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Abstract 

 

Introduction 

Obesity, metabolic syndrome and Type 2 diabetes are clinical states associated with insulin 

resistance and an increased risk of vascular disease. The prevalence of Type 2 diabetes is reaching 

epidemic proportions and there is a growing need for new therapeutic targets. There is a significant 

body of research that demonstrates an association between obesity, insulin resistance, endothelial 

dysfunction and accelerated atherosclerosis, but the molecular mechanisms underlying this link are 

incompletely understood. Biguanides and thiazolidinediones are widely used in the treatment of 

Type 2 diabetes to improve glycaemia but the precise site, mode and extent of their actions remain 

uncertain. For example, in the United Kingdom Prospective Diabetes Study (UKPDS), metformin 

treatment reduced the incidence of myocardial infarction by 39% in comparison with conventional 

treatment which is more than would have been predicted by the difference in achieved HbA1c 

(0.6%). In addition, when the metformin group was compared with a group treated with 

sulphonylurea or insulin, to control for glycaemia, there was still a significant reduction in the 

incidence of stroke and any other diabetes-related end-point. The enzyme AMPK is a novel 

therapeutic target in Type 2 diabetes and the development of specific tissue specific AMPK 

activators is an attractive prospect for the future. We therefore investigated the role of AMPK in the 

action of biguanides and thiazolidinediones. Accordingly, the aims of this project were to first 

determine if metformin improves vascular endothelial function and large artery stiffness in patients 

with Type 2 diabetes. In parallel, the thesis examines if metformin exerts its beneficial effects in 

patients with Type 2 diabetes in association with altered AMPK activity in human adipose. Finally, 

the thesis determines if insulin sensitizers such as metformin and the thiazolidinediones, acting 

directly on vascular endothelial cells, increase NO production by increasing AMPK activity thus 
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accounting for beneficial effects on endothelial function and, in metformin’s case, cardiovascular 

outcome.  

 

Methods 

Twenty men with Type 2 diabetes were randomised to metformin (500 milligrams three times daily 

for ten weeks) and gliclazide (80 milligrams twice daily for ten weeks) in a double-blinded, 

glycaemia controlled, cross-over design. There was a six week run in and washout period. At the 

end of each ten week phase of therapy routine and non routine blood sampling (including plasma 

ADMA), PWV and an adipose biopsy were performed to determine resistance artery function and 

adipose AMPK activity. The effects of metformin, its closely related analogue phenformin and 

rosiglitazone were characterised in cultured human aortic endothelial cells (HAECs). AMPK 

activity was assessed using a peptide kinase assay and the quantification of phosphorylation of the 

AMPK substrate, acetyl-CoA carboxylase (ACC) in HAECs incubated in rosiglitazone, phenformin 

or metformin. Nitric oxide (NO) release was evaluated with a Sievers NO meter. 

 

Results 

The mean age and BMI of subjects in the clinical study was 56.5 years and 31kg/m
2
. Mean HbA1c 

after metformin therapy was 8.3% compared with 7.8% following gliclazide therapy. There was no 

significant difference between resistance artery function and PWV. ADMA was marginally lower 

following metformin therapy (p=0.019). AMPK activity was 2 fold higher following metformin 

therapy when compared with gliclazide therapy (p=0.002). Stimulation of human aortic endothelial 

cells with phenformin and rosiglitazone resulted in the time- and dose-dependent stimulation of 

AMP-activated protein kinase activity and NO production with concomitant phosphorylation of 

endothelial NO synthase at Ser1177.  Infection of endothelial cells with a virus encoding a 

dominant negative AMPK mutant attenuated both phenformin and rosiglitazone-stimulated 
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Ser1177 phosphorylation and NO production. Furthermore, the stimulation of AMPK and NO 

synthesis by rosiglitazone was unaffected by the peroxisome proliferator-activated-receptor-

inhibitor, GW9662. Incubation of HAECs with metformin, however, had no effect on AMPK 

activity or NO synthesis. 

 

Conclusion 

Taken together, the data in this thesis provides further insight into the molecular mechanisms 

underlying the interactions between insulin sensitizing drugs, the enzyme AMPK and both the 

human vascular endothelium and adipose. Further work leading to an increased understanding of 

the molecular mechanisms by which anti-diabetic drugs activate AMPK in both the vascular 

endothelium and adipose tissue may identify novel therapeutic targets in patients with Type 2 

diabetes.  
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1.1 Diabetes Mellitus, Insulin Resistance and the Metabolic Syndrome 

1.1.1 Diabetes Mellitus 

The key clinical features of diabetes mellitus were recognised as long ago as around 1500BC when 

Hindu scholars first described an illness featuring the familiar combination of polyuria, polydipsia, 

body wasting and the less familiar description of urine sweet enough to attract flies and ants 

(Howlett and Bailey, 2007). Today, diabetes mellitus is a chronic disease that we can treat but not 

cure. There are an estimated 2.2 million patients with diabetes in the United Kingdom (UK) with a 

further 500,000 of the UK population undiagnosed (Information Centre Quality Outcomes 

Framework Data 2005/06). Diabetes Mellitus is estimated to cost the NHS £5.2 billion pounds per 

year. This represented a staggering 9.2% of the annual budget in 1997 (Currie et al 1997). Type 2 

Diabetes (T2DM), the most prevalent form of the disease, today affects some 250 million people 

worldwide with more than 380 million predicted by the year 2025. 

 

The major cause of morbidity and mortality in T2DM is cardiovascular disease (Zimmet and 

Alberti 1997, Laakso 1999). The proportion of cardiovascular disease attributable to T2DM has 

increased over the last 50 years (Fox et al 2007). In addition to cardiovascular disease; 

cerebrovascular, peripheral vascular and renovascular disease all contribute significantly to both 

vascular morbidity and mortality in diabetes mellitus (DeFronzo et al 2004). The cornerstone of all 

forms of diabetes mellitus is abnormal insulin physiology. In Type 1 diabetes this constitutes 

insulin deficiency. In T2DM this constitutes resistance to insulin’s metabolic actions.  

 

1.1.2 Insulin Resistance 

Insulin resistance can be defined generically as reduced biological action of insulin at a certain 

concentration. The gold standard for investigating and quantifying insulin resistance is the 

hyperinsulinaemic euglycaemic clamp, so called because it measures the amount of glucose 
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necessary to compensate for an increased insulin level without causing hypoglycaemia (DeFronzo 

et al 1979). Given the complicated nature of the "clamp" technique (and the potential dangers of 

hypoglycaemia in some patients), alternatives have been sought to simplify the measurement of 

insulin resistance. One example is the Homeostatic Model Assessment (HOMA) which employs 

fasting insulin and glucose levels to calculate insulin resistance (Wallace et al 2004). 

 

Sensitivity to insulin-mediated glucose disposal varies more than six-fold in the general population 

(Yeni-Komshian et al 2000). When patients with insulin resistance cannot maintain the degree of 

hyperinsulinaemia needed to overcome the insulin resistance, T2DM develops (Warram et al 1990, 

Lilloja et al 1993). However, the vast majority of patients with insulin resistance continue to 

secrete the large amount of insulin required to overcome this defect in insulin action, thereby 

maintaining normal or near-normal glucose tolerance.  

 

The mechanisms responsible for insulin resistance are poorly understood. Several factors appear to 

contribute to a patient’s metabolic susceptibility to insulin resistance. Age, physical activity, drugs, 

as well as ethnicity, racial status and family propensity are all important. At a more mechanistic 

level metabolic susceptibility to insulin resistance has been related the maldistribution of adipose 

tissue such as visceral adiposity (Lewis et al 2002).
  

In fact, the mechanisms by which patients 

develop visceral adiposity have recently been the subject of intensive research. Visceral adipose 

tissue is very metabolically active and recent discoveries have shown that visceral adiposity is 

associated with abnormalities in the release of a variety of factors from adipose tissue including the 

adipocytokines and free fatty acids (FFA) (Hotamisligil et al 1993, Considine et al 1996, Boden et 

al 1997, Arita et al 1999). It has now been established that there is a close and dynamic relationship 

between insulin resistance and visceral adiposity and that insulin sensitivity is modulated by 

adiposity (Campbell et al 1993, Banerji et al 1995, Ludvik et al 1995, Abate et al 1996). This has 
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led to significant interest in the adipocytokines and FFA, which are proposed to play a pivotal role 

in the regulation of insulin signalling and action. 

 

1.1.2.1 Tumour necrosis factor – alpha 

Tumour necrosis factor – alpha (TNF-α) is expressed as a 26kDa cell surface protein and while it is 

produced in the most part by macrophages, it is also produced in adipose tissue (Kern et al 1995, 

Wajant et al 2003). TNF-α expression is increased in the adipose tissue of obese animals and 

humans (Hotamisligil et al 1993, Hotamisligil et al 1995). Moreover, TNF-α expression is 

positively correlated to BMI, percentage body fat, and hyperinsulinaemia (Kern et al 1995). It has 

also been shown than weight loss decreases TNF-α levels (Kern et al 1995). Infusion of anti-TNF-

α antibodies has been demonstrated to improve insulin sensitivity in animals, but is less effective in 

patients with obesity, impaired glucose tolerance or T2DM (Ofei et al 1996, Paquot et al 2000). 

Moreover, the use of recombinant soluble TNF-α receptor improves insulin sensitivity in insulin 

resistant animals (Hotamisligil et al 1993). Models using knock-out of the genes encoding TNF-α 

protein or its receptor in mice show improved insulin sensitivity (Uysal et al 1997).  

 

1.1.2.2 Leptin 

Leptin is a 16kDa protein secreted by adipocytes in proportion to the total amount of adipocytes 

present (Considine et al 1996). Leptin is proposed to act as a signal that informs the hypothalamus 

of the body’s fat reserve. In patients without visceral adiposity or insulin resistance it is proposed 

that as food is eaten, absorbed and stored, serum leptin concentrations increase, cross the blood-

brain barrier and promote satiety (Mizuno et al 1998, Schwartz et al 1996, Schwartz et al 1998). 

Children with frameshift mutations in the leptin (ob) gene are leptin deficient and display 

hyperphagia, obesity and hyperinsulinaemia (Farooqi et al 2002). 
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1.1.2.3 Interleukin-6 

Interleukin-6 (IL-6) is a 26 kDa protein produced by adipose tissue among many other tissues 

(Mohamed-Ali et al 1997, Podor et al 1989). Adipose tissue has been postulated to contribute a 

significant proportion of the total circulating IL-6 (Mohammed-Ali et al 1997, Yudkin et al 1999). 

Elevated IL-6 concentrations are associated with insulin resistance and obesity (Yudkin et al 1999). 

The addition of IL-6 to cell lines and mice has been shown to inhibit insulin action in skeletal 

muscle, hepatic and adipose tissue (Senn et al 2002, Rotter et al 2003, Kim et al 2004, Nieto-

Vasquez et al 2008). IL-6 pre treatment inhibited the insulin stimulated signalling cascade in both 

hepatic and adipose tissue with a reduction in insulin stimulated glycogen formation and glucose 

uptake demonstrated (Senn et al 2002, Rotter et al 2003). Furthermore, the addition of IL-6 to mice 

attenuated both insulin related suppression of hepatic gluconeogenesis and insulin stimulated 

glucose uptake in skeletal muscle (Kim et al 2004, Nieto-Vasquez et al 2008).  

 

1.1.2.4 Adiponectin 

Adiponectin is a protein secreted exclusively and abundantly by adipose tissue (Scherer et al 1995), 

with plasma levels negatively correlated with insulin resistance, obesity and cardiovascular disease 

(Arita et al 1999, Weyer et al 2001, Hotta et al 2000). This is in contrast to many of the other major 

adipocytokines such as TNF-α, leptin and IL-6, whose levels have been shown to increase with 

increasing adiposity. Adiponectin exists in 3 or more different higher order complexes: high 

molecular weight form (HMW, 12 to 36mer), low molecular weight form (hexamer) and trimeric 

form. The ratio of HMW to the other forms of adiponectin serves as an independent predicting 

factor for metabolic disorders (Fisher et al 2005, Wang et al 2007). Adiponectin levels are reduced 

in patients with insulin resistance (Yudkin et al 1999, Weyer et al 2001). Interestingly, studies of 

the Pima Indian population have shown that in normal healthy individuals low levels of adiponectin 

predict the likelihood of developing T2D later in their life (Lindsay et al 2002).  
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1.1.2.5 Free Fatty Acids  

Visceral adiposity is associated with elevated FFA due to increased activity of hormone-sensitive 

lipase. Accumulation of intracellular lipid in the cell is proposed to contribute to insulin resistance 

at a cellular level and increases in FFA concentration are frequently found in patients with T2DM 

due to increased release from adipose tissue and reduced skeletal muscle uptake (Kelley et al 1994, 

Boden et al 1997, Dresner et al 1999). Free fatty acids stimulate reactive oxygen species (ROS) 

production and inhibit the insulin-stimulated signalling cascade (Muniyappa et al 2007, Chinen et 

al 2007). Consequently, visceral adiposity and its associated effect on FFA and the adipocytokines 

may be important in the pathogenesis of insulin resistance (Lebovitz et al 2005, Miles et al 2005).  

 

1.1.3 The Metabolic Syndrome 

More recently a ‘pre-diabetes’ clinical state termed the metabolic syndrome has been described 

which combines increased adiposity, hypertension, insulin resistance and dyslipidaemia (Alberti et 

al 2005) and is associated with increased cardiovascular risk (Hu et al 2004). There have been 

numerous definitions of the metabolic syndrome which has led to confusion and subsequent 

criticism. In both Adult Treatment Panel III (Grundy et al 2005) and the International Diabetes 

Federation (IDF), (Alberti et al 2005) formulations of the risk of the metabolic syndrome include 

the following surrogates: 

 

- Serum triglyceride >1.7mmol/l 

- High density lipoprotein (HDL) <1.0mmol/l (men), <1.3mmol/l (women) 

- Blood pressure (BP) greater than or equal to 130/85 mmHg OR on medication 

- Fasting serum glucose greater than or equal to 5.6mmol/l 

- Increased waist circumference (population and sex dependent thresholds) 
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Each criteria requires at least 3 surrogates for the diagnosis of metabolic syndrome with the IDF 

combining lipids as one surrogate criteria and requiring waist circumstance as one of the 3 

surrogates. 

 

It is often considered uncertain whether the presence of the metabolic syndrome adds to 

cardiovascular disease prediction beyond the contribution of more than the sum of its individual risk 

factor parts. In a prospective study involving patients with and without diabetes who were followed 

up for an average of 11 years, the risk of incident coronary heart disease associated with the 

syndrome was no greater than that explained by its components (McNeil et al 2005). Moreover, in 

the secondary analysis of the West of Scotland Coronary Prevention Study (WOSCOPS) study 

(Sattar et al 2003) demonstrated that the metabolic syndrome was not a significant predictor of 

coronary heart disease when corrected for its component factors. This evidence suggests that the 

metabolic syndrome is essentially just the equivalent of the sum of its component parts and brings 

into question its value to the clinician in the day to day practice of a diabetes clinic. 
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1.2 Insulin 

1.2.1 Insulin: Structure and function 

Insulin consists of 2 linked polypeptide chains secreted by the β cells of the pancreas in response to 

glucose and amino acids (Sanger 2001). Insulin is the most potent anabolic hormone known, 

promoting the synthesis and storage of carbohydrates, lipids and proteins and inhibiting their 

degradation and release back into the circulation. The major sites of action are skeletal muscle, 

hepatocytes and adipocytes (Borge et al 2002). It is now also recognised that insulin receptors are 

present in many other tissues including the vascular endothelium (Steinberg et al 2002).  

 

1.2.2 Insulin receptor tyrosine kinase 

The insulin receptor is a tetrameric membrane glycoprotein comprised of two α and two β subunits 

that belongs to the large class of tyrosine kinase receptors (Saltiel et al 2002). The insulin receptor 

(IR) is expressed in most tissues of the body (including muscle, liver, adipose and the endothelial 

cell surface). Predictably, the IR has a high affinity for insulin and is necessary for insulin action 

(Zeng et al 1996, Kido et al 2001). When insulin binds to its membrane receptor this results in the 

stimulation of an intra-cellular signalling cascade in insulin sensitive tissues. To be more precise, 

insulin binds to the extracellular α-subunit inducing a conformational change resulting in receptor 

autophosphorylation (Hubbard et al 1994, Hubbard et al 1997). This in turn enables interaction with 

and subsequent phosphorylation of the insulin receptor substrate (IRS) family of proteins (White et 

al 1985, White et al 1985, White et al 1998).  

 

1.2.3 Insulin receptor substrate proteins 

The process of insulin signalling is incompletely understood. It is currently the subject of intensive 

research effort and a large number of proteins have been implicated in the process (Saltiel et al 

2002). The IRS group of proteins have been the focus of a significant body of research recently due 
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to their key role in insulin signalling. Of the 4 members identified (IRS-1, IRS-2, IRS-3, IRS-4), 

IRS-1 and IRS-2 have been subject to the most research. While all 4 members are present in rats, 

only IRS-1, 2, and 4 are present in humans (White 2002). The exact role of each member is yet to 

be determined.  

 

IRS-1 is thought to be important in mediating the metabolic and mitogenic effects of insulin in 

peripheral tissues such as skeletal muscle and adipose tissue as well as being key in insulin action in 

the endothelium (Abe et al 1998). IRS-1 is not thought to have a significant role in insulin action in 

the liver (Yamauchi et al 1996). Mice lacking IRS-1 are insulin resistant but not overtly diabetic 

(Tamemoto et al 1994, Yamauchi et al 1996). Novel IRS-1 phosphorylation sites have been 

identified that regulate the action of insulin, and have the potential to be modified in pathological 

states and facilitate altered signalling (Zhang et al 2008).  Key phosphorylation sites identified on 

IRS-1 include the tyrosine residues 612 and 632 required for IRS-1 / phosphatidylinositol 3-kinase 

(PI3-K) interaction (Montagnani et al 2002). IRS-Ser312 (akin to residue Ser307 in mice) is 

proposed to inhibit the downstream insulin signalling cascade (Danielsson et al 2005). Moreover, 

Ser636 and Ser318 appear to act as a stimulator of insulin action and a negative feedback regulator 

respectively (Weigert et al 2005, Luo et al 2007). Furthermore, IRS-1 gene polymorphisms are 

associated with the development of T2DM in humans (Sesti et al 2001). 

 

IRS-2 is thought to have an important role in the mediation of insulin action in the liver and  

adipose tissue (Withers et al 1998, Withers et al 1999). IRS-2 is thought to mediate pancreatic beta 

cell function and therefore insulin secretion (Diabetes et al 2000). IRS-2 should, therefore, be 

important in the pathogenesis in both Type 1 diabetes (T1DM) and T2DM as defective insulin 

secretion is common to both conditions in time. Indeed, mice lacking the IRS-2 protein exhibit 

diabetes (Withers et al 1998). 
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1.2.4 Insulin signalling cascade in skeletal muscle, hepatocytes and adipocytes 

Insulin binding to its receptor results in receptor autophosphorylation on tyrosine residues and 

subsequent phosphorylation of IRSs. This allows association of IRS-1 with the regulatory subunit of 

PI3K. PI3K consists of an 85kDa regulatory subunit and an 110kDa catalytic subunit that interacts 

with IRS-1 upon activation by the IR (Montagnani et al 2002) via an SH2 domain. Activation of 

catalytic subunit of PI3K results in the production of phosphatidylinositol(3,4,5)trisphosphate (PIP3) 

and activation of the downstream kinase phosphoinositide - dependent kinase-1 (PDK1), (Bevan 

2001). Protein kinase B (PKB) or Akt (v-akt murine thymoma viral oncogene homologue), a 

serine/threonine kinase is then activated in response to phosphorylation by PDK1 at site threonine 

308 (DeFronzo et al 2004). Mammalian TOR (mTOR) is the target for the immunosuppressant drug 

rapamycin and acts as an intracellular nutrient sensor that controls protein synthesis and growth 

(Brown et al 1994). Indeed, PKB is also phosphorylated at site serine 473 by mTOR and its 

associated protein, rictor (which form the complex mTORc2), (Sarbassov et al 2005). PKB also 

regulates the activity of mTOR with PKB activating mTORc1 (complex of mTOR and its 

associated protein raptor), (Vander Harr et al 2007). PKB also phosphorylates and inactivates 

nutrient sensing protein, tuberous sclerosis complex 2 (TSC2) (Potter et al 2002). Indeed, TSC2 has 

been shown to inhibit cell growth and size and antagonise insulin signalling (Ito and Rubin 1999, 

Gao and Pan 2001, Potter et al 2001, Tapon et al 2001). In skeletal muscle and adipose tissue 

activation of PKB results in translocation of GLUT-4 to the plasma membrane thereby allowing the 

uptake of glucose in the cell (Kohn et al 1996, Sano et al 2003), (figure 1.1). In hepatic tissue, PKB-

mediated phosphorylation inactivates glycogen synthase kinase 3 (GSK-3) resulting in activation of 

glycogen synthase and therefore glycogen synthesis (Sutherland et al 1993, Cross et al, 1995, Van 

Weeren et al 1998), (figure 1.1). In addition, the inhibition of GSK3 by PKB is a key step in insulin 

induction of glycogen synthesis in muscle (McManus et al 2005). Moreover, GSK-3 is also 

important for the regulation of hepatic gene transcription by insulin. For example, GSK-3 regulates  
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Figure 1.1 Insulin signalling in skeletal muscle, adipocytes and hepatocytes. Insulin binding to its 

receptor results in receptor autophosphorylation on tyrosine residues and subsequent 

phosphorylation of IRSs. This allows association of IRS-1 with the regulatory subunit of PI3K. 

Activation of catalytic subunit of PI3K results in the production of PIP3 and activation of the 

downstream kinase PDK1. PKB or Akt is then activated in response to phosphorylation by PDK1. 

In skeletal muscle and adipose tissue activation of PKB results in translocation of GLUT-4 to the 

plasma membrane thereby allowing the uptake of glucose in the cell. In hepatic tissue, PKB-

mediated phosphorylation inactivates GSK-3 resulting in activation of glycogen synthase and 

therefore glycogen synthesis. GRB2 and SHP2 adaptor proteins interact with IRS molecules and 

activate mitogen activated protein kinases (MAPK) and stimulate mitogenic responses in the form 

of gene transcription.  
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the transcription of PEPCK and G6Pase genes, two rate controlling steps in gluconeogenesis 

(Lochhead et al 2001). Thus, the IRS/PI3K/PDK1/PKB pathway is very important to insulin’s 

ability to regulate metabolism and promote growth.  

 

While it is recognised that the IRS group of proteins mediate a significant proportion of the insulin 

stimulated signalling events through PI3K it is also important to note that insulin also has the ability 

to regulate a number of adaptor proteins (GRB2 and SHP2). These adaptor proteins interact with 

IRS molecules and activate mitogen activated protein kinases (MAPK) and stimulate mitogenic 

responses in the form of gene transcription. (Bevan 2001, Coggins et al 2001, DeFronzo et al 2004).  

 

Insulin resistant states therefore lead to less insulin stimulated glucose uptake as well as less 

inhibition of hepatic gluconeogenesis (Yki-Jarvinen 1995). This combination results in 

hyperglycaemia and the development of impaired glucose tolerance and ultimately the diagnosis of 

T2DM.  

 

1.2.5 Insulin signalling cascade in the vascular endothelium  

Insulin receptors have been demonstrated to be expressed at the endothelial cell surface (40,000 IR 

per cell) and insulin stimulates an intracellular signalling cascade in the human endothelium with 

resultant nitric oxide production (NO) (Zeng and Quon 1996).  

 

As with the other insulin-sensitive tissues, the IRS proteins are key components of the insulin 

signalling cascade in the vascular endothelium (Figure 1.2). Indeed, overexpression of IRS-1 in 

endothelial cells causes a 3-fold increase in NO production in response to a maximally stimulating 

dose of insulin compared to wild type controls not infected with IRS-1 (Montagnani et al 2002) 
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Figure 1.2 Schematic diagram of insulin signalling in the endothelium 

Insulin (I) binds to its receptor and stimulates and intracellular signalling cascade involving IRS-1, 

PI3K, PIP3 production and PDK-1 activation. PKB is activated leading to increased eNOS activity. 
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while over-expression of a mutant IRS-1 inhibited insulin-stimulated NO production and PI3K 

recruitment to IRS-1 (Montagnani et al 2002). Furthermore, PI3K, PDK-1 and PKB are also 

components of the insulin signalling cascade in the vascular endothelium. The key role of PI3K in 

insulin stimulated NO production in endothelial cells is demonstrated in studies using the PI3K 

inhibitor wortmannin (Zeng and Quon 1996, Hartell et al 2005). PDK-1 activity is also required for 

insulin stimulated NO production in bovine aortic endothelial cells (BAEC) (Montagnani et al 

2002). PKB directly phosphorylates endothelial NO synthase (eNOS) at residue serine 1177 and 

increases enzyme activity in endothelial cells (Dimmeler et al 1999). Insulin stimulated eNOS 

activation is independent of calcium concentration but requires PKB mediated eNOS Ser1177 

phosphorylation (Montagnani et al 2001). The regulation of eNOS is complex, as eNOS exists as a 

monomer but following the binding of essential cofactors including tetrahydrobiopterin (BH4), 

calmodulin (CaM), flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) an active 

enzyme dimer is formed resulting in NO and L-citrulline synthesis from L-arginine, O2 and 

nicotinamide adenine dinucleotide phosphate (NADPH), (reviewed in Forstermann and Munzel 

2006, figure 1.3). 

 

The importance of eNOS to insulin action has been reinforced in knockout studies involving mice. 

For example, eNOS deficient mice are insulin resistant, hypertensive and have defects in fatty acid 

metabolism and dyslipidaemia. They also have impaired insulin stimulated glucose uptake (Duplain 

et al 2001, Nisoli et al 2005, Le Gouill et al 2007).  

 

The adipocytokines are thought to be important in the pathogenesis of T2DM and it has been 

suggested that they play a role in the insulin signalling cascade in the vascular endothelium. 

Adiponectin has also been demonstrated to increase nitric oxide production (Hattori et al 2003) by  
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Figure 1.3 Endothelial Nitric Oxide Synthase activation 

 

Panel A: Endothelial nitric oxide synthase is synthesised as a monomer. Each monomer 

contains both a reductase and an oxidase domain. Monomers bind calmodulin and are able 

to transfer electrons from NADPH through FAD and FMN and have a limited capacity to 

synthesise O2. Monomers are unable to bind BH4 or L-arginine and therefore unable to 

produce NO. The binding of haem allows eNOS dimerisation and the formation of a 

functional enzyme capable of producing NO. This also allows the interaction of the 

reductase and oxidase domains allowing transfer of electrons from the flavins to the haem 

of the opposite monomer. This dimer (in the absence / relative deficiency of BH4 and L-arginine) 

can produce O2
.-
 more effectively. 

 

Panel B: When sufficient BH4 and L-arginine are available, NO and L-citrulline 

are produced. (Adapted from Forstermann and Munzel 2006). 
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a pathway involving PI3K and PKB activation by AMPK (Ouchi et al 2004, Chen et al 2003). 

Furthermore, when TNF-α is added to endothelial cells there is inhibition of insulin-stimulated NO 

production with impairment of the insulin stimulated signalling cascade (Kim et al 2001). Finally, 

the exposure of endothelial cells to IL-6 results in inhibition of insulin-stimulated NO production 

with impairment of the insulin stimulated signalling cascade (Andreozzi et al 2007).  
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1.3 AMP activated protein kinase 

1.3.1 Structure of AMPK 

AMP activated protein kinase (AMPK) is an enzyme ubiquitously expressed in mammalian tissues, 

consisting of 3 subunits (α- [catalytic], ß- [regulatory], γ-[regulatory]) with 2-3 genes encoding each 

subunit (Towler and Hardie 2007). The α subunits contain a protein kinase catalytic domain at the 

N-terminus and a C-terminal regulatory domain that is involved in binding to the β and γ subunits 

(Hardie 2003). All three subunits are encoded by multiple genes (α1, α2, β1, β2, γ1, γ2, γ3) yielding 

12 heterotrimeric combinations, with splice variants adding to the diversity (Hardie 2004). All 

possible combinations of the heterotrimer appear to be expressed in mammals. The potential for a 

number of different heterotrimeric combinations can lead to tissue-specific enzyme diversity 

(Towler and Hardie 2007). It is still unclear what cellular consequences the composition of AMPK 

isoforms may have on the function of each AMPK complex in relation to their particular 

localisation and specific downstream targets. For example a recent study investigated the isoform 

composition of AMPK complexes in human skeletal muscle and found that only 3 of the 12 

theoretically possible AMPK complexes were present (α2β2γ1, α2β2γ3 and α1β2γ1), (Birk et al 

2006, Treebak et al 2007).  

