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. 'SUMMARY 

This research work is conc6rned with the service and ultimate 

behaviour of reinforced concrete slabs and slab-beam systems designed 

in accorda: qce with a predetermined stress field. The elastic stress 

distribution (N 
x, 

NyN 
XY ,MXSMy9M XY 

) in the slab at the ultimate 

load was calculated by the finite element method, using the initial 

elastic uncracked stiffnesses for the slab. 

Design moments (M* 
, M* ) for flexure were based on Wood-Armer 

xy 

equations which were derived from the general yield criterion for 

orthotmopically reinforced concrete slabs given by 

M) (M* -MM2. xyy XY 

The reinforcement was provided parallel to slab edges. 

Design forces (M* 
, M* , N* 9 N* ) for combined flexure and 

xyxy 

membrane forces were calculated using a sandwich model. The core of 

the sandwich was ignored in the design, and the equations of Nielsen- 

Clark were used to calculate the design forces. In all cases the 

reinforcement was designed to withstand the design forces using the 

appropriate uniaxial ultimate limit state of stress. 

A nonlinear layered finite element model was used to study the 

behaviour of the slabs designed by this method, and results were 

checked against laboratory tests on large scale models with various 

boundary conditions. 

Results indicated that all the slabs designed by this method 

behaved satisfactorily under service loads. Both deflections and 

crack widths were within acceptable limits (spanJ250 for deflections 

and 0.3 mm for cracks)s and crack spread in an evenly distributed 
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pattern. All slabs recorded failure loads in excess of their design 

loads. The average enhancement in the design loads for the slabs 

without edge beams was about 16%. and for slab-beans systems about 485. 

It is then concluded that the proposed nethod provides designs 

with good ser-iice and ultimate behaviour, with a reserve of strength 

at least 10% above the design loads. 
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.. CHAPTER ONE 

INTRODUCTI'O N 

Present designs of reinforced concrete slabs are based on Limit 

States concepts. The object of such designs is to ensure that the 

structure satisfies the prescribed requirements at any stage of loading. 

Accordingly, two limit state criteria have to be satisfied by such 

designs, viz: the ultimate limit state and the serviceability limit 

state. Mozt of the existing methods of slabs design, which are based 

on Limit analysis concepts concentrate exclusively on the ultimate 

limit state. Thus the main concern of these methods is the ultimate' 

load for the slab, with empirical rules (e. g. span/depth ratio ... etc. ) 

to ensure satisfactory performance at the Serviceability Limit State. 

According to limit analysis, it is generally difficult to calculate 

the exact value for the limit load of a reinforced concrete slab. 

The methods either 

(a) Postulate a number of collapse mechanisms compatible 

with the edge conditions of the slab, and derive the 

limit load accordingly. Thetrue collapse load 

corresponds to the collapse mechanism giving the least 

load. Such methods thus provide an upperbound to the 

ultimate load. The yield line method for slabs is of 

this nature. 

or (b) Postulate a stress field which is in equilibrium with the 

I 
externally applied load, and does not exceed the strength 

of the slab at any point on the slab. Such stress fields 

are called admissible-stress fields. The load corresponding 
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to an admissible stress field will always be less than 

or equal to the true collapse load of the slab. Such 

methods provide b, lower bound to the ultimate load. 

The Hillerbgr-SIsStrip Method is of this nature. 

An exact value for the true collapse load will obviously exist 

when the loads obtained by upper and lower bound methods coincide - Upper 

bound solutions can thus be unsafe, in contrast with those of lower 

bound, which are always safe. 

The basic requirement by this approach is to satisfy the 

equilibrium and the yield conditions. For concrete slabs, the equilibrium 

equation to be satisfied (see Chapter 2) is 

32M 
x 

32 Ma a2M 
2-y=- 

ax Dy 3 Y2 

where (M 
x0My, 

M 
XY 

) are the moments components at any point on the slab 

and q is the load. Unless the Hillerborg's method is employed 

(Section 2.2.2.2), it is not directly possible to obtain a non-trivial 

solution to equation (1.1). since it contains three independant 

variables (M 
x2Mytm XY 

). However, by adopting linear elastic moment- 
. 

curvature relationships (section 2.2.1) in equation (1.1) we will have: 

D 3443' 
+ 2H a 4W. 

+D4 oj (1.2) 
x ; X4 DX2 a5r2 y ; y4 

Where D, D and H are the anistropic stiffnesses of the plate. xy 
A solution to (1.2) can be obtained since it involves only one variable. 

And hence a solution to (1.1) can be found, by using any values for the 

flexural stiffnesses in the moment-curvature relationships. Of course 

different values of these stiffnesses will give different reinforcement 

patterns. From the-ultimate Limit State point of view, all such 
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distributions are acceptable, since they are all derived from 

equilibrium considerations, and are followed in design. The major 

question is which cX all-these solutions is acceptable and the 

criterion to be satisfied will be of serviceability and economy. 

In the present study, the initial uncracked stiffnesses are used 

to obtain the elastic stress distribution under the ultimate load. 

This elastic analysis under the ultimate load will be done using the 

finite element method. A yield criterion will then be used to provide 

the necessary strength to resist the predicted stress distribution. 

Both criteria of Limit analysis for a safe admissible stress field are 

satisfied in this way, and accordingly the method is expected to yield 

a lower bound on the ultimate load, with minimum reserve of strength. 

Since the design will be based on the ultimate limit state, it 

becomes essential to check on the serviceability of the slabs 

designed by this method. A nonlinear layered finite element model will 

be used to analyse the slab under monotonic loading till failure. 

Experimental work on large scale slabs will be used to check against 

the theoretical predictions. 



CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION: 

In this chapter, the various methods of reinforced concrete slab design 

are discussed. In normal practice, loads to which the structure will 

be subjected are normally known, and it is first desirable to find the 

stress distribution in the slab for calculating the steel areas. The 

stress distribution in the slab is dependant upon the geometry$ boundary 

conditions and the state of the material in the slab whether elastic or 

plastic. Accordingly, the design methods can be classified into two 

main categories, viz: elastic and plastic methods of design. 

The . stress distribution can be found by analytical or numerical 

procedures, and in the latter, both elaszic and plastic effects can be 

conveniently included. The most popular procedure used in obtaining 

stress distributions is the finite element method. Accordingly$ the 

finite element method, which is used extensively in this study, will 

also be reviewed. 

2.2 METHODS OF SLAB DESIGN 

2.2.1 Elastic Methods: 

In these methods, classical plate theory is used to obtain the 

stress distribution. Such methods are adequate for elastic slabs in 

which shear deformations and inplane effects due restraints at the 

boundaries can be ignored. In most cases, the first order theory of 

bending is adopted, with the prerequisite that the lateral deflections 

should be sufficiently small compared to the slab thickness. The stress 

distribution obtained using'elastic methods satisfies both equilibrium 
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of stresses and compatibility of deformations. 

By considering the equilibrium of forces acting on the slab element 

in Figure (2.1), with side lengths dx and dy in the x and y directions 

respectively-i the following equilibrium equations can be derived: 

a Qx 
j- + -hr- +q0 

x x ay 

am am 
x+ 

--ZX -Q0 rx ay x 
am am 

- gy 
y+ 

ay 
x-y+ Qy =0 

Eliminating Qx and Q7 between the three equationsl they can be 

combined in one equation of the form 

32M a2m a2M 
-- 

X- 
.2 

XY + ---Z -.; -q (2.2) 
ax ay ay?. 

Equation (2.2) is known as the plate equilibrium equation. The 

equation can be transformed to one in terms of displacements, by 

relating the moments to the lateral deflection w through the slab 

curvatures, and Hook's law for stress and strains. Thus, if Z is the 

distance of any point normal to the plate middle plane . then 

CZ 
32W 

z 32W 
=ax y -57-7 

C=- 2Z 
g 21, r 

XY ax ary 

(2.3) 

where exSey9e XY are the normal and shearing strains at the point 

in the x, y cartesian system of coordinates. And from Hook's law, the 

stresses a., ayIT ICY are related to strains by 

=Ec+EE (2.4) 
xxx xi y 

vith similar 
. 
expressions for ay and T XY 

The moments are given by 



ýr 

m 
XY 

am 
My + -I- dy 

DY 

"I 

z 

aK 
Ilyx + YÄ dy 

zy 

dy 
ay 

I 

6 

m 
y 

MYX 

Mx 
dx Mx +ý 

L 

ax 

Mxy + 7-, "4 dx 
x 

Qx+ dx 
ax 

x 

Figure (2.1) Equilibrium of a slab el'ement 



T 
h/2 

-h/2 
Cr xz 

dz 

where h is the thickness of the plate. 

Mr 
h/2 32W 32W 2 

000x -j 

-h/2 

(E 
x 57 +E 

xi ý7 )z dz 

(D a2w 
+D 

32 W (2-5) 
xa XZ 35: 7 

S imilarly 

32w (D 
yy aF +Dia 

x2, 

M2D 
azw 

XY yx xy ax ay 

in which 
Dx 

ExPDEY, h3 

12 y 12 (2.6) 
Ex, h3 GP D1 

12 
D 

XY 12 

Substituting expressions (2-5) in the equilibrium equation (2.2), 

we obtain 

34W ;4W4, W D-+ 2(D +ýD -a-X7-; y2 + Dy 377 
(2-7) 

x2 77 1 Xy 

introducing the notation 

1 XY 

we obtain 
34W ;4w 34 w 

D+ 2H + Dy q (2.8) 
x 5-7 ax y 

In the particular case of isotropy ve have 

E vE E=EE 
xy VZ v2 

and GE 
2(1+v) 

and (2.8) reduces to 
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; 4w 
+2 

;4w+ a4W 
q/D (2.8a) 57 axzayz ay-Ir 

where DE h3 

12(l-V2) 

Thus if a solution to (2.8) can be found, then the stress 

distribution is readily obtained from the moment-curvature relationships, 

equations (2-5). Such an approach is quite common to both the 

approximate analytical procedures, and to the numerical methods of 

finite differences and finite elements. 

In the analytical procedures, the deflected surface of the plate 

is represented by either a double infinite Fourier series (Netier Solutions)s 

or by a single infinite sine series (Levy's solutions) A detailed 

account of such methods can be found in text books on Plate Theory 
(192) 

a 

The concept of energy solutions applied to plates was developed by 

Ritz based on the principle of minimization of the total potential. 

The solutions are usually of series solution form, but here more freedom. 

in selecting the series type is given, as long as the function satisfies 

the boundary conditions of the problem. Coefficients for the successive 

terms in the series are selected to minimize the total potential in the 

system. The Galerkin method of solution falls within this general class. 

The terms in the series may be polynomial or trigonometric, and sometimes, 

Bessel and Hankel functions have been used 
(3). 

The discovex7 of suitable 

series solutions which satisfies both the boundary conditions and approxi- 

mates the deflected shape has been generally difficult. 

An alternative to these analytical procedures for the solution of 

the plate equation is the use of the numerical method of the finite 

differences. The method replaces the fourth order partial differential 

equation of the plate by a series of linear simultaneous algabraic equations 
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in the deflections at a finite number of points on the slab. Once the 

deflections at these grid points are found, moments can be obtained 

from equations (2-5), by replacing the curvatures by its equivalent 

finite difference operators. The derivation of the method and its 

application can be found elsewhere 
(1,20,4). 

The accuracy of the 

finite difference solutions depends on the number of grid points used, 

the larger the number, the better the accuracy obtained. kccordingly, 

the number of simultaneous equations increases, and thus, requires a 

large space in the computer, even for small problems. The effort 

involved in setting these equations also increases, and the method is 

difficult to automate. 

For the design engineer, all the methods described are inappropriate, 

and simplified methods have always been resorted too unless of course 

design tables and charts are available. The simplified methods generally 

approximate the slab to a set of parallel beams, and thus the load is 

carried by bending action, in which torsional moments are ignored. 

Compatibility is only approximately satisfied. For a uniform load q. 

the proportions of the load carried by orthogonal strips in x and y 

directions are such that 

(IX + q, =q (2.9) 
y 

The actual distributions qx and cjy are determined by the compatibility 

of deflections at the centre strips. Thus using simple beams deflections: 

qx L4L 
x5 (2.10) 

384 ExIx 384 EyIy 

and assuming equal fle=al rigidities in the two strips s and solving 

(2.9) and (2.10), we have 
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and 

L4 
clx yq (2.11) 

x 
f, 

I 

zr 

44q 
(2.12) 

Lx+L7 

The bending moments in the x and y directions can thus be obtained 

as for simple beams : 

4 
my CL L xxL 8(L4 + L4 sx x 

x 
L2 

7 (2.13) 
M L2 -qa L2' 

yx[ 8(L4 + L4) SY X 
xy 

Coefficients asx and asy corresponding to the bracketed terms 

in (2-13) can be evaluated for various side ratios, -and ixe given in 

Table 12 of Cp 110(5). 

The method is known as Rankine-Grashof method, and applies to 

rectangular sim'Ply supported slabs under uniform loads. For concentrated 

loads, loads are assumed to be distributed over a-finite area, and 

Simmilar analytical procedures are used. The moment distribution depends 

on the dimensions of the finite area and its sides ratios to be. the 

I 
respective plate dimensions. The method becomes complex if a group of 

separate concentrated loads are acting. In such cases, superposition 

principle can be applied. 

This section shows clearly the difficulty of obtaining analytical 

elastic solutions. In most cases, the methods lack generality. The 

methods are further restricted by the inability to account of plasticity 

at high loads, and the wide variability of support conditions encountered 

in'practice. 
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2.2.2 Plastic (or Limit States) Methods: 

The assumption of the classical plate theory that the slab 

material is elastic and homogeneous is limited to low levels of stress. 

As the load is increased, concrete slabs crack due to the limited 

strength of concrete in tension, and accordingly, the slab flexural 

rigidity deteriorates. Cracking induces nonlinearityg and at higher 

loads, the degree of nonlinearity is increased by plastification of 

reinforcing steel. To account for these material changes, plasticity 

theory is used. The plasticity theory assumes that the material of 

the slab is perfectly plastic, which means that the material of the 

slab is capable of indefinite plastic straining, once the conditions 

of yield have been reached. 

The plastic methods of concrete slabs design can be broadly 

classified in two groups - according to the theory of Plasticity - 

viz: upper bound and lower bound methods (Chapter 1). These methods 

include: - 

1. The Yield Line Theory. 

2. Hillerborg Strip Method. 

3. The Strip Deflection Method. 

4. Minimum Weight Designs. 

5- Lower Bound Solutions. 

of which only the first is an upper bound method. 

2.2.2.1 The Yield Line Theory 

The yield line theory of slabs was first introduced by Johansen 

(798,9). 
The method derives the slab ultimate load based on a pre- 

postulated failure mechanism. It is assumed that All the reinforcement 

crossing the yield lines defining the postulated mechanism is yielding. 
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The shape of the assumed mechanism depends on the slab geometry, 

support conditions and the type of loading. Several modes of failure 

are thus possible even for one problem, and according to the theory 

of plasticity, the correct mechanism which determines the ultimate 

capacity of the slab corresponds to the one giving the smallest load. 

The method thus provides an upper bound to the ultimate load, and the 

designer is forced to seek all possible modess for correct analysis. 

This would create some difficulty especially in case of slabs of 

uncomnon shapes. 

In spite the method being an upper bound approach 0 the effects of 

strain hardening and membrane forces, in general, tend to make the 

experimental load higher than the calculated ultimate load. 

Although the yield line theory applies to any shape of slab, any 

load and any edge conditions, it is restricted - in practice - to slabs 

of constant thickness, uniformly reinforced in each of the two mutually 

perpendicular or skew directions. The method does not give any 

information on the best steel distribution within the slab, but can 

be used to analyse a slab with a predetermined distribution of steel. 

Furthermore, the method provides no information on the*slab deflections 

or cracking at any stage of loading. Prediction of the mechanism with 

a combination of concentrated loads can be very difficult, especially 

when uniform loads are also acting. 

2.2.2.2 Hillerborg- Strij2 Method: 

According to the lower bound theorem of plasticity (Chapter 1) 9 

any combination of M 
xS 

My and M 
INY 

which satisfy the equilibrium 

equation (2.2) at all points on the slab, and the boundary conditions 
(13) of the problem, is a valid solution. Hillerborg made use of the 
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strip action in the slabs and chose his solution so that M 
Xy 0 09 

everywhere in the slab, The load is thus carried by bending action 

created by parallel strips spanning in two orthogonal directions X 

and Y. Thus, if a is the proportion of the load carried in the X 

direction strips, equation (2.2) gives 

32M 
x 

XZ 

and 3211V 

ayz 

= aq 

(2.14) 
= 

with the proviso that M=0. 
XY 

The factor a is arbitrarily chosen, and can vary throughout the 

slab vif a=1.0, all the load is carried by bending of X strips, and 

if equal to zero, then all the load is carried by bending of Y strips. 

of courseq different ways of dividing the load will, however, lead to 

different reinforcement patterns, although all such solutions are 

valid, as far as equilibrium is concerned. The designer needs some 

experience to arrive at the most economical distributions and in 

practice, several cases have to be considered. 

For rectangular slabs under uniform loads, the method is easy 

and straightforward. Once the load distribution is determineds each 

strip acting as a beam, can be designed according to the bending 

moments in the strip. In cases when the moments are rapidly changing 

(e. g. strips with discontinuity lines), Hillerborg suggests the use 

of banded reinforcement based on average moments across the band. Each 

band is composed of a number of strips. Design on basis of average 

moments is strictly not in accordance with the lower bound theory, 

because at ultimate load, the theoretical moments will exceed the 

ultimate moments of resistance over a part of each band.. However, 
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once yielding occurs, it is reasonable to expect the moments to 

redistribute themselves. Alsot the total available ultimate moment 

of resistance ac--Oss a band is equal to the required value 
(3). 

Figure (2.2) is an example of a simply supported square slab 

under uniform load, and is intended to show some possible load 

distributions. In this case, two distributions are considered. 

However, both distributions are valid, but the first distribution is 

impractical as it requires varying Layout of steel. From a design 

point of view, the second is more suitable, as it gives an even 

distribution over large areas, and therefore can be reconmended from 

a theoretical as well as a practical point of view, although it requires 

12% more steel$ than the first distribution. 

This simple strip method thus presented is restricted to certain 

slab problems. For cases involving point loads or supports (flat 

slabs), the simple strip method utterly fails. Hillerborg suggested 

the use of what is known as the "Advanced Strip Method"(13). In this 

method, the slab is divided into elements bounded by lines of zero 

shear. force. The design moments are the bending moments found throughout 

the slab which are compatible with zero shear lines, and which are in 

equilibrium with the applied design loading. The slab can be divided 

into three different types of elements as shown in Figure (2.3). 

Element Types (1) and (2) can be designed by the simple strip method. 

But Type (3) is more complex. Hillerborg uses a radial stress field 

and secondary load actions to transfer the loads from the element to 

the column. Finally he achieves his solution by proposing a set of 

rules for reinforcing the element. 

Hillerborg has devoted considerable effort to overcome the 

problem of point supports by the use of Type. (3) elements. Nevertheless, 
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the simplicity of the strip method is lost and this approach is not 

satisfactory as a design procedure. The method as described is for 

the case of a uniform load within the element, and it will be 

increasingly difficult to find a suitable stress field for any other 

type of loading. 

A further drawback of the strip method (in general) is that, on 

pursuit of simple solutions, the designer may choose stress distributions 

which depart far from those required for a good service behaviour, 

which impairs the function of the slab at early stages of loading. 

2.2.2.3 The St rip--De flexion Method: 

To overcome the difficulty in choosing suitable load dispersion 

factors a in the strip method, Fernando and Kemp 
(15) 

developed the 

generalized stril)--deflection method. The method can be considered 

as a development of the Hillerborg strip methodq in the sense that 

torsional moments are ignored every-where on the slab and the load is 

resisted by bending action created by a set of orthogonal strips. 

