A root of a graph is a vertex r such that every other vertex in the graph can be
reached by a path from r. Hence,

3r . Vv Eg. r ---+ v

If we perform a DFS of a graph, and if a root exists it will clearly be in the final tree
constructed. Otherwise there would be a left to right edge from the root. Furthermore,
if the graph is rooted then the root of the last DFS tree will be a root of the graph.
If performing a second DFS starting from the root of the last tree produces just one
tree, then the graph is rooted, otherwise the graph has no root. So the algorithm is
simply expressed as:

rooted :: Graph -> Bool O(V+E)

rooted g= length ts == I

length (dfs g (preorderF (reverse ts)))

where ts = dff g

6.6.7 Finding reachable vertices

Finding all the vertices that are reachable from a single vertex v demonstrates that
df s doesn't have to take all the vertices as its second argument. Commencing a search
at v will construct a tree containing all of v's reachable vertices. This is then flattened

with preorder to produce the desired list.

reachable :: Graph -> Vertex -> [Vertex] -- O(V+E)

reachable gv= preorderF (dfs g [vD

Lemma 6.21
Flattening the finite and well-defined forest ts with preorderF ts returns all -the
nodes that are contained in ts.

Vx. ts -xEF ts 4=* xE preorderF ts

6.6. Depth-first search algorithms 113

Proof By induction on tree depths, that is the following is shown,

Vn > 0, x, ts -
xE T7(depthPruneF n ts) 4==> xE preorderF (depthPruneF n ts)

where depthPrune has the following definition:

depthPruneF :: Int [Tree a] -> [Tree a]
depthPruneF 0 ts =
depthPruneF d ts = map (depthPrune d) ts

depthPrune :: Int -> Tree a -> Tree a

depthPrune d (Node x ts) = Node x (depthPruneF (d-1) ts)
0

One application of this algorithm is to test for the existence of a path between two

vertices:

path :: Graph -> Vertex -> Vertex -> Bool -- O(V+E)

path gvw=w 'elem' (reachable g v)

The elem test is lazy: it returns True as soon as a match is found. Thus the result of

reachable is demanded lazily, and so only produced lazily. As soon as the required
vertex is found the generation of the DFS forest ceases. Thus df s implements a true

search and not merely a complete traversal.

Theorem 6.22 (Paths)

path gvw -#=* v -4 w

114 Chapter 6. Depth-first search based algorithms;

Proof

path gvw
Definition of path

w 'elem' (reachable g v)
f Unfolding definitions of reachable and dff

w 'elern' (preorderF (prune 0 (generates g [v])))

Lemma 6.21 1

wEY (prune 0 (generates g [v]))

Definition of reaches

wE reaches g0 [v]
1 By Theorem 6.4

wE Vý
I Definition of

wEIxIv --+ x
v --+ w

EI

6.6.8 Biconnected components

This section looks at programming a more complex algorithm - finding biconnected

components. An undirected graph is biconnected if the removal of any vertex leaves

the remaining subgraph connected. A biconnected component is a maximal subgraph
that is biconnected. This has a bearing in the problem of reliability in communication

networks. For example, if you want to avoid driving through a particular town, is

there an alternative' route? +-

If a graph is not biconnected the vertices whose removal disconnects the graph, are
known as articulation points. Locating articulation points allows a graph to be par-
titioned into biconnected components (actually a partition of the edges). In Figure
6.5 vertices that are articulation points are marked with an asterisk. The naYve,
brute force method is to remove each vertex in turn and check whether the remain-
ing subgraph is connected. However, this would require O(V(V + E)) time, since a
connectedness check takes O(V + E) time. A more efficient algorithm is described

6.6. Deptli-first' search algorithms 115

a

e* fg

h

Figure 6.5 An undirected graph.

by Tarjan (1972), where biconnected components are found during the course of a
depth-first search in O(V + E) time. Here we apply the same theory as Tarjan, but

express it via explicit intermediate values.

Tarjan's method is based on the following theorem:

Theorem 6.23

Given a depth-first spanning forest of a graph, v is an articulation point in the graph
if and only if: (i) v is a root with more than one child; or (ii) v is not a root, and for

all proper descendants w of v there are no edges to any proper ancestors of v.

This theorem is applied by associating a low point number with every vertex. The

low point number of v is the smallest DFS numbered vertex that can be reached by

following zero or more tree edges, and then along a single graph edge.

Low point numbers are calculated by traversing the DFS trees bottom-up, and as-

sociating each vertex with its low point number. The function label, (see Figure

6-7) annotates a tree with both depth-first numbers and low-point numbers. At anv

vertex, the low point number is the minimum of:

(i) the DFS number of the vertex;

(ii) the DFS numbers of the vertices reached by a single edge; and

(iii) the low point numbers of the vertex's descendants in the tree.

r-
For example, the result of running label on the DFS spanning tree produced from

the graph in Figure 6.5, gives the annotated tree depicted in Figure 6.6.

116 Chapter 6. Depth-first search based algorithms

C(2,1)

1'*'d(3,1)

e(4,3) h(10,2)

fI (5,4)

b(6,5) i(8,4)

9(7,5) j(9,8)

Figure 6.6 The depth-first forest for the undirected graph.

Dashed lines are the important back edges usedfor calculating low points. Tree nodes
are triples, for instance, e(4,3), represents the triple (e , 4,3), where 4 is the depth-first

number and 3 the low point number of vertex e.

From the low points for vertices, articulation points can be calculated. By part (ii) of
Theorem 6.23 -if the depth-first number of v is less than or equal to the low-point of

all proper descendants w of v then v is an articulation point. But since the low-point

numbers of descendants of v are always greater than or equal to the low-point for v,

we can determine if v is an articulation point by checking the low-point numbers of
its immediate children.

The function collect coalesces each DFS tree into a biconnected tree, that is, a tree

where the node elements are biconnected components. At each node the DFS number
is compared with the low-point number of all the children. If the child's low-point

number is strictly less than the node's DFS number, then the component involving

that vertex is not completed. On the other hand, if the node's DFS number is less

than or equal to the child's low-point number, then that component is completed
once the node is included. The function bicomps handles the special case of the root.
Finally, bcc ties all the other functions together.

Coalescing the tree from Figure 6.6 will produce the following forest containing two
trees.

While this algorithm is complex, again it is made up of individual components whose

6., 6.
_'

Depth-first search algorithms 117

bcc :: Graph -> Forest [Vertex] -- O(V+E)

bcc g= (concat map bicomps . map (label g dnum)) forest

where forest dff g
dnum = preArr (bounds g) forest

label :: Graph -> Table Int -> Tree Vertex -> Tree (Vertex, Int, Int)
label g dnum (Node v ts) = Node (v, dnum! v, lv) us

where us = map (label g dnum) ts
lv = minimum ([dnum! vl++[dnum! w I w<-g! v]

++[lu I Node (u, dw, lu) xs<-us])

bicomps :: Tree (Vertex, Int, Int) -> Forest [Vertex]
bicomps (Node (v, dv, lv) ts)

=E Node (v: vs) us 1 (1, Node vs us)<-map collect ts]

collect :: Tree (Vertex, Int, Int) -> (Int, Tree [Vertex])

collect (Node (v, dv, lv) ts) = (lv, Node (v: vs) cs)
where collected = map collect ts

vs = concat ws I (1w, Node ws us)<-collected, lw<dv]

cs = concat if lw<dv then us else [Node (v: ws) U-s]
ýI (1w, Node ws us)<-collected]

Figure 6.7 Biconnected components algorithm.

[a, c, d, hl
I

[d, e]

[e, f, il

b, g] lilil

Figure 6.8 The biconnected trees.

118 Chapter 6. Depth-firs, t search based algorithms

correctness may (potentially at least) be established independently of the other com-
ponents. This is quite unlike typical imperative presentations where the bones of the
recursive DFS procedure are filled out ' with the other, components of the algorithm,
resulting in a single monolithic procedure.

A graph is biconnected when the number of biconnected components is 1, hence the
following function:

isBcc :: Graph -> Bool O(V+E)

isBcc g = length (bcc g) I

6.6.9 Finding bridges

A bridge is an edge whose deletion disconnects an undirected graph, and an edge is
a bridge if and only if it does not lie on a cycle. Hence, a bridge is a biconnected
component with exactly one edge. Therefore, all the bridges can be found in an
undirected graph by returning all the components with two vertices.

bridges :: Graph 7>, [[Vertex]] - O(V+E)

bridges g= filter ((2==). length) (preorderF (bcc g))

r-f 11
k-,. L. L ap t er

Graph algorithms

In this chapter several traditional graph algorithms are implemented. As much as
possible purely functional implementations will be given. NVe will look at weighted
graph problems, and some dynamic graph algorithms. Weighted problems are ones
where the edges are labelled with some cost. The term dynamic graph algorithm is

used here to classify the algorithms where it is necessary to change the graph during

the course of the algorithm. These algorithms require state to be used throughout
for their efficiency. Although a more functional solution to these problems is not
ruled out, if one existed it would probably be more verbose than the imperative solu-
tion. Breadth-first search based algorithms will also be covered in this chapter. The
breadth-first algorithm itself will be expressed purely functionally using the lazyArray

combinator.

7.1 Kruskal's minimum spanning forest algorithm

Kruskal's (1956) algorithm takes an undirected graph, with the edges labelled with
costs, and returns a spanning forest of minimum cost. The algorithm is expressed

quite simply: repeatedly choose a new edge of minimum cost; add this edge to the

spanning forest if and only if it does not form a cycle. This process is complete when 0
all edges have been considered.

NVith the example graph in Figure 7.1, first the edge (d, c) is chosen, then (h, g),
(f ý c), (s, a), (d, e), (b, e), and (s, d). Next the edge (s, b) is chosen, but this forms

the cycle b, e, d, s, so (s, b) is rejected. Finally (f, g) is chosen which completes the

119

120 Chapter 7. Graph algorithms

5

f - ,q

s b

2

6g1h

Figure 7.1 An undirected labelled graph, and minimum cost spanning tree.

tree, also shown in Figure 7.1.

The crux of an efficient implementation requires fast cycle detection. Cycles can be

detected in almost constant-time by using a good implementation of disjoint sets.
Initially, each vertex is in a set of its own. When an edge is chosen the two disjoint

sets that contain the endpoints of the edge are combined, thus graph components are
being built-up. If two endpoints of a chosen edge are in the same component, then

there is a cycle. In this case the edge is elided and another one is chosen. The edges

are best stored in a priority queue, with their cost as the keys. So that at each stage
in the process the item with minimum key is the next edge considered.

The disjoint set operations union/find used here have an almost constant running
time, and were described in Section 4.8. The priority queue operations used here

were implemented with a binomial queue (Section 3.4) which has an 0 (log E) worst
case running time for deleteMi, n and insertQ. With these running timesIthis imple-7

mentation of Kruskal's algorithm should run in O(E log E) time.

initSet :: LGraph -> ST s (Set s Vertex)

initSet g= do set <- newArr (limitsL g) Empty;

applyST UnsSet set) (verticesL g);

return set
I

where insSet set x= insElem set x ExI

Initialisation of the priority queue runs in O(E log E) time.