 

1.3.2 Regulation of AMPK 

To sustain metabolism, intracellular ATP levels must be maintained within a narrow range. This is 

achieved by the regulation of cellular catabolic and anabolic pathways. This may be co-ordinated by 

AMPK which acts as a sensor of cellular energy status, a fuel gauge or metabolic master switch 

(Winder et al 1999, Hardie DG 2003). AMPK can be allosterically activated by AMP (Munday et al 

1988). Aminoimidazole carboxamide ribonucleotide (AICAR) is an adenosine analogue which 

activates AMPK through direct binding, followed by allosteric modification. It is initially taken up 

by adenosine transporters and subsequently phosphorylated by adenylate kinase to produce the 
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AMP analogue ZMP within the cell. ZMP mimics AMP in AMPK signalling but may induce some 

actions that are independent of AMPK (Merrill et al 1997). Furthermore, AMPK is activated in 

response to environmental or nutritional stress factors, which deplete intracellular ATP levels 

including heat shock, hypoxia, ischaemia, glucose deprivation or prolonged exercise (Hardie 2004, 

Musi et al 2001). This results in an increase in the AMP:ATP ratio which inhibits 

dephosphorylation of AMPK and therefore potentiates AMPK  mediated phosphorylation by an 

upstream kinase LKB-1 (a tumour suppressor gene whose germline mutations in humans are the 

cause of Peutz-Jeghers syndrome) which is considered to be constitutively active (Hardie 2004), 

(Figure 1.4). Under conditions in which cellular energy demands are increased or when fuel 

availability is decreased, intracellular ATP is reduced and AMP levels rise (Hardie 2004). In cells, 

adenylate kinase maintains the reaction  

 

                2ADP         ATP + AMP              

 

close to equilibrium such that the AMP:ATP ratio is proportional to the square of the ADP:ATP 

ratio and is therefore considered to be a more sensitive indicator of compromised energy status than 

the ADP:ATP ratio. In addition to increased AMP, AMPK is activated by increased intracellular 

calcium concentration, mediated by calcium/CaM-dependent protein kinase kinase (CaMKK), 

which phosphorylates and activates AMPK at Thr-172, the same site phosphorylated by LKB1 

(Towler and Hardie 2007, Long and Zierath 2006). Furthermore, binding of AMP inhibits the 

dephosphorylation of Thr-172 by protein phosphatases and high concentrations of ATP inhibit the 

activation of AMPK by antagonising binding of AMP (Sanders et al 2007, Riek et al 2008). 
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Figure 1.4 Structure and regulation of AMPK. AMPK is a heterotrimeric complex consisting of 

an α, β, and γ subunits and is activated by the upstream kinases CaMKK and LKB1 via 

phosphorylation of Thr172. Activation of AMPK by CaMKK is dependent on intracellular calcium 

whereas LKB1 activity is constitutive. Generally, AMPK restores energy balance by activating 

processes that produce energy (e.g., lipid oxidation and glucose uptake) while inhibiting those that 

consume energy (for example fatty acid, cholesterol and protein synthesis) (Long and Zierath 2006). 
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1.3.3 Role of AMPK in Energy Homeostasis  

Activation of AMPK triggers catabolic pathways that produce energy, while turning off anabolic 

pathways that consume energy thereby maintaining cellular energy stores. For example, AMPK  

inhibits lipid and triglyceride synthesis in both liver and adipose tissue and stimulates skeletal 

muscle glucose uptake, glycolysis and fatty acid oxidation (Towler and Hardie 2007), (Figure 1.5). 

Stimulation of fatty acid oxidation occurs when AMPK directly phosphorylates and inactivates the 

downstream target, acetyl-coA carboxylase (ACC). ACC synthesizes malonyl-CoA which inhibits 

the rate-controlling step of fatty oxidation involving the transfer of fatty acids into the mitochondria 

by the enzyme carnitine palmitoyltransferase 1 (CPT1) (Trumble et al 1995, Ruderman et al 1999). 

During exercise, activated AMPK inhibits ACC to reduce malonyl-CoA concentration, thereby 

driving the entry of fatty acids into the mitochondria for β-oxidation to restore energy balance 

(Winder et al 1996). The ability of AMPK to induce lipid oxidation and thus the amount of fat 

deposited in skeletal muscle and liver is considered an important feature of AMPK activation. It 

suggests that AMPK and insulin signalling pathways may oppose each other and that AMPK 

activation is insulin sensitising. Therefore it may be that AMPK plays an important role in 

controlling the whole body energy homoeostasis including the regulation of plasma glucose levels 

and body weight. The control of AMPK activity provides an attractive target for therapeutic 

intervention in metabolic disorders such as T2DM and obesity. Indeed, a number of physiological 

and pharmacological factors that are beneficial in these disorders have been shown to act, at least in 

part, through the activation of AMPK. The importance of AMPK in regulating whole body energy 

metabolism is also emphasized by studies on AMPK α2 knockout (KO) mice. Deletion of α2 

results in mild insulin resistance and an insulin-secretory defect (Viollet et al 2003, Jorgensen et al 

2004). Glucose intolerance in the α2 KO mice is not due to a defect in skeletal-muscle glucose 

uptake, but probably results from both impaired insulin action and inhibition of insulin secretion 

(Viollet et al 2003). The molecular basis for this defect is not understood. In a recent study, AMPK  
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Figure 1.5 Role of AMPK in the regulation of whole-body glucose homeostasis. Stimulation of 

AMPK activates ATP-generating processes, while inactivating ATP-consuming processes. In 

skeletal muscle, acute activation of AMPK increases glucose uptake and lipid oxidation. Activation 

of AMPK inhibits glucose and lipid synthesis in the liver but increases lipid oxidation. Lipolysis 

and lipogenesis in adipose tissue are also reduced by AMPK activation. Together, activation of 

AMPK in skeletal muscle, liver, and adipose tissue results in decreased circulating glucose, 

reduced plasma lipid, and ectopic fat accumulation, as well as enhanced insulin sensitivity and 

therefore makes AMPK an attractive target for the treatment of T2DM. Activation of pancreatic 

AMPK is associated with decreased insulin secretion, likely a protective measure to prevent 

hypoglycaemia although this needs to be considered in pharmaceutical targeting of AMPK for the 

treatment of T2DM (Adapted from Long and Zierath 2006). 
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α2 knockout mice fed with a high-fat diet have been shown to exhibit increased body weight 

coupled with an increase in fat when compared with wild-type animals (Villena et al 2004). At 

present, the mechanism underlying this response is not known. 

 

1.3.4 Role of AMPK in the regulation of peripheral tissues 

1.3.4.1 Skeletal muscle 

A large proportion of insulin stimulated glucose disposal occurs in skeletal muscle and insulin 

resistance at this site is thought to contribute to the pathogenesis of T2DM (Petersen et al 2007). 

Insulin increases glucose uptake in muscle by stimulating the translocation of glucose transporter 

GLUT4 from intracellular vesicles to the cell surface. It has been shown that muscular AMPK 

activation stimulates muscle glucose uptake either by exercise or by AICAR. Exercise stimulates 

glucose uptake independently of the traditional insulin pathway but the molecular mechanisms 

remain incompletely understood (Ploug et al 1984). Electrical contraction of skeletal muscle 

increases glucose uptake and increase AMPK activity (Hutber et al 1997). Furthermore, activation 

of AMPK with AICAR increases glucose uptake in the skeletal muscle of rodents (Merill et al 

1997). Interestingly, AICAR-mediated glucose uptake is not attenuated by inhibition of the insulin-

dependent PI3K pathway with wortmannin and, like exercise, appears to utilise separate pathways 

from insulin stimulated glucose uptake in skeletal muscle (Merill et al 1997). AICAR can 

effectively increase glucose transport and GLUT4 translocation in skeletal muscle in patients with 

T2DM (Koistinen et al 2003). Thus, an AMPK-dependant increase in glucose transport is observed 

in skeletal muscle of both rodents and humans. Moreover, in AMPK α2 knockout mice the glucose 

lowering effects of AICAR are abolished (Mu et al 2001). There is, however, conflicting evidence 

as to whether AMPK is required for exercise induced glucose uptake in skeletal muscle (Jorgensen 

et al 2004, Sakamoto et al 2005). Activation of AMPK with metformin is associated with increased 

glucose uptake in isolated rat skeletal muscle (Zhou et al 2001). Significantly, metformin increases 
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AMPK activity, ACC phosphorylation and glucose disposal in isolated skeletal muscle from 

patients with T2DM (Musi et al 2002). Therefore, the beneficial metabolic effects of metformin in 

T2DM patients may also be partly mediated by the activation of AMPK in skeletal muscle.  

 

1.3.4.2 Heart 

In myocardial ischaemia and left ventricular dysfunction an increase in the AMP/ATP ratio results 

in an increase in AMPK activity (Russell et al 2004). In rat cardiac myocytes AMPK increases FFA 

uptake and increased translocation of GLUT4 (leading to increased glucose uptake) in a manner 

that is independent of the PI3K pathway. (Russell et al 1999, Luiken et al 2003). Indeed, in isolated 

hearts of AMPK knockout mice glucose uptake following ischaemia was reduced when compared 

to wild type mice (Xing et al 2003).  Intriguingly, it has been recently demonstrated that an increase 

in AMPK activity by acute metformin therapy results in decreased myocardial injury in both 

diabetic and non-diabetic mice after ischaemia and reperfusion (Calvert et al 2008). Moreover, 

chronic metformin therapy in mice improves left ventricular function and survival after ischaemia 

and reperfusion (Gundewar et al 2009).  This evidence suggests that AMPK may play a role in 

cardiac ischaemia and therapeutic targeting of AMPK in patients with angina, acute coronary 

syndrome or myocardial infarction may be of value. The important role of AMPK in the heart is 

further reinforced by the finding of a novel mutation (Arg531Gly) in the AMPK γ2 subunit 

(PRKAG2 gene) to be responsible for Wolff–Parkinson–White Syndrome which is associated with 

ventricular pre-excitation and the early onset of atrial fibrillation and conduction disease (Gollob et 

al 2001). Indeed, transgenic mice with a cardiac specific expression of this mutation were found to 

have cardiac hypertrophy, impaired contractile function, electrical conduction abnormalities and 

marked glycogen accumulation (Davies et al 2006).  
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1.3.4.3 Liver 

AMPK suppresses both liver gluconeogenesis and lipogenesis. AMPK also increases fatty acid 

oxidation and in turn reduces hepatic lipid deposition (Carling 2004, Khan et al 2005). Activating 

AMPK in the liver is therefore an attractive target for those with T2DM as it could improve 

glycaemia, body weight and the lipid profile. Euglycaemia can be maintained if hepatic 

gluconeogenesis matches insulin mediated glucose uptake in peripheral tissue and when insulin 

resistance creates an imbalance, T2DM can ensue (DeFronzo et al 1989, Basu et al 2000). Hepatic 

gluconeogenesis is regulated in part by the enzymes phosphoenolpyruvate carboxykinase (PEPCK) 

and glucose-6-phosphatase (G6Pase) (Saltiel et al 2001). The role of AMPK in inhibiting hepatic 

gluconeogenesis is thought to be related to its ability to mimic insulin and downregulate the genes 

encoding both PEPCK and G6Pase (Lochhead et al 2000). As previously stated, GSK-3 is 

important for the regulation of hepatic gene transcription by insulin and regulates the transcription 

of PEPCK and G6Pase genes, two rate controlling steps in gluconeogenesis (Lochhead et al 2001).  

Indeed, AMPK activation increases GSK-3 phosphorylation and reduces PEPCK gene expression in 

the liver of rodents (Horike et al 2008). Furthermore, liver AMPK α2 or LKB1 knockout mice 

exhibit hyperglycaemia perhaps due to the increased activity of PEPCK and G6Pase (Shaw et al 

2005, Andreeli et al 2006). In rat hepatocytes, activation of AMPK by AICAR or metformin 

increases fatty acid oxidation via inhibition of ACC (Zhou et al 2001). Moreover, when AMPK is 

activated by metformin in cultured human hepatocytes intracellular lipid content is reduced. This 

effect is abrogated after infection of hepatocytes with adenoviruses expressing a dominant negative 

mutant AMPK (Zang et al 2004).  

 

1.3.4.4 Adipose Tissue 

Visceral adiposity is associated with elevated FFA due to increased activity of hormone-sensitive 

lipase which is the rate limiting step of lipolysis (Meijjssen et al 2001). Accumulation of 
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intracellular lipid is proposed to contribute to insulin resistance at a cellular level. Insulin is thought 

to control the release of FFA from adipose tissue by inhibition of hormone-sensitive lipase 

(Meijssen et al 2001). FFA are also reported to stimulate reactant oxygen species (ROS) production 

which in turn inhibits insulin signalling (Muniyappa et al 2007, Chinen et al 2007). Consequently, 

visceral adiposity and its associated effect on FFA may be important in the pathogenesis of T2DM 

by causing insulin resistance in skeletal muscle and liver in addition to inhibiting insulin secretion. 

(Bayes et al 2004, Lebovitz et al 2005, Miles et al 2005). AMPK is thought have important role in 

adipose tissue by inhibiting lipolysis and lipogenesis. Indeed, AMPK has been implicated in the 

regulation of lipolysis through direct phosphorylation of hormone-sensitive lipase (Garton et al 

1989). Lipolysis and lipogenesis are inhibited in rat adipocytes when using the AMPK activator 

AICAR, (Sullivan et al 1994). It is also suggested that when the regulation of lipid metabolism by 

AMPK is absent, then weight gain and insulin resistance prevail. Indeed when AMPK α2 knockout 

mice were fed with a high-fat diet they were shown to exhibit increased body weight, increased 

adiposity and a degree of insulin resistance when compared with wild-type mice (Viollet et al 2003, 

Jorgensen et al 2004, Villena et al 2004). It has also been recently shown that glucocorticoids 

inhibit AMPK activity in adipose tissue of insulin resistant patients with Cushing’s syndrome (Kola 

et al 2008). Moreover, metformin has been found to prevent the glucocorticoid effects on ex vivo 

cultured human adipocytes (Christ-Crain et al 2008). The effect of insulin sensitizers such as 

metformin or the thiazolidinediones on AMPK activity in human adipose tissue has not yet been 

investigated. Further work is required to examine whether metformin exerts its beneficial metabolic 

effects in patients with T2DM in part by increasing AMPK activity in human adipose. 

 

1.3.4.5 Pancreas 

Evidence suggests that AMPK has a role in the release of insulin perhaps as a sensor of cellular 

energy store. High glucose concentrations stimulate insulin release and it has been proposed that an 
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increase in glucose increases in the cellular ATP/ADP ratio. This in turn activates ATP-sensitive 

K+ channels, causing depolarization of the plasma membrane, opening of voltage gated calcium 

channels, an influx of calcium ions and subsequent exocytosis of secretory granules which is a 

critical step in the secretion of insulin (Rahan et el 1990). An increase in glucose levels represses 

AMPK activity in β cell lines (Salt et al 1998, Leclerc et al 2004), whereas when AMPK is 

activated by AICAR, insulin release in response to high glucose is attenuated (Zhang et al 1995). 

Furthermore, overexpression of a constitutively active form of AMPK results in a reduction in 

insulin release from β cell lines while overexpression of a dominant negative form of AMPK leads 

to an increase in insulin release (Da Silva Xavier et al 2003). Moreover, when metformin is added 

to β cell lines, AMPK is activated and insulin secretion in response to glucose is attenuated 

(Leclerc et al 2004). The activation of pancreatic AMPK is therefore associated with decreased 

insulin secretion which could have a negative effect on glycaemic control in patients with T2DM. 

This effect may, however, be a protective effect during periods of hypoglycaemia, where AMPK is 

activated and insulin secretion falls to maintain euglycaemia. Nevertheless, the exact role of AMPK 

in insulin release remains incompletely understood and further work is required before AMPK can 

targeted by drug therapy. 

 

1.3.4.6 Hypothalamus 

The hypothalamus plays a key role in the regulation of energy balance. It does so by using AMPK 

as a fuel gauge that can respond to both hormones, anorexia or an excess of food. (Schwartz et al 

2000, Andersson et al 2004). Injection of leptin into rodents inhibits AMPK activity in the 

hypothalamus whereas administration of ghrelin stimulates AMPK activity (Andersson et al 2004). 

Moreover, fasting stimulates AMPK activity whereas hyperglycaemia and refeeding inhibits 

AMPK activity in the hypothalamus (Minokowski et al 2004). Therefore, it appears that activating 

AMPK can stimulate food intake through its action in the hypothalamus. While this effect probably 
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represents a physiological response in glucose homeostasis, the prospect of patients gaining weight 

through the pharmacological targeting of AMPK for the treatment of T2DM is unattractive and 

along with AMPK’s documented role in the pancreas, presents a significant challenge to the 

pharmaceutical industry. 

 

1.3.4.7 Vascular Endothelium 

AMPK has an important role in the release of NO from the vascular endothelium. AICAR 

stimulates eNOS Ser1177 phosphorylation and NO production in human aortic endothelial cells 

(HAECs) (Morrow et al 2003). Indeed, AMPK activation has been demonstrated to stimulate 

muscle glucose uptake in a NO-dependent manner and NO production has been proposed to be 

largely responsible for insulin-independent glucose uptake during exercise (Chen et al 2000, Fryer 

et al 2000, Hawley et al 2002). AMPK also has a role in angiogenesis. Vascular endothelial growth 

factor (VEGF) is a key regulator of angiogenesis and stimulates differentiation, survival, migration, 

proliferation and vascular permeability (Ferrara et al 2003). VEGF rapidly stimulates endothelial 

NO synthesis and does so in an AMPK dependent manner (Reihill et al 2007). The ability of 

insulin sensitizers, such as metformin and the thiazolidinediones, to act directly on vascular 

endothelium via AMPK is discussed in sections 1.6 and 1.7 respectively. 

 

1.3.4.8 Interaction with the adipocytokines 

The adipocytokines such as leptin and adiponectin are thought to be important in the pathogenesis 

of T2DM and it has been suggested that AMPK plays a role in mediating their metabolic and 

vascular effects. 
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Figure 1.6 Integration of intertissue signalling by AMPK. Leptin reduces food intake though 

inhibition of hypothalamic AMPK. Leptin increases skeletal muscle fatty acid oxidation via direct 

activation of AMPK and the hypothalamus–sympathetic nervous system axis. The involvement of 

hypothalamic AMPK in leptin-induced skeletal muscle lipid oxidation and glucose uptake is 

unknown. Adiponectin is secreted by adipose tissue and increases skeletal muscle lipid oxidation 

and glucose uptake, as well as suppressing liver glucose production by activating AMPK. (Adapted 

from Long and Zierath 2006) 
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1.3.4.8.1 Leptin 

The adipocytokine leptin diminishes adiposity by reducing food intake (Halaas et al 1995) and 

improves insulin sensitivity (Khan et al 2000). Leptin induces fatty acid oxidation and glucose 

uptake in peripheral tissues, two metabolic responses that are also triggered by AMPK activation 

(Muoio et al 1996, Haque et al 1999). AMPK may therefore be a candidate in the mediation of 

leptin responses with skeletal muscle, liver and the hypothalamus being cited as peripheral targets 

(Minokoshi et al 2002), (Figure 1.6). AMPK is also thought to regulate food intake via the 

hypothalamus. Indeed, in contrast to the effect on peripheral tissues, leptin inhibits AMPK activity 

in the hypothalamus. This is thought to be important for the hormone’s ability to reduce food intake 

and promote satiety (Minokoshi et al 2004).  

 

1.3.4.8.2 Adiponectin 

Plasma levels of adiponectin negatively correlate to insulin resistance, obesity and cardiovascular 

disease. The effects of the adiponectin are partly accounted for by adiponectin induced AMPK 

activation which results in stimulation skeletal muscle fatty acid oxidation and glucose uptake 

(Tomas et al 2002, Yamauchi et al 2002). Furthermore, activation of AMPK by adiponectin 

suppresses hepatic gluconeogenesis. (Yamauchi et al 2002). Adiponectin has also been 

demonstrated to increase nitric oxide production (Hattori et al 2003), by a pathway proposed to 

involve the direct phosphorylation of eNOS by AMP-activated protein kinase (AMPK), and also by 

a parallel pathway involving PI3K and PKB activation by AMPK (Chen et al 2003, Tan et al 2004, 

Ouchi et al 2004, Chen et al 2005), (figure 1.7). Furthermore, adiponectin has been shown to 

reduce infarct size and improve left ventricular function and coronary blood flow following 

ischaemia and reperfusion of isolated rat hearts by a mechanism involving AMPK and NO release 

(Gonon et al 2008). Moreover, AMPK may be necessary for adiponectin to exert its cardio 

protective effect as ischaemia and reperfusion caused a larger myocardial infarct and enhanced  
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Figure 1.7 Potential signalling mechanisms by which adiponectin exerts its effects in human 

endothelial cells. Adiponectin stimulates NO production via a signalling cascade initiated by 

binding to either isoform of its receptor. AMPK is activated (with a parallel signalling pathway 

utilising PKB activated also) with resultant eNOS activation (Adapted from Goldstein and Scala 

2004). 
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myocardial apoptosis in adiponectin knockout mice when compared with wild type mice (Shibata 

et al 2005). Adiponectin knockout mice have been shown to have progressive cardiac remodelling 

in a pressure-overloaded condition due to reduced AMPK signalling and increased insulin 

resistance when compared with wild type mice (Liao et al 2005). Therefore, AMPK appears to be 

important in mediating both the metabolic and the vascular effects of adiponectin but as yet the 

exact signalling mechanisms have not been clarified.  
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1.4 Vascular function and endothelium 

1.4.1 Background 

Atherosclerosis is the process of disruption of normal vascular homeostasis leading to occlusive 

vascular disease. It is one of the most common diseases of the modern age, and is increasing in 

incidence and prevalence. This places a great burden on the health care resources of the world 

(Bonow et al 2002). Atherosclerosis predominantly manifests as ischaemic heart disease, 

cerebrovascular disease and peripheral vascular disease. Endothelial dysfunction is proposed to be 

the triggering event of this process (Hansson 2005, Ross 1999). The vascular endothelium is an 

important mediator of the tone of smooth muscle surrounding the artery and therefore affects local 

blood flow as well as blood pressure (Behrendt et al 2002). Many factors associated with 

endothelial dysfunction have been identified which predispose to the development of 

cardiovascular disease (Grundy et al 1999). These include diabetes, hypertension, family history, 

hypercholesterolemia and cigarette smoking.  

 

1.4.2 Vascular anatomy 

1.4.2.1. The vascular tree 

The arterial vascular tree is composed of a series of bifurcating vessels, which progressively reduce 

in diameter with each generation. All arteries have three layers, termed the tunica intima, the tunica 

media and tunica adventitia. These three layers are clearly defined in the large arteries, and become 

progressively less distinct as the size of artery decreases. The largest arteries are termed elastic 

arteries, and include the aorta and its major branches - the innominate, subclavian, and the proximal 

common carotid and pulmonary arteries. These vessels are characterised by a tunica media 

(muscular layer) rich in elastic tissue (Mulvany et al 1990). This elastic layer provides resilience, 

absorbing energy during systole and releasing this energy during diastole, aiding forward 

propulsion of blood through the circulation (O’Rourke et al 2002). Loss of elasticity is pathological 
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and a natural part of ageing. As vessel size decreases, the quantity of elastic tissue within the tunica 

media decreases. At this point, vessels are termed muscular, or medium-sized, arteries. The 

adventitia of these vessels contains many more nerve-endings than in elastic arteries, reflecting the 

increased importance of autonomic control of these vessels. Small arteries retain the three layers of 

the arterial wall, becoming progressively less distinct to the level of the capillaries, which are 

characterised by a single cell wall (Ross 1999). 

 

1.4.2.2 The resistance artery 

Resistance to flow (impedance) is related to vessel size (McDonald et al 1959). Pressure 

measurements made along the vascular tree have shown that the majority of the pre-capillary drop 

in blood pressure occurs in vessels 100 - 500 micrometers (µm) in size (Bohlen 1986, Mulvany 

1990). Thus, this calibre of vessel accounts for the majority of peripheral resistance within the 

vasculature, and consequently are termed resistance arteries (Schiffrin 1992, Davis et al 1986). The 

peak of resistance within the vasculature coincides with a fall in blood pressure. The tunica media 

of the resistance artery consists of circumferentially arranged smooth muscle cells and connective 

tissue, with the intima consisting of longitudinally arranged endothelial cells. The adventitia 

consists of collagen, sympathetic nerves and fibroblasts (Mulvany 2002). Although physically 

discrete, the vascular endothelium (the intima) and the vascular smooth muscle layer (the media) 

are functionally coupled, as detailed in later sections of this thesis. A great deal of scientific effort 

has been directed towards a better understanding of the means by which endothelial cells influence 

the activity of the smooth muscle cells of the tunica media.  
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1.4.3. Vascular physiology and the pulse wave 

1.4.3.1. Autoregulation 

The vasculature is constrained by tight haemodynamic limitations. The majority of organs rely on 

mean arterial pressure to maintain perfusion. Excursions of pressure above such a pressure leads to 

vessel rupture and potentially life-threatening haemorrhage. Conversely, a drop in blood pressure 

may lead to a reduction in perfusion of vital organs. Blood pressure must therefore be kept 

relatively stable within tolerable levels. Maintenance of pressure homeostasis is achieved by a 

variety of mechanisms. The larger arteries which are elastic and muscular are unable to respond 

acutely to changes of pressure. Regulation is therefore predominantly achieved by changes in 

cardiac output and systemic resistance. The latter is achieved by a change of the physical properties 

of resistance arteries (ie. resistance artery calibre) within various peripheral vascular beds (Nichols 

et al 2001). This implies a change in the tone of the smooth muscle of the resistance artery tunica 

media and implies the involvement of the resistance artery endothelium. Endothelial cells of 

resistance arteries are therefore of critical importance in the maintenance of normal blood pressure, 

and endothelial dysfunction has been implicated as a primary mediator of the development of 

vascular disease. 

 

1.4.3.2. The pulse wave 

The assessment, by palpation, of the arterial pulse wave is one of the most fundamental 

examinations performed in clinical practice. In recent years there has been a resurgent appreciation 

of the information that can be obtained from the measurement and analysis of the pulse pressure 

wave. The basic properties of the radial and carotid pulse waves were described in the late 19th 

Century (Mahomed 1872). The relationship between the physical properties of arterial walls and 

the pulse wave had been identified by the early 1920s (Bramwell et al 1922). 
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1.4.3.3. Pulse wave morphology 

The central arterial pulse wave is composed two major components; a forward travelling wave 

generated by left ventricular systolic contraction and a reflected wave, arriving from the periphery. 

The reflected wave adds to the amplitude of the forward travelling wave by the principle of 

superimposition. The properties of the forward travelling wave are dependent upon the physical and 

mechanical properties of the central large arteries. The properties of the reflected wave are 

dependent on physical and mechanical properties of the whole arterial tree, the transmission 

velocity of the incident wave, and the distance to the major reflecting site(s) (Nichols et al 2002). 

Within the vascular tree, the majority of reflections occur at bifurcations, although the tapering 

observed in larger arteries is also a source of reflections. 

 

An increase in the stiffness of arterial walls causes an increase in the transmission velocity of both 

the incident pressure wave and the reflected wave. As the overall pulse wave morphology is 

dependent on the superimposition of the incident and reflected pressure waves, an early return of 

the reflected component leads to an increase in the amplitude of the pulse pressure. 

 

1.4.3.4. Definition and measurement of arterial stiffness  

‘Arterial stiffness’ is a general term that requires definition. There are several measurable physical 

parameters of the arterial wall that may contribute to the degree of stiffness of the wall including 

pressure, diameter and height of the vessel wall (O’Rourke 1995). In the general literature, arterial 

stiffness is used to describe the overall rigidity of the arterial walls (MacKenzie et al 2002). Several 

established techniques are used to measure arterial stiffness. Pulse Wave Velocity is used to 

measure arterial stiffness in this thesis and detailed discussion of this technique can be found in 

2.2.2.3.4 
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1.4.4. The vascular endothelium 

1.4.4.1 Introduction 

All blood vessels are lined with a monolayer of cells collectively termed the vascular endothelium. 

For many years this layer of cells was thought to be relatively inert. It is now recognised, however, 

that these cells are metabolically active with important paracrine, endocrine and autocrine functions, 

indispensable for the maintenance of vascular homeostasis (Vallance et al 2001, Bonetti et al 2003). 

Abnormal endothelial cell function is a key step in the development of vascular disease 

(Stenhouwer et al 1997). The relevant normal physiology of the endothelium of the resistance artery 

will be outlined, and the mechanisms and implications of endothelial dysfunction considered. 

 

1.4.4.2 Insulin resistance, diabetes mellitus, endothelial dysfunction and atherosclerosis. 

The vascular endothelium is a highly active organ that secretes a number of vasoconstrictor 

substances (endothelin-1) and vasodilator substances (nitric oxide and prostacyclin). The 

monolayer of endothelial cells that line the luminal surface of the vasculature play a central role in 

vascular homeostasis and their dysfunction is thought to play a pivotal role in the development of 

atherosclerosis (Wheatcroft et al 2003). Endothelial dysfunction is found in people with insulin 

resistance, obesity and T2DM but the molecular mechanisms that underlie this association are 

poorly characterised (Cleland et al 2000). A key player in vascular homeostasis is NO. NO is 

produced in endothelial cells from L-arginine which is catalysed by the enzyme eNOS (Muniyappa 

et al 2007). NO regulates vascular tone, inhibits cell adhesion, platelet aggregation and smooth 

muscle proliferation, giving an overall anti-thrombogenic effect (Wheatcroft et al 2003). Obesity 

and metabolic syndrome are associated with increased cardiovascular risk compared with healthy 

controls which may be present years before hyperglycaemia is clinically apparent (figure 1.8). 