Considering the rectangular slab under uniform load q shown 

in Figure (2.4), the slab is first divided into four strips in each 

direction giving 16 grid rectangles. The load intensity cj1j on each 

id to grid (ij) must theoretically be uniforms but can vary from gr, 

another. For any grid (ij), the unknown load distribution in x 

direction is (qx)ij, and from equilibriums the corresponding load 

distribution in the y direction will be (qy)ij =q- (qx)ij. 

Any arbitrarily selected values of such distributions will satisfy 

equilibrium conditions. However, in the strip-deflection methods one 

chooses the distributions q. and qy by considering compatibility of 

deflections at points of intersection of the centre lines of the X and 
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Y strips. The method uses flexibility coefficients, which are 

independent of loading, but depend on the geometry and the boundary 

conditions of the problem. The elastic deflection at the intersection 

points due to X 'loading on X strips is obtained from these coefficients 

as 
k 

AX E Fx 
in qx in 

(2-15) 
n=l 

where 

Ax. -= the deflection due to x loading on x strips 
ij 

Fx. = the flexibility coefficient of x strip at node 
in 

qx in =x load on x strips 

k= number of intersection points on x strip. 

Similar expressions to (2.15) can be written for 'whe deflection 

at the same'points due to Y loading on Y strips. Equating such 

deflections results in a set of linear simultaneous equations in terms 

of the load distributions qx and qy on each grid elemen 
. 
t. 

For patch loads covering extensive areas of the slab, the strip 

system can be chosen so that the load is contained within one grid area, 

and the analysis is identical to that described for uniformly distributed 

loading. If the loaded area is small, the strip system is chosen so 

that the concentrated load is centrally positioned within the grid 

rectangle. It can then be assumed to be uniformly distributed over the 

whole grid area, and the analysis for load distributions and bending 

moments would proceed exactly as for distributed loading (Figure (2-5)). 

The bending moments so derived do not satisfy equilibrium in the 

local region of the grid containing the concentrated load due to the 

initial assumption of spreading the load over the whole grid area. To 
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obtain an exact solution for the plastic collapse load, additional 

moments must be added within the grid element containing the 

concentrated load, using a simple equilibrium. spreader system 
(16) 

0 

Such a system is shown in Figures (2.5b) and (2-5c). The 

concentrated load is first uniformly distributed equally to the 

two strips AA and BB in Figure (2.5b), giving the bending moments 

shown within these two strips. The load from the two strips AA and 

BB is then distributed uniformly to the whole grid area which produces 

the bending moments shown in Figure (2-5c) within the grid area. 

By the use of these spreader systems, equilibri, = is satisfied within 

the grid element containing the concentrated load. Additional 

reinforcement has then to be provided in accordance with the moments 

in both of the two spreader systems. Similar procedures can be used 

for concentrated supports. 

The method is simple for simple grid numbers . but it requires 

the formation of special flexibility coefficients dealing with patch 

loads rather than point loads. In addition, increasing the number of 

strips improves the accuracy, but at the expense of increasing the 

nunber of simultaneous equations to-be solved, which renders the method 

to be computer oriented,, and thus the simplicity of the method is lost 

The method resembles the grid analogy method and the Rankine- 

Grashof's method. 

The strip methods (both Hillerborg and Ferndndo and Kemp) would 

be unsuitable for cases involving high torsional moments. In such 

cases, both methods would give solutions which are far from the 

elastic solutions(18). - The only reason for neglecting torsion in the 

strip methods is because it leads to a simple procedure for hand 
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calculations. The main disadvantage is that it is difficult to 

decide the appropriate load distribution factors without jeopardizing 

the behwriour at working loads. If one has to use a computer program 

to analyse the slab, the best procedure is to include torsional 

moments as well, whether the analysis is done by the grid analogy 

method or the finite element method. 

2.2.2.4 Minimum Weight Designs: 

By assuming a uniform slab thickness, and neglecting the ability 

of concrete to resist tensile forces, Morley(lo) derived the sufficient 

conditions for minimum reinforcement in concrete slabs. If a, and 

a2 are the distributed areas of the reinforcing steel in the direction 

of the principal moments M, and M2 respectively, then the volume of 

steel Vs required over an area A is given by 

Vf 
s 

JA 
kal +a2) dA (2.16) 

where the steel areas are given by 

I M11 I M21 
a, 

fd2 f7 d 
y 

where fy is the yield stress for the steel, and d is the lever arm. 

Substituting for the steel areas a, and a2 in (2.16) we have 

Vs=f1d 
fA (IM11 +Im 21 dA (2-17) 

y 

Accordingly the steel volume is proportional to the moment 

$ 

volume on the slab. Hence the problem of minimizing the reinforcement 

reduces to that of finding the minimum volume V which is given by 

V= 
fý 

(IM11 + IM21 ) dA 
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A moment field is said to "correspond" if the principal =ments 

M, an d M2 and the principal curvatures k1 and k2 have the same sign 
(10) - 

and direction. Morley proved that the moment volume for a 

corresponding field is less than or equal to that of a non corresponding 

one. The sufficient conditions can be summarized as follows: 

If for a slab a particular moment distribution "0" corresponds to 

the displacement field which has 

(a) The curvaturesl k1l lk 
21 K throughout except in 

regions where 

(b) Jkll =k, lk 
21 k and M2=0 or 

(c) Ik 
21 =k, Ik, Ik and M, =0 

then that field has a minimurn moment volume. The problem of finding 

such a distribution field is purely geometrical. 

a neutral area where Jkli = lk 
21 =+ ks it is possible that 

M, A0 and tý 0 0. M, and M2 can be in any direction and the loads 

too can be distributed in any direction. For the simply supported 

slab shown in Figure (2.6) the regions JEH and FKG are such neutral 

areas. 

If k, =-k2=±k, the deformation surface is anticlastic, and 

there is less freedom since for correspondence the loads must be 

distributed in the directions of the principal curvatures, i. e. for 

regions such AEJ, loads must be distributed parallel or perpendicular 

to side EJ as shown, though the ratio of such distributions can be 

arbitrary. 

In the regions where Jkli =k and Ik 
21 <k the moment M2 

must be zero. The region EFGH is such an example and the loads must 

be caxried only in the direction of k1 (i. e. EH or FG) and the signs 
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of 1ý and k, must be the same. 

Figure (2.6) shows the solution for the slab ABCD and illustrates 

the three types of displacement fielcls which are sufficient for a 

minizourn weight solution. The moment volume due to a uniform load 

is 

q L3 V= (0.0834 L7 - 0.0313 L. (2.19) 
x 

which reduces to 0.0521 q L4 or 
5- 

q L4 for a simply supported slab. x 96 x 
The method assumes no constraints on the reinforcement directions. 

Such methods are likely to be impractical, as they could yield 

curvilinear reinforcement patterns. The method is also deficient 

in providing any information on the serviceability of the slab. 

2.2.2.5 Lower Bound Solutions: 

In this method, simple polynomials in moment components are chosen 

to fulfil the equilibrium equation (2.2) and the boundary conditions of 

the problem. To determine the slab ultimate capacity, the moment fields 

are intuitively assumed. Wood 
(4) 

gives a good account of the method 

and shows how the procedure can be used to determine the ultimate 

capacity of reinforced concrete slabs. The concept was later extended 

by Vijaya Rangan 
(11,12) 

to cover continuous slabs. In general termss 

it has been shown that the collapse loads *for such slabs can be written 

in the form 

qL2 

mx 
(8 11 + 2Xp + 16pz) (2.20) 

in which: Lx= short span length of the slab (along the Y-axis) 

11 = degree of orthotropy 

p= sides ratio of the slab L /L 
xy 

Ly= Long span, 

M= yield moment in the X direction 

X=a constant 
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'he value of the constant A depends on the sides ratio and the 

degree of orthotropy V. The value which satisfies the yield criterion 

is approximated by 

4 /1 Y Irp (2.21) 

The collapse load given by (2.20) was compared with the 

corresponding upper bound solution 

q L2 

mx 
24u (2.22) 

P r2 2 (/3 + 

after the latter has been reduced by 4%, to account for the corner 

effects. The two solutions agree within 10% of the reduced upper 

bound solution. 

In obtaining the solution (2.20). Vijaya Rangan 
(11,12) 

used a 

truncated sixth order polynom., als to define the lower bound moment 

fields. It is evident from the approach in the paper how difficult it 

is to obtain such solutions, and they can be produced only for limited 

cases of end conditions and load combinations. Point loads or supports 

present great difficulty in selecting simple moment fields. The method 

has the advantage over the yield line method in that conditions of 

yield are considered at every point on the slab, and not just at the 

yield lines. But the method, in addition to the difficulty encountered 

in obtaining the stress fields, does not provide any information on the 

serviceability of the slab. 

To overcome this difficulty, recently Vijaya Rangan 
(12) 

has 

derived expressions to limit crack widths by choosing the reinforcement 

diameter and spacing to satisfy the code limits. Deflections can then 

be limited by a suitable-choice of depth. 

0 
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2.3 ASSESSING SERVICEABILITY OF REINFORCED CONCRETE SLABS: 

In the cont'ext of limit state design, the two main criteria for 

design are *uItimate- strength and serviceability. The latter may, as 

a first approximation, be related to the slab stiffness. The stiffness 

of the slab as a function of the load may be obtained in many ways. 

For design purposes, empirical values may be used. For elaborate 

analysis, the numerical methods of the finite difference and finite 

element are employed. 

2.3.1 Analytical Procedures: 

2.3.1 Deflections: 

In a macroscopic slab model in which only flexural failures are 

permissible, the slab stiffness at any stage of loading is represented 

by the slope of the moment-curvature diagram of Figure (2.8). Before 

cracking, the slab material is linear elastic, and hence deflections 

can be calculated using the elastic theory, with the gross moment of 

inertia. Ig of the section. After cracking, the behaviour is also 

approximated by a linear reduced flexural rigidity up to the yield 

moment. This implies the use of a bi-linear moment-curvature relation- 

ship in the working load range. The reduced rigidity after cracking 

is the fully cracked transformed section rigidity in the Beeby's 

(21) 
method Thus 

Er 1 (2-23) 
c cr 

where 
R 

U. = The flexural rigidity of the section 

El = 0.57 Ec 
c 

Ec= Youngs modulus for concrete 

cr = moment of inertia of a fully cracked transformed 

section. 
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While in the Branson's method 
(21) 

. an effective moment of 

inertia is used. The effective =ment of inertia depends of the 

stage of loading, and is given by: 

I«I( cr 3+11 cr 3 
(2.24) 

e ff 9m cr -(M 

where 

I 
eff o Effective moment of inertia 

19= Gross moment of inertia 

M= The maxiTnum applied moment in the span 

M 
cr = The cracking moment. 

The cracking moment is calculated from the flexural formula as 

cr =fr19 /Y (2.25). 

where fr= modulus of rupture. 

The Branson's method is more realistic then the Beebylssand 

hence, it is recommended for use in the ACI Code 
(3). 

The applicability of such methods is well established for 

reinforced concrete beams and one-way slabs. For two-way slabs. 

Desayi and Muthu 
(22) 

proposed a method for estimating short-time 

deflections. The load-deflection curve is predicted in two stages: 

prior to and after cracking. In the uncrac--ked stage, the deflections 

are calculated using elastic plate theory. Thus 

q L4 
6=Bx (2.26) 

EI 
cg 

where a is a constant depending on the boundary conditions of the 

problem. 

At the initiation of crackings the deflection 6cr under the 

cracking load q cr 
is estimated from 
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qL4 
6 

cr 
=ßE er 

1x 
(2.27) 

After cracking, due to the continuous decay of the flexural 

rigidity of the slab, an effective noment of inertia can be used. 

The proposed equation is 

-cr 2 cl - cl k 
Ig 

[1 
- k, (' (2.28) 

eff qj -q cr 

where qj is the Johanson load, k1 and k2 are constants to be 

determined. Using the effective moment of inertia after cracking 

(equation 2.28), the deflection in this range can be calculated as 

(q -q )L4 

cr EI 
cr x (2.29) 

c eff 

The expression for I 
eff 

in (2.28) depends on the constants k1 

and k 2' Experimental results of Desayi and Muthu 
(22) 

have shown that 

k, = 0.87761 - 4.. 1604 xlo-4 X0 (2.30) 

k2 = 0.025227 + 8.28 x 10-4 Xo (2.31) 

where f LX L 
x= (p + P7 --Z - 0x 

Xf W)(h 11) 

where 

PX and py= percentage of steel in X and Y directions 

respectively 

LxLy= short and long spans 

h= slab thickness 

V= compressive strength of concrete c 
f =. Yield strength of steel Y 

Equations (2-30) and (2.31) are said to be valid in the range 

4o -< x0< 270. 



29 

The method predicts the maximum defle. ctions in two-way reinforced 

concrete slabs with excellent accuracy, but is restricted in its 

application to uniformly loaded, uniformly reinforced concrete slabs. 

U *ill now, it is the only method known for estimating deflections pt 

of two-way rectangular simple slabs. Recently, the method has been 

extended to cover fixed slabs by Desayi et al 
(23) 

The method still 

needs further investigation to cover other types of supports and 

loading conditions. 

2.3.1.2 Cracking: 

The problem of predicting the maximinn crack width is very complex. 

Due to its stochastic natures assessment of crack widths can only be 

made using empirical means derived using statistipal procedures. 

Although a lot of work has been done and is still continuing, the 

suggestions for design are far from being conclusive. 

At present, two theories are known, which deal with the prediction 

of crack widths in structural members, These are: - 

1. The "Slip" Theory, -which assumes that the crack widths 

depend on the am unt of bond slip in the reinforcement. Here crack 

widths are normally expressed in terms of steel stresses. 

2. The "No Slip" Theory which considers the crack width to be 

effectively zero at the face of the reinforcing bar. Here crack widths 

are expressed in terms of strains. 

Beeby 
(24) investigated cracking in one-way slabs and concluded 

that, the "no slip" theory gives better prediction of crack widths. 

He also found that the crack width and spacing are both linearly 

related to the distance from the point where the crack is measured 

to the surface of the nearest bar. 
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For two-way slabs, extensive work has been done by Orenstien 

(25) (26) 
and Nawy and Nawy et al . Their proposed equation to estimate 

the Tnqxiyninn crack width is 

w 
max =kRc VIT: fs (2.32) 

where 

W 
max 

The maximin crack width 

kA constant depending on the support conditions, 

the sides ratios and the type of loading 

Rc= Cover ratio = (h -d )/(d -d n) 

fs = steel stress 

I= The grid index ýS t/pt 

= Bar diameter in longitudinal direction. 

St= Bar spacing in transverse direction, 

Pt = Steel ratio in the longitudinal direction. 

d, dn = effective and neutral axis depths, respectively. 

It has been found that -the 'grid index is a good ifidication in"checking 

whether wide cracks would form or not. Only if the grid index (I) 'ý' 

160 in2 the slab would develop a pronounced yield line cracks early 

in the loading history. Cracks tend to be finer in width for low 

values of the grid index. 

Orenstien and Navy's equations are restricted to very special 

cases of uniformly loaded, simply supported, and fixed slabs with 

central point loads. In their experiments, welded vire meshes were 

used, which is not the case in most practical situations. 

Desayi and Kulkarni 
(27) 

also did extensive work on two-waY 

reinforced concrete slabs. On the same principles, Desayi and 
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Prabhakara 
(28) 

extended their work to cover skew slabs. The work 

rests on estimating the maximum crack spacing at the cracking moment. 

Assuming that the reinforcement is laid along the directions 1 

and 2, Figure (2-7), then the spacing of the cracks formed in direction 

is 

a, 
kt ft Actl 

(2.33) 
ýl kb fblsl)+(ý2 fbblr'2) 

similarly the spacing of the cracks formed in direction 1 is 

2 
kt ft Act: 

2 (2.34) 
(7r ý2 kb fb'52)+(ýj fbb/11) 

where 

A 

Act 
1, 

Act 
2 

`2 Effective area per unit width in tension in 

directions 1 and 2= 2(h-d)-A 
s 

ft= tensile strength of concrete 

ýl 1 bar diameters in directions 1 and 2 

s11 S2 = spacing between bars in direct ions 1 and 2 

.kta 
constant to account for distribution of 

tensile stress 

f= bond stress b 

fbb = beiring stress 

The maximum crack width is then estimated at any stage of loading 

from 
w=AeR 

max max sc 
(2.35) 

where amax is the maximum crack spacing, es = steel strain at the 

stage of loading considered, and Rc= the co-7er ratio as defined in 

equation (2.32) before. 
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Test results have indicated that the constants kb=1.0, 

1 fff, =f M/M for rectangular slabs, and f the bb t' b Ub P ub 

ultimate bond stress can be taken from C: p 1.10(5) (Section 3.11.6). 

M and MP are the applied and ultimate moments in the direction of 

reinforcement. 

The proposed method estimates crack widths with reasonable accuracy. 

One good aspect of the method is that it is independent of the type of 

loading and the aspect ratio of the slab. The method is established 

for simply supported slabs and fixed slabs, and thus needs further 

investigation to cover other types of supports. 

2-3,2 Numerical Procedures: 

Deflections and cracking of reinforced concrete slabs can be 

calculated using the numerical methods of finite difference and finite 

elements. Due to nonlinearity in material behaviour caused by progressive 

cracking and yielding of reinforcement, a nonlinear procedure is used in 

conjunction with these methods. The finite difference had been used to 

analyse plates by Bhaumik et 1(29) and May et al 
(30) 

using the Tresca 

and Von Mises Criteria. Concrete slabs had been analysed using the 

finite element methods accordingly it will be reviewed here. 

2.4 NONLINM FINITE ELEMENT MODELS: 

To account for nonlinearity due to cracking etc., two types of 

models are normally adopted, viz. a macroscopic model employing a moment- 

curvature relationship to reflect stiffness degradation at various 

stages of loading, or, a microscopic model treating nonlinearities in 

each constituent material individually as they occur. Such models adopt 

either uniaxial or biaxial stres*s-strain properties for plain concretes 



34 

and the uniaxial properties of steel to treat individual nonlinearities 

arising from progressive microcracking in concrete, yielding of steel, 

and plastic flow under compressive states of stress in concrete. 

2.4.1 Macroscopic Models: 

In this case, the reinforced concrete element is assumed to be 

homogeneous and initially isotropic. For low steel percentages, which 

is usually the case in reinforced concrete slabs, the reinforcement 

contributes little to the moment of resistance of uncracked sections 
(21) 

9 

thus the- assumption is quite logical. In this case, the material 

behaviour is linear elastic, with the initial elastic matrix derived in 

the normal way(31) 0 

On the onset of cracking in. the element, the stiffness of the 

element starts to decrease. The new stiffness at any stage of loading 

can be derived from the moment-curvature diagram shown in Figure (2.8a). 

Jofriet and McNiece 
(21) 

used a bilinear relationship of the type 

Ru=EcIg prior to. cracking (2-36) 

Ru=EcI 
cr after cracking. (2.3T) 

where EC -2 0-5T Ec0 

This, method of calculating the rigidity is due to Beeby. In their 

analysis, they did not consider yielding of steel, and thus . could not 

give any information about ultimate behaviour. 

Macroscopic models were also used by Bell and Elms 
(6,32) 

* In 

their model, the behaviour is idealised by a four stage moment curvature 

relationship, Figure (2.8a). Using the square yield assumption several 

intermediate loading surfaces were defined as shown in Figure (2.8b). 

The point on the moment-curvature curve corresponding to each surface is 
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established, and using the relative change of rigidity, the stiffness 

of an element satisfying a yield criterion is appropriately modified. 

A secant modulus approach is used in making the stiffness reduction. 

A direct iteration procedure(31,34) was used in the analysis, in which 

the structure is solved successively under the load while stiffnesses 

are changed, until equilibrium is reached. 

The use of a moment-curvature relationship is an extension of the 

elementary theory of bending. The behaviour of concrete is not being 

investigated in detail, but only treated grossly in the tensile and 

compressive zones along two principal directions. Furthermore, if 

reinforcement patterns vary, several Tnoment-curvature curves may be 

needed for a single analysis. Load enhancement due to biaxial effects, 

effects of constraints in the plane of the structureq are both neglected. 

