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Abstract

The relationship between feature processing and visual classification in the
brain has been explored through a combination of reverse correlation meth-
ods (i.e.“Bubbles” [22]) and electrophysiological measurements (EEG) taken
during a facial emotion categorization task [63]. However, in the absence of
any specific model of the brain response measurements, this and other [60] at-
tempts to parametrically relate stimulus properties to measurements of brain
activation are difficult to interpret. In this thesis I consider a blind data–
driven model of brain response. Statistically independent model parameters
are found to minimize the expectation of an objective likelihood function
over time [55], and a novel combination of methods is proposed for separat-
ing the signal from the noise. The model’s estimated signal parameters are
then objectively rated by their ability to explain the subject’s performance
during a facial emotion classification task, and also by their ability to explain
the stimulus features, as revealed in a Bubbles experiment.



Chapter 1

General Introduction

Interest in parametric models of the brain Electroencephalograph (EEG) in
terms of some properties of input stimuli has, in recent years, grown over the
standard hypothesis–driven paradigm in cognitive neuroscience [62][63][67][60].
The benefits of this approach are that the results are not biased by any fixed
pre–conceived hypotheses, and that subtle distinctions between the influence
of various stimulus properties can be observed from only a single experiment.
Often, however, these approaches have failed to pay sufficient focus to the un-
derlying model hidden within the EEG measurements themselves [60][63][67].
The parametric manipulation approach to empirical research is common in
fields where the properties of the brain responses (e.g. single–cell record-
ings) are well understood, but are these methods still appropriate when the
processes underlying the brain responses are not so well understood, such as
the EEG response? Here it is proposed that, to be valid, these methods do
not require true knowledge of the processes underlying the brain response,
as long as some alternative model is provided where the parameters of the
measured data are statistically independent — i.e a ‘Blind Source Model’
[17].

This approach to modelling the EEG data is tested on data generated
from a ‘Bubbles’ experiment where no explicit model of the EEG responses
was provided [63]. The purpose of the experiment was to explore the timing
of facial feature processing in the brain during the classification of emotional
expressions. The facial features themselves were not controlled paramet-
rically, but rather their availability in the stimulus was controlled by the
smooth random masking of locations in the face. The rest of this chapter
provides a brief framework for framing visual classification problems, followed
by a brief overview of the distinction between stimulus contrast–based exper-
imental designs and parametrically–based experimental designs; and finally
an overview of the cognitive neuroscience of facial emotion processing. The

1



following chapter then specifies and tests certain assumptions of the blind
source model, before presenting the results of its application to the EEG
data from [63]; and the final chapter relates both the classification task per-
formance and the input stimulus to each of the independent parameters of
the EEG model.

Visual Classification

The primary role of the brain during visual classification is clearly to assign
to a particular visual input a particular category of the world, taken from
a finite set of categories. However, to practically perform this role, it must
first be able to encode the visual input, encode the set of possible categories,
and, where appropriate, to plan and execute the behaviour associated with
this category. Figure 1.1 illustrates this arrangement: a visual input, drawn
from a category of the world, is encoded by the brain; this visual code is
assigned by some inferential process to a category code; and this category
code is transformed into a behaviour code. In an explicit visual classification
task, perfect classification performance corresponds to maximum agreement
between the executed behaviour and the behaviour expected by the task
designer, while degrees of performance are proportional to degrees of agree-
ment. Assuming that the brain makes no errors either in encoding the set of
categories or in translating from its category assignment to the appropriate
behaviour, and that the behaviour expected by the task designer is associ-
ated with the true category of the world, performance can be considered as
the degree of agreement between the category assigned by the brain and the
true category of the world.

The focus in this thesis will then be on the other two roles that the brain
must perform — namely encoding the visual input and inferring from this
representation the likeliest category of the world. More precisely, it will be
about when these events might take place in the brain, and what features
of a given stimulus does it require to do them. Although visual encoding is
not itself part of the formal classification process, a visual code that extracts
features from the input that vary most across categories will clearly enhance
classification performance, so the visual encoding process is unlikely to be
completely separated from the category encoding process in a functional sense
(i.e. knowledge of the category set should optimise visual encoding towards
that set). Previous EEG research has associated the visual encoding stage
with a negative ERP effect at 170ms following stimulus onset [25][26] and
the category selection stage with a positive ERP effect at 300ms following
stimulus onset [25][26][43].
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Figure 1.1: Illustration of the visual classification process. Black arrows
represent directed causal relations; Red arrows represent incorrect inferences;
Blue arrows represent correct inferences. Correct classification corresponds
to agreement between the category of the world leading to visual input and
the category code inferred by the brain.
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Experimental design:

Contrast Stimuli vs. Parametric Modulation

The history of empirical cognitive science has been shaped, in the most part,
by the classic experimental paradigm (expressed in [59], for example). Within
this paradigm, a certain model of brain function is put forth, together with
corresponding inputs and outputs, and predictions are made on the output
of this model given certain specific inputs. Such a model is said to be “fal-
sifiable” if one can conceive of an input for which a given output would be
inconsistent with the predictions of the model. While this is, and should be,
seen as a necessary requirement for any scientific model to be taken seriously,
it cannot be seen as a judgement of the model’s quality. Many a trivial model
would pass the test of falsifiability. The test of a model’s quality is rather
the practical test of how useful it is in explaining what we, or others, want
to know. This usefulness may be in terms of its accuracy of prediction, or in
terms of its wealth of prediction, or in terms of both. Either way, the process
of model formation is key to the production of useful empirical predictions.
How this process is performed is no trivial matter.

Let us consider a particular approach to model formation in empirical
research — one where the empirical phase is designed, not to test a specific
prediction of a previously fixed model, but rather to estimate the parameters
of some general model form. This approach is common in psychophysical
research (see e.g. [53]), where the phenomenon of interest is generally at
quite a low level in the processing stream. For these kinds of low–level
processes one can expect there to be less unknown variables influencing the
measured outcome, so it is quite possible to reliably fit a complex non–linear
model to the empirical data. The approach is less common, however, in
higher-level cognitive research, where less is known about the relationship
between stimulus input and measured output.

Linear Template Model

The linear template is a simple model of visual encoding for perceptual clas-
sification that has its roots in behavioural psychophysics (e.g. [13]). It relies
upon the definition of a given set of outputs — let us denote this by S —
and a given input space — let us denote this by the vector–valued variable x.
The linear template model then assumes that the behavioural output chosen
by the observer when faced with a particular input is some function of the
inner product of this input, xi, and an internal template, t, under internal
encoding noise, εc, and internal output noise, εb:

s = f [(xi + εc)
tt + εb], s ∈ S, (1.1)

4



where:

f(a) =

{

+1 a ≥ c
−1 a < c

in the case of a two–category classification. Figure 1.2 displays this graphi-
cally for a given template in a two dimensional input space.

The empirical problem is to find an estimate of the observer’s template
based on a set of known inputs and observed behavioural outputs. One way
to solve this problem is with the method of ‘reverse correlation’ [3][40][47]. If
we have two inputs that are known to produce alternate responses, such as
the two inputs in figure 1.2, then we know also that a dividing line in input
space, defined by the unknown template, exists somewhere between these two
points. Treating these points as the centres of two Gaussian distributions,
we know that some covariance parameters exist such that a fixed proportion
of randomly drawn samples from each distribution are expected to be ‘mis–
classified’ by the observer as different from the original sample. Figure 1.3
displays this graphically for the same two points as in figure 1.2 and a given
proportion of mis–classified points. Provided both the proportion of mis–
classified points and the total number of points is sufficiently large, and the
covariance matrix for each distribution is scalar (i.e. equal for all dimensions
of input space) the template can be estimated empirically by:

t̂ = k [(x̄ij + x̄ii) − (x̄ji + x̄jj)] , (1.2)

where x̄ij is the average, mean–centred value of points generated by distri-
bution i that are classed as distribution j and k is some scalar.

This particular situation can be created by taking a pair of such contrast-
ing input stimuli and corrupting their feature space by additive zero–mean
Gaussian noise. If enough noise samples are created, and the variance of
the noise is set to allow a sufficient number of mis–classifications, then the
experimenter must simply note the response of the observer under each noise
sample and equation 1.2 can be applied to the known noise distribution. The
result of such an estimate is known as the ‘Classification Image’.

Bubbles

The experimental data that this thesis is based upon come from a related
paradigm to reverse correlation, named “Bubbles”. The original Bubbles
experiment [22] consisted of one of two tasks for the observer — judging
the expressiveness of a face (expressive or not expressive — ‘EXNEX’) or
judging the gender of a face (male or female — ‘GENDER’). The stimulus
on any trial consisted of a masked photograph of a face displaying one of the
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Figure 1.2: Illustration of two–category classification problem in two dimen-
sions. X–axis — dimension 1; Y–axis — dimension 2. Two inputs, each
from a different category, are displayed as the red and blue points. The blue
line indicates the boundary in two–dimensional space, given by the equation
above the graph, either side of which a given input should be categorized
as one or the other class. The linear template is given by the unit vector
orthogonal to this line.
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Figure 1.3: Illustration of the reverse–correlation process. For each of the
two points in figure reffig:lte1 a random sample is generated from the Gaus-
sian distribution centred at that point, leading to a subset of mis–classified
samples for each distribution (red marks to the left of the line and blue marks
to the right of the line). The linear template is estimated as the difference
between the mean of the two sets of mis–classified samples.
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two genders and one of the states of expressiveness. The mask completely
covered the face in black, save for a set of Gaussian apertures (“bubbles”)
acting as holes through which the face was visible. Each Gaussian bubble had
a diameter slightly larger than that of the iris. On each trial, the locations of
these bubbles was randomly assigned, and the total number of bubbles per
trial was determined by the performance of the subject in preceding trials.
If the subject was performing poorly up to that point (< 75% accuracy),
then the number of bubbles was increased and, if they were performing well
(> 75% accuracy), the number was decreased.

The original Bubbles data were analysed, per subject, in relation to their
performance. Each trial was categorized as either ‘correct’ or ‘incorrect’ and
the retained mask for that trial was added to those of all other trials in the
same category. The bubbles equivalent of the classification image was found
by taking the proportion of each pixel’s aggregate value in the ‘correct’ set
to the grand aggregate value for this pixel over all trials. What the bubbles
result provides is therefore slightly different to what the reverse correlation
result provides. The bubble classification image as a function of pixel, ρ, is
actually equivalent to a spatially smoothed (by the standard deviation of the
Gaussian) estimate of the likelihood distribution for being ‘correct’, over the
range of possible locations, or means, of the Gaussian aperture:

CB(ρ) ' P (‘correct′|µ = ρ). (1.3)

The principles underlying the Bubbles paradigm are therefore similar to
those underlying the reverse correlation paradigm — an input space is cho-
sen (in this case, the space of pixels); an output response is recorded (the
accuracy of the subject); and the input space is corrupted somehow — but
different in that the bubbles classification image does not provide an estimate
of the linear template [48]. An extension of the bubbles paradigm to EEG
signals [62], which shall be discussed in more detail later, can be viewed as an
approximation of a linear template. Not to the stimulus features themselves,
but to their availability.

Facial emotion

The human face is capable of communicating a wide range of non–verbal
signals. Some of these signals can be considered as ancillary to ongoing ver-
bal communication (see, e.g., [18] for analyses of so–called ‘conversational
expressions’), but a subset of them express information that cannot be ex-
pressed verbally. Perhaps the most widely studied of these expressions are
the emotional facial expressions. Ekman & Friesen [19] reported 6 emotional
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expressions that are recognized across a wide range of cultures — ‘Happy’,
‘Fear’, ‘Disgust’, ‘Surprise’, ‘Anger’, ‘Sadness’. These are commonly referred
to as the 6 ‘universal’ emotional expressions.