7.2. Dijkstra's single-source shortest paths algorithm 121

kruskal :: LGraph -> [Edge]

kruskal g= runST (do set <- initSet g;
loop [I set (initQ g);

loop :: [Edge] -> Set s Vertex -> BinQ -> ST s [Edge]

loop es set q q==emptyQ = return es
True = do (pu, nu) <- find set u;

(pv, nv) <- find set v;
if nu==nv then loop es set qI

else do union set pu pv nu;
loop ((u, v): es) set qI

where q' = deleteMin q
(u, v) = entry (findMin q)

Figure 7.2 Kruskal's minimum spanning forest algorithm.

initQ :: LGraph -> BinQ

initQ g= insertMany [(e, weight g e) I e<-edgesL g]

7.2 Dijkstra's single-source shortest paths algorithm

Dijkstra (1959) presented two algorithms on undirected graphs, one of which is to
find the shortest path between two given vertices. This is extended here to find the

shortest path from a source vertex to every other vertex in the graph. Each vertex
is labelled with its distance from the source, initially all vertices are marked with a
sentinel value larger than any other, except the source which will have a label of 0.
Then, we repeatedly choose the vertex with minimum distance and update all of its

neighbours' distances.

In the example (Figure 7.3), vertex s is the source vertex. Initially, vertex s is chosen

as it has the smallest distance from itself, and its neighbours a, b, and d have their
distances updated. Next, a new vertex is chosen with minimum distance, in this case
the vertex a is chosen, - then its neighbours are updated. A vertex's distance from the

source is only updated if the new path is of less cost than the old path, that is, the

122 Chapter 7. Grapli, algoritlims

25
(D- b

4

02

9

f -9-h 61

25
b

4ce6

6fh 12 13

Figure 7.3 An undirected labelled graph, and shortest paths spanning tree.

new distance w is updated with:

min (distance w) (distance v+ weight (v, w))

for neighbour w of v.

The implementation of Dijkstra's algorithm (Figure 7-4) is quite traditional. All the
vertices are placed into a priority queue with their initial distances from the source
as key. This is appropriate, since the required vertex is retrieved with deleteMinPQ,
and decreaseKey is used when a vertex's distance is updated. The Maybe datatype
is used for keys so that the sentinel distances are Nothing and known distances are
Just distance. The priority queue is initialised with:

initQ :: LGraph -> Vertex -> BinQ

initQ gs= insertMany ((s, Just 0): [(v, Nothing) I v<-verticesL g, s/=v])

where s is the source vertex. Ordering is defined on labels so that the sentinel Nothing
is larger than all defined distances:

instance Ord Label where

Just a <= Just b= a<=b
Nothing <= Just b= False

<= Nothing = True

An updatable array of distances is maintained throughout the algorithm, which forces
us to remain inside the monadic code.

7.3. Floyd's all shortest paths algorithm 123

type Entry = Vertex

type key = Label

dijkstra :: LGraph -> Array Vertex Label
dijkstra gs= runST (do ý dist <- newArr (limitsL g) Nothing;

writeArr dist s (Just 0);
loop dist g (initq g s);
freezeArr dist

1)

loop :: MutArr s Vertex Label -> LGraph -> BinQ -> ST s0
loop dist gq isEmptyPQ q= return ()

otherwise = do us <- mapST getUps (succL g v);
loop dist g (foldr decreaseKey qI us)

where (v, dv) = findMinPQ q
ql = deleteMinPQ q

getUps w= do dw <- readArr dist w;
let dw' = min dw (dv + weight g (v, w)) in

writeArr dist w dw';

return (w, dw')

Figure 7.4 Dijkstra's single-source shortest paths algorithm.

7.3 Floyd's all shortest paths algorithm

The all-pairs shortest paths problem is to compute the shortest paths from every

,
the problem is reduced to an algorithm vertex to every other vertex. For simplicity

to find just the lengths of the shortest paths. Our purely functional implementation
is based on Floyd's (1962) algorithm, which is best described in terms of induction
(Manber 1989). Vertices must be ordered. A path from v to w is a k-path if the
highest vertex on the path, excluding v and w is k.

Inductive Ilypothesis: We know the lengths of the shortest paths between all

pairs of vertices, considering all paths up to k-paths, for some k<m.

124 Chapter 7. Graph algoritlims

In the base case only directed edges are considered. As usual with induction we need
to work out how to extend a solution for m to a solution for m+1. We now consider
all k-paths such that k<m+1. So the only new paths we need to consider are
m-paths. The shortest m-path between x and y, must contain m exactly once. It

can be calculated by taking the shortest i-path (for some i< m) from X ---ý m and
adding the shortest j-path (for some j< m) from m -+ y. By induction we already
know all the shortest paths up to k-paths, hence only two lengths need to be summed.

allShortPaths :: LGraph -> LGraph

allShortPaths g= foldr induct g (verticesL g)

induct :: Vertex -> LGraph -> LGraph
induct mg= short

where
short = mapA (const. update) g

update (x, y) wgt(x, m)+wgt(m, y)<wgt(x, y) = wgt(x, m)+wgt(m, y)
otherwise = wgt(x, y)

where
wgt (v, w) v<x && w<y = weight short (v, w)

otherwise = weight g (v, w)

Figure 7.5 All-pairs shortest-paths problem.

Figure 7.5 gives a functional implementation of Floyd's algorithm. If there is no edge
between two vertices then its length is oc, and self-loops have length 0. The functional

implementation runs in O(V3) time, since all-pairs of vertices are considered for each
vertex. The difference between this implementation and traditional presentations is

that a new array is created each time induct is called. This avoids using destructive

update. The function wgt is need to determine if the length between two vertices
should come from the new array being constructed, or from the old array.

7.3.1 Transitive closure

The transitive closure of a graph g is a graph h such that edge (v, w) is in h if and only
if v ---+g w. If there is a path between v apd w then there must be a shortest pathý
Hence the transitiN-e closure can be found by first using the all-pairs shortest paths

7.4. Vertex colouring 125

algorithm, and then creating an edge if there exists a shortest path. The algorithm
follows:

transitive-closure ::
transitive-closure g

where
short = allSb
toEdge False
toEdge True

LGraph -> LGraph

mapA (toEdge. const. isEdge short) short

ortPaths g
= Nothing

= Just 1

Figure 7.6 Transitive closure.

The implementation will not have the best performance, since the constant factor

overhead is quite large. But nonetheless, its asymptotic complexity is O(V'), since
we are mapping over the graph created by the all-pairs shortest paths algorithm.

7.4 Vertex colouring

The vertices of a graph can be coloured by ordering them and then colouring each
vertex with the first available colour, taking account of the vertices already coloured.
One way of ordering the vertices - which works quite well in practice, although it
doesn't necessarily give the best colouring - is to order by vertex degrees. This
heuristic was first recommended by Brelaz (1979).

colour :: Graph -> Table Vertex

colour g col
where

col array (bounds g) [(v, paint v) I v<-vs]
vertex0rd = array (bounds g) (zip vs
vs = degree0rd g
paint v= head crl! w I w<-g! v, vertex0rd! w<vertex0rd! vl)

Figure 7.7 A graph colouring algorithm.

Figure 7.7 gives a purely functional implementation of the vertex colouring algorithm.
(This was written by Simon Peyton Jones after seeing my stateful version.) Colours

126 ý Chapter 7. Graph algorithms

are represented by positive integers, which gives the ordering on them. Vertices are
ordered in descending degree order by degreeord. A table vertex0rd is created by

mapping vertices in this ordering with successive positive integers. Thus giving a
total ordering of vertices. The colour table col is created by applying paint to each
vertex in descending degree order. The function paint takes a vertex-and looks at
all of its coloured neighbours choosing the smallest colour (i. e. positive integer) that
doesn't match.

The algorithm is linear O(V + E) if the function paint is linear. It is linear because

all graph vertices are considered, and for each one all its edges are considered. In
the implementation, however, paint runs in 0(n') time, where n is the length of the
list of neighbour's colours. Nevertheless, if the list of neighbours is sorted, and a list
difference function is used to take this into account, then paint would run in O(n)
time.

7.5 Breadth-first search based algorithms -

Breadth-first search is a graph traversal strategy that is important for a host of
algorithms. The dual of breath-first search is depth-first search which was covered
extensively in Chapter 6. A breadth-first search of a graph fans out exploring the
adjacent vertices before penetrating deep into the graph. In the example shown in
Figure 7.8 a breadth-first traversal commences from vertex a, and bold edges highlight
the path taken.

Figure 7.8 A directed graph: bold edges give breadth-first traversal.

7.5. Breadth-first search based algorithms 127

7.5.1 Implementing BFS

Just like depth-first search, breadth-first search can be expressed as the composition
of prune and generate. The only difference is that pruning is done in a breadth-first

order.

bfs :: Graph -> [Vertex] -> [Tree Vertex]

bfs g vs = bfsPrune (generates v vs)

The implementation of breadth-first prune on graphs presented here is purely func-
tional, and runs in linear time with respect to the size of the graph. It is based on
two separate functional programming tricks. The first trick is a neat breadth-first
labelling algorithm described by Jones and Gibbons (1992); and the second is based

on a neat way of using the function lazyArray (Johnsson 1995) see Section 4.9. First

we start with a breadth-first pruning algorithm, albeit an inefficient one:

bfsPrune :: [Tree Vertex] -> [Tree Vertex]

bfsPrune ts = us where (us, ss) = traverse ts ([I: ss)

traverse :: [Tree Vertex] -> [[Vertex]] -> ([Tree Vertex], [[Vertex]])

traverse 0 ss =
traverse (Node x ts: us) (s: ss) = if x 'elem' s then (usl, sn)

else (Node x tsl: usl, sn)

where (tsl, sl) = traverse ts ss
(usl, sn) = traverse us ((x: s): sl)

The cleverness lies in the way the second argument to traverse is demanded. This

argument holds a list of states, where each state contains a list of the vertices currently
visited. The first state is empty, and the second state contains the first root node, and
so on. The subtrees of the first root node depend on later states, which in turn depend

on later trees, hence the demand driven basis of the algorithm. The inefficiency here
lies in the use of elem, which we now seek to remove.

First a table is constructed of breadth-first numbers for vertices. The function bf sord
does a breadth-first traversal returning a list of vertex/ breadth-first number pairs.
Th6 subtleness here lies the condition bf sNo! x==n, which will be true if this is the
first time x has been visited. If x has been visited before, there will already be a

128 ,
Chapter 7. Graph, algorithms.

vertex/ broad th- first number pair created by bf sOrd, and hence this will be contained
in the bf sNo array.

bfsNum :: Bounds -> [Tree Vertex] -> Table Int

bfsNum bnds ts = bfsNo

where
bfsNo :: Table Int

bfsNo = amap (\xs -> if null xs then 0 else head xs)
(lazyArray bnds (bfsOrd ts 1))

bfsOrd :: [Tree Vertex] -> Int -> E(Vertex, Int)]

bfsOrd 0n=

bfsOrd (Node x ts: us) n= (x, n):

if bfsNo! x==n then bfsOrd (us++ts) (n+l)

else bfsOrd (us++ts) n

Note bf sord is not efficient because of repeated appends, but this can be removed by

standard methods. Now that the table of breadth-first numbers is known, bf sPrune
can be re-written efficiently. Instead of doing an elem test to check if a vertex has
been visited before, bf sNo is used to check for previously visited vertices. 'The list

of states now contains the current breadth-first number. If when visiting x its state
number is the same as bf sN=! x then x has not been visited before.

7.5.2 Bfs numbering

Breadth-first numbers where used in the above implementation of BFS, so the above
algorithm may be reused to produce a table of BFS numbers.

bfsNums :: Graph -> [Vertex] -> Table Int -- O(V+E)

bfsNums g vs = bfsNum (bounds g) (bfs g vs)

7.5.3 Finding the diameter of a graph

The diameter of a graph is the longest of all the shortest paths between any two
vertices. Where a path's length is considered to be the number of edges it contains.