In most elements, the behaviour of the whole element is judged by the 

state of stress at one point in the element. Recent developments in 

these models involved the use of numerically integrated high order elements 

for discretizatioh, so that the variability of material properties within 

the element can be traced 
(35). 

Although all these models do not reflect 

the true variation of stress through the slab depth, the response can in 

most cases be predicted in a satisfactory manner. 

2.4.2 Microscopic models: 

In such models the slab thickness is divided hypothetically into 

a finite number of layers paxallel to its middle planes Figure (2-9). 

Each layer is assumed to be in a state of plane stress condition, and 

a linear strain variation with the slab depth is assumed for the small 

deflection theory. Each layer can be of a different material. Thus 

for a reinforced concrete element, each constituent material is assigned 
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Figure (2.9) Layered Plate Model 
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a different layer. Perfect bond between all layers is normally assumed, 

although in some cases, bond slip relations can easily be acconmodated. 

The deterioration in the slab stiffness is represented by appro- 

priately changing the layers properties, whenever nonlinearities occur. 

Crack penetration through the slab can thus be conveniently reflected 

by this model. The basic requirements for this model in analysing plate 

bending problems are a stress-strain relationships for concrete and 

steel layers separately, and a yield criterion (Sebtion 2.4-5) for 

concrete layers, expressed in terms of principal stresses. 

2.4.3 Review of Layered Finite Element Models: 

Various types of elements have been used by different investigators, 

and Table (2.1) gives the types of layered elements used, n=ber of 

degrees of freedom and the reference in each that had been used. All 

the elements given are two-dimensional, except the one used by 
(36,3T) a (38) 

Schnobrich and Mubbad/Suidan et al which is a three- 

dimensional numerically integrated isoparametric element. The element 

computes the shear stresses in planes normal to the plate middle plane 

in addition to the normal and torsional bending stresses. Accordingly, 

the element was developed to solve the three-dimensional punching shear 

failure around columns heads. For such problemss an ordinary two- 

dimensional element with a plane stress assumption fails to recognize 

such failures, but is quite good for other problems in which such failures 

are prevented, and accordingly, the element can only fail in flexure. 

All the two-dimensional elements given in Table (2.1) assume that 

the stress in each layer is constant, and do not allow variations of stress 
(39) 

within the element, except the one developed by Rao The assumption 

of constant stress is a crude idealization, especially after cracking. 
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Table (2.1) Layered Plate Bending Elements 

No. Element Nodal Degrees 
of Freedom 

Total 
degrees of 

dom free 

References 

. 

1 W, exq 6y 12 40 

2 us V9 WS 20 39,419 429 

ex 
y 43$ 449 45 

3 us vs w 46 12 
ex S6y 

Reduced bending 
stiffness 

4 WS exq 6y 16 479 48 

k 
XY 

5 corners: 33 49- 

12 Us V, WS 0 
X9 

0y 

W kxq ky2k 
XY 

Midside nodes: 

U$ V2 6t 

6 us VS WS 15 50 

OX9 ey 

7 us V, w 6o 36,37,38 

three dimensional 

L 
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In the finite element models which rely mainly on the released 

imbalanced forces to simulate stiffness degradatim, such an assumption 

would lead to underestimation of these forces. Because variability 

of stress is not all-owed, convergence problems can arise and in such 

cases, equilibrium can hardly be satisfied. This problem will be treated 

in depth in this research. 

The first element. used by Wegmuller 
(40) is the simplest, as only 

three-degrees of freedom per node were used. The element ignores inplane 

effects, and thfis assumes a fixed position for the middle plane of the 

plate. Such an assumption would be restricted only to problems in which 

membrane forces are negligible. 

For concrete slabs in bending the neutral axis shifts from its 

initial position towards the compression face due to cracks progressing 

deeper into the slab depth. The normal procedure adopted in nonlinear 

layered finite element models,, is to simulate this shift by prefixing 

the position of the neutral axis, and superimposing an inplane action 

on the section. This would of course require additional-inplane degrees 

of freedom to be incorporated in the element derivation. 

In such models once cracking occurs, the constitutive relations 

exhibit coupling between inplane and flexural components, similar to 

that which occurs in unsymmetrically laminated plates. A consequence 

of this is that inplane and bending effects are no longer uncoupled, 

and membrane boundary conditions must be specified even for pure bending 

problems. Hand et al 
(42) 

has shown that inplane boundary conditions 

have a large effect on computed load deflection response. Cope and 

Rao 
(45) 

also studied this effect on fixed slabs and concliided that the 

neglect of inplane boundary conditions has greater effects than relaxing 
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restraints to flexural boundary conditions. The effects of inplane 

boundary conditions will be further investigated in this study. 

In an attempt to reduCe the computational effort, Dotreppe et al 
(46) 

used a reduced bending stiffness approximation in their layered finite 

element model. In this approach, it has been assumed that membrane 

forces are zero, and the bending stiffness was derived accordingly. 

Responses of a simply supported slab using this model underestimated 

the ultimate load by 10%. However, the assumption cannot be applied 

to problems in which there are inplane restraints. 

2.4.4, Materials Idealization 

2.4.4.1 Concrete in Tension: 

When loaded in tensions concrete can resist only low stresses, 

up to about 10% of its ultimate strength in compression. Up to this 

loading stage, the material behaves as a linear elastic isotropic material. 

Upon cracking, anisotropic properties are created. In the direction normal 

to. the crack, concrete is given a null stiffness. Howeverg due to 

aggregate interlock, concrete is still capable of resisting shear 

stresses in cracked zones. In such cases, shear stresses are calculated 

using a reduced shear modulus BG. The constant reducing factor $ is 

called the sheax retention factor, and lies between unity for uncracked 

sections and zero for extensively cracked sections. 

The value of a to be used is still uncertain$ and in most cases. 

it is arbitrari3, v assumed. It has been postulated that variations in 

the numeric value of $ produced little differences in the computed 

response of reinforced concrete slabs 
(42,48) 

This might not be 

the case for problems in which the response is laxgely influenced by 
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shear. Values as high as 0.5 
(38) 

or 0.6 
(48 ) 

had been used for both 

plane stress and plate bending problems. Labib and Edwards 
(51) 

investigated several values of 6 in 'the range 0.2 to 0.5 and used a 

value of 0.4 in their study of cracking in concentric and eccentric 

concrete members. 

The reduced shear modulus in cracked concrete is sometimes computed 
(52). 

using empirical equations, such as 

G 
red ýG [0.4 + (i -c /c 

tmax x 0.61 (2-38) 

for e cr 
<c<c tmax 

G 
re d '0 0.4 for c> etmax (2.39) 

in the paper the terms are not defined, but it is logical that 

G 
red 'ý reduced shear mcdulus in cracked concrete 

initial shear modulus in concrete 

C= strain in concrete at any load level 

ecr cracking strain of concrete 

etTn. q-x yield strain of steel 

(439 46,4T) 
A zero value for B is also common However in all 

these modelss a definite value is difficult to determine, due to 

differences in idealizations, and the nature of the structural problem 

at hand. The problem needs further investigation. 

2.4.4.2 Bond Between Concrete and Steel: 

Due to bond effects between concrete and steel, concrete between 

cracks offers s=e resistance to normal stresses in cracked elements. 

To account for this "stiffening" effect,, the stress-strain curve for 
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concrete in tension is modified so that, some stresses will be 

transferred by concrete after cracking. Ignoring tension stiffening 

effect has been known to produce up to 10001o errors in the computed 
(48) 

slab deflections Various theories can be used to incorporate 

tension stiffening effects in layered finite element models. All such 

theories are based on the fact that the average stress over the element 

is not zero, and accordingly, an average stress-strain curve with an 

unloading portion (Figure 2.10) can be used for concrete after cracking. 

Such a concept is due to Scanlon 
(50) 

- The only difference between 

the various theories is the shape of this descending portion and its 

length. Various theories are shown in Figure (2.10) and include: 

(a) Stepped response after cracking. 

(b) Gradually unloading response. 

(c) Discontinuous unloading after cracking. 

Gilbert and Warner 
(48) 

investigated the three theories in connection 

with plate bending problems. They found that while the first theory 

produced very good correlation with experimental results, the gradual 

unloading response predicted an overstiff behaviour. Results obtained 

using the third theory produced good results, but at the expense of slow 

convergence and high cost. 

The strain up to which tension stiffening is considered effective 

is arbitrarily selected. Gilbert and Warner 
(48) 

used 10 r, crs 
where 

e cr 
is the strain corresponding to a stress of ft. Shirai 

(53) 
et al used 

the strain at which bond between concrete and steel is lost, and this was 

taken as the yield strain of steel. For the shape of the unloading 

curve, they used a polynomial function in the form 



STRESS 

ft 

E/e 

er 

(a) Stepped Ilesponse After Cracking 

Kass 

(b) Gradually Unloading Response After Cracking 

STRESS 

ft 

4 10 
(c) Discontinuous Unloading Response After Cracking 

Figure 
-(2.10)- 

Tensile Stress-Strain Curves for Concrete 

1 10 



45 

a (a + alx + a2. %2 + a3x3) ft (2.40) 
eq 0 

Razaqpur and Ghali(54) used a linear unloading curve, with an 

ultimate strain of 10 e cr , in studying shear lag in reinforced 

concrete T-beams. Values as high as 25 e had also been used in some cr 

cases 
(55). 

This reflects the lack of objective criteria to treat cracking of 

reinforced concrete under biaxial stresses. The effects of the factor 

discussed in this section can not be separated from other numerical 

aspects involved in the discretization e. g. method of solution, 

convergence criteria etc., which in general, depend on the problem at 

hand. 

2.4.4.3 Concrete in-Coaression: 

Under compression, concrete diviates from linearity very early in 

the loading history. Tests results 
(56,5T9 589 59) have indicated 

that the ultimate strength of concrete under biaxial compression is 

greaier than in uniaxial compression, and is dependant on the ratio 

of the principal stresses. 

The earlier works in obtaining biaxial stress-strain curves for 

concrete were those due to Liu et al 
(60). 

His proposed equation is 

a= (2.41) 
(1-va) (1 +Ce+ DeZ) 

where 
a9 F- = stress and strain in concrete 
Ec,, j = Youngs modulus and Poisson's ratio for concrete, 

respectively. 

a= ratio of the principal stresses in concrete. 
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The constants Ag B, C and D are found from the following conditions 

on the stress-strain curve in compression (Figure (2.11)): 

(a) ? or c=0, cr = 

(b) For c=0 

(c) For c=c 

For c=c 

dcr Ec 

CIE 1 -va 

Ia =a 

d(T 
ds 

where aP and eP are the peak stress and peak strain in biaxial 

c=pression, respectively. Substituting these in (2.41) and introducing 

the secant modulus at peak stress E 
se =ap /C 

p ve have 

a=cE (2.42) 

1+(1c- 2) 1ýva E 
se cpcp 

Later this equation was further investigated by Tasuji et al 
(59) 

and vas found to represent the behaviour of concrete in both tension 

and compression. For uniaxial cases a= 0. The material constants 

Ec, v, ep9ap to be used in equation (2.42) are found from: 

1. Ec from CP110 or the ACI code equations 

E=5.5 in KN/mm2 (2.43) 
c5 

ff T', 
cL 

or 
E=o. o43 Y3 Yrf-I in N/mm2 (2.44) 

ccc 

where yc= unit mass of concrete in kg/m3. 

The two equations differ by only 0.5% for 2400 kgjm3 concrete 

and f1=0.78 f 
c cu* 

(61) 
2. Poisson's ratio v ranges between O'ell - 0.21 An 

average of 0.19 
(59) 

or 0.15 
(43 ) 

has extensively been used. 
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The peak strain eP: 

Test results by Liu et al 
(60) indicated that for 

biaxial c=pression 

p e=- 2500 microstrains (major direction) 

ep = 500 + 79.8 ap (minor direction) 

where aP is the peak stress. 

The peak stress ap: 

This can be obtained from the biaxial strength 

envelope (see Section 2.4-5). 

Finally, equation (2.42) can then be used to describe the 

stress-straiý behaviour of concrete in compression up to the peak 

stress. Beyond peak, the equation ceases to hold due to the strain 

softening of concrete. At present, little is known about this 

descending branch of the stress-strain curve of concrete. 

For plate benging problems, strain softening effects can safely 

be neglected, and in most cases. the stress-strain cUrVe is assumed 

to possess a horizontal plateau 
('16) 

. Due to the fact that the major 

effect on the response of under-reinforced flexural members is due to 

cracking, post-peak behaviour of concrete in compression can safely be 

ignored. 

2.4.4.4 Idealization of Reinforcement 

In most layered finite element models, each layer of reinforcement 

is represented by an equivalent smeared layer, which can carry stresses 

only in the direction of the original bars. The equivalent thickness 

of the steel layer is determined such that the corresponding area of 

the reinforcement in the element remains unchanged. The steel layer 
11 



49 

is then assumed to be elastic-plastic in both tension and compression 

and to have a definite yield point with or without strain hardening. 

In some cases, two reinforcing steel layers can be represented by an 

equivalent orthotropic layer with two-dimensional properties. In such 

cases,, the layer is treated as a two-dimensional steel plate, which 

obeys the Von Mises yield criterion 
(43944) 

0 Such an assumption is 

very useful in treating skew reinforcement. Even in orthogonal 

reinforcement, two layers of steel can be represented by one, but in 

this case, no interaction between the orthogonal directions is assumed. 

In such cases, care has to be taken in treating yielding of steel in one 

direction not to influence the state of stress in the other direction. 

(39963964) 
Steel can also be modelled as discrete bar elements 9 

Such steel representation is restricted by the fact that steel bars have 

to be laid along certain directions, normally the element local 

coordinate system 
(64) 

. In addition, a special element stiffness 

derivation is needed, in contrast to the smeared approach in which 

the same element stiffness derivation is used for both concrete and 

steel layers. 

In both idealizations, perfect bond between steel and concrete 

is assumed. Bond slip is also sometimes represented by reducing the 

modulus of steel(52)0 

2.4.5 Yield Criteria for Plain Concrete: 

In layered finite element models, each layer is treated as being 

in a state of plane stress condition. And since each materia; is 

separately treated, yield criteria in plane stress condition are 

required for both concrete and the reinforcing steel. For the lattert 



50 

owing to its unlimited plasticity, the Von Mises yield criterion is 

usually adopted. For concrete, the problem is more complex, since 

concrete is brittle in tension and of limited ductility in compression. 

Accordingly, at least two criteria are required (or an eq7aivalent) 

for yielding under tensile and compressive states of stress. 

As a criterion for cracking, two theories are known: 

(a) The maximum stress theory, which assumes that cracking 

in concrete occurs whenever the mximum principal stress exceeds the 

tensile strength of concrete. Test results by Kupfer et al(56) 

indicated that the latter has the same value in both uniaxial and biaxial 

stress states. 

(b) Maximurn strain theory, assumes that cracking occurs whenever 

the maximum principal strain exceeds the limited tensile strain of 

concrete. 

The first theory, however, is more popular thanthe second. - 

However, Phillips 
(65) 

found that the second theory predicts stiffer 

behaviour thau the first. 

For yielding under biaxial, compression states of. stress3 various 

criteria had been used by many researchers. The Von Mises yield 

criterion was used by Valliappan et al 
(63), 

Lin et al 
(50) 

, Gilbert 

and Warner 
(48) 

. Wanchoo et al. 
PT), 

Suidan et al 
(38) 

and Hinton et al 
(55) 

The applicability of this criterion to concrete is debatable, because 

nonlinear action in concrete is not caused by actual plastic flov as 

in metals, but is dictated by the cumulative effect of microcrack 

propagation. In such applications, the associated flow rule of 

plasticity is normally adopted, and the limited plasticity in concrete 
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is represented by the use of a crushing surface analogous to the 

yield surface, but expressed in terms of strains 
(50). 

The modified Columb-Mohr law is more popular, because it represents 

well the behaviour of concrete. Following Nadai 
(66) 

, failure can be 

expressed in terms of the octahedral shear and normal stresses in 

the following manner 

ii =a1a2+ cr 3 

a+a+aa (2.45) 
2122331 

31a2a3 

with the generalized failure criterion F(Ill 121 13 )=0. If one 

of the principal stresses is zero, then 13= 0' Ill 12 and 13 are 

called the stress invariants. Now the octahedral shear stress is 

given by 
I 

)2 )2+( al)2 1.2 46) 
Oct 

[(a, -a2 +(72 - '13 '73 - (2. 

and the mean normal octahedral stress a0 is 

q=1 (a +a)=1 /3 (2.47. ) 
231 

i. 

F(I 1' 12) (2.48) 

Octahedral ýtresses are so named because they occur on the 

sides of an octahedral element formed by planes whose normals make 

equal angles with the principal stress axes. In general form, the 

. octahedral shear stress failure criterion can be written in the form 

T Oct - acro -b= (2.49) 

The constants a and b are normally determined from 
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experimental data. Test results by Kupfer et al(56 
) 

had been used 
(42944) by many researchers in connection with this criterion The 

problem will further be treated in Chapter (4) of this thesis. 

2.4.6 Methods of Solution for Nonlinear Analysis: 

The structural problem to be solved at any stage of loading is 

[ k] Cd] -C P] =0 

where 

(2-50) 

C k] = the stiffness matrix of the structure 

C PI ý 
Cd] = Load and displacement vectors, respectively. 

In equation (2-50). the stiffness matrix of the structure is a 

stress-dependant. The equation is thus nonlinear2 and for solutions 

it is preferable to proceed along a sequence of linearized steps. 

Such an approach is common to solutions of nonlinear algabraic 

equationss such as the Newton-Raphson technique or its modified 

version 
(31). 

For simplicity, a'one degree of freedom system will be 

examined: - 

Let the root of the nonlinear equation f(x) =0 be required. 

The New-ton-Raphson procedure states that 

Xi+i -2 Xi + Ax (2-51) 

where x1 and x i+l are two successive iterates, and Ax, the 

correction to xi is given by 

Ax =- f(xi)/fl(xi) (2.52) 

In Newton-Raphso'n procedure, the gradient ff(Xi) is evaluated 

in each iteration. In the modified Newton-Raphson procedure, at the 

expense of slow-down in rate of convergence,, the initial gradient 
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f I(x 
0) 

is used throughout, thus 

Ax =-f(. Xl)jf I (. xO) (2.53) 

The approach, is schematically shown in Figure (2.12), where the 

tangents drawn as continuous lines axe instantaneous gradients. The 

dotted lines are parallel to the initial tangent, and represent the 

modified Newton-Raphson procedure 
(31). 

Referring to the structural problem., the nonlinear equation 

can be written in the form 

f (d) = Ck ] [d] -FP]= (2-54) 

The stiffness [k] corresponds to the gradient in equation (2.52) 

above. Accordingly, if a variable stiffness approach*is used, then it 

is analogouz to a Newton-Raphson procedure, while a solution employing 

the initial stiffness matrix (constant stiffness) corresponds to the 
(68) 

modified Newton-Raphson technique. The"initial stiffness" method 

is also identical to the modified Newton-Raphson procedure. 

Both methods have been extensively used by research workers. 

The variable stiffhess approach had been employed by Hand et al(42) 

Dotreppe et al, 
(46) 

, Schnobrich 
(37). 

Bell and Elms 
(32) 

, Jofriet and 

(21) (67) (43) 
McNiece , Darwin and Pecknold , and Johnarry 

Although the rate of convergence of the variable stiffness method 

is fast, a long time is spent in each load increment in the updating 

process. Most of the time is lost in the housekeepings as normallY 

such procedures call for extensi-7e use of backing stores in most 

computers. 
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On the other hand, the initial stiffness method converges very 

slowly to the correct solution, and depending on the severity of 

nonlinearity in the structure, it might need a very large n=Ier of 

iterations to achieve an equilibrium position. Johnarry 
(43) 

and 

Duncan et al 
(44) 

have claimed that demanding static equilibrium at 

each load level normally leads to expensive analy3is and poor results, 

although their statement was not supported by any numerical evidence. 