Areas in the brain associated with general facial processing — the fusiform
gyrus [38], the superior temporal sulcus [23] — have been implicated in the
specific processing of facial emotion [49]. But the regions that are most of-
ten implicated are those associated with the affect that the emotion evokes,
rather than face–specific areas. Expressions of negative affect — fear [1][2]
and sadness [11] — are associated with amygdala activation. Happy is asso-
ciated with activation in the cingulate cortex [57], and disgust is associated
with activation in the insula [14]. In terms of EEG/MEG, specific effect of
facial emotion have been reported in MEG [69] and EEG [63] recordings at
170ms following stimulus presentation. The EEG study cited is the study of
Schyns et al. that is tested later.
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Chapter 2

The signal model

Introduction

To be able to quantitatively relate the classification task that a subject is
performing to the brain signals that we measure, we first need a quantitative
model of the brain signals themselves. The Electroencephalogram (EEG)
signal is a measurement of the electric field disturbance at a set of electrodes
placed on the surface of the scalp. While this electric field disturbance is
directly affected by electrophysiological activity in the brain, it does not, in
itself, offer an unambiguous answer to the question of what the components
of this electrophysiological activity are, or where they are taking place in the
brain [5]. The purpose of the EEG signal model is to remove this ambiguity
— to be able to record that, for any set of scalp measurements m(t), the brain
currently has some electrophysiological state x(t), and that this particular
state is the output of some known function β of the measurements. How
this function is chosen is entirely up to us but, once chosen, it will determine
both the state that is assigned to the brain and also the interpretation of that
state in terms of the classification task at hand. What makes any particular
model “good”, or at least “better” than another, is therefore driven by two
completely different kinds of criteria — one based upon what is already
known about how the brain ought to function, and one based upon the task
that the brain is currently performing. There would be little use in producing
a model that could perfectly explain a single isolated task if the state the
brain didn’t also make sense for the brain itself, but at the same time there
would be little to gain from the exercise if an attempt wasn’t at least made
to explain the classification task currently undertaken by the subject.

Returning to the task–oriented assessment of different models later, let
us for now just consider the models in terms of the brain that they aim to
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represent. For this, it is first worthwhile separating the models into three
classes of approach:

1. “data–driven” or statistical approach,

2. “theory–driven” or a priori approach,

3. “naive” or non–model approach.

Of the three, the third is really less of a set and more of a singular en-
tity. It refers to the case where, for whatever reason, the electrophysiological
state x(t) that is assigned to the brain at any particular point in time dur-
ing the course of the task is simply the unaltered set of signals measured
at the electrodes. The data–driven approach consists of those models that
attempt to optimize some statistical properties of the brain electrophysio-
logical state x(t), without explicitly considering the kind of mechanism that
might produce it. The theory–driven approach, on the other hand, consists
of those models that do explicitly attempt this — usually by considering the
electro–physiological basis of the measured brain response. This distinction
is somewhat artificial, as instances of either type may also be interested to
some extent in what the other type is primarily trying to achieve (even if this
interest is not integral to the model solution, both can certainly be judged on
what the other is trying to achieve) but the distinction is useful nonetheless,
if only to make explicit the two different kinds of consideration that they
represent.

Data–driven model

The goal of the data driven model is to explain the measured data by a
set of unknown ‘sources’ that have no explicit physical relation to the set of
electrodes from which the data is measured. In this type of model, although
the sources are assumed to reflect the activity of electrophysiological gener-
ators at real physical locations in the brain, these physical assumptions are
not directly used to estimate their activity, nor are their physical locations
directly estimated. Each source is instead an abstract statistical concept —
some unambiguous transformation of the measured electrical disturbance at
the scalp that adheres to a set of defined statistical constraints.

The basic hypothesis is that the data measured at n electrode sites for
any trial of the experiment and at any time point is generated from some
unknown linear mixture of m ≤ n signal sources and e = n − m noise
sources, where each source is considered as a random variable drawn from
some parametric distribution. The relation between sources and data could
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be also be expressed by a non–linear function, but only the linear case is
considered here. This can be written as:

mi(t) = si1(t)a1 + si2(t)a2 + · · ·+ sin(t)an + c

= Asi(t) + c, (2.1)

where m(t)i is an n × 1 vector of EEG measurements for trial i at time t,
each entry sij(t) of the n×1 vector si(t) is the value of some unknown signal
or noise source j for trial i at time t, each n×1 vector aj is column j of some
unknown n × n invertible “mixing matrix” A, and the n × 1 vector c is an
unknown additive constant. Without any loss of generality, the constant can
be ignored if we assume that both the EEG data and the sources are centred
at each time point. The model should hold for all trials that we measure, so
we can write:

M(t) = AS(t), (2.2)

where column i of the n × k matrices M(t) and S(t) is mi(t) and si(t)
respectively.

If we define the “unmixing matrix” W, such that WtA = I, then the
sources can be recovered from the measured data according to:

S(t) = WtM(t) (2.3)

if only the unmixing matrix is known. The problem is then to find an esti-
mate of this unmixing matrix when the only part of the above model that is
actually observed is the data. This problem is termed ‘Blind Source Separa-
tion’ (BSS). In order to solve this problem, some constraints must be imposed
upon the statistical nature of the sources. Here we constrain the sources to
be independent Gaussian random variables at each point in time t.

Independent Gaussian Sources

The benefit of assuming Gaussian sources is that their statistics go no higher
than second order — Gaussian sources are independent if and only if their
covariance matrix is diagonal. The drawback is that second order statistics
alone do not provide enough constraint to solve for A [17] — an infinite
number of unmixing matrices could equally produce Gaussian variables with
diagonal covariance matrices from the observed data. Consequently, the BSS
problem is more commonly solved under the constraint of non–Gaussian —
in particular super–Gaussian (i.e. positively Kurtotic) — sources [17][28][37].
However, while non–Gaussian BSS of EEG data is effective at finding record-
ing artifacts, meaningful EEG activity is more likely to be close to a Gaus-
sian distribution [29]. Due to the above–mentioned ambiguity of second

12



order statistics, some additional constraints are necessary to separate Gaus-
sian sources. If the sources are assumed to be sufficiently non–stationary
over time (i.e. if their covariance matrix changes sufficiently over time) then
these additional constraints are provided by the temporal sequence of the
data [44][56][52].

To understand this, let us first consider the situation where the sources
are active at only a single point in time and we have measurements at exactly
this point. In this case, the covariance matrix of the data is given by:

Σm =
1

k − 1
MMt,

Substituting Equation 2.2 into the above equation, the data covariance can
be expressed in terms of both the source covariance and the mixing matrix:

Σm = A[
1

k − 1
SSt]At

= AΣsA
t, (2.4)

for which there is no unique solution for A, even if the source covariance
is known. To see why, imagine that A is the product of some orthogonal
matrix V and some diagonal matrix D

1

2 , such that AtA = D. In this case
Equation 2.4 can be rewritten as:

ΣmA = AΣsD, (2.5)

which, because ΣsD is diagonal, is the eigenvalue equation for Σm. As
the eigenvalue equation is only unique up to permutation and scale of the
eigenvectors, so the solution for A is also. The permutation ambiguity can be
resolved by sorting the eigenvectors by eigenvalue, and the scaling ambiguity
can be resolved by fixing the unknown Σs. Referring to the individual source

variances by σ2
j , each corresponding element of D is given by djj =

√

λj/σ2
j ,

where λj is the jth eigenvalue of Σm, and each corresponding column of A is

given by aj = djjvj . So, with a known source covariance, A = VΛ
1

2Σ
−

1

2

s is
a possible solution to equation 2.4, and the only solution where AtA = D.
However, rearranging equation 2.5 slightly, we get:

Λ−
1

2 VtΣmVΛ−
1

2 = I,

which we can multiply on both sides by any arbitrary orthogonal matrix Ṽ

and its transpose without changing the equality. So, dropping the restriction

that AtA = D, any solution for A of the form A = VΛ
1

2 ṼΣ
−

1

2

s also satisfies
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equation 2.4. A is therefore ambiguous, not just up to scale and permutation,
but also up to a rotation of VΛ

1

2 .
Let us now consider the situation where the sources are active at two

points in time and the data are measured at exactly these two points. The
data covariance and the source covariance at both times t1 and t2 are again
related by A:

Σm(t1) = AΣs(t1)A
t,

and:
Σm(t2) = AΣm(t2)A

t.

Multiplying both equations by W:

Σm(t1)W = Σm(t2)WΛ, (2.6)

where Λ = Σs(t1)Σ
−1
s

(t2) is a diagonal matrix. This is the unique1 general-
ized eigenvalue equation for the two matrices Σm(t1) and Σm(t2), where the
ratio σ2

j (t1)/σ
2
j (t2) is equal to a generalized eigenvalue of the two matrices

and the columns of the unmixing matrix are their corresponding generalized
eigenvectors ([52]). This solution for W is clearly unique only in the case
where Λ = Σs(t1)Σs

−1(t2) 6= cI. Hence the source covariance matrix must
be different at the two times if they are to be separated.

From a practical point of view, the situation that we are attempting to
model will probably involve source covariance matrices at more than two time
points. It is of course possible that, over the time course of measurement,
only two periods of source activity with distinguishable covariance exist, but
there is no particular reason to expect this to be the case. This then leads
us to consider the situation where the sources are active over a sequence of
time, T , and the data are measured at each point, t, in this sequence. We
now have, for all t ∈ T :

Σm(t) = AΣs(t)A
t,

and we are looking for an inverse of matrix A such that, for all time t ∈ T ,
Σ(t)s = WtΣ(t)mW is a diagonal matrix. We saw earlier, in equations 2.5
and 2.6, that this process of matrix diagonalization by invertible square ma-
trices is possible for a single symmetric matrix or jointly for two different
symmetric matrices. In the first case the solution is only unique if we restrict
it to be orthogonal, while in the second case it is unique without restriction.
Does a solution exist for diagonalizing more than two symmetric matrices?
The answer is: probably not exactly. However, even if no exact solution does

1Again, up to scale and permutation. The same considerations of unit length scaling
of eigenvectors and sorting by eigenvalue apply as for the standard eigenvalue equation.
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exist, Pham & Cardoso ([56]) show that the invertible square matrix which
merely maximizes the joint diagonalization of the set of data covariance ma-
trices, in the sense of Kullback–Liebler (KL) divergence, also minimizes the
Gaussian mutual information between the sources. Imposing the additional
constraints of multiple simultaneous covariance matrices therefore changes
the problem from that of finding the unique unmixing matrix that trans-
forms the observed data into a set of independent Gaussian sources to that
of finding the unique unmixing matrix that transforms the observed data
into a set of Gaussian sources that are as independent as possible.

Following Pham & Cardoso, let us define the mutual information between
n random vectors Y1, . . . , Yn with joint density fY1,...,Yn

and marginal densities
fY1

, . . . , fYn
as:

I(Y1, . . . , Yn) = −E

[

log

∏n

i=1 fYi
(Yi)

fY1,...,Yn
(Y1, . . . , Yn)

]

, (2.7)

which is equal to the KL divergence between the joint density and the product
of the marginal densities. The (asymmetrical) KL divergence between two
zero mean Gaussian distributions with covariance matrices Σ1 and Σ2 is
given by:

D{Σ1|Σ2} =
1

2
[tr(Σ2

−1Σ1) − log(|Σ2
−1Σ1|) − n], (2.8)

where |X| and tr(X) are respectively the determinant and trace of square
matrix X. For any estimate of the unmixing matrix Ŵ, we have Ŝ(t) =
ŴtM(t), with covariance matrix of the joint density:

Σ̂s(t) = ŴtΣm(t)Ŵ, (2.9)

and covariance matrix of the product of the marginal densities:

Σ̂Πs(t) = diag[Σ̂s(t)]. (2.10)

Assuming that the observed data are temporally independent, the mutual
information between estimated sources over the sequence T is simply the
sum of their mutual information at each time t ∈ T . The solution for Ŵ

that minimizes the mutual information between sources for all time points is
therefore that which minimizes:

lT
∑

t=1

I[Ŝ1(t), . . . , Ŝn(t)] =

lT
∑

t=1

D{Σ̂s(t)|Σ̂Πs(t)},

=

lT
∑

t=1

D{ŴtΣm(t)Ŵ|diag[ŴtΣm(t)Ŵ]}, (2.11)
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where Ŝj(t) is row j of matrix Ŝ(t) ([56].
This terms is related to the likelihood function for the sources, which is

a monotonically decreasing function of D{Σ̂s(t)|Σs(t)}. Using the fact that,
for any positive–definite matrix R and any diagonal matrix Σ,

D{R|Σ} = D{R|diag(R)} + D{diag(R)|Σ},

Pham & Cardoso show that this likelihood function can be written as:

L∗ =

lT
∑

t=1

D{Σ̂s(t)|diag[Σ̂s(t)]} +

lT
∑

t=1

D{diag[Σ̂s(t)]|Σs(t)},

=

lT
∑

t=1

I[Ŝ1(t), . . . , Ŝn(t)] +

lT
∑

t=1

D{diag[ŴtΣm(t)Ŵ]|Σs(t)}. (2.12)

The first term, as we have seen, is minimized when the sources are as inde-
pendent as possible, while the second term is minimized when the (unknown)
source covariance is set to that of the product of the marginal densities for
any estimate of Ŵ. So, by maximizing statistical independence between
sources, we have simultaneously minimized the left hand term of the nega-
tive likelihood function, and we can minimize the right hand hand term by
simply using the marginal variance of our maximally independent estimate
as the true source covariance matrix ([56]).

