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Abstract 

Functional languages are renowned for their mathematical tractability, clarity of ex- 
pression, abstraction powers, and more. There are problem domains, however, that 

still present real challenges to functional languages. One notoriously difficult problem 
domain is graph algorithms. 

Graph algorithms have been studied for a long time with conventional von Neu- 

mann languages. The emphasis has primarily been on the efficiency of the algorithm. 
Concerns such as clarity of the algorithm have been secondary. Although the un- 
derpinnings of algorithms generally have a solid theoretical foundation, there is still 
some distance between computer program and proof of correctness. 

This thesis is an investigation of graph algorithms in the non-strict purely functional 
language Haskell. Emphasis is placed on the importance of achieving an asymptotic 
complexity as good as with conventional languages. This is achieved by using the 

monadic model for including actions on the state. Work on the monadic. model was 

carried out at Glasgow University by Wadler, Peyton Jones, and Launchbury in the 

early nineties and has opened up many diverse application areas. One area is the 

ability to express data structures that require sharing. Although graphs are not 

presented in this style, data structures that graph algorithms use are expressed in 

this style. Several examples of stateful algorithms are given including union/find for 

disjoint sets, and the linear time sort binsort. 

The graph algorithms presented are not new, but are traditional algorithms recast in 

a functional setting. Examples include strongly connected components, biconnected 

components, Kruskal's minimum cost spanning tree, and Dijkstra's shortest paths. 
The presentation is lucid giving more insight than usual. The functional setting 
allows for complete calculational style correctness proofs - which is demonstrated 

with many examples. 

The benefits of using a functional language for expressing graph algorithms are quan- 
tified by looking at the issues of execution times, asymptotic complexity, correctness, 

and clarity, in comparison with traditional approaches. The intention is to be as 

objective as possible, pointing out both the weaknesses and the strengths of using a 
functional language. 
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Preface 

This thesis is submitted in partial fulfilment of the requirements for a Doctor of 
Philosophy Degree at the University of Glasgow. It comprises a study of graph algo- 
rithms in a lazy functional language; with the thesis that they may be implemented 
in such languages without loss of asymptotic complexity and, furthermore, that the 

abstraction powers of these languages allows the algorithms to be expressed so that 

their structure is more apparent than is commonly the case. 

All the work carried out herein is original material except where otherwise stated. 
Chapter 6 is an extension of the work presented by King and Launchbury (1995) at 
the 22'nd Conference on Principles of Programming Languages. Preliminary work 
on functional binomial queues in Chapter 3 was reported at the seventh Glasgow 
Workshop on Functional Programming, see King (1995). 

The programs in this thesis are written in standard Haskell, Version 1.2 (Hudak 

et al. 1992), and have been executed with the Glasgow Haskell compiler (Peyton 

Jones et al. 1993). Knowledge of Haskell is assumed, but most of the concepts should 
be familiar to anyone that has a passing knowledge of functional languages, see Hudak 

and Fasel (1992) for a comprehensive tutorial on Haskell. 

Precis of thesis 

The principal issues covered in the thesis are established in Chapter 1. First it 

is explained why efficient implementations of graph algorithms have alluded purely 
functional programming languages. With examples of graph algorithms, a comparison 
is made between the traditional imperative approach and a functional approach, and 
then with an imperative functional approach. A major claim of this thesis is that 

xiii 
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the high-level abstraction powers of functional languages can offer new insights into 

algorithms. Chapter 3 justifies this claim with two purely functional examples. First, 

program transformation is used to show the equivalence of two well-known sorting 
algorithms: treesort and functional quicksort. Then a functional implementation and 
correctness proof is given for a priority queue algorithm. 

Sometimes purely functional algorithms are not enough. Chapter 4 explains, how the 

monadic model may be used to express algorithms that require mutable state for 
their efficiency. Several examples of stateful algorithms are given, some of which are 
important for later graph algorithms. The chapter concludes with a discussion of 
the merits and otherwise of the imperative functional style of programming. Then 

returning to the purely functional world, graphs are introduced in Chapter 5. Using 
the typical methods of representation many examples of simple functions on graphs 
are given. 

In Chapter 6 the work of the previous two chapters is brought together as the al- 
gorithms that are based on depth-first search are explored in detail. This chapter 
epitomises the thesis. Traditional algorithms are expressed in a modular way, which 
is good for both code reuse, and program verification. Mutable state is used, but only 
where it is essential for efficiency. 

More graph algorithms are given in Chapter 7 including Kruskalts minimum cost 
spanning forest algorithm, Dijkstra's shortest paths, and Floyd's all-pairs shortest 
paths algorithm. Some of these algorithms are ones that seem intrinsically to require 
mutable state for their efficiency. 

Chapter 8 examines the advantages and drawbacks of expressing graph algorithms 
in a purely functional language, compared with traditional approaches. Empirical 
comparisons are made between the same algorithms in a functional and an imperative 
language. The aspects of analysing the complexity of a functional algorithm are 
made, and some examples are given. The differences between the approach taken in 
the thesis and conventional approaches are quantified objectively. Finally, Chapter 9 

reviews the thesis, and discusses directions for future research. 



Contributions of thesis 

Contributions of thesis 

xv 

It is shown how graph algorithms may be expressed in purely functional lan- 

guages with no loss of efficiency. Several examples of traditional graph algo- 
rithms are presented. 

e The high-level abstraction powers for functional languages are shown to offer 
insights to the algorithms presented. 

Many examples of correctness proofs are given, and shown in all detail. For 
example, a functional implementation and correctness proof, of binomial func- 
tional queues is given. Moreover, several proofs of graph algorithms are given 
in all detail, such as a proof of a strongly connected components algorithm. 

Examples of imperative functional algorithms are given, and are shown to be 

superior in some ways to conventional imperative approaches. 

An extensive survey of numerous approaches for expressing graph algorithms is 

given. 

A comparison is made between functional and imperative presentations with 
regard to expressibility, demonstrating correctness, demonstrating complexity, 

, and time and space performance. 
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Introduction 

Computing languages are constantly being designed with the goal that they should aid 
the quick and accurate development of diverse software. In the opinion of many lan- 

guage designers (for example, John Backus (Backus 1978) and Robin Milner (Frenkel 

and Milner 1993)) functional languages have more potential to succeed in meeting 
this goal than conventional programming languages. There are two quite strong ar- 
guments, however, that can be levelled against functional languages. The first is that 

they are too inefficient, and the second is that there are many problem domains that 
these languages do not solve well. The latter issue is addressed in this thesis with an 
investigation of graph algorithms, which have until now proved to be incompatible 

with purely functional languages. 

Graph theory has been studied since Euler's (1736) paper on the famous seven bridges 

of K6nigsberg problem. The problem is to determine if a tour is possible crossing each 
of the seven bridges no more than once. Today graph theory and its algorithms are 
widely used in computer software and hardware, but perhaps more importantly they 
have many real world applications. A survey of graph theory applications will not be 

given here, partly as it is not the topic of the thesis, but also because it has been done 

extensively by others. For example, the following three books cover a wide spectrum 

of applications: Wilson and Beineke (1979); Temperley (1981); and Walther (1984). 

Graph algorithms can be complex, making their implementation difficult to com- 

prehend and non-trivial to prove correct. Functional languages are acknowledged 
to be good at expressing problems clearly, and for providing a good framework for 

correctness proofs. So why have graph algorithms frustrated programmers of purely 
functional languages? The reason is fundamental - graphs do not have a recursive 

I 
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data structure. Recursive data structures are tree shaped, and can be recursively 
traversed from their root to their leaves. Graphs do not conform to this structure - 
there may be a cycle from a vertex to itself. A traversal, therefore, will re-visit old 
vertices, and this has to be dealt with. 

Our interest is with non-strict, purely functional languages like Haskell, rather than 
strict mostly functional languages like Standard ML. There are several advantages 
with using a pure language. The lack of side effects makes mathematical reason- 
ing about programs more straightforward. Lazy languages also provide for greater 
expressiveness which will be illustrated throughout the thesis. Haskell was chosen 
because it is the standard non-strict functional language. Besides this, Haskell was 
an obvious choice at Glasgow, where research is being undertaken with the language. 
Although Haskell is used throughout, many of the points made also apply to other 
functional languages, including strict mostly pure languages like Standard ML. 

Although all the examples will be expressed in Haskell, there are three minor devia- 

tions from the standard: (i), the monad of state transformers requires some functions 

to be built into the language (runST, for example); (ii) the do notation is used for 

including imperative actions on state; and (iii), pairs are used instead of the Assoc 

type. These deviations are expected to exist inýversion 1.3 of Haskell. 

The terminology for graphs used he'rý is not completely standard, mainly because 

there is no standard terminology for graphs. The term graph will be used to mean a 

directed graph (some authors abbreviate this to digraph; and some use the term graph 

to refer to an undirected graph). The points will be called vertices andýthe arrows 

edges (these are called arcs, by many authors to distinguish them from-undirected 

edges). Graphs considered willý_'always be finite in the number of vertices and edges.. 
Unless otherwise 'stated our graphs do not have multiple edges, multiple vertices, or 

self-loops. Nonetheless; such graphs as well as other kinds of graph can be represented, 

and are in this thesis. 

Graph algorithms and functional languages 

Let's start with a simple example: detecting if a graph has a cycle. One algorithm is 
to follow graph edges leaving a stone at each vertex that is passed through. When a 
dead-end is reached, we retrace our steps picking up the stones until a new path is 
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found to follow. If a new path leads to a vertex with a stone, then the graph has a 
cycle. On the other hand, if we tour the whole graph without returning to a vertex 
with a stone then the graph has no cycles. 

To implement this algorithm we have to mimic placing stones on vertices. The most 
suitable representation for this is an array mapping vertices to stones. This makes 
it easy to access and change the stone component. The algorithm's time complexity 
is dependent on these array operations as they will be performed for each vertex. 
Writing to an array in constant time is not straightforward in a language without side 
effects. This is well known with respect to graph problems, for instance, Zimmermann 
(1990) in his book on automatic complexity analysis of functional programs says the 
following: 

"functional programming is not well suited for algorithms of graph theory 

as these usually make frequent use of side effects" 

In other words access to some form of mutable state is required in order to achieve a 

good asymptotic complexity for implementations of graph algorithms. 

In many ways the elegance of a functional language comes from not having access 
to mutable state, so it should only be used when there is no alternative. It is a 

view strongly held by programming la nguage researchers, that with a von Neumann 

machine architecture, access to the state is essential for efficient graph algorithms. 
In some ways this is obvious, since information about a vertex needs to be updated 
instantly for an efficient algorithm. Nevertheless, even this may be possible by encap- 

sulating the updating operations into a special combinator. The combinator would 
be purely functional, in the sense that it would take and return purely functional 

values. However, the function itself would be implemented in an imperative style. In 

this thesis such methods are not dismissed. In Chapter 7 it is shown how breadth- 

first search may be expressed with a special combinator. Often, as is the case with 
breadth-first search, that the implementation becomes more complex than an imper- 

ative implementation. 
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1.2 Why graph algorithms can be complex 

The most efficient graph algorithms traverse the graph the fewest number of times. 
The fastest linear graph algorithm will traverse the graph once. A linear graph 
algorithm is one whose running time is proportional to the size of the graph, that is 
to say, the sum of the number of vertices(V) and edges(E), i. e. O(V + E). Most 

graph algorithms require many pieces of information to be calculated for each vertex. 
For a single pass algorithm many calculations will be performed at once. This is part 
of the reason why traditional presentations of graph algorithms are difficult to follow. 

1.3 Iýraditional approaches 

1.3.1 English style pseudo-code presentations 

The traditional way of expressing graph algorithms is to give English style pseudo- 

code. This is usually a mixture of English statements and Algol-like imperative code. 

The resulting algorithms cannot be executed and usually do not contain enough 

detail to make them easy to code. Here's an example of an algorithm for finding 
, 
the 

connected components of an undirected graph. This is taken verbatim from Manber's 

(1989) book, p. 192. 

Algor ithm'Conn'ected-Componen . 
ts(G); 

Input: G=(V, E), is, an undirected graph 

Output: v. Component is set to the number of the component 

'containing 
v, for every vertex v. 

begin 
Component-'Number :=1; 

while there is an unmarked vertex v do 

Depth-First-Search(G, v); 
(using the following preWORK; 

v. Component := Component-Number; ) 
Component-Number := Component-Number +1 

end 

Figure 1.1 English style pseudo-code description of connected components. 
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The algorithm in Figure 1.1 makes use of a depth-first search algorithm augmented 
with some code specifically to annotate vertices with their connected component 
number. A depth-first search is performed starting at vertex v, and exactly all the 

vertices that are in the same component as v will be annotated. The component 
number is then incremented, and another depth-first search commences starting with 
an unvisited vertex. This process is repeated until all the vertices have been visited, 
and hence annotated with a component number. Here is Manber's (1989, p. 191) 
description of depth-first search: 

Algorithm Depth-First-Search(G, v); 
Input: G=(V, E) is an undirected graph, v is a vertex in V 
Output: depends on the application 

begin 

mark v; 
perform preWORK on v; 
for all edges (v, w) do 

if w is unmarked then Depth-First-Search(G, w); 

perform postWORK for (v, w) * 

end 

Figure 1.2 English style pseudo-code description of depth-first search. 

The algorithm for depth-first search presented in Figure 1.2 is given as a skeleton 
description with'preWORK and postWORK changing for particular algorithms. This is a 

useful approach as depth-first search is used for many other graph algorithms. This 

programming idiom, however, is not supported by conventional compilers - it is 

not possible to pass fragments of code for prewoRK and postWORK to the depth-first 

search procedure. Instead the depth-first search fragment has to be re-written for 

each algorithm. In a functional language there is no problem: common programming 
idioms are just higher-order functions which are passed fragments of code in the form 

of functions. The ability to name and reuse programming idioms is one of the great 

strengths of functional languages. This is the approach taken here, and these concepts 9 
will now be demonstrated with'the above example. 
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1.3.2 Functional language presentations 

The typical functional programming approach is quite different. Programs are struc- 
tured as a sequence of transformations on the input. data. The focus is on what the 
intermediate data should be at each stage. For example, the program to separate 
vertices that are in different components may be expressed functionally as: 

vertex-components :: Graph -> [[Vertex]] 

vertex-components g= map flatten (dff 9) 

A depth-first search is performed on the graph, returning in this case a depth-first 

spanning forest of the graph. This is a list of trees where each tree contains the 

vertices of one component. Finally each tree is flattened using : flatten returning a 

list of lists. I 

Not all the details will be given here (such as the representation used for Graph, Vertex 

etc. ), since they are described and motivated in later chapters. Instead, just enough 
detail is given so that the examples can be used to substantiate some of the claims 

made. 

The English, style pseudo-code (Figure 1.2) can be mimicked by taking the result of 

vertex-components and doing the following: 

component-table :: Graph -> UVertex, Int)] 

component-table g=[ (v, n) I (vs, n)<-ps, v<-vs] 

where ps = zip (vertex-components g) 

This generates a table (actually a list) mapping each vertex to its component number. 
The components could just as easily have been generated the in the form of subgraphs 
by the following: 

components :: Graph -> [[(Vertex, Vertex)ll 

components g=(C (v, w) I v<-vs, w<-g! vl I vs<-vcs] 

where, vcs = vertex-components 

Instead of augmenting a skeleton algorithm with fragments of code, the algorithm is 
0 

built by gluing together simpler parts. Structuring programs in this way often allows 
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dff Graph -> [Tree Vertex] 
dff fst (dfs g0 (vertices g)) 

dfs :: Graph -> [Vertex] -> [Vertex] -> ([Tree Vertex], [Vertex]) 
dfs g ms U= (11, ms) 
dfs g ms (v: vs) = if v 'elem' ms 

then dfs g ms vs 
else let (ts, as) = dfs g (v: ms) (g! v) 

(us, bs) = dfs g as vs 
in (Node v ts: us, bs) 

Figure 1.3 Purely functional implementation of depth-first search. 

for greater understanding of the algorithm. Figure 1.3 shows a purely functional 
implementation of depth-first search. 

The function vertices returns a list of all the vertices contained in the graph. The 
function df s takes three arguments: the graph; a list of all the vertices that have been 

visited before; and an ordering of vertices that are used as positions to start searching. 
The expression (g! v) returns a list of all vertices that are adjacent to v in graph g. 
For each vertex df s checks to see if it has been visited before by looking it up in the 

visited list. Sin 
' 
ce doing a lookup in a list of length n takes O(n) time, the asymptotic 

complexity of df s is 0(V(V+ E)). The English style pseudo-code determines if a 

vertex has been visited before by extracting from the field component of the vertex in 

constant time. Consequently, for depth-first search, there is an unfortunate disparity 
between the complexity of the functional algorithm O(V(V + E)) and the imperative 

algorithm 0 (V + E). 

One of the main reasons people have persisted with functional languages is provability. 
The style shown above of expressing algorithms as the composition of smaller units, 
whilst being good for structuring programs, is also helpful in structuring proofs. Pure 
functional programs are referentially transparent, which roughly means that the same 

expression can be replaced with the'same value. In other words, pure programs 
are side effect free. ' This makes the mathematics for reasoning about a program's 

execution more tractable, making it realistic to prove a program's correctness in all 
detail. 
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As well as provability, the functional implementation has more potential for oPti- 
misations. Again because of the mathematical tractability of the code it makes it 

straightforward to apply simple transformations. For instance, the dataflow for the 
function vert ex- components which is: Graph -4 Forest -4 List, can be reduced to the 
dataflow: Graph -4 List. This is known as code fusion, one of many transformations 
that are realistic to include in an optimising functional language compiler. 

Another important advantage highlighted in the examples above is code reuse. The 
function vert ex- components was reused in the definitions of component -table, and 
components. Furthermore, the function df f can be freely reused for expressing many 
algorithms. Code reuse is more prevalent in functional languages than conventional 
languages, in part because of the transformations on data style of programming. 
But more importantly because functions can be polymorphic, meaning that they may 
take values of many different types. An example used above, is the function zip, that 
zips two lists together regardless of their type. Functional algorithms are commonly 
expressed as the composition of simple reusable components like dff. Code reuse 
comes hand-in-hand with modularity, which is beneficial for programming and proof. 

Referential transparency outlaws destructive updating. For instance, when you exe- 
cute x 

_: 
= 8, in an imperative language, the contents of x is destroyed and replaced 

with 8. Unfortunately, efficient implementations of graph algorithms seem inherently 
to require some form of destructive updating (Section 1.1). Figure 1.2 illustrates this: 
during the course of the depth-first search vertices are marked. Marking is carried out 
for each and every vertex so it has a direct impact on the complexity of the algorithm. 

There are several excellent exp'ositions on the-merits of functional programming lan- 
guages including: Backus (1978); Hughes (1989); and Pountain (1994). Many of the 
points made above have been drawn from this material. 

1.4 Im '' -rati '' functional approach 
'pe 

ye 

This thesis explores the use of state in a functional language. There are several, ways 
of introducing state, some of which are reviewed later (Chapter 4, p. 66). The method 
chosen here is to use the monad of state transformers which is fully supported in the 
Glasgow Haskell compiler. 
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Surprisingly, in the depth-first search algorithm presented above, the marking of 
vertices is the only place where destructive update is necessary for an O(V + E) 
time implementation. So the implementation uses an updatable array (just a normal 
imperative array which has 0(l) time array update) to represent the set of visited 
vertices (Figure 1.4). Hence the functional implementation has asymptotic complexity 
O(V + E). 

Introducing state into a functional language, no matter how elegantly, is fraught with 
danger. The difference between the provability of functional and imperative functional 

code is marginal. The code itself even looks imperative. Here is an example of depth- 

first search expressed in a functional language, using the monad of state transformers 
(Figure 1.4). This is meant to give you a flavour of what to expect. The details about 
introducing state into a functional language are not given until Chapter 4. 

dff :: Graph -> [Tree Vertex] 
dff g= runST (do marks <- newArr (bounds g) False; 

dfs g marks (vertices g) 

dfs :: Graph -> ST s (MutArr s Vertex Bool) -> [Vertex] ->ST s [Tree Vertex] 
dfs g marks 0= return [I 
dfs g marks (v: vs) = do visited <- readArr marks v; 

if visited then dfs g marks vs 
else do ts <- dfs g marks (g! v); 

us <- dfs g marks vs; 

return (Node v ts: us) 

Figure 1.4 Imperative functional description of depth-first search. 

This is a good example of state being encapsulated, purely functional values are taken 

and returned. Other algorithms like the functional components algorithm now have 

an acceptable time complexity as well as being purely functional. Throughout this 

thesis achieving an acceptable asymptotic complexity with respect to conventional 
languages is of paramount concern. Nevertheless, as much as possible the algorithms 

will be expressed purely functionally, although sometimes this is unavoidable. 
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Literature- survey 

Graph theory and its algorithms is a huge topic. This chapter reviews some of the 
many diverse methodologies for the design, implementation, and verification of graph 
algorithms. 

2.1 Graph algorithm design 
I 

Graph problems are so diverse that a unifying approach to the design of graph al- 
gorithms is not feasible. The style of presentation of graph algorithms over the last 

twenty years has been to present the final algorithm usually with pseudo-code (see 

Section 1.3). Typically, the derivation of the algorithm and intuition as to why it 

works are not clear. There has been a potpourri of approaches for expressing graph 
algorithms to give more insight, some of which are now reviewed. 

2.1.1 Mathematical induction 

Mathematical induction is not only useful for proving the correctness of an algorithm, 
but can be instrumental in algorithm development. As an example take the problem 
of sorting a list of numbers. The base case of an inductive proof is the empty list, 

which requires no sorting. Let's assume that n-1 elements are already sorted, then 

n elements can be sorted by inserting the nth element in its correct position. We 

have proved that n elements can be sorted, by using insertion - thus we have the 

algorithm insertion sort. The performance of this 0(nl)'time sort can be improved 

11 
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by using a different inductive principle. Instead of extending a solution of n-1 to 
n, a solution of n/2 is extended to a solution for n. The base case is again trivial, 
the inductive case is to merge two sets of n/2 numbers together - this leads to the 
0 (n log n) algorithm merge sort. 

Manber (1989) describes mathematical induction as a general method for developing 

combinatorial algorithms. As is clear from the above examples, the philosophy gives 
insight and understanding of the algorithms. Graphs, however, are not well suited 
to the inductive approach. They do not have-an inductive structure with neat sub- 
components. In general it is not possible to derive a graph algorithm by extending a 
solution of a small graph to a solution of a larger graph. There are, however, cases 
where it is possible to induct on the number of vertices or edges. One example given in 

Manber (1989, Chapter 7) is Dijkstra's single-source shortest paths algorithm (further 

explained in Section 7.2). The induction hypothesis is: given a graph and a source 

vertex v, we know the closest k vertices to v, and the lengths of the shortest paths 

to them. So induction is on the vertices whose shortest paths have been computed. 
Initially, the first shortest path is the closest vertex from v and this is the base case 
for the induction. Having an inductive principle doesn't guarantee a good, or the best, 

algorithm, and not all graph problems can be expressed in this way. Nevertheless, 

where applicable this offers insight to the algorithm, as well as formally proving it 

correct. 

2.1.2 Using libraries 

With many graph algorithms several efficient routines are essential to achieve the 
best asymptotic complexity. An obvious approach to the fast development of graph 
algorithms is to maintain a library of highly-tuned, reusable routines. Recently this 

approach has been taken by LEDA (Mehlhorn and Naher 1989) and Stanford Graph- 
Base (Knuth 1993). In both cases the graph algorithms and related data structures 
are implemented imperatively, using C++ for LEDA, and C for GraphBase. Having 

such libraries does prevent the re-invention of the wheel; but having them in C is not 
ideal. While C is widely used, the language does not provide a good setting for clarity 
and proof. Furthermore, it is not feasible to provide a complete set of routines for 

every graph problem. For example, different representations of the graph are needed 
for different algorithms. With Knuth's GraphBase the style of presentation is a lit- 
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erate one - documents are written in CWEB which can be translated to C and/or 
This style encourages a far better presentation than usual, and is a great aid 

to understanding and maintaining the code. GraphBase provides several examples of 
non-random graphs, with the intention to provide standards to empirical compare dif- 
ferent algorithms. Example non-random graphs used in GraphBase include: graphs 
of character acquaintances in classic works of literature; cross references in Roget's 
Thesaurus; mileage between North American cities; and many more. 

2.1.3 Graph languages 

Another approach to the design of graph algorithms is to use a specialised language for 

graphs. Examples include GRAMAS (Pape 1979) a graph manipulation system which 

provides an Algol-like language; and GRAPL (NagI 1979) which is mainly concerned 

with dynamic algorithms. The language GEL (Graph Exploration Language) of Erwig 

(1992) provides exploration operators, which give a concise way of expressing many 

algorithms. GEL will be discussed in some detail since it is based on a lazy functional 

language. In GEL depth-first search and breadth-first search are expressed: 

dfs v= explore v: Stack; suc 

bfs v= explore v: Queue; suc 

Here explore denotes tree exploration, and takes a data structure, an expansion, 

and a computation. The data structures have associated get and put operations, for 

taking a single element from and inserting multiple elements into the data structure. 
In the expressions above the get operation will return an element only if it was not 
returned by a previous call of get. The put operation is expressed by (: ) above 
(note this is an overloaded operator). For stacks, v: Stack means that v is initially 

pushed onto the stack. The expansion is expressed by the function suc, which gives 
the association list for the current graph element. Computations were not used in 

the above; computations are actions taken during graph exploration. The explore 

operators work well for many algorithms, reducing the gap between specification and 
implementation. 

Although'a graph'basedý language can be expressive for some problems, there are 
likely to be problems that cannot be expressed well in the language, and it seems 
less than ideal to'add new language concepts for every new problem tackled. Ever 
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changing languages tend not to be widely used, and having too many special features 
tends to make them more difficult to learn. 

Mathematica 

Mathernatica is an environment/workbench for experimenting with discrete mathe- 
matics, and is available on many platforms (Wolfram 1991). It provides a high-level 

applicative programming language with an extensive amount of mathematics under 
the hood. The language features include list processing, algebraic simplification, pat- 
tern matching, and looks like a traditional functional language. A high-level graphics 
description language allows graphs to be displayed interactively. The main -draw- 
back of XIathernatica-is that the model of computation makes it difficult to get the 
right complexity for some traditional algorithms. Skiena (1990) shows how tradi- 
tional graph algorithms'may be implemented in Mathernatica. His emphasis is on 
conciseness of code rather than efficiency. This is fine for experimentation, but when 
considering real problems on a large scale, efficiency becomes crucial. - 

2.1.4 Program derivation 

The advantages of deriving a program rather than inventing it, then proving it correct, 
are quite clear. The derivation gives a correctness proof for free, whereas it may be 

extremely difficult'to show the correctness of an arbitrary program. Moreover, the 
design decisions are pinpointed during derivation, shedding more light on the resulting 
program. 

Bird-Meertens's calculational style 

The Bird-Meertens formalism (also known as squiggol) embodies the transformational 
approach (X1eertens'1986, - Bird (1987,1988), Backhouse 1989). It is particularly 
suited to the functional paradigm, although it is claimed not to be language depen- 
dent.,, Starting with a mathematical specification, a more efficient algorithm is devel- 

oped by successive program transformations. The methodology has been applied and 
developed on many diverse problems including some graph problems (Bird 1984a). 
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But here Bird does not come up with algorithms that have the best asymptotic com- 
plexity. For example, he derives an algorithm to test if a graph has a cycle that runs 
in 0( V') time whereas this problem is possible in 0(V+ E) time (note E< V'). 

In the Bird-Meertens formalism, algebraic properties of datatypes are used in the 
development of algorithms. Most of the work done so far has been with the datatypes 
in the Boom hierarchy, namely: lists, sets, bags, and to a lesser extent trees. See 
Jeuring's (1992) thesis or Hoogerwoord's (1989) thesis for an abundance of problems 
solved in this style. Examples include finding the minimum sum over all segments 
of an integer list, and Eratosthenes's sieve for computing prime numbers. There 
has been limited work applying the approach to arrays (Wright 1988, Jeuring 1991). 
Gibbons's (1991) thesis is about applying the approach to trees. He used higher-order 

combinators, catamorphisms, to express upward and downward accumulations on 
trees. Applying an accumulation to a tree replaces every node with some 'accumulated 
information' about other tree nodes. An upwards accumulation replaces every node 
with some function applied to its descendants; downward accumulations replace every 
node with some function applied to its ancestors. An example is an algorithm to label 

every node with the smallest and largest elements of the node's subtree; this is simply 

expressed using an upward accumulation. 

Derivation specifically for efficient graph algorithms was investigated by Reif and 
Scherlis (1984). They worked with a high-level specification of an algorithm and 
developed a lower-level efficient implementation. Their approach gives insight into 

the algorithms they develop; but the development can be long and tedious and relies 

somewhat on knowing the final algorithm. To overcome this tedium they propose 
to make the development semi-automatic. Their main example is the biconnected 

components algorithm of Tarjan (1972). 

The transformational approach can work extremely well especially on structures that 
have a well known algebra (lists and trees, for example). Graphs, however, do not 
have an obvious algebra. Developing a graph algorithm from its specification is a 

good way of gaining deeper insight-and understanding into the algorithm; but to do 

the development a eureka factor plays a strong r6le. For large graph problems, the 

transformational approach can be laborious. Moreover, the transformation rules are 

not Complete - new algorithms commonly need new transformations. 
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Dijkstra's calculational style 

The calculational style of programming described by Dijkstra (1976) and others, 
that has its origins with the axiomatisation of programs (Hoare 1969) and stepwise- 
refinement (Wirth 1971), is loosely analogous in the imperative world to the Bird- 
Meertens formalism. Efficient algorithms are derived by using pre-conditions, post- 
conditions, and loop invariants of program fragments. Problems tackled by this ap- 
proach are often to do with array manipulation, for example: sorting, searching, or 
partitioning an array so that sections have certain properties. More recently some 

graph problems have been tackled in this style (Gries and Schneider 1993, Chapter 

19). Problems that were previously considered hard to solve are derived systemati- 

cally from their specification by following the rules of the calculus. This is not purely 

mechanical though, occasionally design decisions (eureka steps) are'needed. Again 

this approach can be tedious for large problems and often a certain amount of insight 

is needed to derive an algorithm. 

2.1.5 Graph algebras 

Algebras for graphs have been studied in the context of graph rewriting, see Bauderon 

and Courcelle (1986), for example. There is no universally accepted graph algebra for 

expressing or developing algorithms. It is not obvious how such an algebra should be 

expressed. Other common structures such as trees and lists have a well understood 

algebra. The reasons are similar to why graph algorithms do not lend themselves 

to inductive proofs, and are problematical for lazy functional languages - graphs 
do not have a recursive data structure. Recursive data structures are always tree 

shaped. Klarlund and Schwartzbach (1993) use graph types to overcome this weak- 
ness. Datatypes are extended so that graph structures can be expressed without using 
exPlicit pointers, They do this by using routing fields in datatypes, that contain nav- 
igation directives which lead to a node in the tree. For example, a directive might be 

move tip to a specific child'. The advantages are that graph copying and comparing 
can be derived by the compiler, and it becomes easier to verify, and statically anal- 
yse programs. The use of directives, however, can make the graph type descriptions 

obscure, and several graph shapes cannot be expressed., 

N1,161ler, and Russling (1992), and Mbller (1993a, 1993b), and Russling (1994,1995) 
use an algebra of formal languages and relations to model graphs. They show how 
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some traditional graph problems (shortest paths, cycle detection, reachability, and 
Hamiltonian paths) are derived using algebraic laws. Their language does not use 
predicate calculus (that is, quantifiers), and is therefore more compact than usual 
derivations (for example, the Bird-Meertens formalism). 

