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Abstract 

Leishmania resides inside mammalian macrophages, from where it is thought to 

manipulate the host immune system by releasing virulence factors. The cysteine 

peptidase CPB has been shown to be secreted by the parasite and act as such a 

virulence factor. CPB is released through the flagellar pocket while being 

trafficked to the lysosome. Thus, in this project, the intracellular localisations of 

eight other L. major peptidases were analysed by fluorescence microscopy, after 

tagging the enzymes with green fluorescent protein (GFP). The candidate 

peptidases were chosen by bioinformatics analyses and predictions of N-terminal 

secretory signal peptides and potential transmembrane domains. The aim was to 

find a peptidase accumulating in the flagellar pocket of the cell, from where it 

could be secreted. Five candidate peptidases (a ubiquitin hydrolase, a CaaX 

prenyl protease, a zinc carboxypeptidase and two rhomboid peptidases) 

localised to the mitochondrion, which was unexpected. Another, a calpain-like 

peptidase, localised to the flagellum but not to the flagellar pocket. A serine 

carboxypeptidase was found very close to the flagellar pocket, possibly in small 

vesicles budding off or fusing with the pocket membrane, but did not co-localise 

with a flagellar pocket marker. The bioinformatics predictions differed from the 

experimental results here and, additionally, using different algorithms to predict 

protein properties resulted in contradictory predictions in several cases. This 

suggests that generic protein prediction programmes for mammalian or higher 

eukaryotic proteins can be unreliable and of limited usefulness for Leishmania 

proteins. This corroborates the notion that Leishmania may use novel, non-

classical secretory pathways rather than or in addition to those characterised for 

higher eukaryotes. 

The L. major Bem46-like serine peptidase (LmjF35.4020) of the Clan SC (Family 

S9) was the only candidate peptidase that localised to the flagellar pocket when 

labelled with GFP. This was an indication that this enzyme may be released from 

the cell and could act as a virulence factor. Alternatively, it may be a resident 

protein of the flagellar pocket. Deleting the Bem46 gene in L. major did not 

have a measurable effect on promastigote growth or on footpad lesion 

development in mice inoculated with Bem46-deficient cells, so it does not 

appear to play a role as a major virulence factor. 
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Apart from the secretion of virulence factors, rapid protein turnover, e.g. in the 

lysosome, is important for the infectivity of Leishmania. To investigate lysosome 

structure and function in L. major, a potential LMP (lysosomal membrane 

protein) was identified by bioinformatics. Thus far, no resident membrane 

proteins of the Leishmania lysosome are known and identifying such a protein 

would provide a useful marker for the closer investigation of this important 

organelle. In this project, the location and role of the LMP protein LmjF30.2670 

was investigated using GFP-tagging and fluorescence microscopy. The 

experiments showed that LMP is not lysosomal in L. major, rather, it could be 

observed localising to a distinct, elongated and sometimes doughnut-shaped 

structure in close proximity to the kinetoplast. This structure was not directly 

associated with the flagellar pocket or the cell membrane, its position in the cell 

was variable within a certain area alongside the kinetoplast, it appeared to 

duplicate during cell division and it did not co-localise with the endocytic / 

lysosomal marker FM4-64. Deletion of the LMP gene did not have any effect on 

promastigote growth in cell culture and only a small and transient slowing effect 

on the development of mouse footpad lesions after inoculation with LMP-

deficient L. major. Lysosomal membrane proteins can be targeted to the 

lysosome by the protein carrier complex AP3, which binds to tyrosine or 

dileucine motifs in cargo proteins. LMP contains two such tyrosine motifs at its 

C-terminus, but disruption of these by site-directed mutagenesis did not affect 

LMP localisation, suggesting that its trafficking is AP3-independent, which is in 

accordance with the non-lysosomal localisation of LMP. 

Finally, the lysosome-like acidocalcisome organelles have previously been shown 

to rely on the protein carrier complex AP3 for normal structure and function. In 

AP3-deficient Leishmania, the acidocalcisomes are defective and, at the same 

time, parasite virulence is markedly reduced (Besteiro et al., 2008o). To analyse 

how AP3 is important for acidocalcisome morphology and function, a proton 

pump of the acidocalcisomal membrane, the V-H+-PPase, was investigated by 

GFP-labelling and fluorescence microscopy. In wild type L. major the V-H+-PPase 

could be shown to localise to the acidocalcisomes, whereas in AP3-deficient cells 

it was not detectable, suggesting that the protein is mislocalised and likely 

degraded. The V-H+-PPase also contains several tyrosine motifs that may interact 

with AP3. The two most prominent of these were disrupted by site-directed 
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mutagenesis, but this did not affect the localisation of the V-H+-PPase, 

suggesting that these two sites are not, or not solely, important for AP3 binding 

or that the V-H+-PPase is not bound by AP3 directly.  
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HIFCS heat-inactivated fetal calf serum 
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PCR polymerase chain reaction 
PSG parasite secretory gel 
RNA ribonucleic acid 
SAP / SAcP secretory acid phosphatase 
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 
sec second 
SPase I signal peptide peptidase I 
SRP signal recognition particle 
Th1 / 2 T helper cell type 1 / 2 
Triton X-100 t-octylphenoxyl-polyethoxyl-ethanol 
UV ultra violet 
V volts 
V-H+-PPase vacuolar proton pyrophosphatase 
VL visceral leishmaniasis 
v/v volume to volume 
w/v weight to volume 
WHO world health organisation 
WT wild type 
 
 

Amino acid abbreviations used in this study 
 
A alanine (Ala) 
a an aliphatic amino acid (I, L or V) 
C cysteine (Cys) 
D aspartic acid (Asp) 
E glutamic acid (Glu) 
F phenylalanine (Phe) 
G glycine (Gly) 
H histidine (His) 
I isoleucine (Ile) 
K lysine (Lys) 
L leucine (Leu) 
M methionine (Met) 
N asparagine (Asn) 
P proline (Pro) 
Q glutamine (Gln) 
R arginine (Arg) 
S serine (Ser) 
T threonine (Thr) 
V valine (V) 
W tryptophan (Trp) 
X any amino acid 
Y tyrosine (Tyr) 
 
Ø a bulky hydrophobic amino acid (L, I, F, V or M) 
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1. Introduction 

 

1.1 The Leishmania parasite 

Protozoan parasites of the genus Leishmania are the causative agent of 

leishmaniases in humans and other mammals. They are grouped into the order of 

Kinetoplastida and the family of Trypanosomatidae, together with parasites of 

the genus Trypanosoma, the causative agents of African Sleeping Sickness 

(T. brucei) and Chagas’ disease in South America (T. cruzi). 

1.1.1 The Leishmania life cycle 

The transmitting vectors of Leishmania are bloodsucking female sand flies 

(Phlebotominae) of the genera Phlebotomus (Old World) (Fig. 1-2) and 

Lutzomyia (New World). After the fly has taken up Leishmania with a bloodmeal, 

the short and ovoid Leishmania promastigotes live in the fly gut, where they 

adhere to the midgut walls and start to replicate. They develop into long, 

slender nectomonad promastigotes which then migrate to the anterior of the 

insect gut and become short and broad leptomonad promastigotes. These 

secrete a gel that consists mainly of filamentous proteophosphoglycan (fPPG) 

and forms a plug in the gut. This allows the promastigotes to proliferate and 

develop further into the infective metacyclic promastigotes, which are then 

transmitted to a mammalian host (Gossage et al., 2003b). Once the sand fly has 

injected the metacyclic promastigotes into the mammal, the Leishmania are 

quickly taken up into host cells, mainly macrophages, by phagocytosis. They do 

not remain in the bloodstream for any length of time. They survive within the 

host cell phagosome and differentiate into round, non-motile amastigotes with 

only a short flagellum that barely emerges from its pocket. The phagosome fuses 

with lysosomes to form a mature, acidic phagolysosome (parasitophorous 

vacuole) and the amastigotes multiply within. The parasites adhere closely to 

the membrane of the vacuole and their growth rate appears to be slow, possibly 

so as to not rupture the vacuole too quickly (Chang et al., 2003d). When the 
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amastigotes have proliferated, they are released from the macrophage and can 

then invade other host cells. When the infected host is bitten by another sand 

fly, infected macrophages are taken up into the insect gut, the amastigotes 

differentiate into procyclic promastigotes and the cycle is repeated (Fig. 1-1) 

(recently rev in (Banuls et al., 2007). 

 
Figure 1-1: Leishmania life cycle. (1) Metacyclic promastigotes transmitted into 
mammalian host by sand fly bite. (2) Phagocytosis of promastigote into host cell 
(macrophage depicted here) (3) Promastigote develops into intracellular 
amastigote. (4) Amastigotes proliferate within parasitophorous vacuole.  
(5) Amastigotes are released from host cell and can infect others. (6) Infected 
host cells are taken up into sand fly gut with bloodmeal. (7) Amastigotes are 
released and develop into ovoid procyclic promastigotes in midgut.  
(8) Promastigotes develop into long, non-dividing nectomonad promastigotes.  
(9) Nectomonads migrate to anterior gut. (10) Nectomonads become short 
leptomonad promastigotes. (11) Leptomonads develop into infective metacyclic 
promastigotes which are then transmitted into the mammalian host by sand fly 
bite (adapted from (Gossage et al., 2003a).  
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Figure 1-2: Female mounted Phlebotomus sp. sand fly. Image: CDC Public 
Health Image Library, from World Health Organisation, Geneva, Switzerland. 
 

1.2 Leishmaniasis and treatment 

1.2.1 The leishmaniases 

The leishmaniases are diseases of the tropics and subtropics, prevalent in the 

Old World (parts of the Mediterranean, Africa and Asia with the Middle East and 

India) and the New World (parts of Central and South America) (Fig. 1-3), with 

varying characteristics, depending on the Leishmania species causing the 

infection (Table 1-1). The three main forms of leishmaniasis are visceral, 

cutaneous and mucocutaneous.  

The visceral, most severe form of the disease (VL, also known as "kala azar") is 

caused by L. donovani and L. infantum in the Old World and L. chagasi in the 

New World. Symptoms can include fever, anaemia, organ swelling, intestinal 

ulcers and oedema and VL is often fatal if not treated. Skin lesions are 

characteristic of cutaneous leishmaniasis (CL); this type is caused by species of 

the L. major, L. braziliensis and L. mexicana complexes and symptoms extend 

from small, localised and self-healing ulcers to large disfiguring lesions that lead 

to necrosis of the skin and dissemination of the parasites through the body. The 

muco-cutaneous form of the disease (MCL) is prevalent only in the New World 

and caused by the L. Viannia subgenus, mainly L. braziliensis. Symptoms include 

lesions of nasal and oral tissue and the destruction of facial cartilage and bone. 
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The broad range of clinical symptoms of the leishmaniases reflects the varying 

impact of the different Leishmania species on the human immune system (Banuls 

et al., 2007; Murray et al., 2005). 

In the year 2000, the WHO estimated that 12 million people are infected with 

Leishmania, in over 88 countries worldwide, and every year around 60000 die of 

leishmaniasis with around 2 million new infections arising (WHO, Leishmaniasis 

fact sheet, 2000). These numbers are likely an under-estimate now (PAHO / 

WHO, Leishmaniasis 2007 update sheet); because of urban-rural migrations and 

growing poverty, the leishmaniases are spreading and are expected to become 

more prevalent in the future (Hommel, 1999). Additionally, Leishmania co-

infection of HIV patients (Fig. 1-3) as well as Leishmania transmission through 

shared use of needles among intravenous drug users is a growing concern 

(Jhingran et al., 2008; Alvar et al., 1997) 

 
Figure 1-3: Map of worldwide distribution of leishmaniases (reported cases, 
1990-1998). Light blue are areas of endemic leishmaniases, dark blue areas are 
affected by Leishmania-HIV co-infection (from WHO “Essential leishmaniasis 
maps”) 
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Table 1-1: Examples of clinically important species of Leishmania, the type of 
leishmaniasis they cause (VL = visceral leishmaniasis, LCL = localised cutaneous 
leishmaniasis, DCL = diffuse cutaneous leishmaniasis, MCL = muco-cutaneous 
leishmaniasis), and their geographic distribution. 

Species Disease type Geographic distribution 
L. donovani VL Old World 

L. infantum VL Old World 

L. chagasi VL New World 

   

L. major LCL Old World 

L. tropica LCL Old World 

L. aethiopica LCL, DCL Old World 

   

L. braziliensis LCL, MCL New World 

L. panamensis LCL, MCL New World 

L. peruviana LCL, MCL New World 

   

L. mexicana LCL, DCL New World 

L. amazonensis LCL, DCL New World 

L. pifanoi LCL, DCL New World 
 

1.2.2 Treatment and vaccination 

The main drugs for the treatment of leishmaniases are pentavalent antimonials 

like sodium stibogluconate ("Pentostam"), which have been used since the 1940s. 

These drugs can be very effective, but they need to be administered daily for 

three to four weeks, they can have serious side effects because of the toxicity of 

antimony, and resistant parasites are becoming more wide-spread. Additionally, 

leishmaniasis patients with an HIV co-infection cannot be treated well with 

antimonials and usually relapse. Newly developed drugs are being tested to treat 

the different forms of the disease. However, both old and new drugs have 

disadvantages, including high costs (liposomal amphotericin B “AmBisome”), 

toxicity (pentamidine), teratogenicity (miltefosine), long administration periods 

of several weeks, emerging drug resistance or unsuitability for treatment in HIV 

co-infection. Different drugs are more or less useful in different cases and 

geographical regions; it is unlikely that one optimal treatment will be found for 
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all leishmaniases (Berman, 2003; Melby, 2002; Croft and Coombs, 2003; 

Opperdoes and Michels, 2008; Ouellette et al., 2008). 

Currently there still is no effective Leishmania vaccine. "Leishmanisation", 

inoculation with live parasites, has traditionally been used for immunisation in 

Asia, but this can in some cases lead to a chronic infection. Research has been 

carried out with heat-inactivated adjuvant-supplemented Leishmania or 

Leishmania fractions, with drug-sensitive or genetically attenuated Leishmania 

mutants for live vaccines, as well as with all-defined vaccines like recombinant 

proteins or DNA vaccines (Khamesipour et al., 2006). Especially a vaccine 

composed of a recombinant Leishmania protein (SMT, a sterol 24-c-

methyltransferase) in adjuvant has shown some success (Goto et al., 2007), but 

further research will be needed before a reliable vaccine can be produced. 

1.3 Genomes and genetics 

The genome sequence of L. major was published in 2005 (Ivens et al., 2005f), 

L. braziliensis and L. infantum followed in 2007 (Peacock et al., 2007b) and the 

L. mexicana genome is currently being assembled. The L. major genome consists 

of 32.8 Mb with 8311 putative protein-coding genes, as well as 911 predicted 

RNA genes. Sequencing the genome has led to a "molecular toolkit" for working 

with Leishmania and analysing genes of interest. The widely used gene silencing 

technique RNAi (RNA interference) has only been observed to function in 

L. braziliensis; all other investigated species do not appear to contain all the 

required proteins (Peacock et al., 2007a; Smith et al., 2007). The genomes of 

T. brucei and T. cruzi were also published in 2005 (Berriman et al., 2005; El 

Sayed et al., 2005b). This now allows valuable comparisons among the 

trypanosomatid species (El Sayed et al., 2005a; Kissinger, 2006; Lynn and 

McMaster, 2008). 

Leishmania is diploid and carries 34 - 36 pairs of chromosomes (L. major 36, 

L. mexicana 34, L. braziliensis 35), although aneuploidy of several chromosomes 

has also been observed (Myler, 2008). Additionally, all kinetoplastids contain 

kDNA, the kinetoplast DNA of the mitochondrion. Leishmania contains a single 

large mitochondrion. Its DNA is contained within the kinetoplast and organised in 
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mini- and maxicircles (Campbell et al., 2003b; Beverley, 2003). Minicircles (0.8 - 

1.6 kb in size, 30 000 - 50 000 copies) encode guide RNA genes for RNA editing 

processes (Sturm and Simpson, 1990; Corell et al., 1993). The maxicircles (35 - 

50 kb in size, 10 - 30 copies per cell) encode the actual mitochondrial genome, 

which includes mitochondrial rRNA subunits (Simpson and Simpson, 1978; 

Campbell et al., 2003a). 

Most L. major genes are arranged in one of 133 directional clusters of up to 

several hundred genes, which are transcribed as polycistrons (Ivens et al., 

2005e; Myler et al., 1999; Worthey et al., 2003). Transcription initiation appears 

to be controlled by a small number of promoters in the strand-switch regions 

between two opposing transcription clusters (Martinez-Calvillo et al., 2003; 

Clayton, 2002; Thomas et al., 2009), although random initiation may also be 

taking place. The polycistronic transcripts are processed post-transcriptionally to 

produce monocistronic mRNAs. There is no or only little transcription regulation, 

most control takes place at the level of mRNA stability. Unwanted mRNAs are 

degraded after transcription (Clayton and Shapira, 2007a; Haile et al., 2008), 

while retained mRNAs are cleaved from the precursor transcript and processed 

by trans-splicing of a 39 nucleotide long spliced leader (SL) sequence to their 5' 

ends. This sequence is obtained from the SL-RNA (around 100 nt). In parallel to 

the 5' modification, the 3' end of the mRNA is poly-adenylated (Matthews et al., 

1994) (Clayton and Shapira, 2007b). The regulation of gene expression is an area 

of ongoing research as it shows some unique features in trypanosomatids. 

Sexual recombination in a meiosis-like manner has only recently been observed 

in Leishmania promastigotes, which were traditionally thought to be asexual. It 

appears that, in the sand fly stage, mating can occur between different parasite 

genotypes, leading to hybrid cells (Akopyants et al., 2009). 
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1.4 Host-parasite interactions of Leishmania 

1.4.1 The mammalian immune response 

An intracellular pathogen like Leishmania evades the humoral B-cell response 

(antibodies) of the host’s immune system and it is the T-cell-mediated immune 

response that is responsible for dealing with intracellular pathogens.  

Cytotoxic T-cells attack and kill infected antigen-presenting cells by inducing 

apoptosis. Antigen-presenting host cells are the dendritic cells, B-cells and 

macrophages. They present antigens bound to MHC (major histocompatibility 

complex) molecules on their surfaces. MHC class I proteins present cytosolic 

antigens to the cytotoxic T-cells. This process activates the T-cells and 

stimulates their proliferation (Alberts et al., 2002). 

The second group of T-cells, the T helper cells, is also induced by antigen-

presenting cells, but they do not kill directly, they produce cytokines that 

activate the infected macrophages to destroy their internal pathogens. Here, 

MHC class II proteins present the antigens, picked up by endocytosis, to the T 

helper cells. T helper cells also stimulate B-cells to produce antibodies and 

cytotoxic T-cells to proliferate. There are two major types of T helper cells, Th1 

and Th2. Naïve T helper cells develop into one of these types depending on the 

cytokines released by the antigen-presenting cells; IL-12 secretion by 

macrophages or dendritic cells for example triggers a Th1 response (Alberts et 

al., 2002). Infection with Leishmania leads to either a Th1 or a Th2 based 

immune response, depending on the genetic background and immunological 

status of the individual host (Alexander and Bryson, 2005b; Rogers et al., 2002a). 

The parasite has been shown to manipulate cytokine production in host cells, for 

example inhibiting secretion of IL-12 that is required for an inflammatory (Th1) 

response (Carrera et al., 1996; Weinheber et al., 1998b). 

Th1 helper cells are responsible for activating macrophages and further T-cells; 

they secrete the cytokines IFN-γ (interferon gamma) and TNF-α (tumor necrosis 

factor alpha). A Th1-based immune response triggers macrophages to attack and 

kill their pathogens with hydrolytic enzymes, reactive oxygen species and nitric 
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oxide, leading to a local inflammation and the elimination of the pathogen 

(Alberts et al., 2002). Therefore, a Th1 response is useful and protective against 

intracellular pathogens like Leishmania and presents itself in the self-healing 

cases of leishmaniasis (Alexander and Bryson, 2005c). 

Th2 helper cells stimulate B-cells and their antibody production by secreting a 

Th2-specific set of cytokines, including IL-4. Since antibodies cannot enter cells, 

this response only targets extracellular pathogens (Alberts et al., 2002), while 

intracellular pathogens like Leishmania can proliferate, establish a severe 

infection and even lead to the death of the host. A defective Th1 response (as is 

thought to cause the immunodeficiency of BALB/c mice) has a similar effect 

(Alexander and Bryson, 2005a). 

1.4.2 Leishmania and its mammalian host cells 

Leishmania are most vulnerable when they have just entered a mammalian host. 

They have left the insect environment and are not yet inside the host 

macrophage. Here, the promastigote parasite requires a whole array of 

strategies to evade the host immune system. The surface-bound display or actual 

secretion of virulence factors plays an important role at this stage, allowing the 

parasite to enter the host cell undetected. 

Leishmania appear to infect several different types of mammalian leukocytes, 

including neutrophils and dendritic cells, but it is thought that macrophages 

harbour the majority of Leishmania cells (Gregory and Olivier, 2005). Recent 

publications have presented evidence for an important role for neutrophils in the 

infection process. Neutrophils, which are the first phagocytes to arrive at the 

sand fly bite location, have been shown to ingest Leishmania. Infected 

neutrophils may then act as "Trojan horses" and silently introduce Leishmania 

into macrophages when they are phagocytosed themselves (Laskay et al., 2008). 

It still appears that macrophages do take up Leishmania directly, too, but 

perhaps neutrophils "rescue" parasites that would otherwise not have entered a 

macrophage. Or neutrophils release Leishmania again, possibly in a more 

resistant differentiation stage or enclosed in a host cell derived membrane. The 

released parasite can then be taken up by macrophages (Peters et al., 2008; 

John and Hunter, 2008a; Jochim and Teixeira, 2009) (Fig. 1-4).  
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Figure 1-4: Putative mechanisms of Leishmania uptake into neutrophils and 
macrophages at a sand fly bite site in a mammalian host. Left side: Silent entry 
of Leishmania into the macrophage (as “Trojan Horse”); L. major is taken up 
into neutrophil, this undergoes apoptosis and is then phagocytosed by a 
macrophage. Right side: Alternative mechanism; L. major is taken up by a 
neutrophil, then leaves it and is taken up by a macrophage afterwards. From 
(John and Hunter, 2008b) 
 

Once inside the macrophage, the parasites change the properties of the 

phagosome membrane and initially inhibit fusion with other vesicles. This delays 

vacuole maturation and the accumulation of harsh late endosomal properties 

until the parasites have developed into amastigotes (Desjardins and Descoteaux, 

1997a; Olivier et al., 2005b). Leishmania have been shown to downregulate 

nitric oxide production by downregulating iNOS (cytokine-inducible nitric oxide 

synthase) expression, to neutralise reactive oxygen species (ROS) and lysosomal 
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enzymes in the macrophage, and to interfere with the host immune system 

(Chan et al., 1989; McNeely et al., 1989; Proudfoot et al., 1996; Desjardins and 

Descoteaux, 1997b; De Souza et al., 1995d; Barr and Gedamu, 2003; Ghosh et 

al., 2003). 

The intracellular amastigote stage is more resistant to the hostile environment 

of the later phagolysosome and survives well in acidic pH (Burchmore and 

Barrett, 2001a). It relies on the host cell for a number of nutrients, which it 

sequesters from the degradative environment of the parasitophorous vacuole, 

including low molecular weight molecules like sugars, amino acids, lipids and 

phosphate. The vacuole can acquire further macromolecules and debris through 

fusion with other phagosomes. Amastigotes endocytose larger molecules from 

the vacuole lumen and they also have a large repertoire of intramembrane 

transporters for import of low molecular weight nutrients (Burchmore and 

Barrett, 2001b; McConville et al., 2007). 

Further manipulations of the host cell, such as the secretion of virulence factors 

and the internalisation and degradation of host MHC complex components 

(Antoine et al., 1999; De Souza et al., 1995c), enable Leishmania amastigotes to 

establish a persistent macrophage infection and replicate. After proliferation, 

the amastigotes are released from the host cell and can then infect other 

phagocytes or be taken up into a sand fly. It is not clear if the release of 

Leishmania involves bursting of the phagocyte or if the parasites are released by 

an exocytic process (Handman and Bullen, 2002). 

1.4.3 Leishmania and the sand fly vector 

The attachment of some Leishmania species, including L. major, to the sand fly 

gut epithelium is facilitated by the lipophosphoglycan LPG, which binds to insect 

cell surface galectins (Pimenta et al., 1992; Sacks et al., 2000). LPG is not only 

important for this process, but is also a virulence factor in the mammalian host 

stage. 

Leishmania promastigotes secrete a filamentous proteophosphoglycan (fPPG) 

that forms a gel-like mass, the parasite secretory gel (PSG) plug, in the anterior 

sand fly gut. In this environment, the cells can differentiate into infective 
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metacyclic promastigotes. The PSG plug seems to make feeding more difficult 

for the sand fly ("blocked fly hypothesis"), leading to an increase in feeding 

attempts and, therefore, more chances of parasite transmission to a mammal 

(Stierhof et al., 1999b; Ilg, 2000b; Rogers et al., 2002b). 

1.5 Virulence factors 

Leishmania virulence factors can be broadly classified into three groups: 

Surface-bound molecules, secreted / released molecules, and intracellular 

"pathoantigens" (Chang et al., 2003c). All virulence factors influence the host 

organism in favour of the parasite; they facilitate infection, propagate survival, 

persistence or replication of Leishmania and promote disease progression.  

1.5.1 Surface-bound virulence factors 

Surface molecules are exported via the flagellar pocket, where they are thought 

to be integrated into the pocket membrane and distributed to the surface 

membrane from there. Surface molecules can remain attached or be cleaved 

and released. 

The lipophosphoglycan LPG is the dominant non-protein surface molecule of 

most human-infective promastigotes and has been shown to act as a virulence 

factor in L. major (Spath et al., 2000). LPG consists of a polymer of repeating 

disaccharide-phosphate units with variable side-chain modifications and a 

neutral oligosaccharide on the end. It is anchored to the membrane by a GPI 

anchor. Its composition (length, side chain modifications) is specific to each 

Leishmania species and also life-stage dependent (Turco and Descoteaux, 1992). 

L. major LPG structure changes during metacyclogenesis; metacyclic 

promastigotes carry very long LPG, double the length of the procyclic 

promastigotes’ LPG (Sacks et al., 1990). Amastigote LPG is also larger than that 

of the promastigote form (in L. major) (Turco and Sacks, 1991b) or not 

detectable at all (in L. donovani) (McConville and Blackwell, 1991b).  

It appears that the dense LPG coat of metacyclic promastigotes facilitates 

attachment to the macrophage, shields the cell surface from attacks by the 

complement cascade, protects from proteolytic attacks in the host cell and 
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slows down phagosome maturation, thus allowing differentiation into the more 

resistant amastigote stage (Olivier et al., 2005a). LPG is not always a major 

virulence factor; some species like L. mexicana apparently do not require LPG 

for virulence (Ilg, 2000a; Turco et al., 2001c). 

The most prevalent protein on the surface of Leishmania is GP63 (or 

Leishmanolysin) and it is also a virulence factor. It is a GPI-anchored zinc 

metallopeptidase and has been found on all analysed Leishmania species and 

stages so far, although its abundance is reduced on amastigote cells in 

comparison to promastigotes (Frommel et al., 1990; Medina-Acosta et al., 1989). 

It was found to facilitate migration and binding to host cells, to hydrolyse host 

peptides, and to confer resistance to complement-mediated lysis, thus 

protecting the parasite in the mammalian host (Brittingham et al., 1999; Joshi 

et al., 2002; Russell and Wilhelm, 1986; Sorensen et al., 1994; Joshi et al., 

1998; McGwire et al., 2003; Seay et al., 1996). Amastigotes appear to express 

different types of GP63, without a GPI anchor, that have been observed to 

accumulate in the flagellar pocket area rather than on the entire surface (Hsiao 

et al., 2008). 

1.5.2 Secreted or released virulence factors 

Only a relatively small number of virulence factors secreted by Leishmania have 

been identified and characterised to date. 

Secretory acid phosphatase (SAcP or SAP), a glycoprotein, is secreted by 

Leishmania promastigotes (Gottlieb and Dwyer, 1982; Bates and Dwyer, 1987a; 

Bates et al., 1989c; Shakarian and Dwyer, 2000). In New World species like 

L. mexicana, SAcP is secreted as polymeric filaments, which may be assembled 

in the flagellar pocket (Ilg, 2000c). SAcP can dephosphorylate a broad range of 

substrates, possibly allowing it to influence the host in favour of the parasite 

(Bates and Dwyer, 1987b; Bates et al., 1989b; Doyle and Dwyer, 1993; Shakarian 

et al., 1997; Joshi et al., 2004a). L. donovani SAcP is resistant to a range of 

peptidases, which could contribute to its robust activity in the hydrolytic 

environment of the parasitophorous vacuole (Joshi et al., 2004b). 
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Another type of filamentous glycoprotein is also secreted by Leishmania, the 

secretory gel protein fPPG (filamentous proteophosphoglycan). It fills the 

flagellar pocket with a network of fibrous molecules and then emerges from it to 

surround the cell with a gel-like mass (Stierhof et al., 1999a). This plays a 

particular role in the survival of Leishmania in the sand fly gut. fPPG is 

transmitted into the mammalian host together with the parasites and has been 

shown to exacerbate the infection in the mammal, making it a virulence factor 

in the sand fly vector as well as in the mammalian host (Rogers et al., 2004). 

Certain secreted peptidases of Leishmania have also been shown to be important 

virulence factors (Mottram et al., 2004b). Cysteine peptidases can manipulate 

interleukin signalling, thereby suppressing a protective Th1 immune response 

and facilitating parasite survival (Weinheber et al., 1998a; Buxbaum et al., 

2003c; Mottram et al., 2004c). Additionally, cysteine peptidases have been 

observed to degrade components of MHC class II molecules, thus preventing 

parasite antigens being presented on the macrophage surface (De Souza et al., 

1995b). 

The L. major SIR2rp protein is an NAD-dependent deacetylase and a homologue 

of the yeast ageing regulator protein SIR2 (silent information regulator 2). In 

Leishmania it has been shown to be released, promote parasite survival and 

interfere with mammalian cell proliferation (Vergnes et al., 2002; Sereno et al., 

2005). 

Dwyer and colleagues identified LdNuc, a class I nuclease, as a secreted enzyme 

of L. donovani. It showed broad substrate specificity in vitro and may act as a 

virulence factor by cleaving a range of nucleic acids in the host cell, possibly to 

provide purines for the parasite metabolism (Joshi and Dwyer, 2007). 

Intriguingly, the genome of L. tarentolae, a lizard Leishmania that is not 

infective to mammals, contains homologues of several virulence factors from 

other Leishmania species. These include LPG, CPB and GP63 and it appears that 

either L. tarentolae is crucially missing a virulence factor that enables other 

species to infect mammals or it contains novel factors that prevent 

pathogenicity (Azizi et al., 2009). 
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1.5.2.1 The Leishmania "secretome" 

Elucidation of the Leishmania "secretome", the entirety of secreted / released 

proteins, will allow the identification of further secreted virulence factor 

candidates. As yet, experimental results are relatively scarce and have to be 

interpreted carefully. The experimental design for secretome analyses is 

hampered by technical problems. Efforts have concentrated on analysing 

promastigote culture supernatants. But promastigotes and amastigotes likely 

differ in their secretome and as amastigotes are the prevalent stage in 

mammalian infections, investigation of their secretome is highly relevant, too. 

The promastigote secretome will mainly include proteins involved in the insect 

stages of the life cycle, as well as - at a later stage - virulence factors for 

evading the mammalian immune system directly after infection and for entering 

macrophages. Chenik and colleagues (2005) analysed the culture supernatant of 

L. major stationary phase promastigotes and found known secreted proteins 

including heat shock and ribosomal proteins and the CPB cysteine peptidase, as 

well as several unknown proteins and ribosomal proteins that were not thought 

to be secreted (Chenik et al., 2006). More recently, Silverman and colleagues 

(2008) identified over 150 proteins in the L. donovani secretome, including 

peptidases like oligopeptidase B (OPB), macrophage migration inhibitory factor-

like protein (MIF), proteasomal proteins, the small GTPase Rab1, heavy chain 

clathrin and the LACK antigen. Surprisingly, only two of the 151 proteins 

contained a classical N-terminal signal peptide, suggesting that Leishmania may 

use alternative, non-canonical secretory signals instead (Silverman et al., 2008). 

1.5.3 Intracellular virulence factors ("pathoantigens") 

Secreted or surface-bound Leishmania molecules do not appear to elicit an 

immune response in mammals; they primarily facilitate establishment and 

replication of the parasite within phagocytes and are not highly immunogenic 

(Chang et al., 2003b). The Leishmania epitopes that do lead to an immune 

response are highly conserved intracellular proteins of the parasite cytoplasm, 

including heat shock proteins, acidic ribosomal proteins, histones and the LACK 

("Leishmania homologue of receptors for activated C kinase") antigen (Requena 

et al., 2000b). Some of these antigens are species-specific, for example the 
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LACK antigen, which is a virulence factor in L. major but not in L. mexicana 

(Torrentera et al., 2001). These "pathoantigens" are thought to be released from 

intracellular amastigotes that have undergone lysis. The antigens are then 

processed by antigen presenting cells and presented to the immune system on 

their surface, using the MHC pathways. Is it not clear whether some amastigotes 

lyse within intact host cells, which could then present the antigens themselves 

using the MHC class I system, or whether the host cell disintegrates too and the 

antigenic components are endocytosed by other phagocytes and presented in an 

MHC class II-dependent manner (Chang et al., 2003a; Requena et al., 2000a). 

1.6 Leishmania peptidases 

Peptidases are enzymes that cleave peptide bonds. There are five major groups 

of peptidases: aspartic, cysteine, serine, threonine and metallopeptidases. The 

L. major genome encodes at least 154 such proteins, including members of all 

groups (Fig. 1-5) (Besteiro et al., 2007e; Ivens et al., 2005d). Many of these 

peptidases have not been characterised as yet. Some of the well-studied 

Leishmania peptidases are known virulence factors, including the surface 

metallopeptidase GP63 and the cysteine peptidase CPB. The importance of 

peptidases, especially cysteine peptidases, for parasite virulence makes these 

enzymes potential drug targets or vaccine components (Mottram et al., 1996c; 

Selzer et al., 1999; Alexander et al., 1998a; Pollock et al., 2003a). 