The problem faced by Pham & Cardoso is slightly different to the problem
as stated here, however. They are dealing with the case where, for each time
t, only a single observation of the data is available. Or, in terms of the model
presented here, the experiment consists of only a single trial. But, clearly,
the mutual information term given in Equation 2.11 relies upon our having
an estimate of the data covariance at each time t. To overcome this problem,
they used a kernel estimator for the data covariance (essentially a temporal
smoothing window). For long sequences, this is fine, but the data we are
dealing with cover only very small periods of time (lT ' 100 time points).
The benefit of our design, however, is that we have, for each time t, the
sample covariance matrix of the data, estimated over k ' 3000 independent
observations.

Minimization of the mutual information As stated above, our goal is
to minimize the mutual information between the source signals with respect
to an estimate of the unmixing matrix Ŵ. The gradient of the mutual
information with respect to changes in Ŵ is given by the square n × n

16



matrix G, where:

gij =
1

lT

lT
∑

t=1

σ̂i(t)σ̂j(t)

σ̂2
i (t)

− δij,

=
1

lT

lT
∑

t=1

[ŴtΣm(t)Ŵ]ij

[ŴtΣm(t)Ŵ]ii
− δij . (2.13)

A Jacobi–like algorithm, named ‘Joint Diagonalization for the Block gaussian
Likelihood’, or JD–BGL for short, that uses G to iteratively update pairs
of columns of Ŵ is developed in [55]. If we further define the square n × n
matrix Ω, where:

ωij =
1

lT

lT
∑

t=1

σ̂2
j (t)

σ̂2
i (t)

− δij ,

=
1

lT

lT
∑

t=1

[ŴtΣm(t)Ŵ]jj

[ŴtΣm(t)Ŵ]ii
− δij , (2.14)

then the likelihood of the sources will always increase if we change columns
ŵi and ŵj according to:

[

ŵt

i
(new)

ŵt

j
(new)

]

=

[

ŵt

i

ŵt

j

]

−Tij

[

ŵt

i

ŵt

j

]

, (2.15)

where:

Tij =
2

1 +
√

1 − 4hijhji

[

0 hij

hji 0

]

, (2.16)

and:
[

hij

hji

]

=

[

ωij 1
1 ωji

]

−1 [

gij

gji

]

, (2.17)

for each of the n(n−1)/2 pairs of columns. It will only fail to increase where
gij = gji = 0 — i.e. where the gradient of the likelihood with respect to

changes in Ŵ is zero ([55]).

Simulations To get an idea of what it takes for sources to be deemed
‘sufficiently stationary’, simulations were run testing the performance of the
JD–BGL algorithm for varying levels of stationarity in the source signals in
the absence of noise. Performance under noise is considered in a later section.
Here, the measure of ‘stationarity’, qj, for any source sj(t) was considered
as the variance over time of σ2

j (t). As the σ2
j (t) must always be positive, we
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were careful to control its variance over time without changing its expected
value. The approach taken here was to treat each σ2

j (t) as an independent
gamma random variable over time:

σ2
j (t) ∼ Γ(κ, θ), (2.18)

The mean and variance of a gamma distribution are given by κθ and κθ2, so
both parameters must be changed together if we want to change the variance
while leaving the mean constant. To control for this, each level of station-
arity, qj(p), was set under the joint constraints that κ(p)θ2(p) = qj(p) and
κ(p)θ(p) = κ(p)θ(p) = c, where c is some positive scalar. These constraints
are both met if θ(p) = 1

c
qj(p), and κ(p) = c2 1

qj(p)
.

Two different conditions of non–stationarity were tested — homogeneous
and non–homogeneous. In the homogeneous condition, separating perfor-
mance was measured at 10 equally spaced levels of qj , ranging from 0.01 to
1, with qj = qi, ∀j, i, and expected variance was set to c = 10. Figure 2.1
displays the gamma p.d.f. at each of these levels. In the non–homogeneous
condition, each of 10 levels was set by controlling the difference between
the maximum value of qj and the average of all other values, whilst leav-
ing the maximum value unchanged. A simple scheme was chosen so that
[q1(p), . . . , qn(p)] = [0.01(ap) . . . , 1(ap)], with a being some small positive con-
stant. This also served to test separating performance when more than one
source was close to being stationary. Figure 2.2 displays the varying distri-
butions of qj at different levels of non–homogeneous non–stationarity. For
both conditions, 100 datasets were generated per level, each with lT = 100
time points and k = 1000 observations per time point. Each dataset, level,
and time point consisted of 6 randomly generated Gaussian sources, and the
same randomly generated 6× 6 mixing matrix (uniform, on the range [0, 1])
was used for all levels of a single dataset.

Performance was measured as the KL divergence between the matrix
H = ŴtA and the identity matrix, with perfect separation in the case where
H = I. However, some steps had to be taken to overcome the ambiguity in
permutation and scaling in Ŵt first. For the scaling problem, each row of
Ŵt was scaled to unit length. Then, to construct the permutation matrix,
P, for each column j of the mixing matrix, the “best matching” row i in
Ŵt was selected as the index of the maximum absolute value in Ŵtaj (as
all rows are unit length, this is simply the cosine of their angles, multiplied
by the length of the column). pji was then set to 1 and the process was

repeated for all columns of A. The rows of Ŵt were finally rescaled so that
the diagonal elements of ŴtA were all equal to 1. Note that, when a single
row of Wt was the best match for more than one column of A, then the
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Figure 2.1: Source variance gamma densities for each of the 10 levels of
stationarity.
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Figure 2.2: Distribution over sources of qj for each of the 10 levels of non–
homogeneous stationarity. Low levels of non–homogeneity have more sources
close to stationary than not, high levels vice versa.
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only solution was to assign it to the closest column (normalized by column
length) and the second best matching row would then be set to the remaining
columns (and the same check was carried out for the second best matching
rows, etc...). However, as a result of this procedure, the absolute value of at
least one off–diagonal element of H would greater than 1, and hence H would
no longer be positive semi–definite — a requisite condition for using the KL
divergence as a matrix distance metric [56]. The likeliest cause of this event
was when two or more columns of the mixing matrix were too close together,
so when this occurred the dataset was just rerun with a new mixing matrix.

Figure 2.3 shows performance as a function of homogeneous non–stationarity.
A value of zero here indicates that the matrix H is equal to the identity ma-
trix, and hence the sources are perfectly separated. These results clearly show
that the JD–BGL algorithm reaches optimal performance quickly as the ho-
mogeneous non–stationarity increases, more or less plateauing at q ' 0.25.
To confirm that the improvement in separating performance was indeed
caused by changes in the variance, rather than changes in the kurtosis or
skewness of the gamma distribution, the process was repeated at various
fixed levels of κ (both skewness and kurtosis are functions of κ but not of θ.)
Figure 2.4 shows separating performance as a function of homogeneous θ at
10 different levels of fixed κ, from which it is clear that changes in kurtosis
and skewness were not the cause of the change in separating performance as
a function of variance in figure 2.3.

Figure 2.5 shows separating performance at each of the 10 different lev-
els of non–homogeneous stationarity. Due to the way that the levels were
defined, we can see if there are any effect of the distribution of qj. First,
note that only the variance of the three sources with the lowest qj at level
10 were below qj = 0.1. Comparing the separating performance here at level
10 with separating performance at qj = 0.1 for homogeneous stationarity,
the two are almost identical, despite the fact that most of the sources are
above that level in this case, while all sources were at that level in the ho-
mogeneous case. On the other hand, separating performance at level 4 is far
superior to the corresponding performance for its minimum value qj = 0.016
in the homogeneous case. So separating performance can be high in the non–
homogeneous case, even in the presence of one or more sources that are close
to stationarity, provided that the average non–stationary is sufficiently high
amongst the rest of the sources.

Subspace Partitioning

As stated at the beginning of this section, we propose that the observed
data are generated from some unknown mixture of independent Gaussian
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Figure 2.3: Separating performance as a function of homogeneous non–
stationarity. Horizontal axis — level of non–stationarity, q = κθ2. Vertical
axis — separating performance, Sep = D{H|I}.
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Figure 2.4: Separating performance at different homogeneous levels of k over
range of θ. Individual curves — different levels of κ. Horizontal axis — θ.
Vertical axis — separating performance, Sep = D{H|I}.
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Figure 2.5: Separating performance at each of 10 different levels of non–
homogeneous non–stationarity. Horizontal axis — level of non–homogeneity
in source stationarity, p, corresponding to [q1, . . . , qn] = [0.01(ap), . . . , 1(ap)].
Vertical axis — separating performance, Sep = D{H|I}
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signal and noise sources. We have shown, following Pham & Cardoso ([56]),
that the best estimate of these sources can be recovered by maximizing the
joint diagonalization of the data covariance over time, hence minimizing the
mutual information between sources. We have not, however, shown how
the signal sources can be separated from the noise sources. Consider again
equation 2.2 — this time in terms of our best estimates for A and S(t):

M(t) = ÂŜ(t).

Let us now define the n × k matrix M̂(t) to be an estimate of the observed
data in terms of some subset, B, of the combined signal and noise sources,
and n × k matrix E(t) to be the error in this estimate, given Â, such that:

M(t) = M̂(t) + E(t),

= Â(B)Ŝ(B)(t) + Â(−B)Ŝ(−B)(t), (2.19)

where Â(B) is an n× lB matrix consisting of the columns of Â corresponding
to the lB elements of subset B, Â(−B) is an n × n − lB matrix consisting of
the remaining columns, and Ŝ(B)(t) and Ŝ(−B)(t) are similarly defined lB × k
and n − lB × k matrices. Now, because:

[

Ŝ(B)(t)

Ŝ(−B)(t)

]

=

[

Ŵ(B)t

Ŵ(−B)t

]

M(t)

=

[

Ŵ(B)tM(t)

Ŵ(−B)tM(t)

]

,

we can rewrite equation 2.19 as:

M(t) = Â(B)Ŵ(B)tM(t) + E(t).

The expected error variance in the estimate for the set B̂ given the mixing
matrix Â is therefore given by:

ε =
1

lT

lT
∑

t=1

tr
[

[I − Â(B̂)Ŵ(B̂)t]Σm(t)[I − Â(B̂)Ŵ(B̂)t]t
]

, (2.20)

On this basis, it might seem reasonable to simply find the set B̂ that mini-
mizes this error and call that set the signal set. However, as can be seen from
equation 2.20, the error can be made to zero if B̂ is set to some permutation
of the full mixing matrix, as Â(B̂)Ŵ(B̂)t = I in this case. This makes sense,
because our model is a model of both the signal and the noise, and we do
not know how many signal sources there ought to be.

25



Known signal quantity If the number of signal sources, lB, is known
beforehand, the problem is theoretically solvable but becomes increasingly
computationally expensive as the number of known signal sources and the
number of observed channels increases (the number of unordered source sub-
sets being given by

(

n

lB

)

). The problem is simplified if we assume some natural
order to the sources, such that the signal occupies the top lB sources in the
sorted list. Two slightly different, but related, ordering criteria are intro-
duced here, both utilizing the estimated variance of the recovered sources.
The first criterion, ‘Maximum Expected Energy’ (MEE), assumes that the
expected variance in the signal sources is always higher than the expected
variance in the noise sources. The MEE sorting criterion is easily applied
to the estimated data, but should be sensitive to the relative energy in the
noise. The second criterion, ‘Maximum Non-stationary Energy’ (MNsE),
assumes that the noise is generated by a stationary process, but that its
energy is otherwise unknown. The advantage of the MNsE criterion is that
it is should distinguish equally under varying levels of expected noise vari-
ance, and it is no more difficult to implement than the MEE criterion. As
the previous simulations demonstrate, the JD–BGL algorithm still provides
good estimates of stationary source distributions, provided that a few of the
sources are non–stationary (see fig 2.5). But it is unclear how sensitive it
should be to the level of stationarity in the noise. Simulations, described
in the next section, were run to test both criteria in the presence of both
stationary and non–stationary noise.