Gibbons (1994) presents an initial-algebra approach for modelling directed acyclic 
graphs. Defining an initial algebra for datatypes consists of giving an object construc- 
toi-s for building larger objects, and laws for algebraically manipulating the objects. 
Gibbons's current Nvork has a number of caveats: for example, he can only represent 
directed acyclic graphs, and the edges must be ordered. The notation is also quite 
cumbersome for representing graphs. Here's an example of a simple five vertex graph 
with six edges: 

(2 x verto 9 , 3) 0 (edge 0 ((edge 0 swap,,, 0 edge) - (2 x swapj)) 0 edge) (3 x vert2, o) 

Where vert,,,,, is a vertex with m incoming edges and n outgoing edges; edge is a 
directed edge; x0y places x beside y, but with no connection; x0y means place 9 

x before y, formed by connecting the outgoing edges of x to incoming edges of y; 
rn xx produces m copies of x all of which are placed beside each other; swapn, n 
consists of m edges connecting the first m outgoing edges with the last m incoming 

edges, and connecting the last n outgoing edges with the first n incoming edges. 
Although there are difficulties with the work, this seems a reasonable continuation of 
the Bird-Meertens formalism for graphs. 



18 Chapter 2. Literature survey 

Algebras for path problems 

An algebra for paths to aid the derivation of path algorithms is a more plausible 
proposition. This approach has been explored by Backhouse and Carr6 (1975), Carr6 
(1979) and Tarjan (1981), amongst others. In their approach a general algorithm for 
solving path problems on directed graphs is defined. Different problems are solved by 
using different interpretations of the operators in the path algebra. For example, the 
solution to a set of linear equations by Gauss-Jordan elimination may be interpreted 

as a version of Floyd's (1962) shortest path algorithm. A shortcoming of this work 
is that the emphasis is on manipulating symbols, which are written in a concise 
mathematical notation. Thus an insight into an algorithm is not gained. 

2.1.6 Functional approaches 

Some of the difficulties in the design of graph algorithms can be overcome by using a 
functional language. The essentials of an algorithm can*be expressed without so much 

of the baggage (such as memory management) that, is typical with an imperative 

language. As well as making the development easier, this provides a framework 

for reasoning and yields deeper algorithm insight. Some of the typical functional 

approaches that have been taken in the past will now be reviewed. 

In Standard ML it is common practice (for example, Harrison (1993) or Paulson 
(1991)) to represent a graph by a list of pairs. In order to test if a vertex has 
been visited before, a list of all visited vertices is held, and a list membership test 
performed. This leads to graph traversal algorithms having a quadratic asymptotic 
complexity in the number of vertices O(V2) . Holyer (1991), and Thompson (1995) 
do just the same in a lazy functional language. Wikstr6m (1987) using Standard ML 

notes that the best implementations of graphs use arrays; but at the time Standard 
NML didn't have arrays, so he commented that balanced binary trees could be used 
instead. Arrays have since been added to Standard ML; but to my knowledge no one 
has exploited this for graphs, though their imperative nature would make it quite 
possible to do so. Reade (1989) working with Standard NIL uses a more functional 
method of representation. He represents a graph by a function which computes the 
successors of each vertex. Again a list of visited vertices is maintained to ensure 
termination, so the algorithms presented are not optimal. 
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The parallel non-strict functional language Id (Nikhil and Arvind 1990) provides M- 

structures which are particularly well suited to express state based computations. 
Barth et al. (1991) show how M-structures provide a way of efficiently expressing 

graph traversal. An M-structure array has operations take and put. A take operation 

will either suspend if there is no value to take; or read the value and reset the position 
to empty. A put operation writes a new value to an empty (that is, taken) position. If 

there are suspended take operations when doing a put then the value is communicated 
to one of them and the array component remains empty. This M-structure array is 

particularly suited for holding marks to express whether a vertex has been visited 
before or not during a traversal. The disadvantage of using M-structures is that 

referential transparency can be lost. Currently a new language is being designed 

which combines Id's parallel evaluation strategy and features such as M-structures, 

with the syntax and type system of Haskell. The language is to be called pH which 
stands for parallel Haskell. It is not clear that there will be any benefits in using pH 
for the implementation of graph algorithms. 

Meira (1985b) working with the functional language KRC gives three possible rep- 

resentations for graphs. The first is to use a list of lists where xss! U represents 

vertices adjacent to i. The second is to use a list of pairs, where each pair represents 

an edge. The third is to represent the graph by a successor function, from vertex 
to its immediate neighbours in the same way as Reade (1989). For marking visited 

vertices he again uses a list holding visited vertices. 

Launchbury (1989) using Lazy ML gave a succinct implementation of the strongly con- 

nected components algorithm of Kosaraju (unpublished), and Sharir (1981). Again 

this algorithm wasn't linear; but it was clear where the inefficiency lay -a member- 
ship test on a list was used to check if a node had been visited before or not. 

Burton and Yang (1990) using a lazy functional language represent their graphs by 

heaps. The heaps are implemented with balanced binary trees. The heaps are also 

used for holding visited markings on vertices, which leads to having logarithmic time 

graph traversal. One drawback of this is that each function must take a heap and 

return an updated heap. 

Kashiwagi and Wise (1991)'express their graph algorithms in Haskell. To overcome 
the problem of requiring side effects they present graph algorithms as the fixed point 

of a set of recursive equations. The recursive equations are derived directly from 

the formal specification of the problem. This makes the proof of correctness of the 



20 Chapter 2. Literature survey 

program almost, transparent. Graphs are represented by lists, so the algorithms are 
not optimal. Nevertheless, unlike the usual imperative algorithms, these are suitable 
for parallel evaluation. Unfortunately, the algorithms presented become long and 
unreadable, which makes it hard to gain any insight from them. 

Schoenmakers (1992) in his thesis does not cover graphs, but uses a functional nota- 
tion with added pointer and array operators to explore the amortised complexity be- 
haviour of many data structures. The imperative features such as arrays and pointers 
are encapsulated as much as possible by using intermediate algebras. Data structures 
covered are: lists, trees, skew heaps, Fibonacci heaps, and more. The emphasis is 
firmly on formally showing the amortised behaviour of these structures. 

Hartel and Glaser (1994) implement the resource constrained 
' 
shortest path problem, 

which is NP-complete, in the lazy functional language Intermediate. 
' 
The problem 

is to find the shortest path in a network such that certain constraints are satisfied. 
They develop three variants of a solution and, give a,, critique on the usefulness of 
laziness and functional programming compared to more traditional approaches to the 
problem. 

2.2 Algorithm correctness 

Algorithm correctness can be divided into two categories: program verification, and 
program derivation. Verification is done after the program has been written; deriva- 
tion from a specification results in a program, and correctness proof. A correctness 
proof is a formal demonstration that a program meets its specification; not that it 
is guaranteed to execute correctly in all circumstances. Such a guarantee would re- 
quire proving the correctness of the hardware and software used in all detail, which 
is currently infeasible. 

Several methods of program derivation have already been briefly discussed: the Bird- 
Meertens formalism (Section 2.1.4); the Dijkstra calculus (Section 2.1.4); and the 
algebraic approach (Section 2.1.5). Program derivation can overcome many of the 
software development problems: hacking up the solution to a problem is a sure way, 
of introducing subtle bugs; it is not obvious from the result, where the important 
design decisions were made;, because the program was not written with correctness 
in mind, verification is extremely difficult. Program derivation is no panacea, it is 
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often an effort to derive the smallest of algorithms. It is not just a mechanical process: 
experience and skill play a big part in program derivation, just like with programming. 

Program verification is more common; it is generally quicker to write a program, than 

to derive it formally. Books on algorithmic graph theory usually do not demonstrate 

correctness in all detail. Theorems are stated/proved, but with an informal connec- 
tion to the algorithm. Verifying a functional algorithm is far easier because of their 
mathematical tractability (see Bird and Wadler (1988) for many examples of reason- 
ing about functional programs). Furthermore, functional languages encourage styles 
of programming, such as modularity, which is good for both programming and proof. 

2.3 Complexity analysis of algorithms 

When looking at algorithms, of any sort, one of the most important topics to consider 
is complexity analysis. Almost every book on algorithms has a chapter, or more, on 
complexity: starting with Knuth (1973a), and continuing with Aho et al. (1983), 
Sedgewick (1988), Kingston (1990), and Corman et al. (1990) amongst others. These 

all cover the analysis of imperative algorithms, which is in many ways easier than 

analYsing functional algorithms. This is because of the close correspondence between 
imperative algorithm, and the method of evaluation. Assignments, loops, condition- 
als, and arithmetic operations are all compiled to similar machine instructions. 

The typical presentation of complexity analysis for imperative algorithms is not done 

in all detail. The analysis is often literate and informal, instead of mathematical. 
Common sense leaps are made from pseudo-code to the analysis. This is not surprising 
as the code is not amenable to mathematical manipulation. 

Functional languages are amenable to mathematical manipulation, so showing the 

analysis of a functional algorithm in all detail is plausible. The mapping from a func- 

tional program to machine instructions, however, is not as direct as with imperative 
languages. Lazy functional languages pose further problems as the evaluation order 
is not fixed. Sands (1990) in his thesis developed a simple calculus for time analysis 
of strict functional languages; and more recently Sands (1995) has extended this for 

non-strict functional languages. Bjerner and Holmstr6m (1989) also looked at the 

complexity of lazy functional programs, but for a first-order language. Their ap- 

proach is compositional, and so requires computing information about context. This 
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becomes impractical for relatively simple problems, and it's not easy to see how it can 
be extended usefully to higher-order languages. The analysis of functional programs 
will be discussed further in Chapter 8, where some example calculations will be given 
for a functional example; a stateful example; and a lazy example. 
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Functional algorithms 

There are several advantages in expressing algorithms in a functional language. They 

abstract away from storage details so that little more than the essence of the algorithm 
is described. Formally manipulating a functional algorithm is far simpler than the 
imperative equivalent. Consequently, the correctness of a functional program with re- 
spect to some specification is often straightforward to prove. Typically the functional 

program is the specification. Lazy functional programs are not evaluated in a fixed 
(sequential) order, so the algorithm has potential for parallel evaluation. Another 

pleasant feature of functional languages is the way data structures can be expressed 
and manipulated. Dealing with lists and trees is often annoying in an imperative 
language, because of the explicit use of pointers. 

Conversely, a high level of programming may also be considered disadvantageous. 
There is no easy means for expressing storage details. The language is far removed 
from machine instructions, so deriving the asymptotic complexity is not as easy as it 

may seem. The object code is generally slower than that of a conventional language. 
Although once the essence of the algorithm has been designed functionally, with a 
little effort it can be refined to a sequential imperative implementation. 

This chapter looks at some functional algorithms, and demonstrates typical equational 
reasoning on them. The higher level of abstraction is shown to give deeper insight, 

as well as making equational reasoning easier. 

23 
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3.1 Treesort 

Treesort is a good example of an algorithm that is expressed well functionally, and 
a presentation can be found in many introductory texts on functional programming 
(Field and Harrison 1988, Reade 1989). Treesort works by building intermediate 
trees, the following (polymorphic) binary tree representation being typical: 

data Tree a= Tip I Node (Tree a) a (Tree a) 

A tree is either a tip or a node. A node has three compopents: a left subtree, an 
element, and a right subtree. A tree is ordered if at every node the element is greater 
than all the elements in the left subtree but less than or equal to all the elements in 
the right subtree. 

Treesort relies on the property that flattening an ordered tree in in-order produces an 
ordered sequence. Thus, each element in the original input sequence is inserted into 

an ordered tree, maintaining the ordering property, and the final tree is flattened. 

This is specified by the following functions. First ins which inserts a single element 
into an ordered tree. 

ins :: Ord a => a Tree a -> Tree a 
ins y Tip = Node Tip y Tip 

ins y (Node 1x r) y<x = Node (ins y 1) xr 

Y>=x = Node 1x (ins y r) 

The type for ins has the context Ord a which restricts the type a to objects that have 

a defined ordering. This function is simply extended to insert a sequence of elements 
into an ordered tree: 

insSeq :: Ord a => Tree a [a] -> Tree a 

insSeq tD=t: 
insSeq t (x: xs) = insSeq (ins x t) xs 

This function is more concisely expressed with a list fold operation, but for our 
purposes the above is more convenient. 

Finallyl flattening the tree in-order is done with the following: 
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flatten :: Tree a -> [a] 

flatten Tip = 11 

flatten (Node 1x r) = flatten 1 ++ [x] ++ flatten r 

This implementation of flatten is not the most efficient; it runs in 0 (n log n) time 
for the average case, whereas a linear O(n) time algorithm is possible. This has no 
bearing on the complexity of the following implementation of treesort, since insSeq 
also runs in 0 (n log n) time for the average case. 

treesort :: Ord a => [a] -> [a] 

treesort xs = flatten (insSeq Tip xs) 

3.1.1 M-ansforming the trees out of treesort 

As well as being a good example of the abstraction power of functional languages; 

treesort is a good example of an algorithm that can be formally manipulated. When 

treesort is run many intermediate trees are created, none of which outlive the result 
of the sorting process. These trees may be completely removed from the algorithm by 

using the unfold1fold transformation strategy well established by Burstall and Dar- 

lington (1977). The technique works by unfolding function calls to their definitions, 

then the resulting expression is simplified before being folded back into function calls. 

Like many of the examples given by Burstall and Darlington a key eureka step is 

needed in the simplification phase of the transformation. Eureka steps are just those 

transformations that an automatic system, for example, the deforestation algorithm 
of Wadler (1988a), could not invent. The following lemma describes our eureka step 
which expresses the property that the root of the tree acts as a pivot for the rest of 
the input, and that the input could be divided up into two sublists ahead of time. 
Throughout these transformations it is assumed that all lists and trees are finite and 

contain defined elements only. 

Lemma 3.1 
For all trees (Node I x. r) and lists xs the following holds, 

insSeq (Node 1x r) xs 
Node (insSeq I (filter (< x) xs)) 
x (insSeq r (filter (ý: x) xs)) 
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Proof 

The proof is by induction on the length of the list. The base, case is almost immediate: 

insSeq (Node I, x r) 
Node Ixr 
Node (insSeq Ix (insSeq r 
Node (insSeq I (filter (< x) 
x (insSeq r (filter (ý! x) [ ])) 

as filter p[]=[j for all predicates p. ýI 11ý 

For the inductive case, xg is expressed as y: ys. First assume that y<x. 

insSeq (Node 1x r) (y : ys) 
insSeq (ins y (Node Ix r)) ys 

By assumption 
insSeq (Node (ins y 1) x r) Ys 

Induction 

Node (insSeq (ins y 1) (filter (< x) ys)) 
x (insSeq r (filter (ý: x) ys)) 

Node (insSeq I (y : filter (< x) ys)) 

x (insSeq r (filter (> x) ys)) 
By assumption, 

III 

Node (insSeq 1 (filter (< x) (y ys))) 
x (insSeq r (filter (ý: x) (y : ys))) 

as required. Tile case when y>x is similar. 

3.1.2 Treesort is equivalent to functional quicksort 

0 

With this lemma, the transformation of treesort proceeds as follows. The nil and cons 
cases are done separately. 
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Case []- 

treesort flatten (insSeq Tip 
flatten Tip 

Case (x : xs). 

treesort (x : xs) 
= flatten (insSeq Tip (x : xs)) 

= flatten (insSeq (ins x Tip) xs) 
= flatten (insSeq (Node Tip x Tip) xs) 

Lemma 3.1 1 

flatten (Node (insSeq Tip (filter (< x) xs)) 
x (insSeq Tip (filter (ýý x) xs))) 

flatten (insSeq Tip (filter (< x) xs)) 
ý+ 1XI 

4+-flatten (insSeq Tip (filter (ý! x) xs)) 
treesort (filter (< x) xs) 

4 [XI 
ý+ treesort (filter (> x) xs) 

This provides an alternative recursive definition for treesort with no intermediate 

trees. The recursion is well founded as the length of the list argument decreases with 
each recursive call. Written without the intermediate transformation steps yields, 

treesort 
treesort (x: xs) = treesort (filter (<x) xs) 

++ [X] 

++ treesort (filter (>=x) xs) 

This is more well-known as functional quicksort. So these two algorithms can be 

considered equivalent. But aren't all sorting algorithms equivalent in the sense that 
they all have the same specification? Yes, of course, but the notion of equivalence 
is stronger here. Both treesort and functional quicksort can be considered as reali- 
sations of the same abstract algorithm. This stronger notion of equivalence can be 

characterised by the following theorem: 
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Theorem 3.2 
Treesort and functional quicksort carry out the same comparisons during the sorting 
process. 

Sketeli Proof First both sorting algorithms are re-written so that they return the 
comparisons undertaken rather than an ordered list. For example, quicksort may be 
re-written: 

quicksort' Ord a =ý- [a] (a, a)} 
quicksort' 0 

quick-sort' (x : xs) quicksortc (filter (< x) xs) 
Uf (x, k) IkE xs I 

U quicksortc (filter (> x) xs) 

This function is then shown to be equivalent with a function that returns the compar- 
isons carried out during treesort. The proof is similar to the transformations carried 
out above. 0 

The notion of equivalence of sorts used here concerns comparisons, not the order in 
which they are performed. One may define a stronger notion of equivalence which also 
compares the order in which comparisons are made. However, treesort and quicksort 
do not perform comparisons in the same order. 

The, similarity between treesort and quicksort has been observed before, Hibbard 
(1962) showed the connection between the analysis of the two sorts. See Knuth 
(1973b) for a thorough discussion of both sorts. To the best of my knowledge no one 
has formally demonstrated the similarity of the two sorts. Perhaps this is because 
one wouldn't consider doing this with imperative code. 

3.2 Functional priority queues 

A crucial part of many algorithms is the data structure that is used. Frequently, 
theýalgorithm needs an abstract datatype providing a number of primitive operations 
on a data structure. A priority queue is one such data structure that is used by a 
number of algorithms. - 

Applications include Dijkstra's (1959) algorithm for single- 
source shortest paths (Section 7.2), and the minimum cost spanning tree problem 
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(see Tarjan (1983) for a discussion of minimum spanning tree algorithms). See Knuth 
(1973b) and Aho et al. (1983) for many other applications of priority queues. 

A priority queue is a set where each element has a key indicating its priority. The 

most common primitive operations on priority queues are: 

emptyQ Return the empty queue. 

isFnpty q Return True if the queue q is empty, otherwise return False. 

insertQ iq Insert a new item i into queue q. 

f indMin q Return the item with minimum key in queue q. 

deleteMin q Delete the item with minimum key in queue q. 

meld pq Return the queue formed by taking the union of queues p and q. 

In addition, the following two operations are occasionally useful: 

delete iq Delete item i from queue q. 

decreaseKey iq Decrease the key of item i in queue q. 

There are numerous ways of implementing the abstract datatype for priority queues. 
Using heap-ordered trees is one of the most common implementations. A tree is heap- 

ordered if the item at every node has a smaller key than its descendants. Thus the 

entry at the root of a heap has the earliest priority. A variety of different trees have 
been used including: heaps (Knuth 1973b), splay trees and skew heaps (Sleator and 
Tarjan 1983), 2-3 trees (Aho et al. 1983). In addition, lists (sorted or unsorted) are 

another possible implementation of queues, but will be less efficient on large data 

sets. For a comparative study of these implementations and others in an imperative 

paradigm see Jones (1986). 

The literature on priority queues in a functional paradigm is sparse. Heaps are the 

most common functional implementation, see Paulson (1991), for example. Often the 

disadvantage of using heaps, or balanced trees, is that more bookkeeping is required 
for balancing. This extra bookkeeping adds to the amount of storage space needed 
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by the queue, as well as making the implementation of the primitives more complex. 
We present a functional implementation of priority queues that is based on trees, but 
does not require as much storage space or balancing code as other implementations. 
The implementation is far more elegant than a typical imperative implementation, 
lending itself well to a formal proof of correctness. 

Vuillemin (1978) describes binomial queues which support the full complement of pri- 
ority queue operations in 0 (log n) worst-case time. They are based on heap-ordered 
trees in that a priority queue is represented by a list of heap-ordered trees (that is, 

a forest), where each tree in the forest is a binomial tree. The remaining following 

sections present a purely functional implementation of binomial queues expressing 
the full complement of priority queue operations in Haskell. 

3.3 Binomial trees 

Binomial trees are general trees that have a regular shape. They are best presented 
diagrammatically, where circles represent nodes: 

Bo =0B, =0 
B2 = ýo 

B3 = 

0000 
0 
0 

There are two equally good weývs of expressing the general -case, for n>0. 

Br, 0 

Bn-l ... Bi Bo n-1 

In the rightmost picture the root of a B,, -l tree is linked to the root of another B, '_1 
tree, by adding it as the first child. 
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In Haskell a general tree may be defined with the following datatype: 

data Tree a= Node a [Tree a] 

Then using this datatype binomial trees can be defined inductively: 

Bo = Node x [] 
Bn = Node x[ Bn-1, ..., BI, Bo for n>0. 

Alternatively, the inductive case for n>0 may be defined: 

Bn = Node x (Bn-I - XS) i where Node x xs is a Bn-l tree. 

Haskell has no way of enforcing the structure for binomial queues, beyond the pro- 
grammer using a predicate that verifies it. It is conceivable that a powerful type 

system could enforce the binomial structure. The Haskell predicate which verifies the 

structure is defined using the second definition of binomial queues from above. 

isBinTree :: Int -> Tree a Bool 

isBinTree k (Node x [1) k == 0 

isBinTree k (Node x (t: ts)) = isBinTree (k-1) t 

&& isBinTree (k-1) (Node x ts) 

Binomial trees have some pleasing combinatorial properties. For instance, the bino- 

mial tree Bk has 2' nodes, and (k) nodes of depth d, hence their name. See Vuillemin d 

(1978) and Brown (1978) for more properties. 

3.4 Implementing binomial queues functionally 

Vuillemin (1978) represents a priority queue with a forest of binomial trees. It is 
important that a list of trees is used to represent the forest because the ordering is 
important (a set of trees would not do). The firist tree in the binomial queue must 
either be a Bo tree or just Zero meaning no tree, and the second a B, tree or just 
Zero, this leads to the following structure for a binomial queue: 

[TO, Ti, .. -, T,, ] where Tk ='Zero I Bki for 0<k<n. 
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Vuillemin (1978) and others use an array to represent the forest; moreover, for simplic- 
ity, binary trees are used to represent the binomial trees. Imperative implementations 

of linked structures of this kind usually turn out to be clumsy. Instead the primitives 
will be expressed as recursive functions on a list of general trees, giving a natural 
encoding. 

So the following datatypes are used: 

type BinQ = [BinQTreel 

data BinQTree = Zero I One (Tree Item) 

The constructors Zero and One were chosen because the queue primitives are analogous 
with binary arithmetic. 

Each item is a pair of entry and key: 

type Item = (Entry, Key) 

Where Key is a type with an ordering, that is, it is an instance of the Haskell Ord 

class. The projection functions on items are: 

entry, key :: Item Entry 

entry = fst 

key = snd 

The following predicates may be used to verify that a list of trees has the right 
structure to be a binomial queue. 

isBinQ :: BinQ -> Bool 

isBinQ q= isBinQTail 0 

isBinQTail :: I: ýt, -> BinQ Bool 

isBinQTail kD= Tr'ue 

isBinQTail k (q: qs) = isBinQTree kq && isBinQTail (k+l) qs 

isBinQTree :: Int -> BinTree Bool 

isBinQTree k Zero' = True 

isBinQTree k, (One t) = isBinTree kt 
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Now we can start to express the priority queue operations. Creating a now empty 

queue, and testing for the empty queue follow immediately: 

emptyQ BinQ 

emptyQ 0 

isEmpty :: BinQ -> Bool 

isEmpty q= null q 

Uniting (or melding) two queues together is the most useful of all the primitive 

operations, because other primitives are defined in terms of it. There is a strong 

analogy between queue melding and binary addition. Given the two binomial queues 
[ P0, P1, ..., P,, ] and [ Qo, Q1, ..., Q.. I melding is carried out positionally from left 

to right, using the property that two Bk binomial trees can be linked into a Bk+1 

binomial tree. First Po is melded with Q0, giving one of four possible results. If both 

PO and Q0 contain trees (that is, they are not Zero) they are linked to form a B, tree 

so that the heap-order property is maintained. With just one tree and one zero the 

result is the tree, and given two Zero's the result is Zero. This process of linking is 

carried out on successive trees. If the result of melding Pk with Qk results in a Bk+1 

tree then this is carried on (analogous to a carry bit in binary arithmetic) and melded 

with Pk+l and Qk+l- 

meldC :: BinQ -> BinQ -> BinQTree -> BinQ 

meldC 0 qs Zero = qs 

meldC D qs c= meld [c] qs 

meldC ps Dc= meldC [] ps c 

meldC (p: ps) (q: qs) c= sum: meldC ps qs c) 

where (sum, c') = addC pqc 

addC :: BinQTree -> BinQTree -> Bir'QTree -> (BinQTree, BinQTree) 

addC Zero Zero c = (c, Zero) 

addC (One (Node x xs)) (One (Node y ys)) c= (c, One t) 

where tI key x< key y= Node x (Node y ys: xs) 
I otherwise = Node y (Node x xs: ys) 

addC pqc= addC qcp 
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meld :: BinQ -> BinQ -> BinQ I 
meld pq= meldC pq Zero. 

Points to note about this definition of meld are: that the third argument to meldC 
behaves like a carry; and the function meld calls meldC with the initial carry of Zero; 
also the third case in addC rotates the arguments until the first two are in the same 
form. 

The asymptotic complexity of meld is O(log n) (where n is the number of items in 
the larger queue). We arrive at this by observing that two Bk trees can be linked in 
constant time, and the number of these linking operations will be equal to the size of 
the longest queue, that is 0 (log n) . 'For a more detailed analysis of the complexity of 
meld and the other queue operations see Brown (1978). 

Inserting an item into the queue is expressed by melding a BO tree holding the item, 
into the binomial queue. 

insertQ :: Iteml-> BinQ -> BinQ 
insertQ i qs = meld [one (Node i EDI qs 

inýertMany,:: [Item] -> BinQ 
insertMany is = foldr insertQ 0 is 

Since each binomial tree is heap-ordered the item with the minimum key will be 
root of one of the trees. This is found by scanning the list of trees. The item 

with minimum key is deleted by first extracting the tree that it is the root of, then 
melding the subtrees back into the binomial queue. This melding is easy as the 
subtrees themselves form a binomial queue, in reverse order. These subtrees could 
be stored in this order, which would save doing a reversal, but this would make meld 
slightly more difficult to define. 

First the forest is traversed returning the required tree, and replacing it with a Zero. 

removeMinT :: BinQ -> (BinQTree, BinQ) 

removeMinT Ctl = (t, [1) 

removeMinT (t: ts) I t<mt = (t, Zero: ts) 

I otherwise = (mt, t: mts) 
where (mt, mts) = removeMinT ts 



3.4. Implementing binomial queues functionally 35 

The ordering on binomial queue trees used here is defined: 

instance Ord BinQTree where 

Zero <t= False 

< Zero = True 

One (Node x xs) < One (Node y ys) = key x< key y 

After this the subtrees of the extracted tree are melded back into the queue: 

deleteMin :: BinQ -> BinQ 
deleteMin qs = meld (map One (reverse ts)) qs' 

where 
(One (Node i ts), qsl) = removeMinT qs 

If two tree roots have the same key value, then the latest one occurring in the list is 

chosen by removeMinT. 

The total running time of removeMinT is 0 (log n), since it traverses a list of length 

log n carrying out constant time operations. The deleteMin operation carries out a 

meld, as well as removeMinT. Since the subtrees being melding back into the queue are 

smaller, the melding will take O(log n) time. Hence deleteMin will run in O(log n) 
time. 

The function removeMinT may also be used to express f indMin which again runs in 

0 (log n) time. 

findMin :: BinQ -> Item 

f indMin q=i 

where 
One (Node i ts) = fst (removeMinT 

The two pass algorithm for deleteMin can be performed in one pass over the binomial 

queue (giving a constant time speed-up)'by using the standard cyclic programming 
technique', 'see Bird (1984b). A function is used that both takes the item to be removed 

as an argument and returns the item with minimum key, as well as the binomial 

queue without the item. As usual, the efficient algorithm has a more cumbersome 
implementation, and so is ornitted'here. 
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3.5 Correctness of functional binomial queues 

To show the correctness of the primitive operations, three properties must be shown: 
(i) that the binomial queue structure is maintained; (ii) the heap-ordering property is 
maintained; and (iii) that the primitives satisfy their specification. We may show that 
the queue primitives maintain the binomial queue structure by using the previously 
defined functions isBinQ, isBinTree, isBinQTail, and isBinQTree. Here we show that 
meld maintains the queue structure, by first proving a property about meldC. 

3.5.1 Meld maintains the binomial queue structure 

Theorem 3.3 (meld maintains Ole binomial queue structure) 
After a meld operation the resulting queue is a binomial queue, if and only if meld is 

given two binomial queues. 

Vp, q. isBinQ (meld p'q) isBinQ pA isBinQ q 

Proof 

Using Lemma 3.4, instantiating n with 0, and c with Zero. 0 

Lemma 3.4 (meldC) 
For all n>0, and assuming that ps, qs and c are well-defined, 

Vps, qs, c. isBinQTail n (meldC ps qs c) 
4=* isBinQTail n ps A isBinQTail n qs A isBinQTree nc 

Proof - By induction. If length ps = length qs there would be fewer cases to show. 
Furthermore, the melding implementation coul& be changed so that these lists are 
always equal in size by appending zeros onto the end of the shorter list. This would 
make the program less efficient, however, and the extra code would be superfluous. 
Here we show the correctness of the actual implementation. 
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Case ps=[], qs= [1, any c. 

isBinQTazl n (meldC [] [I c) 
meldC showing for c Zero and c= One t 

isBinQTail n (meldC [] Zero) 
A isBinQTail n (meldC (One t)) 
I meldC I 

isBinQTail nA isBinQTail n (meldC [One t Zero) 
meldC 

zsBinQTail nA isBinQTail n [One t 
isBinQTail, isBinQTree I 

isBinQTail n [] A isBinQTail n [] A isBinQTree n (One t) 
As isBinQTree n Zero is true for n>01 

isBinQTail n [] A isBinQTail n [] A isBinQTree nc 

Case ps = [1, (q : qs), any c. 

37 

This is shown by induction on the length of qs, that is, we assume for qs and show 
for (q : qs). The previous case is the base case for the induction. 

isBinQTail n (meldC [I (q: qs) c) 
meldC showing for c= Zero and c= One t 

isBinQTail n (meldC [] (q : qs) Zero) 
A isBinQTail n (meldC [] (q: qs) (One 

I 
meldC 

I 

isBinQTail n (q: qs) 
A isBinQTail n (meldC [One t] (q : qs) Zero) 

meldC 
I 

isBinQTail n (q: qs) A isBinQTail n (sum: meldC qs c') 
A (sum, c) = addC (One t) q Zero 

I isBinQTail II 

isBinQTail n (q: qs) A isBinQTree n sum 
A isBinQTail (n + 1) (meldC [] qs c') 
A (sum, c') = addC (One t) q Zero 
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I Inductive hypothesis I 

isBinQTail n (q: qs) A isBinQTree n sum 
A isBin Q Tail (n + 1) []A isBin Q Tail (n + 1) qs' 
A isBinQTree (n + 1) c' A (sum, c) = addC (One t) q Zero 

f Lemma 3.5 1 

isBin Q Tail n (q : qs) A isBin Q Tail (n + 1) 
A isBinQTail (n + 1) qs A isBinQTree n (One t) 
A isBinQTree nqA isBinQTree n Zero 

f isBinQTail, isBinQTree, c= Zero or c= One t 
isBinQTail n [] A isBinQTail n (q: qs) A isBinQTree nc 

Case (p : ps), qs =[], any c. 

isBinQTail n (meldC (p: pq) [I c) 
f 

meldC 
I 

isBinQTail n (meldC [] (p: ps) c) 
f Previous case 

J 

isBinQTail n (p: ps) A isBinQTail n [] A isBinQTree nc 

Case (p : ps), (q : qs), any c. 