Endothelial dysfunction is the initiating step leading to atherosclerosis. Endothelial injury or 

dysfunction (e.g. a reduction in bio-available NO leads to an inflammatory response at which time 
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Figure 1.8 Metabolic changes in the evolution of Type 2 diabetes. 

A schematic diagram representing the metabolic changes seen during the evolution of T2DM. The 

vasculature may be exposed to an increasingly atherogenic environment for many years before 

diabetes becomes clinically apparent (adapted from Wheatcroft et al 2003). 
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there is a loss of balance and the production of vasoconstrictor substances predominates (Hattori et 

al 2004). After injury, the expression of cell adhesion molecules (E-selectin, P-selectin, L-selectin, 

intercellular adhesion molecule-1 [ICAM-1] and vascular cell adhesion molecule-1 [VCAM-1] on 

the surface of the endothelium increases (Ross 1999). White blood cells bind to the cell adhesion 

molecules and the endothelium become pro-coagulant with increased cell permeability (Ross 

1999). White blood cells invade the arterial media and then intima where they differentiate into 

macrophages and promote arterial remodelling.  The macrophages subsequently take up lipids and 

become foam cells (Ross 1999). Ultimately the foam cells degrade to become fatty streaks and then 

the lipid core of an atherosclerotic plaque resulting in reduced luminal diameter (Boisvert et al 

1998). The lipid core is covered by a fibrous cap which can rupture into the lumen causing transient 

or permanent occlusive thrombosis formation of the vessel which may result in acute coronary 

syndrome, transient ischaemic attacks, myocardial infarction and cerebrovascular accidents (Ross 

1999). Macrovascular complications occur in T2DM and give rise to coronary artery, 

cerebrovascular and peripheral vascular disease (DeFronzo et al 2004). 

 

1.4.4.3 Nitric oxide 

Initial experiments suggesting the importance of the endothelium as a regulator of vascular tone 

resulted in the identification of the endothelium-derived relaxing factor (EDRF) as NO. This work 

to identify NO was subsequently recognised with the Nobel Prize for Physiology or Medicine 1998 

(Raju 2000). NO is synthesised within endothelial cells during conversion of the amino acid L-

arginine to L-citrulline by eNOS (Vallance 2001). The endothelium controls vascular tone and plays 

a key role in maintaining vascular homeostasis. This process is mediated by release of NO, 

prostacyclin, and endothelium derived hyperpolarizing factors. Nitric oxide has an overall anti-

atherogenic effect on the vasculature, regulating blood pressure, inhibiting leukocyte activation, 

vascular smooth muscle proliferation, and platelet aggregation (Figure 1.9) (Moncada et al 1993,  
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Figure 1.9 Endothelium derived nitric oxide synthesis and action (Adapted from Moncada and 

Higgs 1993). 



66 

 

66 

 

Shimokawa et al 1995). NO is a potent vasodilator and there is clear evidence that basal NO 

dependent vasodilatation occurs in humans (Moncada et al 1993).  

 

NO is generated from L-arginine by a family of NOS (Harrison 1997) Three different isoforms of 

NOS occur in humans. Endothelial (eNOS, NOS III) and neuronal (nNOS, NOS I) isoforms are 

constitutively expressed and synthesise small amounts of nitric oxide (NO) under basal conditions 

as well as following stimulation by various stimuli e.g. insulin, shear stress, acetylcholine (Ach) or 

a rise in intracellular calcium concentration (Michel and Feron 1997). nNOS and iNOS are soluble 

whereas eNOS is membrane bound (Liu et al 1995).  

 

NO production by eNOS requires numerous cofactors including FMN, FAD, BH4 and CaM 

(Moncada 1993). The half-life of NO is short (less than 4 seconds). It is rapidly metabolised to 

nitrite and then to nitrate before being excreted in the urine (Moncada 1993). NO passes from the 

endothelial cell to the vascular smooth muscle cell by diffusion. Once in the smooth muscle cell, it 

activates guanylate cyclase leading to an increase in intracellular guanosine-3,5-monophosphate 

(cGMP) concentrations, leading to a reduction in smooth muscle tone and vasodilation (Vallance et 

al 2001). The importance of NO as a mediator of vascular tone was initially demonstrated in 

experiments in both rabbit aorta ex vivo and the human forearm in vivo, in which application or 

infusion of the eNOS inhibitor, L-NMMA, was shown to produce vasoconstriction (Vallance et al 

1989). Abnormalities of endothelium-mediated vascular function have since been reported in a 

large number of studies in various cardiovascular disease states, including heart failure (Maguire et 

al 1998), hyperlipidaemia (Chowienczyk et al 1992), diabetes (Schofield et al 20002) and 

hypertension (Taddei et al 2002). An impairment of endothelium-derived NO-mediated reduction 

in smooth muscle tone in states of cardiovascular disease and endothelial dysfunction may be 
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caused by either decreased formation or accelerated breakdown of NO. Each of these will be 

addressed in turn.  

 

1.4.4.3.1 Decreased formation of NO 

eNOS activity within the endothelial cell may also be modulated by circulating factors including 

insulin. Insulin has important physiological effects on the endothelium, increasing NO availability, 

stimulating vasodilatation and is proposed to act in an anti-atherogenic manner (Muniyappa et al 

2007). Insulin-stimulated endothelial dependent vasodilatation is impaired in insulin resistance 

(Cleland et al 2000, Wheatcroft et al 2003). Cultured human umbilical vein endothelial cells 

(HUVECs) demonstrate acutely increased activity of eNOS and consequent NO production in 

response to insulin incubation (Zeng et al 1996, Yki-Jarvinen et al 1998). A fall in the circulating 

concentration of insulin, or a decreased sensitivity of intracellular signalling mechanisms could 

lead to a reduction in eNOS activity and therefore in NO production. eNOS may be inhibited by 

endogenous products of arginine metabolism with some similar properties to L-NMMA, 

particularly asymmetric dimethylarginine (ADMA) (Vallance et al 2001). ADMA, a guanidino-

substituted analogue of L-arginine, is a potent endogenous competitive inhibitor of eNOS. ADMA 

is produced by methylation of L-arginine which is catalysed by protein arginine methyltransferases 

(Achan et al 2003). Symmetric dimethylarginine is also produced by methylation of L-arginine but 

does not exert effects on the production of NO by NOS. The predominant mode of elimination of 

ADMA occurs via enzymatic degradation by dimethyl arginine dimethyl amino hydrolase (DDAH) 

to citrulline and dimethylamine (Achan et al 2003). Increased levels of ADMA reduce NO 

formation and are associated with endothelial dysfunction. Plasma levels of ADMA have been 

found to be increased in hypercholesterolaemia (Boger et al 1998), hypertriglyceridaemia 

(Lundman et al 2001), hyperhomocyst(e)inemia (Stuhlinger et al 2003), obesity (McLaughlin et al 

2006), Type 1 diabetes mellitus (Altinova et al 2007), Type 2 diabetes mellitus (Abbasi et al 2001), 
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gestational diabetes (Mittermayer et al 2002) and, most recently, polycystic ovary syndrome 

(Heutling et al 2008). There is a close relationship between concentrations of ADMA and insulin 

resistance (Stuhlinger et al 2002). Indeed, in several prospective studies, ADMA has been noted to 

be an independent predictor of cardiovascular events (Valkonen et al 2001, Mittlemayer et al 2006, 

Krzyzanowska et al 2007). These substances may act as endogenous competitive inhibitors of 

eNOS and provide a credible mechanism by which NO bioavailability may be impaired in states of 

cardiovascular disease. 

 

1.4.4.3.2 Accelerated breakdown of NO  

Accelerated degradation of NO by reactive oxygen species is probably the major mechanism 

impairing NO bioavailability in states of cardiovascular disease (Harrison 1997, Behrendt et al 

2002). The most important mediators of increased oxidative stress are increased generation of 

superoxide anion, and oxidised LDL cholesterol which react with endothelial NO before it reaches 

the vascular smooth muscle cell and therefore reduce total NO-mediated vasodilation (Kojda et al 

1999). 

 

1.4.4.4 Prostacyclin 

Prostacyclin (PGI2) is the major metabolite of arachadonic acid produced by cyclooxygenase 

(COX-1) in the endothelium. PG12 acts as a vasodilator. Clinical and experimental models of 

diabetes are associated with decreased secretion of PGI2 (Feletou and Vanhoutte 2006, Muniyappa 

et al 2007) 

 

1.4.4.5 Endothelium derived hyperpolarising factor 

NO has been shown to be an important endothelium-dependent mediator of vascular tone in 

relatively large arteries and larger arterioles. There are, however, certain arteries in which 
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endothelium-mediated vasodilation is predominately affected by endothelium-dependent 

hyperpolarisation of vascular smooth muscle cells which persists in the presence of inhibitors of 

eNOS and prostacyclin (Feletou et al 1988, Garland et al 1992). This suggested that a separate 

mechanism is partially responsible for endothelium dependent vasodilation of these arteries. The 

exact identity of the chemical (or other) mediator(s) involved in this mechanism is unclear at 

present. This non-prostanoid, non-NO dependent endothelium-dependent hyperpolarisation 

characterised by the EDHF pathway does not appear to represent any one substance, and it is 

therefore likely that there are several endothelium-derived factors responsible (Feletou and 

Vanhoutte 2006). 

 

The relative importance of the EDHF mediated mechanisms to NO mediated mechanisms alters 

with vessel size, and appears to increase as vessel size decreases (Shimokawa et al 1996). At the 

level of the aorta, reduced NO bioavailability is proposed to be the main marker for endothelial 

dysfunction. In resistance arteries, NO, prostacyclins and EDHFs are thought to be involved in 

mediating endothelial function (Kang et al 2007).  

 

1.4.4.6  Measurement of endothelial function 

Several established techniques are used to measure endothelial function. Wire myography is used to 

measure endothelial function in this thesis and detailed discussion of this technique can be found in 

2.2.2.4.1 
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1.5 Metformin 

1.5.1 Galegine (isoamylene guanidine) 

Galega officinalis has been used since medieval times for medicinal purposes by French monks to 

control what was described as “intense urination” (Witters 2001). The therapeutic properties of 

Galega Officinalis for the management of patients with diabetes was ultimately developed in the 

early 1900’s with the knowledge that the plant was a source of guanidine which induced glucose 

lowering biological effects. Guanidine proved to be too toxic and the less toxic derivative galegine 

or isoamylene guanidine was identified (Figure 1.10). Guanidine was subsequently shown to reduce 

blood glucose levels in both animals and humans (Bailey et al 2004). The clinical application of 

Galegine was limited, however, due to its short duration of action, differing efficacy and safety 

concerns (Bailey et al 2004).  

 

1.5.2 The discovery of metformin 

Following a hiatus in research into diabetes after the discovery of insulin, work by the French 

clinician Sterne and colleagues lead to the discovery of dimethylbiguanide (metformin), (Sterne 

1964). Sterne also made some important discoveries in metformin’s mechanism of action. He 

demonstrated that the presence of the pancreas and diabetes (Sterne 1964) was required for 

metformin to lower blood glucose.  

 

At a similar time other investigators in the United States were working on the more potent 

biguanide phenformin (phenylethylbiguanide) (Unger et al 1960). (Figure 1.11). A typically 

effective dose of phenformin would be around 100 mg rather than 2000 mg with metformin. 

Reports of phenformin associated lactic acidosis (Walker et al 1959) and evidence of increased 

cardiovascular mortality in those with T2DM with phenformin (Goldner et al 1971) resulted in 
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Figure 1.10 Structure of galegine (3-methyl-2-butenylguanine/isoamylene guanidine) and 

metformin (dimethylbiguanide) 

Galegine 

Metformin 
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Figure 1.11 Chemical structure of biguanides. Buformin (butylbiguanide) is less potent than 

phenformin but there are case reports of associated lactic acidosis (Krishnamurhty et al 2004) and 

this drug is not used in the United Kingdom. 
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phenformin’s withdrawal from clinical use from most countries in the 1970’s. This proved to be a 

major challenge to the introduction of metformin and it was not introduced into clinical practice in 

the Unites States until 1995, almost 40 years after it was first introduced as a treatment of T2DM in 

Europe in 1957. This coincided with evidence that the risk of lactic acidosis associated with 

metformin is considerably lower than other biguanides and is probably no higher than other anti-

diabetic drugs when prescribed correctly (Misbin 2004). The spectre of increased cardiovascular 

mortality associated with biguanides in 1971 was finally dispelled when the results of the UK 

Prospective Diabetes Study (UKPDS) where published in 1998. 

 

1.5.3 Structure and action of metformin 

As outlined above, three biguanides have been used widely in patients with T2DM: metformin, 

phenformin and buformin; but only metformin remains part of today’s worldwide pharmacopoeia. 

While there are close similarities between these drugs the unique properties of metformin explain 

its longer lasting appeal. Both metformin and phenformin are guanidine derivatives with one mono-

substitution as already shown in Figure 1.10. As shown phenformin has a phenyl ethyl ring 

substituted at the terminal amino group rather than metformin’s two methyl groups. Metformin is of 

smaller molecular weight, more chemically stable, freely soluble in water and does not undergo 

substantial metabolism in vivo (Karttunen et al 1983).  

 

Metformin acts by countering insulin resistance, which is thought to occur in principally in liver and 

muscle (Hundal et al 2000). Metformin acts mainly to reduce hepatic gluconeogenesis and also to 

increase peripheral insulin sensitivity in peripheral insulin sensitive tissues such as muscle and 

adipose. Finally, metformin has protective effects on the cardiovascular system which cannot be 

fully explained by its blood glucose lowering properties (UKPDS 1998). There is evidence to 

suggest that that metformin’s beneficial effects are attributable to disruption of respiratory chain 
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oxidation in mitochondria (El Mir et al 2000, Owen 2000), enhanced insulin tyrosine kinase 

receptor activity (Dominguez et al 1996), enhanced GLUT4 translocation to the membrane 

(Matthaei et al 1993, Hundal et al 1992) and finally the focus of this thesis, activation of AMPK 

(Zhou et al 2001, Musi et al 2002).  

 

1.5.4 Efficacy 

As detailed above metformin has been used in the treatment of patients with T2DM since 1957 in 

Europe and 1995 in the Unites States. It is now the most commonly prescribed oral hypoglycaemic 

worldwide. This section outlines the therapeutic profile of metformin and further details effects on 

blood glucose, weight, lipid profile and the focus of this thesis, the cardiovascular system. 

 

1.5.4.1 Glucose lowering 

The UKPDS study showed that the addition of metformin to diet resulted in a dramatic 

improvement in glycaemic control over a few years compared with patients on diet alone (UKPDS 

1998). Evidence also suggests that the hypoglycaemic properties of metformin are dose dependent 

with the largest study of 451 patients concluding that 2000 mg of metformin was the optimal daily 

dose with a mean change in HbA1C from baseline -0.7% after 14 weeks (Garber et al 1997). In 

Europe the maximum recommended dose is 3000 mg and in the UKPDS study a median daily 

dosage of 2550 mg was used (UKPDS 1998). 

 

Before considering how metformin reduces blood glucose in patients with T2DM it is important to 

consider how glucose is regulated in normal physiology. Following a meal, insulin concentrations 

rise and stop glucose production in the liver and lipolysis in the adipocytes. Glucose uptake 

peripherally in insulin sensitive tissue such as skeletal muscle and adipocytes increases as the 

elevated insulin concentrations improve GLUT4 translocation to their plasma membranes. In T2DM 
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this mechanism of regulating blood glucose is disrupted years before diagnosis (DeFronzo et al 

1992). The liver, skeletal muscle and adipocytes become less responsive to the insulin which results 

in a compensatory hyperinsulinaemia. This can control blood glucose levels for a period until the 

pancreas can no longer secrete enough insulin to maintain normal blood glucose levels and the 

patient develops T2DM (DeFronzo et al 1992).  

 

The principal way in which metformin exerts its glucose lowering effects is by reversing insulin 

resistance and not, like the sulphonylurea class of drugs, by increasing insulin secretion. This occurs 

by reducing hepatic glucose production (Johnson et al 1993, Tikkainen et al 2004), improving 

peripheral insulin action (Johnson et al 1993), increasing intestinal glucose uptake (Bailey et al 

1994, Mithieux et al 2006) and reducing lipolysis in adipocytes (Perriello et al 1994, Abbasi et al 

1998, Tikkainen et al 2004). Exactly how metformin improves insulin action, however, is not 

completely understood after more than 50 years of clinical use.   

 

1.5.4.2 Weight 

The vast majority of patients with T2DM are overweight or obese (Daousi et al 2006). There is 

considerable variability between studies on the effect of metformin on weight loss but reductions in 

body weight are often observed.  Two meta-analyses of controlled studies, however, concluded that 

there was no difference in metformin, placebo or diet on body weight or BMI in patients with 

T2DM (Johansen 1999, Saenz et al 2005). This conclusion is reinforced by the UKPDS study, the 

longest randomised evaluation of metformin effects on weight in overweight patients, where after 

10 years, weight was not significantly different between metformin and placebo (UKPDS 1998). 

There was, however, a significant difference in weight in a recent meta-analysis (Saenz et al 2005) 

comparing metformin with sulphonylurea and in the UKPDS study (UKPDS 1998). 
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1.5.4.3 Lipid profile 

Metformin is associated with modest improvements in the lipid profile. This is usually reflected in 

reductions in total cholesterol, LDL – cholesterol and mainly triglycerides. HDL – cholesterol is 

generally unaffected by metformin (Wulffele et al 2004).  While the beneficial effects of metformin 

on the lipid profile would tend to reduce cardiovascular risk when the reductions are entered into 

the UKPDS risk engine, the overall benefits to 10 year risk of macrovascular end-points are modest.  

 

1.5.4.4 Blood pressure 

In some animal models, metformin appears to have a vascular action. In spontaneously hypertensive 

rats, it has been reported to reduce blood pressure (BP), possibly via modulation of adrenergic tone 

(Peuler et al 1999). In man, blood pressure responses to intravenous infusions of norepinephrine 

and angiotensin II are blunted in the presence of metformin (McAuley et al 1997). Reductions in 

blood pressure have been observed in patients treated with metformin (Chan et al 1993) but the 

overwhelming body of evidence including a meta-analysis suggest that metformin does not alter BP 

in man (Saenz et al 2005). 

 

1.5.4.5 Macrovascular Benefits 

T2DM confers a 2 to 4 fold greater risk of heart disease and stroke when compared with the general 

population. Moreover, life expectancy in patients with T2DM is thought to fall by anything from 5 

to 10 years. The United Kingdom Prospective Diabetes Study (UKPDS) study, initiated in 1977 and 

reported in 1998, was the first randomised trial to demonstrate improved outcome with metformin 

treatment. Randomisation to metformin was associated with dramatic relative risk reductions in 

diabetes-related death (-42%), myocardial infarction (-39%), stroke (-42%) any diabetes related 

end-point (-32%) and all cause mortality (-36%) when compared with diet. This is in contrast to the 

relative risk reductions with sulphonylurea or insulin in diabetes-related death (-20%), myocardial 
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infarction (-21%), stroke (+14%) any diabetes related end-point (-7%) and all cause mortality (-8%) 

when compared with diet. The benefits observed and could not be explained by differences in 

glycaemia. Mean HbA1c after follow up in the diet group and metformin group were 8% and 7.4% 

respectively and there was no clear difference in the glucose lowering effect between metformin, 

sulphonylurea and insulin. Given that the glucose lowering effects on metformin, sulphonylurea and 

insulin were similar, it has been proposed that metformin must confer additional vascular benefits 

beyond those of glycaemia alone. The reason why metformin has beneficial cardiovascular effects 

in overweight diabetic patients in UKPDS remains unanswered. 

 

1.5.4.6 Endothelial function  

Despite 50 years of research the exact mechanisms of action of metformin remain poorly 

understood and have yet to be fully elucidated. It is likely that no single cellular effect can explain 

metformin’s cardioprotective effect. As outlined above it is unlikely that changes in the usual risk 

factors of hyperglycaemia, dyslipidaemia, obesity and hypertension with metformin are enough to 

account for its cardiovascular benefits and therefore other mechanisms must therefore be involved.  

 

There is evidence that metformin improves endothelial function. In a placebo controlled study in 44 

patients with T2DM metformin improved endothelial-dependent vasodilation as assessed by 

forearm plethysmography during an infusion of acetylcholine (Mather et al 2001). This is 

completed by evidence from a randomised placebo controlled cross-over study in patients with 

insulin T2DM in which there were significant reductions in the circulating cell adhesion molecules 

VCAM-1 and E-selectin, reflecting suppression of endothelial activation unexplained by changes in 

glucose (De Jager et al 2005). These results have also been reproduced in patients with impaired 

glucose tolerance (Caballero et al 2004), metabolic syndrome (Vitale et al 2005), polycystic ovary 

syndrome (Diamanti-Kandarakis et al 2005, Orio et al 2005), cardiac syndrome X (Jadhav et al 
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2006) as well as the first degree relatives of patients with T2DM (De Aguiar et al 2006). There is 

also, however, conflicting evidence demonstrating no effect on endothelial function with metformin 

(Natali et al 2004).  

 

1.5.4.7 AMPK 

Recent clinical studies have shown that the effects of metformin may go beyond improving HbA1c 

and may include reductions in cardiovascular end points in T2DM. Perhaps the most intriguing 

development in elucidating metformin’s cellular mechanism of action in recent years is the 

proposed involvement of AMPK. The metabolic and cardio-protective effects of metformin may be 

attributable to the activation of AMPK and its downstream pathways.  

 

The precise mechanisms of how metformin activates AMPK are still poorly understood. Metformin 

has not been shown to bind directly to AMPK or regulate phosphorylation and dephosphorylation in 

cell-free assays (Hawley et al 2002). One hypothesis is that it activates AMPK by weakly inhibiting 

complex I of the respiratory chain resulting in an increase in the AMP/ATP ratio (El-Mir et al 2000, 

Owen et al 2000, Hawley et al 2002). The increase in the AMP/ATP ratio inhibits 

dephosphorylation of AMPK thereby potentiating the phosphorylation of AMPK by LKB1, whose 

activity is thought to be constitutive (Hawley et al 2003). There is also contrasting evidence 

suggesting that AMPK can be activated by metformin without changes in the AMP/ATP ratio 

(Hawley et al 2002). Interestingly, it has been shown that LKB1 is necessary for metformin to 

activate AMPK in the liver and in turn decrease blood glucose in obese rodents (Shaw et al 2005).  

 

Metformin is not metabolised but is transported by at least two organic cation transporters. Organic 

cation transporter-1 (OCT-1) is mainly expressed in the cell membrane of hepatocytes and is 

thought to play an important role in the uptake of metformin from intestinal cells (Wang et al 2002, 
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Dressler et al 2002, Kirmura et al 2005). Organic cation transporter-2 (OCT-2) is mainly expressed 

in the cell membrane of the distal renal tubules and is thought to play an important role in the renal 

tubular excretion of metformin. In contrast, phenformin enters cell membranes by passive diffusion 

without the need for active transport. In mouse hepatocytes, deletion of OCT-1 resulted in 

attenuation of the effects of metformin on AMPK phosphorylation and gluconeogenesis (Shu et al 

2007). It should be noted that there was significant metformin uptake and AMPK activation despite 

deletion of OCT-1 suggesting that other mechanisms such as passive diffusion or other as yet, 

undiscovered transporters may contribute to metformin’s action in liver or indeed in other tissues. It 

is important to note that in OCT-1 deficient mice the glucose lowering effects of metformin were 

abolished suggesting that OCT-1 in the liver plays an important role in mediating metformin’s 

ability to reduce hepatic glucose production (Shu et al 2007). Moreover, it has been recently 

observed that OCT-1 mediates lactic acidosis, the major adverse effect of metformin (Wang et al 

2003). When mice were given metformin, the blood lactate concentration significantly increased in 

wild type mice compared with OCT-1 knockout mice. As previously stated, metformin is a weak 

inhibitor of complex I of the respiratory chain (Hawley et al 2002) and this mechanism of action is 

likely to explain the life-threatening side effect of lactic acidosis that led to the withdrawal of the 

sister drug, phenformin, from human use. Recently, genetic polymorphisms of OCT-1 have been 

found to be associated with variations in metformin’s action. Several nonsynonymous and deletion 

variants have been identified in the human OCT-1 gene (encoded by SLC22A1). It is noteworthy 

that 2 variants that reduce transport of metformin, 420del and R61C, are common polymorphisms 

of OCT-1 with allele frequencies of 19% and 7.2% respectively in those of European descent (Shu 

et al 2003). In addition the effects of metformin on glucose tolerance tests were significantly lower 

in 12 healthy volunteers carrying reduced function polymorphisms of OCT-1 (Shu et al 2007). 

Identification of polymorphisms in genes encoding cation transporter proteins may, therefore 

explain differences in T2DM patients’ tolerance and response to metformin therapy (Jonker et al 
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2004).  Interestingly, in a recently published retrospective study, the 420del and R61C variants 

failed to have any effect on metformin ability to lower HbA1c in a large cohort of patients with 

T2DM (Zhou et al 2009). Large scale prospective studies, however, are necessary to confirm the 

clinical relevance of personalised metformin therapy based on OCT-1 gene polymorphisms. 

Nevertheless, the prospect of the pharmacological tissue specific targeting of influx transporters and 

AMPK in the management of T2DM is an attractive one (Shu et al 2007).  

 

Metformin increases skeletal muscle glucose disposal and decreases hepatic glucose production. 

Metformin has been shown to activate AMPK in myocytes and skeletal muscle cells (Zhou et al 

2001, Yang et al 2006). Therapeutic doses of metformin have been shown to increase AMPK 

activity with an associated decrease in ACC activity in serial muscle biopsies in patients with 

T2DM (Musi et al 2002). Levels of metformin in the skeletal muscle of OCT-1 knockout mice and 

wild type mice are no significantly different, suggesting that the uptake of metformin in skeletal 

muscle may involve other transporters (Wang et al 2003, Shu et al 2007). Metformin has been 

reported to activate AMPK in hepatocytes (Zhou et al 2001) and 3T3-LI adipocytes (Huypens et al 

2005), yet an effect of metformin on AMPK in human liver or adipose tissue has not been 

investigated. Indeed, as is the case with skeletal muscle, the transporter(s) involved in the uptake of 

metformin in adipose tissue remains unknown.  

 

It has recently been reported that metformin stimulates NO synthesis in an AMPK-dependent 

manner in BAECs (Zou et al 2004). This is in contrast to data that suggests that the incubation of 

BAECs with phenformin activates AMPK without altering Ser1177 phosphorylation (Mount et al 

2005). Further work has demonstrated that metformin acts to phosphorylate AMPK and ACC in 

HUVECs (Hattori et al 2006). However in HAECs, metformin failed to show any effect on AMPK 

activity within 2 hours (Morrow et al 2003). The reasons for these conflicting data remain elusive 
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but may be explained by species- and tissue-specific factors. Moreover, the neutral results with 

metformin may reflect the reduced lipophilicity compared with phenformin, such that phenformin 

rapidly accumulates in cells and subsequently has a more rapid effect on metabolism compared with 

metformin.  Therefore, a longer incubation period with a higher concentration of metformin may be 

required to stimulate AMPK and NO synthesis in HAECs.  Furthermore, the neutral results with 

metformin may also be explained by the possibility of cells either carrying reduced function 

polymorphisms of OCT-1 or not expressing OCT-1 at all. 

 

Exactly how metformin improves insulin action, lowers body weight, improves the lipid profile, 

improves endothelial function and reduces the incidence of myocardial infarction remains 

incompletely understood. Further work is required to examine if biguanides mediate these effects by 

stimulating AMPK activity in human adipose tissue and vascular endothelial cells. 