In mammals, peptidase activity can be controlled by peptidase inhibitors like 

serpins or cystatins, but none of these are found in the Leishmania genome. 

Leishmania does contain two classes of inhibitors, ICPs (cysteine peptidase 

inhibitors) and ISPs (serine peptidase inhibitors), both of which are thought to be 

involved in inhibiting host enzymes rather than the parasite's own (Besteiro et 

al., 2004; Besteiro et al., 2007d; Eschenlauer et al., 2009). 
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Figure 1-5: Clans and families of all identified L. major peptidases. Numbers 
(blue, in brackets) are putative number of members of each peptidase type. 
Adapted from (Besteiro et al., 2007c) 
 

1.6.1 Leishmania cysteine peptidase B (CBP)  

The most extensively studied cysteine peptidases of Leishmania are the papain-

like enzymes of Clan CA, including the cathepsin L-like cysteine peptidases CPA 

and CPB and the cathepsin B-like CPC (Besteiro et al., 2007f; Mottram et al., 

2004d).  

The cysteine peptidase B (CPB) is encoded on several genes in a tandem array 

(eight genes in L. major, 19 in L. mexicana). It is a stage-regulated lysosomal 

peptidase that has been detected mainly in the amastigote megasome, but also 

in the promastigote MVT (multivesicular tubule)-lysosome. It has been shown to 

act as a virulence factor. L. mexicana CPB-deficient mutants can still infect 

mouse macrophages, but mouse footpad lesions develop and progress much 

slower than in a wild type infection or even self-heal, depending on the 

susceptibility of the mouse strain. An L. mexicana double mutant lacking CPA in 
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addition to CPB shows an even stronger attenuation of virulence with no lesion 

development, suggesting that CPA also acts as a virulence factor (Buxbaum et 

al., 2003b; Mottram et al., 1996b; Mottram et al., 1997; Mottram et al., 1998). 

The effect of CPB appears to depend on the immune status of the host and on 

the Leishmania species, though. In BALB/c mice, CPB actively promotes a Th2 

immune response instead of the protective Th1 (Alexander et al., 1998b; Pollock 

et al., 2003b; Mottram et al., 2004e). In other mice (C3H), L. mexicana CPB 

seems to actively suppress a Th1 response, resulting in persistent and non-

healing infection; an L. major infection on the other hand is cleared (Buxbaum 

et al., 2003a). Further investigations have shown that CPB - as well as CPA - is 

crucial for autophagy in L. mexicana. Doubly deficient cells showed an 

accumulation of non-degraded autophagosomal material, reduced viability and 

inhibition of metacyclogenesis, which can explain the attenuated virulence of 

the double mutant (Williams et al., 2006c). 

CPB is trafficked to the lysosome, its final destination, along a direct as well as 

an indirect route. It is synthesised in the ER as an inactive zymogen containing a 

pre- and a pro-domain. From the ER it is either taken directly to the lysosome or 

it can be trafficked via the Golgi into the flagellar pocket, where the pre-

peptide is cleaved. Some of the enzyme is then released into the 

parasitophorous vacuole of the macrophage, while the rest is re-endocytosed 

and transported to the lysosome. The pro-domain is cleaved off after arrival, 

which activates the enzyme (Brooks et al., 2000a; Mottram et al., 2004g; Huete-

Perez et al., 1999b). 

Released CPB is thought to degrade NFĸB (nuclear transcription factor kappa B) 

and IĸB (inhibitory NFĸB) in the macrophage cytoplasm (Cameron et al., 2004). 

It has been found to be present even outside the host macrophages, in the 

extracellular matrix (Ilg et al., 1994), and it appears to manipulate the host 

immune system and induce a Th2 response. It remains unclear how the enzyme 

is transported across the membranes from the parasitophorous vacuole into the 

host cell cytoplasm and further on into the extracellular matrix (Mottram et al., 

2004f). Another reported function of cysteine peptidases is the degradation of 

MHC class II complexes in the parasitophorous vacuole, which allows the parasite 

to prevent antigen presentation and an immune response (De Souza et al., 

1995a). 
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1.7 The Leishmania cell 

Leishmania promastigotes are about 15 - 20 μm long with a flagellum of at least 

the same length. Amastigotes on the other hand are rounded with a diameter of 

only 2 - 4 μm. Both cell types show a polar morphology. They contain a nucleus 

and an endoplasmic reticulum (ER), one Golgi apparatus, a single large 

mitochondrion, the peroxisome-related glycosomes, endosomes, a large 

lysosome and a flagellum at the anterior pole of the cell (Fig. 1-6). The 

flagellum emerges from the flagellar pocket, an apical invagination of the cell 

membrane. The shape of the cell and the polarity of endo- and exocytosis are 

maintained by a crosslinked layer of subpellicular microtubules beneath the 

plasma membrane, with the exception of the flagellar pocket membrane. A set 

of large microtubules is also found in the cytoplasm, alongside the tubular 

lysosome, and it is thought to be important for this organelle’s structure (Mullin 

et al., 2001f; Waller and McConville, 2002d; Weise et al., 2000d). 

 
Figure 1-6: Overview of Leishmania promastigote with organelles. Black arrows 
show general endo- and exocytic protein trafficking routes. 
 

The surface membrane of Leishmania cells contains some specific and unusual 

molecules. Non-protein bound GIPLs (glycoinositol phospholipids) and LPG 

(lipophosphoglycan) form a dense surface coat, together with GPI (glycosyl-

phosphatidyl-inositol)-anchored proteins like GP63 (Naderer et al., 2004; Turco 

et al., 2001b). GPI anchors are remarkably common on Leishmania surface 

molecules, but the significance of this is as yet not clear. GPI-anchored proteins 
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appear not to be essential for growth and virulence of the parasite (Hilley et al., 

2000). Transmembrane proteins, abundant in the plasma membranes of other 

eukaryotes, are comparatively rare on the Leishmania surface (Ghedin et al., 

2001i). The amastigote surface contains no LPG or less than that of 

promastigotes, and instead mainly free GPIs and glycosphingolipids acquired 

from the membrane of the parasitophorous vacuole of the host cell (Turco et al., 

2001a; Turco and Sacks, 1991a; McConville and Blackwell, 1991a; Winter et al., 

1994). 

1.7.1 The flagellar pocket 

The flagellar pocket is an invagination of membrane around the base of the 

flagellum, which lacks the subpellicular microtubule scaffold. The pocket lies on 

the outside of the cell, but is still separated from the environment by 

desmosome-like junctions around the flagellum. Its membrane composition 

differs from the cell body surface and it is the sole site of endocytosis and 

exocytosis, for example for the uptake of nutrients or the secretion of virulence 

factors (Landfear and Ignatushchenko, 2001a; de Souza, 2002a; McConville et 

al., 2002i). Only here is the membrane accessible and sufficiently flexible for 

vesicle fusion and budding (Webster and Russell, 1993). Endocytic and exocytic 

(secretory) trafficking pathways converge at the pocket and it is an important 

protein sorting station. Surface molecules like GPI-anchored proteins are 

distributed to the cell surface from the pocket. Secreted proteins can 

accumulate in the pocket, be released into the environment directly or be 

internalised again into the endocytic pathway (McConville et al., 2002h). In 

promastigotes, the beating of the flagellum may aid a constant efflux out of the 

pocket (Ghedin et al., 2001h; Bates et al., 1989a). 

The flagellum appears to not only be important for motility, adhesion to the 

sand fly gut (Killick-Kendrick et al., 1974; Warburg et al., 1989) and possibly 

flagellar pocket function and biogenesis. Recent studies suggest that amastigote 

flagella interact with the membrane of the parasitophorous vacuole (Gluenz et 

al., 2009). Furthermore, the flagellum may also play a role as a sensory 

organelle, similar to sensory cilia in higher eukaryotes, as has been suggested in 

trypanosomes (Oberholzer et al., 2007; Ralston et al., 2009). 
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1.7.2 Intracellular protein trafficking 

Rapid protein trafficking and degradation are particularly important for a 

parasite like Leishmania, as its different hosts and habitats and the changes 

between the highly adapted life cycle stages require fast and efficient protein 

turnover. To ensure this, the organelles of the endocytic and exocytic / 

secretory pathways like the Golgi and the endosomes are localised close to the 

flagellar pocket membrane, where endo- and exocytosis take place. This 

supports a rapid variation of surface molecules and virulence factors, as well as 

fast changes of cell shape and morphology during the life cycle (Morgan et al., 

2002a; Waller and McConville, 2002a). 

As in other eukaryotes, the major routes of vesicular traffic, both endocytic and 

intracellular, are mediated by clathrin-coated vesicles (CCVs) in Leishmania 

(Weise et al., 2000c; de Souza et al., 2009; Denny et al., 2005a). These have an 

outer coat of clathrin molecules and beneath this a layer of one type of adaptor 

protein (AP) complex. Such vesicles are formed from clathrin-coated pits in the 

donor membrane. The pits invaginate, engulf the cargo molecules and bud off as 

transport vesicles. Upon arrival at the destination membrane, the clathrin coat 

merges with the target and the cargo is released into the new compartment or 

the environment (Hirst and Robinson, 1998; Bonifacino and Traub, 2003; Alberts 

et al., 2002). 

Apart from clathrin-coated vesicles, there also are other common vesicle 

trafficking mechanisms. The COP-I and COP-II (coatamer I and II) vesicle systems 

function primarily within the Golgi and between the Golgi and the ER; lipid rafts 

and caveolae (flask-like invaginations of the membrane) are other important 

pathways. Homologues of many components of these mechanisms, as well as 

caveolae-like formations and lipid rafts have been found in Leishmania (Denny et 

al., 2001; Morgan et al., 2002b; McConville et al., 2002g). So it seems that most 

of the eukaryotic membrane transport compartments are conserved in 

Leishmania (McConville et al., 2002f). 

A group of SNAREs (soluble N-ethylmaleimide-sensitive factor (NSF) attachment 

protein (SNAP) receptors) is important for the correct targeting of vesicles to a 

destination membrane, and also for tethering and fusion. When two cellular 
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compartments are about to fuse, SNAREs of both membranes interact to promote 

docking and fusion of vesicle and target membrane (Jahn and Scheller, 2006). 25 

proteins with SNARE-domains have been identified in the L. major genome. GFP-

labelling of several Leishmania SNAREs showed that they localise at the Golgi, in 

late endosomes, lysosomes or near the flagellar pocket. This supports the notion 

that the endo- and exocytic vesicle transport pathways are important and well-

developed in L. major (Besteiro et al., 2006b).  

For proteins to be recognised as cargo for specific vesicles, they require sorting 

signals, which are usually short amino acid sequences situated in the cytoplasmic 

domain of a protein. They are recognised and bound by adaptor protein 

complexes like APs. A variety of such signals has been studied to date. For 

membrane proteins, they include tyrosine- and dileucine-based motifs 

(Bonifacino and Traub, 2003). 

1.7.2.1 Protein synthesis 

Eukaryotic proteins are synthesised at the ribosomes, which are either free in 

the cytosol or bound to the endoplasmic reticulum (rough ER). Especially 

transmembrane proteins and secretory proteins are synthesised in the ER-bound 

ribosomes and are directly, co-translationally imported into the ER membrane or 

lumen. An N-terminal ER-signal sequence is essential for this import process. 

This signal is recognised by the SRP (signal recognition particle), which mediates 

import into the ER; the ER targeting signal is cleaved after the protein has been 

translocated. In the ER, proteins can be modified, for example glycosylated, or a 

GPI anchor can be added. Secretory proteins traffic from the ER to the Golgi 

apparatus where further modifications can take place, are transferred to the 

trans-Golgi network (TGN) and then to their final destination, for example the 

cell surface or organelles like the lysosome or the acidocalcisomes. These 

transport steps are facilitated by transport vesicles shuttling between 

compartments (Alberts et al., 2002). Leishmania possess much the same general 

mechanisms of protein synthesis as higher eukaryotes (McConville et al., 2002e). 
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1.7.2.2 Endo- and exocytosis 

In Leishmania promastigotes, the endocytic pathway consists of tubular early 

endosomes near the flagellar pocket, followed by late endosomes (or 

"multivesicular bodies") with characteristic internal vesicles and one large 

tubular MVT (multivesicular tubule)-lysosome (Ghedin et al., 2001g; Mullin et 

al., 2001e; Weise et al., 2000b; Waller and McConville, 2002b). Endocytosed 

molecules are internalised in clathrin-coated vesicles at the flagellar pocket 

membrane and passed into the endosomal system. There are several distinct 

populations of endosomes, characterised by their respective composition of Rab 

proteins. These are small monomeric GTPases of the Ras superfamily and are 

important for regulating endocytic processes in eukaryotic cells including 

kinetoplastids (McConville et al., 2002c; Engstler et al., 2007). Several Rab 

proteins have been identified in kinetoplastids, including Rab1 in the Golgi 

(Besteiro et al., 2006a; Dhir et al., 2004b), Rab5 in early endosomes in the 

flagellar pocket region (Marotta et al., 2006; Singh et al., 2003) and Rab7 in 

early as well as late endosomes (Patel et al., 2008; Denny et al., 2002). So the 

Leishmania endosome network appears to be similar to that of other organisms, 

while the single large MVT-lysosome is unusual; mammalian cells contain several 

smaller lysosomal vesicles. Exocytosis of proteins in kinetoplastids is thought to 

be mediated by transport vesicles between the Golgi apparatus and the flagellar 

pocket membrane (McConville et al., 2002b; Engstler et al., 2007). 

1.7.2.3 Protein degradation       

The main sites of protein degradation in the cell are the lysosome and the 

proteasome. Intracellular proteins destined for degradation can be targeted to 

the lysosome through the autophagy pathway. Alternatively they can be targeted 

to the cytosolic proteasome for degradation. Ubiquitination is an important 

mechanism for labelling proteins for hydrolysis and Leishmania has a number of 

genes encoding ubiquitination enzymes (Ivens et al., 2005c; Besteiro et al., 

2007g). Furthermore, the kinetoplastids are the only eukaryotes found so far 

that contain not only a conserved eukaryotic 20S proteasome (Wang et al., 2003; 

Robertson, 1999b), but also a HslVU proteasome of prokaryotic origin in the 

mitochondrion (Li et al., 2008; Couvreur et al., 2002; Ivens et al., 2005b). 
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The (macro-) autophagy pathway is a major mechanism of protein delivery to 

the lysosome. It is active particularly in starvation periods and during cellular 

differentiation. Autophagosomes, double-membraned vesicles, deliver cyto-

plasmic proteins and organelles to the lysosome for digestion (Levine and 

Klionsky, 2004; Luzio et al., 2003b; Yoshimori, 2004). The autophagy pathway 

requires several autophagy-related (ATG) proteins, which interact in two 

separate pathways contributing to the autophagy mechanism (Levine and Yuan, 

2005). Autophagy in Leishmania is dependent on the activity of lysosomal 

peptidases like CPA and CPB (Williams et al., 2006b; Williams et al., 2009), 

which are involved in the degradation of autophagosomes and their contents 

after fusion of autophago- and lysosome. Autophagy appears to be crucial for 

cell differentiation events like metacyclogenesis and the maturation of 

metacyclic promastigotes to amastigotes and is, therefore, linked to the 

parasite’s survival and virulence (Besteiro et al., 2006c; Besteiro et al., 2007a; 

Williams et al., 2006a).  

Proteins that are internalised into the cell via endocytosis are also taken to the 

lysosome for degradation. They pass through the early and late endosomes of 

the endocytic pathway and the degradation process begins in hybrid 

compartments that are formed when endosomes and lysosomes exchange 

content or fuse. After degradation is complete, the resulting amino acids can be 

exported from the mature lysosomes and used by the cell (Luzio et al., 2003a). 

It appears that the endocytic pathway of Leishmania is generally similar to that 

of higher eukaryotes and endosomes transport internalised protein cargo to the 

single large lysosome or – in amastigotes – the megasomes (de Souza et al., 2009; 

McConville et al., 2002d).  

1.7.3 The lysosome 

Lysosomes are the most important organelles for protein degradation in a 

eukaryotic cell. These membrane-bound acidic compartments contain many 

different acid hydrolases, for example peptidases. They degrade 

macromolecules, which are transported from endocytic vesicles through early 

and late endosomes to lysosomes. Content exchange between endo- and 

lysosomes appears to be mediated by transient "kiss-and-run" contact as well as 
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by direct fusion and creation of hybrid compartments, where degradation of 

macromolecules mainly takes place (Bright et al., 2005; Luzio et al., 2007b). In 

addition, lysosomes can interact with autophagosomes and also with the plasma 

membrane for exocytic purposes, for example retrograde transport of some 

surface receptors for recycling after their usage as a carrier into the lysosome. 

Other lysosome-like compartments have been termed "secretory lysosomes"; 

they are distinct from "normal lysosomes" and transport newly synthesised 

secretory proteins to the cell surface. Examples of secretory lysosomes are 

melanosomes, platelet dense granules and MHC class II compartments (Luzio et 

al., 2007a; Blott and Griffiths, 2002). There are different lysosome-related 

organelles (LROs) in various organisms and certain cell types, for example the 

pigment granules of skin melanocytes and the Drosophila eye, as well as the 

dense granules of blood platelets (Luzio et al., 2003c). 

Leishmania cells have a single mature lysosome with a unique morphology. In 

late promastigote cells, it is the multivesicular tubule (MVT) lysosome, a large 

tubular structure that stretches along the length of the cell and contains many 

internal vesicles (Ghedin et al., 2001f; Mullin et al., 2001d; Weise et al., 2000a). 

The MVT lysosome and the endosomal pathway can be targeted with different 

endosomal markers like FM4-64 (a red fluorescent live imaging probe), which is 

endocytosed and passed through the early and late endosomes to the lysosome 

(Mullin et al., 2001c; Besteiro et al., 2006d). pH-sensitive markers like 

LysoTracker do not label the lysosome particularly well, suggesting that it is not 

as acidic in Leishmania as in other organisms (Mullin et al., 2001b). In 

Leishmania, LysoTracker preferentially labels acidocalcisomes, which appear to 

be more acidic than the lysosome in these cells (Ghedin et al., 2001e; Besteiro 

et al., 2008n). Fixing cells for fluorescent labelling has been shown to 

disintegrate the MVT, leading to a string of small vesicles instead of one large 

tubule (Ghedin et al., 2001d). Therefore, live imaging probes are preferable for 

fluorescence microscopy of the MVT lysosome. 

Amastigotes of the L. mexicana and L. donovani complexes contain different 

forms of large lysosomes, called megasomes, which can be found in large 

numbers and occupying up to 15 % of the total cell volume (Alexander and 

Vickerman, 1975; Coombs et al., 1986; Ueda-Nakamura et al., 2001b; de Souza, 

2002b). 
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1.7.4 Protein trafficking to the lysosome 

Proteins from the extracellular environment or the parasite surface are 

delivered to the Leishmania lysosome for degradation through the endocytic 

pathway. Furthermore, intracellular proteins and organelles that require 

lysosomal degradation can be taken to the lysosome via the autophagy pathway. 

Proteins are then hydrolysed and the amino acids are used in the parasite’s 

metabolism. 

On the other hand, newly synthesised Leishmania proteins are also targeted to 

the lysosome from biosynthetic pathways at the endoplasmic reticulum (ER) and 

the Golgi. Such proteins can be hydrolases for the lysosomal lumen or integral 

proteins of the lysosomal membrane. Lysosomal targeting appears to take two 

alternative routes, either directly from the Golgi to endo- or lysosomes, or 

indirectly via the cell surface at the flagellar pocket and subsequent re-

endocytosis (McConville et al., 2002k). 

In mammals, newly synthesised luminal lysosomal hydrolases are targeted to the 

lysosome from the trans-Golgi network through the mannose-6-phosphate 

pathway. This involves a mannose-6-phosphate modification of the enzymes 

after biosynthesis, binding to mannose-6-phosphate receptors (MPRs) and 

subsequent vesicular transport of the enzymes to endosomes. By definition, 

absence of MPRs distinguishes lysosomal membranes from all other endosomal 

membranes in mammals (Luzio et al., 2007c; Bonifacino and Traub, 2003). The 

mannose-6-phosphate pathway is thought to be absent from kinetoplastids and it 

is not known what mechanism replaces it, possibly a kinetoplastid-specific 

pathway (Cazzulo et al., 1990; Brooks et al., 2000b; Allen et al., 2007a). Newly 

synthesised lysosomal membrane proteins do not require the mannose-6-

phosphate pathway but are trafficked by transporters like the multimeric carrier 

complex AP3, either directly from the trans-Golgi to endo- and lysosomes or 

along an indirect route via the plasma membrane (Luzio et al., 2007d). Two 

types of targeting motifs for lysosomal membrane proteins have been studied in 

detail so far, tyrosine motifs and dileucine motifs in the C-terminal domains of 

lysosomal membrane proteins. Canonical tyrosine sites consist of a YXXØ motif 

(with Ø being a bulky hydrophobic residue) or, alternatively, an NPXY motif (for 
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internalisation of certain membrane proteins). Canonical dileucine sites show a 

[D/E]XXXL[L/I] or DXXLL motif. Sorting by tyrosine and dileucine signals is 

thought to depend on recognition and interaction with adaptor protein (AP) 

complexes (Bonifacino and Traub, 2003). Tyrosine and dileucine signals have 

been shown to exist and play a role in kinetoplastids’ lysosomal trafficking 

(Tazeh and Bangs, 2007a; Weise et al., 2005). 

1.7.5 The acidocalcisomes 

Acidocalcisomes are small, acidic organelles that can be found in many 

eukaryotic cells including Leishmania (Vannier-Santos et al., 1999b). They are 

electron-dense, rounded granules with a diameter of ~ 200 nm (up to 1.2 μm in 

L. amazonensis under certain conditions (Miranda et al., 2004c), and they 

contain high concentrations of calcium, polyphosphates, magnesium and other 

ions (Docampo and Moreno, 1999; Docampo and Moreno, 2001b; Miranda et al., 

2004b). Kinetoplastid acidocalcisomes have been observed to align, possibly 

along a cytoskeletal structure, and they can accumulate at the posterior end of 

the cell (Mullin et al., 2001a; Docampo and Moreno, 2001a; Waller and 

McConville, 2002c). Their membrane contains proton and calcium pumps, ion 

exchangers and aquaporins (Fig. 1-7), but their function and their origin are not 

clear (Docampo et al., 2005c).  

Acidocalcisomes were first identified in trypanosomes (Vercesi et al., 1994), but 

acidocalcisome-like organelles are conserved from bacteria to humans (in blood 

platelets), so they might have a conserved function (Docampo et al., 2005a). 

They may act as dynamic storage organelles, especially for polyphosphate and 

calcium, and contribute to pH- and osmoregulation, adaptation to environmental 

stress or regulation of calcium levels in signalling (Ruiz et al., 2001; Rohloff and 

Docampo, 2006; Lefurgey et al., 2005; Moreno and Docampo, 2009a; Miranda et 

al., 2004a). Recent work on the soluble VPS1 pyrophosphatases of the 

acidocalcisome lumen in T. brucei and L. amazonensis indicates that these 

proteins, or indeed fully functional acidocalcisomes, are required for virulence 

(Lemercier et al., 2004; Espiau et al., 2006). 

Their acidic pH suggests that the acidocalcisomes are related to the acidic endo-

/ lysosomal compartments. However, at the same time endocytic markers like 
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FM4-64 are not passed on from the endocytic pathway to the acidocalcisomes, 

which suggests they are independent and do not exchange content with endo- or 

lysosomes (Mullin et al., 2001g; Docampo and Moreno, 2001c; Miranda et al., 

2000; Scott et al., 1997). Nevertheless, Leishmania treated with sterol 

biosynthesis inhibitors were observed to accumulate endocytic markers in their 

acidocalcisomes (Vannier-Santos et al., 1999a), and Leishmania mutants with a 

sphingolipid deficiency have been shown to lack late endosomes as well as 

acidocalcisomes (Zhang et al., 2005), suggesting a common origin of 

acidocalcisomes and endo-/lysosomal organelles. However, fractionation 

experiments have shown that acidocalcisomes and lysosomes differ in size and 

protein composition (Scott and Docampo, 2000). For fluorescence microscopy 

analyses, acidocalcisomes can be labelled with the dyes LysoTracker and 

Acridine Orange (which accumulate in acidic compartments), or DAPI (which 

labels polyP-enriched compartments) (Ghedin et al., 2001c; Besteiro et al., 

2008m). 

Apart from acidocalcisomes, there is a variety of other acidic lysosome-related 

organelles (LROs) in different organisms and cell types, including melanosomes 

and platelet dense granules of blood platelets. They are distinct from lysosomes 

in morphology and function, but appear to share certain characteristics like 

targeting pathways for their membrane proteins (Dell'Angelica et al., 2000a; 

Cutler, 2002). All LROs may share a common origin of biosynthesis (Moreno and 

Docampo, 2009b). 
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Figure 1-7: Schematic of acidocalcisome organelle with transporters and 
location of stored molecules (Moreno and Docampo, 2009c). 
PPi: pyrophosphate, Pi: phosphate, poly P: polyphosphate, V-H+-PPase: vacuolar 
proton pyrophosphatase, V-H+-ATPase: vacuolar ATPase, PPK: poly P kinase,  
PPX: exopolyphosphatase, PPase: pyrophosphatase. 
 

1.7.6 The adaptor protein (AP) complexes 

Several endo- and exocytic protein trafficking routes depend on a group of 

cytoplasmic adaptor protein (AP) carriers. These are large multimeric protein 

complexes that are an important factor in the clathrin-mediated formation and 

targeting of transport vesicles and the recruitment of cargo molecules 

(Robinson, 2004b). Four such complexes, AP1, AP2, AP3 and AP4, have been 

identified in humans to date. L. major as well as Saccharomyces cerevisiae, 

Caenorhabditis elegans and Drosophila melanogaster contain AP1, AP2 and AP3, 

but lack AP4 (Boehm and Bonifacino, 2001a; Robinson, 2004a; Denny et al., 

2005b). This points to the AP carriers as an ancient component of eukaryotic 

cells and suggests that they were already present before the point of 

kinetoplastid speciation (Denny et al., 2005c). Each adaptor complex consists of 

a characteristic combination of four complex-specific subunits or adaptins:  

β (large), μ (medium) and σ (small), as well as one of γ, α, δ and ε (all large). 
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The subunits form a rounded shape with two protruding "ears" (Fig. 5-2 in 

chapter 5). 

Different localisations and functions have been observed for the four APs (Boehm 

and Bonifacino, 2002d). AP1 has been associated with protein traffic between 

the trans-Golgi network and late endosomes and lysosomes; it interacts with 

clathrin-coated pits to form vesicles (Gallusser and Kirchhausen, 1993). As does 

AP2, which is involved in endocytosis from the plasma membrane and has been 

observed to deliver membrane proteins to the lysosome (Janvier and Bonifacino, 

2005). AP3 transports membrane proteins from the trans-Golgi network to 

lysosomes, apparently also in association with clathrin (Dell'Angelica et al., 

1998a). Little is known about the function of AP4; it has been found on the Golgi 

and on endosomes, it appears to be involved in targeting proteins to the 

lysosome but it is not clear whether it interacts with clathrin (Barois and Bakke, 

2005; Hirst et al., 1999a; Aguilar et al., 2001; Boehm and Bonifacino, 2002c; 

Dell'Angelica et al., 1999a). To be recognised and trafficked by APs, proteins 

have to present certain binding motifs. AP1, AP2 and AP3 have been shown to 

recognise dileucine and tyrosine binding motifs via their μ subunits (Ohno et al., 

1996c; Ohno et al., 1998d; Dell'Angelica et al., 1997a; Vowels and Payne, 1998; 

Bonifacino and Dell'Angelica, 1999).  

In mammalian cells, two additional adaptin-like carrier protein families have 

been found, the GGAs (Golgi-localised γ-ear containing AFR-binding proteins) 

and the stonins, but these are monomeric and not part of AP complexes (Boehm 

and Bonifacino, 2001b). Neither GGAs nor stonins have been found in the 

kinetoplastids (Field and Carrington, 2004). 
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Aims of project 

L. major manipulates its hosts by secreting virulence factors, such as the 

lysosomal cysteine peptidase CPB. This suggests that other peptidases may also 

be secreted in a similar way. Additionally, the Leishmania lysosome plays a role 

in parasite virulence and survival by facilitating rapid protein turnover and, 

therefore, fast differentiation, cell remodelling and adaptation to the different 

environments during the life cycle. The lysosome-like acidocalcisomes have also 

been shown to be important for Leishmania virulence, but it is not known how. 

Thus, this thesis has the following aims: 

1.) The screening of several L. major peptidases for their intracellular 

localisation, so as to identify a novel peptidase that is secreted and may act as a 

virulence factor. 

2.) The identification of an L. major LAMP (lysosome-associated membrane 

protein) which will be useful as a lysosomal marker and allow a closer 

investigation of the structure and function of this organelle. 

3.) Further investigation of L. major acidocalcisomes by analysing the 

intracellular localisation and targeting of the acidocalcisomal proton pump 

V-H+-PPase.
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2. Material and Methods 

2.1 Bioinformatics 

2.1.1 Gene DB 

The DNA and amino acid sequences for all genes of interest were obtained from 

the L. major genome database on GeneDB (www.genedb.org). 

2.1.2 Vector NTI 

DNA and amino acid sequence analyses as well as the in silico design of plasmids 

and oligonucleotide primers for PCRs were performed using the Vector NTI 

software package (Invitrogen), including the sequence alignment tool AlignX 

(ClustalW algorithm) and the sequencing analysis tool ContigExpress. 

2.1.3 DNA Sequencing 

All DNA samples (plasmids or PCR products) were sequenced by the Sequencing 

Service of the University of Dundee (www.dnaseq.co.uk). Sequencing results 

were analysed using the Vector NTI application ContigExpress (Invitrogen). 

2.1.4 Predictions of protein properties and topologies 

Properties and topological features of proteins were predicted using several 

different prediction programmes and websites (Table 2-1). 
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Table 2-1: All protein prediction and sequence analysis tools, algorithms and 
databases used in this study, with source and website for access. 

Programme Source /  Website 

TargetP 1.1 
Center for Biological Sequence Analysis (CBS), Technical 
University of Denmark, Lyngby, Denmark. 

http://www.cbs.dtu.dk/services/TargetP/ 

SignalP 2.0 and 3.0 
Center for Biological Sequence Analysis (CBS), Technical 
University of Denmark, Lyngby, Denmark. 

http://www.cbs.dtu.dk/services/SignalP/ 

MitoProt II (v1.101) 
Helmholtz Center Munich, Institute of Human Genetics, 
Technical University of Munich, Germany. 

http://ihg2.helmholtz-muenchen.de/ihg/mitoprot.html 

SOSUI 1.11 
Dept of Applied Physics, Nagoya University, Japan. 

http://bp.nuap.nagoya-u.ac.jp/sosui 

HMMTOP 2.0 
Institute for Enzymology, Hungarian Academy of Sciences, 
Budapest, Hungary.  

http://www.enzim.hu/hmmtop/ 

TMPres2D 

For visualisation of 
HMMTOP results. 

Biophysics & Bioinformatics Laboratory, University of Athens, 
Athens, Greece. 

http://biophysics.biol.uoa.gr/TMRPres2D/index.jsp 

TMHMM 2.0 
Center for Biological Sequence Analysis (CBS), Technical 
University of Denmark, Lyngby, Denmark. 

http://www.cbs.dtu.dk/services/TMHMM/ 

Phobius 
Stockholm Bioinformatics Center, Stockholm, Sweden. 

http://phobius.sbc.su.se/ 

big-PI 
Institute of Molecular Pathology (IMP), University of Vienna, 
Vienna, Austria. 

http://mendel.imp.ac.at/gpi/gpi_server.html 

Merops Peptidase 
Database 

Information on all known peptidases and tool for identification 
of active site residues. At the Wellcome Trust Sanger Institute, 
Cambridge, UK. 

http://merops.sanger.ac.uk/ 

NCBI BLAST 

Website for BLAST (Basic Local Alignment Tool) analyses of 
DNA and protein sequences. At the National Center for 
Biotechnology Information (NCBI), Bethesda, MD, USA. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi 
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2.2 Molecular biology 

2.2.1 Polymerase Chain Reactions (PCRs) and oligonucleotides 

All oligonucleotide primers were designed using the software Vector NTI 

(Invitrogen) and obtained from Eurofins MWG Operon (Ebersberg, Germany). For 

details of all oligonucleotides used in this study, see table 2-2. 

PCRs for clonings, site-directed mutageneses or sequencing were performed 

using high fidelity proof-reading DNA polymerases according to the 

manufacturers' instructions (PfuTurbo DNA Polymerase from Stratagene, TaqPlus 

Precision DNA Polymerase from Stratagene and Phusion High-Fidelity DNA 

Polymerase from Finnzymes). PCRs for bacterial colony screens or other analyses 

that did not require proof-reading activity were performed with Taq DNA 

Polymerase from New England Biolabs according to the manual and using a 10 x 

PCR mix (1.13 mg ml-1 BSA, 450 mM Tris pH 8.8, 110 mM ammonium sulphate, 

45 mM MgCl2, 68.3 mM β-mercapto-ethanol, 44 µM EDTA pH 8.0, 10 mM dCTP, 

10 mM dATP, 10 mM dGTP, 10 mM dTTP, in H2O) as the reaction buffer. Standard 

Taq polymerase PCRs were typically performed in a 20 μl volume, with approxi-

mately 100 ng DNA, 10 pmol of each oligonucleotide primer, 0.5 units of Taq 

polymerase and 2 μl of PCR mix. Concentrations and volumes for proof-reading 

PCRs were adjusted according to the manufacturers’ instructions. PCR conditions 

(primer annealing temperature and elongation time) were optimised for each 

reaction. PCRs were typically performed in a Hybaid PCRExpress or PCRSprint 

thermocycler. Colony PCRs were performed on whole E. coli cells picked from 

colonies on agar plates. In this case, a 10 min cell lysis step was included at the 

beginning of the PCR programme. 
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Table 2-2: All oligonucleotide primers used in this study with targeted gene or 
region, direction, as well as sequence with underlined restriction digestion 
enzyme binding site or site-directed mutagenesis codons in bold. 

