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V Vertical Load Component 
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X,, 
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Maximum Allowable Displacement 
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x Horizontal Acceleration 

y Vertical Distance 
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Vertical Acceleration 
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Summary 

Deep water production more than anything else will sustain the petroleum 
industry turnaround well into the 21st Century. However the challenges presented by 
deep water are considerable both commercially and technically especially if the fields are 

marginal. Engineering solutions must aim to minimise the operator's capital risk and 

maximise his ability to avoid large capital commitments prior to verification of 

acceptable reservoir performance. 

Among the more daunting technical issues to be addressed is hydrate and paraffin subsea 

pipeline blockage. Generally considered little more than a nuisance in most shallow water 

areas, the high flow rates, remoteness and the miles of very low temperature water 
through which deep water production must pass, make it quite a serious problem for 

producers. Another physical reality of deep water production are the considerable lengths 

of riser involved. These generate large riser weights which result in high loads being 

exerted upon both the riser and surface connection system. 

The overall aim of this study is to propose and develop a cost effective production design 

concept suitable for oil reservoirs situated in deep (1500 m) water which can be quickly 

and safely installed in areas with limited weather windows. The proposed design is based 

upon a steel catenary riser which will connect an FPSO directly into either a wellhead or 

seabed pipeline system thereby eliminating both the connection complexities and high 

cost associated with a central manifold. The catenary geometry will ensure that the 

structure is inherently compliant whilst a carrier pipe arrangement will provide structural 

protection and buoyancy to a flowline bundle contained within. The interface between the 

riser and the surface production vessel is a critical part of any riser system and so for the 

purposes of this study two design arrangements are considered. The first is based upon a 
direct connection between an FPSO turret and riser where as the second is a hybrid 
design in which the riser is supported by a sub-surface buoy which is hydraulically 

connected to an FPSO using flexible flowlines. This hybrid connection has the advantage 
of decoupling FPSO and riser motions. Design development is carried out by examining a 

range of critical areas. Each investigation forms the basis of a chapter as described below. 

In Chapter 2, the loading and geometric characteristics of a selection of conceivable riser 

profiles are examined and compared with one another. The analysis carried out 

establishes that for all three mathematical curves considered i. e. elliptic, parabolic and 
catenary, maximum bending moments due to self-weight occur at the seabed, except in 

the case of an elliptic curve when the profiles horizontal offset exceeds water depth. The 
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elliptic and parabolic curves, although convenient mathematically would be very difficult 
to attain on a practical basis, a catenary however describes the form assumed by a perfect 
flexible inextensible chain of uniform density suspended from two supports. 

Chapter 3 is devoted to the design of a buoyancy system which is required in order to 

support the riser's submerged weight. Two different systems suitable for deep water are 
investigated. The syntactic foam design provides the riser with a buoyancy system that is 

simple to use during both riser installation and operation. Its characteristics are not 
influenced by external factors and it doesn't impose any additional stresses on the riser, 
however it is very expensive. Nitrogen gas however is relatively cheap, although this is 

somewhat compromised by a considerably more complex arrangement, involving internal 

gas tight compartments, high pressure lines and a high pressure gas source. 

Chapter 4 examines the problems associated with production oil temperature. A heat loss 

analysis is carried out using EXCEL spreadsheets. This analysis identifies a requirement 
for good pipeline and flowline insulation in order for oil transportation problems such as 
hydration to be avoided within a deep water environment. A structural thermal stress 

assessment is also undertaken. 

In Chapter 5 an installation loading analysis investigates the effects of riser geometry and 

submerged unit weight on bending stress, axial stress and lifting load. Bending and axial 

stresses resulting from surface and sub-surface vessel displacements are also calculated 

along with the corresponding deflection profiles. This chapter also examines the static 

structural response of the riser to in-plane current loads. The response (in terms of 
deflection and stress) is characterised by the riser's submerged unit weight, geometry 
(horizontal surface offset) and the side of the riser on which the current acts i. e. Concave 

or Convex. One important characteristic which becomes apparent when a catenary riser is 

subjected to external forces are the large angular rotations which are generated at the top 

end. These have to be accommodated in order to avoid creating seriously high bending 

moments both in the riser as well as in the surface or sub-surface connection assembly. 
This can be achieved through the use of flexible joints. A design for a surface (or sub- 
surface) connection system using flexible joints is proposed in this chapter. 

In Chapter 6a resonant period analysis is undertaken using a numerical procedure based 

upon a finite difference technique and validated by an analytical method developed by 

Blevin for vibrating stretched strings. From this analysis it is shown that the resonant 
periods rapidly converge as the mode number is increased. Overall the results suggest that 
the riser's high natural periods are substantially influenced by carrier pipe diameter and 
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can therefore be positioned so as to avoid external excitation periods by selecting 
appropriate diameters. 

As an alternative to the direct connection of the riser to the surface production vessel a 

study to investigate the advantages of a hybrid connection is carried out in Chapter 7. In 

this study a vertically tethered sub-surface buoy from which a catenary riser is suspended 
is designed and evaluated. The loads imposed upon the buoy and its tethers along with 
the lateral stiffness that this arrangement provides are evaluated using spreadsheets. 

In Chapter 8a detailed capital cost analysis for the catenary riser is undertaken. It is 

found that the economics compare favourably with known production systems designed 

for the same operational environment. 
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Chapter 1 

Introduction 



1.1 Offshore Development Trends 

In 1947 oil production began from wells drilled in the Gulf of Mexico from the 
first offshore platform. The water depth was only 6 metres however this achievement 
represented the beginning of a technological advancement that has enabled the offshore 
industry to continually face the challenge of progressively moving into deeper and deeper 

waters. The driving force behind this drift into deeper water is the fact that reservoirs 
located in shallower waters are becoming exhausted as result of extensive development 

over the past three decades. The advancement of production technology since 1947 is 

summarised in Figure 1.1 in terms of maximum production water depths [1]. In the past 
decade this advancement has been accelerated with the introduction of TLP platforms. A 

new world record for production has been set by Shell Oil's Mars Tension Leg Platform 

which has recently been installed in the Gulf of Mexico in 950 metres of water. 
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1.2 Deep Water Reserves 

The perception of deep water changes each year as the oil industry continues to 

step out into increasing offshore locations. Definitions often used today are to classify 
deep water as 400 m to 2000 m with depths beyond regarded as ultra-deep. Perceptions in 

the 1970s and early 1980s were somewhat different with many technical papers 

classifying deep water in the range 200 m to 400 m which coincides with the boundary 

between the continental shelf and the continental slope. The offshore part of the world's 
sedimentary basins - those areas likely to contain source rocks for oil and gas is estimated 
at around 50 million square kilometres. The continental slope and abyssal plains take up 
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approximately two-thirds of this area and so the undiscovered reserve potential of deep 

water is considerable. These locations will probably have been supplied plentifully with 
organically rich sedimentary material, typically by significant runoff from rivers. There 

are numerous locations around the world where there are hydrocarbon deposits in these 

waters. In the Gulf of Mexico, reserves exceeding 4 billion barrels have been identified in 

500-1800 m waters in the last six years. In Brazil's Campos Basin, oil reserves of over 3 

billion barrels are located in water depths of 400-1000 m and over 2 billion barrels in 

water depths greater than 1000 m. 

Location (Boundary) Details 

South China Sea Eastern Area - Philippines/Borneo/S Vietnam has some sea areas 

extending to 1000+ in. The Philippines seaboard, both E and W has a 

relatively narrow coastal zone up to 1000 in and extensive waters 

beyond 2000 m but located in a seismic zone. 

Japanese Sea Potential on Chinese/Korean side. 

New Guinea North - in Bismark Sea 

South - in Coral Sea 

Australia Western - deep water blocks in the Exmouth Basin. In March 1996 a 
deep water well was drilled on Leyden in 900-1000 m of water. 

Victoria - East of existing Gippsland Basin (Bass Strait fields). 

Bay of Bengal Deep water areas extend along the coastal fringe off India, 

Bangladesh and Myanmar. 

SriLanka Extensive area 2000 - 3000 m to West of the Island. Potential to East 

and up SE Indian Coast, beyond Madras. 

West Africa Extensive areas of Atlantic Ocean beyond 1000 metres water depth: 

Nigeria/Cameroon/Equatorial Guinea/Gabon 

Ghana/Ivory Coast/Angola 

Table 1.1(a) 

Potential Deep Water Hydrocarbon Production Areas [2] 
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Location (Boundary) Details 

Canada (East Coast) Areas offshore Nova Scotia and Newfoundland in less than 1000 m 

presently under development and giving rise to speculation regarding 

development of areas over 1000 in located further seaward. 

Gulf of Mexico Significant potential for developments southward from existing US 

coast fields in depths up to 3600 m. 

Caribbean Sea Significant offshore areas which have the potential to have been well 

supplied with organic material and in water extending beyond 2000 

in. Bounded on South by Venezuela. 

South Atlantic Offshore Brazil (only) with potential northward extension from 

existing areas to include the Amazon Delta. 

Bay of Bengal Deep water areas extend along the coastal fringe off India, 

Bangladesh and Myanmar. 

North Atlantic The West of Shetland region will be a difficult area to develop. 

(West of Shetland) Located in the North Atlantic storm channel between the Faeroe 

Islands and the Scottish archipelago of the Shetland Islands. Heavy 

rains, wind and waves comparable to those of the North Sea, but 

often worse, rake the area much of the year and icebergs and ice floes 

are a winter hazard. Water depths range from 200 - 1500 m and 

estimated recoverable reserves are put at 5 billion bbl oil and a 

negligible amount of gas. 

Altogether, there have been 80 wells drilled in the West of Shetland 

region since the 1977 discovery well on Clair field. BP has already 

started developing the Foinhaven field (540 m) using a catenary 

moored FPSO. Production from Schiehallion (375 m) is scheduled to 

come on stream later this year using an FPSO which will be the 

world's purpose built vessel of its kind in terms of hull volume. 

Table 1.1(b) 

Potential Deep Water Hydrocarbon Production Areas [2] 
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1.3 Deep Water Challenges 

Deep water production more than anything else will sustain the petroleum 
industry turnaround well into the 21st century. However the challenges presented by deep 

water are considerable - both commercially and technically. From information gained as a 

result of deep water exploration it can be concluded that deep water oil fields are most 
likely to be marginal in comparison to the those discovered in either Alaska or the North 

Sea in the 1970's. Therefore if the development of deep water oil fields is to proceed 

operators must be convinced that commercially as well as technically viable options exist. 
These engineering solutions must seek to both minimise the operator's capital risk and 

maximise his ability to avoid large capital commitments prior to verification of 

acceptable reservoir performance. 

The requirements necessary in order to provide an operator with a totally viable deep 

water production system can be identified as follows: 

0 Cost efficient installation 

" Minimisation of offshore installation time. This is particularly important in areas 
with short weather windows such as West of Shetland. This can usually be 

achieved by maximising onshore fabrication and testing. 

0 Economic capital cost 

" Economic operating cost 

" Low maintainability during operational life span. 

" High standard of fabrication and manufacture - good quality assurance 
" Provide the operator with ability to progressively phase develop a field as more 

information on the reservoir is gained as a result of continued exploration. 

" Technically viable in deep water 

" Technically viable in harsh environmental conditions depending upon the field 

location. 

Among the more daunting technical issues to be addressed is hydrate and paraffin subsea 

pipeline blockage. Generally considered little more than a nuisance in most shallow water 

areas, the high flow rates, remoteness and the miles of very low temperature water 

through which deep water production must pass, make it quite a serious problem for 

producers. Another a physical reality of deep water production are the considerable 
lengths of riser involved. These generate large riser weights which result in high loads 

being exerted upon both the riser and surface vessel connection system. 
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1.4 Project Objective 

The overall aim of this study is to develop a production concept suitable for 

reservoirs situated in deep (1500 m) water. The design will endeavour to incorporate all 
the requirements specified above so as to provide a cost effective system which can be 

quickly and safely installed in areas with limited weather windows. The development of 
this design will be carried out by examining a range of critical areas. These areas are 

specified in Section 1.6. 

1.5 Concept Identification and Description 

A fundamental component of this production concept is a passively moored 
Floating, Production, Storage and Offloading (FPSO) vessel. FPSOs provide a number of 

practical advantages compared with other surface installations. Based on conventional 

shipbuilding technology, they are straightforward to build and expensive offshore work is 
kept to a minimum as most of the construction, hook-up and commissioning can be 

completed inshore at significantly less cost. Furthermore, FPSOs have the ability to 
handle heavy payloads and to add equipment incrementally to fit production and reservoir 
changes. They are also easier to install and decommission and can be used again in other 
fields. Their versatility is now unquestioned both in the harsh UK West of Shetland 

environment where two FPSOs will have been installed by 1997 (Foinhaven and 
Schiehallion) and in milder environments where two vessels will be installed about the 

same time in water depths around 800 m (Barracuda and Aquila). 

Many deep water developments will commingle well fluids at the seabed. This will 

require fewer, but larger production risers connected to the surface production vessel 

which in this case is an FPSO. Supporting a number of large diameter risers in deep water 

presents several design challenges. The risers must be compliant enough to allow the 

surface production vessel some freedom of motion. They must be able to withstand 

environmental loadings and their weight must be supported. 

The steel catenary riser concept offers a solution for deep water production. It is intended 

that the catenary riser will connect the FPSO directly into either a wellhead or seabed 

pipeline system thereby eliminating both the connection complexities and high cost 
associated with a central manifold. 
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The basic features of this riser are 

" The riser has catenary profile and is therefore inherently compliant. 
" Containment of flowlines and umbilical within a Carrier Pipe (structural 

protection, buoyancy and potential for thermal insulation), see Figure 1.3 for a 

cross-sectional illustration. Through the use of heavy bulkheads, the flowlines and 
Carrier Pipe act integrally to resist tensile and thermally induced loads. This 

arrangement is similar to the pipeline concept already developed and proven by a 

number of contractors in the North Sea. 

" Use of standard steel flowlines. The number flowlines and their sizing is based 

upon a maximum design oil output of 70,000 BOPD which is based upon a GOR 

of 250 SCF/bbl and an oil gravity of 34 °API. 

" Costs per metre typically the same as for the current North Sea flexible riser 
bundles. 

" The riser section can be fully fabricated and tested onshore. 

I. Injection Water (S" Linc) 

2. Production Oil (12" Line) 

3. Production Oil (12" Line) 

4. Injection Gas (8° Line) 

The interface between the riser and the surface production vessel is a critical part of any 

riser system and so for the purposes of this study two design arrangements will be 

considered: 

1. In this arrangement the top of the catenary riser connects directly into a turret 

assembly located within the forward section of an FPSO, see Figure 1.4. 

2. In this arrangement (commonly referred to as a hybrid design) the risers are 

supported by a sub-surface buoy which is anchored to the seabed using vertical 

tethers. A hydraulic connection between the riser and FPSO is provided by 

flexible flowlines. This type of connection has the advantage of decoupling FPSO 

and riser motions, see Figure 1.5. 
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Figure 1.3 

Riser Cross-Section 
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Figure 1.4 

Catenary Riser Concept (Direct Connection) 
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Not to Scale 

Figure 1.5 

Catenary Riser Concept (Hybrid Arrangement) 



1.6 Structure of Thesis 

This thesis is organised as follows: 

In Chapter 2, the loading and geometric characteristics of a selection of conceivable riser 
profiles are examined and compared with one another. Chapter 3 is devoted to the design 

of a buoyancy system which is required in order to support the riser's weight. Two 
different concepts are evaluated. The effects of the buoyancy on the installation process 
as well as during the riser's operational life span are determined. The results obtained 
from this chapter are applied throughout the rest of the study. Chapter 4 examines the 

problems associated with production oil temperature. A heat loss analysis is carried out 
using EXCEL spreadsheets. This analysis is used to devise a method of insulation as well 
as providing data for a thermal stress investigation. In Chapter 5a static load analysis is 

conducted. Riser behaviour when subjected to loads imposed as a result installation, 

surface end displacement (due to FPSO or sub-surface buoy disturbance) and current is 

examined in terms of structural stress and deflection values. The vibrational performance 

of the riser is analysed in Chapter 6. Dynamic equations of motion are derived and solved 

numerically using a computer program in order to establish the riser's resonant periods of 

vibration along with the corresponding vibrational mode shapes. The results from this 

mathematical model are compared with those obtained from analytical expressions as part 

of a validation exercise. Chapter 7 provides a detailed description of a design proposal for 

the vertically tethered sub-surface buoy. The loads imposed upon the buoy and its tethers 

along with the lateral stiffness that this arrangement provides are evaluated using EXCEL 

spreadsheets. A proposed installation procedure for the hybrid riser system is also 

outlined. Estimates on cost are given in Chapter 8. Component costs as well as a total 

system cost are presented. Chapter 9 is devoted to overall conclusions and 

recommendations for future work. At the end of the thesis are the appendices which are 

used to publish the lists of all the computer programs written. 
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CHAPTER 2 

The Selection of a Riser Profile and an 
Analysis of its Geometric Characteristics 



2.1 General Description 

This chapter deals with the loading exerted upon the riser and its connections 
(surface and seabed) from conditions that are not attributed to sea motions found within 
its operational environment i. e. sea current and waves. The word 'loading' for the 

purposes of this chapter and in fact for the entire thesis can be defined so as to include the 
following: 

" Bending moment 
" Axial force (tension or compression) 
" Shear force 

Riser loading for a zero sea motion condition is a characteristic of geometric profile and 
submerged weight (self-weight) and therefore are parameters that need to be carefully 
chosen in order that one of the most important considerations involved in the design 

process, that of structural stress minimisation can be achieved. Over stressing of the riser 
is as much a problem during its installation as it is during its operational lifetime. 

Apart from the structural loading within the riser itself, geometric profile and self-weight 
inflict many other complexities on the entire production system. These will be examined 
later in the chapter but can be summarised as follows: 

" The imposition of both vertical and horizontal loading on surface or sub-surface 

connections i. e. FPSO turret or sub-surface buoy 

" Riser slope at the surface 

" Riser length 

" Field development strategy 

Submerged weight and profile also combine to give the surface end of the riser a surge 
and heave stiffness which can be utilised in addition with a conventional mooring system 
to reduce FPSO/buoy disturbances at the surface. An analysis of this is given in the final 

section of the chapter. 

All axial and bending stress data detailed within this chapter is calculated using the riser 
cross sectional arrangement defined in the introductory chapter. Diameters and 
thicknesses of all the flowlines and the carrier pipe are tabulated below: 
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Component Outer Diameter 

m 

Wall Thickness 

mm) 

Flowlines 

12" 0.324 25.4 

8" 0.219 18.3 

Carrier Pipe 1.10 10 

Table 2.1. 

Cross-Sectional Dimensions 

The riser design is based upon the utilisation of high tensile steel as the construction 

material and therefore an elasticity modulus value of 2.07 E11N/m2 is used. The choice of 
diameter and wall thickness for the carrier pipe is severely restricted due to important 

considerations such as that of riser buoyancy which is examined in considerable detail in 

Chapter 3. Therefore an estimated outer diameter value of 1.10 m is used along with a 

wall thickness of 10 mm. 

Sea water depth is a critical factor in determining the design of a riser especially when it 

comes down to calculating the structural loading. In Chapter 1 it was clearly specified 
that one of the main requirements of the riser was that it could be installed and operated 
in water depths of between 1000 and 2000 m. For the majority of the calculations 

presented within this chapter a mean depth of 1500 m has been used, however the loading 

sensitivity of the system to depth is established and is illustrated graphically. 