 

1.5.4.8 ADMA 

Metformin has been reported to decrease the plasma ADMA concentrations in poorly controlled 

subjects with Type 2 diabetes in an open labelled, uncontrolled study without a placebo arm; the 

fall in ADMA concentration was associated with improved fasting plasma glucose, although the 

study failed to demonstrate a relationship between the decrease in ADMA concentrations and 

improvement in glycaemic control (Asagami et al 2002). Importantly, no assessment of vascular 

function was made in this study. Furthermore, in a recent study, a subgroup of women with PCOS 

who received metformin demonstrated reductions in ADMA concentration independent of a 

reduction in BMI and fasting blood glucose (Heutling et al 2008). There was a marginal 

improvement in carotid intima media thickness in favour of metformin therapy. However, once 

again, this was also an uncontrolled study involving a small subset of patients without the benefit 

of a placebo arm and it is clear that more data are required to clarify whether metformin mediated 
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reduction in ADMA concentration is genuine and, if so, whether this change can lead to beneficial 

effects on vascular function in overweight subjects with Type 2 diabetes. Interestingly, patients 

with T2DM randomised to the second generation sulphonylurea glibencamide were found to have 

no change in ADMA concentration after six months of therapy (Kelly et al 2007). Further work is 

required to determine if metformin therapy improves vascular endothelial function in association 

with lower circulating concentrations of ADMA. 
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1.6 Sulphonylureas 

The sulphonylureas are derived from sulphonic acid and urea and were introduced to the 

pharmacopeia in 1950s with gliclazide being the most popular in the United Kingdom at present 

(Gerich et al 1989). All sulphonylureas contain a central S-phenylsulfonylurea structure with p-

substitution on the phenyl ring and various groups terminating the urea N' end group. The 

sulponylureas are effective pancreatic insulin secretagogues that can rapidly improve glycaemic 

control (Haupt et al 1971). They control blood glucose levels by directly stimulating insulin 

secretion in the pancreatic beta cells (Gorus et al 1988). Sulphonlyureas bind to a receptor 

associated with the ATP-sensitive potassium channel (KATP; a 140 kDa membrane protein) on the 

plasma membrane which results in closure of the channel (Sturgess et al 1985, Schmid-Antomarchi 

et al 1987). This in turn depolarizes the membrane and triggers the opening of voltage-sensitive 

calcium channels, leading to the rapid influx of calcium. Increased intracellular calcium causes an 

alteration in the cytoskeleton, and stimulates translocation of insulin-containing secretory granules 

to the plasma membrane and the exocytotic release of insulin (Hu et al 2000). Differences in the 

binding, retention in islets and drug half lives result in different patterns of insulin release (Hu et al 

2000).  

Gliclazide for example affects first and second phase of insulin secretion and therefore has the 

advantage of affecting fasting blood glucose and post prandial blood glucose levels (Korytkowski 

et al 2002). In general, experience suggests the sulpohylureas lower blood glucose by around 

3mmol/l corresponding to a drop in HbA1C of around 1.5 to 2% (Inzucchi et al 1998). 

Sulphonylureas are predictably associated with weight gain. In UKPDS, there was an increase in 

body weight of 2 to 3kg which was maximal within 1 year of the study and maintained for the 

entire ten year follow up. In terms of blood pressure and plasma lipid profile, sulphonylureas are 

generally neutral (Inzucchi et al 1998). Improved glycaemic control reduces the progression of 
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microvascular complications but the effect of sulphonylureas on macrovascular complications is 

less clear. In the UKPDS study, where sulphonylureas or insulin were compared with conventional 

therapy in patients with T2DM (with median results of HbA1C of 7% and 7.9% respectively), there 

was a significant 25% reduction in all microvascular end-points as well as a significant 12% 

reduction in any diabetes-related endpoint. The effect of sulphonylureas on macrovascular disease 

is less certain. In UKPDS, there was no difference in all cause mortality or diabetes-related death. It 

is important to note that there was a reduction in myocardial infarction and cardiovascular mortality 

that failed to reach statistical significance (p = 0.052). Overall there was no significant difference 

between those treated with insulin or sulphonylureas and it was concluded that lowering blood 

glucose alone is insufficient to reduce macrovascular events in this high risk group. This is in 

contrast to the reduction in myocardial infarction and cardiovascular mortality in obese patients 

with T2DM randomised to metformin which could not be fully explained by a reduction in 

glucotoxicity. Sulphonylureas are not thought to activate AMPK, indeed the third generation 

sulphonylurea, glimepiride had no effect on AMPK activity when incubated with cultured 

adipocytes and muscle cells (Inukai et al 2005). Thus, the sulphonylureas are an appropriate control 

in studies examining metformin’s ability to stimulate AMPK in patients with T2DM.  
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1.7 Thiazolidinediones 

The peroxisome proliferator activated receptor-γ (PPAR-γ) agonists such as the thiazolidinediones 

(TZDs), rosiglitazone and pioglitazone, are an important class of compounds used in the 

management of T2DM. TZDs are thought to work by the binding to and activating of the PPAR-γ 

receptor (Lehmann et al 1995). The PPAR-γ receptor is a nuclear receptor that is thought to have a 

regulatory role in the differentiation of cells and is present in many tissues including adipose, liver, 

muscle and the vascular endothelium. Indeed, TZDs main action is to promote differentiation of 

pre-adipocytes to adipocytes and redistribute lipids. The ability of TZDs to lower blood glucose is 

well established and they have similar efficacy to other oral hypoglycaemic drugs. They lower 

glucose by lowering insulin resistance in muscle and adipose, increasing insulin related glucose 

disposal and reducing hepatic glucose production (Semple et al 2006). While TZDs are effective in 

reducing blood glucose levels they also cause weight gain and peripheral oedema (Nissen et al 

2007). 

 

The ability of TZDs to reduce cardiovascular events in patients with diabetes has attracted much 

interest. A number of studies have demonstrated that TZDs have the capacity to improve endothelial 

function in non-diabetic subjects (Wang et al 2004, Hetzel et al 2005) and subjects with T2DM 

(Satoh et al 2003, Natali et al 2004, Pitrosh et al 2004).  The beneficial effects of TZDs have been 

reported to be independent of glycaemia, inferring a direct effect on vascular tissues (Satoh et al 

2003, Pitrosh et al 2004).  The endothelial effects of TZDs may be relatively rapid; indeed 

rosiglitazone has been reported to improve endothelial function within 24 h in healthy human 

subjects (Hetzel et al 2005).  

 

The mechanism of action by which TZDs improve vascular endothelial function remains uncertain. 

Recent studies have suggested that TZDs also directly improve NO bioavailability in endothelial 
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cells (Calnek et al 2003, Cho et al 2004, Polikandroitis et al 2005, Kim et al 2006).  Previous 

studies have demonstrated that incubation of HUVECs with rosiglitazone for 48h stimulated NO 

synthesis and phosphorylation of eNOS at Ser 1177 (Polikandroitis et al 2005).  Similarly, 

troglitazone has been reported to stimulate NO synthesis within 3h and eNOS phosphorylation at 

the equivalent site (Ser 1179) in BAEC’s (Cho et al 2004). In HUVECs, rosiglitazone-stimulated 

NO synthesis and eNOS Ser 1177 phosphorylation were reported to be completely inhibited in the 

presence of the PPAR-γ inhibitor, GW9662 (Polikandroitis et al 2005). In BAECs, however, 

troglitazone-stimulated NO synthesis and eNOS Ser 1179 phosphorylation was only partially 

inhibited in the presence of the PPAR-γ inhibitor, BADGE (Cho et al 2004). Several protein kinases 

have been demonstrated to phosphorylate eNOS at Ser 1177
 
in endothelial cells, including protein 

kinase B (PKB) and AMPK (Fulton et al 1999, Dimmeler et al 1999; Chen et al 1999, Morrow et al 

2003), but the protein kinase and signalling mechanism responsible for phosphorylation of eNOS in 

response to TZDs is as yet undetermined.  TZDs have been demonstrated to activate AMPK in 

muscle, liver and adipose (Fryer et al 2002, Saha et al 2004, Konrad et al 2005; Lebrasseur et al 

2006). Indeed, rosiglitazone associated AMPK activation has been shown to be via an AMP/ATP 

dependent pathway in muscle (Hawley et al 2002). TZDs can also activate AMPK by stimulating 

the release and expression of circulating adiponectin from adipose tissue or indirectly by increasing 

the cellular AMP/ATP ratio by a similar mechanism to metformin (Yamauchi et al 2002, Tomas et 

al 2002, Brunmair et al 2004). Further work is required to examine if TZDs mediate their beneficial 

effects by stimulating AMPK in vascular endothelial cells.  

 

Despite the TZD related improvements in vascular biology and endothelial function described 

above, it is important to note that metformin remains the only oral hypoglycaemic drug to 

demonstrate good evidence for cardiovascular protection in a randomised trial. Since UKPDS 

reported in 1998, the thiazolidinediones had been proposed to have beneficial cardiovascular 
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effects. This was assessed by randomisation to pioglitazone to high risk patients with T2DM in the 

Prospective Pioglitazone Clinical Trial in Macrovascular Events (PROactive) study (Dormandy et 

al 2005). The PROactive study was a prospective randomised controlled trial in 5238 patients with 

T2DM who have evidence of cardiovascular disease. Patients were randomised to 45mg of 

pioglitazone versus placebo and continued to take other glucose lowering drugs with an absolute 

reduction in HbA1c of 0.5% in the pioglitazone group versus placebo. However, pioglitazone was 

not associated with cardiovascular benefit as defined by the primary composite cardiovascular end-

point of all-cause mortality, non-fatal myocardial infarction, stroke, acute coronary syndrome, 

amputation or revascularisation (Dormandy et al 2005). Indeed, there was only a modest 10% 

reduction that failed to reach statistical significance (p=0.92). It is worth noting that the “main” 

secondary end-point of all cause mortality and non-fatal myocardial infarction was reduced by 16% 

and did reach statistical significance (p=0.027).  

 

There has been concern that rosiglitazone may be associated with additional cardiovascular risk in 

patients with Type 2 diabetes mellitus. This was related to a recent meta-analysis suggested an 

increase in adverse cardiovascular outcomes in patients randomised to rosiglitazone compared to 

any other treatment (Nissen et al 2007). The meta-analysis included 42 randomised trials (duration 

of 24 weeks or more) and found that randomisation to metformin was associated with a significant 

(p=0.03) increase in the risk of myocardial infarction of 43%, while a 64% increase in 

cardiovascular death just failed to reach statistical significance (p=0.06). The meta-analysis was 

limited, however, by a small event rate and the inclusion of a number of small trials. Following 

publication of this meta-analysis, the European Medicines Evaluation Agency (EMEA) for 

Medicinal Products for Human Use adopted a scientific opinion in January 2008 recommending the 

inclusion of a new warning stating that the use of rosiglitazone in patients with ischaemic heart 

disease and/or peripheral arterial disease is not recommended. In the Unites States, the Federal Drug 
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Administration (FDA) also issues a “black box” warning stating that the drug could increase the 

risk of heart attacks.  

 

Until very recently, no adequately powered randomised cardiovascular morbidity and mortality trial 

evaluating rosiglitazone has been published. The largest randomised examining the effects of 

rosiglitazone on cardiovascular morbidity and mortality has now been published (Home et al 2009). 

Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes 

(RECORD). The results of the trial were largely consistent with those of a non pre-specified interim 

analysis published in 2007 (Home et al 2007). In the trial's 4447 patients with type 2 diabetes, who 

were randomized to receive either rosiglitazone on top of either metformin or sulphonylurea 

(n=2220) or a metformin and sulphonylurea combination (n=2227), the rate of cardiovascular 

hospitalisation or death from cardiovascular causes was 14.5% in both groups over a mean follow-

up of 5.5 years. The rosiglitazone versus active control hazard ratio (HR) for that primary end point 

met RECORD's prospectively stated criteria for non-inferiority. There were no significant 

differences between the groups in risk of the individual end points of cardiovascular death, 

myocardial infarction, or stroke, although the HR for myocardial infarction was elevated by a non 

significant 14% in the rosiglitazone group.  

 

As previously documented in the PROactive study, there was increase in the incidence of heart 

failure with a HR of 2.10 (1.35–3.27, p=0.001). This data were supported in a recent meta-analysis 

that reported that TZDs increased the risk of developing heart failure (relative risk, 1.72, P=0.002) 

(Lago et al 2007). It was, however, acknowledged that the RECORD study had limited statistical 

power for individual components of the primary end point because it was not designed to address 

these questions. In addition, the risk of any bone fracture was increased with rosiglitazone by 57% 

(p<0.0001) overall and by 82% in women and 23% in men. The authors stated the rosiglitazone is 
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not recommended for patients with a history of heart failure or with previous problems that might 

have led to myocardial dysfunction and recommended that rosiglitazone should be used with 

caution in women at high risk of fractures. They also acknowledged that although the evidence was 

insufficient to rule out a small increased risk of myocardial infarction caused by rosiglitazone when 

compared with other glucose-lowering agents, rosiglitazone does not increase overall cardiovascular 

morbidity or mortality. It is clear that the molecular mechanisms by which rosiglitazone and other 

thiazolidinediones have their effects on the cardiovascular system are complex and it remains to be 

seen if either the EMEA or the FDA review their position on the cardiovascular safety of 

rosiglitazone following the publication of the RECORD data. 
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1.8 Objectives 

Biguanides and thiazolidinediones are widely used in the treatment of Type 2 diabetes but the site 

and precise mode of their action remain uncertain. The prevalence of Type 2 diabetes is reaching 

epidemic proportions and there is a growing need for new therapeutic targets. AMPK is a novel 

therapeutic target and the development of specific tissue specific AMPK activators is an attractive 

prospect for the future. The aims of this thesis are: 

 

i. To determine if metformin improves vascular endothelial function in 

association with lower circulating concentrations of ADMA.  

ii. To determine if metformin exerts beneficial metabolic effects in patients with 

T2DM in association with altered AMPK activity in human adipose. 

iii. To determine if insulin sensitizers such as metformin and the 

thiazolidinediones, acting directly on vascular endothelial cells, increase NO 

production by increasing AMPK activity thus accounting for beneficial effects 

on endothelial function and, in metformin’s, case cardiovascular outcome. 
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Chapter 2 Materials and Methods 
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2.1 Materials 

All reagents used were of the highest quality available and were obtained from the following 

suppliers: 

 

2.1.1 General Reagents 

Acros Organics, Loughborough, Leicestershire, UK 

Glacial acetic acid (nitrogen flushed) 

Sodium iodide (nitrogen flushed) 

Sodium nitrite 

 

Amersham Biosciences, Little Chalfont, Buckinghamshire, UK 

Amersham ECL Western Blotting detection kit 

Protein G Sepharose  

 

Axxora UK Ltd, Nottingham, UK 

GW9662  

 

BDH Laboratory Supplies, Poole, Dorset, UK 

Calcium chloride 

Coomassie Brilliant Blue G -250 

Disodium hydrogen phosphate 

Magnesium sulphate 

Orthophosphoric acid 

Potassium chloride 

Sodium dihydrogen orthophosphate 



93 

 

93 

 

Sodium dodecyl sulphate (SDS) 

Sodium pyrophosphate 

 

Calbiochem, Beeston, Nottingham, UK 

A23187 (from Streptomyces chartreusensis) 

 

Fisher Scientific, Loughborough, Leicestershire, UK 

Dimethylsulphoxide (DMSO) 

Ethanol 

D-Glucose 

Glycine 

4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES) 

Methanol 

Potassium dihydrogen phosphate 

Tris (hydroxymethyl) -aminothane (Tris base) 

 

GlaxoSmithkline Stevenage, UK 

Rosiglitazone was a generous gift from Dr Phil Amberry 

 

Melford Laboratories Ltd, Chelsworth Ipswich, UK 

Dithiothreitol (DTT) 

 

National Diagnostics, Hull, UK 

Ecoscint™ A scintillation solution 
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Riedel de Häen, Seelze, German 

Ammonium persulphate 

Ethylenediamine tetraacetic acid (EDTA) 

Glycerol 

Sodium hydrogen carbonate 

 

Schleicher & Schuell, Brunswick Way, London, UK. 

Protran Nitrocellulose membrane 

Whatman 3MM Filter paper 

Whatman P-81 phosphocellulose paper 

 

Severn Biotech Ltd., Kidderminster, Worcestershire, UK 

30% (w/v) Acrylamide (Acrylamide to Bis-Acrylamide ratio 19:1) 

 

Sigma-Aldrich Chemical Company Ltd., Poole, Dorset, UK 

Adenosine 5’-triphosphate (ATP) 

L-arginine 

Benzamidine 

Bovine serum albumin (BSA) 

Brij-35 

Bromophenol blue 

Caesium chloride 

Ethylene glycol-bis (a -aminoethylether)-N,N,N’,N’-tetra acetic acid (EGTA) 

D-Mannitol 

NG-Nitro-L-Arginine Methyl Ester (L-NAME) 
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N,N,N’,N’,-tetramethylethylenediamine (TEMED) 

Oxypurinol 

Phenylmethylsolfonyl fluoride (PMSF) 

Sodium chloride 

Sodium fluoride 

Sodium orthovanadate 

1:1 tri-n-octylamine 

Triton X-100 

Trypsin inhibitor, from soyabean (SBTI) 

Tween 20 

Wortmannin 

Metformin 

Phenformin 

 

2.1.2 Antibodies 

The following antibodies were used in this study, with the conditions used for immunoblotting 

included. 

 

Cell Signalling Technology, Hitchin, Hertfordshire, UK. 

 

Anti-phospho-AMPKα (Thr172), catalogue number 2531. A rabbit polyclonal antibody raised 

against a synthetic phospho-peptide (KLH-coupled) corresponding to residues surrounding Thr172 

of human AMPK-α. The antibody detects levels of both human α-1 and α-2 isoforms of the 

catalytic subunit (diluted 1: 1000 in 5% w/v BSA, incubated at 4°C overnight). 
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Anti-phospho-Acetyl-CoA carboxylase (Ser 80), catalogue number 3661. A rabbit polyclonal 

antibody raised against a synthetic phospho-peptide (KLH-coupled) corresponding to residues 

surrounding Ser80 of human Acetyl CoA carboxylase (diluted 1: 500 in 5% w/v milk powder 

solution, incubated at 4°C overnight). 

 

Anti-phospho-eNOS (Ser1177), catalogue number 9571. A rabbit polyclonal antibody raised 

against a synthetic phospho-peptide (KLH-coupled) corresponding to residues surrounding Ser1177 

of human eNOS, (diluted 1: 1000 in 5% w/v BSA, incubated at 4°C overnight).  

 

Sigma-Aldrich Chemical Company Ltd., Poole, Dorset, UK 

 

Anti-Endothelial Nitric Oxide Synthase, catalogue number N2643. A rabbit antibody raised 

against a synthetic peptide (KLH-coupled) corresponding to amino acids 596-609 of the bovine 

eNOS sequence. The immunogenic sequence is identical to the human eNOS sequence, (diluted 1: 

5000 in 1% w/v BSA, incubated at 4°C overnight). 

 

Upstate Cell Signaling Solutions, Lake Placid, New York. 

 

Anti-PKBα, catalogue number 07-416. A rabbit polyclonal antibody raised against a 15 residue 

synthetic peptide (C -RPHFPQFSYSASGTA) corresponding to the C-terminal residues (466-480) 

of rat PKBα (this sequence is strongly conserved in humans). The antibody has species cross-

reactivity with human PKBα, (diluted 1: 1000 in 5% w/v BSA, incubated at 4°C overnight). 
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Anti-phospho-eNOS (Thr495), catalogue number 07-384. A rabbit antibody raised against a 

synthetic phosphopeptide (KLH-coupled) corresponding to amino acids 489-501 

 

Sheep subunit isoform specific anti-AMPKαααα1 and anti-AMPKαααα2 antibodies were a generous 

gift from Prof Grahame Hardie, University of Dundee, and have been described previously (Woods 

et al., 1996), (diluted 1: 1000 in 5% w/v milk powder solution, incubated at 4°C overnight) 

 

2.1.3 Radioactive materials 

Amersham Pharmacia Biotech, Little Chalfont, Buckinghamshire, UK 

[γ-
32

P] adenosine 5’-triphosphate 

 

2.1.4 Peptides 

SAMS peptide (HMRSAMSGLHLVKRR) was purchased from Pepceuticals Ltd, 

Nottingham, UK. 

 

2.1.5 Adenoviruses 

Control and dominant negative AMPK adenovirus (Ad.α1-DN)
 
were a generous gift from Dr 

Fabienne Foufelle, Paris, France and have been described previously (Morrow et al., 2003).  

 

2.1.6 Cell Culture Plastics 

Corning, NY, USA 

Costar® 25ml, 10ml, 5ml, 1ml sterile pipettes 

75cm
2
 tissue culture flasks 

150cm
2
 tissue culture flasks 

Falcon, Becton Dickinson Labware, Franklin Lakes, NJ, USA 
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6-well tissue culture plates 

12-well tissue culture plates 

100mm tissue culture plates 

 

2.1.7 General Buffers 

 

ECL reagent protocol: Solution a: 0.1M Tris-HCl (pH 8.5), 2.5mM Luminol, 80nM Coumaric 

acid. Solution b: 0.1M Tris-HCl (pH 8.5), 0.06% (v/v) hydrogen peroxide. 

 

Electrode buffer: 25mM Tris, 192mM glycine, 0.1% (w/v) SDS 

 

HEPES-Brij buffer: 50mM HEPES-NaOH, pH 7.4, 1mM DTT, 0.02% (v/v) Brij 35 

 

IP buffer: 50mM Tris -HCl, pH 7.4 at 4°C, 150 mM NaCl, 1% (v/v) Triton X-100, 1% (v/v) 

glycerol, 50mM NaF, 5mM Na4P2O7, 1mM Na3VO4, 1mM EDTA, 1mM EGTA, 1mM DTT, 

Complete protease inhibitor cocktail. 

 

KRH buffer: 119mM NaCl, 20mM Hepes-NaOH pH 7.4, 5mM NaHCO3, 4.8mM KCl, 2.5mM 

CaCl2, 1.2mM MgSO4, 5mM Glucose, 1.2mM, NaH2PO4, 0.1mM arginine 

 

Wire Myography buffer (KPSS): 118.4mM KCl, 1.2mM MgSO4, 24.9mM NaHCO3, 2.5mM  

CaCl2, 11.1mM glucose, 0.023mM EDTA pH 7.4. 
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Lysis buffer: 50mM Tris -HCl pH7.4 at 4°C, 50mM NaF, 1% (v/v) Triton X-100, 250mM 

mannitol, 1mM Na4P2O7, 1mM Na3VO4, 1mM EDTA, 1mM EGTA, 1mM DTT, Complete 

protease inhibitor cocktail. 

 

Biopsy collection buffer (PSS): 118.4mM NaCl, 4.7mM KCl, 1.2mM MgSO4, 24.9mM NaHCO3, 

2.5mM CaCl2, 11.1mM glucose, 0.023mM EDTA pH 7.4. 

TBS: 20mM Tris-HCl pH 7.4, 137 mM NaCl 

 

TBST: 20mM Tris-HCl pH 7.4, 137 mM NaCl, 0.1% (v/v) Tween-20 

 

Transfer Buffer: 25mM Tris, 192mM glycine, 20% (v/v) methanol 

 

4 x sample buffer: 200mM Tris-HCl (pH 6.8), 400mM DTT, 8% (w/v) SDS, 0.4% 

(w/v) bromophenol blue, 40% (v/v) glycerol 
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2.2 Methods 

 

2.2.1 Identification and recruitment of subjects 

Twenty men with Type 2 diabetes (duration > 6 months) were recruited from Diabetes Clinics of 

the North Glasgow University National Health Service Trusts. North Glasgow University Hospitals 

National Health Service Trust ethics committee approved the study. After full explanation of 

experimental procedures aided by a subject information sheet, written informed consent was 

obtained. Each subject was issued with details of the study as well as the investigators’ contact 

telephone numbers. The subject’s General Practitioner was informed of their involvement in the 

study. The inclusion and exclusion criteria for the study are outlined below:  

 

Inclusion criteria:  

BMI range 27-40 kg/m
2 

HbA1c > 7%, <11% (DCCT) at screening 

Previously treated with diet alone or oral monotherapy (i.e. metformin or sulphonylurea). Subjects 

on monotherapy had discontinued medication during the six-week run-in period 

 

Exclusion criteria:  

Subjects on warfarin treatment 

Subjects treated with insulin currently or in the previous 12 months 

Previous intolerance of metformin or sulphonylurea 

Presence of contra-indication to metformin therapy for example renal disease or congestive cardiac 

failure 

 

 



101 

 

101 

 

2.2.2 Study protocol   

 

2.2.2.1 Study design 

The study had a randomised, double blind, glycaemia-controlled crossover design (Figure 2.1). 

Patients on monotherapy discontinued medication during a six-week run-in period. After this 

period, patients were randomised to receive metformin (500mg three times daily) or gliclazide 

(80mg twice daily with a lunchtime placebo capsule to ensure blinding) for ten weeks, aiming for a 

similar reduction in HbA1c. Each drug had a two week dose titration as follows:  

 

Week 1: Gliclazide 80mg once daily with breakfast, metformin 500mg once daily with breakfast. 

 

Week 2: Gliclazide 80mg once daily with breakfast + dummy capsule at lunch, metformin 500mg 

twice daily with breakfast and lunch. 

 

Week 3 – 10: Gliclazide 80mg twice daily at breakfast and evening meal + dummy capsule at 

lunch, metformin 500mg three times daily with breakfast, lunch and evening meal. 

 

Subjects were asked to inform the investigators of any medication started or discontinued during 

the study period. No specific advice on lifestyle was given at the time of randomisation.  

 

Study randomisation 

Randomisation and tablet supply was co-ordinated by the hospital pharmacy. Metformin and 

gliclazide capsules of identical appearance were manufactured by the Western Infirmary pharmacy, 

Glasgow. A computerised
 
randomisation list was made. Randomisation codes were put into

 
sealed 

envelopes and stored by the pharmacist of the Western Infirmary, Glasgow. Medication bottles 
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were numbered, and allocation
 
was done in sequence. Unblinding was performed at the end of the

 

study period. 

 

Subject visits 

The study required subjects to attend the Clinical Investigation and Research Unit (CIRU), 

Division of Cardiovascular Sciences, Western Infirmary, University of Glasgow on a total of nine 

occasions: 

 

Week 0 - Screening visit 

Week 1 - Start of phase 1 

Week 5 - Interim visit 

Week 10 - End of phase 1 (with biopsy) 

Week 12 - Stitch removal 

Week 16 - Start of phase 2 

Week 21 - Interim visit 

Week 26 - End of phase 2 (with biopsy) 

Week 28 - Stitch removal 

 

Patients were contacted by telephone at two weeks and attended the CIRU for a brief assessment at 

five weeks during each phase to check on any side effects and to assess glycaemic control. Any 

patient with significant osmotic symptoms or a fasting blood glucose of >15mM would have been 

withdrawn from the study. Patients were then required to attend the CIRU at 0830hrs at the end of 

the ten week study phase having fasted from midnight (and having abstained from alcohol, caffeine 

and moderate/heavy exercise in the preceding 72 hours) for clinical measures, adipose biopsy and 

blood sampling for biochemical analysis. Taxis were available to transfer volunteers to and from 
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the CIRU. Snacks were provided at the CIRU when the study protocol was completed. Following a 

six-week washout phase, the groups were crossed over (Figure 2.1).  

6 weeks 10 weeks 10 weeks6 weeks

washout

metformin 500mg TDS metformin 500mg TDS

gliclazide 80mg BD gliclazide 80mg BD

Clinical measures
Blood sampling

Clinical measures
Blood sampling

 
Figure 2.1: Crossover design 

 

2.2.2.2 Clinical and morphometric measurements 

 

2.2.2.2.1 Body mass index 

Body weight was measured using
 
analogue scales (Seca, Germany) to within 1kg in light clothing 

without shoes.
 
The weighing scales were calibrated regularly. Height was measured barefoot using 

a stadiometer to within 0.5
 
cm. BMI was calculated as follows: weight (kg)/height(m)

2
.  

 

2.2.2.2.2 Blood pressure 

Blood pressure recordings were taken by a semiautomatic sphygmomanometer (Dinamap Critikon, 

Johnson and Johnson Professional Products Ltd,
 
Bracknell, UK) at screening and the end of each 
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ten week phase. Readings were taken supine after thirty minutes rest. The average of 3 

measurements was calculated.  

 

2.2.2.3 Clinical procedures 

 

2.2.2.3.1 Buttock biopsy 

Subjects were invited to attend the CIRU at 0830, having fasted from midnight. With the subject 

lying prone, one buttock was exposed and the area sterilised with 10% (v/v) iodine. A strict aseptic 

technique was employed. 1% lignocaine hydrochloride was then instilled subcutaneously to cover 

an area of 6cm x 4cm. Once the area was anaesthetised, an elliptical incision was made in the 

buttock and a 3cm x 0.75 cm segment of skin and a diamond shaped segment of adipose tissue was 

removed. A 2g portion of adipose tissue was cut from the margin of the specimen, snap frozen in 

liquid nitrogen and stored at –70
o
C. Four skin stitches were then inserted to close the wound. The 

volunteer was then given a light meal and asked to refrain from exertion for five days while 

keeping the wound clean. Ten days later the stitches were removed. 

 

2.2.2.3.2 Analysis of routine blood samples  

Fasting venous blood samples for urea, creatinine, electrolytes, total cholesterol, triglycerides, 

HDL-cholesterol, LDL-cholesterol, glucose, liver function tests and HbA1C were collected  

between 0830hrs and 0930hrs from the antecubital fossa and placed immediately into the 

appropriate containers. Patients were in a recombinant position for at least ten minutes prior to the 

procedure. The samples were then analysed as routine samples in the Biochemistry Department, 

Gartnavel General Hospital, Glasgow.  
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2.2.2.3.3 Analysis of non-routine blood samples 

Venous blood was collected between 0830hrs and 0930hrs into EDTA-containing tubes, centrifuged 

(500 x g, 4
o
C) and plasma removed into microcentrifuge tubes and stored at -70

o
C until analysis. 

Total adiponectin was determined
 

using ELISA (R&D Systems, Abingdon, UK). Plasma 

concentrations of ADMA and related arginine metabolites were measured using an optimized and 

fully validated HPLC method, based on that previously described (Teerlink 2005), with certain 

modifications as recently described (Blackwell et al 2007). All assays were performed at the 

Biochemistry department at Glasgow Royal Infirmary under the direction of Professor Naveed 

Sattar.  

