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Abstract 

The development of new biomarkers for cancer patients would be advantageous in 

population screening for the early detection of cancers, pathological diagnosis, assessment 

of prognosis, tailoring treatment to individuals, and assessment of treatment response.  

With this in mind different proteomic approaches were used to identify biomarkers which 

could potentially aid prognosis and predict response in gastrointestinal and ovarian cancer. 

Raf Kinase Inhibitor Protein (RKIP) was originally purified from bovine brain extracts and 

named phosphatidylethanolamine-binding protein (PEBP). It has subsequently been shown 

to be a widely expressed and highly conserved protein. Several recent studies have 

suggested that RKIP may suppress metastasis in melanoma, prostate, and breast cancer, as 

reduction or loss of RKIP expression was observed in metastatic cell lines and metastatic 

tissue. In this part of the project RKIP expression was assessed by immunohistochemistry 

in tissue microarrays (TMA) from patients with colorectal and ovarian cancer. The results 

confirmed the findings of earlier studies and suggest that the level of RKIP expression is 

significantly and inversely associated with metastatic disease and can predict the risk of 

metastatic relapse in patients with no evidence of metastases at presentation. The level of 

RKIP expression as a prognostic factor was independent of sex, age, tumour site, mitotic 

index, lymphovascular invasion and tumour stage.  

Cytokeratin 18 (CK18) is an epithelial-specific cytokeratin that undergoes cleavage by 

caspases during apoptosis. Measurement of caspase-cleaved (CK18-NE) or total 

cytokeratin 18 (CK18) from epithelial-derived tumours could be a simple, non-invasive 

way to monitor or predict responses to treatment. Soluble plasma CK18-NE and CK18 

were measured by ELISA from 73 patients with advanced gastrointestinal 

adenocarcinomas before treatment and during chemotherapy, as well as 100 healthy 

volunteers. Both CK18-NE and total CK18 plasma levels were significantly higher in 

patients compared to the healthy volunteers (p=0.015, p<0.001). The total CK18 baseline 

plasma levels prior to treatment were significantly higher (p=0.009) in patients who 

develop progressive disease than those who achieve partial response or stable disease and 

this correlation was confirmed in an independent validation set. The peak plasma levels of 

CK18 occurring in any cycle following treatment were also found to be associated with 

tumour response, but peak levels of CK18-NE did not reach significance (p=0.01, and 

p=0.07, respectively).  
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A surface-enhanced laser desorption-ionisation mass spectrometry (SELDI-MS) pilot study 

on serum from 8 oesophageal cancer patients and 8 healthy volunteers revealed a novel 

biomarker, ~4kDa, downregulated in patients (p=0.012). An expanded 30 tumour/normal 

study was performed for validation which confirmed the down-regulation of this potential 

biomarker (p<0.0001).  Attempts to identify tentatively suggested that the peptide may be 

inter-alpha-trypsin inhibitor heavy chain H4 precursor, which was interesting as a cleavage 

fragment of inter-alpha -trypsin inhibitor heavy chain H4 had been previously found to be 

up-regulated in patients with ovarian cancer, and down-regulated in patients with breast 

cancer. However, it was not possible to confidently confirm this identification. In a further 

part of this study, haptoglobin was found to be significantly more abundant in the serum 

from patients with oesophageal cancer compared to healthy volunteers. It was 

straightforward to isolate and identify and would be amenable to immunoassay as there are 

good antibodies available for confirmation. 

In conclusion, with the current lack of effective markers of metastatic relapse in colorectal 

cancer, a straightforward test like RKIP expression in the primary tumour may be a very 

cost-effective way to identify which patients may derive greater benefit from adjuvant 

treatment and closer post-operative surveillance, and in patients with advanced 

gastrointestinal malignancy levels of plasma CK18 are a potential marker of tumour 

response.  
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1.1 The Challenge 

Radiological imaging of tumours is an essential part of the practice of oncology, with a 

crucial role in screening programmes and in the diagnosis and staging of established 

disease. Furthermore, the assessment of tumour size by imaging, usually with computed 

tomography (CT) is a key component in determining tumour response in clinical practice. 

However, the development of a serum or plasma biomarker to monitor treatment response 

would be advantageous in terms of ease of repeated analysis and use of resources 

compared to anatomical imaging. In addition biomarkers might give an earlier indication 

of potential response to treatment rather than the time lag which is necessary to observe 

changes in tumour size. In patients with malignancy this may avoid administering toxic 

treatments with little prospect of benefit and hence start alternative treatments earlier. 

Another area where serum biomarkers would be of value is in population screening for the 

early detection of cancers. 

Biomarkers are defined as characteristics that are objectively measured and evaluated as an 

indicator of normal biological processes, pathological processes, or pharmacological 

responses to a therapeutic intervention [1]. The ideal biomarker should have a high 

sensitivity and specificity for diagnosis; its level should correlate with disease stage and 

response to treatment; and it should be easily and reproducibly measured. Unfortunately, 

the biomarkers currently available for use in the management of solid tumours, like 

gastrointestinal and ovarian cancer do not fulfil all these criteria and, therefore, are not 

presently recommended for screening of the general population. At present the main uses 

of biomarkers are in determining prognosis, monitoring responses to treatment and in 

detection of disease recurrence. The challenge is therefore to develop the ideal biomarker. 

 

1.2 Classes of Cancer Biomarkers 

1.2.1 Screening markers 

Biomarkers used for cancer screening need to be able to detect early stage disease with 

high sensitivity and specificity (sensitivity refers to the proportion of people with disease 

who have a positive test result and specificity refers to the proportion of people without 

disease who have a negative test result. The ideal biomarker for population screening 
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should have >99.9% sensitivity and specificity) [2]. However, early detection is only 

useful if there is an intervention that can be undertaken when early stage disease has been 

diagnosed, which results in improved survival outcomes for patients. In addition, 

widespread screening of the population is not cost-effective when considering cancers that 

have a low prevalence.  

The biomarker that has probably been most widely used for cancer screening is prostate-

specific antigen (PSA) as a screen for prostate cancer [3].  However, there is no agreement 

about whether screening of the general population reduces premature mortality. A UK 

study evaluated the combination of digital rectal examination and PSA levels as a 

screening tool for prostate cancer. Men with abnormal results were then referred for a 

transrectal ultrasound scan (TRUS) and biopsy of any suspicious areas. Of the men 

referred for TRUS only 6% had a biopsy taken and only 1.7% had prostate cancer [4]. 

These results have been supported by other trials evaluating the role of prostate cancer 

screening in asymptomatic men [5].  

This controversy is highlighted by the results from two large clinical trials that assessed 

prostate-cancer mortality in screening studies which were recently reported. The first study 

from Europe randomised 182,000 men between 50-74 years to either a control group or a 

group that were offered PSA screening once every four years. The results showed that PSA 

screening reduced the rate of prostate-cancer death by 20%, but at a high risk of 

overdiagnosis [6]. The second study from the US randomised 76,693 men between 55-74 

years to either a control group or a group that was offered annual PSA screening for six 

years and digital rectal examination for four years. The results showed that after seven to 

ten years of follow-up, the prostate cancer related mortality was low and did not differ 

significantly between the two groups [7]. 

It is clear that for cancer screening there is a need for much more sensitive and specific 

biomarkers using technologies that are reproducible, portable, cost-effective, amenable to 

large scale screening of populations and ideally uses readily available body fluids. 

1.2.2 Diagnostic markers 

Diagnostic markers are generally used to aid histopathological tumour diagnosis and 

classification and so allow for optimal treatment choices [8]. Where this is extremely 

important is in the diagnosis of adenocarcinoma of unknown primary origin (ACUP). 

ACUP accounts for 3% of all malignant disease, making it one of the ten most frequently 
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diagnosed cancers [9, 10]. However, modern chemotherapy regimens now vary greatly 

between different tumour types and there are targeted treatments available to treat certain 

cancers, and so if it is possible to accurately determine a site of origin, then there is a 

greater potential for tumour-specific treatments which may provide better clinical 

outcomes. Diagnostic markers used include CEA [8], CA19-9 [11], cytokeratin 7 (CK7) 

for gastrointestinal malignancy [12], CK20 and CA-125 for ovarian cancer [8], hormone 

receptors such as oestrogen and progesterone receptors (ER and PR) [13], and PSA for 

breast and prostate cancer [14], and thyroid transcription factor-1 (TTF-1) for lung cancer 

[15]. 

More recently gene-expression profiles have been developed that may potentially be of use 

in patients with ACUP [10, 16]. These have been used retrospectively in formalin-fixed 

paraffin-embedded specimens and have established putative diagnoses in patients that are 

compatible with clinical and pathological findings. However, prospective studies are 

required to assess the utility of these profiles in directing therapy. 

1.2.3 Prognostic markers 

Prognostic markers provide information about the malignant potential of tumours and 

patient survival time to facilitate further treatment choices, especially if there is more 

information gained regarding the risk of future metastatic spread [9]. Prognostic markers 

currently in use in clinical settings include hormone receptors (such as ER and PR), 

proliferation markers (such as Ki67), and proteases, markers of angiogenesis (such as 

VEGF), growth factor receptors (HER-2/neu), and p53 [9]. 

1.2.4 Predictive markers 

Markers used to aid diagnosis can also provide predictive information about a tumour’s 

likely response to different treatments [9]. For example, breast cancer patients with 

oestrogen receptor (ER) positive tumours receive treatment with either tamoxifen or 

aromatase inhibitors in the adjuvant and metastatic setting as clinical trials have shown a 

clinical benefit in patients with ER positive but not ER negative disease [9]. Another 

example would include the use of trastuzumab (Herceptin®) in breast cancer patients 

whose disease overexpresses the growth factor Her-2/neu. Trastuzumab is a monoclonal 

antibody that selectively binds to the HER-2 protein and clinical trials have demonstrated 

clinical benefit in using trastuzumab both in the adjuvant and metastatic setting in patients 

whose cancer overexpresses the HER-2 protein [2, 17]. These markers therefore, help to 
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tailor treatments to patients who will get the most clinical benefit, whilst sparing predicted 

non-responders the toxicities of ineffective treatments. 

1.2.5 Markers of response to cytotoxic and targeted therapies 

Currently, response to therapy in cancer is usually determined by radiological imaging as 

reduction in tumour size will generally be apparent within weeks of starting treatment. 

Serum biomarker measurement to monitor treatment response is advantageous in terms of 

ease of repeated analysis and use of resources compared to anatomical imaging, but is 

generally only used in the setting of advanced disease. Examples of biomarkers that are 

currently used to assess response in advanced disease are cancer antigen 125 (CA-125) for 

ovarian cancer [18], carcinoembryonic antigen (CEA) for colorectal cancer [19] and PSA 

for prostate cancer [8]. This use requires that the quantitative measurement of the 

biomarker e.g. serum concentration, should have some correlation with disease severity. 

However, with the newer targeted treatments, reduction in tumour size may not occur for 

many months and so other measurements of tumour response are required [20]. These 

might include a decrease in the tumour’s metabolic or proliferative activity and it would be 

useful to have biomarkers that could determine this either as a stand-alone test, such as a 

blood test that could be performed at specified time-points, or a molecular imaging 

technique. The main advantage of molecular imaging techniques is that they have the 

potential to show the level and activity of a specific molecular target in vivo. PET (positron 

emission technology) scanning gives information about disease location and can detect 

changes in metabolic activity within disease sites before changes are apparent on 

conventional CT scans [21].  However, molecular imaging relies on the development of 

suitable biomarkers that can be detected by available technology; are easily deliverable to 

the sites of disease (even crossing physiological barriers like the blood-brain barrier); 

accumulate within the sites of disease, but are cleared rapidly from normal tissues, and are 

non-toxic.  The biomarkers required may also need to differentiate between disease states 

and even cancers arising from different sites, making this area of research very 

challenging. 
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1.3 Background to Protein and Peptide Biomarker 
Discovery 

In 1999, the formal definition of a biomarker was created [22]. According to this 

definition, a biomarker is a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or pharmacological 

responses to a therapeutic intervention. A biomarker can serve as a clinical endpoint, 

surrogate endpoint or both.  A clinical endpoint is defined as a characteristic or variable 

that reflects how a patient feels, functions or survives. A surrogate endpoint is defined as a 

biomarker intended to substitute for a clinical endpoint and so, a surrogate endpoint is 

expected to predict clinical benefit (or harm, or lack of benefit) based on epidemiological, 

therapeutic, pathophysiological or other scientific evidence. It was felt that the formal 

definition of a biomarker needed to be created in order to standardise their development 

and measurement, thus establishing internationally accepted markers that are easily and 

reproducibly measured [1].  

Biomarkers in the context of cancer research are molecules occurring in body fluids or 

tissues that are associated with cancer. The identification or measurement of these markers 

is useful for diagnosis and clinical management. The ideal marker should have high 

sensitivity and specificity for diagnosis (i.e. be specific to the cancer type and able to 

reflect low tumour burden or early stage disease); should correlate with disease stage and 

response to treatment; and be easily and reproducibly measured. Most biomarkers have too 

many false positives from benign conditions to make screening feasible. Many only clearly 

identify malignancy once the cancer is sufficiently advanced to make this detection of 

limited use. 

One potential way of discovering new cancer biomarkers is by proteomics. Proteomics is 

the complete description of all proteins encoded by the genome, called the proteome, and 

aims to establish biosignature profiles to discriminate between disease states. Therefore, a 

detailed analysis of proteins expressed by an organism may allow a greater understanding 

of the molecular complexities of cancer and other diseases [23]. In cancer this involves 

analysing the protein expression from tumours, tumour cells or extracellular fluids from 

cancer patients. The main advantage of this approach over gene analysis is that gene 

transcription levels do not necessarily correspond to protein levels and thus function within 

organisms as there are potentially a large number of protein products from each gene. A 

further advantage is that proteomics affords the potential to analyse post-translational 
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modifications of proteins [9]. There are more than 200 post-translational modifications that 

proteins can undergo that affect function, protein-protein and nucleic acid-protein 

interactions, stability, targeting, and half-life [1]. In addition various changes occur when a 

normal cell transforms to a cancerous one, ranging from differences in expression levels of 

proteins, differential protein modification, changes in specific activity, to aberrant 

localisation. All of these changes can affect cellular function and can make study of the 

proteome complex and challenging. 

There are two main approaches for biomarker discovery in proteomics 

1. A global, non-directed approach – using high-throughput technologies such as 

SELDI and MALDI.  

2. Target-specific approaches- where known molecular targets such as antigens and 

antibodies are probed using cross-reacting analytes, such as antigens, antibodies or 

other affinity reagents. 

1.3.1 Global approaches for biomarker discovery  

Global approaches have only become possible due to technological advances in mass 

spectrometry and separation techniques, and the wealth of data gained from the human 

genome project. Two-dimensional gel electrophoresis was initially described thirty years 

ago [24]. Proteins in a 2-dimensional gel (2-D PAGE) are separated in two dimensions, the 

first, dependent on their isoelectric point (the pH at which a molecule carries no net 

electrical charge) and the second on their molecular mass. Spots of interest, for example, 

proteins whose intensities are significantly increased or decreased between normal and 

cancer samples, are then excised and identified using mass spectrometry. The main 

limitations with this technique are that many proteins (including potential biomarkers) are 

expressed at such low levels that they may escape detection and it can be difficult to ensure 

reproducibility due to variation in running conditions. 

Mass spectrometry (MS) was developed in the early 20th century, but has undergone 

significant improvement over the past 20 years with the development of more sensitive, 

higher resolution techniques. High performance liquid chromatography (HPLC) and MS 

techniques have been developed that allow definitive identification and quantitative 

determination of compounds. The increased purity of the compounds that are introduced 

into the MS by HPLC allows for a greater identification capability. Further advances 
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include higher resolution mass spectrometers and tandem MS, which have enabled the 

analysis of biomolecules over 300,000 Da.  

The three commonest ionisation methods used for analysis of proteins and peptides include 

electrospray ionisation (ESI), matrix-assisted laser desorption/ionisation (MALDI) and 

surface-enhanced laser desorption and ionisation (SELDI) [25, 26]. All of these ionisation 

methods can detect within the picomole to femtomole range, which is required for the 

analysis of biological samples.  

MALDI and SELDI both involve spotting of samples onto a solid surface or probe, in the 

case of SELDI; this is called a ProteinChip (BioRad/Vermillion). MALDI requires samples 

to be mixed with an energy-absorbing matrix before being applied to a passive stainless 

steel probe. SELDI, however, uses ProteinChips that selectively bind different proteins and 

peptides of interest using a defined chemical chromographic characteristic (i.e. 

hydrophobic, ion exchange, or metal binding surfaces).  

ESI creates an ion gas cloud in the source directly from the sample solution containing 

highly charged droplets. The droplets are then electrostatically driven through air, heat, 

solvents, nitrogen gas and other drying agents so that the surface charges are deposited 

onto the proteins and peptides. This process is a lot gentler than MALDI and SELDI and, 

therefore, causes less fragmentation of molecules of interest, but is less suited to high-

throughput applications 

These techniques generally require some form of sample fractionation, such as anion 

exchange chromatography, to remove the more abundant proteins which may mask the less 

abundant potential biomarkers within the samples and therefore help to target specific 

areas of proteome for biomarker discovery [1]. The concerns with sample fractionation are 

that the process has to be highly reproducible and there is the potential that biomarkers 

bound to the more abundant proteins may also be removed. 

The advantages of global protein profiling are that it allows the high-throughput analysis of 

samples, therefore making it ideal for population screening. It can analyse readily available 

material, such as serum and plasma, and requires only small amounts of sample for 

analysis. However, it has a number of drawbacks; first the spectra generated by SELDI and 

to an extent MALDI do not give details of the identity of the individual proteins, but rather, 

give a pattern that is associated with different organs and disease states. In order to try and 

identify the potential biomarkers within the samples it is generally necessary to convert 
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proteins into their constituent peptides by digestion with a proteolytic enzyme like trypsin. 

Tandem MS/MS is then used to work out the sequence of the peptides by fragmenting the 

parent ions via collision with gas molecules. The molecular weight and sequence 

information obtained is then searched against suitable protein databases and peptide 

identities assigned based on correlations between the experimentally observed spectra and 

those within the database. One other drawback is that the mass spectra produced contain a 

large number of protein peaks from which it can be difficult to filter out the background 

noise, and there are also concerns about the potential lack of reproducibility and the fact 

that studies are generally limited to investigating only a very small fraction of the proteome 

at a time due to its complexity. 

1.3.2 Target-specific approaches for biomarker discovery 

1.3.2.1 Protein Microarrays 

Protein microarray, a proteomic technology that examines precise protein-protein 

signalling in various disease states in an exact and high-throughput manner, has 

complemented 2-D PAGE MS [27]. A protein array contains a collection of immobilised 

protein spots. Each spot can contain a homogeneous or heterogeneous set of bait 

molecules. The array is interrogated with either a probe (labelled antibody or ligand) or an 

unknown biologic sample (e.g. cell lysate or serum sample) that contains the analytes of 

interest. The query molecules are tagged with a signal generating moiety which then 

generates a pattern of positive and negative spots. An image of the spot pattern is captured, 

analysed and interpreted [28].  Proteins or peptide fragments can also be attached onto the 

microarrays and protein-protein interactions elucidated [29]. Protein and antibody arrays 

are more expensive and labour intensive than DNA arrays and require a large bank of 

specific antibodies to known proteins. However, the specific antigen-antibody reactions 

allow for identification of cancer-specific antigens and more accurate diagnoses and also, 

the high-throughput makes it attractive as a potential screening tool. 

1.3.2.2 Immunoassays 

Within the field of target-specific approaches, immunoassays are one of the fastest 

growing technologies [30]. In its most basic form it is a biochemical test that measures the 

concentration of a substance within a biological fluid, using the reaction between an 

antigen and an antibody. The level of the unknown substance is then determined by the 

plotting of a standard curve. In order to detect the quantity, the antibody or antigens are 
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commonly labelled using enzymes, colloidal gold, radioisotopes, magnetic labels or 

fluorescence. The main drawbacks associated with immunoassays are that they are 

generally limited in the number of samples that can be examined at one time and so are not 

ideal for high-throughput screening. Also, they can only screen for a specific protein and 

so may miss unknown but significant differences between samples. However, they are 

routinely and effectively used in clinical practice and newer technologies such as Luminex 

xMAP® multiplexing technology (www.luminexcorp.com) have been developed which 

allow simultaneous measurement of multiple samples. 

1.3.2.3 Immunohistochemistry 

Immunohistochemistry is the localisation of antigens in tissue sections using labelled 

antibodies and is the standard method for determining the presence of markers within 

tissue [31]. Again, as for immunoassays, the antibodies are labelled using fluorescent dyes, 

enzymes, colloidal gold or radioactive elements. The type of antibody selected will depend 

on the tissue that is under study and the degree of sensitivity that is required.  

It was first described in 1941 (Coons et al, 1941) when studies were performed using 

antibodies labelled with fluorescent dyes to examine tissue sections. Since then there has 

been advances in the sophistication of the technique and labelling of the antibodies used. 

This has resulted in immunohistochemistry becoming a crucial and widely used technique 

both in clinical diagnosis and medical research. 

1.4 The Ideal Biological Fluid for Proteomic Analysis 

The majority of the studies evaluating protein expression in cancer have utilised serum or 

plasma. The theory behind this is that organs or tissues can add to, modify, or remove 

proteins and peptides in the circulating bloodstream. Therefore, the plasma proteome may 

reflect abnormalities or pathological states affecting organs and tissues. Blood is readily 

accessible and medical laboratories are already equipped for its analysis making it an ideal 

diagnostic material. However, human plasma is thought to have tens of thousands of core 

proteins spanning ten to twelve orders of magnitude in protein abundance [32] and, so, 

there are analytical challenges posed by the complexity and depth of the plasma proteome. 

The data obtained following analysis of the serum proteome is very complex and 

bioinformatic tools can help, but the analysis of the serum proteome is reliant on a couple 

of presuppositions; first that the proteins or peptides shed into the serum, through either 

angiogenesis or invasion of surrounding tissues and vasculature, are representative of the 
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organs they are derived from and second, and that they are specific to the disease process 

affecting the organ, whether benign or malignant. In addition it is likely that specific 

biomarkers of disease are going to be of low relative abundance and greatly diluted within 

the circulation and that more abundant proteins may interfere with their detection. 

Therefore, as mentioned earlier some form of sample fractionation is usually necessary to 

increase the chances of detecting low abundance biomarkers. 

This problem may to some extent, be overcome by analysis of fluids lying closer to the site 

of disease in which potential biomarkers will be present in higher concentrations. 

Examples of this include urine for diseases affecting the renal tract, nipple aspirate fluid 

for breast disease and cerebrospinal fluid for central nervous system disorders. The types 

of samples to be studied will also rely in part on the disease process of interest. Serum 

contains proteolytic enzymes, which may make reproducibility of results difficult due to 

the resulting variation in protein levels. Examining the proteomic profiles of tissue sections 

from non-small cell lung and brain cancer has been shown to provide prognostic 

information [33] and urine samples may also show differential proteomic profiles 

reflecting various disease states affecting the renal tract and is not subject to the same 

degree of proteolysis [34] 

Various factors may complicate the measurement or detection of a biomarker within a 

human population, such as age, gender, diet and interaction with medications. These 

difficulties may, in part, be overcome by the use of cell lines or genetically homogenous 

mouse models and so these may be used as the source of material for proteomic analysis. 

Understandably, there are concerns about how applicable the results derived from these 

approaches are to humans. In fact, their main function may be to provide candidate 

biomarkers which may then be further assessed in human populations. 

1.5 The Clinical Challenge 

1.5.1 Oesophageal Cancer  

The incidence of oesophageal cancer has increased over the past 30 years. Currently 7,800 

cases are diagnosed in the UK each year, with more men affected than women and like 

most cancers, its incidence increases with age.  

Unfortunately the outcomes for patients with oesophageal cancer are poor, with an overall 

5-year survival rate of 8%. This is because up to two thirds of patients are diagnosed when 
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their disease is inoperable. For those who undergo an operation, the 5-year survival rates 

are up to 25%. However, recent studies have suggested that administering pre-operative 

chemoradiotherapy or chemotherapy alone improves patient outcomes with 2-year survival 

rates of up to 44% (CancerResearch UK, 2005. Cancerstats, www.cancerresearchuk.org). 

At present screening for oesophageal cancer is not carried out in the UK. This is because 

the screening test would involve an endoscopy and the risks associated with the procedure 

have been judged to out way the benefits, as only a very small number of cases would be 

detected. Again if there was a simple blood test that could be performed in this setting 

which would allow targeting of endoscopies to the patients who would derive the greatest 

benefit and allow for earlier diagnosis of disease then survival outcomes could be 

improved. The potential role of serum biomarkers for the management of patients with 

oesophageal cancer has been looked at in several studies.  

Cytokeratin expression has been studied in many different cell types over the past few 

decades [35]. The most universally expressed are cytokeratin 18 (CK18) and 19 (CK19) 

which are major components of the intermediate filament of simple epithelial cells and 

epithelial-derived tumours, and make up approximately 5% of the total cell protein [36]. 

Their expression has been documented in a number of different cancers and various 

antibodies have been developed for their detection [37]. There is an assay available that 

measures circulating soluble cytokeratin 19 (CK19), CYFRA 21-1, which is based on two 

monoclonal antibodies to CK19 [38]. CYFRA 21-1 has mostly been used clinically in 

lung, and head and neck cancers [39, 40]. In patients with oesophageal cancer high pre-

operative levels of CYFRA 21-1 have been found to be associated with tumour progression 

and poor survival outcomes especially in patients with squamous cell oesophageal 

carcinoma [41, 42]. Serum squamous cell carcinoma antigen 2 (SCC-antigen) mRNA 

concentrations have been found to be associated with pathological changes in oesophageal 

cancer but are not sensitive or specific enough to be used for screening [43].  

1.5.2 Gastric Cancer 

In the UK around 8,000 people are diagnosed with gastric cancer each year, making it the 

eighth most common cancer. Although the incidence has been falling over the past eighty 

years, probably due to improvements in food storage and changes in diet, it tends to occur 

more frequently in males and with increasing age. 
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If gastric cancer is diagnosed and treated at the earliest stage, stage I, then the outcomes are 

very good with 5-year survival rates of 80%.  However, unfortunately only 1% of patients 

are diagnosed with stage I disease; the majority of patients are diagnosed when the disease 

is at a much more advanced stage with 5-year survival rates of 15% or less. In fact 80% of 

patients are diagnosed when their disease has already spread (stage IV) and the survival 

rates in this group of patients are dismal, with 5-year survival rates of 5% (CancerResearch 

UK, 2005. Cancerstats, www.cancerresearchuk.org). It would, therefore, be extremely 

useful if there was a simple screening test, such as a blood test that could aid with earlier 

diagnosis of gastric cancer and highlight which individuals would derive most benefit from 

further investigations like endoscopy. 

At present there are no screening tests for gastric cancer within the UK. Studies performed 

looking at serum biomarkers in gastric adenocarcinoma have failed to provide a biomarker 

that is sensitive or specific enough for population screening [44-46]. Biomarkers that have 

been studied include CEA, carbohydrate antigen 19-9 (CA19-9) and carbohydrate antigen 

72-4 (CA72-4). CA19-9 is a monoclonal antibody raised against a colon carcinoma cell 

line to detect a monosialoganglioside in patients with gastrointestinal cancer [47]. It is 

elevated in 20-40% patients with gastric cancer. The CA72-4 assay measures a tumour 

associated glycoprotein (TAG-72) using two monoclonal antibodies. Raised serum TAG-

72 levels have been observed in 33-59% patients with gastric cancer [48, 49]. Studies have 

been carried out that looking at the role of endoscopy as a screening test in gastric cancer. 

In one study endoscopies were performed on all patients over 40 years of age, who 

presented with symptoms suggestive of upper gastrointestinal pathology. The results 

showed that although more early cancers were discovered, 98 out of every 100 people 

underwent a needless endoscopy, which is not without risk. It was felt that this type of 

screening test was not cost-effective. 

1.5.3 Colorectal Cancer 

There are about 36,000 patients diagnosed with colorectal cancer in the UK each year, 

making it the third most frequently diagnosed cancer and the second leading cause of 

cancer deaths, with over 16,000 patients dying each year (CancerResearch UK, 2005. 

Cancerstats, www.cancerresearchuk.org). The survival rates for colorectal cancer vary 

widely and depend largely on the stage at which the cancer is diagnosed. The 5-year 

survival rates for the earliest stage, I or Dukes A, are over 80%. If, however, the cancer is 

diagnosed at an advanced stage where spread had occurred to distant organs, there is only a 

15% 2-year survival, with a median survival of 10 months from diagnosis. Unfortunately at 
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present only 10% of patients are diagnosed with stage I disease, as symptoms tend to 

present late in the time course of the disease. If it was possible to diagnose patients when 

their disease was at an earlier stage then survival outcomes would be much improved. It 

would, therefore, be extremely useful to have a screening test that could be performed on 

the general population to detect patients with asymptomatic early stage disease, who would 

gain most benefit from further investigations and treatment.  

Various different methods have been employed as screening tests for colorectal cancer 

including faecal occult blood (FOB) screening and techniques involving direct 

visualisation of the bowel such as sigmoidoscopy. Information regarding sigmoidoscopy 

screening suggests a 60-80% reduction in mortality from distal but not proximal cancers 

[50, 51]. Studies that have looked at both sigmoidoscopy and colonoscopy have shown a 

50% reduction in incidence of colorectal cancer up to 6 years of follow-up [52]. One study  

showed an 80% reduction in cancer incidence with sigmoidoscopy which was observed 

after 13 years of follow-up, however, there was no reduction in mortality [53]. The interim 

results from a study looking at once only screening sigmoidoscopy have recently been 

reported [54]. This study randomised 55,736 people aged between 55-64 years to usual 

care or to once only flexible sigmoidoscopy with or without FOB testing. Of the 13,653 

people invited to attend a screening flexible sigmoidoscopy, 8846 (65%) underwent the 

procedure. The incidence of colorectal cancer (this included both distal and proximal 

cancers) and mortality did not differ between the screened and control population, but the 

screen detected cancers tended to have earlier stage disease and a lower case-fatality rate 

although this didn’t reach significance. However, within the screened group there was a 

significant reduction in mortality from colorectal cancer in the group who attended for 

screening investigations, and this is relevant as site-specific cancer mortality is considered 

an appropriate end-point for evaluating screening tests [55]. Endoscopic screening has 

been advocated in the USA for the past 10 years [56] and several countries in Europe have 

launched colonoscopy screening programmes [57, 58]. 