2.2 Geometric Properties of a Curve 

2.2.1 Introduction 

This section looks at three different types of curve that could be considered in 

trying to meet the riser criteria established in the introductory chapter. The curves are: 

" Elliptic 

" Parabolic 

0 Catenary 

An analysis is conducted so as to establish some basic but important geometric 
characteristics associated with each of the curves. 
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This is be done by determining three important characterising features: 

" Maximum profile curvature 

" Top end (surface) slope 

" Curve quadrant length 

The curvature at any point on a curve can be expressed analytically as: 

i dO 
Räs 

(2.1) 

in which ds is the arc length between two points on the curve. If ds is assumed to be very 
small both the arc and chord lengths between the two points can be considered equal and 
hence: 

dy 
= tan O (2.2) 

dx 

dX 
= cose ds 

(2.3) 

If Eqn (2.2) is differentiated with respect to s an exact relationship between curvature and 

curve geometry can be obtained: 

2 
dO 

_1d _y 
dx2 

ds R2% (2.4) 
[iý(d%)J 

On knowing the equation y= f(x) of the curve, the first and second differential 
derivatives can be calculated and subsequently substituted into the above formulae in 

order to obtain 11R. If the riser can be bent elastically so as to attain a curvature 11R, the 
following fundamental relationship can be used: 

1 
_M REI (2.5) 

therefore 

M 
d2y 

dx2 
EIz ]Y2 (2.6) [1+(d%)] 

2-4 



2.2.2 Elliptic Curve 

An ellipse can be defined by the cartesian equation: 

X2 2 

2+ 
b2 

=1 (2.7) 

The curve and its co-ordinate axis are illustrated in Figure 2.1(a). On differentiating the 
following derivatives are found: 

dy b2 x 
dx _ 

a2 y 
(2.8) 

d2y 
= 

b4 
(2.9) 

dx2 a2 y3 

when the differential derivatives are substituted into Eqn (2.6) the following bending 

moment expression is obtained: 

M_ b4 a4 
EI [a4y2+b4x2]Y2 

(2.10) 

Of particular interest are the bending moments at the surface end and at the point of 
contact with the seabed. 
At the surface (y =0 and x= a): 

M_ a 
EI b2 (2.11) 

At the point of contact with the seabed (y =b and x= 0): 

Mb 
- a2 

(2.12) EI 

When the horizontal and vertical offsets are equal (a = b) the elliptic curve becomes 

circular and can therefore be defined by the equation: 

x2+y2=r 

where r= circle radius (= a= b) 
(2.13) 
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If Eqn (2.13) is substituted into Eqn (2.10) then a commonly known expression is obtained 
demonstrating that for circular profile, the bending moment is constant along its length. 

M_1 
EIr 

(2.14) 

The following table uses Eqns (2.11) and (2.12) to calculate end bending loads for a range 

of elliptic profiles. The horizontal offset a is increased from 1000 to 3000 in whilst 
keeping the vertical offset b or water depth constant, at 1500 in. 

a 

m 

Bending Moment (kNm) 

Seabed Surface 

Bending Stress (N/mm2) 

Seabed Surface 

1000 1579 468 170.8 50.6 

1250 1010 585 109.2 63.3 

1500 702 702 75.9 75.9 

1750 515 819 55.7 88.6 

2000 394 936 42.6 101.2 

2500 252 1170 27.3 126.5 

3000 175 1404 18.9 151.8 

EI=1.053 E09 N/m2 

Table 2.2 

Bending Moments and Stresses at the Seabed and Surface for a Range of Elliptic Curves 

The tabulated data indicates that in the case of horizontal offsets less than the water depth 

(1500 m in this case) the maximum curvature and hence the peak bending moment occur 

at the seabed end. When a= 1500 m the profile becomes circular and the bending load 

attains a constant value along the risers length, however when the horizontal offset is 

further increased, the point of maximum curvature is seen to move to the surface end. 

Apart from the loading another important consideration is the length of riser required. 
The length of an elliptic quadrant is given by the formulae: 

L=2I1_4e 2_ 
64 e4 256 e6 ....... (2.15) 

in which the term outside the bracket gives the length of an arc of a circle and 
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2 

e2 =1- 
b2 

(a is always the largest offset) 
a 

The table below gives the curved length of each elliptic quadrant. 

(2.16) 

a 

(m) 

Curved Length 

(m) 

Slope at the Surface (degs) 

from the vertical from the horizontal 

1000 1987 0.0 90.0 

1250 2164 0.0 90.0 

1500 2356 0.0 90.0 

1750 2558 0.0 90.0 

2000 2765 0.0 90.0 

2500 3203 0.0 90.0 

3000 3666 0.0 90.0 

Table 2.3 

Elliptic Quadrant Lengths and Surface Slopes 

2.2.3 Parabolic Curve 

A parabola can be represented by the cartesian equation: 

y=4c x2 (c is a constant) (2.17) 

The curve and its co-ordinate axis are shown in Figure 2.1(b). The constant c can be 

found using the surface boundary condition y=b when x=a, thereby giving: 

_b C4 
a2 

(2.18) 

therefore: 
b2 

y =-j x (2.19) 

On differentiating the following derivatives are found: 

b 
äX 2aX (2.20) 
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dx2=2ä 
(2.21) 

When the differential derivatives are substituted into Eqn (2.6) a bending moment 

expression is obtained: 

M 2ba4 
EI [a4 +4 b2 x2 ]2 

(2.22) 

As in the case of the elliptic curve, maximum and minimum bending load values can be 

found at the surface and seabed ends. 
At the surface (x = a): 

M_ 2ba 
EI3 

(2.23) 
[a2 +4b2] 2 

At the seabed (x = 0): 

M_ 2b 
EI a2 

(2.24) 

The following table uses Eqns (2.23) and (2.24) to calculate end bending loads for a range 

of parabolic profiles. 

a 

(m) 

Bending Moment (kNm) 

Seabed Surface 

Bending Stress 

Seabed 

(N/mm2) 

Surface 

1000 3159 100 341.6 10.8 

1250 2022 115 218.6 12.4 

1500 1404 126 151.8 13.6 

1750 1032 132 111.5 14.3 

2000 790 135 85.4 14.6 

2500 505 133 54.7 14.3 

3000 351 124 38.0 13.4 

EI=1.053 E09 N/m2 

Table 2.4 

Bending Moments and Stresses at the Seabed and Surface for a Range of Parabolic 

Curves 
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The results clearly illustrate the big difference in curvature between seabed and surface. 
The top end is characterised by a very flat profile thereby creating a low bending stress 
region and as the surface offset is increased this loading is seen to peak at an offset of 
about 2000 m. 

The length of the parabola from the seabed to the surface is calculated using the formula: 

L=b a2 
4b2 +1 

2 
a+ 

4 b2 sinh-1 
\aJ 

(2.25) 

and the profiles surface slope (measured from the horizontal) is found by letting x=a in 

Eqn (2.20) i. e. 

O= tan' 
(2 b) 

a 
(2.26) 

a 

(m) 

Curved Length 

m) 

Slope at the Surface (degs) 

from the vertical from the horizontal 

1000 1884 18.4 71.6 

1250 2044 22.6 67.4 

1500 2218 26.6 63.4 

1750 2404 30.3 59.7 

2000 2600 33.7 56.3 

2500 3011 39.8 50.2 

3000 3442 45.0 45.0 

Table 2.5 

Parabolic Quadrant Lengths and Surface Slopes 

2.2.4 Catenary Curve 

A catenary can be defined by the equation: 

y=c cosh XJ (c is a constant) 
C 

(2.27) 
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The curve and co-ordinate system used are illustrated in Figure 2.1(c). The constant is 
determined by iteration using the surface boundary condition y=c+b when x=a. All 
iterations are carried out using an EXCEL spreadsheet. Table 2.6 lists a selection of 

catenary equation constants for a range of horizontal and vertical offsets. 

a 

m) b= 1000 m 

Catenary Constant 

b= 1500 m b= 2000 m 

1000 618.76 475.68 404.43 

1250 911.60 683.29 572.61 

1500 1263.50 928.14 766.54 

1750 1675.60 1211.24 987.96 

2000 2148.64 1533.40 1237.52 

2500 3279.31 2297.24 1823.19 

3000 4657.74 3222.96 2526.99 

Table 2.6 

Catenary Equation Constant Values 

On differentiating Eqn (2.27) the following derivatives are obtained: 

dx = sinh 
( C) 

(2.28) 

ax =c cosh 
i C) 

(2.29) 

When these derivatives are substituted into Eqn (2.6) a bending moment expression is 

obtained: 

M_1 
X EI 

c cosh2 -1 

(2.30) 

CcJ 
At the seabed (x = 0): 

M1 
EI c 

(2.31) 

2-11 



At the surface (x = a): 

M1 
EI 

c cosh( a) 
c 

(2.32) 

The following table uses Eqns (2.31) and (2.32) to calculate end bending loads for a range 

of parabolic profiles. The horizontal offset -a is increased from 1000 to 3000 m whilst 
keeping the vertical offset b constant at 1500 m. 

a 

m) 

Bending Moment (kNm) 

Seabed Surface 

Bending Stress 

Seabed 

(N/mm2) 

Surface 

1000 2214 533 239.4 57.6 

1250 1541 482 166.7 52.2 

1500 1135 433 122.7 46.9 

1750 869 388 94.0 42.0 

2000 687 347 74.3 37.5 

2500 458 277 49.6 30.0 

3000 327 223 35.3 24.1 

EI=1.053 E09 N/m2 

Table 2.7 

Bending Moments and Stresses at the Seabed and Surface for a Range of Catenary 

Curves 

The results of the analysis demonstrate that in the case of a catenary profile the behaviour 

between bending load and an increase in surface offset is fairly straightforward. As a is 

increased curvatures at both surface and seabed ends reduce resulting in a decrease in 

bending stress. 

The length of a catenary arc from x=0 to x=a is attained by using the following 

hyperbolic expression: 

L=c sink 
a- 
c 

(2.33) 
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and the surface slope is found from Eqn (2.28): 

= tan' 
[Sflh(. a)] (2.34) 

a 

(m) 

Curved Length 

(m) 

Slope at the Surface (degs) 

from the vertical from the horizontal 

1000 1918 13.9 76.1 

1250 2074 18.2 71.8 

1500 2244 22.5 67.5 

1750 2426 26.5 63.5 

2000 2617 30.4 59.6 

2500 3024 37.2 52.8 

3000 3452 43.0 47.0 

Table 2.8 

Catenary Quadrant Lengths and Surface Slopes 

2.2.5 Discussion 

The geometric analysis undertaken has established that for all three mathematical 

curves considered maximum bending moments occur at the seabed, except in the case of 

an elliptic profile when horizontal offset exceeds vertical offset. For the selection of 

surface offsets considered (1000 to 3000 m) bending stresses at the seabed are found to 

be lowest in the case of the ellipse and highest for the parabola. However when the 

conditions at the surface end are examined the converse is found, with the largest stresses 

corresponding to the elliptic curve and the smallest with the parabolic. At both ends of 
the curve and in fact along the entire length the catenary is shown to offer an almost mean 
bending stress between those of the ellipse and parabola. Bending load distributions for 

all three curves are illustrated graphically in Figures 2.9 to 2.11 for horizontal offsets of 
1000,1500 and 2000 m. 

The parabola and catenary both suffer from having a significant slope at the sea surface 

creating potential problems in terms of connection to either a turret or sub-surface buoy. 

The ellipse however avoids any connection problems with the ideal end condition of 
infinite slope. These geometric features are illustrated in Figures 2.12 to 2.14. 
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Curve length follows the same behaviour as that shown for both bending load and surface 

slope, in that the catenary profile possesses a length that is somewhere in between that 

offered by the parabola and ellipse. For the range of surface offset values analysed the 

elliptic quadrant possesses the greatest length and the parabolic the least and as found in 

the case of slope, the difference between catenary and parabola is considerably smaller 
than that between catenary and ellipse. It should be noted that any reduction in length will 

ultimately be beneficial for three reasons: 

" Limits the length exposed to current 
" Reduces material and fabrication costs 

" Makes the installation of the riser easier 

In general the catenary appears to offer a compromise between the parabola and ellipse in 

terms of its geometric characteristics. The results also suggest that for a given sea depth, 

horizontal surface offset is a critical factor in determining the profile load, length and 

surface slope and so in the next section this will be one aspect that will be looked at in 

more detail. 

The elliptic and parabolic curves, although convenient mathematically would be very 
difficult to attain on a practical basis. It would require an exact buoyancy load 

distribution to be imposed along the riser and due to the bending flexibility of the system 

very little tolerance in either weight or buoyancy could be accommodated. Any benefits 

would be significantly out weighed by an inevitable increase in fabrication complexity 

and cost. A catenary however describes the form assumed by a perfect flexible 

inextensible chain of uniform density suspended from two supports. Therefore a riser 

with a negligible bending stiffness, uniform submerged unit weight and supported at 

surface and seabed could accurately be assumed to take up a catenary profile. Therefore 

on a practical installation and production basis a catenary curve appears to offer the only 

real option in terms of riser profile. As a result of this it will be a catenary geometry that 
is taken up and analysed in detail throughout the rest of this chapter with the objective of 

using the subsequent results throughout the rest of the production systems design detailed 

in this thesis. 
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2.3 Catenary Line Analysis 

2.3.1 Introduction 

The behaviour of a catenary riser operating in an deep water environment where 
depths range from between 1000 and 2000 m can accurately be modelled as a common 

mooring line. This usually comprises of a freely hanging pre-tensioned wire or chain line 

connecting a surface platform to an anchor on a seabed some distance from the platform. 
If the wire line is replaced by a pipe or bundle of pipes and an anchor substituted for a 

seabed connection unit the entire assembly then effectively becomes a catenary riser 

production system. A catenary riser operating in deep water will have an overall length of 
between 2 and 3km depending upon length of offsets and will therefore have negligible 

stiffness in bending even though the riser is of a rigid steel fabrication i. e. it is not a 
flexible riser. 

The basic theory underlying the behaviour of catenary lines is well known - see, for 

example, O'Brien and Francis (1964) [3]. However this section will review the basic 

mechanics of a catenary and derive its governing equations. 

2.3.2 Governing Equations for an Inelastic Catenary Line [4]. 

Figure 2.2(b) shows an element of a line (assumed to be inextensible) of constant 

submerged weight per unit length w hanging freely as shown in Figure 2.2(a). The 

element weight of w ds is supported by a variation in tension along the line. A differential 

equation for this variation is obtained by taking both vertical and horizontal equilibrium 

of the forces acting on the line element of Figure 2.2(b). Thus 

vertically: 

TsinO + 
ds (Tsin O) ds - wds - TsinO =0 (2.35) 

ds 
(T sin 6) =w (2.36) 

horizontally: 

ä (TcosO) =0 (2.37) 
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Taking sin 0= dy/ds and cos 0= dx/ds and substituting them into Eqns (2.36) and (2.37) 

respectively gives: 

and 

Y d (T ds 
=w (2.38) 

ä(Tä)=° (2.39) 

Integration of Eqn (2.39) yields the expression: 

T 
äs 

=H (2.40) 

in which H is a constant horizontal force component in the line due to the fact that no 

external horizontal forces act on the line in still water. Substituting Eqn (2.40) into Eqn 

(2.38) and differentiating gives an equation of the form: 

Since 

dzyH 
-wa =o (2.41) 

dX2 

ds dy )2]1/2 

ax -1+ dX 
(2.42) 

Eqn (2.41) can be written in terms of x and y only as: 

2Z 1/2 

(2.43) H dX 
-Wi+ 

(dX) 
=0 

This equation is a differential equation for a simple catenary and can be readily integrated 

to yield: 

dx = sink IH+ (2.44) 

in which the constant of integration 0 is given by using boundary conditions which 

constrain the line to go through points x=0, y=0 (seabed) andx = a, y=b (surface). 
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When this condition is applied: 

*= sinh-' 
ýbýaý 

sink A. 
+ A. (2.45) 

in which 
X= wa 

2H 
(2.46) 

It should be noted that if a catenary riser is to have zero slope at the point of seabed 

contact then from Eqn (2.44) it is shown that the constant 6 must also be zero. In order 
for seabed connections to either a wellhead or other subsea assembly to be made possible 
the riser has to attain a horizontal orientation at the seabed. Therefore all profile 

calculations are based upon zero slope at x=0 and hence 64 =0. Integrating Eqn (2.44) 

again and using the boundary conditions given above yields: 

y=W 
Lcosh 

IH +15 I- cosh 15 (2.47) 

This equation can be cross checked by applying the zero slope condition, which is done 

(as previously mentioned) by putting 6 equal to zero and hence: 

y=w cosh IH (2.48) 

The component H1w is constant along the catenary line and if it is replaced by the 

constant c, Eqn (2.47) then becomes identical to the mathematical expression defining a 

catenary curve given in Section 2.2 i. e. 

y=c cosh 
X- 
c 

(2.49) 

This is useful since the equation constant values already calculated using an iterative 

procedure and tabulated in Table 2.6 can be used to obtain horizontal forces for catenary 
lines with submerged unit weights w and horizontal and vertical offsets a and b 

respectively i. e. H= cw. Horizontal forces for a range of submerged unit weights (100, 

500,1000,1500 and 2000 N/m), horizontal offsets (1000,1250,1500,1750 and 2000 m) 
and vertical offsets (1000,1400 m) are given in Appendix A. 
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A number of important results can be derived from these equations. The length of a 
catenary line from its origin (seabed) to a position (x, y) can be obtained as: 

s= f- 
x 

dx (2.50) 
0 

From Eqn (2.42) 

dx = cosh 
IH+ 

$J (2.51) 

therefore: 

x 
s= f cosh l H+ i4 

)dx 

0 

s= 
ýL W 

sinhi 
H+ i3J] 

0 

s=W [Binh 
iH 

+15)- sinh l5] (2.52) 

The total length can be found by letting x=a 

W 
sinh IH +15 

)_sinh] 
L=C 

\ 

L= 
2H 

sinh, % cosh (O + X) (2.53) 
w 

This equation can be verified by putting H/w =c and t=0, it is then shown to be equal 

to Eqn (2.33). Substituting x=a and y=b into Eqn (2.47) and simplifying also gives: 

b= 
2H 

sinh%sinh(15 + 
w 

(2.54) 
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Squaring Eqns (2.53) and (2.54) and subtracting yields the relationship: 

a2 sinh2 2 
LZ = b2 +v (2.55) 

and if the term 

wa 
2H 

is inserted, then: 

(L2 
- b2) w2 =4 Hz sinh2 

2H (2.56) 

which is a useful expression for determining H by iteration from known variables a, b, w 

and L. The loads exerted on the riser due to its geometry and submerged weight can now 

be obtained easily from the work outlined above. 

Axial Tension 
The axial tension distribution along the catenary can be written as: 

T=H(dsl 
ldx)x 

T= H cosh I 
H+ 0I (2.57) 

Vertical Force 

The vertical component of tension can be given by: 

V_H 
dy 
dx x 

V= H sinh l 
H+* I (2.58) 
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Bending Moment/Stress 
An expression for bending moment can be formulated by substituting Eqn (2.44) and its 

differential derivative: 

dx H cosh 
(H 

+15) (2.59) 2- 

into Eqn (2.6) and hence: 

wcoshl \'s' %+ 
13) 

M= 
r` 3ý2EI 

H[1+sinh2(ý'"%+13)] 

M=wEI (2.60) 
H cosh2 

(\7 /+ 

This again can be checked by first substituting c= H/w and 6=0 and then comparing it 

to Eqn (2.32). 