 

2.2.2.3.4 Pulse wave velocity (PWV) 

A relatively simple and direct measure of arterial stiffness, PWV is determined by measurement of 

the time taken for the pulse wave to traverse the distance between two fixed measuring points. The 

PWV is therefore derived as: 

 

distance [m] / time [s], in m/s.  

 

There are a number of potential confounding factors to be considered when measuring the PWV. 

The measurement required is of the velocity of the forward wave, and reflected waves may interfere 

with the accuracy of the calculation. Measurements must therefore be taken from the foot of the 

waveform (the upstroke of the pressure wave), which is generated entirely by the forward wave. 

Another potential problem is the accuracy of measurement of the distance between measuring 

points. Out of necessity, the measurement (using standard techniques) is an approximation of the 

actual distance, as the actual length of the artery cannot be measured. This particular problem is 

addressed with new techniques for the measurement of PWV, using magnetic resonance imaging 
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(MRI) (Mohiaddin et al 1993 and MacGowan et al 2002). Such techniques may become less 

constrained by time, expense and portability in the future and therefore more widely useable. A 

simple and well-established method of measurement of the PWV is to use a semi-automated device 

for analysis of the pressure waveforms at the two measurement sites (Asmar et al 1995). The 

upstroke of the wave is identified at each of these sites, and the time between the two upstroke 

points is measured. Once the distance between measuring points has been identified and entered, the 

velocity of the pulse wave is calculable by the software.  

 

An advantage of this method of PWV measurement over some of the available derived techniques 

(in which different pulse waves are measured at the same relative point in the cardiac cycle using 

ECG gating of data acquisition) is that the pressure waves measured at each point stem from the 

same ventricular systolic contraction. This eliminates potential errors arising from beat-to-beat 

variability of cardiac output and consequent variability of the pulse wave morphology. This directly 

observed method of PWV measurement has been used to demonstrate that an increase in PWV is 

observed in subjects with hypertension (Blacher et al 1991, Asmar et al 2001), polycystic ovary 

syndrome (Kelly et al 2002), diabetes (Lehmann et al 1992), atherosclerosis (Wada et al 1994), 

end-stage renal failure (London et al 2000) the elderly (Meaume et al 2001) and even acutely after 

smoking a single cigarette (Mahmud et al 2003).  

 

In this thesis pulse wave velocity was assessed by using SphygmoCor which uses the principle of 

applanation tonometry to record the pulse waveform at radial and carotid sites. This technique is 

non-invasive and extremely well tolerated. Total duration of the PWV protocol is around 20-30 

minutes and it was performed after each ten week phase of treatment in a temperature controlled 

room at 23
O
C. A minimum of three readings were taken on each study day. After allowing the 

volunteer to rest prone for 15 minutes, a highly-sensitive TY-306 pressure transducer (Fukuda Co, 
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Tokyo, Japan) was applied lightly to the radial artery, enough to flatten the arterial wall but not to 

occlude blood flow. A stable pressure flow waveform was sampled for 10 seconds. Brachial artery 

blood pressure was measured concurrently by a semi-automated oscillometric device. An aortic 

waveform was then generated using validated transfer functions. By combining measurement of 

waveforms from carotid and femoral sites in conjunction with ECG input and a measurement of the 

distance between the two sites, pulse wave velocity can also be calculated. PWV was calculated by 

an automated device from the measurement of the pulse transit time and the distance between the 

two recordings sites at the carotid and femoral arteries [PWV = distance(m)/transit time(s)] 

 

2.2.2.4 Laboratory procedures  

 

2.2.2.4.1 Wire myography 

 

2.2.2.4.1.1 Introduction 

A technique for the investigation of the properties of small arteries with diameters down to 

approximately 100 µm was first suggested in 1972 by Bevan and Osher (Bevan and Osher 1972). 

This technique was developed by Mulvany and Halpern, with the method for investigation of a 

single vessel of diameter 100 – 1000 µm being published in 1977 (Mulvany and Halpern 1977). 

Over subsequent years this technique has been developed to allow investigation of initially two, and 

then four vessels simultaneously. This technique allows small vessels to be mounted as cylinder or 

ring preparations, using a relatively atraumatic technique to preserve vascular endothelial functional 

integrity. The technique allows measurement of isometric responses (Mulvany 1999, Angus 2000) 

and is termed Mulvany-Halpern (wire) myography.  
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2.2.2.4.1.2 Preparation of arteries  

A single investigator, Angela Spiers, was blinded to treatment allocation,
 
and undertook all 

myography studies. After the gluteal biopsy was dissected it was placed immediately in biopsy 

collection buffer (PSS) prewarmed to 37
o
C and transported to the laboratory. In the myography 

laboratory, resistance arteries were dissected from the biopsy. Where possible, four segments of 

artery, (200-400 µm diameter and 2mm in length) were mounted as ring preparations on two 40 

µm stainless steel wires in a four-channel small vessel myograph.  (Danish MyoTechnology, 

Aarhus, Denmark). One wire was attached to an isometric force transducer and the other to a 

movable micrometer. The vessels were then bathed twice in a physiological salt solution, KPSS 

(PSS solution with KCL substituted for NaCl on an equimolar basis). The temperature was 

maintained at 37
 o

C, and pH maintained at 7.4, with a gas mixture of 5% (v/v) CO2 and 95%(v/v) 

O2 being bubbled throughout the experiment.  

 

2.2.2.4.1.3 Normalization of vessels  

Following a rest period of 30 minutes, each artery was stretched at one minute intervals to 

determine the resting tension-internal circumference (L) relationship. The La Place equation P=T/r 

(P is the effective pressure, T is the wall tension and r is the internal radius), was used to determine 

L100. This is the calculated internal diameter of the vessel would have in vivo when relaxed and 

subjected to a transmural pressure of 100mmHg (13.3Kpa). To achieve optimal contraction, each 

vessel was then set to the normalised internal diameter L1 = 0.9L100.  

 

2.2.2.4.1.4 Wire myography protocol 

Small vessel myography is now an established technique used
 
in the measurement of small vessel 

contractility and relaxation,
 
particularly in response to vasoactive agents. The measurement

 
of 

insulin-mediated vasorelaxation by assessing its effect on
 
NE-induced vasoconstriction has been 
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described previously by
 

our own and other groups.
 

Following the normalisation procedure 

described above, the vessels were maintained in physiological salt solution (PSS) at 37
o
C for a 

further 60 minutes. The vessels were then exposed twice to KPSS (PSS solution with KCL 

substituted for NaCl on an equimolar basis). Vessels were subsequently incubated in PSS for 30 

min (washout) before a cumulative concentration response curve (CRC) to norepinephrine (NE) 

from 10
-9

 M to 3x10
-5

 M was obtained.  After a further 30 min washout, a plateau contraction was 

obtained with 10
-5µM NE before a CRC to acetylcholine (ACh) from 10

-9
 M to 3 x 10

-5
 M was 

performed. In this manner, a quantitative assessment of endothelium-dependent vasodilation can be 

obtained. Studies in our laboratory have previously shown that insulin causes relaxation of 

resistance arteries, and that this is attenuated in vessels from insulin resistant subjects (Kelly et al 

2002). Accordingly, CRC to NE was repeated following incubation with insulin (1nM, 1h). Finally 

vessels were pre-incubated with insulin as before with the addition of 1mM L-NMMA to all 

vessels. A final concentration curve to NE was then obtained. 

 

2.2.2.4.1.5 Wire myography analyses 

In this thesis, one parameter was used to compare myography data between phases. Responses are 

expressed as a vessel contraction response, the change in active effective pressure (kPa), calculated 

as change in isometric tension from resting divided by the normalised internal radius, pD2 (which is 

the negative logEC50 of the concentration of agonist (norepinephrine) required to produce 50% of 

the maximal contractile response for 1uM norepinephrine). 
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2.2.2.4.2 Cell culture 

 

2.2.4.2.1 Preparation of HAEC media 

HAECs were cultured in large vessel endothelial cell growth medium supplemented with 

amphotericin B, gentamicin and an endothelial cell supplement (containing foetal bovine serum, 

heparin, human epidermal growth factor, human basic fibroblast growth factor, and 

hydrocortisone), supplied by TCS Cellworks (Boltolph Claydon, Buckinghamshire, UK). Media 

was prepared by mixing the components together and equilibrating at 37°C, 95% air and 5% CO2 in 

a humidified incubator for a minimum of 40 minutes. The final serum concentration of the media 

was 2% (v/v) and the glucose concentration was 5mM. 

 

2.2.4.2.2 Growth of HAECs 

Cryopreserved HAECs (approximately 500,000 cells per vial) from either TCS Cellworks or 

Promocell (Heidelberg, Germany) were rapidly thawed at 37
o
C and seeded into 10 x 25cm

2
 flasks 

containing 4ml/flask of prepared medium. The media was changed after 24 hours, and every 48 

hours thereafter. The cells were maintained at 37°C, 95% air and 5% CO2 in a humidified incubator 

and passaged at 70% confluence. 

 

2.2.4.2.3 Passage of HAECs 

Media was discarded and replaced with 4ml/flask 0.05% (w/v) Trypsin-EDTA (InvitrogenTM). 

Flasks were returned to the humidified incubator for 1 minute, and subsequently lightly tapped to 

aid cell detachment. Complete medium (4ml) was added to the flasks and the resultant suspension 

was transferred to 50 ml centrifuge tubes. The cell suspension was centrifuged for 5min at 157g 

and the supernatant discarded. The cells were resuspended in medium and distributed equally 

between the desired number of plates or flasks. On average the cells from one confluent 75cm
2
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flask were seeded into 5 x 10cm dishes. The medium was replaced 24 hours after trypsinisation, 

and every 48 hours thereafter. HAEC were utilised for experiments between passages 3 and 6. In no 

instances were cells used after passage 6. 

 

2.2.4.2.4 Quiescence of HAECs 

Cells were quiesced for 3-6 hours prior to experiments. Medium containing no endothelial 

supplement, gentamicin or amphotericin B was used during this time. 

 

2.2.4.2.5 Measurement of nitric oxide production in HAECs 

 

2.2.4.2.5.1 Detection of nitric oxide  

NO production was measured in cell culture media as follows. The detection of NO using the 

Sievers 280A Nitric Oxide Analyser is based on the reaction of NO  with dissolved oxygen to form 

nitrite (NO2
-
) and nitrate (NO3

-
) in liquid, with nitrite being the predominant product in cell culture 

systems. The Sievers 280A analyser determines the amount of NO produced from the amount of 

nitrite present in the liquid sample injected into the purge vessel. Under the reducing conditions in 

the purge vessel (see Figure 2) NO2
-
 is reduced to form NO. The reducing agent was prepared by 

dissolving 60mg of sodium iodide in 2ml of deionised water. This was added to 4ml of nitrogen 

flushed acetic acid in the purge vessel and nitrogen gas was bubbled through to purge the NO 

present from solution.  

 

I
- 
+ NO2

-
 + 2H

+
          NO + ½ I2 + H2O 

 

Figure 2.2 Nitrite is reduced to form Nitric oxide  
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The chemical reaction between sodium iodide and acetic acid results in reducing conditions that 

cause the reduction of nitrite (NO2
-
) to NO in the liquid sample injected into the meter’s purge 

vessel.  

 

A photomultiplier measures any chemiluminescence that has resulted from the reaction of ozone 

with the NO produced in the purge vessel and produces a signal. This signal is converted to an 

electrical potential and displayed in mV by the NO analyser. The electrical potential displayed is 

related to the amount of nitrite present in the original liquid sample injected into the purge vessel. 

On each day of sample analysis a standard curve was prepared. A standard solution of 100mM 

NaNO2 stock was prepared using deionised water and serial dilutions were made to give 10nM, 

100nM, 1µM and 10µM standards. A calibration curve was generated from the amount of NO 

produced from the reduction of nitrite present in the standard solutions. HAEC culture medium of 

unknown nitrite concentration was analysed against this standard curve by computer analysis and 

the amount of NO present determined (in nM). 

 

2.2.4.2.5.2 Preparation of adenoviruses and infection of human endothelial cells 

Control and Dominant negative AMPK adenovirus (Ad.α1-DN)
 
were a generous gift from Dr 

Fabienne Foufelle, Paris, France and were propagated and purified as described previously 

(Morrow et al 2003).  Human endothelial cells were infected with 10 pfu/cell adenovirus in 

complete medium and the cells cultured for
 
48 h prior to experimentation.  

 

2.2.4.2.5.3 Sample preparation for NO analysis 

HAECs cultured in 12-well plates were quiesced (section 2.2.4.2.4), the media subsequently 

removed and cells incubated in 0.5 ml/well KRH buffer in a 37°C water bath for 1h. The medium 

was then removed and replaced with fresh KRH buffer (0.5 ml/well) in the presence of various 
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concentrations of test substances (metformin, phenformin and rosiglitazone). An 80µL sample was 

taken to ascertain a basal level of NO in the cell media. After incubation for various durations with 

metformin, phenformin or rosiglitazone, 80µL samples of media were removed and the amount of 

NO determined. The appropriate control experiments were performed in the presence of the eNOS 

inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 0.1 mM for 1 hour), calcium ionophore 

(A23187, 3 µM for 15 minutes) and insulin (1µM for 15 minutes). The dose of L-NAME used in 

all experiments is similar to the physiological plasma concentration of L-arginine (Goumas et al 

2001). The dose and duration of A23187 and insulin stimulation was based on previous 

investigations in our laboratory (Morrow et al 2003). Data is presented as L-NAME-sensitive NO 

synthesis as a percentage difference in NO between the basal and stimulated HAEC media.  

 

2.2.4.2.6 General methods 

 

2.2.4.2.6.1 HAEC lysate preparation 

HAECs cultured in 100mm dishes were quiesced for 3 - 4 hours at 37°C, 95% (v/v) air, 5% (v/v) 

CO2, in serum free medium. The medium was replaced with 5ml KRH buffer and cells placed in a 

37°C incubator for 1hour. The medium was replaced with 5 ml of fresh
 
KRH buffer containing 

metformin, phenformin or rosiglitazone and incubated for various
 
durations at 37°C. The medium 

was replaced with 0.5 ml of lysis buffer (see section 2.1.7). The cell extract was then scraped off 

and transferred to a microcentrifuge tube. Extracts were
 
vortex-mixed and centrifuged (17530g, 

4°C, 3 minutes). The supernatants were then stored at -20°C prior to use. 

 

2.2.4.2.6.2 Adipose tissue lysate preparation 

From the gluteal adipose sample approximately 2g was snap frozen in liquid nitrogen and stored in 

–80
o
C.  When all samples had been collected the samples were thawed for batch analysis. Adipose 
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lysates were prepared as follows. 0.5ml of lysis buffer (section 2.1.7.) was added to each 

microcentrifuge tube and then the tissue was homogenised by 20 passes with a Dounce 

homogeniser. Homogenates were then centrifuged at 805g at 4
o
C for 5 minutes. The resulting 

infranatant was aspirated and stored at –80
o
 prior to use. The resultant supernatant and pellet was 

discarded.  

 

2.2.4.2.6.3 Gel electrophoresis 

Endothelial cell lysates were resolved on sodium dodecyl sulphate (SDS)/polyacrylamide gel 

electrophoresis (SDS-PAGE), carried out using the Bio-Rad mini-protean II system. The resolving 

gel consisted of approximately 10% acrylamide (percentage can vary depending on the molecular 

mass of the protein under study), 375mM Tris - HCl (pH 8.8), 0.1% (w/v) SDS, polymerised with 

0.1% (w/v) ammonium persulphate and 0.05% (v/v) TEMED. The stacking gel consisted of 5% 

acrylamide, 125mM Tris - HCl (pH 6.8), 0.1% (w/v) SDS, polymerised with 0.1% (w/v) 

ammonium persulphate and 0.05% (v/v) TEMED. Lysate samples were mixed with 4 x sample 

buffer, and heated at 95°C for 5 minutes. Samples were loaded into the wells in the stacking gel. 

Broad range pre-stained molecular weight markers (15µl, New England Biolabs) were added to a 

minimum of one well. Gels were immersed in electrode buffer and proteins were resolved using a 

potential difference of 80V through the gel. Once the protein samples had passed through the 

stacking gel a constant voltage of 100V - 150V was applied (generally 120V). 

 

2.2.4.2.6.4 Immunoblotting 

After gel electrophoresis, proteins were transferred to nitrocellulose using the Bio-Rad trans-blot 

apparatus. Nitrocellulose and Whatmann 3MM filter paper was cut to size using scissors and a ruler 

and then equilibrated in transfer buffer. The gel was laid on the nitrocellulose and sandwiched 
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between 2 sheets of filter paper and 2 sponges. This was placed in a transfer cassette and transfer of 

proteins was carried out at 400mA for 2 hours or 40mA overnight in a transfer tank.  

 

2.2.4.2.6.5 Immunodetection of proteins 

Nitrocellulose membrane was incubated with TBST containing 5% (w/v) non-fat milk powder, for 

1 hour at room temperature to block non-specific binding sites. The membrane was washed 3 times 

over 15 minutes with TBST before the primary antibody was added. The concentration of primary 

antibody was determined by the manufacturer’s data sheet and was diluted to the required 

concentration in TBST containing either milk powder or BSA. The nitrocellulose was incubated 

with shaking with the antibody as determined by manufacturer data sheet but typically this was at 

4°C overnight. After the incubation with primary antibody was completed, the nitrocellulose was 

washed 3 times with TBST and the nitrocellulose incubated with secondary antibody for at least 1 

hour. The secondary antibody used were species specific and HRP-linked raised to the (tail) Fc-

region of the primary antibody IgG molecule, and were used at a 1:2000 dilution in TBST 

containing 5% (w/v) non-fat milk powder. After incubation with the secondary antibody was 

completed, the nitrocellulose was again washed 3 times with TBST and twice with TBS. 

Immunolabelled proteins were visualised using the ECL (enhanced chemico-luminescence, section 

2.1.7) system. Solution 1 (2ml) was added to solution 2 (2ml), mixed, and incubated with the 

nitrocellulose for 1 minute. The nitrocellulose was exposed to film in an X-ray cassette and 

developed using a Kodak X-Omat S film processor. The films were then underwent densitometric 

analysis using NIH image software (Scion Image).  
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2.2.4.2.6.6 Immunoprecipitation of AMPK from lysates 

AMPK was immunoprecipitated from endothelial cell and adipose tissue lysates using isoform-

specific anti-AMPK antibodies. AMPKα1 and α2 subunit) antibodies (2µg / lysate) was pre-bound 

to 10µl per sample of 25% (w/v) protein G Sepharose in IP buffer (section 2.1.7) by incubation for 

1 h at 4 °C on a roller mixer. The mixture was then centrifuged (17530g 1min; 4 °C) and the bead 

were washed with 5 x 1 ml of IP buffer prior to the addition of the lysate (100µg). Beads and lysate 

were incubated together for 2 hours at 4°C. Beads were again washed 2 times in IP buffer and 2 

times with high salt IP buffer (containing 1M NaCl ) then a final wash with HEPES-Brij assay 

buffer. All washes were at 4°C. The final pellet was then resuspended in HEPES-Brij assay buffer 

to be assayed for AMPK activity. 

 

2.2.4.2.6.7 Preparation of Bradford Reagent and protein assays 

Protein concentration of lysates was determined by the method of Bradford (Bradford 1976). 

Bradford reagent was prepared (5% [v/v] ethanol, 5.5% [v/v] phosphoric acid, 40mg/l Coomassie 

G), filtered and stored protected from light. To determine the protein concentration in lysate sample 

a 5µl aliquot of each sample was added to 95µl of sterile water and 1ml of a protein assay reagent. 

After mixing and equilibration, the absorbance was read in a spectrophotometer at a wavelength of 

595nm measured against a reference sample containing 1ml protein assay reagent and 100µl dH2O. 

A standard curve of 2-6µg/ml bovine serum albumin (BSA) was prepared and the protein 

concentration of lysates determined by comparing values to the standard curve. This was adapted 

from the method of Bradford (Bradford 1976). 

 

2.2.4.2.6.8 AMPK assays  

Cell lysates were prepared as described in section 2.2.4.2.6.1 and 2.2.4.2.6.2. AMPK activity was 

determined as follows. AMPK immunoprecipitations were carried out using 100µg of protein 
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lysate, 2µg of anti α1 AMPK antibody, and protein G sepharose beads (see section 2.2.4.2.6.6). 

Reaction mixtures (20µl) containing 5µl HEPES-Brij assay buffer, 5µl 1mM AMP in HEPES-Brij 

buffer, 5µl of 1mM SAMS peptide in HEPES-Brij buffer and 5 µl of the immunoprecipitated lysate 

(pellet) resuspended in HEPES-Brij assay buffer were prepared on ice. The reaction initiated by the 

addition of 5µl of [γ-
32

P] ATP solution (1mM [γ-
32

P] ATP with a specific activity in the range 

250,000 to 500,000 cpm/pmol, 25mM MgCl2). Assays were performed in triplicate including blank 

reactions prepared by substituting HEPES-Brij buffer for substrate peptide. After incubation at 

30°C for 10min, 15µl of the reaction mixture was removed and spotted onto 1cm
2
 squares of 

Whatmann P-81 phosphocellulose paper, and the paper dropped into 1% (v/v) phosphoric acid. The 

P-81 paper squares were washed twice with phosphoric acid and then rinsed with water and dried. 

The incorporation of 
32

P into the substrate peptide was determined by immersion in 5 ml toluene-

based scintillation fluid (Ecoscint™) and liquid scintillation counting. Units of AMPK activity 

were expressed as nmol of [γ-
32

P] incorporated into substrate peptide per min at 30 °C. In the case 

of adipose tissue AMPK assays experiments were performed in 4 batches of 10 lysates with AMPK 

activity determined as multiples of a protein of previously documented AMPK activity.  

 

2.2.2.5 Statistical analysis  

Analysis was performed using the Minitab statistical package. All data are expressed as standard 

error of the mean unless stated otherwise. Equivalent values from each study phase were compared 

using paired student t tests. In all cases, p<0.05 was taken as signifying conventional levels of 

statistical significance. Power calculations based on previous wire myography studies suggest that 

16 patients will be required to demonstrate a 10% change in pD2 (change of sensitivity of ACh 

dose-response curve) with 90% power (p<0.05, two-tailed). We planned to recruit 20 patients to 

allow for potential drop-out and technical difficulties with myography protocols. The crossover 
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study design allows us to use paired t-tests for comparison of the primary outcome measures, 

namely ex vivo resistance artery endothelial function (pD2 for ACh curves). 
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Chapter 3 

 

Studies on vascular function and plasma asymmetric dimethylarginine (ADMA) concentrations 

after metformin and gliclazide therapy in patients with Type 2 diabetes. 

 

3.1 Introduction 

Metformin is a widely used and useful hypoglycaemic agent. In the United Kingdom Prospective 

Diabetes Study (UKPDS, 1998), metformin reduced the incidence of myocardial infarction by 39% 

in comparison with conventional treatment. In addition, when the metformin group was compared 

with a group treated with sulphonylurea or insulin, there was a significant reduction in the 

incidence of stroke. These results are supported by a recent cross-sectional study in which 

mortality rates were significantly reduced in patients on metformin monotherapy compared with 

sulphonylurea monotherapy (Johnson et al 2002).  

 

Despite these impressive effects, the mechanism of this vascular protective action of metformin 

remains unclear and the question that remains largely unanswered from UKPDS is why metformin 

has beneficial cardiovascular effects in overweight diabetic patients? In some animal models, 

metformin appears to have a vascular action. In spontaneously hypertensive rats, metformin reduced 

blood pressure possibly via modulation of adrenergic tone (Peuler et al 1999). In addition, in 

streptozocin-induced diabetic rats, metformin lowers blood pressure and improves vascular 

endothelial function (Katakam et al 2000). In man, metformin does not alter BP although BP 

responses to intravenous infusions of norepinephrine and angiotensin II were blunted
 
supporting the 

concept that metformin might modulate vascular responsiveness (McAuley et al 1997). 

Furthermore, vascular studies using metformin in T2DM have yielded conflicting data with one 

study demonstrating a modest improvement while another reporting no change in vascular 
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endothelial function after 3 and 4 months respectively of metformin therapy versus placebo (Mather 

et al 2001, Natali et al 2004). In this chapter, we study of the effect of metformin versus gliclazide 

on vascular function in subjects with T2DM using a randomised, double-blind, glycaemia 

controlled crossover design.  

 

Recent work on the cellular mechanism of metformin action has led to the suggestion that it could 

potentially have beneficial vascular actions, possibly by indirect or by direct stimulation of 

endothelial nitric oxide synthase (eNOS) activity (Davis et al 2006). This chapter investigates a 

potential mediator of metformin’s vascular action; ADMA. One way in which this metformin might 

exert beneficial effects is by the reduction of asymmetrical dimethylarginine (ADMA) 

concentrations. ADMA, a guanidino-substituted analogue of L-arginine, is a potent endogenous 

competitive inhibitor of endothelial nitric oxide (NO) synthase (Palm et al 2007). ADMA is 

produced by methylation of protein bound L-arginine which is catalysed by protein arginine 

methyltransferases (Palm et al 2007). The predominant mode of elimination of ADMA occurs via 

enzymatic degradation by dimethylarginine dimethylaminohydrolase (DDAH) to citrulline and 

dimethylamine (Achan et al 2003). Increased levels of ADMA reduce NO formation and are 

associated with endothelial dysfunction. Plasma levels of ADMA have been found to be increased 

in hypercholesterolaemia (Boger et al 1998), hypertriglyceridaemia (Lundman et al 2001), 

hyperhomocyst(e)inemia (Stuhlinger et al 2003), diabetes mellitus (Abbasi et al 2001), gestational 

diabetes (Mittlemayer et al 2002) and, most recently, polycystic ovary syndrome (Heutling et al 

2008). There is a close relationship between concentrations of ADMA and insulin resistance 

(Stuhlinger et al 2002). Indeed, in several prospective studies, ADMA has been noted to be an 

independent predictor of cardiovascular events (Mittlemayer et al 2002, Valkonen et al 2001, 

Krzyzanowska et al 2007). Metformin was reported to decrease the plasma ADMA concentrations 

in poorly controlled subjects with Type 2 diabetes in an open labelled, uncontrolled study without a 
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placebo arm; the fall in ADMA concentration was associated with improved fasting plasma glucose, 

although the study failed to demonstrate a relationship between the decrease in ADMA 

concentrations and improvement in glycaemic control (Asagami et al 2002). Importantly, no 

assessment of vascular function was made in this study. Furthermore, in a recent interesting study, a 

subgroup of women with PCOS who received metformin demonstrated reductions in ADMA 

concentration independent of a reduction in BMI and fasting blood glucose (Heutling et al 2008). 

There was a marginal improvement in carotid intima media thickness in favour of metformin 

therapy. However, once again, this was also an uncontrolled study involving a small subset of 

patients without the benefit of a placebo or control arm and it is clear that more data would be 

beneficial to help confirm any metformin-induced reduction in ADMA concentration and, if so, 

whether such a change would be in association with beneficial effects on vascular function in 

overweight subjects with Type 2 diabetes. 

 

I hypothesized therefore that a short duration of metformin therapy would improve vascular 

endothelial function in association with a change in the circulating concentration of ADMA in 

comparison with gliclazide therapy.  
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3.2 Aims of this chapter 

This chapter was initiated to extend the observations discussed above and addressed the following 

issues.    

i. Does metformin confer benefit in vascular function when compared with 

gliclazide therapy?  

ii. Are the effects of metformin on ADMA reproducible in a randomised controlled 

double-blind crossover trial? 

iii. Does metformin have a beneficial effect on ADMA concentrations in subjects 

with Type 2 diabetes independent of changes in glycaemic control? 

 

Accordingly, this chapter compares the effect of metformin and gliclazide on plasma ADMA and 

vascular function in subjects with Type 2 diabetes using a randomised, double-blind, glycaemia 

controlled crossover design. 
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3.3 Results 

 

3.3.1 Clinical characteristics at recruitment 

At the time of recruitment; 12 subjects were on metformin monotherapy, 6 were diet controlled and 

2 were on gliclazide monotherapy. 19 subjects were on statin therapy. 17 subjects were on ACE 

inhibitor therapy. No subjects dropped out of the study. There were no reports of changes to drug 

therapy during the study period. The clinical characteristics of the 20 subjects at recruitment are 

summarised in Table 3.1. The mean (SD) age of study participants was 56.5 (3.9) years; mean (SD) 

BMI was 31.4 (4.3) kg/m
2
. The mean (SD) HbA1c at recruitment was 8.3 (1.2) %. The mean (SD) 

creatinine was 105.3 (18.8) µmol/l. The mean (SD) duration of diabetes was 3.5 (2.6) years 

(minimum 6 months).  