Trials have been reported looking at the use of annual FOB screening, one trial showed a 

reduction in mortality that pre-dated a reduction in incidence by 7 years [59]. At present in 

the UK, the NHS is carrying out a Bowel Cancer Screening Programme. As part of this 

screening programme, men and women aged between 60-69 years are sent out faecal 

occult blood (FOB) screening tests every 2 years. Individuals with positive FOB results are 

then offered further investigations, including colonoscopy which allows for direct 

visualisation of the bowel and biopsy of any suspicious lesions identified.  
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The screening programme is based on a pilot study which was performed in England and 

Scotland in 2007. The aim of the pilot study was to discover the feasibility of introducing a 

national screening programme for colorectal cancer based on FOB testing. The trial 

involved men and women aged between 50-69 years. The results showed that of the 

478,250 people invited to participate, the uptake was 271,646 (56.8%). The overall rate of 

a positive test was 1.9%. The number of cancer cases detected was higher in the Scottish 

population, in men, and also increased with advancing age. The positive predictive factor 

was 10.9% for cancer and 35.0% for adenoma. A total of 552 cancers were discovered, of 

which 16.6% were polyps, 48% were stage I (Dukes A) and only 1% were stage IV (Dukes 

D). 

The results from the pilot study were encouraging and suggest that FOB testing may be a 

useful method for screening the population and detecting early stage cancers. However, as 

can be seen from the pilot study the uptake was only 56.8%. If there was a simple blood 

test which could be performed as a screening test, the uptake may be higher as people tend 

to be regard blood tests as more acceptable. Blood is also easily accessible and clinical 

laboratories are well set up for its analysis.  

At present there are no serum or plasma biomarkers available for colorectal cancers that 

are sensitive or specific enough to be used as screening tests. CEA is a member of a class 

of oncofetal antigens that are produced within the normal developing fetus, but only in 

minute amounts by normal adult cells. First described in 1965, it has become the most 

widely used biomarker in gastrointestinal malignancy [60] and can be measured 

quantitatively by immunoradiometric assay in serum, but due to its lack of sensitivity in 

the early stages of disease (<25%) it is unsuitable for population screening. Its main use is 

in the follow-up of patients after surgical resection with the aim of earlier detection of 

recurrence, and in monitoring responses to palliative chemotherapy in advanced disease 

[19]. 

1.5.4 Ovarian Cancer 

About 6,800 women are diagnosed with ovarian cancer in the UK each year. It is the fifth 

commonest cancer in women after breast, lung, colorectal and endometrial cancer 

(CancerResearch UK, 2005. Cancerstats, www.cancerresearchuk.org).  

One of the characteristics of ovarian cancer is common presentation at an advanced stage, 

where 5-year overall survival rates are < 30%, whereas if the disease is diagnosed at stage I 
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(confined to the ovary), the overall survival rates are > 90%. The current screening 

investigations for ovarian cancer include the biomarker, CA-125 and pelvic ultrasound 

scanning. CA-125 is a serum protein defined by a monoclonal OC 125 that was generated 

by immunizing mice with a cell line established from human ovarian carcinoma. It is 

elevated in about 80% of patients with advanced ovarian cancer, but only 50-60% of early-

stage patients. Therefore, CA-125 has a positive predictive value (the probability that 

disease is really present when the test is positive) of <10%, which is increased to only 20% 

with the addition of ultrasound scanning [61-63]. Moreover, CA-125 can also be elevated 

in a number of other conditions including pregnancy, endometriosis, colorectal and 

pancreatic cancers. Therefore, there is a need to develop detection methods to improve the 

sensitivity and specificity of early-stage ovarian cancer detection. 

Therefore, ovarian cancer screening is currently only used in patients who are deemed to 

be at high risk for the disease, including patients with BRCA1 and BRCA2 gene mutations 

[64]. These women are offered annual assessments of CA-125 and ultrasound scanning. 

The NCI is currently running a prospective study looking at a cohort of women at high-risk 

of developing ovarian cancer to determine if the rate of change of CA-125 is predictive of 

disease and whether there are any other serum biomarkers that can be used 

(www.cancer.gov/clinialtrials). Within the UK, women at high risk of ovarian cancer 

determined by their family history are eligible for a study offering genetic screening and 

annual assessments of CA-125 and ultrasound scanning. However, women at high risk of 

ovarian cancer due to gene mutations count for <5% of the cases of ovarian cancer and at 

present the screening tests are not sensitive or specific enough to be used for the general 

population. 

1.5 Aims of the Thesis 

The aims during my research were to find new biomarkers that could be used in patients 

with gastrointestinal and ovarian cancers to potentially aid in diagnosis, assessing 

prognosis and response to therapies. With this in mind a number of both global and target 

specific approaches were tried: 

I. The first part of my research involved a collaboration with Prof Walter Kolch at the 

Beatson Institute looking at the expression of Raf Kinase Inhibitor Protein (RKIP) 

using immunohistochemistry in tissue microarrays (TMA) initially in patients with 

colorectal cancer and later in patients with ovarian cancer. The rationale behind this 

was previous work suggesting that a reduction or loss of expression of RKIP was 
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associated with worse clinical outcomes and the aim was to confirm these findings 

with a much larger cohort of patients. It would be extremely useful to have an 

additional prognostic biomarker especially in the management of patients with 

Stage II or Dukes B colorectal cancer, where the disease remains confined to the 

bowel wall. The role of adjuvant chemotherapy in these patients remains uncertain 

and so if there was a further marker that would allow greater targeting of treatment 

to patients who would gain the most benefit this would be very valuable. It was also 

decided to explore RKIP expression in a bank of TMA from patients with stage Ic 

to IV ovarian cancer who had participated in various chemotherapy trials, to 

discover whether loss or reduction of RKIP expression in these patients showed any 

correlation with clinical outcomes and thus help aid in decisions regarding patient 

management. 

II. The second part involved assessing plasma and serum cytokeratin 18 (CK18) levels 

in patients with advanced gastrointestinal and ovarian cancers using an enzyme-

linked immunosorbent assay (ELISA). The plasma/serum CK18 levels were then 

compared with healthy volunteers and also correlated with clinical outcome, to see 

whether CK18 was useful as either a diagnostic or prognostic marker. It was also 

decided to assess plasma CK18 levels at various time points during palliative 

chemotherapy in patients with advanced gastrointestinal cancer to determine 

whether it could be used as a marker of response to treatment, thus potentially 

reducing toxicity in patients where treatment was having little effect. 

III. The third part of my project comprised a more global approach to biomarker 

discovery and involved comparing serum of patients with advanced oesophageal 

cancer with serum from healthy volunteers using SELDI-MS. The plan was that if 

there were differences observed between the serum proteomes, attempts to identify 

potential biomarkers would be made.  

The background to each part of the project and relevant studies are discussed in greater 

detail within each chapter.



   35 

 

 

 

 

 

Chapter 2 - Materials & Methods 

 

 



Lucy Scott, 2009  Chapter 2 36 

2.1 Materials 

2.1.1 Buffers 

Novex® Tricine SDS running buffer 
(LC1675) 

Running Buffer (10x) – to make up 1000ml, 

add 100ml of Novex® Tricine SDS running 

buffer to 900ml of DI water. 

Novex® Tris-Glycine transfer buffer 

(LC3675) 

Transfer Buffer (25x) – to make up 500ml, 

add 40ml of Novex® Tris-Glycine transfer 

buffer to 50ml of methanol and 410ml of DI 

water. 

Novex® Tricine SDS sample buffer Sample buffer (2X) – to make up 400µl, add 

200µl of Novex® Tricine SDS sample 

buffer to 40µl of NuPAGE® reducing agent 

and 160µl of DI water. Vortex the sample 

vigorously, centrifuge briefly and store at -

20°C until use 

Colloidal Blue Staining Kit (LC6025) 

 

Colloidal Blue Staining Kit (contains 

Coomassie G-250) – to make up 100ml, add 

55ml of DI water to 20ml of methanol, 5ml 

of stainer B and 20ml of stainer A. Mix well 

and use straight away. 

IMAC Binding Buffer (K200-0002) 0.1M sodium phosphate, 0.5M NaCl pH 7.0 

CM Low Stringency Binding Buffer (K200-

0003) 

0.1M sodium acetate, pH 4.0 

U1 buffer 1M urea, 0.2% CHAPS, 50mM Tris-HCl, 

pH 9.0 

U9 buffer 9M urea, 2% CHAPS, 50mM Tris-HCl, pH 

9.0 
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Rehydration buffer  50mM Tris-HCl, pH 9.0 

Wash buffer 1  50mM Tris-HCl, 0.1% OGP, pH 9.0 

Wash buffer 2 50mM Hepes, 0.1% OGP, pH 7.0 

Wash buffer 3 100mM Sodium Acetate, 0.1% OGP, pH 

5.0 

Wash buffer 4 100mM Sodium Acetate, 0.1% OGP, pH 

4.0 

Wash buffer 5 50mM Sodium Citrate, 0,1% OGP, pH 3.0 

Wash buffer 6 33.3% isopropranol/ 16.7% acetonitrile / 

0.1% trifluoracetic acid 

Phosphate Buffered Saline (PBS) 

 

137mM Sodium Chloride (NaCl), 8.5mM 

Di-sodium Hydrogen Phosphate 

(Na2HPO4), 44mM Potassium Chloride 

(KCl), 1.4mM Sodium Di-hydrogen 

Phosphate (KH2PO4) pH 7.4   
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2.1.2 Cells 

CELL TYPES DESCRIPTION GROWTH MEDIUM 

A2780/CP70 In vitro derived cisplatin 

resistant epithelial ovarian 

carcinoma cell line 

RPMI 1640, 10% Fetal Calf 

Serum, and 1% glutamine 

HCT-116 p53+/+ and p53-/- Human colorectal cancer 

cell line.  

p53 null cells originate from 

Vogelstein. 

Dulbecco’s Modified 

Eagle’s Medium, 10% Fetal 

Calf Serum, and 1% 

glutamine. The p53 null 

cells had geneticin added at 

a concentration of 0.5 mg/ml

 

2.1.3 Cell Culture Materials 

SUPPLIER EQUIPMENT 

Harlan Sera-Lab Ltd., Crawley Down, UK Fetal calf serum 

Invitrogen Life Technologies Ltd., Paisley, 
UK 

1X Dulbecco’s Modified Eagles Medium 

200mM glutamine 

Geneticin, G148 sulphate 

RPMI 1640 

2.5% trypsin 

Sigma Chemical Co., Ltd., Poole, Dorset, 
UK 

10X Dulbecco’s Modified Eagles Medium 
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2.1.4 Chemicals, enzymes & kits 

SUPPLIER EQUIPMENT 

Invitrogen Life Technologies Ltd., Paisley, 

UK 

Colloidal Blue Staining Kit (LC6025) 

Mark12™ Unstained Standard (LC5677) 

Novex® Tricine SDS running buffer 
(LC1675) 

Novex® Tris-Glycine transfer buffer 
(LC3675) 

Sypro Ruby Protein Gel Stain (S12000) 

Sypro Ruby Blot Stain (S11791) 

Bio-Rad Laboratories Ltd, Hemel 

Hempstead, UK 

IMAC Binding Buffer (K200-0002) 

CM Low Stringency Binding Buffer (K200-
0003) 

U1 buffer (1M urea, 0.2% CHAPS, 50mM 
Tris-HCl, pH 9) 

U9 buffer (9M, 2% CHAPS, 50mM Tris-
HCl, pH 9) 

Rehydration buffer (K100-0007) 

EAM SPA (C300-0002) 

Wash buffer 1-6 (K100-0007) 

All-in-1 Peptide Standard (C100-0005) 

Fischer Scientific UK Ltd., Whitbrook Way, 
UK 

Acetic acid (Analytical grade) 

Ethanol (Analytical grade) 

Methanol (Analytical grade) 

Perbio Science UK Ltd., Unit 9, Atley Way, 

UK 

No-weigh™ Dithiothreitol (DTT), 7.7mg 
DTT tubes (20291) 
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Peviva AB, Stromkarlsvagen 82, Sweden M30-Apoptosense® ELISA (10010) 

M65 ELISA (10020) 

Sigma-Aldrich Co Ltd., The Old Brickyard, 

UK 

Acetonitrile (99.5%) 

Cisplatinum (II) Diammine Dichloride (1g) 

NP-40 

Sodium Dodecyl Sulphate (SDS) 

Trifluoroacetic acid (99+%) 

Urea 

 

2.1.5 Equipment and Plasticware 

SUPPLIER EQUIPMENT 

Abgene House, Blenheim Road, Epsom, 
Surrey, UK 

Adhesive plate seals (AB-0580) 

Becton Dickinson Labware, Plymouth, UK Falcon 1059 polypropylene tubes 

Falcon 2059 polypropylene tubes 

Falcon 2098 polypropylene tubes 

Sterile plastic pack syringe needles 

18 gauge sterile syringe needles 

Beatson Laboratory Technological Services 
Dept. 

Custom-made semi-dry Western Blot 
System 

Bibby Sterilin Ltd., Stone, Staffs, UK 60, 90, 150mm bacteriological Petri dishes 

Sterile plastic universal containers 

Bio-Rad Laboratories Ltd, Hemel 
Hempstead, UK 

PBS II ProteinChip Reader.  

96-well Bioprocessor (C503-0011) 



Lucy Scott, 2009  Chapter 2 41 

96-well Bioprocessor reservoir & gaskets 
(C5030012). 

CM10 ProteinChip array (C573-0075) 

IMAC30 ProteinChip array (C573-0078) 

NP20 ProteinChip array (C573-0043) 

ProteinChip Serum Fractionation Kit 

(K100-0007) 

Costar Corporation, High Wycombe, Bucks, 
UK 

24 well tissue culture plates 

96 well tissue culture plates 

Edmund Buhler GmbH, Am Ettenbach 6, 
72379 Hechingen, Germany  

Microplate shaker Timix 2 

Eppendorf AG, 22331 Hamburg, Germany Eppendorf microcentrifuge tubes, 1.5ml 
(0030125.150) 

Centrifuge 5415R 

Euro-DPC Ltd., Glyn Rhonwy, Wales, UK  
 

DPC Micromix 5 

DJB Labcare Ltd., 20 Howard Way, 
Buckinghamshire, UK  
 

Jouan Centrifuge CR422 

Jencons (Scientific) Ltd., Cherrycourt Way 
Ind Est, UK 

Greiner 96-well, v-bottom, microplate 

Greiner Bio-one Vacuette® EDTA tubes 

Millipore, 3/5, The Courtyard, UK 

 

Microcon® Centrifugal Filter Devices, YM-
10 (42421) 

Millipore Vacuum pump  

Millipore manifold basic kit 

Immobilon-P Transfer Membrane - PVDF 
membrane, 0.45µm pore size (IPVH00010) 

Immobilon PSQ Transfer Membrane – 
PVDF membrane 0.2µm pore size 
(ISEQ08100) 
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Invitrogen Life Technologies Ltd., Paisley, 
UK 

Novex® 16% Tricine Gels (EC6695) 

XcellSurelock™ Mini-Cell 

Molecular Devices Ltd, 660-665 Eskdale 
Road, UK 

Microplate reader, Spectromax plus 384 

Olympus UK Ltd., 19 Colonial Way, 
Watford, UK  

Light microscope BX40 

Perbio Science UK Ltd., Unit 9, Atley Way, 

UK 

Western Blotting Filter Paper (88600) 

Syngene (UK), Beacon House, Nuffield 
Road, Cambridge,  

Gene Genius Bioimaging System 

 

2.1.6 Other materials 

SUPPLIER EQUIPMENT 

Beatson Institute Central Services Sterile distilled water 

Sterile phosphate –buffered saline (PBS) 

Premier Brands, Adbaston, Stafford, UK Marvel (dried skimmed milk) 
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2.1.7 ELISA Kit Details 

2.1.7.1 M30-Apoptosense® ELISA 

M30 coated microstrips (columns of 96-well format) 

M30 HRP Conjugate (24x) – vial contains 0.4ml mouse monoclonal M30 antibody (anti-

CK18Asp396 neo-epitope) conjugated with horseradish peroxidase (HRP) in phosphate 

buffer with protein stabilizers. This should be diluted with M30 Conjugate Dilution Buffer. 

M30 Conjugate Dilution Buffer – vial contains 12ml of phosphate buffer with protein 

stabilisers for dilution of M30 HRP conjugate. 

M30 Standards A to G – Standard A contains 4ml of phosphate buffered FCS. Standards B 

to G, 0.5ml each, contain standard material in FCS. The values of the standards A to G are 

0, 75, 150, 250, 500, 750 and 1000 U/L, respectively. 

M30 Control Low and High Expression – Two 0.5ml vials containing reactive components 

in phosphate buffered FCS. The values of the controls Low and High are 125+/-25 U/L 

and 650+/-100 U/L, respectively. 

TMB Substrate – bottle contains 22ml of TMB (3,3’5,5’-Tetramethylbenzidine) solution. 

Stop Solution – vial contains 8ml of 1.0 M sulphuric acid. 

Wash Solution (10x) – vial contains 50ml of concentrated wash solution. Dilute with 

450ml of DI water. Diluted buffer consists of 0.014 M phosphate buffer with 0.15 M 

sodium chloride and 0.1% Tween® 20 

2.1.7.2 M65 ELISA 

M65 coated microstrips (columns of 96-well format) 

M65 HRP Conjugate (24x) – vial contains 0.4ml mouse monoclonal M5 antibody (anti-

CK18) conjugated with horseradish peroxidase (HRP) in phosphate buffer with protein 

stabilizers. This should be diluted with M65 Conjugate Dilution Buffer. 
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M65 Conjugate Dilution Buffer – vial contains 12ml of phosphate buffer with protein 

stabilisers for dilution of M65 HRP conjugate. 

M65 Standards A to G – Standard A contains 4ml of phosphate buffered FCS. Standards B 

to G, 0.5ml each, contain standard material in FCS. The values of the standards A to G are 

0, 125, 250, 500, 750 1200 and 2000 U/L, respectively. 

M65 Control Low and High Expression – Two 0.5ml vials containing reactive components 

in phosphate buffered FCS. The values of the controls Low and High are 200+/-20 U/L 

and 1000+/-100 U/L, respectively 

TMB Substrate – bottle contains 22ml of TMB (3,3’5,5’-Tetramethylbenzidine) solution. 

Stop Solution – vial contains 8ml of 1.0 M sulphuric acid. 

Wash Solution (10x) – vial contains 50ml of concentrated wash solution. Dilute with 

450ml of DI water. Diluted buffer consists of 0.014 M phosphate buffer with 0.15 M 

sodium chloride and 0.1% Tween® 20. 
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2.2 Methods 

2.2.1 RAF Kinase Inhibitor Protein 

To study RKIP protein expression, polyclonal rabbit RKIP (ki69) [65] was applied to 

formalin-fixed, paraffin-embedded sections. The RKIP antibody was raised against full-

length rat RKIP protein which was expressed in E.coli. Sections from liver and breast 

paraffin blocks were used as a positive control. In addition, Auerbach’s myenteric 

intramuscular plexuses, which have strong RKIP expression, were used as a positive 

internal control. The scoring system was the same as that used for the previous study [66] 

and corresponded to the sum of a) the percentage of positive cells (1 = <25%, 2 = 26-50%, 

3 = >50%) and b) the staining intensity (0 = negative, 1 = weak, 2 = moderate, 3 = strong). 

The sum for each section was, therefore, anything between 0 and 6. Scores between 0 and 

2 were regarded as negative, scores of 3 and 4 as weakly positive, and scores of 5 and 6 as 

strongly positive. Two scorers blinded to the follow-up data and recurrence status of the 

patients assessed each section independently. 

The scores were then analysed with the clinical outcome data for the patients. Follow-up to 

event outcomes were analysed by Kaplan-Meier survival curves and compared by log-rank 

tests. My role in this collaboration was as an independent scorer of RKIP expression within 

the colorectal and ovarian cancer TMA, and as such, was blinded to the clinical outcome 

data for both patient groups.

2.2.1.1 Tissue microarray construction 

Tissue microarrays were constructed as described in previous studies [67, 68]. In summary, 

paraffin-embedded tumour tissue blocks and matching haematoxylin-eosin (H&E)-stained 

slides were retrieved from the pathology archives and representative areas of tumour were 

marked on each H&E-stained slide. Four cores of 0.6mm2 were taken from each donor 

block and arrayed on a recipient paraffin block using a precision instrument (Tissue 

Arrayer, Beecher Instruments, Silver Spring, MD, USA). Using a microtome, 5µm sections 

were cut from each TMA block and applied to aminopropyltriethoxysilane (APES)-treated 

slides. All sections were stained within 2 weeks of sectioning. The presence of tumour 

tissue on the arrayed samples was verified on an H&E-stained section. 

 

2.2.1.2 Immunohistochemistry (IHC)
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The formalin-fixed, paraffin-embedded tissue microarrays were deparaffinised in three 

changes of xylene, and rehydrated through graded alcohols to distilled water. RKIP protein 

expression was examined as described previously [69, 70] using a 1:1500 dilution of a 

polyclonal rabbit antibody raised against a recombinant full-length RKIP protein, for 1hr at 

room temperature. IHC was performed using rabbit polyclonal antibodies to p21 (Santa 

Cruz, 1:200, 1hr) and carbonyl reductase (1:750, overnight at 4°C, kind gift of Dr 

Umemoto) and mouse monoclonals to PCNA (1:10,000, cat no 2586, Cell Signaling) and 

TIGAR (in-house antibody, 1:200, 1hr). Antigen retrieval was performed using 0.01mol/L 

citrate buffer, pH 6.0 (p21, PCNA and TIGAR) or EDTA (RKIP), at 100°C for 5 minutes, 

followed by cooling on ice for 20min. No antigen retrieval was performed for carbonyl 

reductase sections. Endogenous peroxidase activity was blocked with 1% hydrogen 

peroxide for 20min and non-specific staining was blocked by incubation of sections in 

10% normal goat or horse serum (Vector). Antibody binding was detected using the 

streptavidin-biotin method (Avidin-Biotin Complex Elite Detection kit, Vector, 

Peterborough, United Kingdom) and 3,3-diaminobenzidine (DAB) as chromogen (DAB 

peroxidase substrate kit, Vector). Slides were then counterstained in Mayer’s hematoxylin. 

Omission of the primary antibody served as negative control. Pre-incubation of TIGAR 

antibody with excess peptides (raised to two regions of TIGAR), for 1hr before application 

to sections, served as a negative control for this protein.  

2.2.2 Serum collection 

2.2.2.1. Healthy volunteer samples 

Subjects were eligible for this part of the study if they had no known history of metastatic 

disease, or any other clinically significant acute or chronic illness. A short health 

questionnaire was completed. Blood samples (20ml) were collected into tubes containing 

EDTA on one occasion from 100 healthy volunteers, between November 2004 and 

February 2005. Serum and plasma was separated as detailed below and stored at -70ºC. All 

subjects were allocated an anonymous trial number and no personal details were on the 

samples despatched for analysis. This study was approved by the West Glasgow Hospitals 

Research Ethics Committee, and all volunteers gave written informed consent. 
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2.2.2.2. Patient samples 

Patients with a histologically or cytologically confirmed locally advanced or metastatic 

cancer, either colorectal adenocarcinoma receiving a fluoropyrimidine-based therapy or an 

adenocarcinoma of the oesophagus or stomach receiving a fluoropyrimidine and platinum-

containing regimen, were eligible. All patients gave written informed consent. Twenty ml 

of blood were collected into tubes containing EDTA before starting chemotherapy and then 

prior to administration of each subsequent course of chemotherapy until discontinuation of 

systemic therapy. Additional 20ml samples were collected at various time-points during 

chemotherapy courses in selected patients, with the time-points dependent on the specific 

chemotherapy regimen. All samples were stored according to the trial number with no 

personal details. Clinical outcome data was recorded for each patient. 

2.2.2.3. Colonoscopy and pre-operative serum samples 

Blood samples were collected from patients undergoing colonoscopy. All patients gave 

written informed consent. Blood samples (20ml) were collected into tubes containing 

EDTA on one occasion. All subjects were allocated an anonymous trial number and no 

personal details were on the samples despatched for analysis. Clinical outcome data from 

the colonoscopy was recorded for each patient and they were categorised as, normal 

colonoscopy, pre-malignant adenomas and adenocarcinoma. 

Blood samples were also collected from patients with operable colorectal adenocarcinoma 

who gave written informed consent. Blood samples (20ml) were collected pre-operatively 

into tubes containing EDTA on one occasion. Clinical outcome data was recorded for each 

patient. 

2.2.2.4. Sample preparation  

Plasma was separated within 2 hours of collection by centrifuging the whole blood sample 

at 1500g for 10min at 20°C. The supernatant was then removed, placed in a separate 15ml 

falcon tube and centrifuged again using the above conditions. The resulting supernatant 

was then aliquoted into Eppendorf tubes and immediately frozen at -70°C until analysis 
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2.2.3 Serum Fractionation Technique 

The basic fractionation protocol used here was developed by Ciphergen 

(Biorad/Vermillion). The fractionation took place at room temperature. Samples were 

incubated on a MicroMix at a vigorous setting (amplitude 17, wave 7) unless otherwise 

stated. A Millipore vacuum pump was used to apply a pressure of 15mmHg. 

2.2.3.1. Serum Sample Preparation 

Each serum sample was centrifuged at 16 000g for 10min at 4°C. Twenty µl was aliquoted 

from each sample into a separate well in a v-bottom 96-well microplate (a v-bottom 96-

well microplate was used as this could be easily incubated on the MicroMix). Thirty µl of 

U9 was added to each well and the microplate was incubated on the MicroMix for 20min. 

2.2.3.2 Rehydration and equilibration of the Q HyperD F beads 

Prior to commencing fractionation the Q HyperD F beads were rehydrated and then 

equilibrated with solution U1. This was done by adding 200µl of rehydration buffer to each 

well and incubating the filtration plate on the MicroMix for 60min. The filtration plate was 

placed on top of a waste collection plate and a vacuum was applied for 10min until all the 

supernatant was removed. Two hundred µl of rehydration buffer was added to each well 

and a vacuum was applied for 10min until the supernatant was removed. This procedure 

was repeated three times with the rehydration buffer and three times with U1 solution.  

2.2.3.3. Fractionation 

Fifty µl of each sample was taken from the v-bottom microplate and added into the 

corresponding well on the filtration plate. Fifty µl of U1 solution was added to each well in 

the v-bottom microplate and mixed 5 times to ensure that the entire sample had been 

removed. This solution was then added into the corresponding well on the filtration plate 

so that it contained 100µl of sample. The filtration plate was covered with adhesive sealing 

film and incubated on the MicroMix for 45min. The filtration plate was placed under a 96-

well microplate which was labelled Fraction 1. A vacuum was applied for 1min until all 

the supernatant had been collected into the microplate. This process was repeated with the 

five other wash buffers with each supernatant collected into a fresh microplate. 
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2.2.4 Protein Array Preparation 

The ProteinChip arrays were prepared using protocols developed by Ciphergen which are 

shown below. All chips were incubated at room temperature on the Micromix, which was 

set to shake vigorously (settings of amplitude 20 and wave 7).  

2.2.4.1 EAM Preparation 

Two hundred µl of 100% acetonitrile and 200µl of 1% TFA were added to 5mg of SPA. 

The mixture was then vortexed vigorously and left for 5min at room temperature. It was 

then centrifuged at 20 000g for 2min to pellet any particulate matter. 

2.2.4.2 Preparation of the All-in-1 Peptide Standard Mix 

The vial containing the standard was removed from the -20°C freezer and allowed to warm 

to room temperature. Twenty-five µl of resuspension solution (10 mM ammonium acetate, 

25% acetonitrile, 1.25% trifluoroacetic acid) was added to the vial, flick mixed and the 

vortexed vigorously. A further 25µl of resuspension solution was added to the vial and the 

mixing steps repeated. The vial was then allowed to stand at room temperature for 10min, 

following which the resulting solution was divided into single use aliquots (5-10µl) in 

Eppendorf tubes and stored at -20°C until use. 
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Composition of the All-in-1 Peptide Standard

PEPTIDE AVERAGE MOLECULAR 

WEIGHT (Da) 

MONOISOTOPIC 

MOLECULAR WEIGHT 

(Da) 

Arg8-Vasopressin 1084.25 1083.44 

Somatostatin 1637.90 1636.71 

Dynorphin (porcine) 2147.50 2146.19 

ACTH (1-24) (human) 2933.50 2931.58 

Bovine insulin β-chain 3495.94 3493.64 

Human insulin 5807.65 5803.64 

Hirudin, recombinant 6963.52 6958.96 

 

2.2.4.3 Preparation of the EAM/All-in-1 Peptide Standard Mix 

One hundred µl of 100% acetonitrile and 100µl of 1% TFA were added to 5mg of SPA. 

The mixture was vortexed vigorously and then centrifuged at 16 000g for 2min to pellet 

any particulate matter. 10µl of the EAM solution was pipetted into an Eppendorf tube 

along with 10µl of the resuspended All-in-1 Peptide mix. This was then flick mixed and 

centrifuged at 16 000g for 2min. 

2.2.4.4 IMAC-30 ProteinChip Preparation 

The ProteinChip arrays were placed in the Bioprocessor. Fifty µl of 0.1M CuSO4 solution 

was added to each well and the solution was incubated on the Micromix for 10min. The 

supernatant was then removed and 200µl of DI water added to each well. This was then 

incubated for 1min on the Micromix. The supernatant was removed and 200µl of 0.1M 

sodium acetate buffer pH 4 was added to each well. This was then incubated on the 

Micromix for 5min. The supernatant was removed and 200µl of DI water was added to 
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each well. This was incubated on the Micromix for 1min. The supernatant was removed 

and 200µl of IMAC binding buffer was added to each well. This was incubated twice on 

the Micromix for 5min. The supernatant was removed from the wells and 90µl of IMAC 

binding buffer and 10µl of sample were added to each well. The Bioprocessor was covered 

with adhesive sealing film to avoid cross-contamination of the samples and incubated on 

the Micromix for 45min. The supernatant was removed from the wells. Each well was 

washed three times with 200µl of IMAC binding buffer and incubated on the Micromix for 

5min. The supernatant was removed from the wells and 200µl of DI water was added twice 

to each well and removed immediately. The ProteinChip arrays were removed from the 

Bioprocessor and air dried for 15min.  One µl of SPA was added to each spot and air dried 

for 5min. This procedure was repeated once.  

