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Abstract 

The structurally related PM-94128 and Ajudazols A and B exhibit differing 

biological activities but share the isocoumarin core structure. PM-94128 belongs 

to a large family of compounds known as the aminodihydroisocoumarins and was 

isolated in 1997. It has been shown to be an inhibitor of DNA and RNA synthesis 

and have potent cytotoxic activity in vivo. The Ajudazols A and B were isolated 

in 2004 and have antifungal activity against several important food spoilers. 

 
The work that follows details the design and development of a novel method for 

the generation of the isocoumarin core from isobenzofuran utilizing the 

Achmatowicz rearrangement of α-hydroxyisobenzofurans.  

 
Spirocyclic pyrans such as Polymaxenolide are structurally complex molecules, 

containing large amounts of functionality. The biological activity of 

Polymaxenolide is unknown and there have been no total syntheses reported to 

date. 
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Also reported in this thesis is the design and synthesis of a model system of 

Polymaxenolide, using the Achmatowicz rearrangement of α-hydroxyfurans. 
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Chapter 1 – Isocoumarins and Isochromanones  

 1 

1. Introduction 

1.1. Isocoumarins 

The isocoumarins, to which PM-94128 11 belongs, are a large family of 

compounds possessing the fused phenolactone (Figure 1.1). The recently isolated 

Ajudazols A 2 and B 3 (discussed in section 1.2) share the isocoumarin core, 

although the literature names this structure an isochromanone;2 both compounds 

have complex functionality in their respective linear chains and as such have 

attracted attention from the synthetic community due to their structural 

complexity and significant biological diversity within their respective families.  

 

Figure 1.1. PM-94128 and the Ajudazol A & B 
 
Three common bacterial strains have been found to produce some very 

interesting natural products. From Bacillus, Streptomyces and Xenorhabdus cell 

lines several isocoumarin containing natural product series have been isolated3,4  

including the Amicoumacins5 and the Xenocoumacins.6 

1.1.1. Bacillus iso coumarins 

The Bacillus strain belongs to a genus of rod-shaped, non pathogenic spore 

forming aerobic bacteria. Identifiable as gram positive cells, they can normally 

be found in the soil and gastro intestinal (GI) tracts of various animals. The 

Bacillus species includes both free-living and pathogenic species (Figure 1.2).  
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Figure 1.2. Bacillus subtilis cells.7,8 
 
The Bacillus strain of bacteria has yielded the greatest diversity and number of 

isocoumarins.                    

In 1997 Caňedo was able to extract PM-94128 1 from PhM-PHD-090, a strain of 

Bacillus subtilis, isolated from marine sediment.1 The closely related Y-05460M-

A 4 isocoumarin was isolated five years before from the Bacillus sp strain Y-

05460M, while the AI-77 series of compounds was isolated from the Bacillus 

pumillus cell line (AI-77).9,10 Also from a Bacillus pumillus strain (BN-103) was 

isolated the Amicoumacin series of antibiotics5 whose biological activity has 

been studied the most within this isocoumarin family of compounds.11 

Interestingly Bacillus subtilis strains also produce one of the very first antibiotics 

described in this family; Kristenin12 and the recently characterised Bacilosarcins 

A 5 and B 6.13  

Interestingly of the many Bacillus species two are considered medically 

significant; Bacillus anthracis (causing Anthrax) and Bacillus cereus (causing food 

borne illness similar to that of Staphylococcus).14,15            

1.1.2. Streptomycetes iso coumarins 

The Streptomycetes are members of the bacterial order Actinomycetales; these 

bacteria resemble fungi (they have a branching filamentous structure). 

Streptomyces species are found worldwide in soil and are important in soil 

ecology. It is widely accepted that their unique antibiotic production is to help 

the organism compete with other organisms in the relatively nutrient-depleted 

environment of the soil by reducing competition. By far, the most successful 

genus in this group is Streptomyces with over 500 species. Few species of 

Streptomyces are pathogenic to animals, although a few species cause plant 
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diseases.16,17 Reticulol (to be discussed later) is produced by Streptomyces 

mobaraenis18 and Streptomyces rubreticulae19 along with many other 

isocoumarin type natural products.  

1.1.3. Xenorhabdus iso coumarins 

Xenorhabdus spp. is a Gram negative gamma proteo-bacterium that forms 

entomopathogenic symbioses with soil nematodes. The bacteria produce 

antibiotics, intracellular protein crystals and numerous other products, of which 

Xenocoumacins 1 7 and 2 8 are important.20  

 
Figure 1.3. Xenocoumacin 1 and 2. 
 

1.1.4. Bachiphelacin 

One of the very first isocoumarins isolated was Bachiphelacin 9 (Figure 1.4).21 It 

differs from other isocoumarins in its structure as it has an elongated linear 

chain and the terminal alkyl amino function does not originate from one of the 

20 common amino acids.  

 
Figure 1.4. Bachiphelacin, 9. 
 
Bachiphelacin 9 possesses both antibiotic properties and cytotoxicity against 

gram positive bacteria (MIC of 12 µM against S.aureus) and P-388 lymphatic 

leukaemia cells (IC50 15 µM) respectively. It is another of the isocoumarins 

isolated from a bacillus strain (Bacillus thiaminolyticus IFO 3967/B-1-7). 

Carrasco found that that Bachiphelacin had a potent toxic effect against HeLa 

cells.22 Studies of its mechanism of action led to the conclusion that this 
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antibiotic is an inhibitor of protein synthesis in eukaryotic cells. The antibiotic 

had no effect on protein synthesis in Saccharomyces cerevisiae or Escherichia 

coli, but inhibited the protozoan Trypanosoma brucei. In vitro protein synthesis 

in a rabbit reticulocyte cell-free system was blocked by Bachiphelacin. Carrasco 

also identified a moderate, 5 µM antiherpetic activity in his screen for potential 

antiherpes compounds.23  

Bachiphelacin is active against a multi-resistant Staphylococcus aureus strain 

and a strain of Bacillus subtilis. It exhibits an antiviral activity against Newcastle 

Disease (a highly contagious disease that affects domestic poultry, cage and 

aviary birds and wild birds).24,25 The likelihood of epidemics whenever a viral 

infection is recorded, makes this compound relevant across many sectors and 

interests.  

1.1.5. PM-94128 and Y-05460M-A 

PM-94128 1 has been shown to be cytotoxic against several tumour cell lines in 

the 50 nM activity range (Table 1.1). The activity was assessed against four 

different tumour cell lines, P-388 (lymphoid leukaemia), A-549 (human lung 

carcinoma), HT-29 (human colon carcinoma) and MEL-28 (human melanoma) cell 

lines1,26 using an adaptation of the method originally published by Bergeron.27 
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NH2 O

OOH

H
N

O

OH
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Figure 1.5. PM-94128 and Y-05460M-A. 
 
It was also discovered that PM-94128 1 had an inhibitory effect on DNA, RNA and 

protein syntheses,1,26 determined by measuring T-thymidine, T-uracil and T-

leucine incorporation from P-388 culture fluids via the method described by 

Tomita.28 PM-94128 was found to have an IC50 of 0.1 µM in protein synthesis 

inhibition and an IC50 of 2.5 µM inhibiting DNA / RNA synthesis. The fact that 

these IC50s, compared with those against that of the whole cell line, are much 
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lower than against protein synthesis, would seem to indicate the possibility of 

multiple targets.       More research into the biological activity and mechanism 

of action is consequently needed. 

The related and structurally similar isocoumarin Y-05460M-A 4 (Figure 1.5), has 

the same spectrum, although less potent cytotoxic activity than PM-94128.29       

Y-05460M-A was also tested against P-388 and L-1210 lymphoid leukaemia cell 

lines with IC50 values of 0.11 µM and 0.32 µM respectively.                    

The biological activity assessment (Table 1.1) of Y-05460M-A shows strong 

cytotoxicity in vitro but it exhibits weak antitumour activity in vivo. 

Compound P-388 A-549 HT-29 MEL-28

PM-94128 1 50 nM 47 nM 47 nM 47 nM
Y-05460M-A 4 11 µM - - -

Amicoumacin A 10 - 1.7 µM 3.5 µM 0.35 µM  
Table 1.1. Antitumour activities. 
 

1.1.6. Amicoumacin A to C 

Amicoumacin A 10, B 11 and C 12 (Amicoumacin B is also known as AI-77-B) are 

structurally related to PM-94128 1 and they represent the largest quantity of 

biological data for this class of compound (Figure 1.6). They exhibit 

antibacterial, anti-inflammatory30,31 and antiulcer activities.32,33 while they show 

potent gastoprotective and antiulcerogenic activities they have the distinct 

property of being non-centrally suppressive and non-anticholinerigc or 

histaminergic. Their significant biological activity has highlighted them as 

potential therapeutic leads.34 
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Figure 1.6. Amicoumacin A, B and C.  
 
The antiulcerogenic activity of Amicoumacin-A was investigated using a stress 

induced gastric ulceration procedure.5,35 The ulcers were treated with 

Amicoumacin A, a fairly substantial preventative ratio of 72% at 25 mg/kg was 

observed (Amicoumacin-B and C had greater protective effects at this does, 

100% and 83% respectively). The control pro-kinetic agent sulfiride achieved only 

34% protection at 30 mg/kg.                            

In 2002 the antiulcerogenic activities of the Amicoumacins were described by 

Pinchuk,32 it was found that the Amicoumacins were potent antiulcerogenic 

compounds but the doses administered to the rats to achieve protection were 

3.5 times higher than lethal doses (LD50 values). An examination of chronic 

gastritis and peptic ulcer disease causes highlighted Helicobacter pylori (H. 

pylori) infection. When tested against H. pylori Amicoumacin A exhibited potent 

antibacterial activity (significant activities were not observed in Amicoumacins B 

and C) and therefore an antiulcerogenic activity.      

Amicoumacin A was tested against strains of pathogenic and non-pathogenic 

intestinal bacteria. Entercoccus faecium, Shigella flexneri and Campylobacter 

Jejuni were sensitive to Amicoumacin A. These results are important because 

these 3 bacterial species represent three common human intestinal pathogens.36 

“Enterococci account for approximately 110,000 urinary tract 
infections, 40,000 wound infections, 25,000 cases of nosocomial 
bacteremia and 1100 cases of endocarditis. Furthermore, the 
enterococci are among the most antibiotic resistant of all bacteria, 
with some isolates resistant to all known antibiotics”- Dr Gary Kaiser 
37 
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Shigella flexneri is a human intestinal pathogen, causing dysentery by invading 

the epithelium of the colon and is responsible, worldwide, for an estimated 165 

million episodes of shigellosis and 1.5 million deaths per year. Shigellosis is not 

only a significant cause of infant mortality in developing nations, but maintains 

endemic levels of infection worldwide.38              

C.jejuni (Campylobacter jejuni) is a highly prevalent food-borne pathogen that 

causes diarrhoeal disease in humans.39,40             

The sensitivity E.faecium, S.flexneri and C.jejuni to Amicoumacin A has resulted 

in research into the use of Amicoumacin secreting bacteria (e.g. B.subtilis) as 

Pro-biotics.32,41 

Amicoumacin A has also been shown to have antitumour activity against a range 

of human cancer cell lines, with activities ranging from 0.35 to 1.7 µM. (See 

Table 1.1). 

Phosphorylative inactivation of antibiotics is a known process and is believed to 

be one of the resistance mechanisms used by bacteria.42,43 As part of a screen 

for new antibiotics44 against methicillin-resistant Staphylococcus aureus (MRSA), 

Amicoumacin A was isolated along with Amicoumacin B (AI-77-B) and two novel 

phosphate ester derivatives (Table 1.2), from a strain of Bacillus pumillus 

(MU313B). Phosphorlyation was observed to be exclusively at C8' and not at 

either C9' or phenol positions 

 

Compound R1 R2

10 (Amicoumacin A) H NH2

13 H3PO4 NH2

11 (Amicoumacin B) H OH

14 H3PO4 OH
 

Table 1.2.Phosphorylated derivatives of Amicoumacin A and B. 
 
Hashimoto and co-workers analysed the fermentation broth by HPLC, monitoring 

the quantities of each compound.44 Time course experiments showed that 13 



Chapter 1 – Isocoumarins and Isochromanones.  

 8 

was produced as concentrations of Amicoumacin A decreased. As production of 

14 increased amounts of Amicoumacin B decreased (although the scale of 11 

production was less than with 10).                

To clarify the structure-activity relationship of hydroxyl and amide/acid moiety 

of Amicoumacins, the antibacterial activity of the four compounds were tested 

against Staphylococcus aureus (ATCC 43300) with Vancomycin as the control. 

Amicoumacin A 10 activity was similar to Vancomycin, while 11, 13 and 14 

showed no activity at concentrations tested. The results suggested that the C8' 

hydroxyl and C12' amide group of Amicoumacin A plays a critical role for 

antiMRSA activity. 

Phosphorylation of Amicoumacins is an interesting finding, possibly in relation to 

self-resistance and the export of Amicoumacins from a bacterial cell. 

Another possible insight into the metabolism of the isocoumarins emerged 

recently when Bacilosarcin A 5 and B 6 were characterized.13 They were isolated 

from the Bacillus subtilis strain TP-B0611 and inhibit plant growth (Figure 1.7).  

 
Figure 1.7. Bacilosarcins A 5 and B 6. 
 
Structurally the Bacilosarcins are important because they contain a 2-hydroxy 

morpholine (Bacilosarcin B) and 3-oxa-9-azabicyclo[3.3.1]nonan-7-one 

(Bacilosarcin A) substructures that are very rare in natural products.       

Bacilosarcin A 5 is the more active of the two molecules and showed 82% 

inhibition (at 50 µM) of barnyard millet sprouts versus 98% inhibition by 

Amicoumacin A (Bacilosarcin B showed only very weak 7% inhibition at similar 

concentrations). 

This finding suggests Bacilosarcin A could be a prodrug of Amicoumacin A, as the 

Bacilosarcins appear to represent two metabolites in the cellular processing of 

some aminodihydroisocoumarins (Figure 1.8). 
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Figure 1.8. Correlations between Bacilosarcins and Amicoumacin. 
 

1.1.7. AI-77s and Sg17-1-4 

The AI-77 range of compounds (AI-77-A, B, C, D, F and G) were isolated from a 

soil sample that was classified as Bacillus pumilis AI-77 and represents the 

majority of synthetic research for this class of compound.45 
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Figure 1.9. The AI-77 range of antibiotics.
46
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As a major product in the fermentation process, AI-77-B did not show any 

antibacterial activity and exhibited only gastro-protective activity. AI-77s C 16, 

D 17, F 18 and G 19 showed lower activities than 15.         

Pharmacological examination of the AI-77s showed antibacterial activity (7 to 

236 µM) and a potent gastro-protective activity, together with an inhibitory 

effect paw edema in rats.34           

A possible route for AI-77-B metabolism was hypothesized upon isolation and 

characterisation of Sg17-1-4 20.47 There is no account for the structure of Sg17-

1-4 but the distribution of compounds isolated could suggest a metabolic route 

as one can expect 20to be derived from AI-77-B 11. Cytotoxicities were 

measured against cervical cancer HeLa cells, Sg17-1-4 has slightly lesser potency 

than AI-77-B. 

 
Figure 1.10. Sg17-1-4.  
 
Structurally the aminodihydroisocoumarins are composed of a fusion of two 

modified L-amino acid residues. The eastern (15C) fragment is a modified 

leucine molecule where the β-carbon (C3 – based upon Shimojima’s numbering 

system48) of the original amino acid, becomes incorporated into the isocoumarin 

ring system. The western C7'-C11' fragment is comprised of the second amino 

acids, out of all the known aminodihydroisocoumarins, 7 are derived from the 20 

common amino acids (Table 1.3), the others are derivatives thereof.  In all 

cases, the parent amino acid has been modified to include a new dihydroxy-

propanoic acid moiety (connected to the α/C10' carbon). The difference in 

biological activities between the aminodihydroisocoumarins is due to the side 

chains of the parent amino acid.49  

 1
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Table 1.3. Isocoumarins derived from common amino acids. 
 
The absolute configurations, of the 5 stereocenters of AI-77-B were established 

through X-ray crystallography (Figure 1.11) studies by Shimojima and co-

workers9,10 in the early 1980’s. The centers have all been assigned the S-

configuration. Nuclear magnetic resonance and synthetic studies have been 

completed on PM-9412850 and AI-77-B9,10 and in both cases they support 

Shimojima’s proposed configurations (Figure 1.1).  

O

OH O

H

NH
H

NH2

CO2H

O

OH

OH
H

H

H

 
Figure 1.11 The structure of AI-77-B as solved by Shimojima and collegues.9,10 
 
The dihydroisocoumarin fragment 21 is found in a variety of natural products 

and there have been a significant number of methods reported for their 

construction. The methods generally involve some form of nucleophilic attack 

onto an unsaturated system, whether that is a hydroxide anion attacking an 
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ester or amide 2251,53 or an acid promoted ring closure of a carboxylate onto an 

adjacent olefin 23.54-56  

CO2R
OH

R

OH O

OOH

R

OH

R

OH

O

Base Acid

22 21 23  
Scheme 1.1. The most common routes used to access isochromanone cores. 
 
There have also been reports of more unusual routes, for instance radical 

chemistry57 transition metal catalysed reactions58 and Lewis acid ring 

expansions.59  

1.1.8. Shioiri’s synthesis of AI-77-B 

The first reported synthesis of AI-77-B was reported by Shioiri in 1989.60      

Initially Shioiri attempted the intramolecular addition of a carboxylate 24 onto 

an adjacent olefin under acidic conditions. This approach suffered selectivity 

problems between desired 6-endo-trig cyclisation product 25 and the favoured 

5-exo-trig cyclisation product 26.  

 
Scheme 1.2. Shioiri’s initial attempts to synthesize the core of AI-77-B. 
 
A second approach was conceived; involving a benzylic anion coupling of 

partners 27-29 to a leucine derived aldehyde 30, thus a one step construction of 

the aminodihydroisocoumarins 31 and 32, by diastereoselective addition 

followed by spontaneous lactonisation was achieved. A number of salicylate 

derived starting materials were studied along with variations in the reaction 

conditions (Scheme 1.3).  
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Scheme 1.3. General reaction scheme for aminodihydroisocoumarin formation.  
 
A chelation controlled model was proposed for the selectivity observed in the 

reaction with the nucleophile attacking the carbonyl from the least hindered 

face (Scheme 1.3). α-Aminoaldehyde 30 is deprotonated (using an excess of 

base) to give an N-lithium derivative which seems to serve as an internal ligand 

for chelation control. When titanium tetrachloride was used as an additive, the 

reaction gave moderate yields, but the selectivity was reversed in favour of the 

syn aminodihydroisocoumarin 32. The optimal conditions were found to be with 

LDA (2.6 eq), which gave moderate yields, but most selectivity (4:1, anti:syn). 
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Figure 1.12. The model proposed by Shioiri et al 
 
Cyclisation of the isocoumarin molecule proved to be spontaneous and all that 

remained in the synthesis was cleavage of the phenolic and N-protecting group, 

which was achieved by treatment with boron tribromide giving 33 and 34.   

Synthesis of the linear amino diol fragment began with a N-O benzylidene 

derivative of D-pyroglutaminol 35 as reported by Thottathil.61 
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Scheme 1.4. Thottathil’s synthesis of 43. 
 
α,β-Unsaturated lactam 39 was produced, by oxidative elimination of the 

seleninde derived from lactam 37. The newly installed olefin was oxidized via 

Upjohn conditions (OsO4/NMO) from the less hindered convex back face with a 

97% diastereotopic excess, followed by acetonide protection to yield ketal 40. 

Catalytic hydrogenation using palladium and hydrazine hydrate yielded the free 

alcohol 41. Conversion of the alcohol to a nitrile group was achieved according 

to conditions established within the Shioiri group to yield cyanide 42. tButyl 

carbamate protection followed by amide hydrolysis under basic conditions 

yielded acid 43(Scheme 1.5).  
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Scheme 1.5. Shioiri’s synthesis of the amino. 
 
The synthesis of AI-77-B was completed by coupling acid 43 and amine 33 with 

diethyl phosphorocyanidate (DEPC) and triethylamine. A Pinner reaction 

(trimethylorthoformate and 5% hydrochloric acid in methanol) converted the 

nitrile to the requisite carboxylate functionality, which cyclised spontaneously 

to generate the bis hydrochloric acid salt 45. Basic treatment of salt 45 with 0.1 

N-lithium hydroxide followed by neutralization with 0.1 N hydrochloric acid gave 

the completed AI-77-B molecule 11 (Scheme 1.6). 
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Scheme 1.6. Shioiri’s synthesis of AI-77-B. 
 

1.1.9. Kotsuki’s synthesis of AI-77-B 

Another more recent synthesis of AI-77-B was reported by Kotsuki in 1999,62 

wherein a novel salicyclic acid synthon was generated.                   

To begin, meta-bromophenyl propargyl ether 46 was converted to benzofurans 

47 and 48 via a caesium fluoride mediated rearrangement in good 

regioselectivity (Scheme 1.7) and the resulting bromides were converted into the 

corresponding Grignards 49 and 50. It was not possible to separate regioisomers 

of the CsF rearrangement until generation of aldehydes 55 and 56. 
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Scheme 1.7. Benzofuran generation. 
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The remaining carbon framework was derived from D-ribose; protected as an 

acetonide to generate lactol 51. Wittig olefination of 51, gave the olefin that 

was reduced by catalytic hydrogenation and the free alcohol converted to the 

triflate 52. Coupling of Grignard reagents 49 and 50 to triflate 52 generated the 

key intermediates 53 and 54. Ozonolysis and base hydrolysis of the resulting 

acetates gave salicylaldehyde aldehydes 55 and 56 that were separable by 

chromatography. Benzyl protection of the phenol 56 was followed by acetonide 

deprotection gaving hemiacetal 57. Careful oxidation with sodium periodate and 

hydrogen peroxide gave lactone 58 that was transformed to 59 via mesylation of 

the secondary alcohol and displacement with sodium azide (Mitsunobu azidation) 

with SN2 inversion of the center. Catalytic hydrogenation of azide 59 gave the 

amine that was converted to the hydrochloride salt 33, by acidic work up to 

complete Kotsuki’s synthesis (Scheme 1.8). Vallee later used this approach in his 

synthesis of PM-94128 1.50 
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Scheme 1.8. Kotsuki’s synthesis of the aminodihydroisocoumarin 39. 
 
Kotsuki’s synthesis of the linear section of AI-77-B began with acetal 60 (Scheme 

1.9) that was treated with PMB amine acetic anhydride/pyridine/DMAP to give 

lactam 61. A Sakurai type reaction of acetate 61, Allyl TMS and BF3�OEt2 as the 

Lewis acid produced 62, the Allyl group adding from the lower face of the 

lactone ring. CAN oxidative removal of the PMB group was followed by 

reprotection of the free amine to give the N-Boc protected lactam 63. Lithium 

hydroxide promoted hydrolysis of the lactam ring produced desired acid 64. 
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Scheme 1.9. Kotsuki’s synthesis of the acetonide coupling partner 69. 
 
Coupling of isocoumarin 33 and acid 64 via DEPC mediated conditions proceeded 

in good yield to give amide 65. Oxidative cleavage of the terminal double bond 

gave acid 66. Global removal of the protecting groups was achieved by acid base 

acid reaction sequence yielding 11 ( 

Scheme 1.10). 

 

Scheme 1.10. Coupling of isocoumarin 33 and acid 64. 
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1.1.10. Vallee’s sythesis of PM-94128 

Vallee described the synthesis of PM-92128 (the only full synthesis reported to 

date), utilizing the common disconnection across the peptide bond (Scheme 

1.11).50 The dihydroisocoumarin fragment 33 was synthesized following Kotsuki’s 

approach62 while the dihydroxyamino acid portion 67 was targeted through 

diastereoselective alkylation of a chiral nitrone 69 and a 2,3-dihydro-

[1,2]oxazin-6-one dihydroxylation. 
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Scheme 1.11. The retrosynthesis of PM-94128 designed by Vallée. 
 
The nitrone 69, was synthesized (Scheme 1.12) by the selective O-benzylation of 

valinol, oxidation to the hydroxylamine 71 and condensation with 

isovaleraldehyde producing the desired nitrone 69 in 49% yield.  

H2N
OBn

HOHN
OBn N

O OBn

1) PMBCHO, MgSO4,CH2Cl2,
2) mCPBA, CH2Cl2

3) NH2OH.HCl, CH3OH
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CH2Cl2

79%
71 69  

Scheme 1.12. Generation of nitrone 74. 
 
Addition of tbutyl lithium propiolate to nitrone 69 was achieved successfully to 

give hydroxylamine 72 as a single product. Selective reduction of the alkyne unit 

using Lindlar’s conditions gave the corresponding Z-olefin 73. Hydroxylamine 

protection was necessary at this point to avoid nitrone formation; this was 

achieved by ester saponification followed by cyclisation-dehydration by reluxing 

in toluene. Dihydroxylation of the Z-olefin was accomplished using Shing’s 
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dihydroxylation protocol, giving syn diol 75.63 Protection of the diol 75 with 

acidic dimethoxypropane produced the coupling partner 69. 

 
Scheme 1.13. Synthesis of coupling partner 68. 
 
Coupling of oxazinone 68 with dihydroisocoumarin 33 was performed in the 

presence of trimethylaluminium (3.5 eq). Attempts to couple (and open) the 

oxazinone with only 1.5 equivalents of 33 and sodium-2-ethyl-hexanoate 

resulted in poor yields.                  

Removal of the chiral auxilliary involved concomitant hydrogenolysis of the O-

benzyl and N-O bonds, to be followed by oxidative amino alcohol cleavage using 

palladium(II) acetate giving free amine. Acetyl group deprotection was achieved 

by 3% HCl in methanol to give PM-94128 1. 
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Scheme 1.14. Coupling of aminodihydroisocoumarin 33 and 68. 
 

1.1.11. Other notable syntheses 

Superchi,64 presented his synthesis of the aminodihydroisocoumarin moiety of AI-

77-B, using a metallation/alkylation sequence followed by dihydroxylation/ring 

forming reactions.  

 
Scheme 1.15. Superchi’s approach to aminodihydroisocoumarin 39. 
 
Thomas, Russell and Davies and Durgnat and Vogel all recorded novel syntheses 

of the eastern fragment of AI-77-B while using Shioiri’s procedure60 or a 

modification thereof (benzylic anion addition to leucine derived aldehyde) to 

generate isocoumarin coupling partner 33.  

Thomas’s approach to lactam 82 was via olefination of lactam-aldehyde 80 

derived from L-aspartic acid then syn-dihydroxylation of 4-alkenylazetidinone 

87, that was modified further to give 82.65 
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Scheme 1.16. Thomas’s approach to lactam 82. 
 
Russell and Davies66,67 were able to utilize their intramolecular acylnitroso Diels-

Alder methodology (taking advantage of Shea’s68 work on Type II Diels-Alder 

chemistry and Craigs69 studies into the asymmetric Diels-Alder chemistry) to 

synthesize acid 91.  

 

Scheme 1.17. Synthesis of acid 85. 
 
Durgnat and Vogel70 designed their synthesis around a Diels-Alder approach 

between furan 86 and cyanovinyl acetate 87, the bridged ether 88 was modified 

to give the desired acid coupling partner 89. 

 
Scheme 1.18. Synthesis of furanoside 89 
 
Ghosh, Bischoff and Cappiello71 used a titanium enolate mediated syn-aldol 

reaction of 90, Curtius rearrangement and Dondoni aldehyde homologation to 

generate the acid coupling partner 92 via ester 91. While 

aminodihydroisocoumarin 100 was synthesized from 94 through alkylation and 

protection giving 93 that underwent Diels-Alder/Retro Diels-Alder reaction 

sequence. 
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Scheme 1.19. Synthesis of oxazolidine 92 and aminodihydroisocoumarin 94.  
 
Ward and Proctor have also reported several syntheses of 

aminodihydroisocoumarin family members. Bachiphelacins 9 amino diol fragment 

was synthesized via dihydroxylation of chiral allylsilane 95.72  

 
Figure 1.13. Upjohn dihydroxylation of acid 101. 
 
Ward and Proctor were also able to synthesize AI-77-B 11 and Amicoumacin C 

12, using aspartic acid that could be diprotected as the benzyl ester 98 then 

converted to the Cβ-aldehyde 99, then olefinated with Horner-Wadsworth-

Emmons conditions giving 100, that was then dihydroxylated. 

 

Figure 1.14. Synthesis of olefin 100. 
 
Our interest in the aminodihydroisocoumarins led us to the discovery of the 

isochromanones and the Ajudazols. The isocoumarins are structurally related to 

the isochromanones, they both have benzoic lactone structures with an alpha 

stereocenter. Biologically they have very different activities, making them very 

intersting targets within the Marquez research group. 
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1.2. Isochromanones 

1.2.1. Ajudazol A and B 

Ajudazol A and B were discovered in 2004, during a screening of myxobacteria 

for new biologically active compounds.2,73                       

The myxobacteria group of organisms was first described by Roland Thaxter in 

1892. Myxobacteria are found in most environments; however their main 

habitats are temperate topsoil and rotting vegetation. Physiologically they 

exhibit several features that have made them the subject of significant scientific 

interest.74 

As prokaryotes, Myxobacteria show a unique cooperative social behaviour,74 

based on a complex communication system that allows colonies a swarming 

motility (they can move by gliding or creeping on surfaces) which enables them 

to coordinate in a predatory manner against other microbes 

 
Figure 1.15. Bacterial rods during gliding process.75 
 
To complement their predatory activity, the bacteria produce lytic exo-enzymes 

against their prey. The lysis products of ‘prey’ bacteria and fungi are sufficient 

to sustain the Myxobacterias growth etc. Under starvation conditions, 

Myxobacteria undergo a form of multicellular development where they are able 

to assemble fruiting bodies and more complex structures. Within these bodies 

resistant cell types (myxospores) are produced.76 Myxospores are resistant to 

desiccation giving the organism a dormant stage to its life cycle. Myxobacteria 

also secrete an array of biologically active metabolites including antibiotics and 

antitumour agents. 



Chapter 1 – Isocoumarins and Isochromanones.  

 25 

A B

C D
 

Figure 1.16 Spore body of myxobacterium; B, C and D – Stages in the development of the 
'fruitbody' of the myxobacterium Chondromyces crocatus.75 
 
The species Chondromyces crocatus has been particularly prolific at exhibiting 

high antifungal and cytotoxic effects. The activities have been ascribed to the 

large number of secondary metabolites produced by the species. Of these 

secondary metabolites, Adjudazols A 2 and B 3 were observed as well as 

Crocacin A to D and Chondramides A to D. The crocacins are a family of N-acyl 

dipeptides, known to block electron flow in the third complex of the cytochrome 

bc1 segment of the eukaryotic respiratory chain, while the chondramides are 

new depsipeptides structurally related to jasplakinolide,77,78 which is highly 

cytostatic against mammalian cell lines.79,80 

The discovery of the Ajudazols came surreptitiously from further purification of 

crude extracts, also leading to the further discovery of the chondrochlorens, a 

new β-amino styrene.2 

The antimicrobial activity of the Ajudazols has been partially assessed; Ajudazol 

B incompletely inhibited growth of several important fungi including Botrytis 

cinerea, Ustilago maydis. It has also displayed weak activity against several 

Gram-positive bacteria. Ajudazol A showed only minor activity against a few 
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fungi and Gram-positive bacteria.                     

The Ajudazols antifungal activity is significant because fungi like Botrytis 

cinerea are a ubiquitous fungal pathogen causing gray rot. Botrytis cinerea 

affects a large number of economically important agricultural and horticultural 

crops. It opportunistically infects wounds or senescing tissue and also invades 

young tissues, causing necrosis.81 While Ustilago maydis (corn smut) infects 

maize (Zea mays) and teosinte (Euchlena mexicana) and can ruin whole harvests 

depending on level of infection. 

Studies, to investigate the mechanism of action and influence of the Ajudazols 

on the mitochondrial respiratory energy metabolism were conducted in 2004. 

Nicotinamide adenine dinucleotide (NADH) oxidation in sub mitochondrial 

particles (SMPs) (as determined by UV/VIS spectrophotometry) was inhibited by 

50% at a concentration of 22 nM (Ajudazol A) and 18 nM (Ajudazol B), 

respectively.73 

Faced with this potent activity the site of inhibition within the electron 

transport chain was investigated. The results indicated that the site of inhibition 

of Ajudazols is on the substrate side of cytochrome b. Cytochromes can be 

reduced either by NADH via complex I (NADH: ubiquinone oxidoreductase) or by 

succinate. To determine whether the Ajudazols interfere with complex I, 

complex II, or with both, the effect on reduction kinetics of cytochrome b using 

either NADH or succinate as the substrate was investigated. Ajudazol A and B 

inhibited the reduction of cytochrome b only when NADH was the electron 

donor. The investigations on the mechanism of action of the Ajudazols suggest 

that the Ajudazols block the electron flow in SMPs specifically at the site of 

complex I. The observation is supported by further investigations which 

demonstrated that the new compounds block the electron flow in SMPs 

specifically at the NADH: ubiquinone-oxidoreductase complex 1 site. 
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Figure 1.17. The NADH oxidation/reduction cycle. 
 
The Ajudazols A and B consist of an isochromanone (C1-C9) fragment and a C10-

C29 fragment (Figure 1.18). The isochromanone fragment possesses C8 hydroxyl 

and C9 alkyl groups, while the C10-C29 contains a Z-diene (C17-C20) and an E-

olefin (C23-C24) which is linked to an (E)-3-methoxy-N-methylbut-2-enamide. 

This enamide is shared among other compounds isolated from Chondromyces 

bacteria (for example the Crocacins). Another feature of the Ajudazol 

framework is the (S)-secpropyl oxazole fragment that connects the 

isochromanone and the linear 18C tail portion. 

 
Figure 1.18. Ajudazols A 2 and B 3 
 
The sole difference between the Ajudazols is the C15 carbon. In Ajudazol B it is 

a methyl group (unassigned conformation) rather than an exo-methylene olefin 

(as with Ajudazol A).                

The stereochemistry of the Ajudazols has been assigned by extensive NMR 

studies although no crystallographic data has been reported.82 The C9 carbon 

center has been assigned the S-configuration, as has the C10 carbon, while the 
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C8 hydroxyl center has the R-conformation. The C15 carbon of Ajudazol B has 

not been assigned.  

The isochromanone functionality is one of only a few examples of the more 

common isocoumarin core 21, bearing C8 hydroxyl functionality. The literature 

contains only four other natural products containing C8 hydroxyl 

isochromanones, with only two possessing an alkyl group in the C4 position.83  

 
Figure 1.19. Examples of isochromanone natural products, bearing C4 oxygens. 
 
Other than the C8 hydroxyl and C9 functionality the isochromanones and 

isocoumarins differ only in ring stereochemistry. The aminodihydroisocoumarins 

are R configured while the Ajudazols have S-configuration. 

To date there have been only two reported approaches towards the synthesis of 

the Ajudazols. Both of these are concerned with the synthesis of the C9/C15-C29 

eastern fragment of the molecule. There have been no publications detailing the 

synthesis of the isochromanone bicycle. 

1.2.2. Taylor’s synthesis of the C15-C29 fragment, 104 

As part of his efforts towards the synthesis of Ajudazol A 2, Taylor presented the 

one-pot double acetylene carbo-cupration of a functionalised alkyl cuprate 109, 

that was trapped with 2,3-dibromopropene 110.84            

Taylor’s retrosynthesis (Scheme 1.20) is based on the key Stille disconnection of 

2-stannyl-oxazole 103 and vinyl halide 104. Halide 104 was thought to come 

from the amide coupling of the amine derived from the Wittig olefination of 

aldehyde 105 and 3-methoxybutenoic acid 106. The aldehyde 105 could come 

from alcohol 107, which in turn could be generated through the key double 

acetylene carbo-cupration reaction and subsequent trapping with halide 108. 
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Scheme 1.20. Taylor’s retrosynthesis of the Ajudazol A molecule. 
 
The forward synthesis began with the metal-halogen exchange of iodide 111, 

followed by trans-metallation to generate dialkyl-cuprate. Reaction of cuprate 

with acetylene 110 generated the Z,Z-dienyl intermediate 112 which was 

trapped with 2,3-dibromopropene 108, to give triene 113. THP ether cleavage 

gave alcohol 107 (Scheme 1.21). 

 
Scheme 1.21. The first stages of the synthesis 
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Oxidation of 107 and Wittig olefination of the resulting aldehyde 105 produced 

the tetrene 114, which was reduced and the allylic alcohol masked as the THP 

ether 115. Conversion of the bromide functionality to an iodide was achieved via 

a metal-halogen exchange process with tBuLi and the resulting alkyl-lithium 

quenched with molecular iodine to give vinyl-iodide 116. Cleavage of the THP 

group was followed by free alcohol conversion to the corresponding secondary 

amine 117 via the bromide intermediate. Coupling of amine 117 and acid 106 

completed the synthesis of Taylor’s C15-C29 104 fragment of Ajudazol (Scheme 

1.22). 

 
Scheme 1.22. The final reactions of the sequence 

 
The suitability of the vinyl iodide towards the planned Stille coupling reaction 

was examined see Scheme 1.23. Reacting vinyl iodide 104 with 2-oxazole 

stannane 118 produced in 60% yield the desired compound 119. Pd(PPh3)4 and 

PdCl2(MeCN)2 were also tested for this coupling, but the best results were 

obtained using PdCl2(PPh3)2.  
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Scheme 1.23. Stille reaction tests between vinyl iodide and oxazole 119  
 

1.2.3. Rizzacasa’s synthesis of the C9-C29 fragment  121  

More recently, Rizzacasa reported his convergent approach to the synthesis of 

the C9-C29 portion of the Ajudazols. Rizzacasa’s approach relies on a 

cyclodehydration/Sonogashira coupling/alkyne hydrogenation reaction 

sequence.85   

Retrosynthetically the C18-C19 bond was introduced by Sonogashira cross 

coupling reaction between alkyne 120 and vinyl iodide 121. The alkyne could be 

seen to come from acid 123 followed by oxazole formation using a variant of the 

Wipf protocol.86,87 Vinyl iodide 124 is thought to come from coupling of allylic 

amine 124 and acid 106. (Scheme 1.24) 
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Scheme 1.24. The retrosynthesis designed by Rizzacasa. 
 
Rizzacasa’s synthesis of the C9-C29 segment began with the oxidation and 

olefination of known alcohol 125, giving diene 126. The ester was reduced to 

the allylic alcohol then converted to the bromide and displaced with 

methylamine to give secondary amine 124. Peptide coupling between acid 106 

and amine 124 produced desired vinyl iodide 121 (Scheme 1.25). 

 
Scheme 1.25. Synthesis of the common coupling partner 
 
The oxazole fragment 132 was synthesized from dimethyl malonate 127, which 

was alkylated and then reduced to yield diol 128. Mono-protection and oxidation 

produced the acid 129. Coupling of the acid with known racemic amine 130 
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afforded amide 131. Selective silyl ether deprotection of the tbutyldimethyl 

silyl group allowed Dess Martin Oxidation of the resulting alcohol that could be 

transformed to the desired oxazole 132 (Scheme 1.26). 
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Scheme 1.26 Production of the oxazole fragment corresponding to Ajudazol A. 
 
Coupling of alkyne 132 and vinyl iodide 121 under Sonogashira cross coupling 

conditions gave the desired ene-yne 133. Partial hydrogenation of the alkyne 

followed by mesylation of the primary alcohol and elimination produced (Scheme 

1.27), poly-ene 134 as Rizzacasa’s model system for the synthesis of the 

Ajudazols. 
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Scheme 1.27. Coupling of vinyl iodide 121 and oxazole 132. 
 
Rizzacasa then modified his synthesis of compound 132 (Scheme 1.28) in order 

to replicate the system present in Ajudazol B 2. This enantioselective approach 

allows for either enantiomer of oxazole 137 or 138 to be synthesized, simply by 

selecting the appropriate acid-coupling partner 135 or 136 (Scheme 1.27). 

 
Scheme 1.28. Synthesis of both enantiomers of Ajudazol B. 
 



Chapter 1 – Isocoumarins and Isochromanones.  

 35 

 
1.3. Other isocoumarin containing natural products  

There are a number of isocoumarin containing compounds that are structurally 

simpler, but are important due to their biological profile. 

Reticulol 139 was isolated from isolated from Steptomyces rubreticulae, a strain 

of soil actinomyces called streptoverticillium, NA-4803. Structurally, 139 is very 

similar to both Phytoalexin and Mellein but the compound is planar and lacks a 

stereocenter. 

 
Figure 1.20. Reticulol 139  
 
Reticulol 139, is important because it is a cyclic 3',5'-monophosphodiesterase 

inhibitor. It has been shown that Topoisomerase 1 treated with 45 µM Reticulol 

does not replicate or transcribe DNA.19 

(R)-(-)-Mellein 140 is widespread in nature having been isolated, inter alia, from 

many fungi and several insects in which it appears to play a pheromonal role.                  

(S)-(+)-Mellein 141 is also a fungal metabolite, one source being the marine 

fungus Helicascus kanaloanus. 

 
Figure 1.21. Both enantiomers of Mellein. 
 
The differing activities of aminodihydroisocoumarins from antiinflammatory to 

antitumour would seem to indicate a wide range of different biological targets. 

However compounds like AI-77-B 11 and the Xenocoumacins have not been 

tested for any antitumour activities. Although AI-77-B is known to be very 

cytotoxic when administered intraperitoneally. Combining this with observations 

in oncology, tumour cells have significantly increased uptake of minerals/sugars 

etc from their extra-cellular matrices. This could mean that others in the 
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aminodihydroisocoumarin family of compounds have similar cytotoxicity to PM-

94128 that is as yet undiscovered. 

The first stereospecific synthesis of both enantiomers of Mellein was reported by 

Gill.88 It began with alkylation of R-propylene oxide 142 using propargyl bromide 

derived anion that gave alcohol 143. Silyl protection of the free alcohol was 

followed by alkylation of the terminal alkyne with methyl-chloroformate in 81% 

yield. Diels-Alder reaction between ester 145 and 1-methoxy-1,3-butadiene gave 

the salicylate derivate 146, that upon treatment with toluene-sulfonic acid and 

hydrogen bromide gave 140. The opposite S-enantiomer of Mellein 141 was 

synthesized from S-propylene oxide as per Scheme 1.29. 

 
Scheme 1.29. Gill’s synthesis of R-Mellein 146. 
 
An interesting oxidative approach, to the synthesis of the 3,4-

dihydroisocoumarins Mellein 140 and metabolic derivatives, was reported by 

Watanabe (Scheme 1.30).89 Here the authors report a novel one-pot 

esterification-Michael addition-aldol reaction of a δ-hydroxy-α,β-unsaturated 

aldehyde 147 and a diketene 148. The product was aromatized to give R-Mellein 

140.          

Interestingly, the step-wise procedure was examined first in 47% overall yield 

while the one-pot version gave reproducible yields between 71% and 74% 

reproducibly. 
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Scheme 1.30. Watanbe’s synthesis. 

 
Treatment of alcohol 149 with excess amounts of Martin Sulfurane gave R-

Mellein 140 unexpectedly, via a two-step dehydration-aromatisation process, 

through intermediates 152 and 153 (Scheme 1.31). 

 

Scheme 1.31. Mechanism of aromatization by Martin Sulfurane. 
 
Finally Cho and Choo reported their interesting synthetic approach to sterically 

congested cyclic lactones, through palladium-catalyzed cyclisations of allenyl 

tetrahydrofurans bearing a carboxylic acid (Scheme 1.32).90 
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Scheme 1.32. Synthetic route taken by Cho and Choo. 
 
Mechanistically, an aryl-palladium halide intermediate adds to the center carbon 

of allene unit, resulting in the formation of a π-allylpalladium intermediate. This 

intermediate is attacked by the intramolecular nucleophilic carboxylate to 

afford the observed tricyclic product 156, Scheme 1.33.  

 
Scheme 1.33. Proposed mechanism of palladium-catalysed cyclisation. 
 

1.4. Biosynthetic origin  

Before the 1990s, it was speculated that the aminodihydroisocoumarins were of 

mixed polyketide biosynthetic origin. In 1991, McInerney proposed that the 

aromatic portion of the bicycle is derived from leucine and four acetate units.6    

The linear polyketide 157, is cyclised (and aromatized as water is eliminated) by 

a polyketide synthase (PKS) in a type 1 iterative manner (Figure 1.22). 



Chapter 1 – Isocoumarins and Isochromanones.  

 39 

Bechthold’s work in to this area has helped provide mechanistic evidence of PKS 

activities.91 

 

Figure 1.22. The orsellinic acid biosynthetic pathway.
92

 

 
Isocoumarin 160, is formed as the product of a ring closing reaction of 158, 

giving 159. De-oxygenation at C6 is followed by enantioselective reduction at 

the C3-C4 olefin. The free amine is then malonylated with a moeity derived from 

acetic acid and the requisite amino acid giving 160. Finally oxidation at C8' 

takes place, presumably via water incorporation onto the linear chain. Reduction 

at C9' produces the final aminodihydroisocoumarin, Figure 1.23. 
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Figure 1.23. Formation of the dihydroisocoumarin system.6 
 
McInerney’s proposed biosynthesis was corroborated some 17 years later, when 

Buntin et al. published their work into the biosynthesis of the Ajudazols, noting 

that the formation of the isochromanone is one of the last transformations to 

occur.93 Although the research showed a different method of combining the 

linear orsellinic acid and linear fragment, both papers agreed on the method of 

isocoumarin formation.                 

Buntin determined that the backbone of the Ajudazols molecule comes from a 

mixed system of type 1 polyketide synthase and a non-ribosomal polypeptide 

synthetase (NRPS) multi-enzyme.  

Generally, an acetyl transferase loads a dicarboxyl extender onto an acyl carrier 

protein (ACP) and then is condensed with a starter acyl unit, catalyzed by a 
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ketosynthase, the resulting β-ketoacyl intermediate remains thioester linked to 

the ACP. Ketoreductase processing of the β-ketone is likely followed by 

dehydratase and then enoyl reductase domains to yield an alcohol, enoyl or 

methylene group before the chain migrates to a ketosynthase and further cycles 

of extension. When the polyketide length is reached, termination occurs usually 

accompanied by cyclisation.  

Polyketide synthases, as a group, use a wide range of organic acids as starter 

units, extenders may be malonyl, alkyl malonyl and methoxy-malonyl. 

Polyketide structural diversity is a result of this wider substrate tolerance. 

Chirality is introduced through branched extender units and asymmetric 

reduction of β-ketones to alcohol, chirality as a result increases polyketide 

structural diversity.  Figure 1.24 and Figure 1.25 show the sequence of 

biochemical transformations that that result in the formation of the Ajudazols. 
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Figure 1.24. The first 8 steps of Ajudazol biosynthesis by mixed PKS-NRPS synthetase. 
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 Figure 1.25. The final 8 modifications of the Ajudazol biosynthesis model. 
 
Alcohol stereochemistry in the isochromanone ring, is determined by specific 

ketoreductases. Sequence analysis has shown few consistent differences 

between the ketoreductases types. Research to corroborate and properly 

examine reductase mechanisms of action is needed.  

Biosynthesis of aromatic molecules in bacteria is generally achieved with type I 

and II PKS systems. This means that there are 2 possible mechanisms for chain 

release, coupled to the formation of the isochromanone functionality. 

Mechanism A involves the attack of the C9 hydroxyl group onto the thioester 

161, catalysed by an appropriate thioesterase. Ejection of the peptide carrier 

bound-thiol causes release of the 10-membered lactone 162, where we see a C2–

C9 aldol reaction followed by a ring aromatization reaction (Figure 1.26). 
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Figure 1.26. Proposed mechanism for 173 formation – Mechanism A. 
 
Mechanism B has an intramolecular aldol/aromatisation reaction of 171 before 

the thioester catalyzed cleavage/lactonisation reaction of intermediate 164. 

giving 165 (Figure 1.27). 

 
Figure 1.27. Proposed mechanism of 173 formation – Mechanism B. 
 
There are several post PKS modifications needed to complete the synthesis of 

Ajudazols (C8 hydroxylation and exo-methylene formation). Responsible for 

these modifications are the enzymes AjuI and AjuJ (they have a great deal of 

homology to P450 enzymes) The product released from AjuH is likely to be 

deshydroxyAjudazol, 166; which is a suitable substrate for AjuI and AjuJ. AjuI 

oxidizes the exo-methyl group and AjuJ is responsible for C8 oxidation resulting 

in the complete Ajudazol A molecule. In the case of Ajudazol B, 3 is modified by 

AjuJ only. As Ajudazol A is the major metabolite, the former reaction sequence 

would appear to be the preferred pathway.  
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Figure 1.28. Buntin’s proposed post-PKS modifications.  
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2. Results and discussion 

2.1. Synthesis of PM-94128 

We envisioned PM-94128 1 as having come from the amide disconnection 

favoured by previous syntheses. The linear acid compound 168 was thought to 

be have arisen from the oxidation of ketone 169, this having come from the 

product of a proline catalyzed aldol reaction between hydroxyacetone 170 and 

from N–protected leucine derived aldehyde 171.                    

On the other hand aminodihydroisocoumarin bicycle 167 was thought of as 

originating from the aromatisation of allylic alcohol 172. 172 could in turn be 

the product of the Diels-Alder reaction of diene 174 and α-pyrone 173. α-

Pyrone can come from the ring closing metathesis reaction of diene-ester 175, 

which could be attained by stereoselective alkylation and esterification of N–

protected leucinal 176 (Scheme 2.1). 

 
Scheme 2.1. Our retrosynthesis of PM-94128 
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2.1.1. Proline organocatalysis 

Proline and proline derivatives have found widespread use as organocatalytical 

reagents in synthesis. 

“Proline – a universal asymmetric catalyst?…there are various 
chemical reasons that contribute to prolines role in catalysis. Proline 
is bifunctional, with a carboxylic acid and amine portion. These two 
functional groups can act as both acid or base and facilitate chemical 
transformations in concert, similar or enzymatic catalysis ”– Dr 
Benjamin List94 

Proline has been reported in a large variety of reaction types ranging from 

asymmetric transfer hydrogenation reactions,95-97 to Bayliss-Hillman chemistry98 

and even Diels-Alder type dimerisation reactions.99,100 Derivatives have also 

found widespread use; Corey has applied the oxazaborolidine deriviative of 

proline both in the asymmetric reduction of ketones (Corey-Bakshi-Shibata 

reduction) and as an asymmetric catalyst for Diels-Alder reactions.101,102 

Proline was described as the catalyst for the Hajos, Parrish, Wiechert and Sauer 

reaction, more commonly the Hajos-Parrish reaction.103-106 The Hajos-Parrish 

reaction has found widespread use in the enantioselective synthesis of complex 

bicycles. In its original application the reaction saw proline catalysis of the 

conversion of trione 177 to the bicyclic dione 178 (Scheme 2.2).  

 
Scheme 2.2. Hajos-Parrish reaction of 2-methyl-2-(3-oxobutyl)cyclopentane-1,3-dione. 
 
The Hajos-Parrish reaction is essentially an intramolecular application of the 

reaction that was envisioned for synthesis of the amino-diol fragment 168. 

The large body of work in ‘direct intermolecular aldol reactions’ made us 

confident its application would be successful.107-110 Macmillan (Scheme 2.3) 

reported the use of hydroxy carbonyl compounds 179 with aldehydes 180 in the 

presence of catalytic quantities of L-proline, yielding anti-diols 181 in good yield 

with excellent selectivities.111 
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Scheme 2.3. Macmillan’s method of generating anti-diols. 
 
Further literature searches of proline organocatalyzed aldol reactions, 

highlighted the paper published by Ma, in which they detail their formal 

synthesis of the eastern fragment of PM-94128.112 Their efforts were primarily 

concerned with reporting a method for the diastereoselective reaction of N,N-

dibenzyl-α-aminoaldehydes 182 with ketones 183 catalyzed by proline (Scheme 

2.5). This then was applied to the synthesis of PM-94128 1. 

 
Scheme 2.4. The reaction expanded by Ma et al. 
 
Ma showed that L-proline catalyzed the direct aldol reactions of L-

aminoaldehyde derived dibenzyl derivatives with a range of ketones, in 

moderate to excellent yields and stereoselectivites. Ma’s original aim was to 

expand the scope of the reaction to allow for the use of functionalized 

aldehydes and/or ketones as well as a further demonstration of the benefits of 

the reaction methodology over more common approaches that use silyl ketene 

acetals, titanium homo-enolates and boron enolates (these materials tend to be 

very moisture sensitive). Initial reactions between substituted N-phenylalanine 

and acetone showed good yields (48 to 98%) with up to 96% d.e. at the newly 

formed center. N-Trityl phenylalanine was the best substrate for the reaction in 

terms of selectivity, while dibenzyl phenylalaninal had near quantitative 

conversion but selectivities were reduced to 90% d.e. Table 2.1 highlights a 

selection of Ma’s results.     Altering the stereochemistry of the proline 

catalyst from L to D allowed the generation of the anti-product. However the 

reaction was much less selective for the anti-product and the diastereotopic 

excess was greatly reduced to 34%.  
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Table 2.1. L-Proline catalysed direct aldol reaction of dibenzyl aldehydes and ketones. 
 
The reaction of dibenzylleucinal and hydroxy acetone in HMPA (Entry 1) yielded 

anti-diol (90%) and syn-diol (4%).  Anti-diol 185 was noted to resemble an 

advanced intermediate in the synthesis of PM-94128; hence the ketone was 

transformed into the corresponding acid via an oxidative cleavage reaction with 

sodium hypobromite then esterified to complete the synthesis of the diol-ester, 

186 (Scheme 2.5)  

 
Scheme 2.5. Transformation of ketone 195 to ester 196. 
 
It was decided that Ma’s work represented an excellent approach to the 

synthesis of the amino-diol fragment of PM-94128, so it was decided to adopt 

this methodology with our bicycle synthesis. 
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2.1.2. Initial synthetic efforts 

Our forward synthesis of 167 began with the esterification of Boc-N-Leucine 187. 

IBX oxidation of alcohol produced aldehyde 30 in 80% yield, it had been reported 

in the literature that Swern oxidation conditions were too harsh and 

epimerisation of the α-carbon stereocenter would occur.113 Attempts with the 

less basic/harsh SWERN like SO3.pyridine conditions failed to produce aldehyde 

30 (Scheme 2.6).     

Alkylation of aldehyde 30 was achieved using Grignard reagent (allyl magnesium 

bromide), producing the homo-allylic alcohols 188 and 189 in good yield.114 

However, the alkylation was non-selective, with a ratio of 3:2 in favour of the 

anti-diastereoisomer (188). Improvements to the selectivity were achieved by 

applying Ghosh’s conditions.71 Allyl-tributyltin and tin tetrachloride in 

dichloromethane gave, homo allylic alcohol 188 in much larger quantities than 

189 with a slight decrease in isolated yield (67%). The ratio of diatereoisomers 

could be improved from 5.8:1 to 10:1 in small scale experiments.            

 
Scheme 2.6. Generation of the homo-allylic alcohols 199 and 200. 
 
The inseparable alcohols 188 and 189 were treated with acrylic acid and 

dicyclohexylcarbodiimide (DCC) giving in 65% yield esters 190 and 191 that were 

separable by column chromatography.115-116 The reaction however produced 

many side products, making purification difficult.  
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Scheme 2.7. Esterification of homo allyic alcohols. 
An alternative approach was found using acryloyl chloride and triethylamine that 

generated esters 190 and 191, in much improved 96% yield (Scheme 2.8).117,118 

Interestingly the reaction did not proceed with pyridine as solvent and base. 