Signal quantity estimation Such sorting criteria are only useful if the
number of signal sources is known, however. And, as we do not know this,
we must estimate it somehow. To solve this problem, first note that, in the
absence of noise, the rank of the data covariance matrix at time t is limited
by the number of signal sources (r(t) ≤ lB). If we define the ‘effective
rank’, rE(t), of the data covariance at any point in time to be the rank
of the subspace spanned by the currently active signal sources, then the
problem of estimating the number of signal sources can be reduced to that of
estimating the maximum of rE(t) over time. Let’s call this the ‘Maximum
Effective Rank’ (MER) principle. This makes the problem much easier, as
methods already exist for estimating the rank of the signal subspace for a
single covariance matrix. Note that in estimating the rank of the subspace
spanned by the active signal sources we are not interested in estimating the
true sources themselves. We already have an estimate of that; we simply do
not know which of our estimated sources correspond to the signal. We are
instead searching for some orthogonal basis within which all of the signal
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sources lie.
The classic method for effective rank estimation is what shall be called

here the ‘Cumulative Energy Function’ (CEF) method. The CEF is defined
as the cumulative sum of the eigenvalues of the covariance matrix, sorted by
decreasing magnitude:

CEF(x) =
n

∑

i=1

λi. (2.21)

The basic CEF method is to chose the effective rank as the value rE that
satisfies CEF(rE − 1) < pCEF(n) < CEF(rE), where p is some number
between 0 and 1. In other words, the effective rank of the covariance matrix
is chosen as the rank of the minimal subspace required to generate some fixed
proportion of the variance in the data. Like the MEE criterion introduced
earlier, the CEF method relies upon the assumption that the noise variance
is lower than the signal variance but, more crucially, it also relies upon the
assumption that the noise variance is some known proportion of the signal
variance.

An alternative method that uses the same variance–based sorting crite-
rion as the basic CEF method, but that makes no assumptions about the
magnitude of the noise variance, is ‘row–wise cross–validation’ (CV–RW)
(e.g. [41]). The principal behind the CV–RW method is to find the rank of
the maximal subspace required to predict any data point generated accord-
ing to this covariance matrix. To find this subspace, a covariance matrix is
estimated from a subset of the data where an observation (or a subset of
observations) are left out of the sample. Let us refer to this data as M(−i).
This covariance matrix is subjected to an eigenvalue decomposition, and the
‘left out’ data, M(i) are estimated at each level, f , of the CEF, according to:

M̂(i,f) = V(−i,f)V(−i,f)tM(i), (2.22)

where V(−i,f) is the first f columns of the eigenvector matrix of the covariance
matrix of M(−i). The mean predictive squared error is then calculated at
each level of the CEF over all left out sub–sets, and the effective rank is
chosen as the value of f that minimizes this error. The problem with this
approach, however, is that the left out data are not themselves independent of
their estimate, meaning that the predictive error is naturally under–estimated
([12]).

A stricter cross–validation procedure is suggested in [12]. They name it
‘Eigenvector cross–validation’ (CV–EV) (named after a chemometrics com-
pany who uses the method in their software.) The CV–EV method works
initially like the CV–RW method — a covariance matrix is estimated from a
subset of the data and its eigenvalue decomposition is performed. Then, for
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each level f of the CEF, the values at each variable, d, of the left out data
is estimated individually from the left out data with only the other variables
included:

M̂(i,d,f) = V(−i,d,f)HV(−i,−d,f)tM(i,−d), (2.23)

where H =
[

V(−i,−d,f)V(−i,−d,f)t
]

−1
and the superscripts again correspond to

either included or left out variables or observations. With this approach, the
predictive error is truly independent of the left out data, but it relies upon
there being some correlation between the data variables ([12]). If there is no
correlation between variables, then the entire space is effectively considered
as noise. But also, if there is no correlation between variables at all time
points, then we could not hope separate the sources anyway.

Simulations are described in the next section that test these three effective
rank estimation methods on single covariance matrices. The MER principal
as a means of separating the signal and noise subspaces of the non–stationary
blind Gaussian source model are then tested, followed by tests of the two
source sorting criteria — MEE and MNsE.

Simulations Simulation were first run to compare the various rank esti-
mation methods for a single covariance matrix. Data were generated for 1000
datasets. Each dataset consisted of multivariate normal data of rank order
R = 5 with d = 10 variables. To test the effect of different eigenvalue distri-
butions on the rank estimation methods, in half of the models 5 eigenvalues
were drawn randomly from a uniform distribution on the range (0, 1] while
in the other half they were drawn randomly from an exponential distribution
with λ = 1. The remaining 5 were always set to zero, and 10 eigenvectors were
created by performing a QR decomposition on a 10× 10 matrix with entries
drawn randomly from a uniform distribution on the range (0, 1]. A model
covariance matrix was created, according to Σ = VΛVt, and 1000 samples
were drawn randomly from the corresponding zero–mean multi–variate nor-
mal distribution. Finally, zero–mean uncorrelated Gaussian noise was added
at 5 different levels — ranging from 1 to 20 percent of the sample variance
— providing 1000 × 5 = 5000 datasets in total.

Averaged over all models and noise levels, the CV–EV method was the
most effective at estimating the true rank of the data (Acc = 74.76%), ahead
of CEF (Acc = 43.64%) and CV–RW (Acc = 8.18%). Figure 2.6 displays the
accuracy of the three rank estimation methods as a function of noise level.
Not surprisingly, CEF outperformed the other two methods when the noise
variance equalled exactly its programmed cut–off (90% of the total variance),
but CV–EV performed well at most levels of noise. There was little effect
of the two eigenvalue distributions. Figure 2.7 shows the probability dis-
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tribution over various rank estimates for the three methods. CV–EK only
ever underestimates the true rank of the data, while CV–RW systematically
over–estimates. As expected, CEF over–estimates when the true noise vari-
ance is higher than the programmed threshold and under–estimates when it
is lower. Taken as a whole, CV–EV is clearly the best method to use when
the variance of the noise is unknown beforehand. The potential for under–
estimation of the signal space is preferable to over–estimation and it appears
fairly robust to high levels of noise.

Next, simulations testing the two components of the subspace partitioning
problem — namely the MER principle for estimation of signal quantity and
the MEE and MNsE sorting criteria for identification of a known number of
signals — were run for the blind source model. Two factors were considered
for each problem: the total expected noise variance, as a proportion of the
expected variance for any signal; and the degree of stationarity in the noise,
as a proportion of the stationarity in the signals. Stationarity here is defined
as it was for the earlier simulations. The basic generative model for these
data was different to that used in the previous simulations, as the number
of signals was less than the number of observed variables. Consequently, the
mixing matrix was no longer square. However, the variance of each signal
was again treated as a gamma random variable over time, but the variance of
this gamma distribution was held constant over levels of the noise factors and
over the different signals. Noise was generated according to a multivariate
normal distribution with zero mean and a non-diagonal covariance. To allow
for control over its stationarity, a scalar covariance matrix was created first
and then transformed into a new arbitrary basis by a random orthogonal
matrix. As with the signal variance, the total noise variance over time was
treated as a gamma random variable.

For the data testing MEE and MNsE for a known signal quantity, 10 levels
of total expected noise variance, between 10% and 100% of the expected
variance for any signal, were compared at two levels of relative stationarity
(1% and 100% of the stationarity in the signal). 100 datasets were generated
for each combination of the two factors, each with lT = 100 time points and
k = 1000 observations per time point. Each dataset, level, and time point
consisted of 6 randomly generated Gaussian signal sources and a 12×k matrix
of noise samples drawn from the multivariate normal distribution described
above. The data were generated by first mixing the signal sources and then
adding the noise to the result. The same randomly generated 12 × 6 mixing
matrix was used to mix the signals for all levels of a single dataset. Due to
the relatively high computational demands of the CV–EV algorithm, only
5 levels of total expected noise variance were compared for the data testing
the MER principle for signal quantity estimation, again between 10% and
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Figure 2.6: Accuracy of the rank estimate of a single covariance matrix as
a function of noise variance for three estimation methods. Solid curves —
‘Eigenvector’ cross–validiation. Dashed curves — row–wise cross–validation.
Dotted curved — cumulative energy function. Blue curves — uniformly
distributed eigenvalues. Red curves — exponentially distributed eigenvalues.
Horizontal axis — noise variance as a percentage of total variance. Vertical
axis — rank estimation accuracy.
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Figure 2.7: Probability of rank estimate of a single covariance matrix for three
estimation methods. Blue bars — ‘Eigenvector’ cross–validation. Green
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5.
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100% of the expected variance for any signal. 50 datasets were generated
for each combination of factors, each with lT = 10 time points and k = 50
observations per time point. There were 3 sources, a 6 × k matrix of noise
samples, and the mixing matrix was 6 × 3.

Partitioning performance of both the MEE and MNsE criteria was mea-
sured with d–prime. D–prime is a measure of sensitivity, taking into account
both the proportion of signal sources correctly recognized as such and the
proportion of noise sources incorrectly recognized as signal sources. A value
of d–prime around +2 indicates that about 90% of signal sources are correctly
recognized, while only about 10% of noise sources are incorrectly attributed
to the signal. A negative value of d–prime indicates that there are more
mis–attributed noise sources than there are correctly assigned signal sources.
Figure 2.8 shows the d–prime sensitivity for the two noise conditions (sta-
tionary noise, non–stationary noise) over the range of expected noise variance
when sorting by the MEE criterion. The average sensitivity in both cases
of stationary and non–stationary noise is quite good (d–prime ' 2.5). For
stationary noise, performance drops slightly as the noise variance increases,
but not by a great deal. Surprisingly, performance actually improves with
increased noise variance when the noise is non–stationary and a significant
negative bias appears when the noise variance is around 20% of the signal
variance. Figure 2.9 displays the test results for the MNsE criterion. These
results follow a similar pattern, but the negative bias towards the noise is
present at all levels of noise variance when the noise is non–stationary.

To test the MER principle, estimates of the signal quantity for a each
dataset were taken as the maximum effective rank estimate from the CV–
EV method for any covariance matrix during the time course of the data. The
bar graphs in figures 2.10a and 2.10b each display the average rank estimates
for all 5 noise levels, for the stationary and non–stationary noise conditions
respectively. These graphs show that the average effective rank estimate for
any time point was always close to the signal quantity, but generally slightly
lower. Whether the noise was stationary or not made little difference to the
temporal distribution of these estimates, but the average estimate tended
to be slightly higher in the case of non–stationary noise. This is reflected
in the higher accuracy of the signal quantity estimation for non–stationary
sources, shown in figure 2.11. Figure 2.11 also shows that the estimation of
signal quantity in the non-stationary blind source model is more accurate
than the pure estimation of effective rank for a single covariance matrix.
This can be attributed to the fact that the effective rank estimator gets
more independent ‘chances’ to guess the noise subspace, of which only the
maximum is taken. As the CV–EV method tends to underestimate the rank
of the signal subspace, we should expect performance to be superior when
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Figure 2.8: Sensitivity to signal sources as a function of noise variance when
sorting by mean of estimated source variance (MEE). Solid curve — sta-
tionary noise. Dashed curve — non–stationary noise. Horizontal axis —
noise variance as a percentage of signal variance. Vertical axis — Sensitivity
(d–prime)
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Figure 2.9: Sensitivity to signal sources as a function of noise variance when
sorting by variance of estimated source variance (MNsE. Solid curve — sta-
tionary noise. Dashed curve — non–stationary noise. Horizontal axis —
noise variance as a percentage of signal variance. Vertical axis — Sensitivity
(d–prime)
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Figure 2.10: Mean rank estimate over time at each of 5 levels of (a): sta-
tionary, (b): non–stationary noise variance between 10% and 100% of signal
variance. Horizontal axis — noise level. Vertical axis — mean rank estimate.
Sub–bars — time points. Number of signal sources was 3.

the maximum effective rank out of multiple covariance matrices is used.
Taken together, the results of the above simulations suggest that, while

the the presence of non–stationary noise does appear to improve the estima-
tion of signal quantity, it also induces a large error in the estimation of signal
identity. Non–stationary noise should therefore be minimized if possible.

EEG Data

EEG data were taken from a Bubbles experiment published by Schyns et al.
in 2007 [63]. On each trial of the experiment, subjects were asked to classify
a static Bubble–masked face image as displaying either one of the 6 universal
emotions [‘Happy’ (H); ‘Fear’ (F); ‘Surprise’ (Su); ‘Disgust’ (D); ‘Anger’ (A);
or ‘Sadness’ (Sa)], or ‘Neutral’ (N).

Some details on the authors’ recording set–up (taken from the original
paper): EEG data were recorded on sintered Ag/AgCl electrodes mounted
in a 62–electrode cap (Easy–Cap) at scalp positions including the standard
10–20 system positions along with intermediate positions and an additional
row of low occipital electrodes. Vertical electro-oculogram (vEOG) was bipo-
larly registered above and below the dominant eye, and the horizontal electro-
oculogram (hEOG) was registered at the outer canthi of both eyes. Electrode
impedance was maintained below 10 kU throughout recording. Electrical ac-
tivity was continuously sampled at 1024 Hz. Analysis epochs were generated
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Figure 2.11: Accuracy of number of signal source, estimated as the maximum
rank of a single covaraince matrix, plotted as a function of noise variance.
Solid curve — stationary noise. Dashed curve — non–stationary noise. Hor-
izontal axis — Noise variance as a percentage of signal variance. Vertical
axis — Accuracy.
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offline, beginning 500 ms prior to stimulus onset and lasting for 1500 ms in
total. EEG and EOG artefacts were rejected by using a [230mV ; +30mV ]
deviation threshold over 200 ms intervals on all electrodes. The EOG re-
jection procedure rejected rotations of the eyeball from 0.9o inward to 1.5o

downward of visual angle - the stimulus spanned 5.36o × 3.7o of visual angle
on the screen.