This case is also shown by induction, but this time on the length of ps and qs simul- 
taneously. that is. assume for ps and qs and show for (p : ps) and (q : qs). The cases 
shown above are the base cases. 

isBinQTail n (meldC (p: ps) (q: qs) c) 
f 

meldC 
I 

isBinQTail n (sum : meldC ps qs c) 
I isBinQTail I 

(sum, c') = addC pqc 

isBinQTree n sum A isBinQTail (n + 1) (meldC ps qs c') 
(sum, c') = addC pqc 
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Inductive hypothesis I 

isBinQTree n sum A isBinQTail (n + 1) ps 
A isBinQTail (n + 1) qs A isBinQTree (n + 1) c' 
A (sum, c') = addC pqc 

1 Lemma 3.5 1 

isBinQTree npA isBinQTail (n + 1) ps 
A isBinQTree nqA isBinQTail (n + 1) qs /\ isBinQTree nc 

f isBinQTail I 

isBinQTail n (p: ps) A isBinQTail n (q: qs) A isBinQT7-ee nc 

In the original implementation the function addC was not used. It was only later 

when meld was verified that it was introduced as a means of simplifying the proof. 
Splitting the function in two does make the algorithm more understandable; hence 

formally proving a program, is not only useful in convincing us that it works, but can 
improve the program. 

Lemma 3.5 (addC maintains binomial tree structure) 

For all n >- 0, and assuming that p, q, and c are well defined, 

Vp, q, c. isBinQTree n sum A isBinQTree (n + 1) c' 
A (sum, c') = addC, pqc 

4=-=> isBinQTree ncA isBinQTree npA isBinQTree nq 

Proof 

By case analysis on p, q, and c. There are several cases in the proof, the most 
interesting being where p and q both contain trees. 
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Case p= One (Node x xs), q= One (Node y ys), any c. 

isBinQTail n (addC (One (Node x xs)) (One (Node y ys))) 
A (sum, c') = addC (One (Node x xs)) (One (Node y ys)) c 

addC 
I 

isBinQTree nc 
A (isBinQTree (n + 1) (One (Node x (Node Y'ys xs))) 
V isBinQTree (n + 1) (One (Node y (Node x xs ys)))) 

isBinQTree, isBinTree 

isBinQTree ncA isBinQTree n (One (Node x xs)) 
A isBinQTree n (One (Node y ys)) 

Completing the case. The other cases are similar. 0 

3.5.2 Meld maintains the heap-ordering property 

A tree is heap-ordered if the item at every node has a smaller key than its descendants. 
Formally, a general tree t is heap-ordered if and only if: 

Vx, yEt. x0yA key x< key yAx --+t y 

where x --+t y represents a path in t from x to y (a path consists of zero or more 
edges). The heap-ordering predicate may be expressed with the following recursive 
function: 

heapOrdT :: Tree Item -> Bool 

heapOrdT (N 
, 
ode x [1) = True 

heapOrdT (Node x (Node y ys: xs)) = key x< key y 
heapOrdT (Node x xs) 
heapOrdT (Node y ys) 

Since we are dealing with binomial trees it is convenient to use a function that deals 
directly with them: 

heapOrd :: BinQTree -> Bool 

heapOrd Zero = True 

heapOrd (One t) = heapOrdT t 
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This function is then generalised for binomial queues, by using the following recursive 
definition (it is slightly easier for proof purposes to use this definition rather than a 
higher-order one). 

heapOrdQ BinQ -> Bool 

heapOrdQ = True 

heapOrdQ (t: ts) = heapOrd t && heapOrdQ ts 

TIleorern 3.6 (Heap-ordering property of meld) 
Assuming that p, and q are well defined then: 

Vps, qs . heapOrdQ (meld ps qs) . ý=#. heapOrdQ ps A heapOrdQ qs 

Sketch Proof 

The proof follows the same course of procedure as the proof for Theorem 3.3 and 

relies upon the following lemma for addC. 13 

Lemma 3.7 (Heap-ordering property of addC) 
Assuming that p, q, and c are well defined: 

Vp, q, c. heapOrd sum A heapOrd c' A (sum, c') = addC pqc 
4==* heapOrd pA heapOrd qA heapOrd c 

Proof 

By case analysis. There are several cases to consider, but here only the most inter- 

esting case will be given. 
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Case p= One p, q= One q', any c, where p'= Node x xs and q'= Node, y ys. 

heapOrd sum A heapOrd c' A (sum, c') = addC (One p') (One ql) c 
I 

addC 
I 

heapOrd sum A heapOrd c' A (sum, c') = (c, One t) 
A ((t = Node x (q' xs) A key x< key y) 
V (t = Node y (p' ys), A key x> key y)) 

f Substituting for sum and c' 
heapOrd c 
A ((heapOrd (One (Node x (q': xs))) A key x< key y) 
v (heapOrd (One (Node y (p' : ys))) A key x> key y)) 

f heapOrd, heapOrdT 

heapOrd c 
A ((key x< key yA heapOrdT p' A heapOrdT q') 
V (key y< key xA heapOrdT q' A heapOrdT p')) 

heapOrd cA heapOrdT p' A heapOrdT ql 
heapOrd (One p') A heapOrd (One q') A heapOrd c 

Establishing tile case. The other cases are no more difficult than this one. 0 

3.5.3 Meld meets its specification 

The third property required to show the correctness of meld is that it does a real 
union of elements: 

TIleorem 3.8 
Assuming that x, p, and q are well defined then: 

Vx, p, q. xE meld pqxEpVx 

Sketcli Proof The proof follows the same structure as the proof for Theorem 3.3 
(the proof that meld returns a binomial queue structure). Similarly, a lemma that 
addC does a true addition of trees is shown by case analysis. 0 
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3.6 Implementing decreaseKey and delete 

The usual way in imperative languages to implement decreaseKey and delete is 

to maintain an auxiliary data structure which supporbs direct access, in constant 
time, to each item. Usually this is specified by having pointers into the middle 

of the queue, but this is awkward in a functional setting. One way to achieve a 

reasonable complexity whilst remaining purely functional is to maintain a set of all 
items currently in the queue. Instead of physically removing the item from the queue, 
it is just removed from the set. So binomial queues are extended to a pair containing 
the queue and a set. 

type BinQExt = (BinQ, Set Entry) 

All the priority queue operations must do some extra bookkeeping to maintain the 

set. 

emptyPQ BinQExt 

emptyPQ (emptyQ, emptySet) 

isEmptyPQ :: BinQExt -> Bool 

isEmptyPQ (q, s) = isEmptySet s 

ýVhen inserting a new item, it must be inserted into the set. Similarly, when two 

queues are melded, the union of their sets must be taken: 

insertPQ :: Item BinQExt -> BinQExt 
insertPQ i (q, s) (insertQ i q, insSet (entry i) s) 

meldPQ :: BinQExt BinQExt -> BinQExt 

meldPQ (p, s) (q, t) (meld p q, unionset's t) 

Deleting the minimum item must also delete it from the set: 

deleteMinPQ :: BinQExt -> BinQExt 

deleteMinPQ (p, s) I not UsEmptySet s)'= (q, delSet (entry i) s) 

where 
(i, q) ='(findMin p, deleteMin 
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The f indMinPQ operation makes no change to the set and is just expressed in terms of 
f indMin. When decreasing the key for an item, the item is re-inserted into the queue 
with its new key. When deleting an item it is removed from the set. 

decreaseKey :: Item -> BinQExt -> BinQExt 

decreaseKey i pq (entry i) 'elemSet' (snd pq) insertPQ i pq 
otherwise pq 

delete :: Item BinQExt -> BinQExt 

delete i (q, s) (q, delSet (entrY i) s) 

Of course, maintaining a set has an impact on the time and space complexity of the 

priority queue operations. The set operations may be implemented with balanced 

trees for a reasonable complexity. The running times of decreaseKey and delete 
is 0 (log n), both running times being dominated by the set operations. The other 
operations have the same worst-case complexity as before 0 (log n), except meldPQ 
which is now dominated by the complexity of the set union operation 0(n + m) 
(where n and m are the sizes of the two sets). Furthermore, because items are"never 
physically removed from the queue the complexity of the operations is governed bv 

the total number of inserts made. Constant factors may be improved by doing some 
garbage collection, that is, physically removing items that percolate to the roots of 
trees. 

3.7 Comparison'with other priority queues 

In an imperative language binomial queues perform better than most other priority 
queue implementations, see Jones (1986) for an empirical comparison. More recently 
Fredman and Tarjan (1987) have developed Fibonacci heaps which are based on 
binomial queues. Fibonacci heaps, have a better amortised complexity for many of 
the operations. Unfortunately, they make heavy usage of pointers, so do not lend 

themselves to a natural functional encoding. 

The usual functional implementation of priority queues is to use heaps, see Paulson 
(1991), for example. The advantage of binomial queues over heaps is that the meld 
operation is more efficient (Table 3.1). Joues (1986) reports that in an imperative 

setting, binomial queues are one of the most complex implementations. In Haskell 
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Queue insertQ deleteMin meld 
Lines Time Lines Time Lines Time 

Binomial 1 0 (log n) 6 0 (log n) 11 0 (log n) 
2-3 trees 16 0 (log n) 41 0 (log n) 26 0 (n) 
Sorted list 5 O(n) 1 0(l) 6 O(n) 
Heaps 7 0 (log n) 17 10 (log n) 21 0 (n) 
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Table 3.1 Differences between some Haskell implementations of priority queues. 

the operations on tree and list data structures are far cleaner than in an imperative 

language. Functionally, binomial queues are in many ways more elegant than heaps. 

They are easier to program and understand, as well as being programmed in fewer 
lines of code. Similarly binomial queues have the same advantages over 2-3 trees, see 
Reade (1992) for a functional implementation of 2-3 trees, and Aho et al. (1983) for a 
description of how they may be used for implementing priority queues. Sorted lists are 
the simplest of all implementations, and give the best performance for small queues. 
In spite of this, they have the worst complexity, and will give slower running times for 

larger queues. Table 3.1 summarises the running times and lines of Haskell code for 

four different implementations. It should be noted that the asymptotic complexities 
for the binomial queue operations are all worst-case times. Okasaki (1996) has shown 

the implementation of binomial queue insertion given here runs in 0(1) amortised 

time. 

Independently Fourman (1994) gives a similar implementation of Vuillemin's queues 
in Standard NIL. Unpublished work by Brodal and Okasaki (1995) give a purely 
functional implementation of optimal priority queues. This together with some other 

purely functional implementation techniques for data structures are surnmarised in 

Table 3.2. 
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7, -ucture/autil ription 
_ Queues The queue is represented by a pair of lists (xs, ys) 

(Hood and Melville 1981, where xs is the front of the queue and ys is the end 
Gries 1981, Burton 1982) of the queue in reverse order. 
Deques The implementation uses a pair of lists together with 
Chuang and Goldberg tlýeir lengths. The heads of the lists represent the two 
(1993) ends of the dequ e, and the length information is used 

to achieve a balanced structure. 
Deques The implementation uses a quadruple (xs, ys,: is, ýs)t 
Okasaki (1994) where xs and ys are as with queues, and Ys and ýs 

are the tails of xs and ys, indicating which portions 
of xs and ys have been pre-evaluated. The reverse 
list operation is done incrementally with laziness. All 

o 'erations'run in 0(1) w'orst-case time. p 
Priority queues The implementation is an extension of binomial 
Brodal and Okasaki (1995) queues. The f indMin operation is improved to 0 (1) 

by maintaining a global root; insertQ is improved 
to 0(1) by eliminating cascading carries; and finally 

meld is improved to 0(1) by allowing priority queues 
to contain other priority queues. 

Sets There are several good implementations of sets, all 
Reade (1992) of which use a tree data structure. For efficiency, 
Adams (1993) balanced trees are used, for instance, Reade uses 2-3 

trees, and Adams uses balanced binary trees. 

Thble 3.2 Summary of some purely functional data structures. 



(3/11-11apter 

Stateful algorithms 

A stateful algorithm is one in which access is made to the state. Conventional im- 

perative algorithms are stateful, but purely functional algorithms are not. Many of 
the advantages of functional algorithms come from not having access to the state, 
however, some algorithms seem inherently to require access to the state in order to 

reduce their complexity. 

This chapter describes the monad of state transformers and with it introduces mutable 
arrays and mutable variables. This is not new; the approach taken follows closely the 

work of Launchbury and Peyton Jones (1994,1996). One difference is the use of the do 
notation to express stateful algorithms. The examples were chosen to illustrate the use 
of mutable arrays and mutable variables, and because they are useful for later graph 
algorithms. The chapter finishes with a discussion on the merits and otherwise of the 
imperative functional approach compared with a traditional imperative approach. 

4.1 The need for state 

Once we move to data structures that explicitly require sharing to achieve an efficient 
implementation, then the purely functional world becomes less appealing. In this 
type of structure, the ability of local actions to make global changes on the structure 
becomes vital. For example, the operations of a deque (double-ended queue) are 
usually implemented with doubly-linked lists (Knuth 1973a), and this method of 
implementation cannot easily be mimicked in the purely functional world. 

Sometimes, as in the case of deques, functional solutions exist. For example, Chuang 
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and Goldberg (1993) and Okasaki (1994) both give purely functional implementations 

of deques, see Table 3.2. While such applicative methods are important (and to a 
wider community than just functional programmers), they can be extremely devious 

or complex, arid there are still a number of problems that have been resistant to 

efficient functional solutions. Ponder et al. (1988) describe seven such problems, 
including RAM simulation. 

4.2 Including imperative actions in a functional 

language 

Functional languages like Standard ML and Scheme have allowed imperative actions 
since their conception. In both languages destructive updates can occur as a side effect 
of evaluation. This forces the evaluation order to be fixed and statically determined 
(otherwise the program's meaning becomes h' ard to predict). Amongst other things, 
this rules out lazy evaluation, or even opportunities for parallel evaluation. 

Over the last few years many people have explored various methods of including 
imperative features in functional languages, culminating in the monadic approach 
advocated in turn by Moggi (1989), Wadler (1990a, 1992), Peyton Jones and Wadler 
(1993), Launchbury (1993), and LaU'nchbury and Peyton Jones (1994,1996). This 

approach has a clear semantics, and can be cleanly combined with lazy functional 
languages such as Haskell. 

In the monadic approach that is explored here)'imperaiive actions are specified as 
state-transforming functions. In one sense, therefore, adding imperative features pro- 
vides nothing new: every program presented in this thesis can be written in any purely 
function al program by simulating the state. The only thing that the imperative fea- 

tures provide is a possible improvement of the complexity of the implementation. 
That'is. rather'than representing state changes by replacement of one value with a 
completely fresh one, true destructive update is used. On the other hand, the laws for 

reasoning are just those that would be requii-ed if the purely functional specification 
of state provided here were used in reality. 
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4.3 State transformers 

Imperative actions are specified by using (purely functional) state transformers, ex- 

cept that the state argument is implemented by destructive update in the underlying 
state. For the purposes of this thesis, the implementation of state will be ignored, for 
details see Launchbury (1993). 

State transformers should be viewed as an abstract type defined as follows. 

type ST sa=s -> (a, s) 

return :: a -> ST sa 

return as= (a, s) 

thenST :: ST sa -> (a -> ST s b) -> ST sb 
(m. 'thenST' k) s=kat where (a, t) =ms 

Elements of type ST are functions which, when given a state, produce a value together 

with a new state. These may be sequenced together using thenST. The state argument 

s is given to m which produces a value a and a new state t. These are both passed 
to k, and the result that k produces is the result of the whole thing. The function 

return turns a value into a trivial state transformer. 

4.3.1 The do notation 

For conciseness and clarity the following syntax will be used for sequences of state 
transformers. Haskell is extended with the syntactic form do Q, first used in Launch- 
bury (1993), and implemented in Cofer 2.30 (Jones 1994). The keyword do introduces 
layout, so the following braces and semi-colons can be omitted and inferred automat- 
ically (just like in where and case clauses). Nevertheless, braces and semi-colons will 
be retained here, to prevent confusion. 

EE 

EE 'thenST' do 

P <- EE 'thenSTI \P do 

let D in Q let D in do Q 
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So, for example, we might write the code: -I1 11 1 

do x <- actionl; 
let y= x*x in 

action2 (2+y), 

action3 y 

which expands to: 

.. (actionl 'thenST' (\x-> 

let y= x*x in 

action2 (2+y) 'thenST' 

action3 y))) 

What we have so far only allows us to build state transformers. We have not seen 
how to apply them to an actual state (that is to run them). Recall that the type 
ST is intended to be abstract, so the programmer cannot merely apply it to a state 
argument. Hence, for running state threads we use: 

runST :: (Vs. ST s a) -> a 

This function takes a state transformer, applies it to an initial (theoretically empty) 
state, and returns the final value, discarding the state. The type of runST is not 
a Hindley-IN-lilner type, so runST must be built in as a language construct. The 

nested quantifier is sufficient to ensure that the state transformer does not attempt 
to dereference variables allocated in other, independent, state threads (that is, no 
segmentation faults)'. '' See Launchbury and Peyton Jones (1994,1996) for details. 

4.4 Variables 

Variables are references into the state. The reference itself is unchanging and un- 
changeable. The state to which it refers, however, is subject to change by state 
transformers. 
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Mutable variables come with the following operations: 

newVar a -> ST s (MutVar s a) 

readVar MutVar sa -> ST sa 

writeVar :: MutVar sa -> a -> ST s () 

:: MutVar sa -> MutVar sa -> Bool 

The function newVar is a state transformer which creates a new variable, initialises 
it, and returns a reference to it. The reference type MutVar is abstract. The only 
operations defined on it are those listed above. 

Reference types record not only the type of value they store, but also the state in 

which they were created. This works together with the type of runST to allow the 
typechecker to guarantee that references are only dereferenced in the state thread in 

which they were created (again, see Launchbury and Peyton Jones (1994,1996) for 

the details). 

The function readVar is used to extract the value of a variable and writeVar to assign 
a new value to a variable. Variables are compared for equality of their values with 
the overloaded (==) operator (that is, MutVar is made a member of the equality class 
Eq) - 
To see this in action, consider the following procedure becomes. It is a polymorphic 
copying function for variables, which reads the value of its second argument and writes 
it into the location referenced by its first argument. 

becomes :: MutVar sa -> MutVar sa -> ST s () 

v 'becomes' w= do f val <- readVar w; 

writeVar v val 
I 

The state transformer returns no value of interest, indicated by the type (). An 

example of the use of becomes will be given in the next section. 

4.5 Explicitly linked lists 

Mutable variables can be used to implement explicitly linked lists, that is lists whose 
links may be changed at will. One way of doing this is to define the following: 
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type LinkedList sa= MutVar s, (Link s a) 
data Link sa= Nil 

I Item a (LinkedList s a) 

A linked list is a variable which stores a link. A link is either Nil, representing an 
empty list, or it is an Item containing two components: the element stored at this 
point in the list, and a linked list tail. The definition is like the usual recursive 
definition of lists except for two aspects. First, the tail of the Item node is a variable 
in which another'item is stored, rather than the item itself. Second, the type contains 
an explicit state parameter indicating the presence of state references. 

A recursive procedure for (destructively) appending two such lists could be defined 
as follows. 

appendL :: LinkedList sa -> LinkedList sa -> ST s 

appendL vw= do ý xs <- readVar v; 

case xs of 
Nil v 'becomes' w 
Item xu appendL uw 

I 

From the type, we see that appendL takes two linked lists that (a) must both be in 
the same state thread, and (b) must contain elements of the same type. Given two 
such lists, appendL returns a state ý transformer which returns no interesting value - 
its behaviour is in the state transformations it would enact. That is, it is a procedure. 

Similarly, accessing functions headL and tailL can be defined, the latter destructively 
chops off the front of the list. 

headL :: LinkedList sa -> ST sa 

headL v= do ý Item xw <- readVar v; 

return x 
I 

tailL :: LinkedList sa -> ST s () ,I 

tailL v= do Item xw <- readVar v; 

v 'becomes' w 



4.5. Explicitly linked lists 53 

The Link type provides a pointer-like capability. The variable may contain only Nil, 

or it may contain something more interesting, namely an item with its components. 

4.5.1 Queues 

Queues are a traditional application of linked lists. They are often implemented using 
a linked list, together with a pointer to the end of the list to allow for constant time 

update. 

It has been shown by Hood and Melville (1981) that the queue operations can be 
implemented efficiently without using pointers. This is done by maintaining a pair 
of lists which contain an initial segment of the queue, and the remaining segment 
reversed. The head of the reversed segment contains the last item in the queue, 
therefore it can be accessed in constant time. The amortised time complexity for 

the complement of queue operations is 0(1). This is only an amortised complexity 
because every so often the reversed segment will become empty, and the other segment 

will become the reversed segment after a reversal. Okasaki (1994) achieves an 0(1) 

worst case time complexity for the queue operations by using an incremental approach 

which exploits lazy lists. 

While there is no necessity to implement a queue with explicit pointer operations, this 

will be done here for illustrative purposes. Once it is clear how to express one data 

structure with pointers it is relatively straightforward to express any data structure 
in this way. Other examples, such as deques, were implemented in this style, but will 

not be presented here. 

Two alternative implementations will be presented, the first following traditional 

methods, the second taking advantage of Haskell's ability to return functions as the 

result of applying a function. 

In the first implementation, the queue is a variable containing a pair. 

type Queue sa= MutVar s (LinkedList s a, LinkedList s a) 

The first component is a variable containing the first item of a linked list (that is, it 

points to head of the queue), and the second component is a variable which holds the 
final Nil of the list (that is, it points to the end of the queue). 
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An empty queue is generated by the state transformer makeQ which generates two 
variables: v, initially containing the empty list, and the queue itself containing v as 
both the front and rear ends. 

makeQ ST s (Queue s a) 
makeQ do v <- newVar Nil; 

newVar (v, v) 

A queue is empty if the front and rear variables (pointers) are the same (or, equiva- 
lently if both contain Nil). Ef lements, are added and removed destructively. 

insert :: Queue sa -> a -> ST s0 
insert qx do f (f, r) <-'readVar q; 

w <- newVar Nil; 

writeVar r (Item x w); ' 

writeVar q (f, w) 

remove :: Queue sa -> ST sa 

remove q do f (f, r) <- readVar q; 

x headL f; 

tailL f; 

return x 

empty :: Queue sa -> ST s Bool 

empty q= do ý'(f, r) <- readVar 

return (f==r) 
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Queues can now be used within any state thread as follows. 

.. do 

qI <- makeQ; 

insert q1 5; 

q2 <- makeQ; 

y <- remove q1; 
insert q2 "hello"; 

Each use of makeQ generates a new queue which may be used at any type. In the 

example above, q1 is a queue of integers, whereas q2 is a queue of strings. The two 

queues are independent of each other. 

4.5.2 Hiding the'queue 

The problem with the previous implementation is that the queue is explicit and its 

structure known. There is nothing to prevent non queue-like operations being applied. 
This structure may all be hidden from the programmer as follows. 

ý type AbsQueue sa= (a -> ST s (), ST s a, ST s Bool) 

An abstract queue is a triple of operations, corresponding precisely to the three 

abstract operations on queues: insertion, deletion, and testing for being empty. The 

only thing the user of the queue sees are these operations, no handle on the internal 

queue structure is given. 

The implementation in terms of the previous operations is straightforward. 

makeP. b: 3Q ST s (AbsQueue s a) 

makeAbsQ do (q <- makeQ; 

return (insert q, remove q, empty q) 
I 
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Abstract queues can now be used as follows. 

.. do 

(insA, remA, emPA) <- makeAbsQ; 

insA 5; 

(insB, remB, empB) <- makeAbsQ; 

y <- remA; 
insB "hello"; 

Each time a new queue is generated, -; names for its operations are provided. These 

"procedures" access their mutually shared data structure, but do not expose it for 

unregulated tampering. 

It is interesting to observe that this form of encapsulation only becomes viable because 

we are working with state transformers. Otherwise, each use of the queue operations 

would have to return a triple of the new operations for future use. 

4.6 Mutable arrays, 

For numerous algorithms it is convenient to have arrays which can be updated in 

constant time. They can be provided by a similar scheme to mutable variables. 

newArr ix i =>*(i, i), -> aýý->ST s (MutArr si a) 

readArr Ix i =>, MutArr sýiýa -> i -> ST sa 

writeArr Ix i => MutArr sia -> i -> a -> ST s 

Haskell providesý a class' Ix'of, types that can be used as array indices. The type i is 

constrained to be in this index class (which includes Int, Char, pairs of indices, and 

others). 

Like newVar, the function newArr returns a reference to newly allocated store, only 
this time it is an initialised array. The index range is given by the pair. of values of 
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type i, and the initialisation value by the argument of type a. The type of the "array 

variable" which is returned records the state thread in which it was created, together 

with the index and element types. Initialisation takes time proportional to the size 

of the array, the other two operations (for reading and writing) are constant time. 

4.7 Binsort 

To illustrate the array operations binsort will be expressed which takes O(n + M) 
time (given n elements to sort which are in a range of size m). With binsort, an array 
of bins is used to sort elements. Each element to be sorted has an associated index 
in the array. This association is described by the function key which takes values to 
their index position. For example, the function: 

truncate :: Float -> Int 

could be used as a key function, to sort floating point numbers with respect to their 
integer part. 

Binsort works by placing elements in the array at an index determined by the key 
function, after which the array is traversed, from the first index to the last, giving 
the sorted list with respect to the key function. 

binsort :: Ix i => (i, i) -> (a -> i) -> [a] -> [a] 

binsort (1, u) key xs = runST (do f bin <- newArr (1, u) []; 

insert bin key xs; 
extract bin [l.. ul 

1) 

First an array of bins is created with the indices in the range 1. u. All bins are 
initialised to the empty list (using lists allows us to handle duplicate elements). Then 

the insert and extract "procedures" are called (both state transformers, of course), 
the latter returning a list corresponding to the contents of the array. 
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insert :: Ix i => MutArF si [a] 7->, (a [a] -> ST s 
insert bin key return 
insert bin key (x: xs) do f let i key x in 

ys <- readArr bin i; 

writeArr bin i (x: ys); 
insert bin xs 

extract :: Ai => MutArr si [b] -> [il ST s (b] 

extract bin return 

extract bin (i: is) do xs <- readArr i bin; 

ys <- extract bin is; 

return (xs++Ys) 

Studying the type of binsort shows it to be a pure function. For example, 

binsort (1,5) id [5,2,1,4,21 

will return [1,2,2,4,51. 

All the state operations are encapsulated within a state thread produced by, runST. 
Later in Section 4.9 it is shown how all of the state actions for binsort may be 
encapsulated using the accumArray combinator. 

4.8 Disjoint sets 

Disjoint sets are useful for many algorithms: Tarjan (1974), for example, uses them 
as part of an algorithm to detect dominators in graphs, and they can be used in the 
well-known minimum spanning tree algorithm of Kruskal Jr. (1956). Disjoint sets 
are sets with no elements in common. The operations required are set union and 
set find operations. When given an element, set find will return the name of the 
set it is contained in. Each set therefore needs to have a distinct name. The union 
operation takes the names of two sets and a new name and returns the computed 
union labelled with tile now name. It is crucial to many algorithms to have the 
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union/find operations computed in near constant time (that is, the complexity is 

virtually linear in the number of operations). 

The most commonly used method of representing disjoint sets is to use up-trees, as 

described by Galler and Fisher (1964)-. In an up-tree children point to their parents. 
Each set is represented by an up-tree, where the-root node stores the set name. 

type Set sa= MutArr sa (Node a) 

data Node a= Empty 

Root Name Int 

Parent a 

Mutable arrays are used to store tree nodes, where the set elements are the indices 

of the array. This restricts us to knowing that the elements are in a certain range, 
but this is normally the case with the algorithms that use disjoint sets. As well as 

storing the set ýname in the root node, the root 'node also stores the set size, whiclý is 

useful for the union operation described later. 

123 

F igure 4.1 The disj oint sets a, b c, d, e, fg }2, {h 13 } represented by up- 
trees. The numerical superscripts are set names. 

The f ind operation will, follow parent pointers to a tree root, where the set name is 

contained. For example,, in Figure 4 4, find of c will follow the pointers up to the root 

e, and the set name 2 will be returned. 

'o- r or the efficiency of later calls ý to f ind path compression is also carried out. This 

collapses the path to the root by redirecting every node on the path to point to 

the root. Path compression is implemented using the f ixST combinator, which takes 

advantage of laziness: 

fixST :: (a -> ST s a), -> ST sa 

fixST ks= (x, t) where (x, t) =kxs 
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find :: Ix a => Set saa->, ST sa 
find set x= fixST (\p compress set x P) 

compress :: Ix a => Set sa -> a. ->, a ->, ST, s a,, 

compress set xp do node <- readArr set X; 
case node of 

Root a's -> return x 
Parent a -> writeArr set x (Parent P); 

compress seta p 

Figure 4.2 Imperative functional find using path compression. 

This provides us with a neat functional way of expressing path compression in one 
traversal up the tree. The function compress, takes and returns the pointer to the root. 
Although this is elegant, it is not essential to use f ixST here, since the order of the 

recursive call and writeArr could be rearranged to get the same effect. Nonetheless, 

there are other examples where f ixST has proved to be extremely useful. 

When performing a set'Union the sizes of each set are compared and the smaller set 
is linked to the larger. This is knownas uni , on by size and gives more balanced trees. 
Again this makes later finds more efficient... -" 

union :: Ix a=> Set's a, -> a-> a->Name -7>STs a .. - 
union set px py nz do Root nx sx <- readArr set px; 

Root ny sy <- readArr set py; 
if sx>sy 

then do ý7writeArr set px (Root nz (sx+sy)); 

writeArr set py (Parent px); 
return Px 

else do ý. writeArr set px-(Parent py); 
writeArr set py (Root nz (sx+sy)); 

return py 

Figure 4.3 Imperative functional union using union-by-size. 
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Di I sjoint sets can be constructed with the function insElem which creates one set and 
inserts it into the set of disjoint sets. 

insElem :: Ix a => Set sa -> Name -> [a] -> ST s () 

insElem ar nD= return () 

insElem ar n (v: vs) = do ý writeArr ar v (Root n (I+length vs)); 

applyST ptrRoot vs 
I 

where 

ptrRoot x= writeArr ar x (Parent v) 

This uses the function applyST which has the following definition: 

applyST :: (a -> ST s b) [a] -> ST s 

applyST fU= return 

applyST f (x: xs) = do ýfx; applyST f xs 

For a comparison with traditional imperative code, here's a Pascal implementation of 
f ind using path compression (Figure 4.4). This was taken verbatim from Kingston's 
(1990) book, p. 218. 

procedure Find(x: Entry; var D: DisjointSets): SetType; 

var y, z, tmp: Entry; 
begin 

y :=X; 
while y^. parent 0 nil do 

y := y-. parent; 
end; 
z :=X; 
while z-. parent: A nil do 

tmp := z-. parent; 
z-. parent :=y; 
z := tmp; 

end; 
return CAST(SetType, y); 

end Find; 

Figure 4.4 Imperative version of f ind using path compression. 
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This implementation of f ind (Figure 4.4) differs from the Haskell implementation in 
that it is a two pass algorithm. First the root node is found by chasing pointers, then 
in the second traversal pointers are made from each node to the known root. 

4.9 Stateful combinators 

State transformers are first class values, and as with other first class values - lists 
and trees, for example - there are several useful combining forms. Some of the most 
useful combinators are now described, which are used in later examples. 

There are two obvious ways of combining a list of state transformers. The first listST 

gathers the results of'each stateactibn and retuirns'the'result in list form; the second 
seqST applies each state action'in a list, ', ignoring the results, and returns the unit I- 
state type. 

listST [ST s a] -> ST s [a] 

listST foldr consST nilST 

where 

nilST ST 's [a] 

nilST return, [] 

consST :: ST s`aý-XST s-Eal -> ST sa 

consST x xs = do ýa <- x; 

as <- xs; 
return Was), 

I 

seqST EST s a] -> ST s () 

seqST foldr (; ) (return 0) 

. Just ,,, is map is useful for lists, mapST is useful for state transformers. 

mapST :: (a -> ST s b) -> [a] -> ST s [b] 

mapST f xs = listST (map f xs) 

Sometimes it is possible to fully, encapsulate the state actions in a combinator. Func- 
tions like ac cumArray and iazyArray' do this, and usually give a more appropriate way 
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of expressing algorithms. For example, the binsort algorithm presented earlier, is far 

better expressed using accumArray. 

binsort :: Ix i => (i, i) -> (a i) -> [a] -> [a] 

binsort bnds key xs = flattenArray (accumArray (flip bnds 

E (key x, x) I x<-xsl) 

where flattenArray = concat . elems 

The accumArray function has the type: 

accumArray :: Ix i => (a -> b -> a) -> a -> (i, i) -> E(i, b)] -> Array ia 

The call accumArray fe bnds xs builds an array with bounds bnds from a list if 

index/value pairs xs. In this list all the values with the same index are combined with 

a fold to the left operation, using f, starting with the value e. An implementation is 

given in Launchbury and Peyton Jones (1996) which is as follows, 

accumArray fe bnds xs = runST (do ýa <- newArr bnds e; 

mapST (update a) xs; 
freezeArr a 

1) 
where 

update :: MutArr sib -> (i, b) -> ST s 

update a (i, v) do x <- readArr a i; 

writeArr ai (f x v) 

This definitiqn uses the combinator f reezeArr which simply takes a mutable array, 

and returns a standard Haskell monolithic array; it has the type; 

freezeArr :: Ix i => MutArr sia -> ST s (Array i a) 

Haskell arrays are strict in the list of index/value pairs, and in the indices. Johnsson 
(1995) describes the function lazyArray, which has the following specification: 

lazyArray :: Ix i => (i, i) -> [(i, a)] -> Array i [a] 

lazyArray bnds xs = array bnds (i, EvI (j, v)<-xs, 
i<-range bnds] 
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This is similar to array except that the arr4y-is created immediately, even before xs 
is evaluated. It is only when the array is indexed that. xs is searched. 