 
Scheme 2.8. Acid Chloride esterification. 
 
In the 1960 and 1970s, interest in catalytic olefin metathesis reactions increased 

greatly. In its simplest form, the olefin metathesis reaction consists of a 

redistribution of alkylidene components.119 In 1970, Chauvin and Hérisson120 

proposed the first and now widely accepted cross-metathesis mechanism 

(Scheme 2.9). The mechanism involves the [2+2] cycloaddition between an 

alkene double bond 192 and a transition metal carbene 193 forming a 

metallocycle intermediate 194. The metallocyclobutane intermediate produced, 

can then cyclorevert reversibly to give starting material or a new metallo-

carbene species 195, which can then under go a second [2+2] cycloaddition 

giving intermediate 196. This can cyclo revert to 195 or to the ring closed 

alkene 197. The reaction is quicker than the uncatalyzed reaction because the 

activation energy is lowered through d-orbital interactions on the metal. 
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Scheme 2.9. The mechanism for the ring closing metathesis reaction. 
 
Some 25 years later, Yves Chauvin, Robert Grubbs and Richard Schrock jointly 

won the Nobel prize for the development of the metathesis method in organic 

synthesis. The official press-release contained Figure 2.1 and is an excellent 

analogy of the metathesis reaction. 

 

Figure 2.1. Schrock’s metathesis scheme.
121

 

 
“Metathesis can be viewed as a dance of two molecules, with a 
catalyst pair (left) that includes a metal (black) joining "hands" with 
an alkene (yellow/red) pair. The pair then join in a circle (center) and 
then go off with different partners (right)”. – Yves Chauvin122 

Diene ester 190 had the correct stereochemistry so it was treated with 5 mol% 

Grubbs 1st generation catalyst producing α-pyrone 198 in good yield 78%.115,117 

Using Grubbs 2nd generation catalyst decreased the reaction time (48 to 36 

hours) and increased the yield to 79%. The structure was determined by NMR 

analysis and confirmed by X-ray crystallography (Figure 2.2). 
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Scheme 2.10. Ring closing metathesis of diene-ester 190. 
 

 
Figure 2.2. Xray structure of 198. 
 
Ester 191 was similarly treated with Grubbs 1st generation catalyst, producing α-

pyrone 199 in 75% yield. 

The key step in our synthesis of the aminodihydroisocoumarin fragment 167 was 

the Diels-Alder reaction of α-pyrone 198 and a suitable diene 174 (Scheme 

2.11). The choice of diene is key as it would allow us to set the second ring of 

the aminodihydroisocoumarin, but would also and provide significant scope for 

analogue generation. 

  
Scheme 2.11. The key Diels-Alder reaction of our reaction sequence. 
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The Diels-Alder reaction is the cycloaddition of a conjugated diene with a 

dienophile (alkene or alkyne usually) involving the dienes 4π electrons and the 

dienophiles 2π electrons. The driving force of the reaction is the formation of 

new σ-bonds, which are energetically more stable than the π-bonds. For the 

reaction to proceed, an overlap of the molecular orbitals is required. It is the 

HOMO (Highest Occupied Molecular Orbital) of the diene which interacts with 

the LUMO (Lowest Unoccupied Molecular Orbital) of the dienophile. The Diels-

Alder reaction gives endo and exo-adducts that arise from the reaction transition 

state, where the dienophile can adopt 2 orientations. The endo adduct is the 

kinetic product and is formed by a bonding interaction between the carbonyl of 

the dienophile and the developing π bond of the product. Figure 2.3 shows the 

molecular orbitals, HOMO and LUMO of the reactants and the expected endo and 

exo adducts. It is expected that the endo adduct will be the preferred product 

of the reaction, however a mixture of adducts would still give the same product 

upon aromatization (oxidation) in subsequent transformations.123  

 
Figure 2.3. Diels-Alder reaction. 
 
Initial experiments using 1-(trimethylsiloxy)-1,3-butadiene 201 and α-pyrone 

198 were attempted using a variety of solvents and Lewis Acids The initial 

reactions were carried out in dichloromethane were unsuccessful, changing to 

higher boiling point solvents (i.e. benzene, toluene and xylenes) also failed to 

produce allylic alcohol 200.     Lewis acids have been reported to catalyse 

the Diels-Alder reaction so it was decided to investigate their effect on our 

system.124-127 The use of Trimethylaluminium, aluminium trichloride and 

diethylaluminium chloride was explored, however in all cases, no change to the 

reaction outcome was observed. The use of higher pressures through sealed 

tubes also failed to give any of the desired products (see Appendix 1 for 

reaction conditions). 
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It was reasoned that a possible explanation for the lack of reactivity observed 

was that the diene was not electron rich enough to participate in the 

cycloaddition reaction, i.e. the HOMO and LUMO of the diene and dienophile 

were not close enough in energy. Hence we turned our attention to using a more 

electron rich diene and elected to use diene 202.            

202 is a modified Brassard/Chan diene, where the C3 methoxy group of the 

Brassard/Chan diene 203, has been moved to the C1 position. It also lacks the C3 

TMS ether of Danishefsky’s diene 204 (Figure 2.4). 

 
Figure 2.4. Comparisons between commonly used dienes. 
 
Diene 202 was made according to Molin’s procedure by treating freshly distilled 

methyl crotonate 205 with lithium diisopropylamine (LDA) and trapping the 

resulting enolate with trimethylsilyl chloride (Scheme 2.12).128 When the 

reaction was attempted using commercially available LDA and reagents straight 

from the bottle, no product was observed. Thus reagents had to be distilled and 

the LDA made fresh from nBuLi and iPr2NH. 

 
Scheme 2.12. Generating diene 202. 
 
The reaction between diene 205 dienophile 198, was attempted at relatively 

low temperatures (refluxing dichloromethane), but no reaction could be 

detected. Switching to higher boiling solvents (benzene, toluene or xylene) with 

and without aluminium Lewis acids failed to change the reaction outcome 

returning only α-pyrone and diene degradation products. 

Faced with the lack of success the modified tbutyldimethylsilyl diene 206 was 

synthesized. It was thought that the presence of the TBDMS group would make 

the diene more stable than diene 202. This extra stability resulted in much less 
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degradation of the diene over the prolonged reaction times. To further combat 

the dienes instability problems, smaller batches of the diene were made on a 

regular basis so as to avoid degradation during storage (see Appendix 2 for 

details of reaction conditions). Frustratingly there remained no reaction 

progress. 

 
Scheme 2.13. Modifications to the Diels-Alder reaction. 
 
Finally we turned our attention and efforts to microwave chemistry (Scheme 

2.14). Various conditions were examined in which equivalents, concentrations, 

reaction duration and importantly temperature were varied to try and achieve a 

favourable reaction outcome. There was however, no successful outcome 

observed (see Appendix 3 for reaction conditions). 

 
Scheme 2.14. Attempts to synthesize 200 
 
The use diphenyl ether as the reaction solvent gave what appeared to be a trace 

(by TLC analysis) of the product. Unfortunately, further exploration of the 

reaction using higher temperatures and various reaction times, returned only α-

pyrone 198 and diene degradation (see Appendix 3 for reaction conditions).  

Finally the reaction was attempted without solvent increasing the 

concentrations further (see Appendix 4 for reaction conditions) with no success. 

Faced with the continuous lack of success during the Diels-Alder cycloadditions a 

new approach was developed. 
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2.2. An alternate approach 

Our alternate approach was based on a modified version of the Achmatowicz 

rearrangement which if successful would provide access to a number of 

interesting targets including Ajudazol-A (a synthetic target within the Marquez 

group).  

The Achmatowicz rearrangement was first reported in 1971. It produces α,β-

unsaturated pyranones 208 from α-hydroxyfurans 209 under epoxidising 

conditions.129-131  

OH

R1 O

O

O

R1

R2 OH

R2

[O]

208 209
 

Scheme 2.15. Conversion of hydroxy furans to pyranones. 
 
The accepted mechanism for the rearrangement involves hydroxyl directed 

epoxidiation of the allylic position of furan 208 across the C2-C3 olefin (Scheme 

2.16). A 6 electron movement occurs around the ring, opens epoxide 210, to 

yield zwitterion 211. Carbonyl formation causes the ring to open and generate 

1,4-diketone 212. An intramolecular nucleophilic attack of the free hydroxyl 

onto the adjacent ketone closes the ring and generates hemi-acetal 209. The 

stereochemistry in the α-hydroxyfuran is retained in the product. As expected 

the α-anomer is the major product due to the anomeric effect. 

 
Scheme 2.16. Achmatowicz rearrangement 
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There have been many conditions reported for the rearrangement to date, the 

most popular being N-bromosuccinimide/water132-134 and vanadyl 

acetoacetonate/tertbutyl hydrogen peroxide.135-137 Other conditions that have 

also been reported include hydrogen peroxide,138,139 pyridinium 

chlorochromate,141 meta-chloroperoxybenzoic acid141 molecular oxygen (with 

tetraphenylporphine142,143 or rose bengal144,145). Sharpless asymmetric 

epoxidation conditions have also been reported introducing a resolution step as 

part of the rearrangement.146-148 

The Achmatowicz rearrangement has found widespread use in organic chemistry, 

particularly in natural product synthesis, where it has been widely utilized to 

generate substituted pyrans.  The rearrangement can tolerate a wide range 

of substrates bearing complex functionality, being utilized in the syntheses of 

Isoaltholactone (A),149 Yessotoxin (B)150 and Mycopoxidene(C).151 
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Figure 2.5. The Achmatowicz rearrangement in natural product synthesis. 
 
While the reaction has gained widespread use in organic chemistry there is 

further scope for its application, there are fewer than twenty examples (based 

upon SciFinder® searches) where the furan has substituent’s at either the C3 or 

C4 positions. Only three examples have been reported where both the C3 and C4 

positions are substituted.                     

However despite the lack of literature precedence it was reasoned that an 

Achmatowicz rearrangement reaction of an α-hydroxyisobenzofuran 213 would 

provide bicyclic lactols 214, which could be further functionalised, to generate 



Chapter 2 – Isocoumarins and Isochromanones 
 

 57 

isochromanones (corresponding to the Ajudazols) and Isocoumarins 

(corresponding to the PM-94128 family of molecules). 

 
Scheme 2.17. Our proposed application of the Achmatowicz rearrangement. 
 
Based on this hypothesis a new model system was designed in which both the 

Isocoumarin (PM-94128) 215 and Isochromanone (Ajudazol) 216 core structures 

could originate from reduction of keto-lactone 217 (Scheme 2.18). Keto-lactone 

217 could be obtained through the oxidation of Achmatowicz rearrangement 

product 214. Lactol 214 would in turn originate from the rearrangement of α-

hydroxyisobenzofuran 213 which could be obtained by alkylation of 

isobenzofuran 218. 

 
Scheme 2.18. Model synthesis design. 
 

2.2.1. Model system synthesis 

Most of the methods reported to date involve the generation of substituted 

isobenzofurans. 

Bis-Grignard addition to phthalide 219 followed by treatment of the subsequent 

lactol with acid has been used to generate 1,3-diarylisobenzofurans 220. The 
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first alkylation is presumably at the anomeric position, displacing the methoxy 

group as a result. The second addition at the lactone gives a hemi-acetal 

intermediate that upon treatment with hydrochloric acid the hydroxyl is 

eliminated as water resulting in aromatisation.152  

O

O

OMe

O

Ar

Ar

1) 3x ArMgBr, THF

2) HCl

43-99%
219 220  

Scheme 2.19. Double Grignard addition generating isobenzofuran 227 
 
Retro Diels-Alder reactions of bridged ether type compounds 221 using pyridyl 

tetrazine reagents has also resulted in substituted isobenzofuran generation 

(Scheme 2.20).153,154 221 is synthesized from treatment of 1,2,4,5-

tetrakis(trimethylsilyl)benzene with an iodonium triflate then further reaction 

with furan. 221 is then reacted with with 3,6-di-2-pyridyl-1,2,4,5-tetrazine in 

chloroform at reflux temperature generating isobenzofuran 222 via a retro Diels-

Alder reaction pathway.155 

 
Scheme 2.20. Cycloaddition resulting in isobenzofuran formation.  
 
Cycloadditions between ketimines 224 and an excess of benzaldehyde 223 in the 

presence of a Rhenium(I) catalyst have been used successfully to generate 

isobenzofurans.156 C-H insertion of the rhenium and nucleophilic attack onto the 

benzaldehyde electrophile followed by cyclisation, gives an aminal intermediate 

that undergoes oxidative elimination of the N-rhenium species resulting in 225 

formation (Scheme 2.21). 

 
Scheme 2.21. Rhenium catalyzed isobenzofuran synthesis. 
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Acidic elimination methods to achieve aromatisation have also been reported. 

Scheme 2.22 shows Da-Ming’s synthesis of bis-methoxyisobenzofuran 227 from 

lactol 226 which was treated with acetic acid in chloroform, resulting in the 

elimination of water and a proton.157 

 
Scheme 2.22. Acidic dehydration resulting isobenzofuran formation. 
 
Similarly base mediated elimination methods can yield isobenzofuran compounds 

(Scheme 2.23). Treatment of methyl acetal 228 with lithium diisopropylamine 

has been used in its transformation to isobenzofuran 229. Deprotonation results 

in elimination of the methoxide and aromatization.158 

 
Scheme 2.23. Synthesis of aromatic polycycle 236. 
 
A different method for generating isobenzofurans from methyl acetals 230 was 

reported by Mikami using palladium(0) catalysis.159 Mechanistically there is an 

initial oxidative insertion of the palladium into the C-O acetal bond, followed by 

elimination giving isobenzofuran 218 (Scheme 2.24). 

 
Scheme 2.24.Several Pd(0) catalysts were examined in this reaction.  
 
Despite the fact that there are a number of ways to generate isobenzofurans 

their synthetic use has largely been limited to their use as highly reactive dienes 

in Diels-Alder reactions (Scheme 2.25).160-162 
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Scheme 2.25. Diels-Alder reaction of isobenzofuran 225. 
 
But there are very few other examples of the use of these molecules, other than 

as reactants in Diels-Alder reactions. 

Scheme 2.26. shows the limited use isobenzofurans have received. 

Mohanakrishnan conducted a study of the optical and electrochemical properties 

of diarylbenzo[c]selenophenes and their subsequent correlation with their 

structures.163 A series of selenophenes 232 was synthesized from the 

corresponding isobenzofurans 220 in good yields using Woolin’s reagent (Scheme 

2.26 A). The photochemical reactivity of substituted isobenzofuran 233 was 

examined by Yoshida in 1992 (Scheme 2.26 B), whereby irradiation of 

isobenzofuran 233 gave 234 by photovalence isomerisation.164 Carloni 

investigated the reactivity of isobenzofurans towards singlet oxygen (Scheme 

2.26 C), evaluating 225s suitability for biological radical detection. Oxygen and 

carbon centred radicals were reacted with 225 and the subsequent change in 

fluorescense monitored.165 Finally aromatic isobenzofurans 220 have been 

transformed into thia-naphthalenes in three separate studies. Dufraisse utilized 

thia-napthalene compounds as a starting material in pyrolysis reactions with the 

aim of synthesizing anthracene (and derivatives).166 In 1960 Deana and co-

workers synthesized thia-napthalene derivatives from isobenzofurans using 

carbon disulfide (as Dufraisse did in 1937) with the goal of generating 

benzocyclobutenes from pyrolysis of 236.167 Swager reported in 2008 the use of 

thia-napthalenes (and isobenzofurans) as potential biological chromophores 

using in vivo near-infrared (NIR) fluorescence.168 It was also found that 236 

could be generated from 220 upon treatment with Lawesson’s reagent (Scheme 

2.26 D). 
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Scheme 2.26. Reported uses of isobenzofurans. 
 
For our approach the procedure of Crump and Rickborn was selected,169 wherein 

isobenzofurans are generated from acetals through the use of base. This 

approach was ideal for our purposes, as mechanistically it involved the likely 

generation of the isobenzofuran anion. Trapping of this anion with an 

appropriate aldehyde would provide the desired alcohol precursor for the 

rearrangement. 

Our synthesis began with phthalide 237 which was carefully reduced to the 

corresponding lactol by treatment with 1 equivalent diisobutylaluminium hydride 

(Scheme 2.27). It was found that lactol 238 readily reacted with any excess of 

DiBAl-H therefore reducing the reactive benzaldehyde intermediate 239 to the 

known 1,2-Benzenedimethanol 240.170 The isolation and purification of lactol 

238 proved problematic as the lactol opened readily to the aldehyde-alcohol 

239. Characterisation proved even more difficult as NMR analysis with non-

hydrogen bonding deuterated solvents such as D6-benzene failed to resolve the 

spectra. Hence it was decided to alkylate the lactol directly and bypass the 

isolation step. Treatment of the lactol 238 with 1.2 equivalents of sodium 

hydride and methyl iodide (filtered through basic alumina to remove traces of 

HI) at 0 oC gave acetal 230. The acetal proved to be less prone to ring opening 
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and degradation; however it was made in small batches to avoid this problem all 

together. 

 
Scheme 2.27. Reduction of phthalide to methyl acetal 247. 
 
α-Hydroxyisobenzofuran 249 was generated in one-pot from methyl acetal 230 

by treatment with diisopropylamine and methyl lithium in tetrahydrofuran by 

modification of the protocol described by Crump and Rickborn.169 It is believed 

that during the reaction an in situ catalytic quantity of LDA is generated which 

deprotonates methyl acetal 230. The subsequent movement of electrons (an 

aromatisation process) causes elimination of the methoxy group which leaves 

presumably as a methoxide ion. Deprotonation of the newly generated 

isobenzofuran molecule 218 gives anion 240 which upon trapping with 

isobutryaldehyde furnished the desired α-hydroxyisobenzofuran 241. Crump and 

Rickborn quenched anion 240 with D2O and detected deuterium incorporation. 

 
Scheme 2.28. Synthesis of isobenzofuran alcohol 241.  
 
Attempts to isolate isobenzofuranyl alcohol 241 (via silica gel and neutral 

alumina chromatography) resulted in complete degradation of the highly 
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reactive intermediate. Thus it was decided to react the crude alcohol 241, 

under Achmatowicz rearrangement conditions (meta-chloroperoxybenzoic acid in 

dichloromethane at 0 oC) to avoid these purification issues. Thus lactol 242 was 

generated; although, the lactol also proved to be too unstable to withstand 

purification. It was decided to oxidize the crude lactol 242 using Jones reagent 

gave keto-lactone compound 243. Unfortunately purification by flash column 

chromatography degraded 243 readily. Exchanging the solid phase for neutral 

alumina greatly reduced decomposition, however the molecule could not be 

obtained in high enough purity. At this point it was decided to reduce the 

ketolactone 243 to the more stable isochromanone 244 under Luche 

conditions.171 A facially selective (regioselective) reduction of the ketone was 

observed, to generate the syn diastereoisomer (Scheme 2.29).  

 
Scheme 2.29. Model system synthesis. 
 
The structure of 244 was assigned by NMR studies and later corroborated by X-

ray studies of the crystalline solid. 

 
Figure 2.6. The structure of 244 as solved by X-ray analysis. 
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To assess the anomeric ratio of products from the Achmatowicz rearrangement, 

the unstable lactol 242 was resynthesized and protected immediately as the 

acetate (Scheme 2.30). A 4.6:1 ratio of anomers was observed in the crude 

reaction mixture, with the α product the predominant anomer. This is consistent 

with other examples of the rearrangement in organic synthesis. 149-151 

 
Scheme 2.30. Acetylation of lactol 250. 
 
To expand and explore the scope of the rearrangement the reaction sequence 

was carried out using a number of structurally diverse aldehydes as substrates 

(Table 2.2).  
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Table 2.2. Table of aldehydes used in our reaction sequence. 
 
Keto-lactones 243, 247 to 255 were synthesized as per the 4 step reaction 

series described in Scheme 2.29 in good to excellent yields.  

Isochromanones 252 to 264-272 were then transformed from the corresponding 

lactones using the established Luche conditions, see Table 2.3. In all cases the 

expected chemo-selectivity was observed (ketone reduction).       

Analysis of the isochromanone syn:anti ratios showed that sterically hindered 

tertiary carbons and quaternary carbons provided complete selectivity, with the 

syn product being the preferred diastereoisomer. Linear, unbranched carbon 

chains were less selective, with no selectivity observed in the methyl example 

264 (Entry 2) in the R position while an increase in selectivity was observed as 

the alkyl chain increased in length (Entries 3 and 4)  
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Table 2.3. Isochromanones 244, 256-264. 
 
The syn:anti relationships of the isochromanones were determined with 1H NMR 

analysis. Wherein a small coupling of less than 2.5 was observed for syn 

compounds, while a larger coupling was observed for anti compounds (Jab syn ≤ 

2.5 Hz; Jab anti ≥ 6.0 Hz). 

X-ray crystal structures were successfully obtained for the syn-ethyl phenyl 264 

and cyclohexyl isochromanones 261. 264 was separable from the anti 

diastereoisomer by crystallisation (diethyl ether: petroleum spirits). The crystal 

structures obtained corroborated the success of the isobenzofuran 

rearrangement as well as confirmed the syn-relationship between the C8 and C9 

stereocenters.  
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Figure 2.7. The structures of 261 and 264 as solved by X-ray analysis. 
 
The results were encouraging, in that a large amount of functionality was 

tolerated in the Achmatowicz rearrangement and subsequent transformations. 

Indeed phenyl and cyclohexyl groups, that would create steric tension at the 

newly formed stereocenter, were tolerated. We therefore began to look at 

synthetic applications of our methodology. 

2.2.2. Studies towards the synthesis of Ajudazol A  

Retrosynthetically, we envisioned Ajudazol A 2 as originating from the palladium 

promoted coupling of bromide 266 and oxazole 265.  
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Scheme 2.31. Retrosynthesis of the Ajudazols 
 
The oxazole substituted isochroman-1-one unit 265 was thought of as being 

obtained through the coupling of the isoxybenzofuran anion 267 and aldehyde 

268 followed by treatment of the resulting alcohol under our recently developed 

rearrangement conditions. The isobenzofuran anion 267 could be accessed from 

the methyl acetal 269, while the oxazole aldehyde 268 could originate from 

ester 270. Bromide 266 on the other hand could be formed by the condensation 

of amine 271 and methoxybutenoic acid 106. Bis-alkyne 271 could in turn 

originate from the double acetlyation of butadiyne unit 272 (Scheme 2.31). 

In order to assess the effect of the aldehyde C10 stereocenter on the 

stereochemical outcome of the isobenzofuran alkylation and rearrangement 

sequence a further model system was designed. 2-(±)-Methylbutyraldehyde 

(secbutyaldehyde) was chosen as the model as it represents the first 3 carbons of 

the Ajudazols aliphatic fragment.        
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2-Methylbutyraldehyde was condensed with isobenzofuran anion 240 and then 

oxidised using our developed protocols to yield the consequent keto-lactones 

274 and 275 that were obtained in a 1.6:1 ratio of diastereoisomers with the 

anti compound (274) the preferred conformation (Scheme 2.32). 

 
Scheme 2.32. Formation of diastereoisomers, 283 and 284. 
 
The selectivity of the reaction can be explained using the Felkin-Ahn model for 

addition to carbonyls.172 The model predicts the 2 lowest energy non-eclipsed 

conformations that the aldehyde can adopt. In both conformations the carbonyl 

is orientated perpendicular to Rlarge (in this case the ethyl group). Given that the 

nucleophile (the isobenzofuran anion 240) will attack the aldehyde carbonyl 

along the Burgi-Dunitz angle of ~107o. The favoured conformation for the 

aldehyde has the carbonyl orientated between Rlarge (ethyl group) and Rmedium 

(methyl group) such that the nucleophile (Nu-) will ‘pass’ the hydrogen 

(conformation A) rather than the methyl (conformation B) (Figure 2.8). 

Conformation A is the preferred conformation and the predicted product of this 

model will come via this orientation. 

 
Figure 2.8. Felkin-Ahn conformations for the addition of the isobenzofuran anion. 
 
When either enantiomer of 2-methylbutyraldehyde adopts conformation A the 

product of the addition reaction has the syn relationship. This opposite is true 

when the aldehyde adopts conformation B, the result with either enantiomer is 

the anti-product.  
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It is hypothesized the anti-product is present because the substituents Rsmall and 

Rmedium (hydrogen and methyl respectively) are not sufficiently size 

differentiated for there to be full steric control over the addition. 

When 274 and 275 where reacted under our established Luche reduction 

conditions 2 products were obtained, this is consistent with the facially selective 

reduction observed before. The relative stereochemistry of these products was 

determined by NMR analysis of coupling between C8 and C9 hydrogens. As before 

couplings of ≤ 2.5 Hz were observed in both 276 and 277 indicating a syn 

relationship between these groups.  

 
Scheme 2.33. Synthesis of 276 and 277.  
 
This relationship was later confirmed by X-ray crystallographic analysis of the 

syn:anti compound 276 (Figure 2.9) as 276 was separable from 277 by 

recrystallisation (diethyl ether: petroleum ether). 

 
Figure 2.9. The structure of 276. 
 
With the desired syn:anti compound in hand we were confident that this 

methodology could be applied to the synthesis of the Ajudazols as stereocenter 

inversion is a well-documented transformation (see section 2.2.3). 
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Synthesis of the oxazole coupling partner began with D,L-Serine methyl ester 278 

which was converted to oxazoline 279 by cycloaddition reaction in moderate 

yield according to Leahy’s protocol.173 Unfortunately aromatisation of the 

oxazoline using Leahy’s method (copper(II) bromide, hexamethyl tetraamine and 

1,8-Diazabicyclo[5.4.0]undec-7-ene) gave poor conversion (up to 28% yield). The 

low yield is most likely due to the difficult work-up caused by the copper salt by-

products of the reaction. The work-up involved treatment of the reaction 

mixture with aqueous ammonium salts that resulted in dark blue aqueous and 

organic phases that were very close in colour and therefore difficult to separate. 

Nicolaou’s conditions174 bromotrichloromethane and 1,8-

Diazabicyclo[5.4.0]undec-7-ene, increased the yield to 55% and made the 

reaction considerably easier to work up and purify. 

 
Scheme 2.34. Synthesis of oxazole 270 
 
Oxazole-ester 270 was then reduced with diisobutylaluminium hydride to the 

corresponding alcohol in good yield. Interestingly lithium aluminium hydride 

proved to be too strong/harsh a reagent as reduction of the oxazole heterocycle 

was observed along with the desired alcohol 280. Oxidation of the primary 

alcohol gave aldehyde 281 in good yield, both IBX and Swern oxidation 

conditions produced the same quantities of the desired aldehyde (Scheme 2.35).  

 
Scheme 2.35. Oxidation to aldehyde 281. 
 
Wittig olefination reaction of aldehyde 281 gave ester 282, interestingly it 

required higher temperatures (vigorously refluxing toluene at 120 oC) to 

proceed. The use of dichloromethane and benzene gave no reaction product 

whatsoever. This is not surprising considering the hindered natured of the 

phosphonate used.  
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[1,2] Reduction of the ester yielded allylic alcohol 283 that was further reduced 

with palladium on carbon to give racemic alcohol 284. Simultaneous [1,2] and 

[1,4] reduction of the α,β unsaturated ethyl ester 282 was attempted using 

lithium aluminium hydride, unfortunately gave mixtures of allylic hydroxyl 283, 

saturated alcohol 284 and what appeared to oxazole reduction side products 

(reduction in a [1,6] fashion).               

Finally oxidation of alcohol 284 under Swern conditions yielded the desired 

aliphatic aldehyde 285. Oxidation of the alcohol using IBX gave the aldehyde in 

similar yields. Ease of purification and safety concerns during scale up made the 

Swern oxidation the preferred procedure. 

 
Scheme 2.36. Synthesis of aldehyde 285. 
 
Coupling of aldehyde 285 with isobenzofuran anion 240, as per our procedure, 

gave a lactol 286 that were oxidised immediately to the corresponding lactones 

287 and 288. Reduction of the lactones under Luche conditions gave the 289 

(syn:anti) and 290 (syn:syn) diastereoisomers in 3:2 ratio respectively. 



Chapter 2 – Isocoumarins and Isochromanones 
 

 73 

N
OO

O

O
O

N

OH

O

O
O

N

O

O

O
O

N

O

+

O

OH
O

N

O

O

OH
O

N

O

+

3:2

Separable by crystallization

1) 247, iPr2NH, MeLi

2) mCPBA, CH2Cl2

95%

2.5M Jones,
Acetone

61%

NaBH4, CeCl3,
MeOH, CH2Cl2

86%

285 286

287 288

289 290

 
Scheme 2.37. Synthesis of the Ajudazol model system. 
 
As with previous examples complete syn selectivity during the reduction was 

observed. The structure and stereochemistries were corroborated by X-ray 

analysis of the major diastereoisomer 289, which could be selectively 

crystallized. 

 
Figure 2.10. Crystal structure of Ajudazol model system. 
 

2.2.3. Mitsunobu inversion 

The Ajudazol isochromanone ring system has the anti:anti relationship between 

groups. To examine the feasibility of inverting the hydroxyl group, 289 was 

treated with 4-nitrobenzoic, diisopropylazadicarboxylate and triphenyl 

phosphine as per Mitsunobu conditions. The reaction successfully produced the 

benzoate ester 291 matching the stereochemistry present in the western section 

of the Ajudazols.175-177 
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When diethylazadicarboxylate (DEAD) was used as the acid activation agent, 

none of the benzoate product was observed. 4-Nitrobenzoic acid was used as the 

nucleophile in the hope that the nitro-benzoate 291 might have been induced to 

crystallize. 

 
Scheme 2.38. Mitsunobu inversion of alcohol 299. 
 
The Mitsunobu reaction works by phosphorous addition to the weak N=N π bond 

of diisopropylazodicarboxylate giving an anion 292 that is basic enough to 

remove the alcohol proton. The alkoxide intermediate 293 can then attack the 

phosphonium cation 294, displacing the amine. The final step is displacement of 

the phosporous oxonium 295 by the nucleophile (4-nitrobenzoic acid) in an Sn2 

manner giving ester 291. 
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Scheme 2.39. Mitsunobu mechanism 
 
Removal of the nitro benzoate group was not attempted at this point as there 

was insufficient material to conduct the experiment. 
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Having successfully generated nitro-benzoate 290, it was possible to compare its 

NMR against that of Ajudazol A 2. The analysis showed that 290 had almost 

identical coupling constants (± 0.1 Hz) to that observed in 2 and therefore the 

correct stereochemistry. 

 
                Ajudazol A 2                  p -NO2 ester 290

Atom δ = J ab = δ = J ab = 

C8 4.8 6.5 6.4 6.4

C9 4.4 6.7 4.6 6.8  
Table 2.4. C8-C9 proton couplings in 2 and 290. 
 
Having successfully achieved the synthesis of the Ajudazol model system it was 

decided to investigate whether reduction of the C8 ketone could be achieved 

where the anti product was favoured rather than the syn reduction products 

observed so far. Keto-lactone 251 was selected as a test substrate as it had 

previously given only one syn-product. Unfortunately treatment of 251 with 

borane (as tetrahydrofuran and dimethyl sulfide complexes) gave only 

degradation products with none of the starting material or desired 

isochromanone products recovered. Catecholborane was unreactive with this 

substrate (Scheme 2.40).  

 
Scheme 2.40. Attempted borane reduction of keto-lactone 251.  
 

2.2.4. An unexpected product 

As part of our aldehyde screening (Table 2.2 andTable 2.3), tiglic aldehyde was 

chosen to test our methodology. Tiglic aldehyde is a potentially very useful 

substrate but also potentially dangerous from a side reaction point of view 
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(Scheme 2.41). Utilizing tiglic aldehyde as per our conditions gave 1 product in 

8% yield. The product observed, was believed to be 296 and 297. However, on 

closer examination of the NMR data it was noticed that there were no signals 

corresponding to an olefin in the 13C NMR spectra. There where however, 4 

signals between 42 and 57 ppm, which based on other similar compounds, no 

signals in this region were expected.  

 
Scheme 2.41. The expected products using tiglic aldehyde. 
 
Mass spectrometry of the product showed a peak at 301 m/z in both FAB and CI 

modes, while infrared spectroscopy showed no absorptions corresponding to a 

hydroxyl group. There was an absorption in the IR spectra at 820 cm-1 which 

could potentially be attributed to an epoxide. Crystallization of the unknown 

product allowed the use of X-ray analysis that revealed a very different and 

unexpected bridged-tetracycle 298 (Figure 2.11).  

 
Figure 2.11. The unexpected product. 
 
Mechanistically we believe that the isobenzofuran anion 240 was formed and 

coupled with tiglic aldehyde as expected. At this point the isobenzofuran 299 

undergoes a Diels-Alder reaction with the excess tiglic aldehyde present, giving 
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the endo-product 300 solely; this then lactonizes to give 301. Treatment with 

mCPBA then epoxidizes the dimethyl-double bond giving 302, finally Jones 

reagent oxidises the lactol to give the observed lactone-epoxide 298 via the 

oxygen cation 303 and the chromate diol 304 intermediates. 

 
Scheme 2.42. Proposed mechanism for the generation of bridged ether 298. 
 

2.2.5. Studies towards the Ajudazol A C15-C29 fragm ent. 

Our synthesis began with propane-1,3-diol 305 which was mono-protected as the 

THP ether 306 under mildly acidic conditions84 in acceptable 55% yield. The 

alcohol functionality was then to either a bromide 307178(via an Appel reaction 

in 29% yield), or to the corresponding tosylate 308179 (68% yield), Scheme 2.43. 

 
Scheme 2.43. Synthesis of coupling partners 307 and 308. 
 
Treatment of TMS butadiyne 309 with methyllithium lithium bromide complex 

gave the mono-desilylated anion that was treated with bromide 307, then 

potassium carbonate to give the mono-alkylated alkyne 310. Using bromide 307 
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as coupling partner proved highly problematic, as during the reaction an 

insoluble black material was formed that made extractions/filtration difficult. It 

was also discovered that a dihalide containing impurity was present in the 

bromide coupling partner, resulting in poor 38% yield when compared to 

Fiandanese’s180 or Hennies181 procedure that obtained 56% yield of 310.  

Changing the leaving group to a tosylate resulted in a much more efficient 

reaction as yields were improved to 78% and did not result in the formation of 

the problematic side products (Scheme 2.44). 

OTHP
TMSTMS
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2) X(CH2)3OTHP
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Scheme 2.44. Synthesis of the Ajudazol side chain. 
 
Unfortunately attempts to further alkylate the terminal alkyne have been 

unsuccessful. Initially the alkyne 314 was treated with nbutyl lithium then 2,3-

dibromopropene, the conditions were altered to include larger quantities of base 

and longer deprotonation times, with no success, returning only unreacted 

starting material.  

 
Scheme 2.45.Alkylation attempts of 310  
 
Upon examination of the literature, Tuyét’s copper catalysed allylic substitution 

of terminal alkynes was found.182 Tuyét reports that treatment of various 

terminal alkynes with a variety of allylic halides in the presence of copper(I) 

salts, tetrabutylammonium chloride and potassium carbonate gave allyl 

substituted acetynic compounds; thus alkyne 310 was applied to Tuyét’s 

conditions. Unfortunately none of the desired bromo-compound 311 was 

obtained, so the temperature of the reaction was increased incrementally to 

much higher temperatures (up to 140 oC), with no change (Scheme 2.46). Due to 
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time constraints there has been no time to further investigate this alkyne 

allylation step. 

 
Scheme 2.46.Tuyét’s alkylation conditions. 
 

2.3. Future work 

Despite the success in having shown that isobenzofurans are reactive 

intermediates with significant potential, there are still a number of issues that 

still need to be addressed. 

2.3.1. Introduction of the C8 hydroxyl 

The first obstacle to overcome will be the introduction of the hydroxyl 

functionality; this can be achieved by several means. 

Treatment of phthalic anhydride 312 with zinc borohydride according to 

Kayser’s procedure,183 results in complete reduction at the A position, Scheme 

2.47. The selectivity observed is due to chelation of the zinc borohydride 

between the carbonyl and methyl ether group. The opposite selectivity can be 

achieved using L-selectride, which because of steric hindrance cannot reduce 

the A position carbonyl, resulting in the formation of 314. This method would be 

particularly useful because it allows the generation of both phthalides 313 and 

314.  

 
Scheme 2.47. Introduction of the hydroxyl. 
 
The choice of protecting group is also important here, a sterically large 

protecting group is likely to block that face of the anhydride, preventing 
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reduction of the anhydride 312 at the A position. It is also likely that reduction 

of the lactone 314 to the desired lactol would be impeded by the protecting 

group. We believe a large protecting group is needed for alkylation 

regioselectivity (see 2.3.2), should problems be encountered perhaps a 

protecting group exchange sequence could be required. 

Hydroxy phthalide 316 can also be obtained from the formylation of diol 315 

upon treatment with tin tetrachloride, triethylamine and formaldehyde. The 

reaction proceeds by reaction of diol 315 with tin to give the phenoxide salt 

that gives intermediate 317 upon treatment with formaldehyde. Enolisation to 

the corresponding phenol is followed by oxidation with a second molecule of 

formaldehyde giving intermediate 318 which undergoes lactonisation and a third 

oxidation step to give phthalide 316 (Scheme 2.48).184 
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Scheme 2.48. Synthesis of phthalide 316. 
 
Protected salycilate 319 can be functionalised to obtain phthalide 321. 

Conversion of the acid functionality to the corresponding amide using diethyl 

amine and thionyl chloride would then give the substrate for a formylation 

reaction. Reduction of the aldehyde group in 320 by sodium borohydride would 

allow lactonisation to occur, giving phthalide 321.185 

 
Scheme 2.49.Vilsmeier reaction of salicylate 319. 
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2.3.2. Alkylation regioselectivity 

During the aromatization of acetal 230, the second deprotonation can occur on 

either face of the isobenzofuran molecule. When the isobenzofuran is 

desymmetrized (i.e. incorporating the C8 hydroxyl functionality), deprotonation 

at the isobenzofuran C3 position is preferred. It is hoped that a sterically bulky 

protecting group on the hydroxyl would enhance the regiochemistry by blocking 

the C1 hydrogen from the methyl anion leaving the C3 proton unhindered. A 

trityl (Tr) or triisopropylsilyl (TIPS) ether group should provide the necessary 

steric bulk required for selectivity. Using a trityl group would have the added 

bonus of not requiring a deprotection step as the Jones oxidation conditions 

would be acidic enough to facilitate cleavage of the group. 

 
Scheme 2.50. Regioselective contol of alkylation. 
 

2.3.3. Enantiopure Aldehyde 

Having addressed the region chemistry of isobenzofuran alkylation, enantiopure 

aldehyde 268 will be incorporated into our synthesis as per Scheme 2.29. 

Aldehyde 268 will be synthesized by one of two means from α,β unsaturated 

ester 323, depending on where in the sequence the chirality need be 

introduced. Treatment of 323 with Stryker’s reagent (chiral cuprate reagent), 

should give optically pure ester 324,186 that could be further reduced to the 

corresponding alcohol then oxidised to give aldehyde 268.                       

Treatment of 323 with DiBAl-H should give allylic alcohol 325. Hydroxyl directed 

reduction of the olefin through an iridium (Crabtree like) catalyst should also 

provide the chiral alcohol that could then be oxidised,187 giving 268. 
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2.3.4. Completion of the C1-C14 fragment 

Having already demonstrated that isobenzofuran addition to an aldehyde is 

selective, giving the anti-configuration between C9 and C10, it is anticipated 

that aldehyde 268 (optically pure with the S configuration) will enhance these 

results. Should there be a need, Yamamoto’s MAD (MethylAluminium bis(2,6-Di-

tertbutyl-4-methylphenoxide) chemistry should provide the necessary 

enhancement to selectivity (Scheme 2.52).188 The sterically hindered MAD Lewis 

acid has been shown to favour anti-Felkin Ahn control. Applied to our system it 

will enhance the selectivity already observed. 

 
Scheme 2.52. Yamamoto’s MAD additive. 
 

2.3.5. Further work 

The final steps in the total synthesis of Ajudazol A would begin with the 

palladium mediated coupling between the vinyl bromide bearing C1-C14 ‘eastern 

fragment’ 266 and oxazole containing C15-C29 ‘western unit’ 265. Although 

there is no previous precedence for this type of coupling, we believe that 

Bellina’s conditions for the coupling of unfunctionalised oxazoles and aryl 

iodides could be successfully extrapolated into our system to produce diyne 

327.189 Removal of the protecting group would then generate phenol, which 
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upon a double selective syn-hydrogenation would complete our synthesis of 

Ajudazol A 2.190 
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Scheme 2.53. Completion of Ajudazol A 
 
There is the very real possibility that the proposed palladium coupling between 

vinyl bromide 266 and oxazole 265 might fail. Should this be the case, several 

alternative approaches have been conceived. Reverting to a more traditional 

Stille coupling either between vinyl stannane 329 and a 2-chloro oxazole unit 

328 is feasible. This would require a switch in starting material from the simple 

oxazole ester 270 to the C2-chloro substituted analogue.191,192 Similarly we could 

revert to a Suzuki coupling between C2 halogen substituted oxazole 328 and 

boronic acid 330 using Greaney’s microwave conditions (Scheme 2.54).193 

 
Scheme 2.54. An alternate approach that could be utilized. 
 
Ajudazol B 3 will be synthesized in a different manor. The two natural products  

2 and 3 differ in only one aspect, 3 has a CH methyl at the C15 position while 
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Ajudazol A 2 has an exo-methylene group.  To account for the difference, 

terminal alkyne 310 can be alkylated with R or S-propylene oxide, that would 

give secondary alcohol 332. Conversion of alcohol 332 to a suitable leaving 

group would allow it to be coupled with a suitable oxazole coupling partner. The 

reason for using R or S enantiomers of propylene oxide is due to the fact that 

Ajudazol B was not assigned C15 stereochemistry upon isolation and 

characterisation.2 Utilizing both enantiomers will allow us to both confirm the 

configuration of the natural product, by comparison of physical data (optical 

rotations etc) and simultaneously synthesize an anologue.  

 
Scheme 2.55. Proposed synthesis of Ajudazol B. 
 
Ajudazol A could be similarly synthesized should it be required. Alkylation of 

terminal alkyne 310 with ethylene oxide would give primary alcohol 335 that 

could be oxidised to the corresponding ester. Alkylation of ester 336 with a 

suitable oxazole derived nucleophile would give a ketone intermediate that 

could be olefinated under Petassis or Tebbe conditions to yield the desired exo-

olefin functionality in 337 (Scheme 2.56). 

 
Scheme 2.56. Modified approach to Ajudazol A. 
 
 



Chapter 3 – Experimental  

 85 

3. Experimental 

All reactions were performed in oven-dried glassware under an inert argon 

atmosphere unless otherwise stated. Tetrahydrofuran (THF), diethyl ether and 

dichloromethane (DCM) were purified through a Pure Solv 400-5MD solvent 

purification system (Innovative Technology, Inc). All reagents were used as 

received, unless otherwise stated. Solvents were evaporated under reduced 

pressure at 40°C using a Buchi Rotavapor. IR spectra were recorded as thin films 

on NaCl plates using a JASCO FT/IR410 Fourier Transform spectrometer. Only 

significant absorptions (νmax) are reported in wavenumbers (cm-1). Proton 

magnetic resonance spectra (1H NMR) and carbon magnetic resonance spectra 

(13C NMR) were respectively recorded at 400MHz and 100MHz using a Bruker DPX 

Avance400 instrument. Chemical shifts (δ) are reported in parts per million 

(ppm) and are referenced to the residual solvent peak. The order of citation in 

parentheses is (1) number of equivalent nuclei (by integration), (2) multiplicity 

(s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad, dm = 

double multiplet, dd = double doublet, dt = double triplet) and (3) coupling 

constant (J) quoted in Hertz to the nearest 0.1Hz. High resolution mass spectra 

were recorded on a JEOL JMS-700 spectrometer by electrospray and chemical 

ionisation mass spectrometer operating at a resolution of 15000 full widths at 

half height. Where a 100% peak was not observed in Low resolution mass spectra 

the highest peak was taken to be 100%. Flash chromatography was performed 

using silica gel (Apollo Scientific Silica Gel 60, 40-63 µm) as the stationary phase. 

TLC was performed on aluminium sheets precoated with silica (Merck Silica Gel 

60 F254). The plates were visualised by the quenching of UV fluorescence (λmax 

254 nm) and/or by staining with either anisaldehyde, potassium permanganate, 

iodine or cerium ammonium molybdate followed by heating.  

Methyl-(S)-2-(tertbutoxycarbonylamino)-4-methylpentanoate.113 

 
A solution of (S)-2-(tertbutoxycarbonylamino)-4-methylpentanoic acid 197 (15.0 

g, 60.2 mmol) in anhydrous dimethylformamide (150 mL), was treated 
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sequentially with potassium hydrogen carbonate (13.3 g, 132 mmol) and methyl 

iodide (previously alumina filtered) (5.99 mL, 96.1 mmol), reaction mixture was 

stirred completion by TLC analysis and quenched with water (50 mL). The 

mixture was extracted with ethyl acetate (2x 50 mL) the organic layer was 

washed with saturated sodium chloride (50 mL). Combined organic layers were 

dried over sodium sulfate and concentrated in vacuo, to yield 15.8 g (99%) of the 

desired ester as a clear oil, further purification was not necessary. .           
1H (CDCl3, 400 MHz) δ: 4.90 (1H, d, J = 8.2, CHNH), 4.25-4.24 (1H, m, CHNH), 

3.66 (3H, s, OCH3), 1.65-1.39 (3H, m, CH2CH), 1.37 (9H, s, C(CH3)3), 0.87 (6H, m, 

CH(CH3)2).                   
13C (CDCl3, 100 MHz) δ: 172.2 (CO), 154.9 (NHCO), 81.7 (C(CH3)3),54.6 (OCH3), 

52.8 (CHNH), 43.2 (CHCH2CH), 29.5 (C(CH3)3), 26.4 (CH(CH3)2), 23.5 (CH(CH3)2), 

21.6 (CH(CH3)2).               

m/z [CI+ (+ve), isobutane]  246.2 [M+H]+ (100%), HRMS found 246.1704, C12H24NO4 

requires 246.1705 [M+H]+.                 

υmax (neat)/cm-1: 2916, 1749, 1682.            

27][ Da  = -54.8 (CHCl3, c = 1.1), Lit. 113 20][ Da = -11.6 (CHCl3) 

tertButyl-(S)-1-hydroxy-4-methylpentan-2-yl-carbamate.113 

 
A solution of (S)-methyl-2-(tertbutoxycarbonylamino)-4-methylpentanoate (15.8 

g, 60.0 mmol) in anhydrous tetrahydrofuran (150 mL) was treated with 

anhydrous lithium chloride (5.09 g, 120 mmol), sodium borohydride (4.54 g, 120 

mmol) and the mixture was stirred for 20 minutes. Ethanol (200 mL) was added 

slowly and the resulting opaque white solution was stirred for 12 hours. The 

reaction mixture was cooled to 0 oC, then acidified to pH 4 with 10% aqueous 

citric acid (45 mL) and concentrated in vacuo. The residue was dissolved in 

diethyl ether (100 mL) and washed with water (3x 50 mL). The organic phase 

was dried over anhydrous sodium sulfate and concentrated in vacuo, to give 

crude residue which was purified by flash column chromatography (silica gel, 

elution with 25% ethyl acetate in petroleum spirit) to yield 12.6 g (96% yield) of 

the desired alcohol as a clear oil.                
1H (CDCl3, 400 MHz) δ: 4.49 (1H, bs, CHNH), 3.70-3.58 (2H, m, CH2OH), 3.47-3.42 
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(1H, m, CHNH), 2.42 (1H, bs, OH), 1.62-1.56 (1H, m, CH(CH3)2), 1.38 (9H, s, 

C(CH3)3), 1.25-1.18 (2H, m, CH2CH), 0.86 (6H, m, CH(CH3)2).            
13C (CDCl3, 100 MHz) δ: 156.9 (NHCO), 79.8 (C(CH3)3), 66.9 (CH2OH), 51.2 

(CHNH), 40.6 (CHCH2CH), 28.6 (C(CH3)3), 24.9 (CH(CH3)2), 23.3 (CH(CH3)2), 

22.5(CH(CH3)2).               

m/z [CI+ (+ve), isobutane]  218.2 [M+H]+ (100%), HRMS found 218.1754, C11H24NO3 

requires 218.1756 [M+H]+.               

υmax (neat)/cm-1: 3455, 2978, 1675.            

26][ Da  = -53.60 (CHCl3, c = 1.0), Lit. 72 Da][ = -27.9 (MeOH, c = 2.1) 

tertButyl-(S)-4-methyl-1-oxopentan-2-yl-carbamate, 30.71 

 
A solution of Boc-N-leucinol (12.6 g, 58.0 mmol) in DMSO (150 mL) was treated 

with a solution of IBX (19.5 g, 69.6 mmol) in DMSO (140 mL). The reaction was 

stirred at 40 oC for 16 hours until completion by TLC. The reaction was quenched 

with water (100 mL) and diethyl ether (50 mL) was added, the organic layer was 

washed with water (3x 75 mL) and the organic extracts combined and dried over 

sodium sulfate. The solution was concentrated in vacuo to give 10.4 g aldehyde 

197 (83% yield) a colourless, viscous oil, further purification was not required.                  
1H (CDCl3, 400 MHz) δ: 9.52 (1H, s, CHO), 4.88 (1H, bs, CHNH), 4.22-4.15 (1H, m, 

CHNH), 1.70-1.45 (2H, m, CH2CH), 1.38 (9H, s, C(CH3)3), 1.18 (1H, m, CH(CH3)2), 

0.88 (6H, m, CH(CH3)2).                   
13C (CDCl3, 100 MHz) δ: 199.6 (CHO), 162.4 (NHCO), 81.2 (C(CH3)3), 53.6 (CHNH), 

39.4 (CHCH2CH), 28.7 (C(CH3)3), 24.9 (CH(CH3)2), 23.6 (CH(CH3)2), 21.6 

(CH(CH3)2). 

tertButyl-5-hydroxy-2-methyloct-7-en-4-ylcarbamate,188 and 189.71 

 
To a stirred solution of Boc-N-Leucinal 30 (10.4 g, 48.3 mmol) in 

dichloromethane (240 mL) at -78 oC, was added tin chloride (96.6 mL, 96.6 
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mmol, 1 M in dichloromethane) and the resulting solution stirred for 10 minutes. 

The reaction was treated with allyl tributyltin (22.5 g, 72.5 mmol) and stirred 

for 3 hours, then allowed to attain room temperature and stirred for a further 7 

hours. The reaction was quenched with ammonium chloride solution (50 mL) and 

diluted with dichloromethane (100 mL). The combined organic extracts were 

dried over anhydrous sodium sulfate and concentrated in vacuo. The resulting 

grey residue was dissolved in anhydrous methanol (65 mL) and treated with 

sodium borohydride (1.83 g, 48.3 mmol) and stirred for 5 minutes. The grey 

suspension formed was treated with saturated sodium carbonate (50 mL) and 

diethyl ether (100 mL) and extracted into diethyl ether. Organic extracts were 

combined and washed with water (2x 50 mL) and brine (50 mL) then dried over 

anhydrous sodium sulfate and concentrated in vacuo Purification by flash column 

chromatography (silica gel, elution with 20% diethyl ether in petroleum spirits) 

gave 8.32 g (67% yield) of homo-allylic alcohols 188 and 189 as a clear oil and as 

an 7:1 mixture of anti:syn diastereoisomers. 

tertButyl-(4S,5S)-5-hydroxy-2-methyloct-7-en-4-ylcarbamate, 188.  

 
1H NMR (CDCl3, 400 MHz) δ: 5.89-5.79 (1H, m, CH2CHCH2), 5.17-5.13 (2H, m, 

CH2CHCH2), 4.64 (1H, d, J = 9.0 Hz, NH), 3.66-3.63 (1H, m, CHNH), 3.60-3.57 

(1H, m, CHOH), 2.33-2.29 (2H, m, CHCH2CH), 2.01 (1H, d, J = 2.9 Hz, OH), 1.69-

1.59 (2H, m, CHCH2CH), 1.44 (9H, s, C(CH3)3), 1.36-1.25 (1H, m, CH(CH3)2), 0.86 

(6H, m, CH(CH3)2).                 
13C NMR (CDCl3, 100 MHz) δ: 156.2 (NHCO), 134.6 (CH2CHCH2), 118.4 (CH2CH), 

79.2 (C(CH3)3), 72.8 (CH2CHOH), 52.0 (CHCHNH), 41.9 (CHCH2CH), 39.2 

(CH2CHNH), 28.6 (C(CH3)3), 24.8 (CH(CH3)2), 23.2 (CH(CH3)2), 22.2 (CH(CH3)2). 
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tertButyl-(4S,5R)-5-hydroxy-2-methyloct-7-en-4-ylcarbamate, 189. 

 
1H NMR (CDCl3, 400 MHz) δ: 5.89-5.79 (1H, m, CH2CHCH2), 5.17-5.13 (2H, m, 

CH2CHCH2), 4.64 (1H, d, J = 9.0 Hz, NH), 3.66-3.63 (1H, m, CHNH), 3.60-3.57 

(1H, m, CHOH), 2.33-2.29 (2H, m, CHCH2CH), 2.01 (1H, d, J = 2.9 Hz, OH), 1.69-

1.59 (2H, m, CHCH2CH), 1.44 (9H, s, C(CH3)3), 1.36-1.25 (1H, m, CH(CH3)2), 0.79 

(6H, m, CH(CH3)2).                 
13C NMR (CDCl3, 100 MHz) δ: 156.2 (NHCO), 135.0 (CH2CHCH2), 117.9 (CH2CH), 

78.8 (C(CH3)3), 73.9 (CH2CHOH), 53.2 (CHCHNH), 38.5 (CHCH2CH), 37.2 

(CH2CHNH), 28.5 (C(CH3)3), 23.7 (CH(CH3)2), 22.7 (CH(CH3)2), 20.5 (CH(CH3)2). 

m/z [CI+ (+ve), isobutane]  258.3 [M+H]+ (100%), HRMS found  258.2071, 

C14H28NO3 requires 258.2069 [M+H]+.                         

υmax (neat)/cm-1: 3438, 2957, 1687, 1170. 

(4S,5S)-5-(tertButoxycarbonylamino)-7-methyloct-1-en-4-yl acrylate, 190. 

 
Homoallylic alcohols 188 and 189 (5.34 g, 20.7 mmol) were dissolved in 

dichloromethane (104 mL) and cooled to 0 oC. Acryloyl chloride (2.95 mL, 36.3 

mmol) and triethylamine (10.1 mL, 72.6 mmol) were added sequentially and the 

reaction was stirred for 10 hours. Once complete by TLC analysis the solution 

was neutralised using 1 M hydrochloric acid solution. The organic phase was 

separated then washed sequentially with water (2x 30 mL) and brine (30 mL) 

then dried over anhydrous sodium sulfate and concentrated in vacuo. 