The bending stress resulting from this moment can be established using the fundamental 

relationship: 

M ßb 
= 

zI 
(2.61) 

in which z is the transverse distance from the neutral axis and I is the second moment of 

area. If this equation is substituted into Eqn (2.60) then: 

wEz 
ßZ =/ 

H cosh2 (w x/ 
+ ý) 

(2.62) 

Shear Force 

The shear force exerted across the riser cross section can be obtained by calculating the 

transverse component of horizontal force, see Figure 2.2(b). 

Cdy) =H 
(dx dy) SF=H 

ds)x ds dxx 
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SF=Htanhl H +1ýJ (2.63) 

2.3.3 Catenary Characteristics 

The equations set out above are utilised in several EXCEL spreadsheets to derive 

riser loads and profile features such as slope and length for a selection of catenary 
geometries. In order to enable optimum weights and profiles to be chosen several 
determining parameters are varied and the system's sensitivity towards them established. 
Parameters varied include: 

" Horizontal offset (1000,1500 and 2000 m) 
" Submerged unit weight (100,500,1000,1500 and 2000 N/m) 

Figures 2.15 to 2.23 utilise Eqns (2.57) to (2.63) to illustrate the loading exerted upon the 

catenary riser as a result of its geometry only. The axial and shear loads shown in graphs 
(a) and (b) attain a maximum value at the surface whilst the bending loads reach a peak at 

the seabed. 

Axial stress results shown in graph (b) are calculated using two cross-sectional areas: 

" C. P csa only - cross-sectional area of the carrier pipe only 

" C. P plus Flowlines csa - total cross-sectional area of the carrier pipe and flowlines 

with dimensions as tabulated in Table 2.1 

This is done to illustrate the effect of allowing the flowline bundle to become an integral 

part of the riser structure. The conclusion being that the flowlines reduce the axial 

stressing by virtually trebling the steel cross-sectional area. Bending stresses however, are 

not influenced by the flowlines since they are a function of distance from the neutral axis 

z as opposed to cross-sectional area, see Eqn (2.62). All the bending stress data presented 
is based upon z= D12 where D is the carrier pipe outer diameter. Maximum stresses 

along the riser are obtained by summing together both the bending and axial stress 

contributions as shown in graph (e). These results are again presented for the two cross- 

sectional area conditions. If the risers submerged unit weight is increased (assumed to be 

constant along the entire length) from 100 through 1000 to 2000 N/rn the axial loading is 

shown to also increase as expected, however the bending stress remains un-affected since 
the profile geometry is independent of unit weight. Another parameter that is varied is the 
horizontal surface offset which in the Figures 2.15 to 2.23 is increased from 1000 through 
1500 to 2000 m. 
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The effects of this on the stress condition are twofold: 

" Increases the axial loading due to a greater suspended length of riser 

" Reduces the bending load at the seabed as a result of less curvature; the whole 

profile becomes much flatter. 

As an example, an offset of 1000 m delivers a maximum stress of approximately 230 

N/mm2 which in relation to a working stress of 270 N/mm2 (0.6 of yield strength) is 

obviously too high given that environmental loading has yet to be considered. However 

an offset of 2000 m yields a maximum stress of approximately 100 N/mm2 which would 
be deemed acceptable since it leaves enough strength capacity to hopefully accommodate 

current and wave loading. Another important consideration is that of riser slope, as the 
horizontal offset is increased the slope at the surface (from the horizontal) decreases. A 

shallow riser profile at this point could cause connection problems at the surface vessel. 

All the loading and geometric characteristics associated with both the seabed and surface 

ends are summarised in tabular format in Tables 2.12 to 2.17 for a comprehensive range 

of riser conditions created by altering selected parameters as detailed above. 

Figures 2.24 to 2.26 illustrate the sensitivity of the system to sea depth by plotting 

selected riser loads against sea depths of 1000,1400,1500 and 2000 m. A value of 1400 

m has been included since the results will then correspond to a sub-surface buoy 

arrangement operating in 1500 m of water as already detailed . i. e. the risers vertical offset 

= 1400 m. An increase in water depth requires a greater length of riser and hence a 

greater suspended weight. If this characteristic is coupled with the fact that as the sea 
depth is increased, the risers inclination with the horizontal also increases then the 

outcome is a reduced horizontal force and a greater vertical load acting upon the riser as 

shown in graphs (a) and (b) respectively. The resultant of these two load components 

acting perpendicular to one another is a tensile force acting axially along the riser. For a 

relatively small horizontal offset such as 1000 m, it is shown that axial tension 

significantly increases with vertical offset, see Figure 2.24(c). This is due to the 
dominance of the increasing vertical load component over the declining horizontal load 

component, since the riser has a relatively steep slope, however this dominance reduces 

as the horizontal offset is increased and the gradient becomes increasingly shallow. For a 
horizontal offset of 2000 m the reduction in horizontal force becomes the dominate 

characteristic in going from a sea depth of 1000 to 1400 m to such an extent that the 

resultant axial tension at the surface actually decreases slightly. If the sea depth is further 

increased up to 2000 m then the axial tension is also increased and so it is then apparent 
from Figure 2.26(c) that an optimum sea depth of approximately 1400 m can be 
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established, however more data points are required in order to attain a more accurate 
behavioural picture. 

2.4 Mooring Characteristics 

2.4.1 Introduction 

As previously stated a catenary riser is effectively a mooring line and will 
therefore introduce a stiffness composed of an elastic and geometric stiffness on both 

heave and surge surface vessel motions. Surge is taken in this analysis to describe 

horizontal motion within the plane of the riser i. e. along the X-axis, see Figure 2.6(a). As 

the vessel moves in response to environmental loads such as waves and current, surface 

restoring forces are generated from a change in tension, brought about by the varying 

riser geometry. These forces are non-linear and are solely dependent upon catenary 

configuration i. e. offset length (vertical and horizontal) and submerged weight. This 

section therefore aims to examine the mooring potential of both riser systems in both 

heave and surge by calculating stiffnesses for a range of offsets and submerged unit 

weights. The two production system concepts in question both consist of an in-plane 

double catenary riser arrangement as proposed in Chapter 1, and can be summarised as 
follows : 

" Hybrid Concept - two risers connecting to a sub-surface buoy 100 m below the 

sea surface 

catenary vertical offset = sea depth - 100 m= 1400 m 

" Two risers connecting to an FPSO turret on the sea surface 

catenary vertical offset = sea depth = 1500 m 

For the purposes of this study stiffness values are calculated using surface or near surface 
horizontal displacements of up to 100 m which is approximately 7% of water depth. For a 
tethered sub-surface buoy a drift displacement of 7% would considered a maximum, 
however for a surface moored vessel (FPSO) excursions of up to 25% of water depth may 

need to be designed for in order to accommodate the simultaneous scenario of a 100 year 

current with a damaged mooring system. The bending and axial loading exerted on the 

risers as a consequence of in-plane surface displacements are investigated in Chapter 5. 
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The following analysis neglects the effect of elasticity on the grounds that it will be small 
due to the risers large axial stiffness (AE) generated by the relatively high combined 
cross-sectional area of the carrier pipe and flowline bundle. The riser is assumed to have a 
constant submerged weight per unit length w. 

2.4.2 Mooring Stiffness - In Plane 

Figure 2.3 shows a catenary riser deployed from a connecting point A on the 

underside of a sub-surface buoy or FPSO to a point B on the seabed with horizontal and 

vertical offsets a and b respectively. Points A and B represent catenary riser end positions 
for an undisplaced condition i. e. point A can be considered as the centre of a surface 

excursion watch circle. As the surface vessel is disturbed from point A, through A3, to A4, 

the length of catenary riser lying on the seabed progressively increases resulting in a 

reduction in suspended length. The tension load in the riser at the surface end position Al 

is a function of the total submerged weight of the suspended length and so as this 
decreases so does the tension. This feature coupled with the simultaneous increase in riser 

angle to the horizontal causes the horizontal force H, on the vessel to decrease in a non- 
linear manner. If the surface end is shifted in the opposite direction i. e. from A, through 

A2, to Al then the riser is lifted off the seabed and the suspended length is subsequently 
increased. The tension increases due to the extra riser weight and coupled with a 

reduction in riser inclination at the buoy connection the horizontal force is increased. 

Vertical displacements exhibit exactly the same behaviour. If the surface end is shifted 

upwards from Al through to A4 the riser is progressively lifted off the seabed and the 
downward vertical force Vsi exerted on the surface vessel increases, see Figure 2.4. 

However if it is shifted downwards the opposite occurs i. e. the vertical surface force 

decreases. 

A mooring analysis is carried out utilising the equations developed in Section 2.3 within a 
FORTRAN computer program thus enabling the many iterations required to be carried 

out quickly and easily. Calculations are set up initially to ascertain the horizontal and 

vertical forces exerted on the surface vessel at prescribed displacements from an initial 

undisplaced position A. 

" up to ±100 min 25 m increments - horizontally 

" up to ±50 m in 25 m increments - vertically 
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The analytical process can be represented in block diagram form and as an example, the 
surge displacement case is displayed diagramatically in Figure 2.5. 

Some of the terms expressed in this diagram are defined below: 

Surface offset (a) : Horizontal distance from the point of seabed contact 
B to the risers top end connection at the point (A, b) 
for the undisplaced condition and hence a=A, see 
Figure 2.3 (A is the horizontal distance from the 

vertical axis 1). 

Displaced surface offset (ad1) : Horizontal distance from the point of seabed contact 
B; to the risers top end connection at the co-ordinate 
(Ai, b) for the displaced condition, see Figure 2.3 

Catenary length (L) : Length of suspended riser between points A and B 
for. the undisplaced condition, see Figure 2.3 

Displaced catenary length (Ldp) : Length of suspended riser between points Al and B; 

for the displaced condition, see Figure 2.3. For a 
situation in which the top end of the riser is moved 
towards the left so that A< <A the following can 
written : 

L- Ld; = distance B, B, (2.64) 

The calculations shown at the top of the diagram in Figure 2.5 are those for a riser in an 

undisplaced condition (whose profile is illustrated in black in Figure 2.3(a)) and are 

carried out first, utilising an input consisting of horizontal surface offset a, vertical offset 
b and submerged unit weight w. The catenary length L from the resulting output and the 

surface offset a from the input are then used as starting values in the subsequent analysis 

that goes on and calculates displaced length Ldp, displaced surface offset ad; and 
horizontal force (horizontal component of riser tension) H. The analysis involves 

progressively increasing or decreasing the catenary length (depending upon the value of 
Ai relative to A) whilst iterating to find Hi using Eqn (2.51) until the criterion of zero slope 

at the seabed is satisfied. 
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Undisplaced riser condition : 

Input 
1. Horizontal surface offset (a) 

(as = a) 
2. Vertical offset/Sea depth (b) 

3. Submerged unit weight (w) 

Calculate the catenary constant (c) 
from the iteration of Eqn (2.27) 

Calculate the catenary riser total length (L) 
from Eqn (2.33) 

Suspended length = Total length (Ls = L) 

Calculate the horiziontal force (H) 
from c= H/w (see Eqn 2.49) 

Displaced riser condition (i) : 

Input the displacement horizontal surface offset (a; 

Let the displaced suspended length equal the undisplaced total length 
Lsi =L 

Let the suspended horizontal surface offset equal the displaced horizontal surface offset 

as1 = a1 

Ifa1>a n=+0.001 

Ifa; <a n=-0.001 

I----, 

Ls, = Lsi +n 

as1 =a1 -(L-Ls, 
) 

Suspended length (Ls; 

is progressively decreased 
if a1 <a 

and increased 
if a1 >a 

No 

Iterate to find the horizontal force (H1 

using Eqn (2.56) 

(Ls. 
- b2) w2 = 4Hj sinh 

2 (was. 

2Hj 

Calculate the riser slope at the seabed 
using Eqn (2.44) at x=0 

Cdx)a 
-Binh(ý4) 

Is the seabed slope zero ? 
Yes 

Output 

(H;, Ls1 and as1) 

Figure 2.5 
Block diagram for the catenary parameter calculations 



If the surface forces are plotted against vessel or buoy offset a non-linear curve is 

obtained and since the stiffness is equal to the differential of the curve then it can be 

considered as behaving linearly over the displacement range. For a single riser 
arrangement the horizontal and vertical forces are always in the same direction and hence 

the stiffness is uni-directional i. e. it only acts left to right horizontally (for the 

configuration shown in Figure 2.3) and upwards vertically. For the purposes of a 
comparative study the risers stiffness at the zero displacement position is calculated, 
which is done by assuming the force curve to be linear between prescribed displacements 
lying either side of this position i. e. 25 and -25 m. In most situations this stiffness value 
will be a good approximate to the mean for the entire displacement range. Surge 
displacement profiles and force curves for the sub-surface buoy system with varying 
horizontal offsets and unit weights are illustrated in Figures 2.27 to 2.29. Three main 
conclusions can be drawn from these results: 

For a given displacement 

" Curve gradient increases with unit weight 

" Curve gradient increases with a reduction in vertical offset 

" Restoring force increases with horizontal offset 

The first point can be explained by noting that as the top end of the riser is displaced from 
A to Al the same amount of riser is either lifted off or deposited on the seabed irrespective 

of its submerged weight. However the resulting increase or decrease in riser tension and 
hence restoring force is a function of unit weight and therefore varies. This observation is 
demonstrated more clearly if the stiffness k is tabulated against a selection of riser unit 

weights, see Table 2.6. 

Submerged unit weight 

N/m 

Stiffness for a Single 

Riser Arrangement kN/m 

Stiffness for a Double 

Riser Arrangement (kN/m) 

100 0.427 0.854 

500 2.134 4.268 

1000 4.267 8.534 

1500 6.401 12.802 

2000 8.534 17.068 

Table 2.9 

Surge Stiffnesses for a Horizontal Offset of 1500 m and a Vertical Offset of 1400 m. 
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The second conclusion can be demonstrated in Table 2.10. As the vertical offset is 

reduced the riser curvature at the seabed end decreases with the consequence that a 
greater length of riser is either deposited on or lifted off the seabed for a given 
displacement. This results in a greater curve gradient and hence a higher stiffness. 

Vertical offset Stiffness for a Single Stiffness for a Double 

m) Riser Arrangement (kN/m) Riser Arrangemnt (kN/m) 

1400 8.534 17.068 

1500 7.437 14.874 

Table 2.10 

Surge Stiffnesses for a Horizontal Offset of 1500 m and a Submerged Weight of 2000 N/m. 

Finally, Table 2.11 shows the effect of horizontal offset on surge stiffness, from which it 

is shown that stiffness increases with offset. The reasons for this are identical to those 

given above concerning the effects of a reduction in vertical offset. Increasing the 
horizontal offset for a given vertical offset has the same effect geometrically as reducing 
the vertical offset whilst keeping a constant. A comprehensive set of stiffness results for 

both surge and heave displacements are tabulated in Tables 2.18 to 2.20. 

Horizontal offset 

m) 

Stiffness for a Single 

Riser Arrangement (kN/m) 

Stiffness for a Double 

Riser Arrangement (kN/m) 

1000 4.237 8.474 

1250 6.091 12.182 

1500 8.534 17.068 

1750 11.697 23.394 

2000 15.719 31.438 

Table 2.11 

Surge Stiffnesses for a Vertical Offset of 1400 m and Submerged Weight of 2000 N/m 

The analysis so far has concentrated on calculating the in-plane stiffness associated with a 

single riser arrangement as shown in Figure 2.3, however both the sub-surface buoy and 
FPSO concepts involve two in-plane risers as illustrated in Figure 2.6(a). The combined 
bi-directional stiffness can be calculated by first modelling the system as an equivalent 

spring arrangement in which two identical springs are attached in tandem to opposite 
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sides of a block, see Figure 2.6(b). Both springs are subjected to a pretension FO and 

represent the two risers with a horizontal tension H, attached to a buoy or surface vessel 
(modelled as a simple block) at zero displacement. In this condition there are no external 
forces exerted on the system and so an equation of static equilibrium can be expressed 

simply as: 

Fo-Fo=0 (2.65) 

If the surface vessel or block is displaced a distance x by an external force FeXt then the 

static equilibrium equation is as follows: 

(F0 -kx)+Fe�� -(F0+kx)=0 (2.67) 

where k is the stiffness of a single riser arrangement. FO cancels out and therefore: 

-kx+Fext-kx=0 

Fext =2kx (2.68) 

This expression shows that the total stiffness of the two riser system is simply twice that 

of the single riser arrangement i. e. 

kT = 2k 

This expression also applies in the case of vertical displacements. 

(2.69) 
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2.4.3 Mooring Stiffness - Out of Plane 

The mooring behaviour of the riser arrangement has so far been based upon 

surface or near-surface displacements within the same plane i. e. heave and surge, 
however this anlysis can be generalised to include out-of-plane excursions, see Figure 

2.7. If the surface production vessel is displaced along a heading which is at an angle a 

to the X-axis then the total stiffness of the system is simply the component of the risers 

stiffness in this direction as shown below : 

kT =2kcosa (2.70) 

in which k is the linear stiffness associated with each catenary riser as previously 

calculated. If a=0° then the displacement is in the surge direction and the stiffness 
from the risers is a maximum, however if a= 90 0 then the displacement is in the sway 

direction (perpendicular to the riser plane) and the corresponding stiffnes is zero. Figure 

2.8(a) plots the variation in stiffness through the complete range of directional 

displacement angles (180°) for specified conditions. Actual stiffness values for a several 

angles are given in the table below, see Figure 2.8(b). 
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Shear Loading at the Surface End (maximum) 

cE 
oE 

nu 

mN 

Eß 
-5 

12 F- m 
ö3 
m0 
aa 

ää 
m0 
EE 
00 

U0 

Submerged 
Unit Weight 

(N/m) 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

Shear Force Shear Stress 

(kN) (N/mm2) 

46 1.3 

231 6.7 

462 13.5 

693 20.2 

923 27.0 

65 1.9 

324 9.5 

649 19.0 

973 28.4 

1298 37.9 

86 2.5 

429 12.5 

858 25.0 

1286 37.6 

1712 50.1 

108 3.2 

542 15.8 

1084 31.6 

1625 47.5 

2167 63.3 

132 3.9 

662 19.3 

1323 38.6 

1985 58.0 

2646 77.3 

183 5.3 

915 26.7 

1829 53.4 

2744 80.1 

3658 106.8 

236 6.9 

1178 34.4 

2356 68.8 

3534 103.2 

4712 137.6 

Table 2.17 

Horizontal 
Surface Offset 

(m) 



Riser Stiffness in Surge 

Vertical Offset = 1400 m 

Submerged 
Unit Weight 

(N/m) 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

Stiffness for a Single Stiffness for a Double 
Riser Arrangement Riser Arrangement 

(kN/m) (kN/m) 

0.2 0.4 

1.1 2.1 

2.1 4.2 

3.2 6.4 

4.2 8.5 

0.3 0.6 

1.5 3.0 

3.0 6.1 

4.6 9.1 

6.1 12.2 

0.4 0.9 

2.1 4.3 

4.3 8.5 

6.4 12.8 

8.5 17.1 

0.6 1.2 

2.9 5.8 

5.8 11.7 

8.8 17.5 

11.7 23.4 

0.8 1.6 

3.9 7.9 

7.9 15.9 

11.8 23.6 

15.7 31.4 

Table 2.18 

Horizontal 
Surface Offset 

(m) 



Riser Stiffness in Surge 

Vertical Offset = 1500 m 

Submerged 
Unit Weight 

(N/m) 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

Stiffness for a Single Stiffness for a Double 
Riser arrangement Riser Arrangement 

(kN/m) (kN/m) 

0.2 0.4 

1.0 1.9 

1.9 3.8 

2.9 5.7 

3.8 7.6 

0.3 0.5 

1.3 2.7 

2.7 5.4 

4.0 8.1 

5.4 10.8 

0.4 0.7 

1.9 3.7 

3.7 7.4 

5.6 11.2 

7.4 14.9 

0.5 1.0 

2.5 5.0 

5.0 10.1 

7.5 15.1 

10.1 20.1 

0.7 1.3 

3.3 6.7 

6.7 13.4 

10.0 20.0 

13.4 26.7 

Table 2.19 

Horizontal 
Surface Offset 

(m) 



Riser Stiffness in Heave 

Vertical Offset = 1500 m 

Submerged 
Unit Weight 

(N/m) 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

100 

500 

1000 

1500 

2000 

Stiffness for a Single Stiffness for a Double 
Riser Arrangement Riser Arrangement 

(kN/m) (kN/m) 

0.2 0.4 

1.1 2.2 

2.2 4.3 

3.3 6.5 

4.3 8.7 

0.2 0.5 

1.2 2.4 

2.4 4.8 

3.6 7.3 

4.8 9.7 

0.3 0.5 

1.3 2.7 

2.7 5.4 

4.0 8.1 

5.4 10.7 

0.3 0.6 

1.5 3.0 

3.0 5.9 

4.4 8.9 

5.9 11.8 

0.3 0.6 

1.6 3.2 

3.2 6.5 

4.9 9.7 

6.5 12.9 

Table 2.20 

Horizontal 
Surface Offset 

(m) 



CHAPTER 3 

The Design of a Buoyancy Support 
System for a Catenary Riser 



3.1 General Description 

The design of a production riser for ultra-deep water operations has to take into 

consideration the effects of its considerable self-weight resulting from the choice of steel 

as the fabrication material and a suspended length which could be anywhere between 

1000 and 3000 m depending upon the sea depth and the horizontal surface offset chosen. 
The weight of the riser assembly can be limited or even eliminated by the addition of 

support, either in discrete or continuous amounts along the risers length. The 

minimisation of a risers weight is critical if it is to be considered technically feasible for 

environmentally harsh oceanic conditions such as those experienced West of Shetland. 