7.5. Breadth-first search based algorithms 129

bfsPrune :: (Vertex, Vertex) -> [Tree Vertex] -> [Tree Vertex]
bfsPrune b ts = us

where
(us, ns) = traverse ts (1: ns)
bfsNo = bfsNum b ts

traverse D ns = (11, ns)
traverse (Node x ts: us) (n: ns) = if b then (qs, ns')

else (Node x ps: qs, ns')
where

(b, n') = if bfsNo! x==n then (False, n+1)
else (True, n)

(ps, ms) = traverse ts ns
(qs, ns') = traverse us (nl: ms)

Figure 7.9 Efficient BFS pruning.

This can be found by creating a breadth-first search from each vertex, which yields a
shortest paths forest. Then it's simply a matter of finding the longest one, which is

(lone by converting all tree paths to lists, and finding the longest list.

diameter :: Graph -> Int -- O(V+E)

diameter g= depthF [head (bfs g [vD I v<-vertices

diameterPath :: Graph -> [Vertex]

diameterPath g= longestList (concat

E paths (head (bfs g [vl))] I v<-vertices gl)

paths :: Tree a ->

paths (Node x [1) = E[x]]

paths (Node x ts) = map (x:) (concat (map paths ts))

This version of paths is not the most efficient because of repeated appends caused by

concat, but again the inefficiency can be removed by standard techniques (Section
8.2).

130 Chapter 7., Graph algorithms

The auxiliary functions may be defined as follows:

longestList :: [[all -> [a]

longestList xss = snd (foldr f (O, [D xss)

where f xs (n, ys) = if m>n then (m, xs) else (n, ys)

where m= length xs

depth :: Tree a -> Int

depth (Node x ts) =I+ depthF ts

depthF Forest a -> Int

depthF =0
depthF (t: ts) = max (depth t) (depthF ts)

7.5.4 Shortest path between two vertices

A similar algorithm to the diameter problem is to find the fewest number of edges
between two vertices. This mky be done by first constructing the breadth-first tree
from a given vertex. All the paths are searched for the required vertex, and the paths

are built up during the traversal.

path :: Graph -> Vertex -> Vertex [Vertex]

path gvw= reverse (collect tw

where t= head (bfs g [v1)

collect :: Tree Vertex -> Vertex -> (Vertex]

collect (Node x ts) w ps

X==W = W: ps

otherwise = extract (map (\t->Collect tw (x: ps)) ts)

extract :: Hall [a]

extract 0

extract (xs: xss) null xs = extract xss

otherwise = xS

7.6. Discussion 131

7.5.5 Checking if a graph is bipartite

An undirected graph is bipartite if its vertices can be split into two sets, so that

every edge contains one vertex in each set. If a component is bipartite, then in a
breadth-first traversal, nodes at even numbered levels are in one set, and nodes at
odd numbered levels are in another set. If the level numbering between two vertices
in a graph edge is from odd to even or even to odd, then the component is bipartite.

isBipartite :: Graph -> [Vertex] -> Bool -- O(V+E)
isBipartite g vs = and [odd (depth! v - depth! w) I (v, w)<-edges gl

where
ts = bfs g vs
depth = depthArr (bounds g) ts

depthArr :: Bounds -> Forest Vertex -> Table Int
depthArr bnds ts = array bnds (preorderF (annotateF I ts))

annotateF :: Int -> Forest a -> Forest (a, Int)

annotateF n ts = map (ann n) ts

where
ann n (Node x ts) = Node (x, n) (annotateF (n+l) ts)

Figure 7.10 Checking if an undirected graph is bipartite.

7.6 Discussion

This chapter presented numerous graph algorithms in Haskell with no loss of ef-
ficiency. Some algorithms seem intrinsically to require state throughout such as:
1%'. ruskal*s minimum spanning forest algorithm (Section 7.1); and Dijkstra's shortest

paths algorithm (Section 7.2). These were called dynamic algorithms, because the

graph changes during the algorithm. The use of state can sometimes be avoided,

even although some information about parts of the graph changes during the algo-

rithm. This was demonstrated with algorithms for: graph colouring (Section 7.4);

and Floyd's all-pairs shortest paths algorithm (Section 7-3). With these algorithms

parts of the graph are being changed, but in a predictable manner. With the all-pairs

132 Chapter 7. Graph, algoritlims

shortest paths algorithm edges are repeatedly traversed in a fixed order. The same is
the case with graph colouring, except vertices were traversed in a fixed order.

Although our Haskell implementations of Dijkstra's and Kruskal's algorithms had to
use state, expressiveness was not completely lost. Purely functional data structures
and higher-order functions were used to good effect. Moreover if a purely function so-
lution exists for these algorithms, it will probably involve using a state-encapsulating
combinator. This was used in a purely functional solution of breadth-first search. The
combinator lazyArray was used to encapsulate the state. The resulting algorithm is
subtle, and more complex than an imperative implementation. Hence, although it is
necessary to experiment with these combinators, they currently do not seem to offer
any benefits over an imperative implementation.

Again in this chapter code reuse and modularity was demonstrated. The imple-
mentation of transitive closure (Section 7.3.1) was expressed as a mapping over the
result of the all-pairs shortest paths algorithm. Furthermore, several algorithms were
expressed in terms of breadth-first search (Section 7.5).

f-'If 11
k, -L-Lapter

Aspects of complexity, efficiency,
and style

Algorithm efficiency has been measured in terms of asymptotic complexity since
Knuth (1973a). With computers becoming ever faster, the more asymptotic com-
plexity matters. For example, suppose we have an algorithm that is quadratic in the

size of its input, that is 0(n'). If computing speed is increased by a factor of 100,
how much more input can be handled? Only 10 times as much unfortunately, because
in the time it used to take for n2 it now takes 100n 2= (10n)2. If the algorithm was
linear in its input, however, then 100 times as much input could be handled on the
faster machine.

Commonly the worst-case complexity of an algorithm is given, but this does not al-
ways give a reasonable correspondence with running time. For example, a component
of an algorithm may be executed many times, each time with a different cost. Taking

the sum of the worst case each time can be wildly pessimistic, since some runs may
have the best-case time. Tarjan (1985) discusses amortised complexity, which is a

more precise measure. Instead of taking the worst case every time, he amortises the
different costs. Sequences of operations are considered, rather than looking at each
operation independently. This is not to be confused with average-case analysis, which
considers the complexity of an operation with an average input.

Asymptotic complexity has been expounded upon by Tarjan and others. It has now

superseded empirical analysis for assessing algorithm efficiency. Asymptotic complex-
ity abstracts away from constant factors which different language implementations

may give. This seems the right approach, since it would be difficult to generalise

133

134 Chapter 8. Aspects of complexity, efficiency, and style

how many machine cycles an algorithm would take, especially when each language

compiler has its own nuances. Nevertheless, constant factors cannot be ignored out-
right. A price is being payed in constant factors for using a functional language, so
we should know what that price is. The easiest way to do this is to take empirical
measurements.

Hardly any work has been done to study the complexity of lazy functional languages,
though Sands (1990) in his thesis developed a simple calculus for time analysis of
strict functional languages; and he later extended this for lazy functional languages
(Sands 1990). ' The complexity of lazy functional languages is troublesome because
there isn't a static evaluation order. The complexity of a fragment of code is not
fixed; it can change depending on its surrounding components. The, complexity of
the function composition f. g is not the sum of the complexities of f and g. A well
known example of this phenomenon, due to Bird, is set as an exercise in Bird and
Wadler (1988, p. 158), and is further explained in Wadler (1988b). Given insertion

sort, and composing it with the function head, yields a function that returns the

minimum of a list:

minimum = head . insertion-sort

Insertion sort runs in 0(nl) time, but the minimum function that uses it runs in O(n)

time. This happens as only the head of the list is being demanded; computations
such as insertion on the tail are never demanded, hence not performed. In a strict
language this definition of minimum would be 0(n2), since the complexity of a strict
insertion-sort will not 'change with context. Another more realistic example of
this behaviour - that doesn't change the complexity, but has a large constant time
improvement - is path finding (Section 6.6.7). Examples of this kind illustrate that
lazy languages promote modularity.

8.1 The complexity of functional algorithms

Since functional languages are more amenable to formal manipulation a rigorous for-

mal analysi
's

of a functional program should be easier than for an imperative program.
This is usually the case with strict. functional languages, but non-strict functional lan-

guages pose numerous problems as described above. Let us first look at an example
of calculating the complexity of a simple functional program.

8.1. The complexity of functional algorithms 135

The usual approach (and the approach taken by Bjerner and Holmstr6m (1989), and
Sands (1990,1995)) is to derive a step-counting version of a function. The step-
counting version takes the same arguments as the original function, but returns the

computation cost; hence they are dubbed cost functions. The cost can be measured
in any units, the most convenient is the number of non-primitive function calls used
in the computation. This corresponds with the number of graph reductions made,
which is a more accurate measure. Not including the cost of primitives like (+) is

standard, since the goal in calculating cost is to determine an asymptotic time bound,

and the amount of time per (+) operation does not increase with larger numerical
inputs.

Each non-primitive function call will be counted with a cost of 1, and the notation
((E)) will be used to represent the cost of evaluating E. So, for example, given the
function definition:

f x. ". x=e

the cost of a call to this function is:

ei + «e { ei lxl,
..., e� Ix� 1 ýý

Cost will be expressed in terms of a functional language, which prevents new notation
bein- introduced. To begin with some cost rules for a strict language will be given. 0
These rules may be used for a function in a lazy language, if everything is fully

evaluated. If everything is fully evaluated, the order of evaluation does not change
the asymptotic time bound.

Vel'. ... e,,)))
((if el then e2 else e3))

((let x= el in e2))

((case e of
pat, -+ el

pat,, -4 en))

0

«ei» +---+ «en»

«ei» + if ei then «e2» else «e3)ý
«ei» + «e21e11xl)ý
«e)ý + ease e of

pat, -ý

pat,, ((en))

where e's are expressions, c is a constant, x is a variable, and pat are patterns.
Using these rules, it is straightforward to derive the cost functions for some basic list

136 Chapter 8. Aspects of complexity, efficiency, and style,

operations:

((11)) =0

ft : x3))
=0

fts 41- ys)) =1 +length xs
ý(map f xs)) =1+ sum x)) Ix +- xs]+ length xs
((reverse xs)) =1+ 2(length xs)
((concat xss)) =1+2 (length xss) + sum [length xs I xs (-- xss

These cost functions assume that their elements have been evaluated, which is not
the case with lazy evaluation. Nevertheless, this naYve approach is powerful enough
to calculate the complexity of lazy functions whose results are known to be fully

evaluated. An example of this is now given, which is the non-linear version of preorder
on general trees.

8.1.1 Example: preorder

The function preorder is a good example because it is a function on trees, and the
asymptote is not immediately obvious.

preorder :: Tree a -> [a]

preorder (Node x ts) = x: concat (map preorder ts)

To simplify the calculation only trees of the form t' will be considered, where b is the d

number of branches at each node and d is the depth of the tree. This tree is perfectly
balanced, and may be considered the average case. The function size will be used,
which returns the number of nodes in a tree, thus size(tb) = 0-1

d b-I

8.1. The complexity of functional algorithms 137

Case t1b, the singleton tree.