 

Table 3.1: Clinical characteristics at recruitment 

 

 

 

 

 

 

 

Parameter  Mean 

 

SD 

 

Age  56.5yrs 3.9 

HbA1c  8.3% 1.2 

Creat 

 

BMI 

 

105.3 

 

31.4kg/m2 

18.8 

 

4.3 

Duration of diabetes  3.5yrs 2.6 
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3.3.2 Body mass index and blood pressure 

Mean BMI was not different after each period of therapy (p=0.80), (Table 3.2). There was also no 

significant difference in either systolic blood pressure (p=0.906) or diastolic blood pressure 

(p=0.193, Table 3.2). 

 

Table 3.2: Clinical measures 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Raw outcomes by treatment Treatment Effect 
Outcome  

Metformin Gliclazide 

  

Estimate 95% CI p-value 

BMI (Kg/m
2
)  31.0 (4.3) 31.0 (4.5)   -0.1 (-0.5, 0.4) p=0.80 

SBP (mmHg)  137.2 (19.7) 137.0 (21.0)   -0.3 (-4.3, 3.8) p=0.91 

DBP (mmHg)  72.3 (9.5) 75.0 (11.8)   2.8 (-1.2, 6.7) p=0.19 
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3.3.3 Metabolic parameters 

Gliclazide therapy was more effective at lowering HbA1c than metformin [7.8% +/- 1.74 versus 

8.3% +/- 1.7, p<0.001]. This was complemented by significantly lower fasting blood glucose with 

gliclazide versus metformin therapy [10.3mM +/- 3.2 versus 12.1mM +/-, p=0.005]. Furthermore, 

average LDL cholesterol concentration was significantly lower after gliclazide therapy compared 

with metformin therapy [2.42 +/-0.74 versus 2.79 +/- 0.74, p=0.022].  There was, however, no 

significant difference in total cholesterol, HDL cholesterol or triglyceride between the two stages of 

treatment (Table 3.3).  

 

Table 3.3: Metabolic parameters  

Raw outcomes by treatment Treatment Effect 
Outcome  

Metformin Gliclazide 

  

Estimate 95% CI p-value 

HbA1c (%)  8.34 (1.70) 7.82 (1.74)   0.53 (0.29, 0.76) p<0.001 

Glucose (3.5-5.5) mM  12.1 (4.7) 10.3 (3.2)   1.8 (0.7, 2.9) p=0.005 

Insulin (U/L)  15.6 (13.8) 14.3 (6.0)   1.3 (-4.9, 7.5) p=0.69 

Cholesterol (mmol/l)  5.16 (1.16) 4.75 (1.59)   0.40 (-0.02, 0.78) p=0.054 

HDL-C (mmol/l)  1.25 (0.24) 1.20 (0.24)   0.05 (-0.01, 0.11) p=0.13 

LDL-C (mmol/l)  2.79 (0.74) 2.42 (0.73)   0.40 (0.09, 0.70) p=0.022 

Triglycerides (mmol/l)  2.78 (3.76) 2.94 (4.80)   -0.16 (-0.70, 0.38) p=0.58 
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3.3.4 ADMA and related metabolites 

ADMA was lower following metformin therapy [0.48µmol/l +/- 0.08 versus 0.50µmol/l +/- 0.07, 

p=0.019]. The raw data plot (Figure 3.1) demonstrates that 13 out of the 20 subjects had lower 

values of ADMA concentrations after metformin, five had lower ADMA concentrations after 

gliclazide, and two subjects showed no difference. There was no significant difference in SDMA or 

arginine concentrations between the two treatment groups (Table 3.4). Moreover, there was no 

difference in the arginine/ADMA ratio [127.1 +/- 24.4 versus 129.6 +/- 23.94, p=0.74]. 

 

3.3.5 Pulse wave velocity 

A satisfactory number of acceptable tracings in both periods of treatment could not be obtained for 

four subjects and these data were discarded. Mean PWV for the remaining 16 subjects was not 

different after each period of therapy (p=0.40, Table 3.4).  Finally, there was also no correlation 

between metformin to gliclazide differences in ADMA and PWV, respectively (r=0.069, p=0.80), 

(Figure 3.2). 

 

Table 3.4:  PWV, ADMA and related metabolites 

 

Raw outcomes by treatment Treatment Effect 
Outcome  

Metformin Gliclazide 

  

Estimate 95% CI p-value 

PWV (m/s)   7.89 (1.64)    8.12 (1.49)   -0.22 (-0.73, 0.28) p=0.40 

ADMA (µmol/l)  0.48 (0.08) 0.50 (0.07)   -0.02 (-0.01, -0.04) p=0.019 

SDMA (µmol/l)  0.41 (0.08) 0.42 (0.09)   -0.01 (-0.04, 0.01) p=0.36 

HARG (µmol/l)  2.09 (0.72) 2.18 (0.62)   -0.09 (-0.34, 0.15) p=0.46 

ARG (µmol/l)  61.6 (17.0) 65.6 (16.7)   -4.0 (-10.2, 2.2) p=0.22 
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Figure 3.1: Comparison of ADMA concentrations for individual subjects (n=20) after gliclazide 

and metformin.   

 

 
 

 

 

 

The raw data plot demonstrating that 13 out of the 20 subjects had lower values of 

ADMA concentrations after metformin, five had lower ADMA concentrations after 

gliclazide, and two subjects showed no difference. Red arrows indicate those patients 

randomised to gliclazide first and blue arrows indicate those patients randomised to 

metformin first. 
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Figure 3.2: Correlation of metformin to gliclazide differences in ADMA and PWV.  
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3.3.6 Wire myography 

In total, forty biopsies (twenty subjects x 2) were performed. Twenty two biopsies successfully 

harvested vessels of a suitable diameter. Eighteen subjects had at least one successful biopsy with 

four subjects having full paired myography data. 33 vessels were successfully harvested from the 

11 subjects in the metformin phase versus 29 vessels from 7 subjects in the gliclazide phase. Four 

vessels were not successfully isolated in all cases so responses have been analysed in a paired and 

unpaired manner.  

 

3.3.6.1 Comparison of the effect of metformin and gliclazide on norepinephrine-induced 

vasoconstriction. 

For this analysis, results were obtained from 18 subjects,
 
with 4 subjects having data from both 

metformin and gliclazide phases. Each subject had data from between one and four arteries
 

available for analysis, the mean of which was used as the CRC
 
for that volunteer. Vessels from 

both groups
 
displayed the characteristic sigmoid relationship to increasing

 
concentrations of NE. 

There was no evidence of tachyphylaxis
 
in response to NE in vessels used as controls for time of 

study, which were exposed to NE. To compare NE-induced vasoconstriction
 
during metformin and 

gliclazide phases, data were analyzed
 
as paired [i.e. subjects with completed myography studies 

from
 
both phases: (n = 4)]

 
or unpaired (i.e. including data from subjects with only one

 
successful 

biopsy; n = 18). After paired analysis, there was a borderline statistically
 
significant difference in 

the pD2 between phases [mean pD2 during metformin, 6.72 ± 0.17;
 
pD2 during gliclazide, 6.35 ± 

0.22 (P = 0.05)]. There was, however, no statistical difference in the pD2 between phases [mean 

pD2 during metformin, 6.49 ± 0.16;
 
pD2 during gliclazide, 6.16 ± 0.14 (P = 0.12)] following 

unpaired analysis. 
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3.3.6.2 Acetylcholine-mediated (enodothelial-dependent) vasodilation 

Both groups also exhibited similar endothelium-dependent
 
relaxation to Ach: unpaired data, 

maximum relaxation, metformin 64.9 ± 5.0% (n = 8)
 
vs. gliclazide 69.6 ± 7.2% (n = 7); (P = 0.59). 

Paired data were only available for one subject. 

 

3.3.6.3 Insulin-mediated attenuation of NE-induced vasoconstriction  

 

3.3.6.3.1 Metformin phase 

Figure 3.2 demonstrates the effect of preincubation
 
of vessels with insulin on NE-mediated 

vasoconstriction during
 
the metformin phase. Vessels were preincubated with insulin [1

 
nM]. 

Insulin-mediated attenuation
 
of NE-induced vasoconstriction (a right

 
shift in the CRC) or in 

maximal
 
tension developed in response to NE was not demonstrated: pD2 control, 6.48 ± 0.13;

 
pD2 

insulin, 6.48 ± 0.15 (P = 0.99); maximum contraction,
 
97 ± 1.5% (P = 0.10 vs. control).

  

 

3.3.6.3.2 Gliclazide phase 
 

Figure 3.3 demonstrates the effect of preincubation
 
of vessels with insulin on NE-mediated 

vasoconstriction during
 
the gliclazide phase. Vessels were preincubated with insulin [1

 
nM]. 

Insulin-mediated attenuation
 
of NE-induced vasoconstriction (a right

 
shift in the CRC) or in 

maximal
 
tension developed in response to NE was not demonstrated: pD2 control, 6.14 ± 0.12;

 
pD2 

insulin, 6.14 ± 0.13 (P = 0.94); maximum contraction:
 
95 ± 1.5% (P = 0.19 vs. control). 
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Figure 3.3: NE-induced vasoconstriction in Metformin phase  

 

 

The effect of pre-incubation with insulin 1nM on NE induced vasoconstriction in human resistance 

vessels dissected during the metformin phase was examined (n=11). Insulin-mediated attenuation
 
of 

NE-induced vasoconstriction (a right
 
shift in the CRC) or in maximal

 
tension developed in response 

to NE was not demonstrated. Error bars represent standard errors.  
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Figure 3.4: NE-induced vasoconstriction in Gliclazide phase 

 

 

The effect of pre-incubation with insulin 1nM on NE induced vasoconstriction in human resistance 

vessels dissected during the gliclazide phase was examined (n=7). Insulin-mediated attenuation
 
of 

NE-induced vasoconstriction (a right
 
shift in the CRC) or in maximal

 
tension developed in 

response to NE was not demonstrated. Error bars represent standard errors.  
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3.3.6.3.3 Comparison of insulin action during metformin and gliclazide phases 

To compare insulin-mediated relaxation of NE-induced vasoconstriction
 
during metformin and 

gliclazide phases (Figure 3.4) data were analyzed
 

as paired [i.e. subjects with completed 

myography studies from
 
both phases: 1 nM insulin (n = 4) or unpaired (i.e. including data from 

subjects with only one
 
successful biopsy; n = 18). pD2 and maximum contraction were compared 

between phases. On analysis of paired
 
data, there was no significant difference in any of these 

variables
 
at 1 nM insulin [pD2: metformin, 6.68 ± 0.2; gliclazide,

 
6.39 ± 0.21 (P = 0.42); maximal 

contraction: metformin,
 
99.5 ± 1.3%; gliclazide, 96.9 ± 1.2% (P = 0.26)]. On analysis of unpaired

 

data, there was no significant difference in any of these variables
 
at 1 nM insulin [pD2: metformin, 

6.48 ± 0.13; gliclazide,
 
6.12 ± 0.13 (P = 0.07); maximal contraction: metformin,

 
97.3 ± 1.5%; 

gliclazide, 95.9 ± 1.4% (P = 0.49)]. 
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Figure 3.5: Comparison of metformin and gliclazide phases 

 

Insulin action, measured as pD2 in isolated human vessels, was compared between metformin and 

gliclazide phases (n=18). On analysis of unpaired
 
data, there was no significant difference in pD2 

and maximum contraction between phases at 1 nM insulin. Error bar represent standard errors. 
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3.4 Discussion 

This chapter compared the effects of metformin versus gliclazide on large artery stiffness, 

resistance artery function and circulating concentrations of ADMA using a randomised, double-

blind crossover design in subjects with Type 2 diabetes. One of the main aims was to confirm or 

refute a beneficial effect of metformin on circulating ADMA concentrations in view of recent 

supportive data to this effect from uncontrolled trials. It was also hypothesised that ADMA might 

not only be a predictive marker but also a causative risk factor for cardiovascular disease and thus 

any metformin-induced reduction in ADMA concentration would be accompanied by an 

improvement in vascular function. The data demonstrate that metformin does indeed lower ADMA 

compared with gliclazide despite better glycaemia changes with the latter, supporting a glucose-

independent mechanism for this metformin effect.  That said, the reduction in ADMA was modest 

and the observed magnitude of difference contrasts with reports of much larger reductions in 

ADMA concentration in uncontrolled studies of metformin therapy in women with PCOS as well 

as poorly controlled subjects with Type 2 diabetes, where the drug was added to diet control or 

sulphonylurea therapy (Abbasi et al 2001, Heutling et al 2008). Finally, the data shows that the 

change in ADMA concentration was not associated with any difference in large artery stiffness as 

measured by pulse wave velocity or resistance artery function as measured by wire myography.  

 

A major stimulus for this study was the notion that metformin therapy confers cardiovascular 

benefit in overweight diabetic subjects when compared with sulphonylurea therapy or insulin.  It 

was hypothesised that this would be reflected in a change in pulse wave velocity, an arterial 

stiffness measure which also has a vascular function component. Abnormal large artery function 

plays an important role in the development of cardiovascular disease. In the normal arterial system, 

there is a steep gradient of increasing arterial stiffness moving outward from the heart. In a young 

adult, pulse wave velocity (PWV), a close correlate of arterial wall stiffness, is only 4 to 6 m/s in 
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the highly compliant proximal aorta and increases to 8 to 10 m/s in the stiffer peripheral muscular 

arteries (Yasmin et al 2004). Carotid-femoral PWV (cfPWV) is a measure of aortic distensibility. It 

is known to predict all-cause and cardiovascular mortality in patients with end-stage renal failure, 

hypertension, diabetes and the elderly, independently of known confounding factors (Blacher et al 

1999, Laurent et al 2001, Meaume et al 2001, Cruickshank et al 2002). It was hypothesised that 

metformin therapy would lead to reduced PWV in subjects with Type 2 diabetes when compared 

with gliclazide therapy.  

 

Traditionally, information about the properties of small arteries had to be inferred from 

haemodynamic studies or visual examination of vessels of readily accessible vascular beds. Within 

the last decade techniques have become available that allow routine in vitro investigation of small 

arteries. One technique popularised through the work of Mulvany is wire myography (Mulvany et al 

1990). This involves the harvesting of small resistance arteries from adipose tissue (the buttock) and 

their mounting over two fine wires within small chambers filled with physiological salts solution 

(PSS). This allows ex vivo investigation of arterial tissue. Various agents may be added to the 

chambers to investigate vascular responses and these are measured using computer software 

specially calibrated to detect small changes in vessel tone.  

 

The hypothesis tested was that metformin has similar beneficial effects on different parts of the 

vasculature; aortic compliance measured by cfPWV and endothelial function by wire myography of 

resistance arteries. The results here have demonstrated that in subjects with Type 2 diabetes, 

insulin-mediated attenuation
 
of NE-induced vasoconstriction (a right

 
shift in the CRC) is not 

demonstrated. The data are insufficiently powered to detect any small changes in vascular function 

in association with this dose and duration of treatment. With this is mind, it is particularly important 

to consider the implication of the missing data set in the wire myography data; eighteen subjects had 
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at least one successful biopsy with myography data with only four subjects having paired 

myography results. An absence of vessels of suitable diameter was the reason for failure to obtain 

vessels from biopsies with no myography data with the vessel yield in this study being lower than 

other wire myography studies completed by our group.   

 

The study also failed to show a significant benefit in pulse wave velocity and I need to consider 

why. In the present study subjects were not randomised to the maximum dose of each drug and the 

duration of treatment was relatively short at 10 weeks.  Whether a longer duration of each treatment 

in higher dose would have been associated with a larger change in ADMA concentration with 

measurable improvements in vascular function in favour of metformin is unknown and could be the 

subject of further study. Additionally, it is important to consider whether some of the other changes 

noted may have accounted for the variable alteration in vascular function that we noted. Recently it 

has been demonstrated that weight loss in morbidly obese patients can decrease circulating ADMA 

concentrations (Krzyanowska et al 2004). There was no significant difference in weight after each 

therapy excluding this as a confounding factor. While metformin was associated with a fall in 

ADMA, the gliclazide arm was associated with improved glycaemic control as assessed by fasting 

blood glucose and haemoglobin A1c. The study design aimed to match glycaemic control at the end 

of each phase but this, in the event, proved not to be possible.  Associated with these changes was a 

small improvement in plasma LDL cholesterol. Thus, it is reasonable to speculate that confounding 

effects related to better short term glycaemia and LDL-cholesterol improvements with gliclazide 

may have attenuated any metformin-induced change in ADMA being associated with an associated 

beneficial improvement in vascular function. Nevertheless, despite these changes, the data still 

recorded a significant reduction in ADMA with metformin, which adds some confidence to the 

validity of this latter observation.  This finding is important since increasing evidence indicates that 
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higher levels of ADMA are predictive of cardiovascular events independently of other risk factors 

(Krzyzanowska et al 2007, Asagami et al 2002, Heutling et al 2008).  

 

In conclusion, this chapter provides the strongest evidence thus far to support a beneficial effect of 

metformin therapy on circulating ADMA concentrations in patients with type 2 diabetes, although 

we could not confirm whether this improvement confers benefit on vascular function in subjects 

with type 2 diabetes.  Future studies of metformin at higher doses are required to determine 

whether ADMA lowering by metformin improves vascular function and more importantly, whether 

such a reduction helps explain the vascular end-point benefits of this treatment in prospective 

clinical trials.  
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Chapter 4 

 

Studies on adipose AMP-activated protein kinase and plasma adiponectin after metformin and 

gliclazide therapy in patients with Type 2 diabetes. 

 

4.1 Introduction  

Activation of AMPK triggers catabolic pathways that produce energy, while turning off anabolic 

pathways that consume energy thereby maintaining cellular energy stores. For example, AMPK 

inhibits lipid and triglyceride synthesis in both liver and adipose tissue and stimulates skeletal 

muscle glucose uptake, glycolysis and fatty acid oxidation (Towler and Hardie 2007). Stimulation 

of fatty acid oxidation occurs when AMPK directly phosphorylates and inactivates the downstream 

target, acetyl-coA carboxylase (ACC). ACC synthesizes malonyl-CoA which inhibits the rate-

controlling step of fatty oxidation involving the transfer of fatty acids into the mitochondria by the 

enzyme carnitine palmitoyltransferase 1 (CPT1) (Trumble et al 1995, Ruderman et al 1999). The 

ability of AMPK to induce lipid oxidation and thus the amount of fat deposited in skeletal muscle 

and liver is considered an important feature of AMPK activation. Therefore it may be that AMPK 

plays an important role in controlling the whole body energy homoeostasis including the regulation 

of plasma glucose levels and body weight. The control of AMPK activity provides an attractive 

target for therapeutic intervention in metabolic disorders such as T2DM. 

 

AMPK is thought have important role in adipose tissue by inhibiting lipolysis and lipogenesis. 

Indeed, AMPK has been implicated in the regulation of lipolysis through direct phosphorylation of 

hormone-sensitive lipase (Garton et al 1989). Lipolysis and lipogenesis are inhibited in rat 

adipocytes when using the AMPK activator AICAR, (Sullivan et al 1994). It is also suggested that 

when the regulation of lipid metabolism by AMPK is absent, then weight gain and insulin 

resistance prevail. Indeed when AMPK α2 knockout mice were fed with a high-fat diet they have 
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been shown to exhibit increased body weight, increased adiposity and a degree of insulin resistance 

when compared with wild-type mice (Viollet et al 2003, Jorgensen et al 2004, Villena et al 2004). 

It has also been recently shown that glucocorticoids inhibit AMPK activity in adipose tissue of 

insulin resistant patients with Cushing’s syndrome (Kola et al 2008). Moreover, metformin has 

been found to prevent the glucocorticoid effects on ex vivo cultured human adipocytes (Christ-

Crain et al 2008). The effect of insulin sensitizers such as metformin or the thiazolidinediones on 

AMPK activity in human adipose tissue has not yet been investigated. Further work is required to 

examine whether metformin exerts its beneficial metabolic effects in patients with T2DM in part by 

increasing AMPK activity in human adipose. 

 

Plasma levels of adiponectin negatively correlate to insulin resistance, obesity and cardiovascular 

disease. Interestingly, studies of the Pima Indian population in the USA have shown that in normal 

healthy individuals the concentration of adiponectin can be used to predict the likelihood of 

developing T2DM later in life, with lower levels resulting in increased risk (Lindsay et al 2002). 

The effects of the adiponectin are partly accounted for by adiponectin induced AMPK activation 

which results in stimulation skeletal muscle fatty acid oxidation and glucose uptake (Tomas et al 

2002, Yamauchi et al 2002). Furthermore, activation of AMPK by adiponectin suppresses hepatic 

gluconeogenesis. (Yamauchi et al 2002). Adiponectin has also been demonstrated to increase nitric 

oxide production (Hattori et al 2003), by a pathway proposed to involve the direct phosphorylation 

of eNOS by AMP-activated protein kinase (AMPK), and also by a parallel pathway involving PI3K 

and PKB activation by AMPK (Chen et al 2003, Tan et al 2004, Ouchi et al 2004, Chen et al 

2005). Furthermore, adiponectin has been shown to reduce infarct size and improved left 

ventricular function and coronary blood flow following ischaemia and reperfusion of isolated rat 

hearts by a mechanism involving AMPK and NO release (Gonon et al 2008). Moreover, AMPK 

may be necessary for adiponectin to exert its cardio protective effect as ischaemia and reperfusion 
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caused a larger myocardial infarct and enhanced myocardial apoptosis in adiponectin knockout 

mice when compared with wild type mice (Shibata et al 2005). Adiponectin knockout mice have 

been shown to have progressive cardiac remodelling in a pressure-overloaded condition due to 

reduced AMPK signalling and increased insulin resistance when compared to wild type mice (Liao 

et al 2005). Therefore, AMPK appears to be important in mediating both the metabolic and the 

vascular effects of adiponectin but as yet the exact signalling mechanisms have not been clarified.  

 

Whilst adiponectin would appear to have a preventative role in atherosclerosis, its role as a 

predictive marker of vascular risk is less clear (Chen, Tsai et al 2005, Lindsay et al 2005, Schulze 

et al 2005, Sattar et al 2006, Frystyk et al 2007). Indeed, the addition of metformin to 

sulphonylurea therapy has been shown to have no effect on circulating concentrations of 

adiponectin in subjects with Type 2 diabetes (Phillips et al 2003).  Data concerning the effects of 

sulphonylureas on adiponectin is less robust with some evidence of an increase in adiponectin 

concentration in both rat adipocytes (Kanda et al 2008) and subjects with Type 2 diabetes 

(Drzewoski et al 2006). It is nevertheless tempting to hypothesise that any increase in adipose 

AMPK may be mediated by an increase in plasma adiponectin concentration  

 

Metformin has been previously shown to increase AMPK activity in hepatocytes (Zhou et al 2001) 

and human muscle of subjects with Type 2 diabetes (Musi et al 2002), potentially leading to 

improvements in both insulin sensitivity and glycaemia. In hepatocytes, AMPK activation leads to 

increased fatty acid oxidation and attenuated gluconeogenesis, fatty acid and cholesterol synthesis 

(Zhou et al 2001). In muscle, AMPK activation promotes fatty acid oxidation and glucose transport 

(Musi et al 2002). Conversely, in rat adipocytes AMPK activation has been proposed to attenuate 

both lipolysis and fatty acid synthesis (Sullivan et al 1994). Indeed incubation of 3T3-L1 

adipocytes with AICAR, a pharmacological activator of AMPK, has been demonstrated to attenuate 
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insulin-stimulated glucose uptake, the opposite of what has been observed in skeletal muscle (Salt 

et al 2000).
 
Moreover, metformin has been shown to stimulate AMPK activity, decrease lipolysis 

and inhibit fatty acid synthesis in 3T3L1 adipocytes (An et al 2007). Metformin and AICAR have 

been shown to stimulate AMPK activity but reduce adiponectin protein expression also in 3T3L1 

adipocytes (Huypens et al 2005). Previous work on AMPK has concentrated on rat adipocytes with 

work on human adipocytes or human adipose tissue confined to studies of AMPK activity in 

adipose tissue of subjects with corticosteroid excess and the prevention of corticosteroid-induced 

effects on AMPK in human adipocytes with metformin.  

 

If metformin counteracts insulin action in adipose tissue via this mechanism, this may partly 

explain the common clinical observation of reduced fat mass on this drug (usually ascribed to 

appetite reduction secondary to gastrointestinal side-effects). Indeed, in many ways, metformin’s 

action parallels that of aerobic exercise, helping to divert calories away from storage tissues into 

skeletal muscle. It is possible that AMPK activation is a common mechanism utilised by both 

pharmacological and physiological interventions. Activation of AMPK in human adipose tissue 

would, therefore, be an attractive target for the treatment of T2DM and may explain some of 

metformin’s therapeutic effects.  

 

To test these hypotheses, it was vital that this thesis explored metformin’s action in human adipose 

tissue and on plasma adiponectin, an area thus far neglected in the literature.  
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4.2 Aims of this chapter 

This chapter was initiated to extend the observations discussed above and addressed the following 

issues.  

 

i. Does metformin increase AMPK activity in adipose tissue of subjects with Type 

2 diabetes? 

ii. Is any increase in AMPK activity associated with a change in circulating levels 

of adiponectin? 

 

Accordingly, this chapter compares the effect of metformin and gliclazide on adipose AMPK and 

plasma adiponectin levels in subjects with Type 2 diabetes using a randomised, double-blind, 

glycaemia controlled crossover design. 
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4.3 Results 

 

4.3.1 Adipose AMPK activity 

There was a significant increase in AMPK activity expressed as a multiple of an internal standard of 

known AMPK activity (K) with metformin therapy when compared with gliclazide therapy 

[0.085+/-0.047 versus 0.044+/-0.035, p=0.002], (Table 4.1, Figure 4.1).  

 

Table 4.1: Adipose and AMPK 

Raw outcomes by treatment Treatment Effect 
Outcome  

Metformin Gliclazide 

  

Estimate 95% CI p-value 

AMPK  0.085 (0.047) 0.044 (0.035)   -0.041 (-0.063, -0.019) p=0.002 
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Figure 4.1: Gliclazide adipose AMPK activity expressed as a % of metformin treated adipose 

AMPK activity. There was a significant increase in AMPK activity expressed as a multiple of an 

internal standard of known AMPK activity (K) with metformin therapy when compared with 

gliclazide therapy (n=20). 
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4.3.2 Adipose AMPK protein expression 

There was no significant difference in protein expression between the two phases of treatment 

activity (n=19, p=0.98). (See figure 4.2 where experiment was performed by Dr Ian Salt, University 

of Glasgow)  

 

Figure 4.2: Gliclazide adipose AMPK protein expression expressed as a % of metformin treated 

adipose AMPK protein expression. There was no significant difference in protein expression 

between the two phases of treatment activity (n=19 due to insufficient lysate in one sample). 
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4.3.3 Serum total adiponectin concentration  

There was no significant difference in total adiponectin levels after each phase of therapy [4193 +/-

2696 versus 4648ng/ml +/- 3291ng/ml, p=0.054]. See Table 4.2, Figure 4.3. 

 

Table 4.2: Serum total adiponectin concentration 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Gliclazide plasma adiponectin concentration expressed as a % of metformin 

adiponectin concentration. There was no significant difference in total adiponectin levels after 

each phase of therapy (n=20).  

 

 
 

Raw outcomes by treatment Treatment Effect 
Outcome  

Metformin Gliclazide 

  

Estimate 95% CI p-value 

Adiponectin  4648 (3291) 4193 (2696)   456 (22, 889) p=0.054 

         



148 

 

148 

 

4.4 Discussion 

This chapter compared the effects of metformin versus gliclazide on adipose AMPK activity and 

plasma adiponectin using a randomised, double-blind crossover design in subjects with Type 2 

diabetes. The main aim was to confirm or refute a beneficial effect of metformin on adipose 

AMPK activity. It was also hypothesised that any increase in AMPK activity may be associated 

with an increase in plasma adiponectin.  The data demonstrates that metformin does indeed 

increase adipose AMPK compared with gliclazide. The increase in adipose AMPK activity was not 

associated with an increase in AMPK protein expression. This finding suggests that the change in 

AMPK activity is an increase in the specific activity of AMPK rather than simply a difference in 

the total amount in AMPK between phases. The study design aimed to match glycaemic control 

(see 3.2.3) at the end of each phase but this, in the event, proved not to be possible. Metformin 

increased AMPK activity when compared with gliclazide despite better glycaemia changes with the 

latter, supporting a glucose-independent mechanism for this metformin effect. Associated with 

these changes was a small improvement in plasma LDL cholesterol (see 3.2.3). Somewhat 

surprisingly, there was no significant difference in BMI (see 3.2.2) after each treatment although 

measurement of skin fold thickness or more sophisticated measurement of body composition may 

have provided a more specific marker of fat mass. Finally, the data show that the change in adipose 

AMPK activity was not associated with any difference in plasma adiponectin.  