Purification by flash column chromatography (silica gel, elution with 10 % diethyl 

ether in petroleum spirits) gave 190 5.30 g (82% yield) and 191 883 mg (14% 

yield) as a clear oil     .                      
1H NMR (CDCl3, 400 MHz) δ: 6.45 (1H, d, J = 17.3 Hz, COCHCH2), 6.15 (1H, dd, J 

= 16.0, 8.1 Hz, COCHCH2), 5.88 (1H, d, J = 10.4 Hz, COCHCH2), 5.83-5.75 (1H, m, 

CH2CHCH2), 5.16-5.04 (2H, m, CH2CHCH2), 5.03-5.00 (1H, m, CHOC), 4.51 (1H, d, 
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J = 10.0 Hz, NH), 3.96-3.91 (1H, m, CHNH), 2.42-2.40 (2H, m, C(O)CH2CH), 1.71-

1.63 (1H, m, CH(CH3)2), 1.47 (9H, s, C(CH3)3), 1.31-1.24 (2H, m, CH2CH(CH3)2), 

0.94 (3H, m, CH(CH3)2), 0.92 (3H, m, CH(CH3)2).            
13C NMR (CDCl3, 100 MHz) δ: 165.6 (CHCO), 155.6 (NHCO), 133.1 (CH2CH), 131.2 

(CH2CH), 128.1 (CH2CH), 118.4 (CH2CH), 79.3 (CH2CH), 75.4 (C(CH3)3), 50.3 

(CHCHNH), 42.0 (CH2CH), 36.3 (CHCH2CH), 28.3 (C(CH3)3), 24.7 (CH(CH3)2), 23.1 

(CH(CH3)2), 22.1 (CH(CH3)2).              

m/z [CI+ (+ve), isobutane]  312.2 [M+H]+ (100%). HRMS found 312.2176, C17H30NO4 

requires 312.2175 [M+H]+.              

25][ Da  = -1.9 (CHCl3, c = 1.0) 

(4S,5R)-5-(tertButoxycarbonylamino)-7-methyloct-1-en-4-yl acrylate, 191. 

 
1H NMR (CDCl3, 400 MHz) δ: 6.33 (1H, dd, J = 17.3 , 1.1 Hz, COCHCH2), 6.15 (1H, 

dd, J = 17.3, 10.4 Hz, COCHCH2), 5.88 (1H, d, J = 12.0 Hz, COCHCH2), 5.78-5.65 

(1H, m, CH2CHCH2), 5.05-4.98 (2H, m, CH2CHCH2), 4.94 (1H, d, J = 8.0 Hz, 

CHOC), 4.36 (1H, d, J = 10.0 Hz, NH), 3.87-3.80 (1H, m, CHNH), 2.37-2.25 (2H, 

m, C(O)CH2CH), 1.63-1.57 (1H, m, CH(CH3)2), 1.36 (9H, s, C(CH3)3), 1.24-1.19 

(2H, m, CH2CH(CH3)2), 0.86 (3H, m, CH(CH3)2), 0.84 (3H, m, CH(CH3)2).         
13C NMR (CDCl3, 100 MHz) δ: 165.4 (CHCO), 155.8 (NHCO), 133.1 (CH2CH), 131.3 

(CH2CH), 128.2 (CH2CH), 118.4 (CH2CH), 80.1 (CH2CH), 75.1 (C(CH3)3), 51.3 

(CHCHNH), 42.2 (CH2CH), 36.1 (CHCH2CH), 28.4 (C(CH3)3), 24.4 (CH(CH3)2), 23.2 

(CH(CH3)2), 21.8 (CH(CH3)2).             

m/z [CI+ (+ve), isobutane]  312.2 [M+H]+ (100%), HRMS found 312.2178, C17H30NO4 

requires 312.2175 [M+H]+.                   

υmax (neat)/cm-1: 3367, 3079, 2959, 1689, 1639, 1169.        

[α] 25
D  = -4.3 (CHCl3, c = 1.0) 
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tertButyl-(S)-3-methyl-1-((S)-6-oxo-3,6-dihydro-2H-pyran-2-yl)-

butylcarbamate, 198. 

 
Diene 190 (3.76 g, 12.1 mmol) was dissolved in dichloromethane (120 mL), to 

this was added Grubbs second generation catalyst 5 mol% (518 mg, 0.61 mmol), 

heated to reflux and stirred for 48 hours. Once complete the black solution was 

concentrated in vacuo and suspended in diethyl ether (100 mL) then filtered 

through florisil. The filtrate was concentrated in vacuo and purification by flash 

column chromatography (elution with 20% diethyl ether and petroleum spirits) 

gave 2.67 g (78%) of α-pyrone 198 as a crystalline solid (m.p. 55-57 oC)           
1H NMR (CDCl3, 400 MHz) δ: 6.91 (1H, ddd, J = 9.6, 6.4, 2.1 Hz, COCHCH), 5.99 

(1H, dd, J = 9.8, 2.4 Hz, COCHCH), 4.59 (1H, d ,J = 9.9 Hz, NH), 4.42 (1H, dd, J 

= 12.8, 1.5 Hz, CH2CHCH), 3.87-3.81 (1H, m, CHNH), 2.56-2.48 (1H, m, 

CHCHCH2), 2.27 (1H, ddd, J = 18.6, 5.6, 3.9 Hz, CHCHCH2), 1.73-1.62 (2H, m, 

CH2CH(CH3)2), 1.43 (9H, s, C(CH3)3), 1.39-1.35 (1H, m, CH(CH3)2), 0.92 (3H, d, J 

= 6.3 Hz, CH(CH3)2), 0.92 (6H, d, J = 6.3 Hz, CH(CH3)2).            
13C NMR (CDCl3, 100 MHz) δ: 164.1 (CHCO), 155.8 (NHCO), 145.9 (CHCHCO), 

120.8 (CHCHCO), 79.9 (CHCH2CH), 79.6 (C(CH3)3), 50.4 (CHCHNH), 41.1 

(CHCHCH2), 28.3 (CH2CH(CH3)2), 26.9 (C(CH3)3), 24.8 (CH(CH3)2), 23.0 (CH(CH3)2), 

22.0 (CH(CH3)2).                

25][ Da  = -5.7 (CHCl3, c = 1.0) 

tertButyl-(S)-3-methyl-1-((R)-6-oxo-3,6-dihydro-2H-pyran-2-yl)-

butylcarbamate, 199. 

 
Diene 191 (869 mg, 2.79 mmol) was dissolved in dichloromethane (28 mL), to 

this was added Grubbs second generation catalyst 5 mol% (118 mg, 0.14 mmol), 

heated to reflux and stirred for 44 hours. Once complete the black solution was 
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concentrated in vacuo and suspended in diethyl ether (20 mL) then filtered 

through florisil. The filtrate was concentrated in vacuo and purification by flash 

column chromatography (elution with 20% diethyl ether and petroleum spirits) 

gave 593 mg (75 %) of α-pyrone 199 as a crystalline solid (m.p.103-104 oC).         
1H NMR (CDCl3, 400 MHz) δ: 6.92 (1H, m, COCHCH), 6.03 (1H, dt, J = 9.6, 1.8 Hz, 

COCHCH), 4.72 (1H, d ,J = 8.3 Hz, NH), 4.44 (1H, d, J = 11.6 Hz, CH2CHCH), 

3.86-3.79 (1H, m, CHNH), 2.51-2.35 (2H, m, CHCHCH2), 1.76-1.69, 1H, m, 

CH(CH3)2), 1.50-1.44 (2H, m, CH2CH(CH3)2), 1.45 (9H, s, C(CH3)3), 0.96 (3H, d, J 

= 6.7 Hz, CH(CH3)2), 0.94 (3H, d, J = 6.5 Hz, CH(CH3)2).                  
13C NMR (CDCl3, 100 MHz) δ: 164.1 (CHCO), 155.5 (NHCO), 145.2 (COCHCH), 

121.2 (COCHCH), 80.6 (CHCH2CH), 79.7 (C(CH3)3), 50.9 (CHCHNH), 38.1 

(CHCHCH2), 28.4 (CH2CH(CH3)2), 26.4 (C(CH3)3), 24.6 (CH(CH3)2), 23.7 (CH(CH3)2), 

21.4 (CH(CH3)2). m/z [CI+ (+ve), isobutane]  284.4 [M+H]+ (100%), HRMS found 

284.1865, C15H26NO4 requires 284.1862 [M+H]+.                      

υmax (neat)/cm-1: 3447, 2958, 1686, 1167.           

26][ Da  = -3.9 (CHCl3, c = 1.0) 

(E)-(1-Methoxybuta-1,3-dienyloxy)trimethylsilane, 202.128 

 
A solution of freshly distilled diisopropylamine (3.07 mL, 21.9 mmol) in 

anhydrous tetrahydrofuran (50 mL) at 0 oC was treated with nBuLi (14.0 mL, 21.9 

mmol, 1.56 M in hexanes) and stirred for 15 minutes. The reaction was cooled to 

-78 oC and stirred for 30 minutes; hexamethyl phosphoramide (4.29 mL, 23.9 

mmol) followed by methyl crotonate 205 (2.11 mL, 19.9 mmol) were added and 

the reaction was stirred for a further 40 minutes. A solution of trimethylsilyl 

chloride (4.09 mL, 31.9 mmol) in anhydrous tetrahydrofuran (20 mL) was then 

added slowly and the resulting yellow solution was allowed to attain room 

temperature over 1 hour. Cold pentane (50 mL) was added, followed by water 

(30 mL) and the organic phase was separated then washed with water (3x 20 

mL), dried over anhydrous sodium sulfate and concentrated in vacuo. The brown 

residue was purified by short pass vacuum distillation (88 oC at 32 mm Hg) giving 

4.61 g silyl enolate 202 in 67% yield.               
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1H NMR (CDCl3, 400 MHz) δ: 6.42 (1H, sext, J = 7.6 Hz, CHCHCH2), 4.78 (1H, d, J 

= 17.2 Hz, CHCHCH2), 4.54 (1H, d, J = 10.4 Hz, Ha), 4.43 (1H, d, J = 10.3 Hz, 

Hb), 3.5 (3H, s, OCH3), 0.17 (9H, s, (Si(CH3)3).             
13C NMR (CDCl3, 100 MHz) δ: 166.7 (COCH3), 132.2 (CHCHCH2), 106.8 (CHCHCH2), 

80.4 (CHCHCH2), 54.5 (OCH3), 0.4 (Si(CH3)3). 

(E)-tertbutyl(1-methoxybuta-1,3-dienyloxy)dimethylsilane, 206. 

 
A solution of freshly distilled diisopropylamine (3.07 mL, 21.9 mmol) in 

anhydrous tetrahydrofuran (50 mL) at 0 oC was treated with nBuLi (14.0 mL, 21.9 

mmol, 1.56 M in hexanes) and stirred for 15 minutes. The reaction was cooled to 

-78 oC and stirred for 30 minutes; hexamethyl phosphoramide (4.29 mL, 23.9 

mmol) followed by methyl crotonate 205 (2.11 mL, 19.9 mmol) were added and 

the reaction was stirred for a further 40 minutes; hexamethyl phosphoramide 

(4.29 mL, 23.9 mmol) then methyl crotonate (2.11 mL, 19.9 mmol) were added 

and the reaction stirred for a further 30 minutes. A solution of dimethyl-

tertbutylsilyl chloride (3.61 g, 23.9 mmol) in anhydrous tetrahydrofuran (13 mL) 

was then added slowly and the resulting yellow solution allowed to attain room 

temperature over 1 hour. Cold pentane (50 mL) was added, followed by water 

(30 mL) and the organic phase was separated then washed with water (3x 20 

mL). The brown residue was purified by short pass vacuum distillation (96 oC at 

28 mm Hg) giving 2.27 g silyl enolate 206 in 53% yield.                        
1H NMR (CDCl3, 400 MHz) δ: 6.35 (1H, sext, J = 7.6 Hz, CHCHCH2), 4.67 (1H, dd, J 

= 17.2, 0.9 Hz, CHCHCH2), 4.42 (1H, dd, J = 10.4, 0.9 Hz, Ha), 4.30 (1H, d, J = 

10.4 Hz, Hb), 3.39 (3H, s, OCH3), 0.77 (9H, s, SiC(CH3)3), 0.00 (6H, s, Si(CH3)2).         
13C NMR (CDCl3, 100 MHz) δ: 173.6 (COCH3), 135.3 (CHCHCH2), 107.6 (CHCHCH2), 

80.2 (CHCHCH2), 57.3 (OCH3), 24.9 (C(CH3)3), 19.3 (C(CH3)3), -1.9 (Si(CH3)2). 
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1-Methoxy-1,3-dihydro-isobenzofuran, 230.159  

 
To a -78 oC solution of phthalide 237 (10.0 g, 74.7 mmol) in anhydrous 

dichloromethane (370 mL) was added slowly diisobutylaluminium hydride (78.4 

mL, 78.4 mmol, 1 M in hexanes) and stirred until completion by TLC analysis (4 

h). The reaction was warmed to 0 oC, diluted with diethyl ether (200 mL) and 

quenched by the successive addition of water (3.1 mL), 15% aq sodium hydroxide 

(3.1 mL) and water (7.8 mL). The resultant slurry was stirred for 30 minutes, 

sodium sulfate was added and the resulting slurry stirred for a further 30 

minutes. The solids were removed by filtration and the solution evaporated 

under vacuum.                

The crude residue was dissolved in anhydrous tetrahydrofuran (170 mL) and was 

cannulated to a solution of sodium hydride (3.75 g, 93.4 mmol) in 

tetrahydrofuran (200 mL) at 0 oC and stirred for an hour. Methyl iodide (filtered 

through basic alumina previously) was added (23.3 mL, 375 mmol) to reaction 

mixture and stirred for a further 4 hours. Once complete according to TLC 

analysis, water (50 mL) was added to quench and diluted with diethyl ether (100 

mL). Combined organic extracts were washed with water (2x 50 mL), brine (50 

mL) and dried over sodium sulfate. Purification by flash column chromatography 

(20% elution with diethyl ether and petroleum spirits) gave 8.83 g (78%) of 

methyl acetal 230 as a clear oil.                         
1H NMR (CDCl3, 400 MHz) δ: 7.41-7.26 (4H, m, Ar-H), 6.19 (1H, d, J = 2.2 Hz, 

CH), 5.22 (1H, d, J = 12.8 Hz, CH2O), 5.08 (1H, d, J = 12.8 Hz, CH2O), 3.44 (3H, 

s, OCH3).                   
13C NMR (CDCl3, 100 MHz) δ: 139.9 (Ar-C), 137.3 (Ar-C), 129.2 (Ar-C), 127.7 (Ar-

C), 122.9 (Ar-C), 121.0 (Ar-C), 107.6 (CH), 72.2 (CH2), 54.3 (OCH3).                 

m/z [CI+ (+ve), isobutane]  151.1 [M+H]+ (100%). HRMS found 151.0756, C9H11O2 

requires 151.0760 [M+H]+.          

υmax (neat)/cm-1: 3049, 2859, 1615, 1192. 

General procedure for the preparation of lactones 243, 247 to 255.              

A 0 oC solution of methyl acetal 230 in anhydrous tetrahydrofuran at was treated 

with diisopropylamine and stirred for 10 minutes. Methyl lithium solution (1.6 M 
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in diethyl ether) was added slowly and the reaction stirred for 30 minutes. The 

reaction mixture was cooled to -78 oC and the freshly distilled aldehyde was 

added. The resulting solution was then stirred for a further 2 hours at -78 oC 

before being quenched with water at 0 oC.  The mixture was extracted with 

diethyl ether and the combined organic extracts were then washed with water, 

saturated sodium chloride solution and dried over sodium sulfate.  Solvent 

removal under reduced pressure then afforded the desired α-hydroxy 

isobenzofuran intermediate which was used in the next step without further 

purification.                 

The crude α-hydroxy isobenzofuran unit was then dissolved in anhydrous 

dichloromethane and cooled to 0 oC.  The solution was then treated with 3-

chloroperoxybenzoic acid and the resulting mixture stirred at 0 oC until 

completion.  The reaction was quenched with saturated sodium hydrogen 

carbonate solution and extracted with ethyl acetate and dried over sodium 

sulfate. The solvent was removed under reduced pressure and the crude residual 

lactol was taken on crude without the need of further purification.     The newly 

prepared lactol was dissolved in acetone and treated with freshly made 2.5 M 

Jones reagent. The resulting red/brown solution was then stirred for 2 hours or 

until complete consumption of starting material (as by TLC analysis on alumina 

plates). The reaction was quenched with water and the aqueous layer extracted 

with diethyl ether. The combined organic extracts were washed sequentially 

with water (3x), saturated sodium bicarbonate solution and brine.  The organic 

layer was dried over sodium sulfate and the solvent evaporated under reduced 

pressure. The crude keto-lactones obtained could then be taken on crude to the 

next step. 

General procedure for the reduction of lactones to isochroman-1-ones (244, 

256-264).                 

The freshly obtained crude lactones (243, 247 to 255) were dissolved in 

anhydrous dichloromethane and cooled to -78 oC. The mixture was treated with 

a solution of cerium (III) chloride in anhydrous methanol (0.4 M in methanol, 2 

equivalents) and the resulting suspension was stirred for 10 minutes followed by 

addition of 1.5 equivalents sodium borohydride and stirred until completion as 

indicated by TLC analysis. The reaction solution was warmed to room 

temperature, diluted with dichloromethane and quenched with 10% aqueous 



Chapter 3 – Experimental  
 

 96 

citric acid solution (10 mL).  The biphasic mixture was stirred for 20 minutes and 

the aqueous phase was extracted into dichloromethane and washed sequentially 

with water (2x) and brine. The combined organic extracts were dried over 

sodium sulfate and concentrated under reduced pressure. The crude residues 

were purified by flash column chromatography (silica gel). 

4-Hydroxy-3-isopropylisochroman-1-one, 244. 

 
Keto-lactone 243 was prepared using the general procedure for the preparation 

of lactones, starting from a solution of acetal 230 (1.01 g, 6.73 mmol) in 

tetrahydrofuran (34 mL) and diisopropylamine (189 µL, 1.35 mmol); methyl 

lithium (9.25 mL, 14.8 mmol); isobutyraldehyde (733 µL, 8.08 mmol).  The 

oxidative rearrangement was performed using 3-chloroperoxybenzoic acid (1.81 

g, 8.08 mmol); in dichloromethane (34 mL).  Oxidation was achieved on a 

solution of crude lactol (1.31 g, 6.36 mmol); in acetone (32 mL) using 2.5 M 

Jones (5.08 mL, 12.7 mmol) to afford 1.16 g of the desired keto-lactone 243 

(85%) without further purification.           

Isochroman-1-one, 244 was prepared using the general procedure for the 

reduction of lactones to iso-chroman-1-ones, starting from a solution of keto-

lactone 18 (200 mg, 0.98 mmol) in dichloromethane (5 mL) and using cerium(III) 

chloride (4.90 mL, 1.96 mmol, 0.4 M in methanol) and sodium borohydride (56 

mg, 1.47 mmol). Purification by flash column chromatography (silica gel, 

diethyl ether in dichloromethane in petroleum spirits 30:20:70) afforded 194 mg 

of the desired isochromanone 244 (96%) as a clear oil and as a sole syn 

diastereoisomer.                    
1H NMR (CDCl3, 400 MHz) δ: 8.11 (1H, dd, J = 8.0, 0.8 Hz, Ar-H), 7.65 (1H, td, J = 

7.6, 1.2 Hz, Ar-H), 7.51 (1H, td, J = 7.6, 1.2 Hz, Ar-H), 7.45 (1H, dm, J = 7.6 Hz, 

Ar-H), 4.74 (1H, dd, J = 7.6, 1.6 Hz, CHOH), 3.99 (1H, dd, J = 9.6, 1.6 Hz, 

CHCH), 2.39-2.30 (1H, m, CH(CH3)2), 2.18 (1H, d, J = 7.2 Hz, OH), 1.19 (3H, d, J 

= 6.8 Hz, CH(CH3)2), 1.09 (3H, d, J = 6.8 Hz, CH(CH3)2).            
13C NMR (CDCl3, 100 MHz) δ: 165.1 (CO2CH), 140.3 (Ar-C), 134.4 (Ar-C), 130.4 

(Ar-C), 129.9 (Ar-C), 128.1 (Ar-C), 124.3 (Ar-C), 86.6 (CHOH), 65.2 (CHCH), 28.7 
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(CH(CH3)2), 19.4 (CH(CH3)2), 18.2 (CH(CH3)2).       

m/z: [CI+ Isobutane]: 207 [M+H]+ (100%), 189 [M+H-H2O]+ (35%). HRMS found 

207.1018 C12H15O3 requires 207.1022 [M+H]+.       

υmax (neat)/cm-1; 3446, 2852, 1699, 1558, 1267. 

3-Isopropyl-1-oxoisochroman-4-yl acetate, 245 and 246. 

 
Lactol 242 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.07 g, 7.10 mmol) in 

tetrahydrofuran (35 mL) and diisopropylamine (199 µL, 1.42 mmol); methyl 

lithium (9.7 mL, 15.6 mmol); isobutyraldehyde (773 µL, 8.52 mmol).  The 

rearrangement was performed using 3-chloroperoxybenzoic acid (1.91 g, 8.52 

mmol); in dichloromethane (35 mL).      A portion of the previously crude lactols 

(279 mg, 1.36 mmol) were dissolved in anhydrous dichloromethane (7 mL) and 

cooled to 0 oC. The 0 oC solution was treated with triethylamine (284 µL, 2.03 

mmol) and N, N’-dimethylaminopyridine (17 mg, 136 µmmol) and stirred for 30 

minutes. Acetic anhydride (192 µL, 2.03 mmol) was then added to the reaction 

and the resulting mixture stirred until completion by as indicated by TLC analysis 

(2 h). The reaction was quenched with saturated sodium carbonate (5 mL) and 

diluted with dichloromethane (5 mL). The organic phase was washed with water 

(2 x 5 mL) and brine (5 mL). The combined organic extracts were dried over 

sodium sulfate and concentrated in vacuo.  Purification of the crude residue by 

flash column chromatography (silica gel, 20% diethyl ether in petroleum spirits) 

gave 65 mg (19%) of the desired acetates 245 and 246 as a 4.6:1 (α:β) mixture 

of anomers. 
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Acetic acid (1R,3R)-3-isopropyl-4-oxo-isochroman-1-yl ester, 246. 

    
1H NMR (CDCl3, 400 MHz) δ: 8.02 (1H, dd, J = 8.0, 1.6 Hz, Ar-H), 7.63 (1H, td, J = 

7.6, 1.2 Hz, Ar-H), 7.53 (1H, td, J = 7.6, 1.2 Hz, Ar-H), 7.40 (1H, d, J = 6.8 Hz, 

Ar-H), 7.13 (1H, s, CHOAc), 4.54 (1H, d, J = 2.8 Hz, COCH), 2.61-2.52 (1H, m, 

(CH(CH3)2), 2.09 (3H, s, COCH3), 1.08 (3H, d, J = 6.8 Hz, (CH(CH3)2)), 0.88 (3H, 

d, J = 6.8 Hz, (CH(CH3)2)).                
13C NMR (CDCl3, 100 MHz) δ: 195.1 (CO), 169.6 (COCH3), 137.9 (Ar-C), 134.4 (Ar-

C), 129.9 (Ar-C), 129.4 (Ar-C), 126.3 (Ar-C), 126.1 (Ar-C), 90.5 (CHOCO), 79.8 

(CHO), 30.2 (CH(CH3)2), 21.1 (COCH3), 19.1 (CH(CH3)2), 16.1 (CH(CH3)2). 

Acetic acid (1S,3R)-3-isopropyl-4-oxo-isochroman-1-yl ester, 245. 

O

O

O O

 
1H NMR (CDCl3, 400 MHz) δ: 8.01 (1H, m, Ar-H), 7.64 (1H, td, J = 7.6, 1.6 Hz, Ar-

H), 7.52 (1H, m, Ar-H), 7.35 (1H, d, J = 7.6 Hz, Ar-H), 7.04 (1H, s, CHOAc), 4.14 

(1H, d, J = 5.2 Hz, COCH), 2.51-2.48 (1H, m, (CH(CH3)2), 2.24 (3H, s, COCH3), 

1.05 (3H, d, J = 7.2 Hz, (CH(CH3)2)),  0.99 (3H, d, J = 6.8 Hz, (CH(CH3)2)).        
13C NMR (CDCl3, 100 MHz) δ: 198.2 (CO), 169.6 (COCH3), 139.1 (Ar-C), 134.4 (Ar-

C), 129.9 (Ar-C), 129.5 (Ar-C), 126.5 (Ar-C), 124.8 (Ar-C), 90.2 (CHOCO), 84.8 

(CHO), 29.6 (CH(CH3)2), 21.2 (COCH3), 19.0 (CH(CH3)2), 17.6 (CH(CH3)2).          

m/z [CI+ (+ve), isobutane] 189 [M+H-OAc]+ (100%).                    

υmax (neat)/cm-1; 3442, 2925, 1699, 1558, 1287. 
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4-Hydroxy-3-methylisochroman-1-one, 256.  

 
Keto-lactone 247 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.03 g, 6.92 mmol) in 

tetrahydrofuran (35 mL) and diisopropylamine (194 µL, 1.38 mmol); methyl 

lithium (9.5 mL, 15.2 mmol) and acetaldehyde (1.02 g, 8.28 mmol).  The 

oxidative rearrangement was performed using 3-chloroperoxybenzoic acid (1.86 

g, 8.30 mmol); in dichloromethane (35 mL).  Oxidation was achieved on a 

solution of crude lactol (1.20 g, 6.74 mmol); in acetone (34 mL) using 2.5 M 

Jones (5.39 mL, 13.5 mmol) to generate 1.16 g of the desired keto-lactone 247 

(94%) without further purification. Isochromanone, 256 was prepared using the 

general procedure for the reduction of lactones to iso-chroman-1-ones, starting 

from a solution of keto-lactone 247 (1.16 g, 6.58 mmol) in dichloromethane (33 

mL) and using cerium(III) chloride (32.9 mL, 13.16 mmol, 0.4 M in methanol) and 

sodium borohydride (373 mg, 9.87 mmol).     Purification was achieved by flash 

column chromatography (silica gel, 20 % ethyl acetate in petroleum spirits) to 

afford 1.05 g of isochromanone 256 (90%) as a clear oil and as 1:1 mixture of 

diastereoisomers. 

4-Hydroxy-(3R,4R)-3-methyl-isochroman-1-one, 256syn. 

 
1H NMR (CDCl3, 400 MHz) δ: 8.07 (1H, dd, J = 7.8, 1.2 Hz, Ar-H), 7.59 (1H, td, J = 

7.5, 1.5 Hz, Ar-H), 7.47 (1H, td, J = 7.6, 1.2 Hz, Ar-H), 7.42 (1H, dd, J = 7.4, 1.2 

Hz, Ar-H), 4.64-4.59 (1H, m, CHOH), 4.54 (1H, dd, J = 7.2, 1.9 Hz, CHCH), 1.99 

(1H, d, J = 7.3 Hz, OH), 1.51 (3H, d, J = 6.6 Hz, CH3).            
13C NMR (CDCl3, 400 MHz) δ: 164.4 (CO2CH), 141.3 (Ar-C), 134.4 (Ar-C), 130.3 

(Ar-C), 128.9 (Ar-C), 125.2 (Ar-C), 123.6 (Ar-C), 79.1 (CHOH), 69.5 (CHCH), 18.1 

(CHCH3). 
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4-Hydroxy-(3R,4S)-3-methyl-isochroman-1-one, 256anti. 

 
 1H NMR (CDCl3, 400 MHz) δ: 8.01 (1H, dd, J = 7.8 Hz, Ar-H), 7.60 (1H, td, J = 

7.4, 1.2 Hz, Ar-H), 7.54 (1H, d, J = 7.6 Hz, Ar-H), 7.44-7.39 (1H, m, Ar-H), 4.63 

(1H, t, 7.6 Hz, CHOH), 4.49-4.43 (1H, m, CHCH), 2.48 (1H, d, J = 7.3 Hz, OH), 

1.57 (3H, d, J =  6.8 Hz, CH3).               
13C NMR (CDCl3, 400 MHz) δ: 164.9 (CO2CH), 141.3 (Ar-C), 134.5 (Ar-C), 130.3 

(Ar-C), 128.9 (Ar-C), 125.3 (Ar-C), 123.6 (Ar-C), 79.2 (CHOH), 67.5 (CHCH), 

18.1(CHCH3).                 

υmax (neat)/cm-1; 3440, 2849, 1652, 1286. 

3-Ethyl-4-hydroxyisochroman-1-one, 257. 

 
Keto-lactone 248 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.00 g, 6.66 mmol) in 

tetrahydrofuran (35 mL) and diisopropylamine (137 µL, 1.33 mmol); methyl 

lithium (9.2 mL, 14.66 mmol) and propionaldehyde (577 µL, 8.00 mmol).  The 

oxidative rearrangement was performed using 3-chloroperoxybenzoic acid (1.79 

g, 8.00 mmol); in dichloromethane (35 mL).  Oxidation was achieved on a 

solution of crude lactol (1.12 g, 5.83 mmol); in acetone (29 mL) using 2.5 M 

Jones (4.66 mL, 11.7 mmol) to generate 1.08 g of the desired keto-lactone 248 

(84%) without further purification.           

Isochroman-1-one, 257 was prepared using general the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of 

keto-lactone 248 (1.08 g, 5.66 mmol) in dichloromethane (28 mL) and using 

cerium(III) chloride (28.3 mL, 11.3 mmol, 0.4 M in methanol) and sodium 

borohydride (321 mg, 8.49 mmol).            

Purification by flash column chromatography (silica gel, 30 % ethyl acetate in 

petroleum spirits) afforded 771 mg of isochromanone 257 (71%) as a non-

separable mixture of diastereoisomers in a 60:40 ratio (syn:anti). 
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3-Ethyl-(3R,4R)-4-hydroxy-isochroman-1-one, 257syn. 

 
1H NMR (CDCl3, 400 MHz) δ: 8.11-8.09 (1H, m, Ar-H), 7.64 (1H, td, J = 7.5, 1.3 

Hz, Ar-H), 7.52 (1H, dt, J = 7.6, 1.3 Hz, Ar-H), 7.47 (1H, dm, Ar-H), 4.65 (1H, d, 

J =  1.0 Hz, CHOH ), 4.39-1.35 (1H, m, CHCH), 2.22 (1H, bs, OH), 2.09-1.99 (1H, 

m, CH2), 1.98-1.89 (1H, m, CH2), 1.12 (3H, t, J = 7.5 Hz, CH2CH3).                
13C NMR (CDCl3, 400 MHz) δ: 165.0 (CO2CH), 140.3 (Ar-C), 134.4 (Ar-C), 130.4 

(Ar-C), 129.9 (Ar-C), 127.9 (Ar-C), 124.4 (Ar-C), 82.6 (CHOH), 66.2 (CHCH), 23.5 

(CH2CH3), 9.7 (CH2CH3). 

3-Ethyl-(3R,4S)-4-hydroxy-isochroman-1-one, 257anti. 

 
1H NMR (CDCl3, 400 MHz) δ: 7.89 (1H, d, J = 7.6 Hz, Ar-H), 7.63-7.58 (1H, m, Ar-

H), 7.52-7.45 (1H, m, Ar-H), 7.41 (1H, m, Ar-H), 5.38 (1H, d, J = 5.2 Hz, CHOH), 

4.39-4.35 (1H, m, CHCH), 2.22 (1H, bs, OH), 2.09-1.99 (1H, m, CH2), 1.98-1.88 

(1H, m, CH2), 1.05 (3H, t, J = 7.4 Hz, CH2CH3).             
13C NMR (CDCl3, 400 MHz) δ: 165.0 (CO2CH), 140.3 (Ar-C), 134.0 (Ar-C), 129.4 

(Ar-C), 125.8 (Ar-C), 123.2 (Ar-C), 122.4 (Ar-C), 82.6 (CHOH), 74.2 (CHCH), 25.6 

(CH2CH3), 9.9 (CH2CH3).              

m/z [CI+ (+ve), isobutane]  193 [M+H]+ (100%), HRMS found 193.0863, C12H13O3 

requires 193.0865 [M+H]+.                

υmax (neat)/cm-1; 3433, 2975, 1697, 1607, 1275. 

3-Butyl-4-hydroxyisochroman-1-one, 258. 

 
Keto-lactone 249 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (930 mg, 6.18 mmol) in 
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tetrahydrofuran (31 mL) and diisopropylamine (173 µL, 1.24 mmol); methyl 

lithium (8.5 mL, 13.6 mmol) and valeraldehyde (788 µL, 7.41 mmol).  The 

oxidative rearrangement was performed using 3-chloroperoxybenzoic acid (1.66 

g, 7.41 mmol); in dichloromethane (31 mL).  Oxidation was achieved on a 

solution of crude lactol (1.31 g, 6.82 mmol); in acetone (34 mL) using 2.5 M 

Jones (5.46 mL, 13.6 mmol) to generate the 1.10 g of the desired keto-lactone 

249 (82%) without further purification.          

Isochroman-1-one, 258 was prepared using general the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of 

keto-lactone 249 (973 mg, 5.12 mmol) in dichloromethane (26 mL) and using 

cerium(III) chloride (25.6 mL, 10.2 mmol, 0.4 M in methanol) and sodium 

borohydride (290 mg, 7.68 mmol).          

Purification by flash column chromatography (silica gel, 40 % diethyl ether in 

petroleum spirits) yielded 630 mg of isochromanone 258 (56%) as a yellow solid 

and as a 9:1 mixture of diastereoisomers (syn:anti). 

3-Butyl-(3R,4R)-4-hydroxy-isochroman-1-one, 258syn. 

 
 1H NMR (CDCl3, 400 MHz) δ: 8.06 (1H, dt, J = 7.8, 1.8 Hz, Ar-H), 7.58 (1H, td, J 

= 7.5, 1.4 Hz, Ar-H), 7.46 (1H, td, J = 7.6, 1.2 Hz, Ar-H), 7.40 (1H, dd, J = 7.5, 

0.5 Hz, Ar-H), 4.57 (1H, d, J = 1.8 Hz, CHOH), 4.42-4.38 (1H, m, CHCH), 2.03 

(1H, bs, OH), 1.99-1.91 (1H, m, CH2CH2CH2CH3), 1.86-1.76 (1H, m, 

CH2CH2CH2CH3), 1.56-1.49 (1H, m, CH2CH2CH2CH3), 1.43-1.32 (3H, m, 

CH2CH2CH2CH3), 0.98 (3H, t, J = 7.2 Hz, CH2CH2CH2CH3).           
13C NMR (CDCl3, 400 MHz) δ: 164.9 (CO2CH), 140.3 (Ar-C), 134.4 (Ar-C), 130.5 

(Ar-C), 129.9 (Ar-C), 127.9 (Ar-C), 124.2 (Ar-C), 81.2 (CHOH), 66.6 (CHCH), 30.1 

(CH2CH2CH2CH3), 27.2 (CH2CH2CH2CH3), 22.6 (CH2CH2CH2CH3), 13.9 

(CH2CH2CH2CH3). 
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3-Butyl-(3R,4S)-4-hydroxy-isochroman-1-one, 258anti.  

 
1H NMR (CDCl3, 400 MHz) δ: 8.02 (1H, dd, J = 7.7, 1.1 Hz, Ar-H), 7.58 (1H, td, J = 

7.5, 1.4 Hz, Ar-H), 7.46 (1H, td, J = 7.6, 1.2 Hz, Ar-H), 7.40 (1H, dd, J = 7.5, 0.5 

Hz, Ar-H), 4.67 (1H, d, J = 7.5 Hz, CHOH), 4.37-4.32 (1H, m, CHCH), 2.03 (1H, 

bs, OH), 1.99-1.91 (1H, m, CH2CH2CH2CH3), 1.86-1.76 (1H, m, CH2CH2CH2CH3), 

1.70-1.62 (1H, m, CH2CH2CH2CH3), 1.66-1.58 (3H, m, CH2CH2CH2CH3), 0.85 (3H, 

t, J = 7.2 Hz, CH2CH2CH2CH3).                 
13C NMR (CDCl3, 400 MHz) δ: 164.9 (CO2CH), 140.3 (Ar-C), 134.4 (Ar-C), 130.5 

(Ar-C), 129.9 (Ar-C), 127.9 (Ar-C), 124.2 (Ar-C), 82.9 (CHOH), 68.1 (CHCH), 31.9 

(CH2CH2CH2CH3), 27.0 (CH2CH2CH2CH3), 22.7 (CH2CH2CH2CH3), 13.9 

(CH2CH2CH2CH3).                       

m/z: [CI+ Isobutane]: 221.1 [M+H]+ (100%), HRMS found 221.1180 C13H17O3 

requires 221.1178 [M+H]+.                 

υmax (neat)/cm-1; 3420, 2972, 1685, 1279. 

4-Hydroxy-3-isobutylisochroman-1-one, 259.  

 
Keto-lactone 250 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.01 g, 6.71 mmol) in 

tetrahydrofuran (33 mL) and diisopropylamine (188 µL, 1.34 mmol); methyl 

lithium (9.2 mL, 14.8 mmol) and isovaleraldehyde (863 µL, 8.05 mmol).  The 

oxidative rearrangement was performed using 3-chloroperoxybenzoic acid (1.80 

g, 8.05 mmol); in dichloromethane (33 mL).  Oxidation was achieved on a 

solution of crude lactol (1.42 g, 6.45 mmol); in acetone (33 mL) using 2.5 M 

Jones (5.16 mL, 12.9 mmol) to generate 1.06 g of the desired keto-lactone 250 

(72%) without further purification.           

Isochroman-1-one, 259 was prepared using general the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of 

keto-lactone 250 (1.06 g, 4.88 mmol) in dichloromethane (26 mL) and using 
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cerium(III) chloride (24.4 mL, 9.75 mmol, 0.4 M in methanol) and sodium 

borohydride (277 mg, 7.31 mmol).           

Purification by flash column chromatography (silica gel, 40% diethyl ether in 

petroleum spirits) gave 848 mg of isochromanone 259 (80%) as a clear oil and as 

a 75:25 mixture of diastereoisomers (syn:anti). 

4-Hydroxy-(3R,4R)-3-isobutyl-isochroman-1-one, 259syn. 

 
1H NMR (CDCl3, 400 MHz) δ: 7.96 (1H, d, J = 7.4 Hz, Ar-H), 7.58 (1H, dt, J = 7.3, 

1.1 Hz, Ar-H), 7.44-7.40 (2H, m, Ar-H), 4.55 (1H, d, J = 1.8 Hz, CHOH), 4.49 (1H, 

ddd, J =  8.6, 4.6, 1.9 Hz, CHCH), 3.54 (1H, bs, OH), 1.94-1.88  (2H, m, CH2CH), 

1.60-1.52 (1H, m, CH(CH3)2), 0.93 (6H, t, m, CH(CH3)2).                     
13C NMR (CDCl3, 400 MHz) δ: 165.2 (CO2CH), 141.4 (Ar-C), 134.3 (Ar-C), 130.3 

(Ar-C), 128.8 (Ar-C), 128.8 (Ar-C), 125.8 (Ar-C), 81.3 (CHOH), 66.9 (CHCH), 39.1 

(CH2CH), 23.9 (CH(CH3)2), 23.1 (CH(CH3)2), 21.5 (CH(CH3)2). 

4-Hydroxy-(3R,4S)-3-isobutyl-isochroman-1-one, 259anti. 

 
1H NMR (CDCl3, 400 MHz) δ: 7.81-7.78 (1H, m, Ar-H), 7.58 (1H, td, J = 7.3, 1.1 

Hz, Ar-H), 7.44-7.40 (2H, m, Ar-H), 4.49 (1H, d, J = 7.3 Hz, CHOH), 4.47 (1H, dd, 

J = 13.3, 7.2 Hz, CHCH), 3.54 (1H, bs, OH), 1.85-1.79 (2H, m, CH2CH), 1.60-1.52 

(1H, m, CH(CH3)2), 0.90-0.84 (1H, m, CH2CH), 0.93 (6H, m, CH(CH3)2).        
13C NMR (CDCl3, 400 MHz) δ: 165.3 (CO2CH), 140.4 (Ar-C), 134.3 (Ar-C), 130.1 

(Ar-C), 129.7 (Ar-C), 124.1 (Ar-C), 123.7 (Ar-C), 79.6 (CHCH), 68.3 (CHOH), 41.0 

(CH2CH) 24.1 (CH(CH3)2), 23.1 (CH(CH3)2), 22.2 (CH(CH3)2).           

m/z [CI+ (+ve), isobutane]  221 [M+H]+ (100%), HRMS found 221.1176, C13H17O3 

requires 221.1178 [M+H]+.                

υmax (neat)/cm-1; 3442, 2925, 1699, 1558, 1287. 
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3-tertButyl-(3R,4R)-4-hydroxy-isochroman-1-one, 260.  

 
Keto-lactone 251 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.09 g, 7.24 mmol) in 

tetrahydrofuran (36 mL) and diisopropylamine (203 µL, 1.45 mmol); methyl 

lithium (9.9 mL, 15.9 mmol) and trimethylacetaldehyde (940 µL, 8.68 mmol).  

The oxidative rearrangement was performed using 3-chloroperoxybenzoic acid 

(1.95 g, 8.68 mmol); in dichloromethane (36 mL).  Oxidation was achieved on a 

solution of crude lactol (1.32 g, 6.00 mmol) in acetone (30 mL) using 2.5 M Jones 

(4.79 mL, 11.9 mmol) to give 1.31 g (83%) of the unstable keto-lactone 251 after 

filtration through a short plug of silica gel.  The keto-lactone was used 

immediately.                

Isochroman-1-one, 260 was prepared using general the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of 

keto-lactone 251 (220 mg, 1.01 mmol) in dichloromethane (5 mL) and using 

cerium(III) chloride (5.05 mL, 2.02 mmol, 0.4 M in methanol) and sodium 

borohydride (172 mg, 4.55 mmol).             

Purification by flash column chromatography (silica gel, 20% diethyl ether in 10% 

dichloromethane in petroleum spirits) yielded 171 mg of isochromanone 260 

(77%) as a clear oil and as a single syn diastereoisomer.             
1H NMR (CDCl3, 400 MHz) δ: 8.10 (1H, d, J = 8.0 Hz, Ar-H), 7.65 (1H, dt, J = 7.2, 

1.2 Hz, Ar-H), 7.52 (1H, dt, J = 7.6, 1.2 Hz, Ar-H), 7.45 (1H, d, J = 7.6 Hz, Ar-H), 

4.87 (1H, d, J = 1.2 Hz, CHOH), 4.06 (1H, d, J = 1.6 Hz, CHCH), 1.93 (1H, bs, 

OH), 1.21 (9H, s, C(CH3)3).                 
13C NMR (CDCl3, 100 MHz) δ: 165.6 (CO2CH), 141.0 (Ar-C), 134.4 (Ar-C), 130.4 

(Ar-C), 129.8 (Ar-C), 127.5 (Ar-C), 124.1 (Ar-C), 87.2 (CHOH), 66.4 (CHCH), 34.6 

(C(CH3)3), 26.6 (C(CH3)3)              

m/z [CI+ (+ve), isobutane]  221.3 [M]+ (100%), HRMS found 221.1176, C13H16NO3 

requires 221.1178 [M+H]+.                

υmax (neat)/cm-1; 3424, 2960, 1700, 1606, 1282. 
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3-Cyclohexyl-(3R,4R)-4-hydroxy-isochroman-1-one, 261.   

 
Keto-lactone 252 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.00 g, 6.66 mmol) in 

tetrahydrofuran (34 mL) and diisopropylamine (187 µL, 1.33 mmol); methyl 

lithium (9.2 mL, 14.8 mmol) and cyclohexanecarboxaldehyde (1.01 mL, 8.07 

mmol).  The oxidative rearrangement was performed using 3-

chloroperoxybenzoic acid (1.81 g, 8.07 mmol); in dichloromethane (34 mL).  

Oxidation was achieved on a solution of crude lactol (1.52 g, 6.18 mmol) in 

acetone (31 mL) using 2.5 M Jones (4.94 mL, 12.4 mmol) to give 927 mg (57%) of 

the unstable keto-lactone 252 after filtration through a short plug of silica gel.  

The keto-lactone was used immediately.        

Isochroman-1-one, 261 was prepared using general the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of 

keto-lactone 252 (410 mg, 1.68mmol) in dichloromethane (8 mL) and using 

cerium(III) chloride (8.40 mL, 3.36 mmol, 0.4 M in methanol) and sodium 

borohydride (95 mg, 2.52 mmol).             

Purification by flash column chromatography (silica gel, 30% ethyl acetate in 

petroleum spirits) afforded 339 mg of isochromanone 261 (82%) as a white 

crystalline solid and as a sole syn diastereoisomer (mp. 163 oC - 166 oC).                    
1H NMR (CDCl3, 400 MHz) δ: 8.12 (1H, dt, J = 7.7, 0.7 Hz, Ar-H), 7.64 (1H, td, J = 

7.5, 1.4 Hz, Ar-H), 7.52 (1H, dt, J = 7.6, 1.3 Hz, Ar-H), 7.45 (1H, dd, J = 7.4, 1.2 

Hz, Ar-H), 4.69 (1H, d, J = 5.3 Hz, CHOH), 4.09 (1H, dd, J = 9.8, 1.7 Hz, CHCH), 

2.33 (1H, dm, CycHex-H), 2.09-2.03 (1H, m, CycHex-H), 1.99-1.94 (1H, dm, 

CycHex-H), 1.84-1.78 (1H, m, CycHex-H), 1.75-1.71 (1H, m, CycHex-H), 1.59 

(1H, bs, OH), 1.45-1.15 (4H, m, CycHex-H), 1.13-0.99 (2H, m, CycHex-H).            
13C NMR (CDCl3, 100 MHz) δ: 165.0 (CO2CH), 140.3 (Ar-C), 134.4 (Ar-C), 130.5 

(Ar-C), 129.9 (Ar-C), 128.1 (Ar-C), 124.5 (Ar-C), 85.4 (CHOH), 64.8 (CHCH), 37.9 

(CycHex-H), 29.5 (CycHex-H), 28.1 (CycHex-H), 26.3 (CycHex-H), 25.7 (CycHex-

H), 25.5 (CycHex-H).               

m/z [CI+ (+ve), isobutane]  247 [M+H]+ (100%), HRMS found 247.1335, C15H19O3 
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requires 247.1335 [M+H]+.                        

υmax (neat)/cm-1; 3442, 2925, 1699, 1558, 1287. 

Cyclohexylacetaldehyde.              

Anhydrous dichloromethane (80 mL) was treated with oxalyl chloride solution 

(23.4 mL, 46.8 mmol, 2 M in dichloromethane) at -78 oC. Dimethylsulfoxide (6.6 

mL, 93.6 mmol) was then added to the reaction and the resulting mixture stirred 

for 1 hour. The reaction was then treated with through the slow addition of a 

solution of cyclohexyl ethanol (3.26 mL, 23.4 mmol) in anhydrous 

dichloromethane (40 mL). The reaction was stirred for 1 hour at -78 oC, warmed 

to room temperature and then treated with triethylamine (26.1 mL, 187.2 

mmol).  The reaction was stirred for a further 1 hour before being quenched at 

0oC through the addition of 1 M hydrochloric acid (20 mL). The resulting biphasic 

mixture was stirred for 20 minutes and extracted with dichloromethane (50 mL). 

The combined organic extracts were washed with sat. aq. sodium bicarbonate 

(20 mL), water (2x 30 mL), brine (30 mL), dried over sodium bicarbonate and 

concentrated in vacuo. The crude residue 2.89 g (98%) was taken on without 

further purification. 

3-(Cyclohexylmethyl)-4-hydroxyisochroman-1-one, 262.  

 
Keto-lactone 253 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.01 g, 6.71 mmol) in 

tetrahydrofuran (34 mL) and diisopropylamine (188 µL, 1.34 mmol); methyl 

lithium (9.23 mL, 14.8 mmol) and cyclohexyl-acetaldehyde (1.02 g, 8.06 mmol).  

The oxidative rearrangement was performed using 3-chloroperoxybenzoic acid 

(1.81 g, 8.06 mmol); in dichloromethane (34 mL).  Oxidation was achieved on a 

solution of crude lactol (1.52 g, 6.18 mmol) in acetone (30 mL) using 2.5 M Jones 

(4.86 mL, 12.15 mmol) to generate 1.16 g of the desired keto-lactone 253 (67%) 

without further purification.            

Isochroman-1-one, 262 was prepared using general the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of 

keto-lactone 253 (1.06 g, 4.11 mmol) in dichloromethane (20 mL) and using 
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cerium(III) chloride (20.5 mL, 8.21 mmol, 0.4 M in methanol) and sodium 

borohydride (233 mg, 6.17 mmol).            

Purification was achieved by flash column chromatography (silica gel, 30 % ethyl 

acetate in petroleum spirits) to afford 615 mg of isochroman-1-one, 262 (58%) as 

a clear oil and as a 1:1 mixture of diastereoisomers. 

3-Cyclohexylmethyl-(3R,4R)-4-hydroxy-isochroman-1-one, 262syn.  

 
1H NMR (CDCl3, 400 MHz) δ: 7.84 (1H, d, J = 7.6 Hz, Ar-H), 7.64-7.60 (1H, m, Ar-

H), 7.51-7.48 (1H, m, Ar-H), 7.41 (1H, m, Ar-H), 5.31 (1H, d, J = 3.6 Hz, CHOH), 

4.56-4.52 (1H, m, CHCH), 2.00 (1H, bs, OH), 1.77-1.53 (8H, m, Alkyl-H), 1.23-

1.08 (5H, m, Alkyl-H).                 
13C NMR (CDCl3, 400 MHz) δ: 170.5 (CO2CH), 146.9 (Ar-C), 134.2 (Ar-C), 134.1 

(Ar-C), 129.5 (Ar-C), 125.9 (Ar-C), 124.2 (Ar-C), 83.7 (CHOH), 70.4 (CHCH), 39.7 

(Alkyl-C), 34.3 (Alkyl-C), 33.8 (Alkyl-C), 32.9 (Alkyl-C), 26.5 (Alkyl-C), 26.3 

(Alkyl-C), 26.0 (Alkyl-C). 

3-Cyclohexylmethyl-(3R,4S)-4-hydroxy-isochroman-1-one, 262anti.           

 
1H NMR (CDCl3, 400 MHz) δ: 8.06 (1H, dt, J = 8.0, 1.6 Hz), 7.58 (1H, dt, J = 7.2, 

1.2 Hz), 7.46 (1H, dt, J = 7.6, 1.2 Hz), 7.41 (1H, d, J = 7.6 Hz), 4.56-4.52 (1H, 

m), 4.05  (1H, bs), 2.00 (1H, bs), 1.77-1.53 (8H, m, CycHex), 1.23-1.08 (5H, m, 

CycHex).                    
13C NMR (CDCl3, 400 MHz) δ: 165.0 (CO2CH), 140.3 (Ar-C), 134.4 (Ar-C), 130.5 

(Ar-C), 129.9 (Ar-C), 127.8 (Ar-C), 123.0 (Ar-C), 84.0 (CHOH), 67.2 (CHCH), 37.9 

(Alkyl-C), 33.9 (Alkyl-C), 33.1 (Alkyl-C), 32.5 (Alkyl-C), 32.3 (Alkyl-C), 26.4 

(Alkyl-C), 26.2 (Alkyl-C).              

m/z [CI+ (+ve), isobutane] 261 [M+H]+ (100%), HRMS found 261.1490, C15H19O3 
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requires 261.1491 [M+H]+.                

υmax (neat)/cm-1; 3446, 2925, 1637, 1286. 

4-Hydroxy-(3R,4R)-3-phenyl-isochroman-1-one, 263.  

 
Keto-lactone 254 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.02 g, 6.82 mmol) in 

tetrahydrofuran (34 mL) and diisopropylamine (191 µL, 1.36 mmol); methyl 

lithium (9.4 mL, 15.0 mmol) and benzaldehyde (827 µL, 8.18 mmol).  The 

oxidative rearrangement was performed using 3-chloroperoxybenzoic acid (1.83 

g, 8.18 mmol); in dichloromethane (34 mL).  Oxidation was achieved on a 

solution of crude lactol (1.61 g, 6.69 mmol) in acetone (33 mL) using 2.5 M Jones 

(5.35 mL, 13.4 mmol) to give 1.04 g (64%) of the unstable keto-lactone 254 after 

filtration through a short plug of silica gel.  The keto-lactone was used 

immediately.                  

Isochroman-1-one, 263 was prepared using general the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of 

keto-lactone 254 (1.05 g, 4.40 mmol) in dichloromethane (22 mL) and using 

cerium(III) chloride (22.0 mL, 8.80 mmol, 0.4 M in methanol) and sodium 

borohydride (249 mg, 6.60 mmol).             

Purification was achieved by flash column chromatography (silica gel, 20% ethyl 

acetate in petroleum spirits) to afford 507 mg of isochroman-1-one, 263 (48%) as 

a yellow solid (m.p. 60.5-63.7 oC) and as a single syn diastereoisomer.               
1H NMR (CDCl3, 400 MHz) δ: 8.05 (1H, dd, J = 8.0, 1.2 Hz, Ar-H), 7.57 (1H, td, J = 

7.6, 1.2 Hz, Ar-H), 7.56-7.51 (2H, m, Ar-H), 7.48-7.35 (5H, m, Ar-H), 5.50 (1H, 

d, J = 1.6 Hz, CHOH), 4.72 (1H, d, J = 1.9 Hz, CHCH), 2.55 (1H, bs, OH).            
13C NMR (CDCl3, 100 MHz) δ: 164.9 (CO2CH), 139.4 (Ar-C), 135.2 (Ar-C), 134.5 

(Ar-C), 130.5 (Ar-C), 130.0 (Ar-C), 128.8 (Ar-C), 128.7 (Ar-C), 128.2 (Ar-C), 126.6 

(Ar-C), 124.0 (Ar-C), 81.8 (CHOH), 68.2 (CHCH).          

m/z [CI+ (+ve), isobutane]  241.3 [M+H]+ (100%), HRMS found 241.0866, C15H13O3 

requires 241.0865 [M+H]+.                

υmax (neat)/cm-1; 3430, 3064, 2919, 1708, 1605, 1284. 
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4-Hydroxy-3-phenethylisochroman-1-one, 264. 

 
Keto-lactone 255 was prepared using general procedure for the preparation of 

lactones, starting from a solution of acetal 230 (1.03 g, 6.84 mmol) in 

tetrahydrofuran (34 mL) and diisopropylamine (192 µL, 1.37 mmol); methyl 

lithium (9.38 mL, 15.0 mmol); 3-phenylpropanal (1.08 mL, 8.21 mmol).  The 

oxidative rearrangement was performed using 3-chloroperoxybenzoic acid (1.84 

g, 8.21 mmol); in dichloromethane (34 mL).  Oxidation was achieved on a 

solution of crude lactol (1.85 g, 6.53 mmol) in acetone (33 mL) using 2.5 M Jones 

(5.22 mL, 13.1 mmol) to give 1.69 g (93%) of the unstable keto-lactone 255 after 

filtration through a short plug of silica gel.  The keto-lactone was used 

immediately.              

Isochroman-1-one, 264 was prepared using general the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of 

keto-lactone 255 (248 mg, 0.93 mmol) in dichloromethane (5 mL) and using 

cerium(III) chloride (4.65 mL, 1.86 mmol, 0.4 M in methanol) and sodium 

borohydride (53 mg, 1.40 mmol).             

Purification of the crude residue by flash column chromatography (silica gel, 20% 

ethyl acetate in petroleum spirits) gave 225 mg of isochromanone 264 as a white 

solid in 90% yield and as a 1:1 mixture of diastereoisomers that could be 

separated by recrystallisation (diethyl ether: petroleum spirits). 