((preorder tb)) 1+ ((concat (map preorder
Cost of concat

2+ ((map preorder
+ case (map preorder []) of

11 -4 (([]))
(x : xS) -ý ft 41- concat xs))

2+ ((map preorder +
Cost of map

2+1+

3

tb Case d

tb)) =b tb ((preorder d Definition of preorder, tsd is a list of bd trees
tS b_1 1+ ftoncat (map preorder d

Definition of concat
I

2+ ((map preorder tsd'-l))

b_j) of + case (map preorder tsd

11
-*

C 1))

(x : xs) -4 ((x -+ concat xs))
b- Cost of map, definition of t8d

1

2+ (1 + b((preorder tdb-1)) + b)
+ (([Xl*

,, *7
Xsize

(t'il_ 1)
] -+ concat [xsl , ... i XSb-1

Cost of 4+-, and concat
tb 3+ b((preorder d-1)) +b

+ (1 + size (tb_
1)) + (I + 2(b - 1) + (b - 1)size (tb-

ddI
(tb) By size d

tb-

b-1
V-1 3+ b((preorder d 1)) + 3b +bb1

This is a recurrence'relation which can be solved by repeated substitution to yield:

((preorder tb (d + 6)bd d-1
d+ (d + 5)b ++ 7b +3

138 Chapter 8. Aspects of complexity, efficiency, and style

This gives the asymptote 0(dbd) or O(n log n) where n is the size of the tree. There-
fore, this is a slow algorithm for preorder, since O(n) is possible. The reason for
this behaviour is apparent in the proof, and is known as the repeated appends phe-
nomenon. The recursive call to preorder causes concats to be embedded inside each
other, hence the same lists are traversed several times.

Although the algorithm is slow, it is clear, good for equational reasoning, and close to
a specification of preorder. In an ideal world this inefficient version would be defined

and the compiler would be left to transform it into an efficient version. The next
section surnmarises some of the standard techniques for transforming examples like

preorder into efficient functions.

8.2 Standard optimisation techniques

Occasionally throughout the thesis an inefficient function has been given with a com-
ment that, by using standard transformation techniques, the inefficiency may be re-
moved. Here the most common techniques are surnmarised (Table 8-1). With func-
tional language compilers, it's a realistic proposition that an algorithm's complexity
may be improved by an automatic transformation. The last two techniques docu-

mented in the table are automatic. The foldr/build transformation has been imple-

mented in the Glasgow Haskell compiler, and this has the potential, to transform the
above preorder example into the linear-time version.

8.3 The complexity of stateful algorithms

Commands on the state are just function calls, but ultimately they will cause an
imperative action. These hidden actions have a cost, so assumptions need to be made
about the imperative actions that are being used. The monadic combinators return
and (;) are purely functional, so we can be precise about their cost. With the other

8.3. The coinplexity of stateful algoritlims 139

Teclinique and author Description
Tupling This is applied to functions that have multiple calls
Burstall and Darlington to themselves with different arguments. These are
(1977) combined to one call and the function returns a tuple

of the required results.
Fold/unfold This is a system of rules for transforming recursive
Burstall and Darlington equations, and is the basis for most other techniques.
(1977) Function calls are unfolded to their definitions, laws

are applied, and then definitions are folded back to
function calls.

Novel representation Lists are represented by functions, allowing list ap-
Hughes (1986) pend to be performed in 0(1) time.
Accumulating parame- An extra parameter is added to recursive functions,
ters which serves to accumulate an intermediate result.
Bird (1984a)
Deforestation An automatic algorithm, which fuses functions to-
NVadler (1988a) gether, removing intermediate data structures.
foldr/build An automatic algorithm for the removal of inter-
Gill et al. (1993) mediate data structures. Functions need to be re-

expressed in terms of special combinators. Then rules
for reducing these combinators are applied.

TAble 8.1 Summary of some standard transformation techniques, for improving the
efficiency of functional programs.

operations, however, some reasonable assumptions need to be made:

«return x» 1+ «X ýý
«m; n» 2+ «mý) + «n»
«runST m» 2+ «m»
«a <-- newArr (1, u) v» 2+ rangeSize (1, u)
«v <-- readArr a x» 2 +«x»
«writeArr ax v» 2+ «x» + «v»

We assume that 1, u, and a are fully evaluated. Again, this approach is only useful if
functions are being fully evaluated, but this is still of use for many examples.

140 Chapter 8. Aspects of complexity, efficiency, and style

8.3.1 Example: binsort

This example is taken from Section 4.7 and is the imperative functional version of
binsort. First consider the function insert:

insert :: Ix i => MutArr si [a] -> (a -> i) -> [a] -> ST s
insert bin key U= return ()

insert bin key (x: xs) = do let i= key x in

ys <- readArr bin i;

writeArr bin i (x: ys)

Case [].

((insert bin key 1+ ((return

2

Case (x : xs). Assume that the list xs is finite and well-defined.

((insert bin key (x xs)))
1+ ((do

let i key x in

ys ý-- readArr bin i;

writeArr bin i (x : ys);
insert bin xs

D)
Assume that key x will be demanded

I+ ((key x)) +2
+ ((ys <-- readArr bin i)) +2
+ ((writeArr bin i (x : ys))) +2
+ ((insert bin key xs))

1+ ((key x)) +2
+2+ ((i)) +2
+2 ((i)) + ((x : ys)) +2
+ ((insert bin key xs))

11 + ((key x)) + ((insert bin key xs))

8.3. The complexity of stateful algoritlims 141

Hence,

((insert bin key xs)) =2+ 11 (length xs) + sum [(ýkey x)) Ix +- xs]

Deriving the cost of extract is similar to the above calculation, and reveals the cost
function:

((extract bin is)) 2+ 8(length xs)
+sum [length xs i +- is, xs +- immutableBin! i

where immutableBin = runST (do freezeArr bin })

Now this cost is used together with the cost of insert for deriving the cost of binsort,

which has the definition:

binsort :: Ix i => (i, i) -> (a i) -> [a] -> [a]

binsort bnds key xs = runST (do bin <- newArr U, u) 0;

insert bin key xs;

extract bin (range bnds)

1)

The calculation proceeds as follows.

((binsort bnds key xs))
1+((dof

bin k-- newArr bnds
insert bin key xs;
extract bin (range bnds)

= 1+2

" ((bin +- newArr bnds [1)) +2
" ((insert bin key xs)) +2
" ((extract bin (range bnds)))
+3+ rangeSize bnds +
"2+ 11 (length xs) + sum ((key x)) Ix 4-- xs
" sum [length xs I xs ý-- readArr bin i, i 4-- range bnds
" ((range bnds))

14 + 9(rangeSize bnds) + 12(length xs) + sum [((key x)) Ix +- xs
+ ((range bnds))

142 Chapter 8. Aspects of complexity, efficiency, and style

Assuming that sum [((key x)) Ix +- xs] has asymptote 0 (length xS) and ((range bnds))
has asymptote 0(rangeSize bnds). Then,

((binsort bnds key xs))

has asymptote 0 (length xs + rangeSize bnds).

8.4 The complexity of lazy functions

In this section the cost of a lazy example is calculated to illustrate the difficulties
involved. This will be done in a fashion similar to Bjerner and Holmstr6m (1989).
The difference is in notation, and some details that they would include, will be left
out here. The notation (()) for cost is as before, except this time it is augmented with
two other arguments. - The first is a variable environment, and the second describes
how much of the expression inside (()) is demanded. So for example,

((inap f [2,7,6j)) (f = (*) 3) (o : 21 : 0)

describes the cost of evaluating map f [2,7,6] where f is defined as (*)3, and only
the second element of the resulting list is demanded. The most modest demand is 0

which describes I and says that no output at all should be produced. An unknown
demand will be denoted with J.

The chosen example comes from the graph colouring algorithm (Section 7.4) the
function paint was used to determine an unused colour for the latest vertex, the
definition is changed slightly here to a more general function:

paint xs = head (El..]\\xs)

this function is lazy by virtue of using the infinite list II- -I - The function M) is
defined in the Haskell Prelude as:

M) : Eq a => [a] -> [a] -> [a]

xs \\ ys = foldl del xs ys

where del [I = 11

del (x: xs) yI x==y = del xs y
I otherwise = x: del xs

8.4. The complexity of lazy functions 143

The- calculation commences as follows, where v is the fully evaluated value of the
required result.

((paint xs)) () (v)

2+ (([l..] xs)) (v
I Let xs 111,

- -,
Xn]

3+ ((foldl del [1..] [xl,..., Xnj)) () (V : 0)

= 3+n+((del (del (... (del [1..] xj) ...)) Xn)) () (V : 0)

= 3+n
+((del ys, x,,)) (ys, = del ys2 x,, -,

) (v : 0)

+((del ys2 x,, -,
)) (ys2 = del YS3 Xn-2) J2

+((del YS3 Xn-2)) (ys3 = del YS4 XnA 63

+((del [i..] xi)) () J,,

Now 'we need to'calculate the cost of del [1..] x. when a list of length n is demanded .L
from it:

((del [1..] X)) () (V1 : V2 : ... : V" : 0)

1+ ((if x == 1 then [2..] else x: del [2..] x)) () (vi V"
Taking the worst-case, that is x>nI

1+ ((1 : del [2..] x)) () (vj : v2 : ... : V" : 0)

=1+n+ ((1 :2:... : n: del [n+l..] x)) () (vj : v2: ... : V" : 0)

= 1+n

Going back to our calculation of paint, the difficulty now is calculating the Js.. The
details are left out here, since they require a demand analysis (Bjerner and Holmstr6m

1989), but an informal justification is given. Since we require a list with the head
defined from del ys, x, then ys, should be a list with at least the first two elements
defined. because one of them may match and be deleted. This requires YS2 having at
least three elements defined, and YS3 at least four elements, and so on until del [L.) x,
requires at least the first n elements to be defined.

144 Chapter 8. Aspects of complexity, efficiency, and style

Continuing,

= 3+n
+((del ys, x,,)) (Ysi = del Y82 Xn-1) (V : 0)

(V2 V2 +((del ys2 xn-,)ý (ys2 = del YS3 Xn-2) 12

+ý(del Y83 Xn-2)) (YS3
= del ys4 Xn-3) (V3 V3 3

12 V3

+((del [1..] xi)) () (v, ' : v2' V", n

By the above cost of del [1..] x
3+ n+2+3+ + (n+ 1)
3+n+ n(n+l)

2
1n2+ -*3 n+3 2

Giving the asymptote O(n 2) for paint.

8.5 Empirical measurements of some functional al-
gorithms

There are two main reasons to carrv out empirical measurements here: (i) to demon-
strate that some algorithms have the expected complexity; and (ii) to discover what
the constant factor is between our functional algorithms in Haskell and imperative
algorithms in a conventional language. Although analytical complexity has super-
seded empirical measurements; complexity analysis Of functional programs is still a
research topic. so some hard evidence is needed. Constant factors are also widely
regarded Nvith disdain. a certain magnitude of time difference is con-
sidered unacceptable. Clearly if Haskell programs run in days, whereas C runs in
seconds, this is unacceptable. Everybody has their own opinion as to what is an ac-
ceptable speed difference between functional and imperative. No judgement is made
here, but the question is answered by comparing a functional algorithm in Haskell
running on the Glasgow Haskell compiler with the same algorithm in C running on
the Gnu C compiler.

8.5. Empirical measurements of some functional algorithms 145

8.5.1 Evidence that we have the right asymptotic complexity

Some care is required when taking measurements. All the measurements reported here

where done on a large machine, which was not running any other major processes.
The amount of swapping, caching etc. was low. Each measurement is the mean user
time over three runs. The input data was generated by a random graph generator
not unlike that presented in Section 5.4.3. The graph was placed in a file and read
in, so the overheads of graph generation wasn't included.

The first measurements were taken on the strongly connected components algorithm
(Section 6.6.4) which should run in O(V + E) time. To test for linearity timings were
taken over many inputs (Figure 8.1).