Constant stiffness methods have been used by Valliappan and 
(63) (53) (38) Doolan , Shirai et al . Suidan and Schnobrich , Dietrich et 

al 
(45) 

, Cope and Rao 
(45), 

Rao(39), Duncan 
(44) 

and Johnarry 
(43), 

and 

Hinton et al(55). 

Johnarry 
(43) 

compared the constant and variable stiffness methods 

in plate bending applications. He concluded that for such problems$ 
(97) 

the constant stiffness is the best and least expensive. Cope et al 

had also undertaken similar study, and concluded that no significant 

increase in computational efficiency could be achieved by recomputing 

the stiffness matrix. Similar conclusions were also arrived at by 

Hinton et al(55. 
). 
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CHAPTER THREE 

DESIGN*OF'PIINFORCED'CONCRETE'SLABS 

3.1 INTRODUCTION 

In the previous chapter, the various methods available for the 

design of reinforced concrete slabs have been discussed. Most of these 

methods concentrated exclusively on ultimate loads, and were all 

unsatisfactory3, either in terms of the information they provide on the 

distribution of steel (e. g. the Yield Line Theory - with no information 

about the rigid regions), or the best distribution for a satisfactory 

service behaviour under working loads. 

A design procedure based on realistic understanding of material 

behaviour both at service and ultimate loads is now suggested. The 

proposed direct design approach is based on the theory of plasticity, 

and will be discussed in this chapter. 

3.2 THEORY OF PLASTICITY IN SLAB DESIGN 

Any solution to the ultimate load has to satisfy the conditions 

of classical plasticity. This can be stated in the following manner: - 

1. The Equilibrium Condition: - The internal stresses must be 

in ecjýdlibrium with the externally applied loads. 

2. The Mechanism Condition: - Under the ultimate load, 

sufficient plastic hinges must exist to. transform the 

structure into a mechanism. 

The Yield Criterion: - The ultimate strength of the member 

must nowhere be exceeded. 

For reinforced concrete slabss it is very diffic'ult (if not 
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impossible) to find a design procedure satisfying the three conditions. 

Existing methods are either: 

(a) satisfying conditions (1) and (2) by assuming a suitable 

collapse mechanism. Such methods usually render loads higher or equal 

to the true collapse load. Accordingly, such methods provide an 

upper boirid on the true collapse load of the slab, which may be unsafe. 

The yield line method of reinforced concrete slabs is of this nature. 

However such methods do not check condition (3) on the "rigid! ' portions 

of the slab. 

or (b) Satisf)ring conditions (1) and (3) by assuming a suitable 

stress field (safe admissible stress fields). Such methods render a 

load which is lower or equal to the true collapse load of the slab, 

and thustone of lower bound nature. Accordingly,, the load calculated is 

a safe load i. e. the true ultimate loeýd is greater than the calculated 

load. 

3.3 THE PROPOSED DIRECT DESIGN APPROACH: 

For a safe design, it is we. 11 advised to use a lower bound approach. 

The proposed design approach is very simple and straightforward. The 

method suggested here will be shown to satisfy the three conditions of 

the theory of plasticity. The steps in the method will be discussed in 

relation to these conditions in the following manner: 

3.3.1 The Equilibrium Condition: 

The stress distribution under the design loads will be obtained 

using the elastic analysis by the finite element method. Accordingly, 

such a distribution will automatically satisfy the equilibrium conditions 

as the method is derived from equilibrium considerations. Owing'to its 
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simplicity and versatilitYs the method can be applied to any type 

of slab problem - with any edge conditions. 

The analysis will be made assuming elastic properties for the 

slab. Although the stress distribution is greatly affected by cracking 

in the slab at high loads,, the distribution of stresses at ultimate 

conditions is dependint, on the amount of steel provided for under 

reinforced sections. Accordingly, it is proposed here to reinforce 

the slab so that the strength at any section will follow the elastic 

distribution of stresses. 

The actual ultimate load for the slab so designed should at least 

reach the ultimate load predicted by the elastic analysis. 

3.3.2 The Yield Criterion: 

The yield condition defines tle combination of stresses necessary 

to cause plastic flow at a point. The condition will be satisfied if 

the strength at any point is made equal to or greater than the applied 

stresses. 

An elastic analysis on the slab under the ultimate loads by the 

finite element method provides the stress resultants M, * Mys M,, 
y 

for 

laterally loaded plates. To provide the reinforcement to fit the 

predicted moment field at ultimate Limit state 9 the steel should be 

proportioned as required by the yield criterion. Accordingly$ it becomes 

necessary to derive the yield criterion in terms of the three moments 

components. 

Consider . ng the slab element in Figure (3-1), under the moment 

field M2M, q M with anisotropic properties. The sign convention 
xy xy 

adopted here is such that all moments acting in the element are positive. 
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XY 

Figure (3.1) Notation for Moments on an Element 
(Positive as shown) 

MY 

21 

CY 

FikLxe 3.2) Element with Orthogonal Reinforcement 
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Simplifying assumptions are further made . and these can be summarized 

in the following: 

1. The concrete is assumed to hwre a tensile strength equal to 

zero. 

2. Bar diameters are snall in comparison with the slab depth, 

and that they can carry stresses only in their original 

direction. Accordingly, kinking of bars across a yi6ld line 

is not considered. 

The slab element is lightly reinforced, so that compression 

failures are not permissible and only ductile failures are 

allowed. This is necessary for moment redistributions so 

that the slab elements can reach'their ultimate strength at 

sufficient number of sections, to convert the slab into a 

mechanism. 

Membrane forces do not exist. It is acknowledged that the 

co-existence of such forces with flexural fields on the slab 

elements, will considerably enhance or reduce the resisting 

moment of the slab element,, depending on. whether they are 

compressive or tensile, respectively. 

(Membrane forces will be treated later in Sections 3.6 and 3-7). 

For simplicity, the anisotropic reinforcement in the element 

will be assumed to lie parallel to the element sides (Figure 3.2). 

The element may be reinforced*on the top and bottom surfaces, although 

the degree of orthotropy in the two faces may be different. 

The basic idea is that, if at any point in the slab element 

(Figure 3.2). a line with a normal n and direction t is examined, 
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then the normal moment M must not exceed the value M*, vhere M* is 
nnn 

the moment of resistance that the reinforcement in the slab could 

develop in direction n. This is therefore a normal moment criterion 

which is tested in every direction,, as has been shown by Kemp(72). 

It should be noted that a lower bound stress field with variable 

reinforcement at different points must make provision for yield lines 

in any conceivable direction, because there may be simultaneous multiple 
(19) 

modes of collapse 

Taking the no=al to the yield line at an angle a to the x-axis, 

and considering the equilibrium of the element shown in Figure (3.3), 

we will have 

mn ýX Co,. 52a+ My sin2a- M 
XY s in 2a (3-1) 

M ýX Sin2a+ M Cos2cl+ Ms in 2a 
ty XY 

Mnt (Mx - My)s'n 2a/2 + Mxy cos 2a (3-3) 

The resisting moments at the yield line can be expressed as 

follows 

M* = M* cos2a+ M* sin2a (3.4) 
axy* 

M* = M* sin2a+ M* cos2a (3-5) 
txy 

M* = (M* - 14*) sin 2a/2 (3.6) 
nt xy 

Therefore, when designing the steel, the resistance to normal 

moment should be checked in every direction. Accordingly 

0 

substituting (3.1) and (3.4) in (3-7) we have 

(3-7) 

(M* -m) COS2 a+ (M* -M)s in: 2 a-M sin . 2a 
xxyy XY 

dividing by cos2 a and putting k= tan a 
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Moment Field 

M* x 
y 

stepped 

"ield line y 
I.. x 

. actual a 

yield 
line 

Y 
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(M* -M+ k2- (M* -M+ 2k M0 (3-8) 
xxyy XY 

If the left hand side of equation (3-8) is denoted by f(k), then 

f(k) is related to the excess normal resistance provided by the 

reinforcement over the required normal moment in the stress field. 

As has been shown by Lenschow and Sozen 
(77), 

yield is liable to occur 

along lines with least reistance. Accordingly, along such lines 

df(k)/da =d 
f(tan a) 

da 

d f(tan a) d tan a 
d tan ada 

d f(k) 
SeC2 a 

dk 

= (3-9) 

Since sec ct cannot be zero, hence from (3.8) and (3-9) 

df (k) 
=2k M* - 2)c MV, +2M. 

X7 dk -7 

or 

(M* - my) =-1m yk xy 
(3010) 

If f(k) is to represent a minimum excess moment of resistance 

then 

d 2f (k) 
=2 M* - 2M 0 -dkz- yy 

Hence 11 > My (3.11) 

and accordingly, in (3-10), M 
XY 

/k ;s0 (3.12a) 

and from (3.10) 

k= tan a 
MXY 

(3-12b) 
- 

Iy 
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This gives the orientation of the plane of minimum resistance. 

As has been shown by Lenschow and Sozen(77),, at the yield line 

resulting in the minimum resistance, the components of the external 

normal moments is equal to the moment capacity across the yield line, 

while the internal twisting moment is in equilibrium with the external 

twisting moment. The variation of the normal moments with the yield 

line orientation is given in Figure (3-5). 

Substituting (3.12b) in (3.8) and using the equality sign for 

minimum resistance3, then 

22 M2 
(M* -m+ (M* -M)- 

xy 0 (3.13) 
xxyy (M* - my) 

Rearranging, we have 

(M* -M )(I -M)= M2 
xxy XY 

(3.14) 

which is the same equation arrived at by Save 
(73), Nielsen 

(94) 
1) 

Lenschow et al(77), and Kemp(72). 

Equation (3-14) is the yield criterion for orthotropically 

reinforced concrete slabs. If M* = M* =M (isotropic reinforcement), y 
(72). 

then the equation reduces to that of isotropic slabs The 

Johansen (or Prager's) square criterion (Figure 3.6) is readily 

obtained from equation (3.14) for isotropic slabs. 

It is evident from the yield condition (3.14) that twisting 

moments do exist on the yield lines. This has been confirmed by the 

(77) (92) 
works of Lenschow et al , Cardenas and Sozen . Lenkei(95). 

(90) 
and Satish Jain et al The extensive experimental work on the 

above yield criterion provided by the above mentioned research workers 
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Co 

Figure (3-5) Variation of Applied and Yield Moments with 
Yield Line Orientation 

Figure 
_(3.6) 

The Square Yield Criterion 
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confirmed the validity of this criterion. It has further been 

established that the yield line orientation will not in general 

coincide with the principal directions of neither the applied nor 

the resisting moments, except for isotropic reinforcement. Consequently, 

twisting moments do exist at the yield lines, but their existence do 

not reduce the flexural yield capacity due to the interaction between 

flexural and torsional moments. Equation (3.14) represents a pair of 

intersecting cones in the M5M2M space, Figure (3-7). The 
xy XY 

derivation of the yield criterion in terms of principal moments on 
(72) 

similar lines has been given by Kemp 

For yield in the negative steel at the top of the slabs similar 

procedure to the one just described for positive yield, can be applied. 

If the top steel layers are laid Jin the x and y directions to provide 

the resisting moments M*' and M*I respectively. then the yield condition 
xy 

with negative steel can be written as 

(M*l +m )(M*l +m M2 (3-15) 
xxIy XY 

where both M and M are negative moments'(see Figure (3.1)ý 
xy 

3.3.3 The Mechanism Condition 

The elastic analysis under the ultimate load by the finite 

element will be linked with the yield conditions just derived to 

provide the necessary strength according the elastic moment field. 

The derivation of such design equations will be outlined in subsequent 

sections. 

Because the necessary resistance is made equal to the calculated 

stress at every point in the slab, it is anticipatea that all slab 
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Figure (3. Z) Yield Surface for an ort-hotropically Reinforced Concrete Slab 
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parts will attain their ultimate strength under the design load. 

Accordingly, , with minimum amount of redistribution, every point will 

turn into a plastic hinge at the design load, thus converting the slab 

into a mechanism. Because of the minimum redistribution to achieve 

collapse by this method, the demand for ductility as normally emphasized 

by the classical theory of plasticity will obviously drop. 

3.4 DESIGN OF ORTHOGONAL REINFORCEMENT 

3.4.1 Positive Moment Fields: 

Referring to equation (3-10), substituting it into equation (3.8) 

we will have 

k 14 
XY 

(3.16) 

and from (3.12a), if M 
XY 

>0 then k<0 and vice versa. Equations 

(3-10) and (3.16) then become 

M* =M +KIM I 
xx XY 

m* =M+KI Mxyl 
yy 

(3.17) 

(3.18) 

in which K= IkI is now taken to be a positive arbitrary constant. 

The value of K may be determined so that the total amount Of 

steel is minimim. As has been shown in Section (2.2.2.4), the volume 

of steel to be used is proportional to the total moment volume. 

Accordinglyl at any point on the slab, this will be minimum if the 

sum + M*) is minimum. Using equation (3.17) and (3-18) we will 
y 

have 

M* + M* =M+M+IM. YJ 
(K +1 xyxyv 

so that for a minimum 

(M* + M*) mI (i -1)=0 
xy XY F07 
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whence 

Hence the most effective arrangement of reinforcement would be 

m+ (3-19) 
x1 

MXY 1 

m* =M + Im 1 (3.20) 
yy XY 

3.4.2 Negattive Moment Fields: 

In this case, f(k) in equation (3.8) must be algabraically less 

than or equal to zero. This would yield M* <, M and M* < 
xxy 

M And 
y 

as before, df(k)/dk = 0, but in this case ef(k)/d k-2 4< 0 for an 

algabraic maximilym. The value of k is still given by equation (3.13), 

and hence the corresponding equations to (3.19) and (3.20) would become 

M*1 =MM (3.21) 
xx XY 

M*1 =M-IM1 (3.22) 
yy Xy 

In which ýx and M are both negative. The value of k had also y 

been taken unity for most economical steel, although a different value 

could have been used. 

3.4.3 Mixed Moment Fields: 

Awkvard cases occur when one of the applied moments is positive, 

the other is negative. Thus if equations (3.19) or (3.20) is used to 

calculate the design moments M* or M* ,a negative value may result, 
xy 

for which a positive (bottom) steel is useless. Accordingly, resisting 

normal moment can be set equal to zero and . steel will then be 

provided in one direction. Thus two cases may arise: 

(a) Case of steel in x direction only: 

In this case M* 
y 
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Using this in (3.8) and adopting the equality for mini 

resistance, then 

(M* -M k2- M+ 2k M0 
xxy Xy 

and as before d f(k)/dk =0 and insisting on M* =0 then k=M /M 
y XY y 

so that 
M2 

M* M+ XY 
xxImy (3.23) 

with M* = 0.0 (3.24) 
y 

(b) Case of steel in Y direction only: 

In this case M* 
x 

Again using (3.8), and following the normal procedure with 

df (k) / dk =0 we will have 

k =-M XY 
/ (M; - MY) 

m2 then m 
M* =m+I -M (3.25) 
yy 

with 
M* =0 (3.26) 
x 

Similar procedures can be used when positive moments occur with 

negative ones. Again no top steel will then be needed for the positive 

moments, and similar equations-to those derived can be established, 

and will be listed below. 

3.4.4 Rules for Placing Orthogonal'Reinforcement: 

Given the stress field (M 
X SM y 'M XY 

) at any point on the slab, the 

reinforcement in the X, Y directions will be placed according to the 

following rules: 
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3.4.4.1 Bottom Steel 

Compute the normal moments 

M* M+M 
xx -XY 

M* M+M 
yy XY 

if M* <0 then 
x 

M* <0 then 
y 

M* =M+ with M* 
-Y ymx 

I ýýYl 

x 

kz 
M* =m+ 

XY 

xx 

Im 

y 

(3.27) 

(3.28) 

(3-29) 

(2) If still in (3.28) or (3.29) one gets a negative sign, then 

put such normal moment equal to zero i. e. no reinforcement is required. 

If both M* add M* are negative, then no bottom steel is required. (3) xy 

3.4.4.2 Top Reinforcement 

(1) Compute the normal moments 

M* =M- Im I 
xx XY 

M* = my - Im I y XY 

if M* >0 then 
x M2 

M* =M 
XY 

yy 

im 

x 

with M* 
y 

with M* 
x 

(3.30) 

(3-31) 

If M* >0 then 

M* =M- 

I&LI 

with 1ý* =0 (3.32) 
xx 

IM 
y 

(2) If still in (3-31) or (3-32) one gets a positive sign, then 

put such normal moment equal to zero, i. e. no reinforcement is required. 

(3) If both M* and M* are positive, then no top steel is required. xy 
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Figure (3.8) Design Equations for Bottom Steel 
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M*, = M -IM 1 

Im 1 
XY 

M* ?=0 
x 

M*f= M- IM2 /M I 
xy x yy 
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mx /IM XYI 

Figure (3-9) Design Equations for top Steel 
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Figure (3.10) Reinforcement required for a given Moment Triad 
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Figures (3-8) to (3-10) give a detailed picture of these rules. 

For general use, the diagrams are sketched in a nondimensional form(71). 
.MX, 

AY 

The designer, after establishing the point (I 
'S MI) on the M 

XY . 
-Xy diagram, can easily know which equation to use to get the required 

design normal moments. Bottom steel equations are given in Figure 

(3-8), while those for top steel in Figure (3.9). Figure (3-10) shows 

the two branches of the yield hyperbola, and indicates the directions 

of the steel to be provided at any point. Primed moments refer to 

top steel. 

The equations in this section had been derived by Wood(19), and 

on a similar basis were extended to skew reinforcement by Armer 
(20) 

0 

3.5 MULTIPLE LOADING CASES: 

The above rules apply only when the slab is subjected to a moment 

field resulting from a single load case. In practice, however, many 

slabs and particularly bridge decks are subject to multiple loading. 

The reinforcement must then be proportioned to satisfy the multiple 

moment triads (M 
X3. ' 

M 
Y11 

M 
xyi 

) i=l,, n, produced by the multiple loading, 

vhere n is the number of such loading cases. 

If the slab is reinforced to resist the severest load case, then 

an upper bound solution to the minimum reinforcement is thus provided, 

which is economical Only if the solution lies close to some stationary 

minimum value of the sum (M* + M* ) for all load cases. Such a 
xy 

stationary minimum value is represented by point p of Figure (3-11), 

which represents the reinforcement needed for one loading case. 

For multiple loading cases, the problem can be attacked in the 

following steps. The solution presented can be viewed with respect to 
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Figure (. 3.12) Optimim Yield Moments for Multiple Moment Triads 
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the case of the three loading cases shown in Figure (3.12). For 

simplicity, only design moments for bottom steel will be considered. 

It is assumed that a moment field has been established for each load 

case separatelys and will be designated by (Mxi, M 
yl, 

m 
NY3. 

). The 

steps in the solution are as follows: 

(1) For each load case, find the design moments using equations 

(3.27) to (3.29)- This will define a stationary minimirr value 

of (M* + M* ) for each individual load case as points pl, P2 
xy 

and P3 in Figure (3.12). 

(2) Find the maxiyni3m values of the design moments for all load cases 

i. e. CM! 
9 M*] This will represent an upper bound on the 

xy max 

optimum yield moments, and is represented by point B in Figure 

This point will always lie on the safe region. 

Closer upper bounds are given by points C and D in Figure (3.12). 

To find the design moments values at such points, then proceed 

as follows: for point C. the x coordinate is lmý max of point 

B. Its y-coordinate is found by substitution of this value into 

the yield equation of each load case, and selecting the maximum. 

Whence3, for point C 

M* = fm* 1 (3.33) 
xx 

MZ 

M* = max M7 + 
XY (3.34) 

71 (MX* - ýx 

Similarly for point D 

m* = cm* ý 
Max (3-35) y 

M* = max ýx Xy (3.36) 
x (m* -M yy 



77 

A further optimization is done by looking for the minimim of 

(M* + R* 3, and satis: EY the yield criterion at all grid points xy 

in the region CBD. 