Pre–processing

Prior to running the JD–BGL algorithm on the EEG data, some additional
preprocessing was performed:

1. Referencing

2. Baseline correction

3. Detrending

The most common method for referencing EEG data is the average reference.
The argument for the average reference [51] relies upon two assumptions —
the first quite a strong one, but the second less so. It first assumes that
EEG potentials measured on the scalp are a result of the action of one or
more current dipoles in a homogeneous spherical conducting medium. In this
situation, the integral of the electrical potential over the surface of the sphere
should be 0. Second, it assumes that EEG measurements are taken across
the whole surface of this sphere. If both assumptions are correct then the
potential should sum to 0 over all measurement channels and, if it does not,
then the measurement channels are incorrectly referenced and they should be
re–referenced in such a way that it does. This re–referencing corresponds to
the removal from each channel of the mean measurement over all channels,
and can be expressed as a linear transformation by the average reference
operator, H = I − 11t/e.

The first problem with the second assumption is that the head is not ac-
tually spherical and the brain does not constitute a homogeneous conducting
medium, but we can assume that these are close enough to being true to
ignore them for now. The main problem with it is that EEG potentials are
not measured over the full surface of the sphere. At best, they are measured
over not much more than half of the sphere – the top half that makes up the
scalp. If the potential over the top half of the sphere does not sum to 0, this
does not necessarily mean that the electrodes are incorrectly referenced —
it may simply mean that the potential over the bottom half of the sphere is
opposite. Forcing the summed potential measurements to be 0 in this case
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might actually distort the true picture, as a globally positive potential will
be lowered and a globally negative potential will be raised, even though both
of these potentials are valid for the top half of the sphere. This will, in turn,
force the summed potential over the rest of the sphere to be neutral, which
is certainly possible but unlikely to always be true.

The best solution to this problem is probably to use a local surface Lapla-
cian filter to estimate the current densities at each region immediately below
the scalp (e.g. [4]), but this approach was deemed beyond the scope of the
thesis. An simpler alternative to using the average reference is to use a fixed
EEG measurement channel, or set of channels, outwith the data array as
reference. Any artefactual changes in potential over time caused by exter-
nal factors, such as the amplifier for example, should be reflected equally
in these electrodes and hence removed after referencing. They do, however,
introduce their owns sources of noise and, perhaps more importantly, bias.
Linked mastoid electrodes were used here as reference.

Although the fixed electrode reference should remove any any external
artefactual potential changes that are also measured on the reference source,
any internal potential differences between pairs of electrodes will probably
not be captured by this source (nor by the average reference, for that matter)
and hence remain in the data. One way to remove these is by baseline
correction. Baseline correction assumes that the expected electrical potential
measurement over a given time window should be zero for all channels, as
long as that time window contains no experimental stimulus. Removing
from each time point of the EEG measurement the average potential over
the pre–stimulus interval to satisfy this assumption should hopefully remove
any artefactual potential differences between pairs of electrodes. A final step
is the removal of any linear trend from the EEG data at each electrode. This
step is crucial if we want to minimize the risk of non–stationary noise in our
data, as any two electrodes with opposing trends will tend to amplify the
noise variance over time. Detrending was carried out under the assumption
that any linear trend in the data is already present during the pre–stimulus
time window. A regression line was fit to this window for each trial and
electrode, and the full time course of activity for the electrode was shifted
by the projected path of this line.

Algorithmic details

The JD–BGL algorithm was implemented in Matlab. The algorithm was
terminated either upon convergence of the source estimate likelihood or after
500 iterations. In practise, the algorithm always converged within the 500 it-
eration limit. Joint diagonalization was performed independently per subject
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and per expression (expression shown to the subject, rather than expression
perceived by the subject) over the full time course of EEG measurement
(from −500ms to 1024ms). All 58 channels of the 62 channel EEG set–up
corresponding to scalp locations were included in the analysis (of the remain-
ing 4, 2 are linked mastoid reference electrodes and 2 are EOG electrodes).
Effective rank estimation was performed with the CV–EV algorithm. Due
to the high number of trials at each time point, k–fold cross-validation was
preferred over ‘leave–one–out’ cross-validation. 5 folds were used. Estimated
sources were scaled to make each column of Â unit length and were then
sorted by the MEE criterion. The scaled topographical distribution of a
given source across the scalp surface is contained in its corresponding col-
umn of Â. This distribution was interpolated over a physiscal scalp model
containing the electrode coordinates for presentation purposes. The assump-
tion of Gaussianity in the recovered sources was tested with the Jarque–Bera
test [31].

Results & Discussion

Results are discussed for all three subjects and two example expressions —
‘H’ and ‘F’. The effective rank varied little over time, subject, or expression.
The maximum effective ranks for subject ‘LP’ were 12 and 11 for expressions
‘H’ and ‘F’ respectively; for subject ‘LF’, 12 and 12; and for subject ‘UM’, 15
and 15. Figures 2.12a and 2.12b display topographic maps of the estimated
signal columns of the mixing matrix for subject ‘LP’. Figures 2.13a and
2.13b, and 2.14a and 2.14b display the equivalent results for subjects ‘LF’
and ‘UM’ respectively. The maps are weighted by the expected variance of
their corresponding sources over time.

The top three or four source maps are remarkably consistent across sub-
jects and expressions. Most contain a left and a right lateralized temporal–
parietal source, corresponding roughly to electrodes ‘P3’ and ‘P4’, and a
bi–lateral occipito–temporal source, corresponding roughly to electrodes ‘P7’
and ‘P8’. The left temporal–parietal activation can be seen in the first source
for subject ‘LP’ for both expressions, in the second source for subject ‘LF’
for both expressions, and in the first and third source for subject ‘UM’ for ex-
pression ‘H’ and ‘F’ respectively. The right temporal–parietal activation can
be seen in the second source for subject ‘LP’ for both expressions, in the first
source for subject ‘LF’ for both expressions, and in the second source for sub-
ject ‘UM’ for both expressions. The bi–lateral occipito–temporal source can
be seen in the third source for subject ‘LP’ for both expressions, in the fourth
source for subject ‘LF’ for expression ‘F’ (and possibly in the fifth source for
expression ‘H’), and in the third and first sources for subject ‘UM’ for ex-
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(a)

(b)

Figure 2.12: Mixing vectors for each of the signal sources for subject ‘LP’
and two expressions. Vectors are displayed as topologies over the scalp and
sorted and weighted by decreasing expected variance. (a): Trials where the
subject was shown a ‘Happy’ face. (b): Trials where subject was shown a
‘Fear’ face.

(a)

(b)

Figure 2.13: Mixing vectors for each of the signal sources for subject ‘LF’
and two expressions. Vectors are displayed as topologies over the scalp and
sorted and weighted by decreasing expected variance. (a): Trials where the
subject was shown a ‘Happy’ face. (b): Trials where subject was shown a
‘Fear’ face.

(a)

(b)

Figure 2.14: Mixing vectors for each of the signal sources for subject ‘UM’
and two expressions. Vectors are displayed as topologies over the scalp and
sorted and weighted by decreasing expected variance. (a): Trials where the
subject was shown a ‘Happy’ face. (b): Trials where subject was shown a
‘Fear’ face.
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: Mixing vectors for the three highlighted sources for subject ‘LP’
and two expressions. Vectors are displayed as topologies over the scalp. Top
row: ‘Happy’ trials’. Bottom row: ‘Fear’ trials. (a), (d): Left temporal–
parietal source. (b), (e): Right temporal–parietal source. (c), (f): Occipito–
temporal source

pression ‘H’ and ‘F’ respectively. In all cases, although active bi–laterally,
the occipito–temporal source is slightly biased towards either the right or
left. Figures 2.15a – 2.15c and 2.15d – 2.15f display these source topologies
for subject ‘LP’ and expressions ‘H’ and ‘F’ respectively, while Figures 2.16a
– 2.16f and 2.17a – 2.17f display the same results for subjects ‘LF’ and ‘UM’
respectively.

The electrodes highlighted by these topologies are all commonly impli-
cated in visual classification studies and, in the case of the occipto–temporal
electrodes, in facial perception studies in particular. The occipito–temporal
electrodes are the site of the famous ‘N170’ ERP negative bias towards face
stimuli [10] at 170ms following stimulus onset. This is also the time window
of general visual encoding processes reported previously. Recent studies have
shown an association between the N170 ERP component and the location of
the ‘Fusiform Face Area’ (FFA) in the context of a facial classification task
[30][61][27][24][20]. The FFA is a region in the fusiform gyrus of the temporal
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(a) (b) (c)

(d) (e) (f)

Figure 2.16: Mixing vectors for the three highlighted sources for subject ‘LF’
and two expressions. Vectors are displayed as topologies over the scalp. Top
row: ‘Happy’ trials’. Bottom row: ‘Fear’ trials. (a), (d): Left temporal–
parietal source. (b), (e): Right temporal–parietal source. (c), (f): Occipito–
temporal source
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(a) (b) (c)

(d) (e) (f)

Figure 2.17: Mixing vectors for the three highlighted sources for subject ‘UM’
and two expressions. Vectors are displayed as topologies over the scalp. Top
row: ‘Happy’ trials’. Bottom row: ‘Fear’ trials. (a), (d): Left temporal–
parietal source. (b), (e): Right temporal–parietal source. (c), (f): Occipito–
temporal source
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lobe that has been associated with face processing through both fMRI [38]
and lesion–based [6] studies. The occipito–temporal sources found here also
appear to contain potentials of opposite valency at central/parietal locations,
corresponding roughly to electrodes ‘Cz/CPz’. This is the site of another fa-
mous face–specific ERP effect — the ‘VPP’ [32][33]. It has been suggested
that the VPP and N170 effects are generated by the same underlying process
in the brain [36], so we should expect to find them both represented in a
single independent source.

Parietal potentials in the EEG tend to be associated with the ‘P300’ effect
[70], which occurs, at 300ms following the onset of the stimulus. Although
the original study associated the effect with unpredictability in the stimu-
lus, and assumed a single cortical source, it has since been associated with
two sources — one (frontal) related to top–down attention mechanisms and
the other (temporal–parietal) related to memory, [58]. Given the nature of
the task, where incoming stimuli are matched to internal memorial repre-
sentations, coupled with the relatively low top–down attentional demands of
recognizing emotion from the same set of faces thousands of times, we should
expect to see high average variance in the temporal–parietal component of
the ‘P300’, but not so much in the frontal component. To allow comparison
with the highlighted sources, Figures 2.18a and 2.18b, and Figures 2.18c and
2.18d display the scalp ERP topologies measured from subject ‘LP’ at 170ms
and 300ms following stimulus onset for expressions ‘H’ and ‘F’ respectively.
Figures 2.19a – 2.19d and Figures 2.20a – 2.20d show the same results for
subject ‘LF’ and ‘UM’ respectively.

Confirming that the highlighted sources meet with the assumption of
Gaussianity in the signal model, Figures 2.21a and 2.21b display the time
course of the Jarque–Bera statistic in the three sources for subject ‘LP’ and
expressions ‘H’ and ‘F’ respectively. Figures 2.22a and 2.22b and figures
2.23a and 2.23b display the corresponding data for subjects ‘LF’ and ‘UM’
respectively. Values of the statistic below the criterion value indicate that
the null hypothesis of a Gaussian distribution cannot be ruled out.