SIC
450

4(X)

IN

Xx)

250

NX)

150

WO

50

0

9(XXX)
XXX)

I(XX)

-, [()(XX) 11

Figure 8.1 Measurements of the Haskell strongly connected components algorithm.

This graph shows that the timings are not linear. If they were linear the diagram

would show a plane. At first this is surprising, but what is probably happening is

that when'the input size becomes larger more of the heap is being used, and so more

garbage collection is taking place. This claim can be justified by removing the time
for garbage collection from the timings (Figure 8.2).

This gI raph (Figure 8.2) shows a plane demonstrating that the strongly connected

components algorithm runs in O(V + E) time. The next measurements were taken

on the same algorithm to determine its space usage, which should be 0(V+ E) space.
This was done by looking at how many bytes were allocated in the heap for many
input data sets. The results shown in Figure 8.3, show a plane, giving strong evidence

146 Chapter 8.
,

Aspects of complexity, efficiency, and style

s
2.5

20

15

10

.5

8(X)(X)
Qx)

I(XX)

1- W)O 0

Figure 8.2 Measurements of the Haskell strongly connected components algorithm
without garbage collection time.

that the strongly connected components algorithm runs in linear space.

Sec

1.5cAM

2,! +Ox

I.. Se+0'4

I&OX

5c+07

WX)(X)
XX)()

109)

WX)O U

Figure 8.3 Measurements of the space usage used by the Haskell version of Ahe
strongly connected components algorithm.

Finally measurements were taken on the strongly connected components algorithm
OfTarjan (1972) over the same input sets. This algorithm is entirely different from
the Haskell one used here, so it is unfair to use it as a comparison between C and
Haskell. Nevertheless, the graph (Figure 8.4) is given as a control, and as expected
is a plane.

8.5. Empirical measurements of some functional algoritlims 147

. 4,

MUM

VXX)

1- IwX) U

Figure 8.4 Measurements of the C version of the stronglv connected components
algorithm.

8.5.2 The constant factor between Haskell and C

There is no precise figure that can be said to be the constant factor between Haskell

and C. There will be a different factor for different algorithms, and a different fac-

tor for the same algorithm running on different data. Hence, our goal is merely to
discover the difference in terms of order of magnitude. The biconnected components
algorithm was used as the example, since the Haskell implementation is a variation the
imperative implementation by Hopcroft and Tarjan (1973). The imperative version
of the algorithm was implemented in C, keeping as close as possible to the original
version. Measurements for these Haskell and C implementations of the biconnected

components algorithm are presented in Table 8.2.

Hopcroft and Tarjan (1973) wrote their biconnected components algorithm some
twenty years ago. It only seems fair to compare the latest imperative implemen-

tation of this algorithm, with our ffiskell implementation. GraphBase (Knuth 1993)
has a highly efficient implementation of the algorithm, and also gives data sets which
can be used as benchmarks. The examples used here were taken from classic lit-

erature. where characters are vertices and encounters between characters are edges.
The biconnected components algorithm applied to this data separates characters into

acquaintance groups, so that if someone is removed from a group, every remaining
person will know at least one other person in the group.

148 Chapter 8. Aspects of complexity, efficiency, and style,

1 1 Time (seconds) IC Haskell Differ
Sparse graph Total 2.0 6.76 x3
(5000OV, 5000E) Algorithm 0.24 1.4 x6
ý edium graph Total 0.9 8.1 X9
(200OV, 10000E) Algorithm 0.24 3.7 x 15
Dense graph Total , 9.7 25.12 x3
(50OV, 124750E) Algorithm 2.54 4.4 x2
GraphBase Total

'
0.8 46.39 x58

benchmark Algorithm 0.09 5.98 x66

Table 8.2 Comparisons of the biconnected components algorithm.

These timings were done on a. Sun SPARCstation-10 when no one else was using
it. Each measurement is the mean of three runs, taking the user time. The Haskell
binaries were given 80NI of heap and a IM stack. Garbage collection time was not
included in these measurement, because of the irregularities it may cause (Section
8.5). To be fair we should perhaps add 10% (the average'garbage collection time)
to the Haskell timings. There were five GraphBase examples, and the C and Haskell
ran on all the benchmarks 20 times. Profiling was used with Haskell to find out the
percentage. of time spent in just the algorithm. Then a separate run was done without
profiling, so that the overheads of profiling do not have a bearing on the results. To
measure C time stamps; were placed in the code.

Table 8.2 giNes the results of our measurements. Of the four programs considered,
the GraphBase MVEB code is the only one that has been optimised. Perhaps it is
not surprising then that it runs 60 times faster than our Haskell code. There is plenty
of scope for optimisation of the Haskell code. For instance, code fusion to transform
the algorithm into a single pass algorithm.

8.6 The style factor between functional and im-

peraýive

A case in point is the following algorithm presented in Figure 8.5 which calculates
biconnected components of a graph. (The algorithm is taken from Tarian (1972)).
The syntax has been updated so that it is more like C. The algorithm calculates two

8.6. The style factor between functional and imperative 149

pieces of information for each vertex, namely LOWPT and NUMBER. Stacking operations
are performed as well as recording the components. All of this is carried out during

the course of a graph traversal. So it isn't surprising that the algorithm is non-trivial
to follow.

biconnect(v, u)

NUMBERM ++dfs-number;
LOWPT(v) NUMBER(v);
for w in the adjacency list of vf

if ONUMBERM) f

push (v, w) onto edge stack
biconnect(w, v);
LOWPT(v) = min(LOWPT(v), LOWPT(w));
if (LOWPT(w) >= NUMBER(v)) f-

start of new component with articulation point v;
pop (ul, u2) from edge stack;
while (NUMBER(ul) >= NUMBERM) f

add (ul, u2) to current component;
pop (ul, u2) from edge stack;

I

add (v, w) to current component;
I

I

else if ((NUMBER(w) < NUMBERM) && (w! =u))

push (v, w) onto edge stack;
LOWPT(v) = min(LOWPT(v), NUMBER(w));

I

}
}

Figure 8.5 Tarjan's biconnected components algorithm.

The functional version of the biconnected components algorithm (Figure 8.6) is es-
sentially the same as the imperative algorithm (Figure 8.5). The difference is that

the functional version separates parts of the algorithm into different phases. First the

graph is decomposed into a depth-first spanning forest; from this a depth-first num-
ber table is calculated for every vertex; then the spanning forest is traversed using

150 Chapter 8. Aspects of complexity, efficiency, and style

the table of depth-first numbers to calculate the low point numbers for each vertex.
The spanning forest is annotated with these two pieces of information (depth-first

number and low point number). This annotated tree is then traversed to return the
biconnected components.

bcc :: Graph -> Forest [Vertex]
bcc g= (concat map bicomps . map (label g dnum)) forest

where forest dff g
dnum = preArr (bounds g) forest

label :: Graph -> Table Int -> Tree Vertex -> Tree (Vertex, Int, Int)
label g dnum (Node v ts) = Node (v, dnum! v, lv) us

where us = map (label g dnum) ts
lv = minimum (Ednum! vl++[dnum! w I w<-g! v]

++[lu I Node (u, dw, lu) xs<-us])

bicomps :: Tree (Vertex, Int, Int) -> Forest [Vertex]

bicomps (Node (v, dv, lv) ts)

=E Node (v: vs) us 1 (1, Node vs usWmap collect ts]

collect :: Tree (Vertex, int, Int) -> (Int, Tree [Vertex])

collect (Node (v, dv, lv) ts) = (lv, Node (v: vs) cs)

where collected = map collect ts
vs = concat ws I (1w, Node ws us)<-collected, lw<dvl

cs = concat if lw<dv then us else [Node (v: ws) us]
I (1w, Node ws us)<-Collected]

Figure 8.6 Tarjan's biconnected components algorithm (functional version).

The fundamental difference between the two versions of biconnected components
(Figure 8.5 and Figure 8.6) is the modularity of the functional version. In this ex-
ample there is no reason why the imperative version couldn't be written in this way.
Functional languages encourage this style of programming with data transformations,
whereas conventional languages make it tedious to introduce new data structures.

8.7. C6mp'a'r'ing'lazy with strict 151

8.7 Comparing lazy with strict

It is a reasonable question to ask, how useful is laziness? Could all the algorithms pre-
sented be expressed in Standard ML or a similar non-lazy functional language? Most

of the algorithms presented do not require laziness; however, there where occasions
when it proved to be extremely useful. For example, the prune/generate paradigm
(Section 6.3) was a useful way of breaking depth-first search into two distinct phases,
which was also helpful for proof. The algorithm to detect paths (Section 6.6.7), was
expressed with a potential full graph traversal, but with laziness would stop as soon
as the required result was found. The implementation of path compression in up-trees
(Section 4.8) was expressed as a one pass algorithm using a cyclic combinator. In

summary the two places where laziness proved useful was in modularisation (Hughes
(1989) makes this case well) and cyclic programming (Bird 1984b).

There is perhaps a side issue as well, that with strict languages it is common practice
to resort to using side effects in places where efficiency is required. Lazy functional
languages, on the other hand, cannot include side effects so easily because it would be

unclear when they would be evaluated. In a sense lazy functional language designers

were driven to the monadic model, which allows actions on the state whilst retaining
referential transparency.

In a strict language lazy functions can be expressed by using special data structures
(Reade 1989, Appendix 3). This is clumsy and in practice discourages the use of
laziness except where it is essential. Most strict languages are not purely functional
having side effects, this is useful for debugging purposes, but makes reasoning more
difficult. Having a fixed evaluation order, it is easier to analyse formally the com-
plexity of functions. More often than not, strict language compilers are more efficient
than their lazy counterparts.

8.8 Discussion

In this chapter Haskell has been compared with more conventional lang, iages. The

aspect of efficiency is always brought into a discussion of this kind. This chapter

showed that algorithms can be written in Haskell with no loss of asymptotic com-

plexity, however, there is still an order of magnitude time difference between Haskell

152 Chapter 8. Aspects of complexity, efficiency, and style

and C. However, the cost of developing and maintaining a correct implementation is

often smaller with Haskell than with C. This claim has been justified by an official
experiment by the US Navy (Hudak and Jones 1994). Several imperative languages
including Ada, C++, Awk, and the function language Haskell were used to p;: oto-
type a Naval Surface Warfare Center. The results showed that the Haskell prototype
took significantly less time to develop, and was considerably more concise and easier
to understand than the corresponding prototypes written in imperative languages.
This was again demonstrated in this chapter with the biconnected components algo-
rithm. The Haskell algorithm is more modular, making the implementation easier to
understand.

This chapter also looked at the problems of calculating the complexity of functional

programs. It was found that with strict programs, it is relatively straightforward
to derive a cost estimate for a program. Frequently, although working in a lazy
language, functions do not require lazy evaluation, and the order of evaluation has no
effect on the function's time complexity. In these cases, we are at liberty to analyse
the complexity using cost rules for a strict Ian uage. This was demonstrated by 09
showing the complexity of a purely functional example (Section 8.1.1), and then of
a stateful algorithm (Section 8.3.1). The last example of deriving cost functions for

a program was one which required laziness for its termination (Section 8.4). The

approach taken here was based on the work by Bjerner and Holmstr6m (1989). The

main difference was that the details were left out (which were the difficult part) of
deriving the parts of an expression that are demanded to return the result. This

requires a sophisticated form of strictness analysis, and is almost akin to computing
the program. This cost of lazy programs, is therefore, still an open problem. Although

solutions exist (Sands 1995), they become cumbersome and tedious for working out
simple examples.