Two very important reasons for this can be summarised as follows: 

" Limiting the axial stress exerted upon the riser due to its own weight enables the 

system to retain a greater ability to safely withstand loads generated by prevailing 

environmental conditions. 

" The connection assembly between riser and surface vessel or sub-surface buoy is 

a critical component within the system. To ensure that this component is 

technically feasible in terms of its required strength at a cost that is economic 

compels the combined forces of self-weight and environmental loading acting 

upon it to be minimised. 

Riser support is achieved through the addition of a buoyancy system which works on the 

basis of a principle laid down by the Greek physicist and mathematician Archimedes 

(c. 287 - 212 B. C. ). The buoyancy of a body immersed in a fluid is the vertical upthrust it 

experiences due to the displacement of the fluid, see Figure 3.1(a). It is therefore the 

resultant of all the hydrostatic pressure forces (which increase with depth) acting 

perpendicular to the sides of the immersed body, see Figure 3.1(b) and can be expressed 

analytically as: 

Buoyancy = Vgpf (3.1) 

where: V= volume of fluid displaced 

pf = fluid density 

If the body is fully immersed as illustrated in Figure 3.1 then 7 will also be equal to the 

external volume of the body. 
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The submerged weight of a body which was a term used frequently in Chapter 2 can now 
be fully defined as being equal to the weight of the body in air minus the buoyancy 

exerted upon it when immersed i. e. 

Submerged weight = Weight in air - Buoyancy 

A buoyancy system simply reduces the submerged weight of a riser structure by 

increasing its external volume thereby increasing the buoyancy force exerted upon it. An 

effective buoyancy system will greatly enhance the volume at the expense of very little 

gain in weight. 

Any buoyancy system under consideration for a deep water riser has to posses certain 

attributes: 

" Sufficient compression strength. The hydrostatic pressure at a water depth of 1500 

m is 151 bar (2189 psi). If the buoyancy material is very compressible it will 

contract under pressure losing volume and hence buoyancy. Ordinary expanded 

polystyrene foam for example is useless at any depth in excess of 50 m for this 

reason. 

" Low density and therefore a high buoyancy/weight ratio 

" Very low or preferably zero rate of water absorption over long periods of time. 

The gradual intrusion of water in to a buoyancy system or material causes an 
increase in density and therefore weight. The magnitude of this increase may have 

a negligible effect for short term usage, however for long term exposure the 

weight gain may accumulate to an unacceptable level. 

" Low maintenance over the operational lifetime of the production system. 

" Economical 

" Low fabrication complexity 

The objective of this chapter is to examine two buoyancy systems that have the potential 

capability of providing continuous support to a deep water production riser. This chapter 

discusses the main features of each system and how they effect the riser in terms of the 

following : 

" Manufacture and fabrication 

" Riser loading 

" Performance during installation 

" Performance during operational life span 
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3.2 Syntactic Foam Buoyancy 

3.2.1 Introduction 

Syntactics, because of their low density, were recognised as being ideal for 

deepsea buoyancy from the start. In addition to their low density, they are characterised 
by high hydrostatic strength and a low water absorption. For these reasons syntactic foam 

has long been the most commonly used buoyancy material for supporting marine risers in 

offshore oil exploration. Many drilling depth records have been set with risers equipped 

with syntactic foam, however exploration risers tend to be used for only short periods, 
from a few weeks to a few months at a time, so that most experience is limited to short 

term exposure to hydrostatic pressure. In recent years, however the emphasis has shifted 

to production, the industry needs assurance of 10-, 20- and even 30 year survivability 
during continuous deployment at depth, with buoyancy losses typically less than 3- 5% 

over the entire time span. To fully understand both the benefits and limitations that 

syntactic foam brings to deepsea buoyancy requires a basic knowledge of its unique 

structure and this is given in the next section. 

3.2.2 Syntactic Composite Structure 

Syntactic composites are unique materials formed by combining hollow, thin- 

walled glass microspheres with polymeric resins, which are the cured to produce solids 

with specific properties. Theoretically, the concept of introducing reinforced air in to a 

polymer matrix could include any hollow particle. But from the beginning, the material 

universally used in deepsea applications has been glass, since it is much stronger than any 

other medium available, and strength is the key requirement for withstanding hydrostatic 

pressures. Although glass spheres and resin are the fundamental ingredients, two other 

materials are usually incorporated - macrospheres and external skins. These are the four 

ingredients which form the traditional image of syntactic materials. The composition of 

syntactic foam is illustrated in Figure 3.2(a). 

Microspheres 

Microballon microspheres range from 6 to 120 microns in diameter and are made of high 

strength water glass feed stock. Internal atmosphere is inert. 
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Resins 

Glass microspheres can be incorporated successfully into a wide variety of polymers. 
Traditionally most subsea buoyancy utilises an epoxy matrix. 

Macrospheres 

Macrospheres are added to the resin-microsphere mix to provide additional density 

reduction at low cost, and to provide voids for absorbing the heat of the exothermic 

reaction, allowing large sections to be cured in one piece. They are thin walled and are 

usually made of a high strength, fibre-reinforced epoxy. 

External Skin 

Most subsea buoyancy incorporates a single surface layer of epoxy-saturated fibreglass to 

aid in resisting hydrostatic pressure and to provide a smooth, impact resistant surface for 

finishing, handling and maintenance. 

Performance 

When syntactics are exposed to water at high pressure the single walls of the few 

macrospheres tangential to the surface are broken. This minor damage stops here, because 

pressure then encounters only double walls consisting of the unbroken remainder of the 

broken macrosphere plus the walls of adjoining spheres. With greater pressure, however, 

water breaks through these double walls and floods the macrospheres. Next the remaining 

epoxy structure collapses. Therefore when syntactics are submerged at considerable 
depths a certain degree of buoyancy loss occurs depending upon the exposure time, this 

characteristic is graphically illustrated in Figure 3.2(b). 

The following table gives an example of the performance properties of a commercially 

attainable syntactic foam buoyancy module. The data is taken from Emerson and 
Cumings Eccofloat® buoyancy module series and represents a currently available 

material. 
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Performance Properties (Eccollt at "ý RG - 24) 

Nominal Density (k, -/m3) ? ti 4.4 

Crush Pressure (bar) 15 1.7 

Crush Pressure Depth (m) 1506 

Rated Service Pressure (bar) 91.9 

_Rate(] 
Service Depth (in) 914 

Table 3.1 

Syntactic Foam Properties 

A higher specification foam is available in terms of its pressure rating, however this is 

compromised by an increase in density. 

3.2.3 Structural Arrangement of the Buoyancy System 

The proposed design encases the flowline bundle. cºººnprisinýi Of t%\() 1)1 Iuction 

and two fluid injection lines plus an umbilical within syntactic foam. The whole assembly 
is then sleeved by a large diameter steel pipe known as a carrier pipe. The carrier pipe i, 

fabricated so as ensure that the contents enclosed within it are not exposed to sea water, 
however because of the pipes inherently small wall thickness to radius ratio (ý 0.02) it 

simply acts a shell membrane and is therefore unable to provide resistance to the high 

external hydrostatic pressures experienced in deep water. It therefore relies on the foams 

substantial compressive strength to support the carrier pipe wall so as to avoid failure 

through buckling. A structural connection between carrier pipe and Ilowline bundle is 

created by transversely sub-dividing the riser assembly along its length with bulkheads. 

These ensure that the carrier pipe and flowlines act integrally to resist tensile loads 

generated by self-weight, external environmental forces and thernº, ºI expansion. IIigh 

density polyurethane foam sleeves are inserted between the flowlines and syntactic foam 

in an attempt to insulate the buoyancy material from the potentially damaging el'l'ect of 
high temperatures generated by the hot flowline fluids. This phenomenon is investigated 

in more detail in the next chapter (Section 4.5.9). 

The main reason for introducing the carrier pipe, is to protect the syntactic toaº>> trýýný the 

effects of a prolonged exposure to high pressure sea water which have already be n 
discussed in the previous section. The carrier pipe ensures that water absorption doesn't 

occur and despite its limited strength in circumferential compression it will offer sonic 
degree of structural protection against the high hydrostatic pressures. The result of this 

being that a lower density foam can he used which ultimately henchts the ect)nonºics of 
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the system, the use of a carrier pipe also offers the operators more assurance in terms of 
buoyancy performance over the life span of the assembly. 

3.2.4 Operational Analysis 

The proceeding analysis uses an operational spreadsheet (Spreadsheet 3.1) 

constructed in EXCEL in order to evaluate the effect that the carrier pipe diameter has on 

the risers weight and buoyancy. The results should then enable a designer to select 

optimum dimensions on the basis of operational performance as well as cost. The 

analysis is conducted using two riser arrangements as shown in Figures 3.3,3.4 and 3.5. 

The first arrangement has a carrier pipe enclosing the standard four flowline bundle as 

previously detailed, where as the second arrangement has an additional flowline. This 

flowline provides the operator with greater flexibility in terms of adjusting the weight of 

the system. Filling the flowline with either water or air (at different pressures) can either 
ballast or de-ballast the riser. This is an extremely useful attribute especially during oil 

production, since it is common for wellhead production fluids to change in composition 

and therefore density over the life span of the reservoir. This change could be substantial 

enough to alter the submerged weight of the system to an extent which could be 

detrimental in terms of both the risers behaviour under environmental loading and the 

forces exerted upon a surface (or sub-surface) vessel. The ability to trim the risers weight 
during its operational life is therefore of great benefit. 

The spreadsheet breaks the riser up into six equal length compartments and for each of 

these the buoyancy and weight are calculated. At this stage it is assumed that the risers 

cross-sectional geometry along with the properties of the flowline fluids remain constant 

along the entire length. As a result both unit buoyancy and weight are uniform along the 

complete length of the riser. 

Note: Numbers in brackets correspond to columns or boxes displayed within the 

spreadsheet. 

The buoyancy (5) of each compartment is attained using the following expression: 

Buoyancy =4 DZ g Lc psw (3.2) 

where D= outer diameter of the carrier pipe 
Lc = compartment length 

psw = sea water density 
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The total weight (15) of each compartment is simply calculated by summing together the 

weights of all its constituent components i. e. 

Total weight = 
Weight of syntactic foam buoyancy (6) + 

Oil in flowline 1 (7) + Oil in flowline 4 (8) + 
Injection gas in flowline 2 (9) + Injection water in flowline 3 (10) + 
[Fluid in additional ballast line (11)] + 
Carrier pipe (12) + Flowlines and umbilical (13) (3.3) 

The compartments unit buoyancy (16) and unit weight (17) are obtained by dividing 

Eqns (3.2) and (3.3) by the compartment length. The resultant of these two opposing forces 

acting upon the compartment is termed the submerged unit weight (19). 

Submerged unit weight = Unit weight - Unit buoyancy (3.4) 

If the submerged weight is positive then the weight exceeds the buoyancy and the 

compartments condition can be expressed as being negatively buoyant. However if the 

submerged weight is negative then the buoyancy exceeds the weight and the 

compartment is said to be positively buoyant. A condition of neutral buoyancy has been 

attained if the weight and buoyancy become equal. This equation however, neglects any 

forces exerted upon the riser due to external and internal hydrostatic pressures of both 

fluids acting upon the surfaces of the cylinder. 

The spreadsheet allows the designer to select whether an additional ballast line is to be 

included within the riser by simply typing in a yes/no answer to the question 'Do you 

want to include an additional ballast flowline' (19). It then allows you to enter in the 

dimensions of the flowline with a further question requesting you to select the fluid type 

contained within it (either air or water) by again answering either yes or no to the 

appropriate questions (20). If the flowline is to contain air then its pressure can be altered 

(22), this has the effect of changing its density and hence weight if its volume and 

temperature are assumed to remain constant. The Ideal Gas Law equation expresses this 

statement analytically: 

P 
RT 

(3.5) 
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where p= gas density 
P= gas pressure 
R= specific gas constant 
T= gas temperature 

Results obtained from Spreadsheet 3.1 are illustrated in graphical format in Figure 3.10. 

Figure 3.10(a) plots the risers unit buoyancy and unit weight against carrier pipe outer 
diameter which is varied from 0.9 in to 1.7 in. A diameter of 0.9 in represents the smallest 

carrier pipe (in terms of its cross-section) that could used to completely surround the pre- 
defined flowline bundle. A carrier pipe plating thickness of 10 mm is selected from 

fabrication considerations and is therefore kept constant throughout the analysis. In the 

case of unit weight, three curves (1,2 and 3) are plotted corresponding to three different 

ballast conditions: 

1. Riser with a ballast line full of sea water 

2. Riser with a ballast line full of air at atmospheric pressure (1 bar) 

3. Riser with no ballast line 

The submerged unit weight which is the resultant of the two unit forces shown in Figure 

3.10(a) is illustrated in Figure 3.10(b). For carrier pipe diameters less than 1.3 to 1.4 

depending upon ballast line conditions, the risers submerged weight is positive resulting 
in a negative buoyancy condition, however if the carrier pipes diameter is greater than 1.4 

then the riser becomes positively buoyant. Since most surface connection assemblies are 

designed for use under a tensile load a negatively buoyant riser should be the principle 

aim throughout the design as opposed to a riser with a positively buoyant condition which 

would consequently create compressive a load. Negative buoyancy also enables the riser 

to resist significant deformation when exposed to environmental loading such as an ocean 

current. These considerations therefore constrain the designer to using only the left hand 

side of the graph. 
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Carrier Pipe Submerged Unit Weight (N/m) 

Diameter Ballast Line Fluid Content No I3alkrt 

(m) Sea Water Air I. inr 
150 bar 100 bar 50 bar I bar 

1.0 3944 3728 3712 3097 3651 2934 

1.1 3137 2922 2906 2590 2875 2128 

1.2 2232 2016 2001 19S5 1970 122-) 

1.3 1228 1013 997 981 966 219 

1.4 126 -90 -106 -121 -137 -554 

Table 3.2 

Submerged Unit Weights for a Selection of Riser Operating Conditions 

Both graphs clearly show the effect of having a ballast line within the riser and the extra 

weight it can add to the system when water is pumped in to replace the air. The table 

above highlights this characteristic by tabulating actual submerged unit weight value, for 

the three ballast line conditions stated above, however in this case the air pressure has 

been varied to illustrate its influence. 

3.2.5 Installation Analysis 

Up until now a buoyancy analysis has been conducted with the riser in its 

operational condition defined as being a situation in which fluids such its production oil 

and injection water are being transported between wellhead and production vessel (or 

vice versa) through the riser. However the risers buoyancy pcrfornlance during its 

installation is just as important if failure of' the riser or auxiliary installation equipment 

through excessive loading is to be avoided. Riser installation is dealt with in considerable 

detail later on in the thesis however the procedure can he summarised in three stages: 

" Tow-out - Sub-Surface tow (CDTM) from assembly yard to oil held 

" Sinkage - Lowering of the riser on to the seabed 

" Lift - Securing one end to the seabed production unit whilst lifting the other end 

to the surface for connection to either a surface vessel or suh-surface buoy. 

All three stages of riser installation require an optimum submerged Weight condition. 

This is achieved by flooding some of the tlowlines with sea water whilst leaving the rest 

filled with air. The proceeding analysis examines the effects that a selection of possible 

flowline fluid ballast scenarios have on the risers submerged unit weight during the lila 
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installation phase by utilising an EXCEL spreadsheet that has been adapted from that 

used to calculate operational buoyancy and weight conditions. The installation 

spreadsheet (Spreadsheet 3.2) allows the designer to select whether the fluid content of 

each flowline is either air at atmospheric pressure or sea water by just typing in either a 

yes or no input (20), this information is then used as before to calculate the submerged 

weight condition. The results obtained from the spreadsheet for various flowline fluid 

arrangements are then plotted against a range of carrier pipe outer diameters, see Figure 

3.11. 

Eight ballast conditions (denoted by bold type) are analysed: 

No ballast line 

1. All flowlines full of sea water 
2. Flowlines 1 and 4 full of sea water 
3. Flowline 1 only full of water 
4. All flowlines full of air 

With ballast line 

1. All flowlines + ballast line full of sea water 

2. Flowlines 1 and 4 full of sea water 
3. Flowline 1 only full of water 
4. All flowlines full of air 

It should be noted that any flowlines not flooded with sea water are filled with air at 

atmospheric pressure (1 bar). At a depth of 1500 m for example, the riser is exposed to a 
hydrostatic pressure of approximately 151 bar (1.51x 107N/m2) resulting in a pressure 
differential acting across the risers section of 150 bar, however it is thought that the 

flowlines and foam are of sufficient strength to sustain this. The maximum 

circumferential stress that the 12" flowline would experience due this condition can be 

calculated by assuming that the foam offers zero strength resistance thereby allowing the 

following equation to be used. 

PD 
6c = 2t 

(3.6) 

where ßc = circumferential stress 

P= external hydrostatic force 

D= mean diameter of the flowline 

t= wall thickness of flowline 
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For a 12" flowline the circumferential stress is found to he 88.1 N/mm' which is 

approximately 19% of yield. The flowline would be expected to yield hebre buckling in 

the circumferential direction. 