2.2.4.5 CM-10 ProteinChip Preparation 

The ProteinChip array was placed in the Bioprocessor. Two hundred µl of CM-10 low 

stringency buffer was added to each well and the solution was incubated on the Micromix 

for 5min. This step was repeated once. The supernatant was removed from the wells and 

90µl of CM-10 low stringency buffer and 10µl of sample were added to each well. The 

Bioprocessor was covered with adhesive sealing film to avoid cross-contamination of the 

samples, and incubated on the Micromix for 45 min. Two hundred µl of CM-10 low 

stringency buffer was added to each well and the solution was incubated on the Micromix 

for 5min. This step was repeated twice. The supernatant was removed from the wells and 

200µl of DI water was added to each well and then remove immediately. The ProteinChip 

array was removed from the Bioprocessor and air dried for 10min. 1µl of EAM was added 

to each spot and air dried for 5min. This procedure was repeated once. 

2.2.4.6 NP20 ProteinChip Preparation for Calibration using the All-in-1 
Peptide Standard Mix 

The ProteinChip Array was placed in the Bioprocessor and 3µl of DI water was added to 

each well. The water was then blotted off using a clean laboratory wipe, being careful not 

to touch the actual spot area. One µl of the EAM/All-in-1 Peptide Standard was pipetted 

onto each pre-wet spot. The ProteinChip array was removed from the Bioprocessor and air 

dried for 10min.  
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2.2.5 Analysis of Protein Arrays 

The Protein arrays were then placed in a ProteinChip Reader Model PBS II and were read 

using ProteinChip Software (Version 3.1).  

2.2.5.1 Data Capture 

Data were collected focusing on low molecular weight peptides/proteins. For the IMAC-30 

ProteinChip array the mass was optimised between 1,000 to 30,000Da, with a high mass of 

150,000Da. The laser intensity was set at 225 and the sensitivity at 10. For the CM-10 

ProteinChip array, the mass was again optimised between 1,000 to 30,000Da, with a high 

mass of 150,000Da. The laser intensity was set at 240 and the sensitivity at 10. 

2.2.5.2 Data Preprocessing 

Ciphergen ProteinChip software (version 2.0) was used for data preprocessing. Baseline 

subtraction was performed, followed by normalization of traces for intensity, using the 

instrument-dedicated software. Peaks were then detected using the built-in peak detection 

algorithm, setting the signal to noise ratio to five. Peaks below 2000Da were excluded as 

these are often due to noise from the energy absorbing matrix [71-73]. Data were exported 

to Microsoft® Excel® for further analysis. 

2.2.6 1-D Gel Analysis on Novex® 16% Tricine gels 

2.2.6.1 Serum Sample Preparation 

Fraction 1 (pH 9.0) from the serum samples used for the SELDI-MS experiments was 

examined on the 1-D gels (Novex® 16% Tricine gels). To prepare the samples for running 

on the gel, the fractionation samples were thawed on ice. Thirty µl of thawed sample was 

added to 30µl of 2X Novex® Tricine SDS sample buffer. The mixture was then vortexed 

vigorously, centrifuged briefly and placed on a heating block at 85°C for 2min. The sample 

was then centrifuged again briefly and either run on a gel immediately or frozen at -20°C 

until use. 
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2.2.6.2 Centrifugal Filtration of Fractionated Serum Samples 

Fraction 1 (pH 9.0) from the serum samples was added to the centrifugal filter (molecular 

weight cut-off 10kDa) at varying volumes between 20-100µl. The samples were initially 

spun without using denaturing agents or detergents, but these were subsequently added at 

various concentrations as discussed in the text. Denaturing agents used included 10% 

acetonitrile, 100mM DTT, 2-8M urea, 1% NP40 and 0.5% SDS. The samples were then 

spun at 4°C, 14 000g for between 30-60min. The filtrate was then removed and placed in 

an Eppendorf tube with 2X sample buffer. This was then centrifuged briefly and placed on 

a heating block at 85°C for 2min. The sample was then centrifuged again briefly and either 

run on a gel immediately or frozen at -20°C until use. The retentate was collected by 

inverting the reservoir in the vial and spinning in the centrifuge at 4°C, 1000g for 3min. 

Thirty µl of 2X sample buffer was then added to the retentate. This was then centrifuged 

briefly and placed on a heating block at 85°C for 2min. The sample was then centrifuged 

again briefly and either run on a gel immediately or frozen at -20°C until use. 

DENATURING AGENT MECHANISM OF ACTION 

10% Acetonitrile  Cleavage of salt bridges 

100mM Dithiothreitol (DTT) Disruption of disulphide bonds 

2-8M Urea  Destabilisation of hydrogen bonding and 

hydrophobic interactions 

1% NP-40 Non-ionic detergent-disrupts hydrophobic 

bonds 

0.5% Sodium docedyl sulphate (SDS) Anionic detergent-disrupts hydrophobic 

bonds and coats with negative charge 
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2.2.6.3 Passivation Process to Improve Recovery during Centrifugal 
Filtration 

This involved pre-wetting of the centrifugal filters using solutions to prevent binding of 

target peptides to the filter membrane in an attempt to improve recovery. The solutions 

selected, following consultation with the manufacturer’s technical support department, 

were 1% BSA and 5% Tween-20. The filters were inserted into the filtrate vials and the 

reservoirs were filled with the passivation solution. The cap was replaced on the vial and it 

was left to soak overnight at room temperature. The cap was then removed and the device 

and reservoir washed thoroughly with DI water. The filter was then placed back in the vial, 

filled with DI water and spun in a centrifuge at 25°C, 14 000g for 15min. The DI water 

was then discarded and the washing step repeated. To remove the remaining water, the 

reservoir was inverted in the vial and spun once at 1000g for 3min. The filter was then 

ready for use. If the device was not to be used immediately, it was filled with DI water, 

capped and refrigerated at 4°C until use. 

2.2.6.4 Precipitation Protocol 

This procedure was performed to increase the protein concentration prior to loading the 

protein sample on the gel. One hundred µl of fraction 1 (pH 9.0) from the serum samples 

was added to 9 volumes (1800µl) of ice cold ethanol in Eppendorf tubes. These were then 

incubated at -20°C overnight to precipitate the protein. The samples were then spun at 4°C, 

16 000g for 15min and the supernatant removed. The short spin was then repeated and the 

remaining supernatant removed using a capillary tip. Five hundred µl of 70% ethanol was 

then added to the sample to solubilise any remaining salts and the sample vortexed 

vigorously until the pellet was in solution. The Eppendorf tube was then spun again 4°C, 

16 000g for 5min and the supernatant removed. The short spin was then repeated and the 

remaining supernatant removed using a capillary tip. The Eppendorf tube was then 

inverted and allowed to air-dry for 5min. Freshly-prepared 2X sample buffer was then 

added to the Eppendorf tube and the mixture was vortexed vigorously to resuspend the 

pellet. This was then centrifuged briefly and placed on a heating block at 85°C for 2min. 

The sample was then centrifuged again briefly and either run on a gel immediately or 

frozen at -20°C until use. 
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2.2.6.5 Gel running conditions 

Fifteen µl of protein sample was loaded into the appropriate wells of the 16% Tricine gel 

along with 5µl of unstained mark12 standard. The upper buffer chamber of the XCell 

Surelock™ MiniCell was filled with 200ml and the lower buffer chamber with 600ml of 

Tricine SDS running buffer. The gel was then run at the 124V for 90 min at room 

temperature. 

Mark 12™ Standard molecular weights using Tricine gels  

PROTEIN APPROXIMATE MOLECULAR WEIGHT 
(kDa) 

Myosin 200 

β-galactosidase 116.3 

Phosphorylase B 97.4 

BSA 66.3 

Glutamic dehydrogenase 55.4 

Lactate dehydrogenase 36.5 

Carbonic anhydrase 31.0 

Trypsin inhibitor 21.5 

Lysozyme 14.4 

Aprotinin 6.0 

Insulin B chain 3.5 

Insulin A chain 2.5 

 

2.2.6.6 Gel staining 

The gels were removed from the holder and stained using the Colloidal Blue Staining Kit. 

The gel was shaken in 100ml of staining solution for a minimum of 3hr and a maximum of 



Lucy Scott, 2009  Chapter 2 56 

12hr. The staining solution was then decanted and replaced with 200ml of DI water and the 

gel washed for at least 7hr. The gels were then stored in 10% acetic acid. 

2.2.7 Western Blotting of Novex® 16% Tricine gels 

Prior to the transfer process, the membranes were placed in 100% methanol for 1-3 

seconds and then immersed in DI water for 1-2min to displace the methanol. They were 

then equilibrated in transfer buffer for between 15-30min (gloves and forceps were used 

when handling the membrane to reduce non-specific protein binding and scratches). 

After electrophoresis of the gel, it was also equilibrated in a small container of transfer 

buffer for 5-10min, to remove the electrophoresis salts and buffers. Once both the gel and 

membrane were equilibrated, two pieces of filter paper were soaked in the transfer buffer 

and placed on the anode. A pipette was then rolled over the surface of the paper to exclude 

all air bubbles. The pre-wetted membrane was then placed on top of the wetted filter paper 

and the air bubbles rolled out again. The equilibrated gel was then placed on top of the 

membrane. Two further pieces of filter paper were then soaked in transfer buffer and 

placed on top of the gel and the air bubbles rolled out again. The cathode plate was then 

carefully placed on the stack and the transfer unit run at 100-200mA for 1-2hr at room 

temperature. 

The transfer efficiency was then checked by placing the membrane in a small container of 

coomassie blue stain for 1min and then destaining with 40% methanol and 10% acetic 

acid. Alternatively, the membrane was stained with Sypro Ruby Blot Stain by allowing the 

membrane to completely air dry post-transfer. It was then placed in 7% acetic acid and 

10% methanol for 15min. This was followed by four 5min washes of DI water. The 

membrane was then incubated in 50ml of Sypro Ruby Blot Stain for 15min and then 

washed three times for 1min in DI water. The Sypro Ruby staining was visualised using a 

transilluminator. The gel was also stained after transfer using coomassie blue to check for 

quantities of protein remaining. 



Lucy Scott, 2009  Chapter 2 57 

2.2.8 Mass Spectrometry Analysis of Excised Gel Bands 

2.2.8.1 Digestion 

The gel pieces were excised and dehydrated with acetonitrile for ~10 min. A volume of 10 

mM dithiotreitol (DTT) in 50mM ammonium bicarbonate sufficient to cover the gel pieces 

was added, and the proteins were reduced for 20 min at 56 °C. After cooling to room 

temperature, the DTT solution was replaced with an equal volume of 55mM iodoacetamide 

in 50mM ammonium bicarbonate. After 60min incubation at room temperature in the dark 

with occasional vortexing, the gel pieces were washed by dehydrating with acetonitrile for 

~10min and rehydrating in 50mM ammonium bicarbonate / 5% acetonitrile. This wash 

cycle was repeated before the gel pieces were dehydrated again with acetonitrile for 

~10min. To ensure complete dehydration the gel pieces were dried using a vacuum 

centrifuge for 30min. The dry gel pieces were partially re-swollen on ice, using 0.07µg/µL 

of sequencing grade trypsin. After 15min, the gel pieces were then covered with 50mM 

ammonium bicarbonate, 5% acetonitrile and digested at 37 °C for 1 - 2hr. Once the digest 

was complete, the supernatant was removed and stored. To elute the peptides from the gel 

pieces, they were washed twice for 20min at room temperature. Once, with 1 % formic 

acid and secondly with 80% acetonitrile / 0.1% formic acid, removing the supernatant after 

each wash. The three supernatants were combined and evaporated using a vacuum 

centrifuge to complete dryness. The samples were then desalted with the addition of 10uL 

of water and evaporated again to dryness. 
 

2.2.8.2 LC-MS/MS 

For the analysis of the unknown ~ 4 kDa peptide, HPLC chromatographic separations of 

the protein digests were carried out, using an Ultimate 3000 capillary LC system (Dionex) 

interfaced to a QSTAR XL hybrid quadrupole time of flight tandem mass spectrometer 

(Applied Biosystems), fitted with a microion spray source mounted on a nanospray stage. 

Chromatography was preformed using a nano trap column (C18, 5µm, 100 Å, 300µm i.d. x 

5mm) (Dionex) and a 75µm i.d. x 15cm, PepMap (C18, 3µm, 100 Å) column (Dionex). 

Five µL of sample solution was loaded onto the column and eluted using a two stage 

gradient at a flow rate of 300nL min-1 with a column temperature of 30 ºC. The first stage 

consisted of a gradient from 95 % mobile phase A (98 % water, 2 % acetonitrile and 0.1 % 

formic acid) to 75 % mobile phase A and 25 % mobile phase B (80 % acetonitrile, 20 % 

water, 0.1 % formic acid) in 33min followed by a second stage increasing from 25 % 

mobile phase B to 50 % mobile phase B (50 % mobile phase A) in 10min. After the 



Lucy Scott, 2009  Chapter 2 58 

gradient, the column was washed with 100 % mobile phase B for 6.5min and regenerated 

with 95 % A for 10min. During the online analysis, ions were chosen for product ion 

fragmentation using “Data Dependent Analysis” (DDA) through the Analyst 1.1 software, 

three MS/MS scans of 3 s duration were recorded per 2.5 s MS survey scan, recorded over 

the mass range m/z 400 – 1200. Ions were successfully chosen for fragmentation if their 

charge state lay between 2 to 4 and their abundance exceed 5 counts in the MS survey 

scan. Precursor masses were excluded using dynamic exclusion for 30s after fragmentation 

to limit reanalysis of identical peptides for one acquisition. For the other acquisition, three 

MS/MS scans of 2s duration were recorded per 1.5s MS survey scan, recorded over the 

mass range m/z 400 - 1200. Ions were successfully chosen for fragmentation if their charge 

state lay between 2 to 4 and their abundance exceed 5 counts in the MS survey scan. 

Precursor masses were excluded using dynamic exclusion for 60s after fragmentation to 

limit reanalysis of identical peptide. 

For the analysis of the ~ 17kDa unknown protein/peptide, HPLC chromatographic 

separations of the protein digests were carried out, using an Ultimate 3000 capillary LC 

system (Dionex) interfaced to a 4000 QTRAP linear ion trap quadrupole LC/MS/MS Mass 

Spectrometer (Applied Biosystems) fitted with a microion spray source mounted on a 

nanospray stage. Chromatography was performed using direct injection onto a 75µm i.d. x 

15cm, PepMap (C , 3µm, 100 Å) column 18 (Dionex). Five µL of sample solution was 

loaded onto the column and eluted using a two stage gradient at a flow rate of 300nL min-1 

with a column temperature of 30 ºC. The first stage consisted of a gradient from 95 % 

mobile phase A (98 % water, 2 % acetonitrile and 0.1 % formic acid) to 75 % mobile phase 

A and 25 % mobile phase B (80 % acetonitrile, 20 % water, 0.1 % formic acid) in 33min 

followed by a second stage increasing from 25 % mobile phase B to 50 % mobile phase B 

(50 % mobile phase A) in 10min. After the gradient, the column was washed with 100 % 

mobile phase B for 6.5min and regenerated with 95 % A for 30min. During the online 

analysis, ions were chosen for product ion fragmentation using “Data Dependent Analysis” 

(DDA) through the Analyst 1.4.1 software; two enhanced MS/MS scans were recorded 

(scan rate 4000 amu/s) per enhanced MS survey scan (mass range m/z 450 – 1200, scan 

rate 4000 amu/s). Ions were successfully chosen for fragmentation if their charge state lay 

between 2 to 3 and their abundance exceed 150000 counts in the MS survey scan. An 

enhanced resolution scan (scan rate 250 amu/s) was used to confirm the charge state of 

precursor ions. 
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2.2.8.3 Database searching 

The MS/MS data was extracted from each LC-MS run using the built in Mascot™ (matrix 

science) script in the Analyst 1.1 software. Each MS/MS spectrum was centroided and 

deisotoped prior to analysis. Spectra were only rejected if less than 10 peaks were found. 

Each extracted LC-MS run was submitted to an in-house Mascot™ MS/MS ion database 

search reporting all significant hits from the Sprot database (SwissProt, Release October 

18, 2007)) compiling 285335 sequences and 104773129 residues) with the enzyme 

specificity set to trypsin/P, allowing for up to 2 missed cleavage. One fixed modification, 

Carbamidomethyl (C) and three possible variable modifications N-Acetyl (Protein), 

Oxidation (M), and Deamidation (NQ) were used. The peptide tolerance was set to 60ppm 

and a fragment mass tolerance of ± 0.1Da was also applied. The instrument type was set to 

Q-TOF. 

For the analysis of the ~17kDa unknown peptide, the MS/MS data was extracted from each 

LC-MS run using the built in Mascot™ (matrix science) script in the Analyst 1.4.1 

software. Each MS/MS spectrum was centroided and de-isotoped prior to analysis. Spectra 

were only rejected if less than 10 peaks were found. 

Each extracted LC-MS run was submitted to an in-house Mascot™ MS/MS ion database 

search reporting all significant hits, from the Sprot database (SwissProt, Release October 

18, 2007)) compiling 285335 sequences and 104773129 residues) with the enzyme 

specificity set to trypsin/P, allowing for up to 2 missed cleavage. One fixed modification, 

Carbamidomethyl (C) and four possible variable modifications N-Acetyl (Protein), 

Oxidation (M), Pyro-glu (N-term Q) and Deamidation (NQ) were used. The peptide 

tolerance was set to ± 0.6Da and a fragment mass tolerance of ± 0.6Da was also applied. 

The instrument type was set to ESI-TRAP 
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2.2.9 M30 and M65 ELISA for Cytokeratin 18 Assessment 

2.2.9.1 M30-Apoptosense™ ELISA 

M30-Apoptosense™ ELISA is a commercially available kit. The wells are coated with a 

mouse monoclonal catcher antibody that binds to an epitope on CK18. 25µl of sample are 

added to each well, followed by 75µl of HRP-conjugated monoclonal antibody (M30) 

solution, which acts as the detecting antibody by binding to the caspase cleavage site at the 

N-terminus of the Asp396 fragment of CK18. The samples are then incubated for 4 hours 

at room temperature with constant shaking (oscillation ~ 600 rpm), after which excess 

unbound conjugate is removed by 5 washing steps. Colour development is then achieved 

by the addition of 200µl of 3, 3, 5, 5’-tetramethyl-benzidine solution, followed by 

incubation for 20 minutes in the dark. The reaction is stopped by the addition of 50µl of 

1.0M sulphuric acid and the absorbance measured in a microplate reader at 450nm. 

Through plotting a standard curve of known concentrations of M30 antigen (standards 

supplied in the kit) vs. absorbance, the amount of antigen in the controls and unknown 

samples can be calculated by extrapolation. The units of the M30-ELISA are defined using 

a synthetic peptide corresponding to the CK18 caspase cleavage site (M30 epitope) where 

1 unit equals 1.24pmol of a synthesised peptide containing the M30 recognition motif 

according to the manufacturer.  

2.2.9.2 The M65 ELISA 

The M65 ELISA is another commercially available kit. Samples are reacted with the 

mouse monoclonal antibody “M6” against CK18, which has been immobilised to the 

polystyrene wells and, simultaneously, with the Horseradish Peroxidase -(HRP) conjugated 

monoclonal antibody “M5” directed against a different epitope on CK18. 25µl of sample 

are added to each well, followed by 75µl of HRP-conjugated monoclonal antibody 

solution. The samples are then incubated for 4hr at room temperature with constant 

shaking, after which excess unbound conjugate is removed by 5 washing steps. Colour 

development is then achieved by the addition of 200µl of 3, 3, 5, 5’-tetramethyl-benzidine 

solution, followed by incubation for 20min in the dark. The reaction is stopped by the 

addition of 50µl of 1.0M sulphuric acid and the absorbance measured in a microplate 

reader at 450nm. Through plotting a standard curve of known concentrations of M65 

antigen (standards supplied in the kit) vs. absorbance, the amount of antigen in the controls 

and unknown samples can be calculated by extrapolation.  
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The concentration of both M30 and M65 is expressed as Units per Liter (U/L). 

 

2.2.9.3 Cell line studies with M30-Apoptosense and M65 ELISA 

An aseptic technique was maintained throughout using sterilised material in a class II 

microbiological safety cabinet with vertical airflow. The cell lines selected were HCT-116 

colon carcinoma (p53+/+ wt), HCT-116 (p53-/-) and A2780/CP70 ovarian carcinoma cells. 

These particular cell lines were selected as the main aim of this part of the project was to 

examine cytokeratin 18 levels in plasma/serum from patients with colorectal and ovarian 

cancers, and so the cell line experiments were carried out as a proof of principle. The 

p53+/+ and p53-/- were selected to see if differences could be detected in the amount of 

apoptosis occurring as it would be expected that the p53-/- cells would show less apoptosis 

using these particular ELISAs. The HCT-116 cells were grown in DMEM, supplemented 

with 10% FCS and 1% glutamine. The null cells had geneticin added at a concentration of 

0.5 mg/ml. The A2780/CP70 cells were grown in RPMI 1640, supplemented with 10% 

FCS and 1% glutamine. All three cell lines were maintained at 37ºC in 5% CO2. On the 

day before addition of cisplatin, the cells were plated out at densities of 1.25 x104 and 2.5 

x104 cells per well in 24-well plates containing 200µl of medium. The following day the 

cells received fresh medium containing various concentrations of cisplatin of 0, 1, 5, 25 

µM. The cell cultures and medium were then harvested after 24 and 48hr and examined. 

2.2.9.4 Total cell cultures 

To allow assessment of M30 from the total cell cultures, 10 µL of 10% NP40 lysis buffer 

was added to each well. The plate was then placed on a rotary shaker and lysis was allowed 

to occur for 5min at room temperature. Duplicate 25µL samples of lysed cells and medium 

were then transferred to an M30-Apoptosense plate and M30 concentrations determined. 

2.2.8.5 Cell culture supernatants 

To allow assessment of both M30 and M65 from cell culture supernatants, the plates 

containing the cell cultures and medium were centrifuged at 800g for 5min at 18ºC. One 

hundred µl of the cell-free supernatant was then collected (care was taken not to disturb the 

cell monolayer) and transferred to plain 96-well microtitre plates. The remaining medium 

was then aspirated from the wells to leave the cell monolayer and this plate was quickly 

frozen at -20ºC. Duplicate 25µl samples of cell-free supernatant were transferred to an 



Lucy Scott, 2009  Chapter 2 62 

M30-Apoptosense plate and M65 ELISA plate. The remaining supernatant samples were 

stored at -20ºC in plain 96-well microtitre plates.  

2.2.8.6 Cell pellet lysis 

To allow assessment of M30 from the cell monolayer, 50µl of lysis buffer (10 mM Tris-

HCl, 150 mM NaCl, 5% NP-40, 10 mM MgCl2, pH 7.4) was added to each well of the 

plate and lysis was allowed to occur for 5 minutes on ice. The lysate was then aspirated 

and placed in an Eppendorf. The lysis procedure was then repeated. The Eppendorf tubes 

containing 100 µl of lysate were then centrifuged at 800g for 5min at 4ºC. Duplicate 25µl 

samples of supernatant were then transferred to an M30-Apoptosense plate for cleaved 

CK18 determination.

2.2.8.7 Cytokeratin 18 assessment in human plasma  

2.2.8.7.1 Statistical Analysis 

The statistical analysis for this part of the study was carried out by the Cancer Research 

UK Clinical Trials Unit Department of Medical Statistics. The distribution of the CK18, 

CK18-NE and CEA values were markedly skewed so these variables were logged in all 

analyses. Where there were two classifying groups (e.g. gender) the Mann-Whitney U test 

was use to compare these variables (or changes between variable values); when there were 

more than two groups (e.g. tumour site) the Kruskal-Wallis test was used. Spearman’s rank 

correlation test was used when determining an association between either CK18 or CK18-

NE and age. The replicate variability in the assays was estimated from all the replicate 

results available in the study. 

2.2.8.7.2 Stability Studies 

Plasma was collected and separated as described above. Twenty-five µl of plasma was then 

added to each well on the M30 and M65 ELISA and the M30 and M65 concentrations 

determined as described above. All samples were run in duplicate. 

In order to study the stability of plasma cytokeratin 18 (CK18), 20ml of blood was 

collected from a healthy volunteer. Five ml was removed and the plasma separated as 

described above to act as a baseline sample. The remaining 15ml was spiked with 300µl of 

pooled high positive CK18 signal serum and aliquoted into EDTA specimen tubes. The 
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effects of delay in processing the sample, storage temperatures and freeze-thaw cycles 

were studied. For delays in processing the sample, the sample was stored at room 

temperature for 0, 2, 4, 6 and 24hr prior to separation of the plasma and CK18 analysis. 

For the effects of storage at various temperatures, the plasma was separated and stored at 

room temperature, 4ºC, -20ºC, and -70ºC for 24hr prior to CK18 analysis. For the effect of 

freeze-thawing, the plasma was separated as described above and then subject for up to 5 

freeze-thaw cycles prior to CK18 analysis. 

Experiments were then performed to see how stable cytokeratin 18 was in human plasma 

samples that may not have been frozen immediately following separation of plasma from 

the whole blood sample. This was in an attempt to gauge if delays in processing (as will 

occur in every day clinical practice) affect cytokeratin 18 concentrations. A whole blood 

sample was taken following written informed consent from a patient with advanced 

gastrointestinal adenocarcinoma and the plasma separated as described above. This was 

then aliquoted into Eppendorf tubes. One tube was frozen immediately at -70ºC to act as a 

baseline sample. The remaining tubes were stored at room temperature and frozen after 1, 

2, 3, and 4 week time periods. The plasma samples were then analysed at the same time in 

duplicate. 

Further experiments were then performed on blood samples taken from healthy volunteers 

to see if there was much intra-individual variation in plasma cytokeratin 18 levels from 

day-to-day and also if there was any diurnal variation or effects from fasting. Six blood 

samples were taken from the healthy volunteers at various time points 10am, 2pm, and 

4pm and after fasting overnight. The samples were run in duplicate and the results for each 

time point averaged. 

2.2.8.7.3 Healthy Volunteers and Patients with Advanced Gastrointestinal 

Adenocarcinoma 

Plasma CK18 levels were then measured in the 100 healthy volunteers and 73 patients with 

advanced gastrointestinal adenocarcinomas receiving palliative chemotherapy. The 

objectives of this study were to compare plasma levels of caspase-cleaved and total soluble 

CK18 between healthy volunteers and patients with advanced gastrointestinal 

adenocarcinomas, and to determine if there was any correlation between changes in plasma 

cytokeratin 18 levels during palliative chemotherapy and clinical outcome in patients with 

advanced gastrointestinal adenocarcinomas, and so determine if measurement of CK18 

could potentially be used as a diagnostic marker and a marker of treatment response. 
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2.2.8.7.4 Patients with Early Colorectal Cancer 

Following on from the studies looking at advanced colorectal cancer, it was decided to 

examine serum cytokeratin 18 levels in patients with early colorectal cancer to see if CK18 

could be used as a potential diagnostic marker in this group of patients. Serum rather than 

plasma was used for this part of the study as this is what had been previously collected as 

part of a clinical trial; however the M30-Apoptosense and M65 ELISAs can both be used 

with either serum or plasma. 

The study included both patients undergoing colonoscopy examination for investigation of 

gastrointestinal symptoms and patients with operable colorectal adenocarcinoma. All 

patients gave written informed consent and blood samples were taken before the 

procedures, either colonoscopy or bowel resection, were performed. Limited clinical 

outcome data was collected for both patient groups. 

The three groups consisted of 23 patients with normal colonoscopies, 13 patients whose 

colonoscopies showed polyps or pre-malignant lesions, and 23 patients with colorectal 

adenocarcinoma on colonoscopy or colorectal adenocarcinoma awaiting bowel resection 

2.2.8.7.5 Patients with Ovarian Cancer 

The SCOTROC (Scottish Randomised Trial in Ovarian Cancer)-1 trial was a randomized 

phase III study designed to compare efficacy, tolerability, and quality of life outcomes of 

docetaxel-carboplatin with paclitaxel-carboplatin as initial chemotherapy for stage Ic-IV 

ovarian and/or peritoneal cancers [74]. Between 1998 and 2000, 1077 women from 83 

international centres were randomized to the study. Following debulking surgery, 539 were 

randomly assigned docetaxel-carboplatin, and 538 were assigned to the paclitaxel-

carboplatin arm. The two treatment arms were well-matched with respect to patient 

demographics and disease characteristics. The results from the trial showed that the two 

treatment arms were equivalent in terms of progression-free survival and response. Blood 

samples were collected from patients after surgery, but prior to commencing chemotherapy 

(baseline samples) and at relapse (relapse samples). Plasma was separated according to 

protocol and stored at -70°C. CA-125 levels were also checked in all patients receiving 

chemotherapy and the CA-125 response assessed and classified. 

The plasma samples had been stored at this centre and so were available for CK18 

assessment. Initially the samples were separated into two separate cohorts, those that had 
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been collected from patients in Glasgow and those that had been collected at other centres 

involved in the study. This was due to the fact that the sample handling had been stringent 

at the Glasgow sites due to the proximity to the trial centre, however, other samples had 

been sent some distance and it was felt that it had to be ensured that the median CK18-NE 

and total CK18 values did not very greatly between the cohorts simply due to differences 

in sample handling.  

The objectives of this study were to compare plasma levels of caspase-cleaved and total 

soluble CK18 between healthy volunteers and patients with ovarian cancer and determine 

if measurement of plasma CK18 could potentially be used as a diagnostic and prognostic 

marker. 
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3.1 Background 

Raf Kinase Inhibitor Protein (RKIP) was originally purified from bovine brain extracts and 

named phosphatidylethanolamine-binding protein (PEBP). Subsequent studies have shown 

that it is a widely expressed and highly conserved protein [75]. It was first identified as an 

endogenous inhibitor of the Raf-MAPK kinase (MEK)-ERK pathway that interfered with 

the phosphorylation and activation of MEK by RAF-1 [65]. Later, it was also identified as 

an inhibitor of nuclear factor kappa B (NFκB) transcription factor activation due to 

blocking of the inactivation of IκB, the inhibitor of NFκB [76]. As these pathways are 

often active in malignant tumours it was hypothesised that RKIP expression may have 

importance in the malignant behaviour of tumours and invasion [77, 78]. Several recent 

studies have suggested that RKIP may suppress metastasis in melanoma, prostate, and 

breast cancer, as reduction or loss of RKIP expression was observed in metastatic cell lines 

and metastatic tissue [79-81]. When RKIP was reconstituted in the metastatic cell lines by 

exogenous expression, the in vitro invasiveness and ability to form metastases in mouse 

models was impaired [80, 81]. Conversely, when RKIP expression was downregulated by 

antisense RNA, invasiveness was promoted. Mouse modelling in prostate cancer has 

suggested that although variations in RKIP expression do not affect the primary tumour, 

reduced expression is associated with the development of metastases [80].  