4-Hydroxy-(3R,4R)-3-phenethyl-isochroman-1-one, 264syn.  

 
1H NMR (CDCl3, 400 MHz) δ: 8.06 (1H, dd, J = 7.6, 1.2 Hz, Ar-H), 7.60-7.55 (1H, 

m, Ar-H), 7.50-7.36 (2H, m, Ar-H), 7.24-7.11 (5H, m, Ar-H), 4.53 (1H, bs, CHOH), 

4.35 (1H, ddd, J = 9.1, 4.7, 1.9 Hz, CHCH), 2.94-2.91 (1H, m, CH2CH2Ph), 2.81-

2.76 (1H, m, CH2CH2Ph), 2.20-2.14 (1H, m, CH2CH2Ph), 2.12-1.95 (1H, m, 

CH2CH2Ph), 1.92 (1H, bs, OH).         
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13C NMR (CDCl3, 400 MHz) δ: 164.8 (CO2CH), 141.5 (Ar-C), 140.8 (Ar-C), 134.4 

(Ar-C), 130.5 (Ar-C), 129.9 (Ar-C), 128.6 (Ar-C), 128.5 (Ar-C), 127.8 (Ar-C), 126.2 

(Ar-C), 125.2 (Ar-C), 79.8 (CHOH), 68.1 (CHCH), 31.9 (CH2CH2Ph), 31.0 

(CH2CH2Ph). 

4-Hydroxy-(3R,4S)-3-phenethyl-isochroman-1-one, 264anti. 

 
1H NMR (CDCl3, 400 MHz) δ: 8.03 (1H, dd, J = 7.7, 1.1 Hz, Ar-H), 7.60-7.55 (1H, 

m, Ar-H), 7.50-7.36 (2H, m, Ar-H), 7.24-7.11 (5H, m, Ar-H), 4.68 (1H, t, J = 6.8 

Hz, CHOH), 4.32-4.27 (1H, ddd, J = 9.2, 8.1, 3.1 Hz, CHCH), 2.94-2.91 (1H, m, 

CH2CH2Ph), 2.81-2.76 (1H, m, CH2CH2Ph), 2.20-2.14 (1H, m, CH2CH2Ph), 2.12-

1.95 (1H, m, CH2CH2Ph), 1.92 (1H, bs, OH).                         
13C NMR (CDCl3, 100 MHz) δ: 164.3 (CO2CH), 140.8 (Ar-C), 140.1 (Ar-C), 134.4 

(Ar-C), 130.3 (Ar-C), 128.9 (Ar-C), 128.6 (Ar-C), 128.5 (Ar-C), 127.8 (Ar-C), 126.2 

(Ar-C), 125.2 (Ar-C), 81.7 (CHOH), 66.9 (CHCH), 33.6 (CH2CH2Ph), 30.9 

(CH2CH2Ph).                 

m/z [CI+ (+ve), isobutane]  269.1 [M+H]+ (100%), HRMS found 269.1180, C17H17O3 

requires 269.1178 [M+H]+.                

υmax (neat)/cm-1; 3445, 2924, 1698, 1576, 1282.. 

3-secButyl-4-hydroxyisochroman-1-one, 276 and 277. 

 
Keto-lactones 274 and 275 were prepared using general procedure for the 

preparation of lactones, starting from a solution of acetal 230 (1.00 g, 6.69 

mmol) in tetrahydrofuran (33 mL) and diisopropylamine (187 µL, 1.34 mmol); 

methyl lithium (9.19 mL, 14.7 mmol) and (+/-) 2-methylbutanal (859 µL, 8.03 

mmol).  The oxidative rearrangement was performed using 3-

chloroperoxybenzoic acid (1.79 g, 8.03 mmol); in dichloromethane (33 mL).  

Oxidation was achieved on a solution of crude lactol (1.32 g, 6.00 mmol); in 

acetone (35 mL) using 2.5 M Jones (4.79 mL, 11.9 mmol) to yield 1.39 g of the 
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desired keto-lactones 274 and 275 (95%) as a 1.6:1.0 mixture of anti:syn 

diastereoisomers without further purification. Isochroman-1-ones 276 (syn,anti) 

and 277 (syn,syn) were prepared using general the general procedure for the 

reduction of lactones to iso-chroman-1-ones, starting from a solution of keto-

lactones 274 and 275 (1.39 g, 6.41 mmol) in dichloromethane (26 mL) and using 

cerium(III) chloride (32.1 mL, 12.8 mmol, 0.4 M in methanol) and sodium 

borohydride (363 mg, 9.62 mmol).            

Purification was achieved by flash column chromatography (silica gel, 30% ethyl 

acetate in petroleum spirits) to afford 1.07 g of isochromanones 276 and 277 

(76%) as a yellow solid and as a 1.6:1.0 mixture of diastereoisomers 

(syn,anti:syn,syn) that were separable by recrystallisation from diethyl ether: 

petroleum spirits. 

3-(R)-secButyl-(3R,4R)-4-hydroxy-isochroman-1-one, 276 (syn,anti).  

 
1H NMR (CDCl3, 400 MHz) δ: 8.08 (1H, d, J = 7.8 Hz, Ar-H), 7.65-7.61 (1H, m, Ar-

H), 7.65-7.61 (1H, m, Ar-H), 7.46 (1H, d, J = 7.5 Hz, Ar-H), 4.79 (1H, d, J = 1.3 

Hz, CHOH), 4.11 (1H, dd, J = 2.0, 1.8 Hz, CHCH), 2.37 (1H, bs, OH), 2.21-2.13 

(1H, m, CHCH3), 1.80-1.70 (1H, m, CH2CH3), 1.37-1.24 (1H, m, CH2CH3), 1.16 

(3H, d, J = 6.6 Hz), 0.98 (3H, t, J = 7.4 Hz).               
13C NMR (CDCl3, 100 MHz) δ: 165.3 (CO2CH), 140.1 (Ar-C), 134.4 (Ar-C), 130.3 

(Ar-C), 129.9 (Ar-C), 128.1 (Ar-C), 124.3 (Ar-C), 85.4 (CHOH), 65.2 (CHCH), 34.6 

(CHCH2), 24.8 (CHCH2), 14.9 (CHCH3), 10.7 (CH2CH3). 

3-(R)-secButyl-(3S,4S)-4-hydroxy-isochroman-1-one, 277 (syn,syn). 

 
1H NMR (CDCl3, 400 MHz) δ: 7.88 (1H, d, J = 8.2 Hz, Ar-H), 7.71-7.67 (1H, m, Ar-

H), 7.65-7.61 (1H, m, Ar-H), 7.46 (1H, d, J = 7.5 Hz, Ar-H), 4.74 (1H, d, J = 1.3 

Hz, CHOH), 4.09 (1H, dd, J = 2.5, 1.8 Hz, CHCH), 2.37 (1H, bs, OH), 2.21-2.13 

(1H, m, CHCH3), 1.98-1.90 (1H, m, CH2CH3), 1.37-1.24 (1H, m, CH2CH3), 1.07 
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(3H, d, J = 6.8 Hz), 0.95 (3H, t, J = 7.5 Hz, ).               
13C NMR (CDCl3, 100 MHz) δ: 165.2 (CO2CH), 140.1 (Ar-C), 134.4 (Ar-C), 130.3 

(Ar-C), 129.9 (Ar-C), 128.1 (Ar-C), 124.3 (Ar-C), 84.6 (CHOH), 65.2 (CHCH), 34.5 

(CHCH2), 24.8 (CHCH2), 14.2 (CHCH3), 10.4 (CH2CH3).          

m/z [CI+ (+ve), isobutane] 221 [M+H]+ (100%), HRMS found 221.1179, C13H17O3 

requires 221.1179 [M+H]+.                

υmax (neat)/cm-1; 3426, 2967, 1696, 1285. 

2-Methyl-4,5-dihydro-oxazole-4-carboxylic acid methyl ester, 279.173  

 
A solution of DL-serine methyl ester 278 (2.00 g, 16.8 mmol) and ethyl 

acetimidate (2.08 g, 16.8 mmol) in dichloromethane (65 mL) was treated with 

triethylamine (4.90 mL, 35.2 mmol) (3x 1.63 mL) over 30 minutes. The resulting 

cloudy solution was then stirred at room temperature until completion by TLC 

analysis (18 h). The crude reaction was filtered through celite and washed with 

diethyl ether (3x 100 mL).  The organic layer was concentrated in vacuo and the 

crude residue purified by short path distillation (151 oC) to give 1.76 g (75%) of 

2-methyl-4,5-dihydro-oxazole-4-carboxylic acid methyl ester 279 as a clear oil.          
1H NMR (CDCl3, 400 MHz) δ: 4.71-4.67 (1H, m, COCH), 4.45 (1H, dd, J = 8.6, 8.0 

Hz, CHCH2), 4.37 (1H, dd, J = 10.6, 8.8 Hz, CHCH2), 3.76 (3H, s, OCH3), 1.99 (3H, 

d, J = 1.2 Hz, CCH3).                 
13C NMR (CDCl3, 100 MHz) δ: 171.7 (CO2CH3), 167.8 (NCCH3), 69.4 (COCHN), 51.7 

(OCH3), 36.4 (CH2CH2), 26.5 (CH2CH2), 13.8 (NCCH3).            

υmax (neat)/cm-1; 2955, 1743, 1669, 1438. 

2-Methyl-oxazole-4-carboxylic acid methyl ester, 270.173,174 

 
Procedure A.                   

To a suspension of copper (II) bromide (6.86 g, 30.7 mmol) and hexamethylene 

tetraamine (4.30 g, 30.7 mmol) in anhydrous dichloromethane (65 mL) was 

added a solution of 2-methyl-4,5-dihydro-oxazole-4-carboxylic acid methyl ester 

279 (1.75 g, 12.29 mmol) in dichloromethane (20 mL). The resulting solution was 
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stirred at room temperature for 30 minutes to give a brown suspension that was 

treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (4.59 mL, 30.7 mmol) and 

stirred for 2 hours. The reaction was concentrated in vacuo and the crude 

residue was diluted with ethyl acetate (200 mL). The solution was treated by the 

slow addition of an ammonium chloride: ammonium hydroxide mixture (1:1) (200 

mL). The organic phase was separated and washed again with the ammonium 

chloride: ammonium hydroxide solution (2x 100 mL), water (50 mL) and brine 

(50 mL) sequentially. The organic layer was dried over sodium sulfate and 

concentrated under vacuum. The crude residue was purified by flash column 

chromatography (silica gel, 50% diethyl ether in petroleum ether) to yield 502 

mg (28%) of known oxazole 270 as a white solid. 

Procedure B.            

A 0 oC solution of 2-methyl-4,5-dihydro-oxazole-4-carboxylic acid methyl ester 

279 (11.5 g, 80.3 mmol) in dichloromethane (250 mL) was treated with 1,8-

diazabicyclo[5.4.0]undec-7-ene  (23.9 mL, 160 mmol) and stirred for 10 min. 

Trichlorobromomethane (8.68 mL, 88 mmol), was then added to the reaction 

mixture and the resulting solution stirred at 0 oC for 1 hour. The mixture was 

then warmed to room temperature and stirred until completion as indicated by 

TLC analysis (9 h). The solvent was evaporated under reduced pressure and 

crude residue was purified by flash column chromatography (silica gel, 50% 

diethyl ether in petroleum ether) to give 6.49 g (55%) of oxazole 270 as a white 

solid.                             
1H NMR (CDCl3, 400 MHz) δ: 8.07 (1H, s, Ar-H), 3.84 (3H, s, (Ar-H), 2.45 (3H, s, 

Ar-H).                   
13C NMR (CDCl3, 100 MHz) δ: 162.4 (CO2CH3), 161.7 (Ar-C), 143.8 (Ar-C), 120.2 

(Ar-C), 52.2 (CO2CH3), 13.9 (Ar-CH3).                

m/z [EI+] 141.07 [M]+ (76%), 110.04 [M-CH3O]+ (100%). HRMS found 141.0423, 

C6H7NO3 requires 141.0426 [M]+.               

υmax (neat)/cm-1; 2923, 1734, 1639, 1440. 
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(2-Methyloxazol-4-yl)methanol, 280.173 

 
To a -78 oC solution of 2-methyl-oxazole-4-carboxylic acid methyl ester 270 

(5.44 g, 38.5 mmol) in dichloromethane (200 mL) was added diisobutylaluminium 

hydride (78.9 mL, 78.9 mmol, 1.0 M in dichloromethane) and stirred for 3 hours. 

The reaction mixture was warmed up to 0 oC then diluted with diethyl ether (100 

mL) and treated with the sequential addition of water (3.2 mL), 15% aq sodium 

hydroxide (3.2 mL) and water (6.3 mL). The resulting suspension was stirred at 0 
oC for 30 minutes and then treated with sodium sulfate. The mixture was 

warmed to room temperature and then stirred for a further 30 minutes. The 

solids were filtered off and the solvent evaporated in vacuo.  The crude residue 

obtained was purified by flash column chromatography (silica gel, 60% ethyl 

acetate in petroleum spirits) to yield 3.51 g (82%) of 2-methyl-oxazole-4-

methanol 280 as a clear oil.                 
1H NMR (CDCl3, 400 MHz) δ: 7.41 (1H, s, Ar-H), 4.8 (2H, s, CH2OH), 3.66 (1H, bs, 

OH), 2.38 (3H, s, Ar-CH3).                 
13C NMR (CDCl3, 100 MHz) δ: 162.2 (Ar-C), 140.2 (Ar-C), 134.8 (Ar-C), 56.1 

(CH2OH), 13.8 (Ar-CH3).               

m/z [CI+ (+ve) isobutane]  114.15 [M+H]+ (100%), 96.14 [M+H-H2O)]+ (16%). HRMS 

found  114.0556, C5H8NO2 requires 114.0556 [M+H]+.             

υmax (neat)/cm-1; 3387, 2933, 1648, 1443. 

2-Methyl-oxazole-4-carbaldehyde, 281.173 

 
A -78 oC solution of oxalyl chloride (0.73 mL, 1.46 mmol) in anhydrous 

dichloromethane (5 mL) was treated with dimethylsulfoxide (0.21 mL, 2.92 

mmol) and stirred for 30 minutes. A solution of 2-methyl-oxazole-4-methanol 

280 (110 mg, 1.46 mmol) in dichloromethane (5 mL) was then cannulated slowly 

into the reaction mixture and the reaction stirred for 1 hour at -78 oC. 

Triethylamine (0.61 mL, 4.38 mmol) was then added to the reaction, which was 

allowed to warm to room temperature and stirring continued for a further 2 

hours.         The reaction was diluted with dichloromethane (5 mL) and quenched 
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by the addition of 2 M HCl (5 mL).  The resulting biphasic mixture was extracted 

into dichloromethane (5 mL) and the combined organic phases were washed with 

saturated aqueous sodium sulfate (10 mL), water (2 x 10 mL), brine (10 mL) and 

dried over sodium bicarbonate. Solvent removal in vacuo followed by 

purification of the crude residue by flash column chromatography (silica gel, 30% 

ethyl acetate in petroleum spirits) yielded 87 mg (81%) of aldehyde 281 as a 

brown solid (m.p. 65-69 oC).                 
1H NMR (CDCl3, 400 MHz) δ: 9.90 (1H, s, CHO), 8.16 (1H, s, Ar-H), 2.54 (3H, s, Ar-

CH3).                    
13C NMR (CDCl3, 100 MHz) δ: 183.8 (CHO), 163.1 (Ar-C), 144.5 (Ar-C), 140.9 (Ar-

C), 13.8 (Ar-CH3).               

m/z [EI+(+ve)] 111.06 [M]+ (100%). HRMS found 111.0318, C8H11NO2 requires 

111.0320 [M]+.                  

υmax (neat)/cm-1; 2983, 1690, 1647, 1444, 1107. 

2-Methyl-(E)-3-(2-methyl-oxazol-4yl)-acrylic acid ethyl ester, 282.  

 
To a refluxing solution of 2-methyl-oxazole-4-carbaldehyde, 281 (2.31 g, 24 

mmol) in toluene (100 mL) was added (carbethoxyethylidene) 

triphenylphosphorane (17.25 g, 47.6 mmol) in three portions over 30 min. The 

resulting reaction mixture was refluxed for 3 hours before it was cooled down to 

room temperature and the solvent evaporated under reduced pressure.  The 

crude residue was then loaded directly onto silica and purified by flash column 

chromatography (silica gel, 20% ethyl acetate in petroleum spirits) to give 3.15 g 

(96%) of the desired olefin 282 as a yellow oil and as a single E isomer.               
1H NMR (CDCl3, 400 MHz) δ: 7.68 (1H, s, Ar-H), 7.43 (1H, d, J = 0.7 Hz, CHCCH3), 

4.24 (2H, q, J = 7.1 Hz, CH2CH3), 2.48 (3H, s, Ar-CH3), 2.20 (3H, d, J = 1.2 Hz, 

CCH3), 1.32 (3H, t, J = 7.1 Hz, CH2CH3).               
13C NMR (CDCl3, 100 MHz) δ: 168.3 (CO2CH2), 161.5 (Ar-C), 138.9 (Ar-C), 137.6 

(Ar-C), 128.8 (CCH3), 127.3 (CHCCH3), 60.9 (CH2CH3), 14.5 (Ar-CH3), 14.3 (CCH3), 

13.9 (CH2CH3).                  

m/z [CI+ (+ve), isobutane] 196.25 [M]+ (100%). HRMS found 196.0976, C10H14NO3 
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requires 196.0974 [M+H]+.                  

υmax (neat)/cm-1; 2983, 1690, 1647, 1444, 1107 

2-Methyl-(E)-3-(2-methyl-oxazol-4-yl)-prop-2-en-1-ol, 283.  

 
(E)-2-Methyl-3-(2-methyl-oxazol-4yl)-acrylic acid ethyl ester 282 (2.74 g, 14.4 

mmol) was dissolved in anhydrous dichloromethane (75 mL) and cooled to -78 oC. 

The solution was treated with diisobutylaluminium hydride (30.9 mL, 1.0 M soln. 

in dichloromethane, 30.9 mmol) and stirred at -78 oC for 2 hours. The reaction 

mixture was warmed up to 0 oC and diluted with diethyl ether (75 mL) before 

being quenched by the sequential addition of water (1.1 mL), 15% aq sodium 

hydroxide (1.1 mL) and water (2.7 mL). The resulting cloudy suspension was 

stirred for 30 minutes, treated with sodium sulfate and then stirred for a further 

30 minutes. The resulting suspension was filtered through celite and washed 

with diethyl ether (3x 50 mL).  The combined organic phases were concentrated 

in vacuo and the residual clear oil was purified by flash column chromatography 

(silica gel, 30% ethyl acetate in petroleum spirits) to yield 2.10 g (98%) of the 

desired (E)-2-methyl-3-(2-methyl-oxazol-4-yl)-prop-2-en-1-ol 283 as a colourless 

oil.                    
1H NMR (CDCl3, 400 MHz) δ: 7.48 (1H, s, Ar-H), 6.29 (1H, s, CHCCH3), 4.17 (2H, s, 

CH2OH), 2.46 (3H, s, Ar-CH3), 1.98 (3H, s, CCH3), 1.89 (H, bs, OH).                    
13C NMR (CDCl3, 100 MHz) δ: 160.9 (Ar-C), 139.6 (CCH3), 137.7 (CHCCH3), 135.3 

(Ar-C), 114.2 (CHCCH3), 68.3 (CH2OH), 16.1 (Ar-C), 13.8 (CCH3).       

m/z [EI+(+ve)]  153.13 [M]+ (100%), 135.12 [M-H2O]+(90%). HRMS found 153.0793, 

C8H11NO2 requires 153.0790 [M]+.                

υmax (neat)/cm-1; 3607, 1642, 1442. 

2-Methyl-3-(2-methyl-oxazol-4-yl)-propan-1-ol, 284. 

 
Procedure A             

A solution of (E)-2-methyl-3-(2-methyl-oxazol-4-yl)-prop-2-en-1-ol 283 (142 mg, 

0.93 mmol) in methanol (30 mL) was placed in an H-Cube flow hydrogenator over 
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10% palladium on carbon catalyst, at 40 bar and 35 oC.  The reaction was cycled 

for 3 hours before the hydrogenation was stopped and the solvent evaporated 

under reduced pressure to yield 140 mg (97%) of the desired 2-methyl-3-(2-

methyl-oxazol-4-yl)-propan-1-ol 284 as a colourless oil, which could be used 

without the need of further purification. 

Procedure B             

A solution of (E)-2-methyl-3-(2-methyl-oxazol-4-yl)-prop-2-en-1-ol 283 (2.05 g, 

13.39 mmol) in absolute ethanol (130 mL) was charged with palladium on carbon 

(10% Pd on activated carbon, 134 mg).  The reaction was then placed under a 

hydrogen atmosphere and stirred until completion as indicated by TLC analysis 

(2 h).  The suspension was filtered through celite and the filtrate concentrated 

under vacuum.  The crude residue was purified via flash column chromatography 

(silica gel, elution gradient 50% to 70% diethyl ether in petroleum spirits) to give 

1.99 g (96%) of the desired 2-methyl-3-(2-Methyl-oxazol-4-yl)-propan-1-ol 284 as 

a colourless oil. 

Procedure C            

A solution of (E)-2-methyl-3-(2-methyl-oxazol-4-yl)-prop-2-en-1-ol 283 (8.93 g, 

45.7 mmol) in tetrahydrofuran (280 mL) was cooled to 0 oC and treated with 

lithium aluminium hydride (18.3 mL, 64 mmol, 3.5 M in tetrahydrofuran) and 

stirred for 4 hours. The reaction mixture was diluted with diethyl ether (75 mL) 

before being quenched by the sequential addition of water (2.4 mL), 15% aq 

sodium hydroxide (3.0 mL) and water (7.3 mL). The resulting cloudy suspension 

was stirred for 30 minutes, treated with sodium sulfate and then stirred for a 

further 30 minutes. The resulting suspension was filtered through celite and 

washed with diethyl ether (3 x 50 mL).  The combined organic phases were 

concentrated under vacuo and the residual clear oil was purified by flash column 

chromatography (silica gel, 30% ethyl acetate in petroleum spirits) to yield 3.63 

g (50%) of the desired alcohol 2-methyl-3-(2-Methyl-oxazol-4-yl)-propan-1-ol 284 

as a colourless oil.                  
1H NMR (CDCl3, 400 MHz) δ: 7.32 (1H, t, J = 0.9 Hz, Ar-H), 3.59 (1H, dd, J = 11.2, 

4.9 Hz, CH2OH), 3.48 (1H, dd, J = 11.7, 6.8 Hz, CH2OH), 2.64 (1H, bs, OH), 2.54 

(2H, dd, J = 6.3, 0.9 Hz, CHCH2 ), 2.46 (3H, s, Ar-H), 2.07-1.99 (1H, m, CHCH3), 

0.95 (3H, d, J = 6.8 Hz, Ar-CH3).                
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13C NMR (CDCl3, 100 MHz) δ: 161.4 (Ar-C), 138.4 (Ar-C), 134.6 (Ar-C), 67.3 

(CH2OH), 35.1 (CH2CH), 29.9 (CHCH2), 16.7 (CHCH3), 13.9 (C-CH3).                   

m/z [EI+(+ve)] 155.15 [M]+ (100%), 138.15 [M-OH]+ (16%). HRMS found 155.0943, 

C8H13NO2 requires 155.0946 [M]+.                        

υmax (neat)/cm-1; 2992, 1638, 1461. 

2-Methyl-3-(2-methyl-oxazol-4-yl)-propionaldehyde, 285 

 
Procedure A            

A -78 oC solution of oxalyl chloride (17.07 mL, 34.14 mmol) in anhydrous 

dichloromethane (50 mL) was treated with dimethylsulfoxide (5.27 mL, 68.1 

mmol) and stirred for 30 minutes. A solution of 2-methyl-3-(2-methyl-oxazol-4-

yl)-propan-1-ol 284 (3.53 g, 22.7 mmol) in dichloromethane (50 mL) was then 

cannulated slowly into the reaction mixture and the reaction stirred for 1 hour 

at -78 oC. Triethylamine (14.2 mL, 102.15 mmol) was then added to the reaction 

and stirring was continued at room temperature for a further 2 hours. The 

reaction was diluted with dichloromethane (50 mL) and quenched by the 

addition of 2 M hydrochloric acid solution (50 mL).  The resulting biphasic 

mixture was extracted with dichloromethane (50 mL) and the combined organic 

phases were washed with saturated aqueous sodium bicarbonate (50 mL), water 

(2x 50 mL), brine (50 mL) and dried over sodium sulfate. The solvents were 

removed under educed pressure and the crude residue was purified via flash 

column chromatography (silica gel, elution 50% diethyl ether in petroleum 

spirits) to give 1.82 g (52%) of the desired aldehyde 285 as a colourless oil. 

Procedure B                     

A stirred solution of iodoxybenzoic acid (542 mg, 1.94 mmol) in 

dimethylsulfoxide (5 mL) was treated with a solution of 2-methyl-3-(2-methyl-

oxazol-4-yl)-propan-1-ol 284 (201 mg, 1.29 mmol) in dimethylsulfoxide (2 mL) 

and stirred until completion (3 hours) by TLC analysis. The reaction was diluted 

with diethyl ether (10 mL) and quenched by the addition of water (5 mL) and 

extracted into diethyl ether. The combined organic extracts were washed 

sequentially with water (3 x 10 mL), saturated aqueous sodium bicarbonate 
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solution (10 mL) and brine (10 mL). The organic layer was dried over sodium 

sulfate and the solvents were removed under reduced pressure. The crude 

residue obtained was purified via flash column chromatography (silica gel, 

elution with 50% diethyl ether in petroleum spirits) to give 169 mg (85%) of 

aldehyde 285 as a colourless oil.                
1H NMR (CDCl3, 400 MHz) δ: 9.72 (1H, d, J = 1.3 Hz, CHO), 7.29 (1H, t, J = 0.9 

Hz, Ar-H), 2.90 (1H, ddd, J = 14.7, 6.5, 1.0 Hz, CHCH2), 2.82-2.73 (1H, m, 

CHOCH), 2.52 (1H, ddd, J = 14.7, 7.0, 0.9 Hz, CHCH2), 2.41 (3H, s, Ar-CH3), 1.12 

(3H, d, J = 7.1 Hz, CHCH3).                
13C NMR (CDCl3, 100 MHz) δ: 204.1 (CHO), 161.5 (Ar-C), 137.6 (Ar-C), 134.7 (Ar-

C), 45.4 (CHCH3), 27.0 (CH2), 13.9 (Ar-CH3), 13.3 (CHCH3).          

υmax (neat)/cm-1, 2975, 2934, 1719, 1652, 930. 

4-Hydroxy-3-((S)-1-(2-methyloxazol-4-yl)propan-2-yl)isochroman-1-ones, 289 

and 290.  

 
Keto-lactones 287 and 288 were prepared using the general procedure for the 

preparation of lactones, starting from a solution of acetal 230 (1.36 g, 9.04 

mmol) in tetrahydrofuran (45 mL) and diisopropylamine (254 µL, 1.81 mmol); 

methyl lithium (12.4 mL, 19.9 mmol); 2-methyl-3-(2-methyl-oxazol-4-yl)-

propionaldehyde, 285 (1.8 g, 11.8 mmol).  The oxidative rearrangement was 

performed using 3-chloroperoxybenzoic acid (2.43 g, 10.9 mmol); in 

dichloromethane (45 mL).  Oxidation was achieved on a solution of crude lactol 

(2.46 g, 8.28 mmol); in acetone (41 mL) using 2.5 M Jones (6.62 mL, 16.6 mmol) 

to generate 1.57 g of the desired keto-lactone intermediates 287 (anti) and 288 

(syn) (61%) in a 3:2 ratio of diastereoisomers.          

Isochroman-1-ones, 289 and 290 were prepared using the general procedure for 

the reduction of lactones to iso-chroman-1-ones, starting from a solution of the 

keto-lactones 287 and 288 (1.46 g, 5.08 mmol) in dichloromethane (25 mL) and 

using cerium(III) chloride (25.4 mL, 10.2 mmol, 0.4 M in methanol) and sodium 

borohydride (288 mg, 10.2 mmol). Purification was achieved by flash column 

chromatography (silica gel, 50% ethyl acetate in petroleum spirits) to afford 1.26 
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g (86%) of the desired isochromanones 289 and 290 as a 3:2 (syn,anti:syn,syn) 

mixture of diastereoisomers from which the (syn,anti) diastereoisomer could be 

crystallized out (diethyl ether: petroleum spirits).  It must be noted that 

extended exposure to silica gel resulted in extensive compound decomposition. 

(3S,4S)-4-Hydroxy-3-[(S)-1-methyl-2-(2-methyl-oxazol-4-yl)-ethyl]-

isochroman-1-one, 289 (syn,anti). 

 
1H NMR (CDCl3, 400 MHz) δ: 8.10 (1H, dd, J = 7.3 Hz, Ar-H), 7.64 (1H, dt, J = 7.5, 

1.2 Hz, Ar-H), 7.51 (1H, dt, J = 7.7, 1.3 Hz, Ar-H), 7.48 (1H, d, J = 7.5 Hz, Ar-H), 

7.31 (1H, s, Ar-H), 4.77 (1H, s, CHOH), 4.20 (1H, dd, J = 8.9, 1.4 Hz, CHCH), 

3.83 (1H, bs, OH), 3.16 (1H, dd, J = 14.4, 2.9, CHCH2), 2.64-2.28 (1H, m, 

CHCH3), 2.48 (1H, dd, J = 14.4, 8.7 Hz, CHCH2), 2.24 (3H, s, Ar-CH3), 1.09 (3H, 

d, J = 6.8 Hz, CHCH3).                          
13C (CDCl3, 100 MHz) δ: 164.8 (CO2CH), 161.3 (Ar-C), 140.4 (Ar-C), 138.4 (Ar-C), 

134.9 (Ar-C), 134.2 (Ar-C), 130.4 (Ar-C), 129.8 (Ar-C), 128.0 (Ar-C), 124.5 (Ar-C), 

84.3 (CHOH), 65.5 (CHCH), 33.4 (CHCH2), 28.2 (CHCH3), 15.5 (CHCH3), 13.7 (Ar-

CH3). 

(3R,4R)-4-Hydroxy-3-[(S)-1-methyl-2-(2-methyl-oxazol-4-yl)-ethyl]-

isochroman-1-one, 290 (syn,syn). 

 
1H NMR (CDCl3, 400 MHz) δ: 8.09 (1H, d, J = 7.5 Hz, Ar-H), 7.64-7.59 (1H, m, Ar-

H), 7.50-7.46 (2H, m, Ar-H), 7.29 (1H, s, Ar-H), 4.98 (1H, m, CHOH), 4.13 (1H, 

dd, J = 9.3, 1.2 Hz, CHCH), 2.71 (1H, dd, J = 14.5, 4.3 Hz, CHCH2), 2.56-2.51 

(1H, m, CHCH3), 2.46 (1H, dd, J = 14.4, 7.1 Hz, CHCH2), 2.21 (3H, s, Ar-CH3), 

1.16 (3H, d, J = 6.6 Hz, CHCH3).                
13C NMR (CDCl3, 100 MHz) δ: 165.1 (CO2CH), 161.9 (Ar-C), 140.6 (Ar-C), 137.7 

(Ar-C), 134.8 (Ar-C), 134.5 (Ar-C), 130.1 (Ar-C), 129.4 (Ar-C), 128.0 (Ar-C), 124.6 



Chapter 3 – Experimental  
 

 122 

(Ar-C), 84.9 (CHOH), 64.6 (CHCH), 32.9 (CHCH2), 28.4 (CHCH3), 15.4 (CHCH3), 

13.6 (Ar-CH3).                

m/z [CI+ (+ve), isobutane]  288 [M+H]+ (100%). HRMS found 288.1238, C16H18O4N 

requires 288.1236 [M+H]+.                           

υmax (neat)/cm-1; 3423, 2930, 1707, 1605, 1460, 1277, 911. 

(3S,4R)-3-((S)-1-(2-methyloxazol-4-yl)propan-2-yl)-1-oxoisochroman-4-yl-4-

nitrobenzoate, 290.  

 
A solution of isochroman-1-one 289 in tetrahydrofuran (2 mL) was treated with 

triphenylphosphine (82 mg, 0.31 mmol) and 4-nitrobenzoic acid (52 mg, 0.31 

mmol) and stirred for 10 minutes at room temperature. The resulting solution 

was treated dropwise with diisopropylazodicarboxylate (61 µL, 0.31 mmol) and 

stirred for a further 12 hours. The solvent were evaporated under reduced 

pressure and the crude residue purified by flash column chromatography (silica 

gel, 20% to 60% ethyl acetate in petroleum spirits) to give 53 mg of 4-nitrobenzyl 

ester 290 (62%) as a clear oil.                          
1H NMR (CDCl3, 400 MHz) δ: 8.24 (2H, d, J = 8.8 Hz, Ar-H), 8.17 (2H, d, J = 9.2 

Hz, Ar-H), 8.11 (1H, d, J = 7.6 Hz, Ar-H), 7.57 (1H, dt, J = 9.6, 2.0 Hz, Ar-H), 

7.48 (1H, m, Ar-H), 7.30 (1H, d, J = 8.0 Hz, Ar-H), 7.28 (1H, s, Ar-H), 6.41 (1H, 

d, J = 6.4 Hz, CHOCO), 4.61 (1H, dd, J = 6.8, 4.8 Hz, CHCH), 2.67 (1H, dd, J = 

14.8, 7.2 Hz, CHCH2),2.32 (1H, m, CHCH3), 2.25-2.19 (1H, m, CHCH2), 2.12 (3H, 

s, Ar-CH3), 0.97 (3H, d, J = 6.8 Hz, CHCH3).              
13C NMR (CDCl3, 100 MHz) δ: 164.9 (CO2CH), 163.6 (PhCO2), 161.7 (Ar-C), 150.9 

(Ar-C), 137.5 (Ar-C), 136.3 (Ar-C), 135.2 (Ar-C), 134.4 (Ar-C), 134.3 (Ar-C), 131.2 

(Ar-C), 130.6 (Ar-C), 129.9 (Ar-C), 126.7 (Ar-C), 124.5 (Ar-C), 123.8 (Ar-C), 82.4 

(CHOH), 68.1 (CHCH), 33.6 (CHCH2), 29.7 (CHCH3), 14.4 (CHCH3), 13.9 (Ar-CH3). 

m/z [CI+ (+ve), isobutane]  437 [M+H]+ (100%). HRMS found 437.1346, C23H21O7N2 

requires 437.1349 [M+H]+.                

υmax (neat)/cm-1; 2981, 1726, 1607, 1530, 1266. 
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4-Ethyl-1-(3-hydroxy-2-methyl-oxiranyl)-3a-propyl-5,9b oxa-3a,4,5,9b-

tetrahydro-1H-naphtho[1,2-c]furan-3-one, 298. 

O

O

O

O

 
298 was prepared using general procedure for the preparation of lactones, 

starting from a solution of acetal 230 (876 mg, 5.83 mmol) in tetrahydrofuran 

(30 mL) and diisopropylamine (164 µL, 1.17 mmol); methyl lithium (8.01 mL, 

12.8 mmol); tiglic aldehyde (676 µL, 6.99 mmol). The oxidative rearrangement 

was performed using 3-chloroperoxybenzoic acid (1.57 g, 6.99 mmol); in 

dichloromethane (30 mL).  Oxidation was achieved on a solution of crude lactol 

(1.28 g, 5.89 mmol); in acetone (30 mL) using 2.5 M Jones (4.71 mL, 11.8 mmol). 

The crude residues were reacted using general the general procedure for the 

reduction of lactones to iso-chroman-1-ones, starting from 298 (1.10 g, 5.06 

mmol) in dichloromethane (25 mL) and using cerium(III) chloride (25.3 mL, 10.1 

mmol, 0.2 M in methanol) and sodium borohydride (287 mg, 7.59 mmol). 

Purification of the crude residue by flash column chromatography (silica gel, 20% 

ethyl acetate in petroleum spirits) gave 152 mg of 298 as a yellow solid (m.p. 

87-94 oC) in 8% yield.                               
1H NMR (400 MHz, CDCl3): δ 7.52-7.49 (1H, m, Ar-H), 7.31-7.27 (3H, m, Ar-H), 

5.14 (1H, d, J = 4.6 Hz, ArCHCH), 4.54 (1H, s, CHOCO), 3.16 (1H, q, J = 5.5 Hz, 

CHCHCH3), 2.91 (1H, oct, J = 3.8 Hz, CH3CHC), 1.59 (3H, s, CCH3), 1.45 (3H, d, J 

= 5.4 Hz, CH3CH), 0.74 (3H, s, epoxideCH3), 0.69 (3H, d, J = 7.3 Hz, CHCHCH3). 
13C NMR (100 MHz, CDCl3): δ 179.6 (CO2C), 142.9 (Ar-C), 139.1 (Ar-C), 127.3 (Ar-

C), 127.2 (Ar-C), 122.4 (Ar-C), 121.8 (Ar-C), 97.5 (CCO), 85.8 (ArCO), 82.1 

(ArCO), 59.5 (CHCCH3), 57.5 (CH3CHO), 52.5 (OCCH), 42.1 (CHCHCH3), 16.5 

(OCCH3), 14.6 (CH3CH), 13.7 (COCCH3), 11.7 (CHCH3).           

m/z [CI+ (+ve), (isobutane)] 301.3 [M+H]+ (100%), [FAB+ (NOBA)] 301.3 [M+H]+ 

(100%).                   

vmax (film)/ cm−1: 2913, 1747, 1571, 1109, 1059.  
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3-(tetrahydro-2H-pyran-2-yloxy)propan-1-ol, 306.179 

 
To a stirred solution of 1,3-propane diol 305 (5.01 g, 65.7 mmol) in 

tetrahydrofuran (165 mL) at 0 oC was added para-toluene sulfonic acid (2.53 g, 

13.1 mmol) and stirred for 10 minutes. The resulting opaque solution was 

treated with dihydropyran (6.1 mL, 67.0 mmol) in 3 portions over 30 minutes. 

The solution was stirred for 12 hours and then quenched with saturated aqueous 

sodium hydrogen carbonate solution (10 mL). Diethyl ether (50 mL) was added 

and the biphasic mixture stirred for 30 minutes. The organic layer was extracted 

and washed with water (2x 40 mL), dried over saturated sodium sulfate and 

concentrated in vacuo. Purification by flash column chromatography (silica gel, 

elution with 60% diethyl ether in petroleum spirit) yielded 5.82 g (55%) THP 

ether 306 as a clear oil.           
1H NMR (CDCl3, 400 MHz) δ: 4.58 (1H, bs, OCHO), 3.94-3.76 (4H, m, HOCH2 & 

CHOCH2), 3.60-3.48 (2H, m, CH2CH2CH), 2.77 (1H, bs, OH), 1.87-1.69 (4H, m, 

Alkyl-H), 1.57-1.52 (4H, m, Alkyl-H).               
13C NMR (CDCl3, 100 MHz) δ: 99.1 (OCHO), 66.1 (CH2CH2O), 62.6 (CHOCH2), 61.3 

(HOCH2), 32.1 (HOCH2CH2), 30.6 (CHCH2CH2), 25.3 (CH2CH2CHO), 19.7 

(CHCH2CH2).                        

m/z [CI+ (+ve), isobutane] 161.3 [M+H]+ (100%). HRMS found 161.1175, C8H17NO3 

requires 161.1178 [M+H]+.               

υmax (neat)/cm-1: 3433, 2943, 1137, 1074 

2-(3-bromopropoxy)tetrahydro-2H-pyran, 307. 

 
A solution of 3-(tetrahydro-2H-pyran-2-yloxy)propan-1-ol, 306.82 g, 36.4 mmol) 

in dichloromethane (360 mL) was treated with carbon tetrabromide (36.2 g, 

109.2 mmol) and triphenylphosphine (28.6 g, 109.2 mmol) and stirred for 3 

hours. Once complete by TLC analysis, the solvent was evaporated under 

reduced pressure and the solids formed were adsorbed directly onto silica. 

Purification by flash column chromatography (silica gel, 40-50 % 

dichloromethane in petroleum spirits) gave 2.40 g (29%) of alkylbromide 307.          
1H NMR (CDCl3, 400 MHz) δ: 4.61 (1H, t, J = Hz, OCHO), 3.90-3.84 (2H, m, 
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CHOCH2), 3.56-3.49 (4H, m, BrCH2CH2 & CH2CH2O), 2.14 (2H, quint, J = 6.2 Hz, 

CH2CH2CH2), 1.83-1.79 (1H, m, CHCH2CH2), 1.74-1.69 (1H, m CHCH2CH2), 1.59-

1.52 (4H, m, Alkyl-H).          
13C NMR (CDCl3, 100 MHz) δ: 98.9 (OCHO), 64.9 (CH2CH2O), 62.2 (CHOCH2), 32.9 

(BrCH2), 30.7 (BrCH2CH2), 30.6 (CHCH2CH2), 25.4 (CH2CH2CHO), 19.5 (CHCH2CH2). 

m/z [CI+ (+ve), isobutane] 223.3 [M+H]+ (100%).              

υmax (neat)/cm-1: 2861, 1381, 1126, 1201 

Toluene-4-sulfonic acid 3-(tetrahydro-pyran-2-yloxy)-propyl ester, 308.179 

 
To a stirred solution of 3-(tetrahydro-2H-pyran-2-yloxy)propan-1-ol, 306 (998 

mg, 6.23 mmol) in diethyl ether (31 mL) 0 oC was added tosyl chloride (1.3 g, 6.5 

mmol) and stirred for 10 minutes. Freshly powdered potassium hydroxide (699 

mg, 12.5 mmol) was added in 3 portions over 30 minutes, then stirred for 12 

hours. Water (10 mL) and diethyl ether (10 mL) were added to quench and the 

organic layer separated washed with water (2x 20 mL), dried over anhydrous 

sodium sulfate and concentrated in vacuo. Purification by flash column 

chromatography (elution with 30% diethyl ether in petroleum spirit) yielded 308 

as a clear oil (1.34 g) in 68% yield.                 
1H NMR (CDCl3, 400 MHz) δ: 7.79 (2H, d, J = 8.3 Hz, Ar-H), 7.33 (2H, dd, J = 8.5, 

0.4 Hz, Ar-H), 4.46-4.44 (1H, m, OCHO), 4.20-4.11 (2H, m, SOCH2CH2), 3.78-3.71 

(2H, m, CH2CH2CH2), 3.48-3.35 (2H, m, OCH2CH2), 2.44 (3H, s, Ar-CH3), 1.95-1.88 

(2H, m, CHCH2CH2), 1.63-1.42 (6H, m, Alkyl-H).            
13C NMR (CDCl3, 100 MHz) δ: 144.7 (Ar-C), 133.2 (Ar-C), 129.8 (2x Ar-C), 127.9 

(2x Ar-C), 98.9 (OCHO), 67.7 (SOCH2CH2), 62.8 (CHOCH2), 62.2 (CH2CH2O), 30.5 

(CHCH2CH2), 29.3 (CH2CH2CH2), 25.4 (OCH2CH2), 21.6 (CH3), 19.4(CHCH2CH2). 

m/z [CI+ (+ve), isobutane] 231.3 [M+H-THP]+ (100%), 315.5 [M+H]+ (36%). HRMS 

found 315.1263, C15H23O5S requires 315.1266 [M+H]+.            

υmax (neat)/cm-1: 2943, 1597, 1359, 1176, 943. 
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2-Hepta-4,6-diynyloxy-tetrahydro-pyran, 310.180 

 
To a stirred solution of 1,4-bis(trimethylsilyl)butadiyne 309 (1 eq) in anhydrous 

tetrahydrofuran (0.2 M) at room temperature was added methyl lithium lithium 

bromide (1.1 eq). The reaction was stirred at room temperature for 5 hours, 

then cooled to -78 oC at which point hexamethylphosphoramide (2 eq) was 

addedTHP ether (1.0 eq) was added slowly over 20 minutes. The reaction was 

stirred for 8 hours and allowed to attain room temperature over that period. 

Once complete by TLC analysis saturated aqueous ammonium chloride solution 

(20 mL) and diethyl ether (20 mL) were added. The organic layer was separated. 

The black residue obtained was dissolved in methanol (0.2 M) and potassium 

carbonate (1.2 eq) was added. The reaction was stirred for 12 hours then diluted 

with diethyl ether (20 mL) and water (20 mL). The organic layer was separated 

then washed with water (2x 20 mL) then dried over anhydrous sodium sulfate 

and concentrated in vacuo. Purification by flash column chromatography (elution 

with 2-5% diethyl ether in petroleum spirit) yielded 310 as a clear oil. 

Using bromide 307                

1,4-bis(trimethylsilyl)butadiyne (1.75 g, 9.01 mmol), methyl lithium lithium 

bromide (6.6 mL, 9.91 mmol, 1.5 M in diethyl ether), tetrahydrofuran (45 mL), 

hexamethylphosphoramide (3.14 mL, 18.0 mmol), 2-(3-

bromopropoxy)tetrahydro-2H-pyran 311 (2.00 g, 9.01 mmol, 1M in 

tetrahydrofuran) then methanol (45 mL), potassium carbonate (1.49 g, 10.8 

mmol) giving 650 mg of 310 as a clear oil in 38% yield. 

Using Tosylate 308                

1,4-bis(trimethylsilyl)butadiyne (787 mg, 4.06 mmol), methyl lithium lithium 

bromide (2.98 mL, 4.74 mmol, 1.5 M in diethyl ether), tetrahydrofuran (20 mL), 

hexamethylphosphoramide (1.41 mL, 8.12 mmol), toluene-4-sulfonic acid 3-

(tetrahydro-pyran-2-yloxy)-propyl ester (1.28 g, 4.06 mmol, 1M in 

tetrahydrofuran) then methanol (20 mL), potassium carbonate (673 mg, 4.87 

mmol) giving 611 mg of 310 as a clear oil in 78% yield. 
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1H NMR (CDCl3, 400 MHz) δ: 4.58 (1H, d, J = 4.1 Hz, OCHO), 3.87-3.77 (2H, m, 

CHOCH2), 3.52-3.42 (2H, m, CH2CH2O), 2.39 (2H, t, J = 7.0 Hz, CCCH2), 1.95 (1H, 

s, CCCH), 1.85-1.77 (3H, m, CCH2CH2 & CHCH2CH2), 1.73-1.67 (1H, m, 

CHCH2CH2), 1.57-1.50 (4H, m, Alkyl-H).              
13C NMR (CDCl3, 100 MHz) δ: 98.8 (OCHO), 77.8 (CCCH2), 68.4 (CCCH2), 65.6 

(HCC), 64.9 (HCC), 64.6 (CH2CH2CH2), 62.2 (CHOCH2), 30.6 (CHCH2CH2), 28.3 

(CH2CH2CH2), 25.5 (OCH2CH2), 19.5 (CHCH2CH2), 16.0 (CCCH2)        

m/z [CI+ (+ve), isobutane] 193.3 [M+H]+ (100%). HRMS found 193.1228, C12H17O2 

requires 193.1229 [M+H]+.                

υmax (neat)/cm-1: 2947, 1581, 1182 
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Spirocyclic Pyrans: Towards 

Polymaxenolide  
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4. Introduction 

4.1. Spirocyclic pyrans 

Spirocyclic pyrans and piperidines have been reported in a number of highly 

active natural products and synthetic/semisynthetic derivatives, such as 

Polymaxenolide, pinnaic acid 335 and a number of spirocyclic saccharides and 

nucleosides 336.195-197 
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Figure 4.1. Pinnaic acid 335, spirocyclic glycosides 336, Halichlorine 337. 
 
Polymaxenolide is particularly interesting because of its structural complexity 

that incorporates a novel fusion between uncommon terpene building blocks.  

4.2. Isolation and characterization 

Corals constitute a significant proportion of the tropical reef biomass. One of the 

most abundant soft corals is of the genus Sinularia, which tends to form large 

mono-specific carpets of up to 10 m2. Soft corals are a group of cnidarians, 

organisms possessing a cnidocyte, a type of venomous cell that allows the 

organism a method of catching prey and the ability to defend themselves against 

predators. Soft corals are known to produce classes of complex secondary 

metabolites such as sesquiterpenes and diterpenes with a wide variety of carbon 

skeletons and a range of biological activities.198,199  



Chapter 4 – Spirocyclic Natural Products  

 130 

 
Figure 4.2. Sinularia maxima (left)200 and Sinularia polydactyla (right).201  

 
Studies on Sinularia species secondary metabolites highlighted the 

ichthyotoxicity of the aqueous extracts of some 160 soft corals from all known 

coral families.202 The ichthyotoxicity for the Sinularia genus was 63% (the 

average across all sampled was 60%), however the Sinularia species were 

disproprotionately represented in the most toxic group of extracts (50% of the 

Sinularia genus were amongst the most toxic, all fish treated with these 

metabolites were dead within 45 min).199  

Of the secondary metabolites characterised from the Sinularia species, 

Polydactins A 338 and B 339 have been highlighted due to there biological 

activities and relatively small size. Isolated from Sinularia polydacylya 

(Ehreberg), taken from the South China Sea, the polydactins have moderate to 

weak cytotoxic activity against KB and MCF cell lines. Polydactin A showed the 

stronger activity against both carcinoma cell lines (58 and 63 nM respectively) 

while Polydactin B was much less active against the same targets (16 and 21 µM 

respectively).203 

 
Figure 4.3. Polydactins A 338 and B 339. 
 
A further study of the isolation and charcterisation of S.maxima and 

S.polydactyla secondary metabolites by Kamel identified several new 

cembranoid diterpenes (Figure 4.4).204 The cytotoxicities of compounds 340 to 

342 were assessed against a variety of carcinomas, 342 strongly inhibited the 

growth of ovarian, breast, pancreatic, colon and cervical cancer cell lines, with 
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GI50 (concentration of drug required to inhibit the growth of cells by 50% relative 

to untreated cells) values between 39 nM and 0.58 µM.   

 
Figure 4.4. Cytotoxic diterpenes  
 
Polymaxenolide 343 (Figure 4.5) was similarly isolated from soft corals Sinularia 

maxima and Sinularia polydactyla in 2004 by Kamel and co-workers.205 The 

molecule is important because it is composed of a rare fusion between 

uncommon terpene building blocks. The biological properties/activities of 

Polymaxenolide have not yet been reported. 

 
Figure 4.5. Polymaxenolide  
 
4.3. Biosynthesis 

Complex sesquiterpenes and diterpenes are frequently encountered in the 

extracts of soft corals of the genus Sinularia.199               

It is believed Polymaxenolide is a product of hybridisation between 2 terpenes, 

the product of a mixed biosynthetic pathway. It is composed of both cembrane–

type terpene 344 and an africanane-sesquiterpene 345 skeleton, joined through 

a distinct C,C bond linkage. The structural assembly, is the first recorded 

between these two naturally occurring terpenes.  
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Figure 4.6. Africanane-sesquiterpene and cembrane diterpene. 
 
Kamel205 postulated a ‘probable biogenetic route’ to Polymaxenolide 343, in 

which the C5 enolate of 345 attacks the exo-cyclic epoxide methylene carbon of 

344. Nucleophilic attack of the tertiary alkoxide 346 onto the ketone results in 

hemi-acetal formation. Elimination of the hydroxyl results in formation of the 

internal E-olefin and completes the biosynthesis of Polymaxenolide 343.  

 
Scheme 4.1. The mechanism of formation of Polymaxenolide. R = CO2Me. 
 
Harborne and Turner206 hypothesised that the novel hybrid framework of 

Polymaxenolide (and others) can occur via three different mechanisms           

1) Interference with normal biosynthetic pathways resulting in a build-up of 

intermediates.                   

2) Elaboration of pathways leading to combinations of basic parent skeletons and 
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others derived from a second parent                

3) Regulation or disruption (at a genetic level) following hybridization causing 

shifts in where the compound is produced 

4.4. Structural features 

Polymaxenolide 343 presents a highly complex architecture, showcasing 2 

internal Z-olefins (tri substituted, C7-C8 and C12-C13) as well as syn (C2'-C4') 

and anti (C1'-C8') ring junctions. There is also complex cyclic functionality, 6 

different ring structures are present including a 14C macrocycle, 

cyclopropa[e]azulene ring system and an interesting [5.4] spirocyclic pyran core 

that links Polymaxenloides two terpene components (Figure 4.7207).  
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Figure 4.7. X-ray crystallographic structure of Polymaxenolide . 
 
Rather than orientate as Figure 4.5 suggests, the macrocycle sits out of the 

plane, creating a hollow space in the center of the molecule (Figure 4.8). The 

africanane terpene component is almost planar, lying in a perpendicular fashion 

to the cembrane diterpene. 



Chapter 4 – Spirocyclic Natural Products  

 134 

O

H

OO
O

O

2
34

HH

O

O Sp

67

8

9

10
11

13

14

Sp

 
Figure 4.8. Polymaxenolide . Sp = spirocycle 
 
4.5. Spirocyclic pyrans 

There have been many different approaches to the synthesis of spirocyclic 

piperidines, including radical cyclisations,208 nitrone dipolar cycloadditions,209 

amine spiroannulations,210-212 intramolecular Diels Alder,213 tertiary-amine effect 

based approach214 and Michael additions.215,216  There are far fewer 

examples for the preparation of functionalized spirocyclic pyrans and none to 

date detailing the synthesis of Polymaxenolide . 

The approaches to the synthesis of spirocyclic pyrans are more limited in scope 

and suitability. 

4.5.1. Ring closing metathesis 

Olefin metathesis of quaternary alkene ether compounds is a common synthetic 

route in spirocycle generation.  Schmidt has been able to show that spirocyclic 

pyrans can be generated from tetrene ethers.217 In Schmidt’s approach α-

hydroxy carboxylic acid esters 348 and 349 were transformed into the 

corresponding tetrenes 350 and 351 (Scheme 4.2). Ring closing metathesis of 

the polyenes, gave as single diastereoisomers the spirocyclic pyrans 353 and 354 

in poor to acceptable yields.  



Chapter 4 – Spirocyclic Natural Products  

 135 

 
Scheme 4.2. Schmidt’s’ spirocycle methodology. 
 
Schmidt also reported the synthesis of Menthone 354 and Camphor 358 derived 

spirocycles.218 The RCM precursors were made in two steps from the 

corresponding ketone that was alkylated and converted to the requisite ether. 

Metathesis reaction of 355 gave spirocycle 356, interestingly a modification of 

the reaction conditions allowed for the generation of olefin 

isomerisation/reduction product 357 (Scheme 4.4 and Scheme 4.3). 

  
Scheme 4.3. Synthesis of Menthone derived spirocycles 357 and 356.  
 
Similarly Camphor 357 derived diene 359 could be treated with Grubbs first 

generation catalyst to give spirocycle 360. Modifications to the reaction 

conditions resulted in isomerisation of the double bond giving 361 and 362. 
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Scheme 4.4. Synthesis of Camphor derived spirocycles 360, 361 and 362. 
 
Further enhancements to the ring closing metathesis reactions selectivities were 

observed by Shrock and Hoyveda.219 They achieved excellent yields and 

enantioselectivities of conversion using Molybdenum centered catalysts instead 

of Grubbs ruthenium based equivalent.                  

Hoyveda details the in situ generation of 5 molybdenum catalysts and their 

olefin metathesis applications using THF as solvent and additive. Five catalysts 

were tested against different achiral cyclopentenyl ethers, generating 

spirocyclic pyrans via a ring opening/ring closing reaction sequence.             