To help emphasise the effects of selective flowline flooding during installation, extracts 

of data have been taken from the graphs and tabulated in Tables 3.3 and 3.4 below. 

No ballast line 

Carrier Pipe Submerged Unit Weight (N/ni) 

Diameter Flowline Condition 

(ni) 1 2 3 4 

1.0 3557 3032 2444 18; 55) 

1.1 2751 2226 1637 1049 

1.2 1846 1320 732 1-1-1 

1.3 842 317 -272 -560 

1.4 -260 -796 -1374 I 96 

Table 3.3 

Suhmcrged Unit Weights for a Selection o1* Riser Installation C'onditio ws 

The shaded areas of the tables highlight a positive buoyancy condition. 

With ballast line 

Currier Pipe Submerged Unit Weight tN/m) 

Diameter I luwlinc ('undli1i(in 

(ni) 1 2 3 4 

1.0 4567 377o) 31O l 20I ) 

1.1 3761 2973 2354 1790 

1.2 2856 2068 1479 891 

1.3 1852 1064 475 -II 
1.4 749 -39 -627 -1215 

Table 3.4 

Submerged Unit Wcights for a Selection of Riser Instal lcuion (' ondiliuýnu 
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Both the graphs and the tables show up three important characteristics: 

" The ability to flood flowlines with sea water offers the operator a range of riser 

submerged weights during the critical installation phase. 

0 The inclusion of an additional ballast line within the flowline bundle increases the 

submerged weight of the riser (for a given carrier pipe diameter) for all four 

flooding scenarios. 

"A ballast line increases the range of weights that can be attained by either flooding 

or de-flooding lines. 

The design of a syntactic foam filled riser using both the operational and installation 

spreadsheets can be summarised as follows: 

Operational Spreadsheet 

Used to select the diameter of the carrier pipe in 

order to obtain a desired operational weight 
condition 

Data Transfer I Carrier Pipe Diameter 

Installation Spreadsheet 

Used to select flowline ballast arrangements in 
order to obtain a desired submerged weight 
condition during installation 

3.3 Nitrogen Gas Buoyancy 

3.3.1 Introduction 

The principle ingredient of most buoyancy systems is a gas such as air or nitrogen 

since both are light and cheap. A good vacuum weighs a bit less, but is much more 

expensive. Unfortunately gasses are highly compressible and so experience considerable 

changes in density with pressure. Differences between various buoyancy systems devolve 

into distinctions between the various ways in which the gas can be packaged. This section 
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outlines the details of a buoyancy design using pressurised nitrogen gas encapsulated 

within a carrier pipe. 

3.3.2 Structural Arrangement of the Buoyancy System. 

The objective of the proposed study is to devise an underwater system in which 
the flowline bundle is provided with mutually independent gas buoyancy compartments 

along its entire suspended length. Each compartment is to be supplied with a pressure 
fluid such as nitrogen to provide an amount of buoyancy appropriate for that 

compartment. The cross-section of the riser is illustrated in Figure 3.6 These 

compartments are created by enclosing the flowlines within an outer jacket or carrier 

pipe, the whole assembly is then transversely subdivided using a series of gas tight 
bulkheads. As in the case of the syntactic foam system, these bulkheads also ensure that 

the carrier pipe and flowline bundle act as a continuous structural unit when subjected to 

axial loading. Pressurised gas can be supplied to each compartment independently by 

utilising gas injection lines which run from the surface production vessel along the riser 
to the corresponding compartments, they are arranged in a cluster formation around the 

umbilical which situated in the centre of the riser (Figure 3.7). Fluids can be expelled 
from the compartment by means of a control valve situated within the carrier pipe at the 
bottom of each compartment, just above the bulkhead. This valve can also be used as an 
intake allowing the ambient sea water access to a compartment thereby providing the 

system with a flooding capability. 

3.3.3 Operational Analysis 

The whole buoyancy system works on the basis that the carrier pipe as in the 

syntactic foam case effectively acts as a membrane in that it lacks the strength capability 

required to sustain the high hydrostatic loads experienced in deep water. It therefore 

requires support and this can be achieved by ensuring that the compartmental gas 

pressure is either equal or very close to that of the water which surrounds it, whatever its 

depth. The carrier pipe therefore acts as a container and not as a pressure vessel. 

During the installation of the riser all of the compartments are flooded so as to provide 

sufficient ballast for the riser to be dropped down on to the seabed. When it is desired to 

connect the riser up to the surface production unit buoyancy has to be created in order to 

avoid over loading both the riser and lifting unit. Compartment de-ballasting is done 

simultaneously and is achieved by injecting in sufficiently pressurised nitrogen gas so as 
to force the water out through the control valve. 
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When all the water has been exhausted from the compartment buoyancy gas will start to 

escape and the compartmental gas pressure will then be automatically equalised with that 

of the surrounding sea water. As the riser is upended the nitrogen gas pressure self- 

reduces in response to the decreasing ambient water pressure. 

During both installation and operational life the gas pressure within each compartment 

remains exactly equal to the sea water pressure at the interface between them, i. e. at the 

level of the valve situated at the bottom of each compartment. Although all the nitrogen 
in each compartment is at this pressure, the water pressure outside decreases towards the 

top of the compartment. Therefore the vertical height of each compartment gives rise to a 

maximum pressure differential between the nitrogen gas inside and the water outside the 

top of each compartment. To summarise, the pressure of the buoyancy gas is self 

regulating and differs from the water pressure by no more than a pressure head 

corresponding to the vertical height of each compartment. No matter how deep the water, 

the buoyancy gas pressure is substantially in balance with the ambient water pressure. 

A system buoyancy analysis is carried out using a similar method to that utilised in the 

case of the syntactic foam filled riser. A catenary riser profile with horizontal surface and 

vertical offsets of 1500 in is used as an example and for the purposes of this study the 

analysis is conducted using six different compartmental layouts created by dividing the 

riser up into either 3,4,5,6,10 or 15 longitudinal sections. To simplify both the analysis 

and the design, the bulkheads have been situated so that when the riser is in its 

operational condition the vertical height of each compartment (or vertical bulkhead 

separation) is equal. Vertical heights are therefore calculated by dividing the sea depth by 

the number of compartments and so if the values stated above are used then following 

heights are obtained (whole numbers ! ): 

"3 compartments 500 m 

"4 compartments 375 m 

"5 compartments 300 m 

"6 compartments 250 m 

" 10 compartments 150 m 

" 15 compartments 100 m 

The number of compartments required is a function of: 

" Cost 

" Operating complexity 

" Pressure difference induced stress 
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0 Compartment loss vulnerability 

More compartments will increase the cost of fabrication as well as making the installation 

and operation of the riser more complex through the greater use of gas injectors and 

valves. The effects on riser stressing are ascertained by examining the pressure 
differentials that are inherent within the system. 

The pressure differential acting across the carrier pipe wall can be expressed using the 
following hydrostatic equation: 

OP = psW g yc (3.7) 

where psw = sea water density 

g= gravitational acceleration 

yc = vertical distance up the compartment 

This is illustrated in Figure 3.8 from where it is shown that the maximum pressure 

difference occurs at the top of the compartment i. e. 

AP 
max 

= Psw g h, (3.8) 

where he = vertical height of the compartment 

The above equations are used to graphically demonstrate the pressure loading behaviour 

up the compartment, see Figure 3.12(a). Since the maximum pressure loading is a direct 

function of compartment height it is then also a function of compartment number 

assuming a constant water depth and a uniform compartment height for all compartments. 

This allows the pressure maximum loading to be plotted against the number of 

compartments as shown in Figure 3.12(b). Compartment height is reduced as the number 

of compartments is increased, thereby reducing the pressure difference at the 

compartments top end. 

The pressure difference across the carrier pipe sets up a circumferential stress a, which is 

tensile since the internal pressure will always be greater than the outer. This stress can be 

obtained as follows: 

epD 
6°- 2t 

(3.9) 
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where D= diameter of the carrier pipe 

t= wall thickness 

It should be noted that this expression assumes the carrier pipe to be a perfectly thin- 

walled tube and that the stresses in the pipe wall are uniformly distributed. Substituting 

Eqn (3.8) into Eqn (3.9) provides an equation demonstrating that the maximum 

circumferential stress is proportional to compartment height. 

6c max = 
PsW 

2D 

he 
(3.10) 

t 

In practice this stress will be lower since the calculation above does not take into 

consideration the substantial strengthening effects that the bulkhead will impose on the 

carrier pipe. However the above equation is comprehensively illustrated in Figure 3.13(a) 

in which the maximum circumferential stress is plotted against carrier pipe outer diameter 

for a selection of compartment numbers. If a working stress value is taken to be 

approximately 270 N/mm2 (0.6 yield) then it is clear that minimum number of 

compartments that can be used is four unless the carrier pipe diameter is above 1.05 m in 

which case it is three. Figure 3.13(b) presents circumferential stress data for two riser 

diameters (1.0 and 1.1 m) and six compartmental arrangements (3,4,5,6,10 and 15 

compartments). 

An operational EXCEL spreadsheet (Spreadsheet 3.3) is set up as in the syntactic foam 

case to carry out a buoyancy and weight analysis by examining the riser on a 

compartmental basis. The number of compartments within the riser is selected and for 

each one a submerged unit weight is ascertained by calculating the buoyancy and weight 

of its constituent components. In the case of the syntactic foam filled riser, fluid and 

material properties were constant throughout, resulting in a uniform submerged unit 

weight along its length, however for a buoyancy gas design this is not the case. 

Spreadsheet 3.3 shows that a compartmental variation in weight which is a characteristic 

of this design is solely attributed to differences in compartmental buoyancy gas pressure. 

It has already been explained that in order for the pressure loadings on the carrier pipe to 

be minimised internal gas pressures have to be similar to those of the ambient sea water, 

this gives rise to a situation in which the compartments all have different buoyancy gas 

pressures. These compartmental gas pressures reduce along the riser from seabed to 

surface in response to the sea water pressure. Table 3.5 tabulates buoyancy gas pressures 

corresponding to both the compartment no. and the number of compartments within the 

riser. 
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Compartmental Buoyancy Gas Pressure (bar) 

Compartment Number of Comhartnients 

No. 3 456 11) 15 

1 151 151 151 151 151 151 

2 101 113 121 126 136 141 

3 50 75 90 10 1 121 131 

4 38 60 75 106 121 

5 
J 3O 5O 90 III 

6 
_______ _____1 25 75 1O1 

7 ________ _______ 00 90 

K 15 hO 

9 iU 70 

10 15 (, 11 

5O 

12 II) 

13 

14 
. 70 

15 lU 

Table 3.5 

Buoyancy Gas I'rressures fora Riser in 1500 in cif Waicr 



If a gas can be assumed to be ideal then its unit mass can be related to its pressure by the 
fundamental Ideal Gas Law equation: 

m=PRT (3.11) 

where m= mass per unit length 

Pgas = gas pressure 

A= internal compartment area 
R= specific gas constant 
T= gas temperature 

The unit mass is shown to be proportional to pressure and so will decrease 

compartmentally up the riser, however the unit buoyancy remains constant since the 

carrier pipe diameter and hence volume remain constant along its length. If the unit 
buoyancy is subtracted from the unit weight a submerged unit weight is obtained and 
from Figures 3.14 to 3.25 this is shown to decrease compartmentally up the riser i. e. the 

riser becomes progressively more buoyant. 

To counteract the decrease in compartmental weight it proposed to add additional steel 

weight (or ballast) to the riser with the aim of creating a uniform weight distribution 

along its entire length as detailed in Figures 3.14 to 3.25. The operational spreadsheet 
(Spreadsheet 3.3) is used to calculate the compartmental increase in steel cross-sectional 

area required for the riser to attain a uniform submerged weight distribution equal to that 

of the first compartment (seabed end). The results obtained from this analysis are 

tabulated in Tables 3.7 and 3.8. The additional steel area could be created by 

progressively thickening the carrier pipes walls in compartmental steps, however this 

would undoubtedly cause difficulties during fabrication and manufacture and hence 

increase the cost. This study therefore proposes to add additional area either externally or 
internally by attaching steel rods longitudinally to the carrier pipe as illustrated in Figures 

3.7 and 3.9. They could be manufactured easily and cheaply to an accurate tolerance and 

welded to the carrier pipe and would run the entire length of each compartment. The 

cross-sectional area of the rods would increase in compartmental steps along the riser 
(going from seabed to surface). In order to demonstrate this Tables 3.7 and 3.8 also 

provide cross-sectional area data for a four rod arrangement attached to a riser of 
differing diameter and compartmental layout. 
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3.3.4 Installation Analysis 

This section aims to examine the risers buoyancy behaviour during its installation 

since this phase is considered to be as critical as that of operation in terms of the loading 

imposed upon the structure. Of particular interest is the lifting sequence in which one end 

of the riser is pulled towards the surface using a heavy lift vessel whilst the other end is 

securely attached to the seabed production unit. As the riser is pulled off the seabed and 

towards the surface the compartmental gas pressures will automatically self-reduce in 

response to the decreasing ambient water pressure. As a result of this the gases density 

and consequently its mass will also decrease and the system will become increasingly 

more buoyant with the inherent danger that it could attain positive buoyancy due to the 

absence of any production fluid weight. This condition would inevitably cause the lifting 

cable to be come slack as the riser ascends towards the surface at an ever increasing rate 

under its own buoyancy. At this point the operators control of the installation process is 

lost. However this scenario can be avoided if additional ballast is created by flooding one 

or more of the flowlines (as demonstrated in the syntactic foam case) so as to ensure a 

negatively buoyant riser and hence a controlled lift. 

The risers lift profile sequence is calculated using a FORTRAN program similar to the 

one used in the previous chapter to attain surface displacements profiles. By 

superimposing the length of each compartment on to the lift profiles, the program can 

also calculate the vertical position co-ordinate and therefore depth of all the 

compartmental bulkheads throughout the lift. This information is then fed into an 
installation spreadsheet (Spreadsheet 3.4) which calculates the compartmental gas 

pressures, thereby allowing the risers submerged unit weight to be evaluated 

compartmentally throughout the lift sequence. The submerged unit weight distribution 

along the riser along with the corresponding lift profiles are graphically illustrated in 

Figures 3.26 to 3.38 for six different compartmental layouts. The calculations are carried 

out using two riser diameters each subjected to two different flowline ballast conditions 
i. e. 

Riser diameter = 1.0 m 

0 Flowlines 1 and 4 flooded with sea water with 2 and 3 full of air 

" All flowlines full of air 

Riser diameter = 1.1 m 

" All flowlines flooded with sea water 

" Flowline 1 flooded with sea water and 2,3 and 4 full of air 
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The flowline fluid ballast arrangement is ý determined by inputting either a yes or no 

answer to the relevant questions in box (20) in the installation spreadsheet (Spreadsheet 

3.4). 

The top black line shown in the submerged unit weight graphs and denoted by the word 
Seabed corresponds to the risers submerged unit weight condition when lying flat on the 

seabed prior to lift. In this condition all the compartmental gas pressures equal the 

ambient sea water pressure at 1500 m, however the graph clearly shows a compartmental 

step increase in submerged unit weight along the riser. This characteristic is a result of the 

additional steel added in order for the riser to attain a uniform submerged unit weight 

when in its operational condition. The required compartmental increase in steel cross- 

sectional area for a given carrier pipe diameter is evaluated using the operational 

spreadsheet (Spreadsheet 3.3), this information is then fed through into the calculations 

carried out within the installation spreadsheet (Spreadsheet 3.4). 

This whole procedure can be as summarised as follow. 

Operational Spreadsheet 

Used to select: 
1. Carrier pipe diameter 
2. Compartmental increase in steel c. s. a in 

order to obtain a desired uniform submerged 
weight in the operational condition. 

Data Transfer 
I 1. Carrier Pipe Diameter 

2. Additional Steel C. S. A 

Installation Spreadsheet 

Used to select flowline ballast arrangements 
so as to obtain a desired submerged weight 
condition during installation 

The lift sequence is represented in five stages which are shown up in red on both the 

profile and submerged unit weight graphs. The results clearly show that during the risers 

ascent towards the surface the difference in unit weight between compartments 

progressively decreases until a condition of uniform submerged unit weight is attained. 
At this point the top end of the riser has reached the surface at the correct horizontal 

offset and is depicted on the graph by a flat black line denoted by the word Surface. 
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When the sea water and air have been evacuated from the flowlines and production fluids 

such as oil and injection water allowed to flow, the riser attains its operational condition 

and is represented on the graph by the flat blue line. The graphs demonstrate the need for 

different flowline ballasting arrangements depending upon the riser diameter so as to 

ensure negative buoyancy throughout the lift as previously mentioned. A riser with a 
diameter of 1.1 m generates more buoyancy force than a riser with a diameter of 1.0 m 

with the result that more flowlines have to be flooded with sea water in order to add more 

weight. However too much weight causes an unnecessarily high load to be exerted on 
both the riser and lifting cable/vessel leading to an outcome that could include either 
higher installation costs or a greater risk of technical failure. Cable and riser loading 

throughout the lift sequence is examined in a later chapter. 

3.3.5 The Effects of Temperature on Compartment Buoyancy 

It has already been shown through the use of the Ideal Gas equation (Eqn (3.11)) 

that the mass of gas is a directly proportional to pressure, volume and inversely 

proportional to temperature. Since volume can be assumed to be constant and the effects 

of a variable pressure have been dealt with during the installation analysis this section 

aims to demonstrate the influence temperature has on the riser submerged weight 

condition. Buoyancy gas temperature is dependent upon three aspects: 

" Flowline temperature - can vary from 0 °C to 90 °C depending upon the fluid 

flowing through it i. e. production oil or ballast sea water 

" Ambient sea water temperature - at 1500 m it can be as low -1 °C 

" Thermal insulation within the riser. 

The average temperature which a buoyancy gas attains under operational conditions is 

examined in detail in the next chapter, however for the purposes of a buoyancy study a 

gas temperature of 20 °C is assumed. This is an attempt to emulate the gases thermal 

condition when exposed to heat generated by the warm wellhead production fluids. The 

installation calculations are based upon a gas temperature of 0 °C, this aims to take into 

account the temperature of the sea water ballast within the flowlines as well as the fact 

that the riser may well have been lying on the cold seabed for a considerable amount of 

time before it is lifted. 

The effect that a variation in gas temperature would have on the risers submerged unit 

weight is determined using the operational spreadsheet. The results from this analysis are 

presented graphically in Figure 3.38 for two risers of different diameters, 1.0 m and 1.1 

m. The results suggest that an increase in gas temperature is accompanied by relatively 
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small drop in submerged weight. For example in the case of a riser with a carrier pipe 
diameter of 1.0 ma 40 °C increase in temperature only generates a 6% drop in submerged 

unit weight. For an increased diameter of 1.1 m and hence a greater volume of gas the 

reduction is slightly higher at approximately 18%. 

3.3.6 The Loss of a Buoyancy Compartment 

The inherent risk with all gas buoyancy systems is that of compartmental 

structural failure with the inevitable consequence of an often rapid displacement of 
buoyancy gas with ambient sea water. This results in a reduction of buoyancy volume 
leading to an increase in the submerged weight of the system, the only buoyancy in the 

system would now be generated from the external volume of the flowline bundle. Various 

scenarios which could cause this condition are outlined below: 

" Excessive carrier pipe corrosion leading to a sea water leakage 

" Damaged inlet/outlet valve 

" Pressure difference across carrier pipe exceeds critical value resulting in pipe 

collapse or rupture depending upon whether the sea water or the gas is at the 

higher pressure (respectively). 