In order to investigate if RKIP expression in human primary tumours is related to 

development of metastases, tissue microarrays (TMAs) of normal and cancerous tissue 

were evaluated for RKIP expression. As RKIP expression was found to be reduced in 

metastatic colorectal cancer the hypothesis that RKIP expression may predict overall 

survival and risk of metastatic relapse was assessed within the first part of the study in 

three independent cohorts of colorectal cancer patients. The aim of the second part of the 

study was to investigate the prognostic and predictive value of RKIP expression in tumour 

samples from two groups of ovarian cancer patients recruited to clinical trials of 

combination platinum-based chemotherapy. This study was part of a collaboration with 

Professor Walter Kolch’s group in the Beatson Institute for Cancer Research. As well as 

being involved in design and analysis of the study, my role in data accrual was as an 

independent scorer of RKIP expression within the colorectal and ovarian cancer TMA, and 

as such, was blinded to the clinical outcome data for both patient groups. 
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3.1.1 Colorectal Cancer 

Colorectal cancer is the third most commonly diagnosed malignancy, accounting for 10-

15% of newly diagnosed cancers in Europe and the US with over 780,000 new cases 

diagnosed annually worldwide [82-85]. Colorectal cancer staging has not really changed 

over the past number of years, it remains largely based on clinical appearance and 

histopathological features [86]. Patients presenting with disease limited to the superficial 

bowel wall (Dukes’ stage A) have a >90% 5-year survival, however patients presenting at 

this early stage are in the minority. Approximately 70% of patients will present with cancer 

that has invaded through the bowel wall, which may or may not involve regional lymph 

nodes. Dukes’ stage B cancers do not have lymph node involvement and have a 5-year 

survival of 67%, whereas Dukes’ stage C cancers with lymph node involvement have a 5-

year survival of only 43% [87]. Surgery is the optimal treatment for patients whose disease 

is macroscopically operable at the time of diagnosis. The operability is gauged by the 

absence of metastatic disease on staging investigations, such as CT scans. Adjuvant 

chemotherapy is routinely offered in Dukes’ stage C cancer patients with the aim to 

eliminate micrometastatic disease and to improve disease-free and overall survival, but the 

role of adjuvant chemotherapy in Dukes’ stage B patients is still not clear and is being 

further evaluated in clinical trials. 

Up to 30% of patients will present with metastatic disease (Dukes’ stage D) and ultimately 

almost half of all patients diagnosed will develop locally advanced or metastatic disease as 

a result of micrometastases. Patients with advanced disease, if suitably fit, are given 

chemotherapy with palliative intent. However, the prognosis for patients who relapse 

following surgery or who present with metastatic disease is poor, with 5-year survival rates 

of 5% or less [88-90]. 

Therefore, conventional methods of staging do provide some insight into the clinical 

outcomes for patients, but the development of bioinformatics technology, which aims to 

increase knowledge of biological processes by applying computationally intensive 

techniques to analyse large quantities of data, and molecular analysis of an individual 

patient’s tumour and serum may further augment the ability to predict tumour stage, 

clinical outcome and identify patients who may gain most benefit from other interventions 

such as adjuvant chemotherapy, radiotherapy, hormonal or biological therapies. 

In order to investigate if RKIP expression in human primary tumours is related to 

development of metastases the initial assessment was performed using commercially 
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available TMA (Landmark High-Density Cancer Survey Tissue Microarrays, Ambion, 

UK). These contained 279 paraffin-embedded tissue specimens from 190 patients, 

including 242 matched tumour and normal specimens and 37 independent normal 

specimens. 

The second cohort included TMA from 268 patients with colorectal cancer from the 

Aberdeen Colorectal Tumour Bank. All of these patients had received surgical treatment. 

The third cohort included 65 patients with colorectal cancer from Glasgow and Kuwait 

with no evidence of lymph node or distant organ metastasis at time of surgery. This 

included 25 patients with no evidence of metastatic disease at time of surgery, but who 

subsequently relapsed and 40 patients who remained disease-free after surgery. All patients 

received surgical treatment and 14 of them also received six cycles of standard adjuvant 

chemotherapy (all of the patients receiving adjuvant chemotherapy were from Kuwait). 

The patients were followed up for a minimum period of 2 years (range, 2 to 9 years); with 

a median follow-up of 5.5 years for the survivors (84% of survivors were observed for 

more than 3.5 years). They were assessed clinically for evidence of disease relapse, which 

was then confirmed either radiologically, histologically or at post-mortem examination. 

Four patients were lost to follow-up. Ten patients died as a result of metastatic disease, but 

the date of disease recurrence had not been recorded, so the date of death in these patients 

was used in the disease-free analysis. Eleven of the fourteen patients receiving 

chemotherapy had survival data available. 

3.1.2 Ovarian Cancer 

Ovarian cancer is the fourth most common cancer in the UK, after breast, colorectal and 

lung cancer. Approximately 6,700 women are diagnosed annually, with cancers that are 

predominantly epithelial in origin. One of the characteristics of ovarian cancer is that it 

commonly presents at an advanced stage, when 5-year overall survival rates are <30%, 

whereas if the disease is discovered at stage I (confined to the ovary), the survival rates are 

>90%. The current screening investigations for ovarian cancer are only applied to high-risk 

groups and include the biomarker, cancer antigen 125 (CA-125) and pelvic ultrasound 

scanning. CA-125 is elevated in about 80% of patients with advanced ovarian cancer, but 

only 50-60% of early-stage patients. Therefore, CA-125 has a positive predictive value of 

<10%, which is increased to only 20% with the addition of ultrasound scanning [61-63]. 

Moreover, CA-125 can also be elevated in a number of other conditions including 

pregnancy, endometriosis, colorectal and pancreatic cancers. Therefore, there is a need to 
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develop detection methods to improve the sensitivity and specificity of early-stage ovarian 

cancer detection.  

Carboplatin and cisplatin are the most common chemotherapeutic drugs used to treat 

ovarian cancer in the adjuvant and metastatic setting with response rates in the order of 65-

80%; however, the majority of patients treated will eventually develop chemoresistance 

and die of metastatic disease. There is, therefore, a real need to develop reliable biomarkers 

for disease prognosis and survival in order to target adjuvant treatments to those patients 

who will derive the greatest benefit. 

This part of the study investigated the prognostic and predictive value of RKIP expression 

in tumour samples from two groups of ovarian cancer patients recruited to clinical trials of 

combination platinum-based chemotherapy with clinical outcome data. Primary treatment 

for all patients consisted of surgery (total abdominal hysterectomy, bilateral salpingo-

oophorectomy, omentectomy and peritoneal washings with cytology) and all patients were 

staged according to the FIGO classification (Cancer Committee of the International 

Federation of Gynaecology and Obstetrics, 1986). Tumours were graded and classified by 

a gynaecological pathologist according to the WHO criteria. Response to chemotherapy 

was assessed using standard criteria [74] and patients were followed up to ten years with 

gradually increasing intervals. Follow-up data were complete for all patients up to March 

2005, with a median follow-up of 51.6 months (range, 2.8-136.5 months). 

Formalin-fixed, paraffin-embedded TMA were examined from two cohorts of patients; one 

cohort comprised of 114 patients involved in a single clinical trial (SCOTROC-1) and a 

second cohort of 220 patients involved in various other clinical trials run through the 

Scottish Oncology Gynaecology Group The primary outcomes were overall and disease-

free survival. Overall survival was defined as the time from study entry until death and 

disease-free survival was defined as time from study entry to first confirmed metastatic 

relapse. Univariate and multivariate Cox’s proportional hazard models were used to 

analyse the effect of various clinical characteristics on patient survival. 
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3.2 Results 

3.2.1 Colorectal Cancer 

3.2.1.1. Exploratory Study Results 

To study RKIP protein expression, polyclonal rabbit RKIP (Ki69) was applied to formalin-

fixed, paraffin-embedded sections. Sections from liver and breast paraffin blocks were 

used as a positive control. In addition, Auerbach’s myenteric intramuscular plexuses, 

which have strong RKIP expression, were used as positive internal controls (see Chapter 

2.2.1). As a negative control, the RKIP antibody was either substituted with goat serum or 

preadsorbed with cognate antigen (i.e. the RKIP antibody was incubated with a 10 to 20 

fold molar excess of purified RKIP prior to use). 

To measure RKIP expression, the specificity of the RKIP antibody was validated 

vigorously for both western blot and immunohistochemistry. The RKIP antibody was 

raised against full-length rat RKIP protein which was expressed in E.coli. On Western 

blots, the antibody only detected RKIP, and when the antibody was preadsorbed with 

cognate antigen its reactivity on sections of paraffin-embedded cell lines and human tissue 

was strongly reduced (data not shown). 

The scoring system used to assess RKIP expression was as described for previous studies 

[66] and represented both the area and intensity of the stain within the section. The score 

corresponded to the sum of a) the percentage of positive cells (1 = <25%, 2 = 26-50%, 3 = 

>50%) and b) the staining intensity (0 = negative, 1 = weak, 2 = moderate, 3 = strong). The 

sum for each section was, therefore, anything between 0 and 6. Scores between 0 and 2 

were regarded as negative, scores of 3 and 4 as weakly positive, and scores of 5 and 6 as 

strongly positive (See Figure 3.1). Two scorers (blinded to the follow-up data and 

recurrence status of the patients) scored each section independently. The strength of 

agreement between the two scorers was calculated using linear weighted κ and found to 

correlate well (κ>0.7). 
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Figure 3.1 Representative RKIP expression scores. Scores between 0 and 2 were regarded as 
negative, scores of 3 and 4 as weakly positive, and scores of 5 and 6 as strongly positive 
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The RKIP expression in the first cohort of 279 samples was then assessed, of which 62 

samples had to be excluded due to missing data and sample lifting from the slides. RKIP 

was found to be expressed in normal glandular epithelia of the breast, pancreas and 

salivary glands; renal glomeruli and tubules; transitional epithelium of the bladder; lymph 

and vascular endothelia; neuronal cells, hepatocytes and myocytes. When tumours derived 

from these tissues were examined, the RKIP expression was variable, but frequently 

reduced. In renal and pancreatic tumours the level of reduction of RKIP expression almost 

approached statistical significance compared to the tumours derived from other tissues 

(p=0.053, p=0.054, respectively). However, in the colorectal cancer samples, the reduction 

in RKIP levels was statistically significant (p=0.01) and so RKIP expression was then 

studied in the second, larger cohort of colorectal cancer patients. 

The second cohort of 268 patients had corresponding clinical data including Dukes’ stage, 

sex, age, differentiation and tumour site (proximal colon, distal colon, or rectum). In terms 

of the Dukes’ staging, 19.8% were Dukes’ A, 38.8% were Dukes’ B, and 41.1% were 

Dukes’ C. Within this cohort there were 79 lymph node metastases that were assessed for 

RKIP expression, of these 67 (85%) had weak or no RKIP expression compared with 12 

(15%) that expressed RKIP.  In the 202 primary tumour samples, 89 (44%) were RKIP 

positive and 113 (56%) were RKIP negative. This suggests that the development of 

metastases in colorectal cancer involves a reduction or loss of RKIP expression. 

Examination of the primary tumours showed a statistically significant positive correlation 

between RKIP expression and overall survival (p<0.001) [hazard ratio 2.84]. The mean 

overall survival in the 89 patients whose primary tumour scored positive for RKIP was 93 

months (95% C.I.93-104), whereas reduced or no RKIP expression in 113 patients 

correlated with a reduced survival time of 61 months (95% C.I.52-70). As the survival 

curve for RKIP-positive patients never decreased below 50%, it was not possible to assess 

median overall survival. When a multivariate analysis was carried out, RKIP expression 

was found to be independent of p53 status, tumour differentiation, tumour site and B-Raf 

expression (other factors associated with poorer survival outcomes). This analysis also 

showed that reduction in RKIP expression was associated with a significantly reduced 

survival time comparable to the risk associated with advanced Dukes’ staging. 

The cohort was then stratified according to Dukes’ staging and RKIP expression as Dukes’ 

staging is the main clinical method used to predict risk of disease recurrence. The results 

showed that Dukes’ C patients with RKIP positive primary tumours had a mean survival of 

78 months (95% C.I. 57-100) versus 49 months (95% C.I. 36-62) for Dukes’ C patients 
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with RKIP negative primary tumours (See Figure 3.2). The mean survival of Dukes’ C 

patients with RKIP positive primary tumours was not statistically different from the mean 

overall survival times of Dukes’ A and B patients (92 (95% C.I. 70-113) and 85 (95%C.I. 

74-95) months, respectively). These results suggest that RKIP expression in the primary 

tumour may independently predict overall survival and help to identify a high-risk 

population with reduced or no RKIP expression that may derive greater benefit from 

adjuvant therapies in colorectal cancer. 
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Figure 3.2. Kaplan-Meier plots of overall survival and mean survival of the Aberdeen cohort of 
colorectal cancer patients in relation to Raf kinase inhibitor protein (RKIP) expression. (A) All 
evaluated patients. (B, C) Relationship of RKIP expression to Dukes’ stages 
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In the third cohort of 65 early-stage colorectal cancer patients, loss or reduced RKIP 

expression was significantly associated with metastatic recurrence (p=0.004) and reduced 

disease-free survival (p=0.004). The 5-year disease-free survival was 79% (95% CI 62.9-

95.9) for RKIP positive tumours vs. 31% (95% CI 1.9-59.6) for weak positive RKIP 

tumours vs. 47% (95% CI 25.2-69.1) for RKIP negative tumours. The risk of metastatic 

relapse was not found to correlate with sex, age, tumour site or differentiation, mitotic and 

apoptotic indices, lymphovascular invasion, or depth of invasion. Again when a 

multivariate analysis was performed looking at the above variables, reduction or loss of 

expression of RKIP was the most significant independent prognostic factor (p=0.002, 

hazard ratio, 2.843, S.E. = 0.331). 

The median survival of patients with reduction or loss of RKIP expression was 4.57 and 

3.46 years, respectively compared with more than 8 years in patients with RKIP positive 

primary tumours. Kaplan-Meier plots (see Figure 3.3) show that patients with RKIP 

positive tumours had stable disease-free survival rates of 90% between 2 to 4 years after 

surgery and 80% after year 4. In contrast, patients with reduced or no RKIP expression in 

the primary tumours had a steady decline in disease-free survival over the observation 

period. These results suggest that the level of RKIP expression is significantly and 

inversely associated with metastatic disease and can predict the risk of metastatic relapse in 

patients with no evidence of metastases at presentation. The level of RKIP expression as a 

prognostic factor was independent of sex, age, tumour site, mitotic index, lymphovascular 

invasion and tumour stage.  
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Figure 3.3. Kaplan-Meier plots of disease-free survival of patients with early stage colorectal 
cancer in relation to Raf kinase inhibitor protein (RKIP) expression. (A) Effect of RKIP expression 
on disease-free survival (metastasis-free survival) in 61 patients without stratification. (B) Data 
limited to patients who received surgery alone (Dukes’ A and B1). Blue lines, patients with weak 
and negative RKIP expression; green lines, RKIP-positive patients. P values represent the log-rank 
test. 
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The level of RKIP expression was then correlated with mitotic index, tumour 

differentiation, vascular endothelial growth factor production, tumour blood vessel counts, 

p53 expression and apoptotic index in primary tumours. There was a positive correlation 

between RKIP expression and tumour differentiation in the third cohort (p=0.003). 

However, this was not seen with the second cohort of patients and so, RKIP expression 

does not seem to be simply a marker of differentiation, but is an independent marker of 

prognosis, whereas differentiation was not linked to survival in either of the patient 

cohorts. RKIP expression also correlated positively with apoptotic index (p=0.024). 

Tumours with loss of or reduced RKIP expression had mean apoptotic indices of 6.3 and 

11.3, respectively compared with RKIP positive tumours with an apoptotic index of 15. 

In this study the relationship between RKIP expression and response to adjuvant 

chemotherapy was not addressed. Recent data [[79]] has suggested that certain 

chemotherapeutic drugs can induce RKIP expression, sensitising cells to apoptosis, and our 

study did show a positive correlation between RKIP expression and apoptosis. A follow-up 

study looking at the potential for RKIP to act as a predictive marker of response to 

adjuvant chemotherapy in early-stage colorectal cancer would, therefore, be very 

interesting. If this demonstrated that RKIP expression acted as a predictive marker there is 

the possibility that it could then be used to direct adjuvant treatment to patients who would 

stand to gain most benefit, and the potential for development of novel targeted drugs that 

may increase RKIP expression and thus response to chemotherapy. 

3.2.1.2. Validation Study Results 

Following on from these results, RKIP expression was assessed in a further cohort of 209 

patients with Dukes B colorectal cancer treated at St. Vincent’s Hospital, Dublin between 

1990 and 2002 as an independent validation set. This cohort of patients has been followed 

up for 14 years, 118 (56%) were male and 91 (44%) were female . The TMA consisted of 

222 samples of colorectal cancer tissue with matched normal tissue present in 193 cases. 

There were four cores of normal and tumour tissue present in each case that had been 

chosen by a pathologist as being representative of the tumour as a whole. All cases were 

reviewed by a pathologist before inclusion in the TMA. 

The results of the RKIP scoring showed that 97 (43.7%) of tumours were strongly positive, 

100 (45%) of tumours were weakly positive and 14 (6.3%) were negative. Eleven of the 

tumours were excluded due to sample lifting from the slide (see Table 3.1). The intensity 

of RKIP staining was significantly correlated with disease-specific survival (p=0.007) [see 
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Figure 3.4] and negative RKIP expression was associated with poorly differentiated 

tumours. There was no significant association between RKIP positivity and tumour size, 

lymphovascular invasion, peritoneal involvement or tumour stage. In a multivariate 

analysis RKIP expression level was found to be an independent prognostic factor along 

with peritoneal invasion and lymphovascular invasion. When these three prognostic factors 

were combined a sub-group comprising 25% of the patients were identified whose 5-year 

survival was similar to the of patients with node-positive (stage III or Dukes C) disease. 
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RKIP expression Number of samples 

Negative (0-2) 14 (6.3%) 

Weakly positive (3-4) 100 (45.0%) 

Strongly positive (5-6) 97 (43.7%) 

Excluded samples 11 (5.0%) 

 

Table 3.1. Breakdown of Raf kinase inhibitor protein (RKIP) expression in tissue microarrays 
(TMA) from patients included in the Dublin cohort. 
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Figure 3.4. Kaplan-Meier plots of disease-specific survival of patients with early stage colorectal 
cancer in relation to Raf kinase inhibitor protein (RKIP) expression (Dublin cohort). 
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To further validate these results, RKIP expression in TMA from 1034 colorectal cancer 

patients were studied (kindly provided by Dr. Nik Zeps, Western Australia Research 

Tissue Network). The patient characteristics are shown in Table 3.2. The slides were 

stained for RKIP protein and scored using a semi-quantitative system combining both 

staining intensity and percentage area stained as described previously. Using this system 

RKIP expression was again divided into 3 groups; negative, weakly positive and strongly 

positive. 
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  Number of cases (% of 

total) 

Gender Male 

Female 

510 (49) 

524 (51) 

Dukes’ Stage A 

B 

C 

D 

13 (1) 

629 (61) 

386 (37) 

6 (1) 

 

Table 3.2 Patient Characteristics of 1034 patients with Colorectal Cancer in the Australian Cohort. 
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The results showed that of the 1034 samples, 119 could not be scored due to sample lifting 

from the slides, leaving 915 for analysis. Of the 915, 53 were RKIP negative, 384 were 

weak RKIP positive and 478 were strongly RKIP positive (see Table 3.3). 

There was no difference in survival seen between the RKIP negative and weakly positive 

group owing to the small size of the negative group, and so these groups were therefore 

combined and compared to the strongly positive RKIP group. There was a statistically 

significant difference in both overall (p=0.0007) and disease-specific (p=0.0024) survival 

between the 2 groups, with low RKIP expression correlating with a worse prognosis 

(Figure 3.3). The median survival of RKIP positive patients was 107.6 months, compared 

with 62.5 months in RKIP negative patients [hazard ratio 0.74 (95% CI = 0.62-0.89). The 

RKIP positive patients also had improved 5-year survival (62% v 51.3%) and 10-year 

survival (44.6% v 33.7%). It is of note from this mature survival data that the survival 

curves do come together eventually about 170 months from diagnosis. 
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RKIP expression Number of samples 

Negative (0-2) 53 (5.1%) 

Weakly positive (3-4) 384 (37.1%) 

Strongly positive (5-6) 478 (46.2%) 

Excluded samples 119 (11.5%) 

 

Table 3.3. Breakdown of Raf kinase inhibitor protein (RKIP) expression in tissue microarrays 
(TMA) from patients included in the Australian cohort. 
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Figure 3.5: Kaplan-Meier plot demonstrating the difference in survival in 915 patients with 
colorectal cancer, depending on RKIP expression levels 
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In univariate analysis RKIP expression levels correlated with grade and lymph node status 

and weak/negative RKIP expression was associated with a worse prognosis (hazard ratio, 

0.74, 95% C.I. 0.621-0.881, p=0.001). In a multivariate analysis RKIP expression level and 

lymph node status were shown to give independent prognostic information, again 

weak/negative RKIP expression was associated with worse prognosis (hazard ratio, 0.709, 

95% C.I. 0.563-0.893, p=0.004).  The conclusion to be drawn from this study is that RKIP 

is a useful prognostic marker which may aid in risk-stratifying patients with colorectal 

cancer. 

3.2.1.3. Conclusions 

 In summary, the results from exploratory studies and subsequently confirmed in validation 

studies show that there is a statistically significant relationship between reduced RKIP 

expression, metastatic recurrence and overall survival. These associations are independent 

of other clinical/pathological features. These observations may be explained partly by 

recent data showing that RKIP regulates the spindle checkpoint in cells implying that its 

loss could result in chromosomal instability [91, 92]. This would in turn affect the 

aggressiveness of the tumour and response to adjuvant therapy, independent of other 

prognostic factors such as Dukes’ staging. However, with the current lack of effective 

markers of metastatic relapse in colorectal cancer, a straightforward test like RKIP 

expression in the primary tumour may be a very cost-effective way to identify which 

patients may derive greater benefit from adjuvant treatment and closer post-operative 

surveillance. 

3.2.2 Ovarian Cancer 

The aim of this part of the study was to investigate the prognostic and predictive value of 

RKIP expression in tumour samples from two groups of ovarian cancer patients recruited 

to clinical trials of combination platinum-based chemotherapy. RKIP expression was 

initially determined in the first cohort of TMA from 114 epithelial ovarian cancer patients. 

Corresponding clinical data was available including age, tumour grade, stage and 

differentiation. Out of the 114 samples, 79 were suitable for assessment of RKIP 

expression. The others were deemed unsuitable either because of specimen lifting from the 

slide or absence of tumour tissue within the section. The scoring system used is described 

above. For the statistical analysis, samples were grouped 0-4 equalling RKIP 

weak/negative and > 4 equalling RKIP positive. In total 41 (51.9%) of patient samples had 

reduced or loss of RKIP expression and 38 (48.1%) of patients were RKIP positive. RKIP 



Lucy Scott, 2009  Chapter 3 88 

expression was found to correlate significantly with progression-free survival, with RKIP 

positive patients having significantly greater progression-free survival than those with 

reduced or no RKIP expression (see, Figure 3.5, p=0.025), in fact, the hazard ratio 

associated with RKIP >4 for this cohort was 0.516 (95% CI 0.219-0.919). However, there 

was no correlation with overall survival. RKIP expression was also compared to CA-125 

response and clinical/radiological response data, but was not found to be significantly 

associated with either response. 

Carbonyl reductase expression has previously been shown to be a prognostic marker for 

epithelial ovarian cancer [66] and so the expression of this marker was compared to RKIP 

expression. In this cohort carbonyl reductase was not found to be significantly associated 

with progression-free survival, overall survival, CA-125 response or clinical/radiological 

response. 
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Figure 3.6. Demonstrates the difference in progression-free survival between Raf kinase inhibitor 
protein (RKIP) positive and negative epithelial ovarian cancers in the SCOTROC 1 trial (p=0.025) 
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RKIP expression in the second cohort of 216 patients was then examined. From this cohort 

37 samples were unsuitable for analysis due to sample lifting from the slide, leaving 179 

samples. Of these 179 samples, 83 (46.4%) were RKIP positive and 96 (53.6%) were RKIP 

weak positive or negative. Cox regression analysis was again used to assess whether RKIP 

expression correlated with progression-free or overall survival. However, in this cohort of 

patients the exact opposite result was observed, the hazard ratio associated with RKIP >4 

for the non-SCOTROC-1 cohort was 1.627 (95% CI 1.183- 2.238). RKIP expression did 

not correlate with either progression-free or overall survival and there was no relationship 

between RKIP expression and either CA-125 or radiological response in this cohort. 

So in the first cohort of patients involved in the SCOTROC-1 trial, RKIP positive patients 

had a greater progression-free survival, but in the second cohort of non-SCOTROC-1 trial 

patients, the reverse was true (this difference was real [p<0.001]). It is difficult to explain 

the discrepancy between the results from these two cohorts. The results from the first 

cohort are in accord with those observed in the previous studies of colorectal cancer 

patients, but the second cohort shows completely conflicting results. The staining methods 

used for the two cohorts were identical; there were no significant differences between the 

two cohorts in the distribution of disease stage, patients’ age and performance status, and 

presence of residual disease. One potential explanation is that the paraffin blocks used to 

prepare the non-SCOTROC-1 TMA were older than the SCOTROC-1 blocks, having been 

stored in some cases for up to twenty years. In that case it would be expected that the RKIP 

staining may in fact be weaker and demonstrate more variability for the older blocks as has 

been shown in other studies [93], however, in the current study this was not the case. A 

further possibility would be if the non-specific background stain in the non-SCOTROC-1 

TMA had increased over time so that many tumours become false positive which then 

could explain the reversed risk association.  

 

Another possibility considered was that all the SCOTROC1 patients were treated with 

combination chemotherapy of carboplatin and paclitaxel while some of the non-

SCOTROC trials involved single agent carboplatin and this could be of importance 

especially if RKIP is involved in spindle control. However, when univariate and 

multivariate analyses were performed and stratified for type of chemotherapy, this was not 

found to be significant. As yet, there is not a satisfactory explanation for the discrepancy in 

the results for the two ovarian cancer cohorts. 
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4.1 Background 

4.1.1 Type I Cytokeratins 

As can be seen from the previous chapter, RKIP has some utility as a prognostic biomarker 

in colorectal cancer, identifying patients with primary bowel cancer at higher risk of 

metastatic relapse and poorer survival outcomes. However, the results from the ovarian 

cancer part of the study show conflicting results and highlight the need for alternative more 

reliable biomarkers for diagnosis, prognosis and monitoring treatment outcomes in patients 

with cancer. 

There are five different groups of intermediate filament proteins: type I (acidic 

cytokeratins, 40-56kDa [CK9-CK20]); type II (basic cytokeratins, 53-68kDa [CK1-CK8]); 

type III (vimentin, desmin, glial fibrillary acidic protein and peripherin); type IV 

(neurofilaments, nestin and internexin); type V (nuclear lamin). The intermediate filament 

cytoskeleton of mammalian epithelial cells is generated from pairs of type I and type II 

cytokeratins [94, 95]. 

Cytokeratin expression has been studied in many different cell types over the past few 

decades [35, 96, 97]. The most universally expressed are cytokeratin 18 (CK18) and 19 

(CK19) which are major components of the intermediate filament of simple epithelial cells 

and epithelial-derived tumours, and make up approximately 5% of the total cell protein 

[36]. Their expression has been documented in a number of different cancers and various 

antibodies have been developed for their detection [37].  

Type I cytokeratins are cleaved during apoptosis and reorganise into granular structures. 

This reorganisation of the cytoskeleton is thought to be important for apoptosis to proceed. 

CK18 is cleaved at the sequence VEVD/A located within the non-helical L1-2 linker 

region (after Asp238) by caspase 6 [98] and also at the sequence DALD396 which lies 

within the C-terminus by caspase -9 [99]. The DALD396 sequence is unique to CK18 and 

so can be potentially exploited to form antibodies to allow for its detection. 

4.1.2 Type I Cytokeratins as Tumour Markers 

Cytokeratins have been used as serum biomarkers in patients with epithelial malignancies 

for some time. The three most commonly used in the clinical setting are tissue polypeptide 

antigen (TPA), tissue polypeptide-specific antigen (TPS) and CYFRA 21-1. TPA was 
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originally identified in human carcinoma tumours and cell lines [100], but it was not until 

many years later that the antibodies defining TPA were found to stain cytoskeletal 

intermediate filaments in HeLa cells and TPA was found to consist of a mixture of CK8, 

CK18 and CK19 [97]. It has been used for some time as a serological marker in epithelial 

cancers such as breast, lung, colorectal, head and neck, and bladder cancer [101-106]. 

The marker for TPS relies on the use of a specific monoclonal antibody M3 that binds an 

epitope at residues 322-340 in CK18 [107] and has been used as a tumour marker in 

various epithelial cancers such as breast, ovarian, gastrointestinal and prostate 

malignancies [108-111]. 

The assay that measures circulating soluble CK19, CYFRA 21-1, is based on two 

monoclonal antibodies to CK19 [112]. CYFRA 21-1 has mostly been used clinically in 

lung, and head and neck cancers [39, 40]. 

However, as with other tumour markers currently used in clinical practice, these 

cytokeratin markers are not recommended for diagnosis of early disease due to insufficient 

sensitivity and specificity, but may have some value in detecting disease recurrence and in 

predicting response to chemotherapy, especially when used in combination with other 

markers. 

4.1.3 Origin of Circulating Cytokeratins 

TPS and CYFRA 21-1 are generally considered to be markers of cell proliferation. 

Externalization of TPA has been observed after cell division resulting in a rise in TPA 

detected in cell culture medium [113]. However, it is unlikely that this physiological 

process can account for the levels of TPA detected in the serum of cancer patients. The 

cytokeratins detected in the circulation comprise complexes of partially degraded 

polypeptides that are unlikely to be exported from cells, but more likely to be released as 

part of the dying process [35]. Previous studies looking at TPS and CYFRA 21-1 have 

shown that induction of apoptosis results in increased levels of extracellular TPS and 

CYFRA 21-1, but conversely inhibition of apoptosis, or promotion of necrosis did not 

[114]. 

A monoclonal antibody, M30, has been developed that recognises a neo-epitope of CK18-

NE (CK18-Asp396 cleavage product) exposed after caspase-mediated cleavage during 

apoptosis, but not intact CK18. The antibody in the form of immunohistochemistry (M30 
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Cytodeath™) has been validated as a marker of apoptosis for a few years and has been 

used effectively in patient studies [115-117]. As cytotoxic drugs potentially induce 

apoptosis with different kinetics, the ideal assay should measure the accumulation of the 

products of apoptosis to avoid multiple time-point sampling. It has been shown that the 

more recently developed M30-ELISA measures accumulated CK18 cleavage products 

following apoptosis in medium and cell extracts [118]. 