(Table 4.1) shows results of Hoyveda’s catalyst screen against 5 different 

substrates, the results show reasonable levels of enantioselectivity (62 to 88% 

ee) combined with good to excellent yields. 
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Reaction R Catalyst Catalyst loading Yield e.e.

A H R - 363a 5 mol % 45% 88%

A Me R - 363b 9 mol % 75% 80%

B Me R  - 363c 9 mol % 80% 83%

B TMS S  - 364a 5 mol % 70% 85%

C - S -  364b 5 mol % 90% 62%
a 363a R1 = i Pr, R2 = Ph; 364b R1 = Cl, R2 = Me; 363c R1 = i Pr, R2 = Ph
b 364a R1 = Cl , R2 = Me; 364b R1 = Me, R2 = Ph

 
Table 4.1. The results of Hoyveda’s catalyst screen 
 
4.5.2. Spiroannulation 

Alkyllithium cyclisations onto alkenes or other electrophiles have been well 

documented.220,221 Rychnovsky has shown that alkyllithium spirocyclisations, can 

be performed on a wide selection of electrophile functionality.222,223 However 

this process is rarely applied to complex natural product targets 

 
Scheme 4.5. Treatment of the nitrile with excess lithium tertbutylbiphenyl causes reduction 
of the nitrile.  
 
Alkenes, alkynes, nitriles, halides, phosphonates and epoxides have all been 

validated against Rychnovsky’s method. It was also shown that more complex 
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electrophiles such as allylic ethers are suitable to the reaction sequence 

(Scheme 4.6). 

 
Scheme 4.6. Rychnovsky’s method. 
 
4.5.3. Prins cyclisations 

The Prins reaction of homoallylic alcohols (nucleophiles) and aldehydes 

producing functionalised tetrahydropyrans is one of the most widely documented 

methods.224-228 Lewis acids are utilized in the reaction by coordinating to the 

carbonyl oxygen, promoting nucleophilic attack at the electrophilic carbon. In 

2008 several examples of Prins cyclisations were reported, making use of 

different Lewis acid catalysts to achieve the desired THP structures. 

Fuchigami229 was able to show tetraethylammonium fluoride.hydrogen fluoride 

(Et4NF.5HF) can participate in a Prins cyclisation reaction producing fluorinated 

tertrahydropyrans 367 showcasing syn stereochemistry between substituents. 

Fuchigami showed that it was possible to exchange but-3-en-1-ol for the 

equivalent thiol and amine (and mono-tosylate derivative), to produce 

fluorinated thiacycles and piperidines (selectivity was reduced with sulfur and 

amine derivative as syn and anti fluoro compounds were observed).  

 
Scheme 4.7. Fuchigami’s approach. 
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Fuchigami was also able to show that cyclic ketones could be used to generate 

spirocyclic pyrans under Prins conditions. Hence, treatment of cyclohexanone 

368 with homoallylic alcohol 369 and tetraethylammonium fluoride.hydrgoen 

fluoride generated fluorinated spirocycle tetrahydropyran 370 (Scheme 4.8). 

 
Scheme 4.8. Synthesis of spirocycle 370. 
 
As part of a Prins-Ritter sequence Yadav showed that 4 aminotetrahydropyrans 

can be generated using Bismuth triflate as Lewis acid catalyst.230     

Several aldehydes were utilized in the sequence from isopropyl and cyclohexyl to 

cinnamyl and naphalene. Three cyclic ketones 368, 372 and 374 were 

transformed into the corresponding spirocyclic pyrans by the same method 

(Scheme 4.9). Yadav also altered the nitrile nucleophile, exchanging acetonitrile 

for benzonitrile, phenylacetonitrile or trimethylacetonitrile to introduce further 

functionality to the pyran core.  

 
Scheme 4.9. Prins cyclisations of cyclic ketones. 
 
Yadav was able to generate 4-iodotetrahydropyrans using molecular iodine as 

Lewis acid and nucleophile in the reaction.231 Using this modified set of reaction 

conditions 4 series of spirocycles were generated based upon the starting 

alcohol. The use of alkynes 384 and 385 (series 3 and 4) was significant as it 
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allowed for the introduction of further functionality into the spirocycle 

structure. 

 
Scheme 4.10. Series two gave syn diastereoisomers exclusively. 
 
Attempts to identify other iodide sources, such as LiI, tBu4NI and NaI failed to 

produce the desired transformation. Cerium trichloride/lithium iodide were 

later reported by Yadav as a novel reagent system for the synthesis of 4-

iodotetrahydropyrans.232 It was found that under the same conditions cyclic 

ketones gave higher yields when compared to the acyclic ketones.233 

4.5.4. Pauson Khand 

The Pauson Khand reaction has been utilized as a key step in the synthesis of 

many natural products; including Brefeldin A,234 Incarvilline235 and Kainic acid.236 

Due to poor enantioselectivities of cyclisations there was a need for chiral 

auxilliaries, leading to the use of Menthol,237,238 trans-2-phenylcyclohexanol237,238 

and Camphor derived alcohols.239-241  

Tanyeli242 used Camphor derived alkyl ethers as a PKR precursor in the synthesis 

of spirocyclic cyclopentapyrans. Camphor 358 was treated with allyl magnesium 

bromide, then converted to the corresponding ether 378 upon treatment with 

propargyl bromide. Pauson Khand reaction of the alkyne-olefin gave the 

spirocycle 380. Tanyeli was then able to introduce a methyl group at the 4’ 
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carbon of 379, by exchanging the allyl group for 2-methylpropene in the first 

Grignard addition step and generating spirocycle 381 as before. It was found the 

products regioselectivity could be reversed by alternating the reaction 

sequence, initially alkylating with a propargyl group then forming the 

corresponding ether with allylic bromide. Pauson Khand reaction of the ene-ynes 

382 and 383 gave spirocycles 384 and 385 in good yields.  
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Scheme 4.11. PKR of propargylic ethers. 
 
4.5.5. Other methods 

Another interesting example of spirocycle generation was reported by Harrity in 

2008, during the synthesis of Rhopaloic acid.243 The synthesis was based on the 

key cyclisation of diols R-396 and S-396 (Scheme 4.13), which could be 

synthesized from organo metallic addition of Grignard 395 to epoxide 394. 
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Scheme 4.12. Organomagnesium 387 addition to epoxide 386. 
 
The catalytic palladium/titanium cyclodehydration of diol R-388 gave spirocycle 

390 in acceptable yields. The titanium was shown to be a key participant in the 

reaction facilitating alcohol addition to the Pd π-allyl complex, via a soft 

titanium alkoxide. 
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Scheme 4.13. Spirocyclodehydration reactions of allylic alcohols.  
 
Interestingly the reaction yields were improved when the primary alcohol was 

converted to the acetate, 23% to 67% for the formation of 390. The reason 

stated for such a large increase in the reaction yields, is that the acetate stops 

the competing dimerisation reaction. 

Finally an example of spirocycle generation by a Diels Alder approach was 

reported by Singh in 2008.244 Singh took O-qunione methides derived from 

oxidation of phloroglucinol derivatives Jenseone or Grandinol and reacted them 

with terpene derived dienophiles.                       

The biomimetic 3 component reaction involves the Knoevenagel condensation of 

formaldehyde and 2,4-diisovaleryl phloroglucinol followed by [4+2] cycloaddition 

between the resulting diene and dienophiles β-pinene 393 or camphene 394 to 

yield complex spirocycles 395 and 396 

 
Scheme 4.14. Synthesis of the S-Euglobal derived spirocycles. 
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5. Results and discussion 

5.1. Spirocyclic natural products 

As part of our studies towards the synthesis of spirocycle containing natural 

products (i.e. Polymaxenolide 343, Figure 5.1) we have been interested in 

developing an easy and efficient method of generating functionalised spirocyclic 

compounds which would complement other methods available to date. 

 
Figure 5.1.Polymaxenolide . 
 
5.1.1. Initial findings 

Previous efforts within the Marquez lab to generate spirocycle 398,245 were 

centered on a Prins type cyclisation of an olefin onto a pyran derived oxonium 

ion (Scheme 5.1). 

 
Scheme 5.1. Efforts to generate spirocycle 406.  
 
Treatment of lactol 397 (see Scheme 5.4 for synthesis) with boron trifluoride 

diethyl etherate gave 2 products, generated the desired spirocyclic alcohol 398 

and exo-olefin 399.  

Mechanistically, spirocycle 399 originates from the nucleophilic attack of the 

terminal olefin in intermediate 400 onto the oxonium (Scheme 5.2), via the 



Chapter 5 – Spirocyclic Natural Products  

 144 

Prins cyclisation pathway, overall an intramolecular 6-exo-trig cyclisation is 

observed. The resulting cation is quenched by the addition of water. 

 
Scheme 5.2. Mechanism of formation of 406. 
 
The formation of the exo-olefin molecule 408 is believed to be the result of a 

quicker competing reaction pathway (Scheme 5.3). Intermediate 402 forms as 

expected but instead of the internal cyclisation event, deprotonation 

(elimination of a proton) alpha to the oxonium ion is observed, resulting in the 

exo-olefin functionality. The overall effect is simply dehydration/elimination.  

 
Scheme 5.3. Synthesis of exo-cycle 399. 
 
In light of the inability to favour the cyclisation pathway (Scheme 5.2) over 

deprotonation (Scheme 5.3) a new route to spirocycle 398 was devised to 

incorporate an allylation/RCM reaction sequence. 
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5.1.2. Retrosynthesis 

In our new approach, bicycle 403 could be obtained through the ring closing 

metathesis reaction of 404, the product of the Sakurai reaction of lactol 405 

with allyl trimethylsilane. The lactol 405 could originate from the oxidative 

rearrangement of α-hydroxyfuran 406 that could be produced by a double 

deprotonation/alkylation sequence of furan 86. 

 
Figure 5.2. Retrosynthesis of the spirocyclic core of Polymaxenolide . 
 
5.1.3. Synthesizing lactol, 397. 

The investigation began with furan 86 which was deprotonated with nbutyl 

lithium and alkylated with 5-bromopentene, giving known alkenyl furan 407246 in 

good yield. A second deprotonation, followed by trapping with isobutryaldehyde 

(chosen to introduce some steric bulk at the C2 position of the eventual 

pyranone) gave racemic alcohol 408 in 62%. Oxidative transformation using the 

Achmatowicz rearrangement,129-131 of furfuryl alcohol 408 afforded lactol 397 

(Scheme 5.4) in good 96% yield. The stereochemistry at the anomeric center was 

assigned by NOe studies of 397αααα and 397ββββ. Correlations where observed 

between the CH2 of the axial alkyl group and the hydrogen at the C2 position in 

the β anomer, these hydrogen interactions were not observed between the axial 

alkyl and C2-H in the α conformer. 
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Scheme 5.4. Conversion of furan 86 to lactol 397. 
 
As expected the α-anomer was favoured over the β-anomer, in a reproducible 

ratio of 7:1. This result is consistent with the anomeric effect whereby electron 

withdrawing groups occupy the axial (α) position. In the α anomer, there is a 

favourable alignment of orbitals which allows back donation of electrons from 

the ring oxygen into the σ* orbital of the C-OH bond, the β-anomer does not 

have this favourable overlap.  
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Figure 5.3. αααα and ββββ anomers of 397 
 
Sakurai reported in 1976 that allylsilanes react with a wide variety of aldehyde 

and ketones in the presence of stoichiometric amounts of titanium tetrachloride 

(later expanded to incorporate a plethora of Lewis acids) to form homo-allylic 

alcohols (Scheme 5.5).247,248 Over time this transformation has been found to be 

highly regioselective, can be used with common electrophiles (aldehydes, 

ketones acetals and ketals)249 and several catalytic protocols have been 

developed using TMSOTf,250 Cp2Ti(OTf)2
251 and Ph3CCIO4.

252 Mechanistically, the 

reaction proceeds by Lewis acid activation of the carbonyl group, which upon 

nucleophilic attack of the terminal olefin results in formation of a carbon-carbon 

bond and a silyl-stabilized β-carbocation, subsequent loss of the TMS group then 

regenerates the terminal olefin. 
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Scheme 5.5. Formation of homo-allylic alcohol. 
 
Treatment the lactol 397 with allyl trimethyl silane in the presence of boron 

trifluoride diethyl etherate gave the diene compound 409. Interestingly the allyl 

group occupies the α-position exclusively (Scheme 5.6). This was again 

determined by NOe studies of the crude and purified residues. The allylation is 

consistent with Woerpel’s model253 for the addition of nucleophiles to pyran 

derived oxonium ions. Wherein, axial attack of the incoming nucleophile is 

favoured over the corresponding equatorial addition. 
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Scheme 5.6. Allylation of oxonium 407. 
 
Diene 409 was then treated with Grubbs 1st generation catalyst to give the 

desired spirocycle 410 in 65% yield. Interestingly there was very little difference 

in yields when either dichloromethane or dimethylsulfoxide where employed as 

solvent. The only difference was the efficiency of the reaction as the DMSO 

reaction gave an increased amount of side products; it did however give a slight 

increase in yield (66%).  
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Scheme 5.7. Synthesis of spirocycle 410. 
 
5.1.4. Other ring systems 

Having synthesized spirocycle 410, the method was expanded to incorporate 

different sized ring systems. Spirocycle 419 was synthesized using 4-bromobut-1-

ene to alkylate furan while spirocycle 420 was produced from alkylation of furan 

with 5-bromohex-1-ene. The reaction sequence was repeated as per the 

synthesis of 410.  

 
Scheme 5.8. Synthesis of spirocycles 419 and 420. 
 
5.1.5. Synthesis of the [4.5] spirocycle 

When the reaction sequence was directed to the generation of the 5-membered 

ring 429, a significant problem was encountered. Alkylation of allyl-furan 421 

using the established procedure failed to give the desired furfuryl alcohol 422. It 
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was concluded that the acidity of the allylic protons (Scheme 5.9) was too 

closely matched to that for the furan C5 proton (position b), which resulted in 

non-selective deprotonation and alkylation products.         

Joule and Mills254 give the pKa for furan C2/C5 protons to be 35 while Clayden et 

al.123 give the pKa of propene at approximately 43. Clearly exchanging a 

hydrogen for a furan will increase the acidity of the these protons, providing 

some explanation to 421s unexpected reactivity.  

 
Scheme 5.9. Attempts to alkylate allyl furan 429. 
 
A modified synthetic route was devised in which the alkylation order was 

reversed. Hence the furan anion was trapped with isobutryaldehyde as per 

West’s255 conditions giving secondary alcohol 423 that was protected as a 

tertbutyldimethylsilyl ether 424, that could be C5 alkylated with allyl bromide, 

to give 425. Cleavage of the silyl ether with TBAF gave the secondary alcohol 

426. Treatment of 426 with mCPBA according to our established rearrangement 

conditions gave lactol anomers 427 and 428 selectively (7.8:1 ratio of α to β). 

Allylation of the lactol mixture was followed by ring closing metathesis reaction, 

giving spirocycle 429 in 85% yield.  
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Scheme 5.10. Modified route for the synthesis of the spirocycle 429. 
 
Spirocycle 429 was generated in 43% overall yield from furan 86 in 7 steps, 

while spirocycles 410, 419 and 420 were generated in 26%, 19% and 7% yield 

respectively. The lower yields are due to the decreased yields observed in the 

ring closing metathesis reactions of 409, 419 and 420. This observation is likely 

due to the increased number of conformations available to longer chain alkyl 

groups, making ring closing metathesis less likely therefore increasing the 

probability of cross metathesis products. 

The synthesis has been shown to be an efficient method for generating 

spirocyclic pyrans and has demonstrated complete control of the quaternary 

carbon stereochemistry. Harris,256 Tadano257 and others have shown that an 

enantiopure alcohol can be subjected to Achmatowicz rearrangement conditions 

without detriment to the enantiomeric excess at that position. Their 

observations combined with our method, that features exclusive allyation in the 

α-position, allow us complete stereoselectivity over the reaction sequence.  
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5.1.6. Optimisation of the cyclisation protocol 

It was found that the catalyst ‘life’ could be increased dramatically, particularly 

in the longer reactions by darkening the reaction vessel. When the reaction 

vessel was completely covered in aluminium foil the rate at which the ruthenium 

catalyst was degraded was reduced. In the case of spiro compound 420 

completion could not be achieved without the foil covering.  

Further optimisations were attempted by modifying the heating process and the 

nature of the RCM catalyst. Using microwave heating instead of reflux conditions 

gave only a marginal 1% in reaction yield of spirocycle 419 (Entry 2, Table 5.1)  

Using Grubbs 2nd generation catalyst under both reflux and microwave conditions 

gave increased yields of spirocycle 419. Reflux conditions gave an enhanced 

yield of 80% (an increase of +2%) while microwave conditions gave an 

improvement of 7% to 85% isolated yield (Entries 3 and 4, Table 5.1). 

Entry Catalyst Conditions Yield

1 78%

2 79%

3 80%

4 85%

5 No Reaction

PPh3

Ru

PPh3

PhCl

Cl

PPh3

Ru

PPh3

PhCl

Cl

Ru

PPh3

PhCl

Cl

NN MesMes

O

O

tBu

tBu

Mo

HN
iPr

iPr

Reflux (40 oC), 4 
hours

Microwave, 

100 oC for 4 
minutes

Microwave, 

100 oC for 4 
minutes

Microwave, 

100 oC for 4 
minutes

Ru

PPh3

PhCl

Cl

NN MesMes
Reflux (40 oC), 4 

hours

 
Table 5.1. Summarising the catalyst screen. 
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When the more reactive molybdenum based Schrock catalyst was used no 

cyclisation product was obtained, instead it produced what appeared to be 

traces of homodimer. 

Catalyst loadings and alternate solvents were not examined during the 

optimisation process. 

5.2. Methoxy directed cyclisations 

Having successfully developed an efficient approach to the synthesis of 

spirocyclic pyrans, we turned our attention to the generation of other more 

complicated spirocyclic systems. We were particularly keen to explore the use of 

electron rich aromatic phenyl rings as nucleophiles during the cyclisation step. A 

successful cyclisation using aromatic substituents would provide ready access to 

a new class of spirocyclic compounds depending on the aromatic rings 

substitution pattern (Scheme 5.11).  

Synthetically it was expected that incorporating an electron rich phenyl ring 

would sufficiently increase electron availability and allow the aromatic 

nucleophile to react with the oxonium intermediate 430, in the process 

suppressing the dehydration competition reaction.  

 
Scheme 5.11. Generation of functionalised spirocycles 431 and 432. 
 
It is believed that the methoxy group will influence the cyclisation reaction, 

directing formation of the new ring. In the 4-methoxy example it is believed a 

bis-spirocyclic compound 431 will be produced as a result of the electron 

donating nature of the methoxy ether (ortho, para direction). While the 3-
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methoxy substituted compound will produce a spiro-fused ring system 432 (2 

other products could theoretically be produced by this route but it is believed 

that their production will be minimal due to their ring size and conformations). 

These new spirocycles bear some resemblance to several important and 

interesting classes of compound. 5,6-Dihydropyrone derivatives (433) have been 

identified as non-peptide HIV protease inhibitors and anti-viral agents.258 

Ribasine 434,259 and derivatives have complex skeletal frameworks and finally 

spirocyclic steroid ethers 435 have been shown to exhibit anti-estrogenics 

properties (Scheme 5.12).260 

 
Scheme 5.12. Spirocycles 437, 438 and 439 
 
We envisioned the cyclisation precursors 436 to be generated from the oxidative 

rearrangement of furfuryl alcohol 437. 437 could in turn be generated from the 

alkylation of protected furyl alcohol 438 with bromide 439 that could be 

thought of as having come from anisaldehyde 440. 

 
Scheme 5.13. Generating lactol 436 
 
5.2.1. First synthetic route  

Bromide 443261 was synthesized from 3-methoxy benzaldehyde, that was 

transformed to the known α,β-unsaturated ester 442262 by Wittig olefination 

conditions (carbethoxymethylidene triphenylphosphorane in refluxing 
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dichloromethane) as the E-olefin exclusively. This reaction was optimised using 

microwave heating that gave slightly reduced yields but greatly reduced reaction 

times, 8 to 10 minutes instead of 5+ hours. Lithium aluminium hydride reduction 

of the ester to the saturated alcohol was achieved in good yield.263 The alcohol 

was converted to the desired bromide 443 using Appel halogenation conditions. 

Furan was treated with nbutyl lithium and the anion was quenched with bromide 

443 to give compound 444 in 52% yield (Scheme 5.14). 

 
Scheme 5.14  Synthesis of 444. 
 
Alkyl furan 444 was then treated with a second equivalent of nbutyl lithium and 

the anion quenched with isobutryaldehyde. However the desired α-hydroxyfuran 

compound 445 was not produced. Further attempts to couple 444 with 

isobutyraldehyde proved unsuccessful, the base was changed to lithium 

diisopropylamine (both commercially available and generated in situ from nBuLi 

and iPr2NH), unfortunately failing to generate any of the desired carbinol 445. 

 
Scheme 5.15. The attempted synthesis of alcohol 445. 
 
The 4-methoxy bromide 446 was synthesized in parallel to 443 and this was used 

as coupling partner to previously synthesized TBDMS ether 424, in an effort to 

circumvent the problems encountered in Scheme 5.14. Thus 4-methoxy 

benzaldehyde was olefinated under Wittig conditions to generate the known α,β 

unsaturated ester 447264 in good yield. Conversion of the ester to the bromide 

449266 was conducted as per the 3-methoxy series via known alcohol 448265 
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bromide The yields of conversion were consistent across both series, 

interestingly the overall yield of the 3 step transformations was 51% in both 

cases.  

 
Scheme 5.16. 
 
Treatment of bromide 449 with nbutyl lithium then with furan coupling partner 

did not produce any of the desired aromatic bicycle 450. 

 
Scheme 5.17. Attempted synthesis of 450. 
 
A number of different reaction conditions were explored, including different 

equivalents of bromide, different temperatures, different bases as well as the 

use of molecular sieves and tertbutylammonium iodide (TBAI) as a phase transfer 

catalyst. Unfortunately all combinations of reagents and additives failed to alter 

the unsuccessful outcome of the reaction. 

In an attempt to improve the chances of a successful coupling, it was decided to 

switch bromide 449 for the more reactive allylic bromide 453.267         

452 was synthesized from 442268 by 1,2 reduction of the ester functionality 

using a modification of Malony’s procedure (diisobutylaluminium hydride in 

dichloromethane instead of toluene).269 The allylic alcohol 442 was then 

transformed to allylic bromide 452 via Appel reaction.177 To increase the 

chances of a successful coupling reaction, 442 was also converted into the allylic 

mesylate 453 in acceptable yield.270 
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Scheme 5.18. Synthesising allylic mesylate 453 and bromide 452. 
 
Unfortunately attempts to couple TBDMS protected furan 424 and allylic 

bromide 452, proved to be unsuccessful, the number of equivalents of nbutyl 

lithium where altered returning unreacted starting materials in each case. 

Exchanging allylic mesylate 453 for the bromide also failed to produce any of 

the desired coupled material. 

 
Scheme 5.19. Attempts to synthesize 454. 
 
5.2.2. Palladium cross coupling reactions 

Faced with this complete lack of success it was decided to resort to the use of 

transition metal catalyzed cross coupling reactions reported in the literature.  

The first reaction explored was the Heck reaction, as it is known to be an 

accommodating reaction that can handle electron rich, deficient or neutral 

alkenes. A limitation of the reaction is that the halide or triflate cannot contain 

β-hydrogens bound to an sp3 carbon, due to competing β-hydride elimination, 

that could result. However there have been several protocols designed to 

circumvent this issue.271 
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Scheme 5.20. Heck reaction of alkene. 
 
The mechanism of the Heck reaction is not fully understood and appears to alter 

subtly according to the specific reaction.272-273 What is known is that the first 

step of the catalytic cycle is an oxidative addition of the aryl halide to the Pd(0) 

catalyst affording σ-arylpalladium(II) complex 455. The second step is a 

nucleophilic attack (syn-addition) on the trans-ArPdXL2 456, then a β-hydride 

elimination giving the coupled product 457.274 

Our initial coupling attempts were between previously synthesized allyl furan 

425 and 3 and 4-iodoanisole were treated with palladium acetate catalyst 

(Pd(OAc)2) under both reflux and microwave conditions.275,276 

 
Scheme 5.21. Heck reaction of 425. 
 
The reflux reactions seemed sluggish with little reactivity between reactants, 

whereas the microwave conditions were much more productive, seemingly 

producing desired olefin straight away. However attempts to purify the reaction 

product by flash column chromatography proved unsuccessful, as the compounds 

were inseparable from the either of the starting materials. This made 

confirmation of the reaction success impossible by 1H NMR spectroscopy. 

Treating the crude compounds with TBAF did not change this as alkyl TBDMS 

ether 425 was also deprotected. Purification by derivatisation though reduction 
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of the olefin under either standard conditions (Pd/C, H2) or with the H-Cube also 

gave significant degradation of the starting mixture.          

Undeterred by this, a different approach was formulated. 

Careful searches of the literature highlighted a new variant of the traditional 

Suzuki reaction, using ‘unactivated’ alkyl bromides with aryl boronic acids. 

“In summary, we have described the first palladium or nickel 
catalyzed method for coupling a diverse set of boronic acids and 
unactivated alkyl electrophiles (bromides) that possess β-hydrogens.” 
– Gregory Fu276 

The coupling of aryl bromide 449 and either commercially available furan-2-

ylboronic acid 458 or synthesized TBDMS protected furanyl boronic acid 459 was 

attempted following Fu’s protocol. Unfortunately none of the desired product 

was obtained.  

O

Br

O

O
OB

HO

HO

+ R

R = H, 458
R = CHiPrOTBDMS, 459

Pd(OAc)2, P(tBu)2Me
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O
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2) 1M HCl

R

449

424

R = H
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Scheme 5.22. Suzuki reaction of bromide 449 and boronic acids. 
 
With the inability to generate either of the furan bicycles, other coupling 

reactions were considered. 

At this point we considered the Stille coupling as a feasible alternative to the 

Suzuki coupling because the stannane is more nucleophilic than its corresponding 

boronic acid counterpart (despite the inherent toxicity of tin and tin containing 

compounds).277-278  
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The synthesis of stannane 460 began with furan 424, which was treated with 

nBuLi and tributyltin chloride (Scheme 5.23).279 Regrettably the stannane was 

not formed, under these conditions as indicated by 1H NMR analysis. 

 
Scheme 5.23. Generating stannane 461. 
 
In an attempt to discover the reason for this failure, TBDMS ether 424 was 

deprotonated with nBuLi and alkylated with allyl bromide in excellent yield 

(71%). This suggested that the reason for the problem lay with the tributyltin 

chloride and not the deprotonation step. We reasoned that the problem was 

likely to be the presence of water in the Bu3SnCl, which therefore quenched the 

furfuryl. However despite obtaining a new source of tributyltin chloride, the 

reaction was still unsuccessful. 

The last obvious choice of palladium coupling reaction was the Sonogashira 

coupling. Two possible synthetic routes were considered using this cross coupling 

method. In the first instance alkylation of silyl furan 424 with propargyl 

bromide would give coupling partner 461 which could then be reacted with 

iodoanisole (3- or 4-) to give the desired bicycle 462. The alternative coupling 

approach, reaction of propargyl alcohol and iodoanisole would give known alkyn-

ol 463.279 The alcohol functionality could be transformed to a suitable leaving 

group (halide/alkyl sulfone) and displaced with a suitable anion (Scheme 5.24). 
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Scheme 5.24. Proposed Sonogashira routes to 462 
 
Initially, the first route was employed but a problem was encountered almost 

immediately. Attempts to synthesize TMS-bromide280 466 that could be used in 

place of propargyl bromide failed. This is not surprising when you considering 

the alkyne proton acidity, pKa 28.7,281 it is likely that the furan anion will 

undergo protonation, before the anion can displace the bromide in the desired 

coupling reaction. 

 
Scheme 5.25. Attempts to alkylate 424. 
 
The second route began with Sonogashira cross coupling reaction between 3-

iodoanisole 464 and propargyl alcohol 465 to give alcohol 463 in good yield. 

Transformation of the alcohol functionality to the corresponding tosylate 467 or 

bromide 468 was achieved in 97% and 46% yield respectively. 
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Scheme 5.26. Generating alkyne coupling partners 467 and 468 
 
Unfortunately deprotonation of 424 with nBuLi and treatment with bromide 467 

failed to produce any of the desired bicycle 462. Different bases (LDA, LHMDS, 

KHMDS, NHMDS, KH and NaH) were employed in the reaction with either bromide 

468 or tosylate 467 as the alkylating agent, unfortunately all combinations 

failed to produce 462.  

5.2.3. Molybdenum catalyzed allylic substitution 

At this point, we became aware of a method for molybdenum catalyzed coupling 

of electron rich aromatics (and heteroaromatics).282 Malkov and Kocovsky have 

shown that molybdenum (poly carbonyl)n complexes catalyses the reaction of 

allylic acetates and aromatic compounds. To that end, known acetate 469283 was 

synthesized from allylic alcohol 442 in the presence of acetic anhydride in 86% 

yield. However on closer inspection, the published method suggested that it 

would be unsuitable for our purposes; because with the substrates chosen the 

reaction suffers from a lack of regioselectivity. The SN2 pathway is still the 

preferred reaction, however the reaction mixture would contain a significant 

quantity of the SN2' reaction product as well as low overall yields (~45%).  

 
Scheme 5.27. Substitution of the allylic acetate with furan. 
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Due to the low regioselectivity and product yields, it was decided not to pursue 

this protocol. 

5.2.4. Original route 

The results thus far were disheartening and abandoning the project was seriously 

considered. However one final coupling reaction was attempted using the same 

conditions as before. Surprisingly, coupling product 450 was produced in 38% 

yield, as a mixture of bromide and product. Fluoride cleavage of the silicon 

protecting group gave secondary alcohol 470 and allowed the product to be 

separated from remaining bromide 449. Transformation of the alcohol 470 to 

the corresponding lactol 471 using our rearrangement conditions proceeded in 

high yield and with selectivity comparable to those obtained in the previous 

project. 

 
Scheme 5.28. Synthesis of lactol 471. 
 
5.2.5. Cyclisation vs dehydration 

When lactol 471 was treated with boron trifluoride diethyl etherate to facilitate 

the nucleophilic attack of the benzene olefin onto the oxonium cation, only the 

dehydrated exo-olefin 472 was recovered. The observation is consistent with a 

very slow nucleophilic addition, so slow in fact that deprotonation α to the 

carbon atom of the oxonium ion proceeds rather than the cyclisation (Scheme 

5.29). 



Chapter 5 – Spirocyclic Natural Products  

 163 

 
Scheme 5.29. Formation of the dehydration product. 
 
When the Lewis Acid was exchanged for silicon tetrachloride and ethyl 

aluminium chloride, the exo-olefin 472 was obtained exclusively. With tin 

tetrachloride as the Lewis acid, a small amount of 472 was obtained with larger 

quantities of degradation products in the reaction mixture.  

When triisopropoxytitanium(IV) chloride was used an unexpected product 473 

was formed. It is believed that the titanium species causes ring opening of 

lactol, giving the intermediate 474, through enolisation of the ketone. Electron 

movement opens the ring, giving keto-diene 475, that tautomerizes to the 1,2,5 

diketone species 473. 
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Scheme 5.30. Proposed synthesis of the 1,2,5 triketone system. 
 
It did not appear as though the slow nucleophilic attack vs the quick dehydration 

could be influenced by alternative Lewis acids. It was decided that increasing 
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electron availability for the cyclisation, utilizing a phenolic hydroxyl instead of 

the phenolic methyl ether would provide the desired spirocyclic material. Thus, 

we decided to try boron tribromide as the Lewis acid to achieve the 

demethylation and cyclisation reactions simultaneously. Boron tribromide is 

widely accepted as a standard reagent for the cleavage of phenolic methyl 

ethers,284,285 although a range of softer reaction conditions have been 

reported.286,287 Mechanistically it is believed that the reaction proceeds by 

donation of the ether oxygens lone pair into the empty boron orbital 477, a 

bromide anion is ejected as a result. Nucleophilic attack of the bromide onto the 

methyl carbon and electron movement onto the oxygen gives an oxygen-boron 

bond 478 that is cleaved upon acidic workup to give phenol 479 (Scheme 5.31). 

 
Scheme 5.31. The mechanism of BBr3 cleavage of phenolic methyl ethers.  
 
However treatment of lactols 471 with boron tribromide in dichloromethane 

gave only the exo-cycle 472. It was hoped that the methyl ether would be 

cleaved before oxonium formation thus avoiding the troublesome dehydration 

reaction. Unfortunately, this appears not to be the case as only exo-cyclic triene 

472 was formed with no deprotected phenol observed. It appears that oxonium 

formation is a very quick process quicker than the cleavage of methyl ethers. 

With the end of laboratory work fast approaching one final attempt to form 

these complex spirocycles was attempted. The synthetic route was as before 

with one extra step included (phenolic methyl ether cleavage). Bicycle 480 was 

generated from freshly distilled silyl ether 424 and bromide 443, as previously 

described although the yield was greatly improved (83%). When boron tribromide 

was added to a solution of furanyl alcohol 480, cleavage of both silyl and methyl 
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ether were anticipated, as there exist evidence of silyl ether cleavage with 

Lewis acids.288-291 Unfortunately all that was achieved was extensive degradation 

of the starting materials.  

 
Scheme 5.32. Attempts to synthesize diol 481 
 
Searching the literature, milder conditions were found utilizing cyclohexyl 

iodide.292 Cyclohexyl iodide undergoes thermal decomposition wherein an iodide 

anion is eliminated as hydrogen iodide. Protonation of the oxygens give the 

dication intermediate 483. Attack of the iodide onto the carbon and silicon 

groups causes methyl iodide and tertbutyldimethylsilyl iodide to be ejected from 

intermediate 483 giving diol 482 

 
Scheme 5.33. Demethylation and desilylation of 481. 
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5.3. Future Work 

5.3.1. Spirocyclic products 

With a method in place for the generation of spirocycles 410, 419, 420 and 429 

it is intended to apply it to the synthesis of spirocyclic natural products. Of 

particular interest is the complex natural product Polymaxenolide .  

 
Scheme 5.34. Spirocycle 433 and Polymaxenolide 6. 
 
The introduction of the cycloheptane fused ring system could be problematic, 

initially it was expected that isomerisation of the C2-C3 olefin could be achieved 

using Wilkinsons catalyst.293 The new olefin could participate in a cycloaddition 

reaction building the carbon framework further.   Another approach that is 

being considered is the use of a functionalised allylic bromide to alkylate furan 

86 in the initial stages of the synthesis (Scheme 5.35) to produce 484 that could 

then be carried forward. Tadano,294 and Oishi295 have already demonstrated the 

flexibility/tolerance of the Achmatowicz rearrangement, accepting large 

functionality around the furan ring system. 
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Scheme 5.35. Incorporation of the fused ring systems into the methodology.  
 
Finally, a route that is being examined is centered on a modified Sakurai type 

reaction. It is envisioned that treatment of olefin 486 with Lewis acid will 

induce a cyclisation cascade via intermediate 487, setting the 5 and 7 

membered rings in one reaction leaving an exo-cyclic vinyl group 488 that could 

be further functionalised.  
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Scheme 5.36. Sakurai cascade. 
 
To investigate the feasibility of this approach a model system has been designed, 

it is envisaged that treatment of olefin 489 with Lewis acid will cause oxonium 

formation 490 and subsequent nucleophilic attack of the olefin. The loss of the 

terminal TMS group from intermediate 491 regenerates the olefin giving the 

spirocycle 492.  

 
Scheme 5.37. Intramolecular Sakurai reaction 
 
Initial experiments attempting to introduce the allylic TMS group have been 

unsuccessful. Cross metathesis reactions between allyl TMS and alkene furan 415 

using Gouverneur’s method,296 Grubbs 2nd generation catalyst, have not provided 

any of the desired product 493. It is believed that the metathesis product is 

unstable to silica gel and extensive product degradation has been observed.  

 
Scheme 5.38. Cross metathesis of alkene 408.296 
 



Chapter 5 – Spirocyclic Natural Products  

 168 

In either eventuality much more research and experimentation is required to 

take the methodology described further towards the synthesis of 

Polymaxenolide. 

5.3.2. Methoxy directed cyclisations 

Having successfully synthesized the lactol core 491, increasing the electron 

availability of the phenyl ring is the first priority for this project. The synthesis 

of lactol 499 must be altered slightly, in that an appropriate orthogonal 

protecting group must be introduced masking the phenolic alcohol. Thus 

aldehyde 495 will be synthesized from 3-/4-hydroxy benzaldehyde 494, upon 

treatment with trityl chloride (TrCl)297 or trialkylsilyl chloride (SiR3Cl).298 495 

will then be olefinated, reduced and converted to the bromide as per the 

previously established protocols (Scheme 5.14). Coupling reaction between 

freshly distilled bromide 497 and silyl ether 424 will give the bicycle 498, 

cleavage of the protecting group will give the rearrangement precursor that 

could be converted to lactol 499. Treatment of the lactols 499 with a Lewis acid 

should provide the desired spirocyclic compounds. 
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Scheme 5.39. Future work. 
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6. Experimental 

2-Pent-4-enyl furan, 407.246 

 
A solution of furan 86 (1.69 mL, 24.9 mmol) in anhydrous THF (125 mL) at 0 oC 

was treated with nBuLi (10.5 mL, 26.2 mmol, 2.5 M in hexanes) and the resulting 

mixture allowed to warm up to room temperature. The solution was stirred for 

24 hours, at which point 5-bromopent-1-ene (3.09 mL, 26.2 mmol) was added 

slowly. The resulting reaction mixture was then stirred at room temperature for 

a further 24 hours. The reaction was then poured onto ice and the resulting 

mixture diluted with diethyl ether (100 mL). The resulting brown liquid was then 

stirred for 20 minutes after which it was extracted with diethyl ether (2x 30 

mL). The combined organic extracts were washed with water (2x 20 mL), brine 

(20 mL) and then dried over sodium sulfate. Following concentration in vacuo, 

the residue was purified by short path distillation giving 2.11 g of alkene 407 

(62% yield) as clear oil.                
1H NMR (400 MHz, CDCl3): δ 7.35 (1H, d, J = 1.0 z, Ar-H), 6.32 (1H, d, J = 1.8 Hz, 

Ar-H), 6.03 (1H, d, J = 2.6 Hz, Ar-H), 5.92-5.82 (1H, m, CH2CHCH2), 5.10-5.02 

(2H, m, CH2CHCH2), 2.69 (2H, t, J = 7.6 Hz, CH2CH2CH2), 2.16 (2H, q, J = 7.2 Hz, 

CH2CH2CH2), 2.69 (2H, t, J = 7.6 Hz, CH2CH2CH2).            
13C NMR (100 MHz, CDCl3): δ 156.1 (Ar-C), 140.8 (Ar-C), 138.2 (CH2CHCH2), 114.9 

(CH2CHCH2), 110.0 (Ar-C), 104.8 (Ar-C), 33.2 (CH2CH2CH2), 27.3 (CH2CH2CH2), 

27.2 (CH2CH2CH2).           

m/z [EI+(+ve)] 136.1 [M]+ (100%).                        

vmax (neat)/cm-1. 2092, 1642, 799. 

2-But-3-enyl furan, 411. 

 
A solution of furan 86 (1.49 mL, 22.0 mmol) in anhydrous THF (100 mL) at 0 oC 

was treated with nBuLi (8.84 mL, 22.1 mmol, 2.5 M in hexanes) and the resulting 

mixture allowed to warm up to room temperature. The solution was stirred for 

24 hours, at which point 4-bromobut-1-ene (2.24 mL, 22.1 mmol) was added 

slowly. The resulting reaction mixture was then stirred at room temperature for 



Chapter 6 – Experimental  

 170 

a further 24 hours. The reaction was then poured onto ice and the resulting 

mixture diluted with diethyl ether (100 mL). The resulting brown liquid was then 

stirred for 20 minutes and was then extracted with diethyl ether (2x 30 mL). The 

combined organic extracts were washed with water (2x 20 mL), brine (20 mL) 

and then dried over sodium sulfate. Following concentration in vacuo, the 

residue was purified by short path distillation, giving 2.28 g of alkene 411 in 85% 

yield as clear oil.                   
1H NMR (500 MHz, CDCl3): δ 7.24 (1H, dd, J = 1.8, 0.8 Hz, Ar-H), 6.21 (1H, dd, J 

= 3.1, 1.9 Hz, Ar-H), 5.93 (1H, dd, J = 3.2, 0.9 Hz, Ar-H), 5.82-5.74 (1H, m, 

CH2CH), 5.02-4.91 (2H, m, CH2CH), 2.65 (2H, t, J = 9.1 Hz, CHCH2CH2), 2.36-2.31 

(2H, m, CHCH2CH2).                   
13C NMR (125 MHz, CDCl3): δ 140.4 (Ar-C), 137.5 (CH2CH), 117.4 (CH2CHCH2), 

115.2 (Ar-C), 110.0 (Ar-C), 104.9 (Ar-C), 32.1 (CHCH2CH2), 27.5 (CHCH2CH2).  

m/z [EI+(+ve)] 122.1 [M]+ (100%).                 

vmax (neat)/cm-1. 3080, 2959, 1641, 1009, 729. 

2-Hex-5-enyl furan, 412. 

 
A solution of furan 86 (0.99 mL, 14.6 mmol) in anhydrous THF (74 mL) at 0 oC 

was treated with nBuLi (5.84 mL, 14.6 mmol, 2.5 M in hexanes) and the resulting 

mixture allowed to warm up to room temperature. The solution was stirred for 

24 hours, at which point 6-bromohex-1-ene (1.88 mL, 14.6 mmol) was added 

slowly. The resulting mixture was then stirred at room temperature for a further 

24 hours. The reaction was then poured onto ice and the resulting mixture 

diluted with diethyl ether (100 mL). The resulting brown liquid was stirred for 20 

minutes after which it was extracted with diethyl ether (2x 20 mL). The 

combined organic extracts were washed with water (2x 20 mL), brine (20 mL) 

and then dried over sodium sulfate. Following concentration in vacuo, the 

residue was purified by short path distillation. Giving 1.89 g (87% yield) of alkene 

412, as clear oil.                   
1H NMR (500 MHz, CDCl3): δ 7.21 (1H, dd, J = 1.8, 0.8 Hz, Ar-H), 6.19 (1H, dd, J 

= 3.1, 1.9 Hz, Ar-H), 5.89 (1H, dd, J = 3.1, 0.8 Hz, Ar-H), 5.77-5.68 (1H, m, 

CH2CHCH2), 4.95-4.86 (2H, m, CH2CH), 2.55 (2H, t, J = 7.6 Hz, CH2CH2Ar), 2.00-

1.98 (2H, m, CHCH2), 1.61-1.55 (2H, m, CH2CH2Ar), 1.36 (2H, quint, J = 7.3 Hz, 
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CHCH2CH2).                   
13C NMR (125 MHz, CDCl3): δ 158.5 (Ar-C), 154.8 (Ar-C), 138.8 (CH2CH), 114.4 

(CH2CH), 104.8 (Ar-C), 104.2 (Ar-C), 33.5 (CH2CH2Ar), 28.4 (CH2CHCH2), 27.5 

(CH2CH2CH2), 26.4 (CH2CH2CH2).              

m/z [EI+(+ve)] 150.1 [M]+ (100%).                 

vmax (neat)/cm-1.2976, 2932, 2858, 1640, 1606, 910, 781. 

2-Methyl-1-(5-pent-4-enylfuran-2-yl)-propan-1-ol, 408. 

 
To a solution of alkenyl furan 407 (2.12 g, 15.1 mmol) and TMEDA (2.49 g, 16.6 

mmol) in anhydrous diethyl ether (76 mL) at 0 oC was added slowly nBuLi (6.4 

mL, 15.9 mmol). The resulting solution was allowed to warm to room 

temperature over a period of 3 hours; at this point, it was cooled to −78 oC and 

treated with isobutyraldehyde (1.51 mL, 16.6 mmol). The reaction was then 

stirred for 30 minutes at −78 oC, after which it was allowed to warm up to 0 oC 

and stirred for 2 hours. Saturated aqueous ammonium chloride solution (10 mL) 

was added before being extracted with cold diethyl ether (2x 20 mL). The 

combined organic phases were washed with water (2x 15 ml), brine (15 ml), 

dried over sodium sulfate and concentrated in vacuo. The crude residue 

obtained was then purified by flash column chromatography (silica gel, 10% 

diethyl ether in petroleum spirit) to give 1.95 g (62% yield) 408 as a clear oil.          
1H NMR (500 MHz, CDCl3): δ 6.06 (1H, d, J = 3.0 Hz, Ar-H), 5.87 (1H, d, J = 3.0 

Hz, Ar-H), 5.77 (1H, m, CH2CHCH2), 4.99 (1H, dq, J = 17.1, 1.6 Hz, CH2CHCH2), 

4.94 (1H, d, J = 10.2 Hz, CH2CHCH2), 4.24 (1H, d, J = 7.2 Hz, CH(OH)), 2.57 (2H, 

t, J = 7.5 Hz, CH2Ar), 2.15 (1H, bs, OH), 2.09–2.00 (3H, m, CH2CHCH2 and 

CH(CH3)2), 1.69 (2H, q, J = 7.5 Hz, CH2CH2CH2), 0.98 (3H, d, J = 6.8 Hz, 

CH(CH3)2), 0.81 (3H, d, J = 6.7 Hz, CH(CH3)2).              
13C NMR (125 MHz, CDCl3): δ 155.3 (Ar-C), 154.3 (Ar-C), 138.2 (CH2CH), 114.9 

(CH2CH), 107.0 (Ar-C), 105.2 (Ar-C), 73.5 (CH(OH)), 33.2 (CH2Ar), 33.1 

(CH2CH2CH2), 27.3 (CH2CH2CH2), 27.2 (CH(CH3)2), 18.8 (CH(CH3)2), 18.4 

(CH(CH3)2).                    

m/z [EI+(+ve)] 191.1 [M-OH]+ (100%), HRMS found 231.1312, C12H20NaO2 requires 

231.1360 (M++Na).                   

vmax (neat)/cm-1. 3438, 2960, 2932, 2871, 1640, 1384, 907. 
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2-Methyl-1-(5-But-3-enylfuran-2-yl)-propan-1-ol, 413. 

 
To a solution of alkenyl furan 411 (784 mg, 6.42 mmol) and TMEDA (960 µL, 6.42 

mmol) in anhydrous diethyl ether (32 mL) at 0 oC was added slowly nBuLi (2.56 

mL, 6.42 mmol, 2.5 M in hexanes). The resulting solution was allowed to warm 

to room temperature over a period of 3 hours; at this point, it was cooled to −78 
oC and treated with isobutyraldehyde (639 µL, 6.42 mmol). The reaction was 

then stirred for 30 minutes at −78 oC, after which it was allowed to warm up to 0 
oC and stirred for 2 hours. Saturated aqueous ammonium chloride solution (10 

mL) was added before being extracted with cold diethyl ether (2x 20 mL). The 

combined organic phases were washed with water (2x 15 ml), brine (15 ml), 

dried over sodium sulfate and concentrated in vacuo. The crude residue 

obtained was then purified by flash column chromatography (silica gel, 10% 

diethyl ether in petroleum spirit) to give 1.06 g (85% yield) 413 as a clear oil.        
1H NMR (500 MHz, CDCl3): δ 6.02 (1H, d, J = 3.0 Hz, Ar-H), 5.85 (1H, d, J = 2.2 

Hz, Ar-H), 5.79 (1H, m, CH2CHCH2), 4.97 (1H, dq, J = 15.4, 1.7 Hz, CH2CHCH2), 

4.91 (1H, d, J = 10.2 Hz, CH2CHCH2), 4.21 (1H, dd, J = 7.0, 3.3 Hz, CHOH), 2.62 

(2H, t, J = 7.6 Hz, ArCH2CH2), 2.34–2.28 (2H, m, CH2CHCH2), 2.01 (1H, sept, J = 

6.9 Hz, CH(CH3)2), 1.83 (1H, d, J = 2.8 Hz, OH), 0.94 (3H, d, J = 6.7 Hz, 

CH(CH3)2), 0.77 (3H, d, J = 6.7 Hz, CH(CH3)2).       

13C NMR (125 MHz, CDCl3): δ 154.9 (Ar-C), 154.3 (Ar-C), 137.5 (CHCH2CH2), 115.3 

(CH2CHCH2), 107.1 (Ar-C), 105.4 (Ar-C), 73.6 (CHOH), 33.3 (CH(CH3)2), 32.1 

(CHCH2CH2), 27.6 (CHCH2CH2), 18.8 (CH(CH3)2), 18.4 (CH(CH3)2).           

m/z [EI+(+ve)] 177.1 [M+] (100%).                

vmax (neat)/cm-1. 3601, 2960, 2926, 1468, 1014. 

2-Methyl-1-(5-Hex-5-enylfuran-2-yl)propan-1-ol, 414. 

 
To a solution of alkenyl furan 412 (1.39 g, 9.31 mmol) and TMEDA (1.39 mL, 9.31 

mmol) in anhydrous diethyl ether (46 mL) at 0 oC was added slowly nBuLi (3.72 

mL, 9.31 mmol, 2.5 M in hexanes). The resulting solution was allowed to warm 

to room temperature over a period of 3 hours; at this point, it was cooled to −78 
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oC and treated with isobutyraldehyde (840 µL, 9.31 mmol). The reaction was 

then stirred for 30 minutes at −78 oC, after which it was allowed to warm up to 0 
oC and stirred for 2 hours. Saturated aqueous ammonium chloride solution (10 

mL) was added before being extracted with cold diethyl ether (2x 20 mL). The 

combined organic phases were washed with water (2x 15 ml), brine (15 ml), 

dried over sodium sulfate and concentrated in vacuo. The crude residue 

obtained was then purified by flash column chromatography (silica gel, 10% 

diethyl ether in petroleum spirit) to give 1.55 g 414 as a clear oil in 75% yield.           
1H NMR (500 MHz, CDCl3): δ 6.06 (1H, d, J = 3.1 Hz, Ar-H), 5.87 (1H, d, J = 3.0 

Hz, Ar-H), 5.77 (1H, m, CH2CHCH2), 4.97 (1H, dq, J = 17.1, 1.9 Hz, CH2CHCH2), 

4.92 (1H, dq, J = 10.1, 0.9 Hz, CH2CHCH2), 4.25 (1H, d, J = 6.8 Hz, CHOH), 2.57 

(2H, t, J = 7.5 Hz, ArCH2CH2), 2.09–1.96 (4H, m, CH2CHCH2, CH(CH3)2, OH), 1.61 

(2H, q, J = 7.6 Hz, CH2CH2), 1.41 (2H, quint, J = 7.8 Hz, CH2CH2), 0.99 (3H, d, J = 

6.7 Hz, CH(CH3)2), 0.82 (3H, d, J = 6.8 Hz, CH(CH3)2). 
13C NMR (125 MHz, CDCl3): 

δ 155.9 (Ar-C), 154.5 (Ar-C), 138.9 (CH2CH), 114.7 (CH2CH), 107.3 (Ar-C), 105.4 

(Ar-C), 77.8 (CHOH), 33.7 (CH2Ar), 33.5 (CH2CHCH2), 28.6 (CH(CH3)2), 28.1 

(CH2CH2), 27.7 (CH2CH2), 19.1 (CH(CH3)2), 18.7 CH(CH3)2).              

m/z [EI+(+ve)] 205.1 [M-OH]+ (100%), HRMS found 245.1489, C14H22NaO2 requires 

245.1517 [M + Na]+.                   

vmax (neat)/cm-1. 3437, 2959, 2931, 1462, 1011, 910.  

6-Hydroxy-2-isopropyl-6-pent-4-enyl-6H-pyran-3-one, 397. 

 
A 0 oC solution of furfuryl alcohol 408 (1.40 g, 6.74 mmol) in dichloromethane 

(34 mL) was treated with meta-chloroperoxybenzoic acid (1.67 g, 7.41 mmol) 

and the resulting opaque solution was stirred at 0 oC for 1 hour. The mixture was 

allowed to warm up to room temperature and the reaction was stirred for a 

further 2 hours. The reaction was cooled to 0 oC and quenched by the slow 

addition of saturated aqueous sodium bicarbonate (10 mL). The resulting 

emulsion was allowed to separate and was then extracted with dichloromethane 

(3x 15 mL). The combined organic extracts were washed with water (10 mL), 

brine (10 mL) and dried over anhydrous sodium sulfate. The solution was 
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concentrated in vacuo and the residue obtained purified by flash column 

chromatography (silica gel, 30% diethyl ether in petroleum spirits) to give 1.44 g 

(96% yield) of lactol 397 as a mixture of  anomers (α:β, 8:1).  

Major anomer 397αααα. 

 
1H NMR (500 MHz, CDCl3): δ 6.76 (1H, d, J = 10.2 Hz, CHCHCO), 6.02 (1H, d, J = 

10.2 Hz, CHCHCO), 5.75 (1H, m, CH2CHCH2), 5.03–4.93 (2H, m, CH2CHCH2), 4.32 

(1H, d, J = 2.7 Hz, COCH(O)CH), 2.89 (1H, bs, OH), 2.42 (1H, m, CH2CHCH2), 

2.05 (2H, m, CH2CHCH2 and CH(CH3)2), 1.84–1.79 (2H, m, CH2C(O)OH), 1.56 (1H, 

m, CH2CH2CH2), 1.47 (1H, m, CH2CH2CH2), 1.00 (3H, d, J = 6.9 Hz, CH(CH3)2), 

0.82 (3H, d, J = 6.8 Hz, CH(CH3)2).                 
13C NMR (125 MHz, CDCl3): δ 197.0 (CHCHCO), 147.5 (CHCHCO), 138.1 

(CHCHCH2), 127.9 (CHCHCO), 119.5 (CH2CHCH2), 93.9 (C(O)OH), 78.2 

(COCH(O)CH), 41.1 (CH2CHCH2), 33.0 (CH2C(O)OH), 28.7 (CH(CH3)2), 22.8 

(CH2CH2CH2), 19.0 (CH(CH3)2), 16.9 (CH(CH3)2).  

Minor anomer 397β.   

 
1H NMR (500 MHz, CDCl3): δ 6.86 (1H, d, J = 9.9 Hz, CHCHCO), 5.91 (1H, dd, J = 

9.9, 0.4 Hz, CHCHCO), 5.77 (1H, m, CH2CHCH2), 5.05–4.93 (2H, m, CH2CHCH2), 

4.19 (1H, d, J = 4.8 Hz, COCH(O)CH), 2.35 (2H, q, J = 7.4 Hz, CH2CHCH2), 2.24–

2.13 (3H, m, CH(CH3)2 and CH2C(O)OH), 1.75 (1H, m, CH2CH2CH2), 1.25 (1H, m, 

CH2CH2CH2), 0.99 (3H, d, J = 7.0 Hz, CH(CH3)2), 0.91 (3H, d, J = 6.8 Hz, 

CH(CH3)2).                     
13C NMR (125 MHz, CDCl3): δ 195.2 (CHCHCO), 147.1 (CHCHCO), 141.9 

(CH2CHCH2), 137.8 (CHCHCO), 121.9 (CH2CHCH2), 85.6 (C(O)OH), 78.2 

(COCH(O)CH), 33.5 (CH2CHCH2), 32.8 (CH2C(O)OH), 31.8 (CH(CH3)2), 24.8 

(CH2CH2CH2), 18.9 (CH(CH3)2), 16.1 (CH(CH3)2).         

m/z [EI+(+ve)] 207.1 [M−OH]+ (100%), HRMS found 247.1305, C13H20NaO3   
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requires 247.1310 [M+Na]+.                  

vmax(film)/cm−1: 3400, 2966, 2930, 1676, 1382, 908. 