Figures 2.24a and 2.24b display the time course of the estimated variance
in the three previously highlighted signal sources for subject ‘LP’ and expres-
sions ‘H’ and ‘F’ respectively. Figures 2.25a and 2.25b and figures 2.26a and
2.26b display the corresponding data for subjects ‘LF’ and ‘UM’ respectively.
All graphs are plotted from stimulus onset (0ms) to 400ms following stim-
ulus onset. These variance profiles tend to be characterised by at least two
peaks in time — the first occurring early, at around 50ms following stimulus
onset; and the second occurring at around 150 − 180ms following stimulus
onset. The two temporal–parietal sources appear to act synchronously, while
the peaks in the occipito–temporal source variance are perhaps just offset
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(a) (b)

(c) (d)

Figure 2.18: ERP scalp topologies for subject ‘LP’ during the time windows
of the N170 and P300 components. Top row: ‘Happy’ trials’. Bottom row:
‘Fear’ trials. (a), (c): N170. (b), (d): P300.
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(a) (b)

(c) (d)

Figure 2.19: ERP scalp topologies for subject ‘LF’ during the time windows
of the N170 and P300 components. Top row: ‘Happy’ trials’. Bottom row:
‘Fear’ trials. (a), (c): N170. (b), (d): P300.
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(a) (b)

(c) (d)

Figure 2.20: ERP scalp topologies for subject ‘UM’ during the time windows
of the N170 and P300 components. Top row: ‘Happy’ trials’. Bottom row:
‘Fear’ trials. (a), (c): N170. (b), (d): P300.
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Figure 2.21: Jarque–Bera test statistic for subject ‘LP’ and two expressions.
Statistic is plotted for the two temporal–parietal sources and the occipito–
temporal source. Values below the dotted criterion line indicate normality.
(a): Trials where the subject was shown a ‘Happy’ face. (b): Trials where
subject was shown a ‘Fear’ face.
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Figure 2.22: Jarque–Bera test statistic for subject ‘LF’ and two expressions.
Statistic is plotted for the two temporal–parietal sources and the occipito–
temporal source. Values below the dotted criterion line indicate normality.
(a): Trials where the subject was shown a ‘Happy’ face. (b): Trials where
subject was shown a ‘Fear’ face.
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Figure 2.23: Jarque–Bera test statistic for subject ‘UM’ and two expressions.
Statistic is plotted for the two temporal–parietal sources and the occipito–
temporal source. Values below the dotted criterion line indicate normality.
(a): Trials where the subject was shown a ‘Happy’ face. (b): Trials where
subject was shown a ‘Fear’ face.

slightly, and are absent completely in the case of subject ‘LF’.
The existence of the second systematic peak in these variance profiles

is not unexpected. Given its timing and given the stimuli that are being
presented, this fits naturally with the existing literature on the N170 ERP
effect. However, the fact that this peak is almost always present in all three
of these sources suggests that more than a single process is underlying the
N170 effect. The existence of a systematic peak in the variance profiles
as early as 50ms is more surprising, but has been previously reported as
result of low–level stimulus properties, such as luminance [25]. Although the
unmasked stimuli were controlled for luminance and contrast, the effect of
the random masking would be to alter these properties of the stimulus over
the experiment, hence producing a degree of variance in the signal at this
time.

In summary, the estimated signal sources, at least those with the highest
average variance, are consistent across multiple subjects and conditions of
the experiment. Furthermore, their distributions over the scalp correspond
to well studied ERP topologies, their variance profiles over time fit known
events in the literature, and the assumption of their normality is justified in
5 out of the 6 cases. The next logical step would be to attempt to localize
the cortical generators that might be associated with these sources. The
methods that exist to perform this localization (see [46] for a methodologi-
cal overview) fall under the category of the ‘theory–driven’ models discussed
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Figure 2.24: Post–stimulus source variance estimate for subject ‘LP’ and two
expressions. Variance is plotted for the two temporal–parietal sources and
the occipito–temporal source. (a): Trials where the subject was shown a
‘Happy’ face. (b): Trials where subject was shown a ‘Fear’ face.

earlier. An interesting approach might be to combine the maximum in-
dependence constraint of the blind source model with other, physiologically
motivated, constraints during the estimation process. However, this step was
deemed beyond the scope of this thesis, and so the cortical interpretation of
these results remains, unfortunately, somewhat speculative.
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Figure 2.25: Post–stimulus source variance estimate for subject ‘LF’ and two
expressions. Variance is plotted for the two temporal–parietal sources and
the occipito–temporal source. (a): Trials where the subject was shown a
‘Happy’ face. (b): Trials where subject was shown a ‘Fear’ face.

(a)

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

Time (ms)

V
ar

ia
nc

e

 

 
Left temporal−parietal
Right temporal−parietal
Occipito−temporal

(b)

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

Time (ms)

V
ar

ia
nc

e

 

 
Left temporal−parietal
Right temporal−parietal
Occipito−temporal

Figure 2.26: Post–stimulus source variance estimate for subject ‘UM’ and
two expressions. Variance is plotted for the two temporal–parietal sources
and the occipito–temporal source. (a): Trials where the subject was shown
a ‘Happy’ face. (b): Trials where subject was shown a ‘Fear’ face.
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Chapter 3

Relating the signal to the

information

Introduction

So far we have produced a model of the observed data in terms of some set
of maximally independent sources, and we have produced estimates of which
of these sources are signal and which are noise. Now that we have this model
of the observed responses, our goal is to fit the output of the model to the
subject’s task performance and to the feature space of the visual input. The
estimated model parameters seem to correspond to sensible subspaces of the
measured responses, but the true test of the model lies in how well these
parameters correspond to real world events that are presumed to be either
driving or driven by the brain processes that it represents.

Fitting to the behaviour

The first step is to decide how relevant each of these model parameters are to
the output behaviour of the subject during the task. The subject responded
by selecting one of the seven possible emotional categories, so the behavioural
data are, in theory, of the multi–category classification type described in the
introduction. However, incorrect responses were not specifically encoded
during the original experiment. Each trial was recorded as either ‘incorrect’,
if the subject responded incorrectly, or as ‘N’, ‘H’, ‘Su’, etc... if the subject
responded correctly. Unfortunately, the nature of the incorrect responses
must be known if we are to analyse the data in terms of a multi–category
classification, so they were instead analysed in terms of a set of independent
binary classifications (e.g. ‘H’ or ‘not H’; ‘F’ or ’not F’, etc...). While it
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would have been preferable to analyse the full classification problem, this is
still OK and corresponds to the behavioural Bubbles analysis in the original
paper from which these data were taken.

Logistic regression

Logistic regression was chosen as the method to fit the brain signals to the
binary classification data. Under the right conditions, logistic regression is
equivalent to a Naive Bayes classifier [39], and should achieve lower error in
the case of a large set of data [50]. Furthermore, logistic regression analysis
has successfully been applied to classification problems using EEG data in
the past ([21]). The basic model for the logistic regression analysis here is
that the probability of the subject’s response, yi, being ‘correct’ on any trial
i is a logistic function of the independent signal sources at each time point
on this trial, such that:

P (yi = ‘correct’|si) =
1

1 + e−f(si(t),t)
, (3.1)

where:
f(si(t), t) = β1(t)si1(t) + . . . + βlB(t)silB(t) + c(t) (3.2)

is a continuous linear function of the source activations on trial i and a vector
of time–varying parameters, β(t). The logistic function can be understood
as effectively ‘squashing’ this continuous function of the source variables into
a binary output variable, while the parameters of the continuous function
can be understood as the influence of each source variable on the outcome of
this process. Large positive values of βj(t) imply that large positive values
of source sij at time t tend to correspond to ‘correct’ in the output variable,
while large negative values of βj(t) imply the opposite, and a value of zero
implies that the best guess for the value of the output variable is basically
50/50, regardless of the value of the source.

Model parameters were estimated using the ‘Iteratively Re–weighted Least
Squares’ (IRLS) algorithm of McCullach & Nelder [42]. Once fit, model pa-
rameters were evaluated using Cameron & Windmeijer’s R2 formulation for
a Bernoulli distribution [15]:

R2 = 1 −
1

k

∑k

i=1 ŷi log(ŷi) + (1 − ŷi) log(1 − ŷi)

ȳ log(ȳ) + (1 − ȳ) log(1 − ȳ)
, (3.3)

where ȳ is the expected value of variable y.
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Results & Discussion

Results of the behavioural analysis are again discussed for all three subjects
and two example expressions (‘H’ and ‘F’). Figures 3.1a to 3.1c display the
R2 for the full model, including all independent signal sources, for subject
‘LP’ for expressions ‘H’ and ‘F’ respectively. Figures 3.2a and 3.2c and
figures 3.3a and 3.3c display the corresponding results for subject ‘LF’ and
‘UM’ respectively. The overall R2 values are not particularly impressive,
peaking at no higher than 4% explained variance for any subject and any
expression, but they do display some systematic variation over time. There
is generally a first peak at around the 150 − 180ms time window and, for
subjects ‘LP’ and ‘UM’ at least, occasionally a second peak between 250 and
300 ms following stimulus onset. Again, this first peak fits with the expected
time window of the N170 ERP component and although the R2 values are
not particularly high for these time points, the coefficients of the full models
are all statistically significant during this window (p < 0.05). Note that there
is no obvious behavioural relation to the early variance observed at around
50ms in the sources.

Figures 3.1b and 3.1d display the R2 for the three independent signal
sources highlighted earlier [left and right temporal–parietal (numbers 1 and
2 on the figure, and bi–lateral occipito–temporal (number 3 on the figure)],
for subject ‘LP’ for expressions ‘H’ and ‘F’ respectively. Figures 3.2b and
3.2d and figures 3.3b and 3.3d display the corresponding results for subject
‘LF’ and ‘UM’ respectively. Given the timing of the first peak in the R2 for
the full model, we would expect this peak to be localised mainly on source
number 3. This is the case in general, although subject ‘LF’ for expression
‘F’ is the exception. Simlarly, given the timing of the second peak, we would
expect this peak, where it exists, to be localised mainly on the two temporal–
parietal sources. Again, in general this is the case, although there is also some
sensitivity for the occipato–temporal source during this time window. The
significant (p < 0.05) peaks in the individual source models include the early
peak on source 3 for all cases where it is present (i.e. all cases except for ‘LF’
and ‘F’) and the late peak on source 1 wherever it is present (‘LP’, ‘H’; ‘LP’,
‘F’; ‘UM’, ‘H’). However, other peaks, including the early–to–middle peaks
for ‘LF’ and ‘F’ on source 2 and ‘LF’ and ‘H’ on source 2, are significant at
this level also.

Overall, what are we to make of these results? The EEG model clearly
doesn’t provide a great overall fit to the behavioural data of the subject, but
some consistent patterns are revealed in the relative fit of each of the model
parameters when compared against each other. Particularly in the case of
subject ‘LP’, whose results display the highest peak fit between any indi-

54



(a)

0 50 100 150 200 250 300 350 400
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Time (ms)

F
ul

l M
od

el
 R

2

(b)

0

100

200

300

400

1

1.5

2

2.5

3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (ms)Source

R
2

(c)

0 50 100 150 200 250 300 350 400
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (ms)

F
ul

l M
od

el
 R

2

(d)

0

100

200

300

400

1

1.5

2

2.5

3
0

1

2

3

4

5

6

7

x 10
−3

Time (ms)Source

P
ro

po
rt

io
na

l R
2

Figure 3.1: R2 goodness–of–fit for both the full model [(a), (c)] and the three
highlighted sources [(b), (d)] over time. Results are shown for subject ‘LP’
and expressions ‘H’ [(a), (b)] and ‘F’ [(c), (d)]. Horizontal axis — time (ms).
Vertical axis — R2.
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Figure 3.2: R2 goodness–of–fit for both the full model [(a), (c)] and the three
highlighted sources [(b), (d)] over time. Results are shown for subject ‘LF’
and expressions ‘H’ [(a), (b)] and ‘F’ [(c), (d)]. Horizontal axis — time (ms).
Vertical axis — R2.
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Figure 3.3: R2 goodness–of–fit for both the full model [(a), (c)] and the three
highlighted sources [(b), (d)] over time. Results are shown for subject ‘UM’
and expressions ‘H’ [(a), (b)] and ‘F’ [(c), (d)]. Horizontal axis — time (ms).
Vertical axis — R2.
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(a)

(b)

Time (ms)
0 50 100 150 200 250 300 350

Figure 3.4: Representation of model fit in terms of (a): combined, and (b):
individual goodness–of–fit for each of the three highlighted sources. For each
time point, the source topologies are weighted by their corresponding R2

value. Results shown for subject ‘LP’ and expression ‘H’.

vidual source and the behaviour (around 1% of explained variance) the time
course of the fit between individual sources and behaviour coincides perfectly
with the time courses of both the N170 and P300 ERP components, whose
gross topologies match the topologies of the corresponding sources. Figures
3.4a and 3.4b provide a graphical representation of the three highlighted sig-
nal sources, each weighted by their fit to the behavioural response over time,
for subject ‘LP’ and expression ’H’. This representation shows quite nicely a
shift from early occipital to later parietal processes over the time following
stimulus onset.

Perhaps the reason for the inconsistency in these results is that what
is being modelled is not the full multi–category classification task that the
subject is performing, but rather the set of independent binary classification
tasks for each expression. Future experiments designed explicitly around
the multi–category framework should be run to see how the model fares.
It is not difficult to extend the logistic regression framework to the multi–
category case. The probability distribution of the responses should be treated
as a multinomial rather than a binomial distribution in this case. Another
possible reason for the inconsistency is in the estimation of the logistic re-
gression parameters themselves. One way to improve the estimates is to
replace the standard cost function with a regularized version which penalizes
over–parametrized solutions (e.g. [39]). However, methods for selecting the
appropriate regularization term were deemed beyond the scope of this thesis.