So far little has been said here about the space behaviour of functional programs,
apart from demonstrating that the linear-time strongly connected components algo-
rithm runs in a linear amount of space (Section 8.5.1). The space behaviour of lazy
functional programs is difficult to predict; hence complex to calculate. The space
complexity is the residency of the computation, which is the maximum amount of
live data in the heap at any point during a computation.

/--I L
%-,. L. Lapter

Conclusion

This chapter summarises the previous chapters, and gives a discussion of future re-
search.

9.1 Original objective

The original objective of this dissertation was to determine the advantages of express-
ing graph algorithms in a functional language. Graph algorithms have been notori-

ously difficult, and have not been given a good treatment in functional languages,

predominantly because they do not have an inductive structure. Since functional lan-

guages are renowned for expressing other mathematical structures elegantly, it has
been a failing that graph algorithms have not been fully explored. My objective was
therefore to apply all the benefits that functional languages provide to the algorithms
of graph theory.

With the advent of monads, all the previously intractable problems for purely func-

tional languages became solvable. With monads purely functional languages could
have mutable data structures. For example, arrays that can be updated in 0(1) time.
This is a young but powerful tool, with undesirable as well as desirable effects. One

undesirable effect is that the programmer is at liberty to express all his programs
in this style. The resulting code can be more unwieldy, and just as troublesome as

conventional imperative code. Therefore, it was necessary to study algorithms in this

style, to determine if the usual expressiveness remained, or was totally lost.

153

154 Chapter 9. Conclusion

9.2 Appraisal

In Chapter 1, the difficulties of implementing graph algorithms efficiently in a purely
functional language were described. This was done by comparing and contrasting
an algorithm for connected components in three styles: (i) with conventional pseudo-
code; (ii) with inefficient functional code; and (iii) with efficient imperative functional

code. The different presentations served to illustrate some of the advantages of func-
tional languages, such as: expressiveness, code reuse, modularisation, and provability.
It was explained that one of the main reasons for these advantages, namely not hav-,
ing side effects, was the very thing that made it difficult in the past to express graph
algorithms efficiently.

After this, in Chapter 2, related work was reviewed. There is an abundance of work on
the design of graph algorithms. Perhaps unsurprisingly, there is no universal approach
that is good for all algorithms. Approaches that seem destined to win through are:
GraphBase, Knuth's literate style of expressing graph algorithms in a conventional
language; and languages that provide good settings for dealing with mathematics,
like Mathernatica. Algebraic approaches are scarce, and so far have not offered new
insights to graph algorithms, although they do provide a framework for demonstrating

correctness. Previous functional language approaches are also discussed, all of which
lose out in asymptotic complexity as compared to a conventional implementation.

Many claims are made of functional languages, and often they are not substantiated.
One is that they provide high-level abstraction -powers. This claim is justified in
Chapter 3, by demonstrating the equivalence of two algorithms: treesort and func-
tional quicksort. These two algorithms, at first, seem strikingly unalike. Since the
algorithm for treesort has the functionality: List -ý Tree -+ List, it is natural to con-
sider if the functionality can be optimised to: List -+ List. This is done quite simply
with standard program transformations. In a conventional language one would not
consider the optimisation in the first place, let alone do the program transformations.
The expressive powers are further justified by giving a functional implementation

of binomial queues. Priority queues are used by several graph algorithms, so it is
important to have an efficient implementation. They were shown to have a clear
implementation, and their formal verification was shown to be possible in all detail.

After motivating the need for state, in Chapter 4, the monadic model was introduced.
With examples it was demonstrated how dynamic data structures can be expressed.

9.2. Appr'aisal - 155

Some examples were shown only for illustrative purposes, but others like union/find
and binsort seem intrinsically to require state for an efficient implementation. Com-
binators on the state were provided as an aid to expressing stateful algorithms, thus

providing some, benefit of expressing algorithms in a stateful way.

Different models for graphs were discussed in Chapter 5. Several were considered, but

the ones chosen were the traditional adjacency list and adjacency matrix. These were
chosen because of their efficiency, and because they could be expressed with Haskell
immutable arrays. Adjacency matrices were used for expressing weighted graphs.
Several examples of simple graph functions were presented, giving testimony to how

concise and expressive the language can be.

In Chapter 6, algorithms that use depth-first search were studied in detail. Depth-first

search turned out to be a good example of state being encapsulated - the function

dff had type Graph -> Forest, where Graph and Forest are both purely functional

values - although state is used within the definition of df f. Moreover, this example
epitomised the concepts of code reuse, modularity, clarity of expression, laziness, and
straightforwardness of correctness proofs. The value returned by df f is a depth-first

spanning forest, and graph algorithms were expressed in terms of this. Therefore,

the df f component was repeatedly reused. The algorithms were expressed clearly,
typically as one or two line functions, as the composition of simpler components.
With this modularisation correctness proofs were shown in all detail.

Several traditional graph algorithms were given in Chapter 7, including dynamic

graph 'algorithms. These were graph algorithms where an encapsulation of state is

not possible. State has to be threaded throughout the entire algorithm. It was worth
looking at these to see if anything at all could be gained by expressing them in an im-

perative functional style. There were two important outcomes from looking at these

algorithms: first, that any conventional graph algorithm can be expressed without
loss of efficiency; and second, that the imperative functional approach benefits from

using stateful combinators, so in some ways it is superior to a conventional imperative

approach. This chapter also looked at algorithms that can be implemented purely
functionally. With examples such as graph colouring, all-pairs shortest paths, and
transitive closure, reasonable solutions were found. With breadth-first search devious

means had to be used, namely lazyArray, to achieve a purely functional solution.
Although the solution is purely functional, it is more difficult to understand than an
imperative solution. Hence, we should not be happy with a purely functional imple-

156 Chapter 9. Conclusion

mentation that has the best complexity, if it is too obscure to be easily understood.
The implementation should be as clear to understand as possible.

Whenever algorithms of any sort are studied, their efficiency should always be con-
sidered. This was explored for functional and stateful algorithms in Chapter 8. All

aspects of efficiency were explored, including calculating the complexity of functional

and stateful algorithms, looking at empirical measurements of the Haskell imple-

mentations compared with C, and looking at space usage. Because of laziness, an
analytical measurement of the time and space behaviour of lazy programs is much
harder than with strict programs. This point was illustrated by calculating the time

complexity of a lazy program. Empirical measurements were made, and the two main
results were: (i) evidence that the time and space of a Haskell graph algorithm were as
expected; and (ii) that for one algorithm, an order of magnitude time difference was
shown between Haskell and C. This last result was not ideal, but some may consider
it an acceptable price to pay for the benefits that Haskell provides over languages like
C.

The benefits of using a functional language have been substantiated throughout the
thesis. In Chapter 8a comparison was made of a functional implementation, with an
imperative implementation. The size of the two programs is about the same, and they

are both based on the same algorit
'
hm. The main difference between the two is that

the Haskell version is modular, which is a style promoted by the nature of functional
languages. This makes the algorithms far easier to understand, often providing more
insight. No claim is made that Haskell should replace all imperative languages, but

although less efficient, there are several other benefits. A language like Haskell is
therefore ideal for prototyping, where getting a good understanding of the problem is

essential. This may then be transcribed into a more efficient language if performance
is critical.

9.3 Further work

This section summarises some of the possibilities for further work.

There were many aspects that were not considered and that would make the work
more complete. Parallelism was not considered at all. Purely functional languages
have a good potential for parallelism, since programs are not evaluated in a fixed

9.3. Further work 157

sequential order. However, the monadic model for including actions on the state
sequentialises actions, and so prevents parallelism. This tension between parallelism
and the monadic model needs to be explored.

Another topic of further work is to look at larger problems, and NP-complete prob-
lems, to see if the same ideas are applicable.

Our comparison between lazy and strict languages was very brief. Empirical mea-
surements could be taken to discover the performance cost for laziness. Also, a more
extensive comparison between the two evaluation models needs to be made. Several

people in the Standard ML community believe that lazy languages have virtually no
benefits over strict languages. Throughout the thesis, advantages afforded by lazy
languages have been discussed full but there was only a cursory mention of the 0 Y,
maiiýy benefits of strict languages.

Another topic of research is to try and remove all actions on state from our programs.
This is often achieved by using a special combinator to encapsulate state. This was
demonstrated in Section 7.5 with an algorithm for breadth-first search. Solutions of
this kind are often more complex, than an imperative solution. Work therefore needs
to be done to explore such combinators in the context of reasoning and programming.

BLANK IN

ORIGINAL

Bibliography

Adams, S. (1993), Efficient sets: a balancing act, Journal of Functional Programming
3(4), 553-561. (p 46)

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1983), Data Structures and Algorithms,
Addison-Wesley. (pp. 21,29,45,102)

Backhouse, R. C. (1989), An exploration of the Bird-Meertens formalism, in Interna-
tional Summer School on Constructive Algorithmics. (p 14)

Backhouse, R. C. and Carr6, B. A. (1975), Regular algebra applied to path-
finding problems, Journal of the Institute of Mathematics and its Applications
15(2), 161-186. (p 18)

Backus, J. (1978), Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs, Communications of the ACM
21(8), 613-641. (pp. 1,8)

Barth, P. S., Nikhil, R. S. and Arvind (1991), XI-structures: Extending a paral-
lel, non-strict, functional language 'With state, in J. Hughes, ed., Conference
on Functional Programming Languages and Computer Architecture, LNCS 523,
Springer-Verlag, Cambridge, 1XIassachusetts, pp. 538-568. (pp. 19,67,70)

Bauderon, NI. and Courcelle, B. (1986), An algebraic formalism for graphs, in
P. Franchi-Zannettacci, ed., 11'th Colloquiurn on Trees in Algebra and Pro-
gramming, LNCS 214, Springer-Verlag, Nice, France. (p 16)

Bird, R. S. (1984a), The promotion and accumulation strategies in transforma-
tional programming, ACM Transactions on Programming Languages and Sys-
tems 6(4), 487-504. See also Bird (1985). (pp. 14,139)

Bird, R. S. (1984b), Using circular programs to eliminate multiple traversals of data,
Acta Informatica 21(3), 239-250. (pp. 35,151)

Bird, R. S. (1985), Addendum to the "The promotion and accumulation strategies in
transformational programming", A CM Transactions on Programming Languages
and Systems 7(3), 490-492. - (p 159)

159

160 Bibliography

Bird, R. S. (1987), An introduction to the theory of lists, in M. Broy, ed., Logic of
Programming and Calculi of Discrete Design, Springer-Verlag, pp. 3-42. Also
available as Technical Monograph PRG-56, Oxford University. (p 14)

Bird, R. S. (1988), Lectures on constructive functional programming, in M. Broy, ed.,
Constructive Methods in Computer Science, Vol. 55, Springer-Verlag, pp. 151-
218. Also available as Technical Monograph PRG-69, Oxford University. - (p' f 4)

Bird, R. and Wadler, P. (1988), Introduction to Functional Programming, Prentice
Hall. (pp. 21,134)

Bjerner, B. and Holmstr6m, S. (1989), A compositional approach to time analysis of
first-order lazy functional programs, in Functional Programming Languages and
Computer Architecture, ACM, London, pp. 157-165. (pp. 21,135,142,143,
152)

Brelaz, D. (1979), New methods to color the vertices of a graph, Communications of
the A CM 22,251-256. (p 125)

Brodal, G. S. and Okasaki, C. (1995), Optimal purely functional priority queues.
Unpublished manuscript. (pp. 45,46)