6-Hydroxy-2-isopropyl-6-but-3-enyl-6H-pyran-3-one, 415.  

 
A 0 oC solution of furfuryl alcohol 413 (1.71 g, 8.82 mmol) in dichloromethane 

(44 mL) was treated with meta-chloroperoxybenzoic acid (2.17 g, 9.70 mmol) 

and the resulting opaque solution was stirred at 0 oC for 1 hour. The mixture was 

allowed to warm up to room temperature and the reaction stirred for a further 3 

hours. The reaction was cooled to 0 oC and quenched by slow addition of 

saturated aqueous sodium bicarbonate (15 mL). The resulting emulsion was 

allowed to separate and was then extracted with dichloromethane (3x 15 mL). 

The combined organic extracts were washed with water (15 mL), brine (10 mL) 

and dried over anhydrous sodium sulfate. The solution was concentrated in 

vacuo and the residue obtained purified by flash column chromatography (silica 

gel, 20% diethyl ether in petroleum spirits) to give 1.47 g (81% yield)of lactols 

415 as a mixture of  anomers (α:β, 7.8:1).  

Major anomer 415α 

 
1H NMR (500 MHz, CDCl3): δ 6.80 (1H, d, J = 10.2 Hz, CHCHCO), 6.05 (1H, d, J = 

10.2 Hz, CHCHCO), 5.90 (1H, m, CH2CHCH2), 5.11 (1H, d, J = 17.2 Hz, 

CH2CHCH2), 5.04 (1H, d, J = 10.2 Hz, CH2CHCH2), 4.37 (1H, d, J = 2.7 Hz, 

COCH(O)CH), 3.05 (1H, bs, OH), 2.47 (1H, m, CH(CH3)2), 2.34 (1H, m, 

CH2CHCH2), 2.19 (1H, m, CH2CHCH2), 1.97 (2H, m, CH2CH2), 1.06 (3H, d, J = 7.0 

Hz, CH(CH3)2), 0.87 (3H, d, J = 6.8 Hz, CH(CH3)2).               
13C NMR (125 MHz, CDCl3): δ 195.2 (CHCHCO), 147.2 (CHCHCO), 135.4 

(CH2CHCH2), 122.3 (CHCHCO), 116.9 (CH2CHCH2), 115.6 (C(O)OH), 85.4 

(COCH(O)CH), 31.8 (CH2CHCH2), 30.9 (CH(CH3)2), 29.7 (CH2CH2), 18.9 (CH(CH3)2), 

16.9 (CH(CH3)2).  



Chapter 6 – Experimental  

 176 

Minor anomer 415β                    

 
1H NMR (500 MHz, CDCl3): δ 6.87 (1H, d, J = 10.3 Hz, CHCHCO), 6.07 (1H, d, J = 

10.2 Hz, CHCHCO), 5.89 (1H, m, CH2CHCH2), 5.09 (1H, d, J = 16.9 Hz, 

CH2CHCH2), 5.02 (1H, d, J = 10.1 Hz, CH2CHCH2), 3.95 (1H, d, J = 4.1 Hz, 

COCH(O)CH), 2.44 (1H, m, CH(CH3)2), 2.37 (1H, m, CH2CHCH2), 2.23 (1H, m, 

CH2CHCH2), 1.94 (2H, m, CH2CH2), 1.05 (3H, d, J = 6.9 Hz, CH(CH3)2), 0.95 (3H, 

d, J = 6.7 Hz, CH(CH3)2).                   
13C NMR (125 MHz, CDCl3): δ 194.2 (CO), 146.8 (CHCH), 135.9 (CH2CH), 123.4 

(CHCO), 116.1 (CH2CH), 93.5 (OCOH), 89.1 (COCH), 45.2 (CHCH2CH2), 29.0 

(CH(CH3)2), 21.4 (CHCH2CH2), 18.7 (CH(CH3)2), 18.6 (CH(CH3)2).         

m/z [EI+(+ve)] 193.1 [M−OH]+ (85%), HRMS found 233.1148, C12H18NaO3 requires 

233.1153 [M+Na]+.                  

vmax (film)/cm−1: 3432, 2967, 2932, 1686, 1041, 910.  

6-Hydroxy-2-isopropyl-6-Hex-5-enyl-6H-pyran-3-one, 416. 

 
A 0 oC solution of furfuryl alcohol 414 (1.46 g, 6.64 mmol) in dichloromethane 

(33 mL) was treated with meta-chloroperoxybenzoic acid (1.64 g, 7.30 mmol) 

and the resulting opaque solution was stirred at 0 oC for 1 hour. The mixture was 

allowed to warm up to room temperature and the reaction stirred for a further 2 

hours. The reaction was cooled to 0 oC and quenched by slow addition of 

saturated aqueous sodium bicarbonate (10 mL). The resulting emulsion was 

allowed to separate and was then extracted with dichloromethane (3x 15 mL). 

The combined organic extracts were washed with water (10 mL), brine (10 mL) 

and dried over anhydrous sodium sulfate. The solution was concentrated in 

vacuo and the residue obtained purified by flash column chromatography (silica 

gel, 30% diethyl ether in petroleum spirits) to give 1.19 g (75% yield) of lactol 

416 as a mixture of  anomers (α:β, 7.9:1).  
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Major anomer 416α.                    

 
1H NMR (500 MHz, CDCl3): δ 6.76 (1H, d, J = 10.2 Hz, CHCHCO), 6.03 (1H, d, J = 

10.2 Hz, CHCHCO), 5.77 (1H, m, CH2CHCH2), 4.98 (1H, dq, J = 17.1, 1.9 Hz, 

CH2CHCH2), 4.93 (1H, d, J = 10.2 Hz, CH2CHCH2), 4.32 (1H, d, J = 2.7 Hz, 

COCH(O)CH), 2.42 (1H, m, CH(CH3)2), 2.05 (2H, m, CH2CHCH2), 1.82–1.81 (2H, m, 

CH2C(O)OH), 1.54–1.35 (4H, m, CH2CH2), 1.00 (3H, d, J = 7.0 Hz, CH(CH3)2), 0.83 

(3H, d, J = 6.8 Hz, (CH(CH3)2). 

Minor anomer 416β                    

 
1H NMR (500 MHz, CDCl3): δ 6.82 (1H, d, J = 10.3 Hz, CHCHCO), 6.00 (1H, d, J = 

10.3 Hz, CHCHCO), 5.77 (1H, m, CH2CHCH2), 5.00–4.91 (2H, m, CH2CHCH2), 3.90 

(1H, d, J = 4.1 Hz, COCH(O)CH), 2.42 (1H, m, CH(CH3)2), 2.05 (2H, m, 

CH2CHCH2), 1.85–1.76 (2H, m, CH2C(O)OH), 1.54–1.37 (4H, m, CH2CH2), 1.00 (3H, 

d, J = 6.9 Hz, CH(CH3)2), 0.90(3H, d, J = 6.8 Hz, CH(CH3)2).              

m/z [EI+(+ve)] 221.1 [M−OH]+ (100%), HRMS found 261.1461, C14H22NaO3 requires 

261.1466 [M + Na]+.                

vmax(film)/cm−1: 3429, 2966, 2931, 1671, 1382, 908.  

6-Allyl-6-(pent-4-enyl)-2-isopropyl-6H-pyran-3-one, 409. 

 
A solution of lactol 397 (0.99 g, 4.76 mmol) in anhydrous dichloromethane (23 

mL) was treated with allyltrimethylsilane (1.58 mL, 9.99 mmol) and the resulting 

mixture was cooled to −78 oC. The reaction mixture was then treated by the 

slow addition of BF3�OEt2 (1.78 mL, 14.1 mmol) and the resulting solution was 

stirred for 30 minutes at −78 oC. The reaction was then allowed to warm to room 

temperature and stirred for a further 2 hours. Once the reaction was complete, 
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as determined by TLC analysis, the reaction was quenched with saturated 

aqueous ammonium chloride (5 mL) and extracted with dichloromethane (2x 

10mL). The combined organic phases were washed sequentially with saturated 

sodium hydrogen carbonate (10 mL), water (2x 10 mL) and brine (10 mL). The 

combined organic extracts were dried over anhydrous sodium sulfate and the 

solvent was removed in vacuo. The crude residue was purified by flash column 

chromatography (silica gel, 8% diethyl ether in petroleum spirits) to afford 945 

mg (80 % yield) of desired bis-alkenyl product 409 as a clear oil.    

1H NMR (500 MHz, CDCl3): δ 6.75 (1H, d, J = 10.4 Hz, CHCHCO), 5.96 (1H, d, J = 

10.4 Hz, CHCHCO), 5.78–5.65 (2H, m, CH2CHCH2), 5.07–4.85 (4H, m, CH2CHCH2), 

4.02 (1H, d, J = 2.6 Hz, COCH(O)CH), 2.51 (1H, ddt, J = 8.0, 6.5, 1.0 Hz, 

C(O)CH2CHCH2), 2.34–2.40 (1H, m, CH(CH3)2), 2.32–2.30 (1H, m, C(O)CH2CHCH2), 

2.00–2.01 (2H, m, CH2CHCH2), 1.70–1.64 (1H, m, CH2CH2), 1.53–1.44 (2H, m, 

CH2CH2), 1.30–1.22 (1H, m, CH2CH2), 0.95 (3H, d, J = 7.0 Hz, CH(CH3)2), 0.79 

(3H, d, J = 6.8 Hz, CH(CH3)2).                  
13C NMR (125 MHz, CDCl3): δ 196.7 (CHCHCO), 154.6 (CHCHCO), 138.4 

(CH2CHCH2), 132.6 (CH2CHCH2), 126.6 (CHCHCO), 118.6 (CH2CHCH2), 114.7 

(CH2CHCH2), 78.5 (COCH(O)CH), 75.7 (CHC(O)CH2), 39.7 (CH2CHCH2), 38.0 

(CH2CHCH2), 33.8 (CH2C(O)), 29.1 (CH(CH3)2), 22.7 (CH2CH2CH2), 19.2(CH(CH3)2), 

16.9 (CH(CH3)2).                   

m/z [EI+(+ve)] 249.2 [M]+ (100%), HRMS found 249.1849, C16H25O2 requires 

249.1855 [M + H]+.                  

vmax (film)/ cm−1: 2924, 1709, 1381, 911.  

6-Allyl-6-(but-3-enyl)-2-isopropyl-6H-pyran-3-one, 417. 

 
A solution of the lactol 415 (1.36 g, 6.45 mmol) in anhydrous dichloromethane 

(32 mL) was treated with allyltrimethylsilane (2.15 mL, 13.54 mmol) and the 

resulting mixture was cooled to −78 oC. The reaction mixture was then treated 

by the slow addition of BF3�OEt2 (2.44 mL, 19.3 mmol) and the resulting solution 

stirred for 30 minutes at −78 oC. The reaction was then allowed to warm to room 

temperature and stirred for a further 2 hours. Once the reaction was complete, 

as determined by TLC analysis, the reaction was quenched with saturated 
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aqueous ammonium chloride (10 mL) and extracted with dichloromethane (2x 15 

mL). The combined organic phases were washed sequentially with saturated 

sodium hydrogen carbonate (10 mL), water (2× 10 mL) and brine (10 mL). The 

combined organic extracts were dried over anhydrous sodium sulfate and the 

solvent was removed in vacuo. The crude residue was then purified by flash 

column chromatography (silica gel, 20-50% dichloromethane in petroleum spirits) 

to afford 876 mg (58 % yield) of the desired bisalkenyl product 417.            
1H NMR (500 MHz, CDCl3): δ 6.76 (1H, d, J = 10.4 Hz, CHCHCO), 5.98 (1H, d, J = 

10.4 Hz, CHCHCO), 5.80– 5.68 (2H, m, CH2CHCH2), 5.09–5.02 (2H, m, CH2CHCH2), 

4.94 (1H, dq, J = 17.1, 1.7 Hz, CH2CHCH2), 4.88 (1H, dq, J = 10.2, 1.6 Hz, 

CH2CHCH2), 4.03 (1H, d, J = 2.5 Hz, COCH(O)CH), 2.51 (1H, dd, J = 14.2, 6.4 Hz, 

CH2CHCH2), 2.39 (1H, m, CH(CH3)2), 2.29 (1H, m, CH2CHCH2), 2.19 (1H, m, 

CH2CHCH2), 1.93 (1H, m, CH2CHCH2), 1.80 (1H, ddd, J = 13.6, 11.9, 4.7 Hz, 

CH2CH2), 1.54 (1H, ddd, J = 13.6, 11.6, 4.7 Hz, CH2CH2), 0.96 (3H, d, J = 7.0 Hz, 

CH(CH3)2), 0.80 (3H, d, J = 6.8 Hz, CH(CH3)2).               
13C NMR (125 MHz, CDCl3): δ 196.7 (CHCHCO), 154.3 (CHCHCO), 138.4 

(CH2CHCH2), 132.5 (CH2CHCH2), 126.7 (CHCHCO), 118.8 (CH2CHCH2), 114.6 

(CH2CHCH2), 78.6 (COCH(O)CH), 75.5 (CHC(O)CH2), 39.8 (CH2CHCH2), 37.8 

(CH2CHCH2), 29.1 (CH(CH3)2), 27.9 (CH2CH2), 19.2 (CH(CH3)2), 16.0 (CH(CH3)2). 

m/z [EI+(+ve)] 235.2 [M]+, (100%), HRMS found 235.1693, C15H23O2 requires 

235.1698 [M]+.                 

vmax (film)/ cm−1: 2964, 2930, 1686, 1061, 910.  

6-Allyl-6-(hex-5-enyl)-2-isopropyl-6H-pyran-3-one, 418. 

 
A solution of the lactol 416 (926 mg, 3.88 mmol) in anhydrous dichloromethane 

(20 mL) was treated with allyltrimethylsilane (1.29 mL, 8.16 mmol) and the 

resulting mixture was cooled to −78 oC. The reaction mixture was then treated 

by the slow addition of BF3�OEt2 (1.48 g, 11.6 mmol) and the resulting solution 

stirred for 30 minutes at −78 oC. The reaction was then allowed to warm to room 

temperature and stirred for a further 2 hours. Once the reaction was complete, 

as determined by TLC analysis, the reaction was quenched with saturated 

aqueous ammonium chloride (15 mL) and extracted with dichloromethane (3x 20 
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mL). The combined organic extracts were washed sequentially with saturated 

sodium hydrogen carbonate (10 mL), water (2x 10 mL) and brine (10 mL). The 

combined organic phases were dried over anhydrous sodium sulfate and the 

solvent was removed in vacuo. The crude residue was then purified by flash 

column chromatography (silica gel, 7% diethyl ether in petroleum spirits) to 

afford 778 mg (56% yield) of the desired bisalkenyl product 418.             
1H NMR (500 MHz, CDCl3): δ 6.80 (1H, d, J = 10.4 Hz, CHCHCO), 6.02 (1H, d, J = 

10.4 Hz, CHCHCO), 5.75–5.73 (2H, m, CH2CHCH2), 5.13–5.07 (2H, m, CH2CHCH2), 

4.97 (1H, dq, J = 17.1, 1.6 Hz, CH2CHCH2), 4.91 (1H, d, J = 10.2 Hz, CH2CHCH2), 

4.04 (1H, d, J = 2.6 Hz, COCH(O)CH), 2.54 (1H, dd, J = 14.2, 6.3 Hz, CH2CHCH2), 

2.43 (1H, m, CH(CH3)2), 2.32 (1H, dd, J = 14.2, 8.2 Hz, CH2CHCH2), 2.02 (2H, m, 

J = 6.9 Hz, CH2CHCH2), 1.71 (1H, m, CH2CH2CH2), 1.54–1.43 (2H, m, CH2CH2CH2), 

1.41–1.33 (2H, m, CH2CH2CH2), 1.23 (1H, m, CH2CH2CH2), 1.00 (3H, d, J = 7.0 Hz, 

CH(CH3)2), 0.84 (3H, d, J = 6.8 Hz, CH(CH3)2).                        
13C NMR (125 MHz, CDCl3): δ 196.9 (CHCHCO), 154.7 (CHCHCO), 138.8 

(CH2CHCH2), 132.7 (CH2CHCH2), 126.6 (CHCHCO), 118.6 (CH2CHCH2), 114.5 

(CH2CHCH2), 78.6 (COCH(O)CH), 75.8 (CHC(O)CH2), 39.7 (CH2CHCH2), 38.5 

(CH2CHCH2), 33.6 (CH2CH2CH2), 29.2 (CH(CH3)2), 29.1 (CH2CH2CH2), 22.9 

(CH2CH2CH2), 19.2 (CH(CH3)2), 16.0 (CH(CH3)2).               

m/z [EI+(+ve)] 263.2 [M]+ (100%), HRMS found 263.2007 C17H27O2 requires 

263.2012 [M]+.                  

vmax (film)/ cm−1: 3075, 2928, 1686, 1640, 1388, 911. 

2-Isopropyl-1-oxaspiro[5.6]dodeca-4,8-dien-3-one, 410.  

 
A solution of bisalkenyl pyranone 409 (52 mg, 0.21 mmol) in dichloromethane (2 

mL) in a darkened reaction vessel was treated with 5 mol% first generation 

Grubbs catalyst (8.6 mg, 10.5 µmol). The resulting mixture was then stirred and 

heated to reflux for 15 hours. The resulting black solution was concentrated in 

vacuo and the crude residue obtained was purified by flash column 

chromatography (silica gel, 7% diethyl ether in petroleum spirits) to give 29 mg 

(65% yield) of spirocycle 410 as a clear oil                
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1H NMR (500 MHz, CDCl3): δ 6.98 (1H, d, J = 10.4 Hz, CHCHCO), 5.94 (1H, m, 

CHCHCO), 5.91 (1H, d, J = 10.3 Hz, CHCH), 5.50 (1H, m, CHCH), 3.94 (1H, d, J = 

2.8 Hz, COCH(O)CH), 2.53 (1H, dd, J = 14.9, 5.9 Hz, CHCHCH2), 2.46 (1H, dd, J = 

14.9, 7.1 Hz, CHCHCH2), 2.38 (1H, m, CH(CH3)2), 2.23 (1H, m, CHCHCH2), 2.16 

(1H, m, CHCHCH2), 2.03 (1H, m, CH2CH2), 1.85 (1H, m, CH2CH2), 1.77 (1H, m, 

CH2CH2), 1.57 (1H, m, CH2CH2), 0.99 (3H, d, J = 6.9 Hz, CH(CH3)2), 0.83 (3H, d, J 

= 6.8 Hz, CH(CH3)2).                 
13C NMR (125 MHz, CDCl3): δ 197.4 (CHCHCO), 155.5 (CHCHCO), 134.4 (CHCH), 

125.0 (CHCH), 124.9 (CHCHCO), 78.4 (COCH(O)CH), 72.6 (CHC(O)CH2), 43.2 

(CHCHCH2), 33.4 (CHCHCH2), 28.8 (CH(CH3)2), 28.4 (CH2CH2), 21.3 (CH2CH2), 19.3 

(CH(CH3)2), 16.0 (CH(CH3)2).               

m/z [EI+(+ve)] 220.1 [M]+ (100%).               

vmax (film)/ cm−1: 2923, 1648,1368, 912.  

2-Isopropyl-1-oxaspiro[5.5]undeca-4,8-dien-3-one, 419.  

 
Procedure A            

A solution of bisalkenyl pyranone 417 (128 mg, 0.55 mmol) in dichloromethane 

(10 mL) in a darkened reaction vessel was treated with 5 mol% first generation 

Grubbs catalyst (22.5 mg, 27 µmol). The resulting mixture was then stirred and 

heated to reflux for 4 hours. The resulting black solution was concentrated in 

vacuo and the crude residue obtained was purified by flash column 

chromatography (silica gel, 40-60% dichloromethane in petroleum spirits) to give 

88 mg (78% yield) of spirocycle 419 as a clear oil                

Method B                          

A solution of bisalkenyl pyranone 417 (72 mg, 0.31 mmol) in dichloromethane 

(1.5 mL) was treated with 5 mol% of Grubbs second generation catalyst (13 mg, 

15 µmol). The resulting red solution was placed in a microwave reactor and 

heated to 100 oC for 6 minutes, then cooled to room temperature. The resulting 

black solution was concentrated in vacuo and the crude residue obtained was 
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purified by flash column chromatography (silica gel, 40-60% dichloromethane in 

petroleum spirits) to give 53 mg (85% yield) of spirocycle 419 as a clear oil 

1H NMR(500 MHz, CDCl3): δ 6.84 (1H, d, J = 10.3 Hz, CHCHCO), 5.91 (1H, d, J = 

10.3 Hz, CHCHCO), 5.70 (1H, m, CHCH), 5.52 (1H, m, CHCH), 3.95 (1H, d, J = 2.9 

Hz, COCH(O)CH), 2.37–2.24 (3H, m, CHCHCH2, CHCHCH2 and CH(CH3)2), 2.13 (1H, 

m, CHCHCH2), 2.03 (1H, m, CHCHCH2), 1.80 (1H, m, CH2CH2), 1.68 (1H, m, 

CH2CH2), 0.92 (3H, d, J = 6.9 Hz, CH(CH3)2), 0.80 (3H, d, J = 6.8 Hz, CH(CH3)2). 
13C NMR (125 MHz, CDCl3): δ 197.5 (CHCHCO), 154.2 (CHCHCO), 126.9 (CHCH), 

125.6 (CHCHCO), 122.6 (CHCH), 78.4 (COCH(O)CH), 71.3 (CHC(O)CH2), 32.8 

(CH2CH2), 30.4 (CHCHCH2), 28.8 (CH(CH3)2), 21.9 (CHCHCH2), 19.1 (CH(CH3)2), 

16.1 (CH(CH3)2).                   

m/z [EI+(+ve)] 207.1 [M]+ (100%). HRMS found 207.1380, C13H19O2 requires 

207.1385 [M]+.                  

vmax (film)/ cm−1: 2965, 2926, 1687.  

2-Isopropyl-1-oxaspiro[5.7]trideca-4,8-dien-3-one, 420.  

 
A solution of bisalkenyl pyrone 418 (121 mg, 0.46 mmol) in dichloromethane (10 

mL) in a darkened reaction vessel was treated with 5 mol% first generation 

Grubbs catalyst (18.9 mg, 23 µmol). The resulting mixture was then stirred and 

heated to reflux for 18 hours. The resulting black solution was concentrated in 

vacuo and the crude residue obtained was purified by flash column 

chromatography (silica gel, 20-60% dichloromethane in petroleum spirits) to give 

28 mg (26% yield) of spirocycle 420 as a clear oil               
1H NMR (500 MHz, CDCl3): δ 6.92 (1H, d, J = 10.4 Hz, CHCHCO), 5.94 (1H, d, J = 

10.4 Hz, CHCHCO), 5.85 (1H, m, CHCH), 5.49 (1H, m, CHCH), 4.05 (1H, d, J = 2.9 

Hz, COCH(O)CH), 2.52 (1H, dd, J = 13.5, 8.1 Hz, CHCHCH2), 2.44–2.37 (2H, m, 

CHCHCH2, CH(CH3)2), 2.19–2.14 (2H, m, CHCHCH2), 1.88–1.76 (2H, m, 

CH2CH2CH2), 1.66 (1H, m, CH2CH2CH2), 1.61–1.42 (3H, m, CH2CH2CH2, 

CH2CH2CH2), 1.02 (3H, d, J = 6.9 Hz, CH(CH3)2), 0.83 (3H, d, J = 6.8 Hz, 

CH(CH3)2).                       
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13C NMR (125 MHz, CDCl3): δ 197.3 (CHCHCO), 155.4 (CHCHCO), 133.4 (CHCH), 

125.9 (CHCHCO), 125.3 (CHCH), 78.8 (COCH(O)CH), 65.9 (CHC(O)CH2), 37.3 

(CHCHCH2), 29.8 (CH(CH3)2), 28.9 (CHCHCH2), 26.8 (CH2CH2CH2), 19.3 

(CH2CH2CH2), 15.9 (CH2CH2CH2), 15.3 (2 × CH(CH3)2).         

HRMS found 257.1512, C15H22NaO2 requires 257.1517 [M+Na]+.         

vmax (film)/ cm−1: 3154, 2932, 1685, 1383, 908.  

2-Allylfuran, 421.246 

 
A solution of furan 86 (1.61 mL, 22.0 mmol) in anhydrous THF (110 mL) at 0 oC 

was treated with nBuLi (8.84 mL, 22.1 mmol, 2.5 M in hexanes) and the resulting 

mixture allowed to warm up to room temperature. The solution was stirred for 

24 hours at room temperature, at which point the allyl bromide (1.91 mL, 22.1 

mmol) was added slowly. The resulting reaction mixture was then stirred at 

room temperature for a further 24 hours. The reaction was then poured onto ice 

and the resulting mixture diluted with diethyl ether (100 mL). The resulting 

brown liquid was then stirred for 20 minutes after which it was extracted with 

diethyl ether (2x 30 mL). The combined organic extracts were washed with 

water (2× 20 mL), brine (1× 20 mL) and then dried over sodium sulfate. The 

solvent was removed under reduced pressure to give 1.71 g (72% yield) alkene 

421 in as clear oil.                   
1H NMR (500 MHz, CDCl3): δ 7.19 (1H, q, J = 0.9 Hz, Ar-H), 6.17 (1H, dd, J = 3.2, 

1.9 Hz, Ar-H), 5.89 (1H, dd, J = 3.2, 0.9 Hz, Ar-H), 5.85-5.77 (1H, m, CH2CH), 

5.04-4.98 (2H, m, CH2CH), 3.27 (2H, d, J = 2.6 Hz, CHCH2Ar).                          
13C NMR (125 MHz, CDCl3): δ 154.1 (Ar-C), 141.5 (Ar-C), 134.2 (CH2CH), 117.1 

(CH2CHCH2), 110.5 (Ar-C), 105.7 (Ar-C), 32.8 (CH2CHCH2).         

m/z [EI+(+ve)] 108.1 [M]+ (99%).                       

vmax (neat)/cm-1. 3076, 2927, 1639, 995, 915. 

 

 

 



Chapter 6 – Experimental  

 184 

1-Furan-2-yl-2-methyl-propan-1-ol, 423.255 

 
To a stirred solution of furan 86 (5.34 mL, 73.4 mmol), N,N,N′,N′-

tetramethylethylenediamine (11.01 mL, 73.4mmol) in anhydrous diethyl ether 

(150 mL) at 0 oC was added slowly nBuLi (32.3 mL, 80.7 mmol, 2.5 M in 

hexanes). The solution was stirred for 2 hours then cooled to -78 oC and 

isobutyraldehyde (7.33 mL, 80.74 mmol) added and stirred for 3 hours. Warmed 

to room temperature, water (50 mL) added and diluted with diethyl ether (50 

mL). The organic layer was separated and washed sequentially with water (2 x 

50 mL) and brine (50 mL) and dried over sodium sulfate. Solvents were removed 

in vacuo and the residue obtained was purified by flash column chromatography 

(30% ethyl acetate: petroleum spirits) gave 1-furan-2-yl-2-methyl-propan-1-ol 

423 was obtained, 10.3 g in 99% yield.                
1H NMR(400 MHz, CDCl3): δ 7.37 (1H, dd, J = 2.0, 1.2 Hz, Ar-H), 6.33 (1H, dd, J = 

3.2, 2 Hz, Ar-H), 6.27 (1H, dd, J = 3.6, 1.0 Hz, Ar-H), 4.37 (1H, d, J = 6.8 Hz, 

CHCHOH), 2.17-2.05 (1H, m, CH(CH3)2), 1.94 (1H, bs, OH), 1.02 (3H, d, CH(CH3)2, 

J = 6.8 Hz), 0.86 (3H, d, J = 6.8 Hz, CH(CH3)2).              

13C NMR (100 MHz, CDCl3): δ 156.8 (Ar-C), 141.8 (Ar-C), 110.3 (Ar-C), 106.7 (Ar-

C), 73.7 (CHOH), 33.7 (CH(CH3)2), 18.9 (CH(CH3)2), 18.6 (CH(CH3)2).                 

m/z [EI+(+ve)] 140.1 [M]+ (100%), HRMS found 140.0841, C8H12O2 requires 

140.0837 [M]+.                           

vmax (film)/ cm−1: 3321, 1556, 2941 

tertButyl-(1-furan-2-yl-2-methyl-propoxy)-dimethyl-silane, 424. 

 
A suspension of sodium hydride (3.67 g, 91.8 mmol) in anhydrous 

tetrahydrofuran (100 mL) was cooled to 0 oC and a solution of 1-furan-2-yl-2-

methyl-propan-1-ol 423 (10.3 g, 73.4 mmol) in anhydrous tetrahydrofuran (85 

mL) was added. The reaction was stirred for 30 minutes and then treated with 

tertbutyldimethylsilyl chloride (22.1 g, 146 mmol). The reaction was then stirred 
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for 5 hours until completion, as indicated by TLC analysis. Once complete the 

reaction was treated with water (75 mL) and diethyl ether (75 mL) and the 

organic layer was separated and washed sequentially with water (2 x 50 mL) and 

brine (20 mL). The organic phase was concentrated in vacuo and purified by 

flash column chromatography (silica gel, petroleum spirits) to give 17.1 g (92% 

yield) of silyl ether 424 as a clear oil.                 
1H NMR (400 MHz, CDCl3): δ 7.30 (1H, dd, J = 1.6, 0.8 Hz, Ar-H), 6.28, (1H, dd, J 

= 3.2, 2.0 Hz, Ar-H) 6.12 (1H, dd, J = 3.2, 0.8 Hz, Ar-H), 4.30 (1H, d, J = 6.8 Hz, 

CHOSi), 2.00 (1H, m, CH(CH3)2), 0.98 (3H, d, J = 6.8 Hz, CH(CH3)2), 0.85 (9H, s, 

C(CH3)3), 0.72 (3H, d, J = 6.8 Hz, CH(CH3)2), 0.00 (3H, s, CH3Si), -0.16 (3H, s, 

CH3Si).                                     
13C NMR (100 MHz, CDCl3): δ 156.9 (Ar-C), 140.9 (Ar-C), 109.8 (Ar-C), 106.3 (Ar-

C), 74.2 (CHOSi), 31.6 (CH(CH3)2), 26.2 (C(CH3)3), 25.8 (CH(CH3)2), 22.7 (C(CH3)3) 

18.6 (CH(CH3)2), -5.0 (Si(CH3)2), -5.3 (Si(CH3)2).            

m/z [EI+(+ve)] 254.2 [M]+ (100%), HRMS found 254.1698, C14H26O2Si requires 

254.1702 [M]+.                 

vmax (film)/ cm−1: 3440, 2958, 1637 

[1-(5-Allyl-furan-2-yl)-2-methyl-propoxy]-tertbutyl-dimethyl-silane, 425. 

 
tertButyl-(1-furan-2-yl-2-methyl-propoxy)-dimethyl-silane 424 (2.69 g, 10.5 

mmol) was dissolved in anhydrous tetrahydrofuran (50 mL) and cooled to 0 oC. 

nBuLi (6.32 mL, 15.8 mmol, 2.5 M in hexanes) was then added and the resulting 

solution was stirred for 2 hours at 0 oC. The orange/brown solution was treated 

with freshly distilled allyl bromide (1.37 mL, 15.8 mmol) and stirred for 12 hours 

at room temperature. The reaction was quenched with water (50 mL) and 

diluted with diethyl ether (50 mL). The phases were separated and the organic 

layer was washed with water (2x 50 mL) and brine (20 mL) and concentrated in 

vacuo. Purification with flash column chromatography (silica gel, petroleum 

spirits) gave 2.69 g of 425 in 87% yield.               
1H NMR (400 MHz, CDCl3): δ 6.03 (1H, d, J = 2.8 Hz, Ar-H), 5.97-5.87 (1H, m, 

CH2CHCH2), 5.92 (1H, d, J = 3.2 Hz, Ar-H), 5.11 (2H, m, CHCH2), 4.25 (1H, d, J = 
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8.8 Hz, CHOSi), 3.36 (2H, d, J = 6.4 Hz, CH2CH), 2.02-1.97 (1H, m, (CH3)2CH), 

0.95 (3H, d, J = 6.8 Hz, CH3CH), 0.87 (9H, s, C(CH3)3), 0.80 (3H, d, J = 6.8 Hz, 

CH3CH), 0.02 (3H, s, CH3Si), -0.13 (3H, s, CH3Si).             

13C NMR (100 MHz, CDCl3): δ 155.5 (Ar-C), 152.3 (Ar-C), 134.3 (CH2CHCH2), 116.5 

(CHCH2), 107.0 (Ar-C), 105.8 (Ar-C), 74.2 (CHOSi), 34.2 (CH(CH3)2), 32.6 

(ArCH2CH), 25.8 (C(CH3)3), 18.9 (CHCH3), 18.4 (CHCH3), 18.3 (C(CH3)3), -4.87 

(CH3Si), -5.18 (CH3Si).                   

m/z [EI+(+ve)] 294.2 [M]+ (100%), HRMS found 294.2019, C17H30O2Si requires  

294.2015 [M]+.                            

vmax (film)/ cm−1: 2962, 2097, 1672, 1643, 1078, 835, 777. 

1-(5-Allylfuran-2-yl)-2-methylpropan-1-ol, 426.  

 
To a stirred solution of [1-(5-Allyl-furan-2-yl)-2-methyl-propoxy]-tertbutyl-

dimethyl-silane 425 (2.68 g, 9.14 mmol) in anhydrous THF (10 mL) at 0 oC was 

added tetrabutylammonium fluoride (18.3 mL, 18.38 mmol, 1 M in THF). The 

reaction was stirred at 0 oC for 10 minutes and then at room temperature for a 

further 12 hours. Once complete by TLC analysis, the reaction was diluted with 

diethyl ether (20 mL), water (10 mL) was then added and the biphasic solution 

was stirred for 30 minutes. The organic extracts were washed with water (2x 10 

mL), brine (10 mL), dried over anhydrous sodium sulfate and concentrated in 

vacuo. The crude residue purified via flash column chromatography (5% diethyl 

ether in petroleum spirits) to give 1.59 g (97% yield) alcohol 426 as a clear oil.           
1H NMR (500 MHz, CDCl3): δ 6.02 (1H, d, J = 3.0 Hz, Ar-H), 5.84 (2H, m, Ar-H and 

CH2CHCH2), 5.04 (1H, m, CH2CHCH2), 5.01 (1H, m, CH2CHCH2), 4.20 (1H, d, J = 

7.2 Hz, CHOH), 3.27 (2H, d, J = 6.5 Hz, ArCH2CHCH2), 1.98 (1H, sept, J = 7.0 Hz, 

CH(CH3)2), 0.93 (3H, d, J = 6.7 Hz, CH(CH3)2), 0.76 (3H, d, J = 6.8 Hz, CH(CH3)2). 
13C NMR (125 MHz, CDCl3): δ 154.8 (Ar-C), 153.9 (Ar-C), 133.9 (CH2CHCH2), 116.9 

(CH2CHCH2), 107.3 (Ar-C), 105.9 (Ar-C), 73.6 (CHOH), 33.2 (CH(CH3)2), 32.6 

(CH2CHCH2), 18.9 (CH(CH3)2), 18.4 (CH(CH3)2).           

m/z [EI+(+ve)] 163.1 [M-OH]+ (100%), HRMS found 181.0281, C11H17O2 181.1229 

[M]+.                    

vmax (neat)/cm-1. 3426, 2965, 1681, 835, 777.  
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6-Hydroxy-2-isopropyl-6-Allyl-6H-pyran-3-one, 427. 

O

O

OH
 

A 0 oC solution of furfuryl alcohol 426 (801 mg, 4.44 mmol) in dichloromethane 

(15 mL) was treated with meta-chloroperoxybenzoic acid (1.08 g, 4.89 mmol) 

and the resulting opaque solution was stirred at 0 oC for 1 hour. The mixture was 

allowed to warm up to room temperature and the reaction was stirred for a 

further 2 hours. Once the reaction was complete, as determined by TLC analysis, 

the reaction was cooled to 0 oC and quenched by slow addition of saturated 

aqueous sodium bicarbonate solution (8 mL). The resulting emulsion was allowed 

to separate and was then extracted with dichloromethane (3x 20 mL). The 

combined organic extracts were washed with water (1x 10 mL), brine (1x 10 mL) 

and dried over anhydrous sodium sulfate. The solution was concentrated in 

vacuo and the residue obtained purified by flash column chromatography (silica 

gel, 10-50% diethyl ether in petroleum spirits) to give 709 mg (81% yield) of 

Lactol 427 as mixture of anomers (7.8:1, α:β) as a clear oil  

Major Anomer 427α                    

 
1H NMR (500 MHz, CDCl3): δ 6.69 (1H, d, J = 10.2 Hz, CHCHCO), 5.95 (1H, d, J = 

10.1 Hz, CHCHCO), 5.81 (1H, m, CH2CHCH2), 5.18–5.12 (2H, m, CH2CHCH2), 4.26 

(1H, d, J = 2.8 Hz, COCH(O)CH), 3.10(1H, bs, OH), 2.58 (1H, dd, J = 13.6, 6.3 Hz, 

CH2CHCH2), 2.43 (1H, dd, J = 13.6, 8.3 Hz, CH2CHCH2), 2.35 (1H, m, CH(CH3)2), 

0.93 (3H, d, J = 7.4 Hz, CH(CH3)2), 0.76 (3H, d, J = 6.8 Hz, CH(CH3)2).            
13C NMR (125 MHz, CDCl3): δ 197.1 (CHCHCO), 147.4 (CHCHCO), 131.2 

(CH2CHCH2), 127.8 (CHCHCO), 120.7 (CH2CHCH2), 92.8 (C(O)OH), 78.2 

(COCH(O)CH), 45.8 (CH2CHCH2), 28.7 (CH(CH3)2), 19.0 (CH(CH3)2), 16.0 

(CH(CH3)2).  
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Minor anomer 427β 

 
1H NMR (500 MHz, CDCl3): δ 6.75 (1H, d, J = 9.8 Hz, CHCHCO), 5.97 (1H, d, J = 

9.8 Hz, CHCHCO), 5.81 (1H, m, CH2CHCH2), 5.18–5.12 (2H, m, CH2CHCH2), 3.89 

(1H, d, J = 4.4 Hz, COCH(O)CH), 3.32 (1H, bs, OH), 2.61 (1H, m, CH2CHCH2), 

2.42 (1H, m, CH2CHCH2), 2.34 (1H, m, CH(CH3)2), 0.92 (3H, d, J = 8.2 Hz, 

CH(CH3)2), 0.84 (3H, d, J = 6.0 Hz, CH(CH3)2).                
13C NMR (125 MHz, CDCl3): δ 186.4 (CHCHCO), 149.9 (CHCHCO), 130.8 

(CH2CHCH2), 127.5 (CHCHCO), 120.6 (CH2CHCH2), 94.6 (C(O)OH), 82.1 

(COCH(O)C), 41.7 (CH2CHCH2), 29.0 (CH(CH3)2), 18.9 (CH(CH3)2), 16.8 (CH(CH3)2). 

m/z [EI+(+ve)] 179.1 [M-OH]+ (100%), HRMS found 219.0992, C11H16NaO3    

219.0997 [M+Na]+.                

vmax (film)/ cm−1: 3403, 2965, 2932, 1691, 1466, 909. 

6,6-Diallyl-2-isopropyl-6H-pyran-3-one, 428. 

 
A solution of the lactol 427 (441 mg, 2.24 mmol) in anhydrous dichloromethane 

(11 mL) was treated with allyltrimethylsilane (747 µL, 4.70 mmol) and the 

resulting mixture was cooled to −78 oC. The reaction mixture was then treated 

by the slow addition of BF3�OEt2 (851 µL, 6.72 mmol) and the resulting solution 

stirred for 30 minutes at −78 oC. The reaction was then allowed to warm to room 

temperature and was stirred for a further 5 hours. Once the reaction was 

complete, as determined by TLC analysis, the reaction was quenched with 

saturated aqueous ammonium chloride (10 mL) and extracted with 

dichloromethane (3x 20 mL). The combined organic extracts were washed 

sequentially with saturated sodium hydrogen carbonate (1× 10 mL), water (2× 10 

mL) and brine (1× 10 mL). The combined organic phases were dried over 

anhydrous sodium sulfate and the solvent was removed in vacuo. The crude 

residue was then purified by flash column chromatography (silica gel, 5% ethyl 

acetate in petroleum spirits) to afford 452 mg (81% yield) of the desired 
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bisalkenyl product 428.                   
1H NMR (500 MHz, CDCl3): δ 6.77 (1H, d, J = 10.4 Hz, CHCHCO), 5.95 (1H, d, J = 

10.4 Hz, CHCHCO), 5.75 (2H, m, CH2CHCH2), 5.11–5.00 (4H, m, CH2CHCH2), 4.04  

(1H, d, J = 2.6 Hz, COCH(O)CH), 2.51 (1H, ddt, J = 14.3, 6.3, 1.3 Hz, CH2CHCH2), 

2.39 (2H, m, CH(CH3)2 and CH2CHCH2), 2.31–2.23 (2H, m, CH2CHCH2), 0.96 (3H, 

d, J = 7.0 Hz, CH(CH3)2), 0.80 (3H, d, J = 6.8 Hz, CH(CH3)2).           
13C NMR (125 MHz, CDCl3): δ 195.6 (CHCHCO), 153.0 (CHCHCO), 131.9 

(CH2CHCH2), 131.3 (CH2CHCH2), 125.3 (CHCHCO), 117.9 (CH2CHCH2), 117.3 

(CH2CHCH2), 75.7 (COCH(O)CH), 74.4 (CHC(O)CH2), 42.0 (CH2CHCH2), 37.9 

(CH2CHCH2), 28.1 (CH(CH3)2), 18.1 (CH(CH3)2), 14.9 (CH(CH3)2).                  

m/z [EI+(+ve)] 221.2 [M]+ (95%), HRMS found 221.1536, C14H21O2 requires 

221.1542 [M]+.                  

vmax (film)/cm−1:2964, 2930, 1690, 1366, 1060.  

7-Isopropyl-6-oxaspiro[4.5]deca-2,9-dien-8-one, 433. 

O

O

 
A solution of bisalkenyl pyrone (58 mg, 0.26 mmol) in dichloromethane (3 mL) in 

a darkened reaction vessel was treated with 5 mol% first generation Grubbs 

catalyst (10.8 mg, 13 µmol). The resulting mixture was then stirred and heated 

to reflux for 3 hours. The resulting black solution was concentrated in vacuo and 

the crude residue obtained purified by flash column chromatography (silica gel, 

5% ethyl acetate in petroleum spirits) to give 44 mg of product 433 (85% yield) 

as a clear oil                    
1H NMR(500 MHz, CDCl3): δ 6.96 (1H, d, J =10.2 Hz, CHCHCO), 5.96 (1H, d, J = 

10.2 Hz, CHCHCO), 5.97 (1H, m, CH2CH), 5.75 (1H, m, CHCH), 3.97 (1H, d, J = 

2.9 Hz CHOC), 2.85 (1H, dquint, = 16.9, 4.0 Hz, CHCHCH2), 2.72 (1H, d, J = 17.2, 

1.9 Hz, CHCHCH2), 2.68-2.63 (1H, dm, CHCHCH2), 2.50-2.45 (1H, d, CHCHCH2), 

2.41 (1H, septd, J = 6.9, 2.9 Hz, CH(CH3)2), 1.00 (3H, d, J = 7.0 Hz, CH(CH3)2), 

0.88 (3H, d, J = 6.9 Hz, CH(CH3)2). .               
13C NMR (125 MHz, CDCl3): δ 196.9 (CHCHCO), 154.6(CHCHCO), 128.4 (CHCH), 

127.7 (CHCHCO), 124.5 (CHCH), 82.1 (COCH(O)CH), 80.0 (CHC(O)CH2), 46.8 

(CHCHCH2), 40.0 (CHCHCH2), 28.4 (CH(CH3)2), 19.0 (CH(CH3)2), 16.1 (CH(CH3)2).         
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m/z [EI+(+ve)] 193.1 [M]+ (90%), HRMS found 193.1223, C12H17O2 requires 

193.1229 [M]+.                       

vmax (film)/ cm−1: 2928, 1686, 1476, 1383.  

Methyl-(E)-3-(3-methoxyphenyl)-acrylate, 442.262 

 
To a refluxing solution of methyl (triphenylphosphoranylidene) acetate (23.8 g, 

71.0 mmol) in anhydrous dichloromethane (185 mL) was added 3-

methoxybenzaldehyde 441 (4.83 mL, 35.5 mmol). The resulting mixture was 

refluxed at reflux for a further 10 hours. The reaction mixture was cooled to 

room temperature and concentrated in vacuo and adsorbed directly onto silica. 

Purification with flash column chromatography (silica gel, elution with 20% 

diethyl ether in petroleum spirits) afforded 6.20 g (91% yield) of ester 442 as a 

single E isomer.                         
1H NMR (400 MHz, CDCl3): δ 7.69 (1H, d, J = 16.0 Hz, ArCHCH), 7.32 (1H, t, J = 

8.0, Ar-H), 7.15-7.13 (1H, m, Ar-H), 7.07-7.06 (1H, m, Ar-H), 6.96 (1H, ddd, J = 

8.4, 2.8, 0.8, Ar-H), 6.46(1H, d, J = 16.0, ArCHCH), 3.85 (3H, s, OCH3), 3.83 (3H, 

s, CO2CH3).                   
13C NMR (100 MHz, CDCl3): δ 167.4 (CO), 159.9 (Ar-C), 144.8 (Ar-C), 135.8 (Ar-C), 

129.9 (Ar-C), 120.7 (Ar-C), 118.1 (CHCH), 116.1 (Ar-C), 113.0 (CHCH), 55.3 

(OCH3), 51.7 (CO2CH3).                   

m/z [EI+(+ve)] 192.0 [M]+ (100%), 161.02 [M-OCH3]
+ (26%), HRMS found 192.0785, 

C11H12O3 requires 192.0786 [M+].                 

vmax (film)/ cm−1: 1700, 1639, 1434, 783, 679 

3-(3-Methoxyphenyl)-propan-1-ol.263 

 
To a stirred solution of (E)-methyl 3-(4-methoxyphenyl) acrylate 442 (5.05 g, 

26.9 mmol) in tetrahydrofuran (270 mL) at 0 oC was added slowly lithium 

aluminium hydride solution (8.07 mL, 8.07 mmol, 1 M in diethyl ether). The 
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resulting suspension was heated under reflux and stirred for 10 hours. The 

reaction was cooled to 0 oC and diluted with diethyl ether (200 mL) and 

sequentially treated with water (2.2 mL), 15% NaOH solution (2.2 mL) and water 

(6.6 mL). To the resulting opaque white suspension was stirred for 30 minutes 

was added anhydrous sodium sulfate and stirred for a further 30 minutes. The 

solids were filtered off and washed with diethyl ether (3x 50 mL) then 

concentrated in vacuo. Purification using flash column chromatography (silica 

gel, elution with 30-50% diethyl ether in petroleum spirits), gave 3.26 g (73% 

yield) of the desired saturated alcohol.                  
1H NMR (400 MHz, CDCl3): δ 7.24 (1H, dt, J = 7.7, 0.8 Hz, Ar-H), 6.84-6.76 (3H, 

m, Ar-H), 3.83 (3H, s, OCH3) 3.71 (2H, t, J = 6.4 Hz, CH2CH2CH2), 2.72 (2H, t, J = 

6.4 Hz, CH2CH2CH2), 1.93 (2H, m, CH2CH2CH2), 1.74 (1H, bs, OH).          
13C NMR (100 MHz, CDCl3): δ 159.7 (Ar-C), 143.5 (Ar-C), 129.4 (Ar-C), 120.9 (Ar-

C), 114.3 (Ar-C), 111.1 (Ar-C) 62.2 (CH2CH2CH2), 55.2 (OCH3), 34.1 (CH2CH2CH2), 

32.1 (CH2CH2CH2).               

m/z [EI+(+ve)] 166.0 [M]+ (100%), HRMS found 166.0995, C10H14O2 requires 

166.0994 [M+].                 

vmax (film)/ cm−1: 3291, 2861, 1504, 1292 

1-(3-Bromopropyl)-3-methoxybenzene, 443.261 

 
To a solution of 3-(4-methoxyphenyl)propan-1-ol (3.16 g, 19.0 mmol) in 

dichloromethane (190 mL) was added carbon tetrabromide (24.9 g, 76.0 mmol) 

and triphenylphosphine (19.9 g, 76.0 mmol). The reaction was stirred until 

completion by TLC analysis (3 hours). The solvent was evaporated under reduced 

pressure and the solids formed were adsorbed directly onto silica and purified by 

flash column chromatography (silica gel, 5 % diethyl ether in petroleum spirits) 

to give 3.32 g (77 % yield) of the desired bromide 443.        
1H NMR (400 MHz, CDCl3): δ 7.27 (1H, m, Ar-H), 6.82-6.79 (3H, m, Ar-H), 3.84 

(3H, s, OCH3), 3.44 (2H, t, J = 6.4 Hz, CH2CH2CH2), 2.80 (2H, t, J = 7.2 Hz, 

CH2CH2CH2), 2.21 (2H, t, J = 6.4 Hz, CH2CH2CH2).      

13C NMR (100 MHz, CDCl3): δ 159.8 (Ar-C), 142.2 (Ar-C), 129.5 (Ar-C), 120.9 (Ar-

C), 114.4 (Ar-C), 111.5 (Ar-C), 55.2 (OCH3), 34.1 (CH2CH2CH2), 33.8 (CH2CH2CH2), 
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33.1 (CH2Br).                   

m/z [EI+(+ve)] 79Br-228.0 [M]+ (100%), HRMS [M+] found 228.0151, C10H13O
79Br 

requires 228.0150. 81Br-230.0 [M]+ (97%), HRMS [M+] found 230.0129, C10H13O
81Br 

requires 230.0129.                

vmax (film)/ cm−1: 3016, 3014, 1625, 1503, 832. 

2-(3-(3-Methoxyphenyl)propyl)-furan, 444. 

 
Furan 86 (328 µL, 4.52 mmol) in anhydrous tetrahydrofuran (22 mL) was cooled 

to 0 oC and treated with nBuLi (1.8 mL, 4.52 mmol). The reaction was warmed to 

room temperature and stirred for 20 hours at which time the reaction cooled 

back down to 0 oC and a solution of bromide 443 (1.03 g, 4.52 mmol) in 

anhydrous tetrahydrofuran (10 mL) was added. The reaction mixture was then 

stirred for a further 4 hours. The resulting brown solution was diluted with 

diethyl ether (15 mL) and water (10 mL) was added and stirred for 30 minutes. 

The organic phase was washed with water (2x 10 mL), dried over anhydrous 

sodium sulfate and concentrated in vacuo. Purification by flash column 

chromatography (silica gel, 4% dichloromethane in petroleum spirits) afforded 

507 mg (52%) of the aromatic compound 444 as a clear oil.             
1H NMR (400 MHz, CDCl3): δ 7.32 (1H, dd, J = 1.7, 0.7 Hz, Ar-H), 7.25-7.19 (2H, 

m, Ar-H), 6.81-6.74 (1H, m, Ar-H), 6.29 (2H, dd, J = 3.1, 1.9 Hz, Ar-H), 6.01 (1H, 

dd, J = 3.1, 0.8, Ar-H), 3.81 (3H, s, OCH3), 2.66 (4H, q, J = 7.2 Hz, CH2CH2CH2), 

1.99 (2H, quint, J = 7.6 Hz, CH2CH2CH2).                        
13C NMR (100 MHz, CDCl3): δ 159.8 (Ar-C), 155.9 (Ar-C), 142.2 (Ar-C), 140.8 (Ar-

C), 129.5 (Ar-C), 120.4 (Ar-C), 114.4 (Ar-C), 111.1 (Ar-C), 110.1 (Ar-C), 104.9 

(Ar-C), 55.2 (OCH3), 35.3 (CH2CH2CH2), 34.1 (CH2CH2CH2), 27.5 (CH2CH2CH2).       

m/z [EI+(+ve)] 216.1 [M]+ (100%), HRMS found 216.1151, C14H16O2, requires 

216.1150 [M+].                 

vmax (film)/ cm−1: 2938, 1601, 1584, 1261 
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Methyl-(E)-3-(4-methoxyphenyl)-acrylate, 447.264 

 
To a refluxing solution of methyl (triphenylphosphoranylidene) acetate (24.5 g, 

73.4mmol) in anhydrous dichloromethane (185 mL) was added 4-

methoxybenzaldehyde 446 (4.99 mL, 36.7mmol). The resulting mixture was 

refluxed at reflux for a further 10 hours. The reaction mixture was cooled to 

room temperature and concentrated in vacuo and adsorbed directly onto silica. 

Purification with flash column chromatography (silica gel, elution with 20% 

diethyl ether in petroleum spirits) afforded 6.41 g (91% yield) of ester 447 as a 

single E isomer.                  

1H NMR (400 MHz, CDCl3): δ 7.55 (1H, d, J = 16.0 Hz, ArCHCH), 7.38 (2H, dd, J = 

8.8, 2.0 Hz, Ar-H), 6.81 (2H, dd, J = 8.8, 2.0 Hz, Ar-H), 6.21 (1H, d, J = 16.0 Hz, 

ArCHCH), 3.74 (3H, s, OCH3), 3.69 (3H, s, CO2CH3).            
13C NMR (100 MHz, CDCl3): δ 167.8 (CO), 161.4 (Ar-C), 144.5 (CHCH), 129.7 (2x 

Ar-C), 127.1 (Ar-C), 115.3 (CHCH), 114.3 (2x Ar-C), 55.4 (OCH3), 51.6 (CO2CH3).  

m/z [EI+(+ve)] 192.1 [M]+ (100%), 161.1 [M-OCH3]
+ (20%), HRMS found 192.0788, 

C11H12O3 requires 192.0786 [M+].               

vmax (film)/ cm−1: 1681, 1599, 1485, 787. 

3-(4-Methoxyphenyl)-propan-1-ol, 448.265 

 
To a stirred solution of (E)-methyl 3-(4-methoxyphenyl) acrylate 447 (2.13 g, 

11.1 mmol) in tetrahydrofuran (55 mL) at 0 oC was added slowly lithium 

aluminium hydride solution (15.8 mL, 55.4 mmol, 3.5 M in diethyl ether). The 

resulting suspension was heated under reflux and stirred for 10 hours. The 

reaction was cooled to 0 oC and diluted with diethyl ether (100 mL) and 

sequentially treated with water (2.2 mL), 15% NaOH solution (2.2 mL) and water 

(6.6 mL). To the resulting opaque white suspension was stirred for 30 minutes 

was added anhydrous sodium sulfate and stirred for a further 30 minutes. The 

solids were filtered off and washed with diethyl ether (3x 50 mL) then 

concentrated in vacuo. Purification using flash column chromatography (silica 

gel, elution with 30-50% diethyl ether in petroleum spirits), gave 1.31 g (71% 
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yield) of the desired saturated alcohol 448.                
1H NMR (400 MHz, CDCl3): δ 7.15 (2H, d, J = 8.6 Hz, Ar-H), 6.87 (2H, d, J = 8.6 

Hz, Ar-H), 3.82 (3H, s, OCH3), 3.70 (2H, t, J = 6.4 Hz, CH2CH2CH2), 2.69 (2H, t, J 

= 7.6 Hz, CH2CH2CH2), 1.93-1.86 (2H, m, CH2CH2CH2), 1.35 (1H, bs, OH).          