Following cytotoxic treatments, cells receiving an apoptotic stimulus may not necessarily 

undergo apoptotic cell death, but rather undergo necrosis [119]. As a result of the loss of 

cell membrane integrity during necrosis, intracellular proteins are released into the 

extracellular space. The M65-ELISA uses two monoclonal mouse antibodies specific for 

epitopes on CK18 to measure total (both caspase-cleaved and un-cleaved) soluble CK18. 

The two ELISAs can be used in conjunction to calculate the relative proportion of caspase-

cleaved CK18 to total CK18 in medium, cell extracts and plasma [118] and, thus, the 

primary mechanism of epithelial cell death can potentially be deduced. 

The theory that cytokeratins could be released from cells following necrosis due to 

disintegration of the plasma membrane or as part of the apoptotic process was studied 

using the M30 antibody [120]. The HCT-116 colorectal carcinoma cell line was selected 

and cells were treated with agents reported to induce either apoptosis or necrosis. The M65 

and M30 ELISA were then used to measure levels of extracellular CK18 and caspase-

cleaved CK18. The results showed that necrosis resulted in increased levels of CK18 

molecules that were not cleaved by caspases (with no accompanying increase in caspase-

cleaved CK18), but that the apoptosis-inducing agents resulted in increased levels of 

caspase-cleaved CK18. 

However, the situation in vivo may be very different as levels of caspase-cleaved or 

uncleaved CK18 may not be truly representative of the predominant mode of cell death 

occurring. This is because apoptosis and necrosis may not result in equally efficient release 

of cytokeratins into the circulation, and apoptotic bodies tend to be cleared to some extent 

by macrophages and other phagocytes whereas necrotic cells are not. Also, the half-life of 

the different CK18 species within the circulation is unknown, and so, the ratios of caspase-

cleaved to uncleaved CK18 will only be an approximation of the type of cell death that is 

actually occurring [121]. 

There is also some debate as to whether it is possible to detect differences in circulating 

levels of cytokeratins in cancer patients against a background of normal physiological cell-
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turnover. However, there have been several studies (discussed in the next section) showing 

elevated levels of both caspase-cleaved and uncleaved CK18 in patients with tumours, and 

also in patients with septic shock [122], liver, and renal graft-versus-host disease [123-

127], and myocardial infarction [128]. One theory to explain why this might happen is that 

the amount of apoptosis ongoing as part of the disease process overwhelms the clearing 

ability of the macrophages resulting in the presence of apoptotic bodies within the 

circulation. These apoptotic bodies may be subsequently broken down within the 

circulation (secondary necrosis) releasing their contents [129]. Another theory relates to 

the close proximity of tumour cells to blood vessels due to tumour-induced angiogenesis 

[130]. This means that some apoptotic bodies may gain access to the circulation before 

encountering macrophages. So, although there are increased levels of caspase-cleaved 

CK18 detected in the circulation, the source may not be clear. It may be as a result of 

apoptosis within the tumour and therefore representative of the mode of tumour cell death, 

or as a result of secondary necrosis of apoptotic bodies within the circulation. 

The possible source of CK18 detected within the circulation of patients with cancer has 

been studied to try and establish if the increased levels are derived from the tumour itself. 

One study looked at different modes of cell death using both the M30-Apoptosense and 

M65 ELISA [120]. Serum samples were collected from pelvic blood vessels and peripheral 

venous sites of 37 patients undergoing surgery for endometrial cancer and 19 patients 

undergoing surgery for benign endometrial conditions. Higher levels of caspase- cleaved 

CK18 (CK-NE) were observed in the local serum collected from patients with cancer than 

those with benign disease 178 vs. 125 U/L (p=0.009), and also in the peripheral serum 

samples, 178 vs. 145 U/L (p=0.01). Total CK18 levels were similarly higher in the local 

serum of cancer patients than those with benign disease, 1303 vs. 333 U/L (p<0.0001) 

suggesting that the origin was from the tumour. 

4.2 Studies using the M30-Apoptosense and M65 ELISA  

4.2.1 Cytokeratin 18 as a Tumour Marker 

A recent study quantified CK18-NE levels in the sera of 201 patients with breast cancer 

and compared it with 82 healthy subjects using the M30-ELISA. The results showed that 

patients with primary cancer had higher levels of CK18-NE than healthy controls 

(p=0.0001). Patients with recurrent cancer had higher levels than healthy controls and 

patients with primary cancer (p<0.0001 and p=0.008, respectively). Patients with 
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oestrogen-receptor negative cancer had higher levels than those with oestrogen-receptor 

positive cancer. Also, in patients with recurrent cancer, there was some correlation 

between CK18-NE levels and number of involved organs and performance status (p=0.041 

and p=0.014, respectively) [131]. The results from this study showed that CK18-NE could 

discriminate between patients with breast cancer and healthy volunteers and also that 

elevated serum levels of CK18 may have some prognostic value in terms of number of 

involved organs and patient performance status. 

4.2.2 Cytokeratin 18 as a Biomarker of Treatment Response  

4.2.2.1 Breast Cancer 

Cytotoxic chemotherapy may induce apoptosis (and necrosis) in cancer cells and, 

therefore, measurements of circulating apoptotic products could be a simple, non-invasive 

way to monitor responses to treatment. A number of studies have been performed 

evaluating serum CK18 as a biomarker of treatment response in patients with cancer. 

Changes in the levels of circulating CK18-NE were analysed during the chemotherapy 

treatment with cyclophosphamide, epirubicin and 5-flourouracil or docetaxel of 32 patients 

with recurrent breast cancer [118]. Blood samples were collected on days 1, 3, and 6 of 

each treatment cycle. An index was calculated based on the pre-treatment level observed in 

each patient and the maximum levels observed during chemotherapy. All the patients had 

pre-treatment levels within the stated normal range (<200 U/L). The results showed that 

increases in serum CK18-NE of at least 50% were significantly associated with clinical 

response (p=0.0001). In 57% of responders, increases of 50% or more in the level of 

CK18-NE were seen, versus 5.6% of non-responders. This suggests that increases in the 

serum level of CK18-NE during chemotherapy may correlate with clinical response in 

patients with breast cancer.  

A recent study evaluated the use of CK18 as a biomarker for monitoring chemotherapy –

induced cell death in breast cancer [132]. In this study, both CK18-NE and total CK18 

were assessed using the ELISA and drug-induced release of CK18 examined from both 

breast carcinoma cells and tissue. Serum CK18 levels were then determined in 61 patients 

with breast cancer receiving either docetaxel or cyclophosphamide/epirubicin/5-

flourouracil (CEF) chemotherapy. The results confirmed that CK18-NE was released from 

cell and tissue cultures to the extracellular compartment. In terms of the serum studies, 

docetaxel was found to induce increased levels of CK18-NE, indicating that the primary 

mode of cell death was apoptosis. In contrast, CEF induced increased levels of total CK18, 
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indicating that the primary mode of cell death in these patients was necrosis. Also, the 

level of increase of total CK18 at 24hr post-treatment was correlated with clinical response 

to CEF chemotherapy (p<0.0001). The results from this study show that different 

chemotherapy regimens can result in different forms of cell death within the same tumour 

type and again that levels of CK18 may predict treatment outcomes. 

4.2.2.2 Colorectal Cancer 

Two studies have recently been published evaluating CK18 in patients with colorectal 

cancer. The first studied pre- and post-operative serum levels of CK18-NE in 31 patients 

[133]. It also assessed serum levels of CK18-NE in 10 patients receiving combination 

chemotherapy with oxaliplatin/capecitabine. The results showed that peri-operative levels 

of CK18-NE correlated significantly with tumour recurrence (p=0.016), but that increases 

in CK18-NE observed during chemotherapy did not correlate with response.  The second 

study measured pre- and post-operative plasma levels of CK18-NE and total CK18 in 49 

patients with colorectal cancer and correlated the levels with patient and tumour 

characteristics, and survival outcomes [134].  The results showed that peri-operative 

plasma levels of both CK18-NE and total CK18 were correlated with disease stage and 

were predictive of disease-free survival independent of tumour stage. Also the ratio of 

plasma CK18-NE/total CK18 which decreased with tumour progression, was also 

predictive of disease-free survival 

4.2.2.3 Prostate Cancer 

Changes in serum CK18 have also been evaluated in patients with prostate cancer. One 

study [120] looked at the pattern of increases of serum CK18-NE and total CK18 during 

cytotoxic chemotherapy treatment in 25 men with hormone-refractory prostate cancer and 

correlated the results with alterations in the level of prostate-specific antigen (PSA). 

Currently PSA is the most widely used serum biomarker in patients with prostate cancer to 

monitor response to treatment, and help detect early disease recurrence. The patients 

classified as PSA non-responders i.e. had a <50% decrease in PSA level during treatment, 

were also classified as CK18-NE non-responders (<2-fold increase of M30 U/L). Whereas 

the patients classified as PSA-responders (>90% decrease in PSA during treatment) were 

also classified as CK18-NE responders. They concluded that increases in total CK18 were 

not always paralleled by increases in CK18-NE; again signifying that apoptosis was not the 

dominating mode of cell death. This suggests that it may be important to monitor both 
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types of cell death (necrosis and apoptosis) during treatment, but that changes in serum 

CK18-NE levels may help to predict treatment responses in this group of patients. 

Another study looked at levels of CK18-NE and total CK18 in the sera of 82 patients with 

hormone refractory prostate cancer receiving palliative chemotherapy [135]. Serum 

samples were collected on days 1, 3, 5, and 7 of each cycle of treatment and pre- and post-

treatment levels were compared. The results showed that both docetaxel and vinorelbine 

caused significant increases in CK18-NE, usually between days 5 to 7 of each treatment, 

and that the amplitude of docetaxel-induced increases in CK18-NE was associated with 

baseline PSA and CK18 serum levels in this patient group suggesting a tumour origin. The 

conclusions from this study were that serum CK18-NE could be used to assess apoptosis in 

vivo and that the clinical efficacy of these chemotherapy treatments was due to induction of 

apoptosis. 

4.2.2.4 Lung Cancer 

Circulating CK18 levels have also been evaluated in patients with lung cancer. One study 

compared serum levels of CK18-NE between 60 patients with lung cancer, 22 patients with 

benign lung disease and 32 healthy volunteers. The results showed a statistically 

significant difference between these groups (p<0.001). They also looked at baseline serum 

levels of CK18-NE in terms of predictive power of survival and found that patients with 

CK18-NE levels >43.8 U/L had significantly shorter median survival (p=0.013; hazard 

ratio: 3.9) (95% CI=1.3–11.4). Changes in serum CK18-NE in 18 patients receiving 

palliative chemotherapy were then measured at baseline and then days 1and 2 of treatment. 

The results showed a four-fold increase in CK18-NE at 48 hours (p<0.001). The 

conclusions from this study were that measuring serum CK18-NE might be used as a novel 

biomarker for prediction of survival as well as for monitoring the efficiency of 

chemotherapy in lung cancer patients [136]. 

4.2.3 Cytokeratin 18 as a Biomarker in Early Clinical Trials 

Many of the newer targeted treatments are not myelotoxic and so traditional endpoints, 

such as bone marrow toxicity, used in early clinical trial evaluation may be less relevant. 

Therefore, greater emphasis will be placed on the measurement of biological responses as 

surrogate markers of activity for potential trial endpoints, and potentially allowing intra-

patient dose escalation to biologically active dose levels. Studies have been performed to 

evaluate the use of CK18 as a potential pharmacodynamic biomarker (or surrogate marker 
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of the effect that the drug is having on the body). One study validated the use of M30-

Apoptosense ELISA as a potential pharmacodynamic marker for evaluating the clinical 

efficacy of an antisense compound targeted to the X-linked inhibitor of apoptosis protein 

(XIAP) within a phase I trial [137]. Independent quality control data were achieved 

through the treatment of X-G4 cells (XIAP knockdown cells) with staurosporine (a potent 

protein kinase C inhibitor that induces apoptosis) and collection of media for analysis. The 

measurements on assay precision over time and between kits were within the 

manufacturer’s acceptance criteria of 10%. Also, the M30 antigen levels appeared to be 

stable in plasma stored -80°C for at least 6 months, and had a half-life of 80-100 hours in 

plasma stored at 37°C. The results demonstrated that CK18-NE appeared to be a relatively 

stable marker, which is desirable for a marker to be used as part of a clinical trial. Previous 

studies by our group have also demonstrated that disease stabilisation was associated with 

CK18-NE plasma levels in patients with advanced solid tumours treated in a phase 1 

clinical trial of the novel hydroxamate histone deacetylase inhibitor, belinostat [138].  

Therefore, measurement of circulating CK18 may be of use in assessing newer targeted 

anti-cancer treatments in clinical trials in addition to potentially acting as a real time 

marker of clinical response to cytotoxic therapy allowing for earlier adjustments of dosage 

or drug as required. 

My aims in this part of the project were to: 

1. Perform cell-line studies using colon and ovarian carcinoma cell lines treated with 

cisplatin to determine the mode of cell death in gastrointestinal and ovarian cancer cells 

receiving a cytotoxic stimulus, and to test the proof of principle using the M30-

Apoptosense and M65 ELISA. 

2. Measure serum and plasma CK18 levels from healthy volunteers to determine a normal 

range. 

3. Measure serum CK18 levels in patients with early colorectal cancer and compare these 

to patients with pre-malignant polyps and healthy volunteers. 

4. Measure plasma CK18 levels patients with advanced gastrointestinal malignancy (both 

pre-treatment and in patients receiving palliative chemotherapy) and in patients with 

ovarian cancer to determine the utility of CK18 as a potential biomarker for diagnosis, 

prognosis and assessing treatment outcomes in these patient groups. 
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4.3 Cell Line Studies  

4.3.1 Results 

My aim in this part of the project was to perform cell-line studies using colon and ovarian 

carcinoma cell lines treated with cisplatin to determine the mode of cell death in 

gastrointestinal and ovarian cancer cells receiving a cytotoxic stimulus, and to test the 

proof of principle using the M30-Apoptosense and M65 ELISA. HCT-116 p53+/+, HCT-

116 p53-/- colon carcinoma and A2780/CP70 ovarian carcinoma cells were grown in 

culture (see Materials and Methods section 2.2.9.3). The cells were then plated and treated 

with various concentrations of cisplatin, as described in the materials and methods section 

(see section 2.2.9.3). They were then harvested after 24 and 48 hours of cisplatin exposure. 

The total CK18 and CK18-NE were determined from the cell culture supernatant (see 

Table 4.1A & B, Figures 4.1A & B)) and the ratio of CK18-NE (M30) to total CK18 

(M65) calculated for the HCT-116 colon carcinoma cell lines (see Table 4.2). The CK18-

NE (M30) values were then determined for the cell pellet lysis (see Table 4.3 and Figure 

4.2) and total cell culture lysis (see Table 4.4 and Figure 4.3). The samples were run in 

duplicate and the values expressed are the mean of the two measurements (see Materials 

and Methods section 2.2.8.4-2.2.8.6 for definitions of cell culture supernatant, cell pellet 

lysis and total cell culture lysis). 
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cisplatin conc. µM 

  
cell line 0 1 5 25 50 

A2780/CP70 
 * * * * 49 U/L 

HCT-116 p53 +/+ 
 1232 U/L 1370 U/L 1606 U/L 2005 U/L 3143 U/L 

HCT-116 p53 -/- 
 811 U/L 648 U/L 610 U/L 651 U/L 2003 U/L 

 

Table 4.1 A. Table showing total CK18 (U/L) concentration in cell culture supernatant harvested at 
24hr from 2.5 x104 plates. This demonstrates increasing concentrations of total CK18 detected with 
increasing cisplatin concentrations in both HCT-116 cell lines. *level undetectable 

 

 

 

 

 

 
cisplatin conc. µM 

  
cell line 0 1 5 25 50 

A2780/CP70 
 * * * * * 

HCT-116 p53 +/+ 
 1294 U/L 1390 U/L 1234 U/L 1589 U/L 1671 U/L 

HCT-116 p53 -/- 
 615 U/L 615 U/L 451 U/L 576 U/L 1275 U/L 

 

Table 4.1 B. Table showing CK18-NE (U/L) concentration in cell culture supernatant harvested at 
24hr from 2.5 x104 plates. This demonstrates increasing concentrations of CK18-NE detected with 
increasing cisplatin concentrations in the HCT-116 p53 -/- cell line. *level undetectable. 
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CK18-NE and total CK18 values for HCT-116 p53 +/+ cell culture 
supernatant harvested after 24hr cisplatin 

 

 
 

Figures 4.1A & B. Total CK18 and CK18-NE levels in cell culture supernatant from HCT-116 
p53+/+ and HCT-116 p53-/- cells harvested 24 hours after cisplatin treatment. This 
demonstrates higher levels of apoptosis and cell death at lower cisplatin concentrations in 
the HCT-116 p53+/+, as would be expected given the central role of p53 in apoptosis. 
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M30:M65 ratio Cisplatin 
concentration (µM) HCT-116 +/+ cells HCT-116 -/- cells 

0 1 0.8 

1 1 1 

5 0.7 0.7 

25 0.7 0.8 

50 0.5 0.6 
 

Table 4.2. Table showing the ratio of M30 to M65 in colon carcinoma cell lines 

 

 

 

 

 

 

 
cisplatin conc. µM 

  
cell line 0 1 5 25 50 

A2780/CP70 
 55 U/L 65 U/L 50 U/L 91 U/L 170 U/L 

HCT-116 p53 +/+ 
 1021 U/L 931 U/L 947 U/L 1686 U/L 1698 U/L 

HCT-116 p53 -/- 
 583 U/L 475 U/L 538 U/L 830 U/L 1556 U/L 

 

Table 4.3. Table showing CK18-NE (U/L) concentrations in cell pellet lysate harvested at 24hr from 
2.5 x104 plates. This demonstrates increasing CK18-NE levels with increasing cisplatin 
concentrations especially in the colon carcinoma cell lines. 
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Figure 4.2. CK18-NE values from cell pellet lysis in both colon carcinoma and ovarian carcinoma 
cell lines harvested 24 hours after cisplatin treatment. This demonstrates very low levels of 
apoptosis occurring in the A2780/CP70 ovarian carcinoma cell lines even at high cisplatin 
concentrations. It also shows greater apoptosis in the HCT p53+/+ colorectal carcinoma cell lines 
compared to the HCT p53-/-, as would be expected, even in cells cultured without cisplatin in the 
medium. However as can be seen at higher cisplatin concentrations, there is convergence of the 
CK-18 NE values for both HCT-116 cells lines, demonstrating that the higher cisplatin 
concentration in the medium overcomes the inherent resistance to apoptosis within the p53 null 
cells. 

 

 

 

 
cisplatin conc. µM 

  
cell line 0 1 5 25 50 

A2780/CP70 
 * * * 171 U/L 167 U/L 

HCT-116 p53 +/+ 
 1670 U/L 1597 U/L 1555 U/L 1722 U/L 1790 U/L 

HCT-116 p53 -/- 
 999 U/L 832 U/L 823 U/L 1171 U/L 1530 U/L 

 

Table 4.4. CK18-NE (U/L) in total cell culture lysate harvested at 48hr from 1.25 x104 plate.*level 

undetectable 
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CK18-NE values from total cell culture lysis 
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Figure 4.3. CK18-NE levels in from total cell culture lysate in both colon carcinoma and ovarian 
carcinoma cells 48 hours after cisplatin treatment. This demonstrates very low levels of apoptosis 
occurring in the CP70 ovarian carcinoma cell lines even at high cisplatin concentrations. It also 
shows greater apoptosis in the HCT p53+/+ colorectal carcinoma cell lines compared to the HCT 
p53-/-, as would be expected given the central role of p53 in apoptosis. 
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4.3.2 Conclusions 

The results confirm that the M30-Apoptosense and M65-ELISAs measure both CK18-NE 

and total CK18 released from colon and ovarian carcinoma cells following incubation with 

cisplatin. In the culture supernatant from the HCT-116 cell lines, the low ratio of M30 to 

M65 of 0.5 and 0.6 (for the HCT-116 p53+/+ and HCT-116 p53-/- cells respectively) at the 

maximum cisplatin concentration of 50 µM, indicates that the primary mode of cell death 

is necrosis, but the correspondingly high ratio of M30 to M65 of 1.0 at decreased cisplatin 

concentrations shows the primary mode of cell death is apoptosis (see table 4.2). 

In the HCT-116 colorectal carcinoma cell line, there were increased levels of apoptosis 

demonstrated by higher concentrations of CK18-NE in the cell culture supernatant (see 

Table 4.1B, Figure 4.1), cell pellet lysis (see Table 4.3, Figure 4.2) and total cell culture 

lysis (see Table 4.4, Figure 4.3) in the p53 wild-type cells compared to the null cells, as 

was to be expected given the central role of p53 in cell apoptosis. The results also 

demonstrated greater apoptosis in the HCT p53+/+ colorectal carcinoma cell lines 

compared to the HCT p53-/- in cells cultured without cisplatin in the medium (see Figure 

4.2). However as can be seen at higher cisplatin concentrations, there is convergence of the 

CK-18 NE values for both HCT-116 cells lines, demonstrating that the higher cisplatin 

concentration in the medium overcomes the inherent resistance to apoptosis within the p53 

null cells. In the A2780/CP70 ovarian carcinoma cell line, the inherent cisplatin resistance 

was apparent with low levels of cell death observed at cisplatin concentrations lower than 

50 µM (see Figures 4.2 & 4.3). 

The results from the cell line studies confirm that the M30 and M65 ELISAs detect CK 18 

released from cancer cells undergoing cytotoxic treatment and can give some indications as 

to the primary mode of cell death.  

4.4 Cancer versus normal control samples 

4.4.1 Stability Studies 

The next aim was, therefore, to study CK 18 levels in human plasma from healthy 

volunteers, patients with gastrointestinal and ovarian cancer and patients with advanced 

gastrointestinal cancer receiving palliative chemotherapy to determine the utility of CK18 

as a potential diagnostic and prognostic biomarker. As a prelude to this, I evaluated some 
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of the characteristics of the M30 and M65 epitopes in spiked serum samples to assess the 

issue of stability, and different storage conditions on site. 

Experiments were initially performed using the M30-Apoptosense ELISA to check the 

stability of CK18-NE in blood samples stored under various conditions: in samples with a 

delay in processing, and in samples that had been frozen and thawed. A 20ml venous blood 

sample was taken from a healthy volunteer. This was spiked with a sample of pooled high 

CK18-NE positive signal serum from a patient sample (supplied by Dr Plumb). The effects 

of a delay in processing the whole blood sample stored at room temperature were 

examined (sample processed at 0, 2, 4, 6, and 24 hours). The effects of storing plasma 

extracted from the sample at room temperature, 4ºC, -20ºC, and -70ºC for 24 hours prior to 

CK18-NE determination were examined. Finally the effect of 4 freeze-thaw cycles on the 

CK18-NE levels was also studied.  

EFFECT VARIABLE 

Delay in processing (whole blood) 0, 2, 4, 6, 24hr 

Sample storage temperature (plasma) Room temperature, 4ºC, -20ºC, and -70ºC 

Freeze-thaw cycles Up to 4 freeze-thaw cycles 
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Figures 4.4 A-C Results of plasma stability studies. (A) Shows the variation in plasma CK18-NE 

during a delay in sample processing from 2 to 24hr. The samples were stored at room temperature. 

The values varied by 8% from a minimum of 162.7 U/L to a maximum of 182.5 U/L. (B) shows the 

variation in plasma CK18-NE from up to 4 freeze/thaw cycles. The samples were stored at -70°C 

prior to analysis. The values varied by 11% from a maximum of 161.3 U/L to a minimum of 143.6 

U/L. (C) shows the variation in plasma CK18-NE in samples stored at a range of temperatures prior 

to analysis. The values varied by 11 % from a maximum of 151.5 U/L to a minimum of 134.5 U/L.   
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The results showed that CK18-NE appears to be quite stable as there was little variation 

(up to 11%) in the levels detected no matter how long the blood sample was kept prior to 

processing, what temperature the plasma was stored at and how many freeze-thaw cycles 

the plasma had undergone (Figure 4.4 A-C). This variation was very close to the assay 

precision of 10% stated within the manufacturer’s acceptance criteria. 

Experiments were then performed to see how stable CK18 was in human plasma samples 

that may not have been frozen immediately following separation of plasma from the whole 

blood sample. This was in an attempt to gauge if delays in processing (as will occur in 

every day clinical practice) affect CK18 concentrations. A whole blood sample was taken 

following written informed consent from a patient with advanced gastrointestinal 

adenocarcinoma and the plasma separated as described above. This was then aliquoted into 

Eppendorf tubes. One tube was frozen immediately at -70ºC to act as a baseline sample. 

The remaining tubes were stored at room temperature and frozen after 1, 2, 3, and 4 week 

time periods. The plasma samples were then analysed at the same time in duplicate. 

The results showed that for both CK18-NE and total CK18 there was a steady decline in 

concentration over the time period. For CK18-NE this fell from a baseline level of 382.2 

U/L, to week 1 - 354.6 U/L, week 2 – 303.8 U/L, week 3 – 255 U/L, week 4 – 200.2 U/L. 

This represents a 48% decrease from baseline. For total CK18 this fell from a baseline 

level of 957.6 U/L, to week 1 – 791.5 U/L, week 2 – 619.4 U/L, week 3 – 563.2 U/L, week 

4 – 495.2 U/L. This represents a 51% decrease from baseline (see Figure 4.5).  

The conclusion to be drawn from this part of the study is that there is a steady decline in 

plasma CK18 levels in plasma stored at room temp that can be detected even after one 

week, and so with clinical samples destined for CK18 assessment the aim should be to 

have the plasma separated and frozen within 24 hours of the blood sample being taken, 

which is eminently achievable, and so within the normal operation of the clinic we did not 

envisage variations in CK18 due to ex vivo handling issues to influence our interpretation 

of the data. 

A recent study was published which examined methods to increase the robustness of these 

assays for routine clinical use [139]. Matched plasma and serum samples were collected 

from 31 lung cancer patients and 18 controls. The conclusions drawn were that a greater 

than 4-hour delay in processing lead to a significant increase in CK18-NE (p<0.0001) 

which was minimized by incubating the sample on ice. Both serum and plasma were fairly 

resistant to processing variations and that the values between serum and plasma correlated 
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well, although CK18-NE tended to be lower in serum (p<0.0005). Prolonged storage (-80 

°C) led to an increase in CK18-NE of 12% at 6 months and 34% at 1 year).The study also 

reported less variation between duplicate measurements made using serum and concluded 

that this was the preferred medium as it was more resistant to variations in sampling 

handling. 

Further experiments were then performed on blood samples taken from healthy volunteers 

to see if there was much intra-individual variation in plasma CK18 levels from day-to-day 

and also if there was any diurnal variation or effects from fasting. Six blood samples were 

taken from the healthy volunteers at various time points 10am, 2pm, and 4pm and after 

fasting overnight. The samples were run in duplicate and the results for each time point 

averaged. 

The results showed that there was not a large amount of intra-individual variation with the 

average CK18-NE ranging from 94.7 to 153.6 U/L and total CK18 ranging from 285.3 to 

384.1 U/L (see Figure 4.6). 
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Figure 4.5. Demonstrates decrease in CK18-NE and total CK18 concentrations in plasma samples 
stored at room temperature for up to 4 weeks prior to analysis. The results show that for both 
CK18-NE and total CK18 there is a steady decline in concentration over the time period. For CK18-
NE this falls from a baseline level of 382.2 U/L, to week 1 - 354.6 U/L, week 2 – 303.8 U/L, week 3 
– 255 U/L, week 4 – 200.2 U/L, representing a 48% decrease from baseline. For total CK18 this 
falls from a baseline level of 957.6 U/L, to week 1 – 791.5 U/L, week 2 – 619.4 U/L, week 3 – 563.2 
U/L, week 4 – 495.2 U/L representing a 51% decrease from baseline 
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Figure 4.6. Bar chart summarising intra-individual variation in CK18-NE and total CK18 plasma 
levels  
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4.4.2 Plasma Cytokeratin 18 Levels in Healthy Volunteers 

The CK18-NE values within 100 normal healthy controls were then assessed using the 

M30 Apoptosense ELISA (the manufacturers of this assay quote the normal range ≤180 

U/L). Within the population studied there was a wide range of values, from 51 to 849 U/L, 

with a median of 121 U/L (see Figure 4.7). The values were independent of age (p=0.80) 

and gender (p=0.21). The range in females was 51 – 849 U/L and that in males was 79 – 

616 U/L). The total soluble CK18 levels were also determined for the 100 normal healthy 

volunteers using the M65 ELISA and as for the CK18-NE, there was a wide range in total 

soluble CK18 levels (161 - 899 U/L), with a median of 312 U/L. As for CK18-NE, the 

range in females was greater compared to the males (167-889 U/L vs. 161-630 U/L). Again 

these values were independent of age (p=0.45) and gender (p=0.06). 
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Figure 4.7.CK18-Asp396 (CK18-NE) and CK18 plasma levels in healthy volunteers. Histograms 
showing the range of plasma levels of CK18-Asp396 (CK18-NE) and CK18 in the healthy 
volunteers and the frequency of their occurrence. Plasma CK18-Asp396 (CK18-NE) ranges from 
51-849 U/L with a median value of 121 U/L and CK18 ranges from 161-899 U/L with a median 
value of 312 U/L. 
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4.4.3 Serum Cytokeratin 18 in Early Colorectal Cancer  

Following on from the studies looking at plasma CK18 levels in healthy volunteers, it was 

decided to examine CK 18 levels in patients with early colorectal cancer to see if CK18 

could be used as a potential diagnostic marker in this group of patients. Serum rather than 

plasma was used for this part of the study as this had been previously collected as part of a 

clinical trial and compared with serum from the healthy volunteers; however the M30-

Apoptosense and M65 ELISAs can both be used with either serum or plasma. 

The study included both patients undergoing colonoscopy examination for investigation of 

gastrointestinal symptoms and patients with operable colorectal adenocarcinoma. All 

patients gave written informed consent and blood samples were taken before the 

procedures, either colonoscopy or bowel resection, were performed. Limited clinical 

outcome data was collected for both patient groups. 

The three groups consisted of 23 patients with normal colonoscopies, 13 patients whose 

colonoscopies showed polyps or pre-malignant lesions, and 23 patients with colorectal 

adenocarcinoma on colonoscopy or colorectal adenocarcinoma awaiting bowel resection. 

The results showed there was no significant difference in the median serum CK18-NE or 

total CK18 between the 3 different groups. However, as the groups were quite small it was 

decided to measure the serum CK18-NE and total CK18 levels in the blood samples 

collected from the 100 healthy volunteers and compare this to patients with pre-malignant 

polyps shown on colonoscopy, and the group of patients with early colorectal cancer. 