Primer 
ID 
 

Target sequence 
 

Direction 
 

Sequence  
(restriction sites underlined and 
mutagenesis codons in bold) 

A. Primers for cloning candidate peptidase genes into pNUS-GFPcN vector (pGL1132) 

OL2243 forward 
CCATATGGTGCGTGTCGATCCAATAT 
      NdeI 

OL2244 

Rhomboid-like serine 
peptidase, full length 
(LmjF02.0430) reverse 

TGGTACCGAAACGCGAGCGTGCATACACG 
      KpnI 

OL2245 forward 
CCATATGCAGCAGCCATGCTTCTTTG 
      NdeI 

OL2246 

Control Rhomboid-
like serine peptidase, 
full length 
(LmjF04.0850) reverse 

TGGTACCGAGCGTGGCAGTGAGCTTGTCG 
      KpnI 

OL2247 forward 
CCATATGCACTTGCGCGTGCTGCCAC 
      NdeI 

OL2248 

Ubiquitin hydrolase 
cysteine peptidase, 
truncated 
(LmjF09.0240) reverse 

CAGATCTGCTATGAGGCTTGCTGGCTTTA 
      BglII 

OL2251 forward 
CCATATGTGCTGCCTTGTCAGTGGTG 
      NdeI 

OL2252 

CaaX prenyl 
protease, full length 
(LmjF26.2690) reverse 

TGGTACCGTAGCGCCACAGTGTCCACGCC 
      KpnI 

OL2663 forward 
CCATATGTACGTCTGCATCACTTCTG 
      NdeI 

OL2664 

Calpain-like cysteine 
peptidase, full length 
(LmjF31.0390) reverse 

TGGTACCAGATCTCTCCTCCAGGATGCCA 
      KpnI 

OL2255 forward 
CCATATGGTGCAGGGCATGCTGTTCT 
      NdeI 

OL2256 

Zinc 
carboxypeptidase, 
truncated 
(LmjF33.0200) reverse 

TGGTACCCAGCAGCCGGAACGTTACGGAC 
      KpnI 

OL2659 forward 
GATTAATATGGCGTCTTTTCTCTCAACCA 
      AseI 

OL2660 

Serine 
carboxypeptidase, 
full length 
(LmjF18.0450) reverse 

CAGATCTCGCCAAACTCTGGCCGCGCAGG 
      BglII 

OL2259 forward 
CCATATGAGCTTTGGCAGCTTTCTTC 
      NdeI 

OL2260 

Bem46-like serine 
peptidase, full length 
(LmjF35.4020) reverse 

TGGTACCAACGACAGCAGCAGCTCCGGCG 
      KpnI 
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B. Primers for “Bem46LONG” protein expression construct 

OL3058 forward 
CCATATGGCAGAGCGCGTGTGCGTCACC 
    NdeI 

OL3060 

Bem46 fragment 
(LmjF35.4020) 

reverse 
CAAGCTTCTAAACGACAGCAGCAGCTCC 
   HindIII 

C. Primers for cloning of Bem46 deletion plasmids 

OL2874 forward 
AAGCTTCACTGCGTTCGCCCCGTCTTTTTT 
 HindIII 

OL2875 

5’ deletion flank  of  
Bem46 
(LmjF35.4020) reverse 

GTCGACAAAGGGTGCAGCCGAAGTCA 
   SalI 

OL2876 forward 
CCCGGGGCGGCGACAAAAGGGAAAGCAGC 
  SmaI 

OL2877 

3’ deletion flank  of  
Bem46 
(LmjF35.4020) reverse 

AGATCTTGAAGGCGACGTGAAGCACATAC 
  BglII 

D. Primers for analysing potentially Bem46 deficient L. major cell lines 

OL2259 forward 
CCATATGAGCTTTGGCAGCTTTCTTC 
      NdeI 

OL2260 

Bem46 wild type 
allele (LmjF35.4020) 

reverse 
TGGTACCAACGACAGCAGCAGCTCCGGCG 
      KpnI 

OL3278 forward GGAGGAAGTGAGAGAGGAGT 

OL3279 

Southern blot probe 
sequence in 3’flank 
of Bem46 reverse CCTACTCTCTACACGTCCTC 

E. Primers for cloning LMP gene into pNUS-GFPcN vector 

OL2428 forward 
CCATATGAGCGACTTTGCCTCTGGGA 
      NdeI 

OL2429 

LMP gene,  
full length 

reverse 
TGGTACCCGAGTAGGAATCATCCGGATTC 
      KpnI 

OL1973 5’end of LMP gene reverse 
TTCCATATGTACAACCACTTCAGCA 
         NdeI 

OL2002 forward 
GATAGATCTGTGCTGCGAAGGCTGC 
          BglII 

OL1975 
3’end of LMP gene 

reverse 
TTCGGTACCTCACGAGTAGGAATCA 
          KpnI 

F. Primers for site-directed mutageneses of LMP tyrosine sites 

OL2690 forward GCAGCGTCTGCGCACAACGCCTACGTTCTCGGC
AAGCG 

OL2691 
LMP tyrosine site I 

reverse CGCTTGCCGAGAACGTAGGCGTTGTGCGCAGA
CGCTGC 

OL2692 forward GCAGCGGCACAAGGAGGGGGCCAACTCTTTAC
AGAATCC 

OL2693 
LMP tyrosine site II 

reverse CGCTTGCCGAGAACGTAGGCGTTGTGCGCAGA
CGCTGC 

OL3007 forward CGTACTACTTTACCCAGGTGTCTGTG 

OL3008 

Region of tyrosine 
mutations 
(sequencing primers reverse CCAGTGTTGGCCATGGCACAGGGAGC 
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G. Primers for cloning of LMP deletion plasmids 

OL2323 forward 
CAAGCTTGGCGTTTATTTCTGGCCTGGGG 
    HindIII 

OL2324 

5’ deletion flank  of  
LMP gene 
(LmjF30.2670) reverse 

CGTCGACGAGGCTGAGGCTGGGAACTGGC 
      SalI 

OL2325 forward 
CCCCGGGAGTGCCGACGGCCGTACTGACG 
      SmaI 

OL2326 

3’ deletion flank  of  
LMP gene 
(LmjF30.2670) reverse 

GAGATCTTGTTTGTATCTCTTGAAATTGG 
     BglII 

H. Primers for analysis of potentially LMP gene deficient L. major cell lines 

OL13 reverse GGTGAGTTCAGGCTTTTTCA 

OL2698 
Hygromycin cassette 

forward CTCGGTGTGAGCGCTCGTCGCCGCT 

OL12 forward TGGCCGAGGAGCAGGACTGA 

OL2699 
Bleomycin cassette   

reverse CTGAGACTGCTTGCAGGCGTGTCCT 
OL2428 forward CCATATGAGCGACTTTGCCTCTGGGA 

OL2429 
Wild type LMP allele  

reverse TGGTACCCGAGTAGGAATCATCCGGATTC 

I. Primers for investigation of acidocalcisomal V-H+-PPase 

OL2426 forward 
CCATATGGCTGGGAGGATCTTGATTG 
      NdeI 

OL2427 

V-H+-PPase,  
full length  
(for GFP fusion) reverse 

TGGTACCCTCGATGAGGTTCAGCACAATA 
     KpnI 

OL2639 forward TTCACTGGCGTGGTCCCAATTCTCGT 

OL2640 

GFP cassette  
(for RT PCR) reverse CCATCCTCAATGTTGTGTCTGATCTT 

J. Primers for site-directed mutageneses of V-H+-PPase tyrosine sites 

OL2452 forward TACTACACCTCCAATGCCGCCCGCCCAGTGCAG
GAGATTG 

OL2453 

V-H+-PPase  
tyrosine site III 

reverse AATCTCCTGCACTGGGCGGGCGGCATTGGAGG
TGTAGTAG 

OL2454 forward GCCCTGACGATCGACGCGGCCGGCCCTATTTCC
GATAAC 

OL2455 

V-H+-PPase  
tyrosine site IV 

reverse GTTATGGGAAATAGGGCCGGCCGCGTCGATCG
TCAGGGC 
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2.2.2 DNA vectors used in this study 

All genes of interest were cloned into plasmids for GFP tagging or protein 

expression (Table 2-3). The PCR-amplified genes were first sub-cloned into a 

commercial sub-cloning vector (pGEM-T Easy Vector System from Promega or 

PCR-Script cloning kit from Stratagene) according to the manufacturers' 

instructions, and subsequently cloned into the final plasmid. The pGEM-T Easy 

system was used mainly for sub-cloning Taq polymerase PCR products, as the 

standard Taq polymerase adds an A-tail (a single adenosine) to the ends of the 

product after PCR and this A-tail allows ligation with the T (thymidine)-

overhangs at the ends of the vector. Alternatively, PCR products from non-A-

tailing polymerases can be cloned into the pGEM-T Easy vector after an 

additional A-tailing step with Taq Polymerase (15 mins at 72 °C). The PCR-Script 

vector has blunt ends without poly-T overhangs and can therefore be used for 

sub-cloning directly after PCRs with non-A-tailing high-fidelity polymerases, or 

A-tailed products can be cloned into the blunt ended PCR-Script vector after 

removing the A-tail by "polishing" the PCR product with Pfu Polymerase and 

polishing buffer from the PCR-Script kit (Stratagene) according to the 

manufacturer's instructions. For GFP-labelling of proteins, the vectors pNUS-

GFPcN (pGL1132, for C-terminal GFP tag) and pNUS-GFPnN (pGL1135, for N-

terminal GFP tag) were used (Tetaud et al., 2002b). For the expression of the 

Bem46 protein with a His-tag, the expression vector pET28a (pGL655) was used. 

For integration of the mCherry-labelled HASPB surface protein into the 18S rRNA 

ribosomal locus (GeneDB ID LmjF27.rRNA.06) of the L. major genome and 

expression under the control of the ribosomal (rRNA) pol1 promoter, the vector 

pRIB (pGL631) was used, which is based on the pFW31 vector (Benzel et al., 

2000). The pRIB plasmid containing the HASPB sequence was linearised using PacI 

and PmeI, transfected into L. major for homologous recombination into the 

ribosomal locus, and cells were cloned before analysis by fluorescence 

microscopy. For deletion of the L. major Bem46 and LMP genes, the Leishmania 

knock-out vector pGL345 was used, which was originally designed to delete the 

L. mexicana cysteine peptidase B (CPB) array (Mottram et al., 1996a). The CPB 

flanking regions in the vector were replaced with Bem46 and LMP flanking 

regions respectively, using double restriction digests (HindIII / SalI for the 

5’flank, SmaI / BglII for the 3’flank) and the hygromycin resistance marker 
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contained in pGL345 was exchanged to bleomycin (cassette taken from pGL762) 

to generate a second knock-out vector with a different antibiotic resistance 

marker for deletion of the second allele of a gene. The plasmids were linearised 

using HindIII and BglII before transfecting and cloning. 

Table 2-3: All plasmids generated and used in this study with plasmid backbone, 
inserted gene with GeneDB ID, use of the plasmid and resistance markers 

Plasmid 
ID 

Plasmid 
backbone 

Gene inserted (with GeneDB ID), plasmid function, 
antibiotic resistance markers (Amp: ampicillin, Neo: 
G418, Kan: kanamycin, Bleo: bleomycin) 

pGL1569 pNUS-GFPcN CaaX prenyl protease 2 LmjF26.2690,  
GFP fusion plasmid, Amp/Neo 

pGL1570   pNUS-GFPcN Zinc carboxypeptidase LmjF33.0200,  
GFP fusion plasmid, Amp/Neo  

pGL1572 pNUS-GFPcN Rhomboid serine peptidase LmjF02.0430, 
GFP fusion plasmid, Amp/Neo 

pGL1586 pNUS-GFPcN Ubiquitin hydrolase cysteine peptidase LmjF09.0240, 
GFP fusion plasmid, Amp/Neo 

pGL1588 pNUS-GFPcN 
Bem46 serine peptidase LmjF35.4020, 
GFP fusion plasmid, Amp/Neo 

pGL1763 pNUS-GFPcN Calpain cysteine peptidase LmjF31.0390,  
GFP fusion plasmid, Amp/Neo 

pGL1764 pNUS-GFPcN Serine carboxypeptidase LmjF18.0450,  
GFP fusion plasmid, Amp/Neo 

pGL1589 pNUS-GFPcN Rhomboid-like serine peptidase LmjF04.0850 
(mitochondrial control), GFP fusion plasmid, Amp/Neo 

pGL1577 pET28a (pGL655) Bem46 peptidase LmjF35.4020 (slight truncation), 
protein expression construct pBP266, Amp 

pGL1578 pET28a (pGL655) Bem46 peptidase LmjF35.4020 (slight truncation), 
protein expression construct pBP268, Kan 

pGL1954 pET28a (pGL655) Bem46 peptidase LmjF35.4020 (larger truncation), 
protein expression construct, Kan 

pGL1893 pRIB (pGL631) mCherry-tagged HASPB, for integration in ribosomal 
locus, Amp/Hyg 

pGL1898 pGL345 Bem46 knock-out vector, Amp/Hyg 

pGL1899 pGL345 Bem46 knock-out vector, Amp/Bleo 

pGL1682   pNUS-GFPcN LMP protein LmjF30.2670 (full length),  
GFP fusion plasmid, Amp/Neo 

pGL1683 pNUS-GFPnN LMP protein LmjF30.2670 (“Lamp ends” construct), 
GFP fusion plasmid, Amp/Neo 

pGL1765 pGL1682 LMP protein LmjF30.2670 (full length), mutated 
tyrosine site I, GFP fusion plasmid, Amp/Neo 

pGL1826 pGL1682 LMP protein LmjF30.2670 (full length), mutated 
tyrosine site II, GFP fusion plasmid, Amp/Neo 
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pGL1957 pGL1683 LMP protein LmjF30.2670 (“Lamp ends” construct), 
mutated tyrosine site I, GFP fusion plasmid, Amp/Neo 

pGL1958 pGL1683 LMP protein LmjF30.2670 (“Lamp ends” construct), 
mutated tyrosine site II, GFP fusion plasmid, Amp/Neo 

pGL1705 pGL345 LMP knock-out vector, Amp/Hyg 

pGL1707 pGL345 LMP knock-out vector, Amp/Bleo 

pGL1681 pNUS-GFPcN V-H+-PPase LmjF31.1220,  
GFP fusion plasmid, Amp/Neo 

pGL1702   pGL1681 V-H+-PPase LmjF31.1220, mutated tyrosine site III, 
GFP fusion plasmid, Amp/Neo 

pGL1703     pGL1681 V-H+-PPase LmjF31.1220, mutated tyrosine site IV, 
GFP fusion plasmid, Amp/Neo 

pGL1704     pGL1681 V-H+-PPase LmjF31.1220, tyrosine sites III and IV 
mutated, GFP fusion plasmid, Amp/Neo 

 

2.2.3 Restriction endonuclease digestions 

All restriction endonucleases used were obtained from New England Biolabs 

(NEB) and used with their specific buffers in 20 – 50 μl volumes according to the 

manufacturer's instructions. To digest large amounts of DNA, the volume was 

increased and digests occasionally carried out overnight. Double digests using 

two enzymes were done simultaneously when possible, or sequentially with a 

purification and buffer exchange step. Digested DNA was visualised by agarose 

gel electrophoresis. 

2.2.4 Agarose gel electrophoresis 

DNA was visualised by agarose gel electrophoresis, using UltraPure agarose 

powder (Invitrogen) at 1 % (w/v) in 0.5 x TBE buffer (20 mM Tris, 20 mM boric 

acid, 0.5 mM EDTA, pH 7.2). For small fragments (< 500 bp) the concentration 

was increased to 1.5 or 1.8 % and for large fragments (> 2 kb) it was decreased 

to 0.8 %. The agarose was solubilised in the buffer by boiling in the microwave 

and cast after addition of SYBR-Safe DNA stain (Invitrogen, used at 1 in 5000 

dilution). Gel electrophoreses were performed in LifeTechnologies Horizon gel 

chambers. DNA samples were prepared with 6 x DNA loading dye (0.25 % (w/v) 

bromophenol blue, 0.25 % (w/v) xylene cyanol FF, 30 % (v/v) glycerol, in H2O) 

and run at around 100 V, depending on the size and concentration of the gel and 
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the size of the DNA fragments. A 1 kb molecular weight marker (Invitrogen 1 Kb 

Ladder) was used at a concentration of 0.5 μg per lane to determine the size of 

the analysed DNA fragments. Gels were viewed under UV light, using a BioRad 

Gel-Doc imager with Quantity One software, or a DarkReader blue light 

transilluminator (Clare Chemical Research) for excising DNA from a gel. DNA 

extractions from agarose gels were performed using a Gel Extraction kit (Qiagen) 

according to the manufacturer’s instructions. 

2.2.5 Ligations 

Ligations were performed with T4 DNA ligase and T4 ligase buffer (New England 

Biolabs), according to the manufacturer’s instructions. Typically, purified 

digested plasmid and DNA insert were used at a ratio of 1:3 in a 10 μl reaction 

volume, and incubated overnight in a 16 °C water bath. Especially for blunt-

ended ligations, digested vectors were treated with CIP (calf intestinal alkaline 

phosphatase, from New England Biolabs) according to the manufacturer’s 

instructions, to dephosphorylate the DNA ends and prevent self-ligation, and 

then purified using a PCR purification kit (Qiagen). Ligations into the commercial 

sub-cloning vectors pGEM-T Easy (Promega) or PCR-Script (Stratagene) were 

performed according to the manufacturers’ instructions. After ligations, the 

ligated plasmids were transformed into Escherichia coli competent cells and 

verified either by bacterial colony PCR or by plasmid purification and subsequent 

restriction digest analysis. 

2.2.6 Transformations 

Plasmids were introduced into bacterial cells for replication by heat shock 

transformation. For this, 50 μl of competent E. coli cells (thawed on ice) were 

mixed with 1 μl of isolated plasmid or 10 μl of a ligation reaction mix, kept on 

ice for 20 mins, heat-shocked in a water bath at 42 °C for 45 sec, and then 

transferred back on to ice for 5 to 10 mins before plating the cells out on agar 

plates containing the appropriate antibiotics for selection of positive 

transformants. Cells transformed with a kanamycin resistance cassette-

containing plasmid, like pET28a, were incubated in 1 ml of warm LB medium 
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without antibiotics on a shaker for 30 – 45 mins at 37 °C before plating out, to 

allow the cells to recover and develop kanamycin resistance. 

 
2.2.7 Site-directed mutageneses of plasmids 

Site-directed mutageneses of individual amino acids were performed using the 

"QuikChange Mutagenesis" kit (Stratagene) according to the manufacturer's 

instructions. All site-directed mutageneses in this study were targeted at 

tyrosine motifs, changing a tyrosine (DNA codons TAT or TAC) to an alanine 

(codon GCC). These mutageneses were performed on the respective gene after 

cloning it into the GFP fusion plasmids pNUS-GFPcN or pNUS-GFPnN. To obtain 

double mutants with two tyrosine sites disrupted within one protein, the two 

sites were mutated sequentially. The mutated plasmids were confirmed by 

sequencing and then used for L. major transfections and fluorescence 

microscopy. 

2.2.8 DNA isolation from bacteria and plasmid preparation for 

transfections 

Plasmid DNA was purified from bacterial cells using a QIAprep Spin Miniprep kit 

(Qiagen), either on the benchtop or in the QIAcube machine (Qiagen), according 

to the manufacturer’s instructions. For transfections of Leishmania, as well as 

for the preparation of DNA sequencing samples, plasmid DNA was quantified and 

concentrated by ethanol precipitation. Quantifications were carried out using an 

Eppendorf BioPhotometer and measuring the absorption at 260 nm (A260) to 

estimate DNA concentration as well as the ratio A260 to A280 (absorption of DNA at 

260 nm to absorption of contaminating proteins at 280 nm, ideally between 1.8 

and 2) to estimate purity. For ethanol precipitations, DNA samples were mixed 

with 2 volumes of 100 % ethanol and 1/10 volume of 3 M sodium acetate at pH 

5.2, frozen for least one hour (at -20 °C) and centrifuged at 13 000 x g and 4 °C 

for 20 mins. The DNA pellet was washed once with 70 % ethanol, dried and then 

resuspended in sterile H2O to the appropriate concentration. 
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2.2.9 RNA isolation 

Total RNA was isolated from L. major cell lines with Trizol reagent (Invitrogen), 

according to the manufacturer's instructions. All equipment was cleaned with 

DEPC (diethylpyrocarbonate)-treated water (0.01 % (v/v) DEPC) before handling 

RNA samples, to avoid contamination with RNAses. The RNA was visualised on a 

1 % agarose RNA gel made with UltraPure TAE buffer (Invitrogen) and stained 

with ethidium bromide, before use in further experiments. 

2.2.10 Reverse Transcriptase (RT-) PCR 

To prepare cDNA for RT-PCRs, RNA samples were first treated with RQ1 RNAse-

free DNAse (Promega). Then the cDNA was synthesised from the mRNA contained 

in the total RNA, using random hexamer primers and SuperScript Reverse 

Transcriptase III (both Invitrogen) according to the manufacturer’s instructions. 

Control samples without Reverse Transcriptase ("-RT") were also included. Using 

the cDNA as the template, a 500 bp fragment of the GFP cassette in the 

transgenic cell lines was PCR-amplified, using specific primers (OL2639 and 

OL2640) and standard Taq DNA polymerase (New England Biolabs). 

2.2.11 Targeted gene replacement in Leishmania 

L. major genes were deleted by replacing both alleles with the antibiotic 

resistance markers hygromycin and bleomycin respectively, by homologous 

recombination. For this, vectors were cloned, based on the Leishmania knock-

out vector pGL345, to include specific 5’ and 3’ flanking regions (500 - 900 bp 

each) of the gene of interest up- and downstream of the antibiotic marker 

cassettes. The vectors were linearised with HindIII and BglII and transfected into 

L. major wild type cells for integration into the genome, sequentially replacing 

both alleles. Transfectants were cloned and doubly resistant cells were selected 

using hygromycin and bleomycin. Whole genomic DNA was isolated from 

potential knock-out clones and analysed for successful gene deletion by PCR and 

Southern Blot. 
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2.2.12 Southern Blotting 

Southern Blotting was used to analyse L. major whole genomic DNA after 

targeted gene replacement to confirm the deletion of a gene. For each cell line, 

4 to 5 μg of DNA were digested overnight in the appropriate buffer for the 

respective enzyme(s). The enzymes were chosen to allow probing and 

visualisation of different sized fragments in order to distinguish between wild 

type and heterozygous as well as homozygous knock-out cell lines. The digested 

DNA was electrophoresed through a large, thick 0.8 % agarose gel with large 

wells, stained with SYBR-Safe DNA stain (Invitrogen) and was photographed 

alongside a fluorescent ruler to determine the position of the DNA ladder 

relative to the DNA smear and the length of the gel. The gel was washed first 

with depurination buffer (0.25 M HCl) for 10 mins on a shaker and rinsed with 

dH2O, then washed with denaturation buffer (1.5 M NaCl, 0.5 M NaOH) for 15 - 

30 mins on a shaker, rinsed with dH2O, and finally washed with neutralisation 

buffer (3 M NaCl, 0.5 M Tris-HCl, pH 7.0) for 15 - 30 mins and rinsed with dH2O. 

The DNA was then transferred from the gel onto a membrane overnight, using 

capillary forces. The gel was placed on a blotting paper wick, the ends of which 

were placed in a chamber filled with 20 x SSC buffer (3 M NaCl, 0.3 M sodium 

citrate, pH 7.0). The membrane (Hybond-N nylon membrane, GE Healthcare 

Amersham) was pre-soaked first in dH2O and then in 20 x SSC buffer, then placed 

on the gel, followed by two layers of blotting paper, a thick stack of paper 

towels, a plastic plate to distribute the pressure and a weight. After the 

overnight transfer, the membrane was washed for 10 to 20 mins in 2 x SSC buffer 

and then the DNA was covalently attached to the membrane in a UV Stratalinker 

2400 crosslinker (Stratagene) at 1200 mJoules. The blot was kept dry until 

probing. Blots were probed using the Gene Images AlkPhos Direct Labelling and 

Detection System (GE Healthcare Amersham) according to the manual, to 

generate a fluorescence-labelled DNA probe, allow this to bind to the 

membrane-linked DNA and visualise it on photographic film after incubation with 

a chemiluminescence substrate. The DNA probe was generated by a standard 

Taq DNA polymerase PCR reaction, amplifying a suitable region of ~ 500 bp 

within one of the flanking regions of the gene and purifying the DNA from an 

agarose gel. 
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2.3 Bacterial cultures 

2.3.1  E. coli cell lines used in this study 

For high-copy replication of plasmid DNA and subsequent DNA isolation from the 

bacterial cells, competent E. coli XL1-Blue cells were used (genotype recA1 

endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac, tetracycline-resistant, original 

batch from Stratagene, subsequently re-cultured in the lab). 

Four different E. coli strains were used in protein expression experiments, 

depending on which yielded the best results for the respective plasmids: E. coli 

BL21 (DE3), E. coli BL21 (DE3) pLysS, E. coli BL21 (DE3) Rosetta and E. coli BL21 

(DE3) Rosetta-gami. E. coli BL21 (DE3) carries the DE3 prophage with the T7 RNA 

polymerase gene and the lacIq lac-repressor protein overexpression site. 

Plasmids that contain a T7 promoter for expression of the inserted protein of 

interest (e.g. pET vector based constructs) are repressed until expression is 

induced by the addition of IPTG and subsequent activation of T7 polymerase 

from a lac promoter. The pLysS strain of BL21 (DE3) carries an additional plasmid 

(pLysS) which encodes the T7 phage lysozyme. This inhibits the T7 polymerase 

and further suppresses T7 polymerase activity, and therefore the expression of 

the protein of interest, until induction with IPTG. The pLysS plasmid confers 

chloramphenicol resistance. The BL21 (DE3) Rosetta strain (original batch from 

Novagen) is derived from the BL21 (DE3) strain and optimised for expression of 

eukaryotic proteins with rare codon usage. It carries an additional plasmid which 

encodes tRNAs for codons that are rare in E. coli and also confers 

chloramphenicol resistance. The BL21 (DE3) Rosetta-gami strain (original batch 

from Novagen) has all features of the Rosetta strain and, additionally, is 

optimised to support the correct folding of the expressed target protein in the 

bacterial cytoplasm. All these bacterial cell lines were made competent by 

chemical treatment in the lab. 

2.3.2 Generation of competent E. coli cell lines 

All batches of competent cells used were made using a rubidium chloride 

method. A single colony of the respective E. coli strain was used to inoculate 
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2 ml of LB (Luria Broth) medium for an overnight culture at 37 °C. 0.5 ml of this 

culture was diluted into 100 ml LB broth and cultured for ~ three hours until an 

optical density (OD, measured at wavelength of 600 nm) of 0.4 – 0.6 was 

reached. The culture was incubated on ice for 10 mins, then centrifuged at 

1000 x g for 15 mins at 4 °C in two 50 ml conical flasks. The cell pellet was 

resuspended in 33 ml cold RF1 buffer (100 mM RbCl, 50 mM MnCl2 · 4H2O, 30 mM 

potassium acetate pH 7.5, 10 mM CaCl2 (dihydrate), 15 % (w/v) glycerol, pH 

adjusted to 5.8 with 0.2 M acetic acid, filter-sterilised), incubated for 15 mins 

on ice and centrifuged as before. The pellet was resuspended in 8 ml cold RF2 

buffer (10 mM MOPS pH 6.8, 10 mM RbCl, 75 mM CaCl2 (dihydrate), 15 % (w/v) 

glycerol, pH adjusted to 6.8 with NaOH, filter-sterilised) and incubated on ice 

for one hour. The suspension was aliquoted for single use and snap-frozen in 

ethanol on dry ice; aliquots were stored at – 80 °C. 

2.3.3 Bacterial cultures 

E. coli cells were spread onto agar plates containing the appropriate antibiotics 

(ampicillin at 100 μg ml-1, kanamycin at 50 μg ml-1 or chloramphenicol at 

38 μg ml-1) after transformation, using a sterile glass spreader. Plates were 

incubated at 37 °C overnight, then sealed with parafilm and maintained at 4 °C 

for up to one month. Single colonies were used to inoculate liquid cultures. For 

long term storage, E. coli cultures were mixed with an equal volume of 2 % (w/v) 

peptone and 40 % (v/v) glycerol solution in 1 ml aliquots and stored at -80 °C. 

Liquid bacterial cultures for replication and isolation of plasmid DNA were grown 

in Luria Broth (LB) medium at 37 °C, shaking overnight. Appropriate antibiotics 

were added to the cultures and cells were harvested for plasmid DNA 

purification. Cultures for protein expression experiments were grown in LB 

medium. Large cultures (typically 100 ml for a small scale test, 1 litre for a large 

protein expression culture) were inoculated with up to 15 ml of a fresh overnight 

culture, in a baffled Erlenmeyer flask of at least twice the volume of the culture 

and with appropriate antibiotics. Large cultures were grown at 37 °C in a shaker 

(~ 180 rpm) to an OD600nm of ~ 0.6 and then induced by adding IPTG (isopropyl β-

D-1-thiogalactopyranoside) and culturing further at the required temperature, 

usually overnight. New protein expression constructs were typically tested under 
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the following overnight culturing conditions: temperatures of 20 °C, 25 °C and 

37 °C, induction with different IPTG concentrations between 0.1 and 1 mM. 

2.3.4 Bacterial cell extracts 

Recombinant protein was expressed in E. coli as described above. After 

harvesting the E. coli cells (typically 20 mins at 5000 x g), they were lysed using 

B-Per Bacterial Protein Extraction Reagent (Pierce) according to the 

manufacturer’s instructions and adding DNAse I (10 μg ml-1) during an extended 

lysis step on ice for 10 mins. After centrifugation (typically 30 mins at 15000 x g) 

and separation of the insoluble components, the soluble fraction could be 

subjected to protein purification procedures. 

2.4 Protein biochemistry 

2.4.1 Denaturing polyacryamide gel electrophoresis (SDS-PAGE) 

Whole cell extracts and purified proteins were separated and visualised by SDS-

PAGE (sodium dodecyl phosphate polyacrylamide gel electrophoresis), typically 

using 12 % (w/v) polyacrylamide gels cast in plastic casting cassettes (Invitrogen) 

according to the manufacturer’s instructions. Gels were made with 30 % 

acrylamide-bis solution (Bio-Rad). A 5 % stacking gel was cast over the 12 % 

resolving gel to initially focus the proteins before separation. Samples were 

mixed with SDS-PAGE loading buffer (2 x loading buffer: 20 % (v/v) glycerol, 

2.5 % (w/v) SDS, 0.05 % (w/v) bromophenol blue, 0.2 M Tris-HCl pH 6.8, 10 % 

DTT in H2O) and boiled for ~ 5 mins at 100 °C. For the electrophoresis, XCell 

SureLock Mini Cell chambers (Invitrogen) were used with 1 x SDS-PAGE running 

buffer (10 x running buffer: 25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS), 

initially at 90 V through the stacking gel, then at ~ 150 V through the resolving 

gel until the protein dye front reached the bottom of the gel. A protein marker 

(Pre-stained Protein Marker Broad Range, New England Biolabs) was run 

alongside the protein samples at a concentration of 1 - 2 μg per lane to 

determine the size of the analysed proteins. 
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2.4.2 Coomassie staining of SDS-PAGE gel 

After electrophoresis, polyacrylamide gels were stained with Coomassie stain 

(2.5 % (w/v) Coomassie Brilliant Blue R-250, 45 % (v/v) methanol, 10 % (v/v) 

glacial acetic acid, in H2O) for one hour at room temperature under agitation. 

Gels were then treated with destaining solution (10 % (v/v) methanol, 10 % (v/v) 

glacial acetic acid, in H2O) for several hours or overnight, at room temperature 

under agitation. The destaining solution was changed several times during this 

process and a paper tissue was placed in the solution next to the gel to absorb 

stain. 

2.4.3 Western Blotting 

For Western blotting, proteins were transferred from an SDS-PAGE gel (not 

Coomassie-stained) onto a nitrocellulose membrane (Hybond-C, GE Healthcare 

Amersham). The transfer was carried out using a semi-dry blotting chamber (Bio-

Rad Trans-Blot SD Semi-Dry Transfer Cell) with transfer buffer (20 % (v/v) 

methanol, 20 mM Tris-HCl, 15 mM glycine, in H2O) and at 20 V for 30 mins. After 

the transfer, the membrane was incubated in a blocking solution of 5 % (w/v) 

milk powder (Marvel) in TBST buffer (25 mM Tris-HCl pH 8.0, 120 mM NaCl, 0.1 % 

Tween-20) for one hour at room temperature or overnight at 4 °C on a shaker. 

After blocking, the membrane was incubated with the primary antibody (diluted 

in fresh blocking solution) for the appropriate time (one hour up to overnight) at 

room temperature or at 4 °C. In this study, the anti–His primary antibody 

(Qiagen Tetra-His Mouse IgG) was usually used at a 1 in 1000 dilution and the 

anti–Bem46 antibody (rabbit polyclonal antibody) at varying concentrations in 

the different experiments. After incubation with the primary antibody, the 

membrane was rinsed 3 x 10 mins with TBST buffer and then incubated with HRP 

(horseradish peroxidase)-conjugated secondary antibody for one hour at room 

temperature. The anti-mouse secondary antibody (Promega goat anti-mouse IgG 

HRP) required for the anti–His primary antibody was used at a 1 in 5000 dilution. 

The anti-rabbit secondary antibody (Sigma goat anti-rabbit IgG HRP) required for 

the anti–Bem46 primary antibody was used at a 1 in 10000 dilution. The 

secondary antibody was followed by 3 x 10 mins TBST washes, treatment of the 

membrane with ECL (enhanced chemiluminescence) substrate (SuperSignal West 
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Pico Chemiluminescent Substrate or West Femto Maximum Sensitivity Substrate, 

Pierce ThermoScientific) according to the manufacturer’s instructions and 

exposure of the Western blot on photographic film or using a chemiluminescence 

detector (Bio-Rad Chemi-Doc XRS). 

2.4.4 Protein purifications 

Recombinant His-tagged protein was purified by metal ion affinity chromato-

graphy under native or denaturing conditions. 