58



Fitting to the stimulus

EEG Bubbles

The primary inspiration for the analysis presented here is the “EEG Bub-
bles” method, introduced in [62] and further replicated in [68], [66], and
[63], amongst others. Below is an outline of the “EEG Bubbles” method, as
presented in [63].

For each subject taking part in the experiment and for each of the 7
expressions presented to the subject:

• All trials on which the subject did not correctly identify the target
expression were removed.

• For each EEG measurement channel:

1. For each time point following stimulus onset:

(a) The EEG voltage distribution over the selected trials was con-
verted to z–scores.

(b) The resulting z–score distribution was divided into 13 equally
spaced bins and each trial was marked according to its bin.

(c) The 6 highest and 6 lowest bins were separated from the rest
and assigned to two groups — “above mean” and “below
mean” respectively.

(d) Per spatial frequency band of the bubble masks:

i. For each of the two groups, the bubble masks correspond-
ing to the trials contained within their bins were collected
together and summed per pixel.

ii. The value of each pixel in the “below mean” group was
subtracted from the value of the corresponding pixel in
“above mean” group. Let us refer to the result of this
subtraction as the “difference plane”.

2. The 500ms time window prior to stimulus onset was chosen as
a statistical baseline and, for each spatial frequency band of the
difference planes:

(a) The total pixel value mean was computed over the baseline
time window.

(b) The total pixel value standard deviation was computed over
the baseline time window.

(c) For each time point following stimulus onset:
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i. Each pixel of the difference plane was normalized to a z–
score by removing the baseline mean and dividing by the
baseline standard deviation.

ii. A threshold on the absolute values of these z–scores was
chosen according to a two–tailed hypothesis (p < 0.05),
and corrected for multiple comparisons using the “pixel
test”, [16]. To create a “threshold plane”, pixels exceeding
threshold were then set to a value of 1 and the rest set to
0.

iii. The threshold planes were then convolved with a Gaussian
filter, which was parametrized according to the bubbles in
the mask at this spatial frequency.

iv. The final outcome was the result of multiplying, per pixel,
each band of the filtered threshold planes with the corre-
sponding band of the filtered stimulus image. The authors
referred to this as the “EEG Classification Image”.

Before addressing specific points of the analysis in more detail, it makes
sense to hold in mind the idea of part 1 as the “meat and potatoes” of the
analysis, while part 2 is more like the dessert. All of the numbers that shape
the results are derived in part 1; whereas how those numbers are presented
is controlled in part 2.

So what is happening in part 1? Well, first of all, the data are being
normalized and they are being down sampled - first from thousands of trials
to 13 bins, and then from 13 bins to 2 groups. The purpose of normalizing
independently at each time point and EEG channel is to ensure that the
results are not driven by any global amplitude or power differences along these
2 dimensions. The purpose of down sampling is to create a contrast against
which the values of the pixels in the mask can be compared. Subtracting the
sum of the masks in the lower bin from the sum of the masks in the higher
bin is equivalent to setting each of the EEG amplitudes in the higher bin to
1, each of the the EEG amplitudes in the lower bin to −1, multiplying the
bubble mask on each trial with its corresponding EEG amplitude, and adding
up the results. So the results contained in the difference plane are similar
to the multiplication between the values of each pixel and the amplitudes
measured at each EEG channel, normalized by the variance in the EEG
data.

The second part is all about determining statistical significance of the
values in the difference plane and presenting the final result. Normally claims
to statistical significance are reliant upon the distribution of the residual
error. However, these data are essentially reduced to two points, per pixel
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per time point (above plane and below plane), so there is no distribution from
which these statistics can be derived. The authors instead determine the error
distribution from the distribution of difference plane values during the pre–
stimulus time window, the assumption being that the mean and variance of
any correlations during this time period should reflect the mean and variance
of any inherent noise in the process. The value of each pixel in the difference
planes post stimulus are then normalized by these estimates and considered
as points on a standard Gaussian cumulative distribution with zero mean and
unit standard deviation. They are then deemed to significantly deviate from
zero if their absolute value exceeds the reciprocal of some chosen p–value
when evaluated by the cdf (e.g. p < 0.05).

Linear model of pixel information

As the difference planes from the EEG Bubbles method are equivalent to:

xρ,j =
Cov(mj , ρ)

Var(m)
, (3.4)

calculated for for each pixel, ρ, in the stimulus and each measurement chan-
nel, j, the method can basically be seen as a linear model of pixel information
in terms of brain activation. To see why, let us denote the set of Bubble mask
values for pixel p as the n × 1 vector bρ and the set of brain measurements
at electrode j as the k × 1 vector mt

j . The linear model is then:

bρ = mt

jxρ,j. (3.5)

Multiplying both sides by mj , we get:

mjbρ = mjm
t

jxρ,j. (3.6)

Because the vector product mjm
t
j is a scalar quantity, corresponding to the

inner product of brain response vector mt

j with itself, it can be factored out
of the right hand side by multiplying both sides by its inverse, leaving us
with:

(mjm
t

j)
−1mjbρ = xρ,j. (3.7)

Which, assuming the EEG data for channel j is zero–mean, is simply equation
3.4.

The benefit of re–framing the EEG Bubbles analysis in terms of a linear
model is, firstly, that we can more easily compare and transform between the
previous linear models estimated up to now for both the signal space and
for the relation between the signal and the behavioural space. Secondly, we
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can produce goodness–of–fit estimates for each pixel in the input and each
electrode and time point of the brain signal, according to:

R2 = 1 −
Var(ε)

Var(ρ)

= 1 −
Var(ρ − ρ̂)

Var(ρ)

= 1 −
(bρ − b̂ρ)

t(bρ − b̂ρ)

(bρ − b̄ρ)t(bρ − b̄ρ)
, (3.8)

and we can also estimate significance values for each model parameter, al-
lowing us to replace part 2 of the EEG Bubbles method presented above.

Figures 3.5a and 3.5b display the the EEG Bubbles difference planes and
linear model coefficients, both applied to the data in [63], for a single subject
shown the “happy” expression at 15 random electrodes between 160 and
190 ms. The pixel–wise correlation between the two methods, averaged over
electrode, time, expression, and spatial frequency band is 0.832. Figures
3.6a and 3.6b display the time courses of results from the EEG Bubbles
difference planes and the linear model coefficients for a single subject and
expression, for all electrodes, averaged over the pixels in the mask. Note the
extra smoothness in the linear coefficients compared to the difference planes.

Results & Discussion

Results of the stimulus–based linear models are presented as per the previous
two sections. Figures 3.7a and 3.7c show time courses of the R2 values for
the full linear model containing all signal sources, averaged over all pixels in
the stimulus, for subject ‘LP’ and for expressions ‘H’ and ‘F’ respectively.
Figures 3.8a and 3.8c and figures 3.9a and 3.9c show the corresponding results
for subjects ‘LF’ and ‘UM’ respectively. Again, the overall magnitude of the
R2 statistics is far from impressive, peaking at no higher that 1.5% of the
explained variance. However, the temporal evolution of the statistic is far
more pronounced than it was in the behavioural model. For each subject
and expression, with the exception of subject ‘LF’ and expression ‘F’, there
is a single clear, strong peak between 150 and 180ms.

Figures 3.7b and 3.7d show time courses of the R2 values for the three
individual highlighted signal sources, averaged over all pixels in the stimulus,
for subject ‘LP’ and for expressions ‘H’ and ‘F’ respectively. Figures 3.8b and
3.8d and figures 3.9b and 3.9d show the corresponding results for subjects
‘LF’ and ‘UM’ respectively. As was the case with the behavioural results, the
early peak in the full model R2 statistic can be primarily attributed to the fit
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(a) (b)

Figure 3.5: (a): EEG Bubbles ‘difference planes’ for subject ‘LP’ and expres-
sion ‘Happy’. X–axis is time (160−190ms), Y–axis is electrode (15 electrodes
chosen at random), colour is absolute value of result. Each axis is further
broken down into sub–cells of X–pixels × Y–pixels in the bubble masks. (b):
Linear model coefficients for subject ‘LP’ and expression ‘Happy’. X–axis is
time (160 − 190ms), Y–axis is electrode (15 electrodes chosen at random),
colour is absolute value of coefficient. Each axis is further broken down into
sub–cells of X–pixels × Y–pixels in the bubble masks.

(a) (b)

Figure 3.6: Comparison of EEG Bubbles and linear model coefficient time
courses [(a) is EEG Bubbles, (b) is linear model coefficients]. X–axis is time,
Y–axis is arbitrary because results are adjusted to be in comparable scale.
Results are displayed as averages over mask pixels and spatial frequency
bands for subject ‘LP’ and expression ‘Happy’.
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from source number 3 – the occipito–temporal source. Most of these graphs,
excluding subject ‘LP’ for expression ‘H’ and subject ‘LF’ for expression ‘F’,
also display a secondary set of peaks in sources 1 and 2 directly after the
initial peak in source 3.

So the majority of the sensitivity to the stimulus in the EEG data appears
to be centred on the occipito–temporal source during the time period of the
N170 ERP component. But what local information in the stimulus does this
correspond to? Figures 3.10a and 3.10b display the relative R2 statistic for
each pixel in the stimulus on source number 3 for subject ‘LP’ and expressions
‘H’ and ‘F’ respectively. These data are displayed between 120 and 180ms
following stimulus onset. Figures 3.11a and 3.11b and figures 3.12a and 3.12b
show the corresponding results for subjects ‘LF’ and ‘UM’ respectively. For
subjects ‘LP’ and ‘UM’, these data are quite striking. Both cases clearly
show a differential local information sensitivity for the happy and the fearful
stimuli. Fear is processed early, and with facial information mostly around
the eyes, while happy is processed slightly later and utilizing information from
the whole face. The behavioural Bubbles results in [63] show that these are
the local regions in the face corresponding to correct classification for these
two expressions. The sensitivity shown by the occipito–temporal source is
therefore to the information relevant for the emotional expression during this
time window. Along with the evidence for early sensitivity of this source to
the behavioural response of the subject, this goes against any idea that the
early occipital EEG reflects only a bottom–up encoding process.

However, for the temporal–parietal sources, the opposite seems to be the
case. Where the temporal–parietal sources show the strongest peak in sensi-
tivity to the behavioural outcome (‘LP’, ’H’), there is little or no sensitivity in
these sources to the stimulus information. Why might this be? A speculative
answer might be that the parietal sources in fact represent processes of mo-
tor planning, rather than stimulus categorization. Given the high number of
possible key responses, motor planning was possibly a factor in the response
accuracy, and parietal neurons in monkeys have been shown to be sensitive
to the locations of targets in a grasping task [54]. All three subjects were
right handed, and the left parietal source tends to show the higher sensitivity
to the behaviour, but not necessarily to the stimulus information.

Now, how do these results compare with the findings of the original EEG
bubbles analysis by Schyns et al.[63]? The main finding presented in [63]
are: that category–specific stimulus information is integrated over the time
course of the N170 at bi–lateral occipito–temporal electrode sides; and that
this integration corresponds to a goal–directed trajectory in the feature space
(i.e. moving across the face towards the features that are diagnostic for the
emotion). The first of these findings is clearly replicated here, as discussed
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Figure 3.7: R2 goodness–of–fit, averaged over all pixels in the stimulus, for
both the full model [(a), (c)] and the three highlighted sources [(b), (d)] over
time. Results are shown for subject ‘LP’ and expressions ‘H’ [(a), (b)] and
‘F’ [(c), (d)]. Horizontal axis — time (ms). Vertical axis — R2.
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Figure 3.8: R2 goodness–of–fit, averaged over all pixels in the stimulus, for
both the full model [(a), (c)] and the three highlighted sources [(b), (d)] over
time. Results are shown for subject ‘LF’ and expressions ‘H’ [(a), (b)] and
‘F’ [(c), (d)]. Horizontal axis — time (ms). Vertical axis — R2.
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Figure 3.9: R2 goodness–of–fit, averaged over all pixels in the stimulus, for
both the full model [(a), (c)] and the three highlighted sources [(b), (d)] over
time. Results are shown for subject ‘UM’ and expressions ‘H’ [(a), (b)] and
‘F’ [(c), (d)]. Horizontal axis — time (ms). Vertical axis — R2.
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(a)

Time (ms)
120 130 140 150 160 170 180 190 200

(b)

Time (ms)
120 130 140 150 160 170 180 190 200

Figure 3.10: Relative maps of individual R2 statistics for each pixel in the
stimulus on occipito–temporal source over time for subject ‘LP’ for expression
(a): ‘H’ and (b): ‘F’. Values shown are averaged over spatial frequency.