13C NMR (100 MHz, CDCl3): δ 157.3 (Ar-C), 133.9 (Ar-C), 129.3 (2x Ar-C), 113.8 

(2x Ar-C), 62.3 (CH2CH2CH2), 55.3 (OCH3), 34.5 (CH2CH2CH2), 31.2 (CH2CH2CH2). 

m/z [EI+(+ve)] 166.1 [M]+ (100%), HRMS found 166.0995, C10H14O2 requires 

166.0994 [M+].                    

vmax (film)/ cm−1: 3410, 2871, 1521, 1269 

1-(3-Bromopropyl)-4-methoxybenzene, 449.266 

 
To a solution of 3-(4-methoxyphenyl)propan-1-ol 448 (1.31 g, 7.89 mmol) in 

dichloromethane (80 mL) was added carbon tetrabromide (10.3 g, 31.3 mmol) 

and triphenylphosphine (8.20 g, 31.3 mmol). The reaction was stirred until 

completion by TLC analysis (3 hours). The solvent was evaporated under reduced 

pressure and the solids formed were adsorbed directly onto silica and purified by 

flash column chromatography (silica gel, 5 % diethyl ether in petroleum spirits) 

to give 1.42 g (79 % yield) of the desired bromide 449.            
1H NMR (400 MHz, CDCl3): δ 7.03 (2H, d, J = 8.4 Hz, Ar-H), 6.76 (2H, d, J = 8.8 

Hz, Ar-H), 3.71 (3H, s, OCH3), 3.30 (2H, t, J = 6.4 Hz, CH2CH2CH2), 2.64 (2H, t, J 

= 7.2 Hz, CH2CH2CH2), 2.05 (2H, quin, J = 6.4 Hz, CH2CH2CH2).          
13C NMR (100 MHz, CDCl3): δ 158.1 (Ar-C), 132.6 (Ar-C), 129.5 (2x Ar-C), 113.9 

(2x Ar-C), 55.3 (OCH3), 34.4 (CH2CH2CH2), 33.2 (CH2CH2CH2), 33.1 (CH2CH2CH2). 

m/z [EI+(+ve)] 79Br-228.0 [M]+ (100%), HRMS found 228.0151, C10H13O
79Br, 

requires 228.0150 [M+].  81Br-230.0 (100%), HRMS found 230.0132, C10H13O
81Br 

requires 230.0129 [M+].                 

vmax (film)/ cm−1: 3030, 3004, 1612, 1510, 829. 
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(E)-3-(3-Methoxy-phenyl)-prop-2-en-1-ol, 451.268 

 
A stirred solution of (E)-3-(3-Methoxy-phenyl)-acrylic acid methyl ester 442 

(5.07 g, 26.4 mmol) in anhydrous dichloromethane (130 mL) was cooled to -78 oC 

and treated with diisobutylaluminium hydride (58.1 mL, 58.1 mmol, 1 M in 

dichloromethane) and stirred for 3 hours. Warmed to 0 oC and diluted with 

diethyl ether (75 mL). The reaction was quenched with water (1.05 mL), 15% 

aqueous sodium hydroxide (1.05 mL) and water (5.75 mL) sequentially. The 

cloudy suspension was stirred for 30 minutes and was then treated with sodium 

sulfate and stirred for a further 30 minutes. The solids formed were filtered 

through celite and washed with diethyl ether (3x 100 mL) and the filtrate was 

concentrated under reduced pressure. Purification by flash column 

chromatography (silica gel, 20-40% diethyl ether in petroleum ether) gave 3.08 g 

(71% yield) of allylic alcohol 451 as a clear oil.               
1H NMR (400 MHz, CDCl3): δ 7.26 (1H, t, J = 8.0 Hz, Ar-H), 7.01 (1H, d, J = 7.6 

Hz, Ar-H), 6.95 (1H, t, J = 2.0 Hz, Ar-H), 6.84 (1H, ddd, J = 8.0, 2.4, 0.4 Hz, Ar-

H), 6.60 (1H, d, J = 16.0 Hz, ArCHCH), 6.40 (1H, dt, J = 15.9, 5.7 Hz, CHCHCH2), 

4.33 (2H, bs, CH2OH), 3.83 (3H, s, OCH3), 2.21 (1H, bs, OH).            

13C NMR (100 MHz, CDCl3): δ 159.8 (Ar-C), 138.2 (Ar-C), 130.9 (CHCH), 129.6 (Ar-

C), 128.9 (CHCH2), 119.2 (Ar-C), 113.3 (Ar-C), 111.9 (Ar-C), 63.6 (CH2OH), 55.2 

(OCH3).                          

m/z [EI+(+ve)] 164.1 [M]+ (100%), HRMS found 164.0838, C10H12O2, requires 

164.0837 [M+].                 

vmax (film)/ cm−1: 3161, 2360, 1652.  

(E)-1-(3-Bromoprop-1-enyl)-3-methoxybenzene, 452.267 

 
To a refluxing solution of (E)-3-(3-methoxy-phenyl)-prop-2-en-1-ol 451 (967 mg, 

5.89 mmol) in dichloromethane (30 mL) was added carbon tetrabromide (7.72 g, 

23.6 mmol) and triphenylphosphine (6.19 g, 23.6 mmol). The reaction was 
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stirred for 3 hours until completion by TLC analysis. The reaction mixture was 

concentrated under reduced pressure and the solids formed were adsorbed 

directly onto silica and purified by flash column chromatography (silica gel, 5 % 

diethyl ether in petroleum spirits) to give 891 mg (67 % yield) of the desired 

allylic bromide 452.          

1H NMR (400 MHz, CDCl3): δ 7.48 (1H, t, J = 7.5 Hz, Ar-H), 7.24 (2H, m, Ar-H), 

6.92 (1H, m, Ar-H), 6.80 (1H, d, J = 15.1 Hz, ArCHCH), 6.34 (1H, dt, J = 15.7, 5.2 

Hz, ArCHCH2), 3.92 (2H, d, J = 6.2, CH2OH), 3.83 (3H, s, OCH3).           

13C NMR (100 MHz, CDCl3): δ 160.9 (Ar-C), 138.9 (Ar-C), 132.9 (CHCH), 129.1 (Ar-

C), 122.7 (CHCH2), 119.7 (Ar-C), 113.6 (Ar-C), 113.4 (Ar-C), 55.2 (OCH3), 36.1 

(CH2Br).  

(E)-3-(3-Methoxyphenyl)-allyl methanesulfonate, 453.270 

 
To a stirred solution of (E)-3-(3-methoxy-phenyl)-prop-2-en-1-ol, 451 (499 mg, 

3.05 mmol) in tetrahydrofuran (20 mL) at 0 oC was added mesyl chloride (344 µL, 

4.57 mmol). The resulting solution was stirred for 10 minutes and then treated 

with triethylamine (848 µL, 6.09 mmol) for a further 2 hours. The mixture was 

diluted with diethyl ether (20 mL) and 10% aqueous hydrochloride acid solution 

(5 mL) was added. The phases were separated and the organic layer was washed 

with saturated sodium bicarbonate solution (5 mL) and brine (10 mL), then dried 

over anhydrous sodium sulfate and concentrated in vacuo. The crude residue was 

taken on to the next step without further purification. 

3-(Methoxy-phenyl)-prop-2-yn-1-ol, 463.279 

 
3-Iodoanisole 464 (6.53 g, 54.8 mmol) in acetonitrile (270 mL) was treated with 

Bis(triphenylphosphine)palladium(II) dichloride (4.81 g, 6.85 mmol), copper 

iodide (2.61 g, 13.7 mmol) and triethylamine (38.5 mL, 274 mmol). The resulting 
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yellow solution was treated with propargyl alcohol 465 (3.94 mL, 65.8 mmol) 

and the reaction was heated to reflux and stirred for 10 hours. Once complete, 

by TLC analysis, the solids were filtered off and washed with diethyl ether (2x 50 

mL), the filtrate was evaporated and the residue obtained was purified by flash 

column chromatography (30% ethyl acetate in petroleum) to give 7.37 g (83% 

yield) of the desired alkyne 463 as a brown oil.       

1H NMR (400 MHz, CDCl3): δ 7.22 (1H, dd, J = 8.0, 0.8 Hz, Ar-H), 7.04 (1H, dt, J = 

7.6, 0.8 Hz, Ar-H), 6.98 (1H, dd, J = 2.4, 1.2 Hz, Ar-H), 6.89 (1H, ddd, J = 8.4, 

2.8, 0.6 Hz, Ar-H), 4.49 (2H, s, CH2OH), 3.79 (3H, s, OCH3), 1.70 (1H, s, OH).  
13C NMR (100 MHz, CDCl3): δ 159.3 (Ar-C), 129.4 (Ar-C), 124.2 (Ar-C), 123.5 (Ar-

C), 116.5 (Ar-C), 115.1 (Ar-C), 87.0 (CC), 85.7 (CCH2), 55.3 (OCH3), 51.7 

(CH2OH).                  

m/z [EI+(+ve)] 162.1 [M]+ (100%), HRMS found 162.0679, C10H10O2, requires 

162.0681 [M+].                 

vmax (film)/ cm−1: 3374, 3002, 2938, 2227, 1603, 855, 782, 687. 

3-(3-Methoxyphenyl)prop-2-ynyl 4-methylbenzenesulfonate, 467. 

 
A solution of alkyne alcohol 463 (509 mg, 3.14 mmol) in diethyl ether (20 mL) 

was treated with 4-methylbenzenesulfonyl chloride (628 mg, 3.30 mmol) and the 

solution was cooled to 0 oC and stirred for 30 minutes. Powdered potassium 

hydroxide (881 mg, 15.7 mmol) was added in 3 portions over 20 minutes and the 

heterogeneous mixture stirred for a further 2 hours. Water (10 mL) and diethyl 

ether (20 mL) were added and the biphasic mixture was stirred for 30 minutes. 

The organic phase was washed with water (2x 10 mL), brine (10 mL), dried over 

anhydrous sodium sulfate and concentrated in vacuo to yield 972 mg (97% yield) 

of tosylate 467.                          

1H NMR (400 MHz, CDCl3): δ 7.75 (2H, d, J = 8.4 Hz, Ar-H), 7.22 (2H, d, J = 8.0 

Hz, Ar-H), 7.08 (1H, t, J = 7.9 Hz, Ar-H), 6.79-6.74 (2H, m, Ar-H), 6.68 (1H, dd, J 

= 1.3 Hz, Ar-H), 4.84 (2H, s, CCH2O), 3.67 (3H, s, OCH3), 2.29 (3H, s, ArCH3).    
13C NMR (100 MHz, CDCl3): δ 159.2 (Ar-C), 145.2 (Ar-C), 133.3 (Ar-C), 130.3 (Ar-
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C), 129.8 (Ar-C), 129.4 (Ar-C), 128.2 (Ar-C), 127.0 (Ar-C), 124.2 (Ar-C), 122.4 

(Ar-C), 116.9 (Ar-C), 115.4 (Ar-C), 88.9 (CCCH2), 80.4 (CCCH2), 58.6 (OCH3), 55.3 

(CCCH2), 21.6 (ArCH3).                

m/z [EI+(+ve)] 316.1 [M]+ (100%), HRMS found 316.0772, C17H16O4S, requires 

316.0769 [M+].                 

vmax (film)/ cm−1: 2852, 2233, 1595, 1319, 1176, 759. 

1-(3-Bromo-prop-1-ynyl)-3-methoxy-benzene, 468. 

 
To a solution of 3-(Methoxy-phenyl)-prop-2-yn-1-ol 463 (367 mg, 2.26 mmol) in 

dichloromethane (15 mL) was added carbon tetrabromide (2.99 g, 9.05 mmol) 

and triphenylphosphine (2.37 g, 9.05 mmol). The reaction was stirred for 3 hours 

until completion by TLC analysis, solvent was evaporated under reduced 

pressure. Crude solids were adsorbed directly onto silica and purified by flash 

column chromatography (silica gel, 5 % diethyl ether in petroleum spirits), 

affording 232 mg (46% yield) of 468 as a brown oil.             
1H NMR (400 MHz, CDCl3): δ 7.16 (1H, dd, J = 7.6, 0.6 Hz, Ar-H), 6.97 (1H, d, J = 

7.6 Hz, Ar-H), 6.90-6.89 (1H, m, Ar-H), 6.84-6.82 (1H, Ar-H), 4.09 (2H, s, CH2Br), 

3.73 (3H, s, OCH3).                  
13C NMR (100 MHz, CDCl3): δ 160.2 (Ar-C), 130.5 (Ar-C), 122.9 (Ar-C), 115.8 (Ar-

C), 115.1 (Ar-C), 114.0 (Ar-C), 85.7 (CCCH2), 80.9 (CCCH2), 55.2 (OCH3), 12.2 

CCH2Br. 

(E)-3-(3-methoxyphenyl)-allyl acetate, 469.283 

 
A solution of (E)-3-(3-Methoxy-phenyl)-prop-2-en-1-ol 451 (5.49 g, 33.5 mmol) 

was dissolved in dichloromethane (100 mL) at 0 oC. Triethylamine (6.99 mL, 50.2 

mmol) and dimethylaminopyridine (409 mg, 3.45 mmol) were added and the 

reaction mixture was stirred for 30 minutes, then treated with acetic anhydride 
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(4.45 mL, 50.2 mmol). The mixture was stirred for a further 12 hours until 

completion, monitored by TLC analysis. Water (20 mL) and dichloromethane (50 

mL) were added and the organic phase was washed with water (2x 20 mL). The 

combined organic extracts were dried over anhydrous sodium sulfate and 

concentrated in vacuo. Purification with flash column chromatography (silica 

gel, 20% diethyl ether in petroleum ether) gave 5.94 g (86% yield) of allylic 

acetate 469.            
1H NMR (400 MHz, CDCl3): δ 7.15 (1H, t, J = 7.9 Hz, Ar-H), 6.90 (1H, d, J = 7.7 

Hz, Ar-H), 6.84 (1H, t, J = 2.0 Hz, Ar-H), 6.74 (1H, ddd, J = 8.2, 2.5, 0.7 Hz, Ar-

H), 6.54 (1H, d, J = 15.8 Hz, CHCHCH2), 6.19 (1H, dt, J = 15.8, 6.4 Hz, 

CHCHCH2), 4.64 (2H, d, J = 6.4 Hz, CHCH2), 3.73 (3H, s, OCH3), 2.02 (3H, s, 

COCH3).                   
13C NMR (100 MHz, CDCl3): δ 170.9 (COCH3), 159.8 (Ar-C), 137.7 (Ar-C), 134.1 

(CHCH), 129.6 (Ar-C), 123.5 (Ar-C), 119.3 (CHCH), 113.8 (Ar-C), 111.8 (Ar-C), 

65.0 (CHCH2), 55.2 (OCH3), 21.0 (COCH3).        

m/z [EI+(+ve)] 206.1 [M]+ (100%), HRMS found 206.0945, C12H14O3, requires 

206.0943 [M+].                      

vmax (film)/ cm−1: 2941, 2835, 1735, 1490, 1259, 775. 

tertButyl-(1-(5-(3-(4-methoxyphenyl)propyl)furan-2-yl)-2-methylpropoxy) 

dimethylsilane, 450. 

 
To a stirred 0 oC solution of tertButyl-(1-furan-2-yl-2-methyl-propoxy)-dimethyl-

silane 424 (992 mg, 3.89 mmol) in anhydrous tetrahydrofuran (10 mL) was added 

slowly nBuLi (1.16 mL, 5.84 mmol, 2.5 M solution in hexanes). The solution was 

stirred at 0 oC for 10 minutes and the yellow solution was allowed to attain room 

temperature over an hour. Cooled to -78 oC the now brown solution was treated 

with a solution of bromide 449 (10 mL, 5.07 mmol, 0.5 M in tetrahydrofuran) 

and stirred for 1 hour, then for a further 12 hours at room temperature. The 

mixture was diluted with diethyl ether (10 mL) and quenched with saturated 

ammonium chloride solution (5 mL) and the layers separated. The organic phase 
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was washed with water (2x 10 mL), dried over anhydrous sodium sulfate and 

concentrated in vacuo. Purification by flash column chromatography (silica gel, 

petroleum ether) gave 1.03 g of silyl ether bicycle 450 (38% yield) as clear oil 

that was inseparable from remaining bromide 449.              
1H NMR (400 MHz, CDCl3): δ 7.09 (2H, d, J = 9.2 Hz, Ar-H), 6.85 (2H, d, J = 9.4 

Hz, Ar-H), 6.01 (1H, d, J = 3.0 Hz, Ar-H), 5.89 (1H, d, J = 3.0 Hz, Ar-H), 4.24 

(1H, d, J = 7.0 Hz, CHOSi), 3.79 (3H, s, OCH3), 2.59 (4H, t, J = 7.7 Hz, 

CH2CH2CH2), 2.05-1.98 (1H, m, CH(CH3)2), 1.94-1.87 (2H, m, CH2CH2CH2), 0.96 

(3H, d, J = 6.7 Hz, CH(CH3)2), 0.87 (9H, s, SiC(CH3)3), 0.79 (3H, d, J = 6.8 Hz, 

CH(CH3)2), 0.02 (3H, s, SiCH3), -0.13 (SiCH3).             
13C NMR (100 MHz, CDCl3): δ 158.1 (Ar-C), 155.0 (Ar-C), 154.5 (Ar-C), 132.4 (Ar-

C), 129.4 (2x Ar-C), 113.9 (2x Ar-C), 106.9 (Ar-C), 105.3 (Ar-C), 74.3 (CHOSi), 

55.3 (OCH3), 34.4 (CH2CH2CH2), 33.2 (CH2CH2CH2), 30.2 (CH(CH3)2), 27.5 

(CH2CH2CH2), 25.9 (C(CH3)3), 18.8 (CH(CH3)2), 18.6 (CH(CH3)2), 18.3 (C(CH3)3), -

4.8 (SiCH3), -5.2 (SiCH3).              

m/z [EI+(+ve)] 402.3 [M]+ (100%), HRMS found 402.2594, C24H38O3Si, requires 

402.2590 [M+].                 

vmax (film)/ cm−1: 2955, 2932, 2856, 1512, 1247 

1-(5-(3-(4-Methoxyphenyl)propyl)furan-2-yl)-2-methylpropan-1-ol, 470. 

 
To a stirred solution of tertButyl(1-(5-(3-(4-methoxyphenyl)propyl)furan-2-yl)-2-

methylpropoxy)dimethylsilane, 450 (595 mg, 1.48 mmol) in tetrahydrofuran (4 

mL) at 0 oC was added tetrabutylammonium fluoride (2.96 mL, 2.96 mmol) and 

the resulting solution was stirred for 48 hours. Water (5 mL) and diethyl ether 

(10 mL) were added and the phases were separated. The organic layer was then 

washed with water (2x 5 mL), brine (5 mL) and dried over anhydrous sodium 

sulfate. The solution was concentrated in vacuo to afford 418 mg (98% yield) of 

alcohol 470 that was used without further purification.                      
1H NMR (400 MHz, CDCl3): δ 6.99 (2H, d, J = 8.6 Hz, Ar-H), 6.73 (2H, d, J = 8.6 

Hz, Ar-H), 6.01 (1H, d, J = 3.1 Hz, Ar-H), 5.82 (1H, d, J = 3.0 Hz, Ar-H), 4.19 

(1H, dd, J = 7.1, 5.2, CHOH), 3.69 (3H, s, OCH3), 2.50 (4H, q, J = 7.5 Hz, 
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CH2CH2CH2), 2.03-1.95 (1H, m, CH(CH3)2), 1.82 (2H, quint, J = 5.6 Hz, 

CH2CH2CH2), 1.69 (1H, d, J = 5.2 Hz, OH), 0.92 (3H, d, J = 6.7 Hz, CH(CH3)2), 

0.75 (3H, d, J = 6.8 Hz, CH(CH3)2).               

13C NMR (100 MHz, CDCl3): δ 157.8 (Ar-C), 155.3 (Ar-C), 154.5 (Ar-C), 134.0 (Ar-

C), 129.4 (2x Ar-C), 113.8 (2x Ar-C), 107.1 (Ar-C), 105.3 (Ar-C), 73.7 (CHOH), 

55.3 (OCH3), 34.3 (CH2CH2CH2), 33.3 (CH2CH2CH2), 29.9 (CH2CH2CH2), 27.5 

(CH(CH3)2), 18.8 (CH(CH3)2), 18.4 (CH(CH3)2).       

m/z [EI+(+ve)] 288.2 [M]+ (100%), HRMS found 288.1729, C18H24O3 requires 

288.1725 [M+].                 

vmax (film)/ cm−1: 3432, 1613, 1511, 1244, 1035. 

6-Hydroxy-2-isopropyl-6-(3-(4-methoxyphenyl)propyl)-2H-pyran-3(6H)-one, 

469. 

 
To a stirred solution of 1-(5-(3-(4-Methoxyphenyl)propyl)furan-2-yl)-2-

methylpropan-1-ol, 470 (452 mg, 1.56 mmol), in dichloromethane (9 mL) at 0 oC 

was added 3-chloroperoxybenzoic acid (423 mg, 1.72 mmol). The white 

suspension was stirred for 30 minutes at 0 oC then a further 4 hours at room 

temperature until completion TLC analysis. The reaction was cooled to 0 oC and 

diluted with dichloromethane (10 mL) then quenched by the slow addition of 

saturated sodium hydrogen carbonate solution (5 mL) and stirred for a further 30 

minutes. The resulting emulsion was allowed to separate and was then extracted 

into dichloromethane (3x 10 mL). The organic layer was washed with water (2x 5 

mL), dried over anhydrous sodium sulfate and concentrated in vacuo. 

Purification by flash column chromatography (silica gel, 30% diethyl ether in 

petroleum spirits) afforded 306 mg (65% yield) of lactol 469 as a mixture of 

anomers (7:1, α to β) and as clear oil  
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6-α-Hydroxy-2-isopropyl-6-(3-(4-methoxyphenyl)propyl)-2H-pyran-3(6H)-one, 

469αααα.  

 
1H NMR (400 MHz, CDCl3): δ 7.09 (2H, d, J = 8.6 Hz, Ar-H), 6.84 (2H, d, J = 8.7 

Hz, Ar-H), 6.74 (1H, d, J = 10.2 Hz, CHCH), 6.04 (1H, d, J = 10.2 Hz, CHCO), 4.34 

(1H, d, J = 2.7 Hz, COCH), 3.79 (3H, s, OCH3), 2.64-2.59 (2H, m, CH2CH2CH2), 

2.67-2.43 (2H, m, CH2CH2CH2), 1.88-1.81 (2H, m, CH2CH2CH2), 1.79-1.68 (1H, m, 

CH(CH3)2), 1.59 (1H, bs, OH), 1.03 (3H, d, J = 7.0 Hz, CH(CH3)2), 0.92 (3H, d, J = 

6.8 Hz, CH(CH3)2).                  
13C NMR (100 MHz, CDCl3): δ 196.8 (CO), 157.9 (Ar-C), 147.3 (Ar-C), 133.8 (Ar-C), 

129.3 (Ar-C), 127.9 (Ar-C), 113.9 (Ar-C), 94.0 (OCO), 78.2 (COCH), 55.3 (OCH3), 

41.2 (CH2CH2CH2), 34.7 (CH2CH2CH2), 28.7 (CH(CH3)2), 25.4 (CH2CH2CH2), 19.1 

(CH(CH3)2), 16.2(CH(CH3)2). 

6-β-Hydroxy-2-isopropyl-6-(3-(4-methoxyphenyl)propyl)-2H-pyran-3(6H)-one, 

469ββββ.   

 
1H NMR (400 MHz, CDCl3): δ 7.09 (2H, d, J = 8.6 Hz, Ar-H), 6.84 (2H, d, J = 8.7 

Hz, Ar-H), 6.81 (1H, d, J = 9.8 Hz, CHCH), 6.00 (1H, d, J = 10.3 Hz, CHCO), 3.85 

(1H, d, J = 4.7 Hz, COCH), 3.79 (3H, s, OCH3), 2.64-2.59 (2H, m, CH2CH2CH2), 

2.67-2.43 (2H, m, CH2CH2CH2), 1.88-1.81 (2H, m, CH2CH2CH2), 1.79-1.68 (1H, m, 

CH(CH3)2), 1.26 (1H, bs, OH), 1.01 (3H, d, J = 6.8 Hz, CH(CH3)2), 0.88 (3H, d, J = 

6.8 Hz, CH(CH3)2).                 
13C NMR (100 MHz, CDCl3): δ 204.3 (CO), 167.0 (Ar-C), 150.3 (Ar-C), 133.8 (Ar-C), 

129.3 (Ar-C), 127.4 (Ar-C), 155.1 (Ar-C), 81.9 (OCO), 77.2 (COCH), 55.3 (OCH3), 

41.2 (CH2CH2CH2), 34.7 (CH2CH2CH2), 28.7 (CH(CH3)2), 24.8 (CH2CH2CH2), 19.1 

(CH(CH3)2), 16.2(CH(CH3)2).             

m/z [CI+ (+ve), (isobutane)] 305.2 [M+H]+ (100%), HRMS found 305.1756, C18H25O4 

requires 305.1753 [M+H]+.                

vmax (film)/ cm−1: 3431, 1675, 1613, 1511. 
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2-isoPropyl-6-(3-(4-methoxyphenyl)propylidene)-2H-pyran-3(6H)-one, 472. 

 
A solution of 6-Hydroxy-2-isopropyl-6-(3-(4-methoxyphenyl)propyl)-2H-pyran-

3(6H)-one 471 in dichloromethane (0.1 M with respect to lactol) was cooled to -

78 oC. The solution was treated with Lewis acid (see below for specific reagents) 

and stirred for 2 hours at -78 oC. The reaction was diluted diethyl ether (5 mL) 

and quenched with water (2 mL). The phases were separated and the organic 

layer was washed with water (2x 2 mL), dried over anhydrous sodium sulfate and 

concentrated in vacuo. Purification by flash column chromatography (silica gel, 

20% diethyl ether in petroleum spirits) gave 472 as a clear oil.       

With boron trifluoride diethyl etherate          

Lactol (51 mg, 0.17 mmol), dichloromethane (1.7 mL), BF3.OEt2 (43 µL, 0.34 

mmol) gave 31 mg 472 in 64% yield.                    

With silicon tetrachloride               

Lactol (46 mg, 0.15 mmol), dichloromethane (1.5 mL), SiCl4 (452 µL, 0.45 mmol, 

1 M in dichloromethane) gave 33 mg 472 in 76% yield.         

With ethyl aluminium chloride          

Lactol (49 mg, 0.16 mmol), dichloromethane (1.6 mL), SiCl4 (478 µL, 0.48 mmol, 

1 M in hexanes) gave 13 mg 472 in 29% yield.               
1H NMR (400 MHz, CDCl3): δ 7.05 (2H, d, J = 8.6 Hz, Ar-H), 6.79 (2H, d, J = 10.3 

Hz, Ar-H), 6.76 (1H, d, J = 6.5 Hz, CHCH), 5.86 (1H, d, J = 9.8 Hz, CHCO), 5.02 

(1H, t, J = 7.5 Hz,CH2CHCH), 4.13 (1H, d, J = 4.7 Hz, COCH),3.72 (3H, s, OCH3), 

2.63 (2H, t, J = 7.5 Hz, CH2CH2CH), 2.49 (2H, q, J = 7.6 Hz, CH2CH2CH), 2.18-

2.12 (1H, m, CH(CH3)2), 0.96 (3H, d, J = 6.9 Hz, CH(CH3)2), 0.84 (3H, d, J = 6.8 

Hz, CH(CH3)2).                 
13C NMR (100 MHz, CDCl3): δ 195.2 (CO), 157.9 (Ar-C), 151.1 (CHC), 147.1 

(CHCH), 141.1 (Ar-C), 133.6 (Ar-C), 129.3 (CHCO), 122.1 (Ar-C), 119.3 (Ar-C), 

113.8 (Ar-C), 85.4 (CH2CHC), 77.3 (CHCO), 55.3 (OCH3), 34.2 (CH2CH2CH), 31.7 

(CH(CH3)2), 27.6 (CH2CH2CH), 18.9 (CH(CH3)2), 16.8(CH(CH3)2).         

m/z [EI+(+ve)] 286.1 [M]+ (100%), HRMS found 286.1566, C18H22O3 requires 

286.1569 [M]+.                 

vmax (film)/ cm−1: 2966, 1685, 1612, 830. 
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10-(4-methoxyphenyl)-2-methyldecane-3,4,7-trione, 473. 

 
6-Hydroxy-2-isopropyl-6-(3-(4-methoxyphenyl)propyl)-2H-pyran-3(6H)-one 471 

(46 mg, 0.149 mmol) in dichloromethane (1.5 mL) was cooled to -78 oC. The 

solution was treated with chloro triisopropoxytitanium (IV) (449 µL, 0.45 mmol) 

and stirred for 2 hours. The reaction was diluted with diethyl ether (5 mL) and 

quenched then water (2 mL). The phases were separated and the organic layer 

was washed with water (2x 2 mL), dried over anhydrous sodium sulfate and 

concentrated in vacuo. Purification by flash column chromatography (silica gel, 

20% diethyl ether in petroleum spirits) gave 24 mg (55% yield) of 473 in as a 

green oil.                    
1H NMR (400 MHz, CDCl3): δ.7.08 (2H, d, J = 8.6 Hz, Ar-H), 6.82 (2H, d, J = 8.6 

Hz, Ar-H), 3.78 (3H, s, OCH3), 3.35 (1H, sept, J = 6.9 Hz, CH(CH3)2), 2.94 (2H, t, 

J = 6.1 Hz, COCH2CH2), 2.74 (2H, t, J = 6.2 Hz, COCH2CH2), 2.56 (2H, t, J = 7.5 

Hz, CH2CH2CH2), 2.45 (2H, t, J = 7.4 Hz, CH2CH2CH2), 1.88(2H, quint, J = 7.4 Hz, 

CH2CH2CH2), 1.11 (6H, d, J = 6.9 Hz, CH(CH3)2).             
13C NMR (100 MHz, CDCl3): δ.208.6 (CH2COCH2), 202.8 (COCOCH), 198.9 

(CH2COCO), 157.9 (Ar-C), 133.5 (Ar-C), 129.4 (2x Ar-C), 113.8 (2x Ar-C), 55.3 

(OCH3), 41.6 (CH2CH2CH2), 36.2 (COCH2CH2), 34.1 (CH2CH2CH2), 33.8 (CH(CH3)2), 

30.6 (COCH2CH2), 25.5 (CH2CH2CH2), 17.4 (2x CH(CH3)2).           

m/z [EI+(+ve)] 304.2 [M]+ (100%), HRMS found 304.1673, C18H24O4 requires 

304.1674 [M+].                          

vmax (film)/ cm−1: 2067, 1704, 1613, 831. 
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tertButyl(1-(5-(3-(3-methoxyphenyl)propyl)furan-2-yl)-2-methylpropoxy) 

dimethylsilane, 481. 

 
A solution of tertButyl-(1-furan-2-yl-2-methyl-propoxy)-dimethyl-silane 424 

(1.95 g, 7.66 mmol) in anhydrous tetrahydrofuran (40 mL) at 0 oC was treated 

slowly with nBuLi (3.44 mL, 8.42 mmol, 2.45 M solution in hexanes). The solution 

was stirred for 10 minutes at 0 oC and the yellow solution was allowed to attain 

room temperature over an hour. The resulting brown solution was cooled to -78 
oC and treated with a solution of freshly distilled bromide 443 (20 mL, 8.42 

mmol, 0.4 M in tetrahydrofuran) and stirred for 1 hour, then for a further 12 

hours at room temperature. The reaction mixture was diluted with diethyl ether 

(20 mL) and quenched by the slow addition of saturated ammonium chloride 

solution (5 mL). The layers were separated and the organic phase was washed 

with water (2x 10 mL), dried over anhydrous sodium sulfate and concentrated in 

vacuo. Purification by flash column chromatography (silica gel, petroleum 

spirits) gave as an oil an inseparable mixture of desired silyl ether 481 and 

bromide 443 (2.77 g, 87:13 silyl ether:bromide).             
1H NMR (400 MHz, CDCl3): δ 7.21-7.18 (1H, m, Ar-H), 6.81-6.73 (3H, m, Ar-H), 

6.02 (1H, d, J = 3.0 Hz, Ar-H), 5.89 (1H, d, J = 3.0 Hz, Ar-H), 4.24 (1H, d, J = 7.0 

Hz, CHOSi), 3.79 (3H, s, OCH3), 2.62 (4H, t, J = 7.4 Hz, CH2CH2CH2), 2.05-1.99 

(1H, m, CH(CH3)2), 1.96-1.90 (2H,m ,CH2CH2CH2), 0.96 (3H, d, J = 6.7 Hz, 

CH(CH3)2), 0.87 (9H, s, SiC(CH3)3), 0.79 (3H, d, J = 6.8 Hz, CH(CH3)2), 0.02 (3H, s, 

SiCH3), -0.13 (3H, s, SiCH3).               
13C NMR (100 MHz, CDCl3): δ 160.6 (Ar-C), 151.4 (Ar-C), 151.2 (Ar-C), 142.1 (Ar-

C), 129.8 (Ar-C), 120.6 (Ar-C), 115.2 (Ar-C), 113.2 (Ar-C), 108.7 (Ar-C), 104.3 

(Ar-C), 74.3 (CHOSi), 55.2 (OCH3), 35.3 (CH(CH3)2), 34.3 (CH2CH2CH2), 29.8 

(CH2CH2CH2), 27.2 (CH2CH2CH2), 25.9 (C(CH3)3), 18.8 (CH(CH3)2), 18.6 

(CH(CH3)2),18.5 (C(CH3)3) -4.8 (SiCH3), -5.2 (SiCH3).                   

m/z [EI+(+ve)] 288.2 [M]+ (100%), HRMS found 288.1730, C18H24O3 requires 

288.1725 [M+].                 

vmax (film)/ cm−1: 3432, 1613, 1511, 1244, 1035 
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7. Appendices 

7.1. Appendix 1 - Reaction of diene 208 and dienoph ile 198 

 

Equivalent's Diene Solventa
Lewis Acid Temperature

1.1 CH2Cl2 - Reflux

1.1 CH2Cl2 - Reflux (sealed tube)

1.1 Benzene - Reflux

1.1 Benzene - Reflux (sealed tube)

2.0 Toluene - Reflux

2.0 Xylene - Reflux

1.15 CH2Cl2 Me3Al Reflux

1.2 CH2Cl2 AlCl3 Reflux

1.2 CH2Cl2 Et2AlCl Reflux

1.15 CH2Cl2 Me3Al Reflux (sealed tube)

1.15 Benzene Me3Al Reflux

1.15 Benzene Et2AlCl Reflux

1.15 Benzene Me3Al Reflux (sealed tube)

2.0 Toluene AlCl3 Reflux

2.0 Xylene AlCl3 Reflux
 

a Reactions were run at concentrations of 0.2 M with respect to dienophile 198.  
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7.2. Appendix 2 - Reaction of modified dienes 202 a nd 206 

 

 
a Reactions were run for at least 24 hours and at 0.2 M with respect to dienophile and with 
1.1 equivalents of diene and monitored by TLC. 
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7.3. Appendix 3 - Microwave conditions. 

 

 
a Number of diene equivalents  b    µµµµW conditions were applied temperatures and durations, 
pressures increased as a result up to 5 bar with the toluene and diphenyl ether experiments. 
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7.4. Appendix 4 - Neat Diels Alder series. 

 
Number of diene equivalents in parentheses. 
 

7.5. Appendix 5 – X-ray data for 198 

Table 1.  Crystal data and structure refinement for 198. 
Identification code   198  
Empirical formula   C15 H25 N O4 
Formula weight    283.36 
Temperature    293(2) K 
Wavelength    0.71073 A 
Crystal system, space group  ?,  ? 
Unit cell dimensions   a = 10.3366(15) A   alpha = 90 deg. 

b = 10.3366(15) A    beta = 90 deg. 
c = 27.883(6) A   gamma = 120 deg. 

Volume     2580.0(7) A3 
Z, Calculated density   7,  1.277 Mg/m3 
Absorption coefficient   0.092 mm-1 
F(000)     1078 
Crystal size    ? x ? x ? mm 
Theta range for data collection  3.16 to 27.48 deg. 
Limiting indices    13<=h<=13, -13<=k<=13, -35<=l<=36 
Reflections collected / unique  36960 / 3940 [R(int) = 0.2909] 
Completeness to theta = 27.48  99.9 % 
Absorption correction   None 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  3940 / 1 / 186 
Goodness-of-fit on F2   0.943 
Final R indices [I>2sigma(I)]  R1 = 0.0906, wR2 = 0.1864 
R indices (all data)   R1 = 0.2407, wR2 = 0.2395 
Absolute structure parameter  1(3) 
Largest diff. peak and hole  0.192 and -0.180 e.A-3 
 
Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 
103) for 198. 
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
________________________________________________________________ 
                                x                 y                 z           U(eq) 
________________________________________________________________ 

O(1)         7440(5)       8896(5)         62(1)         70(1) 
O(2)         5622(6)       7224(6)       -379(2)        98(2) 
O(3)        12589(4)      10529(5)        158(1)       76(1) 
O(4)        11797(5)      10698(5)        908(1)       74(1) 
N(1)        10611(5)      10764(5)        244(1)       59(1) 
C(1)         6291(8)       7505(9)          2(3)          77(2) 
C(2)         5972(9)       6463(8)        377(3)        93(2) 
C(3)         6900(10)      6715(10)       731(3)      114(3) 
C(4)         8237(8)       8184(8)        788(2)        85(2) 
C(5)         8040(7)       9366(8)        547(2)        67(2) 
C(6)         9439(6)      10873(7)        492(2)       60(2) 
C(7)        11694(7)      10690(7)        471(2)       63(2) 
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C(8)        13977(8)      10632(9)        325(2)      76(2) 
C(9)        14561(9)      10326(10)      -133(2)      109(3) 
C(10)       14954(8)      12113(9)        537(2)       88(2) 
C(11)       13630(9)       9328(9)        683(3)      100(2) 
C(12)       9125(7)      12038(7)        258(2)       73(2) 
C(13)       10111(11)     13587(9)        411(4)      121(3) 
C(14)       11663(9)      14151(10)       427(4)      131(4) 
C(15)        9682(13)     14617(10)       152(4)      153(4) 

________________________________________________________________ 
Table 3.  Bond lengths [A] and angles [deg] for 198. 
________________________________________________________________ 

O(1)-C(1)                     1.341(8) 
O(1)-C(5)                     1.466(6) 
O(2)-C(1)                     1.221(7) 
O(3)-C(7)                     1.342(7) 
O(3)-C(8)                     1.461(7) 
O(4)-C(7)                     1.223(6) 
N(1)-C(7)                     1.321(7) 
N(1)-C(6)                     1.448(7) 
C(1)-C(2)                     1.417(10) 
C(2)-C(3)                     1.310(10) 
C(3)-C(4)                     1.463(11) 
C(4)-C(5)                     1.494(9) 
C(5)-C(6)                     1.513(8) 
C(6)-C(12)                    1.540(8) 
C(8)-C(10)                    1.471(10) 
C(8)-C(9)                     1.513(9) 
C(8)-C(11)                    1.569(9) 
C(12)-C(13)                   1.467(10) 
C(13)-C(14)                   1.408(11) 
C(13)-C(15)                   1.524(12) 
C(1)-O(1)-C(5)              118.2(5) 
C(7)-O(3)-C(8)              119.8(5) 
C(7)-N(1)-C(6)              122.8(4) 
O(2)-C(1)-O(1)              117.2(6) 
O(2)-C(1)-C(2)              125.0(7) 
O(1)-C(1)-C(2)              117.9(7) 
C(3)-C(2)-C(1)              122.4(7) 
C(2)-C(3)-C(4)              120.4(7) 
C(3)-C(4)-C(5)              110.9(6) 
O(1)-C(5)-C(4)              110.6(5) 
O(1)-C(5)-C(6)              106.0(4) 
C(4)-C(5)-C(6)              115.9(5) 
N(1)-C(6)-C(5)              112.0(5) 
N(1)-C(6)-C(12)             111.7(5) 
C(5)-C(6)-C(12)             112.4(5) 
O(4)-C(7)-N(1)              123.4(5) 
O(4)-C(7)-O(3)              125.9(5) 
N(1)-C(7)-O(3)              110.6(5) 
O(3)-C(8)-C(10)             110.0(6) 
O(3)-C(8)-C(9)              101.3(5) 
C(10)-C(8)-C(9)             114.7(6) 
O(3)-C(8)-C(11)             110.2(6) 
C(10)-C(8)-C(11)            112.4(5) 
C(9)-C(8)-C(11)             107.5(6) 
C(13)-C(12)-C(6)            115.3(5) 
C(14)-C(13)-C(12)           119.2(9) 
C(14)-C(13)-C(15)           113.3(8) 
C(12)-C(13)-C(15)           109.8(7) 

________________________________________________________________ 
  
Symmetry transformations used to generate equivalent atoms: 
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 Table 4.  Anisotropic displacement parameters (A2 x 103) for 198. 
The anisotropic displacement factor exponent takes the form:-2 π^2 [ h^2 a*^2 U11 + ... + 2 h k a* 
b* U12 ] 
_________________________________________________________________ 
              U11         U22         U33         U23         U13        U12 
_________________________________________________________________ 

O(1)     66(3)      93(3)      36(2)      -3(2)       0(2)      30(3) 
O(2)     91(4)      90(4)      71(3)     -10(3)      -9(3)      14(3) 
O(3)     67(3)     121(4)      44(2)       9(2)       7(2)      50(3) 
O(4)     77(3)     108(3)      43(2)       4(2)      -1(2)      51(3) 
N(1)     61(3)      80(3)      34(2)      -4(2)       0(2)      34(3) 
C(1)     46(4)      84(5)      78(5)       0(4)      14(4)      14(4) 
C(2)     71(5)      75(5)      96(5)      15(4)      15(5)       9(4) 
C(3)     85(6)     109(7)     115(6)      49(5)       8(5)      23(6) 
C(4)     91(5)      84(5)      62(4)      20(3)       0(3)      30(5) 
C(5)     59(4)      98(5)      40(3)     -10(3)      -6(3)      37(4) 
C(6)     68(4)      85(5)      35(3)      -2(3)      -4(3)      45(4) 
C(7)     63(4)      91(5)      40(3)      -1(3)      -4(3)      42(3) 
C(8)     76(5)     103(6)      64(4)       8(4)      -1(3)      56(5) 
C(9)    106(6)     177(9)      83(5)       3(5)      19(4)     101(7) 
C(10)    78(5)     113(6)      88(5)      20(5)      -6(4)      58(5) 
C(11)   114(6)     111(6)      91(5)      24(4)      -8(4)      69(5) 
C(12)    67(4)      84(5)      65(4)     -12(3)     -14(3)      36(4) 
C(13)   131(8)      87(6)     132(7)      10(5)     -55(6)      44(6) 
C(14)    75(6)      84(6)     213(11)     16(6)      26(6)      24(5) 
C(15)   180(10)     93(7)     173(9)      16(6)     -64(8)      58(7) 

 
Table 5.  Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
198. 
_________________________________________________________ 
                             x                y              z           U(eq) 
_________________________________________________________________ 

H(1A)       10603         10746         -64          70 
H(2A)        5069          5566           371         111 
H(3A)        6709          5956           948         137 
H(4A)        9090          8167           650         102 
H(4B)        8435          8415          1126         102 
H(5A)        7315          9505           734          81 
H(6A)        9809         11234           817          71 
H(9A)       14386         10818          -396         163 
H(9B)       14054          9269          -192         163 
H(9C)       15614         10695          -103         163 
H(10A)      15146         12873           304         132 
H(10B)      15880         12186           633         132 
H(10C)      14473         12245           811         132 
H(11A)      13301          9516           984         149 
H(11B)      14517          9267           733         149 
H(11C)      12859          8402           552         149 
H(12A)       9211         11986           -87          88 
H(12B)       8102         11769           328          88 
H(13A)       9832         13604           746         145 
H(14A)      11889         13655           677         196 
H(14B)      12165         15205           492         196 
H(14C)      11995         13980           125         196 
H(15A)      10156         15577           306         230 
H(15B)       8617         14194           164         230 
H(15C)      10002         14731          -176         230 

 

7.6. Appendix 6 – X-Ray data for 244 

Table 1.  Crystal data and structure refinement for 244. 
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Identification code   244 
Empirical formula   C12 H13 O3 
Formula weight    205.22 
Temperature    293(2) K 
Wavelength    0.71073 A 
Crystal system, space group  P21/n 
Unit cell dimensions   a = 6.2961(11) A   alpha = 90 deg. 

b = 8.7626(18) A    beta = 90.705(5) deg. 
c = 18.718(3) A   gamma = 90 deg. 

Volume     1032.6(3) A3 
Z, Calculated density   4,  1.320 Mg/m3 
Absorption coefficient   0.094 mm-1 
F(000)     436 
Crystal size    0.1 x 0.1 x 0.4 mm 
Theta range for data collection  3.18 to 27.48 deg. 
Limiting indices    -8<=h<=8, -11<=k<=11, -24<=l<=24 
Reflections collected / unique  13411 / 2353 [R(int) = 0.0612] 
Completeness to theta = 27.48  99.7 % 
Absorption correction   None 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  2353 / 0 / 192 
Goodness-of-fit on F2   1.119 
Final R indices [I>2sigma(I)]  R1 = 0.0444, wR2 = 0.1050 
R indices (all data)   R1 = 0.0674, wR2 = 0.1257 
Largest diff. peak and hole  0.232 and -0.258 e.A-3 
 
Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 
103) for 244. 
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
________________________________________________________________ 
                               x                  y                  z             U(eq) 
__________________________________________________________ 

O(3)        11708(2)       4056(1)       1987(1)       31(1) 
O(1)         5333(2)       4401(1)       1092(1)       32(1) 
O(2)         7225(2)       4751(1)       2064(1)       29(1) 
C(8)        10919(3)       5579(2)       2013(1)       26(1) 
C(9)         8900(3)       5588(2)       2443(1)        26(1) 
C(10)        9004(3)       4852(2)       3179(1)       28(1) 
C(6)         8465(3)       5880(2)        968(1)        26(1) 
C(11)       10736(3)       5581(2)      3635(1)       33(1) 
C(5)         7959(3)       6375(2)        280(1)        30(1) 
C(7)         6899(3)       4975(2)       1364(1)       26(1) 
C(4)         9446(3)       7194(2)       -101(1)        31(1) 
C(2)        11903(3)       7008(2)        883(1)       29(1) 
C(1)        10437(3)       6188(2)       1275(1)       26(1) 
C(12)        6858(3)       4994(2)       3540(1)       35(1) 
C(3)        11409(3)       7508(2)        200(1)       31(1) 

________________________________________________________________ 
  
 
Table 3.  Bond lengths [A] and angles [deg] for 244. 
_____________________________________________________________ 

O(3)-C(8)                     1.425(2) 
O(1)-C(7)                     1.213(2) 
O(2)-C(7)                     1.338(2) 
O(2)-C(9)                     1.461(2) 
C(8)-C(1)                     1.508(2) 
C(8)-C(9)                     1.513(2) 
C(9)-C(10)                    1.521(2) 
C(10)-C(11)                   1.518(3) 
C(10)-C(12)                   1.523(3) 
C(6)-C(1)                     1.388(2) 
C(6)-C(5)                     1.392(2) 
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C(6)-C(7)                     1.472(2) 
C(5)-C(4)                     1.385(3) 
C(4)-C(3)                     1.380(3) 
C(2)-C(3)                     1.383(2) 
C(2)-C(1)                     1.387(2) 
C(7)-O(2)-C(9)              120.20(13) 
O(3)-C(8)-C(1)              111.51(13) 
O(3)-C(8)-C(9)              108.58(13) 
C(1)-C(8)-C(9)              108.94(14) 
O(2)-C(9)-C(8)              110.19(13) 
O(2)-C(9)-C(10)             104.48(13) 
C(8)-C(9)-C(10)             116.90(14) 
C(11)-C(10)-C(9)            110.75(15) 
C(11)-C(10)-C(12)           110.52(15) 
C(9)-C(10)-C(12)            109.80(15) 
C(1)-C(6)-C(5)              120.96(16) 
C(1)-C(6)-C(7)              119.90(15) 
C(5)-C(6)-C(7)              119.12(16) 
C(4)-C(5)-C(6)              119.36(17) 
O(1)-C(7)-O(2)              117.67(16) 
O(1)-C(7)-C(6)              123.91(16) 
O(2)-C(7)-C(6)              118.41(15) 
C(3)-C(4)-C(5)              120.02(17) 
C(3)-C(2)-C(1)              120.59(17) 
C(2)-C(1)-C(6)              118.74(16) 
C(2)-C(1)-C(8)              122.67(16) 
C(6)-C(1)-C(8)              118.57(15) 
C(4)-C(3)-C(2)              120.33(17) 

_____________________________________________________________ 
  
Symmetry transformations used to generate equivalent atoms 
 
Table 4.  Anisotropic displacement parameters (A2 x 103) for 244. 
The anisotropic displacement factor exponent takes the form: -2 π2 [ h2 a*2 U11 + ... + 2 h k a* b* 
U12 ] 
______________________________________________________________ 
                        U11        U22           U33        U23        U13        U12 
______________________________________________________________ 

O(3)     30(1)      30(1)      34(1)       4(1)       4(1)       5(1) 
O(1)     28(1)      35(1)      32(1)      -2(1)      -3(1)      -3(1) 
O(2)     28(1)      33(1)      26(1)       1(1)      -2(1)      -4(1) 
C(8)     27(1)      26(1)      26(1)       1(1)      -2(1)      -2(1) 
C(9)     27(1)      24(1)      26(1)      -1(1)      -3(1)      -1(1) 
C(10)    32(1)      25(1)      27(1)       0(1)       0(1)       2(1) 
C(6)     27(1)      25(1)      26(1)      -2(1)       0(1)       0(1) 
C(11)    37(1)      33(1)      28(1)       1(1)      -3(1)       0(1) 
C(5)     31(1)      30(1)      28(1)      -2(1)      -3(1)       0(1) 
C(7)     28(1)      24(1)      27(1)      -2(1)      -1(1)       2(1) 
C(4)     37(1)      32(1)      24(1)       2(1)      -1(1)       1(1) 
C(2)     31(1)      26(1)      28(1)      -2(1)       2(1)      -1(1) 
C(1)     29(1)      23(1)      26(1)      -2(1)       0(1)       2(1) 
C(12)    38(1)      36(1)      30(1)       0(1)       4(1)      -2(1) 
C(3)     35(1)      28(1)      30(1)       1(1)       4(1)      -2(1) 

 
Table 5.  Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
244.  
________________________________________________________________ 
                               x                 y                 z           U(eq) 
________________________________________________________________ 

H(10)       10430(30)      6670(30)      3688(11)      40(6) 
H(4)         6590(30)      6110(20)        79(9)          25(5) 
H(8)         8390(30)      6670(20)       2482(9)         20(4) 
H(6)        11960(30)      6290(20)      2264(9)        25(5) 
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H(9)         9320(30)      3750(20)       3092(9)         27(5) 
H(13)        6500(30)      6060(30)      3578(10)      35(5) 
H(12)       10730(30)      5120(20)     4132(12)      36(5) 
H(3)         9090(30)      7520(20)      -584(10        30(5) 
H(2)        12460(30)      8110(20)      -68(10)        39(5) 
H(1)        13330(30)      7260(20)      1097(10)      36(5) 
H(15)        5700(40)      4480(20)      3250(12)      41(6) 
H(14)        6910(40)      4500(30)      4035(13)      46(6) 
H(11)       12190(40)      5450(30)      3429(12)      52(6) 
H(7)        12900(50)      4080(30)      1723(14)      67(8) 

________________________________________________________________  
 

7.7. Appendix 7 – X- Ray data for 261 

Table 1.  Crystal data and structure refinement for 261. 
Identification code   261 
Empirical formula   C15H18O3 
Formula weight    246.31 
Temperature    100 K 
Wavelength    0.71073 A 
Crystal system, space group  Monoclinic,  P 1 21/c 1 
Unit cell dimensions   a = 19.150(13) A   alpha = 90 deg. 

b = 5.058(3) A    beta = 97.09(2) deg. 
c = 12.838(10) A   gamma = 90 deg. 