Small scale native purifications were carried out by incubating the filtered 

soluble fraction of bacterial protein extracts with Ni-NTA (nickel-nitrilotriacetic 

acid) agarose beads (Qiagen), preparing a small column (Disposable 2 ml 

Polystyrene Columns, Pierce ThermoScientific) with this slurry and washing the 

column with wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 to 50 mM imidazole, 

pH 8.0). The protein was then eluted with elution buffer (50 mM NaH2PO4, 

300 mM NaCl, 500 mM imidazole, pH 8.0) into several fractions. 

Large scale native purifications were performed using an IMAC (immobilised 

metal-ion affinity) column packed with MC-20 matrix (Poros) on a BioLogic Duo-

Flow purification (Bio-Rad) system. The column was equilibrated with 

equilibration buffer (50 mM NaH2PO4, 300 mM NaCl, 0.5 mM imidazole, pH 8.0), 

the filtered soluble fraction of a bacterial extract was loaded onto the column, 

washed with wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 to 50 mM imidazole, 

pH 8.0) and eluted into several fractions with elution buffer (50 mM NaH2PO4, 

300 mM NaCl, 500 mM imidazole, pH 8.0). 

For denaturing protein purification, bacterial cells were lysed with urea buffer 

(8 M urea, 100 mM NaH2PO4, 10 mM Tris pH 8.0) with DNAse I (10 μg ml-1) and 

lysozyme (100 μg ml-1), incubated at room temperature overnight on a roller, 

sonicated (10 x 10 sec), centrifuged (typically 30 mins at 15000 x g), and the 

soluble fraction filtered before loading onto the column. The affinity 

chromatography was carried out using an IMAC (immobilised metal-ion affinity) 

column packed with MC-20 matrix (Poros) on a Bio-CAD purification system 

(Applied Biosystems). The column was first equilibrated with urea buffer (as 

used for cell lysis), loaded with the protein extract, washed with urea buffer 
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adjusted to pH 6.2 and flow-through collected, washed with urea buffer 

adjusted to pH 5.2 and flow-through collected; finally the denatured protein was 

eluted with urea buffer adjusted to pH 4.5. Before using denatured protein for 

antibody production, the urea buffer was removed by dialysis into PBS, using a 

Slide-A-Lyzer 10 K dialysis cassette (10000 MWCO, Pierce ThermoScientific) to 

dialyse 3 ml protein solution in 2 litres PBS for ~ 20 hours, changing the PBS once 

during this time. Potentially forming protein precipitate can still be used for 

animal inoculation for antibody production. 

2.4.5 Protein quantification 

Protein concentrations were determined by Bradford assays, using Bradford 

reagent (Sigma, undiluted or at 1 in 5 dilution) according to the manufacturer’s 

instructions. Assays were set up in 96-well plates; the standard curve was 

produced using nine BSA solutions with concentrations ranging from 

0 to 2 mg ml-1. The results were read at a wavelength of 592 nm in a Versamax 

microplate reader (Molecular Devices) with SoftMaxPro software.  

2.4.6 Antibody production, purification and quality assessment 

A specific polyclonal antiserum against L. major Bem46 was raised in a rabbit, 

using the almost full-length recombinant protein as an antigen. The recombinant 

protein was expressed with a C-terminal 6 x histidine-tag in E. coli using the 

pET28a-based plasmid pGL1577, purified by urea extraction and dialysis as 

described above. A rabbit was immunised with the protein (4 inoculations with 

250 μl of 1 mg ml-1 protein over the course of three months) at the Scottish 

National Blood Transfusion Service (Penicuik, Midlothian) and three bleeds as 

well as the pre-immune serum were obtained. 

The antibody was purified using an affinity-purification column with bound 

recombinant (his-tagged) Bem46. For this, recombinant Bem46 was first 

exchanged into a coupling buffer (4 M guanidine hydrochloride (Sigma), 100 mM 

sodium phosphate, 0.05 % sodium azide, pH 6.4, in H2O) to allow binding to the 

affinity column. For this buffer exchange, a Bio-Rad pre-packed 10 ml buffer 

exchange column was used; the column was washed with 20 ml coupling buffer, 

loaded with up to 3 ml protein solution (purification fractions), the flow-through 
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discarded and finally 4 ml coupling buffer were added and the flow-through 

(4 ml buffer-exchanged recombinant protein) collected. Next, this collected 

protein was bound to the beads for the affinity purification column; it was 

covalently linked to 2 ml AminoLink Coupling Gel (Pierce) on a disposable 5 ml 

column (Pierce), following the manufacturer’s instructions and using 400 μl 

AminoLink reductant solution (Pierce). This coupling process was carried out for 

six hours at room temperature or overnight at 4 ºC on a roller, then the beads 

were allowed to settle for ~ 30 mins, before draining the column, washing it 

with 5 ml coupling buffer, blocking it by adding 2 ml 1 M Tris (pH 7.5) and 

further 200 μl AminoLink reductant solution, incubating for 30 mins at room 

temperature on a roller, then allowing the beads to settle for 30 mins. The 

column was washed with 15 ml 1 M NaCl, followed by 5 ml PBS with 0.05 % 

sodium azide. 750 μl antiserum were applied to the column and let flow through. 

This was repeated several times to purify a useful amount of antibody, always 

allowing the entire 750 μl to flow through before applying more. Afterwards, 

100 μl of PBS with sodium azide were applied and allowed to enter the resin, the 

column was capped at the bottom, further 500 μl were added, the column 

capped at the top and incubated standing at room temperature for one hour. It 

was washed with 12 ml azide-free PBS and drained. To elute the bound 

antibody, 4 ml elution buffer (100 mM glycine-HCl pH 2.7) were applied and 

0.5 ml elution fractions were collected. The fractions were pH neutralised 

immediately by adding 50 μl 1M Tris-HCl (pH 7.5) to each. Antibody 

concentrations of the fractions were determined by Bradford assay and the best 

fractions were buffer-exchanged into PBS and sodium azide (final concentration 

0.02 %) for use. 

2.5 Leishmania cell culture 

2.5.1 Leishmania promastigote culture 

Leishmania major promastigote parasites (L. major MHOM/IL/80/Friedlin, WHO 

designation MHOM/JL/81/Friedlin) were grown and maintained in HOMEM 

medium (Invitrogen or PAA) supplemented with 10 % (v/v) heat-inactivated 

foetal calf serum (HIFCS), at 25 °C in lidded flasks (Corning 25 cm2 canted neck 

culture flasks with phenol-style cap). Cells were subpassaged into fresh medium 
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every three to four days and usually only used for experiments up to subpassage 

20. The following antibiotics were added if appropriate for selection of 

transfected cells: G418 (Calbiochem) at 50 μg ml-1 (neomycin resistance cassette 

confers G418 resistance), bleomycin (phleomycin, from InvivoGen) at 20 μg ml-1, 

puromycin (Calbiochem) at 50 μg ml-1 and hygromycin B (Calbiochem) at 

50 μg ml-1. To prevent bacterial contaminations, penicillin-streptomycin (Sigma) 

was added to cultures occasionally (at 1 % (v/v)). 

2.5.2 Determination of L. major cell densities 

L. major cell culture densities were determined using an Improved Neubauer 

haemocytometer counting chamber (Weber Scientific) under a light microscope 

(at 200 x magnification). Before counting, cells were fixed in an equal volume of 

2 % (v/v) paraformaldehyde solution (in PBS). For growth curves, cultures were 

started at 1 x 105 cells ml-1 and cell densities were determined daily at the same 

time for seven to nine days. 

2.5.3 Leishmania stabilates 

Stabilates of L. major cell lines were prepared with 10 % cryoprotectant DMSO 

(dimethyl sulfoxide) and 20 % HIFCS in HOMEM medium, using mid-log phase 

dividing promastigotes. They were gradually frozen, in cryovials 

(AlphaLaboratories, Feel the Seal 1 ml or 1.2 ml tubes) protected with cotton 

wool, at -80 °C overnight and then transferred into liquid nitrogen for long-term 

storage. 

2.5.4 Transfection, selection and cloning 

L. major cells were transfected by electroporation, either with Cytomix buffer 

in a Bio-Rad electroporator (Gene Pulser II with Capacitance Extender II) or with 

the Amaxa transfection system and the Human T-cell Nucleofector kit (Lonza 

Biologics). For the Cytomix protocol, 5 x 107 cells were pelleted at 1000 x g for 5 

mins, resuspended in half the volume of ice cold Cytomix buffer (120 mM KCl, 

0.15 mM CaCl2, 10 mM K2HPO4, 25 mM HEPES, 2 mM EDTA, 2 mM MgCl2, pH 7.6), 

pelleted again and resuspended in ice cold Cytomix buffer to a final 

concentration of 1 x 108 cells ml-1. Approximately 20 μg DNA (ethanol-
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precipitated and resuspended in 20 μl sterile dH2O) was pipetted into a chilled 

electroporation cuvette, 400 μl of cells in buffer were added and electroporated 

once at 0.45 kV and capacitance 500 μF. The cells were left on ice for 10 mins to 

recover, then transferred into 10 ml fresh HOMEM medium supplemented with 

FCS and warmed to culturing temperature. This method was used for all the 

transfections in chapter 3 (screen of potentially secreted L. major peptidases). 

The transfections described in chapters 4 and 5 were performed using the Amaxa 

system, again with 5 x 107 cells per transfection. Cells were pelleted at 1000 x g 

for 10 mins and resuspended in 100 μl Amaxa Human T-cell Nucleofector buffer 

and mixed with 10 μg ethanol-precipitated DNA (in 20 μl sterile dH2O) in an 

Amaxa cuvette. Samples were electroporated in the Amaxa instrument, using 

the set programme U-033, and then transferred onto ice for several mins before 

transferring the cells into 10 ml fresh HOMEM medium supplemented with HIFCS 

and warmed to culturing temperature. All transfected populations were cultured 

at 25 °C overnight to recover. A non-transfected control culture was always 

included for each transfection, to assure un-transfected cells did not exhibit 

antibiotic resistance in the selection process. If populations required cloning 

out, the transfected cells were immediately split into two separate 5 ml 

cultures. One day after transfection, the appropriate antibiotics were added to 

the cultures to select for positive transfectants, depending on which antibiotic 

resistance cassette was introduced into the cells on the transfected plasmid. 

Cells were grown for at least two weeks for the selection to be complete and the 

plasmids to be established in the lines. If clonal populations were required, the 

transfected populations were transferred into 96-well plates in three serial 

dilutions (1 in 5, 1 in 50 and 1 in 500) one day after transfections, after adding 

antibiotics. The plates were sealed with parafilm to avoid drying out and were 

incubated at 25 °C over several weeks to allow cultures to grow. Based on the 

calculated transfection efficiencies, an average of 20 clones should be obtained 

from the 1 in 50 dilution, and 2 from 1 in 500 (Protocols for handling and 

working with Leishmania, Mottram laboratory, 2008). 

2.5.5 Leishmania DNA isolation 

Whole genomic DNA was prepared from Leishmania cell lines using the DNeasy 

Blood & Tissue kit (Qiagen) according to the “Cultured animal cells” protocol, on 
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the bench top or using the QIAcube machine (Qiagen). 10 ml of mid to late log 

L. major culture were pelleted at 2000 x g for 5 mins, resuspended in a small 

remainder of the supernatant, transferred to a 1.5 ml eppendorf tube, pelleted 

again (3000 x g for 1 min) and resuspended in 200 μl PBS (100 μl when using the 

QIAcube). 20 μl proteinase K (from Qiagen kit) and 4 μl RNAse A (100 mg ml-1 

solution) were added, vortexed and incubated for 2 mins at room temperature. 

From here, the kit was used according to the manufacturer’s instructions. 

2.5.6 Leishmania cell extracts 

Whole cell extracts of Leishmania were prepared with lysis buffer containing 2 % 

SDS (sodium dodecyl sulphate) (w/v) in PBS with protease inhibitors, usually 

Complete Protease Inhibitor Cocktail (Roche), used according to the 

manufacturer’s instructions. Typically, 5 to 10 ml of mid or late log L. major 

cells were pelleted at 1000 x g for 5 mins, washed twice with sterile PBS, 

resuspended in 100 – 200 μl cold lysis buffer, incubated on ice for ~ 15 mins and 

then boiled for 5 mins. 

2.5.7 Mouse infections and parasite harvests from foot pads 

BALB/c mice were injected into the footpad with 20 μl stationary-phase L. major 

promastigote cultures at a concentration of 5 x 107 cells ml-1 in sterile PBS. To 

generate an infection progression curve, six mice were used per cell line and 

lesion growth of the footpad was measured weekly until the footpad had swollen 

to 5 mm and the mice were culled. Amastigote parasites were harvested from 

the footpad by excising the lesion from the foot using a scalpel and transferring 

fragments of the infected tissue into HOMEM buffer with 10 % HIFCS and the 

antibiotic gentamycin (Sigma) at 10 μg ml-1. Incubation in this medium at 25 °C 

leads to differentiation of the harvested amastigotes into culture promastigotes. 
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2.6 Fluorescence microscopy 

2.6.1 The DeltaVision System 

All fluorescence microscopy was performed on a DeltaVision Deconvolution 

microscopy system (Applied Precision), fitted with a CoolSnap HQ camera. The 

system was operated and images were captured and processed using the 

software SoftWoRx, running on a Linux system. Fluorescent cells were imaged 

with a FITC filter (λEx: 490 nm / λEm: 528 nm) for GFP fluorescence, a RD-TR-PE 

filter (λEx: 555 nm / λEm: 617 nm) for mCherry, MitoTracker, LysoTracker and 

FM4-64 fluorescence and a DAPI filter (λEx: 360 nm / λEm: 457 nm) for DAPI (4',6-

diamidino-2-phenylindole) staining of nuclei and kinetoplasts. Reference images 

were obtained under brightfield illumination. Images were typically obtained at 

an exposure time of 1 sec and with transmission levels (% T) of the neutral 

density filter adjusted to the respective intensity of the fluorescence. All images 

were taken at a 1000 x magnification using a 100 x oil immersion objective. 

Usually, 20 Z-stacks were taken for each image. They were deconvolved using a 

“conservative ratio setting” with 10 iterations. For figures, either the best 

Z-stack image was chosen, or several Z-stacks were projected into one image. 

Images of two or more fluorescence channels and / or brightfield were merged 

using Adobe Photoshop CS. 

2.6.2 Live cell imaging sample preparation 

For imaging of live cells, the cells were harvested by centrifugation (1 min at 

1000 x g), usually ~200 μl of mid-log phase cells per slide or adjusted volumes 

for cultures of lower or higher density. Cells were washed twice or - if treated 

with a stain - three times with ice-cold PBS, resuspended in ~40 μl PBS per slide 

and applied to a glass slide with a large cover slip (24 x 63 mm). The cover slip 

was sealed onto the slide with clear nail varnish to prevent leakage or drying of 

the sample. To decrease the cells’ movement and therefore facilitate imaging, 

the slides were usually cooled for ~10 mins at 4 °C before microscopy. Several 

different molecular stains were used to fluorescently label different components 

of the cells: DAPI (4',6-diamidino-2-phenylindole) was used to stain nucleus and 

kinetoplast. DAPI permeates membranes and binds to DNA. It is excited at a 
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wavelength of 358 nm and emits at around 461 nm. In this study, DAPI was made 

up to a stock solution of 10 mg ml-1 in H2O and was used at a final concentration 

of 1 μg ml-1, cells were incubated for 5 to 10 mins at room temperature and then 

washed with PBS and prepared as described above. LysoTracker Red DND-99 

stain (Invitrogen Molecular Probes) was used to target acidic organelles like the 

lysosome and (in Leishmania) particularly the acidocalcisomes. Its absorption 

peaks at 577 nm and it emits at 592 nm. The stain was made up to a 1 mM stock 

solution and used at a final concentration of 10 μM. Cells were incubated for 

~30 mins at 25 °C and then washed three times with PBS and prepared as 

described above. The mitochondrion was stained with MitoTracker Red CMXRos 

stain (Invitrogen Molecular Probes). This stain is excitable at 578 nm and emits 

at 599 nm. It was made up to a 1 mM stock solution and then a 10 μM working 

solution in PBS and used at a final concentration of 1 - 2 nM. Cells were 

incubated for 2 mins at 25 °C and then washed three times with PBS and 

prepared as described above. The lipophilic molecular dye FM4-64 (Invitrogen 

Molecular Probes) was used as a red fluorescent endocytic marker; it is excited 

at 558 nm and emits at 734 nm. In Leishmania, it labels the flagellar pocket of 

the cell within the first minutes of staining, then enters the endocytic pathway 

and later labels the lysosome (after 30 to 45 mins). The stock solution was made 

up to 12 mM in DMSO and used at a final concentration of 40 μM. Cells were 

incubated with FM4-64 for 15 mins at 4 °C and then washed, resuspended in 

fresh HOMEM medium and incubated at 25 °C for various times, depending on 

the desired staining. 

2.6.3 Fixing of cells 

Cells were fixed for counting and for fluorescence microscopy in 1 % (v/v) 

paraformaldehyde in PBS. For the fluorescence microscopy in this study, most 

cell lines were fixable while still retaining their GFP or mCherry signals as well 

as all of the molecular stains, at least if analysed directly (within one or two 

hours). This also applies to the stains MitoTracker and FM4-64 which are 

described as non-fixable in the manufacturer's manuals.  
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2.6.4 Immunofluorescence analysis (IFA) 

For immunostaining and fluorescence microscopy, 200 μl L. major cells were 

first washed twice in PBS and fixed in paraformaldehyde as described above. 

After 30 mins, cells were permeabilised with 20 μl 1 % Triton X-100 (in PBS) for 

10 mins, and then 20 μl of 1 M glycine / PBS were added for 10 mins in order to 

neutralise free aldehyde groups from the fixation and reduce background 

fluorescence. The cells were washed twice and resuspended in 200 – 400 μl fresh 

PBS. Glass slides were washed in 70 % ethanol, coated with 0.01 % poly-L-lysine 

(Sigma) and dried. The fixed cells (~ 50 μl per slide) were allowed to adhere to 

the slides (confined by a square of nail varnish) for 15 - 30 mins in a dark box 

containing PBS-soaked tissue to prevent drying. The slides were then incubated 

with blocking buffer TB (0.1 % Triton X-100, 0.1 % BSA, in PBS) for at least 5 

mins. Primary antibodies were diluted in TB buffer and incubated with the cells 

for one hour at room temperature, or overnight at 4 ºC. Approximately 150 μl 

antibody solution were used per slide. Cells were washed carefully three times 

with at least 10 ml PBS, and excess liquid was removed by blotting with a tissue 

at the corner of the slide. Alexa Fluor 594 (red)–conjugated anti-rabbit 

secondary antibody (Molecular Probes) was diluted 1 in 2000 in TB buffer and 

incubated with the cells in the dark for one hour at room temperature. DAPI 

(4',6-diamidino-2-phenylindole, 10 mg ml-1 stock solution) was diluted in TB 

buffer at 0.5 μg ml-1 and incubated with the cells for one min, then the slides 

were washed 3 x with 10 ml PBS and excess liquid as well as remains of the nail 

varnish square were removed. Approximately 50 μl of mounting solution (2.5 % 

DABCO in 50 % glycerol and PBS) were applied to a 20 x 64 mm coverslip; this 

was placed on the slide and sealed with nail varnish. Until microscopy, slides 

were kept in a moist box in the dark, to prevent drying. 

2.7 Statistical data analysis 

Data from promastigote culture growth curves as well as mouse footpad lesion 

measurements were expressed as means ± standard deviation from the mean. P-

values were calculated by unpaired, two-tailed Student’s T-tests, using Microsoft 

Excel. Differences were considered significant at a p-value of < 0.05. 
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3. Screen for peptidases  
  secreted by Leishmania 

 

3.1 Introduction 

Leishmania is known to release virulence factors which are either secreted into 

the host environment or are attached to the Leishmania surface, from where 

they can interact with the host or be cleaved and released. An example of a 

well-studied Leishmania virulence factor is the cysteine peptidase B (CPB), 

which is a degradative hydrolase of the lysosome. A proportion of CPB molecules 

is not trafficked directly from biosynthesis in the ER to the lysosome, but is 

exocytosed into the flagellar pocket, re-endocytosed and then transported to 

the lysosome via the endocytic pathway. During this process, some CPB is 

released from the flagellar pocket and acts as a virulence factor and manipulate 

the immune system (Mottram et al., 2004a). Other Leishmania peptidases may 

be released in a similar manner and could be active as virulence factors, for 

example cleaving components of the host immune defence machinery. 

3.1.1 Secretion of proteins 

The flagellar pocket is the sole site of exocytosis in Leishmania. To be released 

from the cell, all molecules, including virulence factor proteins, have to be 

targeted into the flagellar pocket first. 

Classical targeting signals that direct proteins into the secretory pathway after 

biosynthesis are located at the N-terminus of a protein (Blobel and Dobberstein, 

1975) and are typically around 15 - 30 residues long. Such "signal peptides" are 

cleaved after trafficking of the protein. There is no signal peptide consensus 

sequence, but they usually consist of a positively charged N-terminal part (n-

region) followed by a hydrophobic stretch (h-region) and polar uncharged amino 

acids at the C-terminal end (c-region) of the peptide (Emanuelsson et al., 2007; 
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Tobin and Wirth, 1993a). It appears that this type of signal is widely conserved; 

experiments have shown that a mammalian signal peptide elicits correct 

secretory targeting in Leishmania (Tobin and Wirth, 1993b), suggesting 

conservation of some secretory mechanisms. Alternatively to a signal peptide, a 

protein can be targeted into the secretory pathway and then anchored in a 

membrane by a "signal anchor" which is not cleaved but forms a transmembrane 

helix. It is worth noting that not all proteins with a signal peptide are secreted; 

they can be retained in the ER, the Golgi or in vesicles along the way. Also not 

all secreted proteins contain a classical signal peptide (Emanuelsson et al., 

2007). Non-classical secretion pathways are an alternative type of protein 

secretion in eukaryotes, targeting proteins to the cell surface independently of 

the ER /Golgi network and without a canonical N-terminal secretory signal 

(Bendtsen et al., 2004a). This takes place via secretory lysosomes, polypeptide 

export through ABC transporters or by budding of the plasma membrane itself 

(Rubartelli et al., 1990; Mehul and Hughes, 1997; McConville et al., 2002j). In 

Leishmania, the surface protein HASPB (previously named Gene B Protein) is an 

example of a secreted surface protein that does not exhibit a classical N-

terminal signal peptide (Rangarajan et al., 1995b). Its N-terminus contains a 

myristoylation and a palmitoylation site and dual acylation at these sites appears 

to be crucial for secretory targeting via a novel and conserved pathway (Denny 

et al., 2000). 

3.1.2 Targeting of proteins to the mitochondrion 

Non-secretory proteins can be targeted to different intracellular destinations 

and organelles. This usually requires a particular sorting signal and some of 

these signals have been identified in eukaryotes. 

Targeting of proteins into the mitochondrion requires a complex mitochondrial 

targeting signal. This does not consist of a particular conserved amino acid 

sequence, but common features are an N-terminal amphipathic anti-helix and an 

unusual enrichment in arginine, alanine and serine. The length of such a signal is 

highly variable from only a few to over 80 residues (Emanuelsson et al., 2007; 

von Heijne et al., 1989b). Import into the mitochondrion is a more complex 

process than for other organelles because of this organelle’s double membrane. 
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Proteins can be translocated across one or both membranes, for integration into 

either of these or - for soluble proteins - release into the intermembrane space 

or the inner matrix (Hannavy et al., 1993; Costa-Pinto et al., 2001). 

3.1.3 Bioinformatics prediction of protein properties 

Many features and topological properties of proteins can be predicted using 

programmes available online. These differ in their approach, their species- and 

cell type specificity and outputs are generally not directly comparable. 

Proteins of an eukaryote as divergent as Leishmania may be difficult to 

characterise using general or eukaryotic protein prediction software, as the 

underlying patterns and trafficking motifs may vary considerably in this species, 

in comparison to higher eukaryotes. Nevertheless, prediction programmes can be 

powerful tools to gain a first insight into a protein's solubility, anchoring and 

target compartment in silico. 

A specific N-terminal signalling domain is an indicator of possible secretion and 

can target a protein into the secretory pathway. Transmembrane domains point 

to a localisation of the protein in an organellar membrane or at the cell surface. 

Transmembrane proteins on the cell surface can interact with the environment 

from there, or be released by cleavage. Additionally, an N-terminal 

mitochondrial targeting motif is identifiable with suitable predictors, as are 

potential GPI anchoring sites. To predict N-terminal secretory or mitochondrial 

signals, the prediction programmes TargetP, SignalP and MitoProt were used. 

The SOSUI, TMHMM, HMMTOP and Phobius algorithms were employed for the 

prediction of transmembrane domains and big-PI predicted potential GPI 

anchoring sites. Guidelines and information on the available prediction tools and 

their optimal usage have been collected and reviewed in (Emanuelsson et al., 

2007). 

TargetP 1.1 (CBS, Technical University of Denmark) gives an initial indication of 

the kind of N-terminal signal present in an amino acid sequence. It differentiates 

between a secretory signal peptide (SP), a mitochondrial targeting peptide 

(mTP) and "others" and it provides a reliability coefficient (RC) for each 

prediction, between 1 (very reliable) and 5 (unreliable) (Emanuelsson et al., 
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2000; Nielsen et al., 1997). Following the TargetP prediction, more detailed 

predictions of signal or mitochondrial targeting peptides can be obtained with 

the programmes SignalP and MitoProt. 

SignalP 2.0 and 3.0 (CBS, Technical University of Denmark) provides a more in-

depth analysis of the likelihood of a secretory signal peptide or a signal anchor, 

and additionally predicts cleavage sites for signal peptidase I (SPase I). 

Predictions are made using Neural Networks (SignalP-NN) or Hidden Markov 

Models (SignalP-HMM) trained on eukaryotic sequences (Bendtsen et al., 2004b). 

SignalP-NN analyses the amino acid sequence as a series of overlapping windows, 

using two separate Neural Networks for predicting the actual signal peptide and 

predicting the SPase I cleavage site. Five different scores are estimated by 

SignalP-NN: the S-score (likelihood of residue belonging to a signal peptide), the 

C-score (likelihood of residue being the first residue of a mature protein, which 

should coincide with a change in the S-score), the Y-score (geometric average of 

C-score and smoothed slope of S-score for a better estimation of cleavage site) 

and the D-score (average of maximal Y-score and mean S-score for an optimised 

combined result). The output includes a graph as well as a table of the results 

and a prediction of the most likely cleavage site within the protein sequence. 

In contrast, SignalP-HMM predicts the probability of a signal peptide by fitting 

the entire amino acid sequence onto a model of a signal peptide-containing 

protein. It distinguishes between a signal peptide, a signal anchor and "other" N-

terminal signals. If a signal peptide is predicted, the programme identifies the n-

region, h-region and c-region of the peptide, as well as the most likely cleavage 

site. 

MitoProt II (Helmholtz Center Munich) can be used to predict the probability of 

an N-terminal mitochondrial targeting sequence. This prediction is based on the 

analysis of 47 parameters that have been correlated with mitochondrial 

targeting and the programme has been trained and validated using a database of 

over 13 000 proteins (Claros and Vincens, 1996). It analyses the sequence of up 

to 40 amino acids from the N-terminus of a protein and calculates the 

probability of import to the mitochondrion. 
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Several different programmes are available for the prediction of transmembrane 

domains in proteins by analysing the hydropathy of the amino acid sequence as 

well as the length of hydrophobic stretches. 

Transmembrane domain predictors used in this study were SOSUI (University of 

Nagoya; (Hirokawa et al., 1998), TMHMM 2.0 (CBS, Technical University of 

Denmark; (Krogh et al., 2001), HMMTOP 2.0 (Hungarian Academy of Sciences; 

(Tusnady and Simon, 2001; Tusnady and Simon, 1998) and Phobius (Stockholm 

Bioinformatics Centre), which is a combined predictor of transmembrane 

domains and signal peptides with a better discrimination between the two than 

SignalP (Kall et al., 2004a). The output files of all programmes contain a table of 

results with the predicted number of transmembrane domains and their positions 

as well as a graphical representation. It is important to note that a predicted 

transmembrane domain at the far N-terminus may be a false positive and 

actually a signal peptide (Lao et al., 2002b). 

The programme big-PI (IMP, University of Vienna) was employed for the 

prediction of a GPI-anchoring site at the C-terminus of the mature protein 

(Eisenhaber et al., 1999), which can indicate the positioning of a protein in the 

cell membrane, from where it can potentially be cleaved.  

3.2 Results 

3.2.1 Bioinformatics analyses of candidate peptidases 

Bioinformatics analyses were carried out on all 160 proteins identified as 

peptidases in the L. major genome project (Ivens et al., 2005a). They were 

initially identified as peptidases by comparison to the Merops database of all 

known peptidases (http://merops.sanger.ac.uk). 

As a first indicator of intracellular localisation, signal peptide predictions for the 

160 putative L. major peptidases were obtained from the genome database 

GeneDB. These predictions had been generated with version 2.0 of the 

SignalP-HMM algorithm. In this initial analysis, 38 were predicted to contain a 

secretory signal peptide (Table 3-1). These were analysed further by re-

evaluating the SignalP predictions with TargetP and the updated version 3.0 
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SignalP algorithms, as well as by predicting mitochondrial targeting signals using 

MitoProt, transmembrane domains using SOSUI, TMHMM, HMMTOP and Phobius 

and potential GPI-anchoring sites using big-PI. 

Proteins of known function, those known to be currently under investigation 

elsewhere or those that were unlikely to be secreted (e.g. predicted to be 

mitochondrial) were excluded from the list of candidates (Table 3-1). Finally, 

seven new candidate peptidases and one potential mitochondrial control were 

selected for more detailed analysis. 

The eight candidate peptidases contained diverse members from the different 

peptidase groups (Table 3-2). Three cysteine peptidases were included: a 

calpain-like cysteine peptidase, a ubiquitin hydrolase cysteine peptidase and a 

CaaX prenyl protease with an unknown catalytic mechanism. From the serine 

peptidase group, four candidates were chosen: two rhomboid-like serine 

peptidases, one of which was included as a mitochondrial control, the only 

L. major serine carboxypeptidase and a Bem46-like serine peptidase. The only 

metallopeptidase included was a zinc carboxypeptidase of unknown function. No 

aspartic or threonine peptidases were selected. All candidate peptidases had 

homologues in other Leishmania species, with shared synteny in almost all cases. 

The Bem46-like serine peptidase was the only candidate where the L. infantum 

and L. braziliensis genes were not both located on the same chromosome as in 

L. major; the L. braziliensis Bem46 was located on chromosome 34 instead of 

35. All candidate peptidases also had homologues in T. brucei and T. cruzi. 

Additionally, it should be mentioned that no homologues of the selected 

L. major peptidases were present in the L. donovani "secretome" as previously 

published by Silverman and co-workers (Silverman et al., 2008). The predictions 

of secretory and mitochondrial targeting signals for all candidate peptidases are 

shown in Table 3-2 and those of transmembrane domains and GPI anchoring sites 

in Table 3-3. 

The calpain-like cysteine peptidase (LmjF31.0390) was predicted to be a soluble 

protein without transmembrane domains or a mitochondrial targeting signal, 

featuring a secretory signal peptide that is most likely cleaved after residue 17. 

The predictions from different programmes were consistent and strong for the 

calpain-like cysteine peptidase. 
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The ubiquitin hydrolase cysteine peptidase (LmjF09.0240) was also predicted to 

be a soluble protein without transmembrane domains. SignalP and Phobius 

assigned a secretory signal peptide with a cleavage site after residue 28, 

whereas TargetP and MitoProt predicted a mitochondrial targeting peptide 

instead of a secretory signal. 

The CaaX prenyl protease (LmjF26.2690) was predicted to contain two to four 

transmembrane domains, depending on the algorithm. A secretory signal peptide 

with a cleavage site after residue 48 was predicted by SignalP when using the 

Hidden Markov Model (HMM) algorithm. However, SignalP Neural Networks (NN) 

and TargetP predicted a low probability of a signal peptide, a potential cleavage 

site after residue 15 and, in accordance with the MitoProt result, a high 

probability of import into the mitochondrion. 

The first rhomboid-like serine peptidase (LmjF02.0430) was predicted to have 

either none or up to four transmembrane domains, depending on the algorithm. 

A secretory signal was calculated as highly likely, but the most likely cleavage 

site was placed after residue 18 by version 2.0 of SignalP and after residue 27 by 

the updated version 3.0. Predictions agreed on a very low probability of 

mitochondrial import. 

The second rhomboid-like serine peptidase (LmjF04.0850), which was included 

as a mitochondrial control, received very high probability values for import into 

the mitochondrion. TargetP as well as Phobius and SignalP-NN did not predict a 

secretory signal peptide. However, SignalP-HMM did predict such a signal, with a 

calculated cleavage site after residue 63 in SignalP version 2.0 and after residue 

36 in version 3.0. This peptidase was predicted to contain three to five 

transmembrane domains. 

The serine carboxypeptidase (LmjF18.0450) was predicted to contain none or 

one transmembrane domain. The latter was predicted at the very N-terminus of 

the protein, which can be a false positive and correspond to a secretory signal 

peptide instead (Emanuelsson et al., 2007). The probability values for a 

secretory signal were high across all used algorithms, with a consistently 

calculated cleavage site after residue 29. TargetP predicted no mitochondrial 
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targeting sequence, whereas MitoProt gave a medium probability value of 0.6 for 

mitochondrial import. 

The Bem46-like serine peptidase (LmjF35.4020) also was predicted to have one 

transmembrane domain at its N-terminus, which may be a signal peptide. The 

calculated probabilities of a secretory signal peptide varied widely between 

different programmes, from SignalP version 2.0 and Phobius predicting no signal 

peptide, to TargetP assigning a high likelihood value of 0.95 with a high 

reliability coefficient. The cleavage site of a potential signal peptide was 

positioned after residue 29 by SignalP version 3.0. No mitochondrial import was 

predicted. 

Finally, the analysis of the largest protein, the zinc carboxypeptidase 

(LmjF33.0200) yielded the most varying and contradictory results. SOSUI and 

TMHMM predicted it to be soluble with no transmembrane domains, whereas 

HMMTOP and Phobius assigned four transmembrane domains. Predictions for a 

secretory signal peptide ranged from unlikely in TargetP (which assigned this 

prediction a very poor reliability coefficient of 5) to a reasonably high likelihood 

(0.79) and a potential cleavage site after residue 18 in SignalP-HMM version 3.0. 