Brown, i. ýI. R. (1978), Implementation and analysis of binomial queue algorithms,
SIAM Journal of Computing 7(3), 298-319. (pp. 31,34)

Burstall, R. NI. and Darlington, J. (1977), A transformation system for developing
recursive programs, Journal of the A CM 24(l), 44-67. (pp. 25,101,139)

Burton, F. W. (1982), An efficient functional implementation of FIFO queues, Infor-

,. mation Processing Letters 14(5), 205-206. (p 46)

Burton, F. W. and Yang, H. -K. (1990), Nlanipulating multilinked data structures in
a pure functional language, Software - Practice and Experience 20,1167-1185.
(pp. 19,66)

Carr6, B. (1979). Graphs and Networks, Oxford Applied
'
Niathematics and Computing

Science Series, Oxford University Press, Clarendon Press, Oxford. (p 18)

Chuang, T. -R. and Goldberg, B. (1993), Real-time deques, multihead, turing ma-
chines, and purely functional programming, in Conference on Functional Pro-
gramming Languages and Computer Architecture, ACM SIGPLAN/SIGARCH,
Copenhagen, Denmark, pp. 289-298. - (pp., 46,47)

Clack, C., Clayman, S. and Parrott, D. (1995), Dynamic cyclic data structures in lazy
functional languages, Technical report, University College London, Department
of Computer Science. (p 71)
URL: http: //www. cs. uci. ac. uk/staff/clack/papers/guide. html

Bibliography 161

Clenaghan, K. (1995), Calculational graph algorithms: reconciling two approaches
with dynamic algebra, Report CS-119518, CWI, Amsterdam, Computer Science,
Department of Algorithmics and Architecture. (p 90)

Corman, T. H., Leiserson, C. E. and Rivest, R. L. (1990), Introduction to Algorithms,
The MIT Press, Cambridge, Massachusetts. (pp. 21,109)

Dijkstra, E. W. (1959), A note on two problems in connexion with graphs, Numerische
Mathematik 1,269-271. (pp. 28,121)

Dijkstra, E. W. (1976), A Discipline of Programming, Academic Press. (p 16)

Erwig, M. (1992), Graph algorithms = iteration + data structures? The structure of
graph algorithms and a style of programming, in E. Mayr, ed., Graph-Theoretic
Concepts in Computer Science, LNCS 657, Springer-Verlag, pp. 277-292. (p 13)

Euler, L. (1736), Solutio problematis ad geometriam situs pertinentis (The solution
of a problem relating to the geometry of position), Commentarii Academiae
&ientiarum Imperialis Petropolitanae 8,128-140. (P 1)

Field, A. J. and Harrison, P. G. (1988), Functional Programming, Addison-Wesley.
(p 24)

Floyd, R. (1962), Algorithm 97: Shortest path, Communications of the ACM
5(6), 345. (pp. 18,123)

Fourman, M. (1994), Notes for a course on Algorithms and Data Structures (using

- NIL), given at the University of Western Australia, Perth. (p 45) I
Fredman, X1. L. and Tarjan, R. E. (1987), Fibonacci heaps and their uses in improved

network optimization algorithms, Journal of the ACM 34(3), 596-615. (p 44)

Frenkel, K. and , Milner, R. (1993), An interview with Robin Milner, Communications

, ,
of the ACM 36(l), 90-97.. (p 1)

Galler, B. A. and Fisher, M. J. '(1964), An improved equivalence algorithm, Commu-
nications of the ACM 7(5), 301-303. (p 59)

Gibbons, J. (1991), Algebras for tree algorithms, PhD thesis, Oxford University.
Technical monograph PRG-94. (p 15)

Gibbons, 'J. (1994), An initial-algebra approach to directed acyclic graphs. Depart-
ment of Computer Science, University of Auckland. (p 17)
URL: http: //www. cs. auckland. ac. nz/-jeremy/publications. html

Gifford, D., k. and Lucassen, J. M. (1986), Integrating functional and imperative
programming, in Proceedings of the ACM Conference on Lisp and Functional
Programming, 'ACM, MIT, pp. 28-38. (p 67)

162 Bibliography

Gill, A., Launchbury, J. and Peyton Jones, S. L. (1993), A short cut, to deforestation,
in Conference on Functional Programming Languages and Computer Architec-
ture, ACM SIGPLAN/SIGARCH, Copenhagen, Denmark, pp. 223-232. (p 139)
URL: http: //www. dcs. gla. ac. uk/fp/authors/Andy-Gill

Gries, D. (1981), The Science of Programming, Springer-Verlag. (p 46) ý

Gries, D. and Schneider, F. B. (1993), A Logical Approach to Discrete Math, Springer-
Verlag. (p 16)

Guzman, J. C. and Hudak, P. (1990), Single-threaded polymorphic lambda calculus,
in Proceedings of Wth Annual IEEE Symposium on Logic in Computer Science,
pp. 333-343. (p 67)

Harrison, R. (1993), Abstract Data Types in Standard ML, John Wiley and Sons.
(P 18)

Hartel, P. H. and Glaser, H. (1994), The resource constrained shortest path problem
implemented in a lazy functional language, Technical report 94-05, University of
Southampton, Department of Electronics and Computer Science. (p 20)
URL: http: //www. ecs. soton. ac. uk/research/tr/94-05/hg. html

Hibbard, T. 'N. (1962), Some combinatorial properties of certain trees with applica-
tions to searching and sorting, Journal of the A CM 9,13-28. (p 28)

Hoare, C. A. R. (1969), An axiomatic basis for computer programming, Communi-
cations of the ACM 12,576-580,583. (p 16)

HolVer, 1. (1991), Functional Programming with Miranda'I'l Pitman, London.
(pp. 18,69)

Hood, R. and Melville, R. (1981), Real-time queue operations in pure Lisp, Informa-
tion Processing Letters 13(2), 50-53. (pp. 46,53)

Hoogerwoord. R. R. (1989), The design of functional programs: a calculational ap-
proach, PhD thesis, Eindhoven University of Technology. (p 15)

Hopcroft, J. E. and Tarjan, R. E. (1973), Algorithm 447: Efficient algorithms for
graph manipulation, Communications of the ACM 16(6), 372-378. (pp. 83,
147)

Hudak, P. and Fasel, J. H. (1992), A gentle introduction to Haskell, ACM SIGPLAN
Notices 27(5). (p xiii)
URL: http: //haskell. systemsz. cs. yale. edu/haskell/tutorial/tutorial -ps. Z

Bibliography 163

Hudak, P. and Jones, M. P. (1994), Haskell vs. Ada vs. C++ vs. Awk vs. ... An exper-
iment in software prototyping and productivity, Technical report, Department
of Computer Science, Yale University. (p 152)
URL: ftp: //nebula. systemsz. cs. yale. edu: /pub/yale-fp

Hudak, P., Peyton Jones, S. L., NVadler, P., Arvind, Boutel, B., Fairbairn, J., Fasel, J.,
Guzman, M. M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, R., Nikhil,
R. S., Partain, W. and Peterson, J. (1992), Report on the functional program-
ming language Haskell, Version 1.2, ACM SIGPLAN Notices 27(5). (p Xiii)

-URL: ftp: //ftp. dcs. gla. ac. uk/pub/haskell/report

Hughes, J. (1986), A novel representation of lists and its application to the function
"reverse", Information Processing Letters 22(3). Also appeared as a Program-
ming Methodology Group Memo MIG-38, Chalmers Institute, Sweden, (1984).
(p 139)

Hughes, J. (1989), Why functional programming matters, The Computer Journal
32(2), 98-107. (pp. 8,88,151)

Jeuring, J. (1991), The derivation of hierarchies of algorithms on matrices, in
B. X16ller, ed., IFIP TC2/WG2.1 Working Conference on Constructing Programs
from Specifications, North-Holland, pp. 9-32. (p 15)

Jeuring, J. (1992), Theories for Algorithm Calculation, PhD thesis, CWI, Amsterdam,
The Netherlands. (p 15)

Johnsson, T. (1995), Lazy monolithic array algorithms. Chalmers University. (pp. 631
1270

Jones, D. W. (1986), An empirical comparison of priority-queue and event-set imple-
mentations, Communications of the ACM 29(4), 300-311. (pp. 29,44)

Jones, G. and Gibbons, J. (1992), Linear-time breadth-first tree algorithms: an exer-
cise in the arithmetic of folds'and zips, Technical Report TR-31-92, Program-
ming Research Group, Oxford University. (p 12 7)
URL: http: //www. comiab. ox. ac. uk/oucl/publications/tr/TR-31-92. html

Jones, M. P. (1994), Release notes for Gofer 2.30, Computer Science Department,
University of Nottingham. (p 49)
URL: ftp: //ftp. cs. nott. ac. uk/nott-fp/languages/gofer

Kashiwagi, Y. and Wise, D. S. (1991), Graph algorithms in a lazy functional program-
ming language, in Proceedings of the Tth International Symposium on Lucid and
Intensional Programming, pp. 35-46. Also available as Technical Report Number
330. Computer Science Department, Indiana University. (p 19)

164 Bibliography

King,, D. J. (1995), Functional binomial queues, in K. Hammond, D. N. Turner and
P. M. Sansom, eds, Proceedings of the 1994 Glasgow Workshop on Functional
Programming, Springer-Verlag, Ayr, Scotland, pp. 141-150. (P xiii)
URL: htt p: //www. dc s. gl a. ac. uk/f p/ authors /David-King

King, D. J. and Launchbury, J. (1995), Structuring depth-first search algorithms in
Haskell, in The 22'nd Symposium on Principles of Programming Languages,
ACM SIGPLAN-SIGACT, San Francisco, California, pp. 344-354. (P xiii)
URL: http: //www. dcs, gla. ac. uk/fp/authors/David-King

Kingston, J. H. (1990), Algorithms and Data Structures, International Computing
Science Series, Addison-Wesley. (pp. 21,61)

Klarlund, N. and Schwartzbach, M. 1. (1993), Graph types, in 20'th Symposium

on Principles of Programming Languages, ACM, Charleston, North Carolina.
(p 16)

Knuth, D. E. (1973a), The Art of Computer Programming: Fundamental Algorithms,
Vol. 1,2'nd edn, Addison-Wesley, Reading, Massachusetts. (pp. 21,47,133)

Knuth, D. E. (1973b), The Art of Computer Programming: Sorting and Searching,
Vbl. 3, Addison-Wesley, Reading, Massachusetts. (pp. 28,29)

Knuth, D. E. (1993), The Stanford GraphBase: A Platform for Combinatory Com-
puting, ACINI Press and Addison-Wesley. (pp. 12,147)
URL: ftp: //labrea. stanford-edu/

Krusk-al Jr., . 1. B. (1956), On the shortest spanning subtree of a graph and the travel-
ling salesman problem, Proceedings of the American Mathematical Society 7,48-

. 50. (pp. 58,119)

Launchbury. J. (1989), Functional strongly connected components algorithm. Dis-
tributed on the comp. lang. functional network newsgroup. (P 19)

Launchbury, J. (1993), Lazy imperative programming, in Workshop on State in
Programming Languages, ACINI SIGPLAN, Copenhagen, Denmark, pp. 4G-56.
(pp. 48.49)
URL: http: //www. cse. ogi. edu/-j1/Papers

LaunchburN, J. and Peyton Jones, S. L. (1994), Lazy functional state threads, in
Conference on Programming Language Design and Implementation, ACM SIG-
PLAN, Orlando, Florida. (pp. 47,48,50,51)
URL: http: //www. dcs. gla. ac. uk/fp/papers/