The combinator lazyArray will be seen later in an implementation of breadth-first 
search (Section 7.5). 

4.10 Discussion 

This chapter presented a number of examples of programming in Haskell with state 
transformers. Tile style of programs obtained is anýintriguing mix of functional and 
imperative. This section tries to clarify some of the issues that have been exposed. 

The first point is that having imperative features. trtlly increases the power of the lan- 
guage. Any multi-linked data, structure can be, implemented giving the same as mp- y 
totic complexity as in the (sequential) imperative case. This is a big step forward, as 
previously there were problems for which no efficient solutions were known in Haskell. 
The big question is, however, whether incorporating the opportunities for imperative 
actions intoa lazy functional language destroys the advantages of the language? Has 
the babv been thrown out with the bath water? 

The example of binsort described earlier in Section 4.7 is interesting in this respect. 
The algorithin itself seems to 

' 
requ 

' 
ire destructive update to be efficient, but its in- 

put/output behaviour can be expressed purely functionally. That is, binsort is a 
function which takes a list and returns a list. It has no externally visible state be- 
haviour, and may be treated like a pure function. Thus it is possible to completely 
encapsulate imperative actions: elsewhere, where imperative actions are not explicitly 
required, purely functional code may be used. 

The reverse inclusion happens all over the place as well. Many of the state-based 
examples use purely functional values and data structures within the state thread. 
One concrete effect of this is that even though the structure of a given piece of code 
may mimic imperative code, the details may be quite different. With a number of the 
examples, an implementation was presented at a much higher level than is typical of 
completely imperative implementations. The code here is more at the level that one 
expects from pseudo-code. 
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What of the other features'typical in modern functional languages? Again, many of 
these carry over: 

Almost all of the examples are polymorphic, not in the weak sense of C pointers, 
but with all the usual guarantees of strong, static typing. This was explicitly 
drawn out in the case of queues, but it is also there in binsort and in union/find. 

Higher-order programming is used to good effect in encapsulating the queues 
(quite apart from defining state transformers in the first place! ). The value 
returned by makeAbsQ is a triple of functions, each function defined by partial 
application. 

Laziness shows up in the examples of cyclic programming. This is used in 
the function find from union/find where the well-known technique of cyclic 
programming is used to reduce a multi-pass algorithm to a single pass. 

In many (though by no means all) imperative languages there is no underlying 
garbage collection - the programmer has to free space explicitly if there is a 
high turnover. This is tedious and error prone. In the programs here unreach- 
able storage can simply be ignored, relying on the garbage collector to reclaim 

Despite all this, using state transformers is no panacea. There are some serious conse- 

quences. First of all, we lose much of the structural simplicity common to many purely 
functional algorithms. Equational reasoning becomes much more complex because of 
the underlying state - similar techniques that are required for imperative reasoning 
'are required here. Nevertheless, if a program needs state operations, then there is no 

choice. In particular, some programs really are naturally state manipulators in that 

even functional solutions will plumb extra values through the computation (name- 

supply programs often have this form). With these nothing is lost by being explicit 

about state, indeed a better structure may be obtained by so doing. 

Because of this it turns out that we are unable to encapsulate state operations as 
tightly as we might like. Queues and union/find are examples of this. Since their 

access has an implicit'implication for future accesses (i. e. they are state transformers), 

they have to be used within a state transformer thread, so making the thread quite 

pervasive, affecting the structure of a large part of the program. 
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One major difference between traditional imperative languages -and the imperative 

actions described here is in syntax. This is not simply a lexical issue, but intimately 
involves semantics. In a traditional language the references to x in a statement like 

x x+1 have two different meanings. The reference on the left refers to the location 
to which x refers, whereas the. reference on the right refers to the value stored in 
that location. This lack of distinction is not present in the state transformer idiom. 
Every reference to a variable refers to its location, making variables first-class (that is 

pointers, which are not truly first-class in imperative languages). A variable's value 
can only be accessed by using the "procedure" readVan Unfortunately it seems as 
though there is no way of avoiding this, without making the state strict in the values 
it stores. It is of some comfort that despite the syntax being clumsy on occasion, it 
does at least make the order of state accesses explicit. 

A more serious implication of using a state transformer is the sequentialisation of the 

program (fragment). One of the strengths,. of non-strict languages is their potential 
for parallel evaluation, but the more state is used the more potential parallelism is 
lo St. 

Finally we ought to refer to the state arguments, s, that seem to pervade the types of 
state transformers. They are present for technical reasons in order to make encapsu- 
lation of state transformers referentially transparent. Nevertheless, they do also Wav 

a useful role in alerting the programmer to the existence of state components within 
data structures. 

RelatO"worý, 

Currently there is no final consensus in the purely functional language community on 
how arrays should be implemented, but there, does seem to be agreement that some 
problems require constant time update to, achieve the same asymptotic efficiency as 
imperative solutions., 

Burton and Yang (1990) expqrimented with multi-lýnked data structures lin a lazy 
functional language. The data structures are implemented by using heaps which in 
turn are implemented by using arrays; and the arrays are implemented using balanced 

trees. So an imperative efficiency wasn't possible, but it would be if the arrays were 
implemented to provide an, update operation in constant time. With their approach 
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functions are passed a heap and return an updated heap as a result. 

A drawback of the imperative functional approach is that it imposes sequentiality on 
the imperative actions. The dataflow language Id (Nikhil 1991) provides I-structures 

and more recently M-structures (Barth-et al. 1991) which can be updated in constant 
time whilst fitting well with the parallel evaluation strategy of Id. Although these 

structures may be the way forward for parallel implementations, they would make a 
sequential implementation more complex. Moreover, they destroy the semantics of 
the language - the results of a program which uses M-structures call vary depending 

on evaluation order. 

A shortcoming of using explicit state transformers for state based computations is 

that we have to be explicit about when state is present, and it is not always possible 
to encapsulate the state part into one small component. An alternative is somehow 
to determine when it is safe to do a destructive update. Meira (1985a) discusses 

changing the evaluation scheme for the lazy functional language KRC to determine 

when it is safe to update objects by overwriting. He then implements a linear time 

solution to the set union problem. 

Gifford and Lucassen (1986) showed how to integrate functional and imperative pro- 

gramming into a single language. They introduced an effect system which statically 

checks for side-effect invariants in a similar manner to type checking. The side-effect 
invariants are: the ability to read, write, and allocate memory. In essence, the effects 

system restricts the use of side effects. Advantages are that it's easy to combine 

programs with different effects, and the programs are suitable for parallel execution. 
Disadvantages are that equational reasoning may not be used on the program frag- 

ments that have side effects, and a predictable order of evaluation is necessary. 

There has been an abundance of work on elaborate type systems that reject programs 

where safe state manipulations cannot be guaranteed. Examples include linear type 

svstems (NVadler 1990c); the single-threaded type systems (Guzmdn and Hudak 1990); 

and the stratified type systems (Swarup et al. 1991). With all of these approaches 
the resulting type system becomes complex, and they have not been fully tested in 

practice. One type system that has been tested in practice is the unique type system 

of Smetsers et al. (1993). Their system has been implemented in the lazy functional 

graph rewriting language Concurrent Clean. If the type of an object is unique then 

there is a guarantee that it will only be accessed once. Hence, destructive updates 

are safely performed on an object with such a type. 
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MO*delling 'graphs 

This'chapter considers various means of modelling a graph in computer store. The 

particular representation chosen is of great importance, since it can have a profound 
effect on the complexity of an algorithm. The models chosen here are traditional 

ones, that is, adjacency lists, and adjacency matrices. Using these representations 
functions are provided for constructing various types of graph, these functions are 

useful for testing algorithms. Graph classification functions are also given; most 

graph algorithms only work on certain types of graph, so it is useful to determine 
0 
what kind of graph we have. 

5.1 Representations of graphs 

The most widely-used representations of graphs are adjacency lists and adjacency 
matrices. Both are typically represented with arrays. In Haskell there are many 
choices of representation to consider, for example: 

Use a list of pairs to represent the graph edges. This is often chosen in the 
functional programming literature (for example, Paulson (1991), Holyer (1991)), 
because it is the, simplest. The main shortcoming with this representation is 

that algorithms do not have the optimal asymptotic complexity. 

Use a function from vertices to their adjacent vertices (see'Reade (1989)). The 

efficiency of algorithms using this representation depends upon the underlying 
implementation of functions. A shortcoming with this representation is that it 
is hard to construct arbitrary graphs efficiently during run-time. 

69 
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41 Use a purely functional algebraic datatype utilising laziness to express cycles 
(Section 5.2). 

Use immutable arrays to represent adjacency lists (Section 5.3) or adjacency 
inatrices (Section 5.5). These are fine as iong as we don't need to dynamically 
change a graph during an algorithm. 

Mimic the conventional approach with the state monad, that is, have explicit 
pointers in the heap. This representation results in', imperative style algorithms. 
Nevertheless, if parts of a graph need to be dynamically modified, then this is 
more appropriate than the above purely functional representations. 

In other functional languages, one could consider: version arrays (Morrisett (1993) 
in Standard , NIL); using reference types in Standard NIL; M-structures (Barth et al. 
(1991) in Id), or using unique types (Smetsers et al. (1993) in Clean). None of these 
are considered here. 

5.2 Cyclic representations , 

In a lazy language the cyclic nature of a graph can be represented by a cyclic structure. 
For example, the following cyclic expression is a graph, with one vertex, and one self- 
looping edge: 

01 ýý- 

ones :: [Intl 

ones = I: ones 

This could be generalised to any directed graph by using a list of vertices (Figure 
5.1). 

graph --: [a, b, c, d] 

where a= Vertex "all [d] 
b= Vertex "b" [a, cl 
c= Vertex 11 c0 
d= Vertex "d" [b] 

Figure 5.1 A cyclic expression representing a cyclic graph. 
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As an example the complete graph with vertices in the range described bY the bnds 

pair could be constructed by: 

completeG bnds = 

where g= map constructG-vertices 

constructG u= Vertex u[g!! w I w<-vertices, w/=ul 
vertices = range bnds 

The function complet eG creates a cycle by using list lookup (! !) on g, and this method 

may be used to create arbitrary graphs on-the-fly at run-time, see Clack et al. (1995) 

for an implementation. List lookup is not a constant time operation, so the graph 

construction algorithm doesn't have linear time complexity. Another difficulty with 
the cyclic structure is that operationally it's an infinite tree, so care is needed not 
to loop indefinitely. Try printing out the result of compieteG bnds and the structure 

will unravel printing out the same vertices endlessly. The functional programming 

solution to prevent this endless unravelling, is to label each vertex with a unique 

name. Then traversal functions will maintain a set of unique names indicating which 

vertices have been visited before. 

5.3 Adjacency -lists 

For many algorithms the best representation is an array of adjacency lists. The array 
is indexed by vertices, and each component of the array is a list of those vertices 

reachable along a single edge. This adjacency structure is linear in the size of tile 

, graph. The indexed structure allows us to be explicit about the sharing that occurs 
in the graph. Thus standard Haskell immutable arrays are chosen here. This gives 

constant time access (but not update - these arrays may be shared arbitrarily). 

The same structure may be used to represent undirected graphs as well, simply by 

ensuring that there are edges in both directions. An undirected graph can be viewed 

as a symmetric directed graph. Multi-edged graphs may also be represented by a 

simple extension, but these are not considered here. 

Graphs, therefore, may be thought of as a table indexed by vertices. 

type Table a= Array Vertex a 

type Graph = Table [Vertex] 
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The type vertex may be any type belonging to the Haskel 
*I 

index class Ix, which 
includes Int, Char, tuples of indices, and more. Haskell arrays come with indexing 
(! ) and the functions indices (returning a list of the indices) and bounds (returning 
a pair of the least and greatest indices). The function vertices is provided as an 
alternative for indices, which returns a list of all the'vertices in a graph. 

vertices Graph -> [Vertex] 

vertices indices 

Sometimes it is convenient to extract a list of edges from the graph, this is done with 
the function edges. An edge is a pair of vertices. 

type Edge = (Vertex, Vertex) 

edges :: Graph -> [Edge] O(V+E) 

edges g (v, w) v<-vertices g, w<-g! vl 

To manipulate tables (and graphs) the generic function mapA is provided which applies 
its function argument to every array index/entry pair, and builds a new array. 

mapA :: Ix a => (a -> b -> c) -> Array ab -> Array ac 

mapA fa= array (bounds a) [ (i, fi (a! i)) -I-, i<-7indices a] 

The Haskell function array takes low and high bounds and a list of index/value pairs, 
and builds the corresponding array in linear time. Because we are using an array- 
based implementation we often need to provide a pair of vertices as array bounds. So 
for convenience weý define,, 

type Bounds = (Vertex, Vertex) ',: 

Using mapA we could define, 

outdegree :: Graph -> Table Int -- O(V+E) 

outdegree g= mapA numEdges g 

where numEdges v ws = length ws 

which builds a table detailing the number of edges leaving each vertex. 
It is often useful to build up a graph from a list of edges, buildG is provided for this 
purpose: 
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buildG, :: Bounds -> [Edge] -> Graph -- O(V+E) 

buildG bnds es -= accumArray (flip (: )) U bnds es 

using accumArray described in Section 4.9. Lists are built of all the values associated 

with each index. Again, constructing the array takes linear time with respect to the 
length of the adjacency list. So in linear time, a graph defined in terms of edges can 
be converted to the vertex table based graph. For example, 

graph = buildG (Ial, lnl) 

(reverse Ulal, lb)), 

(Iel, )f)), 

Ch' 

('k' 

( lal, ld' ), (Ibll lel ), (lel, ld' ), 

will produce the array representation for the graph shown in Figure 5.2. The function 

reverse is used so that earlier entries will occur earlier in the adjacency list. 

3- b 

e ---------- 0. f 

Figure 5.2 A directed graph. 

Then, the immediate successors to I el are found by computing: 

graph ! 'e' 

which returns [Idl , If I, IgIl. 

Combining the functions edges and buildG gives us a way to reverse all the edges in 

a graph giving the transpose of the graph: 
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transposeG :: Graph -> Graph -- ýO(V+E)ý 
transposeG g= buildG (bounds g) (map reverseE-(edges g)) 

reverseE :: Edge -> Edge 

reverseE (v, w) = (w, v) 

Edges are extracted from the original-graph, their direction reversed, and the graph 
is rebuilt with the new edges. Then, for example, 

(transposeG graph) ! ! el 

will return [IbIl. Now by using transposeG, an in-degree table for vertices may 
immediately be defined: 

indegree :: Graph Table Int O(V+E) 

indegree g= outdegree (transposeG g) 

5.4 Classifying graphs 

It is important to classifv graph 
's 

for efficient algorithm design. IMany algorithms will 
only work on certain types of graph. Several different classes of graph will now be 
considered. The null graph has no vertices or edges, and the empty graph has vertices 
but no edges. A simple graph is one with no self-loops; a pseudo-graph contains at 
least one self-loop. In a functional graph, each vertex has out-degree one as the graph 
is modelling a real function. A graph is Eulerian-if it is connected and the in-degree 
and out-degree are the same for every vertex, meaning that there exists a tour which 
includes each edge exactly once. 

These functions are all neatly expressed as one-liners in Haskell and are presented in 
Figure 5.3. They are expressed with no loss of efficiency, their asymptotic complexity 
is given as a comment along with their type. Null graphs cannot be modelled with the 
representation used here, since standard Haskell arrays must have at least one index. 
Although, it would be quite straightforward to extend our representation to handle 
null graphs. ' 

The function isEulerian makes use of isConnected; an implementation 
of isConnected will be given later in Section 6.6-3. 
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isEmptyG :: Graph -> Bool -- OM 
isEmptyG g= null (edges g) 

isPseudoG :: Graph -> Bool -- O(V+E) 
isPseudoG g= or E v==w I (v, w)<ýedges g] 

isSimpleG :: Graph -> Bool -- O(V+E) 
isSimpleG g= not UsPseudoG g) 

isFunctionalG :: Graph -> Bool -- O(V) 
isFunctionalG g= and [ length (g! v) == 11 v<-vertices g] 

isEulerian :: Graph -> Bool -- O(V+E) 
isEulerian g= isConnected g && Undegree g == outdegree g) 

Figure 5.3 Some graph classifications. 

5.4.1 Classifying undirected graphs 

Although the functions above may be applied to undirected graphs; undirected graphs 
have different properties, and other means of classification. An undirected graph is 

r-egular if all vertices in the graph have the same, degree. An undirected graph is 

Eulerian if it is connected and the degree of each vertex is even. A graph is complete 
if there is an edge between every pair of vertices, the graph must also be simple. 

Since undirected edges are represented by two directed edges, the in-degree and out- 
degree for each vertex in an undirected graph will be equal; here outdegree is used 

as it is more efficient. The function degreeSeq sorts all the vertex degree's into 

ascending order. The function degreeord orders the vertices in descending order of 

their put-degrees. 

The function isCompleteG utilises binsort (Section 4.7) for efficiency. The adjacency 
list for each vertex is ordered and compared with a list of all vertices, except the 

vertex itself which would form a self-loop. Comparing two lists of size V-I for 

equality is O(V), and binsort on a list of size V-I with index range of size V is 

O(V) , therefore, the algorithm for isCompieteG will run in O(V2) time. 
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isRegularG :: Graph -> Bool -- O(V+E) 
isRegularG g= all (==d) ds 

where (d: ds) = degree g 

isEulerianU :: Graph -> Bool -- ýO(V+E) 
isEulerianU g= isConnected g && all even (degree g) 

degree :: Graph -> Table Int -- O(V+E) 
degree g= outdegree g 

degreeSeq :: Graph -> [Intl -- O(V. (log V)+E) 
degreeSeq g= quicksort (elems (degree g)) 

degree0rd :: Graph -> [Vertex] O(V. (log V)+E) 
degree0rd g= (reverse map snd quicksort) 

(length, (g! v), v). ýj v<-vertices gl 

isCompleteG Graph -> Bool -- O(V-2) 

isCompleteG g and E binsort (bounds g) id (g! v) 
wI 'W<-ýverticeis g, v/--w'] I v<-vertices g] 

Figure 5.4 Some classifications of undirected graphs. 

5.4.2, Generating graphs, 

It is useful to construct different types of graphs to test algorithms and invariants. 
The function buildG described earlier proves to be invaluable for generating various 
graphs. 

A simple circuit is a cyclic path where each vertex appears exactly once except the 
first and last vertices. In Figure 5.5 the function siiýieCircuit creates a list of 
vertices, and generates a graph where each vertex in the list has an edge to the next 
vertex in the list. The last vertex in the list has an edge in the graph to the first 

vertex in the list. 

The graph in F igure 5.6 is generated by the following function call: 

functionalG (\x -> I+ ((x+3) 'mod' 12)) 
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emptyG :: Bounds -> Graph -- O(V) 

emptyG bnds = buildG bnds 0 

completeG :: Bounds -> Graph -- O(V-2) 

completeG bnds = buildG, bnds E (v, w) I v<-range bnds, w<-range bnds, v/=w] 

simpleCircuit :: Bounds -> Graph -- O(V) 

simpleCircuit (1, u) = buildG U, u) ((u, l): zip rs (tail rs)) 
where rs = range U, u) 

functionalG :: (Vertex -> Vertex) -> Bounds -> Graph -- O(V) 
functionalG f bnds = buildG bnds E (i, f j) I i<-range bnds] 

Figure 5.5 Generating graphs. 

12 

9 

6 

3 

Figure 5.6 An example of a functional graph. 
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This graph represents an eight hour time difference, for example, between British 
Summer Time and Pacific Daylight Time. 

It is sometimes useful to be able to generate an undirected graph from a directed one. 
This is done most succinctly by taking the union of a graph with its transpose: - 

undirected :: Graph -> Graph 

undirected g= buildG (bounds'g) (edges'g ++'edges (transposeG g)) 

This will introduce extra edges between vertices v and w if there is already a directed 
edge from v to w, and from w to v. 

5.4.3 Generating ran. dom, graphs,, ',, 

For measuring the running times of, some algorithms, it's convenient to have a large 
randomly generated graph. There are several ways of constructing a graph randomly. 
The number of edges and vertices could be chosen at random, but it is usually more 
practical to have control over these values. Here's a straightforward way of generating 
a random graph where the vertices are integers: first we need a random number 
generator randomList that returns a list of random numbers in a given range. There 
are several good ways of generating random numbers, a specific implementation is 
not included her(-,: 

randomList :: Int -> [Intl 

A random permutation is generated by constructing an array of integers, and swap- 
ping each index once with a random index value. For efficiency, a stateful algorithm 
is used, which runs in O(n) time. ý'A purely functional solution is not known for this 
problem (Ponder et al. 1988). 

randomPerm :: Int -> [Intl 

randomPerm n 

= runST (do fr <- newArr (1, n) 0 

applyST (\i -> writeArr ri i) [l.. nj; 
applyST (swapArr r) (zip [1.. nl (randomList n)); 
mapST (readArr r) [l.. nl 

1) 
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where swapArr :: Ix a => MutArr sab -> (b, b) -> ST s 

swapArr r (x, y) = do fa <- readArr r x; 
b <- readArr r 

writeArr rxb; 

writeArr rya 

A permutation of the integers from 1 to V2ý is constructed, and we use the property 
that there is a one-to-one mapping with graph edges. The function randomE takes 
the number of vertices v and edges e, and returns a list of e edges. These are then 
converted to a graph with the function randomG. 

randomE :: Int -> Int -> [Edge] 

randomE ve= take e [(x+l, y+l) I r<-randomPerm (v*v) 

(x, y)<-[r 'divMod' v], X/=yl 

randomG :: Int -> Int -> Graph 

randomG ve= buildG (l, v) (randomE v e) 

5.5 Adjacency matrices 

An adjacency matrix is a (V x V) matrix, where the edge (v, w) is in the graph, 
if and only if, row v and column w contains the entry 1. Adjacency matrices are 
typically represented with a two dimensional array. The advantage over adjacency 
lists is that we can determine if we havean edge (v, w) in constant time. Adjacency 

matrices are easily generalised to weighted graphs by storing the weight at the array 
entry. Like adjacency lists a standard Haskell immutable array is used to represent 
the matrix. 

type Matrix a= Array Edge a 

type Edge = (Vertex, Vertex) 

A graph is now a matrix with labelled entries. This allows multi-edged graphs to be 

represented, by storing the number of edges in the label. The name LGraph will be 
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used for the type of labelled graphs, and functions will be suffixed with L to distinguish 
from graphs represented with adjacency lists. 

type LGraph = Matrix Label, 

type Label = Maybe Value 

Here the Maybe datatype is used for labels, a label of Nothing means there is no edge, 
and a label of Just v is an edge with a label value v. Label values may be of any 
type, but sorne functions may require equality on the type. 

verticesL :: LGraph -> [Vertex] ý-- O(V) 

verticesL g= range (limitsL g) 

edgesL :: LGraph -> [Edge] -- O(V-2) 

edgesL g=[eI e<-indices g, isEdge g el 

limitsL :: LGraph -> (Vertex, Vertex) -- 0(l) 

limitsL g= (1, u) where = bounds g 

isEdge :: LGraph -> Edge Bool -- 0(l) 

isEdge ge= weight ge Nothing 

weight :: LGraph -> Edge -> Label -- 0(1) 

weight ge=g! e 

Although with adjacency lists it takes 0(1) time to return a vertex's successors, with 
adjacency matrices it takes O(V) time to return all the successors, and predecessor 
of a vertex. 

succL LGraph Vertex -> [Vertex] -- O(V) 

succL v=Cw w<-verticesL g, isEdge g (v, w)] 

predL :: LGraph Vertex -> [Vertex] -- O(V) 

predL gv=Cw w<-verticesL g, isEdge g (w, v)] 
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5.5.1 Classifying edge labelled graphs 

Since a different representation is used for edge labelled graphs, most of tile classifi- 
cation functions will have different implementations, and different running times. For 

example, isEmptyL has a running time of O(V2) compared with isEmptyG which runs 
in O(V) time. 

isEmptyL :: LGraph -> Bool -- O(V^2) 
isEmptyL g= and E not (isEdge g e) I e<-indices g] 

isUnweightedL :: LGraph -> Bool -- O(V^2) 
isUnweightedL g= and E not (isEdge g e) 11 g! e==Just 11 e<-indices g] 

isUndirectedL LGraph -> Bool -- O(V-2) 
isUndirectedL g= and C g! (v, w)==g! (w, v) I (v, w)<-indices g] 

isCompleteL :: LGraph -> Bool -- O(V-2) 
isCompleteL g= and [ isEdge g (v, w) I (v, w)<-indices g, v/=wl 

I 
F, igure 5.7 Classifying edge labelled graphs. 

5.5.2 Generating'edge labelled graphs 

just like with 
, 
adjacency lists it is convenient to have a function that builds a graph 

from a list of edges: 

buildL :: Bounds -> [Edge] -> LGraph -- O(V-2) 

buildL (1, u) es = (array i (e, Nothing) I e<-range 
// (e, Just 1) 1 e<-es] 

where i= ((1,1), (u, u)) 

If there is an edge between two vertices it is given the label Just 1 otherwise it is 

given the label Nothing. The operator (//) takes an array and a list of index/value 

pairs, and returns the array from the left argument after it has been updated with 
the index/value pairs in the right argument. Sometimes it is necessary to specify the 

edge weights: 
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mkLGraph :: [(Edge, Label)], ->ý Bounds, 7>, LGraph,, -- O(V-2) 

mkLGraph els U, u) = (array i (e, Nothing) e<-range il) els 
where i, = ((1,1), (u, u)) 

The functions for generating edge labelled graphs' (emptyL, completeL, simpieCircuitLl 
functionalL) are now identical to the functions for graphs modulo buildL. Code du- 
plication may be avoided by defining an abstract datatype for graphs that includes 
functions like buildL. 

5.6 Discussion 

The principal differences between the two graph representations, adjacency lists and 
adj, acency matrices, are surnmarised in Table 5.1. These differences have an impact on 
the complexity of graph algorithms. For example, the functions to create degree tables 
indegree and outdegree run in O(V + E) time with adjacency lists, but run in O(V2) 
time with adjacency matrices (note E 

-< 
V'). With these examples adjacency lists are 

better suited. and there are several examples where this is the case (another example 
covered in Chapter 6 is depth-first search). Nevertheless, there are several cases where 
adjacency matrices are more efficient than adjacency lists. With adjacency matrices, 
the existence of an edge is determined in 0(l) time, hence the representation is more 
convenient for weighted graph pro blems - where the edges are annotated. Some 
examples of weighted graph algorithms are given in Chapter 7. 

1 1 Adjacency list Adjacency m 
Space to represent 
graph O(V +-E) O(V2) 

Time taken to dis- 
cover the existence of O(V) 0(i) 
an ecle 
Time taken to return 
all neighbours of a 0(i) O(V) 
vertex 

Table 5.1 Summary of differences between adjacency lists and adjacency matrices. 
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Depth-first search based algorithms 

Depth-first search (DFS) is a recipe for graph traversal. The recipe being to follow 

edges deep into the graph before fanning out to other edges. This simple method 
of traversal is the basis for several algorithms. Tarjan (1972), and Hopcroft and 
Tarjan (1973) were the first to discover this more than twenty years ago. In their 

work, and other work since, the DFS algorithm is viewed as a skeleton upon which 

code fragments are embedded. These code fragments compute information during the 

traversal process which is 
- 
relevant to the particular algorithm being expressed. This 

has proved to be a successful method of designing efficient graph algorithms, but it 

has a number of drawbacks. 

So many calculations are performed during the course of a graph traversal, that it 
becomes extremely difficult to understand and reason about what is going on. The 
DFS algorithm is lost as it is intertwined with other code fragments. It cannot be 

reused without having to duplicate the code. The alternative approach is one that is 

taken frequently in functional languages: to express the algorithm as the composition 

of several reusable components. 

Given a graph we return a depth-first spanning forest, algorithms that use DFS are 

expressed in terms of this forest. A constant factor in complexity time is lost by doing 

this, but the gains far out-weigh this slow-down. Algorithms become more lucid, the 

code for DFS is reused for new algorithms. Since this is good for programming it is 

also good for reasoning. Static values like the depth-first spanning forest are easier 
to reason about, rather than dynamic values processed (luring a traversal. 

83 
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6.1 Depth-first search 

Depth-first search is often viewed as ýa process which may loosely be described as 
follows. Initially, all the vertices of the graph are deemed "unvisited", so we choose 
one and explore an edge leading to a new vertex. Now we start at this vertex and 
explore an edge leading to another new vertex. We continue like this until we reach 
a vertex that has no edges leading to unvisited vertices. At this point we backtrack, 

and continue from the latest vertex that does lead to new unvisited vertices. 

Eventually we will reach a p, oint_,,, where, every, vertex'reachable from 'theiinitial vertex 
has been visited. If there are any unvisited vertices left, one is chosen and the search 
commences again, until finally every vertex has been visited once, and every edge has 
been examined. 

The graph in Figure 6.1 shows a'depth-first- traversal starting at vertex a. If at 
any vertex there is a choice of edges to follow, 'the selection is made by using the 
alphabetical ordering of'vertices. 

/d_e\b, 

��/ >1:. k4 g >1 m 

Figure 6.1 A directed graph: bold edges give a depth-first traversal. 

6.2 Specificationof depth-first search 

IN"e will concentrate " on depth first search as a specification for a value, namely the 
spanning forest defined, by aý depth-first traversal of a graph. Such a forest for the 
graph in Figure 6.1 is depicted in Figure 6.2. The (solid) tree edges are those graph 
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edges that lead to unvisited vertices. The remaining graph edges are also shown, 
but in dashed lines. These edges are classified according to their relationship with 
the tree, namely, forward edges (which connect ancestors in the tree to descendants), 
back edges (the reverse), and cross edges (which connect nodes across the forest, but 

always from right to left). This standard classification is useful for thinking about a 
number of algorithms and later, in Section 6.6.5, an algorithm for classifying edges in 
this way is given. 

a 

C 
Back 

9h 

k Cross 

Forward 

e 
Cross 

Figure 6.2 A depth-first spanning forest. The dashed lines represent graph edges 
that are not included in the forest. 

Since the approach explored here is to manipulate the depth-first forest explicitly, the 
first step, therefore, is to construct the depth-first forest from a graph. To do this an 
appropriate definition of trees and forests is needed. 

A forest is a list of trees, and a tree is a node containing some value, together with a 
forest of sub-trees. Both trees and fores ,t, s are'p olymorphic in the type of data they 
may contain. 

data Tree a= Node a (Forest a), 

type Forest a= [Tree a] 

A depth-first search of aJ graph takes a graph and an initial ordering of vertices. All 

graph vertices in the initial ordering will be in the returned forest. 

dfs :: Graph -> [Vertex] -> Forest'Vertex 

This function is the key component to all the DFS algorithms that are expressed 
here. For now we restrict ourselves to considering its properties, and leave its efficient 
Haskell implementation until Section 6.5. 
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Sometimes the initial ordering of vertices is not important. When this is the case the 
following related function is used: 

dff :: Graph -> Forest Vertex 

dff g= dfs g (vertices g) 

What are the properties of depth-first forests? They can be completely characterised 
by the following two properties. 