Volume     1234.0(15) A3 
Z, Calculated density   4,  1.326 Mg/m3 
Absorption coefficient   0.091 mm-1 
F(000)     528 
Crystal size    0.20 x 0.08 x 0.08 mm 
Theta range for data collection  3.198 to 23.255 deg. 
Limiting indices    -21<=h<=21, -5<=k<=5, -14<=l<=14 
Reflections collected / unique  7318 / 1765 [R(int) = 0.207] 
Completeness to theta = 22.790  99.5 % 
Absorption correction   None 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  1765 / 1 / 166 
Goodness-of-fit on F2   0.8991 
Final R indices [I>2sigma(I)]  R1 = 0.0771, wR2 = 0.1382 
R indices (all data)   R1 = 0.1909, wR2 = 0.1766 
Largest diff. peak and hole  1.00 and -1.12 e.A-3 

 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic  displacement parameters (A2 x 
103) for 261. 
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
____________________________________________________________ 
                             x                 y                 z            U(eq) 
____________________________________________________________ 

O(1)         3398(2)      10491(9)       3782(3)       41 
O(5)         2372(2)      11354(8)       1944(3)       33 
C(8)         3898(3)       9640(12)       564(5)       32 
C(9)         2871(3)      11639(13)      1291(5)       31 
C(13)        1096(3)       9815(13)      2763(5)       37 
O(16)        2785(2)      13508(8)        674(3)       38 
C(19)        3470(3)       9779(11)      1361(5)       29 
C(23)         542(3)      10050(13)      3513(5)       41 
C(28)        4581(3)       6205(13)      1512(5)       37 
C(37)        4450(3)       7840(12)       634(5)       36 
C(48)         519(3)       7620(12)      4207(5)       43 
C(50)        2383(3)       8912(12)      2596(5)       35 
C(57)        3595(3)       8150(12)      2243(5)       29 
C(62)        4157(3)       6348(12)      2303(5)       40 
C(65)        1817(3)       6911(12)      4074(5)       37 
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C(68)        3131(3)       8388(12)      3085(5)       36 
C(72)        1828(3)       9304(11)      3355(5)       30 
C(76)        1244(3)       7100(13)      4816(5)       42 

 
 
Table 3.  Bond lengths [A] and angles [deg] for 261. 
____________________________________________________________ 

O(1)-C(68)                    1.442(7) 
O(1)-H(2)                     0.89(4) 
O(5)-C(9)                     1.355(7) 
O(5)-C(50)                    1.491(7) 
C(8)-C(19)                    1.388(8) 
C(8)-C(37)                    1.390(8) 
C(8)-H(81)                    0.950 
C(9)-O(16)                    1.231(7) 
C(9)-C(19)                    1.478(8) 
C(13)-C(23)                   1.522(8) 
C(13)-C(72)                   1.533(7) 
C(13)-H(131)                  0.950 
C(13)-H(132)                  0.950 
C(19)-C(57)                   1.397(8) 
C(23)-C(48)                   1.522(8) 
C(23)-H(231)                  0.950 
C(23)-H(232)                  0.950 
C(28)-C(37)                   1.396(8) 
C(28)-C(62)                   1.377(9) 
C(28)-H(281)                  0.950 
C(37)-H(371)                  0.950 
C(48)-C(76)                   1.530(8) 
C(48)-H(481)                  0.950 
C(48)-H(482)                  0.950 
C(50)-C(68)                   1.515(7) 
C(50)-C(72)                   1.541(8) 
C(50)-H(501)                  0.950 
C(57)-C(62)                   1.405(8) 
C(57)-C(68)                   1.488(9) 
C(62)-H(621)                  0.950 
C(65)-C(72)                   1.524(8) 
C(65)-C(76)                   1.541(9) 
C(65)-H(651)                  0.950 
C(65)-H(652)                  0.950 
C(68)-H(681)                  0.950 
C(72)-H(721)                  0.950 
C(76)-H(761)                  0.950 
C(76)-H(762)                  0.950 
C(68)-O(1)-H(2)             108(4) 
C(9)-O(5)-C(50)             118.2(5) 
C(19)-C(8)-C(37)            119.9(6) 
C(19)-C(8)-H(81)            119.4 
C(37)-C(8)-H(81)            120.7 
O(5)-C(9)-O(16)             115.5(6) 
O(5)-C(9)-C(19)             119.8(6) 
O(16)-C(9)-C(19)            124.7(7) 
C(23)-C(13)-C(72)           111.5(5) 
C(23)-C(13)-H(131)          110.1 
C(72)-C(13)-H(131)          109.2 
C(23)-C(13)-H(132)          108.9 
C(72)-C(13)-H(132)          107.7 
H(131)-C(13)-H(132)         109.5 
C(9)-C(19)-C(8)             120.7(6) 
C(9)-C(19)-C(57)            118.6(6) 
C(8)-C(19)-C(57)            120.7(6) 
C(13)-C(23)-C(48)           112.3(5) 
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C(13)-C(23)-H(231)          108.7 
C(48)-C(23)-H(231)          107.8 
C(13)-C(23)-H(232)          109.1 
C(48)-C(23)-H(232)          109.3 
H(231)-C(23)-H(232)         109.5 
C(37)-C(28)-C(62)           120.1(6) 
C(37)-C(28)-H(281)          120.3 
C(62)-C(28)-H(281)          119.7 
C(28)-C(37)-C(8)            119.9(7) 
C(28)-C(37)-H(371)          119.7 
C(8)-C(37)-H(371)           120.4 
C(23)-C(48)-C(76)           110.3(5) 
C(23)-C(48)-H(481)          110.5 
C(76)-C(48)-H(481)          110.6 
C(23)-C(48)-H(482)          107.8 
C(76)-C(48)-H(482)          108.2 
H(481)-C(48)-H(482)         109.5 
O(5)-C(50)-C(68)            109.0(5) 
O(5)-C(50)-C(72)            106.6(5) 
C(68)-C(50)-C(72)           116.8(5) 
O(5)-C(50)-H(501)           108.3 
C(68)-C(50)-H(501)          108.4 
C(72)-C(50)-H(501)          107.5 
C(19)-C(57)-C(62)           118.7(6) 
C(19)-C(57)-C(68)           118.9(6) 
C(62)-C(57)-C(68)           122.4(6) 
C(57)-C(62)-C(28)           120.7(6) 
C(57)-C(62)-H(621)          119.3 
C(28)-C(62)-H(621)          120.0 
C(72)-C(65)-C(76)           112.9(5) 
C(72)-C(65)-H(651)          109.1 
C(76)-C(65)-H(651)          110.4 
C(72)-C(65)-H(652)          106.7 
C(76)-C(65)-H(652)          108.1 
H(651)-C(65)-H(652)         109.5 
C(50)-C(68)-C(57)           109.4(5) 
C(50)-C(68)-O(1)            111.9(5) 
C(57)-C(68)-O(1)            108.2(5) 
C(50)-C(68)-H(681)          109.1 
C(57)-C(68)-H(681)          109.1 
O(1)-C(68)-H(681)           109.1 
C(50)-C(72)-C(13)           111.6(5) 
C(50)-C(72)-C(65)           110.1(5) 
C(13)-C(72)-C(65)           110.7(5) 
C(50)-C(72)-H(721)          108.5 
C(13)-C(72)-H(721)          108.2 
C(65)-C(72)-H(721)          107.6 
C(65)-C(76)-C(48)           111.4(5) 
C(65)-C(76)-H(761)          108.8 
C(48)-C(76)-H(761)          108.6 
C(65)-C(76)-H(762)          109.2 
C(48)-C(76)-H(762)          109.4 
H(761)-C(76)-H(762)         109.5 

 
Symmetry transformations used to generate equivalent atoms: 
 
Table 4.  Anisotropic displacement parameters (A2 x 103) for 261. 
The anisotropic displacement factor exponent takes the form: -2 π2 [h2 a2 U11 + 2 h k a* b* U12 ] 
________________________________________________________________ 
                        U11         U22        U33          U23        U13        U12 
________________________________________________________________ 

O(1)     50(3)      40(3)      33(3)      -1(3)       5(2)      -2(2) 
O(5)     40(3)      29(3)      29(3)       2(2)       4(2)       6(2) 
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C(8)     33(4)      31(4)      30(4)      -3(3)       1(3)       2(3) 
C(9)     31(4)      26(4)      35(4)      -2(4)       6(4)      -4(3) 
C(13)    33(4)      40(4)      38(4)       3(4)       2(3)       3(3) 
O(16)    44(3)      35(3)      33(3)       4(2)       3(2)      -2(2) 
C(19)    28(4)      25(4)      32(4)       4(3)      -6(3)       2(3) 
C(23)    46(5)      33(4)      43(5)       6(3)       6(4)       8(4) 
C(28)    32(4)      36(4)      43(5)      -2(4)       3(4)       2(3) 
C(37)    38(4)      36(4)      35(4)     -11(3)       5(3)      -1(3) 
C(48)    53(5)      37(4)      42(5)      -2(3)      17(4)      -3(4) 
C(50)    25(4)      31(4)      46(5)       8(4)      -5(3)      -4(3) 
C(57)    31(4)      28(4)      28(4)     -10(3)      -1(3)       1(3) 
C(62)    47(4)      31(4)      38(5)       6(3)      -2(4)       5(4) 
C(65)    40(4)      33(4)      37(4)       3(3)       2(4)       6(3) 
C(68)    47(5)      28(4)      31(4)       0(3)       2(4)     -11(3) 
C(72)    37(4)      23(4)      31(4)      -2(3)      10(3)      -3(3) 
C(76)    61(5)      31(4)      35(4)       2(3)       6(4)      -4(4) 

 
Table 5.  Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
261. 
________________________________________________________________ 
                             x               y                z           U(eq) 
________________________________________________________________ 

H(81)        3806         10774           -27          47 
H(131)       1108         11388          2362          49 
H(132)        981          8359          2307          49 
H(231)        652         11532          3958          58 
H(232)         94         10303          3118          58 
H(281)       4958          4974          1564          53 
H(371)       4743          7731            90          52 
H(481)        176          7836          4675          59 
H(482)        397          6146          3762          59 
H(501)       2233          7470          2149          45 
H(621)       4246          5231          2899          58 
H(651)       2267          6707          4467          46 
H(652)       1717          5417          3633          46 
H(681)       3143          6777          3467          48 
H(721)       1958         10798          3785          49 
H(761)       1357          8517          5292          57 
H(762)       1232          5492          5196          57 
H(2)         3180(30)     10410(130)     4360(40)      50 

 
 

7.8. Appendix 8 – X-Ray data for 264 

Table 1.  Crystal data and structure refinement for 264 
Identification code    264 
Empirical formula    C17H16O3 
Formula weight    268.30 
Temperature     100(2) K 
Wavelength     0.71073 Å 
Crystal system     Monoclinic 
Space group     Pc 
Unit cell dimensions   a = 12.826(5) Å α= 90°. 
     b = 7.712(2) Å β= 91.105(19)°. 
     c = 6.916(3) Å γ = 90°. 

Volume     683.9(4) Å3 
Z     2 

Density (calculated)   1.303 Mg/m3 

Absorption coefficient   0.089 mm-1 
F(000)     284 
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Crystal size    0.20 x 0.20 x 0.08 mm3 
Theta range for data collection  1.59 to 29.97° 
Index ranges    -18<=h<=17, -10<=k<=9, -9<=l<=9 
Reflections collected   11845 
Independent reflections   3782 (R(int) = 0.0465) 
Observed reflections (>2sigma(I)) 3011  
Completeness to theta = 29.97°  100.0 %  
Absorption correction   Semi-empirical from equivalents 
Max. and min. transmission  0.9929 and 0.9825  

Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  3782 / 2 / 185 

Goodness-of-fit on F2   1.023 
Final R indices (I>2sigma(I))  R1 = 0.0463, wR2 = 0.1051 
R indices (all data)   R1 = 0.0646, wR2 = 0.1149 
Absolute structure parameter  -0.9(10) 

Largest diff. peak and hole  0.334 and -0.165 e.Å-3 

 
Table 2.  Atomic coordinates  and equivalent  isotropic displacement parameters (Å2) for 264 

U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 
_________________________________________________________________ 
           x         y                   z       U(eq) 
_________________________________________________________________ 

O(1)   0.67391(11)   1.14513(16)  0.21976(19)   0.0244(3) 
O(2)   0.56260(10)   0.93766(16)  0.28384(17)   0.0214(3) 
O(3)   0.53289(11)   0.67266(18) -0.02699(19)   0.0279(3) 
C(1)   0.83906(14)   0.9027(3)  0.1581(3)   0.0259(4) 
C(2)   0.91110(15)   0.7787(3)  0.1035(3)   0.0296(4) 
C(3)   0.87838(16)   0.6092(3)  0.0635(3)   0.0281(4) 
C(4)   0.77443(16)   0.5625(3)  0.0824(3)   0.0257(4) 
C(5)   0.70136(14)   0.6854(2)  0.1382(2)   0.0211(4) 
C(6)   0.73436(15)   0.8547(3)  0.1754(3)   0.0214(4) 
C(7)   0.65680(14)   0.9895(2)  0.2268(2)   0.0203(4) 
C(8)   0.58683(15)   0.6453(2)  0.1529(3)   0.0225(4) 
C(9)   0.54193(14)   0.7526(2)  0.3149(3)   0.0206(4) 
C(10)   0.42548(14)   0.7342(3)  0.3422(3)   0.0236(4) 
C(11)   0.38640(15)   0. 8493(3)  0.5064(3)   0.0294(4) 
C(12)   0.27748(15)   0.8039(2)  0.5677(3)   0.0234(4) 
C(13)   0.19026(15)   0.8675(3)  0.4681(3)   0.0278(4) 
C(14)   0.09075(15)   0.8264(3)  0.5285(3)   0.0379(6) 
C(15)   0.07723(19)   0.7218(3)  0.6883(3)   0.0419(6) 
C(16)   0.1631(2)   0.6567(3)  0.7863(4)   0.0451(6) 
C(17)   0.26268(18)   0.6990(3)  0.7279(3)   0.0340(5) 
 

 
Table 3.   Bond lengths [Å] and angles [°] for  264. 
_____________________________________________________  

O(1)-C(7)    1.221(2) 
O(2)-C(7)    1.339(2) 
O(2)-C(9)    1.468(2) 
O(3)-C(8)    1.428(2) 
O(3)-H(1)    1.03(4) 
C(1)-C(2)    1.387(3) 
C(1)-C(6)    1.400(3) 
C(1)-H(1A)    0.9500 
C(2)-C(3)    1.399(3) 
C(2)-H(2A)    0.9500 
C(3)-C(4)    1.390(3) 
C(3)-H(3A)    0.9500 
C(4)-C(5)    1.393(3) 
C(4)-H(4A)    0.9500 
C(5)-C(6)    1.395(3) 
C(5)-C(8)    1.507(3) 
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C(6)-C(7)    1.486(3) 
C(8)-C(9)    1.516(3) 
C(8)-H(8A)    1.0000 
C(9)-C(10)    1.516(2) 
C(9)-H(9A)    1.0000 
C(10)-C(11)    1.534(3) 
C(10)-H(10A)    0.9900 
C(10)-H(10B)    0.9900 
C(11)-C(12)    1.509(3) 
C(11)-H(11A)    0.9900 
C(11)-H(11B)    0.9900 
C(12)-C(17)    1.388(3) 
C(12)-C(13)    1.392(3) 
C(13)-C(14)    1.387(3) 
C(13)-H(13A)    0.9500 
C(14)-C(15)    1.382(4) 
C(14)-H(14A)    0.9500 
C(15)-C(16)    1.377(4) 
C(15)-H(15A)    0.9500 
C(16)-C(17)    1.385(3) 
C(16)-H(16A)    0.9500 
C(17)-H(17A)    0.9500 
C(7)-O(2)-C(9)   119.98(14) 
C(8)-O(3)-H(1)   100(2) 
C(2)-C(1)-C(6)   119.08(19) 
C(2)-C(1)-H(1A)   120.5 
C(6)-C(1)-H(1A)   120.5 
C(1)-C(2)-C(3)   119.93(18) 
C(1)-C(2)-H(2A)   120.0 
C(3)-C(2)-H(2A)   120.0 
C(4)-C(3)-C(2)   120.57(18) 
C(4)-C(3)-H(3A)   119.7 
C(2)-C(3)-H(3A)   119.7 
C(3)-C(4)-C(5)   120.09(19) 
C(3)-C(4)-H(4A)   120.0 
C(5)-C(4)-H(4A)   120.0 
C(4)-C(5)-C(6)   119.00(17) 
C(4)-C(5)-C(8)   122.74(17) 
C(6)-C(5)-C(8)   118.21(16) 
C(5)-C(6)-C(1)   121.31(17) 
C(5)-C(6)-C(7)   119.76(16) 
C(1)-C(6)-C(7)   118.89(17) 
O(1)-C(7)-O(2)   117.96(16) 
O(1)-C(7)-C(6)   123.77(17) 
O(2)-C(7)-C(6)   118.27(16) 
O(3)-C(8)-C(5)   111.55(15) 
O(3)-C(8)-C(9)   112.26(15) 
C(5)-C(8)-C(9)   108.82(14) 
O(3)-C(8)-H(8A)   108.0 
C(5)-C(8)-H(8A)   108.0 
C(9)-C(8)-H(8A)   108.0 
O(2)-C(9)-C(8)   110.52(14) 
O(2)-C(9)-C(10)   106.88(14) 
C(8)-C(9)-C(10)   115.48(15) 
O(2)-C(9)-H(9A)   107.9 
C(8)-C(9)-H(9A)   107.9 
C(10)-C(9)-H(9A)  107.9 
C(9)-C(10)-C(11)  112.01(15) 
C(9)-C(10)-H(10A)  109.2 
C(11)-C(10)-H(10A)  109.2 
C(9)-C(10)-H(10B)  109.2 
C(11)-C(10)-H(10B)  109.2 
H(10A)-C(10)-H(10B)  107.9 
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C(12)-C(11)-C(10)  113.03(15) 
C(12)-C(11)-H(11A)  109.0 
C(10)-C(11)-H(11A)  109.0 
C(12)-C(11)-H(11B)  109.0 
C(10)-C(11)-H(11B)  109.0 
H(11A)-C(11)-H(11B)  107.8 
C(17)-C(12)-C(13)  118.67(18) 
C(17)-C(12)-C(11)  120.09(19) 
C(13)-C(12)-C(11)  121.23(18) 
C(14)-C(13)-C(12)  120.4(2) 
C(14)-C(13)-H(13A)  119.8 
C(12)-C(13)-H(13A)  119.8 
C(15)-C(14)-C(13)  120.3(2) 
C(15)-C(14)-H(14A)  119.8 
C(13)-C(14)-H(14A)  119.8 
C(16)-C(15)-C(14)  119.7(2) 
C(16)-C(15)-H(15A)  120.2 
C(14)-C(15)-H(15A)  120.2 
C(15)-C(16)-C(17)  120.3(2) 
C(15)-C(16)-H(16A)  119.9 
C(17)-C(16)-H(16A)  119.9 
C(16)-C(17)-C(12)  120.7(2) 
C(16)-C(17)-H(17A)  119.6 
C(12)-C(17)-H(17A)  119.6 

 
Symmetry transformations used to generate equivalent atoms:  
 
 Table 4.   Anisotropic displacement parameters  (Å2) for 264.   

The anisotropic displacement factor exponent takes the form:  -2π2[ h2 a*2 U11 + ...  + 2 h k a* 

b* U12 ] 
_________________________________________________________________ 

   U11 U22  U33 U23 U13 U12 

O(1) 0.0306(7) 0.0226(7) 0.0199(6) -0.0010(6) 0.0003(5) -
0.0034(5) 
O(2) 0.0236(6) 0.0195(6) 0.0210(7) -0.0006(5) -0.0004(5)  0.0001(5) 
O(3) 0.0326(7) 0.0303(8) 0.0207(7) -0.0018(6) -0.0020(6)   
-0.0055(6) 
C(1) 0.0255(10) 0.0344(11) 0.0180(9)  -0.0016(8) 0.0005(7)   
-0.0039(8) 
C(2) 0.0236(9)  0.0450(12) 0.0201(10)  -0.0018(9) 0.0007(8)  0.0004(8) 
C(3) 0.0303(10)  0.0327(11) 0.0214(9)  0.0008(8) 0.0038(8)  0.0101(8) 
C(4) 0.0336(10)  0.0259(10) 0.0176(9)  0.0016(8) 0.0019(7)  0.0055(8) 
C(5) 0.0279(9)  0.0227(10) 0.0129(8)  0.0028(7) 0.0035(7)  0.0008(7) 
C(6) 0.0249(8)  0.0257(10) 0.0138(8)  -0.0006(7) -0.0006(7)  0.0016(7) 
C(7) 0.0251(9)  0.0242(9) 0.0114(7)  -0.0012(7) -0.0023(7)   
-0.0008(7) 
C(8) 0.0291(9)  0.0208(9) 0.0177(8)  -0.0018(7) 0.0017(7)   
-0.0021(7) 
C(9) 0.0249(9)  0.0199(8) 0.0170(8)  0.0012(7) 0.0007(6)   
-0.0012(7) 
C(10) 0.0236(9)  0.0241(9) 0.0231(9)  -0.0036(8) 0.0015(7)   
-0.0036(7) 
C(11) 0.0217(9)  0.0339(11) 0.0327(11)  -0.0100(9) 0.0046(8)   
-0.0043(8) 
C(12) 0.0242(9)  0.0237(9) 0.0222(9)  -0.0057(8) 0.0028(7)   
-0.0010(7) 
C(13) 0.0312(10)  0.0313(10) 0.0209(10)  -0.0017(8) 0.0003(8)  0.0001(8) 
C(14) 0.0227(10)  0.0575(15) 0.0335(12)  -0.0172(11) -0.0024(9)  0.0019(9) 
C(15) 0.0366(12)  0.0501(14) 0.0397(13)  -0.0197(11) 0.0171(10)   
-0.0204(11) 
C(16) 0.0699(18)  0.0333(13) 0.0330(12)  0.0011(10) 0.0215(12)   
-0.0127(11) 
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C(17) 0.0441(12)  0.0292(11) 0.0288(11)  0.0035(9) 0.0021(9)  0.0069(9) 
 
Table 5.   Atomic coordinates  and isotropic displacement parameters (Å2) for 264. 
_________________________________________________________________  
                    x                 y           z              U(eq) 
_________________________________________________________________  
H(1A)   0.8605  1.0186  0.1835  0.031 
H(2A)   0.9826  0.8089  0.0931  0.035 
H(3A)   0.9276  0.5253  0.0232  0.034 
H(4A)  0.7532  0.4466  0.0572  0.031 
H(8A)  0.5797  0.5201  0.1881  0.027 
H(9A)  0.5779  0.7174  0.4384  0.025 
H(10A)  0.4090  0.6116  0.3711  0.028 
H(10B)  0.3884  0.7659  0.2203  0.028 
H(11A)  0.4346  0.8380  0.6193  0.035 
H(11B)  0.3876  0.9719  0.4638  0.035 
H(13A)  0.1989  0.9394  0.3580  0.033 
H(14A)  0.0316  0.8703  0.4597  0.045 
H(15A)  0.0090  0.6949  0.7304  0.050 
H(16A)  0.1541  0.5825  0.8944  0.054 
H(17A)  0.3215  0.6557  0.7983  0.041 
H(1)  0.584(3) 0.756(5) -0.093(6) 0.099(12) 
 

7.9. Appendix 9 – X-ray data for 276 

Table 1.  Crystal data and structure refinement for 276. 
Identification code   276 
Empirical formula    C13 H16 O3 
Formula weight    220.27 
Temperature    293 K 
Wavelength    1.54180 A 
Crystal system, space group   Monoclinic,  P 1 21/n 1 
Unit cell dimensions   a = 7.5397(8) A   alpha = 90 deg. 

b = 15.2598(13) A   beta = 99.298(6) deg. 
c = 10.2955(11) A  gamma = 90 deg. 

Volume     1169.0(2) A3 
Z, Calculated density   4,  1.251 Mg/m3 
Absorption coefficient   0.716 mm-1 
F(000)     472 
Crystal size    0.30 x 0.10 x 0.08 mm 
Theta range for data collection  6.619 to 65.288 deg. 
Limiting indices    -8<=h<=7, -14<=k<=17, -12<=l<=11 
Reflections collected / unique  4172 / 1859 [R(int) = 0.025] 
Completeness to theta = 65.288  93.3 % 
Absorption correction   Semi-empirical from equivalents 
Max. and min. transmission   0.94 and 0.62 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters   859 / 0 / 148 
Goodness-of-fit on F2    0.9186 
Final R indices [I>2sigma(I)]   R1 = 0.0578, wR2 = 0.1541 
R indices (all data)   R1 = 0.0839, wR2 = 0.1765 
Largest diff. peak and hole  0.48 and -0.34 e.A-3 
 
Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 
103) for 276. 
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
________________________________________________________________ 
                              x                y                z           U(eq) 
________________________________________________________________ 

C(1)         6864(4)        755(2)       3996(3)       47 
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C(2)         5997(4)        657(2)       2710(3)       46 
C(3)         5233(4)       1428(2)       1963(4)       51 
O(4)         5029(3)       2172(1)       2624(2)       54 
C(5)         5237(5)       2139(2)       4061(3)       49 
C(6)         6949(5)       1657(2)       4605(3)       52 
O(7)         8525(3)       2074(2)       4304(3)       64 
C(8)         5108(5)       3096(2)       4537(3)       56 
C(9)         5110(6)       3110(2)       6014(4)       69 
C(10)        5335(7)       4011(3)       6617(5)      101 
C(11)        3427(6)       3533(3)       3797(4)       86 
O(12)        4803(4)       1442(2)        773(2)       66 
C(13)        5927(5)       -163(2)       2096(3)       58 
C(14)        6749(5)       -879(2)       2769(4)       62 
C(15)        7635(5)       -777(2)       4039(4)       64 
C(16)        7686(5)         27(2)       4667(4)       56 

 
Table 3.  Bond lengths [A] and angles [deg] for 276. 
________________________________________________________________ 

C(1)-C(2)                     1.387(4) 
C(1)-C(6)                     1.509(4) 
C(1)-C(16)                    1.399(4) 
C(2)-C(3)                     1.471(4) 
C(2)-C(13)                    1.399(4) 
C(3)-O(4)                     1.344(4) 
C(3)-O(12)                    1.216(4) 
O(4)-C(5)                     1.464(4) 
C(5)-C(6)                     1.512(4) 
C(5)-C(8)                     1.549(4) 
C(5)-H(51)                    0.994 
C(6)-O(7)                     1.426(4) 
C(6)-H(61)                    0.963 
O(7)-H(1)                     0.89(3) 
C(8)-C(9)                     1.521(5) 
C(8)-C(11)                    1.522(5) 
C(8)-H(81)                    1.015 
C(9)-C(10)                    1.506(5) 
C(9)-H(91)                    1.020 
C(9)-H(92)                    0.958 
C(10)-H(101)                  0.978 
C(10)-H(102)                  1.011 
C(10)-H(103)                  0.973 
C(11)-H(111)                  0.993 
C(11)-H(112)                  1.005 
C(11)-H(113)                  0.939 
C(13)-C(14)                   1.385(5) 
C(13)-H(131)                  0.965 
C(14)-C(15)                   1.378(6) 
C(14)-H(141)                  0.922 
C(15)-C(16)                   1.384(5) 
C(15)-H(151)                  0.909 
C(16)-H(161)                  0.964 
C(2)-C(1)-C(6)              118.5(3) 
C(2)-C(1)-C(16)             119.2(3) 
C(6)-C(1)-C(16)             122.2(3) 
C(1)-C(2)-C(3)              119.7(3) 
C(1)-C(2)-C(13)             120.4(3) 
C(3)-C(2)-C(13)             119.8(3) 
C(2)-C(3)-O(4)              118.6(3) 
C(2)-C(3)-O(12)             123.9(3) 
O(4)-C(3)-O(12)             117.5(3) 
C(3)-O(4)-C(5)              118.7(2) 
O(4)-C(5)-C(6)              109.7(3) 
O(4)-C(5)-C(8)              106.6(2) 
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C(6)-C(5)-C(8)              115.8(3) 
O(4)-C(5)-H(51)             107.6 
C(6)-C(5)-H(51)             106.8 
C(8)-C(5)-H(51)             110.1 
C(5)-C(6)-C(1)              108.3(3) 
C(5)-C(6)-O(7)              113.2(3) 
C(1)-C(6)-O(7)              107.3(3) 
C(5)-C(6)-H(61)             107.0 
C(1)-C(6)-H(61)             110.2 
O(7)-C(6)-H(61)             110.9 
C(6)-O(7)-H(1)              114(2) 
C(5)-C(8)-C(9)              109.8(3) 
C(5)-C(8)-C(11)             110.1(3) 
C(9)-C(8)-C(11)             111.1(3) 
C(5)-C(8)-H(81)             109.9 
C(9)-C(8)-H(81)             109.3 
C(11)-C(8)-H(81)            106.5 
C(8)-C(9)-C(10)             114.0(4) 
C(8)-C(9)-H(91)             110.3 
C(10)-C(9)-H(91)            107.1 
C(8)-C(9)-H(92)             107.4 
C(10)-C(9)-H(92)            105.7 
H(91)-C(9)-H(92)            112.2 
C(9)-C(10)-H(101)           110.7 
C(9)-C(10)-H(102)           114.9 
H(101)-C(10)-H(102)         111.0 
C(9)-C(10)-H(103)           104.2 
H(101)-C(10)-H(103)         105.8 
H(102)-C(10)-H(103)         109.7 
C(8)-C(11)-H(111)           112.2 
C(8)-C(11)-H(112)           107.5 
H(111)-C(11)-H(112)         113.7 
C(8)-C(11)-H(113)           107.1 
H(111)-C(11)-H(113)         107.0 
H(112)-C(11)-H(113)         109.2 
C(2)-C(13)-C(14)            119.9(3) 
C(2)-C(13)-H(131)           117.9 
C(14)-C(13)-H(131)          122.2 
C(13)-C(14)-C(15)           119.6(3) 
C(13)-C(14)-H(141)          120.6 
C(15)-C(14)-H(141)          119.8 
C(14)-C(15)-C(16)           121.1(3) 
C(14)-C(15)-H(151)          117.6 
C(16)-C(15)-H(151)          121.3 
C(1)-C(16)-C(15)            119.7(3) 
C(1)-C(16)-H(161)           121.5 
C(15)-C(16)-H(161)          118.7 

 
  
Symmetry transformations used to generate equivalent atoms: 
  
Table 4.  Anisotropic displacement parameters (A2 x 103) for 276. 
The anisotropic displacement factor exponent takes the form: 2 π2 [h2 a*2 U11 + ... + 2 h k a* b* 
U12 

________________________________________________________________ 
                       U11          U22          U33         U23        U13        U12 
________________________________________________________________ 

C(1)     52(2)      42(2)      47(2)       3(1)       6(2)      -2(2) 
C(2)     49(2)      43(2)      45(2)       1(1)       3(2)       0(1) 
C(3)     53(2)      51(2)      45(2)       0(2)       1(2)      -2(2) 
O(4)     68(2)      47(1)      43(1)      -1(1)      -3(1)       4(1) 
C(5)     57(2)      45(2)      45(2)       0(1)       6(2)       2(2) 
C(6)     62(2)      49(2)      42(2)       1(1)       2(2)       3(2) 
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O(7)     56(2)      54(1)      78(2)     -15(1)      -1(1)      -5(1) 
C(8)     62(2)      46(2)      57(2)      -1(2)       6(2)       5(2) 
C(9)     88(3)      61(2)      61(3)     -14(2)      18(2)       0(2) 
C(10)   107(4)      98(4)     100(4)     -23(3)      22(3)      -2(3) 
C(11)    93(3)      67(3)      90(3)     -14(2)      -7(2)      33(2) 
O(12)    86(2)      66(2)      42(2)       2(1)      -2(1)      13(1) 
C(13)    66(2)      54(2)      51(2)      -7(2)       6(2)      -6(2) 
C(14)    71(3)      40(2)      77(3)      -3(2)      17(2)      -3(2) 
C(15)    66(2)      43(2)      82(3)      12(2)      13(2)       8(2) 
C(16)    61(2)      51(2)      54(2)       9(2)       1(2)       5(2) 

 
 
Table 5.  Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
276. 
_________________________________________________________________ 
                             x                y               z           U(eq) 
_________________________________________________________________ 

H(51)        4226          1786          4295          62 
H(61)        6988          1612          5542          64 
H(81)        6169          3449          4329          71 
H(91)        6130          2731          6486          90 
H(92)        3954          2910          6161          90 
H(101)       5204          3991          7546         117 
H(102)       6478          4324          6495         117 
H(103)       4300          4336          6176         117 
H(111)       3274          4139          4109          99 
H(112)       2381          3137          3869          99 
H(113)       3577          3573          2911          99 
H(131)       5278          -209          1211          72 
H(141)       6716         -1422          2372          72 
H(151)       8160         -1258          4456          81 
H(161)       8329            75          5554          66 
H(1)         8870(40)      2540(20)      4810(30)      50 

 
  

7.10. Appendix 10 – X-ray data for 289 

Table 1.  Crystal data and structure refinement for 289. 
Identification code   289 
Empirical formula   C16 H17 N1 O4 
Formula weight    287.32 
Temperature    150 K 
Wavelength    0.71073 A 
Crystal system, space group  Monoclinic,  P 1 21/n 1 
Unit cell dimensions    a = 8.3707(4) A   alpha = 90 deg. 

b = 7.7537(3) A    beta = 94.832(2) deg. 
c = 22.1213(10) A   gamma = 90 deg. 

Volume     1430.66(11) A3 
Z, Calculated density   4,  1.334 Mg/m3 
Absorption coefficient   0.096 mm-1 
F(000)     608 
Crystal size    0.35 x 0.20 x 0.15 mm 
Theta range for data collection  1.848 to 27.476 deg. 
Limiting indices    -10<=h<=10, -10<=k<=8, -28<=l<=26 
Reflections collected / unique  9665 / 3251 [R(int) = 0.0679] 
Completeness to theta = 27.476  99.6 % 
Absorption correction   None 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  3251 / 0 / 193 
Goodness-of-fit on F2   0.9678 
Final R indices [I>2sigma(I)]  R1 = 0.0560, wR2 = 0.1112 
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R indices (all data)   R1 = 0.1063, wR2 = 0.1332 
Largest diff. peak and hole  0.65 and -0.75 e.A-3 
 
Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 
103) for 289. 
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________ 
                         x             y             z           U(eq) 
_______________________________________________________________ 

O(1)        -1640(2)       4218(2)       2217(1)       29 
C(2)        -1633(2)       6022(3)       2087(1)       24 
C(3)           18(2)       6812(3)       2218(1)       23 
O(4)         1098(2)       6271(2)       1763(1)       24 
C(5)          582(2)       6214(3)       1166(1)       24 
O(6)         1575(2)       5990(2)        808(1)       33 
C(7)        -1158(2)       6406(3)        993(1)       23 
C(8)        -2250(2)       6367(3)       1439(1)       24 
C(9)        -3879(3)       6521(3)       1261(1)       30 
C(10)       -4406(3)       6687(3)        655(1)       35 
C(11)       -3320(3)       6712(3)        217(1)       35 
C(12)       -1695(3)       6571(3)        384(1)       30 
C(13)         856(2)       6289(3)       2830(1)       24 
C(14)        2496(3)       7166(3)       2929(1)       32 
C(15)        3528(2)       6493(3)       3466(1)       25 
N(16)        5040(2)       7236(2)       3623(1)       25 
C(17)        5601(2)       6416(3)       4105(1)       25 
O(18)        4607(2)       5177(2)       4287(1)       31 
C(19)        3293(2)       5254(3)       3866(1)       29 
C(20)        7129(3)       6697(3)       4483(1)       31 
C(21)        -217(3)       6730(3)       3337(1)       37 

 
Table 3.  Bond lengths [A] and angles [deg] for 289. 
________________________________________________________________ 
  

O(1)-C(2)                     1.428(3) 
O(1)-H(1)                     0.87(3) 
C(2)-C(3)                     1.517(3) 
C(2)-C(8)                     1.505(3) 
C(2)-H(21)                    1.000 
C(3)-O(4)                     1.470(2) 
C(3)-C(13)                    1.525(3) 
C(3)-H(31)                    0.983 
O(4)-C(5)                     1.355(2) 
C(5)-O(6)                     1.208(2) 
C(5)-C(7)                     1.482(3) 
C(7)-C(8)                     1.401(3) 
C(7)-C(12)                    1.390(3) 
C(8)-C(9)                     1.392(3) 
C(9)-C(10)                    1.382(3) 
C(9)-H(91)                    0.946 
C(10)-C(11)                   1.383(3) 
C(10)-H(101)                  0.939 
C(11)-C(12)                   1.383(3) 
C(11)-H(111)                  0.934 
C(12)-H(121)                  0.938 
C(13)-C(14)                   1.531(3) 
C(13)-C(21)                   1.533(3) 
C(13)-H(131)                  0.974 
C(14)-C(15)                   1.502(3) 
C(14)-H(141)                  0.999 
C(14)-H(142)                  0.983 
C(15)-N(16)                   1.408(3) 
C(15)-C(19)                   1.333(3) 
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N(16)-C(17)                   1.295(3) 
C(17)-O(18)                   1.354(2) 
C(17)-C(20)                   1.483(3) 
O(18)-C(19)                   1.381(3) 
C(19)-H(191)                  0.934 
C(20)-H(201)                  0.973 
C(20)-H(202)                  0.955 
C(20)-H(203)                  0.968 
C(21)-H(211)                  0.963 
C(21)-H(212)                  0.980 
C(21)-H(213)                  0.982 
C(2)-O(1)-H(1)              109.9(18) 
O(1)-C(2)-C(3)              112.09(16) 
O(1)-C(2)-C(8)              111.02(17) 
C(3)-C(2)-C(8)              110.16(17) 
O(1)-C(2)-H(21)             107.2 
C(3)-C(2)-H(21)             108.5 
C(8)-C(2)-H(21)             107.7 
C(2)-C(3)-O(4)              110.88(16) 
C(2)-C(3)-C(13)             113.95(17) 
O(4)-C(3)-C(13)             105.59(16) 
C(2)-C(3)-H(31)             109.0 
O(4)-C(3)-H(31)             107.3 
C(13)-C(3)-H(31)            109.9 
C(3)-O(4)-C(5)              120.89(15) 
O(4)-C(5)-O(6)              117.60(18) 
O(4)-C(5)-C(7)              118.30(18) 
O(6)-C(5)-C(7)              124.1(2) 
C(5)-C(7)-C(8)              120.06(19) 
C(5)-C(7)-C(12)             119.35(19) 
C(8)-C(7)-C(12)             120.56(19) 
C(2)-C(8)-C(7)              118.84(18) 
C(2)-C(8)-C(9)              122.28(19) 
C(7)-C(8)-C(9)              118.7(2) 
C(8)-C(9)-C(10)             120.5(2) 
C(8)-C(9)-H(91)             119.6 
C(10)-C(9)-H(91)            119.9 
C(9)-C(10)-C(11)            120.4(2) 
C(9)-C(10)-H(101)           120.2 
C(11)-C(10)-H(101)          119.4 
C(10)-C(11)-C(12)           120.2(2) 
C(10)-C(11)-H(111)          120.7 
C(12)-C(11)-H(111)          119.1 
C(7)-C(12)-C(11)            119.7(2) 
C(7)-C(12)-H(121)           118.6 
C(11)-C(12)-H(121)          121.7 
C(3)-C(13)-C(14)            110.41(17) 
C(3)-C(13)-C(21)            109.63(17) 
C(14)-C(13)-C(21)           111.67(18) 
C(3)-C(13)-H(131)           107.6 
C(14)-C(13)-H(131)          108.2 
C(21)-C(13)-H(131)          109.1 
C(13)-C(14)-C(15)           114.10(19) 
C(13)-C(14)-H(141)          108.5 
C(15)-C(14)-H(141)          109.1 
C(13)-C(14)-H(142)          107.7 
C(15)-C(14)-H(142)          107.0 
H(141)-C(14)-H(142)         110.4 
C(14)-C(15)-N(16)           119.93(18) 
C(14)-C(15)-C(19)           132.0(2) 
N(16)-C(15)-C(19)           108.08(19) 
C(15)-N(16)-C(17)           105.02(18) 
N(16)-C(17)-O(18)           113.77(18) 
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N(16)-C(17)-C(20)           128.8(2) 
O(18)-C(17)-C(20)           117.36(19) 
C(17)-O(18)-C(19)           104.15(16) 
O(18)-C(19)-C(15)           108.98(18) 
O(18)-C(19)-H(191)          120.0 
C(15)-C(19)-H(191)          131.0 
C(17)-C(20)-H(201)          109.3 
C(17)-C(20)-H(202)          109.5 
H(201)-C(20)-H(202)         109.0 
C(17)-C(20)-H(203)          109.3 
H(201)-C(20)-H(203)         111.6 
H(202)-C(20)-H(203)         108.1 
C(13)-C(21)-H(211)          110.7 
C(13)-C(21)-H(212)          110.3 
H(211)-C(21)-H(212)         107.4 
C(13)-C(21)-H(213)          110.6 
H(211)-C(21)-H(213)         109.0 
H(212)-C(21)-H(213)         108.8 

 
Symmetry transformations used to generate equivalent atoms: 
  
Table 4.  Anisotropic displacement parameters (A2 x 103) for 289. 
The anisotropic displacement factor exponent takes the form:-2 π2 [h2 a*2 U11 + ... + 2 h k a* b* 
U12 ] 
______________________________________________________________ 
                       U11         U22         U33          U23        U13         U12 

_______________________________________________________________ 
O(1)     32(1)      30(1)      26(1)       0(1)       5(1)      -5(1) 
C(2)     25(1)      24(1)      23(1)      -2(1)       5(1)       2(1) 
C(3)     27(1)      22(1)      21(1)      -5(1)       1(1)       3(1) 
O(4)     22(1)      30(1)      21(1)      -2(1)       2(1)       0(1) 
C(5)     25(1)      24(1)      23(1)       1(1)       1(1)      -3(1) 
O(6)     27(1)      46(1)      26(1)       0(1)       6(1)      -2(1) 
C(7)     25(1)      21(1)      25(1)       0(1)      -1(1)      -2(1) 
C(8)     24(1)      20(1)      26(1)      -2(1)       0(1)      -1(1) 
C(9)     24(1)      32(1)      34(1)      -1(1)       2(1)       3(1) 
C(10)    25(1)      36(1)      44(2)       1(1)      -9(1)       0(1) 
C(11)    37(1)      36(1)      28(1)       4(1)     -11(1)      -3(1) 
C(12)    31(1)      32(1)      26(1)       1(1)       1(1)      -3(1) 
C(13)    27(1)      23(1)      22(1)      -1(1)       1(1)       1(1) 
C(14)    32(1)      32(1)      29(1)       1(1)      -5(1)      -5(1) 
C(15)    27(1)      25(1)      23(1)      -2(1)       0(1)      -1(1) 
N(16)    25(1)      27(1)      23(1)       1(1)      -2(1)      -1(1) 
C(17)    24(1)      27(1)      23(1)      -1(1)       4(1)       3(1) 
O(18)    28(1)      35(1)      29(1)       8(1)      -2(1)      -1(1) 
C(19)    25(1)      26(1)      37(1)       2(1)      -2(1)      -2(1) 
C(20)    27(1)      41(1)      25(1)      -1(1)      -1(1)       4(1) 
C(21)    35(1)      51(2)      26(1)      -8(1)       0(1)      12(1) 

 
Table 5.  Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
289. 
__________________________________________________________________ 
                               x              y                z           U(eq) 
__________________________________________________________________ 

H(21)       -2383          6587          2355          28 
H(31)         -73          8074          2194          25 
H(91)       -4630          6514          1558          34 
H(101)      -5507          6779           536          43 
H(111)      -3669          6825          -193          42 
H(121)       -937          6563            94          35 
H(131)       1023          5047          2822          28 
H(141)       2326          8430          2981          38 
H(142)       3073          6946          2568          38 
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H(191)       2432          4502          3897          30 
H(201)       7721          5618          4520          37 
H(202)       6906          7077          4878          37 
H(203)       7739          7591          4301          37 
H(211)        359          6584          3729          49 
H(212)       -561          7937          3304          49 
H(213)      -1172          5989          3311          49 
H(1)        -1160(30)      3660(40)      1944(13)      50 

 
 

7.11. Appendix 11 – X-ray data for 298 

Table 1.  Crystal data and structure refinement for 298. 
Identification code   298 
Empirical formula   C18 H20 O4 
Formula weight    1201.36 
Temperature    150(2) K 
Wavelength    0.71073 A 
Crystal system, space group  ?,  ? 
Unit cell dimensions   a = 6.6229(12) A   alpha = 90 deg. 

b = 10.6758(14) A   beta = 98.058(6) deg. 
c = 22.750(3) A   gamma = 90 deg. 

Volume     1592.7(4) A3 
Z, Calculated density   1,  1.253 Mg/m3 
Absorption coefficient   0.088 mm-1 
F(000)     640 
Crystal size     ? x ? x ? mm 
Theta range for data collection  3.11 to 27.48 deg. 
Limiting indices    -8<=h<=8, -13<=k<=13, -29<=l<=29 
Reflections collected / unique  20004 / 3649 [R(int) = 0.1898] 
Completeness to theta = 27.48  99.9 % 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  3649 / 0 / 279 
Goodness-of-fit on F2   0.931 
Final R indices [I>2sigma(I)]  R1 = 0.0679, wR2 = 0.1409 
R indices (all data)   R1 = 0.1864, wR2 = 0.1920 
Largest diff. peak and hole  0.198 and -0.209 e.A-3 
 
Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 
103) for 298. 
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
________________________________________________________________ 
                              x                y                 z              U(eq) 
________________________________________________________________ 

O(1)         3165(4)       7540(2)       1893(1)       40(1) 
O(2)         1331(4)       5138(2)       2233(1)       48(1) 
O(3)         4994(4)       4162(2)       1245(1)       43(1) 
O(4)        -1587(5)       5971(3)       2432(1)       74(1) 
C(1)         2591(5)       6993(3)        910(1)       33(1) 
C(2)         2386(5)       8305(3)        955(1)       37(1) 
C(3)         2536(6)       9069(4)        468(2)       46(1) 
C(4)         2973(6)       8506(4)        -57(2)       51(1) 
C(5)         3203(6)       7227(4)        -91(2)       50(1) 
C(6)         2983(5)       6433(3)        390(1)       38(1) 
C(7)         2016(6)       8564(3)       1585(1)       40(1) 
C(8)         2212(5)       6537(3)       1512(1)       34(1) 
C(9)         2872(6)       5325(3)       1840(1)       36(1) 
C(10)        -255(6)       5977(3)       2120(2)       51(1) 
C(11)         -88(5)       6747(3)       1573(2)       41(1) 
C(12)        3121(5)       4108(3)       1505(1)       38(1) 
C(13)        4891(6)       3344(3)       1756(2)       39(1) 
C(103)      -1860(7)       8937(4)       1304(2)       58(1) 



Chapter 7 – Appendices  

 229 

C(104)       -172(6)       8197(3)       1676(2)       46(1) 
C(105)      -1672(6)       6270(4)       1061(2)       51(1) 
C106)       1300(7)       3553(4)       1126(2)       58(1) 
C(107)       5085(8)       1961(4)       1656(2)       50(1) 

 
Table 3.  Bond lengths [A] and angles [deg] for 298. 
________________________________________________________________ 

C(1)-C(7)                     1.455(4) 
O(1)-C(8)                     1.463(4) 
O(2)-C(10)                    1.377(4) 
O(2)-C(9)                     1.463(4) 
O(3)-C(12)                    1.449(4) 
O(3)-C(13)                    1.463(4) 
O(4)-C(10)                    1.207(4) 
C(1)-C(6)                     1.382(4) 
C(1)-C(2)                     1.412(5) 
C(1)-C(8)                     1.508(4) 
C(2)-C(3)                     1.391(5) 
C(2)-C(7)                     1.514(4) 
C(3)-C(4)                     1.401(5) 
C(3)-H(1)                     1.00(4) 
C(4)-C(5)                     1.378(5) 
C(4)-H(2)                     1.01(4) 
C(5)-C(6)                     1.408(5) 
C(5)-H(3)                     0.95(4) 
C(6)-H(4)                     1.05(3) 
C(7)-C(104)                   1.542(5) 
C(7)-H(5)                     1.01(3) 
C(8)-C(9)                     1.526(4) 
C(8)-C(11)                    1.565(5) 
C(9)-C(12)                    1.527(4) 
C(9)-H(13)                    1.06(4) 
C(10)-C(11)                   1.510(5) 
C(11)-C(105)                  1.541(6) 
C(11)-C(104)                  1.568(5) 
C(12)-C(13)                   1.476(5) 
C(12)-C(106)                  1.502(5) 
C(13)-C(107)                  1.502(5) 
C(13)-H(16)                   1.02(3) 
C(103)-C(104)                 1.524(6) 
C(103)-H(9)                   0.95(4) 
C(103)-H(7)                   1.02(4) 
C(103)-H(8)                   1.08(5) 
C(104)-H(6)                   0.98(3) 
C(105)-H(10)                  0.95(4) 
C(105)-H(11)                  1.09(4) 
C(105)-H(12)                  1.03(4) 
C(106)-H(15)                  1.04(5) 
C(106)-H(14)                  1.00(5) 
C(106)-H(20)                  1.00(4) 
C(107)-H(18)                  1.00(4) 
C(107)-H(17)                  1.11(4) 
C(107)-H(19)                  0.99(4) 
C(7)-o(1)-C(8)               96.5(2) 
C(10)-o(2)-C(9)             112.1(2) 
C(12)-o(3)-C(13)             60.9(2) 
C(6)-C(1)-C(2)              121.5(3) 
C(6)-C(1)-C(8)              135.5(3) 
C(2)-C(1)-C(8)              103.0(3) 
C(3)-C(2)-C(1)              120.4(3) 
C(3)-C(2)-C(7)              133.3(3) 
C(1)-C(2)-C(7)              106.3(3) 
C(2)-C(3)-C(4)              118.2(3) 
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C(2)-C(3)-H(1)              120(2) 
C(4)-C(3)-H(1)              122(2) 
C(5)-C(4)-C(3)              120.8(3) 
C(5)-C(4)-H(2)              120(2) 
C(3)-C(4)-H(2)              119(2) 
C(4)-C(5)-C(6)              121.8(4) 
C(4)-C(5)-H(3)              120(2) 
C(6)-C(5)-H(3)              119(2) 
C(1)-C(6)-C(5)              117.2(3) 
C(1)-C(6)-H(4)              122.1(17) 
C(5)-C(6)-H(4)              120.6(17) 
O(1)-C(7)-C(2)              100.0(3) 
O(1)-C(7)-C(104)            100.5(3) 
C(2)-C(7)-C(104)            111.1(3) 
O(1)-C(7)-H(5)              112.5(19) 
C(2)-C(7)-H(5)              116.0(17) 
C(104)-C(7)-H(5)            114.6(19) 
O(1)-C(8)-C(1)              100.8(2) 
O(1)-C(8)-C(9)              105.1(2) 
C(1)-C(8)-C(9)              130.2(3) 
O(1)-C(8)-C(11)             100.8(2) 
C(1)-C(8)-C(11)             108.8(3) 
C(9)-C(8)-C(11)             107.1(3) 
O(2)-C(9)-C(12)             108.8(3) 
O(2)-C(9)-C(8)              103.8(3) 
C(12)-C(9)-C(8)             121.5(3) 
O(2)-C(9)-H(13)             105.0(18) 
C(12)-C(9)-H(13)            109.1(19) 
C(8)-C(9)-H(13)             107.6(19) 
O(4)-C(10)-o(2)             119.2(3) 
O(4)-C(10)-C(11)            129.2(4) 
O(2)-C(10)-C(11)            111.5(3) 
C(10)-C(11)-C(105)          108.8(3) 
C(10)-C(11)-C(104)          114.0(3) 
C(105)-C(11)-C(104)         113.9(3) 
C(10)-C(11)-C(8)            100.3(3) 
C(105)-C(11)-C(8)           117.0(3) 
C(104)-C(11)-C(8)           102.1(3) 
O(3)-C(12)-C(13)             60.1(2) 
O(3)-C(12)-C(106)           116.5(3) 
C(13)-C(12)-C(106)          122.3(3) 
O(3)-C(12)-C(9)             109.2(3) 
C(13)-C(12)-C(9)            114.4(3) 
C(106)-C(12)-C(9)           119.2(3) 
O(3)-C(13)-C(12)             59.06(19) 
O(3)-C(13)-C(107)           116.8(3) 
C(12)-C(13)-C(107)          124.3(4) 
O(3)-C(13)-H(16)            110.5(18) 
C(12)-C(13)-H(16)           114.9(18) 
C(107)-C(13)-H(16)          116.9(18) 
C(104)-C(103)-H(9)          112(3) 
C(104)-C(103)-H(7)          105(3) 
H(9)-C(103)-H(7)            107(3) 
C(104)-C(103)-H(8)          111(3) 
H(9)-C(103)-H(8)            112(4) 
H(7)-C(103)-H(8)            110(3) 
C(103)-C(104)-C(7)          115.1(3) 
C(103)-C(104)-C(11)         117.9(4) 
C(7)-C(104)-C(11)           100.2(3) 
C(103)-C(104)-H(6)          111.9(19) 
C(7)-(104)-H(6)            103(2) 
C(11)-C(104)-H(6)           106.8(18) 
C(11)-C(105)-H(10)          109(2) 
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C(11)-C(105)-H(11)          110(2) 
H(10)-C(105)-H(11)          110(3) 
C(11)-C(105)-H(12)          109(2) 
H(10)-C(105)-H(12)          109(3) 
H(11)-C(105)-H(12)          111(3) 
C(12)-C(106)-H(15)          114(3) 
C(12)-C(106)-H(14)          113(3) 
H(15)-C(106)-H(14)          103(4) 
C(12)-C(106)-H(20)          106(2) 
H(15)-C(106)-H(20)          109(3) 
H(14)-C(106)-H(20)          112(4) 
C(13)-C(107)-H(18)          109.3(19) 
C(13)-C(107)-H(17)          110.4(19) 
H(18)-C(107)-H(17)          104(3) 
C(13)-C(107)-H(19)          109(2) 
H(18)-C(107)-H(19)          114(3) 
H(17)-C(107)-H(19)          111(3) 

 
Symmetry transformations used to generate equivalent atoms: 
Table 4.  Anisotropic displacement parameters (A2 x 103) for 298. 
The anisotropic displacement factor exponent takes the form: 
-2 π2 [ h2 a*2 U11 + ... + 2 h k a* b* U12] 
_________________________________________________________________ 
                        U11         U22           U33          U23        U13         U12 

_________________________________________________________________ 
O(1)     48(2)      36(1)      34(1)      -4(1)       2(1)       2(1) 
O(2)     58(2)      44(2)      46(1)      15(1)      22(1)      13(1) 
O(3)     49(2)      40(1)      42(1)       1(1)      16(1)       2(1) 
O(4)     80(2)      71(2)      83(2)      26(2)      57(2)      22(2) 
C(1)     31(2)      34(2)      32(2)       2(1)       2(2)      -1(2) 
C(2)     36(2)      40(2)      36(2)      -1(2)       7(2)       0(2) 
C(3)     52(3)      40(2)      47(2)       7(2)       8(2)      -1(2) 
C(4)     64(3)      48(3)      44(2)       7(2)      16(2)       1(2) 
C(5)     52(3)      64(3)      35(2)      -1(2)      10(2)       3(2) 
C(6)     41(2)      42(2)      30(2)       0(2)       6(2)       1(2) 
C(7)     50(3)      31(2)      40(2)       0(2)       5(2)       5(2) 
C(8)     37(2)      35(2)      28(2)      -5(1)       5(2)      -1(2) 
C(9)     43(2)      37(2)      30(2)       1(2)      11(2)       2(2) 
C(10)    57(3)      43(2)      57(2)      12(2)      23(2)      12(2) 
C(11)    35(2)      44(2)      47(2)       5(2)      14(2)       8(2) 
C(12)    37(2)      38(2)      40(2)       3(2)       9(2)       0(2) 
C(13)    46(2)      34(2)      37(2)       4(2)       9(2)       5(2) 
C(103)   57(3)      50(3)      69(3)       9(2)      16(2)      16(2) 
C(104)   54(3)      44(2)      44(2)       3(2)      18(2)       9(2) 
C(105)   29(2)      52(3)      72(3)       7(2)       3(2)       1(2) 
C(106)   51(3)      49(3)      69(3)     -16(2)      -5(2)      -3(2) 
C(107)   62(3)      41(2)      47(2)       5(2)       9(2)       9(2) 

 
Table 5.  Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
298. 
_________________________________________________________________ 
                                  x                 y                 z              U(eq) 
_________________________________________________________________ 

H((6)         -180(50)      8320(30)      2102(15)      38(9) 
H((4)         3160(50)      5460(30)       354(14)      46(10) 
H((18)        4340(50)      1740(30)      1257(16)      41(9) 
H((10)       -2990(70)      6510(40)      1136(16)      65(12) 
H((1)         2340(60)      9990(40)       499(15)      60(12) 
H((16)        5730(50)      3710(30)      2125(15)      39(9) 
H((17)        4270(60)      1420(40)      1969(17)      67(12) 
H((2)         3160(60)      9050(40)      -405(18)      75(13) 
H((19)        6550(70)      1740(30)      1710(16)      60(12) 
H((9)        -1800(70)      8850(40)       890(20)      77(15) 
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H((11)       -1370(60)      6680(40)       644(19)      72(12) 
H((7)        -1560(70)      9860(40)      1407(18)      77(14) 
H((13)        4250(60)      5510(30)      2128(16)      58(11) 
H((3)         3520(60)      6860(40)      -450(18)      67(12) 
H((5)         2480(50)      9410(30)      1752(14)      43(9) 
H((12)       -1610(60)      5310(40)      1043(16)      67(12) 
H((15)        1590(70)      2700(40)       940(20)      89(15) 
H((14)         800(80)      4090(50)       770(20)     100(17) 
H((8)        -3340(80)      8690(40)      1420(20)     104(17) 
H((20)         240(70)      3440(40)      1397(18)      73(14) 
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