Import to the mitochondrion was calculated unlikely. 

None of the analysed proteins were predicted to contain a GPI-anchoring site.
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Table 3-1: All 160 analysed putative peptidases from the L. major genome with 
prediction of signal peptide (SignalP 2.0) and evaluation status for candidate 
selection process. CP: cysteine peptidase, SP: serine peptidase, MP: metallo-
peptidase, TP: threonine peptidase. "Selected" peptidases are the candidates 
chosen for investigation here. Peptidases "previously characterised" or "under 
investigation" are or have been investigated elsewhere. 
 

Peptidase  
Signal 
peptide Status 

Cysteine peptidases (CP) 
Calpain-like CPs (28 genes) 26 no, 2 yes 1  selected 
Ubiquitin hydrolase-like CPs (19 genes) 16 no, 3 yes 1  selected 
CPA Yes previously characterised  
CPB (8 gene array) Yes previously characterised 
CPC Yes previously characterised 
GPI8 CP Yes previously characterised 
SUMO1/Ulp2 CP No - 
ATG4-like CP (2 genes) No - 
D-alanyl-glycyl endopeptidase-like CP (2 genes) No - 
Otubain-like CP No - 
Metacaspase CP No - 
Separase CP No - 
Pyroglutamyl peptidase I CP No - 
PfpI/DJ-1-like CP No - 

Metallopeptidases (MP) 
Zinc carboxypeptidase-like MP (3 genes) 2 no, 1 yes 1 selected 
GP63-like MP (6 genes) Yes previously characterised 
Mitochondrial intermediate peptidase-like MP Yes probably mitochondrial 
Mitochondrial processing MP, alpha subunit (3 
genes) 2 no, 1 yes probably mitochondrial 

Mitochondrial processing MP, beta subunit (2 
genes) 1 no, 1 yes probably mitochondrial 

ATP-dependent zinc MP (5 genes) 4 no, 1 yes - 
Aminopeptidase P1-like MP (4 genes) 3 no, 1 yes - 
Metallopeptidase clan ME family M16 Yes - 
Caax prenyl protease 1 MP No - 
Dipeptidyl peptidase-III-like MP No - 
Aminopeptidase-like MP (10 genes) No - 
Peptidyl dipeptidase-like MP (2 genes) No - 
Thimet oligopeptidase-like MP No - 
Carboxypeptidase-like MP (4 genes) No - 
Mitochondrial ATP-dependent zinc MP (2 genes) No - 
Pitrilysin-like MP No - 
Metallopeptidase clan MP family M67 (2 genes) No - 
Methionine aminopeptidase-like MP No - 
Glutamamyl carboxypeptidase-like MP No - 
Aspartyl aminopeptidase-like MP No - 
O-sialoglycoprotein-like MP No - 
Proteasome regulatory non-ATPase subunit 11-
like MP No - 
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* has hydrophobic domain close to N-terminus 
# one of these was chosen as a mitochondrial control

 Peptidase  
Signal 
peptide Status 

Aspartic peptidases (AP) 

Presenilin-like AP No - 
Signal peptide peptidase No - 

Serine peptidases (SP) 

Serine carboxypeptidase CBP1-like SP Yes selected 
Bem46-like SP No* selected 

Rhomboid-like SP (2 genes) Yes  2  selected# 
Mitochondrial inner membrane signal peptidase Yes probably mitochondrial 
Subtilisin-like SP (2 genes) 1 no, 1 yes under investigation 
ATP-dependent Clp protease subunit (5 genes) 3 no, 2 yes - 
OPB-like SP (2 genes) No - 
Prolyl oligopeptidases-like SP No - 
Dipeptidyl peptidase-8-like SP No - 
Signal peptidase I-like SP No - 
Serine peptidase, Clan SC, family S9D No - 
26S Protease Regulatory Subunit-like SP No - 
Nucleoporin-like SP No - 

Threonine peptidases (TP) 

HslVU complex proteolytic subunit-like TP Yes likely mitochondrial 
Several proteasome subunit TPs (20 genes) No - 

Unclassified peptidases 

Caax prenyl protease 2 Yes selected 
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Table 3-2: Details of all candidate peptidases. L. major gene IDs from www.genedb.org. CP: cysteine peptidase, SP: serine peptidase, 
MP: metallopeptidase 

Peptidase name 
L. major  
gene ID 

Size of gene (bp / kb) 
and protein (kDa) GFP fusion protein pNUS-GFP fusion 

plasmid ID 

Calpain-like cysteine peptidase 
(CP), clan CA, family C2 LmjF31.0390 2.6 kb 

97 kDa 
full length 
C-terminal fusion pGL1763 

Ubiquitin hydrolase cysteine peptidase  
(CP), clan CA, family C19 LmjF09.0240 2.8 kb 

105 kDa 
truncated to 2.4 kb, 
C-terminal fusion pGL1586 

CaaX prenyl protease 2  
family U48 (unknown catalytic mechanism) LmjF26.2690 375 bp 

25 kDa 
full length  
C-terminal fusion pGL1569 

Rhomboid-like serine peptidase  
(SP), clan ST, family S54 LmjF02.0430 1.1 kb  

40 kDa 
full length 
C-terminal fusion pGL1572 

Rhomboid-like serine peptidase  
(SP) (mitochondrial control),  
clan ST, family S54 

LmjF04.0850 1.2 kb 
44 kDa 

full length 
C-terminal fusion pGL1589 

Serine carboxypeptidase  
(SP), clan SC, family S10     LmjF18.0450 1.4 kb 

52 kDa 
full length 
C-terminal fusion pGL1764 

Bem46-like serine peptidase  
(SP), clan SC, family S09X LmjF35.4020 1.2 kb 

43 kDa 
full length 
C-terminal fusion pGL1588 

Zinc carboxypeptidase  
(MP), clan MC, family M14 LmjF33.0200 4.5 kb 

161 kDa 
truncated to 600 bp, 
C-terminal fusion pGL1570 
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Table 3-3: Predictions of secretory and mitochondrial sorting signals for all candidate peptidases.  
L: likelihood, P: probability, SP: signal peptide, mTP: mitochondrial targeting peptide, SA: signal anchor, CS: most likely SPase I 
cleavage site, aa: amino acid residue, RC: TargetP reliability coefficient (from 1 - very reliable to 5 - not reliable), D-Score: best 
indicator of signal peptide probability from SignalP. 

Prediction programme results for N-terminal secretory and mitochondrial signal peptides 
Peptidase name L. major  

gene ID TargetP  SignalP-HMM 
version 2.0 

SignalP-HMM 
version 3.0 

SignalP-NN 
version 3.0 MitoProt 

Calpain-like cysteine 
peptidase  LmjF31.0390 

SP L = 0.93 
mTP L = 0.03 
RC: 1 

SP P = 0.99 
SA P = 0.001 
CS: after aa 17 

SP P = 0.99 
SA P = 0.001 
CS: after aa 17 

SP P = 0.59  
(D-Score) 
CS: after aa 17 

Mitochondrial import  
P = 0.04 

Ubiquitin hydrolase 
cysteine peptidase LmjF09.0240 

SP L = 0.18 
mTP L = 0.89 
RC: 2 

SP P = 0.95 
SA P = 0.05 
CS: after aa 28 

SP P = 0.94 
SA P = 0.05 
CS: after aa 28 

SP P = 0.54 
(D-Score) 
CS: after aa 28 

Mitochondrial import  
P = 0.93 

CaaX prenyl protease 2  LmjF26.2690 
SP L = 0.09 
mTP L = 0.87 
RC: 2 

SP P = 0.92 
SA P = 0.03 
CS: after aa 48 

SP P = 0.92 
SA P = 0.03 
CS: after aa 48 

SP P = 0.29 
(D-Score) 
CS: after aa 15 

Mitochondrial import  
P = 0.96 
 

Rhomboid-like serine 
peptidase  LmjF02.0430 

SP L = 0.96 
mTP L = 0.02 
RC: 1 

SP P = 0.87 
SA P = 0.00 
CS: after aa 18 

SP P = 0.92 
SA P = 0.02 
CS: after aa 27 

SP P = 0.54 
(D-Score) 
CS: after aa 27 

Mitochondrial import  
P = 0.05 

Rhomboid-like serine 
peptidase 
(mitochondrial control) 

LmjF04.0850 
SP L = 0.02 
mTP L = 0.93 
RC: 1 

SP P = 0.93 
SA P = 0.003 
CS: after aa 63 

SP P = 0.82 
SA P = 0.01 
CS: after aa 36 

SP P = 0.25 
(D-Score) 
CS: none 

Mitochondrial import  
P = 0.99 

Serine 
carboxypeptidase  LmjF18.0450 

SP L = 0.99 
mTP L = 0.05 
RC: 1 

SP P = 1.00 
SA P = 0.00 
CS: after aa 29 

SP P = 0.99 
SA P = 0.001 
CS: after aa 29 

SP P = 0.84 
(D-Score) 
CS: after aa 29 

Mitochondrial import  
P = 0.60 

Bem46-like serine 
peptidase LmjF35.4020 

SP L = 0.95 
mTP L = 0.03 
RC: 1 

SP: none 
SA: none 
CS: none 

SP P = 0.27 
SA P = 0.73 
CS: after aa 29 

SP P = 0.65 
(D-Score) 
CS: after aa 29 

Mitochondrial import  
P = 0.08 

Zinc carboxypeptidase LmjF33.0200 
SP L = 0.18 
mTP L = 0.33 
RC: 5 

SP P = 0.76 
SA P = 0.00 
CS: after aa 18 

SP P = 0.79 
SA P = 0.00 
CS: after aa 18 

SP P = 0.27 
(D-Score) 
CS: none 

Mitochondrial import  
P = 0.07 
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Table 3-4: Predictions of transmembrane domains and GPI anchoring sites for all candidate peptidases.  
TM: transmembrane, GPI: potential glycosylphosphatidylinositol anchoring site, SP: secretory signal peptide 

Prediction programme results for transmembrane domains and GPI anchoring sites 

Peptidase name L. major  
gene ID SOSUI TMHMM  HMMTOP  Phobius  big-PI 

Calpain-like cysteine 
peptidase  LmjF31.0390 TM domains: 0 TM domains: 0 TM domains: 0 TM domains: 0 SP: 

yes No GPI 

Ubiquitin hydrolase 
cysteine peptidase LmjF09.0240 TM domains: 0 TM domains: 0 TM domains: 0 TM domains: 0 SP: 

yes No GPI 

CaaX prenyl protease 2  LmjF26.2690 TM domains: 4 TM domains: 2 TM domains: 4 TM domains: 4 
SP: yes No GPI 

Rhomboid-like serine 
peptidase  LmjF02.0430 TM domains: 0 TM domains: 3-4 TM domains: 3 TM domains: 3 

SP: yes No GPI 

Rhomboid-like serine 
peptidase 
(mitochondrial control) 

LmjF04.0850 TM domains: 3 TM domains: 4 TM domains: 7 TM domains: 5 
SP: no No GPI 

Serine 
carboxypeptidase  LmjF18.0450 TM domains: 1 

(at N-terminus) 
TM domains: 1  
(at N-terminus) 

TM domains: 1  
(at N-terminus) 

TM domains: 0 
SP: yes No GPI 

Bem46-like serine 
peptidase LmjF35.4020 TM domains: 1 

(at N-terminus) 
TM domains: 1  
(at N-terminus) 

TM domains: 3 (one 
at N-terminus) 

TM domains: 1  
(at N-terminus) 
SP: no 

No GPI 

Zinc carboxypeptidase LmjF33.0200 TM domains: 0 TM domains: 0 TM domains: 4 TM domains: 4 
SP: yes No GPI 
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3.2.2 Cloning of GFP fusion proteins and fluorescence 

microscopy 

The candidate peptidases selected by bioinformatics were cloned and fused to 

GFP at their C-terminus, using the pNUS-GFPcN vector (pGL1132) (Tetaud et al., 

2002a). Six of the eight peptidases were cloned full-length. Only the ubiquitin 

hydrolase and the zinc carboxypeptidase, which are very large genes, were 

truncated at their 3' end to facilitate cloning (Table 3-2). For all peptidases, the 

N-termini were left unmodified to allow targeting of the protein through its N-

terminal secretory or mitochondrial signal. L. major wild type promastigotes 

were transfected with the eight different GFP fusion plasmids and the plasmids 

were maintained extrachromosomally in the cell lines by culturing the cells 

under constant antibiotic selection pressure. After allowing two to three weeks 

for the GFP fluorescence to be established at a detectable level, the eight cell 

lines were examined by fluorescence microscopy using the DeltaVision 

deconvolution microscope system. The cells were analysed at different phases of 

growth to detect possible changes of protein distribution or trafficking, but all 

eight candidate peptidases displayed unchanging patterns of GFP fusion protein 

localisations throughout their promastigote life cycle. The fluorescence patterns 

described in the following section were always observed in the majority of cells 

(> 50 %) of a sample. When appropriate, cells were stained with the red 

endocytic dye FM4-64, which stains the flagellar pocket when incubated for a 

short period of time, or with MitoTracker Red, which stains the mitochondrion. 

Live cells and lightly (30 %) paraformaldehyde-fixed cells exhibited the same 

fluorescence patterns and intensities, for GFP as well as for all stains used (if 

imaged directly after staining), so figures in this chapter contain live as well as 

fixed cell microscopy images. 

Five of the eight GFP-fused candidate peptidases appeared to localise to the 

single large mitochondrion: the ubiquitin hydrolase, the CaaX prenyl protease, 

the zinc carboxypeptidase as well as both rhomboids (Fig. 3-1). This is consistent 

with high likelihood values for mitochondrial import for one of the rhomboids, 

the ubiquitin hydrolase and the CaaX prenyl protease. Mitochondrial targeting 

was not predicted for the zinc carboxypeptidase and the second rhomboid-like 

serine peptidase (Tables 3-3 and 3-4). 
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Figure 3-1: Live cell deconvolution microscopy images of five L. major cell lines 
expressing different GFP-fusion proteins with the GFP signal pattern correspon-
ding to the mitochondrion. Kinetoplasts (K) and nuclei (N) stained with DAPI. DIC 
images of cells shown as insets. Scale bar = 10 μm.  
(A) Cell expressing GFP-tagged ubiquitin hydrolase (LmjF09.0240) (B) Cell 
expressing GFP-tagged zinc carboxypeptidase (LmjF33.4020) (C) Cell expressing 
GFP-tagged CaaX prenyl protease (LmjF26.2690) (D) Cell expressing GFP-tagged 
rhomboid peptidase (LmjF02.0430) (E) Left panel: cell expressing GFP-tagged 
mitochondrial control rhomboid peptidase (LmjF04.0850); right panel: image of 
the same cell stained with red fluorescent MitoTracker dye. 
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The calpain-like peptidase showed a flagellar localisation. The GFP fusion 

protein appeared to accumulate in the flagellum outside the cell body, and the 

intensity of the signal decreased towards the tip of the flagellum. The GFP signal 

could not be detected in the flagellar pocket (Fig. 3-2). 

A 

 

B 

 

Figure 3-2: Deconvolution microscopy images of L. major cell line expressing 
GFP-tagged calpain. Kinetoplasts (K) and nuclei (N) stained with DAPI. 
Brightfield (DIC) images of cells shown as insets. Scale bar = 10 μm. 
(A) Scattered GFP fluorescence signal decreasing along the length of the 
flagellum; left panel: GFP and DAPI signals, fixed cell; right panel: overlay with 
brightfield (DIC) image to outline the cell.  
(B) GFP fluorescence concentrated in the portion of the flagellum close to the 
cell body outside the flagellar pocket; left panel: GFP and DAPI signals, live cell; 
right panel: image overlay with brightfield (DIC) image to outline the cell.  
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The serine carboxypeptidase appeared to localise to punctate structures 

surrounding the flagellar pocket. The GFP signal did not co-localise with the red 

fluorescent flagellar pocket stain FM4-64 (Fig. 3-3). 

 
 
Figure 3-3: Fixed cell deconvolution microscopy images of L. major cell line 
expressing GFP-tagged serine carboxypeptidase (LmjF18.0450) and stained with 
the red flagellar pocket stain FM4-64. Kinetoplast (K) and nucleus (N) stained 
with DAPI. DIC image of cell shown as inset. Scale bar = 10 μm. 
Top left: GFP and DAPI fluorescence image; bottom left: FM4-64 red fluorescent 
molecular dye staining the flagellar pocket; top right: merged image of GFP, 
DAPI and FM4-64 signals with no visible co-localisation; bottom right: merged 
image of GFP, DAPI and FM4-64 with brightfield (DIC) image to give outline of 
cell. 
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The GFP-labelled Bem46 localised to the flagellar pocket. The GFP signal largely 

co-localised with the red fluorescent flagellar pocket stain FM4-64 (Fig. 3-4). 

 

 
Figure 3-4: Fixed cell deconvolution microscopy images of L. major cell line 
expressing GFP-tagged Bem46 peptidase (LmjF35.4020) with the GFP signal 
pattern co-localising with the red flagellar pocket stain FM4-64. Kinetoplast (K) 
and nucleus (N) stained with DAPI. Brightfield (DIC) image of cell shown as inset. 
Scale bar = 10 μm. 
Top left: GFP and DAPI fluorescence image; bottom left: FM4-64 red fluorescent 
molecular dye staining the flagellar pocket; top right: merged image of GFP, 
DAPI and FM4-64 signals with co-localisation of GFP and FM4-64 in flagellar 
pocket; bottom right: merged image of GFP, DAPI and FM4-64 with brightfield 
(DIC) image to give outline of cell. 
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3.3 Discussion 

The generation of GFP-fusion proteins of the eight selected L. major peptidases 

was successful and the GFP fluorescence could be tracked in vivo by 

fluorescence microscopy to determine the intracellular localisation of each 

fusion protein. 

It is remarkable that five of the eight candidate peptidases were trafficked to 

the mitochondrion in L. major when tagged with GFP. The in silico predictions of 

mitochondrial targeting motifs as opposed to secretory signal peptides yielded 

ambiguous results for the ubiquitin hydrolase and the CaaX prenyl protease and 

clearly non-mitochondrial results for the zinc carboxypeptidase and one of the 

rhomboids. So the observed mitochondrial localisation was unanticipated for 

these. The second rhomboid was expected to be targeted to the mitochondrion, 

and the pattern of its localisation in this organelle supports the conclusion that 

the reticulated GFP-labelled structure visible in all five candidates was indeed 

the mitochondrion. The identification of this organelle was further corroborated 

by the fact that the DAPI-stained kinetoplast was always closely associated with 

or incorporated in the GFP pattern, as well as by staining experiments with the 

MitoTracker Red molecular stain, which co-localised with the GFP fluorescence 

pattern. 

It is not apparent why these proteins localised to the mitochondrion. 

Mistargeting to the mitochondrion due to misfolding or overexpression of the 

fusion proteins is unlikely, because misfolded or surplus protein would be 

expected to accumulate in the cytoplasm, be trafficked to the lysosome or the 

proteasome for degradation (Goldberg, 2003b; Katayama et al., 2008) or possibly 

be targeted into the flagellar pocket for exocytosis from the cell. Protein import 

to the mitochondrion is a directed process and requires distinct targeting motifs 

(von Heijne et al., 1989a). Consequently the observed localisation of a protein in 

this compartment is most likely genuine. The fact that not all eight fusion 

proteins localised to the mitochondrion, which could point to a systematic 

mistake or a fault with the DNA vector used, additionally supports the notion 

that the mitochondrial localisation was not an artefact. 
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Very little data is available on the candidate peptidases analysed in this study; 

they are mostly putative enzymes that have not been investigated in 

kinetoplastids. Therefore, conclusions regarding their function and reasons for 

their mitochondrial localisation are speculative. 

Ubiquitin hydrolase cysteine peptidases are de-ubiquitinating enzymes and are 

involved in the non-lysosomal protein degradation process at the proteasome, 

where they cleave ubiquitin molecules from ubiquitinated proteins. Poly-

ubiquitination labels a protein for proteasomal degradation and de-

ubiquitination takes place to rescue proteins from the degradation pathway, to 

modify the ubiquitin signal or to recycle ubiquitin. Ubiquitin hydrolase 

peptidases specifically cleave bonds involving the C-terminal glycine of 

ubiquitin, either bound to another ubiquitin or to a different protein (Alberts et 

al., 2002; Bonifacino and Weissman, 1998). Nineteen ubiquitin hydrolase 

cysteine peptidases are found in the L. major genome and the clan CA / family 

C19 group of proteins is one of the largest peptidase families. Ubiquitination in 

mitochondria has not been broadly investigated to date. However, there are 

examples of ubiquitinated proteins in mitochondria (Sun et al., 2009; Thompson 

et al., 2003), as well as a ubiquitin ligase and a ubiquitin hydrolase located in 

the outer membrane of human mitochondria (Yonashiro et al., 2006; Nakamura 

and Hirose, 2008b). So there is evidence for a ubiquitination machinery in the 

mitochondria of higher eukaryotes (Germain, 2008) and it has been suggested 

that a human ubiquitin hydrolase is involved in the maintenance of 

mitochondrial morphology (Nakamura and Hirose, 2008a). The ubiquitin 

hydrolase investigated here may be part of a similar system in Leishmania. 

The CaaX prenyl protease is a peptidase which cleaves C-terminal CaaX 

sequences (whereby a is an aliphatic amino acid) of membrane proteins during 

prenylation. First, the CaaX sequence is prenylated (farnesylated or geranyl-

geranylated, depending on the nature of the X residue) at the cysteine residue, 

then a CaaX prenyl protease cleaves the aaX tripeptide, leaving the cysteine as 

the new C-terminus, which is then methylated by a specific methyltransferase. 

After these modifications, the prenylated protein can insert into and function 

within a membrane (Otto et al., 1999). The activity of CaaX prenyl proteases is 

membrane-associated and there are often only one or two such enzymes found 

in any organism, which then play a major role in the processing of proteins. Two 
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CaaX prenyl proteases have been found in the L. major genome (Besteiro et al., 

2007b), one of which was investigated in this project. Its catalytic mechanism 

has not been elucidated; therefore it is not classed into one of the five types of 

peptidases yet. A T. cruzi homologue as well as some prenyl proteases in other 

organisms have been found to localise to the ER membrane with their active site 

in the cytosol (Porcel et al., 2000). It is possible that the L. major prenyl 

protease studied here functions in a similar way, but is inserted into the 

mitochondrial outer membrane with its C-terminus, exposing the active site to 

the cytosol. This would explain the mitochondrial location of the GFP fusion 

protein. 

Rhomboid-like serine peptidases are polytopic type II intramembrane proteins 

that cleave other proteins within the membrane. The membrane lipid bilayer is 

an unusual site for proteolysis, but the active site of rhomboids contains a 

water-filled indentation which allows hydrolytic cleavage to take place in an 

otherwise hydrophobic environment. Rhomboids play a role in several cellular 

processes like signalling cascades and are widely conserved, from bacteria to 

humans (Lemberg and Freeman, 2007b; McQuibban et al., 2003). It is thought 

that eukaryotic cells contain at least two rhomboids, one of which is found in 

the mitochondrion. Some species contain more than two, for example Drosophila 

with seven rhomboids (Koonin et al., 2003). Accordingly, the L. major genome 

contains two predicted rhomboid-like serine peptidases, a mitochondrial and a 

non-mitochondrial one, and both were investigated in this study. The predicted 

mitochondrial rhomboid was used as a mitochondrial control protein and its GFP 

fusion protein co-localised with the MitoTracker stain in a mitochondrion-shaped 

pattern as expected. Surprisingly, the second rhomboid showed the same 

pattern when fused to GFP, suggesting that it is mitochondrial as well and the 

reason for this is not clear. The L. major rhomboids do not have close 

homologues in other species outside of the kinetoplastids and they differ from 

the rhomboids of higher eukaryotes in that they are largely predicted to have 

fewer transmembrane domains than the usual six or seven (Lemberg and 

Freeman, 2007a). Interestingly, loss of the mitochondrial rhomboid in yeast 

causes a growth defect and abnormal mitochondria (Freeman, 2004). It is worth 

noting that the L. major cell line transfected with the GFP-fused mitochondrial 
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control rhomboid here showed a consistently reduced growth rate too, which 

may have been due to over-expression in the mitochondrion. 

The zinc carboxypeptidase had a very low prediction to be mitochondrial, but its 

GFP fusion protein clearly localised there. Since this protein has not yet been 

investigated in detail, its enzymatic properties are only putative. It does not 

have close homologues in other organisms outside the Leishmania species. It is 

interesting to note that the bioinformatics predictions for the large full length 

zinc carboxypeptidase were of lower reliability and consistency than those for 

the other seven candidate peptidases, which may point to a potential decrease 

in prediction accuracy with increasing protein size and, therefore, structural 

complexity. Additionally, this protein was truncated for the GFP fusion and only 

a small region from the N-terminal end was cloned into the GFP vector. The fact 

that it was nevertheless targeted to the mitochondrion suggests that the N-

terminus alone is sufficient for correct trafficking by an N-terminal 

mitochondrial targeting motif. However, it is possible that a full length fusion 

protein would traffic in a different way and that the GFP pattern observed in 

this study was caused by the truncation. 

Apart from these five mitochondrial peptidases, the remaining three candidates 

exhibited more interesting and distinct GFP fusion protein fluorescence 

patterns. 

The calpain-like peptidase clearly localised to the flagellum with a 

concentration of GFP in the flagellum outside the cell body and a decrease of 

fluorescence towards the distal tip. The GFP-fusion protein was not visible in the 

flagellar pocket. Calpains (Calcium-dependent papain-like cysteine peptidases) 

are thought to be involved in signal transduction pathways, the function of the 

cytoskeleton and a broad range of other cellular processes (Evans and Turner, 

2007a). They are usually intracellular but non-lysosomal and require calcium for 

activity. They often cleave their highly specific substrates only partially, leading 

to modification rather than breakdown (Evans and Turner, 2007b; Croall and 

Ersfeld, 2007). Kinetoplastid calpains seem to differ from animal calpains. They 

do not show the classical calpain structure including an EF-hand calcium binding 

site and they are classified into five groups according to their domains and their 

resemblance with mammalian calpains. The L. major calpain analysed here is a 
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class I calpain; these have the highest similarity to mammalian calpains in 

comparison to other kinetoplastids’ calpain-like proteins (Croall and Ersfeld, 

2007). The first trypanosomatid calpain-like protein that was investigated was 

T. brucei CAP5.5, which is associated with the cytoskeleton (Hertz-Fowler et al., 

2001) and was also identified as a component of the T. brucei flagellar proteome 

(Broadhead et al., 2006). Overall, six calpain-like proteins were found in the 

“flagellome” of T. brucei, all with conserved L. major homologues but not 

including the calpain analysed here. Since the Leishmania “flagellome” has not 

been analysed yet, it is possible that this calpain is specific for the L. major 

flagellum and differs in localisation from its Trypanosoma homologue. Another 

possibility is that the T. brucei “flagellome” analysis is not comprehensive. The 

calpain investigated here seemed not to be expressed along the whole flagellum, 

but only in a short area close to the flagellar pocket. So its expression level 

relative to the whole flagellum may be below the significance threshold for the 

identification of distinct flagellar proteins. It will be interesting to investigate 

the localisation of this calpain in the amastigote stage of L. major, where the 

flagellum does not protrude from the pocket, to see whether the calpain 

remains associated with the short flagellum within the pocket or is redistributed 

elsewhere in the cell. 

The two peptidases that did localise to the flagellar pocket area and might be 

secreted are Bem46 and the serine carboxypeptidase.  

The serine carboxypeptidase GFP fusion protein appeared to localise to small 

punctate or elongated structures in close proximity to the flagellar pocket. It is 

possible that the protein accumulated in small vesicles budding off or fusing with 

the flagellar pocket membrane. The GFP signal did not co-localise with the 

endocytic stain FM4-64, neither at the flagellar pocket nor further into the 

endocytic pathway or at the lysosome. Therefore it seems that the protein was 

either not released into the pocket or only at undetectable levels or may have 

been released from the pocket too rapidly for detection. The transmembrane 

domain predictions calculated only one transmembrane helix for this peptidase, 

at the N-terminus, which may be a signal peptide. Even if it is a genuine 

transmembrane domain, it may anchor the protein in the membrane until it is 

cleaved, so it is feasible for it to be released into the flagellar pocket in a 

soluble form. Generally, serine carboxypeptidases of clan SC, family S10 are 
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located in lysosomes in animals and in the vacuole in plants and fungi (Parussini 

et al., 2003c), so it is unexpected that the L. major serine carboxypeptidase was 

not found in the lysosome. However, there is a possibility that it normally is 

targeted to the lysosome, perhaps via the flagellar pocket like CPB, but was 

here retained in vesicles along the way. A reason for this could be an 

interference of GFP with targeting signals. Carboxypeptidases function by 

cleaving the C-terminal amino acid of proteins. A T. cruzi homologue of the 

L. major serine carboxypeptidase has been characterised by Cazzulo and co-

workers (Parussini et al., 2003b) and is thought to be lysosomal. Like other 

serine carboxypeptidases of the S10 family it was shown to be a glycoprotein 

with two or three N-glycosylation sites. Apart from an N-terminal signal peptide, 

it seems also likely that there is a short pro-peptide, as in many other serine 

carboxypeptidases (Parussini et al., 2003a). All in all, a similar structure could 

be expected for the L. major peptidase, but since it shows only 47 % similarity 

with its closest homologue, the T. cruzi serine carboxypeptidase, it may have 

evolved L. major specific characteristics, functions or intracellular destinations. 

Again, there is a possibility that the GFP tagging and overexpression interfered 

with correct folding and that the observed localisation is an artefact and 

possibly a route of disposal of surplus or misfolded protein. 

Finally, the Bem46-like serine peptidase GFP fusion protein showed a clear 

localisation to the flagellar pocket and a good co-localisation with the flagellar 

pocket stain FM4-64. This pattern was observed in most cells. A few cells showed 

a different pattern with strong GFP expression throughout the cytosol. This may 

indicate that the flagellar pocket localisation seen in most cells was a true 

observation and not due to over-expression of the GFP fusion protein, as large 

amounts of GFP seemed to accumulate in the cytosol of some cells without being 

exported into the flagellar pocket as a “detoxification” route. Bem46 belongs to 

the S9 serine peptidase family which also includes the membrane-bound 

oligopeptidase B (OPB), which has been well characterised in kinetoplastids and 

which cleaves small peptides (Matos Guedes et al., 2007; Coetzer et al., 2008), 

but Bem46 seems to be a highly divergent member of the family. It does not 

contain the β-propeller domain which restricts substrate size for other family 

members. Bem46 peptidases have not been investigated in much detail in other 

organisms, but some research on plants and fungi suggests an involvement of the 
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protein in maintenance of cell polarity (Mercker et al., 2009d; Mochizuki et al., 

2005c). The L. major Bem46 was predicted to contain a transmembrane domain 

at the N-terminus, which may be a signal peptide. Depending on the algorithm, 

one or two other transmembrane domains are found in this protein, which would 

make a crucial difference to the ability of the protein to be secreted. An N-

terminal transmembrane domain or signal peptide may target the protein into 

the flagellar pocket membrane where it could be cleaved and released as a 

soluble enzyme and, potentially, act as a virulence factor. If one or both of the 

other potential transmembrane domains are real, they could prevent release and 

the protein may remain in the membrane. Assuming the observed flagellar 

pocket localisation is not an artefact created by GFP-tagging or overexpression, 

the peptidase may be an integral protein of the pocket membrane. No resident 

proteins of the Leishmania flagellar pocket membrane are known to date, so it 

will be worth investigating the role of Bem46 in this compartment and its 

potential usefulness as a marker protein. 

To conclude, the bioinformatics predictions and the in vivo GFP-labelling results 

did not correspond consistently. There were striking ambiguities within the 

predictions for some proteins, for example two algorithms predicting no signal 

peptide for Bem46 and two other algorithms confidently suggesting a signal 

peptide. Two of the five mitochondrial peptidases were not identified as 

mitochondrial proteins according to the predictions; three peptidases yielded 

similarly strong predictions for N-terminal secretory signals and mitochondrial 

signals, which should be mutually exclusive. 
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4. The Leishmania  
  Bem46-like serine peptidase 

 

4.1 Introduction 

4.1.1 Bem46-like peptidases 

The first Bem46 protein described was a temperature-sensitive Bem1/Bud5 

suppressor ("Bud EMergence") protein identified in the yeast Schizo-

saccharomyces pombe (Valencik and Pringle 1995, unpublished, Uniprot database 

accession P54069). It appears that Bem46 is involved in the interaction of the 

small G protein Bem1 and the activator Bud5 (a GDP-GTP exchange factor), 

which is important for the establishment of cellular polarity and the initiation of 

bud formation through reorganisation of the actin cytoskeleton (Cabib et al., 

1998). 

Many other organisms including mammals, invertebrates, protozoans and 

prokaryotes carry Bem46 homologues, but these proteins have thus far only been 

studied in detail in the fly Drosophila melanogaster, the fungus Neurospora 

crassa and the plant Arabidopsis thaliana. In D. melanogaster there is evidence 

that BEM46 may interact with an activator (GDP-GTP exchange factor) of a G 

protein that is involved in the asymmetrical cell division of larval neuroblasts, 

but it is not essential (Giot et al., 2003; Parmentier et al., 2000). The N. crassa 

BEM46 was found to be essential for maintaining cell polarity of hyphae 

germinating from ascospores, and facilitating their directional growth. BEM46 

was differentially expressed, localising to the perinuclear endoplasmic reticulum 

and close to the cell membrane, depending on the cell type. It contains a 

secretory signal peptide and apparently no ER retention signal, so may not 

permanently reside in the ER. It was also expressed differentially in different 

tissues (Mercker et al., 2009c). The A. thaliana BEM46 (or WAV2) was found to 

be highly expressed in the plant root tip area and to suppress root bending by 
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inhibiting root tip rotation. The protein appears to be membrane-bound and 

mainly expressed on the cell surface. Some evidence suggests it may influence 

microtubule organisation (Mochizuki et al., 2005b). 