 

In animal studies activation of AMPK has been proposed to attenuate lipolysis, fatty acid synthesis 

and insulin-stimulated glucose uptake in adipocytes (Towler and Hardie 2007). These data support 

the notion that metformin action parallels that of aerobic exercise, helping to divert calories away 

from storage tissues into skeletal muscle and it is possible that AMPK activation is a common 

mechanism utilised by both pharmacological and physiological interventions. This may explain 

some of the beneficial effects of metformin in patients with Type 2 diabetes. 
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It is important to consider the limitations of the data presented here. Firstly, while a robust and 

significant difference in AMPK activity with metformin when compared with gliclazide is 

demonstrated it is important to note that the effect of gliclazide on AMPK activity has not been 

widely studied. The principal mechanism of action of the sulphonylurea class of drugs is to 

improve insulin secretion by the beta cells of the endocrine pancreas, and data concerning the 

effects of sulphonylurea on AMPK are limited. Indeed, glimepiride treatment has been shown to 

have no effect on AMPK activity in cultured myocytes as expressed by AMPK phosphorylation 

while gliclazide has no effect (up to 1 hour incubation) in 3T3-LI adipocytes on AMPK activity as 

assessed by kinase assay (Inukai et al 2005, P J Logan, personal communication). Secondly, there 

are no functional data examining downstream targets of AMPK, which is now the subject of 

further work out with the scope of this thesis. Indeed, in retrospect it may have been of interest to 

measure plasma FFA concentrations although these results may again have been confounded by the 

imperfect matching for glycaemia. Finally, while the vast majority of the tissue biopsy will 

constitute human adipose only approximately 50% of the cells are adipocytes and therefore it is 

impossible to quantify whether any presence of blood or macrophages could confound the results.  

 

Despite the chapter demonstrating a change in adipose AMPK it failed to demonstrate a change in 

plasma adiponectin.  This is agreement with a previous study which demonstrated the addition of 

metformin to sulphonylurea therapy has been shown to have no effect on circulating concentrations 

of adiponectin in subjects with Type 2 diabetes (Phillips et al 2003).  The impact of metformin on 

plasma adiponectin may also be difficult to interpret in this chapter as there is some evidence 

supporting an increase in adiponectin concentration with gliclazide (Kanda et al 2008, Drzewoski 

et al 2006). It is also important to consider the limitations of the plasma adiponectin assay which is 

a crude measurement of only total adiponectin using ELISA. The exact physiological role of 

adiponectin is incompletely understood but it is known that adiponectin exists in 3 or more different 
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higher order complexes: high molecular weight form), low molecular weight form and trimeric 

form. Adiponectin has also been shown to operate at a molecular level by increasing nitric oxide 

production (Hattori et al 2003) by pathways proposed to involve AMPK. Phosphorylation of eNOS 

by AMP-activated protein kinase (AMPK) has been proposed but the exact signalling mechanisms 

have not been clarified (Chen et al 2003, Tan et al 2004, Ouchi et al 2004, Chen et al 2005). It is 

therefore clear that further work is required to determine whether there is a relationship between 

AMPK and adiponectin in the action of metformin. 

 

Interestingly, it has been recently shown that glucocorticoids inhibit AMPK activity in adipose 

tissue of insulin resistant patients with Cushing’s (Kola et al 2008). Moreover, metformin has been 

found to prevent the glucocorticoid effects on ex vivo cultured human adipocytes (Christ-Crain et 

al 2008). The work in this thesis extends these observations by demonstrating that metformin is 

capable of activating AMPK in adipose tissue in patients who also have insulin resistance. 

 

In conclusion, this chapter provides the strongest evidence thus far to support a beneficial effect of 

metformin therapy on adipose AMPK concentrations in patients with type 2 diabetes, although 

there was no demonstrable change in plasma adiponectin concentration. Further work elucidating 

the molecular mechanisms by which metformin activate AMPK in adipose tissue may identify 

novel and tissue specific therapeutic targets in subjects with Type 2 diabetes.  
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Chapter 5 

 

Studies on biguanide effects on AMP-activated protein kinase and nitric oxide synthesis in 

human aortic endothelial cells.  

 

5.1 Introduction 

 

Recent clinical studies have shown that the effects of metformin may go beyond improving HbA1c 

and may include reductions in cardiovascular end points in T2DM. There is a growing body of 

evidence to suggest that the biguanide class of anti-diabetic drugs improve endothelial function. 

The mechanism of metformin action in target tissues that results in altered glucose homeostasis 

and potentiation of vascular endothelial function remains uncertain. Perhaps the most intriguing 

development in elucidating metformin’s cellular mechanism of action in recent years is the 

proposed involvement of AMPK. The metabolic and cardio-protective effects of metformin may be 

attributable to the activation of AMPK and its downstream pathways.  

 

AMPK has an important role in the release of NO from the vascular endothelium. AICAR 

stimulates eNOS Ser1177 phosphorylation and NO production in human aortic endothelial cells 

(HAECs) (Morrow et al 2003). Indeed, AMPK activation has been demonstrated to stimulate 

muscle glucose uptake in a NO-dependent manner and NO production has been proposed to be 

largely responsible for insulin-independent glucose uptake during exercise (Chen et al 2000, Fryer 

et al 2000, Hawley et al 2002). AMPK also has a role in angiogenesis. Vascular endothelial growth 

factor (VEGF) is a key regulator of angiogenesis and stimulates differentiation, survival, migration, 

proliferation and vascular permeability (Ferrara et al 2003). VEGF rapidly stimulates endothelial 

NO synthesis and does so in an AMPK dependent manner (Reihill et al 2007).  
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It has recently been reported that metformin stimulates NO synthesis in an AMPK-dependent 

manner in BAECs (Zou et al 2004). This is in contrast to data that suggests that the incubation of 

BAECs with phenformin activates AMPK without altering Ser1177 phosphorylation (Mount et al 

2005). Further work has demonstrated that metformin acts to phosphorylate AMPK and ACC in 

HUVECs (Hattori et al 2006). However in HAECs, metformin failed to show any effect on AMPK 

activity within 2 hours (Morrow et al 2003). The reasons for these conflicting data remain elusive 

but may be explained by species- and tissue-specific factors. Moreover, the neutral results with 

metformin may reflect the reduced lipophilicity compared with phenformin, such that phenformin 

rapidly accumulates in cells and subsequently has a more rapid effect on metabolism compared with 

metformin.  Therefore, a longer incubation period with or higher concentration of metformin may 

be required to stimulate AMPK and NO synthesis in HAECs.  Furthermore, the neutral results with 

metformin may also be explained by the possibility of cells either not expressing OCT-1 or carrying 

reduced function polymorphisms of OCT-1. 

 

Exactly how metformin improves insulin action, lowers body weight, improves the lipid profile, 

improves endothelial function and reduces the incidence of myocardial infarction remains 

incompletely understood. Further work is required to examine if biguanides mediate these effects by 

stimulating AMPK in vascular endothelial cells and in this chapter I investigate the effect of both 

metformin and phenformin in HAECs. 
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5.2 Aims of this chapter 

 

This chapter was initiated to extend the observations discussed above and addressed the following 

issues.  

i. Does metformin or phenformin stimulate nitric oxide production in cultured 

HAECs?  

ii. Does metformin or phenformin stimulate eNOS phosphorylation at Ser1177 in 

cultured HAECs?  

iii. Does metformin or phenformin rapidly stimulate eNOS phosphorylation at 

Ser1177 and NO synthesis in an AMPK-dependent manner?  
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5.3 Results  

5.3.1 Effect of A23187, insulin and L-NAME on nitric oxide (NO) production in HAECs. 

In HAECs, both insulin and A23187 independently stimulated NO production when compared to 

control (Figure 5.1). This effect was inhibited by pre-treatment with L-NAME.  

 

Figure 5.1 Stimulation of NO synthesis by A23187 and insulin in HAECs. 

Cells were incubated in KRH buffer in the presence or absence of L-NAME (black bars) for 1 

hour. Cells were stimulated with insulin (1µM) or A23187 (3µM) for 15 minutes. After the times 

indicated, media was removed and assayed for NO2
- 

content as described in methods. The data 

shown represents the mean % basal ± SEM NO synthesis from 3 independent experiments 

performed in sextuplicate. * p<0.05 relative to insulin or A23187 in the absence of L-NAME. 

 

 

 

 

 

 

*
*
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5.3.2 Effect of Metformin and Phenformin on nitric oxide (NO) production. 

This chapter examined the ability of the anti-diabetic biguanide drug metformin and its derivative, 

phenformin to modulate NO production in HAECs. Stimulation of HAECs with metformin (200 

µM) had no effect on the rate of NO synthesis after incubation for either 60 or 120 minutes (Figure 

5.2). Stimulation of HAECs with phenformin (200 µM) stimulated the rate of NO synthesis within 

60 minutes and reached a maximum 3.6-fold increase at 120 minutes (Figure 5.3).  Under identical 

conditions, stimulation of NO by phenformin was dose dependent (Figure 5.4) such that NO 

synthesis was significantly stimulated by 200 µM phenformin reaching a maximum 2.0-fold at 60 

minutes. 

 

5.3.3 Effect of Metformin and Phenformin on AMPK activity 

Phosphorylation of eNOS at Ser1177 has been reported to be mediated by several protein kinases, 

including AMPK. We next examined the ability of metformin to modulate AMPK activity in 

HAECs as assessed by incorporation of 
32

P from of [γ-
32

P] ATP into the AMPK substrate peptide 

SAMS. Stimulation of HAECs with metformin (200 µM) had no effect on AMPK activity after 

incubation for 60 or 120 minutes (Figure 5.2). Stimulation of HAECs with phenformin (200 µM) 

stimulated AMPK activity within 60 minutes and reached a maximum 3.3-fold increase at 120 

minutes (Figure 5.3). Under identical conditions, stimulation of AMPK activity was also dose-

dependent, such that 20 µM phenformin significantly stimulated AMPK activity, reaching a 

maximum 3.1-fold increase (Figure 5.4).  
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Figure 5.2 Metformin fails to stimulate AMPK and NO synthesis in HAECs.   

HAEC AMPK activity and the rate of L-NAME-sensitive NO2
- 
synthesis in media were determined 

after incubation in 200 µmol/l metformin for the indicated durations. Data shown represents the 

mean % basal ± S.E. NO synthesis or AMPK activity from 3 independent experiments. * p<0.05 

relative to value in absence of metformin.  
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Figure 5.3 Phenformin stimulates AMPK and NO synthesis in HAEC in a time-dependent 

manner.   

HAEC AMPK activity and the rate of L-NAME-sensitive NO2
- 
synthesis in media were determined 

after incubation in 200 µM phenformin for the indicated durations. Data shown represents the 

mean % basal ± S.E. NO synthesis or AMPK activity from 3 independent experiments. * p<0.05 

relative to value in absence of phenformin.  
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Figure 5.4 Phenformin stimulates AMPK and NO synthesis in HAEC in a dose-dependent 

manner.   

HAEC AMPK activity and the rate of L-NAME-sensitive NO2
- 
synthesis in media were determined 

after incubation for the indicated concentrations of phenformin for 1 hour. Data shown represents 

the mean % basal ± S.E. NO synthesis or AMPK activity from 3 independent experiments. * 

p<0.05 relative to value in absence of phenformin.  
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5.3.4 Effect on Phenformin on phosphorylation of ACC. 

To further characterise the effect of biguanides on HAEC AMPK activity I determined the 

phosphorylation status of ACC, which is phosphorylated by AMPK at Ser80 in ACC1 and Ser 220 

in ACC2 (human sequence).  Using an antibody that recognises both phosphorylated species, 

phenformin (200 µM) significantly stimulated phosphorylation of ACC in a time-dependent 

manner (Figure 5.5).  

 

Figure 5.5  Phenformin stimulates phosphorylation of ACC in HAECs. 

HAEC lysates, prepared from cells incubated with phenformin (200 µM) for 60 minutes and 120 

minutes were resolved by SDS PAGE, transferred to nitrocellulose and probed with the antibodies 

indicated.  Representative immunoblots are shown, repeated with similar results on 3 different 

samples of lysates.   
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5.3.5 Effect of phenformin phosphorylation of eNOS at Ser1177 and Thr495 in HAECs.  

Phosphorylation of eNOS has been demonstrated to be an important determinant of NO 

production.  In particular, phosphorylation at Ser1177 and dephosphorylation of Thr495 has been 

demonstrated to increase eNOS activity (Lin et al 2003). I therefore determined the effects of 

phenformin on eNOS phosphorylation at these sites in HAECs using phosphorylation site-specific 

antibodies. Stimulation of HAECs with 200 µM phenformin significantly stimulated 

phosphorylation of eNOS at Ser1177 (Figure 5.6).  In contrast, stimulation of HAECs with 

phenformin was without any significant effect on phosphorylation of eNOS at Thr495 (Figure 5.6).   

 

Figure 5.6  Effect of phenformin on eNOS phosphorylation at Ser1177 and Thr495 in HAECs. 

HAEC lysates, prepared from cells incubated with phenformin (200 µM) for 60 min and 120 min 

were resolved by SDS PAGE, transferred to nitrocellulose and probed with the antibodies 

indicated. Representative immunoblots are shown, repeated with similar results on 3 different 

samples of lysates.  
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5.3.6 Effect of the use of adenovirus expressing dominant negative AMPK on phenformin 

stimulated AMPK activation and NO stimulation  

To determine whether AMPK activation was required for phenformin-stimulated NO synthesis, 

HAECs were infected with control (Ad.Null) adenoviruses or adenoviruses expressing dominant 

negative AMPK (Ad.alpha1DN) prior to incubation with phenformin (200 µM) for 1h and NO 

production assessed. HAECs infected with Ad.alpha1DN exhibited significantly attenuated 

phenformin stimulated NO production at 1 hour compared to control virus-infected cells (Figure 

5.4). Insulin has previously been demonstrated to stimulate NO synthesis by PKB-mediated 

phosphorylation and activation of eNOS, independent of AMPK.  Infection of HAECs had no 

effect on insulin-stimulated (1µM, 15min) NO synthesis indicating that the effect of infection with 

Ad.alpha1DN did not result in the non-specific downregulation of NO synthesis in an AMPK-

independent manner. The effect of infection with Ad.alpha1DN on phosphorylation of eNOS or 

ACC was not examined. 
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Figure 5.7 Phenformin-stimulated NO synthesis is AMPK-dependent. 

The rate of L-NAME-sensitive NO2
- 
synthesis was determined in media of HAECs infected with 

Ad.Null or Ad.α1DN (10 Pfu/cell) after incubation in the presence or absence of phenformin (200 

µM, 1h) or insulin (1 µM, 15min). Data shown represents the mean % basal ± S.E. NO synthesis 

from 4 independent experiments performed in sextuplicate. * p<0.05 relative to value in Ad.Null-

infected cells. # p<0.05 relative to vehicle-treated cells.  
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5.3.4 Discussion 

The central finding of this chapter is that phenformin rapidly stimulates NO production in an 

AMPK-dependent manner in HAECs.  The stimulation of AMPK by phenformin is associated with 

increased phosphorylation of eNOS-Ser1177. The stimulation of NO production is attenuated by 

infection of HAECs with Ad.alpha1DN. These data support the hypothesis that biguanides increase 

NO production by an AMPK-dependent mechanism. As AMPK has previously been demonstrated 

to stimulate NO synthesis via phosphorylation of eNOS at Ser1177, the complete inhibition of 

phenformin-stimulated NO production by infection with Ad.alpha1DN suggests that AMPK-

mediated phosphorylation and activation of eNOS underlies phenformin-stimulated NO synthesis.  

 

A number of studies have demonstrated that biguanides have the capacity to improve endothelial 

function in non-diabetic subjects and subjects with T2DM. The beneficial effects of biguanides 

have been reported to be independent of glycaemia inferring a direct effect on vascular tissues.  

The endothelial effects of biguanides may be relatively rapid and stimulation of AMPK activity 

and NO synthesis by phenformin was achieved at concentration of 200µM.  It is difficult to explain 

the neutral results with metformin. Phenformin is a more lipophilic and potent biguanide which 

was removed from clinical practice due to the incidence of lactic acidosis and is often used in in 

vitro experimentation as the biguanide of choice. It is possible that metformin, being less 

lipophilic, was unable to reach a sufficiently high intracellular concentration to exhibit effects 

during the short course of my experiments.  

 

It has recently been reported that metformin stimulates NO synthesis in an AMPK-dependent 

manner in BAECs and has been demonstrated to phosphorylate AMPK and ACC in HUVECs (Zou 

et al 2004, Hattori et al 2006).  In the current study, I was unable to show any effect with metformin 

within 2 hours on either AMPK activity or NO production, in agreement with our laboratory’s 
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previous findings (Morrow et al 2003).  In contrast, the related biguanide, phenformin, robustly 

stimulated AMPK activity, ACC phosphorylation, eNOS Ser1177 phosphorylation and NO 

production in HAECs. Furthermore, infection of HAECs with Ad.alpha1DN indicates that AMPK 

activation is required for phenformin-stimulated NO synthesis.  It has been previously demonstrated 

that attenuation of AMPK signalling in this way does not alter NO synthesis in response to stimuli 

such as insulin. Indeed, insulin has previously been demonstrated to stimulate NO synthesis by 

PKB-mediated phosphorylation and activation of eNOS, independent of AMPK (Morrow et al 

2003). Infection of HAECs had no effect on insulin-stimulated (1µM, 10 min) NO synthesis 

indicating that Ad.alpha1DN solely attenuates AMPK-dependent stimulation of NO synthesis and 

does not result in the non-specific downregulation of NO synthesis in an AMPK-independent 

manner. 

 

In contrast to the current study, incubation of BAECs with phenformin was recently reported to 

activate AMPK without altering Ser1177 phosphorylation (Mount et al 2005).  The reasons for 

these conflicting data remain elusive, but may reflect species-specific differences with respect to 

phenformin action.  The neutral results with metformin may reflect the reduced lipophilicity 

compared with phenformin, such that phenformin rapidly accumulates in cells and subsequently has 

a more rapid effect on metabolism compared with metformin.  Furthermore, the neutral results with 

metformin may also be explained by the possibility of certain cells carrying reduced function 

polymorphisms of OCT-1. 

 

It is also important to consider if a longer incubation period or a higher concentration of metformin 

may be required to stimulate AMPK and NO synthesis in HAECs.  The plasma concentrations of 

metformin in patients treated with the drug are estimated to be 10–20 µM (Bailey et al 1996). It is 

important to consider that in many experiments involving cultured cells the doses used to activate 
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metformin are consistently higher in a range between 1 and 10 mM (Yang et al 2006, Zhang et al 

2007). This can be explained in part by the fact that OCT-1 predominantly expressed in the liver 

and is not expressed in many cultured cells. Indeed, 25% of the total dose of metformin is found in 

the liver 10 minutes after intravenous administration to wild type mice compared with <1% with 

OCT-1 knockout mice (Wang et al 2002). Higher doses of metformin are not used in patients with 

T2DM due to gastrointestinal side effects and also because of the risk of lactic acidosis, both of 

which might be caused by the ability of the compound to act as an inhibitor of the respiratory chain 

at high concentrations (Owen et al 2000). Further work is required to determine the time and 

concentration of metformin which will result in the maximal beneficial effects of AMPK activation 

without the development of gastrointestinal side effects and lactic acidosis. Indeed, it has been 

shown that an increase in the phosphorylation of ACC is evident when the degree of 

phosphorylation and activation of AMPK is very small (Hawley et al 2002). This suggests that to 

obtain beneficial therapeutic effects of metformin, maximal activation of AMPK may therefore not 

be necessary. However, with that in mind it may now be possible to develop a new generation of 

drugs that are more precisely targeted at AMPK. If new drugs could activate AMPK at lower 

concentrations they may have fewer unwanted side effects.  

 

Taken together with these previous studies, this thesis postulates that phenformin is able to 

stimulate endothelial NO synthesis in an AMPK-dependent manner, but species- and tissue-specific 

factors may underlie the seemingly conflicting data concerning the effects of metformin obtained to 

date.  
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Chapter 6 

 

Studies on thiazolidinedione effects on AMP-activated protein kinase and nitric oxide synthesis 

in human aortic endothelial cells.  

 

6.1 Introduction 

 

There is a growing body of evidence to suggest that the TZD class of anti-diabetic drugs improve 

endothelial function, as assessed by endothelium-dependent vasodilatation in patients with T2DM 

or insulin resistance (Pitrosch et al 2004, Natali et al 2004, Semple et al 2006).  The 

hypoglycaemic effects of TZDs are mediated by the transcription factor PPARgamma, but recent 

work suggests that the improvement of endothelial function by TZDs is independent of the effect 

on glycaemia (Satoh et al 2003, Pritosch et al 2004, Semple et al 2006). Therefore, the mechanism 

of action by which TZDs improve vascular endothelial function remains uncertain.   

 

Recent studies have suggested that prolonged exposure to TZDs directly improves NO 

bioavailability in endothelial cells and increases phosphorylation of eNOS at Ser1177 (Calnek et al 

2003, Cho et al 2004, Polikandriotis et al 2005, Kim et al 2006).  Several protein kinases have 

been demonstrated to phosphorylate eNOS Ser1177 in endothelial cells, including PKB and 

AMPK, but the protein kinase and signalling mechanism responsible for phosphorylation of eNOS 

in response to TZDs is as yet undetermined (Fulton et al 1999, Dimmeler et al 1999, Chen et al 

1999, Fryer et al 2002, Morrow et al 2003).  As TZDs have been demonstrated to rapidly and 

chronically activate AMPK in muscle, liver and adipose, it is possible that activation of AMPK 

may mediate eNOS phosphorylation and NO synthesis in response to TZDs in endothelial cells 

(Fryer et al 2002, Saha et al 2004, Konrad et al 2005, Lebrasseur et al 2006).   
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6.2 Aims of this chapter 

This chapter was initiated to extend the observations discussed above and addressed the following 

issues.  

i. Does rosiglitazone stimulate nitric oxide production in HAECs?  

ii. Does rosiglitazone stimulate eNOS phosphorylation at Ser1177 in HAECs?  

iii. Does rosiglitazone rapidly stimulate eNOS phosphorylation at Ser1177 and NO 

synthesis in an AMPK-dependent manner and/or PPAR gamma-independent 

manner? 
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6.3 Results 

6.3.1 Effect of Rosiglitazone on nitric oxide (NO) production 

Stimulation of HAECs with rosiglitazone (200 µM) stimulated the rate of NO synthesis within 30 

minutes and reached a maximum 2.1 fold increase at 60 min (Fig. 6.1a).  The increase in the rate of 

NO synthesis was sustained for 24h. Under identical conditions, Stimulation of NO by 

rosiglitazone was dose dependent (Fig. 6.1b) such that NO synthesis was significantly stimulated 

by 2 µM rosiglitazone and was stimulated maximally by 20 µM rosiglitazone (2.1 fold). 

 

6.3.2 Effect of Rosiglitazone on AMPK activity 

Stimulation of HAECs with rosiglitazone (200 µM) maximally stimulated AMPK activity 3.5 fold 

within 30 minutes and activation was sustained for 24 hours (Figure 6.1a). Under identical 

conditions, stimulation of AMPK activity was also dose-dependent, such that 2 µM rosiglitazone 

significantly stimulated AMPK activity, reaching a maximum 2.4 fold increase in AMPK activity 

at 200 µM (Figure 6.1b). 

 

6.3.3 Effect of a PPARgamma inhibitor on Rosiglitazone stimulated NO production and AMPK 

activity 

The principal therapeutic actions of the TZDs are thought to be alterations in gene expression 

mediated by PPARgamma. Preincubation of HAECs with the PPARgamma inhibitor, GW9662 (5 

µM) was without effect on rosiglitazone-stimulated AMPK activity and NO synthesis (Figure 

6.1b).  
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Figure 6.1 Rosiglitazone stimulates AMPK and NO synthesis in HAECs.   

HAEC AMPK activity and the rate of L-NAME-sensitive NO2
- 
synthesis in media were determined 

after incubation A) in 200 µM rosiglitazone for the indicated durations and B) for the indicated 

concentrations of rosiglitazone for 1h after preincubation with GW9662 (G, 5 µM) for a further 1h. 

Data shown represents the mean % basal ± S.E. NO synthesis or AMPK activity from 3 

independent experiments. * p<0.05 relative to value in absence of rosiglitazone.  
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6.3.4 Effect on Rosiglitazone on phosphorylation of AMPK 

Activation of AMPK requires phosphorylation at Thr172 by an AMPK kinase. Using a phospho-

Thr172-specific anti-AMPK antibody, it was observed that that rosiglitazone also stimulates 

phosphorylation of AMPK at Thr172 in a time and concentration-dependent manner (Figures 

6.1c); in close agreement with the AMPK assay data (Figures 6.1a & 6.1b).   

 

Figure 6.1 Rosiglitazone stimulates AMPK and NO synthesis in HAECs.   

C) Under identical conditions, AMPK Thr172 phosphorylation was determined in HAEC lysates.  

Representative immunoblots are shown from 3 independent experiments. 

 

 

 

 

 

 

 

C 



171 

 

171 

 

6.3.5 Effect of the use of adenovirus expressing dominant negative AMPK on Rosiglitazone 

stimulated AMPK activation and NO stimulation  

To determine whether AMPK activation was required for rosiglitazone-stimulated NO synthesis, 

HAECs were infected with control (Ad.Null) adenoviruses or adenoviruses expressing dominant 

negative AMPK (Ad.alpha1DN) prior to incubation with rosiglitazone (200 µM) for 1 hours or 24 

hours and NO production assessed.  HAECs infected with Ad.alpha1DN exhibited significantly 

attenuated rosiglitazone (1 hour) stimulated NO production (Fig. 6.2a) compared with control 

virus-infected cells.  In HAECs incubated with rosiglitazone for 24 hours there was a non-

significant reduction in NO synthesis in cells infected with Ad.alpha1DN compared with control 

virus-infected cells.  Insulin has previously been demonstrated to stimulate NO synthesis by PKB-

mediated phosphorylation and activation of eNOS, independent of AMPK.  Infection of HAECs 

had no effect on insulin-stimulated (1µM, 15min) NO synthesis indicating that the effect of 

infection with Ad.alpha1DN did not result in the non-specific downregulation of NO synthesis in 

an AMPK-independent manner (Fig. 6.2a). Infection with Ad.alpha1DN markedly attenuated 

rosiglitazone-stimulated AMPK activity, as assessed by ACC phosphorylation and was without 

effect on eNOS expression (Fig. 6.2b) 
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Figure 6.2. Rosiglitazone-stimulated NO synthesis is AMPK-dependent. 

A) The rate of L-NAME-sensitive NO2
- 

synthesis was determined in media of HAECs infected 

with Ad.Null or Ad.α1DN after incubation in the presence or absence of rosiglitazone (RSG, 200 

µM, 1h or 24h) or insulin (1 µM, 15min). Data shown represents the mean % basal ± S.E. NO 

synthesis from 4 independent experiments. * p<0.05 relative to value in Ad.Null-infected cells. # 

p<0.05 relative to vehicle-treated cells.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

A 



173 

 

173 

 

Figure 6.2. Rosiglitazone-stimulated NO synthesis is AMPK-dependent. 

B) Under identical conditions, ACC phosphorylation and eNOS expression were determined in 

HAEC lysates.  Representative immunoblots are shown from 3 independent experiments. 
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6.3.6 Effect on Rosiglitazone on eNOS phosphorylation 

Phosphorylation of eNOS has been demonstrated to be an important determinant of NO 

production.  In particular, phosphorylation at Ser1177 has been demonstrated to increase eNOS 

activity. I therefore determined the effects of thiazolidinediones on eNOS phosphorylation at these 

sites in HAECs using phosphorylation site-specific antibodies. Incubation of HAECs with 

rosiglitazone (20µM) stimulated phosphorylation of eNOS at Ser1177 (Fig. 6.3). Furthermore, 

rosiglitazone-stimulated eNOS Ser1177 phosphorylation was completely inhibited in HAECs 

infected with Ad.alpha1DN compared to cells infected with control Ad.null viruses.  In the same 

lysates, infection with Ad.alpha1DN abrogated rosiglitazone-stimulated AMPK activity, as 

assessed by ACC phosphorylation (Fig. 6.3).   
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Figure 6.3. Rosiglitazone-stimulated eNOS Ser1177 phosphorylation is AMPK-dependent. 

Phosphorylation of eNOS Ser1177 and ACC was determined in lysates prepared from HAECs 

infected with Ad.Null or Ad.α1DN after incubation with rosiglitazone (20 µM) for 1h.  

Representative immunoblots are shown, repeated with similar results on 3 different samples of 

lysates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



176 

 

176 

 

6.4 Discussion 

The central finding of this chapter is that rosiglitazone rapidly stimulates NO production and eNOS 

Ser1177 phosphorylation in an AMPK-dependent manner in HAECs.  The stimulation of AMPK by 

rosiglitazone is associated with increased phosphorylation of eNOS-Ser1177.  The stimulation of 

NO production and phosphorylation of eNOS at Ser1177 is attenuated by infection of HAECs with 

Ad.alpha1DN. These data support the hypothesis that thiazolidinediones increase NO production by 

an AMPK-dependent mechanism. As AMPK has previously been demonstrated to stimulate NO 

synthesis via phosphorylation of eNOS at Ser1177, the complete inhibition of rosiglitazone-

stimulated eNOS Ser1177 phosphorylation by infection with Ad.alpha1DN provides strong 

evidence that AMPK-mediated phosphorylation and activation of eNOS underlies rosiglitazone-

stimulated NO synthesis.  