However, the same procedure can be adopted for negative steel, 

in which case, the minimum replaces the maximum in the above steps. 

The problem can also be solved graphically, by drawing the yield 

curve for each load case, and then selecting the least value of (M* + M*)s 
xy 

as point A in Figure (3.12) by inspection, which is the intersection of 

two yield curves. 

The above procedure can also be used in case of skew reinforcements 
(69) 

as explained by Kemp 

3.6 DESIGN OF REINFORCEMT FOR MEMBPJUTE FORCES: 

Equations analogous to those given for flexural reinforcement were 

also derived by Nielsen(74) to design orthogonal reinforcement to 

resist tensile membrane forces. He assumed that, if both principal 

inplane forces are compressive, then all such forces can be supported 

by concrete only, and no reinforcement is needed. He also considered 

skew reinforcement, and the procedure adopted is similar to that used 
(75) for flexural reinforcement. Clark extended the Nielsen approach 

to cover a general state of stress. Clark pointed out that it may 

be of practical interest to Provide reinforcement even. for inplane 

compressive forces. Clark equations are thus more general than those 

of Nielsen or Eorley(88), who considered the case of combined flexure 

and membrane forces. This problem will be discussed later in 

section (3-7). 
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3.6.1 Rules for Designing for In2lane Forces: 

Given the stress triad (N 
X9Ny9N -37 

) at any point in the slab, 

and is required to design reinforcement according to the lover bound 

theory of plasticity. In this research, the stress vector will be 

obtained using the finite element program described in Chapter 4. 

In addition to assi3mptions (1) and (2) of Section (3.3.2), it will 

further be assumed that under plane stress conditions,, concrete obeys 

the square yield criterion shown in Figure (3-13), and that failure 

occurs by unrestricted plastic flow and not by buckling of the section. 

Sign convention for membrane forces is tension positive, Figure 

A general case of providing reinforcement in the two directions 

x and a will be considered. The reinforcement in these directions and 

their associated stresses will be Ax9Aa and fX arid f. respectively. 

The principal concrete stresses are taken to be cr 1 and a2 with the 

major principal stress at e to the x-axisq as shown in Figure (3.15). 

a, is always algabraically greater than a2* 

By considering Figures (3-15)and (3.16). the following equilibrium 

equations may be written: 

N=Afx+A fý COS2 a+ cr 1h COS2 6+a2ý sin2 6 

A jsin2 a+ ah sinz 6+ ah cos2 a at 12 
(3.37) 

N 
XY =-Aafa sin a cos a-a1 hsin 6 cOS6+cT, h sin 6 COS6 

On dividing through by the slab thickness (h) and defining the 

normal and shear stresses as 

ax 
.=Nx 

/h 9 cry =Ny Txzr =N 17 
/h (3-38) 

and the reinforcement ratios as 
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Figure (3-13) Yield Criterion 'for Concrete in Plane Stress 
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Figure (3.14) Sign Convention for Direct and Shear Inplane Forces 

per Unit Length 
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pA ct a 

we obtain 

a=pf +p f 
xxaa 

cr =pf Sin2 a yaa 

pf sin a Vaa 

(3.39) 

COS2 CL +a1 COS2e +a2 Si. 2 e 

+0 1s 
in2 e +a 

2 COS2 6 (3.40) 

Cos 1-a 2) sin e cos e 

There are seven unknowns in equations (3-40). By considering 

the yield criterion for a certain state of stresses, some of the 

variables can be predetermined for nine possible cases surnmarized 

in Table (3.1). It can be seen that a direct solution can be 

obtained except for cases (1) and (4), where four unknowns are to be 

determined from the three equations of (3.40). The fourth equation 

can be obtained by minimizing the total reinforcement in the element 

thus 

(p +p x 
tan e 

(3.41) 

In Table (3.1), a, is given as zero when tension reinforcement is 

provided because of the assumption that concrete does not carry tensile 

forces, and a20fC when compression reinforcement is Drovided to make 

the optimum use of concrete. I 

Table (3.2) sirmarizes the expressions for the areas of reinforcement, 

principal stresses-in concrete, and e for each case. The following 

synbols are used in Table (3.2) 

a a f 
Xf x c 

= a a - f 
y. f 7 c 

I 
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+ a7 cot a)(T. + a., cot 
c 

X7 

Having established the equations relevant to each case in Table 

'(3.1)9 it is necessary to establish a means of determining which set 

of equations should be used for a particular stress triad. This can 

be achieved by deriving the surfaces in stress space which form the 

boundaries to regions pertinent to each case. Following the procedure 

adopted for flexural reinforcement (Section 3.4.4 ), the design equations 

can be plotted on the non-dimensional plane ax /IT 
XY 

19ay /1-C 
Xy 

I- 

Typical curves are shown in Figure (3-17) for a= 60 0 and fc /Irxyl 

The equations of the boundary curves are given in Table 

To cover all the cases with real boundary curves p 
it is required 

that 

fc -2 1T 
Nzr 

I cosec a 

The boundary line parallel to ax/IT XY 
I axis extends to t -. 

When a= iT/2, we have the case of orthogonal reinforcement, and 

the complex expression; in Table (3.2) and (3.3) reduce those given in 

Table (3.4) and (3-5) respectively. In addition, the case boundary 

graphs illustrated in Figure (3-lT) reduce to one graph of Figure (3-18). 

3.7 COMBINED BENDING AND 14EMBRANE FORCES: 

The stress triad in this case becomes (N 
9N2N0M9M9M xyVxy XY 

and to design for all six components, a filled sandwich element is 

used(74,75,70. In such an approach, all six stress resultants are 

resolved into a set of inplane stress resultants acting in the outer 



83 

shells of the sandwich. Figure (3-19) shows such an element, whereas 

Figures (3.20) and (3.21) show the resolution of these forces and how 

they are all lumped at the level of the reinforcements. The basic 

assumption behind such methods is that the reinforcement will be centrally 

positioned in the outer shells of the element. Further to simplify the 

problem for designers,, it is best to assume that 

x xx 

X =X =X xy xx 
=y=y xy xx 

where X 
xx ,Y xx and Z 

xx are some reasonable average values of the distances 

of the steel layers from the middle plane of the plate. 

When all stress resultants are simmed up as menbrene forces at the 

reinforcement level, the problem reduces to the problem of designing for 

membrane forces only. And the equations described in the previous section 

can then be used. 

3.8 CLOSURE 

The rules set in this chapter provide either an optimum reinforcement 

or a close upper bound to the minimurn reinforcement in concrete slabs. 

These rules will ensure that the yield criteria are nowhere exceeded, and 

that a state of yield will exist in most slab portions, sufficient to 

convert it into a mechanism at failure. The other conditions of equili- 

brium and boundary conditions will be satisfied by a stress field obtained 

from a finite element program, and this will be discussed in the following 

chapter. 
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Top Layer: Centrally Reinforced 
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Figure (3-19)- Filled Sandwich Model 
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Table 3.1 Simnary of Various Possible Combinations 

of Reinforcement. 

Case 
Reinforcement 
description 

Known, values 
. .... . 

Method of Solution 
...... 

1 Both tension f= f =f 0 minimization of x a s 
+P (P 

x y 

2 No x f= 
a 

fI 
s P x 

03'a 0 direct solution 

a tension 

3 No a fx = fs Pa 00 direct solution 

x tension 

4 Both compression f= 
x 

f f'9 af 2c nimization of 
a s 

+P (P 
x y 

5 No x f= f, P = O, a 2=f 
direct solution 

a s x 
a 6ompression 

6 No a f= f, P 
a 

= 03'a =f 2 direct solution 
x Is c 

x compression 

7 x tension f= f. fa f =2 direct solution 
x S 

a compression a1= 09 a2= fc 

8. x compPession f= f? f 9 =f direct solution 
x s a s 

a tension Cr 1= 0, a2= f 

q No reinforcement IS x= P Ct =0 direct solution 
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Table 3.3 Boundary Curves for Skew Reinforcement 

uati 
Cr 1± 

tan a sec a 
21 T XY 

I 

r-- -': 
A 

t. 
'ý c Y-, r `cI[. ý: T)2 27 

-4 
17,2 Tr XY XY 

31a=- (cosec a cot a)-l 
, r, y7 
-2x 

4afc cosec a± cota)-l I =I r x7y 
a fc fc 2 

5 --Y-F =1E7-- 4] 
2 

XT f 
xy XY XY 

af c 6 
r-xyy-F 

Lt 
an cL 

2 1r 
xy 

I+ 
Isec al 

CY f 
TI r-, 7y 2 cot a -4- 

fc a Cot aa co, a cot 

T4 
ýT 

11 xyl "r 

xY cot a(cot cosec + cosec a ±2 cot a0 -; 7- 

ý(YT I 'T 
+iT 

XY 

axf ay 
-r,, -rxy 

10 a Cy 

XY 

11 ax a 
cota (-cota± coseca)-coseca± 2cota+fc cosec a I 

cosec a ±cota) =0 

12 
Cr a 

cota (cota ± coseca)+coseca± 2cota 
fc 

-rx .1+r XY XY 
cosec a (cosec a± cota) =0 

13 a-x cry 
cota (-cota coseca) - cosec a ±2 cot a0 1'r. 

y 
II -Cv F 

14 ax fc fc 
2c 

ot C, a cot a 
+2'cot a-4 

ý7 
1- 11 

ýv 
Tx 77 T 7y r7, -c TT k xy A Irxyl 

Note: Alternative sign is the same as that of r 
XY 
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Table 3.5 Boundax7 Curves for Orthogonal 

Reinforcement 

Curve I......... 
..... 

Equation 
..... ... .......... ... 

ay 
+ 

T XYI 

ax 
-I. _Lc- + 

:, o 
JTXYJ 2- 1 TX71 TxYll 

1 

Cry 
- -1 TXY 

ay c+1 
T 

xy Txy I- 

CFX 
:fcf 

--. 
1014 

1 T. YJ 
2 IT I Ir xv 

I 

xyl 

/T 

2., Y- =-a0 iTxyl 

f 
c - 

12 

2ý zr I-4 IT-VI x 

8 ax, 

Xy 

91 Txy I 1r., 
Yl 

10 
ax 

-=1 
Xy Xy I 

ax fc 
+1 

1 'r Xyl 
I Txyl 

12 Inapplicable 
13 Inapplicable 

ax 1 rc fc 
14 2-7-+4 T. 

xy 1 xy I 
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CHAPT M- FOUR 

THE PINITE'EL='T M=OD 

4.1 IINRODUCTION: 

In the previous chapter, the rules . for designing the reinforcement 

in concrete slabs for a given moment triad have been established. The 

moment triad is obtained by the elastic analysis-using the finite 

element method. In this chapter, the finite element method, which will 

be used not only to obtain the elastic moment fields but also to carry 

out a detailed nonlinear analysis on the slab will be described. Some 

examples demonstrating the validity of the finite element model adopted 

will also be given. 

4.2 THE FINITE ELEMENT USED: 

4.2.1 The Stiffness of a Layered Finite Element: 

In this study, a rectangular fot= noded layered finite element 

is used. In such models, plate bending problems are treated by dividing 

the plate thickness into a finite =ber of layers parallel to the 

plate Middle plane. Each layer is assumed to be in a state of, plane 

stress condition. The usual assumptions of the first order theory of 

plates axe adopted in this resea--ch(l). Accordingly, the layered 

element is built up as a combination of two standaxd elements. 

1. rectangular four noded plane stress elementv ýrith eight 

degrees of freedom. The two nodal degrees of freedom are 

the inplane defor-mations u and v, axe represented by the 

following bil-4neax functions 

a, + a2x +a 3y +a ey 

v=a5+ a6x +a 77 + axy (4.2) 

with a linear strain variation within the element* 
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2. A rectangular four-noded plate bending elementp originally 

(68) 
developed by j1dini-Clough and Melosh This norr-conforming 

type element employing twelve degrees of freedcm, has the 

aw ;wT j, and is vector of nodal deformations (S} ay v 5- 

defined by a truncated fourth order polynomial in the lateral 

deflection w given by 

W=a9+ alox + ally + alýx2 +a1 3'cy +a 14 y2 +a 15 X2 + 

a, 6ý2y + a, 7xy2 + al, y3 + a, 9x 
3y +a 20 Xy3 (4-3) 

Accordinglyq the layered element model defined by combining the above 

two elements will have the vec-, or of nodal deformations 

I Vo Wo - 
aw aw T 

(4-4) Uý -Y rx 
I 

The constants of the polynomials a, to a20 can be evaluated by 

writing down the twenty simultaneous equations linking the nodal 

displacements when the coordinates take up thei= appropriate values. 

In matrix form, t%e nodal displacement vector for the element can be 

written as 

= [C) {a} (4-5) 

where [C] is a 20 x 20 matrix depending on nodal coordinatesq and 

(al a vector of 20 unkno, ým constants. Inverting 

-1 e 
a) cc] w (4.6) 

The strain vector from the classical first order theory of 

plates will be given by 

au av au 3vbbb 
5-X 9 5-Y 9 5-Y ax xy XY 

} (4-7) 

in which the first three axe inplane components. The bending strain 

components eb axe obtained from the curvatLxes at the middle plane 
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of the plate. For a layer at a distance Z from the middle plane 

of the plateg th; bending strains are eb -Z 
32W 

etc. x 57 

Accor-dinglyp the total strains in each layer at Z from the middle 

plane axe 
au a 2w 

Z =a x a0c x 
av ; 2W 

Z =, CY ; )3r ay 

au arv a 2w 
+- g+ 2Z 

XY aDc ay 
which can be written in the form 

c l 
x1 

E 

c = 0 
y 

c xy 
J 

00Z0 

1 

0100 

0 

0 

z 

au 
ax 
av 
Dy 
au av 
ay 

-T- TX 

a2w 
ax, 

D2 w 
7 

; 2w 

2axay 

In matrix form, equation (4-8) can be written as 

{C I= [R] (cm } (4-9) 

(4-8) 

where e is the vector of total strains at level z, and c is the 

strain vector at the middle plane of the plate, and ERJ is 3x6 

transformation matrix defined in (4-8) above. 

The strain vector {e 
m} 

is related to the element nodal 

displacement vector through the differential operators defined in 

(4.7). Thus operating on the displacement functions equations (4-1) 

to (4-3) we have: 



9T 

cm '2 ý 

*2 ae 

a 7 abx 

*3 a a6 a By 
2a 12 -6a 15 x -2a, 6y -a, ýxy 

2a 14 -2a, 7x -6a, y -a 2CPcy 

2a 13 4a, 6x 4a 17Y 
6algX2 6a 

20Y 

we can w=ite 
e 

{Cm {aI 

e 
[B] 61 (4-10) 

in which [B ] is a6x 20 matrix at each Gauss point, called the 

strain matrix, and {E: 
mIe 

is a vector of middle plane strains. 

Using (4-10) in (4-8) we will have 

ER [13 le. (4-11) 

The stress vector IM any layer is given by 

Cr = [DI {e (4-12) 

where LD] is given by Hooks law as 

[D] E1 -V 0 

-, V, z V10 (4-13) 
l_IV 

LO 02 

called the constitutive matrix. 

Following the standaxd p--oced=es 
(68) 

9t, he aktment stiffness 

matrix is given by 

[K] = 
jil BT D3 dx dy dz (4-14) 

and using equation (4-11) in (4-14)9 thealement stiffness matrix 

is given by 

[K] = (R B7D (R B) dx dy dz 

BT (RT D R) B dx dy dz (4-15) 

only the bracketed term in (4-15) is dependint on the Z coordinatep 
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and the integration can be performed by sli=Lng the layers 

cont: ributions. Accord-4nglyv equation (4-15) becomes 

I Y-1 = 
ff 

BT DI B dx dy (4.16) 

in which the constitutive matrix DI represents the eqnivalent 

constitutive matrix of the layered element and is given by 

DI 
f ER T [D] [ý3 dz 3 

E 
1 Vi o Z. V. z 11i 0 1 

-'YZ Vi 0 vZZ iii 0 

j-v i j- v 0 0 00 
2 2 

, , Z V.: z 0 Z Z 
i ý. 1i ii 

vZZ 
ii 0 

122 
vZZ 

iii 
0 

02:: ýv-i Z 10 
1-Vi 

2 

L 2 i 2 
Z D 

ji i i (d Z)i 
Z. D. : Z? D 

where N is the total number of layers in the element. 

Equation (4-17) dictates the important feature of this model in 

treating composite materials made up as a combination of various 

4tuents. If the element is made up cf layers with symmetric cOnSt 
.6 

properties about the middle Plane of the plate, the summation terms 

of ZdZ in (4-17) would vanish, and the constitutive matrix exhibits. 

uncoupling between membrane and fle = al effects. For reinforced 

concrete, such a coupling effect is bound to occur due to unsymmetric 

cracking, even if the slab element was initially isotropic. 

The membrane terms Di dZ i in (4-17) can be evaluated exactly using 

any =ber of layers across the thickness of the slab, even if the 

(U. ý 
i 

slab whole thickness is considered as one layer. But the flexural 
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E. 

terms Z1Z? dZi) representing the flexural rigidity of the l--! Y II 
plate, depend" on the rramber of layers used. Table (4-1) gives the 

accuracy obtained in computing the flexural stiffness as a function 

of the number of layers N. The convergenoe of the integral to the 

conventional plate flexural rigidity Eh3/12(1--V2) is clear from the 

table, as the = ber of layers is increased. 

Although increasing the r=ber of layers would enable a close 

monitering of nonlineaxities, it req7aires both a large space and time 

in the compater. The fle=al stiffnesses can be co=ected by the 

factors given in Table (4-1) which were derived assuming one material 

plate with layers of equal thicknesses. 

Table (4-1) Flexural rigidities of a layered plate 
as a function of =ber of layers 

. 

x % e=or co=ection fac tor 

2 25*0 1-333 
4 6-25 1-o66 
6 2-78 1-028 
8 1-56 1-015 

10 1-00 1-010 
12 0*70 1-007 

The area integration of the stiffness matrix in (4-16) is 
(68) 

performed using the Gaussianý. quadrature For the range of 

problems tested in this study, it is found that a reduced number of 

four station points is quite adequate to yield good results. It is 

true that a higher = ber of such points will enable a close monitor 

of plastification, but the stiffness integration is not affected, and 

the computation time is substantially increased. 

/ 



4.2.2 Element Subdivision: 100 

This element has been tested extensively by the authorp and 

is found to converge very well with the increasing element subdivision. 

In bending, the case of a squaxe simply supported slab under uniformly 

distributed load will be given as an example. The rate of convergence 

is very good, and the accuracy of both the deflections and moments 

can be seen even for the case of a rough mesh of 2x2 elements. 

Table (4.2) gives the results of this study, using six layers across 

the slab depth. The mesh subdivisions given in the table, are those 

used on a symmetric quadrant. 

Table 4.2 Convergence study for the case of a 
... Simply Supported Plate under uniform loading. 

Mesh Deflection x 103/224 D Moment x 100 qa 2. 

2. x 2 4*303 4918 

4x4 4"127 4-22 

6x6 A. 0 . 94 4-2; ") 

8x8 4*092 4-24 

10 X 10 4-077 4-24 

Exact(') 4-060 4*57 

The deflection and moments refe=ed to axe those mpas=ed at 

the centre of the plate. The boundary conditions axe those of Type 

in Figure (4-13b)v and a reduced integration order of 2x2 was used in 

the computations. 

The inplane element has also been tested by the author. As 

has been shown in the previous section, the stiffness of this element 

is independant of the number of layersq if the element is made uP of 
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one materialg and thus only one layer can be used. For more than one 

material, the =ber of layers may be taken equal to the number of 

constituting materials. 

The problem considered for convergence is the cantilever problem 

under an edge point load. Table (4-3) reflects the excellent rate of 

convergence of the results to the exact solution as the mesh size is 

refined. The beam is assumed to be of one material, thus only one 

layer was adopted and a reduced integration of 2x2 was used. The 

maximum stress referred to in the table is that given at the Gauss 

point No-4 (Figure 4-1) of element No. lp-neax the support. 