0 Compartment puncture from an external object such as a ship hull or torpedo 

hitting the riser. 

The proceeding analysis evaluates the effects of a compartment loss on the riser in an 

operational condition in terms of both the axial loading exerted upon the riser and vertical 

loading exerted upon a surface or sub-surface vessel. The evaluation is conducted using a 
EXCEL spreadsheet that has been adapted from the one used during the operational 

analysis. The buoyancy loss spreadsheet (Spreadsheet 3.5) allows the designer to model a 

compartmental loss by filling either single or multiple compartments with sea water by 

again responding to the appropriate questions. On the basis of this input the spreadsheet 

calculates a total submerged weight for the riser which is equal to the vertical loading 

exerted upon the surface production unit, however the risers axial loading at the surface is 

obtained from expressions formulated in Chapter 2. Axial tension can be expressed as a 

function of vertical force by combining Eqns (2.57) and (2.58) respectively i. e. 

T=H(.! 
) 

dxJx 

V_H 
dy (dxx 
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Substituting Eqn (2.58) into Eqn (2.57) in order to eliminate H creates the following 

expression: 

T=VS (3.12) 
yx 

From Figure 2.2(b) it is shown that sin 0= dy/ds and hence: 

Tsurface -V (3.13) 

sin 0 

)surface 

where V= vertical load at the surface (= total submerged weight) 
0= riser inclination from the horizontal at the surface 

Results from this analysis are presented in Figures 3.39 to 3.44 for risers with 3,4,5,6, 

10 and 15 compartments and diameters of 1.0 m and 1.1 m. 

Graph (a) Demonstrates the effect on both vertical and axial loading of losing a 

single compartment 
Graph (b) Illustrates the effect on axial stress of losing a single compartment 

Graph (c) Demonstrates the effect on both vertical and axial loading of cumulative 

compartment loss going from surface to seabed 

Graph (d) Illustrates the effect on axial stress of a cumulative compartment loss 

going from surface to seabed 

The results clearly demonstrate that the greatest impact on loading is attained when the 

seabed compartment (1) is lost where as the flooding of the other compartments all create 

smaller additional loads very similar to one another. These characteristics are attributed to 

the length of each compartment which has already been determined using an equal 

compartment height arrangement ensuring that compartment (1) is the longest with the 

rest significantly shorter and decreasing in length up the riser. This decrease is however 

marginal which explains why the difference in loading between them is almost negligible. 

The table below summarises the effects of buoyancy loss for various compartmental 

layouts and helps to illustrate the difference between losing compartment (1) and any one 

of the others. 
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No. of Compartments % Increase in Axial Stress 

Com artmcnt (I) Other Cone rurtwent" 

3 108 02 

4 91 47 

5 80 38 

6 72 31 

10 54 1 

15 44 1i 

Table 3.6 

The Effects of an Individual Compartment Loss 

One of the most important features to note is the way the increase in axial stress decreases 

with an increase in the number of compartments. Increasing the number of compartments 

reduces their length and therefore their impact on overall buoyancy if one of them is lost. 

This is one of the main benefits to increasing the number of' buoyancy compartments. 

Graphs (c) and (d) illustrate the effects of losing more than one compartment. A 

progressive increase in both axial and vertical loading is demonstrated as compartments 

are systematically flooded from surface to seabed i. e. from compartment (6) to 

compartment (I) in the case of a riser with six compartments. These graplhs also help to 

underline the benefits of riser buoyancy in terms of minimising self-weight stress. Ii all 

the buoyancy compartments are intact, then the maximum axial stress (at the surface) is 

found to be 45 N/mm' for a carrier pipe diameter of 1.0 in or 17.3 N/nom' il' the diameter 

is 1.1 m. However if all the compartments are flooded then this stress increases to 153 

N/mm' in the case of a 1.0 in diameter carrier pipe and 156 N/mm' for it diameter of I. 1 

in. The differences in both cases is well over 100 Mimi' which is substantial when Set 

against an overall working stress of approximately 270 N/mm'. 
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CHAPTER 3 

Analysis Spreadsheets 

Spreadsheets 3.1 - 3.5 
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CHAPTER 3 

Results 

Figures 3.10 - 3.44 

Table 3.7 



Unit Weight and Buoyancy (Operational) (a) 
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Submerged Unit Weight (Installation) (a) 
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Pressure Differences Acting Across the Carrier Pipe Wall (a) 
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The Influence of C. P. Diameter on Circumferential Stress (a) 
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Compartmental Unit Weight and Buoyancy (Operational) (a) 
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Compartmental Submerged Unit Weight (Operational) (a) 
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Compartmental Ballast (Steel Rods) 

3 Compartments 

1 
2 
3 

4 Compartments 

1 
2 
3 
4 

5 Compartments 

1 
2 
3 
4 
5 

6 Compartments 

1 
2 
3 
4 
5 
6 

Carrier Pipe Outer Diameter 
1.0 m 1.1 m 

Additional Steel Ballast Additional Steel Ballast 
C. S. A Required Rod Diameter C. S. A Required Rod Diameter 

(m2) (mm) (m2) (mm) 

o 0 
0.0037 34 
0.0075 49 

0 0 
0.0028 30 
0.0056 42 
0.0084 52 

0 0 
0.0022 27 
0.0045 38 
0.0067 46 
0.0090 53 

0 0 
0.0019 24 
0.0037 34 
0.0056 42 
0.0075 49 
0.0093 54 

Horizontal Surface Offset = 1500 m 

Sea Depth = 1500 m 

0 0 
0.0049 40 
0.0098 56 

0 0 
0.0037 34 
0.0074 48 
0.0111 59 

0 0 
0.0030 31 
0.0059 43 
0.0089 53 
0.0118 61 

0 0 
0.0025 28 
0.0049 40 
0.0074 48 
0.0098 56 
0.0123 63 

Carrier Pipe Wall Thickness = 10 mm 

Table 3.7(a) 



Compartmental Ballast (Steel Rods) 

10 Compartments 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

15 Compartments 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Carrier Pipe Outer Diameter 
1.0 m 1.1 m 

Additional C. S. A Ballast Additional C. S. A Ballast 
Required Rod Diameter Required Rod Diameter 

(m2) (mm) (m2) (mm) 

0 0 
0.0011 19 
0.0022 27 
0.0034 33 
0.0045 38 
0.0056 42 
0.0067 46 
0.0078 50 
0.0090 53 
0.0101 57 

0 0 
0.0007 15 
0.0015 22 
0.0022 27 
0.0030 31 
0.0037 34 
0.0045 38 
0.0052 41 
0.0060 44 
0.0067 46 
0.0075 49 
0.0082 51 
0.0090 53 
0.0097 56 
0.0104 58 

Horizontal Surface Offset = 1500 m 

Sea Depth = 1500 m 

0 0 
0.0015 22 
0.0030 31 
0.0044 38 
0.0059 43 
0.0074 48 
0.0089 53 
0.0103 57 
0.0118 61 
0.0133 65 

0 0 
0.0010 18 
0.0020 25 
0.0030 31 
0.0039 35 
0.0049 40 
0.0059 43 
0.0069 47 
0.0079 50 
0.0089 53 
0.0098 56 
0.0108 59 
0.0118 61 
0.0128 64 
0.0138 66 

Carrier Pipe Wall Thickness = 10 mm 

Table 3.7(b) 



CHAPTER 4 

Production Fluid Heat Loss and 
Insulation Analysis 



4.1 General Description 

In order to prevent wax deposition, emulsification and hydrate formation oil 

companies have sought to either chemically inject, insulate or heat the oil within risers 

and subsea pipelines. This is especially important when crude oil transportation is 

required through a deep water environment where ambient temperatures are relatively 

low, or when the oil to be transported is of a low gravity and high viscosity type (heavy 

oil). 

The study presented in this chapter aims to first of all identify and discuss the operational 

problems associated with subsea oil transportation in terms of crude oil characteristics 

with a subsequent examination of existing remedies along with corresponding examples 

and geographic areas of application. However most of the work undertaken within this 

chapter concentrates on the design of a thermal insulation system for a deep water seabed 

pipeline and catenary riser as illustrated in Figure 4.1. The objective is to provide an 

insulation system that will sufficiently maintain product temperature to an extent where 

the formation of substances within the oil as mentioned above are minimised. The 

insulation has to posses certain capabilities in order to satisfy geometric, buoyancy and 

strength constraints which have already been defined. One of the main technical obstacles 

that must be overcome in satisfying these requirements is hydrostatic pressure since the 

carrier pipe will not be designed to withstand the high pressure loading experienced in 

deep water. At a depth of 1500 in, water exerts a pressure of 151 bar or 15 MN/m2 which 

greatly exceeds the maximum performance of most insulating materials in terms of 

compression resistance and generally those that can are of high density which 

subsequently creates further problems with buoyancy. The final section of this chapter 

aims to establish the thermal stressing inherent within the system due to the presence of 

large temperature differences within the structure. 

4.2 Crude Oil Characteristics 

4.2.1 Viscosity and Gravity 

In the analysis of crude oil transportation through subsea pipelines, the viscosity 

and density of the oil plays an important role and in the case of heavy oil is the major 

cause of many production problems. Heavy oil is usually referred to as crude with 

gravities less than 16 °API and with dynamic viscosities greater than 1 kg/m. s at 28 °C 

and 0.02 kg/m. s at 100 T. 
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This crude lacks the lighter ends and contains heavy metals, particularly vanadium, nickel 

and sulphur. Although very viscous these crudes do behave as Newtonian fluids in that 

their viscosity is a function of temperature only (see Figure 4.2) and does not change 

significantly with shear rate or pumping speed. There are however only a few offshore 
fields producing heavy crude oil, namely the Beta, Point Pedernalis, San Miguel and 
Hueneme fields off the coast of California plus the Vega and Rospo Mare fields in the 

Mediterranean and Adratic respectively. Light oil is more common and is found in places 

such as the North Sea, Gulf of Mexico and West of Shetland. This study is therefore based 

upon a light oil and in particular a crude with a gravity of 34 °API whose relationship 

with temperature is illustrated graphically on a logarithmic scale in Figure 4.2. 

4.2.2 Wax Deposition 

Crude oils are generally complex chemical systems containing thousands of 
individual components in the range from low molecular weight to high molecular weight 

waxes and asphaltenes. The high molecular weight waxes and asphaltenes are dissolved 

under reservoir conditions. These components may precipitate in pipelines as the 

thermodynamic equilibrium is disturbed which is caused by the changing pressure and 

temperature. Precipitation is carried out by several mechanisms namely molecular 
diffusion, shear dispersion, brownian motion and gravity settling, however it has been 

shown that molecular diffusion is the main mechanism. The wax crystals which form 

during the crystal growth process may develop an interlocking 3D - structure that can 

entrap the oil. This leads to an increase in the viscosity of the transported oil. For the 

majority of light crude oils wax deposition starts at about 37 T. Therefore a solution to 

this problem would include preventing the oil cooling to temperatures below 37 °C by 

either insulating or heating the crude, utilising wax suppressants or periodically 'pigging' 

the pipelines. 

4.2.3 Emulsification 

Emulsification is a problem only associated with crude oil - gas mixtures and 

studies have shown that unless the temperature of the crude is at least 40 °C 

emulsification can take place to an extent where separation (on the production platform) 

can be difficult to attain. This was a problem that was faced by the Cormorant 'A' 

platform which is a multi-purpose facility that acts as collection and separation, water 
injection, gas compression and pump-station for its own crude and gas and that from 

other platforms. 
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Installation of heaters and/or injection of demulsifying agents on the platform could be 

used to breakdown emulsions, but these solutions were rejected in favour of pipeline 
insulation on the basis of space, weight and cost requirements on an already congested 

platform. 

4.2.4 Hydration 

Subsea pipelines carrying unprocessed multi-phase fluids (produced water, liquid, 

hydrocarbons and gases) are prone to the formation of hydrates which can lead to serious 

operational problems such as blockage. One approach that is currently being adopted by 

industry to solve this problem is to prevent the hydrates forming by the use of expensive 
inhibitor chemicals such as methanol and glycol which basically depress the hydrate 

formation temperatures. Apart from the high cost, establishing facilities for the 

continuous injection of these chemicals generally adds to the burden on the support vessel 

and it was because of these two drawbacks that hydrate depressants were rejected in the 

case of the Cormorant 'A' platform. However the curves in Figure 4.3 show that hydrate 

formation can be prevented if temperatures are kept above a specified temperature 
dependent on pipeline pressure. In this report the wellhead pressure is taken to be 6000 

psi which if assumed to be constant along the pipeline means that the hydrate expectancy 
boundary lies at approximately 20 °C along the pipe. Hence in this case hydration can be 

prevented if the crude oil is kept at a temperature above 20 °C by either utilising the 

methods of external heating or flowline insulation. 

4.3 Existing Oil Transportation Methods by Pipeline 

4.3.1 Introduction 

The transportation of crude oil through subsea pipelines and risers systems that 

are situated within deepwater especially where the ambient temperature can be as low as 

-1.0 °C, require special measures to be undertaken to ensure that production problems 

previously discussed are minimised. Practical methods available to enable this include: 

" Thermally insulating the pipeline (and riser) to retain heat. 

" Heating the crude in the pipeline by either pumping a hot liquid through a 
concentric line or by using electrical coil heating. 

" The continuous injection of chemicals to suppress the formation of hydrates, wax 
and emulsions. 
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In the case of production from heavy oil fields it is the high viscosity of the oil that 

causes the main problems especially in terms of pumping. Therefore methods available 
for the transportation of low gravity, high viscosity crude include: 

" External heating or thermally insulating the pipeline to reduce viscosity or 
maintain the existing low viscosity respectively. 

" Injecting water to form a water ring around the crude or to form an emulsion with 
a lower viscosity. 

" Reducing the viscosity of the crude by the addition of a dilutent. 

Two methods outlined above, namely thermal insulation and external heating will be 

discussed further. 

4.3.2 Thermal Insulation 

A small number of thermally insulated pipelines have been installed offshore in 

different parts of the world. Most of these lines were installed to either prevent hydrate 

and wax deposition or to allow the pumping of high pourpoint crudes. Methods that are 

currently being used or are under development are detailed in Figure 4.4. 

Thermal insulation is accomplished by adding insulation material to the outside of the 

pipeline (or flowline) with the further addition of a steel or plastic sleeve to keep the 
insulation material dry and prevent it from been crushed by hydrostatic loading. This type 

of insulation is termed a Jacketing System. 

Alternatively there are various insulation systems currently under development that do 

not depend upon a sleeve and therefore rely upon the insulating material being both crush 
and corrosion resistant. This type of insulation is termed a Thick Coating System. 

Jacketing System 

Installations using polyurethane foam inside a polyethylene sleeve have been made off 
the coast of Gabon and in the Arabian Gulf. However in deeper waters; 30 to 45 m, this 

method is no longer satisfactory because of the possibility of leaks through the 

polyethylene sleeve. Once this happens the water pressure will crush the polyurethane 
foam and make it ineffective as an insulating material. The problem of hydrostatic 

pressure is overcome by the pipe within a pipe method or steel jacket in which the steel is 

made sufficiently thick to withstand the compression. The insulation material such as low 

density polyurethane foam is then placed between flowline and sleeve (or carrier). 
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Its thermal conductivity value k is typically of the order of 0.025 W/m. K, which is close 
to the thermal conductivity of air. In fact it is the air which is the insulator as the function 

of the cellular plastic structure is just to prevent the air from convecting. Examples of this 

method can be found in the Indonesian offshore fields as well as in the case of the 

pipeline linking the UMC (Underwater Manifold Centre) and the Cormorant 'A' platform 
in the North Sea. 

One method recently introduced into North Sea operations provides a more economical 

alternative to polyurethane foams by which a pumpable gelling but non-setting slurry of 
hollow, high-strength silica spheres and sea water is pumped into the space surrounding 
the flowline(s) and enclosed by the steel carrier pipe. The slurry can be pumped into the 

pipeline annulus after it has been installed providing a flexibility in insulation application 

and hence slurry installation can be deferred until the later stages of the productive life of 

a field when flow rate decreases and thermal conservation is more important. Other 

advantages of using HSM Slurry include: 

" Reduction in capital costs at the fabrication site 

" Good thermal conductivity (approximately 0.3 W/m. K) 

" Unlimited depth rating 

" Provides a stabilising weight to a pipeline system (relatively high density) 

Thick Coating System 

The thick coating system represents an alternative to the jacketing system whereby the 

sleeve pipe or carrier is omitted thereby greatly reducing the work at the fabrication site. 
In this alternative the insulation is provided either in the form of prefabricated half-shell 

mouldings of High Density Polyurethane Foam (HDPUF) or Syntactic Foam strapped to 
the flowline. Since these mouldings are exposed to the sea water, they must be 

encapsulated in a layer of either steel or solid polymer in order to prevent water ingress 

over long periods of time at high hydrostatic pressures. HDPUF has an approximate 

maximum depth rating of only 140 m whilst Syntactic Foam has a substantially greater 
limiting depth of approximately 3000 m, depending upon material density. Densities 

range from 250 to 500 kg/m3 with associated thermal conductivity values in the range 
from 0.05 to 0.1 W/m. K. 
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Thermal Conductivity Density 
Material (W/m. k) (kg/m3) 

I. 

Low Density Polyurethane 
Foam 

Nitrogen Gas 

Polyurethane + 
PVC Foam + 
Polychloropene 

High Density Polyurethane 

Foam 

Syntactic Foam 

High Density PVC 

Asbestos 

HSM Slurry Stiffened 

with Bentonite and 
Cement 

High Density Polyethylene 

Concrete 

Steel 

0.025 70 

0.026 Dependent upon 
Pressure 

0.05 300 

0.057 400 

0.085-0.1 384.4 

0.15 1400 

0.165 577 

0.3 820 

0.52 950 

0.86-1.3 1900.2300 

40 7850 

Table 4.1 
The Insulating Capabilities of Various Materials 



An alternative method involves the application of several coatings of a combination of 

material including Polyurethane, PVC and Polychloroprene which are usually applied 
using an automatic machine that also bonds the layers together as well as to the pipe 

using various heat methods. This type of insulation system has been proposed for the 
North Alwyn development with the aim of preventing wax deposition problems. 

The insulating capabilities of various materials are detailed in Table 4.1 

4.3.3 External Heating 

External heating is mainly used in the transportation of high pourpoint crude to 

ensure a sufficiently low viscosity so as not to cause any pumping problems. It is also 

used to maintain a minimum oil temperature under conditions of no-flow or very little 

flow, and to reheat the pipeline after a shutdown. 

One method which can provide a heat source to a pipeline is to install a concentric 

pipeline with either the inner line or the annulus serving as the crude carrier with the 

ability to pump a heated liquid through the other portion of the line. i. e. uses the heat 

exchanger principle. However such a system is limited to relatively short distances. 

An alternative method available to provide external heating is that of electrical means. 
Again this method is only applicable to short lengths of pipeline. An example of an 

electrically heated pipe is currently being installed for Statoil and will carry gas and 

condensate from the Sleipner West wellhead platform to the processing platform. The 

electrical system offers a means of controlling hydrate and wax formation in multiphase 
flows. It also enables electricity to be delivered to remote subsea facilities. For heating 

purposes the system uses electrical induction cables inserted along the full axial length of 
the pipeline. A high frequency alternating current in the cables forms an induction field 

that generates heat in the ferromagnetic steel pipe, sufficient to raise and maintain the 

temperature of the pipe material and the pipe contents to a pre-determined level. 