 

Previous studies have demonstrated that incubation of human umbilical vein endothelial cells 

(HUVECs) with rosiglitazone for 48h stimulated NO synthesis and phosphorylation of eNOS at 

Ser1177 (Cho et al 2004).  Similarly, troglitazone has been reported to stimulate NO synthesis 

within 3h and eNOS phosphorylation at the equivalent site (Ser1179) in bovine aortic endothelial 

cells (BAECs), (Polikandriotis et al 2005).  In this chapter, I show for the first time that 

rosiglitazone stimulates NO synthesis and eNOS Ser1177 phosphorylation in HAECs, in 

agreement with the previous studies in HUVECs & BAECs.  Furthermore, I demonstrate a 

mechanism by which the rapid stimulation of NO synthesis and eNOS Ser1177 phosphorylation is 

achieved. 

 

In HUVECs, rosiglitazone-stimulated NO synthesis and eNOS Ser1177 phosphorylation were 

reported to be completely inhibited in the presence of the PPARgamma inhibitor, GW9662 

(Polikandriotis et al 2005).  In BAECs, however, troglitazone-stimulated NO synthesis and eNOS 
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Ser1179 phosphorylation was only partially inhibited in the presence of the PPARgamma inhibitor, 

BADGE (Cho et al 2004). In contrast, I demonstrated that rosiglitazone-stimulated NO synthesis 

was unaffected by the PPARgamma inhibitor, GW9662. The likely reason for the differences 

observed between the findings of this chapter and those conducted previously may reflect the 

different cell types utilized, but is more likely to be a result of the markedly different durations of 

rosiglitazone stimulation.  I incubated cells with rosiglitazone for 1-2 hours, whereas Polikandroitis 

and colleagues stimulated HUVECs with rosiglitazone for 24 hours and Cho and co-workers 

stimulated with troglitazone for up to 24 hours (Cho et al 2004, Polikandriotis et al 2005).   

 

As the principal effect of PPARgamma is the regulation of gene transcription, it seems likely that 

the acute effects observed in the current study are too rapid to be the result of PPARgamma-

mediated alterations in gene transcription.  I cannot, however, rule out the later (12-24 hours) 

effects of rosiglitazone and other thiazolidinediones being the result of altered gene transcription.  

 

A number of studies have demonstrated that thiazolidinediones have the capacity to improve 

endothelial function in non-diabetic subjects and subjects with type 2 diabetes. Despite the TZD 

related improvements in vascular biology and endothelial function described above, it is important 

to note that metformin remains the only oral hypoglycaemic drug to demonstrate good evidence for 

cardiovascular protection in a randomised trial. Indeed, in both the large scale clinical trials 

involving thiazolidinediones, PROactive and RECORD, pioglitazone and rosiglitazone failed to 

confer cardiovascular protection in patient with T2DM. It is therefore clear that the molecular 

mechanisms by which rosiglitazone and other thiazolidinediones have their effects on the 

cardiovascular system are complex.  
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The beneficial effects of TZDs have been reported to be independent of glycaemia, inferring a 

direct effect on vascular tissues (Satoh et al 2003, Pitrosch et al 2004).  The endothelial effects of 

TZDs may be relatively rapid; indeed rosiglitazone has been reported to improve endothelial 

function within 24 hours in healthy human subjects and it is increasingly clear that the TZDs have 

non-genomic, PPARgamma-independent effects (Hetzel et al 2005).  Furthermore, stimulation of 

NO synthesis and AMPK activity by rosiglitazone was achieved at concentrations as low as 2 µM.   

These concentrations are close to those achieved clinically; healthy subjects given 8 mg of 

rosiglitazone have been demonstrated to exhibit a peak plasma rosiglitazone concentration of 0.7 - 

0.8 µM after 1 hour (Kim et al 2004).  The findings of this final chapter of results provide evidence 

for an AMPK-dependent mechanism by which TZDs rapidly contribute to increase NO 

bioavailability.  This mechanism may underlie the rapid effects of TZDs on endothelial function 

that are independent of PPARgamma-mediated alterations in gene transcription.  

 

The work in this final chapter has been complemented and significantly extended by work carried 

out by my laboratory colleagues.  

 

I demonstrated that preincubation of HAECs with GW9662 had no effect was on rosiglitazone-

stimulated AMPK activity and NO synthesis, suggesting that this was a PPARgamma independent 

effect of rosiglitazone. Importantly, this observation has been extended with data confirming that 

preincubation of HAECs with GW9662 prevents rosiglitazone stimulated expression of CD36 

mRNA, indicating that GW9662 does effectively inhibit PPARgamma-mediated transcription in 

HAECs under these conditions. This finding adds weight to the suggestion that that PPARgamma 

is not an upstream component of rapid thiazolidinedione-stimulated, AMPK-dependent NO 

synthesis (Boyle et al 2008).   
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Two upstream AMPK kinases have been isolated to date, LKB1 and Ca
2+

/calmodulin-dependent 

kinase kinase (CaMKK), (Hawley et al 2003, Woods et al 2003, Hawley et al 2005).   

 

It has been proposed that LKB1 activity is constitutive, such that AMP binding to AMPK inhibits 

dephosphorylation at Thr172 permitting phosphorylation and activation by LKB1 (Woods et al 

2003). Further work by laboratory colleagues has determined that LKB1 activity is necessary for 

rosiglitazone-stimulated AMPK activity.  HeLa cells do not express endogenous LKB1, and 

therefore the effect of rosiglitazone on AMPK activity and AMPK Thr172 phosphorylation in 

HeLa cells stably expressing wild type (LKB1-WT) or kinase inactive mutant (LKB1-KD) LKB1 

was investigated (Sapkota et al 2002).  Rosiglitazone stimulated AMPK activity and AMPK 

Thr172 phosphorylation in cells expressing LKB1-WT, but no effect of rosiglitazone was apparent 

in HeLa cells expressing LKB1-KD (Boyle et al 2008).  Moreover, Rosiglitazone had no 

significant effect on LKB1 activity as assessed by its ability to activate recombinant AMPK kinase 

domain. These data provides evidence that rosiglitazone stimulates AMPK activity utilizing a 

LKB1-dependent mechanism and is in agreement with previous studies showing no changes in 

LKB1 activity with phenformin, AICAR, muscle contraction and extreme ischemia in a variety of 

tissues (Lizcano et al 2004, Sakamoto et al 2004, Altarejos et al 2005).  

 

It is now apparent that CaMKK can act as an alternate upstream kinase to LKB1 that activates 

AMPK in a Ca
2+

-dependent and AMP-independent manner (Hawley et al 2005, Woods et al 

2005). It has been demonstrated that HAECs express CaMKK and that CaMKK mediates VEGF-

stimulated AMPK activation in HAECs (Reihill et al 2007). Further work has demonstrated that 

preincubation of cells with the CaMKK inhibitor STO-609 has no significant effect on 

rosiglitazone-stimulated AMPK activity, AMPK Thr172 phosphorylation or phosphorylation of the 

AMPK substrate, acetyl CoA carboxylase (ACC), yet completely inhibits VEGF-stimulated 
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AMPK activity (Boyle et al 2008). This observation suggests that CaMKK is not an upstream 

kinase responsible for AMPK activation in response to rosiglitazone.   

 

It has also been determined that other thiazolidinediones activate AMPK in HAEC’s.  Stimulation 

of HAECs with troglitazone or pioglitazone (20 µM) for one hour stimulated AMPK activity, 

AMPK Thr172 phosphorylation and ACC phosphorylation and preincubation with GW9662 was 

without effect (Boyle et al 2008). This observation suggests that activation of AMPK is a common 

mechanism utilized by thiazolidinediones. 

 

Finally, endothelial NO synthesis has been demonstrated to inhibit monocyte adhesion to the 

endothelium, an early, key step in atherogenesis.  A previous study has demonstrated a modest 

reduction in TNF-α-stimulated adhesion of U937 cells to HAECs in response to incubation with 

pioglitazone for 24h (Kurebayashi et al 2005). Further work in our laboratory demonstrated that 

acute (1 hour) stimulation with rosiglitazone was sufficient to reduce TNF-α-stimulated adhesion 

of U937 cells to HAECs in an L-NAME-sensitive manner (Boyle et al 2008).  These data suggest 

that AMPK-mediated rosiglitazone-stimulated NO synthesis has rapid functional effects.  

 

In summary, the findings of this chapter provide evidence for an AMPK-dependent mechanism by 

which thiazolidinediones rapidly contribute to increased NO bioavailability.  This mechanism may 

underlie the rapid effects of thiazolidinediones on endothelial function that are independent of 

PPARgamma-mediated alterations in gene transcription.  
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Chapter 7 Discussion 
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7.1 Background  

Cardiovascular risk assessment in patients with T2DM shows that even when traditional 

cardiovascular risk factors (smoking, hypertension and hypercholesterolaemia) are corrected for, 

insulin resistance remains an independent risk factor for vascular disease (Laakso 1999). Moreover, 

despite aggressive treatment of the individual risk factors, death from T2DM remains unacceptably 

high (Ford 2005). Insulin sensitizers such as the biguanides and thiazolidinediones are widely used 

in the treatment of T2DM but the site and precise mode of their action remain uncertain. The 

prevalence of T2DM is reaching epidemic proportions and there is a growing need for new 

therapeutic targets. AMPK is a novel therapeutic target because it has been demonstrated to 

mediate, at least in part, the effects of a number of physiological and pharmacological factors that 

exert beneficial effects on metabolism and the vasculature. Thus, the development of specific tissue 

specific AMPK activators is an attractive prospect for the future.  

 

7.2 Aims  

The aims of this thesis were as follows: 

 

i. To determine if metformin improves vascular endothelial function in 

association with a lower circulating concentration of ADMA.  

ii. To determine if metformin exerts beneficial metabolic effects in patients with 

T2DM in association with altered AMPK activity in human adipose. 

iii. To determine if insulin sensitizers such as metformin and the 

thiazolidinediones, acting directly on vascular endothelial cells, increase NO 

production by increasing AMPK activity thus accounting for beneficial effects 

on endothelial function and, in metformin’s, case cardiovascular outcome. 
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7.3 Metformin fails to improve vascular function but is associated with a small fall in circulating 

concentrations of ADMA when compared with Gliclazide therapy. 

I hypothesized that a short duration of metformin therapy would improve vascular function in 

association with lower circulating concentrations of ADMA in comparison with gliclazide therapy. 

To test this hypothesis I compared the effects of metformin versus gliclazide on large artery 

stiffness, resistance artery function and circulating concentrations of ADMA using a randomised, 

double-blind crossover design in subjects with Type 2 diabetes. One of the main aims was to 

confirm or refute a beneficial effect of metformin on circulating ADMA concentrations in view of 

recent supportive data to this effect from uncontrolled trials. It was also hypothesised that ADMA 

might not only be a predictive marker but also a causative risk factor for cardiovascular disease and 

thus any metformin-induced reduction in ADMA concentration would be accompanied by an 

improvement in vascular function. The data demonstrates that metformin does indeed lower 

ADMA compared with gliclazide despite better glycaemia changes with the latter, supporting a 

glucose-independent mechanism for this metformin effect. Finally, the data show that the change 

in ADMA concentration was not associated with any difference in large artery stiffness as 

measured by pulse wave velocity or resistance artery function as measured by wire myography.  

 

There are certain limitations to this work. The reduction in ADMA was modest and the observed 

magnitude of difference contrasts with reports of much larger reductions in ADMA concentration 

in uncontrolled studies of metformin therapy in women with PCOS as well as poorly controlled 

subjects with Type 2 diabetes, where the drug was added to diet control or sulphonylurea therapy 

(Abbasi et al 2001, Heutling et al 2008). Thus, while of interest, the difference in ADMA could be 

deemed as biologically insignificant and clinically irrelevant. It is also particularly important to 

consider the implication of the missing data set in the wire myography data; eighteen subjects had 

at least one successful biopsy with myography data with only four subjects having paired 



184 

 

184 

 

myography results. An absence of vessels of suitable diameter was the reason for failure to obtain 

vessels from biopsies with no myography data although the vessel yield in this study is consistent 

with other wire myography studies completed by our group and others. The data are therefore 

insufficiently powered to detect any small changes in vascular function in association with this 

dose and duration of treatment. The data also failed to show that metformin conferred a benefit in 

pulse wave velocity and it was important to consider why. In the present study subjects were not 

randomised to the maximum dose of each drug and the duration of treatment was relatively short at 

10 weeks.  Whether a longer duration of each treatment in higher dose would have been associated 

with a larger change in ADMA concentration with measurable improvements in vascular function 

in favour of metformin is unknown and could be the subject of further study. The study design 

aimed to match glycaemic control at the end of each phase but this, in the event, proved not to be 

possible. Associated with these changes was a small improvement in plasma LDL cholesterol. 

Thus, it is reasonable to speculate that confounding effects related to better short term glycaemia 

and LDL-cholesterol improvements with gliclazide may have attenuated any metformin-induced 

change in ADMA being associated with an associated beneficial improvement in vascular function. 

Finally, the decision at the design stage to not make baseline measurements of both PWV and 

ADMA concentration at the beginning of each phase may have made strict interpretation of the 

results more difficult. From this we could truly know if metformin treatment lowered ADMA 

concentration as it is impossible to distinguish if the final results represent an effect of gliclazide to 

raise ADMA concentration or PWV.  The protocol for each patient was already fairly rigorous and 

therefore an assessment of resistance artery endothelial function would have been difficult to 

justify (two additional buttock biopsies). Future studies of metformin at higher doses for a longer 

duration are required to determine whether ADMA lowering by metformin improves vascular 

function and more importantly, whether such a reduction helps explain the vascular end-point 

benefits of this treatment in prospective clinical trials.  
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7.4 Metformin increases AMPK activity in adipose tissue in patients with T2DM when compared 

with Gliclazide therapy. 

I hypothesized that a short duration of metformin therapy exerts beneficial metabolic effects in 

patients with T2DM in association with increased AMPK activity in human adipose and that this 

may be associated with changes in circulating levels of plasma adiponectin concentration. To test 

these hypotheses, this thesis explored metformin’s action in human adipose tissue and plasma 

adiponectin, an area thus far neglected in the literature. This chapter compared the effects of 

metformin versus gliclazide on adipose AMPK activity and plasma adiponectin using a 

randomised, double-blind crossover design in subjects with Type 2 diabetes. The main aim was to 

confirm or refute a beneficial effect of metformin on adipose AMPK activity. It was also 

hypothesised that any increase in AMPK activity may be associated with an increase in plasma 

adiponectin concentration.  The data demonstrate that metformin does indeed increase adipose 

AMPK compared with gliclazide. The increase in adipose AMPK activity was not associated with 

an increase in AMPK protein expression. This finding suggests that the change in AMPK activity 

is an increase in the specific activity of AMPK rather than simply a difference in the total amount 

in AMPK between phases. The study design aimed to match glycaemic control at the end of each 

phase but this, in the event, proved not to be possible. Metformin increased AMPK activity when 

compared with gliclazide despite better glycaemia changes with the latter, supporting a glucose-

independent mechanism for this metformin effect. Associated with these changes was a small 

improvement in plasma LDL cholesterol with gliclazide. Somewhat surprisingly, there was no 

significant difference in BMI after each treatment although measurement of skin fold thickness or 

more sophisticated measurement of body composition may have provided a more specific marker 

of fat mass. Finally, the data show that the change in adipose AMPK activity was not associated 

with any difference in plasma adiponectin. 
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There are certain limitations to this work. Firstly, while a robust and significant difference in 

AMPK activity with metformin when compared with gliclazide is demonstrated it is important to 

note that the effect of gliclazide on AMPK activity has not been widely studied. The principal 

mechanism of action of the sulphonylurea class of drugs is to improve insulin secretion by the beta 

cells of the endocrine pancreas, and the data concerning the effects of sulphonylurea on AMPK are 

limited. Indeed, glimepiride treatment has been shown to have no effect on AMPK activity in 

cultured myocytes as expressed by AMPK phosphorylaton while gliclazide has no effect (up to 1 

hour incubation) in 3T3-LI adipocytes on AMPK activity as assessed by kinase assay (Inukai et al 

2005, P J Logan, personal communication). Secondly, there is also no functional data examining 

downstream targets of AMPK. Without evidence of downstream effects any beneficial metabolic 

effects associated with increased AMPK activity with metformin therapy can only be implied. 

Finally, while the vast majority of the tissue biopsy will constitute human adipose only 

approximately 50% of the cells are adipocytes and therefore it is impossible to quantify whether 

any presence of blood or macrophages could confound the results and that the increase in AMPK 

activity is in the circulating plasma or in vascular cells. Finally, again the decision at the design 

stage to not make baseline measurements of plasma adiponectin at the beginning of each phase 

may have made strict interpretation of the results more difficult. From this we could truly know if 

metformin treatment increased plasma adiponectin as it is impossible to distinguish if the final 

results represent an effect of gliclazide to increase adiponectin concentration.  It is also important 

to consider the limitations of the plasma adiponectin assay which is a crude measurement of only 

total adiponectin using ELISA. The exact physiological role of adiponectin is incompletely 

understood and further work is required to determine whether there is a relationship between 

AMPK and adiponectin in the action of metformin. Further work elucidating the molecular 

mechanisms by which metformin activates AMPK in adipose tissue may identify novel and tissue 

specific therapeutic targets in subjects with Type 2 diabetes. 



187 

 

187 

 

7.5 Phenformin, but not Metformin stimulates NO in an AMPK dependant manner. 

I hypothesized that biguanide therapy would stimulate NO production in an AMPK dependant 

manner in HAECs. Metformin failed to stimulate NO production or AMPK activity in HAECs. In 

contrast, phenformin rapidly stimulated NO production in an AMPK-dependent manner in HAECs.  

The stimulation of AMPK by phenformin is associated with increased phosphorylation of eNOS-

Ser1177. The stimulation of NO production is attenuated by infection of HAECs with 

Ad.alpha1DN. These data support the hypothesis that phenformin increases NO production by an 

AMPK-dependent mechanism. As AMPK has previously been demonstrated to stimulate NO 

synthesis via phosphorylation of eNOS at Ser1177, the inhibition of phenformin-stimulated NO 

production by infection with Ad.alpha1DN suggests that AMPK-mediated phosphorylation and 

activation of eNOS underlies phenformin-stimulated NO synthesis.  

 

There are certain limitations to this work. In retrospect, the hypothesis that AMPK-mediated 

phosphorylation and activation of eNOS underlies phenformin-stimulated NO synthesis could have 

been further strengthened if I had demonstrated that phosphorylation of eNOS at Ser1177 and ACC 

was attenuated by infection with Ad.alpha1DN. It is also important to consider the neutral data with 

metformin. It has recently been reported that metformin stimulates NO synthesis in an AMPK-

dependent manner in BAECs and has been demonstrated to phosphorylate AMPK and ACC in 

HUVECs (Zou et al 2004, Hattori et al 2006).  I was unable to show any effect of metformin within 

2 hours on either AMPK activity or NO production, in agreement with previous findings (Morrow 

et al 2003).  Phenformin, however, robustly stimulated AMPK activity, ACC phosphorylation, 

eNOS Ser1177 phosphorylation and NO production in HAECs. The contrasting results make 

interpretation of the findings with phenformin more difficult. Phenformin in a more lipophilic and 

potent biguanide which was removed from clinical practice due to the incidence of lactic acidosis 

and is often used in in vitro experimentation as the biguanide of choice. The dose of phenformin 
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most commonly used in the experiments described was 200µM, which is supra-physiological. It is 

possible that metformin, being less lipophilic, was unable to reach a sufficiently high intracellular 

concentration to exhibit effects during this short course of my experiments. It is also important to 

consider if a longer incubation period or a higher concentration of metformin may be required to 

stimulate AMPK and NO synthesis in HAECs.  The plasma concentrations of metformin in patients 

treated with the drug are estimated to be 10–20 µM (Bailey et al 1996). It is important to consider 

that in many experiments the doses used to activate metformin are consistently higher in a range 

between 1 and 10 mM (Yang et al 2006, Zhang et al 2007). Higher doses of metformin are not used 

in patients with T2DM due to gastrointestinal side effects and also because of the risk of lactic 

acidosis, both of which might be caused by the ability of the compound to act as an inhibitor of the 

respiratory chain at high concentrations (Owen et al 2000). Further work is required to determine 

the time and concentration of metformin which will result in the maximal beneficial effects of 

AMPK activation without the development of gastrointestinal side effects and lactic acidosis. 

Furthermore, it is impossible to exclude if the neutral results with metformin may also be explained 

by the possibility of certain HAECs either not expressing OCT-1 which is expressed particularly in 

the liver or carrying reduced function polymorphisms of OCT-1 (Wang et al 2002). Finally, it is 

important to state that while phenformin has been shown to stimulate NO production and AMPK 

activity in HAECs, further work is required to confirm if this would translate into beneficial 

metabolic and vascular effects in patients with T2DM. 

 

7.6 Rosiglitazone stimulates NO in an AMPK dependent manner. 

I hypothesized that rosiglitazone therapy would stimulate NO production in an AMPK dependant 

manner in HAECs. Rosiglitazone rapidly stimulates NO production and eNOS Ser1177 

phosphorylation in an AMPK-dependent manner in HAECs.  The stimulation of AMPK by 

rosiglitazone is associated with increased phosphorylation of eNOS-Ser1177.  The stimulation of 
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NO production and phosphorylation of eNOS at Ser1177 is attenuated by infection of HAECs with 

Ad.alpha1DN. These data support the hypothesis that thiazolidinediones increase NO production by 

an AMPK-dependent mechanism. As AMPK has previously been demonstrated to stimulate NO 

synthesis via phosphorylation of eNOS at Ser1177, the complete inhibition of rosiglitazone-

stimulated eNOS Ser1177 phosphorylation by infection with Ad.alpha1DN provides strong 

evidence that AMPK-mediated phosphorylation and activation of eNOS underlies rosiglitazone-

stimulated NO synthesis. Moreover, rosiglitazone-stimulated NO synthesis was unaffected by the 

PPARgamma inhibitor, GW9662.  

 

There are certain limitations to this work. I demonstrated that rosiglitazone-stimulated NO synthesis 

was unaffected by the PPARgamma inhibitor, GW9662. As the principal effect of PPARgamma is 

the regulation of gene transcription, it seems likely that the acute effects observed in the current 

study are too rapid to be the result of PPARgamma-mediated alterations in gene transcription. This 

is in disagreement with work in other cell lines. Indeed, in HUVECs, rosiglitazone-stimulated NO 

synthesis and eNOS Ser1177 phosphorylation were reported to be completely inhibited in the 

presence of the PPARgamma inhibitor, GW9662 (Polikandriotis et al 2005).  Moreover, in BAECs, 

however, troglitazone-stimulated NO synthesis and eNOS Ser1179 phosphorylation was only 

partially inhibited in the presence of the PPARgamma inhibitor, BADGE (Cho et al 2004).  The 

likely reason for the differences observed between the findings in this thesis and those conducted 

previously may reflect the different cell types utilized, but is more likely to be a result of the 

markedly different durations of rosiglitazone stimulation.  I incubated cells with rosiglitazone for 1-

2 hours, whereas Polikandroitis and colleagues stimulated HUVECs with rosiglitazone for 24 hours 

and Cho and co-workers stimulated with troglitazone for up to 24 hours (Cho et al 2004, 

Polikandriotis et al 2005).  I cannot, however, rule out the later (12-24 hours) effects of 

rosiglitazone and other thiazolidinediones being the result of altered gene transcription and it would 
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have been of value to compare the effect of GW9962 on NO production and AMPK activity at both 

the 1 and 24 hour time points. Finally, it is important to state that while rosiglitazone has been 

shown to stimulate NO production and AMPK activity in HAECs, further work is required to 

confirm if this would translate into beneficial metabolic and vascular effects in patients with T2DM. 

It is also important to consider that despite the TZD related improvements in vascular biology and 

endothelial function described above metformin remains the only oral hypoglycaemic drug to 

demonstrate good evidence for cardiovascular protection in a randomised trial. Indeed, in both the 

large scale clinical trials involving thiazolidinediones, PROactive and RECORD, pioglitazone and 

rosglitazone failed to confer cardiovascular protection in patients with T2DM. It is therefore clear 

that the molecular mechanisms by which rosiglitazone and other thiazolidinediones have their 

effects on the cardiovascular system are complex.  

 

7.7 Future work and summary 

AMPK is an attractive goal for therapeutic intervention in T2DM. As demonstrated in the data 

presented in this thesis in both adipose tissue of patients with T2DM and cultured human vascular 

endothelial cells, two of the most commonly used treatments for diabetes, biguanides and 

thiazolidinediones, may well exert a proportion of their beneficial effects through the activation of 

AMPK. The generation of more specific and potent activators of AMPK, however, could have 

additional metabolic and vascular benefits for patients with T2DM.  

 

At this point in time, it is still uncertain whether direct activation of the AMPK pathway in patients 

with T2DM will be safe. It is unknown whether directly activating AMPK in the absence of 

depleted energy stress or physiological stress would be detrimental. It is certain that the effects of 

AMPK activation in other organs or tissues need to be carefully evaluated as the widespread 

cellular functions of AMPK will make selective targeting challenging for the pharmaceutical 
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industry. A greater understanding of specific AMPK signalling pathways and their regulation will 

be crucial for the development of such drug therapy.  

 

Three target tissues have caused concern in the literature to date; hypothalamus, pancreas and the 

heart. The hypothalamus plays a key role in the regulation of energy balance. It does so by using 

AMPK as a fuel gauge that can respond to both hormones, anorexia or an excess of food. (Schwartz 

et al 2000, Andersson et al 2004). Injection of leptin into rodents inhibits AMPK activity in the 

hypothalamus whereas administration of ghrelin stimulates AMPK activity (Andersson et al 2004). 

Moreover, fasting stimulates AMPK activity whereas hyperglycaemia and refeeding inhibits 

AMPK activity in the hypothalamus (Minokowski et al 2004). Therefore, it appears that activating 

AMPK can stimulate food intake through its action in the hypothalamus. While this effect probably 

represents a physiological response in glucose homeostasis, the prospect of patients gaining weight 

through the pharmacological targeting of AMPK for the treatment of T2DM is unattractive and 

presents a significant challenge to the pharmaceutical industry. It is important to note, however, 

that this theoretical side effect of AMPK activators remains to be established.  

 

Another area of concern is AMPK’s role in the pancreas. It has been demonstrated that an increase 

in glucose levels represses AMPK activity in β cell lines (Salt et al 1998, Le Clerc et al 2004), 

whereas when AMPK is activated by AICAR, insulin release in response to high glucose is 

attenuated (Zhang et al 1995). Furthermore, overexpression of a constitutively active form of 

AMPK results in a reduction in insulin release from β cell lines while overexpression of a dominant 

negative form of AMPK leads to an increase in insulin release (Da Silva Xavier et al 2003). 

Moreover, when metformin is added to β cell lines, AMPK is activated and insulin secretion in 

response to insulin is attenuated (Leclerc et al 2004). The activation of pancreatic AMPK is 

therefore associated with decreased insulin secretion which could have a negative effect on 
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glycaemic control in patients with T2DM. This effect may, however, be a protective effect during 

periods of hypoglycaemia, where AMPK is activated and insulin secretion falls to maintain 

euglycaemia. Nevertheless, the effects the exact role of AMPK in insulin release remains 

incompletely understood and further work is required before AMPK can targeted by drug therapy in 

patients with T2DM. 

 

Finally, alterations in cardiac AMPK activity are associated with a number of cardiovascular-

related diseases including glycogen storage cardiomyopathy (Arrad et al 2003) and Wolff–

Parkinson–White syndrome (Gollob et al 2001) suggesting that the manipulation of AMPK 

activity in cardiac tissue may not be without risks.  

 

All of these uncertainties will need to be clarified by further work defining the effects of AMPK 

activation in the various target tissues described above. An ideal AMPK activator would be 

administrated by the oral route, activate AMPK at low concentration and be effective in specific 

target organs, such as the liver, skeletal muscle and adipose tissue but not the hypothalamus or 

pancreas. Tissue-specific pharmacological activation of AMPK is, therefore, essential and could 

potentially be achieved through isoform-specific activation or targeting of downstream substrates 

of AMPK. The first validation of the beneficial effects of a direct AMPK activator were recently 

reported (Cool et al 2006). The small molecule, compound A-769662 has been shown to directly 

activate AMPK both in vitro and in vivo. In cell culture studies A-769662 has been shown to 

reduce fatty acid synthesis in primary rat hepatocytes (Cool et al 2006). Moreover, acute 

intraperitoneal injection of A-769662 in Sprague–Dawley rats rapidly decreased hepatic malonyl 

CoA levels and stimulated fatty acid oxidation. Furthermore, treatment of ob/ob mice with A-

769662 for five days, again by injection, decreased plasma glucose and triglyceride concentrations, 

lowered hepatic triglyceride content and glucose production and reduce body weight.  These results 
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demonstrate that small-molecule-mediated activation of AMPK in vivo is feasible and, therefore 

may represent a promising approach for the treatment of patients with T2DM.  It is important to 

note that the compound A-769662 has poor oral bioavailability which at the present time limits its 

use in a clinical setting. This study does however pave the way for the development of an 

alternative small-molecule compound that if safe, potent, acted directly on AMPK and had good 

oral bioavailability, would be an attractive candidate to progress towards clinical study. 
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