In general, Bem46-like proteins are conserved proteins found in many different 

organisms. They are usually predicted to have at least one transmembrane 

domain towards the N-terminus, an alpha/beta-hydrolase domain and often an 

N-terminal signal peptide (Mercker et al., 2009b). Results from functional 

studies suggest a role for Bem46 in signal transduction and the maintenance of 

cell polarity, with a possible involvement in the modulation of the cytoskeleton. 

4.1.2 The S9 family of peptidases 

Bem46 proteins are serine peptidases with an alpha/beta-hydrolase domain and 

are classified into clan SC, prolyl oligopeptidase family S9, subfamily S9X 

(unassigned peptidases). Members of the S9 family of peptidases are usually 

oligopeptidases with a restricted substrate size specificity. This is conferred by 

an N-terminal eight-bladed beta-propeller domain, which restricts entry of 

larger peptides into the active site (Fulop et al., 1998a). Substrate specificity 

varies; many S9 peptidases cleave prolyl bonds, but not all. The oligopeptidase B 

(OPB) preferentially cleaves arginine and lysine bonds (Polgar, 2002a; Pacaud 

and Richaud, 1975a). The active site of S9 peptidases is a catalytic triad 

positioned in the C-terminal domain and consists of the active site residues 

serine, aspartic acid and histidine, in this order. The fold of the catalytic domain 

is a characteristic alpha/beta-hydrolase fold with an alpha-beta-alpha sandwich 

structure consisting of eight beta-sheets connected by alpha-helices (Rawlings et 

al., 2008; Ollis et al., 1992). The L. major Bem46 is a divergent member of the 

S9 family. It has a conserved catalytic triad in its alpha/beta-hydrolase domain, 

but the overall sequence identity to other members like OPB is not very high. It 

also lacks the N-terminal beta-propeller domain, which may allow Bem46 to 

cleave larger substrates or a broader range of substrates than other S9 

peptidases (Fig. 4-1). 
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Figure 4-1: S9 peptidase family members including Bem46-like serine peptidase. 
Comparison of protein length and domain structure. Catalytic domain with 
catalytic triad SDH present in all members, Bem46-like peptidase lacking N-
terminal beta-propeller domain. Scissor symbol shows cleavage site downstream 
of Bem46 signal peptide / N-terminal transmembrane domain. Adapted from a 
figure by Cathy Moss. 
 

4.2 Results 

4.2.1 Bioinformatics analyses of  L. major Bem46-like peptidase 

4.2.1.1 Phylogenetic analysis 

BLAST analyses of the L. major Bem46 (LmjF35.4020) sequence did not reveal 

any highly identical homologues of the protein outside the kinetoplastids; Bem46 

proteins of non-kinetoplastids show below 30 % sequence identity to L. major 

Bem46. Nevertheless, it can be aligned with Bem46 homologues from a broad 

range of other organisms, and the alignment shows some sequence conservation 

and a similarity in length, as well as a conservation of all three residues of the 

active site in all aligned species but the mammal (rat) (Fig. 4-2).  

Similarity of Bem46 proteins is higher among the kinetoplastids. L. major Bem46 

is highly identical to its L. infantum (identity 94 %, e-value 0.0) and 

L. braziliensis (identity 83 %, e-value 5e-180) homologues, but the identity is 

already markedly reduced in the other kinetoplastids species T. brucei (identity 

43 %, e-value 4e-74) and T. cruzi (identity 43 %, e-value 1e-81). All these species 

carry only one respective Bem46 gene. 
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The closest non-kinetoplastid proteins that were revealed by BLAST analysis 

were Bem46 proteins of many different Drosophila species and hypothetical 

proteins from a broad range of organisms (including fungi, invertebrates, 

Xenopus, yeast and prokaryotes), as well as orthologues of the vertebrate 

alpha/beta-hydrolase-containing protein 13 from the S33 peptidase family, but 

identity with the L. major Bem46 is below 40 % for these (with e-values above 

5e-38). 

The Bem46 gene LmjF35.4020 encodes the only Bem46-like protein in the 

L. major genome; its closest homologue (LmjF33.0400, another putative S9 

family serine peptidase) only shows 28 % identity, with an e-value of 9.7e-09. 

The L. major Bem46 can be aligned with Bem46-like proteins from other 

kinetoplastids, Drosophila, yeast, bacteria and other organisms, and the active 

site residues appear conserved and can be aligned. Such alignment is not readily 

achievable for the L. major Bem46 and other members of the L. major S9 

peptidase family like the oligopeptidase B (OPB), which differ substantially and 

appear to feature a different active site position. 
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     1                                                                             80 
L. major (1) MSFGSFLLSAGLYLVLVAVFVSLFLHIMSYRYRSQQNQLLYYPHIPPESREVCEDPVALGIPYAERVCVTTADKVRLWGY 
S. pombe     (1) ---MLVLHHPSLFQAAFSLFQDSENPLSLPTLLIFFHHPIVYLRVYIHPS-FISFLDMAGSLSSAIFNVLKYSGMASLAV 
D. melanogaster (1) --------------------------------------MKEVGIALPKSR-GVGVGVLAAFLLCFIFYYFYGGYMTLALF 
E. histolytica (1) ------------------------------------------------------------------MIWEIIAGATALIM 
R. norvegicus (1) ----------------------------------------------------------------MVLRNLRLFPCACSAL 
M. tuberculosis (1) ---------------------------------------------------------------MSLKRCRALPVVAIVAL 
A. thaliana     (1) -----------------------------------------------------------------MVTYVSALFYGFGGI 
Consensus (1)                                                                  IV       MA  AL 
  

 
 

     81                                                                           160 
L. major (81) MLWPAPAPSAEKSGNASVPDSIGRASSNVATAEGGMHVEVDAPGSATDSTSASNMVSGSSRSVTMSSGMPSFVMLYFHGN 
S. pombe     (77) TLIALGFLYKYQKTLVYPSAFPQGSRENVPTPKEFNMEYERIELRTRDKVTLDSYLMLQSESPESR-----PTLLYFHAN 
D. melanogaster (42) AGIILLIFYYAQDLLLYHPDLPANSRIYIPIPTMHNLPHITVSIKTPDDVTLHAFWVTQPEERSKSS----PTLLYFHGN 
E. histolytica (15) VLSGIYLFTHQYEIVFYPTRHSLPSVEEITQTFQLPFELKEVSIFTNDNNTIYLYACLK-EEPSK-----HITLLLFQSN 
R. norvegicus (17) GRKIAAEYRSFTSKSLKEHIVPPLMNMMIYLNCLTVKFPLLVDLKRPETKIAHTVNFFLRSEPGV--------L--LGI- 
M. tuberculosis (18) VASGVIMFIWSQQR---R-LIYFPSAGPVPSASSVLPAGRDVVVETQDGMRLGGWYFPHTSGGSG------PAVLVCNGN 
A. thaliana     (16) VVAGVALLVAFQEKLVYVPVLPGLSKSYPITPARLNLIYEDIWLQSSDGVRLHAWFIKMFPECRG------PTILFFQEN 
Consensus (81) VL GL LF   Q  LLY   LP  S   I T         DV L T D VTLH W      E S       PTLLYF GN 

 
 

      161                                                                          240 
L. major (161) AGNVGHRLPLAQAFVTHLKCAVMMVDYRGFGLSDDSEQTQETLELDAQACFDYLWQDPRVPRDRIIVMGTSLGGAVSIHL 
S. pombe     (152) AGNMGHRLPIARVFYSALNMNVFIISYRGYGKSTG-SPSEAGLKIDSQTALEYLMEHPICSKTKIVVYGQSIGGAVAIAL 
D. melanogaster (118) AGNMGHRMQNVWGIYHHLHCNVLMVEYRGYGLSTG-VPTERGLVTDARAAIDYLHTRHDLDHSQLILFGRSLGGAVVVDV 
E. histolytica (89)  AGTVLDRIEMAKKYYELCDVNFVIAVYRGFDKSTG-IPEEVTMANDVEKYFESLES-LGVDMNNIVVIGRSIGASMALKL 
R. norvegicus (86)  --------------------WHTVPSCRGEEAKGKCRCWYKAALRDGNPIIVYLHG--SAEHRSSLFYRVATNAARALEA 
M. tuberculosis (88)  AGDRSMRAELAVALHG-LGLSVLLFDYRGYGGNPG-RPSEQGLAADARAAQEWLSGQSDVDPARIAYFGESLGAAVAVGL 
A. thaliana     (90)  AGNIAHRLEMVRIMIQKLKCNVFMLSYRGYGASEG-YPSQQGIIKDAQAALDHLSGRTDIDTSRIVVFGRSLGGAVGAVL 
Consensus (161) AGNMGHRL LA   Y   L  NVLMV YRGYG S G  PSE GL  DAQAAIDYL     VD  RIVVFGSLGGAVAI L 

 
 

      241                                                                          320 
L. major (241) AANERYGRRIAAVIVENSFSSISDMASALSRPILTKLASRCPDLAVGIFEYYVKPLALRISWNSAQKITKVV--VPMLFL 
S. pombe     (231) TAKNQ--DRISALILENTFTSIKDMIPTVFPYGGSIISR-----------------FCTEIWSSQDEIRKIKK-LPVLFL 
D. melanogaster (197) AADTVYGQKLMCAIVENTFSSIPEMAVELVHPAVKYIPN----------------LLFKNKYHSMSKIGKCS--VPFLFI 
E. histolytica (167) YNKKN----CKGLIIENGFTTLLDVGKILMPAISFFP------------------WLIKDKWDNLNEIKQVQKGKRILFC 
R. norvegicus (144) KGGYP----VDAIVLEAPFTNMWVASINYPLLKLYEIAR-------------------SAYRN-KDRVKMVV-----FP- 
M. tuberculosis (166) AVQRP----PAALVLRSPFTSLAEVGAVHYPWLPLRR-------------------LLLDHYPSIERIASVH--APVLVI 
A. thaliana     (169) TKNNP--DKVSALILENTFTSILDMAGVLLPFLKWFIGGSGTKSLK------LLNFVVRSPWKTIDAIAEIK—QPVLFL 
Consensus (241)  A      KIAALILENTFTSI DMA  L P I   I                   LLK  W SIDKI  V    PVLFL 
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      321                                                                          400 
L. major (319) SGMRDEIVPPEQMRTLYKAATKCLRDGNGGELTIPLRRFLEFEDGRHNNLPLMPG--YMSALQDFVTDVRNAGAAAVV-- 
S. pombe     (291) SGEKDEIVPPPQMVLLFGLCGS------------AKKKFHSFPKCTHNDTCLGDG--YFQVIADFLAENDINTPAS---- 
D. melanogaster (259) SGLADNLVPPRMMRALYTKCGS------------EIKRLLEFPGGSHNDTWIVDG--YYQAIGGFLAELQQQPLLKAPEK 
E. histolytica (225) SSGQDEIVPPSMMQHLYDVAHETG----------KKVRMEKFAKGFHMNLPSFPE--YFEKLNKFFEELTKETMEEGIIE 
R. norvegicus (194) PGYHHNLLCESPMLIRSVR------------------------------------------------------------- 
M. tuberculosis (221) AGGSDDIVPATLSERLVAAAAE-------------PKRYVVVPGVGHNDPELLDGRVMLDAIRRFLTETAVLGQ------ 
A. thaliana     (239) SGLQDEMVPPFHMKMLYAKAAARN----------PQCTFVEFPSGMHMDTWLSGGEVYWKTNLQFLEKYAPEKRKEDTGR 
Consensus (321) SG  DEIVPP  M  LY  AA                KRFL FP G HND  L  G  YF  I  FL E            

 
 
 

       401        414 
L. major (395) -------------- 
S. pombe     (353) -------------- 
D. melanogaster (325) SNVWVELEHKIIDV 
E. histolytica (293) NQEGQ--------- 
R. norvegicus (213) -------------- 
M. tuberculosis (282) -------------- 
A. thaliana     (309) -------------- 
Consensus (401)                

 

Figure 4-2: Sequence alignment of L. major Bem46 with several other Bem46 proteins (yeast Schizosaccharomyces pombe, fly 
Drosophila melanogaster, protozoan Entamoeba histolytica, rat Rattus norvegicus, prokaryotic pathogen Mycobacterium tuberculosis, 
plant Arabidopsis thaliana). Aligned using AlignX (Invitrogen). The active site consisting of Ser (position 231), Asp (323) and His (365) 
(residues highlighted in red) is conserved in all species but rat. Colour scheme (from AlignX): blue letter in cyan box: consensus residue 
derived from a block of similar residues at this position; black letter in green box: consensus residue derived from the occurrence of 
greater than 50 % of a single residue at this position; red letter in yellow box: consensus residue derived from a completely conserved 
residue at this position; green with no box: residue weakly similar to consensus residue at this position.
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4.2.1.2 Prediction of protein topology 

The bioinformatics analysis described in chapter 3 allowed a preliminary 

characterisation of Bem46. It was predicted that the protein is not targeted to 

the mitochondrion and contains a secretory signal peptide, which may be an 

uncleaved signal anchor that could retain Bem46 in a membrane. Topology 

algorithms predicted a highly likely transmembrane domain at the N-terminus, 

which may be a misinterpretation of the signal peptide or anchor sequence, and 

one or two further transmembrane domains, depending on the algorithm used. 

The Phobius algorithm was developed to distinguish better between signal 

peptides and transmembrane domains at the N-terminus and can therefore be 

more accurate than other algorithms (Emanuelsson et al., 2007; Kall et al., 

2004b). While SOSUI (Fig. 4-3), TMHMM (Fig. 4-5) and Phobius (Fig. 4-6) 

predicted only one transmembrane domain, HMMTOP predicted up to three (Fig. 

4-4). The active site lies in the C-terminal half of the protein (Fig 4-7) and the 

active site residues S 231 (serine), D 323 (aspartic acid) and H 365 (histidine) 

were identified by Merops Blast (http://merops.sanger.ac.uk). Additionally, 

Bem46 contains one non-conserved asparagine site (94NAS96) that could be N-

glycosylated. 

 
Figure 4-3: Prediction of L. major Bem46 protein topology, predicted using the 
SOSUI algorithm. N: N-terminus, C: C-terminus, TM1: transmembrane domain 1. 
Residues in circles: active site residues S (Ser), D (Asp) and H (His). Black arrow: 
potential cleavage site. 
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Figure 4-4: Prediction of L. major Bem46 protein topology, predicted using the 
HMMTOP algorithm and visualised using TMPres2D. N: N-terminus, C: C-terminus, 
TM1 to 3: transmembrane domains 1 to 3. Residues in circles: active site 
residues. Black arrow: potential cleavage site. 
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Figure 4-5: Prediction of L. major Bem46 protein topology, predicted using the 
TMHMM algorithm. Red: probability of transmembrane domain. Orientation in 
the membrane not determinable (probability of “inside” localisation of N-
terminus: 0.5). 
 

 
Figure 4-6: Prediction of L. major Bem46 protein topology, predicted using the 
Phobius algorithm. Red line: probability of a signal peptide, grey peak at N-
terminus: predicted transmembrane domain. 
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MSFGSFLLSAGLYLVLVAVFVSL FLHIMS YRYRSQQNQLLYYPHIPPESRVCEDPVALGIP

Y AERVCVTTADKVRLWGYMLWPAPAPSAEKSGNASVPDGRASSNVATAEGGMHVEVDA

PGSATDSTSASNMVSGSSRSVTMSSGMPSFVMLYFHGNAGNVGHRLPLAQAFVTHLKAVM

MVDYRGFGLSDDSEQTQETLELDAQACFDYLWQDPRVPRDRIIVMGSLGGAVSIHLAANER

YGRRIAAVIVENSFSSISDMASALSRPILTKLASRCPDAVGIFEYYVKPLALRISWNSAQKITKVV

VPMLFLSGMRDEIVPPEQMRTLYKATKCLRDGNGGELTIPLRRFLEFEDGRHNNLPLMPGY

MSALQDFVTDVRNGAAAVV 

Figure 4-7: L. major Bem46 protein sequence with annotations. 
Yellow: most likely transmembrane domain, black arrow: potential cleavage 
site, blue star: truncation point for long expression construct (used for antibody 
production, truncated by 23 amino acids), red star: truncation point for shorter 
protein expression construct (used to enhance solubility, truncated by 62 amino 
acids), red: active site residues, grey: potential N-glycosylation site. 
 

4.2.2 Fluorescence microscopy 

GFP-labelled Bem46 could be shown to localise to the flagellar pocket of 

promastigote L. major, as was described in chapter 3. To obtain additional 

information on the localisation of GFP-tagged Bem46 in L. major, it was co-

expressed with a fusion protein of the surface protein HASPB (previously named 

Gene B Protein, (Rangarajan et al., 1995a) and the red fluorescent tag mCherry 

(Shaner et al., 2004). This fusion protein construct was generated by Elmarie 

Myburgh using the pRIB vector, and the HASPB-mCherry sequence was integrated 

into the ribosomal locus of the L. major genome to ensure stable gene 

expression under the control of the ribosomal promoter. Transfected cells were 

serially diluted and selected for expression of both fluorescent marker proteins. 

The mCherry-labelled HASPB was mainly visible at the cell surface in the initial 

two to three days of a promastigote culture. It appeared that cell lines with a 

strong expression of HASPB-mCherry exhibited a low expression level of Bem46-

GFP and vice versa. Cells expressing both constructs at a sufficiently high level 

for deconvolution fluorescence microscopy were not abundant. The surface-

labelling HASPB-mCherry protein particularly labelled the flagellar membrane, 

thus also outlining the position of the flagellum within the flagellar pocket. The 

GFP-labelled Bem46 did not co-localise with the red fluorescent signal, but was 

visible in close proximity, confined to the flagellar pocket area and surrounding 

the flagellum (Fig. 4-8 and 4-9). 



 

 108

 
Figure 4-8: Deconvolution fluorescence microscopy image of L. major co-
expressing an extrachromosomal Bem46-GFP fusion protein and a red fluorescent 
HASPB-mCherry fusion protein labelling the cell surface; fixed cell. Nucleus (N) 
and kinetoplast (K) stained blue with DAPI. Brightfield image (DIC) for reference. 
Scale bar: 10 μm. 
 
 

 
Figure 4-9: As in figure 4-8 (see above). Magnification of flagellar pocket area of 
cell. Shown are four consecutive deconvolution microscopy Z-stacks (from left to 
right: stack 8, 10, 12 and 14) to allow a view of the fluorescence pattern in 
different focal planes. Scale bar: 10 μm. 
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4.2.3 Deletion of Bem46 gene in L. major 

L. major cell lines deficient in Bem46 (Δbem46) were generated by deleting both 

alleles of the wild type gene locus and replacing them sequentially with the 

antibiotic resistance marker cassettes for hygromycin and bleomycin. The initial 

round of transfection was carried out with both hygromycin and bleomycin 

resistance marker plasmids separately, yielding heterozygous cell lines resistant 

to the respective antibiotic. These were subsequently transfected again, to add 

the respective other antibiotic marker, in replacement of the second allele of 

the Bem46 gene. This second transfection was more successful for bleomycin 

resistant cells being transfected with hygromycin than vice versa. In the 

following section, all cell lines mentioned had been initially transfected with the 

bleomycin marker and then with hygromycin. Doubly resistant parasite cell lines 

were obtained after cloning transfectants under antibiotic pressure. They were 

analysed for correct Bem46 gene deletion by PCR and Southern blot analysis (Fig. 

4-10 and 4-11). 

 
Figure 4-10: Strategy for PCR and Southern blot analyses of potential Δbem46 
clones. (A) L. major Bem46 locus. (B) Hygromycin cassette integrated in Bem46. 
(C) Bleomycin cassette integrated in Bem46. Green: open reading frames; light 
grey: surrounding DNA sequence; dark grey: 5’ and 3’ gene deletion flanks; 
arrows: primer binding sites, annotated with PCR product size in black. OL 
numbers: primer numbers for PCR. Blue box: binding site for Southern blot 
probe. Red: relevant KpnI and NaeI restriction sites for Southern blot, with 
restriction digest fragment sizes in red. 
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PCRs were performed with primers targeting the wild type Bem46 allele, 

resulting in a PCR product of 1.2 kb in wild type and heterozygote cell lines and 

no PCR product in Δbem46 lines. Four of six doubly resistant clonal cell lines did 

not show a PCR product (Fig. 4-11 A). Of these four, three clones were 

confirmed to be Bem46 deficient mutants (Δbem46) by Southern blot. Southern 

blots were performed on NaeI-/KpnI-digested genomic DNA after agarose gel 

electrophoresis. The DNA was transferred from the gel onto a membrane and 

hybridised with a probe specific for the 3’ flank of Bem46. The detected 

fragments differed in size, depending on the Bem46 alleles or integrated 

antibiotic markers present in the respective cell line (Fig. 4-10). The three 

positive clones (clones 3, 4 and 5) showed correct integration of both antibiotic 

resistance cassettes and a loss of the wild type allele (Fig. 4-11 B). 

 
Figure 4-11: Analysis of potential Δbem46 mutant clones by PCR and Southern 
blotting. (A) PCR of  the wild type Bem46 gene locus. 1-6: potential Δbem46 cell 
lines 1-6, WT: control PCR using wild type DNA. Expected size of PCR product: 
1.2 kb. (Fig. 4-10) (B) Southern blot of potential Δbem46 clones 3, 4 and 5, as 
well as wild type DNA (WT). Blot probed for the 3' flanking region of the gene 
locus after digest with NaeI and KpnI. Wild type locus fragment size 2 kb. 
Bleomycin cassette integration site fragment size 3 kb. Hygromycin cassette 
integration site fragment size 6.3 kb (Fig. 4-10). 
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The generated Bem46 gene deficient cell line Δbem46 (clone 3) was analysed for 

promastigote growth in vitro and infectivity in mice by inoculation into the 

footpad and monitoring of lesion development. 

Δbem46 promastigote growth in cell culture was assessed daily over a period of 

seven days. The L. major Δbem46 cells exhibited a normal growth rate in culture 

(Fig. 4-12), albeit with a trend of slightly slower growth than the wild type after 

culture day 4. However, unpaired T-tests showed there was no significant 

difference in growth between the two cell lines, with all p-values above 0.2. 

BALB/c mice were inoculated with Δbem46 and wild type parasites, and footpad 

lesion development was monitored weekly over a period of four weeks with six 

mice per L. major cell line (Fig. 4-13). As in the promastigote culture, there was 

a small lag in lesion growth for Δbem46. Unpaired t-tests showed that there was 

a significant difference between the two cell lines in week 3 (p = 0.04), but 

measurements in all other weeks did not differ significantly (p values above 0.1). 

 
Figure 4-12: In vitro growth curve of promastigote cultures of wild type 
L. major and Δbem46 cells. Daily cell counts, experiments done in triplicates. 
Error bars show +/- standard deviation of the mean. 
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Figure 4-13: Measurements of footpad lesion development of BALB/c mice after 
infection with wild type L. major and Δbem46 cells. Weekly measurements of 
footpad swelling in mm. Measurements of six mice per cell line. Error bars show 
+/- standard deviation of the mean. 
 

4.2.4 Expression and purification of recombinant Bem46-like 

peptidase for antibody production 

The localisation of the GFP-tagged Bem46 was a first indication that this protein 

is trafficked to the flagellar pocket, but additional evidence could support the 

results, such as immunofluorescence staining and further fluorescence 

microscopy. For the production of a specific antibody, recombinant Bem46 

protein was expressed in bacteria, purified and injected into a rabbit for 

polyclonal antibodies to be produced.  

The nearly full-length Bem46 was expressed in E. coli to obtain and purify the 

protein for antibody production. The gene was truncated by 69 bp (23 amino 

acids) at its N-terminus, where a transmembrane domain was predicted, in order 

to try and enhance solubility. It was cloned into the pET28a vector, which added 

a C-terminal His-tag (6 histidine residues) to the protein sequence. This cloning 

work was done by Gareth Westrop, resulting in plasmid pGL1577 (originally 

named pBP266, carries ampicillin resistance cassette). Different E. coli cell lines 

and different expression conditions and media were assessed in order to obtain a 
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high yield of recombinant protein as well as good solubility (for details of 

conditions tested see material and methods, section 2.3.2). The recombinant 

Bem46 was largely detected in the insoluble pellet fraction in all conditions 

tested. The best yield was obtained by culturing transformed BL21 (DE3) pLysS 

cells overnight (~ 16 hours), at 15 °C in LB medium supplemented with ampicillin 

and chloramphenicol and by inducing expression with 1 mM IPTG. 

As most of the protein remained insoluble, it was purified by denaturing urea 

extraction (elution peak at pH 5.3) using the BioCAD system. The elution 

fractions obtained were analysed by SDS-PAGE and Western immunoblot using an 

anti-His antibody (Fig. 4-14). Protein yield was quantified by Bradford assay. 

Before the recombinant protein could be used for raising an antibody, it was 

dialysed with PBS to remove the high concentration of urea in the samples. 

Dialysis caused it to precipitate in fine crystals. The precipitate was used for 

antibody production in a rabbit. The rabbit serum from three bleeds, as well as 

the pre-immune serum, was affinity-purified using recombinant protein bound to 

a column, and tested by Western immunoblotting and by immunofluorescence 

microscopy. 

 
Figure 4-14: Protein purification fractions 1-10 after denaturing urea extraction 
of recombinant Bem46 (expected size: ~ 41 kDa). Left: Coomassie blue-stained 
12 % SDS-PAGE gel of Bem46 elution fractions. Right: Western immunoblot of the 
same gel, using an anti-His-tag antibody. 
 
 
On Western immunoblots, the anti-Bem46 antibody detected recombinant 

L. major Bem46 with no contaminating cross-reactions with other proteins (Fig. 

4-15); detection of recombinant protein was possible with 100 μg of antibody. 
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However, on blots of L. major whole cell lysates, the anti-Bem46 antibody bound 

to several proteins, one of which was the correct size for the wild type Bem46 

(43 kDa) (arrowed in Fig. 4-16) and which did not seem to appear in Δbem46 

lysate. To detect the endogenous Bem46, the antibody had to be used at a 

higher concentration (2 mg). On blots of lysates of cell lines carrying an 

extrachromosomal overexpression plasmid for the GFP-tagged Bem46, the 

anti-Bem46 antibody detected the overexpressed fusion protein at 70 kDa, in 

addition to the apparent endogenous Bem46 and the contaminating proteins 

(Fig. 4-16). 

 
Figure 4-15: Western immunoblot of recombinant L. major Bem46 (R) and 
L. major whole cell lysate (L), probed with 100 μg of anti-Bem46 antibody. 
Arrow: Recombinant Bem46 (~ 41 kDa). (A) Western blot.  
(B) Corresponding Coomassie-stained SDS polyacrylamide gel. 
 

 
Figure 4-16: Western immunoblot of L. major whole cell lysates, probed with 
2 mg of anti-Bem46 antibody. Cell lines used: wild type (WT), wild type 
expressing Bem46-GFP extrachromosomal overexpression plasmid (OX), Δbem46 
(KO). Arrow: Putative Bem46 protein of correct size (43 kDa). 
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Immunofluorescence analysis (IFA) of L. major cells using the anti-Bem46 

antibody (1 mg antibody per slide) did not yield consistent results. Fluorescent 

punctate structures could be detected by fluorescence microscopy in all 

samples, while control samples without secondary antibody showed no 

fluorescence. Cells carrying the extrachromosomal overexpression plasmid for 

the GFP-tagged Bem46 showed a higher intensity of fluorescence in the flagellar 

pocket area and the immunostaining fluorescence pattern largely co-localised 

with the GFP fluorescence signal. Wild type cells showed a similar pattern with 

fluorescent punctae throughout the cell and often an accumulation towards the 

flagellar pocket area. The Δbem46 cells showed a similar fluorescence pattern 

with notably more punctae along the length of the flagellum and no apparent 

larger punctae at the flagellar pocket (Fig 4-17). 

 

Figure 4-17: Immunofluorescence microscopy of L. major using anti-Bem46 
antibody (dilution 1 in 200). Cells fixed, brightfield (DIC) images shown for 
reference. (A) Wild type L. major stained with anti-Bem46 antibody (B) Δbem46 
stained with anti-Bem46 antibody (C) Wild type L. major overexpressing GFP-
labelled Bem46 and stained with anti-Bem46 antibody. Top panel: red 
fluorescence filter image, anti-Bem46 antibody fluorescence pattern. Middle 
panel: green fluorescence filter image, GFP fluorescence pattern. Bottom panel: 
Brightfield (DIC) reference image. 
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4.2.5 Expression and purification of soluble recombinant 

Bem46-like peptidase 

A second, further truncated protein expression construct was generated for 

obtaining soluble recombinant Bem46. 62 amino acids (186 bp) were deleted 

from the N-terminus of the sequence, including the predicted transmembrane 

domain, in order to try and enhance solubility (Fig. 4-7). The truncated gene 

sequence was cloned and fused to a His-tag at the N-terminus using the vector 

pET28a. The fusion protein was expressed in E. coli as before. Again, different 

expression conditions were explored. It was established that using E. coli BL21 

(DE3) cells in LB medium, with expression induced with 0.5 M IPTG at 20 °C 

resulted in the highest yield of soluble protein of all tested conditions. The 

recombinant protein was purified using a small-scale bench top His-tag affinity 

purification system and analysed by SDS-PAGE and Western immunoblot (Fig. 4-

18). This showed that a large proportion of the protein remained in the insoluble 

fraction; some was soluble but had not bound to the affinity column and passed 

through during column loading. Nevertheless the purified elution fractions 

contained protein of the correct size (37.5 kDa) and with few contaminations. 

The earliest fractions (E1 to 3) showed a small smear of lower molecular weight 

protein below the Bem46 protein band, probably degradation. 

 
Figure 4-18: Purified truncated recombinant Bem46 (protein size 37.5 kDa).  
(A) Western immunoblot. Soluble fractions (E1 to E6) after His-tag affinity 
purification, column flow-through fraction (FT) and insoluble pellet (P). Blot 
probed with anti-His-tag antibody. (B) Corresponding Coomassie-stained SDS 
polyacrylamide gel of fraction E3, flow-through (FT) and pellet (P) fractions. 
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4.3 Discussion 

It could be shown by fluorescence microscopy and co-localisation with the 

flagellar pocket stain FM4-64 that the L. major Bem46 accumulated in the 

flagellar pocket of promastigotes when tagged with GFP (see chapter 3). 

Additional labelling of the cell and flagellum membrane with a red fluorescent 

surface protein (HASPB-mCherry) revealed that Bem46-GFP was directly 

surrounding the flagellum within the flagellar pocket. From here, Bem46 may be 

released into the host environment, where it could act as a virulence factor and 

degrade host molecules. 

However, bioinformatics predictions of the Bem46 topology predicted at least 

one transmembrane domain, at the protein’s N-terminus. This suggests that 

Bem46 could be anchored to the flagellar pocket membrane. A single, N-

terminal transmembrane domain could be cleaved and the protein may still be 

released. Alternatively, Bem46 may be a resident protein of the pocket 

membrane and not released into the environment at all. The composition of the 

flagellar pocket is not well-studied. This compartment is not an extracellular 

environment, but rather a semi-confined space and exchange with the outside 

environment is probably regulated (Landfear and Ignatushchenko, 2001b). The 

pocket membrane is a region of high endo- and exocytic activity, so a peptidase 

that is particularly abundant here, like possibly Bem46, could play an important 

role. It could process proteins that are being exported through the pocket, or 

exogenous proteins that are being imported from the environment for 

degradation. The notion that Bem46 may be retained in the pocket is supported 

by the fact that two recent studies on the L. donovani and L. braziliensis 

secretomes did not find Bem46 homologues to be secreted (Silverman et al., 

2008; Cuervo et al., 2009c). The finding that recombinant Bem46 expressed as 

an insoluble protein, even after truncation of the predicted transmembrane 

domain at the N-terminus, adds to the evidence that Bem46 may be membrane-

bound, perhaps by more than one transmembrane domain. No flagellar pocket-

specific membrane proteins of Leishmania are known to date, so it will be worth 

analysing the localisation and function of Bem46 in this compartment in more 

detail. If the flagellar pocket membrane localisation can be confirmed, Bem46 

could be useful as a protein marker for the Leishmania flagellar pocket. Finally, 
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it is possible that Bem46 is distributed along the entire cell surface, not solely in 

the pocket, but at a lower abundance that was not readily detected by 

fluorescence microscopy. 

Deletion of the Bem46 gene in L. major had neither a significant effect on 

promastigote growth in culture, nor on the establishment and progression of 

footpad infections in BALB/c mice. Consequently, Bem46 does not appear to be 

a major virulence factor in L. major. This finding supports the notion that Bem46 

may not be secreted but retained in the flagellar pocket membrane. 

Promastigote Δbem46 cells appear morphologically normal under light 

microscopy, suggesting that Bem46 is not an essential structural component of 

the flagellar pocket membrane or matrix composition. Loss of Bem46 may have 

caused a more subtle phenotype in the cells, which was not readily detected. 

Alternatively, other enzymes, for example other S9 serine peptidases, may have 

compensated for the lack of Bem46. Promastigote cultures and BALB/c mouse 

infections were performed as initial experiments, but other options like 

infections of more immuno-competent mouse strains like C57/BL6 as well as in 

vitro macrophage infections can be explored to reveal more subtle phenotypic 

changes. Additionally, electron microscopy (EM) of the flagellar pocket area may 

allow the detection of morphological changes in Δbem46 cells that were not 

visible under light microscopy. Immuno-EM with the anti-Bem46 antibody that 

was raised in this study would be useful to confirm the flagellar pocket 

localisation shown by GFP-tagging. However, additional antibody purification 

steps may be required to enhance the specificity and decrease the cross-

reactivity of the generated antibody for use in immuno-EM. Labelling Bem46 

with a multiple HA (hemagglutinin)-tag, expressing this construct from the 

ribosomal locus of the L. major genome, and using an anti-HA antibody for 

immuno-EM is an alternative option.  