4.4 Fundamental Heat Transfer Theory for an Annular Section 

4.4.1 Introduction 

This section aims to establish the fundamental basis of heat conduction and 
convection for annular sectional geometries. The theory presented is then applied to a 
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flowline encapsulated within carrier pipe or jacket with the resulting annular gap filled 

with either a solid or gaseous insulator, see Figure 4.5. 

The objective of this exercise is to formulate heat transfer expressions that can he used to 

predict: 

" the temperature behaviour of a pipe line fluid subjected to radial heat loss 

" radial temperature distribution across the annular section 

Carrier Pipe/Jacket 

Insulation 
(Solid/Gas) 

n=/, 2,3,4, 
.... 

Figure 4.5 

An Insulated I Towline 

4.4.2 Heat Transfer Mechanisms 

In cases involving the radial loss of heat from a liquid or gaseous pipe flow to an 

ambient environment composed of either liquid or gas, three heat transfer inechanisnus 

must have taken place; conduction, convection and radiation. For the purposes of Iltis 

study radiation is neglected on the grounds that its influence IS sinall relative to the other 

two modes of transfer because of the relatively low temperatures involved. 

Conduction 

Fouricr's law forms the fundamental basis of heat conduction and is based upon the 

empirical observation of one-dimensional steady heat flow through a solid. Onc- 

climensional flow implies that the temperature is uniform over Surfaces IpcncCnd icnlar to 

the direction of heat conduction and such surfaces are calla! W henna/ surhwe. s. , )I((I(h" 
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flow implies that the temperature at any point does not vary with time. It therefore 

follows from considerations of continuity, that in one-dimensional steady flow the rate of 
heat flow through successive surfaces is constant. 

It is subsequently found that the rate of heat flow is proportional to the area of flow and 

to the temperature difference across the layer and inversely proportional to its thickness. 

This is Fourier's law and can be expressed as follows: 

Q=-kA( ý (4.1) 

where: Q= rate of heat loss 

A= heat flow area 
dx = layer thickness 
dT = temperature difference 

The constant of proportionality k is called the Thermal Conductivity of the material and 

the negative sign indicates that the heat flow is positive in the direction of temperature 

fall. 

When Fourier's law is applied to a situation involving steady radial conduction through a 

pipe wall the heat flow can be defined as follows: 

Q=-2knr(d )L (4.2) 

where: r= nominal radius of the pipe 
L= pipe length 

Since Q is independent of r, we obtain through integration 

2kic l 
q= 

(Tn 
- 

Tn+1) (4.3) 

log rn+ý 
e rn 

where: q= rate of heat loss per unit length 
Tn = temperature of surface n 
rn = radial distance to surface n 
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Convection 

The mechanism of convective heat flow could theoretically be calculated from Fourier's 
law as expressed by Eqn (4.1) where dT/dx is the temperature gradient in the fluid and k 

is the thermal conductivity of the fluid. However dT/dx is a quantity which cannot be 

easily measured in practice due to its non-linear behaviour and so it is more common to 

express convective heat transfer by an equation of the form: 

Q=hA (Tn - Tn+l) (4.4) 

where: h= convective heat transfer coefficient 
(T,, - To+, ) = the temperature difference across the fluid layer 

It must be remembered that h is not a physical constant of the fluid as opposed to the 

thermal conductivity k and is in fact a function of all the parameters that affect the heat 

flow, such as viscosity, specific heat capacity and velocity. 

When the above expression is applied to cases involving cylindrical geometries the 

following equation is obtained: 

q=2h7Lr'(T. -Tn+1) (4.5) 

4.4.3 Temperature Behaviour of a Pipeline Fluid Subject to Heat Loss 

The radial passage of heat transfer across the pipeline system can be broken down 
into its constituent material layers. 

0 -* 1 The heat transfer medium is a fluid and hence Eqn (4.5) is applicable due to 

convection taking place. 

TO-T, =9 2nr, ho-, 
(4.6) 

1-ý 2 The heat transfer medium is a solid (i. e. steel flowline) and hence Eqn (4.3) 
is applicable due to conduction taking place. 

TI- T2 =q log 
(r2 

2n kl_Z r, 
(4.7) 
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2--ý3(a) 

2-ý3(b) 

3-94 

4-*5 

Solid insulation material (i. e. foam) and hence Eqn (4.3) is applicable due 

to conduction taking place. 

T2-T3 =q loge 
(r3 

2 nk2-3 r2 
(4.8) 

Gaseous insulation material (i. e. nitrogen gas) and hence Eqn (4.5) is 

applicable due to convection taking place. 

T2-T3 =q 2 7C r2 h2-s 
(4.9) 

Solid (i. e. steel carrier pipe) and hence Eqn (4.3) is applicable due to 

conduction taking place. 

T3-T4 =q loge 
(r4) 

2 is k3-4 r3 
(4.10) 

Ambient fluid (i. e. sea water) and hence Eqn (4.5) is applicable due to 

convection taking place. 

T4-TS =q (4.11) 
21t r4 h4_5 

Since q is constant Eqns (4.6) to (4.11) can be added together: 

Case (a) - Solid Insulator 

To - TS =q1+1 loge r? +1 loge y+1 logy 
(. L4) +1 

27c r, ho-, k, 
-z r, k2-3 rx k3-4 rs r4 h4-s 

re-arranging to obtain an expression for q: 

q= 
1 

ri ho-1 

27c(To-T5) 

1 1 r2 1 1ogr3 
1 loge L4 + + k, 

-21ogý 

(ri) 
+ kz-3ý rz 

+ 
k3-4 ý r3 r4 h4-s 

(4.12) 
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in which: 

2n 

1+1 loge 
(r2)+ 

1 loge 
I'3 

+1 loge ra +1 
rý h0-1 k1-2 r1 kz-3 

(r2j 
ks-a 

cr31 

ra ha-s 

can be defined as the Overall Heat Transfer Coefficient U. 

Case (b) - Gaseous Insulator 

TO-T5= q1+1 loge r2 +1+1 loge r4 +1 
2 r1 ho-I k1-2 r, r2 hi-3 k3-a 

(r3) 

r4 h4-s 

re-arranging to obtain an expression for q 

2n(To-TS) 
q 

1+1 loge 
(L2 

+1+1 loge t4 +1 
ri ho-1 k1-2 r, r2 h2-3 k3-4 r3 r4 h4-5 

in which: 

2n 

1+1 loge r2 +1+1 loge IEil +1 
r, ho-, k, 

-s r, rz h2-3 k3-4 rs r4 h4-s 

can be defined as the Overall Heat Transfer Coefficient U. 

(4.13) 

(4.14) 

(4.15) 

The overall heat transfer coefficient obtained for each case allows the expression for unit 

rate of heat loss q to be simplified: 

q=U(To-T5 

This can be re-written as: 

dQ = U(To(x) - T5)dx 

where: x= axial distance along the pipe 
dQ = total rate of heat loss over a flowline length of dx 

(4.16) 

(4.17) 
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To(s) = flowline fluid temperature (function of x) 

It is reasonable to assume that the temperature of the ambient environment T5 which 

effectively acts as a heat sink remains constant along the pipe length. 

In order to eliminate the unknown quantity dQ another equation is required. This can be 

generated by applying the conservation of energy to a flowline length dx as illustrated 

below. 
x 

dQ 

To 

Fluid Flow 

aX 

Figure 4.6 

Fluid Heat Balance 

nccpTo =mcp(To-dTo)+dQ 

where: m= fluid mass flow rate 
c, = fluid specific heat capacity 

Simplifying Eqn (4.18) 

dQ = mcP dTo 

i 
To- dTo 

(4.18) 

(4.19) 

however since the ambient temperature T5 is assumed to be constant along the pipeline 

length this expression can be re-written as: 

dQ=mcP d(TO(x) -T5) (4.20) 

The fluid temperature To can be obtained as a function of x by substituting Eqn (4.17) into 

(4.20) thereby eliminating the unknown variable dQ. 

U(TO(X) - T5) dx = mcp d(TO(, )- T3) (4.21) 
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Re-arranging Eqn (4.21): 

d`To(X)-T5) 
=U dx (4.22) (To(x) 

- T5) map 

To(X) 
1zU 

f d(TO(x)-T5)= J dx (4.23) 
me 

To(i) 
(TO(X)-T5) 

0P 

Integrating using the initial boundary conditions x=0, To(x) = T0(j) yields the following 

equation: 
(T-T 

loge lo O(jý 5=Ux 
(TO(x) 

-TS) mcP 
(4.24) 

(TOT 
- TS) 

= exp 
Ux 

(4.25) (TO(x) 
-TS) mep 

Re-arranging to obtain To(X) 

To(x) = 
To(x) - T5 

+ T5 (4.26) 
Ux 

exp 
mC 

This equation enables the flowline fluid temperature to be calculated at any point along 

the pipeline. The overall heat transfer coefficient U is obtained using either Eqn (4.13) or 
Eqn (4.15) depending upon whether the annular gap between flowline and carrier pipe is 

filled with a solid or gas insulator respectively. 

It should be noted that Eqn (4.26) demonstrates a characteristic logarithmic decay in fluid 

temperature along the flowline as a result of heat loss to the ambient environment. 

4.4.4 The Calculation of a Heat Transfer Coefficient for a Fully Developed Pipe 
Flow (ho. 1) 

In the following section both analytical and empirical correlations recommended 
for engineering use in terms of a cylindrical geometry are summarised. These are 

subsequently used to predict an average heat transfer coefficient value for the inner pipe 

surface assuming a heat transfer condition of forced convection. 
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Reynolds Number 

The first important condition that must be established is whether the internal pipe flow is 

laminar or turbulent and this is dependent upon Reynolds number. For internal flow it is 

customary to base the Reynolds number in the internal pipe (or flowline) diameter, D, as 

defined below: 

Pu D, 
ReD =9 (4.27) 

where: p= fluid density 

um = mean fluid velocity 
D, = internal pipe diameter 

µ= dynamic viscosity 

However a more useful form of the above expression may be found upon the introduction 

of the mass flow rate m. 

m= paum (4.28) 

where: a= internal pipe cross-section 

If this expression is substituted in to Eqn (4.27): 

ReD =4m (4.29) 
n D, µ 

It is difficult to predict with precision when a fully developed pipe flow is laminar or 
turbulent, however for engineering calculations it is generally agreed that the transition 

may be expected to occur at a critical Reynolds number of. 

Reýriý'. 1 = 2300 

As an example the pipeline/riser system under consideration later in this chapter has the 
following oil and flowline parameters: 

m=110kg/s D, = 0.324 m µ=3.20x10-3 kg/ms 
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This results in a Reynolds number of 1.35 x 105 which greatly exceeds the critical value 

and hence a condition of turbulent flow exists. 

Nusselt Number 

The Nusselt number is a dimensionless group, and is a measure of the rate heat transfer 

by convection. It has been shown that it can be expressed as a function of Reynolds 

number which describes the flow and Prandtl number which is a property of the fluid. For 

the purposes of this analysis the following empirical relation is used to calculate the 

Nusselt number: 

f ReDPr 
NuD -2 [1 + 1.99 Rep'18 (Pr - 1)] (4.30) 

where: f= friction factor 

Pr = Prandtl number 

This relation is the Prandtl-Taylor modification of the Reynolds analogy and is applicable 

to fully developed flow in smooth pipes. The friction factor can be found from the 

Friction Law of Blasius which is an experimental relation that appears to apply 

reasonably well to Reynolds numbers up to 2X 105 for developed turbulent flow in a 

pipe. It can be defined as follows: 

f=0.0791 Rej 4 (4.31) 

The Prandtl number Pr is a measure of the ratio of momentum diffusion through the 
fluid due to viscosity, to heat diffusion by conduction and is calculated as follows: 

Pr = 
Cp 

k 

Heat Transfer Coefficient 

(4.32) 

The heat transfer coefficient h can be calculated from the Nusselt number using the 

following relationship: 

ho-I - 
Nuk 
D, 

(4.33) 
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4.4.5 The Calculation of a Heat Transfer Coefficient for an Ambient Fluid (h4.5) 

The Convection Process 

Fluid motion is the distinguishing feature of heat transfer by convection. Although 

the process of conduction by molecular exchange is still present in a fluid, the transport 

of energy is profoundly influenced by the fluid motion. The cause of motion can be 

attributed to a number of sources: 

" When the fluid motion past a body such as a pipe is generated by external forces 

(i. e. a current) the transfer of heat between the surface and the fluid is termed 

forced convection. 

" When no external forces are present, fluid motion may still occur about a body 

immersed in a fluid at a different temperature as a result of density differences 

setting up internal buoyancy forces. In this situation the process of heat transfer is 

termed free convection. 

In practice both forced and free convection occur simultaneously, however one is usually 

dominate over the other. One method of establishing the prevailing convection type is 

outlined below. 

Grashof Number 

The significance of buoyant convective forces within a flow can be described in terms 
Grashof number: 

Gr = 
D4 3g3 AT 

(4.34) 
1) 2 

where: D4 = outer diameter of the carrier pipe 

g= gravity 
ß= coefficient of thermal expansion 
AT = temperature difference 

v= kinematic viscosity 

The ratio Gr/Re2 can be used to establish whether a flow has either forced or free 

convective characteristics: 
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Gr/Re2 «1 forced convection 
Gr/Re2 »1 free convection 

Nusselt Number for Free Convection 

For free convection around cylinders sufficiently long that end effects may be neglected 

Churchill and Chu recommended the following relation which is valid for a wide range of 
Rayleigh number Rao. 

( ý9/16 -8/Zý 
2 

NuD = 0.60 + 0.387 RaD'/6 1+ 10.5 
9 

(4.35) 
Pr 

I 

valid for: 0< Pr < oo 
10-5 < RaD < 1012 

where: RaD = Pr. GrD (4.36) 

Nusselt Number for Forced Convection Normal to a Cylinder 

Forced convection normal to a pipeline or riser represents a worst case condition as 

opposed to tangential forced convection, in terms of fluid flow heat loss. In an ocean 

environment forced convection will be generated by currents and whether the flow is 

predominantly normal or tangential to the pipeline/riser will depend upon the currents 

orientation to it. However for the purposes of this study current flow normal to the pipe is 

assumed be prevalent and hence the worst case condition is applied along the entire 

pipeline length. 

For flow normal to a cylinder (Figure 4.7) Churchill and Bernstein proposed the 

following correlation based upon an analysis of data covering wide ranges of Pr and 
ReD: 

3/g 4/3 

Nu 0.3 + 
0.62 ReD 1/2 Pr 1/3 

1+ ReD 
(4.37) _ D [1 + (0.4/Pr) ]h/4 2.82 x 103 

valid for: Rep. Pr > 0.2 

in which the Reynolds number is based upon the undisturbed freestream velocity normal 
to the carrier pipe of diameter D4 : 
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U- D4 
ReD = 

v 

Heat Transfer Coefficient 

(4.38) 

The heat transfer coefficient can be calculated from the Nusselt number by using the 
following relation for both cases of convective transfer discussed above: 

ha-s - 
Nuk 

D 4 
(4.39) 

4.4.6 The Calculation of a Heat Transfer Coefficient for an Annular Gaseous 

Layer (h2.3) 

The following analysis is based upon the assumption that free convection is the 

dominant heat transfer characteristic within the gas occupying the annular space between 

flowline and carrier pipe. This is considered as being a reasonable assumption since the 

gas is enclosed within compartments and hence its motion cannot be influenced by 

external factors. 

Nusselt Number 

The Nusselt number is obtained from a series of logarithmic empirical curves derived by 

Beckman. The graph illustrated in Figure 4.8 plots Nusselt number Nu against (Grp,; Pr) 

for a range of do/d; values, where do and d; are the diameters of the outer and inner 

cylinders respectively (D2 and D3 in Figure 4.5). In the case of Gr, di is the characteristic 
dimension with AT the temperature difference between the inner and outer cylinder 

surfaces (surfaces 2 and 3 in Figure 4.5). 

Heat Transfer Coefficient 

The heat transfer coefficient can be calculated from the Nusselt number as before by 

using the following equation in which D2 is the diameter of the inner cylinder or flowline. 

h2-3 
Nuk 

- D2 
(4.40) 
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4.5 Insulation Design for a Seabed Pipeline and Catenary Riser. 

4.5.1 Introduction 

This analysis aims to apply the heat transfer relationships detailed in the previous 

section to first of all establish fluid heat loss and temperature decay behaviour for the 

proposed riser arrangements as described in Chapter 3. A similar analysis is also 

conducted upon the pipeline linking wellhead and riser. This section of the production 

system can be considered to be as critical if not more so than the riser in terms of heat 

loss due to its considerable length (6000 m) and servere ambient environment (min water 
temperature at 1500 m is approx. -1.0 °C). The results of both studies should then provide 
information on whether flowline insulation is required in order to further minimise heat 

loss and ultimately limit oil transportation problems. 

4.5.2 System Modelling 

In order to carry out an analytical heat transfer analysis both pipeline and riser are 

modelled using a simplified cross-sectional geometric arrangement. Oil flow heat loss 

calculations are then carried out on this model using an EXCEL spreadsheet. The 

spreadsheet is created so as allow a variety of both fluid and structural parameters to be 

altered in order for their respective influences on the heat transfer behaviour to be 

established. 

Catenary Riser 

Figure 4.9 illustrates the proposed cross-section of the catenary riser as defined in 

Chapter 3 in which buoyancy is provided by either syntactic foam or pressurised nitrogen 

gas. The heat transfer model is displayed below in Figure 4.10. This model is created by 

removing all but one of the flowlines, a single oil flowline, which is centred within the 

carrier pipe. The cross-section is now of annular geometry and therefore similar to that 

shown in Figure 4.5, thereby allowing the thermal analysis methods previously outlined 

to be applied using the catenary riser spreadsheet (Spreadsheet 4.2). 

Seabed Pipeline 

The cross-sectional arrangement of the seabed pipeline (Figure 4.10) is exactly the same 

as that of the riser with the exception that in this case the carrier pipe is externally coated 

with concrete. 

4-27 



Carrier Pipe 

.......... 

Actual Section b-b' (a) 

Scale 1: 15 

*4 

Syntactic Foam/ 
Nitrogen Gas 

......................... 

.......................... 

.......... .......... 

.......... .......... 
-0- ......... 013........ ý 4 

-ý ............ ..... ýý 
.......................... 
.......................... 

........................ 

0 
Thermal Model (b) 

S 

Figure 4.9 

Catenary Riser Cross - Section 



Concrete Sleeve .... Syntactic Foam/ 
Nitrýý, en Gas/ 

............ . 
ý' 

HSM Slurry 

Carrier Pipe 

Actual Section a-a' (a) 

Scabcd 

6 

Thermal Modcl (b) 

Figure 4.10 

Seabed Pipeline Cross - Section 



This coating provides the seabed pipeline with a certain degree of lateral and vertical 

stability as well protection and according to current practices is approximately 40 mm 
thick. The thermal analysis of the pipeline is carried out using the seabed pipeline 

spreadsheet (Spreadsheet 4.1). 