Table (4-3) Convergence study for the case of a cantilever 
beam carrying a point load P at the free edge. 

Mesh P13 Maximm deflection/; ý--" 
Ei 

maxinnTn stress at GP 
PL/z -*- 

xx 

4x4 0*24774 0*55208 

6x6 0-29a96 0-72017 

8x8 0-3226o 0-82292 

10 x 10 0-33507 0-88021 

P. cac t 0*33333 0-93497 

bd2 *Z 
xx = the. section modulus = g- 

4-3 NONLINEAR ANALYSIS OF CONCRETE STRUCTURES. 

4-3.1 General 

The behaviour of concrete can be explained with the aid of the 

stress-strain curve of FigL=e (4.2). Under small compxessýve loads 

less than 309/6 of its ultimate strength, concrete behaves as a linear 

elastic material. Under increasing loads, concrete behaves in a non 
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linear way. The material has got but a limited ductility, and under 

high com; ressive stresses, the material fails by crushing when attaining 

a limiting strain valuep normally taken as 0-0035 for design purposes, 

On the other hand, concrete c. -aqks at very early stages of loading 

ow. ng to its small tensile strength. Once the material cracks, it 

also loses all its strength in a direction normal to the crack. The 

reinforcing layers axe thus left to carry all such stresses. The latter 

willt under increasing states of stress, become plastic. 

A valid nonlinear finite element model has thus to consider all 

thsse sources of nonlinearities. Other sources of nonlinearities like 

bond effects and dowel-action axe still difficult to treat, and in most 

cases, they are probably unimportant in slab problems. Accordingly, 

they will not be considered in this study. 

4.3.2.1 Biaxial. Yield Criteria for Plain Concrete: 

Under biaxial states of stress, concrete strength increases in 

comparison to uniaxial(56957958977P78), The increase in ultimate 

strength due to biaxial stressing depends on the ratio of the two 

principal-stresses. A maximum increase in compressive strength of 

25Y6 is achieved at a stress ratio of lateral/axial st=e'ss of 0*5ý 

whereas the minimum increase of 16Y6 corresponds to equal biaxial 

compressive stresses. Under biaxial comp: cession-tension, the 

compressive strength was found to decrease almost linearly as the 

applied tensile stress is increased. For biaxial tensiont the strength 

is almost the same as that of the uniaxial strength. 

In connection with finite elements applications the experimental 

results of Kupfer et al(56) has largely been employed, and is adopted 

in this study toog Figure (4-3). This biaxial failure envelope had 
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(82) 

also been confirmed by the works of Buyokozturk and 
(58) 

Tasuji et al The Mohr-Coulomb failure surface is nearly the 

same (see the following section), except in the region of combined 

tension-compression stresses, a region over which the Kupfer's si=face 

predicts a higher strength. The square yield criterion due to Johansen 

(16) 
and Pxager(l) ignores any possible interaction between a set of 

orthogonal stressest which implies that for failures under biaxial 

compressive states, the ultimate strength of concrete is the same as 

that under uninxial states, Fig=e 

The use of uniaxial properties is thus more conservative, and 

hence justifiable from the design point of View. Tn cases--where 

nonlinearities axe largely dictated more by crack propagation than 

plastic action under compresaive states of stressest such differences 

in the yi4eld conditions axe insignificant, as in such cases, the concrete 

ccmpressive strength may not be reached before the structure collapses. 

4.3.2.2 The Yield Criterion: 

A multi-linear fit for the yield surface of Fi6m=e (4-3) can be 

obtained in terms of the octahedral sheax stress of the fo=(43) 

IL2 (a2 + Cy2 -a 'a +3 T2 
Oct 3xyxy XY 

as 
Toct -a-ba0= (4-19) 

where a0 is the mean normal stress, a and b axe constants, to be 

determined from experiments. Taking fC as the uniaxial compressive 

strength of concrete and fd as the equivalent compressive strength 

under biaxial compressionp and defining the ratios 

m =. f t/fc and n=f d/: Cc (4.20) 

equation (4-19) can be established in the following manner: 



(a) compression yielding: 

(i) For uniaxial coýmpression -r 
r2- 

f. and the Oct -3 

mean stress is fc/3, then by (4-19) 

V2- 
bf /3 +a (4.21) 

3 fo 
c 

(ii) for biaxial compression 
r2 

f and the 
Oct 3d 

mean stress is -2 fd/3t then 

V-2 
f 2b fd/3 +a (4.22) 

3d `7 

Solving (4.21) and (4_. 22) and using (4.2) then 

+ V-2 (n - 1) VT nf=0 (4.23) 
Oct (2n 

---'17 -o3 (ý-n- 1) 0 

Taking n= 1-16 from Fig-are (4-3)v then 

Toct/fc + (0*1714 aolfc) - 0*4143 =0 (4.24) 

lo4 

(b) Terlsion-Compression 

Using the same procedure, it can be shown that 

T Oct/f + V7 m) cr lfc _2 
V2 m0 (4-25) 

cn 
R+ 

M) 03 T-M-) 

(c) Tension-tension: 

Since no increase in ultimate tensile strength due t& bia. -cial 

stressing, the simple circular condition: 

(a If 
t)2 + (7 

21f t 
)2 -1=0 (4.26) 

is sufficient, although equation (4.25) can also be used in this case. 

4-3.3 Materials Modelling. 

In the present layered finite element model, each layer is assumed 

to be in a state of plane stress. A layer is also assumed to be of 

one material whose properties are represented at the Gauss points, 

although using the present formulation, different materials properties 

can be assigned at each Gauss point. 
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prior to crackingg a Gauss point in a concrete layer is 

assi=ed to be elastic and isotropic, having the following 

constitutive matrix 

1 V- 

Dcv10 
(4.27) 

200 1-, v 
2 

Upon cracking, the x-coordinate axis is placed parallel to 

the crack (FigUre (4-5)), and the stress normal to the crack direction 

is removed. The constitutive matrix is then modified accordingly, 

with the new orientation of the axes, to be 

-E00 

D000 (4.28) 

LO 0a GI 

in which $ is the shear retention factor in cracked concrete. 

The =merical value of s ranges between 1 and 0 for unoracked and 

cracked concrete, respectively. In this study 6 is taken as 0.4 

for all the problems investigated here. Literatu=-e reveals a good 

justification for the use of srdch a valueq see section (2-4.4-1). 

It is known that bond between concrete and reinforcing steel 

gives some resistance to stresses in concrete after cracking. To 

account for this tension stiffening effect, the modified stress-strain 

diagram for concrete in tension is used, FigL=e 

The direction of the principal stress responsible for the crack 

is given by 
2 cr 

Tan 26 XY (4-30) 
a. a. xy 

However, the angle 6 given by (4-30) will lie between 0 and 4500' 

The actual crack di=eq"jion Oc. is dete=ined from a Mohr Is circle. 
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The constitutive matrix D* is defined in the crack directions 

and thus has to be transformed to the global directions. The 

transformed matrix becomes 

D' =TTDT (4-31) 

where the transfcrmation matrix T is given by 

2 S2 CS 

TS2c2 -cs (4-32) 

2 'S 2CS C2-S2 

where 

Cos ec: r, S= sin e,, 

However, during the load history of Ne struct=eq an open crack 

might closep if the stress across the crack turns to a compressive one. 

on the yield surfacep this behaviour is restricted to the region CB 

of Figure (4-7), unhere dowel action and cleavage behaviour exist 

they would also occur in this region of the yield surface. Since very 

little is understood about the behaviour of concrete in this region, 

it will be possible to allow f or such f eatures by a modif ication of 

the yield s=face in this zone(43). This is usually done by corrverting 
e. lFechve 

the tension-compression stresses to an7, -. 
1- 

compression, and using the 

corresponding intermediate compression yield surface (see section 

4.3-3-1), tlaus 
(i) dowel action is allowed for since the loss of stiffness 

is substantially less. than the case of tensile failure. 

the possibility of cracks closing can be avoided for the 

same reason. 

The yield surface can thus be divided into four regions as shown 

in Figure (4.7): 
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1. Failure under combined tension - ED 

2. Failure under tension compression-stresses - DC 

Cleavage failure- CB. 

Biaxial c=piession failure - BA. 

The term cleavage f ailure is u sed to describe a state of f ailur e 

intermediate between splitting and crashing. In this study whenever 

cleavage yielding is detected, the point is treated as for compression 

yielding as far as the constitutive matrix is concerned. 

4-3.3-1 Concrete: 

It has already been established that an initial linear elp-stic 

behaviour for concrete under compression is limited only to small load 

range up to about 30 to 50% of the ultimate capacity(58,59). Beyond 

this rangeg some plastic action is involved. Accordingly, two 

approaches can be defined, which deal with the analysis of concrete 

under compressive forces: 

1. Perfect and work-hardening plasticity theorems 

2. Representation of a given stress-strain relationship using 

ourve fitting methods. 

4.3-3.1(a) Perfect and work hardening plasticity: 

In compressiong concrete can f low like a ductile material on the 

yield surfacep before it reaches its crushing strain. To account for 

its limited plasiic flow ability befcre crashing, a perfectly plastic 

model can be introduced. The-complete stress-strain relationship is 

developed in three parts: (1) before yield, (2) during plastic flow, 

and (3) after fracture. 

Before yieldv a linear elastic model can be used. During the 

plastic flowv a yield surface is needed to define the onset of yield. 

The famous Von Mises criterion defined in te=s-of an effective stress 
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as 

(a2 + crz -aay +3r)i-a (4-33) 
xy xy 0 

has been used by many investigators(47948950)0 

To const--uct the stress-strain relationship in the plastic range, 

the normality of the plastic deformation rate vector to the yield 

surface (ýmown as the no=ality rule) is used. Thus 

aF 
ac (4-33) 

in which X>0 is a scalar proportionality factor. The onset of 

fracture can be def ined using a crushing surf ace, analogous to (4-33) 

and expressed in terms of strains(50). After fracture, concrete is 

assumed to lose all its strength. 

One disad: vantage of this approach is that nonlineax action is 

ignored until the yield surface is reached. In case 'of planar 

structures subjected in plane compressive forces, such an assumption 
(43) 

may lead to stiff predictions 

4.3-3.1(b) Representation of a given stress-strain - 

Curve using curve fitting methods: - 

Various empirical stress-strain equations expressed in terms of 

their respective principal stress and strain values have been 

established by fitting curves. to the laxge amounts of biaxial test 
(60) '8P59) 

and Buyokoz tLk(82) data. Works by Liu et al, , Irasuji et al(r. -O' 

axe all of this type. The following equation 

a e: 
a 1+ 

(4-34) 

1+ 21[c- 
12 

.p*7Pct 

represents a uni; xial stress-strain curve for concrete, and was 
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originally proposed by Liu, Mcperiments indicate that, the constants 

are 

a=E initial elastic modulus 

CP = 0*0025 for corpression 

f for uniax-, al compression. C ý10 cu e 

Equation (4-34) may also be used for concrete in tension(58978)9 and 

in this case ep = 00000159 up = ft- 

For the rz-, merical procedure adopted in this studyg equation (4-34) 

is incrementally linearized during the monotonic loading. This is 

usually done by using intermediate loading surfaces after Bell and 

Elms 
(6) 

, and Chen et al(78). Such surfaces are shown in Figure 

The first loading surface oo=esponds to the initial discontinuity in 

the stress-strain diagram. Subsequent loading surfaces are-ass, =*ed to 

-he shape of the limiting yield surface. Accordingly, the inter- have 4. 

mediate surfaces will be represented by equation (4424) but with an 

-imate strength f An in-ýermediate strength f 
cc replacing the ult c 

empirical form for f 
cc 

has been suggested by Johnaxry 
(43) 

-as 

f 
cc =f co -ft+ft (Ec/Ei) (4-35) 

fE is the initial modulus. subject to 
cc C* C 

In this research, 

the instantaneous modulus i's computed using (4-34). The discontinuity 

stress fco is taken as 505/6 fcuo 

4-3-3.2 Reinforcing Steel: 

In the present layered approach, steel b, =s axe represented by a 

smeared layert whL; h can carry stresses only in the original direction 

of the bars. The stress-st=ain, curve for steel ba--s is taken as a 

bilineax relationship in both tension and compression, Fiouxe (4.8). 
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Steel bars are thus assumed to have a definite yi eld point fy, and 

in case of high yield bars, P- proof stress corresponding to 0.2yo strain 

is used. 

Prior to yieldingg stresses are ýomputed uzing the initial modulus. 

After yielding, a secant modulus is calculated -md used in the subsequent 

load increment, as 

(4-36) 

Linear strain hardening can also be incorporated, if so desired. 

4-3-4 Pseudo-load vector: 

"'he out-of-balance forces resulting from lack of equilibrium during 

a certain load increment in a nonlinear analysis axe used to supplement 

the current load vector. Such forces axe obtained f==: 

F ex 
=p_BG dv (4-37) 

where the stress vector is always kept within the material yield 

"equilibrium results whenever excess stresses beyond surf ac e. Lack of 

the yield surfaces axe removedg and the stress state is brought back 

on the yield su:: face. Within any material,. whenever such a stress 

state existag the cur=ent constitutive matrix of the material is modified, 

for their use in the subsequent loading step. 

In this study, the integration in (4-37) is Performed using the 
(68) 

Gauss (padrature , and for consistency, the same order of integration 

as that used for the stiffness computation, is also adopted. 

The =erical procedure used in this study employs a total strain 
(43) 

technique at each load level. Using such procedures would eventually 

lead to large ps-eudo-forcesl Paxticulaxly when the st=icture is under- 

going extensive plastification. And if the load increment-is-made 
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sufficiently smallt these induced forces will lead to unacceptable 

predictions, especially if equilibrium is . satIsfied at each load 

level by allowing the required namber of ite=ations. Accordingly, 

bounds can be set on the load increments, which depend on the degree 

of plasti. fication in the structure. Following Johnar--y(43), the 

derivation of such bounds is given in Appendix (C). However, 

analysis with such bounds on the load increment , requires the load 

increment to be less than 0*15 Pcr 
(43), 

although acceptable predictions 

with a load increment of 0-2 P 
or 

have been obtained as will be shown 

in (4-4-1). 

4-3.5 Details of the Numerical Procedure: 

An incremental, total strain, iterative proced=e using the 
(43,68945) 

initial stiffness matrix is used The load is applied 

in small increments, within eachg an elastic problem is first tried, 

followed by a succession of linearized iterations until equilibrium 

is maintained. At any stage of loading, the equilibrium equation to 

be satisfied is represented by equation (4-37)9 with the excess forces 

F ex ter-ding to zero. The excess force representing the lack of 

equilibrium at any stage is recycled until equilibrium is achieved. 

At any moment, these excess forces axe added to the load vector at 

the start of the next load increment. Accordingly, the elastic 

solution at the beginning of a load increment is obtained using a 

fictitious load vector, that contains all applied loads in addition 

to the accumulated nonlinear effects resulting from previous load 

increments. 

The convergence of the residual load vector P ex towards zero is 

generally slowq particularly when the initial stiffnesses axe used. 
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Accelerators have been used, but since no universal procedure exists, 

ýhese were not -tried. Phillips 
(65) 

examined various techniques, but 

could not obtain successful results with any one type. However, 

during the -course of this study, it was found that a limit between 

10 to 15 iterations yields goods results for most of the problems 

considered in this research. 

The solution proceeds along the following steps: 

1. Elements stiffness matrices are formed from the layers stiffnesses, 

using Gauss quadrat=e. A reduced integration order of 2x2 

is used for all the problems considered in this study. 

2. The global stiffness matrix is formed from the elements matrices, 

using standard procedures(31). The matrix is then decomposed 
(68) 

using the Gaussian-elimination procedure 

A small load increment is applied, and the structure is solved 

for nodal displacements. From nodal displacementsq middle plane 

strains and curvatures are found at the Gauss points. 

For each sampling point in a layerg the total strains axe found 

from: - 

+ZX (4-38) 

Using the current constitutive matrix D for the point, stresses 

and principal stresses axe found. 

The stress state at the point is checked against the -. elevant 

transition criteria. If none axe violatedv stePs 4 and 5 are 

repeated for all sampling points in all layers in all elements. 

If any of the criteria are violated, the constitutive matrix D 

at the s=pling point is changed. The change in the stiffness 

matrix D is used to compute the excess stress, and the stresses 
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axe then brought back to within the yield surface. The point 

contribution to the stress resultant vectors NIM is 

calculated from 

N=a dz IM= az dz (4-39) 

Previous steps are repeated fox- all sampling points in all layers 

and in all elements. 

e. For each element, r=erical integratian is used to evaluate the 

nodal forces resulting from the stress resultants N and MO thus 

FfN)_, M (4-40) 

The global force vector is assembled from elements contributions 

at the nodes, and equilibrium is then examined, using 

lip "I = [PI 
-E F1 (4-41) 

The excess force vector F ex is added to the load vector, 

and the structure is analysed using 
[, ex 1, 

wid stePs 4 to 8 

are relpeatedf and convergence is checked, using the displacement 

norm 

NCEM =([ 6d aT { Adl /[d IT {d 1) 
12' 

(4-42) 

Iterations'are ass=ed to converge when the iterate Norm ý 10-4. 

10. If convergence is achievedg or a predefined limit on the iterations 

is exhaustedt a new load increment is added to the load vector, 

and steps 3 to 9 are repeated. (For the required iterations 

limit, see section 4-5)- 

A schematic illustration for the numerical procedure is given in 

Fig=e (4-9). Details of the computer progran, are given in Appendix 

(B), together with the instructions for data preparationo 

When failure is -imminentv a ! a-rge disparity between internal and 
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external forces can be seen. At such a stage, the reinforcement could 

have yielded at quite a large number of points, and displacements 

increase at faster rates. In most casesp convergence does not occurt 

when failure is approached. 

4.4 
_RESULTS 

AND COY2ARISONS. 

To examine the validity of the developed model, va=ious types 

of problems have been analysed, and the results were compared with 

existing reliable test data. The logic followed is that, if over a 

wide range of problems, this model could produce accurate predictions 

for bqth the deflections and the ultimate loads, the program can then 

be used to predict the behaviour of similax problemsq when using 

different design procedures. In the end, the program is aimed at 

ex=ining the validity of the design equations of Chapter 3 in this 

reseaxch. 

4.4.1 A Square Sinply Supported Slab under a Central Point Load. 

A square simply supported slab 1828-8 mm side length =-d 139*7 mmdeep 

with isotropic reinforcement 0-99916 which was tested under a central 

point load by the Portland Cement Association and was analysed by 
(46) 

Dotreppe et al The materials iDroDe=ties used were as follows 

fcjA = 47,17 X/= 

%= 27580 I, /= 2 
30394 I, /= 2 

y 
Es= 206850 IT/= 2 

139-7cm 9 d, = 114-3 mm. 
FigLLre (4-10) gives the load-deflection curve for this slab. 

Due to symmet--y, one quadxant with a mesh of 6x6 elements was 

analysedq using an integration order of 2x2. The slab was analysed 

using this model with and without considering tension stiffening. 

The analysis considering tension stiffening shows the high 
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accuracy of the model in predicting both the displacements and the 

ultimate load. The analysis ignoring tension s1wiffening produced a 

more flexible behaviour. This is in good agreement with Gilbert 

and Waxner(48), who concluded that by ignoring tension stiffening 

effects in concrete between adjacent cracks, e=o=s in the calculated 

deflections can be as high as 100yo. 

Although neglecting tension stiffening effect must not affect 

the ultimate load, this model predicts an ultimate load 10% less 

than the actual ultimate load when tension stiffening is not considered. 

The computed deflections show that, iý the analysis was not terminated, 

the ultimate load could have been -&eached, but at very high deflections. 

Dotreppe(46) using a different model also found that the ultimate load 

is underestimated by 100/-C. Although he did not attribute this to any 

one reasont the author is of the opinion that svch an underestimation 

in the ultimate load is mainly due to the neglected tension stiffening 

effect (see Figure (4-10)). 