When the median serum CK18-NE and total CK18 were compared between the healthy 

volunteers and the patients with pre-malignant polyps, the CK18-NE level was 

significantly higher in patients with polyps (p=0.043), but there was no statistically 

significant relationship for total CK18 (p=0.214). However, when median serum CK18-NE 

and total CK18 levels were compared between the healthy volunteers and the patients with 

early colorectal cancer, both CK18-NE and total CK18 were significantly higher in 

patients with early colorectal cancer (p=0.044, and p=0.005, for CK18-NE and total CK18, 

respectively) {Figure 4.8}. 

The results are interesting as they suggest that serum CK18-NE levels may differentiate 

between patients with pre-malignant polyps and healthy volunteers, and that both serum 

CK-NE and total CK18 may differentiate between healthy volunteers and patients with 
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early colorectal cancer, and thus could potentially be used as an early diagnostic 

biomarker. However, the sample sizes used for this part of the study were very small and it 

was not possible to expand the study as the samples had been collected as part of an earlier 

clinical trial. Also, there was only very limited clinical data collected on the groups of 

patients, so, it is difficult to draw any definite conclusions. It is also likely that a diagnostic 

test based on these results would have low sensitivity and specificity due to a substantial 

overlap in the distribution of the values.
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Figure 4.8. Box plots showing the CK18-NE on the left and total CK18 serum levels in the healthy 
volunteers, patients with pre-malignant polyps on colonoscopy and patients with early colorectal 
cancer.  
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4.4.4 Plasma Cytokeratin 18 Levels in Advanced Gastrointestinal 

Cancer Patients 

The CK18-NE and CK18 levels were then assessed in the 73 patients with advanced 

gastrointestinal adenocarcinoma, including 18 patients with oesophageal adenocarcinoma, 

19 patients with gastric adenocarcinoma, and 36 patients with adenocarcinoma of the colon 

or rectum (see Table 4.5). Thirty-two of the patients with gastric or oesophageal 

adenocarcinoma were treated with combination chemotherapy comprising epirubicin, 

cisplatin, and 5-FU (ECF), 3 were treated with a combination of cisplatin and 5-FU (CF), 

and 2 with carboplatin and 5-FU (CarboF). Thirty-three of the patients with colorectal 

cancer were treated with xeloda (capecitabine) monotherapy, and 3 with infusional 5-FU 

and folinic acid (modified “de Gramont” regimen).  

Receiver operating characteristics (ROC) curves for CK18-NE and CK18 distinguished 

between patients with advanced gastrointestinal malignancy and healthy volunteers (Figure 

4.10). Pooled data for all 73 patients demonstrated that CK18-NE has a sensitivity of 27% 

at a specificity of 90% in distinguishing patients with advanced gastrointestinal 

malignancy and healthy volunteers. Similarly, CK18 has a sensitivity of 71% at a 

specificity of 90% in distinguishing between patients with advanced gastrointestinal 

malignancy and healthy volunteers. These results suggest that CK18 may be a better 

biomarker than CK18-NE in distinguishing between plasma from patients with cancer and 

healthy volunteers, but that both markers may have limited use as a diagnostic marker. 

The median CK18- NE value was 207 U/L (range 35 - 2535 U/L) and the median CK18 

value was 717 U/L (range 206 - 7747 U/L). When these results were compared to the 

healthy volunteers, the pre-treatment plasma levels of both CK18- NE and CK18 were 

significantly higher in the plasma samples of patients with gastrointestinal adenocarcinoma 

compared with plasma samples from healthy volunteers (see Figure 4.9 A & B). These 

significantly higher plasma levels of both CK18- NE and CK18 were also demonstrated 

when plasma samples from the different tumour types were compared with plasma samples 

from the healthy volunteers (p=0.015 for patients with gastric cancer and p <0.001 for 

patients with oesophageal and colorectal cancer) (See Table 4.6). 
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Table 4.5. Table summarising patient demographic data. * ECF = epirubicin/cisplatin/5-fluorouracil, 
CF = cisplatin/5-fluorouracil, CarboF = carboplatin/5-fluorouracil 

Characteristic Number of patients 

Age                             Median – 68 years 

Range – 24-88 years 

73 

Gender                        Male 

Female 

41 

32 

Primary Tumour Site – Colorectal 

Oesophageal 

Gastric 

36 

18 

19 

Disease Extent            Locally Advanced 

Metastatic 

Unknown/Adjuvant 

11 

60 

2 

Chemotherapy            Capecitabine 

Modified de Gramont 

ECF* 

CF* 

CarboF* 

33 

3 

32 

3 

2 

Chemotherapy Cycles Median – 4 cycles 

 Range – 1-12 cycles 

 

Clinical Outcome        Partial Response 

Stable Disease 

Disease progression 

Non evaluable & missing 

16 

25 

27 

5 
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Figure 4.9 A & B. Plasma CK18-Asp396 (CK18-NE) and CK18 levels in patients versus healthy 
volunteers, and in different tumour types versus healthy volunteers. A, Box plot demonstrating 
significantly higher plasma CK18- NE and CK18 levels in patients with advanced gastrointestinal 
adenocarcinomas compared to healthy volunteers (p <0.001). B, Box plot demonstrating 
significantly higher baseline CK18- NE and CK18 plasma levels in patients with advanced 
oesophageal (p<0.001, for CK18- NE and CK18), colorectal (p<0.001 for CK18- NE and CK18) and 
gastric (p=0.015, p<0.001, for CK18- NE and CK18, respectively) cancer compared to healthy 
volunteers. U/L is defined according to the manufacturer’s brochure where 1 unit equals 1.24pmol. 
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Figure 4.10. ROC curves for CK18-NE and CK18 distinguishing between patients with advanced 
gastrointestinal malignancy and healthy volunteers 
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 CK18-NE 
median value & 

range (U/L) 

CK18 median 
value & range 

(U/L) 

p-value for 
CK18-NE 
between 
tumour & 
healthy 

volunteer 

p-value for 
CK18- between 

tumour & 
healthy 

volunteer 

Healthy 
volunteers 

121 (51-849) 312 (161-899) - - 

Gastric cancer 183 (35-1569) 746 (206-3313) p=0.015 p<0.001 

Oesophageal 
cancer 

204 (86-2535) 672 (266-7747) p<0.001 p<0.001 

Colorectal 
cancer 

213 (81-1936) 780 (267-3482) p<0.001 p<0.001 

Table 4.6 Table summarising the median and range of CK18-NE and CK18 plasma levels in 
healthy volunteers and cancer patients 
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4.4.5 Plasma Cytokeratin 18 Levels in Advanced Gastrointestinal 

Cancer Patients receiving Palliative Chemotherapy 

4.4.5.1 Analysis of Plasma Cytokeratin 18 at Baseline Prior to Chemotherapy  

The plasma CK18 levels from the 73 patients with locally advanced or metastatic 

gastrointestinal adenocarcinomas receiving palliative chemotherapy were then analysed at 

various time-points throughout their chemotherapy treatment (see Materials and Methods 

section 2.2.2.2). Plasma was not available for all time points during treatment (70.5% of 

samples were from day 1 of each chemotherapy cycle); however, baseline pre-treatment 

plasma samples were collected from all patients undergoing chemotherapy. 

Objective tumour response data was available for 68 out of the 73 patients, and included 16 

patients with partial responses, 25 patients with stable disease and 25 patients with 

progressive disease. A further 2 patients had rapid clinical disease progression which 

occurred before radiological disease assessment and were deemed to have progressive 

disease. Five others were non-evaluable as 4 had missing scan data and 1 patient was 

receiving adjuvant treatment. Patients’ case notes were also reviewed to document the 

timing and grade of epithelial toxicity observed during chemotherapy using standard 

clinical methods. This was then correlated with changes in plasma total CK18 and CK18-

NE. As can be seen from just plotting out the values of CK18-NE and total CK18 at 

various time-points, patients with clinical responses tended to have higher peaks in plasma 

CK18-NE, total CK18 or both observed during treatment, than in patients with progressive 

disease for all tumour types (see Figure 4.11). 
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Figure 4.11 A. Patient with oesophageal cancer and partial response documented on CT 
scanning. ‘C’, corresponds to the chemotherapy cycle number and ‘d’ to the day within that cycle. 
This demonstrates a peak in plasma total CK18 at Cycle 4 day 1 of treatment. 
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Figure 4.11 B. Patient with gastric cancer and partial response documented on CT scanning, C’, 
corresponds to the chemotherapy cycle number and ‘d’ to the day within that cycle. This 
demonstrates peaks in both total CK18 and CK18-NE at cycle 1 day 3 of treatment. 
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Figure 4.11 C. Figure demonstrating the variation in total CK18 in two patients with oesophageal 
cancer during palliative chemotherapy. Note the peak in CK18 in the patient whose disease 
responded to chemotherapy compared to the patient whose disease progressed during treatment. 
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Baseline plasma CK18-NE and total CK18 levels were significantly higher in the patients 

with metastatic disease compared with those with locally advanced disease (p=0.014 and 

p=0.011, respectively). Also, the CK18-NE and total CK18 median plasma levels at 

baseline were higher (289 U/L vs. 194 U/L for CK18-NE, and 1021 U/L vs. 618 U/L for 

total CK18) in patients who subsequently developed progressive disease during treatment 

(n=27) compared to patients who subsequently developed partial response or stable disease 

(n=41), although was only statistically significant for total CK18 (p=0.125, p=0.009, for 

CK18-NE and total CK18, respectively, (see Figure 4.12). There is an overall sensitivity of 

22% at a specificity of 90% for CK18-NE and an overall sensitivity of 19% at a specificity 

of 90% for CK18 baseline plasma levels in distinguishing between patients who will 

subsequently progress through chemotherapy and those who will have partial 

response/stable disease with treatment. 

Carcinoembryonic antigen (CEA) is produced within the normal developing fetus, but only 

in minute amounts by normal adult cells. It was first described in 1965 and has become the 

most widely used biomarker in gastrointestinal malignancy [60], but due to its lack of 

sensitivity in the early stages of disease it is unsuitable for population screening. Its main 

use is in the follow-up of patients after surgical resection with the aim of earlier detection 

of recurrence, and in monitoring responses to palliative chemotherapy in patients with 

advanced colorectal cancer [19] In 32 of the 36 patients with colorectal cancer, serial 

measurements of serum CEA were taken at each cycle of chemotherapy and the fall in 

serum CEA correlated with clinical outcomes. The results demonstrate that fall in CEA 

level was associated with response category (p=0.03) with the major difference between 

the patients achieving a partial response and those who developed progressive disease 

(p=0.008). Therefore, in patients with colorectal cancer baseline plasma total CK18 may 

give an earlier indication of which patients are more likely to respond to palliative 

chemotherapy than the crucial fall in serum CEA observed with each cycle of treatment. 

Various patient demographic factors, including age, gender and baseline disease extent 

(either locally advanced or metastatic disease at commencement of chemotherapy) were 

then analysed with treatment outcome to chemotherapy, but no correlation was found 

[p=0.514, p=0.149, and p=0.934, for age, gender and disease extent, respectively]. 

Similarly, there was no significant association between baseline plasma CK18-NE and 

total CK18 levels and patient’s age (p=0.345, p=0.112 for CK18-NE and total CK18, 

respectively) and gender (p=0.519, p=0.257 for CK18-NE and total CK18, respectively). 

In addition, a straightforward visual inspection of the data revealed no obvious association 

between the timing of epithelial toxicity experienced and the occurrence of peak values of 
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plasma total CK18 and CK18-NE, although the sampling for CK18 measurement was 

within the first 2 days of each cycle of treatment while epithelial toxicity tended to occur 

mid-way through treatment cycles, although epithelial damage at the cellular level in 

normal tissues may well occur at the same time as in the cancer but become clinically 

apparent later during the treatment cycle. 

4.4.5.2 Analysis of Plasma Cytokeratin 18 Levels as a Pharmacodynamic 
Marker of Response 

In order to evaluate plasma CK18 as a potential pharmacodynamic marker of response to 

palliative chemotherapy in patients with advanced gastrointestinal adenocarcinomas further 

analyses were performed on the data. The data were first examined to see if there was any 

correlation between patients who achieve a decrease in plasma CK18-NE and total CK18 

between days 1 and 2 of the first cycle of chemotherapy and between day 1 levels of the 

first 2 cycles of treatment, and clinical outcome (partial response/disease stabilisation 

versus progressive disease), whilst accounting for the variability in the replicate CK18-NE 

and total CK18 levels (see Materials & Methods section 2.2.8.7). Sixty-two point five per 

cent of patients, who achieved a partial response with treatment, had a decrease in CK18-

NE compared to 29.6% of patients who developed progressive disease and 48% of patients 

with stable disease. For plasma total CK18 the equivalent figures for patients achieving a 

decrease were 62.5% for partial responders, 52% for patients with stable disease and 

44.4% for patients with progressive disease. There was no statistically significant 

association between response category and decrease in either CK18-NE or total CK18 

plasma levels (p=0.051 and p=0.347, respectively), although the CK18-NE was verging on 

significance.  

The plasma levels of CK18-NE and CK18 were examined for each patient and the 

maximum level (or peak level) observed during treatment, defined as the maximum level 

that had been observed for each patient during any cycle of treatment, was compared with 

tumour response. Peak levels of CK18 were found to be associated with tumour response, 

but peak levels of CK18-NE did not reach significance (p = 0.01, and p = 0.07, 

respectively (Figure 4.13 A & B). 

Comparison of the different chemotherapy regimens (ECF and capecitabine) and tumour 

response is confounded by comparing responses between the two different tumour groups 

(upper gastrointestinal cancer and colorectal cancer). Chi-squared test analysis of the 

relationship between the chemotherapy regimens and response (partial response/stable 
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disease vs. progressive disease) found no relationship between chemotherapy regimen and 

tumour response. Also, from the analysis the association between baseline plasma CK18-

NE, total CK18 and response does not appear to be greatly affected when the 

chemotherapy regimen is allowed for. 

In summary, plasma levels of CK18 at baseline are significantly higher in patients with 

progressive disease compared to patients with partial response/stable disease (Figure 4.12), 

and peak plasma levels of CK18 observed during treatment are associated with treatment 

response. Differences in plasma CK18-NE and CK18 levels do not significantly associate 

with the patient’s age, gender or the extent of disease at baseline.  
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Figures 4.12. Baseline plasma levels of CK18-NE and total CK18 correlated with treatment 
outcome. Box plot demonstrating baseline CK18-NE and total CK18 plasma levels in patients who 
developed progressive disease through chemotherapy compared to those who achieved a partial 
response/stable disease. The total CK18 level is significantly higher in patients with progressive 
disease (p=0.009, Mann-Whitney), [N.E. stands for non-evaluable treatment outcome]. 



Lucy Scott, 2009  Chapter 4 129 

4.4.5.3 Validation Study 

A validation study was then carried out to see if the baseline plasma levels of CK18-NE 

and total CK18 showed a reproducible correlation with treatment outcome in 53 patients 

with advanced gastrointestinal malignancy. This included 25 patients with colorectal 

cancer, 15 with gastric cancer and 13 with oesophageal cancer. Twenty-five of the patients 

with gastric or oesophageal adenocarcinoma were treated with combination chemotherapy 

comprising epirubicin, cisplatin, and 5-FU (ECF), 1 was treated with a combination of 

cisplatin and 5-FU (CF), 1 with carboplatin and 5-FU (CarboF) and 1 with epirubicin, 

carboplatin, and 5-FU (ECarboF). Fifteen of the patients with colorectal cancer were 

treated with xeloda (capecitabine) monotherapy, 2 with infusional 5-FU and folinic acid 

(modified “de Gramont” regimen), 5 with combination chemotherapy comprising 

capecitabine and oxaliplatin, 1 with oxaliplatin and 5-FU (FOLFOX) and 2 with 

capecitabine, oxaliplatin and cetuximab.  

Objective tumour response data was available for all of the 53 patients, and included 8 

patients with partial responses, 24 patients with stable disease and 12 patients with 

progressive disease. A further 9 patients had rapid clinical disease progression which 

occurred before radiological disease assessment and were deemed to have progressive 

disease (see Table 4.7).  

The validation group showed overlapping range and similar median values for CK18-NE 

and CK18 as the original test set (median 158 U/L, range 56 – 18786 U/L for CK18-NE 

and median 660 U/L and range 235 – 19702 U/L for CK18). In the validation group, 

baseline plasma levels of both CK18-NE and CK18 were again significantly associated 

with treatment outcomes (partial response/stable disease vs. disease progression: p = 0.028, 

p = 0.003, respectively).  
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Table 4.7. Table summarising patient demographic data for the validation study. * XELOX = 
capecitabine/oxaliplatin, FOLFOX = oxaliplatin/5-fluorouracil,  ECF = epirubicin/cisplatin/5-fluorouracil, CF = 
cisplatin/5-fluorouracil, CarboF = carboplatin/5-fluorouracil, ECarboF = epirubicin/carboplatin/5-fluorouracil 

Characteristic Number of patients 

Age                             Median – 70 years 

Range – 41-86 years 

53 

Gender                        Male 

Female 

31 

22 

Primary Tumour Site – Colorectal 

Oesophageal 

Gastric 

25 

11 

17 

Disease Extent            Locally Advanced 

Metastatic 

14 

39 

Chemotherapy            Capecitabine 

Modified de Gramont 

XELOX* 

FOLFOX* 

XELOX/Cetuximab* 

ECF* 

CF* 

CarboF* 

ECarboF 

15 

2 

5 

1 

2 

26 

1 

1 

1 

Clinical Outcome        Partial Response 

Stable Disease 

Disease progression 

8 

24 

21 
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Figures 4.13 A & B. Peak plasma levels of CK18-NE (M30) and total CK18 (M65) correlated with 
clinical response (partial response/stable disease vs. progressive disease). Box plot demonstrating 
peak plasma levels of CK18-NE and total CK18 in patients who developed progressive disease 
through chemotherapy compared to those who achieved a partial response/stable disease. The 
peak CK18 level is significantly associated with response (p=0.01). 
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4.4.6 Conclusions 

This is the first report, to our knowledge, documenting that the mean plasma CK18 level is 

high in patients with advanced gastrointestinal malignancy compared to healthy volunteers. 

The groups were not age-matched, but levels of CK18 do not correlate with age. It is of 

note that the range of both plasma CK18-NE and CK18 was wide in the healthy volunteers. 

Alcohol intake is known to increase caspase-cleaved CK18 values in serum as alcohol may 

cause apoptosis of liver cells [140]. Other studies have also shown that viral illness, 

chronic hepatitis and sepsis will increase levels of caspase-cleaved CK18 detected by the 

M30 Apoptosense ELISA [122, 123, 141]. Thus the wide variation in caspase-cleaved 

CK18 values in healthy volunteers could potentially be explained by intercurrent viral 

illness or alcohol consumption. A short health questionnaire had been completed by all the 

healthy volunteers participating in the study and details were recorded regarding alcohol 

intake. Using a cut-off of > or < 10 units of alcohol consumption per week, the effect of 

average weekly alcohol intake on CK18-NE and total CK18 plasma levels in the 100 

volunteers was assessed using the Mann-Whitney test. There was no significant association 

found between alcohol consumption and either CK18-NE or total CK18 (p=0.905, 

p=0.980, for CK18-NE and total CK18, respectively). However, this may be due to under-

reporting of alcohol intake on the health questionnaires. 

The group of healthy volunteers was not followed up long-term and so it is unknown 

whether they subsequently developed any pathology to account for the variation in levels 

observed. As there is a significant overlap in plasma CK18-NE levels between the healthy 

volunteers and cancer patients it may be challenging to draw conclusions in individual 

cases.  

After our sample collection from healthy volunteers had been completed, it was reported 

that elevated serum levels of caspase-cleaved CK18 may be an indicator of myocardial 

damage [128]. However, healthy volunteers were ineligible if they had significant past or 

current illnesses. Although it was feasible that the patients with gastrointestinal cancer 

could have developed myocardial damage during the course of the study, these 

chemotherapy regimens are used with caution in patients with significant cardiac co-

morbidities and we believe that it is unlikely that myocardial damage accounts for the 

levels of plasma CK18 observed. 

The results suggest that the plasma CK18 level prior to commencing chemotherapy may 

predict outcome with treatment in patients with advanced gastrointestinal adenocarcinoma. 
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The patients with comparatively higher baseline levels of plasma total CK18 tended to 

have higher levels of disease progression through chemotherapy compared to patients with 

lower baseline levels. This may be a reflection of the extent of disease present and 

potential for access to the circulatory system, as patients with metastatic disease had higher 

baseline levels of total CK18 and CK18-NE than those with locally advanced disease. 

However, when baseline disease extent as determined by CT scanning was correlated with 

treatment outcome a statistically significant association was not found. This suggests that 

baseline plasma CK18-NE and total CK18 may not just give an indication of tumour 

burden, but also the amount of cell death that is occurring, whether this is as a result of 

chemotherapy or part of the ongoing disease process. 

In conclusion, the results from this study suggest that measuring baseline and peak plasma 

levels of CK18 in patients receiving palliative chemotherapy for advanced gastrointestinal 

malignancy may help predict individual outcomes to therapy. However, a larger 

prospective clinical study is required to validate these results. 

4.5 Plasma Cytokeratin 18 in Ovarian Cancer  

4.5.1 Background 

As discussed previously, ovarian cancer is the fourth most common cancer in the UK, after 

breast, colorectal and lung cancer, and there is a need to develop detection methods to 

improve the sensitivity and specificity of early-stage ovarian cancer detection.  

The SCOTROC (Scottish Randomised Trial in Ovarian Cancer) 1 trial was a randomized 

phase III study designed to compare efficacy, tolerability, and quality of life outcomes of 

docetaxel-carboplatin with paclitaxel-carboplatin as initial chemotherapy for stage Ic-IV 

ovarian and/or peritoneal cancers [74]. Between 1998 and 2000, 1077 women from 83 

international centres were randomized to the study. Following debulking surgery, 539 were 

randomly assigned docetaxel-carboplatin, and 538 were assigned to the paclitaxel-

carboplatin arm. The two treatment arms were well-matched with respect to patient 

demographics and disease characteristics. The results from the trial showed that the two 

treatment arms were equivalent in terms of progression-free survival and response. Blood 

samples were collected from patients after surgery, but prior to commencing chemotherapy 

(baseline samples) and at relapse (relapse samples). Plasma was separated according to 

protocol and stored at -70°C. CA-125 levels were also checked in all patients receiving 

chemotherapy and the CA-125 response assessed and classified. 
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The plasma samples had been stored at this centre and so were available for CK18 

assessment. Initially the samples were separated into two separate cohorts, those that had 

been collected from patients in Glasgow and those that had been collected at other centres 

involved in the study. This was because sample handling had been stringent at the Glasgow 

sites due to the proximity to the trial centre, however, other samples had been sent some 

distance and it was felt that it had to be ensured that the median CK18-NE and total CK18 

values did not vary greatly between the cohorts simply due to differences in sample 

handling.  

The aims for this part of the study were:  

1. To assess if there was a difference between baseline plasma levels of CK18 in patients 

with ovarian cancer and healthy volunteers, i.e. a diagnostic marker  

2. To assess if plasma CK18 was a stable epitope that could be examined in samples from 

patients with ovarian cancer that had been subject to variations in sample handling, 

previous freeze-thaw cycles and prolonged storage at -70°C. 

3. To assess if post-surgery, but pre-chemotherapy plasma levels of CK18 (baseline levels) 

in ovarian cancer patients could predict for clinical outcomes in terms of progression-free 

and overall survival, and also, CA-125 and radiological responses, i.e. a prognostic marker. 

4. To assess if plasma CK18 levels at the time of first disease relapse in ovarian cancer 

correlated with clinical outcome.  

4.5.2 Results 

4.5.2.1. Comparison between Plasma Cytokeratin 18 levels in Healthy 
Volunteers and Baseline Levels in Patients with Ovarian Cancer 

The baseline CK18 plasma levels were compared between the 170 patients with ovarian 

cancer and the 100 healthy volunteers. The results showed that the total CK18 plasma 

levels were significantly higher in the patients compared to the healthy volunteers 

(p<0.001) [see Figure 4.14], however, CK18-NE did not show a significant association 

(p=0.418). 
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Figure 4.14. Box plots showing CK18-NE and total CK18 plasma levels between healthy 
volunteers and ovarian cancer patients. The total CK18 (M65) levels are significantly greater in 
patients compared to the healthy volunteers, p<0.001 



Lucy Scott, 2009  Chapter 4 136 

4.5.2.2. Correlation between Baseline Plasma Cytokeratin 18 levels in 
Patients with Ovarian Cancer and Clinical Outcomes 

There were 70 baseline plasma samples available within the Glasgow cohort for CK18 

assessment. The results showed that although there was not a significant correlation 

between CK18-NE, total CK18 and progression-free survival (p=0.064 and p=0.34, 

respectively), there was a statistically significant association between baseline plasma 

CK18-NE, total CK18 and overall survival (p=0.046 and p=0.003, respectively). There 

was no association between baseline CK18 plasma levels and either CA-125 response or 

clinical/radiological responses. 

The non-Glasgow cohort comprised 100 randomly selected plasma samples. The results for 

this cohort showed that there was a statistically significant association between baseline 

plasma CK18-NE, total CK18 and progression-free survival (p<0.001 for both CK18-NE 

and total CK18), and overall survival (p<0.001 for both CK18-NE and total CK18). This 

difference in association with progression-free survival within the two groups of patients 

was surprising, but one potential explanation is that the differences observed could be due 

to variances in sample handling between the two patient populations. As for the Glasgow 

cohort, there was no association between baseline CK18 plasma levels and either CA-125 

response or clinical/radiological responses in this cohort. When the median values for 

CK18-NE and total CK18 between the two cohorts were compared there were no 

significant differences between them, and so for further statistical analyses the two cohorts 

were combined into one group of 170 patients. 

On the basis of these results a multivariate Cox regression analysis was then carried out 

looking at baseline CK18-NE and total CK18 plasma levels in relation to residual disease 

after surgery, FIGO stage and ECOG performance status in comparison to overall survival. 

Residual disease was classified into three categories; none or microscopic, macroscopic 

<2cm, and macroscopic >2cm. The FIGO stages were classified into three groups; Ic and 

II, III, and IV. The ECOG performance status was also classified into three groups; 0, 1, 

and 2. The results showed that baseline plasma CK18-NE was not independently 

statistically significant (p=0.432), however residual disease after surgery and ECOG 

performance status were both significant (p=0.005, p=0.015, respectively) [see Table 4.8]. 

The results for total CK18 were along similar lines, as baseline plasma total CK18 was not 

independently statistically significant (p=0.083), however residual disease after surgery 

and ECOG performance status were both significant (p=0.017, p=0.014, respectively) [see 

Table 4.9]. The CK18 levels were then correlated with each of the factors studied in the 
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multivariate analysis using the Kruskall-Wallis test (see Materials & Methods section 

2.2.8.7). Both the baseline CK18-NE and total CK18 plasma levels were significantly 

associated with residual disease (p<0.001), FIGO stage (p=0.003, p<0.001, for CK18-NE 

and total CK18, respectively), and the total CK18 plasma level was also significantly 

associated with performance status (p=0.002) [see Table 4.10, Figure 4.15]. There was no 

association between baseline plasma levels of either CK18-NE or total CK18, and 

histology of the primary ovarian tumour (serous, mucinous, clear cell, endometrioid, 

anaplastic, papillary and other) which may suggest that the plasma CK18 levels measured 

are a feature of tumour vascularisation and access to the peripheral circulation rather than 

the histological type. 
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95.0% CI for Exp(B) 
 
  

B 
  

SE 
  

Wald 
  

df 
  

Sig. 
  

Exp(B) 
  Lower Upper 

CK18-NE (logged) 
0.127 0.162 0.617 1 0.432 1.136 0.827 1.560 

Residual disease 
after surgery  - -  10.750 2 0.005  -  -  - 

Residual disease 
after surgery (1) -1.291 0.421 9.388 1 0.002 0.275 0.120 0.628 

Residual disease 
after surgery (2) -0.621 0.293 4.498 1 0.034 0.538 0.303 0.954 

FIGO stage 
 -  - 1.884 2 0.390  - -   - 

FIGO stage (1) 
-0.575 0.487 1.393 1 0.238 0.563 0.217 1.462 

FIGO stage (2) 
-0.378 0.313 1.455 1 0.228 0.685 0.371 1.266 

ECOG 
performance 
status 

 -  - 8.361 2 0.015 -   - -  

ECOG 
performance 
status (1) 

-0.208 0.420 0.244 1 0.621 0.813 0.357 1.851 

ECOG 
performance 
status (2) 

0.607 0.332 3.339 1 0.068 1.835 0.957 3.518 

 

Table 4.8. Multivariate Cox Regression analysis of plasma CK18-NE and residual disease after 
surgery, FIGO stage and ECOG performance status in patients with ovarian cancer in comparison 
to overall survival. The results showed that baseline plasma CK18-NE was not independently 
statistically significant (p=0.432), however residual disease after surgery and ECOG performance 
status were both significant (p=0.005, p=0.015, respectively). 
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95.0% CI for Exp(B) 

 
  

B 
  

SE 
  

Wald 
  

df 
  

Sig. 
  