Property 6.1 (Spanning subgraph) 
The depth-first forest of a graph is a spanning subgraph, that is, it has the same 
vertex set, and the edge set is ý subset of the grapfi edge set. The subgraph does not 
contain multi vertices or multi edges. 

Property 6.2 (No left-riglit croSs-edges) 
The graph contains no left-right cross-edges with respect to the forest. 

These two properties are satisfied by every depth-first forest, consequently several 
functions would satisfy these properties. The next property describes, togetherýwith 
the above two properties, one implementation of depth-first search. 

Property 6.3 (Initial ordering) 
Given the depth-first spanni 

' 
ng forest, every descendant of a root or later node, appears 

later in the initial ordering than'the root. '1 

6.3 The generate-prune paradigm 

In order to translate a graph into a depth-first spanning forest we make use of a 
technique common in lazy functional programming: - generate then prune. Given a 
graph and a list of vertices (a root set), we first generate a (potentially infinite) forest 
consisting of all the ver ' 

tices and edges in 
' 
the graph, and then prune this forest in 

order to remove repeats. The choice of pruning pattern determines whether the forest 
ends up being depth-first (traverse in a left-most, tOP-most fashion) or breadth-first 
(top-most, left-most), or perhaps some combination of the two. 

Definitioii (--ý) 
For reasoning purpo 

, 
ses, it is convenient to use a notion of paths rather than single 

edges: a path being made up of zero or more edges joined end-to-end. The notation 
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v ---49 w will be used to mean that there is a path from v to w in the graph g. Where 

there is no confusion the graph subscript will be dropped. 

6.3.1 Generating 

We define'a function generate which, given a graph g and a vertex v builds a tree 

rooted at v containing all the vertices in g reachable from v. 

generate :: Graph -> Vertex -> Tree Vertex 

generate gv= Node v (generates g (g! v)) 

generates :: Graph -> [Vertex] -> [Tree Vertex] 

generates g vs = map (generate g) vs 

Unless g happens to be a tree anyway, the generated tree will contain repeated sub- 
trees. Further, if g is cyclic, the generated tree will be infinite (though rational). 

Of course, as the tree is generated on demand, only a finite portion will be generated. 
The parts that prune discards will never be constructed. 

ab 

/\ bCa 

/\ bC 

/\ bCa 
',,, 

C dI 

�Th ab 

cd 

Figure 6.3 A generated forest, for the graph shown in the box. 

6.3.2 Pruning 

The goal of pruning the (infinite) forest is to discard subtrees whose roots have oc- b 
curred previously. Thus we need to maintain a set of vertices (traditionally called 
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"marks") of those vertices to be discarded, The depth-first pruning may be defined 

as follows where P represents the set of,, vertices previously visited (or marked). This 
specification is convenient for reasoning. Specifications will be distinguished from 
programs by an italic font. Section 6.5 gives an efficient implementation of prune. 

prune :: Set Vertex Forest Vertex -4 Forest Vertex 

prune P 

prune P [Node x ts] E, P 

xVP [Node x (prune Qxj U P) ts) 

prune P (ts 4+- us) prune F ts, 
ý; -ý 

4+- prune . 
(P, UY (prune P ts)) us 

Flatten (, F) maps forests to sets and mayl be defined: 

Definition (Flatteii) 
Flattening transforms a tree to the set of all nodes contained in the tree. 

-77 
t'g 

I= 
UtE7-ts 7'tl 77 (Node x ts) =IxIU.. F ts 

, 

The set definitions of (. F) and (T) are only applied to finite objects, and are therefore 
computable in those cases. Generally, (. F) is applied to expressions of the form 

prune P ts which always terminates with a finite tree when ts is a rational tree, that 
is, it has been generated with generates, and P is a finite set. 0 
Note that in this chapter the symbol E is heavily overloaded. In the expression xEy, 
y may be a set, list, tree, or forest, but x will always be a unitary object. For example, 
if y is a tree of integers then*_x is an integer. The notation x E, y is used to signify 
that x is of type tree, and x Er y to signify that x is of type forest. 

Now (Ifs can be defined in terms of generates and prune: 

Definitioii (Deptli-first search) 
dfs g vs prun. e 0, (generate, S g ys) 

This definition, although more verbose, is superior to the implementation of DFS 
given in Chapter 1 because of its modularity (Hughes 1989). It is not only easier to 
understand, but allows the proofs to be modular. Instead of having properties about 
one function dfs, separate properties can be stated for generates and prune. This 
makes inventing properties'and proving them easier than would be the case with just 
dfs. ýIIIIII 
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Deforestation of a flattened dfs 

rrequently a flattened version of dfs is useful, this may be deforested into a recursive 
definition reaches. 

reaches gP xs = 17 (prune P (generates g xs)) 

Case []- 

Y (prune P (generates g 
Definitions of Y, prune, and generates 

Case [xl, where xEP. 

(prune P (generates g [xl)) 

Y (prune P [Node x (generates g (g! x)) 
0 

Case [xl, where xý 

(prune P (generates g [x])) 

=Y (prune P [Node x (generates g (g! x)) 

=Y[ Node x (prune (fx} U P) (generates g (g! x))) 

= jxj UY (prune (fx} UP) (generates g (g! x))) 

= jx} U reaches 9 ({x} U P) (g! x) 

Case xs 41- Ys. 

(prune P (generates g (xs * ys))) 
Y (prune P (generates g xs)) 

UY (prune (P U. F (prune P (generates g xs))) (generates g ys)) 
reaches gP xs U reaches g (P U reaches gP xs) ys 
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Hence, this yields the following recursive definition for reaches: 

reaches :: Graph Set Vertex -* [yertex] 7-+ Set Vertex 

reaches gP 
reaches gP [x] xEP= 

1XýP= jx} U reaches g (fx} U P) (g! x) 
reaches gP (xs -++- ys) = reaches gP xs 

U reaches g (P U reaches gP xs) ys 

Deffilition (Reaclies) 
The notation vý, will be used to denote the set of all vertices in the graph g that can 
be reached by traversing paths from vertex v. Similarly all the vertices that can be 

''denoted by vs4g. I Formally, reached from the list of vertices vs are 

Vý, fwIv ---+g w 
VS49 UVEVS V4 

Theorem 6.4 (Reaclies) 
The recursive function reaches terminates when'given well-defined arguments, and 
tile call reaches g0 vs for some graph'g and list of vertices vs'will return a set of all 
the vertices in g that are reached by paths from elements in vs. 

Vx .xE reaches y0 vs -#ý xE vs4 

Proof A proof is given in M61ler (1993b) and in Clenaghan (1995). 1 ED 

Leinina 6.5 (Prune) 
The function call prune P ts for a, finite set of vertices P and rational forest ts returns 
a subforest (g, ) of ts. Formally, 

VP. ts . prune P ts 9. r ts 

Sketcli Proof By well-founded induction. The well-ordering is defined on the 
visited set and the forest: 

us) < (P, ts) =IQI<IPIV (size us < size ts 

where size is the number of nodes in a forest. The ordering says that either the 
subsequent visited sets are becoming larger or subsequent trees are becoming smaller. 
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Then the following property is shown: 

VQ, us, Pý ts 
((Q, us) < (P, ts) =ý- prune Q us C, us) =* prune P ts C., ts 

When the visited set P contains all nodes from ts then prune P ts this is easily 
shown. 0 

Lemma 6.6 
If a node is in the result of a prune for a rational forest ts then it cannot have been 
in the finite set P passed to prune. 

Vx, P -xE prune P ts =: >. xVP 

Proof By well founded induction. The well-ordering is defined on the size of forests 

and visited sets as before, and so the inductive formula is: 

VQ, us, P, tS7 x-0, us) < (P, ts) =* (x i E prune Q us =: ý* xE us)) 
(x E prune P ts =ý- xE ts) 

Case [I- 

xE prune P 

xE 
False 

xP 

Case [ to 
i 

tn for n>0. 

x (=- prune P [to,..., tnj 
I Definition of prune 

xE prune Po [to] ý+ prune P, [ti] -4+ --- -+ prune Pn (tnj 

where PO =P and Pi = Pi-1 UT (prune Po t to,..., ti-1 1) for i>0. Without loss of 
generality there will exist some 0 *-' i<n such that: 

xE prune Pi [ti] 

Consider tj = Node v ts 

xE prune Pi (Node v ts ] 
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By definition of prune 
(v E Pi AxE 
V (v V Pi AxE Node v (prune Q V} U Pi-1) ts)) 

Since x 

vVPj A xENode v (prune- 
ý(Iv} U Pi -lYts) 

v Pi A (x =vVxE prune (lv} U Pi-1) ts) 
By induction hypothesis 

x Pi AxV {v} U Pj. ý., 
Since xV fv}UPi-, UPi and P C, Pi, li 

xVP 

The following lemma says that if the result of a can be partitioned then each 
partitioning can be defined in terms of a prune. 
Lemma 6.7 
For sorne graph y and vertices vs then the following holds, 

Vts. us . ts +F us = dfs g vs =>. 3xs, ys . vs = xs * ys 
A ts prune 0 (generates g xs) 
A us prune (xs4) (generates g ys) 

Proof 

ts 4+ us df3 9 vs 
By unfolding dfs and letting vs vo, v, for some n>0 

ts -+j- us = prune 0 (generates g[ vo, Vn 
By prune and generates 

I 

ts * us = prune Po (generates g [vo]) 

prune P, (generates g [vl]) 

, 4+- prune, P, (generates y [v,, ]) 

where PO 0 and Pi =. F (prune ('generates g [vO,..., vi'-l])) for some 0<i<n. 
Furthermore, by using the definition of reaches and by using Theorem 6.4 we have 
Pi =[ VO, ..., vi- I]4. Now each element prune Pi (generates, g [vi]) is either a single- 
toil list holding one tree or it is the empty list. Whence, we are able to choose as 
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much of vs as is necessary (call this amount xs) in order to construct ts. From this, 

and using the name ys for the remaining segment, then we have 

3xs, ys vs = xs * ys 
A ts prune 0 (generates g xs) 
A us prune (xs4) (generates g ys) 

0 

6.4 Correctness of DFS 

Now the correctness of DFS may be shown by using the above properties of prune 
and generates. 

Tlleorem 6.8 (Tlie function dff satisfies Property 6.1) 
The function call dff g returns a spanning subgraph of the graph g. 

Proof There are two parts to this proof, first all the vertices in the graph g must 
be shown to be in dff g, that is: 

(i) Vv 
.vE': 

(dff g) <-==> vE vertices 

and second it must be shown that all tree edges in the dff g are graph edges in g, 

that is: 

Ve .e (-= edgesF (dff g) => eE edges g 

Since sets'have been used throughout, parts (i) and (ii) are not strong enough to 

show that multiple vertices or multiple edges do not appear in the depth-first forest. 

Nevertheless, it is straightforward to reformulate everYthing with lists and verif. v this. 
0 

Proof WI 

Vv .VEY 
(dff g) VEY (prune 0 (generates g (vertices g))) 

vE reaches g0 (vertices g) 

vE vertices' g 
0 



94 Chapter 6. Depth-first search basea algorithms 

Before verfting part (ii) we introduce set definitions for edgesT and edgesF. 

Definition (Edges of trees and forests) 
The expression edges Tt is the set of all edges in the tree t, and edgesF ts is the set 
of all edges contained in the forest ts. Formally, 

edges T (Node x ts) 

edjesF ts 

Proof (ii) 

Since, 

I(x, y) I Node y ts+-ts} 
U edgesF ts 

Utert, edgesT t 

dff g prune 0 (generates g (vertices g)) 
generates g (vertices 9) 

the theorem is proved týy showing the following 

Ve 
.eE edgesF (generates g (vertices 9)) =ý- eE edges g 

this is shown by straightforward equational reasoning. 0 

Proposition 6.9 (The function dff satisfies Property 6.2) 
The function call dff y returns a forest where there are no graph edges between left 
and right subtrees. In the following ts +ý us is a subforest occurring anywhere within 
dff g. 

Vts 4+- us E., dff gAvE ts AwE us =:: >. (v, w) V edges g 

The ban on left-right cross edges translates into paths, and is expressed with the 
following two lemmas. At the top level, it implies that there is no path from any 
vertex in one tree to any vertex in a tree that occurs later in the forest. 

Lemma 6.10 (No left-right paths between top-level trees) 
If (ts 4+- us = dfs g vs), then Vv E ts . Vw E us .v -i-+ w 
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Proof 

ts +F us dfs 9 vs AvE ts AWE us 
Definition of dfs I 

ts * us = prune 0 (generates g vs) AvE ts AWE us 
Using Lemma 6.7 partition vs into two lists vs = xs ys 

choosing xs such that ts = prune 0 (generates g xs) 
ts prune 0 (generates g xs) 
A us = prune (xs4) (generates g ys) 
AvE ts AwE us 

vE prune 0 (generates g xs) AwE prune (xs4) (generates g ys) 
I By Theorem 6.4 and Lemma 6.6 

vE xs4 AwV xs4 
Definition of 4 

v --/-+ W 
m 

Deeper within each tree of the forest, there can be paths that traverse a tree from 
left to right, but the absence of any graph edges which cross the tree structure from 
left to right implies that the path has to follow the tree structure. In other words the 
only way to get from v to w is via (an ancestor of) x, the point at which the forests 

that contain v and w are combined (otherwise there would be a left-right cross edge). 
Thus there is also a path from v to x. This may be formally expressed: 

Lemma 6.11 

If the tree (Node x (ts *- us)) is a subtree occurring anywhere within dff g, then 

Vv E ts 
- 

Vw E us -v --4 w =: e v --4 x 

Unfortunately we don't have a calculational style proof of this lemma. It turns out 
to be difficult because the proof requires knowledge of the depth-first forest creation 
process. Nevertheless, the lemma may be shown by reasoning about a process, which 
is a common style of proof given in traditional texts. An informal argument ii. this 
style is now given. 

Since w is in us and only one w can exist in dff g, w is not in ts. If there is a path 
from v to w, w would become a descendant of v unless the path from v to w contains 



96 Chapter 6. Depth-first search based algorithms 

a vertex that has been visited before (call it p). Vertex p will either be an ancestor 
of v or in a previously visited tree. If p is in a previously visited tree then w would 
also be in a previously visited tree, since p -+ w. But w is in us which occurs to the 
right of ts. On the other hand, it is possible for p to be an ancestor of v, and w to be 

a descendant of p. Hence v --4 p where (Node p (ts 44- us)) is a subtree occurring 
anywhere within dff g. 

6.4.1 Ordering properties of DFS 

Now two ordering properties are given that show the relationship between the initial 

order of vertices given to dfs, and the structure of the forest. 

Lemma 6.12 (Initial ordering property) 
The function dfs satisfies Property 6.3. 

as-+[Node a bs]-Wcs=dfsg vs =ý, VbE [Node a bs]+Fcs . a<,, b 

for a and b in vs. The notation <,, is used for the ordering induced by the list of 
vertices vs. that is. v <,, w if v=w or if v occurs earlier in vs than w. 

Proof First the left part of the implication is transformed: 

as +F [ Node a bs I -* cs = dfs g vs 
Definition of dfs 

as 4+- [ Node a bs ] 41- cs = prune 0 (generates g vs) 

Now we use Lemma 6.7 twice. First partitioning vs into vs = (xs -i+ [z]) 41- ys such 
that as +ý [ Node a bs ]= prune 0 (generates g (xs +ý [z])). Then partitioning xs +F (z) 

such that as = prune 0 (generates g xs), clearly z=a and we have, 

as prune 0 (generates g xs) 
A Node a bs ]= prune P, (generates g [a]) 

A cs = prune P2 (generates g ys) 

where P, = reaches g0 xs and P2 = P, U reaches g P, [a]. 
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Now, 

bE [Node a bs]-fFcs 
bE prune P, (generates g [a]) 44- prune P2 (generates g ys) 

By Lemma 6.6 

b P, U P2 

Theorem 6.4 

b XS4 

=> As bV xs and bE xs +ý [a] -++- ys 
bE [a] +ý ys 

=> a <,, b 
11 

This second property is used in a proof of the strongly connected components algo- 
rithm given later. 

Lemma 6.13 

Let a and b be any two vertices. Write --+ for paths in the graph g, and < for the 

ordering induced by the list of vertices vs. Then 

t Er dfs g vs -aEtAbEt 
3c .c -4 aAc --4 b 

(V d. d --ý avd --+ b =* c< d) 

This Lemma says that: 

given two vertices that occur within a single depth-first tree (taken from the 
forest), then there is a predecessor of both (with respect to --*) that occurs 
earlier in vs than any other predecessor of either. (If this were not the case, 
then a and b would end up in different trees). 

if the earliest predecessor of either a or b is a predecessor of them both, then 

they will end up in the same tree (rooted by this predecessor). 
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Proof 

(=) 
3tE dfs g vs . a, bEt 

3ts, us, xs, c . ts4+-[Node c x-5]+Fus= dfs g vs A a, b E Node c xs 
Theorem 6.8, and excluded middle 

I 

A (c -+ aAc --+ b) A (Vd .d -1-4 aVd --+ a) 
Lemma 6.10, aE Icl U Yxs UY us 

A (c --+ aAc -+ b) 

A (Vd 
.d -ý-+ aVdEfc}U 37 xs UY us) 

Lemma 6.12 1 

A (c -4 aAc --4 b) A (Vd 
-daVc< d) 

Similarly for b as for a 

A (c -+ aAc ---+ b) 

A (Vd . 
(d --ý4 aVc< d) A (d -i-+ bvc< d)) 

3c .c -4 aAc --+ bA (Vd 
-d -+ aVd --+ b =ý, c< d) 

I 
() 

3c caAc --ý bA (Vd .d --* aVd -+ b =: ý c< d) 

BY spanning property, a, b, c E, dfs g vs, consider CEt 
A ts +- [t] 4+- us = dfs g vs AcEt 

A (a E ts VaEtVaE us) 
BY no left-right edges (Lemma 6.10) c ---+ aAcEt=: ý* aý us 
A ts 4+- [t] 4+- us = dfs g vs AcEtA (a E ts VaE t) 

Assume a E, ts, and c on sider aE Node e bs I 

A as +F [ Node e bs cs -+ [t) -++- us = dfs g vs AcEt 
AaE Node, e bs 

By initial ordering (Lemma 6.12) 

A ((a E ts A (3e 
.e ---+ aAe <- c)) VaE t) 

(V d. d ---+ a =* c< d) 

A ((a E ts A '('-nVe 
.e --+ a => c< e)) VaE t) 

AaEt 

Similarly for b as for a 

3t, ts, us . a, bEtA ts 4+- [t] 4+- us = dfs g vs 
0 
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6.5 Efficient implementation of prune 

The easiest way to achieve an efficient implementation of prune is to make use of 

state transformers, and mimic the imperative technique of maintaining an array of 
booleans, indexed by the set elements. This is what is done here. 

If paying an extra logarithmic factor is acceptable, then it is possible to dispense 

completely with the imperative features used in prune, and to use an implementation 

of sets based upon balanced trees, for example. 

The set-operations required are initialisation (the empty set), membership test, and 
addition of a singleton. While it is acceptable to spend linear time in generating 
the empty set (as it is only done once), it is essential that the other operations are 
performed in constant time. 

The implementation of vertex sets is easy: 

type Set s= MutArr s Vertex Bool 

mkEmpty :: Bounds -> ST s (Set s) 

mkEmpty bnds = newArr bnds False 

contains :: Set s -> Vertex -> ST s Bool 

contains mv= readArr mv 

include :: Set s -> Vertex -> ST s () 

include mv= writeArr mv True 

Using these, prune is therefore defined as: 

prune :: Bounds Forest Vertex -> Forest Vertex 

prune bnds ts runST (do ým <- mkEmpty bnds; 

chop m ts 

1) 

The prune function begins by introducing a fresh state thread, then generates an 

empty set within that thread and calls chop. The final result of prune is the value 

generated by chop, the final state being discarded. 
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chop :: Set s -> Forest Vertex -> ST s (F'orest Vertex) 

chop mD= return 

chop m (Node v ts : us) = do ý visited <- contains m v; 
if visited then 

chop m us 
else do ý include m v; 

as <- chop m ts; 

bs <- chop m us; 

return (Node v as: bs) 
I 

I 

When chopping a list of trees, the root of the first is examined. If it has occurred 
before, the whole tree is discarded. If not, the vertex is added to the set represented 
by m, and two further calls to chop are made in sequence. 

The first, namely, chop m ts, prunes the forest of descendants of v, adding all these 
to the set of marked vertices. Once this is complete, the pruned subf6rest is named 

as, and the remainder of the original forest is chopped. The result of this is, in turn, 

named bs, and the resulting forest is constructed from the two. 

All this is done lazily, on demand. The state combinators force the computation 
to follow a predetermined linear sequence, but exactly where in that sequence the 

computation is, is determined by external demand. Thus if only the top-most left- 

most vertex were demanded then that is all that would be produced. On the other 
hand, if only the final tree of the forest is demanded, then because the set of marks is 

singIC-threaded, all the previous trees will be produced. This is not as restrictive as 
it may at first seem, however, since all the trees must be computed by DFS, anyway, 
in order to produce the last one. 

At this point one, may wonder whether any benefit has been gained by using a fu-nc- 

tional language. After all, the code looks fairly imperative. To some extent such a 
comment would be justified, but it is important to note that this is the only place 
in the development that destructive operations have to be used to gain efficiency. 
The flexibility is there to gain the best of both worlds: destructive update, is only 
used where it is vital, everywhere else we may use the powerful modularity options 
provided by lazy functional languages. 



6.5. Efficient implementation of prune 101 

6.5.1 Equivalence of stateful prune with purely functional 

prune 

An equivalence is now shown of the specification of prune (p. 88) with the imperative 

implementation of prune given in the last section. Equivalent in the sense that, if the 

two functions are given the same arguments, they will return the same value. First 

another version of prune is derived from the specification: 

sprune Forest Vertex -+ Set Vertex -+ (Forest Vertex, Set Vertex) 

sprune P= (HIP) 

sprune(Nodexts: us)P JxEP = spruneusP 
XýP= (Node x as : bs, R) 

where 
(as, Q) = sprune ts (lx} U P) 
(bs, R) = sprune us Q 

Theorem 6.14 
For a list of trees ts and a set of vertices P: 

prune P ts = fst(sprune ts P) 

Sketch Proof 

The proof uses the transformation technique known as tupling (Burstall and Darlington 

1977). The function sprune is derived from prune by using the following tuple struc- 
ture: 

sprune ts P= (prune P ts, PUF (prune P ts)) 

Ur sing case analysis prune is unfolded until we have an instance of the above property. 
When an instance occurs we fold back, giving the above recursive definition of sprune. 

0 

The function sprune, although purely functional, is a state manipulator. The state 

in sprune being the set of visited vertices. By using the definitions of (; ) and return, 
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sprune may, be rewritten as follows: 

sprune Forest Vertex ST s (Forest Vertex) 

sprune return [] 

sprune (Node v ts : us) do I visited +- contains v; 
if visited then 

sprune us 

else do I include v; 
as 4-- sprune ts; 
bs +- sprune us; 
return (Node v as : bs) 

I 

where 

contains :: Vertex -ý ST 8 Bool 

contains v= \P -4 (v E P, P) 

include :: Vertex -+ ST s () 

include v= \P -4 ((), JVJ U P) 

Theorem 6.15 
For a list of trees ts: 

sprune ts 0= prune bnds ts 

where bnds defines the range of vertices used. This version of prune refers to 'the 

implementation given on page 99. 

Sketcli Proof The definition of chop is visibly the same as sprune modulo chop 
taking a re 

' 
ference argument. The chief difference is in the way sets are represented, 

i. e. the definitions of contains and include. The formal proof relies on showing that 

arrays can be used to represent sets, which is well-known (Aho et al, 1983). The 
details of this are left out here. Proposition 6.16 is the critical transformation, that 

converts between a functional and an imperative program. 0 
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Proposition 6.16 (runST-introduction) 

Given a functional expression e, the following holds: 

e= runST (return e) 

6.6 Depth-first search algorithms 

6.6.1 Depth-first search numbering 

Having specified and implemented DFS we turn to consider how it may be used. The 
first algorithm is straightforward. We wish to assign to each vertex a number which 
indicates where that vertex came in the search. A number of other algorithms make 
use of this depth-first search number, including the biconnected components algorithm 
that appears later, for example. 

Depth-first ordering of a graph is expressed most simply by flattening the depth-first 

forest in preorder. Preorder on trees and forests places ancestors before descendants 

and left subtrees before right subtrees. The use of repeated appends (++) caused by 

concat introduces an extra logarithmic factor here for the average case, but this is 

easily removed using standard transformations. 

preorder :: Tree a -> [a] 

preorder (Node a ts) = [a] ++ preorderF ts 

preorderF :: Forest a -> [a] 

preorderF ts = concat (map preorder ts) 

Now obtaining a list of vertices in depth-first order is easy: 

preOrd :: Graph -> [Vertex] 

preOrd g= preorderF (dff g) 

It is often convenient, however, to translate such an ordered list into actual numbers. 
For this the function tabulate could be used: 

tabulate :: Bounds -> [Vertex] -> Table Int 

tabulate bnds vs = array bnds (zip vs [I.. ]) 
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which zips the vertices together with the positive integers 1,2,3, ...,, and (in linear 
time) builds an array of these numbers, indexed by the vertices. 

These can be packaged up into a function as follows: 

preArr :: Bounds -> Forest Vertex -> Table Int 

preArr bnds ts = tabulate bnds (preorderF ts) 

(it turns out to be convenient for later algorithms if such functions take the depth-first 
forest as an argument, rather than construct the forest themselves. ) 

6.6.2 Topological sorting 

The converse to preorder is postorder, and unsurprisingly this turns out to be useful in 
its own right. Postorder places descendants before ancestors and left subtrees before 

right subtrees: 

postorder :: Tree a -> [a] 

postorder (Node a ts) = postorderF ts ++ (a] 

postorderF :: Forest a ->-[a] 

postorderF ts = concat (map postorder ts) 

So, like with preorder, postorder is define 

postOrd :: Graph -> [Vertex] 

postOrd g= postorderF (dff g) 

The lack of left-right cross edges in DFS forests leads to a pleasant property when a 
DFS forest is flattened in postorder. This is expressed with the following definition. 

Definition (Post-ordering) 
A linear ordering < on vertices is a post-ordering with respect to a graph g exactly 
when, 

v<w A V-4w =: ý- 3u. v+--4u A w<u 

(where v()u means v ---+ u and u --4 v). In words, this definition states that, 
if from some vertex v there is a path to a vertex later in the ordering, then there is 
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also a vertex u which occurs no earlier than w and which, like w is also reachable by 

a path from v. In addition, however, there is also a path from u to v. 

This property is so-named because post order flattening of depth first forests have 

this property. 

Theorem 6.17 
If vs = postOrd g, then the order in which the vertices appear in vs is a post-ordering 
with respect to g. 

Proof If v comes before w in a post order flattening of a forest, then either w is 

an ancestor of v, or w is to the right of v in the forest. In the first case, take w as u. 
For the second, note that as v -+ w, by Lemma 6.10, v and w cannot be in different 

trees of the forest. Then by Lemma 6.11, the lowest common ancestor of v and w 
will do. 11 

All this can be applied to topological sorting. A topological sort is an arrangement 
of the vertices of a directed acyclic graph into a linear sequence vl,. .., v,, such that 
there are no edges from vj to vi where i<j. This problem arises quite frequently, 

where a set of tasks need to be scheduled, such that every task can only be performed 

after the tasks it depends on are performed. 

Ný, e define, 

topSort :: Graph -> [Vertex] 

topSort g= reverse (postOrd g) 

Tlieorem 6.18 (Topological sort) 
Given an acyclic directed graph g, 

Va, bE topSort g. a -+ b =* a 
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Proof 

Va, bE topSort g. a --* b 
I Excluded middle, (: ýp) is defined by postOrd 

a<pb v b<pa 
ý (5p) is a post-ordering, Theorem 6.17 

(3c. a()cA b<pc) V b<pa 

As g is acyclic, the first disjunct is false when a0b 

a= bV b<Pa 
(: 5p) 

a<b 
0 

6.6.3 Weakly connected components 

Two vertices in an undirected graph are connected if there is a path from the one 
to the other. In a directed graph, two vertices are weakly connected if they would 
be connected in the graph made by viewing each edge as undirected. Finally, with 
an undirected graph, each tree in the depth-first spanning forest will contain exactly 
those vertices which constitute a single component. 

This is translated directly into a program. The function components takes a graph 
and produces a forest, where each tree represents a connected component. 

components :: Graph -> Forest Vertex 

components g= dff (undirected g) 

A graph is connected if there is exactly one component: 

isConnected :: Graph -> Bool 

isConnected g= length (components g) 

Theorem 6.19 (Connected components) 
Given a directed graph g, 

t Er components g. a, bEt -4=4* a()gu 
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The notation gu is the undirected graph such that all directed edges in g are undi- 
rected edges in g U. 

Proof 

(=) 

3t Er components g. a, bEt 

Definition of components 
3t Er dff (undirected g) . a, bEt 

Take a common ancestor x of a and b 

x --4t aAx --+t b 

Lemma tree edges --4t are graph edges )9U 

xyaAxyb 
Transitivity 

a ý--+, u b 

(=) 

abU 
By spanning Property 6.1 a, bE dff g 

a, bE dff (undirected g) 
Choose t E,. dff (undirected g) such that aEt 

as -H- [t] +ý bs = dff (undirected g) AaEt 
I By excluded middle 

I 

(b E as VbEtVbE bs) AaEt 
I By no left-right cross edges (Lemma 6.10) bý bs 

(b E as VbE t) AaEt 
I Contradiction if bE as, as b --*, u a, by Lemma 6.10, aE as 

aEtAbEt 
0 
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6.6.4 Strongly connected components 

Two vertices in a directed graph are said to be strongly connected if each is reachable 
from the other. A strongly connected component is a maximal subgraph, where all the 
vertices are strongly connected with each other. This problem is well known to com- 
piler writers as the dependency analysis problem - separating procedures/functions 
into mutually recursive groups. We implement the double depth-first search algorithm 
of Kosaraju (unpublished), and Sharir (1981). 

scc :: Graph -> Forest Vertex 

scc g= dfs (transposeG g) (reverse (postOrd g)) 

The vertices of a graph are ordered using postord. The reverse of this ordering is 
used as the initial vertex order for a depth-first traversal on the transpose of the 
graph. The result is a forest, where each tree constitutes a single strongly connected 
component. 

The algorithm is simply stated, but its correctness is not at all obvious. Nonetheless, 0 
it may be proved as follows. 

Tlieorern 6.20 (Strongly connected components) 
Let a and b be any two vertices of g. Then 

(I tEr8 cc 9. aEtAbE t) -##- a +--+ 

Proof 

The proof proceeds by calculation. The notation gT will be used for the transpose 
of g. Edges ---+ in gT will be edge 

"s 
+-- in g. Further, let <- be the post-ordering 

defined by postOrd g. Then its reversal induces the ordering ý!. Now, 

3t E7 scc 9. aEtAbEt 

Definition of scc 
1 

3t Er dfs 
-q 

T (reverse (postOrd g)) . a, bEt 
ý By Lemma 6.13 1 

3c, c ý-- aAc ý-- b 
(Vd .d ý- avd ý- b =: ý c> d) 

4=#- ýc. a --+ c 
(Vd .a ---> dVb --4 d =: ý < 
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From here on are loop of implications is constructed. 