In other organisms, Bem46 peptidases play a role in the maintenance of cell 

polarity. Downregulation of Bem46 peptidases leads to loss-of-polarity pheno-

types, expressed by undirected budding site establishment in yeast (Valencik and 

Pringle 1995, unpublished, Uniprot database accession P54069), uninhibited 

bending of growing root tips in Arabidopsis (Mochizuki et al., 2005a), and 

undirected hyphae growth in the fungus Neurospora (Mercker et al., 2009a). 
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Maintenance of cell polarity is highly important for Leishmania, with the 

flagellar pocket and flagellum positioned at the anterior end of the cell, and an 

asymmetrical distribution of organelles and trafficking pathways, some of which 

converge at the flagellar pocket. The fact that Bem46-GFP accumulated at one 

end of the cell may indicate that Bem46 plays a role for Leishmania cell 

polarity. This notion makes it even more interesting to analyse the morphology 

of Δbem46 cells in more detail by electron microscopy. 

Bem46 is classified as an S9 serine peptidase. However, it appears to differ 

markedly from other members of the S9 family like oligopeptidase B (OPB), not 

only in its sequence but also in its structure, as Bem46 lacks the entire N-

terminal beta-propeller domain that restricts substrate size for other S9 

peptidases (Fulop et al., 1998b). Consequently, Bem46 may not have a specific 

substrate size limit and may be able to cleave relatively large peptides.  

Different members of the S9 family have different substrate specificities and 

cellular localisations; the S9 type peptidase POP (prolyl oligopeptidase), for 

example, cleaves substrates after proline, whereas OPB preferentially cleaves 

after basic residues (arginine and lysine) (Polgar, 2002b; Pacaud and Richaud, 

1975b; Fulop et al., 1998c). Consequently, possible properties and substrate 

preferences of Bem46 can not be easily inferred from what is known about other 

S9 peptidases, and Bem46 may differ substantially. If expression of soluble and 

active recombinant Bem46 can be achieved, screening a library of different 

peptides may be most useful in order to determine which amino acids Bem46 

cleaves, and whether it is an endopeptidase that cleaves within peptide 

sequences, or an exopeptidase that cleaves only terminal amino acids. 

All experiments were performed on promastigote stage cells. It will be 

interesting to analyse the localisation of Bem46 in amastigotes, which is the 

intracellular stage in the mammalian host. Amastigotes are distinctly smaller 

and their flagellum barely protrudes from the flagellar pocket. Pro- and 

amastigotes exhibit some morphological and biochemical differences, and 

expression, trafficking and localisation of Bem46 may undergo changes during 

differentiation. If Bem46 is in fact released from promastigotes it may play a 

role during the infection and proliferation stages within the sand fly host, or 

during the initial phase of a mammalian infection. However, the situation in 
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amastigotes may be different and Bem46 could be downregulated, re-routed to a 

different subcellular destination, or membrane-bound in promastigotes while 

released in amastigotes or vice versa. To elucidate the localisation of Bem46 in 

amastigote cells, macrophages can be infected with Bem46-GFP-expressing 

metacyclic promastigotes and changes in the GFP fluorescence patterns can be 

tracked within the macrophage. 
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5. Membrane proteins of the  

  Leishmania lysosome and of the  
  lysosome-like acidocalcisomes 

 

5.1 Introduction 

5.1.1 The Leishmania lysosome 

The protein composition of the Leishmania lysosome has not yet been 

characterised in detail. Several hydrolytic enzymes of the lysosomal lumen are 

known, for example the cysteine peptidase CPB (Huete-Perez et al., 1999a). 

However, no integral proteins of the lysosomal membrane in Leishmania have 

been identified to date. Such transmembrane proteins likely contribute to the 

morphology of the lysosome, which changes considerably during the Leishmania 

life cycle, from a small compartment in early promastigotes to the long tubular 

MVT lysosome in metacyclic promastigotes and the large megasomes of 

amastigotes (Ghedin et al., 2001b; Ueda-Nakamura et al., 2001a). Lysosomal 

membrane proteins are also important for lysosomal function, for example the 

acidification of the lumen or the export of amino acids, fatty acids and 

carbohydrates after degradation of macromolecules. Additionally, they probably 

play a role in the interaction and fusion with late endosomes and autophago-

somes, act as receptors for molecule import into the lysosome and may stabilise 

and protect the inside of the membrane from the harsh, acidic conditions of the 

lysosome lumen and its degradative enzymes (Eskelinen et al., 2002; Granger et 

al., 1990; Fukuda, 1991; Cuervo and Dice, 1996). 

In higher eukaryotes, the lysosomal membrane contains various transporters and 

integral proteins, most importantly LAMPs (lysosome associated membrane 

proteins) and LIMPs (lysosome integral membrane proteins) (Luzio et al., 2003d). 
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Identifying a lysosomal membrane protein in Leishmania will allow further 

investigations into lysosomal structure and function. Establishing a reliable 

marker membrane protein for this organelle may be very useful for fluorescence 

microscopy as well as other cell biology applications; marker proteins have been 

identified for other organelles and are now routinely used, for example the 

molecular chaperone BiP of the endoplasmic reticulum (Bangs et al., 1993), the 

mitochondrial marker protein CS (citrate synthase, (Castro et al., 2008), the 

glycosome marker proteins GAPDH  (glyceraldehyde-3-phosphate dehydrogenase, 

(Hart and Opperdoes, 1984; Plewes et al., 2003) and PFK (phosphofructokinase, 

(Lopez et al., 2002), as well as the proteins Rab1 (Dhir et al., 2004a), GM-130 

(Golgi matrix protein, (Nakamura et al., 1995) and GRIP (McConville et al., 

2002a) of the Golgi apparatus. 

5.1.2 Lysosome-Associated Membrane Proteins (LAMPs) 

In many organisms, LAMPs are an important and abundant component of the 

lysosomal membrane. In mammals there are two different forms, LAMP-1 and 

LAMP-2. In mice, deficiency in LAMP-1 leads only to mild defects, possibly 

because LAMP-2 can compensate for its function. Lack of LAMP-2 has more 

severe consequences, including a pathological accumulation of autophagosomes 

in several organs, muscles and other tissues and often death after 20 - 40 days. 

Doubly deficient mice, lacking both LAMPs, show even more autophagosome 

accumulation, a change in lysosomal appearance and defects in cholesterol 

metabolism, leading to death within 16 days. Surprisingly, it was shown that the 

overall protein degradation and also the acidity of the lysosome are not strongly 

affected by the deletion of either or both LAMP genes (Eskelinen, 2006; 

Eskelinen et al., 2004b). In humans, LAMP-2 deficiency leads to a rare and 

severe disorder, Danon disease, a lysosomal glycogen storage defect that is 

associated with cardiomyopathy, muscle weakness and mental retardation 

(Nishino et al., 2000). 

Mammalian LAMPs are type I transmembrane proteins with one transmembrane 

domain, a short C-terminal tail in the cytosol and a long luminal N-terminus 

(Fig. 5-1). The luminal domain is heavily glycosylated, with 16 - 23 N-

glycosylation sites, depending on the organism. Both LAMP-1 and LAMP-2 are 
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additionally O-glycosylated in the "hinge" region of the luminal domain. The 

heavy glycosylation may play a role in protecting the LAMPs from the hydrolytic 

environment of the lysosomal lumen. But LAMP-deficient cells as well as cells 

with deglycosylated LAMPs still contain intact lysosomes, so LAMPs are not 

essential for the maintenance of these organelles (Eskelinen et al., 2004a; 

Eskelinen et al., 2005a; Kundra and Kornfeld, 1999). It has been suggested that 

mammalian LAMPs are required for the motility and subsequent fusion of 

phagosomes and the compartments of the endosomal system (Huynh et al., 

2007). Mammalian LAMPs are targeted to the lysosomes via two pathways, a 

direct route from the ER and trans-Golgi to the late endosomes and lysosomes, 

as well as an indirect route via the plasma membrane and early endosomes 

before internalisation into late endosomes and lysosomes (Hunziker and Geuze, 

1996). A specific C-terminal tyrosine-based sorting signal (GYXXØ) has been 

shown to be required for lysosomal targeting, whereby the bulky hydrophobic C-

terminal amino acid Ø (V, L, I, M or F) plays an important role (Gough et al., 

1999b). 

 
Figure 5-1: Schematic of mouse LAMP-2. The four loops are formed by disulfide 
bridges, zig-zag at the top denotes proline-rich hinge region, forks represent N-
glycosylation sites, rings represent O-glycosylation sites in hinge region. LAMP-1 
has a very similar structure. Image from (Eskelinen et al., 2005b) 
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T. brucei contains one LAMP-like protein, the type I transmembrane protein p67, 

which is encoded at multiple gene loci. It is not a sequence homologue of 

mammalian LAMPs, but it shows a strong structural resemblance, with a highly 

glycosylated long N-terminal domain in the lysosomal lumen, one 

transmembrane domain and a cytosolic C-terminal tail. It localises to the 

lysosome in both life cycle stages of T. brucei (Alexander et al., 2002; Kelley et 

al., 1999). The function of p67 is not known, it may play a role analogous to that 

of mammalian LAMPs, but this has not been elucidated in detail. It has been 

shown that p67 is essential in T. brucei bloodstream form cells and that loss of 

p67 severely affects lysosomal morphology. p67 is sorted to the lysosomal 

membrane of T. brucei by two dileucine targeting motifs in the C-terminal 

domain which are crucial for targeting (Tazeh and Bangs, 2007b; Peck et al., 

2008); this is thought to depend on AP3- or AP4-mediated vesicle transport 

(Allen et al., 2007b). Leishmania does not have a close homologue of p67. 

5.1.3 The protein carrier complex AP3 

The adaptor complex AP3 is a multimeric protein complex consisting of the 

subunits β3, μ3, σ3 and δ (Fig. 5-2) (Odorizzi et al., 1998c). It is involved in 

sorting and carrying newly synthesised membrane proteins to the lysosome 

(Nakatsu and Ohno, 2003a), as experiments on yeast, fly and mammalian cells 

have shown (Dell'Angelica et al., 1999f; Cowles et al., 1997a; Rozenfeld and 

Devi, 2008; Luzio et al., 2003e). However, as yet, it is not clear whether AP3 

trafficks proteins from the trans-Golgi network to the lysosome or, alternatively, 

from early endosomes, or probably both (Peden et al., 2004b; Ihrke et al., 

2004a). 

AP3 recruits cargo proteins with specific tyrosine-based and dileucine-based 

motifs as sorting signals (Dell'Angelica et al., 1997b; Ohno et al., 1998c; Wen et 

al., 2006; Honing et al., 1998; Nakatsu and Ohno, 2003b). It is thought to bind 

and interact with clathrin through its “clathrin-box” site on the β subunit 

(Dell'Angelica et al., 1998b; Newell-Litwa et al., 2007; Peden et al., 2004a; 

Drake et al., 2000). Two isoforms of the subunits β3 and μ3 - and therefore two 

differing AP3 complexes - are expressed in mammals, one ubiquitously (AP3A) 

and one solely in neurons (AP3B) (Yang et al., 2000b; Simpson et al., 1997). 
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Figure 5-2: Schematic of the AP3 complex with its subunits (Odorizzi et al., 
1998b). 
 

When AP3 is defective, yeast cells exhibit a mislocalisation of the alkaline 

phosphatase ALP and the t-SNARE Vam3p to cytoplasmic vesicles instead of the 

vacuole (Cowles et al., 1997b). The Drosophila pigmentation mutants garnet, 

ruby, carmine and orange each carry a mutation in one of the four AP3 subunits. 

These fly mutants exhibit pigmentation defects, particularly of the eyes. A likely 

explanation for this is that the proteins required for synthesis, transport or 

storage of the pigments are not delivered to the lysosome-like pigment granules 

by the AP3 carrier properly (Boehm and Bonifacino, 2002a). 

In mammalian cells, lack of AP3 can have severe consequences, too. A distinct 

human disease, Hermansky-Pudlak syndrome type 2 (HPS2, OMIM 233300), has 

been linked to AP3 defects. HPS2 patients exhibit albinism, prolonged bleeding 

time (platelet storage pool deficiency), lysosomal storage disorders and an 

increase in lysosome and melanosome sizes (HERMANSKY and PUDLAK, 1959; 

Dell'Angelica et al., 1999e). HPS2 corresponds to the mouse mutants mocha and 

pearl. The mocha mouse has a defect in the AP3 δ subunit, while the pearl 

mouse carries a mutation of the β3 subunit. Both show prolonged bleeding time 

(platelet storage pool deficiency), pigmentation defects / albinism 

(melanosomal storage defect) and lysosomal storage defects (Kantheti et al., 

1998c; Feng et al., 1999; Odorizzi et al., 1998a; Boehm and Bonifacino, 2002b). 

AP3 deficient mouse mutants show a mislocalisation of the lysosomal membrane 
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proteins LAMP-1 and LAMP-2, which contain tyrosine-based AP3 binding motifs, 

and LIMP-2, which contains dileucine-based AP3 binding motifs (Yang et al., 

2000a; Le Borgne et al., 1998). In the wild type these proteins are thought to be 

transported from the ER to endosomes and then to lysosomes along two 

pathways: directly through AP3-vesicles or indirectly through the secretory 

pathway via the plasma membrane. LAMPs have been observed to accumulate in 

endosomal AP3-vesicle buds (Peden et al., 2004c). In mutants lacking AP3, the 

LAMP proteins are found on the lysosomes as usual, but also clustered on the cell 

surface. This indicates that only the indirect, possibly AP2-mediated pathway to 

the lysosome is active in the mutant; with the AP3 pathway not functioning, 

there is too much LAMP-1 and LAMP-2 to be processed through the indirect 

pathway, so they accumulate on the plasma membrane (Dell'Angelica et al., 

2000b; Dell'Angelica et al., 1999d; Yang et al., 2000c; Peden et al., 2004d). This 

effect has also been observed for other mammalian lysosomal proteins, for 

example endolyn (Ihrke et al., 2004b) and CD63 (Rous et al., 2002). AP3 appears 

to be important but not essential for the lysosomal targeting of several 

membrane proteins. 

All these findings suggest that AP3 is involved in protein traffic to lysosomes and 

LROs (lysosome-related organelles) like melanosomes and platelet dense 

granules (Boehm and Bonifacino, 2002e; Dell'Angelica et al., 1999c; Kantheti et 

al., 1998b). The latter resemble the acidocalcisomes of Leishmania in their size, 

acidity and polyphosphate content (Besteiro et al., 2008l; Ruiz et al., 2004). 

Recent experiments from the Mottram laboratory have provided evidence that 

the protein carrier complex AP3 appears to be involved in protein trafficking to 

the acidocalcisomes of Leishmania (Besteiro et al., 2008k). AP3 null mutants of 

L. major (Δap3δ) were created by deleting the δ-subunit of the AP3 complex, 

which should abolish the function of the entire AP3 complex (Kantheti et al., 

1998a). The Δap3δ cells were viable, but cell growth rates were reduced. The 

appearance of the MVT lysosome in the mutants was not visibly different from 

that in wild type parasites (as analysed by fluorescence microscopy with the 

marker dye FM4-64). Surprisingly, however, the acidocalcisomes were much less 

acidic than in wild type cells, had lost their polyphosphate content and seemed 

to be less prevalent or less detectable, likely because they were empty or 

otherwise compromised. This is the first evidence that AP3 may also be involved 
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in the targeting of proteins to the acidocalcisomes, e.g. intramembrane proton 

pumps like the V-H+-PPase and V-H+-ATPase. Infection experiments with mice 

showed that parasites lacking AP3 were capable of invading macrophages, but 

they did not proliferate as well as wild type parasites and they did not produce 

any skin lesions in mice (Besteiro et al., 2008j). These findings are supported by 

results previously reported for the V-H+-PPase of T. brucei. RNAi silencing of this 

protein led to a loss of acidocalcisome acidity and polyphosphate content, as 

well as a cell growth defect in procyclic and bloodstream form cells (Lemercier 

et al., 2002c). These findings point to a so far unknown involvement of the 

acidocalcisomes and potentially the AP3 carrier in parasite virulence. 

5.1.4 Tyrosine-based protein sorting signals 

Canonical tyrosine-based sorting signals consist of the amino acids YXXØ, 

whereby Ø is a bulky hydrophobic residue like L, I, F, V or M (Ohno et al., 

1996b). Such YXXØ signals are conserved throughout the eukaryotes, from 

protozoans to mammals (Bonifacino and Traub, 2003). It appears that many 

proteins that are sorted by a YXXØ motif are at least partly or transiently 

targeted to the plasma membrane and YXXØ is an important signal for the rapid 

internalisation of proteins from the surface. YXXØ is known to be important for 

sorting of proteins to the endo- and lysosomal compartments. YXXØ motifs 

involved in lysosomal targeting are usually preceded by a glycine residue and are 

positioned within 9 residues of the protein’s C-terminus (Gough et al., 1999a; 

Williams and Fukuda, 1990; Harter and Mellman, 1992; Bonifacino and Traub, 

2003). 

Different YXXØ motifs are known to be recognised by one or more of the 

respective μ subunits of the adaptor complexes AP1, AP2, AP3 and AP4 (Ohno et 

al., 1995; Ohno et al., 1996a; Ohno et al., 1998b; Hirst et al., 1999b). 

Recognition by μ subunits of AP3 is strongest for YXXØ motifs with acidic residues 

before and after the tyrosine (Ohno et al., 1998a) and the evidence suggests 

that AP3 mainly recognises YXXØ motifs for lysosomal targeting. YXXØ motifs 

that are folded inside the protein are unlikely to be active signals (Bonifacino 

and Traub, 2003). 
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5.1.5 The vacuolar proton pyrophosphatase of the 

acidocalcisomal membrane 

Several proteins of the kinetoplastid acidocalcisomes have been identified 

(Docampo et al., 2005b), including the intramembrane proton pump V-H+-PPase 

(vacuolar-type proton-translocating pyrophosphatase). If the AP3 carrier is 

indeed involved in transporting membrane proteins to the acidocalcisomes, the 

V-H+-PPase is a potential cargo candidate. It was initially known as a component 

of the plant vacuole membrane and was later discovered as an active enzyme 

and an acidocalcisomal marker in kinetoplastids (Scott et al., 1998; Rodrigues et 

al., 1999a; Rodrigues et al., 1999b; Lemercier et al., 2002b). Its activity couples 

the energy-releasing hydrolysis of pyrophosphate with translocation of protons 

into the acidocalcisome lumen for maintenance of acidity. 

The L. major V-H+-PPase (gene ID LmjF31.1220) is an intramembrane protein 

with 16 predicted transmembrane domains (Fig. 5-3). It is a relatively large 

protein with 803 amino acids and a molecular weight of 83.5 kDa. It contains an 

inorganic H+-pyrophosphatase domain and is thought to function as a proton 

pump in the acidocalcisome membrane, like its homologues in other organisms 

(Lemercier et al., 2002a). There are six canonical YXXØ tyrosine motifs in the 

V-H+-PPase sequence, which are candidate binding sites for a possible 

interaction with the carrier complex AP3. Of the six tyrosine sites, two (sites V 

and VI) lie within the predicted transmembrane domains on the luminal side of 

the membrane and are therefore unlikely to be accessible for interactions with 

cytosolic proteins. Tyrosine sites I to IV are positioned in the cytosolic loops of 

the V-H+-PPase and may interact with cytosolic proteins, but site I is the least 

highly conserved of the four sites and does not appear in trypanosome 

V-H+-PPases (Fig. 5-3). Site II is located very closely to the membrane and less 

accessible than the others. Hence, tyrosine sites III (YRPV, Tyr-Arg-Pro-Val) and 

IV (YGPI, Tyr-Gly-Pro-Ile) may be the most likely candidates for an interaction 

with AP3 or another carrier (Besteiro et al., 2008i). 
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Figure 5-3: Prediction of V-H+-PPase protein topology. Predicted using HMMTOP 
and visualised with TMPres2D. Image: Sebastien Besteiro. 
 

 

 

 

 

 

 

 



 

 130

5.2 Results: The L. major LAMP-like protein 

5.2.1 Identification and bioinformatics analysis of  L. major LAMP-

like protein 

A Leishmania genome BLAST search with mammalian LAMP sequences yielded no 

significant results, indicating that L. major does not have a sequence homologue 

of mammalian LAMP proteins or p67 from T. brucei. Nevertheless, the L. major 

lysosomal membrane should - as in mammals - contain different membrane 

proteins that contribute to and maintain lysosome structure, morphology and 

function. No such proteins have been identified thus far. 

Since the AP3 carrier complex is known to transport membrane proteins to the 

lysosome in other organisms by binding to canonical tyrosine or dileucine motifs, 

the initial approach to finding a membrane protein of the Leishmania lysosome 

was to search the L. major genome database for a transmembrane protein 

containing such motifs. This work was done by Sebastien Besteiro, who 

conducted a double query search on the GeneDB database for proteins with 

either of the two AP3 binding motifs as well as transmembrane domains. From 

the resulting proteins, LmjF30.2670 was chosen as a candidate LAMP-like protein 

(LMP), because it was predicted to contain one or two transmembrane domains 

like the mammalian LAMPs. It shows only around 12 % identity with human LAMP-

2A and can be poorly aligned with this protein (Fig. 5-4); it also contains two 

putative tyrosine motifs towards its C-terminus (see Table 5-1 for summary of 

LmjF30.2670 characteristics). It is important to note that LmjF30.2670 does not 

show a high sequence homology to mammalian LAMPs, but may be a structural 

homologue. The L. major LMP and the human LAMP-2A are similar in length (Fig. 

5-4) and possibly in topology. Notably, the GY residues of the C-terminal 

lysosomal targeting motif of the human LAMP (Gough et al., 1999c) are 

conserved in L. major, although the rest of the tyrosine motif is different 

(GYKQF in humans, GYNSL followed by eight further amino acids before the C-

terminus in L. major). 

The L. major LMP is conserved among the kinetoplastids with identity values of 

61 to 69 % in Leishmania species (with an e-value of 7e-171 for L. infantum and 
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an e-value of 5e-123 for L. braziliensis) and 50 % for T. brucei and T. cruzi (with 

e-values 2e-36 and 6e-41 respectively), so may have an important function. It 

does not share sequence identity with the trypanosome LAMP-like protein p67. 

BLAST search results did not show any vertebrate homologues of the protein, 

merely weak homologies with a small number of bacterial, yeast and 

invertebrate proteins, all with e-values above 6.0. 

 
Figure 5-4: Alignment of L. major LMP and human LAMP-2A sequences. Red line: 
human LAMP transmembrane domain; black line: HMMTOP predicted L. major 
transmembrane domain; blue line: TMHMM predicted L. major transmembrane 
domain; dashed lines: SOSUI predicted L. major transmembrane domains. 
 

5.2.1.1 Prediction of protein topology and features  

The protein topology of the L. major LMP was predicted using the programmes 

SOSUI, TMHMM, HMMTOP and Phobius. The results of these predictions differed, 

with SUSUI predicting two transmembrane domains at the N- and the C-terminus 

(Fig 5-5), HMMTOP predicting one transmembrane domain near the N-terminus 

(same position as in SOSUI) (Fig. 5-7), and TMHMM as well as Phobius predicting 

one at the C-terminus (same position as in SOSUI) (Fig. 5-6 and 5-8). It is worth 

noting that the N-terminal transmembrane domain predicted by SOSUI and 

HMMTOP may be a misinterpretation of an N-terminal signal peptide. The 

Phobius algorithm was developed to distinguish better between signal peptides 

and transmembrane domains at the N-terminus and may therefore be more 

accurate (Emanuelsson et al., 2007; Kall et al., 2004c). The N-terminal 

transmembrane domain predicted by HMMTOP does not coincide with the 

transmembrane domain of mammalian LAMPs; it lies further upstream (Fig. 5-4). 
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Two tyrosine motifs (YXXØ) were identified manually in the sequence. 

Additionally there is one canonical dileucine motif ([D/E]XXX[LL/LI]) as well as 

two potential N-glycosylation sites (Fig. 5-9). 

 
Figure 5-5: Prediction of L. major LMP protein topology, predicted using the 
SOSUI algorithm. N: N-terminus, C: C-terminus. Predicted two transmembrane 
domains at amino acids 20-42 and 293-311. 
 

 
Figure 5-6: Prediction of L. major LMP protein topology, predicted using the 
TMHMM algorithm. Red: probability of transmembrane domain. Predicted one 
transmembrane domain at amino acids 294-316 and a potential second 
transmembrane or signal peptide domain at the N-terminus. 
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Figure 5-7: Prediction of L. major LMP protein topology, predicted using the 
HMMTOP algorithm and visualised using TMPres2D. Predicted one transmembrane 
domain at amino acids 14-38. N: N-terminus, C: C-terminus. Red boxes: the two 
tyrosine motifs YYVL and YNSL.  
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Figure 5-8: Prediction of L. major LMP protein topology, predicted using the 
Phobius algorithm. Predicted one transmembrane domain at amino acids 294-
315. Red line: probability of a signal peptide (high at N-terminus), grey peak: 
predicted transmembrane domain. 
 

 

 MSDFASGSGRRPRAAGPLLASGVLLLALLTVVCAPVNA EVVVAPLCAEKHGFAGEFNDYS 

IPVEQAPAAGEAIVLIARAFPLNLGNMLARWLYINATYRISEGAQLTEASDNNGILELANVAGT

DIEVRVMRVRTDGPTPFRFFSFFANRPVCHVAVAPDNSFIAPMPHRLRATPQLPLTMYFKAVL

PPTVNALIVRVSADGRTDEKFRSGDRVYTSGDLVRADSGGAVLFAYTSPMENTATPYYTQVS

VSYGEWEGDGAAKPNASNTSSSGGDSRDSMQPTQSTPVLRRLLLISLFLFLLYQAAASAHN 

YYVLGKRDVMDIVPCAKSAAAGVRAAQLVTLRCMGRSQRHKEGYNSLQNPDDSYS  

Figure 5-9: L. major LMP protein sequence with annotations. Yellow: regions of 
potential transmembrane domains, red: canonical tyrosine motifs (YXXØ), green: 
canonical dileucine motif [D/E]XXX[LL/LI], grey: potential N-glycosylation sites, 
black arrow: most likely signal peptide cleavage site. 
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Table 5-1: Characteristics of L. major LMP gene and protein 

GeneDB gene ID LmjF30.2670 

Size 
1.107 kb 
368 aa 
39.6 kDa 

Predicted transmembrane 
domains 

SOSUI: Two at aa 20-42 and 293-311 
HMMTOP: One at aa 14-38 
TMHMM: One at aa 294-316 
Phobius: One at aa 294-315 

Predicted N-terminal signal 
peptide (SignalP-HMM) 

Yes. Signal peptide probability: 0.995  
Most likely cleavage site: after aa 38 

Tyrosine motifs 
Two YXXØ tyrosine motifs: 
314YYVL317 and 357YNSL360 

Dileucine motifs One [D/E]XXX[LL/LI] dileucine motif: 
 72EAIVLI77 

 

 

5.2.2 Cloning and GFP labelling of LAMP-like protein 

The L. major LMP gene was cloned in full length and fused to GFP to label the C-

terminus of the protein, resulting in plasmid pGL1682. A second construct was 

cloned to replace the middle domain of LMP with GFP and leave 46 amino acids 

of the N-terminus and 83 amino acids of the C-terminus intact on either side of 

GFP ("LAMPends" construct) for targeting and integration into a membrane 

(pGL1683). Both constructs were expressed extrachromosomally in L. major wild 

type and AP3 carrier-deficient (Δap3δ) cell lines. Transfectants were analysed by 

fluorescence microscopy to assess the intracellular localisation of the LMP 

protein in L. major and to evaluate the possible involvement of AP3 in the 

targeting of LMP to its destination membrane. 
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5.2.3 Fluorescence microscopy 

5.2.3.1 GFP fusion protein expression in L. major 

Expression of the GFP-tagged proteins was successful; both constructs resulted 

in a visible expression and localisation of GFP in L. major. The full length LMP 

tagged with GFP appeared to localise in an undefined area close to the flagellar 

pocket. The fluorescence signal was diffuse and distributed in no distinct pattern 

(Fig. 5-10). The fusion protein of the LMP protein ends on either side of GFP 

("LAMPends") gave a more distinct fluorescence pattern. It localised to a small 

elongated structure close to the kinetoplast and just inwards from the flagellar 

pocket. In some cases, probably depending on the focal plane, the structure 

appeared almost doughnut-shaped, in some cells seemingly encircling the 

kinetoplast (Fig. 5-11). Dividing cells could occasionally be observed to contain 

two such green structures (Fig. 5-12). 

Staining of the GFP cell lines with the endocytic stain FM4-64 showed that the 

GFP fusion proteins did not localise to the L. major MVT lysosome in any 

promastigote life stage. The full length LMP-GFP signal and the red fluorescent 

stain only partially co-localised in the area of the flagellar pocket and possibly 

early endosomes, but not further into the endocytic pathway (Fig. 5-10). For the 

LAMPends-GFP fusion protein there was no detectable overlap with the FM4-64 

pattern (Fig. 5-13). 
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Figure 5-10: Live cell deconvolution fluorescence microscopy images of L. major 
expressing GFP-tagged full-length LMP protein (LmjF30.2670). Top left panel: 
GFP signal pattern. DIC image of cell shown as inset. Kinetoplast (K) and nucleus 
(N) stained blue with DAPI. Scale bar = 10 μm. Lower left panel: GFP and DAPI 
signals merged with DIC image to give outline of the cell. Top right panel: FM4-
64 staining (~45 mins) of flagellar pocket and endosomes. Lower right panel: 
Merged image of GFP, DAPI and FM4-64 signal patterns. 
 

 
Figure 5-11: Live cell deconvolution fluorescence microscopy images of L. major 
expressing the "LAMPends" fusion protein (GFP between the C- and N-terminus of 
LMP (LmjF30.2670)), with three different GFP patterns observed. All images 
showing kinetoplast (K) and nucleus (N) stained blue with DAPI. Scale bar = 10 
μm. 
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Figure 5-12: Live cell deconvolution fluorescence microscopy image of dividing 
L. major cell expressing the "LAMPends" fusion protein (GFP between the C- and 
N-terminus of LMP (LmjF30.2670)). Kinetoplasts (K) and nuclei (N) stained blue 
with DAPI. DIC image of cell shown as inset. Scale bar = 10 μm. 
 

 
Figure 5-13: Live cell deconvolution fluorescence microscopy images of L. major 
expressing the "LAMPends" fusion protein (GFP between the C- and N-terminus of 
LMP (LmjF30.2670)). Left images: GFP signal and kinetoplast (K) and nucleus (N) 
stained blue with DAPI. Merged with DIC image to show outline of cell. Scale bar 
= 10 μm. Right images: FM4-64 staining (top panel: 15 mins, bottom panel: 1 
hour) of endo-/lysosomal system, as well as GFP and DAPI signals. DIC images of 
cells shown as inset. 
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The LAMPends GFP fusion protein was additionally co-localised with the red 

fluorescent surface marker HASPB-mCherry (as described in section 4.2.2 for 

Bem46). This experiment showed that the GFP-labelled structure was separate 

from the cell membrane. It could be observed that the GFP-labelled structure 

appeared to replicate during cell division (Fig 5-14). 

 
Figure 5-14: Live cell deconvolution fluorescence microscopy image of L. major 
co-expressing the "LAMPends" fusion protein (GFP between the C- and N-
terminus of LMP (LmjF30.2670)) and a red fluorescent HASPB-mCherry fusion 
protein labelling the cell surface. Left panel: Merged image of GFP signal, 
kinetoplast (K) and nucleus (N) stained blue with DAPI and surface labelled with 
mCherry. Scale bar = 10 μm. Right panel: DIC image of cell. 
 

 

 

 

 

 

 

 



 

 140

5.2.3.2 GFP fusion protein expression in Δap3δ cells 

The two GFP fusion proteins were also expressed in Δap3δ cells, to investigate 

whether the absence of the adaptor complex AP3 affects the trafficking and 

localisation of the LMP protein. Expression in Δap3δ resulted in the same 

fluorescence patterns as in wild type L. major. There was no detectable 

difference between the cell lines, either with the full length GFP-tagged LMP 

(Fig. 5-15), or with the LAMPends fusion protein (Fig. 5-16). 

 
Figure 5-15: Live cell deconvolution fluorescence microscopy images of L. major 
Δap3δ cells expressing GFP-tagged full-length LMP (LmjF30.2670). GFP and DAPI 
signals merged with DIC image to give outline of the cell. Kinetoplast (K) stained 
blue with DAPI. Scale bar = 10 μm. 
 
 

 
Figure 5-16: Live cell deconvolution fluorescence microscopy images of L. major 
Δap3δ cells expressing GFP-tagged “LAMPends” fusion protein. GFP and DAPI 
signals merged with DIC image to give outline of the cell. Kinetoplast (K) stained 
blue with DAPI. Scale bar = 10 μm. 
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5.2.4 Mutagenesis of tyrosine motifs 

The LMP protein contains two canonical tyrosine motifs near its C-terminus, 

tyrosine site I (314YYVL317) and site II (357YNSL360) (Fig. 5-7 and 5-9), which may be 

involved in trafficking of the protein, possibly by AP3. The tyrosine residue of 

each site was changed into alanine by site-directed mutagenesis of the 

"LAMPends" GFP fusion plasmid pGL1683. Both tyrosine sites were mutated 

separately, resulting in plasmid pGL1957 with tyrosine site I mutated and 

pGL1958 with site II mutated. The plasmids were transfected into L. major wild 

type cells as before and transfectants analysed by fluorescence microscopy. The 

tyrosine mutant cell lines did not differ from the wild type fusion protein 

expressing lines, the fluorescence pattern observed was very similar.  

 

 
Figure 5-17: Live cell deconvolution fluorescence microscopy images of L. major 
wild type cells expressing GFP-tagged “LAMPends” fusion protein with C-
terminal tyrosine motifs mutated. (A) Tyrosine site I (314YYVL317) mutated, with 
Y314 changed to alanine. (B) Tyrosine site II (357YNSL360) mutated, with Y357 
changed to alanine. GFP and DAPI signals merged with DIC image to give outline 
of the cell. Kinetoplast (K) stained blue with DAPI. Scale bar = 10 μm. 
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5.2.5 Deletion of LAMP-like gene in L. major 

L. major cell lines deficient in LMP protein (Δlmp) were generated by deleting 

both alleles of the wild type gene locus and replacing them with the antibiotic 

resistance marker cassettes for hygromycin and bleomycin. The initial round of 

transfections was carried out with both hygromycin and bleomycin resistance 

marker plasmids separately, yielding heterozygous cell lines resistant to the 

respective antibiotic. These were subsequently transfected again, to add the 

other antibiotic marker, in replacement of the second allele of the LMP gene. 