Launchbury, J. and Peyton Jones, S. L. (1996), State in Haskell, Lisp and Symbolic
Computation - (pp. 47,48,50,51,63)

Bibliography 165

Manber, U. (1989), Introduction to Algorithms -A Creative Approach, Addison-
Wesley, Reading, Massachusetts. (pp. 4,5,12,123)

Meertens, L. (1986), Algorithmics: Towards programming as a mathematical activity,
in I W. de Bakker, H. Hazewinkel and J. Lenstra, eds, Proceedings of the CWI
Symposium on Mathematics and Computer Science, North-Holland, pp. 289-
334. (p 14)

. Nlehlhorn, K. and Naher, S. (1989), LEDA -A library of efficient data types
and algorithms, in Mathematical Foundations of Computer Science, LNCS 379,
Springer-Verlag, pp. 88-106. (p 12)

Meira, S. L. (1985a), A linear applicative solution for the set union problem, Infor-
mation Processing Letters 20,43-45. (p 67)

Nleira, S. L. (1985b), On the Efficiency of Applicative Algorithms, PhD thesis, Uni-
versity of Kent, Canterbury. Report number T1. (P 19)

Nloggi, E. (1989), Computational lambda-calculus and monads, in Symposium on
Logic in Computer Science, IEEE, Asilomar, California. (p 48)

N181ler, B. (1993a), Algebraic calculation of graph and sorting algorithms, in
D. BjOrner, X1. Broy and I. V. Pottosin, eds, Formal Methods in Programming
and their, Applications, LNCS 735, Berlin, Germany, pp. 394-413. (p 16)

M61ler, B. (1993b), Derivation of graph and pointer algorithms, Report Number 280,
Institut far Mathematik, University of Augsburg, D-86135 Augsburg, Germany.
(PP. 16,90)

N. 1611er, B. and Russling, M. (1992), Shorter paths to graph algorithms, in R. S.
Bird, C. Morgan and J. Woodcock, eds, Proceedings of the 2'nd International
Conference on the Mathematics of Program Construction, LNCS 669, Springer-
Verlag, Oxford, UK. For an extended version see M611er and Russling (1994).
(p 16)
URL: http: //www. informatik. uni-augsburg. de/info2/mitarbeiter/Russling/

N161ler, B. and Russling, X1. (1994), Shorter paths to graph algorithms, Science of
Computer Programming 22,157-180. (p 165)

Morrisett, I G. (1993), Generalizing first-class stores, in Proceedings of the ACM
SIGPLAN Workshop on State in Programming Languages, Copenhagen, Den-
mark, pp. 73-87. Published as Technical Report YALEU/DCS/RR-968, Depart-
ment of Computer Science, Yale University. (p 70) -
URL: ftp: //vache. venari. cs. cmu. edu/usro/igmorris/pub/

166 Bibliography

Nagl, M. (1979), GRAPL -A programming language for handling dynamic problems
on graphs, in Proceedings of 5'th International NVorkshop on Graph Theoretic
Concepts in Computer Science, pp. 25-45. (p 13)

Nikhil, R. S. (1991), Id language reference manual, version 90.1, Computation struc-
tures group memo 284-2, MIT, Laboratory for Computer Science. (p 67)

Nikhil, R. S. and Arvind (1990), Programming in Id: A Parallel Programming Lan-
guage. (p 19)

Okasaki, C. (1994), Simple and efficient purely functional queues and deques, Journal
of Functional Programming 4(4). (pp. 46,48,53)
URL: http: //foxnet. cs. cmu. edu/people/cokasaki/papers. html,

Okasaki, C. (1996), The role of lazy evaluation in amortized data structures, in In-
ternational Conference on Functional Programming, ACM, Philadelphia, Penn-
sylvania. (p 45)

Pape, U. (1979), GRAMAS -A graph manipulation system, in Proceedings of
5'th International NVorkshop on Graph Theoretic Concepts in Computer Sci-
ence, pp. 47-63. (p 13)

Paulson, L. C. (1991), ML for the Working Programmer, Cambridge University Press,
Cambridge. (pp. 18,29,44,69)

Peyton Jones, S. L., Hall, C., Hammond, K., Partain, NV. and Wadler, P. (1993), The
Glasgow Haskell compiler: A technical overview, in Proceedings of the UK Joint
Framework for Information Technology, Technical Conference, Keele. (p xiii)
URL: http: //www. dcs. gla. ac. uk/fp/papers/grasp-jfit. ps. z

Peyton Jones, S. L. and NVadler, P. (1993), Imperative functional programming, in
20'th Symposium on Principles of Programming Languages, ACXI, Charleston,
North Carolina. (p 48)
URL: http: / /www. dc s. gi a. ac. uk/f p/authors /Phil ip-Wadl er

Ponder, C. G., McGeer, P. C. and Ng, A. P. -C. (1988), Are applicative languages
inefficient?, ACM SIGPLAN Notices 23(6), 135-139. (pp. 48,78)

Pountain, D. (1994), Functional programming comes of age, Byte 19(8), 183-184.
(p 8)

Reade, C. (1989), Elements of Functional Programming, Addison-NN'esley. (pp. 18,
19,24.69,151)

Reade, C. (1992), Balanced trees with removals: an exercise in rewriting and proof,
Science of Computer Programming 18,181-204. (pp. 45,46)

Bibliography 167

Reif, J. H. and Scherlis, W. L. (1984), Deriving efficient graph algorithms (summary),
in E. Clarke and D. Kozen, eds, Logics of Programs, LNCS 164, Springer-Verlag,
pp. 421-441. (p 15)

Russling, M. (1994), An algebraic treatment of graph and sorting algorithms, in
Proceedings of the 14'th International SCCC Conference, Concepci6n, Chile.
Extended version available from Institut ffir Mathematik der Universitdt Augs-
burg, Germany, Report Number 324,1995. (p 16)
URL: http: //www. informatik. uni-augsburg. de/info2/mitarbeiter/Russling/

Russling, M. (1995), A general scheme for breadth-first graph traversal, in Pro-
ceedings of the Trd International Conference on the Mathematics of Program
Construction, LNCS 947, Springer-Verlag, Kloster Irsee, Germany, pp. 380-398.
(p 16)
URL: http: //www. informatik. uni-augsburg. de/info2/mitarbeiter/Russling/

Sands, D. (1990), Calculi for time analysis of functional programs, PhD thesis, Im-
perial College, University of London. (pp. 21,134,135)
U RL: ftp: //theory. doc. ic. ac. uk/theory/papers/Sands

Sands, D. (1995), A naYve time analysis and its theory of cost equivalence, The Jour-
nal of Logic and Computation 5(4), 495-541. Preliminary version available as
TOPPS report D-173, DIKU, University of Copenhagen, 1993. (pp. 21,134,
135,152)
URL: ftp: //ftp. diku. dk/diku/semantics/papers

Schoenmakers, B. (1992), Data Structures and Amortized Complexity in a Functional
Setting, PhD thesis, Eindhoven University of Technology. (p 20)
URL: f tp: //f tp. cwi. ni/pub/berry

Sedgewick, R. (1988), Algbrithms, 2'nd edn, Addison-Wesley, Reading, Mas-
sachusetts. (p 21)

Sharir, INI. (1981), A strong-connectivity algorithm and its applications in data flow
analysis, Computers and mathematics with applications 7(l), 67-72. (pp. 19,
108)

1

Skiena, S. (1990), Implementing Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica, Addison-Wesley. (p 14)

Sleator, 'D. D. and Tarjan, R. E. (1983), Self-adjusting binary trees, in Proceedings
of the 15'th Annual ACNI Symposium on Theory of Computing, ACM, Boston,
Massachusetts, 'pp. 235-245. (p 29)

168 Bibliography

Smetsers, S., Barendsen, E., van Eekelen, M. and Plasmeijer, R. (1993), Guaranteeing
safe destructive updates through a type system with uniqueness information for
graphs. University of Nijmegen. (pp. 67,70)
URL: ftp: //ftp. cs. kun. nl/

Swarup, V., Reddy7 U. S. and Ireland, E. (1991), Assignments for applicative lan-
guages, in Functional Programming Languages and Computer Architecture,
LNCS 523, Springer-Verlag, pp. 192-214. (p 67)

Tarjan, R. E. (1972), Depth-first search and linear graph algorithms, SIAM Joumal
of Computing 1(2), 146-160. (pp. 15,83,115,146,148)

Tarian, R. E. (1974), Finding dominators in directed graphs, SIAM Journal of Com-
puting 3(l), 62-89. (p 58)

Tarjan, R. E. (1981), A unified approach to path problems, Journal of the ACM
28,077-595. (p 18)

Tarjan, R. E. (1983), Data Structures and Network Algorithms, SIANI. (p 29)

Tarian, R. E. (1985), Amortized computational complexity, SIAM Journal on Alge-
braic and Discrete Methods 6,306-315. (p 133)

Temperley, H. N. V. (1981), Graph Theory and Applications, John Wiley and Sons,
Now York. (P 1)

Thompson, S. (1995), Miranda TIN I: The craft of Functional Programming, Addison-
NN esley. (p 18)

N`uillemin, J. (1978), A data structure for manipulating priority queues, Communi-
cations of the ACM 21(4), 309-315. (pp. 30,31,32)

NVadler, P. (1988a), Deforestation: Transforming programs to eliminate - trees, in Euro-
pean Symposium on Programming, LNCS 300, Springer-Verlag, Nancy, France,
pp. 344-358. See also NVadler (1990b). (pp. 25,139,169)

Wadler, P. (1988b), Strictness analysis aids time analysis, in 15'th Symposium on
Principles of Programming Languages, ACIM. (p 134)
URL: http: //www. dcs. gia. ac. uk/f p/authors/Philip-Wadier

Wadler, P. (1990a), Comprehending monads, in Conference on Lisp and Functional
Programming, ACM, Nice, France, pp. 61-78. (p 48)
URL: http: //www. dcs. gia. ac. uk/f p/authors/Philip-wadler

Bibliography 169

Wadler, P. (1990b), Deforestation: Transforming programs to eliminate trees, in The-
oretical Computer Science, LNCS 73, Springer-Verlag, pp. 231-248. See also
ýVadler (1988a). (p 168)
URL: http: //www. dc s. gla. ac. uk/f p/authors /Phil ip-Wadler

Wadler, P. (1990c), Linear types can change the world!, in M. Broy and C. Jones,
eds, Programming Concepts and Methods, North Holland. (p 67)

Wadler, P. (1992), The essence of functional programming (invited talk), in 19'th
Symposium on Principles of Programming Languages, ACM, Santa Fe, New
Mexico. (p 48)
URL: http: //www. dc s. gla. ac. uk/f p/authors /Phil ip-Wadler

NNalther, H. (1984), Ten Applications of Graph Theory, D. Reidel, Dordrecht. (P 1)

Wikstr8m, A. (1987), Functional Programming using Standard ML, Prentice Hall.
(P 18)

Wilson, R. J. and Beineke, L. W., eds (1979), Applications of Graph Theory, Academic
Press, London. (P 1)

Wirth, N. (1971), Program development by stepwise refinement, Communications of
the A CM 14,221-227. (p 16)

NNOlfram, S. (1991), Mathematica: A System for Doing Mathematics by Computer,
2'nd edn, Addison-Wesley. (p 14)

Wright, C. J. (1988), A theory of arrays for program derivation, Transferral disserta-
tion, Oxford University. (p 15)

Zimmermann, W. (1990), Automatische Komplexitdtsanalyse Funktionaler Pro-
gramme, Informartik-Facherichte, Springer, Berlin. (p 3)

2APY