4.5.3 Reservoir and Production Flow Data 

The following analysis is conducted using a single phase light crude oil (34 °API) 

with a viscosity - temperature relationship as shown in Figure 4.2. However in order to 

simplify calculations a constant viscosity (corresponding to wellhead temperature) is 

assumed along the entire length of pipeline and riser. The suitability of this hypothesis is 

evaluated and presented along with the rest of the results. One of the most important 

production variables in terms of its influence on fluid temperature decay behaviour is 

flow rate. Calculations are initially based upon a flow rate of 70,000 Barrels of Oil per 
Day (BOPD) through the single 12" flowline in the heat transfer model. This specific 
flow rate is based upon a oil production throughput of 150,000 BOPD for two production 
lines of 11.375" internal diameter taken from a current engineering design study. Other 

parameters selected for the purposes of this study are detailed below: 

Reservoir Temperature 74 °C (165 °F) 

Reservoir Pressure 413 bar (6000 psi) 
Injection Gas Temperature 94 °C (200 °F) 

Injection Water Temperature 10 °C (50 °F) 

4.5.4 Sea Water Temperatures and Current Velocities 

Mean monthly surface temperatures over the West of Shetland slope range from 

8.0 °C in winter to 12.5 °C in summer. However beyond water depths of 1000 m 
temperatures are found to be close to -1.0 °C with seasonal variations almost negligible. 
Thermal calculations are therefore based upon an ambient water temperature of -1.0 °C in 

the case of the seabed pipeline and a depth averaged winter temperature of 4.5 °C in the 

case of the riser. The analysis subjects the production pipeline and riser to a normal 

current velocity of 1 m/s over the full water depth (Figure 4.7). 

4.5.5 Thermal Insulation Characteristics of the Existing Riser Arrangement 

The decay in production oil temperature along the seabed pipeline and riser is 

graphically shown in Figure 4.15 for both the syntactic foam and nitrogen gas 

arrangements. In each case the pipeline is simply an extension of the riser in terms of 
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construction and internal buoyancy content with the exception of the concrete coating. 
The actual cross-sectional arrangement along with the corresponding thermal model for 

both riser and pipeline are illustrated in Figures 4.9 and 4.10 respectively. Utilising either 

syntactic foam or nitrogen gas in a 6000 m seabed pipeline isn't very practical in terms of 

economic or technical feasibility, however the results are useful in a purely comparative 

role. 

Syntactic Foam 

The Overall Heat Transfer Coefficient for the syntactic foam riser can be expressed as 
follows: 

U1 
2n 

1+1 loge 2+1 loge 
(L3)+ 1 

logy r4 +1 
r, h01 ks l r, kse r2 ksteel rs ra hsw 

where: ho;, = production oil heat transfer coefficient (forced convection) 

= thermal conductivity of steel k8tee 
ksf = thermal conductivity of syntactic foam 
hsw = ambient sea water heat transfer coefficient (forced/free convection) 

r. = surface radii - defined in Figure 4.11(a) 

The results presented in Figure 4.15 clearly illustrate how effective syntactic foam is as 

an insulating material. The syntactic foam maintains the oil temperature at a level 

virtually equivalent to its wellhead condition along the entire length of seabed pipeline 

and riser. The calculated drop in temperature between wellhead and surface is only 1.3 °C 

representing a 2% reduction from the wellhead condition. This impressive insulating 

characteristic is also demonstrated in Table 4.2, in which temperatures at specified radial 

surfaces are tabulated at three different locations (A, B and C, see Figure 4.1) along the 

seabed pipeline and riser. The fall in temperature (radially) across the foam at each of the 

locations is approximately equivalent to 99% of the centre flow temperature To. 
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Nitrogen Gas 

The Overall Heat Transfer Coefficient U for the nitrogen gas riser can be defined as 
follows: 

U=i 
22t 

1+1 loge 
(r2 

++1 loge 
i4 

+1 
r, h011 ksteel r, r2 hng ksteel r3 r4 hs 

r 

where: h,, 
g = nitrogen gas heat transfer coefficient (free convection) 

r. = surface radii - defined in Figure 4.11(a) 

Although a gas is a very good insulator in terms of conduction with a thermal 

conductivity of only 0.024 W/m K gases are very poor insulators whenever convection 
becomes the dominant thermal mechanism. This is confirmed by the results presented in 

Figure 4.15 which show a considerable decay in oil temperature along both the seabed 

pipeline and catenary riser. The calculated drop in temperature between wellhead and 

surface production unit is 44 °C representing a 60% reduction from the wellhead 

condition (at 74 °C). As a result of this large decrease in temperature the oil in the riser 

attains a thermal condition in which emulsification and wax deposition can develop 

ultimately inhibiting efficient oil transportation. When the radial temperature 

distributions are examined (Table 4.2) only 30 to 55% of the total temperature drop 

occurs across the annular gas layer, compared to 99% in the case of synaptic foam. 

Although syntactic foam is mostly air, the fact that it is trapped within tiny hollow 

particles that are themselves held securely within a resin matrix ensures that heat 

conduction is the more dominant heat transfer mechanism. Air has a very low thermal 

conductivity giving rise to the effective nature of syntactic foam as a insulator. If a gas is 

held in a large compartment un-restrained, it circulates in response to density changes 

thereby creating convection currents which are considerably more proficient in 

transporting thermal energy than conduction 

The gases heat transfer coefficient as determined from Figure 4.8 is based upon both 

Prandtl and Grashof numbers as defined in Eqns (4.32) and (4.34) respectively. These in 

turn are a function of viscosity (dynamic and kinematic) and ultimately gas pressure. 
Thermal calculations carried out on the seabed pipeline use a gas pressure equal to that 

experienced at a sea water depth of 1500 m (151 bar) where as the riser calculations are 
based upon a uniform depth averaged pressure of 75.5 bar along the entire length. 
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4.5.6 Alternative Methods of Insulation 

This section examines alternative methods of insulation which are economic, 
technically feasible and capable of maintaining the oil temperature at a high enough level 

throughout the production system. 

High Strength-Silica Microsphere (HSM) Slurry 

This is a new substance currently being developed at Heriot Watt University. Due to its 

relatively high density it cannot be considered practical for the riser on a weight basis, 

however in the case of the seabed pipeline HSM slurry can offer several advantages, see 
Section 4.3.2. The Overall Heat Transfer Coefficient U for a seabed pipeline utilising 
HSM slurry can be defined as follows: 

U' 
2n 

1+1 loge r2 +1 loge 
(13 

+1 loge r4 +1 loge rs +1 
rl hoil ksteel rl khsm r2 kstee, r3 kc ra r5 haw 

where: khsm = thermal conductivity of HSM slurry 
kstee, = thermal conductivity of concrete 

r. = surface radii - defined in Figure 4.11(b) 

Figure 4.16 presents results for two different arrangements: 

" Slurry filled pipeline and a syntactic foam filled riser 

" Slurry filled pipeline and a nitrogen gas filled riser 

The results illustrate the effectiveness of HSM slurry as a thermal insulator with a 

temperature decay curve very similar to that obtained for the syntactic foam filled riser. 
The calculated temperature drop along the 6000 m of pipeline is 1.8 °C compared with 
1.0 °C for the syntactic foam. In the case of the riser section, syntactic foam maintains an 

almost constant oil temperature along the length as opposed to nitrogen gas which allows 

a considerably greater degree of heat loss resulting in a rapid temperature decay profile. 
However because the HSM slurry filled pipeline has ensured that oil entering the riser is 

at a temperature level close to its wellhead condition, the temperature at the sea surface is 

now well above the level required (- 37 °C) to potentially activate any oil flow problems 

such as emulsification and wax deposition. The calculated oil temperature at the top of 

the riser is 54.1 °C compared with 30 °C in the case of a nitrogen gas filled seabed 

pipeline. 
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Nitrogen Gas with a Syntactic Foam Flowline Sleeve 

In order to try and retain even more heat within the riser whilst still using a nitrogen gas 
based system requires the oil flowlines to be encased within an insulating sleeve (Figure 

4.12). This sleeve has to be lightweight, easily fabricated, sufficiently strong under 

compression as well as possessing good insulating characteristics. This specification can 
be achieved by using syntactic foam and therefore this section aims to evaluate the 

thermal characteristics of a nitrogen gas riser with syntactic foam insulated oil flowlines. 

The Overall Heat Transfer Coefficient U for the riser can be defined as follows: 

U= 
2n 

1+1 loge r2 +1 loge 
T3 

+1+1 lege TS +1 
ri hoil ks l 

[ri 
ksn r2 r3 hN2 ksýl 

cr4) 

rs h5W 

where: r,, = surface radii - defined in Figure 4.13 

The results displayed graphically in Figure 4.17 correspond to a slurry filled seabed 

pipeline and a 10 mm thick syntactic foam sleeve around the flowline. The added 

insulation has the effect of increasing the oil temperature at the surface from 54.1 °C to 

66.5 °C. The effect of sleeve thickness on heat loss is demonstrated in Figure 4.18(a) in 

which surface oil temperature is plotted against syntactic foam sleeve thickness. The 

results show a non-linear relationship with most of the increase in temperature occurring 

when the thickness is increased from 0 to 20 mm, beyond this the temperature curve 

tends to a horizontal asymptote as thickness approaches infinity. 

4.5.7 The Effect of Oil Flow Rate on Temperature Decay 

Besides the overall heat transfer coefficient, temperature decay is also a function 

of fluid flow rate as demonstrated by Eqn (4.26). The influence of single flowline flow 

rates between 1,000 and 70,000 Barrels of Oil per Day (BOPD) on oil temperature at 

locations (B) and (C) are calculated and presented in Figure 4.18(b). The insulation 

system chosen for this analysis is the nitrogen gas/syntactic foam sleeve (10 mm) 

arrangement with the seabed pipeline filled with HSM slurry. Both temperature curves 

show a non-linear response to flow rate, as flow rate is increased so does temperature, 

however the rate of increase progressively decays with both curves levelling out at about 
40,000 BOPD in a similar way to that experienced with the sleeve thickness. At about 
12,000 BOPD the oil at the top of the riser (location C) reaches the temperature zone 

where emulsification and wax deposition become potential problems and at a flow rate of 
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approximately 7,000 BOPD hydration becomes an issue depending upon the composition 
of the crude oil. 

4.5.8 The Effect of Oil Viscosity on Temperature Decay 

All the thermal analysis conducted so far has assumed a constant oil viscosity 

with respect to temperature. This section aims to justify this assumption by establishing 
the thermal sensitivity of the system to oil viscosity, this can be achieved by taking 

practical maximum and minimum values from Figure 4.2 and applying them throughout 

the production system using the existing thermal models. The results are as follows: 

Dynamic Viscosity (74 °C) is 0.0032 kg/m s Oil Temperature at (C) = 66.5 °C 

Dynamic Viscosity (10 °C) is 0.01 kg/m s Oil Temperature at (C) = 66.8 °C 

For the viscosity range considered the results suggest an almost negligible difference. The 
insulation system chosen for this analysis is the nitrogen gas/syntactic foam sleeve (10 

mm) arrangement with the seabed pipeline filled with HSM slurry. 

4.5.9 The Effect of High Temperatures on Syntactic Foam 

For the grade of syntactic foam required for deep water operations, most 
manufacturers suggest a maximum limiting temperature of approximately 90 °C. At about 
this temperature the foam starts to soften creating a reduction in density and hence 

strength with the rate of softening being dependent upon the grade of foam used. In the 

case of the oil flowlines temperatures don't exceed 74 °C (reservoir temperature) and so 

no problems arise, however injection gas temperatures can reach temperatures of 94 °C, 

high enough to degrade the foam in the immediate area. A simple and practical solution 
to this problem would be insert a high density polyurethane sleeve around the injection 

gas flowline with the aim of sufficiently insulating the syntactic foam from the high 

temperatures generated by the gas. An illustration of this arrangement can be found in 

Figures 3.3,3.4 and 3.5. 

4-38 



4.6 Thermal Stress Analysis 

4.6.1 Introduction 

The following section attempts to evaluate the effects of temperature on the 
catenary riser in terms of induced axial stress. 

Thermal stress is caused by differences in structural temperature that are inherent within 
the system. These structural temperature differences are created by materials either 

expanding or contracting from an initial condition in response to radial temperature 

gradients set up between the hot flowline fluids and the cold ambient sea water as 

presented in the previous chapter. 

Thermal stress is a direct function of structural temperature difference and so the greatest 

stresses will occur when the riser has attained it operational condition. All calculations 

are therefore based upon this condition and the assumption that the flowlines equal the oil 
temperature and the carrier pipe equals the ambient sea water temperature. The radial 

temperature distributions tabulated in Tables 4.2 to 4.4 justify this hypothesis. 

Thermal strain is based upon a components change in temperature from an initial 

condition which for the purposes of this study is 20 T. It is assumed that this corresponds 
to an ambient average temperature during riser and pipeline onshore fabrication. During 

oil production the flowlines as shown in the previous section attain a considerably higher 

temperature and will therefore expand, however the carrier pipe experiences a drop in 

temperature as it takes on the surrounding temperature and hence it contracts. An 

important feature about this behaviour is that if the flowlines and carrier pipe were not 
structurally connected then thermal strain would be unaccompanied by stress i. e. 

component strain is unrestrained. However the riser design is based upon both the 
flowlines and carrier pipe being integral parts of the structure and therefore axial strain is 

restrained resulting in thermal stress. In the cases of both riser and pipeline structural 

connection between flowlines and carrier pipe is achieved by way of transverse steel 
bulkheads. 

The total strain in a body experiencing restraint and therefore stress may be divided into 

two components: 

" strain resulting from the stress (restriction induced) - expressed as c,, 

" strain resulting from the temperature change - expressed as CT 
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Therefore: 

or 

E=Ca+ET (4.43) 

E=E+a (T - Ti) (4.44) 

where: a= coefficient of linear thermal expansion 
(T - T; ) = change in temperature from initial condition 

ß= axial thermal stress 

The coefficient of linear expansion is a measure of a materials size dependence upon 

temperature and is therefore a material property. 

4.6.2 Thermal Stress Calculations 

Figure 4.14 illustrates the basic longitudinal cross-section of a riser or pipeline in 

which a flowline bundle is encapsulated within a carrier pipe. The annular volume around 

the flowlines is filled with either pressurised gas, slurry (in the case of the pipeline) or 

syntactic foam with structural connections between flowlines and carrier pipe provided 

through the use of transverse bulkheads. These bulkheads act to constrain relative 

movement between flowlines and carrier pipe ensuring that all structural components acts 

as an integral unit. 

Since there is no externally applied force, the sum of the internal forces in the flowlines 

and carrier pipe must be zero. Therefore: 

Fcp+Ff=0 

or 
ßcpAcp+ßfAf=0 

where: FcP = carrier pipe internal axial force 

Ff = flowline bundle internal axial force 
ßcp = carrier pipe axial stress 

af= flowline bundle axial stress 
Acp = carrier pipe steel cross-sectional area 
Af= total steel cross-sectional area of flowline bundle 

(4.45) 

(4.46) 
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Since relative motion between flowlines and carrier pipe is restrained then their 

respective axial strains are equal: 

Ecp = Ef (4.47) 

where: ecP = carrier pipe axial strain 
Cf = flowline bundle axial strain 

Applying Eqn (4.44) to the carrier pipe and flowline bundle: 

£ýP = EP + cc (T, 
p - 

T, ) (4.48) 

£f =E 
if-T; ) (4.49) 

Equating Eqns (4.48) and (4.49) creates the following expression: 

Cy' E 
+a(Te1-T; )= 

E 
+a(Tf-T; ) (4.50) 

of can be eliminated by substituting in Eqn (4.46): 

`p +a(Tf-T; ) (4.51) 
Ep 

+a(Tcp-T 
a 
EA f 

Re-arranging so as to obtain QP 

ßcp 1+ÄP=aE [(T 
(- T, ) - 

(T, 
P - 

T, )] (4.52) 
f 

ßcp =aE 
(Tf-Tcp) 

Ar (4.53) FAf +Acp) 

af can be obtained by substituting in Eqn (4.46): 

aE`Tf-T`P)+ofAf=O (4.54) 
+ 

AP 
Af 
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therefore: 
(Tf - T'p ) App of =-aE 
(Af +Acp) l 

(4.55) 

The negative sign indicates a compressive stress whilst a positive sign denotes a tensile 

stress. 

The axial loads imposed upon the seabed pipeline and riser as a consequence of 
temperature differences within the structure are presented graphically in Figures 4.19(a) 

and (b) respectively for carrier pipe diameters of 1.0 and 1.1 m. In each case it is assumed 
that the difference in temperature between carrier pipe and ambient seawater is negligible 

resulting in a pipeline carrier pipe at -1.0 °C and a riser carrier pipe at 4.5 °C. 

Both graphs illustrate a linear relationship between flowline temperature and axial stress 
in both the carrier pipe and flowline bundle. As the temperature of the flowlines is 

increased, the carrier pipe is forced to expand and the flowlines forced to contract 

resulting in an increase in axial stress, tensile in the case of the carrier pipe and 

compressive in the case of the flowlines. If a situation arose in which the flowlines were 

colder than the surroundings then the opposite would occur i. e. the flowlines would be 

tension and the carrier pipe in compression, see Figure 4.19(b). 
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CHAPTER 4 

Analysis Spreadsheets 
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Results 

Figures 4.15 - 4.19 
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Seabed Pipeline Oil Temperature Profile (N2/SF) (a) 
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Radial Temperature Distributions (N2/SF) 

Location (A) 
(Wellhead) 

Location (B) 
(Bottom of the riser) 
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Table 4.2 

Centre of fiowline 

Flowline Inner wall 

Flowline outer wall 

Carrier pipe inner wall 

Carrier pipe outer wall 

Concrete outer surface 

Ambient seawater 

Centre of flowline 

Flowilne Inner wall 

Flowline outer wall 

Carrier pipe Inner wall 

Carrier pipe outer wall 

Ambient seawater 

Centre of Ilowline 

Flowline Inner wall 

Flowline outer wall 

Carrier pipe Inner wall 

Carrier pipe outer wall 

Ambient seawater 



Seabed Pipeline Oil Temperature Profile (HSM Slurry) 
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Radial Temperature Distributions (HSM Slurry) 

Location (A) 
(Wellhead) 

Location (B) 
(Bottom of the riser) 

Location (C) 
(Top of the riser) 

Structural Surface Temperatures (degs C) 

HSM Slurry Filled Pipeline 
Syntactic Foam Filled Riser 
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Seabed Pipeline Oil Temperature Profile (a) 
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Radial Temperature Distributions (SF Sleeve) 

Location (A) 
(Wellhead) 

Location (B) 
(Bottom of the riser) 

Structural Surface Temperatures (degs C) 

HSM Slurry Filled Pipeline 
HSM Slurry Filled Pipeline Nitrogen Gas Filled Riser 
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Table 4.4 

Centre of flowline 

Flowline Inner wall 

Flowline outer wall 

Carrier pipe inner wall 

Carrier pipe outer wall 

Concrete outer surface 

Ambient seawater 

Centre of flowline 

Flowline Inner wall 

Flowline outer wall 

Syntactic foam outer surface 

Carrier pipe Inner wail 

Carrier pipe outer wall 

Ambient seawater 

Centre of flowline 

Flowline Inner wall 

Flowline outer wall 

Syntactic foam outer surface 

Carrier pipe Inner wall 

Carrier pipe outer wall 

Ambient seawater 



The Effect of S-Foam Sleeve Thickness on Oil Temperature (a) 
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Thermal Stressing of the Seabed Pipeline (a) 
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