Exp(B) 
  Lower Upper 

Total CK18 (logged) 
0.344 0.198 2.998 1 0.083 1.410 0.956 2.080 

Residual disease after 
surgery  - -  8.196 2 0.017  - -  -  

Residual disease after 
surgery (1) -1.174 0.428 7.529 1 0.006 0.309 0.134 0.715 

Residual disease after 
surgery (2) -0.515 0.300 2.952 1 0.086 0.597 0.332 1.075 

FIGO stage 
 - -  0.636 2 0.727  -  - -  

FIGO stage (1) 
-0.329 0.516 0.406 1 0.524 0.720 0.262 1.978 

FIGO stage (2) 
-0.245 0.325 0.565 1 0.452 0.783 0.414 1.481 

ECOG performance 
status  - -  8.526 2 0.014  - -  -  

ECOG performance 
status (1) -0.122 0.424 0.083 1 0.773 0.885 0.386 2.030 

ECOG performance 
status (2) 0.658 0.329 4.005 1 0.045 1.931 1.014 3.678 

 

Table 4.9. Multivariate Cox Regression analysis of plasma total CK18 and residual disease after 
surgery, FIGO stage and ECOG performance status in patients with ovarian cancer in comparison 
to overall suvival. The results showed that total CK18 was not independently statistically significant 
(p=0.083), however residual disease after surgery and ECOG performance status were both 
significant (p=0.017, p=0.014, respectively). 
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  N p-value 
None or microscopic 45 
Macroscopic <2cm 63 mean CK18-

NE (logged) 
Macroscopic >= 2cm 62 

< 0.001 

None or microscopic 45 
Macroscopic <2cm 63 

Mean total 
CK18 

(logged) Macroscopic >= 2cm 63 
< 0.001 

 
  N p-value 

Ic and II 32 
III 114 mean CK18-

NE (logged) 
IV 24 

0.003 

Ic and II 32 
III 114 

Mean total 
CK18 

(logged) IV 25 
< 0.001 

 
  N p-value 

0 53 
1 86 mean CK18-

NE (logged) 
2 31 

0.168 

0 53 
1 86 

Mean total 
CK18 

(logged) 2 31 
0.002 

 

Table 4.10. Kruskal-Wallis Test for a) residual disease after surgery, b) FIGO stage, and c) ECOG 
performance status in patients with ovarian cancer. The CK18-NE and total CK18 plasma levels 
were then correlated with each of the factors looked at in the multivariate analysis. Both the 
baseline CK18-NE and total CK18 plasma levels were significantly associated with residual 
disease (p<0.001), FIGO stage (p=0.003, p<0.001, for CK18-NE and total CK18, respectively) and 
the total CK18 plasma level was also significantly associated with performance status (p=0.002). 
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Figure 4.15. Box plots showing baseline CK18-NE and total CK18 plasma levels in relation to A) 
residual disease after surgery, B) FIGO stage, C) ECOG performance status, D) histology of 
primary ovarian tumour. The baseline CK18-NE (M30) and total CK18 (M65) plasma levels were 
significantly associated with residual disease (p<0.001), FIGO stage (p=0.003, p<0.001, for CK18-
NE and total CK18, respectively) and the total CK18 plasma level was also significantly associated 
with ECOG performance status (p=0.002). 
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4.5.2.3. Correlation between Baseline and Relapse Plasma Cytokeratin 18 
levels in Patients with Ovarian Cancer and Absolute Values of CA-125 

It was then decided to look to see if there was any association between plasma CK18 levels 

and absolute values of CA-125 taken at baseline and at first relapse. This analysis was 

carried out as CA-125 is currently the most widely used biomarker in ovarian cancer to 

monitor treatment responses, early detection of recurrence, and also to assist in diagnosis, 

although it is not sufficiently sensitive or specific to be used alone or in screening 

programmes. Spearman’s Rank Correlation was used to see if there was an association 

between baseline and relapse values of plasma CK18-NE and total CK18, and CA-125 (see 

Table 4.11).  

The results showed that there was a statistically significant correlation between the 

baseline CK18 plasma levels and absolute CA-125 levels in the 169 patients with absolute 

CA-125 levels available (p<0.001 for CK18-NE and total CK18). They also showed a 

statistically significant correlation between the CK18 plasma levels and absolute CA-125 

levels in 52 patients at first relapse (p=0.013, and p=0.001 for CK18-NE and total CK18, 

respectively). 
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 n Correlation 
Coeff (ρ) p-value 

mean CK18-NE 169 0.323 < 0.001 
mean total CK18 169 0.439 < 0.001 
 

 n Correlation 
Coeff (ρ) p-value 

mean CK18-NE 52 0.346 0.013 
mean total CK18 52 0.452 0.001 

 

Table 4.11. Spearman’s Rank Correlation a) baseline plasma CK18-NE, total CK18 and CA-125, 
b) first relapse plasma CK18-NE, total CK18 and CA-125 in patients with ovarian cancer. The 
results showed that there was a statistically significant correlation between CK18 plasma levels 
and absolute CA-125 levels in the 169 patients at baseline (p<0.001 for CK18-NE and total CK18). 
They also showed a statistically significant correlation between the CK18 plasma levels and 
absolute CA-125 levels in 52 patients at first relapse (p=0.013, and p=0.001 for CK18-NE and total 
CK18, respectively). 
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4.5.2.4. Correlation between Plasma Cytokeratin 18 Levels at First Disease 
Relapse in Patients with Ovarian Cancer and Clinical Outcomes 

Based on the results suggesting that there was a correlation between baseline plasma 

CK18-NE and total CK18 levels and survival outcomes, it was decided to look at matched 

baseline plasma CK18-NE and total CK18 levels with samples taken at first relapse. A 

small cohort of 54 matched relapse plasma samples was assessed initially to see if there 

was an association between the CK18 plasma levels at relapse and survival outcomes. To 

begin with, the CK18-NE and total CK18 levels at relapse were compared with the 

matched baseline samples to see if there was any significant difference between them, but 

this was not the case, as neither showed a statistically significant difference (p=0.968 and 

p=0.416, for CK18-NE and total CK18, respectively). When the relapse plasma levels 

were then correlated with survival outcomes, there was a statistically significant 

association between plasma CK18-NE, total CK18 and progression-free survival (p=0.019 

and p=0.044, respectively). However, there was no association with overall survival 

(p=0.308 and p=0.995, respectively). As for the baseline sample cohort, there was no 

association between relapse CK18 plasma levels and either CA-125 response or 

clinical/radiological responses in this cohort. 

On the basis of the above results, it was decided not to expand the relapse sample cohort 

any further as the results were not statistically significant and it was probable that the 

CK18 plasma levels would not come out as a significant independent factor on multivariate 

analysis. 

4.5.3 Conclusions 

In summary, the results from this part of the study are interesting as they show that plasma 

total CK18 is significantly higher in patients with ovarian cancer than healthy volunteers 

(p<0.001). When the baseline levels were correlated with survival outcome measures, both 

CK18-NE and plasma CK18 were significantly associated with overall survival within 

both cohorts (Glasgow and non-Glasgow) of patients studied, however within the larger 

non-Glasgow cohort of 100 patients, the baseline plasma levels of CK18-NE and total 

CK18 were also significantly associated with progression-free survival (p<0.001). The 

difference in the results between the two patient cohorts may potentially be due to sample 

handling differences. In a further small cohort of 54 Glasgow patients additional plasma 

samples taken at relapse showed a significant association between plasma CK18-NE, total 
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CK18 and progression-free survival (p=0.019, p=0.044, respectively), but not overall 

survival. 

When a multivariate analysis was carried out, the baseline CK18-NE and total CK18 were 

significantly associated with residual disease after surgery and FIGO stage. The plasma 

CK18 levels were then studied with CA-125, and a significant correlation was found both 

with the baseline samples (p=<0.001, for both CK18-NE and total CK18) and the samples 

taken at relapse (p=0.013, p=0.001 for CK18-NE and total CK18 respectively). Taken with 

the results of the multivariate analysis this would tend to suggest that CK18 may be acting 

as an additional marker of tumour burden. 

In conclusion, measuring plasma CK18 levels in patients with ovarian cancer may help to 

give some indication of who will have better survival outcomes. However, in this case, the 

plasma CK18 level may be a reflection of the disease burden. 
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Chapter 5 - Serum Biomarker Discovery using 
Proteomic Approaches 
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5.1 Background 

The incidence of oesophageal cancer has increased over the past 30 years for reasons that 

are unclear. About 7,800 new cases are diagnosed in the UK each year, making it the ninth 

commonest cancer (Cancer Research UK National Statistics). It tends to affect more males 

than females. Two thirds of patients are diagnosed when their disease is locally advanced 

(inoperable) or metastatic. In these patients the prognosis is dismal with 5-year survival 

rates of 8%. At present population screening programmes are not carried out for 

oesophageal cancer, as this would entail an invasive procedure (endoscopy and biopsy) 

with inherent risks. So, it would be extremely useful if there was a simple blood test 

capable of detecting early oesophageal cancer that could be performed as an initial 

screening tool, which may then pinpoint which patients should proceed to endoscopy and 

biopsy. 

Mass spectrometry (MS) is an analytical technique for determining the composition of 

samples or molecules. It can also be used to discover the composition of chemical 

compounds and peptides. The main benefit of using MS for potential biomarker discovery 

is that it is high-throughput and thus ideal for screening large numbers of clinical samples. 

MS/MS techniques which provide amino acid sequence data are becoming increasingly 

more widely used because of the unambiguous identification of proteins and the fact that 

they can give information about protein structure. 

The general principle behind the technology involves ionising chemical compounds to 

generate charged species, which are accelerated along a vacuum tube. The three 

commonest ionisation methods used for analysis of proteins and peptides include 

electrospray ionisation (ESI), matrix-assisted laser desorption/ionisation (MALDI) and 

surface-enhanced laser desorption and ionisation (SELDI) [25]. All of these ionisation 

methods can detect within the dynamic range, which is required for the analysis of 

biological samples.  

ESI creates an ion gas cloud in the source directly from the sample solution containing 

highly charged droplets. The droplets are then electrostatically driven through air, heat, 

solvents, nitrogen gas and other drying agents so that the surface charges are deposited 

onto the proteins and peptides. This process causes less fragmentation of molecules of 

interest than MALDI and SELDI, but is less suited to high-throughput applications. 
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MALDI and SELDI both involve spotting of samples onto a solid surface or probe, in the 

case of SELDI; this is called a ProteinChip (BioRad/Vermillion). MALDI requires samples 

to be mixed with an energy-absorbing matrix before being applied a passive stainless steel 

probe. The analyte is then embedded in a solid state matrix crystal on the probe. The 

energy absorbing matrix then converts laser energy to thermal energy which facilitates the 

desorption/ionisation process. SELDI uses ProteinChips that selectively bind different 

proteins and peptides of interest using a defined chemical chromographic characteristic 

(i.e. hydrophobic, ion exchange, or metal binding surfaces). Consequently in SELDI, the 

sample-presenting surface plays an active role in the extraction, presentation, structural 

modification, amplification and/or ionisation of a given sample. 

In both MALDI and SELDI the sample is then put in a vacuum chamber and the crystal is 

hit with a laser, causing the proteins to desorb and ionise, producing ionised protein 

molecules in the gas phase. The ions are accelerated down a flight tube and a detector at 

the end of the tube records the time of flight. A deflector is also used to mask the peaks due 

to the matrix ions and reduce the risk of detector saturation. MALDI and SELDI are often 

coupled to time-of-flight (TOF) analyzers, which calculate mass from the time taken for 

ions to travel from the source to the detector when the same kinetic energy is applied, 

using the formula KE = 1/2 mv2 (where v = d/t). Given the time of flight, the known length 

of the tube and the voltage applied (V); the mass-to-charge ratio (m/z value) of the protein 

can be derived.  M/z values are directly related to the mass of the corresponding molecules 

(mass relation to charge is 1, therefore m/z equals 1). 

 The data obtained following analysis of the serum proteome is challenging to analyse due 

to the complexity and dynamic range. Bioinformatic tools can help with this, but the 

analysis of the serum proteome is reliant on a couple of presuppositions; first that the 

proteins or peptides shed into the serum, through either angiogenesis or invasion of 

surrounding tissues and vasculature, are representative of the organs they come from, and 

second that they are specific to the disease process affecting the organ.  

The spectra generated using these approaches do not give details of the identity of the 

individual proteins or their abundance; rather they give a pattern that is associated with 

different organs and disease states. Mass spectra generated from a training set of samples 

are analysed by pattern-recognition algorithms to identify diagnostic signature patterns 

comprising a subset of key mass-to-charge (m/z) species and their relative intensities. Mass 

spectra from unknown samples are then subsequently classified by the similarity to the 

pattern found in the mass spectra used in the training set.  
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 In choosing the type of sample to be studied using mass spectrometry approaches like 

SELDI, serum is obviously an attractive option as it is readily attainable with minimal 

discomfort to the patient. However, due to the large numbers of proteins and peptides that 

are expressed within it, rapid high resolution techniques are required to unravel the 

complexities and identify biomarkers that will be significant and reproducible when 

applied to larger patient populations. Also, serum contains proteolytic enzymes, which may 

make reproducibility of results difficult. The types of samples to be studied also depends in 

part on the disease process of interest; examining the proteomic profiles of lung and brain 

tissue sections from patients with non-small cell lung and brain cancer has been shown to 

provide prognostic information [33], and urine samples may also show differential 

proteomic profiles reflecting various disease states affecting the renal tract. One of the 

benefits of using urine is that it is not subject to the same degree of proteolysis as serum 

[34].  

In choosing which approach to use for serum biomarker discovery, we decided to use 

SELDI-MS initially to determine if there was a difference in the serum proteome between 

patients with oesophageal adenocarcinoma and healthy volunteers, because when the 

project was conceived there had been several interesting studies published using SELDI as 

a platform for novel biomarker discovery, with some success in distinguishing patients 

with breast, lung, prostate and ovarian cancers from normal controls. There was no data 

published describing the use of SELDI in upper gastrointestinal cancers, and so we decided 

to see if we could discover novel biomarkers that would help aid earlier diagnosis in this 

particular patient group who have notoriously poor treatment outcomes, usually as a result 

of advanced disease at presentation. The attraction with SELDI was that as a high-

throughput technology it would theoretically allow for rapid population screening using 

easily accessible material, such as serum or plasma. 

There are limitations associated with the SELDI technique. Retrospective analysis of 

published studies has highlighted the fact that many of the supposed differences between 

sample groups could in fact be due to artefact (as discussed in the next section). Therefore, 

it is crucial to have quality assurance and control specifications, as well as detailed sample 

handling and processing protocols. The differentially expressed peptides are not identified; 

the samples are classified into sample groups on the basis of unique proteomic patterns, so 

it is especially important to ensure that any differences observed are real and not due to 

experimental artefact.  
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Also, the stringent procedures required to reduce the risk of experimental artefact may 

potentially make everyday use of SELDI in the clinical setting difficult. Therefore, we also 

decided to examine samples collected using alternative methods (gel-based technologies) 

as a way to validate the results from the SELDI, and to establish whether there were other 

markers of tumour response within serum samples that were easily detected using less 

stringent sample handling and preparation protocols than the SELDI and, therefore, may be 

more applicable to everyday clinical practice. 

5.2 Studies using the SELDI-MS technique 

SELDI technology has been used to determine patterns of protein expression in a number 

of different types of cancer including prostate [142], ovarian [143, 144], breast [146] [See 

Table 5.1], lung [147], pancreatic [149], colorectal [150], gastric [151], nasopharyngeal 

[152], and hepatocellular cancer [153] and also different biological fluids including serum 

[144], plasma [155], urine [156], human tears and nipple aspirate [158]. However, the 

majority of the studies evaluating protein expression in cancer have involved the use of 

serum or plasma. The theory behind this approach is that each organ and tissue is perfused 

by blood, which can add to, modify, or remove circulating proteins and peptides. 

Therefore, the serum proteome may reflect abnormalities or pathological states of organs 

and tissues. Non-malignant conditions have also been studied including Alzheimer’s 

disease [159] and renal allograft rejection [34].  

Early studies using SELDI looked at development of biomarkers in malignant disease. One 

study aimed to identify molecular markers associated with the pathologic progression of 

prostate cancer using laser capture microdissection and tissue proteomics [160]. Fifteen 

hundred samples including matched normal, prostatic intraepithelial neoplasia and frankly 

malignant cells were microdissected and analysed. The results showed that there was a 

specific and reproducible protein phenotype associated with each cell type and that the 

analysis would be feasible in the clinical setting. 

An influential paper describing the use of serum proteomics to distinguish between 

pathological states in the clinical setting was published in The Lancet in 2002 [144]. The 

paper described the generation of serum proteomic patterns using SELDI mass 

spectrometry to find a unique signature that would differentiate women with ovarian 

cancer from benign disease controls. An initial training set was derived from 50 controls 

and 50 women affected with ovarian cancer. A unique proteomic pattern was then 

determined by an iterative searching algorithm and used to classify an independent masked 
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set. This method correctly identified all of the 50 cancer samples, including 18 early stage 

tumours, and 63 out of 66 control samples were also identified. However, there were 

concerns expressed by the group that the mass spectrometers used were low resolution and 

not designed for routine clinical use. Also, the results were not reproducible over time and 

tended to vary between machines [144]. 

In June 2003 doubts were first raised regarding the results of the Petricoin study when 

biostatisticians reanalysed a data set that had been posted on-line the previous year. 

Although they also identified many differences between the serum proteomic patterns of 

the normal controls and the patients with cancer, on re-analysis these seemed to be 

experimental artefact. Their major concern was that most of the differences observed were 

in proteins with m/z values of < 500, which may be less reliable as they tend to include 

values generated by matrix ions, experimental noise or errors in measurement [161]. 

The published results were also reanalysed by another group. They again found that the 

results were not reproducible, which was concerning as the reproducibility of the 

proteomic patterns is critical to the success of a potential screening programme, especially 

as this approach does not provide an explanation to support the diagnosis. They felt that the 

mass calibration and experimental protocols had varied across the experiments.  Their 

conclusions were that many of the differences between the sample groups described in the 

original experiments could be due to sample processing artefact and not due to true 

changes within the serum proteome [162].  

They produced guidelines to ensure reproducible results.  Suggestions included using some 

form of baseline correlation (or subtraction) as the baselines of different spectra could be 

variable between different instruments, and also on the same instrument on different days 

(the baseline signal is due to a mixture of chemical noise from the matrix molecules and 

electronic noise and tends to be proportionally larger in the low m/z region). They also 

suggested that standard protocols should be drawn up to eliminate technological 

differences from being interpreted as biological differences. Careful experimental design 

was a necessity, e.g. by randomising the samples, to ensure that factors like differences in 

machine calibration, chip quality and variations in the reagents did not cause artefact. Also, 

the results should be carefully calibrated and revalidated after every change in protocol and 

samples tested using both versions of the protocol to ensure that the results are confirmed. 

Following the paper published in the Lancet, Petricoin and his group further refined their 

methods [163]. They analysed a total of 248 serum samples from both healthy women and 
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preoperative samples from women diagnosed with epithelial ovarian cancer. The samples 

were prepared with a Biomek 2000 robotic liquid handler and a control reference sample 

was randomly applied to one spot on each array as a quality control for process integrity, 

sample preparation and mass spectrometry function. The samples were then analysed using 

a standard protocol on both a high-resolution hybrid quadropole time-of-flight mass 

spectrometer (QSTAR pulsar I, Applied Biosystems, Inc., Framingham, MA, USA) and 

the lower resolution Protein Biological System II time-of-flight mass spectrometer (PBS-

II, Biorad/Vermillion). 

The results showed that the mass spectra from the QqTOF MS led to proteomic patterns 

with a higher level of sensitivity and specificity than those from the PBS-II. The QqTOF 

MS showed 100% sensitivity and specificity in identifying samples from unaffected 

patients to those suffering from ovarian cancer. This included the correct identification of 

serum samples taken from all 18 stage I ovarian cancer patients. They excluded spectra 

from the analysis, which were felt to be of poor quality. Their conclusions were that high-

resolution MS yielded superior classification patterns; the main source of error occurred 

during the acquisition of the mass spectra, which could be reduced by quality assurance 

and control specifications; and that the distinct proteomic patterns discovered required 

validation in a larger scale clinical trial. 

Following the study by Petricoin and Liotta in 2002, a new proteomic test for early 

detection of ovarian cancer known as OvaCheck™ was developed. This test measures 

breakdown products of proteins in blood serum and looks for patterns that may indicate 

disease. However, several groups have reanalysed the data from the study and there are 

now doubts about the potential reliability of OvaCheck™. Professional bodies, such as the 

Society of Gynecologic Oncologists, feel that further clinical validation is required, before 

this test becomes available to the general public. OvaCheck™ is currently undergoing 

clinical trials in preparation for FDA regulatory review (Correlogic Systems 

www.correlogic.com).
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MARKER CANCER SENSITIVITY SPECIFICITY 

PSA Prostate 65% 35% 

SELDI multi-marker profile Prostate 83% 97% 

CA15.3 Breast 23% 69% 

SELDI multi-marker profile Breast 93% 91% 

CA-125 Ovarian 35% 98% 

SELDI multi-marker profile Ovarian 82% 92% 

Table 5.1. Table summarizing sensitivity and specificity of the SELDI multi-marker profiles 
compared to the currently available tumour markers in prostate, breast and ovarian cancer 
(BioRad/Vermillion).   
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5.2.1 Is identification of potential biomarkers crucial? 

The confidence in a biomarker is greatly increased if it makes biological sense. It also 

allows results to be confirmed by other methods including enzyme-linked Immunosorbant 

Assay (ELISA) antibody depletion of antigen and Western Blotting. Identification of the 

biomarkers also gives an insight to the disease on a molecular level and may allow for 

mapping out of protein interaction pathways and possible development of treatments to a 

specific molecular target. 

In a recent study serum proteomic expressions were analysed on 153 patients with invasive 

epithelial ovarian cancer, 42 with other ovarian cancers, 166 with benign pelvic masses 

and 142 healthy women [164]. The SELDI technique was used for protein expression 

profiling. Three potential biomarkers were discovered, two of which were down-regulated 

in the cancer group and one was up-regulated. The potential biomarkers were purified and 

identified; the down-regulated peptides were apolipoprotein A1 and a truncated form of 

transthyretin, and the up-regulated peptide was a cleavage fragment of inter-alpha-trypsin 

inhibitor heavy chain H4. The identified biomarkers were identified as acute phase 

reactants suggesting they are by-products of the host response to the tumour.  

The discriminatory power of the markers was confirmed with samples from five centres 

through both cross- and independent validation. The biomarkers were then combined with 

CA-125 in a multivariate predictive model and were found to significantly improve on the 

sensitivity of CA-125 alone (74% vs. 65%) whilst maintaining a relatively high specificity 

(97%). Two of the markers were also evaluated using immunoassays and provided 

preliminary analysis of their tumour site specificity. The levels of apolipoprotein A1 were 

also studied in breast and colon cancer patients and were found to be unaffected; the levels 

of transthyretin were not altered in the serum of breast or prostate cancer patients. This 

study concluded that the identified biomarkers demonstrated the potential to improve the 

detection of early stage ovarian cancer.  

A further study using SELDI-MS examined 94 urine samples, including samples from 

patients with transitional cell carcinoma (TCC) of the bladder, patients with urogenital 

disease and healthy donors. Multiple protein changes were reproducibly detected in the 

TCC group, including 5 potential biomarkers. One of these markers was also present in the 

cancer cells and identified as α-defensin. Defensins are a small family of peptides with 

antimicrobial, cytotoxic and anti-tumour activities [165, 166].When the protein clusters 

and potential biomarkers were combined in analysis, the sensitivity of detecting TCC was 
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87% with a specificity of 66%. Compared with voided urine or bladder-washing cytology, 

the combined analysis provided a sensitivity of 78% for detecting low-grade TCC versus 

33% for cytology. The study concluded that this proteomic approach could potentially 

result in the development of a sensitive urinary TCC diagnostic test [156]. 

Patients with high-risk breast cancer, defined by standard prognostic factors, currently 

have a 30-50% chance of developing metastatic disease despite receiving adjuvant 

chemotherapy. Therefore, a study was performed looking at early post-operative serum 

from 81 women with high-risk breast cancer using SELDI-MS. The aim was to determine 

if proteomic profile differences could help predict relapse, thus allowing  better tailoring of 

adjuvant treatment to individuals [167]. The results showed that there were protein peak 

differences that varied according to clinical outcome. This allowed a multi-protein model 

to be built which correctly predicted the outcome in 83% of the patients. The 5-year 

metastasis-free survival was 83% vs. 22% (p=0.0001) in the good prognosis vs. the poor 

prognosis group. Components of the multi-protein model were identified as haptoglobin, 

C3a complement fraction, transferrin, apolipoprotein C1 and apolipoprotein A1. The 

conclusion was that the post-operative serum protein pattern might have important 

prognostic value in high-risk early breast cancer, although these results have not been 

validated by a prospective trial. 

Again the markers identified by this study were well-known host-response proteins part of 

a complex systemic response. This is not really surprising as the blood samples were taken 

in the early post-operative period, but these proteins may still have a role to play in tumour 

metastasis due to increased release of growth factors, angiogenesis and potential negative 

effects on immune surveillance. Haptoglobin is mainly synthesised by the liver and has 

been shown to be up regulated in solid tumours [168-170]. It has a role in angiogenesis, 

tissue remodelling and cell migration [171]. Transferrin signalling possibly has a role in 

increasing the metastatic potential of solid tumours and promoting angiogenesis  [172, 

173]. Post-translational modification of abundant host proteins may also occur by specific 

tumour enzyme processes. 

A further study looking for novel biomarkers for breast cancer compared sera from 152 

breast cancer patients and compared it with 129 healthy controls using SELDI-TOF MS 

[174]. There were ten peak clusters that were found to discriminate between the cases and 

controls. These clusters were identified as, inter-alpha-trypsin inhibitor heavy chain 4 

fragments, a fibrinogen fragment and a tentative identification of C3a des-arginine 

anaphylatoxin.  
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Without the identification of the host-response proteins the understanding that the 

biomarkers were all components of this pathway would not have been appreciated. It also 

provides some evidence of a biological basis as to why the levels of these particular 

proteins should vary between patients with cancer and healthy volunteers. 

5.3 Results 

5.3.1 SELDI-MS analysis of human serum samples-pilot study 

My aims in this part of the study were:   

i. To perform a pilot study to discover if there were differences in the serum 

proteome between healthy volunteers and patients with oesophageal 

adenocarcinoma. 

ii. If there were differences between the serum proteome to then perform a 30 healthy 

volunteers x 30 patients with oesophageal adenocarcinoma study to validate the 

results. 

iii. To identify any potential biomarkers discovered. 

Initially a pilot study was carried out comparing 8 serum samples from patients with 

metastatic oesophageal cancer and 8 healthy control samples. Serum was chosen rather 

than plasma as the clotting factors in plasma tend to interact with the sample binding 

surface. The sample collection procedure was stringent to try and reduce the risk of artefact 

(See Materials and Methods 2.2.2.4). All samples were processed by a standard operating 

procedure (SOP) and serum fractionation was carried out prior to sample analysis to reduce 

the likelihood that abundant proteins such as albumin would interfere with the binding of 

potential biomarkers. The serum fractionation was performed via anion exchange 

chromatography by stepwise pH gradient elution according to established protocol. 

Fractionation was carried out as more abundant proteins, like albumin, can block the 

binding of less abundant proteins (potential biomarkers) to the ProteinChip array. 

However, as potential biomarkers may be bound to albumin, both fractionated and 

unfractionated samples were examined. A 1-D gel was run and stained with Coomassie 

blue to validate the fractionation process (see Figures 5.1 . A & B). 

  



Lucy Scott, 2009  Chapter 5 158 

 

A

20000 40000 60000 80000

20000 40000 60000 80000

4

3

0

10

20

30

20000 40000 60000 80000

3976.9+H6464.8+H

6663.4+H

8973.3+H

23570.6+H

-1

0

1

2

20000 40000 60000 80000

0

2

4

6

20000 40000 60000 80000

6662.4+H

9243.9+H

28139.7+H

66783.7+H

0

2

4

20000 40000 60000 80000

6660.2+H

13922.2+H

28128.7+H

66612.2+H

0

2

4

20000 40000 60000 80000

6657.2+H
12638.6+H

66588.5+H

-1

0

1

2

3

20000 40000 60000 80000

F1

F2

F3

F4

F5

F6

C   UF         F1  F2  F3  F4  F5  F6            F1  F2  F3   F4 F5  F6

C   = Molecular weight marker
UF = Unfractionated
F1  = Fraction 1, pH9
F2  = Fraction 2, pH7
F3  = Fraction 3, pH5
F4  = Fraction 4, pH4
F5  = Fraction 5, pH3
F6  = Fraction 6, organic

B

Normal Tumour

200

116

66

21

55

36

14
6

17283.7+H
28087.9+H

 

Figure 5.1. A) Gel stained with Coomassie blue demonstrating representative sample fraction of 

human serum. B) Mass spectra demonstrating sample fractionation with albumin peak in fractions 

3 & 4 (characteristic peak at mass = 66kDa)  
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Optimisation experiments were then carried out with both fractionated and unfractionated 

samples on CM10 (cationic exchange surface) and IMAC30 (metal ion binding surface) 

ProteinChip arrays. These demonstrated capture of different protein subsets on the two 

different chip surfaces (see Figure 5.2). 

The pilot study revealed that a novel biomarker m/z ~ 4 kDa was downregulated (p=0.012) 

in 6 out of the 8 oesophageal tumour samples in fraction 1, pH9, on the CM10 ProteinChip 

(see Figure 5.3).  
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Figure 5.3. Representative spectra from the pilot study of 8 fractionated serum samples from 

patients with advanced oesophageal cancer and 8 healthy volunteers showing down-regulation of a 

~4kDa peptide in 6 out of the 8 oesophageal cancer samples in fraction 1, pH9, on the CM10 

ProteinChip surface (p=0.012). 
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5.3.2 SELDI-MS analysis of human serum samples-30x30 study

In order to further investigate the results from the pilot study, a further study was 

performed using the serum from 30 patients with advanced oesophageal cancer and 30 

healthy volunteers. The serum samples were fractionated as previously described and 

fraction 1 was examined using both the IMAC and CM10 ProteinChip arrays according to 

the conditions established using the pilot study. 

The results from this larger validation study also confirmed down-regulation of the ~4kDa 

protein/peptide within fraction 1 of the serum from patients with advanced oesophageal 

cancer compared to the healthy volunteers on the CM10 ProteinChip array (p<0.0001).  

In an attempt to identify the potential biomarker, the unfractionated and fractionated serum 

samples were run on 1-D gels with the aim of obtaining a concentrated sample of the 

unknown protein of interest that could then be sent for further analysis (and identification) 

using mass spectrometry (MALDI-MS) or alternative methods (See Figure 5.5). 
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Figure 5.4. Representative spectra from the 30x30 healthy volunteers versus patients with 
advanced oesophageal cancer. This again confirms down-regulation of ~4kDa peptide in fraction 1, 
pH9, on the CM10 ProteinChip surface (p<0.0001). 
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Figure 5.5. Flow chart summarising the various approaches attempted to identify the unknown 
peptide/protein down-regulated in the serum of patients with advanced oesophageal 
adenocarcinoma compared to the healthy volunteers. Low and high protein loads are loosely 
defined as 10 µL of fraction 1 and 50 µL of fraction 1. 
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5.4. Polyacrylamide Gel Electrophoresis (PAGE) on 16% 
acrylamide Tricine gels. 

Polyacrylamide gel electrophoresis (PAGE) is a powerful and widely used method to 

evaluate complex mixtures of proteins and peptides. Therefore, we ran serum samples from 

the patients with advanced oesophageal cancer and the healthy volunteers on 1-D gels to 

see if the ~4kDa peptide of interest could be visualised, and that being the case excise the 

band to see if the protein/peptide could be identified. Tricine gels were used as these are 

more suitable for resolving low molecular weight proteins and peptides. The tricine system 

was developed by Schaegger and von Jagow in 1987. In this system tricine replaces 

glycine in the running buffer allowing more efficient stacking and destacking of low 

molecular weight proteins resulting in greater resolution of lower molecular weight 

peptides (Schaegger & von Jagow, 1987). 