3c. a--+c A b-+c 

A (Vd 
.a ---+ dVb -+ d =: ý d< c) 

Consider d=a and d=bI 

3c -a -4 cAa<cAb --ý cAb<c 
A (V d-a --+ dVb -+ d =* d< c) 

1 
:5 is a post-ordering 

I 

3c . 
(3e a)eAc< e) A (3f 

.b +--+ fAc< f) 
A (V dadVb --+ d =ý d< c) 

fec 
and f=c using (Vd 

... 
3c .a)cAbc 

Transitivity 

a)b 

which gives us one direction. But to complete the loop: 

a 
+- b 

There is a latest vertex reachable from a or b 

abA3c. (a ---ý cVb --+ c) 
A (V d. a ---+ dVbd =ý, d< c) 

Transitivity of 
3ca ---ý cAb --+ c 

(Vd .a -* dvb ---+ d =* d 

as required, and so the theorem is proved. 0 

To the best of our knowledge, this is the first calculational proof of this algorithm. 
Traditional proofs (see Corman et al. (1990), for example) typically take many pages 
of wordy argument. In contrast, because an earlier algorithm is reused, its properties 
can also be reused, giving a compact proof. Similarly, we believe that it is because 

we are using the DFS forest as the basis of our program that our proofs are simplified 
as they are proofs about values rather than about processes. 

A minor variation on this algorithm is to reverse, the roles of the original and trans- 
posed graphs: 
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sccl :: Graph -> Forest Vertex 

sccl g= dfs g (reverse (postOrd (transposeG 

The advantage now is that not only does the result express the strongly connected 
components, but it is also a valid depth-first forest for the original graph (rather 
than for the transposed graph). This alternative works as the strongly connected 
components in a graph are the same as the strongly connected components in the 
transpose of the graph. 

To determine if a graph is strongly-connected, the function scc is used to check if a 
single component is returned: 

isScc :: Graph -> Bool 

isScc g= length (scc g) 

6.6.5 Classifying edges 

We have already seen the value of classifying the graph edges with respect to a given 
depth-first search. This idea is coded by building subgraphs of the original containing 
all the same vertices, but only a particular kind of edge. 

Tree edges are easiest, these are just the edges that appear exp licitly in the spanning 
forest. The other edges may be distinguished by comparing preorder and/or postorder 
numbers of the vertices of an edge. The situation is summarised in the following 
diagram: 

'ftee, Forward 

preorder: ...... v .................................. W 

Back, Cross 

Back 

postorder: ...... v .................................. W 

71ýree, Forward, Cross 
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The above diagram expresses the relationship between the four types of edge (tree 

edges, forward edges, back edges, and cross edges) and the preorder and postorder 
numbers. Only back edges go from lower postorder numbers to higher, whereas only 
cross edges go from higher to lower in both orderings. Forward edges, which are the 
composition of tree edges, cannot be distinguished from tree edges by this means - 
both tree edges and forward edges go from lower preorder numbers to higher (and 
conversely in postorder) - but since we can already determine which are tree edges 
there is no problem. The implementation of these principles is now immediate and 
presented in Figure 6.4. 

tree :: Bounds -> Forest Vertex -> Graph 
tree bnds ts = buildG bnds (edgesF ts) 

where 
edgesF ts = concat (map edgesT ts) 
edgesT (Node v ts) =[ (v, w) I Node w us<-ts] ++ edgesF ts 

back :: Graph -> Table Int Graph -- O(V+E) 
back g post = mapA select g 

where select v ws =[w w<-ws, post! v<post! w] 

cross :: Graph -> Table Int -> Table Int -> Graph -- O(V+E) 
cross g pre post = mapA select g 

where select v ws =IwI w<-ws, post! v>post! w, pre! v>pre! wl 

forward :: Graph -> Graph -> Table Int -> Graph 
forward g tree pre = mapA ,, elect g 

where select v ws =[wI w<-ws, pre! v<pre! wl \\ tree! v 

Figure 6.4 Classification of graph edges. 

To classify an edge the depth-first spanning forest is generated, and used to produce 
preorder and postorder numbers. These numbers give all the information required to 
construct the appropriate subgraph. We have been slack with the implementations 

of tree, and forward. Neither of these implementations is linear-time. The function 

tree can be made to run in linear-time by making edgesF linear, this is achieved by 

using standard transformation techniques (Section 8.2). The function f orward is not 
linear-time because of the quadratic list difference function. This inefficiency can be 

removed by ordering both lists, and using another list difference operator which takes 
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advantage of the ordering. 

6.6.6 Detecting rooted graphs 

A root of a graph is a vertex r such that every other vertex in the graph can be 
reached by a path from r. Hence, 

3r . Vv Eg. r ---+ v 

If we perform a DFS of a graph, and if a root exists it will clearly be in the final tree 
constructed. Otherwise there would be a left to right edge from the root. Furthermore, 
if the graph is rooted then the root of the last DFS tree will be a root of the graph. 
If performing a second DFS starting from the root of the last tree produces just one 
tree, then the graph is rooted, otherwise the graph has no root. So the algorithm is 
simply expressed as: 

rooted :: Graph -> Bool O(V+E) 

rooted g= length ts == I 

length (dfs g (preorderF (reverse ts))) 

where ts = dff g 

6.6.7 Finding reachable vertices 

Finding all the vertices that are reachable from a single vertex v demonstrates that 
df s doesn't have to take all the vertices as its second argument. Commencing a search 
at v will construct a tree containing all of v's reachable vertices. This is then flattened 

with preorder to produce the desired list. 

reachable :: Graph -> Vertex -> [Vertex] -- O(V+E) 

reachable gv= preorderF (dfs g [vD 

Lemma 6.21 
Flattening the finite and well-defined forest ts with preorderF ts returns all -the 
nodes that are contained in ts. 

Vx. ts -xEF ts 4=* xE preorderF ts 
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Proof By induction on tree depths, that is the following is shown, 

Vn > 0, x, ts - 
xE T7(depthPruneF n ts) 4==> xE preorderF (depthPruneF n ts) 

where depthPrune has the following definition: 

depthPruneF :: Int [Tree a] -> [Tree a] 
depthPruneF 0 ts = 
depthPruneF d ts = map (depthPrune d) ts 

depthPrune :: Int -> Tree a -> Tree a 

depthPrune d (Node x ts) = Node x (depthPruneF (d-1) ts) 
0 

One application of this algorithm is to test for the existence of a path between two 

vertices: 

path :: Graph -> Vertex -> Vertex -> Bool -- O(V+E) 

path gvw=w 'elem' (reachable g v) 

The elem test is lazy: it returns True as soon as a match is found. Thus the result of 

reachable is demanded lazily, and so only produced lazily. As soon as the required 
vertex is found the generation of the DFS forest ceases. Thus df s implements a true 

search and not merely a complete traversal. 

Theorem 6.22 (Paths) 

path gvw -#=* v -4 w 
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Proof 

path gvw 
Definition of path 

w 'elem' (reachable g v) 
f Unfolding definitions of reachable and dff 

w 'elern' (preorderF (prune 0 (generates g [v]))) 

Lemma 6.21 1 

wEY (prune 0 (generates g [v])) 

Definition of reaches 

wE reaches g0 [v] 
1 By Theorem 6.4 

wE Vý 
I Definition of 

wEIxIv --+ x 
v --+ w 

EI 

6.6.8 Biconnected components 

This section looks at programming a more complex algorithm - finding biconnected 

components. An undirected graph is biconnected if the removal of any vertex leaves 

the remaining subgraph connected. A biconnected component is a maximal subgraph 
that is biconnected. This has a bearing in the problem of reliability in communication 

networks. For example, if you want to avoid driving through a particular town, is 

there an alternative' route? +- 

If a graph is not biconnected the vertices whose removal disconnects the graph, are 
known as articulation points. Locating articulation points allows a graph to be par- 
titioned into biconnected components (actually a partition of the edges). In Figure 
6.5 vertices that are articulation points are marked with an asterisk. The naYve, 
brute force method is to remove each vertex in turn and check whether the remain- 
ing subgraph is connected. However, this would require O(V(V + E)) time, since a 
connectedness check takes O(V + E) time. A more efficient algorithm is described 
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a 

e* fg 

h 

Figure 6.5 An undirected graph. 

by Tarjan (1972), where biconnected components are found during the course of a 
depth-first search in O(V + E) time. Here we apply the same theory as Tarjan, but 

express it via explicit intermediate values. 

Tarjan's method is based on the following theorem: 

Theorem 6.23 

Given a depth-first spanning forest of a graph, v is an articulation point in the graph 
if and only if: (i) v is a root with more than one child; or (ii) v is not a root, and for 

all proper descendants w of v there are no edges to any proper ancestors of v. 

This theorem is applied by associating a low point number with every vertex. The 

low point number of v is the smallest DFS numbered vertex that can be reached by 

following zero or more tree edges, and then along a single graph edge. 

Low point numbers are calculated by traversing the DFS trees bottom-up, and as- 

sociating each vertex with its low point number. The function label, (see Figure 

6-7) annotates a tree with both depth-first numbers and low-point numbers. At anv 

vertex, the low point number is the minimum of: 

(i) the DFS number of the vertex; 

(ii) the DFS numbers of the vertices reached by a single edge; and 

(iii) the low point numbers of the vertex's descendants in the tree. 

r- 
For example, the result of running label on the DFS spanning tree produced from 

the graph in Figure 6.5, gives the annotated tree depicted in Figure 6.6. 
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C(2,1) 

1'*'d(3,1) 

e(4,3) h(10,2) 

fI (5,4) 

b(6,5) i(8,4) 

9(7,5) j(9,8) 

Figure 6.6 The depth-first forest for the undirected graph. 

Dashed lines are the important back edges usedfor calculating low points. Tree nodes 
are triples, for instance, e(4,3), represents the triple (e , 4,3), where 4 is the depth-first 

number and 3 the low point number of vertex e. 

From the low points for vertices, articulation points can be calculated. By part (ii) of 
Theorem 6.23 -if the depth-first number of v is less than or equal to the low-point of 

all proper descendants w of v then v is an articulation point. But since the low-point 

numbers of descendants of v are always greater than or equal to the low-point for v, 

we can determine if v is an articulation point by checking the low-point numbers of 
its immediate children. 

The function collect coalesces each DFS tree into a biconnected tree, that is, a tree 

where the node elements are biconnected components. At each node the DFS number 
is compared with the low-point number of all the children. If the child's low-point 

number is strictly less than the node's DFS number, then the component involving 

that vertex is not completed. On the other hand, if the node's DFS number is less 

than or equal to the child's low-point number, then that component is completed 
once the node is included. The function bicomps handles the special case of the root. 
Finally, bcc ties all the other functions together. 

Coalescing the tree from Figure 6.6 will produce the following forest containing two 
trees. 

While this algorithm is complex, again it is made up of individual components whose 
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bcc :: Graph -> Forest [Vertex] -- O(V+E) 

bcc g= (concat map bicomps . map (label g dnum)) forest 

where forest dff g 
dnum = preArr (bounds g) forest 

label :: Graph -> Table Int -> Tree Vertex -> Tree (Vertex, Int, Int) 
label g dnum (Node v ts) = Node (v, dnum! v, lv) us 

where us = map (label g dnum) ts 
lv = minimum ([dnum! vl++[ dnum! w I w<-g! v] 

++[ lu I Node (u, dw, lu) xs<-us]) 

bicomps :: Tree (Vertex, Int, Int) -> Forest [Vertex] 
bicomps (Node (v, dv, lv) ts) 

=E Node (v: vs) us 1 (1, Node vs us)<-map collect ts] 

collect :: Tree (Vertex, Int, Int) -> (Int, Tree [Vertex]) 

collect (Node (v, dv, lv) ts) = (lv, Node (v: vs) cs) 
where collected = map collect ts 

vs = concat ws I (1w, Node ws us)<-collected, lw<dv] 

cs = concat if lw<dv then us else [Node (v: ws) U-s] 
ýI (1w, Node ws us)<-collected] 

Figure 6.7 Biconnected components algorithm. 

[a, c, d, hl 
I 

[d, e] 

[e, f, il 

b, g] lilil 

Figure 6.8 The biconnected trees. 
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correctness may (potentially at least) be established independently of the other com- 
ponents. This is quite unlike typical imperative presentations where the bones of the 
recursive DFS procedure are filled out ' with the other, components of the algorithm, 
resulting in a single monolithic procedure. 

A graph is biconnected when the number of biconnected components is 1, hence the 
following function: 

isBcc :: Graph -> Bool O(V+E) 

isBcc g = length (bcc g) I 

6.6.9 Finding bridges 

A bridge is an edge whose deletion disconnects an undirected graph, and an edge is 
a bridge if and only if it does not lie on a cycle. Hence, a bridge is a biconnected 
component with exactly one edge. Therefore, all the bridges can be found in an 
undirected graph by returning all the components with two vertices. 

bridges :: Graph 7>, [[Vertex]] - O(V+E) 

bridges g= filter ((2==). length) (preorderF (bcc g)) 
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Graph algorithms 

In this chapter several traditional graph algorithms are implemented. As much as 
possible purely functional implementations will be given. NVe will look at weighted 
graph problems, and some dynamic graph algorithms. Weighted problems are ones 
where the edges are labelled with some cost. The term dynamic graph algorithm is 

used here to classify the algorithms where it is necessary to change the graph during 

the course of the algorithm. These algorithms require state to be used throughout 
for their efficiency. Although a more functional solution to these problems is not 
ruled out, if one existed it would probably be more verbose than the imperative solu- 
tion. Breadth-first search based algorithms will also be covered in this chapter. The 
breadth-first algorithm itself will be expressed purely functionally using the lazyArray 

combinator. 

7.1 Kruskal's minimum spanning forest algorithm 

Kruskal's (1956) algorithm takes an undirected graph, with the edges labelled with 
costs, and returns a spanning forest of minimum cost. The algorithm is expressed 

quite simply: repeatedly choose a new edge of minimum cost; add this edge to the 

spanning forest if and only if it does not form a cycle. This process is complete when 0 
all edges have been considered. 

NVith the example graph in Figure 7.1, first the edge (d, c) is chosen, then (h, g), 
(f ý c), (s, a), (d, e), (b, e), and (s, d). Next the edge (s, b) is chosen, but this forms 

the cycle b, e, d, s, so (s, b) is rejected. Finally (f, g) is chosen which completes the 
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120 Chapter 7. Graph algorithms 
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Figure 7.1 An undirected labelled graph, and minimum cost spanning tree. 

tree, also shown in Figure 7.1. 

The crux of an efficient implementation requires fast cycle detection. Cycles can be 

detected in almost constant-time by using a good implementation of disjoint sets. 
Initially, each vertex is in a set of its own. When an edge is chosen the two disjoint 

sets that contain the endpoints of the edge are combined, thus graph components are 
being built-up. If two endpoints of a chosen edge are in the same component, then 

there is a cycle. In this case the edge is elided and another one is chosen. The edges 

are best stored in a priority queue, with their cost as the keys. So that at each stage 
in the process the item with minimum key is the next edge considered. 

The disjoint set operations union/find used here have an almost constant running 
time, and were described in Section 4.8. The priority queue operations used here 

were implemented with a binomial queue (Section 3.4) which has an 0 (log E) worst 
case running time for deleteMi, n and insertQ. With these running timesIthis imple-7 

mentation of Kruskal's algorithm should run in O(E log E) time. 

initSet :: LGraph -> ST s (Set s Vertex) 

initSet g= do set <- newArr (limitsL g) Empty; 

applyST UnsSet set) (verticesL g); 

return set 
I 

where insSet set x= insElem set x ExI 

Initialisation of the priority queue runs in O(E log E) time. 
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kruskal :: LGraph -> [Edge] 

kruskal g= runST (do set <- initSet g; 
loop [I set (initQ g); 

loop :: [Edge] -> Set s Vertex -> BinQ -> ST s [Edge] 

loop es set q q==emptyQ = return es 
True = do (pu, nu) <- find set u; 

(pv, nv) <- find set v; 
if nu==nv then loop es set qI 

else do union set pu pv nu; 
loop ((u, v): es) set qI 

where q' = deleteMin q 
(u, v) = entry (findMin q) 

Figure 7.2 Kruskal's minimum spanning forest algorithm. 

initQ :: LGraph -> BinQ 

initQ g= insertMany [ (e, weight g e) I e<-edgesL g] 

7.2 Dijkstra's single-source shortest paths algorithm 

Dijkstra (1959) presented two algorithms on undirected graphs, one of which is to 
find the shortest path between two given vertices. This is extended here to find the 

shortest path from a source vertex to every other vertex in the graph. Each vertex 
is labelled with its distance from the source, initially all vertices are marked with a 
sentinel value larger than any other, except the source which will have a label of 0. 
Then, we repeatedly choose the vertex with minimum distance and update all of its 

neighbours' distances. 

In the example (Figure 7.3), vertex s is the source vertex. Initially, vertex s is chosen 

as it has the smallest distance from itself, and its neighbours a, b, and d have their 
distances updated. Next, a new vertex is chosen with minimum distance, in this case 
the vertex a is chosen, - then its neighbours are updated. A vertex's distance from the 

source is only updated if the new path is of less cost than the old path, that is, the 
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Figure 7.3 An undirected labelled graph, and shortest paths spanning tree. 

new distance w is updated with: 

min (distance w) (distance v+ weight (v, w)) 

for neighbour w of v. 

The implementation of Dijkstra's algorithm (Figure 7-4) is quite traditional. All the 
vertices are placed into a priority queue with their initial distances from the source 
as key. This is appropriate, since the required vertex is retrieved with deleteMinPQ, 
and decreaseKey is used when a vertex's distance is updated. The Maybe datatype 
is used for keys so that the sentinel distances are Nothing and known distances are 
Just distance. The priority queue is initialised with: 

initQ :: LGraph -> Vertex -> BinQ 

initQ gs= insertMany ((s, Just 0): [(v, Nothing) I v<-verticesL g, s/=v]) 

where s is the source vertex. Ordering is defined on labels so that the sentinel Nothing 
is larger than all defined distances: 

instance Ord Label where 

Just a <= Just b= a<=b 
Nothing <= Just b= False 

<= Nothing = True 

An updatable array of distances is maintained throughout the algorithm, which forces 
us to remain inside the monadic code. 
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type Entry = Vertex 

type key = Label 

dijkstra :: LGraph -> Array Vertex Label 
dijkstra gs= runST (do ý dist <- newArr (limitsL g) Nothing; 

writeArr dist s (Just 0); 
loop dist g (initq g s); 
freezeArr dist 

1) 

loop :: MutArr s Vertex Label -> LGraph -> BinQ -> ST s0 
loop dist gq isEmptyPQ q= return () 

otherwise = do us <- mapST getUps (succL g v); 
loop dist g (foldr decreaseKey qI us) 

where (v, dv) = findMinPQ q 
ql = deleteMinPQ q 

getUps w= do dw <- readArr dist w; 
let dw' = min dw (dv + weight g (v, w)) in 

writeArr dist w dw'; 

return (w, dw') 

Figure 7.4 Dijkstra's single-source shortest paths algorithm. 

7.3 Floyd's all shortest paths algorithm 

The all-pairs shortest paths problem is to compute the shortest paths from every 

, 
the problem is reduced to an algorithm vertex to every other vertex. For simplicity 

to find just the lengths of the shortest paths. Our purely functional implementation 
is based on Floyd's (1962) algorithm, which is best described in terms of induction 
(Manber 1989). Vertices must be ordered. A path from v to w is a k-path if the 
highest vertex on the path, excluding v and w is k. 

Inductive Ilypothesis: We know the lengths of the shortest paths between all 

pairs of vertices, considering all paths up to k-paths, for some k<m. 
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In the base case only directed edges are considered. As usual with induction we need 
to work out how to extend a solution for m to a solution for m+1. We now consider 
all k-paths such that k<m+1. So the only new paths we need to consider are 
m-paths. The shortest m-path between x and y, must contain m exactly once. It 

can be calculated by taking the shortest i-path (for some i< m) from X ---ý m and 
adding the shortest j-path (for some j< m) from m -+ y. By induction we already 
know all the shortest paths up to k-paths, hence only two lengths need to be summed. 

allShortPaths :: LGraph -> LGraph 

allShortPaths g= foldr induct g (verticesL g) 

induct :: Vertex -> LGraph -> LGraph 
induct mg= short 

where 
short = mapA (const. update) g 

update (x, y) wgt(x, m)+wgt(m, y)<wgt(x, y) = wgt(x, m)+wgt(m, y) 
otherwise = wgt(x, y) 

where 
wgt (v, w) v<x && w<y = weight short (v, w) 

otherwise = weight g (v, w) 

Figure 7.5 All-pairs shortest-paths problem. 

Figure 7.5 gives a functional implementation of Floyd's algorithm. If there is no edge 
between two vertices then its length is oc, and self-loops have length 0. The functional 

implementation runs in O(V3) time, since all-pairs of vertices are considered for each 
vertex. The difference between this implementation and traditional presentations is 

that a new array is created each time induct is called. This avoids using destructive 

update. The function wgt is need to determine if the length between two vertices 
should come from the new array being constructed, or from the old array. 

7.3.1 Transitive closure 

The transitive closure of a graph g is a graph h such that edge (v, w) is in h if and only 
if v ---+g w. If there is a path between v apd w then there must be a shortest pathý 
Hence the transitiN-e closure can be found by first using the all-pairs shortest paths 
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algorithm, and then creating an edge if there exists a shortest path. The algorithm 
follows: 

transitive-closure :: 
transitive-closure g 

where 
short = allSb 
toEdge False 
toEdge True 

LGraph -> LGraph 

mapA (toEdge. const. isEdge short) short 

ortPaths g 
= Nothing 

= Just 1 

Figure 7.6 Transitive closure. 

The implementation will not have the best performance, since the constant factor 

overhead is quite large. But nonetheless, its asymptotic complexity is O(V'), since 
we are mapping over the graph created by the all-pairs shortest paths algorithm. 

7.4 Vertex colouring 

The vertices of a graph can be coloured by ordering them and then colouring each 
vertex with the first available colour, taking account of the vertices already coloured. 
One way of ordering the vertices - which works quite well in practice, although it 
doesn't necessarily give the best colouring - is to order by vertex degrees. This 
heuristic was first recommended by Brelaz (1979). 

colour :: Graph -> Table Vertex 

colour g col 
where 

col array (bounds g) [ (v, paint v) I v<-vs] 
vertex0rd = array (bounds g) (zip vs 
vs = degree0rd g 
paint v= head crl! w I w<-g! v, vertex0rd! w<vertex0rd! vl) 

Figure 7.7 A graph colouring algorithm. 

Figure 7.7 gives a purely functional implementation of the vertex colouring algorithm. 
(This was written by Simon Peyton Jones after seeing my stateful version. ) Colours 
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are represented by positive integers, which gives the ordering on them. Vertices are 
ordered in descending degree order by degreeord. A table vertex0rd is created by 

mapping vertices in this ordering with successive positive integers. Thus giving a 
total ordering of vertices. The colour table col is created by applying paint to each 
vertex in descending degree order. The function paint takes a vertex-and looks at 
all of its coloured neighbours choosing the smallest colour (i. e. positive integer) that 
doesn't match. 

The algorithm is linear O(V + E) if the function paint is linear. It is linear because 

all graph vertices are considered, and for each one all its edges are considered. In 
the implementation, however, paint runs in 0(n') time, where n is the length of the 
list of neighbour's colours. Nevertheless, if the list of neighbours is sorted, and a list 
difference function is used to take this into account, then paint would run in O(n) 
time. 

7.5 Breadth-first search based algorithms - 

Breadth-first search is a graph traversal strategy that is important for a host of 
algorithms. The dual of breath-first search is depth-first search which was covered 
extensively in Chapter 6. A breadth-first search of a graph fans out exploring the 
adjacent vertices before penetrating deep into the graph. In the example shown in 
Figure 7.8 a breadth-first traversal commences from vertex a, and bold edges highlight 
the path taken. 

Figure 7.8 A directed graph: bold edges give breadth-first traversal. 
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7.5.1 Implementing BFS 

Just like depth-first search, breadth-first search can be expressed as the composition 
of prune and generate. The only difference is that pruning is done in a breadth-first 

order. 

bfs :: Graph -> [Vertex] -> [Tree Vertex] 

bfs g vs = bfsPrune (generates v vs) 

The implementation of breadth-first prune on graphs presented here is purely func- 
tional, and runs in linear time with respect to the size of the graph. It is based on 
two separate functional programming tricks. The first trick is a neat breadth-first 
labelling algorithm described by Jones and Gibbons (1992); and the second is based 

on a neat way of using the function lazyArray (Johnsson 1995) see Section 4.9. First 

we start with a breadth-first pruning algorithm, albeit an inefficient one: 

bfsPrune :: [Tree Vertex] -> [Tree Vertex] 

bfsPrune ts = us where (us, ss) = traverse ts ([I: ss) 

traverse :: [Tree Vertex] -> [[Vertex]] -> ([Tree Vertex], [[Vertex]]) 

traverse 0 ss = 
traverse (Node x ts: us) (s: ss) = if x 'elem' s then (usl, sn) 

else (Node x tsl: usl, sn) 

where (tsl, sl) = traverse ts ss 
(usl, sn) = traverse us ((x: s): sl) 

The cleverness lies in the way the second argument to traverse is demanded. This 

argument holds a list of states, where each state contains a list of the vertices currently 
visited. The first state is empty, and the second state contains the first root node, and 
so on. The subtrees of the first root node depend on later states, which in turn depend 

on later trees, hence the demand driven basis of the algorithm. The inefficiency here 
lies in the use of elem, which we now seek to remove. 

First a table is constructed of breadth-first numbers for vertices. The function bf sord 
does a breadth-first traversal returning a list of vertex/ breadth-first number pairs. 
Th6 subtleness here lies the condition bf sNo! x==n, which will be true if this is the 
first time x has been visited. If x has been visited before, there will already be a 
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vertex/ broad th- first number pair created by bf sOrd, and hence this will be contained 
in the bf sNo array. 

bfsNum :: Bounds -> [Tree Vertex] -> Table Int 

bfsNum bnds ts = bfsNo 

where 
bfsNo :: Table Int 

bfsNo = amap (\xs -> if null xs then 0 else head xs) 
(lazyArray bnds (bfsOrd ts 1)) 

bfsOrd :: [Tree Vertex] -> Int -> E(Vertex, Int)] 

bfsOrd 0n= 

bfsOrd (Node x ts: us) n= (x, n): 

if bfsNo! x==n then bfsOrd (us++ts) (n+l) 

else bfsOrd (us++ts) n 

Note bf sord is not efficient because of repeated appends, but this can be removed by 

standard methods. Now that the table of breadth-first numbers is known, bf sPrune 
can be re-written efficiently. Instead of doing an elem test to check if a vertex has 
been visited before, bf sNo is used to check for previously visited vertices. 'The list 

of states now contains the current breadth-first number. If when visiting x its state 
number is the same as bf sN=! x then x has not been visited before. 

7.5.2 Bfs numbering 

Breadth-first numbers where used in the above implementation of BFS, so the above 
algorithm may be reused to produce a table of BFS numbers. 

bfsNums :: Graph -> [Vertex] -> Table Int -- O(V+E) 

bfsNums g vs = bfsNum (bounds g) (bfs g vs) 

7.5.3 Finding the diameter of a graph 

The diameter of a graph is the longest of all the shortest paths between any two 
vertices. Where a path's length is considered to be the number of edges it contains. 
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bfsPrune :: (Vertex, Vertex) -> [Tree Vertex] -> [Tree Vertex] 
bfsPrune b ts = us 

where 
(us, ns) = traverse ts (1: ns) 
bfsNo = bfsNum b ts 

traverse D ns = (11, ns) 
traverse (Node x ts: us) (n: ns) = if b then (qs, ns') 

else (Node x ps: qs, ns') 
where 

(b, n') = if bfsNo! x==n then (False, n+1) 
else (True, n) 

(ps, ms) = traverse ts ns 
(qs, ns') = traverse us (nl: ms) 

Figure 7.9 Efficient BFS pruning. 

This can be found by creating a breadth-first search from each vertex, which yields a 
shortest paths forest. Then it's simply a matter of finding the longest one, which is 

(lone by converting all tree paths to lists, and finding the longest list. 

diameter :: Graph -> Int -- O(V+E) 

diameter g= depthF [ head (bfs g [vD I v<-vertices 

diameterPath :: Graph -> [Vertex] 

diameterPath g= longestList (concat 

E paths (head (bfs g [vl))] I v<-vertices gl) 

paths :: Tree a -> 

paths (Node x [1) = E[x]] 

paths (Node x ts) = map (x: ) (concat (map paths ts)) 

This version of paths is not the most efficient because of repeated appends caused by 

concat, but again the inefficiency can be removed by standard techniques (Section 
8.2). 
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The auxiliary functions may be defined as follows: 

longestList :: [[all -> [a] 

longestList xss = snd (foldr f (O, [D xss) 

where f xs (n, ys) = if m>n then (m, xs) else (n, ys) 

where m= length xs 

depth :: Tree a -> Int 

depth (Node x ts) =I+ depthF ts 

depthF Forest a -> Int 

depthF =0 
depthF (t: ts) = max (depth t) (depthF ts) 

7.5.4 Shortest path between two vertices 

A similar algorithm to the diameter problem is to find the fewest number of edges 
between two vertices. This mky be done by first constructing the breadth-first tree 
from a given vertex. All the paths are searched for the required vertex, and the paths 

are built up during the traversal. 

path :: Graph -> Vertex -> Vertex [Vertex] 

path gvw= reverse (collect tw 

where t= head (bfs g [v1) 

collect :: Tree Vertex -> Vertex -> (Vertex] 

collect (Node x ts) w ps 

X==W = W: ps 

otherwise = extract (map (\t->Collect tw (x: ps)) ts) 

extract :: Hall [a] 

extract 0 

extract (xs: xss) null xs = extract xss 

otherwise = xS 
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7.5.5 Checking if a graph is bipartite 

An undirected graph is bipartite if its vertices can be split into two sets, so that 

every edge contains one vertex in each set. If a component is bipartite, then in a 
breadth-first traversal, nodes at even numbered levels are in one set, and nodes at 
odd numbered levels are in another set. If the level numbering between two vertices 
in a graph edge is from odd to even or even to odd, then the component is bipartite. 

isBipartite :: Graph -> [Vertex] -> Bool -- O(V+E) 
isBipartite g vs = and [ odd (depth! v - depth! w) I (v, w)<-edges gl 

where 
ts = bfs g vs 
depth = depthArr (bounds g) ts 

depthArr :: Bounds -> Forest Vertex -> Table Int 
depthArr bnds ts = array bnds (preorderF (annotateF I ts)) 

annotateF :: Int -> Forest a -> Forest (a, Int) 

annotateF n ts = map (ann n) ts 

where 
ann n (Node x ts) = Node (x, n) (annotateF (n+l) ts) 

Figure 7.10 Checking if an undirected graph is bipartite. 

7.6 Discussion 

This chapter presented numerous graph algorithms in Haskell with no loss of ef- 
ficiency. Some algorithms seem intrinsically to require state throughout such as: 
1%'. ruskal*s minimum spanning forest algorithm (Section 7.1); and Dijkstra's shortest 

paths algorithm (Section 7.2). These were called dynamic algorithms, because the 

graph changes during the algorithm. The use of state can sometimes be avoided, 

even although some information about parts of the graph changes during the algo- 

rithm. This was demonstrated with algorithms for: graph colouring (Section 7.4); 

and Floyd's all-pairs shortest paths algorithm (Section 7-3). With these algorithms 

parts of the graph are being changed, but in a predictable manner. With the all-pairs 
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shortest paths algorithm edges are repeatedly traversed in a fixed order. The same is 
the case with graph colouring, except vertices were traversed in a fixed order. 

Although our Haskell implementations of Dijkstra's and Kruskal's algorithms had to 
use state, expressiveness was not completely lost. Purely functional data structures 
and higher-order functions were used to good effect. Moreover if a purely function so- 
lution exists for these algorithms, it will probably involve using a state-encapsulating 
combinator. This was used in a purely functional solution of breadth-first search. The 
combinator lazyArray was used to encapsulate the state. The resulting algorithm is 
subtle, and more complex than an imperative implementation. Hence, although it is 
necessary to experiment with these combinators, they currently do not seem to offer 
any benefits over an imperative implementation. 

Again in this chapter code reuse and modularity was demonstrated. The imple- 
mentation of transitive closure (Section 7.3.1) was expressed as a mapping over the 
result of the all-pairs shortest paths algorithm. Furthermore, several algorithms were 
expressed in terms of breadth-first search (Section 7.5). 
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Aspects of complexity, efficiency, 
and style 

Algorithm efficiency has been measured in terms of asymptotic complexity since 
Knuth (1973a). With computers becoming ever faster, the more asymptotic com- 
plexity matters. For example, suppose we have an algorithm that is quadratic in the 

size of its input, that is 0(n'). If computing speed is increased by a factor of 100, 
how much more input can be handled? Only 10 times as much unfortunately, because 
in the time it used to take for n2 it now takes 100n 2= (10n )2. If the algorithm was 
linear in its input, however, then 100 times as much input could be handled on the 
faster machine. 