Other rmmerical aspects of this model had also been investigated.. 

Figure (4-11) compares the predictions of the response for the same 

slab with various mesh subdivisions using the same load increment 

size. As far as mesh refinement is concernedg no significant 

-he predictions made using a4x4 difference is obtained between 4. 

and 6x6 elements. Materials nonlinearities axe predicted to 

occur at exactly the same loads for the two mesh subdivisions. 

The same slab was also reanalysed using different sizes of load 

increments. FigL=e (4-10) gives a comparison between the responses 

predicted by different sizes of load increments. It is appaxent 

how the predictions improve with a reduced size of load incremente 

Experience with this model indicates its ability in producing 
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accurate predictions when. the load increment is taken around 0.08 

of the cracking load P 
cr" 

The effect of increasing the number of iterations has also been 

considered. Figure (4-13). gives the results of the predictions for 

the same slabs when the total number of iterations is increased from 

59 10,15 and then 30. In any case, this would mean the static 

equilibrium is satisfied at any load level. The accuracy of the 

predictions is shown to improve with the increased nunber of iterations. 

This is in contradiction to what Duncan and Johnarry 
(44) 

have found. 

They claimed that"attempts to satisfy static equilibrium at each load 

level, lead to expensive analysis and poor resultsit, It is obvious 

that demanding static equilibrium at each load level leads to expensive 

analysiss but should never lead t9 poor results. However, this model 

in its present formulation shows a vex7 good desirable response with 

increasing number of iterations. As a compromise between cost and 

accuracy, a limit of 15 to 20 iterations normally produces acceptable 

results. 

The effect of imposing various membrane boundary conditions have 

also been studied using this model. For a simply supported slab, the 

flexural bound'ary conditions are obvious, but the restraints to membrane 

movements are ambiguous. Such a slab can be supported in quite 

different ways, and each can be considered as a simple support. In this 

study, different restraints to inplane movements have been tried, to see 

their effect on the predictions made by this model. Four types of 

inplane boundary conditions are shown in Figure (4.14b). The prob. ',. em 

investigated is the same simply supported slab under a central point 

load. The predicted response'for the slab corresponding to each type of 
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boundary condition is shown in Figure (4.14a). 

Figure (4.14a) compares the various predictions obtained in each 

case. The effect of increasing the restraint to inplane movements 

affected both the computed deflections and the ultimate load. However, 

for elastic solutions, usually the effect of various inplane restraints 

is insignificant. Even the cracking load is not affected by such 

variations. 

From Figure (4.14a), it is clear that the boundary conditions type 

gives accurate predictions for both the response and the ultimate 

load. Accordingly, this type will be adopted in analysing simply 

supported slabs. 

4.4.2 The Slab Tested by McN61ce: 

This was a square slab simply supported at four corners . and was 

(21) 
tested by Jofriet and McN41ce The slab was 914.4 mm. square and 

44.7 =a deep, isotropically reinforced with 0-85%, reinforcing steel. 

The slab was tested under a central point load, and had the following 

properties: 

fcu = 48.62 N/=2 

Ec= 28614 N/=2 

ft = 2.413 N/=2 

v=0.15 N/=2 

fy= 331 11/=2 

ES = 200000 N/=2 

d, = 33-3 = 

44.7 = 

A mesh of 4x4 elements over asymmetric quadrant was used, together 

with a load increment size of 0.1 P Details of the slab are shown 
cr. 

in Figure (4.16), and the results of the analysis in Figure (4-15). 

Two results of analyses had been given here, one for the slab with pin 

9 
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supports at the corners, the other with roller supports. The agreement 

in both cases is quite good. Analysis with pin supports predicts stiffer 

behaviour at high loads, while the one with roller supports shows a 

flexible response at high levels. In both cases, the discrepancy with 
(42) 

experimental results is not too serious. Hand , using a layered 

model in analysing this slabs also noticed the difference in the computed 

response due to variation in inplane boundary conditions. The results 

obtained by Dotreppe 
(46) 

using a reduced bending stiffness are identical 

to the one obtained here using pin supports. Since it had not been 

reported which inplane boundary condition was actually used in the test, 

the predictions obtained here are considered satisfactory. 

4.4.3 Tee-Beam BI Tested by Rao: 

This problem was chosen to demonstrate the ability of this model 

to analyse complex structures. This beam was first tested and analysed 

by Rao(39) using a combination of beam elements for the web of the beam, 

and plain stress elements for the flanges. The data needed for the 

analysis were as follows: 

fau = 48 NI=2- fy= 340 N/=2 

Ec= 35000 N/mm2 

ft = 4.8 N/mm2 

v=0.2 

E! 200000 N/mm2 
s 

Other geometrical properties of the beam are given in Figure (4.18). 

The beam was analysed subject to a single point load at the centre. 

Due to symmetry, only one quarter of the beam represented by half 

the span and half the flange width was analysed here. The mesh used 

here comprised of six elements along the spans and four across the flange. 
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The computed load-deflection curve for the central point of the 

beam is given in Figure (4-17). This analysis predicts a higher cracking 

load (of 16 kN) in- comparison with the actual cracking load of 9 kN,, but 

could predict exactly 
. 
the ultimate load of the bean. Rao(39) , 

in his 

analysis, also obtained such a high cracking load. He suggested that 

the low experimental cracking load could be due to the beam being 

already cracked prior to test, and suggested the use of 0.96 N/=2 for 

the tensile strength of concrete. This value he later used to analyse 

the beam, but still his predictions were too flexible, and could not 

predict the ultimate load correctly. 

As for the present model3, apart from the high cracking load, the 

predictions made are acceptable. The cracking load could have been reduced 

if a value of 5% f 
CLL 

is used for the tensile strength of concrete. 

4.4.4 Hayes'--Slab-Beam System 

This is a square slab which is monolithically cast with its 

supporting beams. The slab was chosen from a series of tests on integral 

slab-beam systems conducted by Hayes et al. The present slab represents 
(84) 

the slab-beam test designated Al by Hayes et, al The slab was 

supported by edge beams of the same flexural stiffness, which were 

simply supported at the corners. The relevant data is as follovs: 

f 
ca = 35.3 N/mm2 

ft = 2.65 N/=2 

Ec= 24710 N/=2 

v=0.15 

fy = 300 N/mm2 

210000 N/=2 

Other dimensions and reinforcement data are given in Figure (4.19). 
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The slab reinforcement was uniformly spaced in each direction. 

The slab was analysed. using a mesh of 5x5 elements over a 

synmetric quadrant. The load was applied as a uniformly distributed 

load, and an increment size, of 0.1 P was used in the analysis. cr 
Tension stiffening effects were neglected, but bounds were set on the 

incremental plastic loads (see section 4-3.4). A maximum number of 

30 iterations was allowed in the analysis. 

The results are shown in Figure (4.19). The figure shows the 

excellent ability of the model in predicting the behaviour of slab-beam 

systems. The analysis predicts the first cracking of the slab and the 

beams to occur simultaneously at a load of 5 kN/m2 (about 18 M). This 

is exactly the cracking load reported by Hayes 
(84) in his experiments. 

In the post cracking range, and up to 75% of the ultimate load, only 

an average of 9 iterations were needed to achieve convergence. First 

yield of steel was detected at the centre of the supporting beams, at 

about 15.4 kN/m2 (about 56 kN), which again agrees very well with the 

value of 54 kN reported in the paper.. After yielding of the steel, 

convergence to the specified limits was not obtaineds and the total 

number of iterations allowed was reached in each load increment. 

Although convergence to the desired levels was not achieved, the 

disparity was not great. The stiffening effects appearing after the 

first yield load in Figure (4.19) is caused by convergence problems. 

The solution would very much improve if the size of load increment 

was further reduced after attaining first yield. In any case, the 

pre-sent model could accurately predict the ultimate load of this slab- 

beam system. Under the ultimate load a mechanism had already formed, 

with the reinforcement in the supporting beams yieldings and also along 
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the two centre lines of the slab. Deflections were also very high, 

and at the slab centre, the'deflection was greater'than the slab 

thickness. 

The state of mechanism just described represents the composite 

rectangular mode in which the slab-beam system actually failed. This 

supports the conclusion that the present model is able to predict 

accurately the behaviour of slab-beam systems. 

Perhaps, the only disadvantage in the formulation of this model 

in the analysis of slab-beam systems lies in the assumption of plane 

stress state in the layer. The effect of such an assumption is the 

neglect of the vertical shear, normal to the middle plane. For thin 

plates, this shear has no effect. But for beams, the effect may be 

felt, if the beam will be subjected to high torsional stress$ for 

example. In this case, this model would definitely underestimate the 

shear stresses in the beam (see Figure(4.20) below). 

Actual 
Shear Flow 

Predicted y 
The Layered Model 

Figure-(4.20) Shear Flow in a layered Plate Bending Model 



122 

4.5 CONCLUSIONS. 

This element in its-present formulation had been extensively 

tested by the author, and the following conclusions are arrived at: 

1. A mesh division which is valid for an elastic analysis is also 

adequate for nonlinear analysis of concrete planar structures. 

Acceptable predictions can be obtained even with a rough mesh 

subdivision. 

2. Inplane boundary conditions are very important for a successful 

nonlinear analysis. The computed response is found to be greatly 

affected by varying edge restraints to inplane movements. 

A numerical integration of order 2x2 is adequate to produce 

acceptable results, for the range of problems consiaered in this 

chapter. It is true -that ii higher order would enable close 

monitoring of the nonlinearities, and can thus aid in achieving 

faster convergence. However-$ the cost of the analysis increases 

dramatically when using higher orders of numerical integration,, 

in addition, no significant improvement on the computed response 

was observed. 

Tension stiffening provided by concrete between adjacent cracks 

has very significant influences on the accuracy of the predictions. 

Taking this factor in consideration aids convergence, and thus 

reduces the cost of the analysis. Cracking and yielding initiation, 

though are not affected, would not produce the large imbalance 

forces which occur when neglecting tension stiffening. The same 

effect can be produced by setting bounds on the plastic load 

increments, in which case tension stiffening can be ignored. 
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In all casesq convergence is very fast when the load increment 

size is taken between 0.08 and 0.1 of the cracking load. Prior 

to yielding of reinforcement, convergence to 'very small tolerances 

of the order specified in section (4-3-5) can be achieved within 

10 to 15 iterations, for most of the problems considered, with the 

load increment around 0.15 the cracking load. With a load 

increment of 0.08 the cracking load, convergence to small tolerances 

can be obtained with less than 10 iterations, in most cases. 

After yielding of reinforcement, large excessive forces are produced. 

If bounds are not set on the plastic loads,, convergence cannot be 

achieved. The problem can further be treated by reducing the size 

of the load increment after the steel starts yielding. In the 

present program, the load increment is reduced to half its value 

prior to yield in steel. 

The lack of convergence after yielding normally happens when the 

structure is undergoing extensive plastification. Experience 

with this model indicates that this occurs near ultimate conditions, 

and is indicative of the imminent failure of the structure. 

Analysis with this model indicates the effect of attaining 

equilibrium at each load increment. The accuracy of the predictions 

is found to improve very much by demanding convergence to small 

tolerances. This is in contradiction to what Duncan and Johnarry (44) 

have found. The Duncan and Johnarry's (43944) 
model was a crude one$ 

because of the restricting assumption of constant stress over the 

layer. As their numerical procedure involving total strains 

(successive approximations) relied in its success on the released 

imbalance forces, the assumption of constant stress always under- 
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estimated these forces. Accordingly, it was not strange that 

their predictions were stiffer than what they should be, and 

their model was not able to achieve equilibrium in most cases. 

In the present formulation, stresses are sampled at the Gauss 

points, which allows for the variability of stresses over the 

layer. In this way, a good improvement in the element performance 

was achieved. 
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Gauss points in a finite element 
N. B. Encircled axe the nodal =bering in element local coordinate 

11 12 13 14 15 

6 10 

4 

Pigure (4-1) Elements and nodal numbering system in the 
f inite element program 
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Figure (4.2) Stress-Strain relationship for concrete in compression 

FigL=e (4.3) Biaxial strength of concrete 
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Fi; rure--(4-4) 
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The square yield criterion for plain concrete 
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Transformation of cracked stiffness to global 
directions 
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Figure (4.6) Tensile Stress-Strain curve for concrete 
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pigure-(4-7) "Zoning" the yield surface - initial and 
subsequent loading surfaces 
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Figure (4.8) Stress-Strain curve for a steel layer 
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CHAPTER'FIVE 

INVESTIGATION 

5.1*INTRODUCTION 

In the previous chapter a reliable finite element program was 

established. In this chapter, the proposed direct design procedure 

(Chapter 3) will be critically examined. The design procedure is 

dependant on the avdilability of a finite element program, and can be 

summarized as follows: 

(1) The geometric details, materials properties and the design 

loads are used as the input data for the program. The 

program performs an elastic analysis on the slabg using the 

initial uncracked concrete section properties. The analysis 

establishes the stress distribution (N 
9N9N 14 9M0M Xy ICY xy Xy 

at any point on the slab at the specified ultimate design load. 

(2) Using the design equations of chapter (3)9 the required resisting 

moments are calculated at every point on the slab. 

(3) Using the Limit State Theory (Appendix A)9 the steel areas 

required to provide the design resisting moments and membrane 

forces in step (2) are calculated for each element. The program 

then inserts the computed steel areas in the two orthogonal 

directions in their proper places in the layered finite element 

model. 

(4) To check the service and ultimate behaviour of the slabs designed 

in this way, a ful. 1 incremental nonlinear analysis is performed. 

A wide range of problems has been investigated and their results 

will be presented in this chapter. 
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5.2 CONPARISON BETWEEN'TORSIONAL'AND'TORSIONLESS'ANALYSES: 

5.2.1 General: 

The provision of reinforcement to resist the three moment components 

14 MSM in laterally loaded slabs can be regarded as an extension xy XY 
to the well known Hillerborg's strip method of slab d esign. In fact, 

the strip method provides reinforcement to resist the normal moment 

components Mx and My. while the torsional stress component M 
Xy 

is ignored. 

This is equivalent to assuming that the sltb is designed as a series of 

parallel beams (in each direction) without torsional stiffness. Such 

an assumption is. unsatisfactory in two ways. Firstg the method would 

produce unacceptable moment fields for cases in which torsional moments 

are dominant. Secondly, in pursuit of simple solutions, the designer 

nay choose stress'distributions which depart from the elastic 

distributions, which will jeopardize the service load behaviour. 

In the slabs which are loaded uniformly the Code provisions for 

torsional moments may circumvent this, but in cases where slabs are 

subject to eccentric concentrated lcadss or torsional loads9 the Code 

provisions may not be applicable. 

The proposed design method provides reinforcement to resist all 

three moment components, and is thus more general. A study to compare 

the two design procedures has been undertaken here. The object of 

the study is to compare the design moment fields in the two methods, 

and to show their relative merits in terms of econony by comparing 

the moment volumes. In both cases, the finite element program 

developed in Chapter (4) was used. For, Hillerborg's strip method, 

the slab was assumed to possess zero torsional stiffness i. e. G=0.0 

in the finite element analysis. Such a numerical simulation would yield 
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a stress distribution in equilibrium with the applied loads, but with 

zero torsional moments everywhere. Accordingly, such an analysis will 

be called a "torsionless" analysis. On the other hand, for the present 

design procedure., isotropic properties for concrete slab were assumed, 

and the torsional modulus G 0.0. This would also produce a stress 

distribution in equilibrium with the applied loads, but with M 
XY 

0 0. As 

opposed to the torsionless analysis, solutions obtained with G00.0 are 

linked with the equations of Chapter (3), and will be termed as "torsion- 

al analysis". 

5.2.2 Analyses and Results: 

A series of slabs with various boundary conditions and differing 

sides ratios was investigated. The slabs were all analysed under a 

uniformly distributed lateral load. Table (5-1) summarizes the cases 

considered, and gives the rosults obtained. The results for the moment 

volumes have been plotted in Figure (5-1) and Figure (5.2). Comparisons 

for the moment fields for the two design prodedures are presented in 

Figures (5-3) to (5-9) for the seven cases in Table (5.1) for square 

slabs. Results for rectangular slabs with sides ratios of 1.5 and 2.0 

for the seven cases considered are given in Figures (Dl) to (D56) in 

Appendix (D). In all figures, full lines indicate the results 

of the proposed torsional analysis, while the broken lines ------- are 

those of the torsionless analysis. The numbers on the curves indicate 

the strip nunber as shown in the small diagrams near the curves in each 

figure. It should be mentioned that all slabs had been analysed using 

a regular mesh of 10 x 10 elements. Accordinglys the strip distance from 

the edge can easily be calculated in tenths of the span length. 

Individual curves give the variation of the design moment along 

the strip. For general use,, the results had been expressed in a 
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nondimensional form. The sign convention for the =ments is that 

those causing tension on the underside of the slab are positive. 

5.2.3 'Discussion of'RLisults: 

From Figures (5-1)'and (5.2), it is evident that the torsional 

analysis always gives higher moment volumes than that of no torsion. 

This is true for all cases considered. With slabs simply supported 

along all sides, the moment volumes corresponding to the bottom steel 

only are approximately the same in the two analyses, the Tnum 

difference in this case is only 8% of the torsionless value (see Table 

5-1). Accordingly, the apparent differences between the two analyses 

can be attributed to the torsional moments, which are concentrated 

near the discontinuous supported corners. In practice, torsional 

reinforcement is normally added at such corners, as a certain percentage 

k5) of the midspan reinforcement. Following Cp 110 . torsional steel 

moment volumes were calculated (see Appendix Dl) , and added to the 

torsionless analysis results. The resulting total moment volumes have 

been compared in Table (5.2), for the cases with discontinuous edges. 

The results of the final moment volumes indicate that, in case of slabs 

simply supported on all edges, the torsional analysis is at least 10% 

more economical than the torsionless analysis. For other types of 

slabs in Table (5.2), the torsional analysis gives moment volumes either 

very close to that of the torsionless analysiss or higher by up to 20%. 

Large differences can also be seen in cases with free edges. The 

two methods produce moment volumes which differ considerably from each 

other., as can be seen from Figure (5-1). For the case of slabs vith one 

free edge (case'C), the difference is due. to two reasons: 
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(a) The torsionless analysis 'underestimates the reinforcement 

normal to the free edge, as can be seen fr= Figures (5.5b), 

Figures (DI8 and D22). 

(b) The torsional reinforcement. 

However nothing can be done about the reason in (a), but the 

torsional steel can be added according to Cpllo(5). over the two 

confined corners. This has the effect of reducing the difference in 

the moment volumes from an average of 48% (Table 5-1) to a maximum of 

9.5% only (Table 5.2). This shows the importance of the torsional 

moments in this case, The slight (9.5%) difference is thus due to 

cause (a) above, and reduces in effect as the sides ratio tends to 

mity. But the effect of the torsional moments reduces with the 

reduction in the n=ber of confined corners (between orthogonal 

discontinuous edges), which increases the effect of the normal moments 

in determining the total moment volume (cause (a) above). Take for 

example, the case of a slab simply supported along two orthogonal sides$ 

and supported by a column at the opposite corner (case G). From Table 

(5.1), the difference in moment volumes in the two analyses ranges between 

32.2% and 44-TOO. Addition of torsional steel over the confined corner 

between the two simply supported edges reduces the difference to a 

maximum of 18.6, 'v, 

The difference in such cases is due to the large differences in 

the moment fields. A comparison between the moment fields produced 

by the two analysis for the seven cases in Table (5-1). is given in 

Figures (5.3) to (5-9) and in Appendix (D). 

Considering the case of the simply supported slabs, the moment 

fields . are given by Figures (5.3a, b. c, d) and Figures (Dl to D8). 
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While the torsional analysis gives a fairly gradual variation of 

design moments, the torsionless analysis produces a parabolic variation, 

with concentration of reinforcement in the central zone of the slab. 

Me smooth variation of design moments in the torsional analysis 

provides a convenient way of placing the reinforcement in the strip. 