(a)
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Figure 3.11: Relative maps of individual R2 statistics for each pixel in the
stimulus on occipito–temporal source over time for subject ‘LF’ for expression
(a): ‘H’ and (b): ‘F’. Values shown are averaged over spatial frequency.

above. For the second of these findings, certainly in the case of the happy
expression, local stimulus information sensitivity appears to move down from
the eyes and towards the mouth, while it stays fixed at the eyes for the
fearful expressions (in the two subjects where the eyes are the location of
maximum stimulus sensitivity at least). The difference between the results
presented here and those presented in [63], however, is that the occipito–
temporal source here was selected automatically as one of the top few signal
sources, based upon the CV–EV subspace partition and the MEE sorting
criterion, while the occipito–temporal electrodes in the original study were
selected on the basis of a combination of prior knowledge and trial–and–error.

One possible advantage of the non–model approach to EEG analysis is
that the space of the brain can be explored at will, possibly revealing some
interesting sensitivity properties that are not revealed at any single source.
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(a)
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Figure 3.12: Relative maps of individual R2 statistics for each pixel in the
stimulus on occipito–temporal source over time for subject ‘UM’ for expres-
sion (a): ‘H’ and (b): ‘F’. Values shown are averaged over spatial frequency.

For example, our occipito–temporal source is sensitive to visual information
bi–laterally, but previous EEG bubbles studies (e.g. [62]), have shown that
certain right and left occipito–temporal electrodes are sensitive to contra–
lateral information in the stimulus. Well, there is nothing stopping us from
inverting the linear transformation from the source space back into the EEG
electrode space. As both the independent Gaussian sources model and the
linear model of pixel information are simply linear transformations, the coef-
ficients of the pixel model can be transformed into EEG bubbles coefficients
by the same unmixing matrix W t as transforms the sources into EEG elec-
trode measurements. The difference, however, is that the transformed results
are truer estimates of the individual channel sensitivities because they are
scaled by the appropriate independent variance (i.e. by the variance of the
source, rather than the variance of the electrode, which is contaminated by
covariance with other electrodes). They also have been estimated in the
absence of the noise subspace. Figures 3.13a and 3.13b show a comparison
between EEG bubbles data and the linear independent pixel model data,
after transformation back into the electrode space, for subject ‘LP’ and ex-
pression ‘H’ at occipito–temporal electrodes P8 and P7 respectively. The top
half of both figures displays the original EEG bubbles data, while the bottom
half displays the transformed independent source data.
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Figure 3.13: Comparison of R2 statistics from single electrode EEG Bubbles
(top half of each figure) and transformation of full source model into electrode
space (bottom half of each figure). (a): P8 electrode. (b): P7 electrode.
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Chapter 4

General Discussion

In this thesis I have argued that the extension of reverse correlation methods,
traditionally applied to study receptive field properties of single cells, to EEG
signals measured on the scalp is flawed in the absence of a model relating
those scalp measurement to a set of underlying brain processes. Without such
a model, interpretation of the results relies upon two assumptions: firstly,
that what is measured by any single electrode corresponds to a meaningful
brain process in itself; and, secondly, that what are jointly measured on any
pair of electrodes correspond to different brain processes. Without prior rea-
son to assume either, the interpretation of reverse correlation results from
raw EEG electrode signals is problematic. On the other hand, without de-
tailed structural knowledge of the subject’s brain tissue (data taken from a
structural MRI scan, for example), we cannot reliable estimate the current
density that causes the signals measured at the scalp [34]. Since such data is
often unavailable, alternative methods of estimating the functional sources
of EEG data are desirable.

Here was considered a particular approach to the ‘Blind Source Separa-
tion’ (BSS) problem, presented in [56], wherein the raw data were modelled
as a set of statistically independent signals drawn from an unknown Gaus-
sian distribution with a non–stationary variance profile. Tests on simulated
data generated from artificial Gaussian sources demonstrated that the algo-
rithm presented in [56] required only a minimal level of non–stationarity in
the source variance for effective separation. The method was further devel-
oped to isolate the sources associated with meaningful brain activity from
those associated with noise or recording artefact. Tests on simulated data
demonstrated that the meaningful sources could be successfully isolated with
this method, provided that the variance profile of the noise is close to sta-
tionary. When applied to real EEG data, recorded during a facial emotion
classification study, the method revealed three sources of the EEG signals
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corresponding to consistent scalp topologies across three different subjects
— two lateralised temporal–parietal sources and a bilateral (although biased
to one side) occipito–temporal source. These topologies fit with previous
ERP research in the fields of visual classification and facial emotion process-
ing — the temporal–parietal ‘P300’ effect ( 300ms following stimulus) and
the occipito–temporal ‘N170’ effect ( 170ms following stimulus) — and, more
specifically, to each individual subject’s ERP topology record during these
time windows.

To understand the function of these modelled sources, two forms of re-
gression were performed on their single–trial data — a logistic regression
against the subjects’ response behaviour, and a linear regression against the
random information available through the stimulus masks (equivalent to the
‘EEG Bubbles’ method developed in [62]). Previous visual classification re-
search [25][26][43] would predict that the occipito–temporal source activity
is significantly correlated with general stimulus information (i.e. information
suggesting that it is a face), but not with specific information differentiating
the particular facial emotion from others, while the two temporal–parietal
sources are significantly correlated with both the response behaviour of the
subject and the stimulus information specifically differentiating the facial
emotion. The results of these two analyses displayed a slightly different pat-
tern, however. In the majority of cases, both the occipito–temporal and
the left temporal–parietal sources were significantly correlated with response
behaviour, while neither temporal–parietal source tended to show any signif-
icant correlation with stimulus information and the occipito–temporal source
was correlated specifically with the stimulus information differentiating the
particular emotion. These results support the hypothesis that the N170 does,
in fact, reflect meaningful classification processes, at least in the case of facial
emotion perception [63][64]. They also question the extent to which the P300
reflects any kind of perceptual process at all. It may rather be that what
the P300 effect is measuring is a form of motor planning — a hypothesis
supported by previous monkey research [54].

Overall, the work presented in this thesis has demonstrated the utility of
fitting a principled model to raw measurements of EEG data, even when
structural knowledge of the subjects’ brain tissue is non–existent and only a
few simple constraints are imposed on the solution. To conclude this work,
future extensions of the method shall now be discussed, considering both the
signal model and the experimental design of the reverse correlation.
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Source statistics

Although the simplicity of the non–stationary independent Gaussian source
model is appealing, and comes with theoretical justification [29], it is not the
only way to go. As mentioned earlier, blind models of non–Gaussian sources
are far more common than those of Gaussian sources, and the data generated
from such a model should be compared to that presented here. Non–Gaussian
BSS tends to be bracketed under the term ‘Independent Components Anal-
ysis’ (ICA). In principle, ICA models can be estimated by a similar joint
diagonalization process to that performed for the non–stationary Gaussian
sources ([17],[52]). The problem is instead to find a mixing matrix that
jointly diagonalizes both the covariance matrix for a given set of data and
a second matrix of higher–order cross–statistics, as both must be diagonal
for non–Gaussian sources to be independent. However, practically this ap-
proach may not be the most effective, due to increasing estimation errors as
the order of the statistics increases. Bell & Sejnowski [9] propose an iterative
algorithm to maximize the mutual independence between estimated sources,
where each source p.d.f. is considered as a particular non–linear transfor-
mation of a Gaussian variable, but this method does not consider the joint
estimation of sources over a time window.

If the assumption of non–Gaussianity is used to replace the assumption
of non–stationarity in the sources, then we lose one of the appealing features
of this model, which is that it provides a single estimate of the mixing matrix
over all time of EEG measurement, and we also lose the ability to compare
the results. Ideally, future models of the EEG that consider non–Gaussian
sources should also account for the time dimension as the non–stationary
Gaussian model of Pham & Cardoso does. However, it should be noted
that, in a related work [29], where the non–stationary Gaussian model used
a kernel estimator to separate a single time series (as in [56]) and hence
the two methods could be compared, the Gaussian BSS model outperformed
a variety of non–Gaussian ICA models in isolating meaningful sources over
recording artefact.

Principled choice of time window

As was discussed in the text, parameters of the signal model were estimated
jointly for the full time course of measurement (i.e. from −500−1024ms fol-
lowing stimulus presentation.) The full time window was chosen to maximize
the number of data points, and hence increase the chance of separating the
non–stationary sources from the possibly non–stationary noise. However, if
the underlying model did not hold for this entire window, then this could

73



have been a source of error. The unknowns are: how sensitive is the solution
to violations of the model assumptions, and on what criteria should window
selection be based? If the JD–BGL algorithm can be shown to be robust
under violations of the model assumptions, then the largest available time
window should be selected, provided that the number of active sources over
this time window does not exceed the number of measurement channels. If it
is not so robust, however, then some method of finding, a priori, the windows
in which the assumptions are not violated should be developed. Future simu-
lations should be performed to test the robustness of the JD–BGL algorithm
when the Gaussian assumption is violated for a subset of the sources. The
relationship between the marginal normality of the sources and the marginal
normality of the measurement channels, via the Jarque–Bera test, should
also be explored as a means for selecting the appropriate window.

Integration of the behavioural correlation with model specification

As the signal model is currently specified, the only constraints on the solution
are in terms of the source statistics. However, as we are primarily interested
in finding sources that maximally explain both the visual input and the
behavioural output of the classification task, it makes sense to introduce
those as additional constraints in the joint diagonalization algorithm. In
other words, rather than attempting to minimize only the mutual information
between sources, attempt also to maximize the mutual information between
each source and the task–related variables. This approach makes more sense
in the context of the behavioural variable only, as the number of dimensions
in the stimulus space is so large.

Extension into the spectral domain

While it is not uncommon for EEG/MEG data to be analysed as a time–
varying amplitude signal, there is mounting evidence that many of its in-
teresting behavioural correlates are to be found in its spectral decomposi-
tion (e.g. [7][8][35]). Particularly interesting in the context of the research
presented here is the spectral relationship between occipito–temporal and
temporal–parietal brain regions as a function of both stimulus information
modulation and behavioural response.

To extend the BSS model to the spectral domain, it is necessary to re-
place the trial–averaged, time–varying data covariance matrix with a trial–
averaged, time–varying estimate of the cross–spectral density (CSD) matrix
at a given frequency. Various methods exist for the estimation of the time–
varying CSD matrix, including the short–time Fourier transform [71] and the
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wavelet transform [45]. The JD–BGL algorithm must also be extended to
perform joint diagonalization on complex matrices.

It should be noted that a recent method has been developed to per-
form non–Gaussian ICA on time–varying spectral data [29]. However this
method, rather than attempting to jointly diagonalize the time–varying CSD,
diagonalizes a time– and frequency–averaged CSD matrix jointly with a non–
Gaussian constraint. As a result, the method is limited to separating narrow–
band sources, but has less parameters to resolve. A comparison of the two
approaches would be interesting.

EEG pre–processing

An obvious area for improvement in this analysis is with the early EEG anal-
ysis pipeline — in particular, artefact rejection. As shown in the simulations,
the most destructive influence on parameter estimation was non–stationary
noise in the observed data. A likely source of such noise is eye–blink or eye–
movement artefacts. Although EOG potentials were recorded for the purpose
of removing such artefacts from the data, there is no guarantee that they al-
ways succeeded. Pre–filtering of the EEG data with temporal non–Gaussian
ICA components derived from the ERP may be an effective pre–processing
stage.

Naturalistic stimulus space

When facial expressions are generated by complex and subtle interactions
between muscles in the face, it is an interesting question as to how much we
might expect first–order configurations of static pixels in an image to really
capture how they are processed. The strength of reverse–correlation methods
in psychophysics is that the input space is well specified and the perceptual
processes that are being tested are sufficiently low in the processing stream
as to be expected to be sensitive to the dimensions of the input space. Can
the same be said of emotional face stimuli and processes measured by EEG?

Considering facial emotion as a form of social communication, there is
a strong argument that its production and perception should share a com-
mon neural basis (see e.g. [65] for an evolutionary argument). In this case
we should expect the space of facial muscle activation to modulate the brain
response of the observer more strongly than the space of stimulus pixel inten-
sity, which is only indirectly affected by the process of expression generation.
This aspect of the current research is more critical than any other to our
future understanding of when and how the brain processes facial emotion, as
it is the one that directly addresses the question of what it is that the brain
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is meant to be processing.

This is an appropriate note to conclude on; a logical extension of the theme
of this thesis — for all its potential power to map out multiple associations
between features of the brain and the external world with which it interacts,
the application of reverse correlation to EEG, MEG, and related brain imag-
ing modalities is useless without first getting the right features from the raw
images. While the model presented here may not get those features right, it
is at least attempting to find them.
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