Commonly the worst-case complexity of an algorithm is given, but this does not al- 
ways give a reasonable correspondence with running time. For example, a component 
of an algorithm may be executed many times, each time with a different cost. Taking 

the sum of the worst case each time can be wildly pessimistic, since some runs may 
have the best-case time. Tarjan (1985) discusses amortised complexity, which is a 

more precise measure. Instead of taking the worst case every time, he amortises the 
different costs. Sequences of operations are considered, rather than looking at each 
operation independently. This is not to be confused with average-case analysis, which 
considers the complexity of an operation with an average input. 

Asymptotic complexity has been expounded upon by Tarjan and others. It has now 

superseded empirical analysis for assessing algorithm efficiency. Asymptotic complex- 
ity abstracts away from constant factors which different language implementations 

may give. This seems the right approach, since it would be difficult to generalise 

133 



134 Chapter 8. Aspects of complexity, efficiency, and style 

how many machine cycles an algorithm would take, especially when each language 

compiler has its own nuances. Nevertheless, constant factors cannot be ignored out- 
right. A price is being payed in constant factors for using a functional language, so 
we should know what that price is. The easiest way to do this is to take empirical 
measurements. 

Hardly any work has been done to study the complexity of lazy functional languages, 
though Sands (1990) in his thesis developed a simple calculus for time analysis of 
strict functional languages; and he later extended this for lazy functional languages 
(Sands 1990). ' The complexity of lazy functional languages is troublesome because 
there isn't a static evaluation order. The complexity of a fragment of code is not 
fixed; it can change depending on its surrounding components. The, complexity of 
the function composition f. g is not the sum of the complexities of f and g. A well 
known example of this phenomenon, due to Bird, is set as an exercise in Bird and 
Wadler (1988, p. 158), and is further explained in Wadler (1988b). Given insertion 

sort, and composing it with the function head, yields a function that returns the 

minimum of a list: 

minimum = head . insertion-sort 

Insertion sort runs in 0(nl) time, but the minimum function that uses it runs in O(n) 

time. This happens as only the head of the list is being demanded; computations 
such as insertion on the tail are never demanded, hence not performed. In a strict 
language this definition of minimum would be 0(n2), since the complexity of a strict 
insertion-sort will not 'change with context. Another more realistic example of 
this behaviour - that doesn't change the complexity, but has a large constant time 
improvement - is path finding (Section 6.6.7). Examples of this kind illustrate that 
lazy languages promote modularity. 

8.1 The complexity of functional algorithms 

Since functional languages are more amenable to formal manipulation a rigorous for- 

mal analysi 
's 

of a functional program should be easier than for an imperative program. 
This is usually the case with strict. functional languages, but non-strict functional lan- 

guages pose numerous problems as described above. Let us first look at an example 
of calculating the complexity of a simple functional program. 
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The usual approach (and the approach taken by Bjerner and Holmstr6m (1989), and 
Sands (1990,1995)) is to derive a step-counting version of a function. The step- 
counting version takes the same arguments as the original function, but returns the 

computation cost; hence they are dubbed cost functions. The cost can be measured 
in any units, the most convenient is the number of non-primitive function calls used 
in the computation. This corresponds with the number of graph reductions made, 
which is a more accurate measure. Not including the cost of primitives like (+) is 

standard, since the goal in calculating cost is to determine an asymptotic time bound, 

and the amount of time per (+) operation does not increase with larger numerical 
inputs. 

Each non-primitive function call will be counted with a cost of 1, and the notation 
((E)) will be used to represent the cost of evaluating E. So, for example, given the 
function definition: 

f x. ". x=e 

the cost of a call to this function is: 

ei + «e { ei lxl, 
..., e� Ix� 1 ýý 

Cost will be expressed in terms of a functional language, which prevents new notation 
bein- introduced. To begin with some cost rules for a strict language will be given. 0 
These rules may be used for a function in a lazy language, if everything is fully 

evaluated. If everything is fully evaluated, the order of evaluation does not change 
the asymptotic time bound. 

Vel'. ... e,, ))) 
((if el then e2 else e3)) 

((let x= el in e2)) 

((case e of 
pat, -+ el 

pat,, -4 en)) 

0 

«ei» +---+ «en» 

«ei» + if ei then «e2» else «e3)ý 
«ei» + «e21e11xl)ý 
«e)ý + ease e of 

pat, -ý 

pat,, ((en)) 

where e's are expressions, c is a constant, x is a variable, and pat are patterns. 
Using these rules, it is straightforward to derive the cost functions for some basic list 
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operations: 

((11)) =0 

ft : x3)) 
=0 

fts 41- ys)) =1 +length xs 
ý(map f xs)) =1+ sum x)) Ix +- xs ]+ length xs 
((reverse xs)) =1+ 2(length xs) 
((concat xss)) =1+2 (length xss) + sum [ length xs I xs (-- xss 

These cost functions assume that their elements have been evaluated, which is not 
the case with lazy evaluation. Nevertheless, this naYve approach is powerful enough 
to calculate the complexity of lazy functions whose results are known to be fully 

evaluated. An example of this is now given, which is the non-linear version of preorder 
on general trees. 

8.1.1 Example: preorder 

The function preorder is a good example because it is a function on trees, and the 
asymptote is not immediately obvious. 

preorder :: Tree a -> [a] 

preorder (Node x ts) = x: concat (map preorder ts) 

To simplify the calculation only trees of the form t' will be considered, where b is the d 

number of branches at each node and d is the depth of the tree. This tree is perfectly 
balanced, and may be considered the average case. The function size will be used, 
which returns the number of nodes in a tree, thus size(tb) = 0-1 

d b-I 
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Case t1b, the singleton tree. 

((preorder tb)) 1+ ((concat (map preorder 
Cost of concat 

2+ ((map preorder 
+ case (map preorder []) of 

11 -4 (([])) 
(x : xS) -ý ft 41- concat xs)) 

2+ ((map preorder + 
Cost of map 

2+1+ 

3 

tb Case d 

tb )) =b tb ((preorder d Definition of preorder, tsd is a list of bd trees 
tS b_1 1+ ftoncat (map preorder d 

Definition of concat 
I 

2+ ((map preorder tsd'-l)) 

b_j) of + case (map preorder tsd 

11 
-* 

C 1)) 

(x : xs) -4 ((x -+ concat xs)) 
b- Cost of map, definition of t8d 

1 

2+ (1 + b((preorder tdb-1)) + b) 
+ (([Xl* 

,, *7 
Xsize 

(t'il_ 1) 
] -+ concat [ xsl , ... i XSb-1 

Cost of 4+-, and concat 
tb 3+ b((preorder d-1)) +b 

+ (1 + size (tb_ 
1)) + (I + 2(b - 1) + (b - 1)size (tb- 

ddI 
(tb) By size d 

tb- 

b-1 
V-1 3+ b((preorder d 1)) + 3b +bb1 

This is a recurrence'relation which can be solved by repeated substitution to yield: 

((preorder tb (d + 6)bd d-1 
d+ (d + 5)b ++ 7b +3 
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This gives the asymptote 0(dbd) or O(n log n) where n is the size of the tree. There- 
fore, this is a slow algorithm for preorder, since O(n) is possible. The reason for 
this behaviour is apparent in the proof, and is known as the repeated appends phe- 
nomenon. The recursive call to preorder causes concats to be embedded inside each 
other, hence the same lists are traversed several times. 

Although the algorithm is slow, it is clear, good for equational reasoning, and close to 
a specification of preorder. In an ideal world this inefficient version would be defined 

and the compiler would be left to transform it into an efficient version. The next 
section surnmarises some of the standard techniques for transforming examples like 

preorder into efficient functions. 

8.2 Standard optimisation techniques 

Occasionally throughout the thesis an inefficient function has been given with a com- 
ment that, by using standard transformation techniques, the inefficiency may be re- 
moved. Here the most common techniques are surnmarised (Table 8-1). With func- 
tional language compilers, it's a realistic proposition that an algorithm's complexity 
may be improved by an automatic transformation. The last two techniques docu- 

mented in the table are automatic. The foldr/build transformation has been imple- 

mented in the Glasgow Haskell compiler, and this has the potential, to transform the 
above preorder example into the linear-time version. 

8.3 The complexity of stateful algorithms 

Commands on the state are just function calls, but ultimately they will cause an 
imperative action. These hidden actions have a cost, so assumptions need to be made 
about the imperative actions that are being used. The monadic combinators return 
and (; ) are purely functional, so we can be precise about their cost. With the other 
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Teclinique and author Description 
Tupling This is applied to functions that have multiple calls 
Burstall and Darlington to themselves with different arguments. These are 
(1977) combined to one call and the function returns a tuple 

of the required results. 
Fold/unfold This is a system of rules for transforming recursive 
Burstall and Darlington equations, and is the basis for most other techniques. 
(1977) Function calls are unfolded to their definitions, laws 

are applied, and then definitions are folded back to 
function calls. 

Novel representation Lists are represented by functions, allowing list ap- 
Hughes (1986) pend to be performed in 0(1) time. 
Accumulating parame- An extra parameter is added to recursive functions, 
ters which serves to accumulate an intermediate result. 
Bird (1984a) 
Deforestation An automatic algorithm, which fuses functions to- 
NVadler (1988a) gether, removing intermediate data structures. 
foldr/build An automatic algorithm for the removal of inter- 
Gill et al. (1993) mediate data structures. Functions need to be re- 

expressed in terms of special combinators. Then rules 
for reducing these combinators are applied. 

TAble 8.1 Summary of some standard transformation techniques, for improving the 
efficiency of functional programs. 

operations, however, some reasonable assumptions need to be made: 

«return x» 1+ «X ýý 
«m; n» 2+ «mý) + «n» 
«runST m» 2+ «m» 
«a <-- newArr (1, u) v» 2+ rangeSize (1, u) 
«v <-- readArr a x» 2 +«x» 
«writeArr ax v» 2+ «x» + «v» 

We assume that 1, u, and a are fully evaluated. Again, this approach is only useful if 
functions are being fully evaluated, but this is still of use for many examples. 



140 Chapter 8. Aspects of complexity, efficiency, and style 

8.3.1 Example: binsort 

This example is taken from Section 4.7 and is the imperative functional version of 
binsort. First consider the function insert: 

insert :: Ix i => MutArr si [a] -> (a -> i) -> [a] -> ST s 
insert bin key U= return () 

insert bin key (x: xs) = do let i= key x in 

ys <- readArr bin i; 

writeArr bin i (x: ys) 

Case [ ]. 

((insert bin key 1+ ((return 

2 

Case (x : xs). Assume that the list xs is finite and well-defined. 

((insert bin key (x xs))) 
1+ ((do 

let i key x in 

ys ý-- readArr bin i; 

writeArr bin i (x : ys); 
insert bin xs 

D) 
Assume that key x will be demanded 

I+ ((key x)) +2 
+ ((ys <-- readArr bin i)) +2 
+ ((writeArr bin i (x : ys))) +2 
+ ((insert bin key xs)) 

1+ ((key x)) +2 
+2+ ((i)) +2 
+2 ((i)) + ((x : ys)) +2 
+ ((insert bin key xs)) 

11 + ((key x)) + ((insert bin key xs)) 
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Hence, 

((insert bin key xs)) =2+ 11 (length xs) + sum [ (ýkey x)) Ix +- xs ] 

Deriving the cost of extract is similar to the above calculation, and reveals the cost 
function: 

((extract bin is)) 2+ 8(length xs) 
+sum [length xs i +- is, xs +- immutableBin! i 

where immutableBin = runST (do freezeArr bin }) 

Now this cost is used together with the cost of insert for deriving the cost of binsort, 

which has the definition: 

binsort :: Ix i => (i, i) -> (a i) -> [a] -> [a] 

binsort bnds key xs = runST (do bin <- newArr U, u) 0; 

insert bin key xs; 

extract bin (range bnds) 

1) 

The calculation proceeds as follows. 

((binsort bnds key xs)) 
1+((dof 

bin k-- newArr bnds 
insert bin key xs; 
extract bin (range bnds) 

= 1+2 

" ((bin +- newArr bnds [1)) +2 
" ((insert bin key xs)) +2 
" ((extract bin (range bnds))) 
+3+ rangeSize bnds + 
"2+ 11 (length xs) + sum ((key x)) Ix 4-- xs 
" sum [ length xs I xs ý-- readArr bin i, i 4-- range bnds 
" ((range bnds)) 

14 + 9(rangeSize bnds) + 12(length xs) + sum [ ((key x)) Ix +- xs 
+ ((range bnds)) 
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Assuming that sum [ ((key x)) Ix +- xs ] has asymptote 0 (length xS) and ((range bnds)) 
has asymptote 0(rangeSize bnds). Then, 

((binsort bnds key xs)) 

has asymptote 0 (length xs + rangeSize bnds). 

8.4 The complexity of lazy functions 

In this section the cost of a lazy example is calculated to illustrate the difficulties 
involved. This will be done in a fashion similar to Bjerner and Holmstr6m (1989). 
The difference is in notation, and some details that they would include, will be left 
out here. The notation (()) for cost is as before, except this time it is augmented with 
two other arguments. - The first is a variable environment, and the second describes 
how much of the expression inside (()) is demanded. So for example, 

((inap f [2,7,6j)) (f = (*) 3) (o : 21 : 0) 

describes the cost of evaluating map f [2,7,6] where f is defined as (*)3, and only 
the second element of the resulting list is demanded. The most modest demand is 0 

which describes I and says that no output at all should be produced. An unknown 
demand will be denoted with J. 

The chosen example comes from the graph colouring algorithm (Section 7.4) the 
function paint was used to determine an unused colour for the latest vertex, the 
definition is changed slightly here to a more general function: 

paint xs = head (El.. ]\\xs) 

this function is lazy by virtue of using the infinite list II- -I - The function M) is 
defined in the Haskell Prelude as: 

M) : Eq a => [a] -> [a] -> [a] 

xs \\ ys = foldl del xs ys 

where del [I = 11 

del (x: xs) yI x==y = del xs y 
I otherwise = x: del xs 
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The- calculation commences as follows, where v is the fully evaluated value of the 
required result. 

((paint xs)) () (v) 

2+ (([l.. ] xs)) (v 
I Let xs 111, 

- -, 
Xn] 

3+ ((foldl del [1.. ] [xl,..., Xnj)) () (V : 0) 

= 3+n+((del (del (... (del [1.. ] xj) ... )) Xn)) () (V : 0) 

= 3+n 
+((del ys, x,, )) (ys, = del ys2 x,, -, 

) (v : 0) 

+((del ys2 x,, -, 
)) (ys2 = del YS3 Xn-2) J2 

+((del YS3 Xn-2)) (ys3 = del YS4 XnA 63 

+((del [i.. ] xi)) () J,, 

Now 'we need to'calculate the cost of del [1.. ] x. when a list of length n is demanded .L 
from it: 

((del [1.. ] X)) () (V1 : V2 : ... : V" : 0) 

1+ ((if x == 1 then [2.. ] else x: del [2.. ] x)) () (vi V" 
Taking the worst-case, that is x>nI 

1+ ((1 : del [2.. ] x)) () (vj : v2 : ... : V" : 0) 

=1+n+ ((1 :2:... : n: del [n+l.. ] x)) () (vj : v2: ... : V" : 0) 

= 1+n 

Going back to our calculation of paint, the difficulty now is calculating the Js.. The 
details are left out here, since they require a demand analysis (Bjerner and Holmstr6m 

1989), but an informal justification is given. Since we require a list with the head 
defined from del ys, x, then ys, should be a list with at least the first two elements 
defined. because one of them may match and be deleted. This requires YS2 having at 
least three elements defined, and YS3 at least four elements, and so on until del [L. ) x, 
requires at least the first n elements to be defined. 
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Continuing, 

= 3+n 
+((del ys, x,, )) (Ysi = del Y82 Xn-1) (V : 0) 

(V2 V2 +((del ys2 xn-, )ý (ys2 = del YS3 Xn-2) 12 

+ý(del Y83 Xn-2)) (YS3 
= del ys4 Xn-3) (V3 V3 3 

12 V3 

+((del [1.. ] xi)) () (v, ' : v2' V", n 

By the above cost of del [1.. ] x 
3+ n+2+3+ + (n+ 1) 
3+n+ n(n+l) 

2 
1n2+ -*3 n+3 2 

Giving the asymptote O(n 2) for paint. 

8.5 Empirical measurements of some functional al- 
gorithms 

There are two main reasons to carrv out empirical measurements here: (i) to demon- 
strate that some algorithms have the expected complexity; and (ii) to discover what 
the constant factor is between our functional algorithms in Haskell and imperative 
algorithms in a conventional language. Although analytical complexity has super- 
seded empirical measurements; complexity analysis Of functional programs is still a 
research topic. so some hard evidence is needed. Constant factors are also widely 
regarded Nvith disdain. a certain magnitude of time difference is con- 
sidered unacceptable. Clearly if Haskell programs run in days, whereas C runs in 
seconds, this is unacceptable. Everybody has their own opinion as to what is an ac- 
ceptable speed difference between functional and imperative. No judgement is made 
here, but the question is answered by comparing a functional algorithm in Haskell 
running on the Glasgow Haskell compiler with the same algorithm in C running on 
the Gnu C compiler. 
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8.5.1 Evidence that we have the right asymptotic complexity 

Some care is required when taking measurements. All the measurements reported here 

where done on a large machine, which was not running any other major processes. 
The amount of swapping, caching etc. was low. Each measurement is the mean user 
time over three runs. The input data was generated by a random graph generator 
not unlike that presented in Section 5.4.3. The graph was placed in a file and read 
in, so the overheads of graph generation wasn't included. 

The first measurements were taken on the strongly connected components algorithm 
(Section 6.6.4) which should run in O(V + E) time. To test for linearity timings were 
taken over many inputs (Figure 8.1). 
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Figure 8.1 Measurements of the Haskell strongly connected components algorithm. 

This graph shows that the timings are not linear. If they were linear the diagram 

would show a plane. At first this is surprising, but what is probably happening is 

that when'the input size becomes larger more of the heap is being used, and so more 

garbage collection is taking place. This claim can be justified by removing the time 
for garbage collection from the timings (Figure 8.2). 

This gI raph (Figure 8.2) shows a plane demonstrating that the strongly connected 

components algorithm runs in O(V + E) time. The next measurements were taken 

on the same algorithm to determine its space usage, which should be 0(V+ E) space. 
This was done by looking at how many bytes were allocated in the heap for many 
input data sets. The results shown in Figure 8.3, show a plane, giving strong evidence 
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Figure 8.2 Measurements of the Haskell strongly connected components algorithm 
without garbage collection time. 

that the strongly connected components algorithm runs in linear space. 
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Figure 8.3 Measurements of the space usage used by the Haskell version of Ahe 
strongly connected components algorithm. 

Finally measurements were taken on the strongly connected components algorithm 
OfTarjan (1972) over the same input sets. This algorithm is entirely different from 
the Haskell one used here, so it is unfair to use it as a comparison between C and 
Haskell. Nevertheless, the graph (Figure 8.4) is given as a control, and as expected 
is a plane. 
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Figure 8.4 Measurements of the C version of the stronglv connected components 
algorithm. 

8.5.2 The constant factor between Haskell and C 

There is no precise figure that can be said to be the constant factor between Haskell 

and C. There will be a different factor for different algorithms, and a different fac- 

tor for the same algorithm running on different data. Hence, our goal is merely to 
discover the difference in terms of order of magnitude. The biconnected components 
algorithm was used as the example, since the Haskell implementation is a variation the 
imperative implementation by Hopcroft and Tarjan (1973). The imperative version 
of the algorithm was implemented in C, keeping as close as possible to the original 
version. Measurements for these Haskell and C implementations of the biconnected 

components algorithm are presented in Table 8.2. 

Hopcroft and Tarjan (1973) wrote their biconnected components algorithm some 
twenty years ago. It only seems fair to compare the latest imperative implemen- 

tation of this algorithm, with our ffiskell implementation. GraphBase (Knuth 1993) 
has a highly efficient implementation of the algorithm, and also gives data sets which 
can be used as benchmarks. The examples used here were taken from classic lit- 

erature. where characters are vertices and encounters between characters are edges. 
The biconnected components algorithm applied to this data separates characters into 

acquaintance groups, so that if someone is removed from a group, every remaining 
person will know at least one other person in the group. 
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1 1 Time (seconds) IC Haskell Differ 
Sparse graph Total 2.0 6.76 x3 
(5000OV, 5000E) Algorithm 0.24 1.4 x6 
ý edium graph Total 0.9 8.1 X9 
(200OV, 10000E) Algorithm 0.24 3.7 x 15 
Dense graph Total , 9.7 25.12 x3 
(50OV, 124750E) Algorithm 2.54 4.4 x2 
GraphBase Total 

' 
0.8 46.39 x58 

benchmark Algorithm 0.09 5.98 x66 

Table 8.2 Comparisons of the biconnected components algorithm. 

These timings were done on a. Sun SPARCstation-10 when no one else was using 
it. Each measurement is the mean of three runs, taking the user time. The Haskell 
binaries were given 80NI of heap and a IM stack. Garbage collection time was not 
included in these measurement, because of the irregularities it may cause (Section 
8.5). To be fair we should perhaps add 10% (the average'garbage collection time) 
to the Haskell timings. There were five GraphBase examples, and the C and Haskell 
ran on all the benchmarks 20 times. Profiling was used with Haskell to find out the 
percentage. of time spent in just the algorithm. Then a separate run was done without 
profiling, so that the overheads of profiling do not have a bearing on the results. To 
measure C time stamps; were placed in the code. 

Table 8.2 giNes the results of our measurements. Of the four programs considered, 
the GraphBase MVEB code is the only one that has been optimised. Perhaps it is 
not surprising then that it runs 60 times faster than our Haskell code. There is plenty 
of scope for optimisation of the Haskell code. For instance, code fusion to transform 
the algorithm into a single pass algorithm. 

8.6 The style factor between functional and im- 

peraýive 

A case in point is the following algorithm presented in Figure 8.5 which calculates 
biconnected components of a graph. (The algorithm is taken from Tarian (1972)). 
The syntax has been updated so that it is more like C. The algorithm calculates two 
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pieces of information for each vertex, namely LOWPT and NUMBER. Stacking operations 
are performed as well as recording the components. All of this is carried out during 

the course of a graph traversal. So it isn't surprising that the algorithm is non-trivial 
to follow. 

biconnect(v, u) 

NUMBERM ++dfs-number; 
LOWPT(v) NUMBER(v); 
for w in the adjacency list of vf 

if ONUMBERM) f 

push (v, w) onto edge stack 
biconnect(w, v); 
LOWPT(v) = min(LOWPT(v), LOWPT(w)); 
if (LOWPT(w) >= NUMBER(v)) f- 

start of new component with articulation point v; 
pop (ul, u2) from edge stack; 
while (NUMBER(ul) >= NUMBERM) f 

add (ul, u2) to current component; 
pop (ul, u2) from edge stack; 

I 

add (v, w) to current component; 
I 

I 

else if ((NUMBER(w) < NUMBERM) && (w! =u)) 

push (v, w) onto edge stack; 
LOWPT(v) = min(LOWPT(v), NUMBER(w)); 

I 

} 
} 

Figure 8.5 Tarjan's biconnected components algorithm. 

The functional version of the biconnected components algorithm (Figure 8.6) is es- 
sentially the same as the imperative algorithm (Figure 8.5). The difference is that 

the functional version separates parts of the algorithm into different phases. First the 

graph is decomposed into a depth-first spanning forest; from this a depth-first num- 
ber table is calculated for every vertex; then the spanning forest is traversed using 
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the table of depth-first numbers to calculate the low point numbers for each vertex. 
The spanning forest is annotated with these two pieces of information (depth-first 

number and low point number). This annotated tree is then traversed to return the 
biconnected components. 

bcc :: Graph -> Forest [Vertex] 
bcc g= (concat map bicomps . map (label g dnum)) forest 

where forest dff g 
dnum = preArr (bounds g) forest 

label :: Graph -> Table Int -> Tree Vertex -> Tree (Vertex, Int, Int) 
label g dnum (Node v ts) = Node (v, dnum! v, lv) us 

where us = map (label g dnum) ts 
lv = minimum (Ednum! vl++[ dnum! w I w<-g! v] 

++[ lu I Node (u, dw, lu) xs<-us]) 

bicomps :: Tree (Vertex, Int, Int) -> Forest [Vertex] 

bicomps (Node (v, dv, lv) ts) 

=E Node (v: vs) us 1 (1, Node vs usWmap collect ts] 

collect :: Tree (Vertex, int, Int) -> (Int, Tree [Vertex]) 

collect (Node (v, dv, lv) ts) = (lv, Node (v: vs) cs) 

where collected = map collect ts 
vs = concat ws I (1w, Node ws us)<-collected, lw<dvl 

cs = concat if lw<dv then us else [Node (v: ws) us] 
I (1w, Node ws us)<-Collected] 

Figure 8.6 Tarjan's biconnected components algorithm (functional version). 

The fundamental difference between the two versions of biconnected components 
(Figure 8.5 and Figure 8.6) is the modularity of the functional version. In this ex- 
ample there is no reason why the imperative version couldn't be written in this way. 
Functional languages encourage this style of programming with data transformations, 
whereas conventional languages make it tedious to introduce new data structures. 
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8.7 Comparing lazy with strict 

It is a reasonable question to ask, how useful is laziness? Could all the algorithms pre- 
sented be expressed in Standard ML or a similar non-lazy functional language? Most 

of the algorithms presented do not require laziness; however, there where occasions 
when it proved to be extremely useful. For example, the prune/generate paradigm 
(Section 6.3) was a useful way of breaking depth-first search into two distinct phases, 
which was also helpful for proof. The algorithm to detect paths (Section 6.6.7), was 
expressed with a potential full graph traversal, but with laziness would stop as soon 
as the required result was found. The implementation of path compression in up-trees 
(Section 4.8) was expressed as a one pass algorithm using a cyclic combinator. In 

summary the two places where laziness proved useful was in modularisation (Hughes 
(1989) makes this case well) and cyclic programming (Bird 1984b). 

There is perhaps a side issue as well, that with strict languages it is common practice 
to resort to using side effects in places where efficiency is required. Lazy functional 
languages, on the other hand, cannot include side effects so easily because it would be 

unclear when they would be evaluated. In a sense lazy functional language designers 

were driven to the monadic model, which allows actions on the state whilst retaining 
referential transparency. 

In a strict language lazy functions can be expressed by using special data structures 
(Reade 1989, Appendix 3). This is clumsy and in practice discourages the use of 
laziness except where it is essential. Most strict languages are not purely functional 
having side effects, this is useful for debugging purposes, but makes reasoning more 
difficult. Having a fixed evaluation order, it is easier to analyse formally the com- 
plexity of functions. More often than not, strict language compilers are more efficient 
than their lazy counterparts. 

8.8 Discussion 

In this chapter Haskell has been compared with more conventional lang, iages. The 

aspect of efficiency is always brought into a discussion of this kind. This chapter 

showed that algorithms can be written in Haskell with no loss of asymptotic com- 

plexity, however, there is still an order of magnitude time difference between Haskell 



152 Chapter 8. Aspects of complexity, efficiency, and style 

and C. However, the cost of developing and maintaining a correct implementation is 

often smaller with Haskell than with C. This claim has been justified by an official 
experiment by the US Navy (Hudak and Jones 1994). Several imperative languages 
including Ada, C++, Awk, and the function language Haskell were used to p;: oto- 
type a Naval Surface Warfare Center. The results showed that the Haskell prototype 
took significantly less time to develop, and was considerably more concise and easier 
to understand than the corresponding prototypes written in imperative languages. 
This was again demonstrated in this chapter with the biconnected components algo- 
rithm. The Haskell algorithm is more modular, making the implementation easier to 
understand. 

This chapter also looked at the problems of calculating the complexity of functional 

programs. It was found that with strict programs, it is relatively straightforward 
to derive a cost estimate for a program. Frequently, although working in a lazy 
language, functions do not require lazy evaluation, and the order of evaluation has no 
effect on the function's time complexity. In these cases, we are at liberty to analyse 
the complexity using cost rules for a strict Ian uage. This was demonstrated by 09 
showing the complexity of a purely functional example (Section 8.1.1), and then of 
a stateful algorithm (Section 8.3.1). The last example of deriving cost functions for 

a program was one which required laziness for its termination (Section 8.4). The 

approach taken here was based on the work by Bjerner and Holmstr6m (1989). The 

main difference was that the details were left out (which were the difficult part) of 
deriving the parts of an expression that are demanded to return the result. This 

requires a sophisticated form of strictness analysis, and is almost akin to computing 
the program. This cost of lazy programs, is therefore, still an open problem. Although 

solutions exist (Sands 1995), they become cumbersome and tedious for working out 
simple examples. 

So far little has been said here about the space behaviour of functional programs, 
apart from demonstrating that the linear-time strongly connected components algo- 
rithm runs in a linear amount of space (Section 8.5.1). The space behaviour of lazy 
functional programs is difficult to predict; hence complex to calculate. The space 
complexity is the residency of the computation, which is the maximum amount of 
live data in the heap at any point during a computation. 



/--I L 
%-,. L. Lapter 

Conclusion 

This chapter summarises the previous chapters, and gives a discussion of future re- 
search. 

9.1 Original objective 

The original objective of this dissertation was to determine the advantages of express- 
ing graph algorithms in a functional language. Graph algorithms have been notori- 

ously difficult, and have not been given a good treatment in functional languages, 

predominantly because they do not have an inductive structure. Since functional lan- 

guages are renowned for expressing other mathematical structures elegantly, it has 
been a failing that graph algorithms have not been fully explored. My objective was 
therefore to apply all the benefits that functional languages provide to the algorithms 
of graph theory. 

With the advent of monads, all the previously intractable problems for purely func- 

tional languages became solvable. With monads purely functional languages could 
have mutable data structures. For example, arrays that can be updated in 0(1) time. 
This is a young but powerful tool, with undesirable as well as desirable effects. One 

undesirable effect is that the programmer is at liberty to express all his programs 
in this style. The resulting code can be more unwieldy, and just as troublesome as 

conventional imperative code. Therefore, it was necessary to study algorithms in this 

style, to determine if the usual expressiveness remained, or was totally lost. 
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9.2 Appraisal 

In Chapter 1, the difficulties of implementing graph algorithms efficiently in a purely 
functional language were described. This was done by comparing and contrasting 
an algorithm for connected components in three styles: (i) with conventional pseudo- 
code; (ii) with inefficient functional code; and (iii) with efficient imperative functional 

code. The different presentations served to illustrate some of the advantages of func- 
tional languages, such as: expressiveness, code reuse, modularisation, and provability. 
It was explained that one of the main reasons for these advantages, namely not hav-, 
ing side effects, was the very thing that made it difficult in the past to express graph 
algorithms efficiently. 

After this, in Chapter 2, related work was reviewed. There is an abundance of work on 
the design of graph algorithms. Perhaps unsurprisingly, there is no universal approach 
that is good for all algorithms. Approaches that seem destined to win through are: 
GraphBase, Knuth's literate style of expressing graph algorithms in a conventional 
language; and languages that provide good settings for dealing with mathematics, 
like Mathernatica. Algebraic approaches are scarce, and so far have not offered new 
insights to graph algorithms, although they do provide a framework for demonstrating 

correctness. Previous functional language approaches are also discussed, all of which 
lose out in asymptotic complexity as compared to a conventional implementation. 

Many claims are made of functional languages, and often they are not substantiated. 
One is that they provide high-level abstraction -powers. This claim is justified in 
Chapter 3, by demonstrating the equivalence of two algorithms: treesort and func- 
tional quicksort. These two algorithms, at first, seem strikingly unalike. Since the 
algorithm for treesort has the functionality: List -ý Tree -+ List, it is natural to con- 
sider if the functionality can be optimised to: List -+ List. This is done quite simply 
with standard program transformations. In a conventional language one would not 
consider the optimisation in the first place, let alone do the program transformations. 
The expressive powers are further justified by giving a functional implementation 

of binomial queues. Priority queues are used by several graph algorithms, so it is 
important to have an efficient implementation. They were shown to have a clear 
implementation, and their formal verification was shown to be possible in all detail. 