Initially 16% Tricine gels were run with 10µl of fraction 1 control/tumour serum and 5µl 

of unfractionated serum (See Materials and Methods 2.2.6). The gel was stained with 

Coomassie blue and demonstrated a band visible ~4kDa. The decision was then made to 

repeat the gel, but to filter the serum samples using a centrifugal filter (molecular weight 

cut off [MWCO] 10kDa, Microcon® Centrifugal Filter Devices) prior to electrophoresis, 

to see if this would improve further MS analysis by removing higher molecular weight 

proteins.  

In order to prepare the filtered sample to run on the gel, 20µl of unfractionated 

control/tumour serum was added to the centrifugal filter. The samples were spun at 4°C, 

14,000g for 60min. The filtrate was then removed and placed in an Eppendorf tube with 

20µl of sample buffer. Ten µl of the filtered unfractionated buffered serum sample was 

loaded onto the gel and the gel run at the manufacturer’s recommended conditions (see 

Materials & Methods 2.2.6.5). The gel was then stained with Coomassie blue. There were 

no bands visible in the filtered samples, but bands were visible in the unfiltered controls. 

The conclusions drawn were that either the filters were holding back the protein/peptides 

of interest or that the Coomassie wasn’t sensitive enough to detect the minute amounts of 

protein (Coomassie sensitivity 20ng BSA). The plan was then to repeat this experiment 

using Sypro Ruby to stain the gel as its sensitivity is greater than that of Coomassie blue at 

1-2ng of BSA. Other benefits with the Sypro ruby stain is that it stains a number of 

different classes of protein, and it is also compatible with subsequent analysis of proteins 
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using Edman-based sequencing and mass spectrometry. When the experiment was 

repeated, there were still no bands visible within the filtered samples. Therefore, the 

experiment was repeated using increased concentrations of protein (by loading larger 

volumes of serum to the centrifugal filter) and using the rapid fixation/staining step for 

Sypro Ruby stain as this is supposed to increase the sensitivity of detection to 0.25-1ng of 

BSA. 

The filtration step was repeated, however this time, 40µl of both unfractionated serum and 

fraction 1 serum were added to the centrifugal filter (20ul had been previously used). For 

the fractionated samples 30µl of filtrate was added to 15µl of sample buffer and for the 

unfractionated samples 25µl of filtrate was added to 40µl of sample buffer (to make up a 

less concentrated sample because of very intense staining seen at higher concentrations). 

Ten µl of the fractionated samples and 5µl of the unfractionated samples (previously used 

10µl, but the concentration was quite strong) was then loaded onto the gels which were run 

at the manufacturer’s recommended conditions. Following the rapid fixation/staining with 

Sypro Ruby, there were bands ~4kDa visible in the unfiltered, but not the filtered samples. 

The conclusions drawn were that an alternative ultrafiltration protocol was needed as either 

aggregates were forming over the filtration membrane preventing filtration, or the ~4kDa 

protein/peptide was potentially bound to a larger protein and thus not passing through the 

filter. 

The experiments were then repeated using unfiltered control/tumour fractionated and 

unfractionated samples, but increasing the protein loading onto the gel to see if this 

improved the detection. Fifteen µl of fraction 1 control/tumour serum and 10µl of 

unfractionated serum were, therefore, loaded onto the 16% tricine gels (10µl and 5µl 

respectively had previously been used). This was followed by the basic staining protocol 

using Sypro Ruby. This demonstrated bands clearly visible ~4kDa using a number of 

different control and tumour samples (See Figure 5.6). It was then decided to repeat this 

experiment using Coomassie blue staining, the rationale being that if the bands of interest 

were visible using Coomassie (despite its decreased protein sensitivity), then there should 

be sufficient protein within the samples for successful MS analysis. The repeat experiment 

did show bands ~4kDa, which were excised and sent for MS analysis (see Figure 5.7). This 

was repeated with several other gels and the gel pieces excised to ensure that there was 

sufficient material for analysis.  
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5.4.1 MS analysis of excised gel pieces 

The MS analysis was hindered due to a number of technical difficulties and although there 

was a peak demonstrated at 4.2kDa, the mascot search identified this as the trypsin used 

for the digest. One of the reasons this may have occurred was as a result of the 

reduction/alkylation step used to block potential cysteine residues prior to the in-gel digest, 

and so, the plan was to repeat the MS analysis, but to omit the reduction/alkylation step 

and use chymotrypsin instead of trypsin for the digest as it is less specific. A number of 

further gels were, therefore, run and the gel pieces excised and sent for MS analysis. Again 

identification was not possible. Further gel bands were provided, analysis from which 

showed only keratins and polymers, which were probably related to the plastics from the 

Eppendorf tubes reacting with the ethanol in the storage solution. The plan was then to 

repeat the analysis, but reduce the storage time for the samples prior to analysis. One 

analysis gave a potential identification as inter-alpha-trypsin inhibitor heavy chain H4 

precursor, which is interesting as this has been identified in some other studies. However, 

the confidence of this potential identification was low and further samples were provided 

to try and confirm this. 

It was then decided to re-run the gels, excise the bands of interest and send them to the 

proteomics department in Dundee, as they have a different (Orbitrap MS) mass 

spectrometry instrument. Unfortunately, Dundee was not able to identify the protein of 

interest either. The full results did show increased levels of Apoliprotein C-1 in the control 

samples compared to the tumour samples, but they advised that the protein concentration in 

the control samples was generally higher than that in the tumours anyway and this may 

explain the difference. Also, it was felt that the Apoliprotein C-1 was probably a fragment 

and not the full length precursor, and so confidence in this potential identification was low.  

The low confidence in potential identifications is an important problem with this type of 

study especially when the unknown peptides/proteins are of very low mass. This is because 

the lower the mass, the fewer residues are present to allow for a confident identification. 

5.4.2 Edman sequencing 

Due to the difficulties experienced in trying to identify the protein/peptide using MS 

analysis, a different approach was considered – Edman or protein sequencing. Edman 

degradation is a method of sequencing amino acids in a peptide where the amino-terminal 

residue is labelled and cleaved from the peptide without disrupting the peptide bonds 

between the other amino acid residues. Trifluoroacetic acid (TFA) is used to cleave the 
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first amino acid and leaves the new amino terminus available for the next degradation 

cycle. The cleaved amino acid is then selectively extracted into an organic solvent and 

treated with acid to form a more stable amino acid derivative. This is then transferred to a 

reverse phase C-18 column for detection by high pressure liquid chromatography (HPLC). 

The process is repeated sequentially to provide the N-terminal sequence of the 

protein/peptide. 

The advantage of this technique is that it requires only 10-100 picomoles of peptide for the 

sequencing process. The disadvantages are that peptides being sequenced in this way 

cannot have more 30 residues (the process is able to accurately sequence up to 30 amino 

acids with about 98% accuracy per amino acid), and as the degradation proceeds from the 

N-terminus of the protein, it will not work if the N-terminal amino acid has been 

chemically modified or if it is concealed within the protein. In such cases, internal 

sequencing can be performed by sequencing the peptide fragments resulting from 

enzymatic or chemical digestion of a specific protein.  

Sample purity is one of the most critical factors for successful sequencing. Samples should 

ideally contain only one protein or peptide component and be free of reagents that interfere 

with the degradation and sequencing process. Samples can be purified by techniques such 

as HPLC, and SDS-PAGE and Western Blot. SDS-PAGE and Western Blotting are 

especially useful if the protein of interest is a component of a complex mixture, such as 

serum, and so we used Western Blotting as a source of material. Assumptions that can be 

made when preparing samples using electrophoresis and electroblotting are that only 80% 

of the peptide of interest is actually concentrated into the band of the gel and only 50% of 

the protein transfers to the PDVF-membrane and remains there after staining and 

destaining (Max Planck Institute for Molecular Genetics). 

. 
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Figure 5.8. 16% Tricine gels stained with Coomassie blue showing greater abundance of protein 
~17kDa within the oesophageal cancer serum samples compared to the healthy volunteers. 
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5.5 Western Blotting in preparation for Edman 
sequencing 

To try and optimise the protein/peptide identification from Edman sequencing, a 16% 

Tricine gel was loaded with 15µl of fractionated control/tumour samples and run as before 

(124V for 90min). Tris-Glycine (1x) transfer buffer was prepared with 10% methanol and 

PVDF transfer membrane (0.45µm pore size) was used. A semi-dry Western Blot was 

performed, run at 200mA for 75min and the membrane stained with Coomassie blue for 1 

minute and destained with 40% methanol/10% acetic acid. The plan was to excise the 

membrane piece containing the protein band of interest and send this to Dundee for Edman 

sequencing. However, the results showed that there were no bands visible on either the 

membrane or the gel at the 4kDa mark. The conclusion drawn was that the protein had 

passed straight through the membrane, probably due to its very low molecular weight. 

The experiment was, therefore, repeated, but the protein concentration loaded onto the gel 

was increased and the transfer time decreased. A 16% Tricine gel was loaded with 30µl 

(previously 15µl) of fraction 1 control/tumour sample and the transfer time reduced to 

45min (from 75min). Again following staining the band was not visible on both the gel and 

the membrane. The conclusion was that the pore size on the membrane was too large and 

that further blotting should be performed with 0.2µm PVDF membrane. 

We, therefore, performed western blotting using immobilon-PSQ 0.2µm PVDF transfer 

membrane to see if the smaller pore size improved the protein transfer. The tricine gel was 

loaded with 30ul of fraction 1 control/tumour sample with a transfer time of 15min 

(reduced from 45min) using tris-glycine transfer buffer. The results showed that the band 

remained on the gel indicating that the transfer time was not long enough, and so the 

experiment was repeated with an increased transfer time of 45min. The results showed that 

the insulin control had transferred to the membrane, but the protein of interest had not. 

When the gel was stained there were still faint bands present ~4kDa in the samples and 

insulin control indicating that the protein of interest had not transferred efficiently between 

the gel and the membrane.  

The experiment was, therefore, repeated again, however the amount of methanol in the 

transfer buffer was increased to 20% from 10%, the membrane and gel were both soaked in 

transfer buffer for 10min prior to blotting and the transfer time was increased from 75 to 

90min. Unfortunately, again the results showed that the protein of interest had not 
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transferred and in fact there seems to be very inefficient transfer of all proteins between the 

gel and membrane using this method. 

We then tried changing the transfer buffer to Nupage transfer buffer (20% methanol) from 

tris-glycine transfer buffer with the hope that this would improve transfer, and also reduce 

interference if protein sequencing was attempted. The gel and membrane were soaked in 

transfer solution for 15min with agitation prior to blotting and the transfer time was 

increased to 2hr. However, the transfer was much less efficient than that using the tris-

glycine transfer buffer with a lot of protein (including the peptide of interest) left on the gel 

following staining. 

We, therefore, increased the concentration of fraction 1 sample:sample buffer (30µl:10µl) 

and loaded all of this onto the gel to try and get the maximum possible concentration of the 

protein of interest; the gel time was to be decreased from 90min to 45min, to see if this 

concentrated the ~4kDa protein over a smaller area; and the transfer time was increased to 

2hr. The results showed that the 4kDa band had disappeared from the gel, but was not 

present on the membrane. A possible explanation for this is that the Commassie stain was 

not sensitive enough to detect the low concentrations of protein. Therefore, the plan was to 

repeat the experiment, but this time stain the membrane with Sypro Ruby Protein Blot 

(which is compatible with MS analysis and Edman sequencing). However, staining with 

the Sypro Ruby confirmed that the protein of interest had not transferred to the membrane. 

The other option was to precipitate the protein from the fraction 1 serum samples to try and 

maximise the concentration of protein loaded onto the gel and then repeat the transfer (See 

Materials & Methods 2.2.6.4). Fifty µl of the precipitated protein sample was then run on a 

16% Tricine gel for 90min, which was then stained with Coomassie blue. The results 

showed that the precipitation step did not improve recovery of the protein of interest and 

suggested that the peptide may be soluble in 70% ethanol. 

If this precipitation step had worked, then another option may have been to collect all the 

fraction 1 filtrations performed using the centrifugal filter together and try to precipitate 

the protein from this as theoretically this should contain a pure, concentrated sample of the 

protein ~4kDa, with all the more abundant proteins of >10kDa removed, however, 

unfortunately this was not the case. 

It was then decided to re-visit the centrifugal filtration as it was felt if this was successful it 

would provide a sample that could be used for both MS analysis and Edman sequencing. It 
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was decided to use a denaturing agent in case the ~4kDa protein was bound to a larger 

protein and that this was preventing filtration. Two M urea was initially selected as a 

denaturing agent as it would not interfere with MS analysis. One hundred µl of fraction 1 

control/tumour sample was added to the centrifugal filter (molecular weight cut off 10kDa) 

with 25µl of 2M urea. The samples were spun at 24°C, 14,000g for 25min. The retentate 

was collected by spinning at 1,000g for 3min. The filtrate sample was prepared by adding 

30µl of filtrate to 30µl of sample buffer; 40µl of sample buffer was added to the retentate. 

Thirty µl of buffered filtrate and 15µl of buffered retentate were then loaded onto a 16% 

Tricine gel. The results from the gel showed that the band of interest was not present in the 

filtrate but still lay within the retentate.  

This experiment was then repeated with 8M urea and 10% acetonitrile as denaturing 

agents. Again the gel showed that the band of interest remained within the retentate. A 

possible reason was that the protein of interest may potentially be linked by disulphide 

bonds preventing filtration. It was, therefore decided to add 100mM dithiothreitol (DTT) to 

the 8M urea as a denaturing agent. The gel showed a faint suggestion of a band ~4kDa in 

the filtrate sample, but this was not conclusive. So, 1% NP40 was added to 100mM DDT, 

in case the protein was very hydrophobic and this was preventing passage through the 

centrifugal filter. Again the gel showed only a very faint band ~4kDa in the filtrate sample, 

which was not a high enough concentration to send for either MS or Edman sequencing 

(Figure 5.9). 

Due to the difficulties experienced with the centrifugal filtration process, it was decided to 

prepare samples of insulin and BSA to act as positive and negative controls to check 

whether the filters were working correctly. The sample was also prepared with and without 

heating (to 85°C) to see if this resulted in protein aggregation and thus difficulties in the 

filtration process. The results showed that the centrifugal filter was holding back the BSA 

within the retentate as expected, and that heating the sample didn’t appear to result in 

protein aggregation. The results for the insulin control showed that although the insulin 

was present in the filtrate and not the retentate i.e. the centrifugal filter was allowing it to 

pass through, the concentration of protein appeared much lower than for the non-filtered 

controls indicating the filter was preventing passage of most of the insulin through into the 

filtrate and that there must be some binding to the filter membrane (Figure 5.10).  
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Figure 5.9.16% Tricine gel stained with Coomassie blue. Centrifugal filters (molecular weight cut-
off 10kDa) underwent passivation process with 1% BSA and 5% Tween. Fractionated serum 
samples were denatured with NP40 and DTT, filtered and run on the gel using standard conditions. 
Note the faint band present at ~4kDa in fraction 1 of the healthy volunteer serum. Insulin MW 5 
kDa served as a positive control. 
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Figure 5.10. 16% Tricine gels stained with Coomassie blue demonstrating the results of the control 
experiments using insulin and BSA (MW 66kDa) to check the function of the centrifugal filters with 
a molecular weight cut-off of 10, 000Da. Insulin is present within the filtrate and not the retentate 
showing it is in fact being filtered through the centrifugal filter, however it is present at much lower 
concentrations than the unfiltered control samples indicating a degree of binding to the filter 
membrane . BSA is present within the retentate, but not the filtrate showing that it is being retained 
by the filter membrane. 
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On the advice of Millipore, a passivation protocol to prevent binding of target peptides to 

the filter membrane was then tried with the centrifugal filters that involved pre-soaking the 

filters using various solutions. The solutions chosen were 1% BSA and 5% TWEEN-20. 

The filters were soaked overnight with the passivation solution, washed thoroughly with 

dH2O, and the sample of insulin then filtered as per the normal protocol. The results 

showed that although the insulin was present in the filtrate and not the retentate, the 

concentration was much lower than for the unfiltered control, and so, the conclusion drawn 

was that the passivation process had not made much difference to the protein recovery.  

The passivation process was applied to the fraction 1 control/tumour samples to see if there 

was improved recovery of the protein of interest. Again the filters were soaked with 1% 

BSA and 5% TWEEN-20. They were then loaded with samples containing 1% NP40 and 

100mM DDT as denaturing agents and using insulin as a control. The results showed that 

the protein of interest still remained within the retentate. The plan was to repeat the process 

using 0.5% SDS (ionic detergent) in addition to 100mM DDT as denaturing agents, but to 

omit the passivation process as this did not seem to result in improved recovery. The 

results showed that once again the peptide of interest remained within the retentate. 

Possible reasons for this could include the DTT solution which had been made previously, 

aliquoted and stored at -20°C until use. It could also be the particular filter type was not 

performing very efficiently. The possibility that the peptide was retained in detergent 

micelles was excluded as the concentration of NP40 used was below the critical micellar 

concentration. 

5.6  Haptoglobin 

On visual inspection of the Tricine gels there seemed to be a difference in the protein 

concentration between the control and tumour samples in fraction 1 observed from the gels 

(with decreased protein concentration in the tumour samples), so we decided to run all the 

unfractionated control and tumour samples that had been used in the 30x30 SELDI-MS 

study on 16% tricine gels to see if there was a marked variation in protein concentration 

between the control and tumour samples. Ten µl of unfractionated serum was added to 

100µl of sample buffer and 10µl of this was loaded onto the gel. The results did not show 

large observable differences in protein concentration. However, there did seem to be 

greater abundance of some proteins in the tumour samples compared to the normal 

controls, especially a band ~17kDa which was clearly visible in 26/29 (90%) tumour 

samples and 23/32 (72%) control samples (Figure 5.8). This gel band was excised and sent 
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for MS analysis. It was identified as haptoglobin, an acute phase reactant. This is not really 

surprising as a lot of acute phase reactive proteins are up-regulated in patients with cancer 

as discussed previously. However, in contrast to the ~4kDa unknown peptide, it was easily 

detected and identified. The results also suggest that differentially expressed proteins 

which are not identified as acute-phase reactants may provide a disease-specific biomarker 

5.7 Conclusions 

In summary, the SELDI-MS results were encouraging and suggested that there was a 

~4kDa peptide that was significantly down-regulated in the serum of patients with 

oesophageal carcinoma. However, despite much effort identification was not made 

although there was a tentative suggestion that it may be an inter-alpha-trypsin inhibitor 

heavy chain H4 precursor, which was interesting as a cleavage fragment of inter-alpha -

trypsin inhibitor heavy chain H4 had been previously found to be up-regulated in patients 

with ovarian cancer and down-regulated in patients with breast cancer. 

Other techniques that might have been tried to potentially identify the peptide included 

using an alternative make of centrifugal filter (Nanosept® omega 10K MWCO) and 

repeating the filtration process. The protocol for the Nanosept® filters recommended 

diluting the sample to 500ul with TRIS-HCl pH7 to try and prevent membrane fouling, this 

was not tried with the Millipore centrifugal filters and so it is not known whether this 

would have made a difference to the protein filtration.  

A search was also performed for a commercially available antibody to inter-alpha-trypsin 

inhibitor heavy chain H4 precursor to see if this could be used to confirm down-regulation 

of the protein of interest within the patient serum. However, this was not available. Non-

commercial routes were not tried and it may have been an option to develop either an in-

house or commercially made custom antibody 

On the other hand, haptoglobin was found to be significantly more abundant in the serum 

from patients with oesophageal cancer compared to healthy volunteers. It was 

straightforward to isolate and identify and would be more amenable to immunoassay. A 

recent study compared the sera from 39 patients with breast cancer and compared it with 

40 healthy controls using 2-DE separations coupled with MALDI [175]. Proteins that were 

found to be upregulated in patients with breast cancer included alpha1-antitrypsin 

precursor and a haptoglobin precursor. It may be that haptoglobin would be a better 

biomarker to take forward for future studies. 
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6.1 Background 

Gastrointestinal and ovarian cancers are unfortunately commonly diagnosed at an 

advanced stage when the chance of cure and responses to treatment are low resulting in 

decreased survival outcomes. It would therefore be very beneficial if biomarkers existed 

that were sensitive and specific enough to allow for diagnosis of these cancers at an earlier 

stage. If these markers could be detected in blood samples that would potentially increase 

uptake of this as a screening test as blood is readily accessible, so most people find blood 

testing acceptable, and clinical laboratories are equipped for its analysis.  

It would also be of benefit to have additional biomarkers of prognosis that would allow for 

greater tailoring of cancer treatment in individuals. This is of importance in patients with 

early colorectal cancer which remains confined to the bowel wall. At present the role of 

adjuvant chemotherapy within this patient group had not been firmly established and so it 

would be very helpful to have additional prognostic information that would identify 

patients who would gain most benefit from adjuvant treatment. 

At present responses to chemotherapy are generally assessed radiologically at certain time-

points during chemotherapy treatment such as midway through and at the end of treatment. 

This unfortunately means that some patients will receive chemotherapy that is not effective 

but may be associated with toxicity. If there were biomarkers available that could help 

assess responses to chemotherapy at an earlier stage, patients could potentially be changed 

to alternative treatments that may be more effective. There is the prospective that 

biomarkers measured at baseline, prior to patients commencing treatment, may help to 

predict which patients are likely to respond to particular chemotherapy regimens and so 

help to tailor treatment to individuals. 

Newer targeted treatments that have been developed tend to have cytostatic rather than 

cytotoxic effects (at least initially) and so it can be challenging to assess responses to 

treatment using conventional radiological techniques as it may take months to observe 

tumour shrinkage on CT. In these patients it would be invaluable to have a biomarker that 

could act as a surrogate marker of tumour response again to help avoid the potential 

toxicities of ineffective treatments. 
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6.2 Aims of the project 

My aims during my research were to find new biomarkers that could be used in patients 

with gastrointestinal and ovarian cancers to potentially aid in diagnosis, assessing 

prognosis and response to therapies.  

The first part of my research involved looking at the expression of RKIP using 

immunohistochemistry in TMA initially in patients with colorectal cancer and later in 

patients with ovarian cancer. The rationale behind this was previous work suggesting that a 

reduction or loss of expression of RKIP was associated with worse clinical outcomes and 

we wanted to confirm these findings with a much larger cohort of patients. It was also 

decided to explore RKIP expression in a bank of TMA from patients with stage Ic to IV 

ovarian cancer to discover whether loss or reduction of RKIP expression in these patients 

showed any correlation with clinical outcomes and thus help aid in decisions regarding 

patient management. 

The second part of my research comprised assessing plasma and serum CK18 levels in 

patients with advanced gastrointestinal and ovarian cancers using an ELISA. Plasma CK18 

levels were also assessed at various time points during palliative chemotherapy in patients 

with advanced gastrointestinal cancer to determine whether it could be used as a marker of 

response to treatment. 

The third part of my project comprised a more global approach to biomarker discovery and 

involved comparing serum of patients with advanced oesophageal cancer with serum from 

healthy volunteers using SELDI-MS. The plan was that if there were differences observed 

between the serum proteomes, attempts would be made to identify potential biomarkers  

6.3 Results & Future Aims 

6.3.1 Prognostic marker in colorectal cancer – RKIP 

The results from this part of the study confirmed the findings of earlier studies, namely that 

loss of or reduced expression of RKIP in patients with colorectal cancer was associated 

with worse outcomes with an increased potential for metastatic spread and reduced overall 

survival. One theory as to why this may occur is that RKIP has a role in regulating the 

spindle checkpoint in cells and so its loss may result in chromosomal instability. This may 
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in turn affect metastatic potential and response to treatment. With the current lack of 

effective markers of metastatic relapse in colorectal cancer, a straightforward test like 

RKIP expression in the primary tumour may be a very cost-effective way to identify which 

patients may derive greater benefit from adjuvant treatment and closer post-operative 

surveillance. 

In contrast the results from the ovarian cancer part of the study were conflicting. Within 

the first cohort there was a correlation seen between reduced RKIP expression and 

decreased progression-free survival, which is in accord with the results seen in colorectal 

and other cancers. However, the results from the second larger cohort were completely 

contradictory with reduced RKIP associated with improved survival outcomes. As yet 

there is not a satisfactory explanation for this observation, although technical problems 

related to the long-term storage of the paraffin-embedded tissue samples are suspected. 

The future aims for this part of the project are to examine the methylation status of fresh 

frozen samples taken from the Dublin colorectal cancer cohort using pyrosequencing to see 

if epigenetic silencing is responsible for the reduction in RKIP expression observed within 

the tumour samples. Gene silencing by promoter methylation has been reported in some 

studies [176, 177], but negative results have also been observed [178] and it will be 

interesting to see if the results from this part of the project confirm promoter methylation. 

 
6.3.2 Biomarkers of response in advanced gastrointestinal 

malignancy- CK18 

The results from the early colorectal cancer part of the study are interesting as they suggest 

that serum CK18-NE levels may differentiate between patients with pre-malignant polyps 

and healthy volunteers, and that both serum CK18-NE and total CK18 may differentiate 

between healthy volunteers and patients with early colorectal cancer, and thus could 

potentially be used as an early diagnostic biomarker. However, the sample size was small 

and as the samples had been collected as part of an earlier clinical trial, it was not possible 

to either expand or perform a validation study. However, it would be interesting to see if 

these results held up in a larger prospective clinical trial.  

The results from the advanced gastrointestinal cancer part of the study showed that both 

CK18-NE and total CK18 plasma levels were significantly higher in patients compared to 

the healthy volunteers. The total CK18 baseline plasma levels prior to treatment were 
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significantly higher in patients who developed progressive disease than those who 

achieved partial response or stable disease and this correlation was confirmed in an 

independent validation set. The peak plasma levels of CK18 occurring in any cycle 

following treatment were also found to be associated with tumour response. In conclusion, 

levels of plasma CK18 were found to be a potential marker of tumour response in patients 

with advanced gastrointestinal malignancy, however a larger prospective clinical trial 

would confirm if plasma CK18 could be used as a prognostic marker in advanced 

gastrointestinal cancer.  

The results from the ovarian cancer part of the study were interesting, they showed that 

baseline total CK18 plasma levels were significantly higher in the patients compared to the 

healthy volunteers (p<0.001) and that there was a statistically significant association 

between baseline CK18-NE and total CK18 plasma levels and overall survival. The 

baseline CK18-NE and total CK18 plasma levels were then examined in relation to 

residual disease after surgery, FIGO stage and ECOG performance status but were not 

found statistically significant as an independent marker in the multivariate analysis. It was 

felt that on the basis of these results there was not a lot to be gained by taking this part of 

the project on any further. The fact that elevation of both CK18-NE and total CK18 plasma 

levels correlated with residual disease, FIGO stage and absolute CA-125 plasma levels 

would tend to suggest that they may be acting as markers of disease burden in ovarian 

cancer. However, there is the possibility that plasma CK18 could also characterise a more 

aggressive type of ovarian cancer associated with worse clinical outcomes, possibly either 

due to higher rates of cell turnover or increased conditioning of the blood with CK18 from 

highly vascularised tumours. 

6.3.3 Diagnostic markers – downregulated peptide in advanced 

oesophageal cancer. 

The SELDI-MS results were encouraging and suggested that there was a ~4kDa peptide 

that was significantly down-regulated in the serum of patients with oesophageal carcinoma 

(p<0.0001). However, one of the limitations of using SELDI-MS is that it does not identify 

the peptides. The MALDI-MS did tentatively suggest that the peptide may be inter-alpha-

trypsin inhibitor heavy chain H4 precursor, which was interesting as a cleavage fragment 

of inter-alpha -trypsin inhibitor heavy chain H4 had been previously found to be up-

regulated in patients with ovarian cancer and down-regulated in patients with breast 

cancer. However, the confidence of the identification was low and we were unable to 
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reproduce this result as attempts at the protein/peptide identification were hampered in part 

by its low mass. It may be that the peptide is bound to more abundant proteins, or the 

reason for its down-regulation in the serum of patients with advanced oesophageal cancer 

is alternative post-translational modifications which affect its ionisation. This would make 

sense as authors of the previous studies in ovarian cancer have made no reference to 

difficulties in isolating or identifying inter-alpha-trypsin inhibitor heavy chain H4 

precursor. 

Other techniques which could have been applied would have centred on immunological 

detection of inter-alpha-trypsin inhibitor heavy chain H4 precursor or alternative 

ultrafiltration devices with reduced capacity for non-specific binding (see Chapter 5.6). 

This part of the project was very challenging due to the difficulties experienced in trying to 

prepare a sample of the protein of interest that was pure and concentrated enough to permit 

identification by either mass spectrometry or Edman sequencing. Due to the poor 

prognosis of the majority of patients diagnosed with oesophageal adenocarcinoma, it 

would obviously be extremely useful to have a serum biomarker that could potentially 

distinguish between patients with cancer and healthy volunteers, maybe allowing for 

earlier diagnosis, whilst disease is potentially operable. However, the identity of the ~4kDa 

peptide found to be down-regulated in patients with advanced oesophageal cancer in this 

study has proved elusive, and without an identity it is difficult to provide a biological 

answer for its down-regulation or to use other approaches to confirm the findings of this 

study. The ~4kDa peptide does appear to have unusual properties which mean that it may 

not be the best biomarker due to difficulties in its isolation and detection, and due to the 

limitations associated with the SELDI-MS, it is unlikely that this technique is practical 

enough to be adopted in routine clinical practice due to the stringent protocols required for 

sample handling and processing 

On the other hand, haptoglobin was found to be significantly more abundant in the serum 

from patients with oesophageal cancer compared to healthy volunteers. This makes 

biological sense because, as mentioned previously, haptoglobin is an acute phase reactant 

and has been shown to be up regulated in solid tumours [168-170]. It has a role in 

angiogenesis, tissue remodelling and cell migration [171]. Haptoglobin was 

straightforward to isolate and identify and would be more amenable to immunoassay as 

there are good antibodies available for confirmation. It may be that this would be a better 

biomarker to take forward for future studies, although it may not be specific and may need 

to be part of a multi-marker profile. 
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In conclusion, the need for more effective and reliable biomarkers for the diagnosis, 

prognosis and prediction of clinical outcomes in cancer patients is clear and the search for 

non-invasive and reproducible laboratory assays has been intensive over the past number 

of years. The overriding aim is to create ideal biomarkers to optimise the management of 

patients with cancer ensuring that they receive accurate diagnoses, and treatment tailored 

to individuals ensuring they receive the most effective and least toxic therapies available.   
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