Twelve doubly resistant parasite cell lines were obtained after cloning out 

transfectants under antibiotic pressure. They were analysed for correct LMP 

gene deletion by PCR and Southern blot analysis. Four cell lines (BH3, BH4, HB1 

and HB4, whereby names relate to the order in which the bleomycin or 

hygromycin cassettes were integrated) did not show a PCR product for the wild 

type LMP gene (1.1 kb), but products of the correct sizes for the integrated 

hygromycin (1.5 kb) and bleomycin (2.3 kb) resistance cassettes (Fig. 5-19 and 

Fig. 5-18 for strategy). All four cell lines could subsequently be confirmed to be 

Δlmp null mutants, by Southern blot probing for the 5' flanking region of the 

gene locus after digesting whole genomic DNA with HindIII and NotI. The four 

cell lines showed integration of both antibiotic resistance cassettes (fragment 

sizes were 6 kb for hygromycin integration and 5.3 kb for Bleomycin integration), 

but no wild type alleles (fragment size 3.5 kb) (Fig. 5-21 and Fig. 5-20 for 

strategy). 
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Figure 5-18: Strategy for PCR analysis of potential Δlmp clones. (A) LMP gene 
locus. (B) Hygromycin cassette integrated in LMP. (C) Bleomycin cassette 
integrated in LMP. Green: open reading frames; light grey: surrounding DNA 
sequence; dark grey: 5’ and 3’ gene deletion flanks (overlapping with wild type 
allele in A); arrows: primer binding sites, annotated with PCR product size and 
OL primer numbers. 
 

 
Figure 5-19: PCR analysis of potential Δlmp clones BH3, BH4, HB1 and HB4 and a 
wild type DNA control. H: PCR targeting hygromycin cassette using primers 
OL2698 and OL13 (product size 1.5 kb); B: PCR targeting bleomycin cassette 
using primers OL12 and OL2699 (product size 2.3 kb); W: PCR targeting LMP gene 
using primers OL2428 and OL2429 (product size 1.1 kb). 
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Figure 5-20: Strategy for Southern blot to be probed with 5' flank fluorescent 
probe (red box). (A) LMP gene locus, HindIII / NotI digest results in 3.5 kb 
product. (B) Hygromycin cassette in LMP, HindIII / NotI digest results in 6 kb 
product. (C) Bleomycin cassette in LMP, HindIII / NotI digest results in 5.3 kb 
product. 
 
 

 
Figure 5-21: Southern blot analysis of Δlmp clones BH3, BH4, HB1 and HB4 as 
well as L. major DNA (WT) as control and both hygromycin (H) and bleomycin (B) 
heterozygous cell lines. Blot probed for the 5' flanking region of the gene locus 
after digest with HindIII and NotI. L. major locus fragment size 3.5 kb. 
Bleomycin cassette integration site fragment size 5.3 kb. Hygromycin cassette 
integration site fragment size 6 kb. 
 

To elucidate the role of the L. major LMP protein in more detail, the Δlmp cell 

line BH3 was phenotypically analysed by assessing population growth in vitro, 

mouse footpad infectivity and lesion development. Promastigote growth was 

assessed in culture, by measuring population densities daily for 9 days. The Δlmp 

cell line grew at a normal rate in promastigote culture, similar to the wild type 

(Fig. 5-22). Unpaired t-tests showed no significant differences between the two 

cell lines, with all p-values above 0.3. 
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BALB/c mice were inoculated with Δlmp and wild type cells and footpad lesion 

development was monitored over a four week period. Unpaired t-tests showed a 

significantly slower lesion development in Δlmp-infected mice from week 2 

onwards, in comparison to the wild type infection (p-values < 0.02) (Fig. 5-23). 

 

 
Figure 5-22: In vitro growth curve of promastigote cultures of wild type 
L. major and Δlmp cells. Daily cell counts, experiments done in triplicates. Error 
bars show +/- standard deviation of the mean. 
 

 
Figure 5-23: Measurements of footpad lesion development of BALB/c mice after 
infection with wild type L. major and Δlmp cells. Weekly measurements of 
footpad swelling in mm. Measurements of six mice per cell line. Error bars show 
+/- standard deviation of the mean. 
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5.3 Results: The L. major acidocalcisomal V-H+-PPase 

5.3.1 Cloning and GFP labelling of V-H+-PPase 

In order to investigate the intracellular localisation and function of the L. major 

acidocalcisomal V-H+-PPase (GeneDB gene ID LmjF31.1220), the full-length gene 

was cloned and fused to GFP at its 5' end using the pNUS-GFPcN vector, resulting 

in the plasmid pGL1681. This construct was transfected into L. major wild type 

and Δap3δ cells and expressed extrachromosomally. 

5.3.2 Fluorescence microscopy 

The cell lines transfected with the GFP fusion plasmids were analysed by 

fluorescence microscopy. The GFP fusion protein was observed to localise to 

punctate structures in wild type cells. Co-localisation experiments with the 

acidocalcisome-labelling LysoTracker stain showed that the punctate structures 

were acidocalcisomes (Fig. 5-24). In Leishmania, LysoTracker has been found to 

preferentially stain acidocalcisomes rather than lysosomes, suggesting that the 

Leishmania lysosome is less acidic than the acidocalcisomes (Mullin et al., 

2001h; Ghedin et al., 2001a). In contrast to the wild type results, the Δap3δ cell 

line showed a consistent loss of all visible green fluorescence (Fig. 5-25). 

These fluorescence microscopy experiments were carried out to confirm 

previous experiments using a specific antibody against the V-H+-PPase, which 

showed punctate structures of a highly similar size and distribution in the cell to 

those observed here (Besteiro et al., 2008h).  
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Figure 5-24: Live cell deconvolution fluorescence microscopy images of L. major 
expressing GFP-tagged V-H+-PPase (LmjF31.1220). Left panel: Punctate pattern 
of GFP signal, DIC image of cell shown as inset, scale bar = 10 μm. Middle panel: 
LysoTracker staining the punctate acidocalcisomes; kinetoplast (K) and nucleus 
(N) stained blue with DAPI. Right panel: Merged image of DAPI and co-localising 
GFP and LysoTracker patterns. 
 
 

 
Figure 5-25: Live cell deconvolution fluorescence microscopy images of L. major 
wild type and Δap3δ mutant cell lines, expressing GFP-tagged V-H+-PPase 
(LmjF31.1220). Left panel: Wild type cell line showing punctate pattern of GFP 
signal. Right panel: Δap3δ mutant cell line showing no detectable GFP signal. 
DIC images of cells shown as inset. Kinetoplast (K) and nucleus (N) stained blue 
with DAPI. Scale bar = 10 μm. 
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5.3.3 Mutagenesis of tyrosine motifs 

Two of the tyrosine motifs found in the V-H+-PPase sequence (Fig. 5-3), tyrosine 

site III (467YRPV470) and site IV (539YGPI542) were mutated by site-directed muta-

genesis, to investigate whether they play a role in the trafficking of newly 

synthesised V-H+-PPase to the acidocalcisomes. The mutageneses were per-

formed on the GFP fusion plasmid (pGL1681), changing the respective tyrosine 

residues to alanine. Both tyrosine sites were mutated separately as well as 

together, resulting in the plasmids pGL1702 (Y467A, mutated tyrosine site III), 

pGL1703 (Y539A, mutated site IV) and pGL1704 (both sites mutated). 

The plasmids were transfected into L. major wild type cells as before. 

Fluorescence microscopy showed that neither the single nor the double tyrosine 

mutation had a visible impact on the trafficking of the V-H+-PPase to the 

acidocalcisomes. The punctate acidocalcisomal GFP pattern was observed in all 

three mutant cell lines, with no detectable difference from the wild type fusion 

protein (Fig. 5-26). 

 
Figure 5-26: Live cell deconvolution fluorescence microscopy images of L. major 
expressing GFP-tagged V-H+-PPase (LmjF31.1220) with mutated tyrosine sites. 
(A) Tyrosine site III (467YRPV470) mutated, with Y467 changed to alanine. (B) 
Tyrosine site IV (539YGPI542) mutated, with Y539 changed to alanine. (C) Double 
mutant with both tyrosine site III and IV mutated. GFP and DAPI signals merged 
with DIC image to give outline of the cell, DIC images of cells shown as insets. 
Kinetoplast (K) and nucleus (N) stained blue with DAPI. Scale bar = 10 μm. 
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5.3.4 Confirmation of GFP expression in all V-H+-PPase cell lines 

To confirm that all V-H+-PPase-GFP cell lines were indeed expressing GFP, 

whether it was detectable by fluorescence microscopy or not (as observed in 

Δap3δ cells), RT (reverse transcriptase)-PCRs targeting the GFP-fusion gene were 

performed. For this, RNA was isolated from the following cell lines: L. major 

wild type; wild type and Δap3δ expressing V-H+-PPase-GFP; wild type expressing 

V-H+-PPase-GFP(Y467A) and V-H+-PPase-GFP(Y539A). cDNA was prepared from the 

RNA samples, including controls without Reverse Transcriptase (“-RT”). Using 

the cDNA as the template, primers binding within the GFP cassette (OL2639 and 

OL2640) were used to PCR-amplify a 500 bp part of GFP. All cDNA samples 

except the wild type gave the expected 500 bp PCR product, while the “-RT” 

controls did not (Fig. 5-27). This confirmed that GFP mRNA was present in all 

cell lines and that the GFP fusion genes were being transcribed. 

 
Figure 5-27: Agarose gel of RT-PCR products of GFP cDNA from wild type (WT) 
and Δap3δ cells expressing GFP-tagged V-H+-PPase (wild type V-H+-PPase or with 
mutated tyrosine sites), to confirm translation of GFP cassette into mRNA. 
“+RT”: cDNA samples. “-RT”: control samples not treated with reverse 
transcriptase. WT: wild type DNA as control. 
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5.4 Discussion 

5.4.1 The LAMP-like protein (LMP) 

The Leishmania LMP protein that was identified after a genome database search 

does not appear to have a lysosome-associated localisation after all. Its 

predicted structure suggested a similarity to the mammalian LAMPs and also the 

trypanosome LAMP-like protein p67, although the topology prediction softwares 

used gave varying results. It could not be established in silico whether the 

L. major LMP contains one or two transmembrane domains and, if there is only 

one, at which terminus of the protein. The sequence of LMP and its low number 

of potential glycosylation sites were considerably different from other LAMP-like 

proteins. However, the number of glycosylation sites may not be important, as 

trypanosomatids can form very large glycans from one N-glycosylation site (Atrih 

et al., 2005). 

GFP-labelling experiments showed that the protein did not localise to or close to 

the lysosome in L. major; no co-localisation could be observed with FM4-64-

stained endo- or lysosomes. Instead, the GFP fusion protein was observed in the 

region of the flagellar pocket and the kinetoplast. The two different GFP fusion 

constructs, a full-length construct and one consisting of the C- and N-terminus of 

the protein surrounding GFP ("LAMPends"), resulted in different GFP patterns. 

Both localised to the same area of the cell, just inwards of the flagellar pocket, 

but the full-length protein gave a more diffuse pattern with no clear shape, in 

close proximity to the endocytic stain FM4-64 but with no clear overlap with it. 

The "LAMPends" fusion protein on the other hand could be observed in a very 

clearly delineated structure next to the kinetoplast. The GFP pattern was 

observed to take an elongated rod-shape or a doughnut shape in close 

juxtaposition to the kinetoplast, sometimes even encircling it. These different 

shapes may solely reflect different perspectives or focal planes of the images, 

though, and the GFP-labelled compartment may always be circular. A structure 

of this shape and position has not been described in Leishmania so far. In 

T. brucei, the protein BILBO1 takes a very similar doughnut- or horseshoe-like 

shape, but is localised around the collar of the trypanosome flagellar pocket and 

functions as a cytoskeletal scaffolding protein involved in flagellar pocket 
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biosynthesis (Bonhivers et al., 2008). L. major LMP bears no homology to BILBO1 

and appears to be in a distinctly different position in the cell. The T. brucei 

protein XMAP215, when tagged with YFP, shows a circular fluorescence pattern 

similar to that of LMP, too. This is a microtubule plus end binding protein and it 

is thought to define the posterior end of procyclic cells (Vaughan et al., 2009), 

but details of this work are not published yet. 

Because the LAMPends fusion protein was observed in a much more defined and 

clear-cut structure in the cell than the full-length fusion, it may be a better 

indicator of the natural localisation of LMP. The C-terminus of LMP may be 

important for the correct trafficking of the protein or the correct anchoring of it 

in a membrane, especially as it contains two tyrosine motifs that could be 

sorting signals. In the full-length GFP fusion protein, the C-terminus may be 

blocked by the relatively large GFP and this may interfere with the targeting of 

the protein. Although site-directed mutageneses of the tyrosine sites did not 

lead to a visible disturbance of LMP protein trafficking, the possibility remains 

that these sites are important, perhaps in conjunction with other signals. There 

is, for example, one dileucine site towards the N-terminus of the protein, which 

may play a role. Alternatively, the tyrosine sites may have some redundancy and 

only simultaneous deletion of both tyrosine sites may lead to an effect on 

trafficking. So although the LAMPends protein is missing a large proportion of 

LMP, its targeting may be more reliable because it still contains both its termini 

intact and unobstructed. 

Tyrosine motifs of lysosomal membrane proteins in other organisms interact with 

the AP3 adaptor complexes for targeting (Dell'Angelica et al., 1999b). It is 

thought that the main function of AP3 is the transport of membrane proteins to 

the lysosome (Nakatsu and Ohno, 2003c), but there is also evidence that AP3 

might be involved in targeting proteins to the lysosome-like acidocalcisomes 

(Besteiro et al., 2008g). The LMP-GFP fusion proteins were expressed in Δap3δ 

mutants in addition to wild type cells, to investigate if AP3 is responsible for 

targeting of LMP. The Δap3δ cells exhibited the same GFP pattern as the wild 

type. The localisation studies suggest that LMP is not lysosomal or acido-

calcisomal, so AP3 may not be the adaptor complex responsible for LMP 

trafficking. However, as it appears to be a membrane protein it may still be 

targeted to its destination by one of the other AP complexes. To my knowledge, 
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L. major deletion mutants of AP1, -2 and -4 do not currently exist, but it would 

be interesting to express the LAMPends protein in such cell lines to investigate a 

possible AP complex interaction. However, there is an avirulent AP1-deficient 

L. mexicana mutant cell line (Gokool, 2003), which may be suitable for 

expression and further localisation studies of LMP-GFP. AP1 is generally thought 

to be important for protein traffic between the trans-Golgi network and 

endosomes as well as the plasma membrane. There is evidence that Leishmania 

AP1 is important for traffic to the lysosome, too (Vince et al., 2008), but its 

function remains unclear. As LMP appears to localise close to the flagellar 

pocket and, therefore, close to the endo- and exocytic pathways and the trans-

Golgi network, a possible interaction of LMP and AP1 may be worth 

investigating. 

It is worth noting that it is not clear whether LMP is indeed a membrane protein. 

It may only have one transmembrane domain and it is possible that it is cleaved. 

Furthermore, the predictions of transmembrane domains are just that, 

predictions, and a predicted N-terminal transmembrane domain can, in reality, 

be a signal peptide (Emanuelsson et al., 2007; Lao et al., 2002a). The Phobius 

algorithm has been trained to distinguish these two domains with more accuracy 

(Kall et al., 2004d), so its prediction of a highly likely N-terminal signal peptide 

and only one transmembrane domain towards the C-terminus may be the most 

reliable. Nevertheless, the possibility remains that the HMMTOP prediction with 

one transmembrane domain at the N-terminus is the best prediction, that this 

transmembrane domain is actually a signal peptide and that LMP is soluble. 

To investigate whether LMP is membrane-bound, cellular fractionation 

experiments may be useful. Cytoplasmic and organellar fractions of the cell can 

be separated by differential centrifugation or digitonin extraction (Coombs et 

al., 1982; Hide et al., 2008). LMP can then be detected on a Western 

immunoblot of the fractions, ideally using an LMP-specific antibody. 

Alternatively, the experiment can be performed with LMP-GFP expressing cells 

and an anti-GFP antibody. 

To confirm the localisation of the native LMP protein, immunofluorescence 

experiments with specific antibodies could be useful. Thus far, all results were 

obtained using overexpressed GFP fusion proteins. The observed GFP patterns 
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were concentrated in small, distinct areas and therefore likely not artefacts. 

Misfolding, mislocalisation or exaggerated overexpression levels could be 

expected to cause accumulation of the GFP protein in the cytosol or in the 

lysosome for degradation. Nevertheless, the GFP data require confirmation by 

alternative experiments, ideally immunofluorescence or transmission electron 

microscopy (immuno-TEM) using a specific anti-LMP antibody. Such an antibody 

was raised against a recombinant LMP protein fragment (the predicted soluble 

proportion of the protein), but could not be utilised. The affinity-purified 

antibody cross-reacted with many other proteins, on Western immunoblots of 

Leishmania cell extracts as well as in whole cell immunofluorescence analyses, 

and was thus not useful for further experiments.  

So far, the nature of the subcellular structure that is labelled by the LAMPends-

GFP protein could not be determined. It does not appear to be part of the 

endosomal system and some observations suggest that the structure replicates 

during cell division. The latter notion could be studied in more detail by 

immunofluorescence analyses of all promastigote cell cycle stages, to establish 

at what time during cell division this structure replicates. Co-expression of the 

LAMPends-GFP protein with the surface-labelling HASPB-mCherry protein showed 

that the GFP-labelled structure is not directly attached to the cell surface, but 

appears to lie further inwards. Its position in relation to the kinetoplast appears 

variable; it can lie closer to the nucleus or closer to the flagellar pocket, and 

sometimes it appears to encircle the kinetoplast. 

The area around the flagellar pocket and the kinetoplast is an area of high 

activity; the endo- and exocytic pathways converge here, the mitochondrion as 

well as the Golgi and the ER can extend towards the pocket (Correa et al., 2007; 

McConville et al., 2002l; Lacomble et al., 2009b), as well as barely known 

structures like membrane whorls. LMP does not co-localise with the endocytic 

dye FM4-64 and it is predicted by the Mitoprot algorithm not to be targeted to 

the mitochondrion (with a low probability of 0.09 for mitochondrial export). 

Nevertheless, an association with any of these organelles is possible. 

Alternatively, LMP may localise to a novel structure or a specific type or area of 

a known compartment. In trypanosomes, specialised “quartet” bundles of 

microtubules have been found associated with the flagellar pocket (Lacomble et 

al., 2009a), so it may be interesting to investigate whether the LMP structure is 
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associated with microtubules in this area. Treatment of cells with a microtubule-

disruptor like thioridazine (Ilgoutz et al., 1999; Seebeck and Gehr, 1983) may be 

useful here, to investigate if this has an effect on the localisation of LMP-GFP. 

Deletion of the LMP gene did not appear to have a strong impact on viability and 

general morphology of L. major. However, mouse footpad infections with Δlmp 

progressed significantly slower than wild type infections from week 2 onwards, 

after an initially normal infection development. So the lack of LMP appears to 

have some effect on virulence. Further experiments will be necessary to analyse 

the phenotype of the Δlmp cell line, including macrophage infection assays in 

comparison to wild type L. major. Additionally, transmission electron microscopy 

of the flagellar pocket area may reveal morphological defects in the Δlmp cells. 

5.4.2 The acidocalcisomal V-H+-PPase 

The investigation of the acidocalcisomal V-H+-PPase confirmed and supported 

previous findings by S. Besteiro (Besteiro et al., 2008f). The GFP-fused V-H+-

PPase localised to the acidocalcisomes, as shown by co-localisation with the 

acidocalcisome-staining LysoTracker dye. The same punctate pattern had 

previously been shown for the native V-H+-PPase when detected by specific 

antibodies in wild type cells (Besteiro et al., 2008e). The pattern was very 

different for the Δap3δ cells, where no GFP signal could be detected, although 

Reverse Transcription PCRs showed that GFP was being expressed at a 

comparable level to that of wild type cells expressing V-H+-PPase-GFP. This, 

again, corroborates the results from experiments using the V-H+-PPase-specific 

antibody on Δap3δ cells, which also showed a strong decrease in detection of 

V-H+-PPase and, therefore, intact acidocalcisomes (Besteiro et al., 2008d). This 

is strong evidence that the L. major V-H+-PPase is trafficked to the 

acidocalcisomal membrane through the carrier complex AP3 or another process 

that depends on AP3. Nevertheless, acidocalcisomes were still present in Δap3δ 

cells, suggesting that AP3 is not involved in their biogenesis, but rather supplies 

these organelles with certain membrane proteins (Besteiro et al., 2008c). 

In the Δap3δ cells, the V-H+-PPase is being expressed but does not appear to 

reach the acidocalcisomes. The fact that it could not be detected when labelled 

with GFP and only a very small proportion could be detected by immuno-
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staining, leaves the question what happens to the V-H+-PPase in Δap3δ cells. It is 

not merely mislocalised, because it could not be detected elsewhere in the cell. 

A protein that is expressed but cannot be transported to its destination is most 

likely rapidly degraded, in the lysosome or in the cytosolic proteasome. 

Especially the proteasomal degradation machinery of eukaryotic cells has been 

investigated and it was found that many newly synthesised proteins can be 

degraded very quickly if they are misfolded or superfluous (Goldberg, 2003a; 

Schubert et al., 2000). This can take place directly after biosynthesis at the ER, 

where the ER-associated protein degradation (ERAD) machinery identifies and 

labels proteins for proteasomal degradation. If the V-H+-PPase can not be 

trafficked away from the ER in AP3-deficient cells, the ERAD pathway may be 

involved in rapid degradation of this protein. It is thought that kinetoplastids 

may have an active ERAD pathway, but no details are known (Engstler et al., 

2007). Apart from the non-lysosomal degradation at the proteasome, some 

proteins can alternatively be digested in the lysosome. In trypanosomes, 

proteins with disrupted targeting signals have been observed to be taken to the 

lysosome and be degraded there (Triggs and Bangs, 2003). 

Studies on the T. brucei V-H+-PPase showed how this protein is synthesised but 

not targeted correctly when the SRP (signal recognition particle) machinery for 

ER import is silenced. In this case, the nascent V-H+-PPase is likely degraded 

before entering the ER and this degradation appears to be neither lysosomal nor 

proteasomal, but dependent on an unknown, possibly ER membrane-associated 

mechanism (Lustig et al., 2007). In the L. major experiments presented here, 

the situation appears different and the L. major V-H+-PPase is likely to enter the 

ER and be mistargeted or degraded at a later stage, where the lysosome or 

proteasome could indeed play a role again.  

To elucidate the fate of the V-H+-PPase in Δap3δ cells, future experiments could 

involve treating the cells with inhibitors of lysosomal peptidases, like K11777 

(Mahmoudzadeh-Niknam and McKerrow, 2004) or proteasome inhibitors like 

lactacystin (Fenteany et al., 1995) or MG132 (Robertson, 1999a). Ideally, such 

inhibitors will stop or delay degradation of the GFP-labelled V-H+-PPase, 

allowing its detection in the lysosome or, if it is targeted to the proteasome, in 

the cytosol. 
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The V-H+-PPase has several tyrosine-based motifs that could serve as interaction 

sites for AP3 (Ohno et al., 1998e). To elucidate this, the two tyrosine sites (III 

and IV) that were predicted to be most exposed in the cytosol, as well as being 

conserved among kinetoplastids, were mutated individually as well as 

simultaneously. None of these manipulations led to consistent changes in the 

GFP distribution in wild type cells expressing the GFP-labelled V-H+-PPase with 

the respective mutations. This suggests that the tyrosine sites III and IV are not 

or not solely responsible for interacting with AP3. The other tyrosine sites, or 

indeed altogether different motifs like a dileucine site, may be important for 

AP3 binding. Alternatively, the V-H+-PPase may not bind directly to AP3 itself, or 

other carrier complexes take over the function of AP3 when it is absent from the 

cell. A yeast-two-hybrid assay may help to elucidate whether AP3 and the V-H+-

PPase are binding partners. 
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6. Final Conclusions 

 

Intracellular protein trafficking is important for virulence of Leishmania. The 

exo- and endocytic pathways, which converge in the flagellar pocket area, allow 

secretion of virulence factors as well as the uptake of host components into the 

parasite for lysosomal degradation (de Souza et al., 2009; McConville et al., 

2002m). Additionally, the lysosome is also crucial for Leishmania protein 

turnover and, therefore, cellular remodelling and adaptation to different host 

organisms. As the flagellar pocket is the sole site of endo- and exocytosis in 

kinetoplastids, the area around this pocket is of particular importance for the 

trafficking of potential virulence factor proteins. The aims of the study 

presented here were the identification of a potentially secreted L. major 

peptidase that may act as a virulence factor, as well as the identification of an 

L. major lysosomal membrane protein and the elucidation of AP3-dependent 

protein trafficking to the lysosome and the lysosome-like acidocalcisomes. 

For the identification of both the potentially secreted peptidases and the 

potential lysosomal membrane protein, a bioinformatics approach was taken and 

candidate proteins were chosen based on predictions of protein properties and 

targeting signals. These predictions proved not very reliable. There were 

discrepancies between results from different algorithms and the experimental 

localisations of the proteins only partially agreed with the predictions. The 

rhomboid peptidase LmjF02.0430, for example, localised to the mitochondrion 

despite all employed algorithms predicting a secretory signal and a very low 

probability of mitochondrial import. Furthermore, different transmembrane 

topology prediction programmes sometimes yielded differing predictions, like for 

Bem46, which was calculated to have from one to three transmembrane 

domains, depending on the algorithm used. 

The prediction programmes were developed either for proteins from a very 

broad spectrum of organisms or trained on mammalian / higher eukaryote 

proteins. Thus, predicting protein properties for an ancient and divergent 

eukaryote like Leishmania was unreliable with these programmes and 
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predictions had to be treated with care. It is likely that Leishmania has retained 

or developed kinetoplastid-specific protein targeting signals and pathways, in 

addition to or instead of those found in mammalian cells (Marin-Villa et al., 

2008; Silverman et al., 2008). In fact, an analysis of the L. donovani secreted / 

released proteins (the “secretome”) revealed that only two of 151 apparently 

secreted proteins (a putative beta-fructofuranosidase and a putative eukaryotic 

translation initiation factor 3 subunit) carried a classical N-terminal secretory 

signal peptide (Silverman et al., 2008); Silverman and colleagues combined a 

mass spectrometry analysis of L. donovani culture supernatants with a 

bioinformatics screen of the L. major genome database and the two resulting 

sets of proteins showed no overlap except for the two proteins mentioned 

above. Silverman et al identified only 50 proteins with a known classical 

eukaryotic secretion signal by bioinformatics analyses, whilst ruling out proteins 

with multiple transmembrane domains. Of the candidate peptidases analysed in 

the study presented here, only Bem46 and the serine carboxypeptidase 

LmjF18.0450 were identified in the bioinformatics screen by Silverman et al. 

The lack of overlap between the in vitro and in silico approaches appears too 

striking to be explained by very conservative experimental thresholds or the 

differences between the L. major and L. donovani genomes (Silverman et al., 

2008). Another, recent publication by Cuervo and colleagues (2009) analysed the 

secretome of L. braziliensis, using 2D electrophoresis and mass spectrometry on 

culture supernatants, as well as subsequently analysing the identified proteins 

for secretory signals by bioinformatics. 35 different proteins were found to be 

secreted / released by L. braziliensis, only three of which contained a classical 

N-terminal secretion signal (a protein disulfide isomerase, an elongation factor 

1-beta and a mitochondrial precursor of a HSP70-related protein 1) (Cuervo et 

al., 2009b).  

None of the L. major peptidases analysed in the work presented here were found 

in either the L. donovani or the L. braziliensis supernatant secretomes, despite 

the fact that at least Silverman et al found an abundance of peptidases and 

proteolysis-related proteins to be secreted, including the family S9 

oligopeptidase B (OPB) (Silverman et al., 2008). Thus, bioinformatics analyses of 

classical secretion signals may not be particularly useful for Leishmania, a notion 

that was corroborated by the partially unreliable prediction results obtained in 
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the study presented here. It appears that alternative mechanisms to classical 

secretion, for example secretion through microvesicles or exosome-like blebs, 

are important in Leishmania. This is supported by the findings that some of the 

L. donovani secreted proteins are orthologues of proteins secreted in 

microvesicles by higher eukaryotic cells and that small vesicle-like blebs have 

been observed in the area of the L. donovani promastigote flagellar pocket as 

well as on the surface of amastigotes (Silverman et al., 2008). From the results 

obtained in the study presented here, the conclusion that Leishmania secretory 

pathways seem to differ from those of higher eukaryotes may be extended to 

other trafficking signals and pathways, like mitochondrial targeting peptides. 

These could not be predicted reliably for Leishmania proteins either and may 

also differ from classical eukaryotic mechanisms. Such specialisations are of 

particular interest, as kinetoplastid-specific pathways and protein functions can 

be useful drug targets.  

Of the eight candidate peptidases that were predicted to be secreted and 

subsequently tagged with GFP for localisation studies, only one, the Bem46 

serine peptidase, accumulated in the flagellar pocket. Deletion of Bem46 did not 

affect promastigote growth or infectivity in mice significantly, but it is possible 

that other peptidases compensated for the loss of Bem46 or that the effect was 

too subtle to be detected thus far. However, Bem46 appears not to be a major 

virulence factor and further investigations will help to elucidate its function as 

well as clarify whether it is released. As the bioinformatics predictions of 

transmembrane domains appear to favour a model of one transmembrane 

domain at the N-terminus of Bem46, it may be anchored in the flagellar pocket 

membrane and not released. This conclusion is supported by the fact that Bem46 

was not found in Leishmania secretome analyses so far (Silverman et al., 2008; 

Cuervo et al., 2009a). Thus, Bem46 may be a resident protein of the Leishmania 

flagellar pocket. 

A bioinformatics approach was also taken to try and identify a membrane protein 

of the Leishmania lysosome, which would be a useful marker for an in depth 

investigation of this important organelle. For this, the L. major genome was 

screened for proteins with one or two transmembrane domains as well as 

tyrosine or dileucine motifs that may interact with AP3, a trafficking complex 

that delivers membrane proteins to the lysosome in other organisms. The 
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selected candidate protein LMP showed low sequence identity to mammalian 

lysosome-associated proteins, but structural similarities. The bioinformatics 

analyses performed on the LMP protein to predict transmembrane domains did 

not yield consistent results, with different algorithms predicting different 

topologies. This further supports the notion that generic eukaryotic protein 

prediction algorithms are of limited usefulness for Leishmania proteins. 

Labelling the N- and C-terminus of LMP protein with GFP showed that it did not 

localise to the lysosome, but to a small elongated or circular structure close to 

the kinetoplast, in the flagellar pocket area. As this is an area of particularly 

high activity with endo- and exocytic pathways converging, a novel compartment 

or complex here, like the LMP-labelled structure, might be involved in either of 

these processes and may give insight into previously unknown pathways. It 

appears unlikely that the LMP structure is part of the endocytic pathway, as it 

does not co-localise with the endocytic stain FM4-64, but it could be involved in 

sorting proteins for exocytosis. Another possibility is an association with the 

mitochondrion in some way, as the LMP structure was always observed close to 

the kinetoplast, which is incorporated into the Leishmania mitochondrion. 

Further analyses of the phenotype of LMP-deficient L. major should shed light on 

this protein’s function. The data presented here show a lag in mouse footpad 

lesion development after infection with Δlmp parasites, which may be caused by 

a disturbance in mammalian host cell invasion. Thus, macrophage infection 

assays may yield useful results. LMP is highly conserved among the 

kinetoplastids, which suggests a somewhat important function for this protein. 

Whilst there are no close homologues of LMP in L. major, it is possible that a 

divergent but maybe structurally similar protein compensated for LMP loss in the 

Δlmp mutant. 

The identification of a resident protein of the Leishmania lysosomal membrane 

remains a useful goal for future projects. Such a protein will allow further 

investigations of the lysosome, an organelle that probably plays an important 

role in parasite virulence and survival. The previous finding that Leishmania 

lysosomes are intact in AP3-deficient cells (Besteiro et al., 2008b) points to 

differences in AP3 function or AP3 pathways between Leishmania and higher 

eukaryotes. A lysosomal membrane marker would be very useful in shedding 

light on AP3 function in Leishmania. The protein CLN3 (ceroid lipofuscinosis 
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neuronal protein 3, also Battenin) is a glycosylated multispanning 

transmembrane domain of mammalian lysosomal membranes (Nugent et al., 

2008; Storch et al., 2004; Phillips et al., 2005; Kyttala et al., 2004) that possibly 

depends on the AP3 carrier for lysosomal trafficking (Mao et al., 2003; Kyttala et 

al., 2005). It has an L. major homologue with only 15 % sequence identity, but a 

similar predicted topology with several transmembrane domains. Preliminary 

GFP-tagging experiments have suggested a lysosomal localisation for the 

L. major CLN3 and this protein may be worth investigating further as a potential 

lysosomal marker. 

For LMP as well as for Bem46 it will be interesting to explore protein localisation 

as well as the effects of the respective gene deletions in the amastigote life 

cycle stage, for example by macrophage infection studies. Whilst promastigotes 

are a relevant study object and virulence factors identified here can play an 

important role not only in the sand fly infection stage but also in the initial 

phase of the mammalian infection, amastigotes are the cells that mainly 

interact with mammalian macrophages and they possibly differ from 

promastigotes in their secretome to some extent (Silverman et al., 2008). 

Finally, the results for the intracellular localisation and AP3 traffic-dependence 

of the V-H+-PPase corroborate previous results and strengthen the notion that 

AP3 and / or the acidocalcisomes are important for Leishmania virulence 

(Besteiro et al., 2008a). If AP3 directly interacts with the V-H+-PPase, further 

site- directed disruptions of potential binding sites should elucidate this 

pathway. Furthermore, the fate of the V-H+-PPase in AP3-deficient cells remains 

unclear and it will be interesting to discover how and where it is degraded. It 

appears unlikely that the mistargeting of the V-H+-PPase itself and on its own is 

responsible for the avirulent phenotype and defective acidocalcisomes observed 

in AP3-deficient Leishmania. Thus, other proteins of the acidocalcisomes will be 

of interest, too, as well as finding out more about the origin and biosynthesis 

pathway of acidocalcisomes in general. 
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