After motivating the need for state, in Chapter 4, the monadic model was introduced. 
With examples it was demonstrated how dynamic data structures can be expressed. 
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Some examples were shown only for illustrative purposes, but others like union/find 
and binsort seem intrinsically to require state for an efficient implementation. Com- 
binators on the state were provided as an aid to expressing stateful algorithms, thus 

providing some, benefit of expressing algorithms in a stateful way. 

Different models for graphs were discussed in Chapter 5. Several were considered, but 

the ones chosen were the traditional adjacency list and adjacency matrix. These were 
chosen because of their efficiency, and because they could be expressed with Haskell 
immutable arrays. Adjacency matrices were used for expressing weighted graphs. 
Several examples of simple graph functions were presented, giving testimony to how 

concise and expressive the language can be. 

In Chapter 6, algorithms that use depth-first search were studied in detail. Depth-first 

search turned out to be a good example of state being encapsulated - the function 

dff had type Graph -> Forest, where Graph and Forest are both purely functional 

values - although state is used within the definition of df f. Moreover, this example 
epitomised the concepts of code reuse, modularity, clarity of expression, laziness, and 
straightforwardness of correctness proofs. The value returned by df f is a depth-first 

spanning forest, and graph algorithms were expressed in terms of this. Therefore, 

the df f component was repeatedly reused. The algorithms were expressed clearly, 
typically as one or two line functions, as the composition of simpler components. 
With this modularisation correctness proofs were shown in all detail. 

Several traditional graph algorithms were given in Chapter 7, including dynamic 

graph 'algorithms. These were graph algorithms where an encapsulation of state is 

not possible. State has to be threaded throughout the entire algorithm. It was worth 
looking at these to see if anything at all could be gained by expressing them in an im- 

perative functional style. There were two important outcomes from looking at these 

algorithms: first, that any conventional graph algorithm can be expressed without 
loss of efficiency; and second, that the imperative functional approach benefits from 

using stateful combinators, so in some ways it is superior to a conventional imperative 

approach. This chapter also looked at algorithms that can be implemented purely 
functionally. With examples such as graph colouring, all-pairs shortest paths, and 
transitive closure, reasonable solutions were found. With breadth-first search devious 

means had to be used, namely lazyArray, to achieve a purely functional solution. 
Although the solution is purely functional, it is more difficult to understand than an 
imperative solution. Hence, we should not be happy with a purely functional imple- 
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mentation that has the best complexity, if it is too obscure to be easily understood. 
The implementation should be as clear to understand as possible. 

Whenever algorithms of any sort are studied, their efficiency should always be con- 
sidered. This was explored for functional and stateful algorithms in Chapter 8. All 

aspects of efficiency were explored, including calculating the complexity of functional 

and stateful algorithms, looking at empirical measurements of the Haskell imple- 

mentations compared with C, and looking at space usage. Because of laziness, an 
analytical measurement of the time and space behaviour of lazy programs is much 
harder than with strict programs. This point was illustrated by calculating the time 

complexity of a lazy program. Empirical measurements were made, and the two main 
results were: (i) evidence that the time and space of a Haskell graph algorithm were as 
expected; and (ii) that for one algorithm, an order of magnitude time difference was 
shown between Haskell and C. This last result was not ideal, but some may consider 
it an acceptable price to pay for the benefits that Haskell provides over languages like 
C. 

The benefits of using a functional language have been substantiated throughout the 
thesis. In Chapter 8a comparison was made of a functional implementation, with an 
imperative implementation. The size of the two programs is about the same, and they 

are both based on the same algorit 
' 
hm. The main difference between the two is that 

the Haskell version is modular, which is a style promoted by the nature of functional 
languages. This makes the algorithms far easier to understand, often providing more 
insight. No claim is made that Haskell should replace all imperative languages, but 

although less efficient, there are several other benefits. A language like Haskell is 
therefore ideal for prototyping, where getting a good understanding of the problem is 

essential. This may then be transcribed into a more efficient language if performance 
is critical. 

9.3 Further work 

This section summarises some of the possibilities for further work. 

There were many aspects that were not considered and that would make the work 
more complete. Parallelism was not considered at all. Purely functional languages 
have a good potential for parallelism, since programs are not evaluated in a fixed 
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sequential order. However, the monadic model for including actions on the state 
sequentialises actions, and so prevents parallelism. This tension between parallelism 
and the monadic model needs to be explored. 

Another topic of further work is to look at larger problems, and NP-complete prob- 
lems, to see if the same ideas are applicable. 

Our comparison between lazy and strict languages was very brief. Empirical mea- 
surements could be taken to discover the performance cost for laziness. Also, a more 
extensive comparison between the two evaluation models needs to be made. Several 

people in the Standard ML community believe that lazy languages have virtually no 
benefits over strict languages. Throughout the thesis, advantages afforded by lazy 
languages have been discussed full but there was only a cursory mention of the 0 Y, 
maiiýy benefits of strict languages. 

Another topic of research is to try and remove all actions on state from our programs. 
This is often achieved by using a special combinator to encapsulate state. This was 
demonstrated in Section 7.5 with an algorithm for breadth-first search. Solutions of 
this kind are often more complex, than an imperative solution. Work therefore needs 
to be done to explore such combinators in the context of reasoning and programming. 



BLANK IN 

ORIGINAL 



Bibliography 

Adams, S. (1993), Efficient sets: a balancing act, Journal of Functional Programming 
3(4), 553-561. (p 46) 

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1983), Data Structures and Algorithms, 
Addison-Wesley. (pp. 21,29,45,102) 

Backhouse, R. C. (1989), An exploration of the Bird-Meertens formalism, in Interna- 
tional Summer School on Constructive Algorithmics. (p 14) 

Backhouse, R. C. and Carr6, B. A. (1975), Regular algebra applied to path- 
finding problems, Journal of the Institute of Mathematics and its Applications 
15(2), 161-186. (p 18) 

Backus, J. (1978), Can programming be liberated from the von Neumann style? 
A functional style and its algebra of programs, Communications of the ACM 
21(8), 613-641. (pp. 1,8) 

Barth, P. S., Nikhil, R. S. and Arvind (1991), XI-structures: Extending a paral- 
lel, non-strict, functional language 'With state, in J. Hughes, ed., Conference 
on Functional Programming Languages and Computer Architecture, LNCS 523, 
Springer-Verlag, Cambridge, 1XIassachusetts, pp. 538-568. (pp. 19,67,70) 

Bauderon, NI. and Courcelle, B. (1986), An algebraic formalism for graphs, in 
P. Franchi-Zannettacci, ed., 11'th Colloquiurn on Trees in Algebra and Pro- 
gramming, LNCS 214, Springer-Verlag, Nice, France. (p 16) 

Bird, R. S. (1984a), The promotion and accumulation strategies in transforma- 
tional programming, ACM Transactions on Programming Languages and Sys- 
tems 6(4), 487-504. See also Bird (1985). (pp. 14,139) 

Bird, R. S. (1984b), Using circular programs to eliminate multiple traversals of data, 
Acta Informatica 21(3), 239-250. (pp. 35,151) 

Bird, R. S. (1985), Addendum to the "The promotion and accumulation strategies in 
transformational programming", A CM Transactions on Programming Languages 
and Systems 7(3), 490-492. - (p 159) 

159 



160 Bibliography 

Bird, R. S. (1987), An introduction to the theory of lists, in M. Broy, ed., Logic of 
Programming and Calculi of Discrete Design, Springer-Verlag, pp. 3-42. Also 
available as Technical Monograph PRG-56, Oxford University. (p 14) 

Bird, R. S. (1988), Lectures on constructive functional programming, in M. Broy, ed., 
Constructive Methods in Computer Science, Vol. 55, Springer-Verlag, pp. 151- 
218. Also available as Technical Monograph PRG-69, Oxford University. - (p' f 4) 

Bird, R. and Wadler, P. (1988), Introduction to Functional Programming, Prentice 
Hall. (pp. 21,134) 

Bjerner, B. and Holmstr6m, S. (1989), A compositional approach to time analysis of 
first-order lazy functional programs, in Functional Programming Languages and 
Computer Architecture, ACM, London, pp. 157-165. (pp. 21,135,142,143, 
152) 

Brelaz, D. (1979), New methods to color the vertices of a graph, Communications of 
the A CM 22,251-256. (p 125) 

Brodal, G. S. and Okasaki, C. (1995), Optimal purely functional priority queues. 
Unpublished manuscript. (pp. 45,46) 

Brown, i. ýI. R. (1978), Implementation and analysis of binomial queue algorithms, 
SIAM Journal of Computing 7(3), 298-319. (pp. 31,34) 

Burstall, R. NI. and Darlington, J. (1977), A transformation system for developing 
recursive programs, Journal of the A CM 24(l), 44-67. (pp. 25,101,139) 

Burton, F. W. (1982), An efficient functional implementation of FIFO queues, Infor- 

,. mation Processing Letters 14(5), 205-206. (p 46) 

Burton, F. W. and Yang, H. -K. (1990), Nlanipulating multilinked data structures in 
a pure functional language, Software - Practice and Experience 20,1167-1185. 
(pp. 19,66) 

Carr6, B. (1979). Graphs and Networks, Oxford Applied 
' 
Niathematics and Computing 

Science Series, Oxford University Press, Clarendon Press, Oxford. (p 18) 

Chuang, T. -R. and Goldberg, B. (1993), Real-time deques, multihead, turing ma- 
chines, and purely functional programming, in Conference on Functional Pro- 
gramming Languages and Computer Architecture, ACM SIGPLAN/SIGARCH, 
Copenhagen, Denmark, pp. 289-298. - (pp., 46,47) 

Clack, C., Clayman, S. and Parrott, D. (1995), Dynamic cyclic data structures in lazy 
functional languages, Technical report, University College London, Department 
of Computer Science. (p 71) 
URL: http: //www. cs. uci. ac. uk/staff/clack/papers/guide. html 



Bibliography 161 

Clenaghan, K. (1995), Calculational graph algorithms: reconciling two approaches 
with dynamic algebra, Report CS-119518, CWI, Amsterdam, Computer Science, 
Department of Algorithmics and Architecture. (p 90) 

Corman, T. H., Leiserson, C. E. and Rivest, R. L. (1990), Introduction to Algorithms, 
The MIT Press, Cambridge, Massachusetts. (pp. 21,109) 

Dijkstra, E. W. (1959), A note on two problems in connexion with graphs, Numerische 
Mathematik 1,269-271. (pp. 28,121) 

Dijkstra, E. W. (1976), A Discipline of Programming, Academic Press. (p 16) 

Erwig, M. (1992), Graph algorithms = iteration + data structures? The structure of 
graph algorithms and a style of programming, in E. Mayr, ed., Graph-Theoretic 
Concepts in Computer Science, LNCS 657, Springer-Verlag, pp. 277-292. (p 13) 

Euler, L. (1736), Solutio problematis ad geometriam situs pertinentis (The solution 
of a problem relating to the geometry of position), Commentarii Academiae 
&ientiarum Imperialis Petropolitanae 8,128-140. (P 1) 

Field, A. J. and Harrison, P. G. (1988), Functional Programming, Addison-Wesley. 
(p 24) 

Floyd, R. (1962), Algorithm 97: Shortest path, Communications of the ACM 
5(6), 345. (pp. 18,123) 

Fourman, M. (1994), Notes for a course on Algorithms and Data Structures (using 

- NIL), given at the University of Western Australia, Perth. (p 45) I 
Fredman, X1. L. and Tarjan, R. E. (1987), Fibonacci heaps and their uses in improved 

network optimization algorithms, Journal of the ACM 34(3), 596-615. (p 44) 

Frenkel, K. and , Milner, R. (1993), An interview with Robin Milner, Communications 

, , 
of the ACM 36(l), 90-97.. (p 1) 

Galler, B. A. and Fisher, M. J. '(1964), An improved equivalence algorithm, Commu- 
nications of the ACM 7(5), 301-303. (p 59) 

Gibbons, J. (1991), Algebras for tree algorithms, PhD thesis, Oxford University. 
Technical monograph PRG-94. (p 15) 

Gibbons, 'J. (1994), An initial-algebra approach to directed acyclic graphs. Depart- 
ment of Computer Science, University of Auckland. (p 17) 
URL: http: //www. cs. auckland. ac. nz/-jeremy/publications. html 

Gifford, D., k. and Lucassen, J. M. (1986), Integrating functional and imperative 
programming, in Proceedings of the ACM Conference on Lisp and Functional 
Programming, 'ACM, MIT, pp. 28-38. (p 67) 



162 Bibliography 

Gill, A., Launchbury, J. and Peyton Jones, S. L. (1993), A short cut, to deforestation, 
in Conference on Functional Programming Languages and Computer Architec- 
ture, ACM SIGPLAN/SIGARCH, Copenhagen, Denmark, pp. 223-232. (p 139) 
URL: http: //www. dcs. gla. ac. uk/fp/authors/Andy-Gill 

Gries, D. (1981), The Science of Programming, Springer-Verlag. (p 46) ý 

Gries, D. and Schneider, F. B. (1993), A Logical Approach to Discrete Math, Springer- 
Verlag. (p 16) 

Guzman, J. C. and Hudak, P. (1990), Single-threaded polymorphic lambda calculus, 
in Proceedings of Wth Annual IEEE Symposium on Logic in Computer Science, 
pp. 333-343. (p 67) 

Harrison, R. (1993), Abstract Data Types in Standard ML, John Wiley and Sons. 
(P 18) 

Hartel, P. H. and Glaser, H. (1994), The resource constrained shortest path problem 
implemented in a lazy functional language, Technical report 94-05, University of 
Southampton, Department of Electronics and Computer Science. (p 20) 
URL: http: //www. ecs. soton. ac. uk/research/tr/94-05/hg. html 

Hibbard, T. 'N. (1962), Some combinatorial properties of certain trees with applica- 
tions to searching and sorting, Journal of the A CM 9,13-28. (p 28) 

Hoare, C. A. R. (1969), An axiomatic basis for computer programming, Communi- 
cations of the ACM 12,576-580,583. (p 16) 

HolVer, 1. (1991), Functional Programming with Miranda'I'l Pitman, London. 
(pp. 18,69) 

Hood, R. and Melville, R. (1981), Real-time queue operations in pure Lisp, Informa- 
tion Processing Letters 13(2), 50-53. (pp. 46,53) 

Hoogerwoord. R. R. (1989), The design of functional programs: a calculational ap- 
proach, PhD thesis, Eindhoven University of Technology. (p 15) 

Hopcroft, J. E. and Tarjan, R. E. (1973), Algorithm 447: Efficient algorithms for 
graph manipulation, Communications of the ACM 16(6), 372-378. (pp. 83, 
147) 

Hudak, P. and Fasel, J. H. (1992), A gentle introduction to Haskell, ACM SIGPLAN 
Notices 27(5). (p xiii) 
URL: http: //haskell. systemsz. cs. yale. edu/haskell/tutorial/tutorial -ps. Z 



Bibliography 163 

Hudak, P. and Jones, M. P. (1994), Haskell vs. Ada vs. C++ vs. Awk vs. ... An exper- 
iment in software prototyping and productivity, Technical report, Department 
of Computer Science, Yale University. (p 152) 
URL: ftp: //nebula. systemsz. cs. yale. edu: /pub/yale-fp 

Hudak, P., Peyton Jones, S. L., NVadler, P., Arvind, Boutel, B., Fairbairn, J., Fasel, J., 
Guzman, M. M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, R., Nikhil, 
R. S., Partain, W. and Peterson, J. (1992), Report on the functional program- 
ming language Haskell, Version 1.2, ACM SIGPLAN Notices 27(5). (p Xiii) 

-URL: ftp: //ftp. dcs. gla. ac. uk/pub/haskell/report 

Hughes, J. (1986), A novel representation of lists and its application to the function 
"reverse", Information Processing Letters 22(3). Also appeared as a Program- 
ming Methodology Group Memo MIG-38, Chalmers Institute, Sweden, (1984). 
(p 139) 

Hughes, J. (1989), Why functional programming matters, The Computer Journal 
32(2), 98-107. (pp. 8,88,151) 

Jeuring, J. (1991), The derivation of hierarchies of algorithms on matrices, in 
B. X16ller, ed., IFIP TC2/WG2.1 Working Conference on Constructing Programs 
from Specifications, North-Holland, pp. 9-32. (p 15) 

Jeuring, J. (1992), Theories for Algorithm Calculation, PhD thesis, CWI, Amsterdam, 
The Netherlands. (p 15) 

Johnsson, T. (1995), Lazy monolithic array algorithms. Chalmers University. (pp. 631 
1270 

Jones, D. W. (1986), An empirical comparison of priority-queue and event-set imple- 
mentations, Communications of the ACM 29(4), 300-311. (pp. 29,44) 

Jones, G. and Gibbons, J. (1992), Linear-time breadth-first tree algorithms: an exer- 
cise in the arithmetic of folds'and zips, Technical Report TR-31-92, Program- 
ming Research Group, Oxford University. (p 12 7) 
URL: http: //www. comiab. ox. ac. uk/oucl/publications/tr/TR-31-92. html 

Jones, M. P. (1994), Release notes for Gofer 2.30, Computer Science Department, 
University of Nottingham. (p 49) 
URL: ftp: //ftp. cs. nott. ac. uk/nott-fp/languages/gofer 

Kashiwagi, Y. and Wise, D. S. (1991), Graph algorithms in a lazy functional program- 
ming language, in Proceedings of the Tth International Symposium on Lucid and 
Intensional Programming, pp. 35-46. Also available as Technical Report Number 
330. Computer Science Department, Indiana University. (p 19) 



164 Bibliography 

King,, D. J. (1995), Functional binomial queues, in K. Hammond, D. N. Turner and 
P. M. Sansom, eds, Proceedings of the 1994 Glasgow Workshop on Functional 
Programming, Springer-Verlag, Ayr, Scotland, pp. 141-150. (P xiii) 
URL: htt p: //www. dc s. gl a. ac. uk/f p/ authors /David-King 

King, D. J. and Launchbury, J. (1995), Structuring depth-first search algorithms in 
Haskell, in The 22'nd Symposium on Principles of Programming Languages, 
ACM SIGPLAN-SIGACT, San Francisco, California, pp. 344-354. (P xiii) 
URL: http: //www. dcs, gla. ac. uk/fp/authors/David-King 

Kingston, J. H. (1990), Algorithms and Data Structures, International Computing 
Science Series, Addison-Wesley. (pp. 21,61) 

Klarlund, N. and Schwartzbach, M. 1. (1993), Graph types, in 20'th Symposium 

on Principles of Programming Languages, ACM, Charleston, North Carolina. 
(p 16) 

Knuth, D. E. (1973a), The Art of Computer Programming: Fundamental Algorithms, 
Vol. 1,2'nd edn, Addison-Wesley, Reading, Massachusetts. (pp. 21,47,133) 

Knuth, D. E. (1973b), The Art of Computer Programming: Sorting and Searching, 
Vbl. 3, Addison-Wesley, Reading, Massachusetts. (pp. 28,29) 

Knuth, D. E. (1993), The Stanford GraphBase: A Platform for Combinatory Com- 
puting, ACINI Press and Addison-Wesley. (pp. 12,147) 
URL: ftp: //labrea. stanford-edu/ 

Krusk-al Jr., . 1. B. (1956), On the shortest spanning subtree of a graph and the travel- 
ling salesman problem, Proceedings of the American Mathematical Society 7,48- 

. 50. (pp. 58,119) 

Launchbury. J. (1989), Functional strongly connected components algorithm. Dis- 
tributed on the comp. lang. functional network newsgroup. (P 19) 

Launchbury, J. (1993), Lazy imperative programming, in Workshop on State in 
Programming Languages, ACINI SIGPLAN, Copenhagen, Denmark, pp. 4G-56. 
(pp. 48.49) 
URL: http: //www. cse. ogi. edu/-j1/Papers 

LaunchburN, J. and Peyton Jones, S. L. (1994), Lazy functional state threads, in 
Conference on Programming Language Design and Implementation, ACM SIG- 
PLAN, Orlando, Florida. (pp. 47,48,50,51) 
URL: http: //www. dcs. gla. ac. uk/fp/papers/ 

Launchbury, J. and Peyton Jones, S. L. (1996), State in Haskell, Lisp and Symbolic 
Computation - (pp. 47,48,50,51,63) 



Bibliography 165 

Manber, U. (1989), Introduction to Algorithms -A Creative Approach, Addison- 
Wesley, Reading, Massachusetts. (pp. 4,5,12,123) 

Meertens, L. (1986), Algorithmics: Towards programming as a mathematical activity, 
in I W. de Bakker, H. Hazewinkel and J. Lenstra, eds, Proceedings of the CWI 
Symposium on Mathematics and Computer Science, North-Holland, pp. 289- 
334. (p 14) 

. Nlehlhorn, K. and Naher, S. (1989), LEDA -A library of efficient data types 
and algorithms, in Mathematical Foundations of Computer Science, LNCS 379, 
Springer-Verlag, pp. 88-106. (p 12) 

Meira, S. L. (1985a), A linear applicative solution for the set union problem, Infor- 
mation Processing Letters 20,43-45. (p 67) 

Nleira, S. L. (1985b), On the Efficiency of Applicative Algorithms, PhD thesis, Uni- 
versity of Kent, Canterbury. Report number T1. (P 19) 

Nloggi, E. (1989), Computational lambda-calculus and monads, in Symposium on 
Logic in Computer Science, IEEE, Asilomar, California. (p 48) 

N181ler, B. (1993a), Algebraic calculation of graph and sorting algorithms, in 
D. BjOrner, X1. Broy and I. V. Pottosin, eds, Formal Methods in Programming 
and their, Applications, LNCS 735, Berlin, Germany, pp. 394-413. (p 16) 

M61ler, B. (1993b), Derivation of graph and pointer algorithms, Report Number 280, 
Institut far Mathematik, University of Augsburg, D-86135 Augsburg, Germany. 
(PP. 16,90) 

N. 1611er, B. and Russling, M. (1992), Shorter paths to graph algorithms, in R. S. 
Bird, C. Morgan and J. Woodcock, eds, Proceedings of the 2'nd International 
Conference on the Mathematics of Program Construction, LNCS 669, Springer- 
Verlag, Oxford, UK. For an extended version see M611er and Russling (1994). 
(p 16) 
URL: http: //www. informatik. uni-augsburg. de/info2/mitarbeiter/Russling/ 

N161ler, B. and Russling, X1. (1994), Shorter paths to graph algorithms, Science of 
Computer Programming 22,157-180. (p 165) 

Morrisett, I G. (1993), Generalizing first-class stores, in Proceedings of the ACM 
SIGPLAN Workshop on State in Programming Languages, Copenhagen, Den- 
mark, pp. 73-87. Published as Technical Report YALEU/DCS/RR-968, Depart- 
ment of Computer Science, Yale University. (p 70) - 
URL: ftp: //vache. venari. cs. cmu. edu/usro/igmorris/pub/ 



166 Bibliography 

Nagl, M. (1979), GRAPL -A programming language for handling dynamic problems 
on graphs, in Proceedings of 5'th International NVorkshop on Graph Theoretic 
Concepts in Computer Science, pp. 25-45. (p 13) 

Nikhil, R. S. (1991), Id language reference manual, version 90.1, Computation struc- 
tures group memo 284-2, MIT, Laboratory for Computer Science. (p 67) 

Nikhil, R. S. and Arvind (1990), Programming in Id: A Parallel Programming Lan- 
guage. (p 19) 

Okasaki, C. (1994), Simple and efficient purely functional queues and deques, Journal 
of Functional Programming 4(4). (pp. 46,48,53) 
URL: http: //foxnet. cs. cmu. edu/people/cokasaki/papers. html, 

Okasaki, C. (1996), The role of lazy evaluation in amortized data structures, in In- 
ternational Conference on Functional Programming, ACM, Philadelphia, Penn- 
sylvania. (p 45) 

Pape, U. (1979), GRAMAS -A graph manipulation system, in Proceedings of 
5'th International NVorkshop on Graph Theoretic Concepts in Computer Sci- 
ence, pp. 47-63. (p 13) 

Paulson, L. C. (1991), ML for the Working Programmer, Cambridge University Press, 
Cambridge. (pp. 18,29,44,69) 

Peyton Jones, S. L., Hall, C., Hammond, K., Partain, NV. and Wadler, P. (1993), The 
Glasgow Haskell compiler: A technical overview, in Proceedings of the UK Joint 
Framework for Information Technology, Technical Conference, Keele. (p xiii) 
URL: http: //www. dcs. gla. ac. uk/fp/papers/grasp-jfit. ps. z 

Peyton Jones, S. L. and NVadler, P. (1993), Imperative functional programming, in 
20'th Symposium on Principles of Programming Languages, ACXI, Charleston, 
North Carolina. (p 48) 
URL: http: / /www. dc s. gi a. ac. uk/f p/authors /Phil ip-Wadl er 

Ponder, C. G., McGeer, P. C. and Ng, A. P. -C. (1988), Are applicative languages 
inefficient?, ACM SIGPLAN Notices 23(6), 135-139. (pp. 48,78) 

Pountain, D. (1994), Functional programming comes of age, Byte 19(8), 183-184. 
(p 8) 

Reade, C. (1989), Elements of Functional Programming, Addison-NN'esley. (pp. 18, 
19,24.69,151) 

Reade, C. (1992), Balanced trees with removals: an exercise in rewriting and proof, 
Science of Computer Programming 18,181-204. (pp. 45,46) 



Bibliography 167 

Reif, J. H. and Scherlis, W. L. (1984), Deriving efficient graph algorithms (summary), 
in E. Clarke and D. Kozen, eds, Logics of Programs, LNCS 164, Springer-Verlag, 
pp. 421-441. (p 15) 

Russling, M. (1994), An algebraic treatment of graph and sorting algorithms, in 
Proceedings of the 14'th International SCCC Conference, Concepci6n, Chile. 
Extended version available from Institut ffir Mathematik der Universitdt Augs- 
burg, Germany, Report Number 324,1995. (p 16) 
URL: http: //www. informatik. uni-augsburg. de/info2/mitarbeiter/Russling/ 

Russling, M. (1995), A general scheme for breadth-first graph traversal, in Pro- 
ceedings of the Trd International Conference on the Mathematics of Program 
Construction, LNCS 947, Springer-Verlag, Kloster Irsee, Germany, pp. 380-398. 
(p 16) 
URL: http: //www. informatik. uni-augsburg. de/info2/mitarbeiter/Russling/ 

Sands, D. (1990), Calculi for time analysis of functional programs, PhD thesis, Im- 
perial College, University of London. (pp. 21,134,135) 
U RL: ftp: //theory. doc. ic. ac. uk/theory/papers/Sands 

Sands, D. (1995), A naYve time analysis and its theory of cost equivalence, The Jour- 
nal of Logic and Computation 5(4), 495-541. Preliminary version available as 
TOPPS report D-173, DIKU, University of Copenhagen, 1993. (pp. 21,134, 
135,152) 
URL: ftp: //ftp. diku. dk/diku/semantics/papers 

Schoenmakers, B. (1992), Data Structures and Amortized Complexity in a Functional 
Setting, PhD thesis, Eindhoven University of Technology. (p 20) 
URL: f tp: //f tp. cwi. ni/pub/berry 

Sedgewick, R. (1988), Algbrithms, 2'nd edn, Addison-Wesley, Reading, Mas- 
sachusetts. (p 21) 

Sharir, INI. (1981), A strong-connectivity algorithm and its applications in data flow 
analysis, Computers and mathematics with applications 7(l), 67-72. (pp. 19, 
108) 

1 

Skiena, S. (1990), Implementing Discrete Mathematics: Combinatorics and Graph 
Theory with Mathematica, Addison-Wesley. (p 14) 

Sleator, 'D. D. and Tarjan, R. E. (1983), Self-adjusting binary trees, in Proceedings 
of the 15'th Annual ACNI Symposium on Theory of Computing, ACM, Boston, 
Massachusetts, 'pp. 235-245. (p 29) 



168 Bibliography 

Smetsers, S., Barendsen, E., van Eekelen, M. and Plasmeijer, R. (1993), Guaranteeing 
safe destructive updates through a type system with uniqueness information for 
graphs. University of Nijmegen. (pp. 67,70) 
URL: ftp: //ftp. cs. kun. nl/ 

Swarup, V., Reddy7 U. S. and Ireland, E. (1991), Assignments for applicative lan- 
guages, in Functional Programming Languages and Computer Architecture, 
LNCS 523, Springer-Verlag, pp. 192-214. (p 67) 

Tarjan, R. E. (1972), Depth-first search and linear graph algorithms, SIAM Joumal 
of Computing 1(2), 146-160. (pp. 15,83,115,146,148) 

Tarian, R. E. (1974), Finding dominators in directed graphs, SIAM Journal of Com- 
puting 3(l), 62-89. (p 58) 

Tarjan, R. E. (1981), A unified approach to path problems, Journal of the ACM 
28,077-595. (p 18) 

Tarjan, R. E. (1983), Data Structures and Network Algorithms, SIANI. (p 29) 

Tarian, R. E. (1985), Amortized computational complexity, SIAM Journal on Alge- 
braic and Discrete Methods 6,306-315. (p 133) 

Temperley, H. N. V. (1981), Graph Theory and Applications, John Wiley and Sons, 
Now York. (P 1) 

Thompson, S. (1995), Miranda TIN I: The craft of Functional Programming, Addison- 
NN esley. (p 18) 

N`uillemin, J. (1978), A data structure for manipulating priority queues, Communi- 
cations of the ACM 21(4), 309-315. (pp. 30,31,32) 

NVadler, P. (1988a), Deforestation: Transforming programs to eliminate - trees, in Euro- 
pean Symposium on Programming, LNCS 300, Springer-Verlag, Nancy, France, 
pp. 344-358. See also NVadler (1990b). (pp. 25,139,169) 

Wadler, P. (1988b), Strictness analysis aids time analysis, in 15'th Symposium on 
Principles of Programming Languages, ACIM. (p 134) 
URL: http: //www. dcs. gia. ac. uk/f p/authors/Philip-Wadier 

Wadler, P. (1990a), Comprehending monads, in Conference on Lisp and Functional 
Programming, ACM, Nice, France, pp. 61-78. (p 48) 
URL: http: //www. dcs. gia. ac. uk/f p/authors/Philip-wadler 



Bibliography 169 

Wadler, P. (1990b), Deforestation: Transforming programs to eliminate trees, in The- 
oretical Computer Science, LNCS 73, Springer-Verlag, pp. 231-248. See also 
ýVadler (1988a). (p 168) 
URL: http: //www. dc s. gla. ac. uk/f p/authors /Phil ip-Wadler 

Wadler, P. (1990c), Linear types can change the world!, in M. Broy and C. Jones, 
eds, Programming Concepts and Methods, North Holland. (p 67) 

Wadler, P. (1992), The essence of functional programming (invited talk), in 19'th 
Symposium on Principles of Programming Languages, ACM, Santa Fe, New 
Mexico. (p 48) 
URL: http: //www. dc s. gla. ac. uk/f p/authors /Phil ip-Wadler 

NNalther, H. (1984), Ten Applications of Graph Theory, D. Reidel, Dordrecht. (P 1) 

Wikstr8m, A. (1987), Functional Programming using Standard ML, Prentice Hall. 
(P 18) 

Wilson, R. J. and Beineke, L. W., eds (1979), Applications of Graph Theory, Academic 
Press, London. (P 1) 

Wirth, N. (1971), Program development by stepwise refinement, Communications of 
the A CM 14,221-227. (p 16) 

NNOlfram, S. (1991), Mathematica: A System for Doing Mathematics by Computer, 
2'nd edn, Addison-Wesley. (p 14) 

Wright, C. J. (1988), A theory of arrays for program derivation, Transferral disserta- 
tion, Oxford University. (p 15) 

Zimmermann, W. (1990), Automatische Komplexitdtsanalyse Funktionaler Pro- 
gramme, Informartik-Facherichte, Springer, Berlin. (p 3) 

2APY 