Unlike the torsionless analysis, the reinforcement design in the 

torsional analysis can thus be based on the maxiTninn or the average value 

of the moment, without producing a significant difference. This is also 

an advantage over the- designs based on the miniTninn weight principles 
(10) 

which requires continuously varying reinforcement pattern. 

For clamped slabs (case B), results of the moment distributions are 

given in Figure (5.4) and Figures (D9 to D16). Although the torsionless 

analysis tends to give higher moment values, the two methods do not 

differ very much from each other. In the two analysis, the ratio between 

the support to central moment is about 2. The extension of the supports 

reinforcement in slabs with sides ratios greater than 1.0, agrees very 

well in the two cases. For edge strips, this steel extends the full 

strip length, and extends to about 0.2 L in the central strips. 

For slabs with two adjacent edges simply supported and supported 

on a column on the opposite corner (case G) the two methods produce 

different distributions, as can be seen from, Figures (5.9, D49 to D56). 

The torsionless analysis requires very strong bands of steel along the 

free edge strips, with little steel at the centre (the ratio of free 

edge to centre steel is about 214)- On the other hand, 'the torsional 

analysis produces a more even distribution, even for this case. 

Finally the present design approach, which is represented by the 

torsional analysis is compared with the yield line designs. The case 
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considered is the square simply supported slab of Table (5.1). It 

will be assumed in the yield line design that the slab is reinforced 

in a banded form with the slab being divided into a centraland two 

edge strips in each direction. The ultimate moments provided in the 

central strip of width 2x is m2, that of edge strips is ml. Differences 

in the lever arms will be neglected$ so that the steel volume is 

proportional to the moment volume. By considering the two modes of 

failure in Figure (5.12). then the volume of steel is minimum when 

the ultimate loads of the two modes are the same. This will give 

x=0.375 L where L is the span length, and 

0.0746 q L4 

0.0241 q L2 

m2 = 0.0475 q LZ 

Now for the same slab, from Table (5-1) and Figure (5-3) we have: 

V=0.0744 q L4 

m, = 0.0225 q L2 (5.2) 

m- = 0.0475 q L2 
2 

The moment values in (5.2) are the central value and the value 

at the mid of strip 2 in Figure (5-3), which is at 0.15 L from the 

support. This distance is equivalent to x=0.35 Z, as compared to 

0.375 L in the yield line analysis. 

Equations (5.1) and (5.2) show that the two methods yield the 

same results. The only difference is that vhile only three bands are 

used in each direction in the yield line analysis, the present design 

method assumes many more bands. Since the derivation in the yield 

line theory here had been based on an assumption of equal ultimate loads 

in tvo failure modes, it can be concluded that the use of banded 
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reinforcement will involve failure by simultaneous formation of many 

collapse mechanisms. In. the limit when every point is designed 

according to the stress distribution, an infinite number of collapse 

modes will form at the design load, due to the yielding of all portions 

of the slab and not just along the yield lines. 

5.2.4 Conclusions: 

Based on what has been presented the following conclusions can be 

drawn: - 

(1) The distribution of design moments in concrete slabs can 

conveniently be obtained by using the finite element method. 

Putting the shear modulus G=0 in the analysis produces 

solutions without torsional moments, which is equivalent to 

the Fernando and Kemp's strip deflection method of slab design, 

and thus to Hillerborg's method (Torsionless Solutions). 

(2) Using isotropic material properties 'ýith the shear modulus 

G00.0 in the finite element analysis. solutions were obtained 

which were linked with the design equations of Chapter (3) to 

produce distributions of design moments in concrete slabs. The 

procedure takes torsional moments as well as the normal moments 

in the calculation of the normal design moments (Torsional 

Solutions). 

The strip method represented here by the torsionless analysis 

produces moment volumes which compare within acceptable variance 

with those obtained fromi the proposed direct design method, 

provided the additional torsional steel is included. 
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For slabs discontinuous on all edges (i. e. simply supported a. 11 

around),, the direct design method produces more economical 

solutions than the strip method. Using the torsional analysis 

suggested here a saving in steel can be obtained in this case 

of between 10 to 19% of that required by the strip method. 

The suggested torsional analysis provides a fairly smooth 

variation in the distribution of design moments. Accordingly, 

the designer can base the reinforcement design in the strip on 

either the maxiTnurn or the average value of the design moment in 

the strip, without departing far from the original distribution 

of moments in the strip. 

(6) The proposed method provides both the required quantity of torsional 

steel at the corners, and the length over which such steel should 

extend. In normal practice, such a steel is only taken as a certain 

percentage of midspan steel, as prescribed by the Codes of Practice. 

(7) The method also provides the amount and the distribution of transverse 

steel. In some cases, the simple strip method requires no steel in 

this direction, and the designer will provide such steel based on 

Code requirements. 

(8) The method is found to compare accurately with designs based on the 

yield line theory involving failure under simultaneous collapse 

modes. The present direct design approach has the advantage 

of providing distributions of moments with a wider choice than that 

permitted by the yield line theory. The comparison lead to the 

conclusion that the proposed direct design approach which allows 

for yielding of all portions of the slab) permits failure with 

simultaneous collapse modes under. the design ultimate load. 
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Table'(5.2): Comparison betweenzoment, volumes produced by 
Torsional andTorsionless analyses -'Additional 
moment volume due to torsional reinforcement 
according to CP110 is added to the case of 
torsionless analysef. 

N. B. All moment volumes are in terms of qL4 Y. 
.... .... ......... ... 

Slab Type 
LxG00........ G -ý'O ...... - ''TOTAL' 

vvv +V 
vGý0 

total 
, ... 

Vl 
.. a... 

I.. 

l.. a vG=0 

1.0 . 0882 . 0715 . 037. . 1085 . 813 

1.25 . 1200 . 0988 . 0487 . 1475 . 814 

1.50 . 16oo . 1309 . 05952 . 1go4 . 84o 

1.75 . 1995 . 1616 . 0655 . 2271 . 878 

2.0 . 2357 . 1go6 o6gi . 260 . 907 

1.0 . 1150 . 0791 . 0396 . 1187 . 970 

1.25 . 2189 . 1444 . 0648' . 2092 i. o46 

1.50 . 3627 . 2385 . 096 . 334 l. o86 

1.75 . 5431 . 3656 . 1304 . 496 1.095 

2.0 . 7609 . 5359 . 1728 . 7089 1.073 

1.0 . 0520 . 0378 . 0054 . 0432 1.2o4 
AAAolýeýW 1.25 . 07o4 . 0557 . 0071 . 0628 1.12 

1.50 . 0910 . 0709 . 0085 . 0794 1.146 

1.75 . 1096 . 0847 . 009 . 0937 1.17 

2.0 . 1262 . 0986 . 00912 . 1077 1.172 

1.0 . 1538 . 1063 . 0324 . 1387 1.109 

1.25 . 2505- . 1727 o438 . 2164 1.157 

1.50 . 3866 . 2695 . 0564 . 3259 1.186 

1.75 . 5594 . 4039 . 0704 . 474 1.180 

2.0.1 . 7727 
. 
-5844 0090 -- 

. 6744 
.... ... 

1.146 

V, = moment volume without torsional steel 

= additional torsional steel moment volume V 
a 

V= total moment volume =V +V 
a 1 
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z 2x 
LL 

1- 2x 1 
Mo de 1 Mo de 2 

For unit deflection at the intersections of the yield 
lines* 

Mi 

Mode 1: qX2/3 = 4(=, (t - 2x) + m2 2x) x-2 

qx 
24 x) + 2m x/. Z ) 

2 

)2, Mo de 2: q 
[(Z 

- 2x /3 ,+ 4(L - 2x) x/2 + 4x2 
] 

=. 4m, 2£ 
(Z - 2x) 

24mi 

. Z2(1 

For a given x. the minimum moment volume is when the ultimate 

loads from the two modes are the same. 

V=2 (MJ(12 - 4X2) +m2 (2x)2) 

and for minimum volume 

dy 0 
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Figure (5.12) Optimuni Minimi= Weight Solution for a Square 
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5.3'NUMERICAL EXPERIMENTS: 

5.3.1. 'Geteral. 

A series of computer experiments, using the layered finite 

element program were conducted on a number of rectangular slabs. 

The slabs were all designed by the proposed direct design method, 

except two, which were intended for comparison with the direct 

design method. The object of these numerical experiments is to 

study the service and ultimate behaviour of the slabs designed by this 

method. 

The proposed method uses. the initial uncracked stiffnesses in the 

elastic analysis under the ultimate load. However, it is not likely 

that the resulting elastic stress distributions would actually occur 

in the slab under ultimate conditions,, for the following two reasons: 

(a) Owing to the progressive cracking as the load increasess 

the slab stiffnesses gradually deteriorate. 

(b) The yield criterion adopted in the design is, after all 

an approximation to the exact yield criterion. 

Accordingly, redistribution of stresses is bound to occur, 

though, it is anticipated here that this would be minimum. Although 

it is believed that the strength of under-reinforced sections is 

dependAnt on the steel provided, there is no guarantee that the 

behaviour under service loads will be satisfactory. The 166tter is 

more dependant on the stiffness of the cracked sections and the 

extent of cracking. Accordingly, such numerical experiments are 

justified. 

The variables in the study are as follows: 

(a) Boundary Conditions. 
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(b) Sides ratios. 

(c) Materials'properties. 

The slabs in this study can be divided into five series as 

follows: 

Test Series 1: - includes ten slabs simply supported on all sides. 

Test Series 2: - includes five slabs simply supported on three 

sides, with one edge free. 

Test Series 3: - includes five slabs simply supported along two 

adjacent edges, while the opposite corner is 

resting on a column. 

Test Series 4: - includes three slabs supported by edge beams all 

around. 

Test Series 5: - includes two slabs simply supported on three sides, 

free on the fourth. This test series is intended 

to provide a comparison between the proposed direct 

design approach and the simple strip method. 

In each of the first three seriess slabs with sides ratios 

between 1.0 and 2.0 were examined. 

5.3.2 Designation of Slabs tested: 

All test slabs were designed to carry uniform loads only. 

In each runs the slab was first designed for a specified ultimate 

load using the direct design approach. All safety factors on the 

design load and the materials were taken as'unity, the slab was then 

analysed under an incremental load till failure. This would constitute 

a full computer experiment. The computer experiments were given the 

serial names N1JMEX 1, NUMEX 2... etc., and Tables (5-3)to (5-7) 
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describe the type of each problem in each numerical experiment. 

5.3.3'Proportioning'and'L6Acling. 

In the slabs in Series 1 to 3, one dimension was chosen to be 

2000 mt. while the other dimension, (always along the X-axis) was 

varied for each run. The slab depth in each case was taken as span/20. 

The definition of the term "span" used in calculating the depth depends 

on the boundary conditions of the problem. For slabs supported along 

four edges, the span length was taken as the length of the short side 

of the slab. For other cases involving free edgess the span length 

was taken as the length of the longer free edge. 

An arbitrary design load was chosen, and an elastic analysis for 

the slab under the design load was obtained from the finite element 

program. The output. from such an analysis would normally include the 

elastic deflections and the moment distribution under the choqen. load. 

The design moments derived using the design equations of Chapter (3) 

in this research, were also obtained from the program, Since the 

initial uncracked stiffnesses were used in the analysis, these elastic 

deflections cannot be used directly as an indication of the deflections 

under service loads. Due to crack penetration through the depth of the 

slab, the flexural rigidity would be greatly reduced. In the present 

research, an effective moment 6f inertia was used to predict the 

deflections under the service load, using. the Branson IS(93) method. 

The assumptions and the derivation of the necessary equations*are given 

in Appendix (E). Using the elastic deflections under the ultimate load, 

6es the predicted Tnaximim deflection under the service load is given by 

6. I 

-. 1 x -a (5-3) 
LF I 

eff 
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where 

6= predicted maximinn deflection under sex-vice load 
P 

4= maximum elastic deflection under ultimate design 
e 

load 

LF = Load factor (-* 

19= gross moment of inertia of the section 

Ieff = Effective moment of inextia of the section. 

In this study, the limiting service deflection 6L was taken 

as the span/250. Accordingly, the predicted deflection was limited 

to that value, in choosing the suitable depth of the slab, or the 

design ultimate load. 

5.3.4 Analysis: 

For each experiment, the deformational behaviour resulting from 

various changes in slab material due to progressive cracking and 

yielding under increasing-load, has been traced using the nonlinear 

finite element program, described in the previous chapter. For slabs 

having supports symmetry about their two orthogonal centre lines, only 

one quadrant was analysed using a4x4 subdivisions. In cases with 

one axis of symmetry, half the slab was analysed using a. mesh of 6x6 

elements. The unsymmetrical cases in test series 3 were analysed using 

8x8 elements over the whole 'slab. For the slab-beam systems in 

series 4. a mesh of 5x5 elements over a symetric quadrantwas used. 

For all tested models, the slab thickness was divided into six 

concrete layers, plus tvo to four steel layers, as might be required 

by the reinforcement design according to the elastic analysis. The 

elastic analysiswas aone by using six concrete layers with no steel. 
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k1l experiments were assigned the following materials properties, 

except test series 4: - 

Concrete compressi-7e strength, f 
cu = 20 N/'MM2 

Concrete tensile strength, ft=1.5 Njmmz 

-e, E 14000 N/nm2 Young's modulus for concret 
c 

Poisson ratio for concrete, v=0.15 

Yield strength of steel, fst = 300 NIMMZ 

Young's modulus for steel, Es= 210000 N1=2 

Experiments NUNEX 3.6 to 10 were designed to study the effect 

of varying materials properties on the behaviour of the slab. The 

slab tested in this series was simply supported with LxAy=1.50s 

and subject to a uniform load of 33.3 KN/mm2 The concrete strengths 

considered were 20,25,309 359 40 N/=2 with ft=0.075 fcu. 

NUM 10 was assigned f 20 N/mm: 2, but f 410 N/mraZ. In each 
cu st 

test, a load increment size. of 0.1 P 
cr 

(the cracking load of the slab) 

was the maxiMUTO value used, for all slabs. 15 iterations were used 

in most cases (except in the slab-beam systems, where 30 were used), 

with 2x2 sampling points in each element. The displacement and 

force norms (see Section 4.3-5) used to limit the iterations were 

1x 10-4 and 0.01 respectively, (e.: ecept the slab-beam systems3, for 

which the force norm was taken as 0.05). 

In evez7 test, the following aspects of structural behaviour 

have been investigated: - 

(1) Deflections: short te= deflections under increasing load till 

failure. For simplicity, only the point of maximum deflection 

will be considered. 

(2) Redistribution of internal stresses: The redistribution of 

bending moments in the reinforcement directions due to material 

nonlinearity will be considered. 
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Cracking and yielding of steel: A quantitative measure of 

cracks is not feasible by the present model, since the model 

employs a smeared crack approach. But, since crack widths 

can be related to steel strains, the latter can be used as a 

measure of the crack widths, and accordingly will be investigated 

in this study. 

(4) Failure loads: Although the use of the proposed design 

philosophy is expected to yield lower bounds on collapse loads, 

load enhancements due to strain hardening and membrane forces 

are also possible. The analysis will then try to study these 

effects. 

5.4 RESULTS, DISCUSSIONS AND CONCLUSIONS: 

5.4.1 Test Series 1. 

This series includes tests on slabs which are simply supported 

along all edges, and can be divided into two subseries. 

1. Subseries 1A: and includes the test runs NUMEX 1 to 

and were aimed to study the behaviour of SiMPlY supported 

slabs with various sides ratios. 

2. Subseries 1B: and includes the test runs NUM 396979899910 

which were made on a rectangular simply supported slab with 

sides ratio = 1.5, under a uniform load of 33.3 KN/m. 2. The 

tests were aimed to study the effect of various materials 

properties on the response, 

Results of both subseries are shown in Figures (5-13) to (5-18)- 

For convenience, a sim=ary of the results is given in Table (5-3) and 

Table (5.4), respectively. 
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5.4.2 CONCLUSIONS: 

5.4.2.1'Subseries 1A. 

1. The service behaviour of all the slabs in this series was 

satisfactory. The deflection limit of span/250 has been 

reached at an average of 67% of the design loads. This gives 

a high service load in terms of deflections. In tezms of steel 

strains, first yield was observed at an average of 69-0% of the 

design load. All slabs showed an identical service behaviour. 

2. Yield of steel was concentrated in the short span direction. 

Irrespective. of the side ratio, 81% of the total steel in this 

directionýhas completely yielded when failure was reached. 

Yield in this direction reaches the boundaries of the slab at 

about 91 to 96% of the design load. On the other hand, only 

a small percentage of steel in the long span direction yields. 

This percentage reduces with the increase in sides ratio. 

3. The distribution of normal moments at the design load is very 

close to that predicted by the elastic analysis, only in the 

short span direction. In the long span directions the moments 

are much smaller than those predicted by the elastic analysis. 

The difference increases with the increase in'sides ratio. 

The slabs in this series did not record a significant increase 

in the ultimate load. Under the design load, many collapse 

mechanisms can combine from the extensive yielding on most of 

the slab portions. 

5.4.2.2-Si! b8eries'B: (Variables. "Coricrete'and'Ste6I StrenEýhs) 

1. An improved service behaviour is obtained by increase in the 

compressive strength of concrete. This is represented by high 

'cracking loadsq low deflections and reduced steel strains. 
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2. The service behaviour of all slabs was satisfactory. The 

deflection limit of spanJ250 was reached at an average load 

of 0.78 Pd. With high compressive concrete strengths, 

deflection limits occur at loads close to the design loads, 

in this test series. 

3. No yield of steel occurs within the service load range. 

In fact, for high grades of concrete, first yield loads were 

close to the'design loads. An average value of 0.78 Pd was 

obtained for the first yield loads. 

4. The use of high yield steel with low grades of concrete lead 

to a slightly flexible behaviour. But still the overall 

response was satisfactory. 

5. Similar to the slabs in the previous series, the distribution 

of the normal moments in the short span direction was very 

close to that predicted by the elastic analysis$ on most of the 

slab area. The distribution of the normal moment in the long 

span direction is different from that predicted by the elastic 

analysis. 

For the same steel strength, the induced compressive membrane 

force at ultimate loads increased in magnitude with higher 

grades of concrete. 

5.4.3 Test'Series 2: (Slabs'simply'saported'6n 3 sides) 

This series includes the test runs NUMEX 11 to NUMEX 15. The 

slabs in this series were all simply supported on three sides, and 

free on the fourth. The slabs were designed for a uniform load of 

20 KN/m2-q and the analysis was intended to study the behaviour for 
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various sides ratios. In these slabs, the free edge has always been 

taken as one of the long edges, along the X-axis. 

The distribution of the design moments for some of the slabs in 

this series can be found in Figures (5-5) and Figures (D17 to D24) in 

Appendix (D). The distribution of the support reactions is given in 

Figure (5-19). From these figures, it can be seen that most of the 

load is carried by bending of the strips parallel to the free edge. 

Figure (5.19) shows that for a square slab, 82% of the total load is 

carried by strips parallel to the free edge. This agrees quite well 

with the 45 0 load distribution recommended by CP110(5). In this 

case, the 45 0 load distribution will give 75% of the total load to 

be carried by these strips. However, in both distributions, the 

proportion of the load carried by the strips parallel to the free 

edge reduces with the increase in sides ratios. For a slab with a 

side ratio of free to short edge of 2.0, the 45 0 distribution gives 

50% of the total load, while the finite element gives 38% of it to be 

carried by the strips parallel to the free edge, which indicates that 

most of the load is carried by the short span strips. 

Accordingly, if the span in the span/depth ratio was taken as 

the long free edge, the resulting behaviour would be satisfactory. 

In fact such an analysis was first undertaken, but it was found that 

this was too conservative, for slabs with sides ratio greater than 1.25. 

The results of such an analysis are not. shown here, but it was found 

that, yield of steel started at an average load of-0.92 Pd. while the 

deflection limit was reached at 0.9 Pd. 

The same slabs were redes, igned with reduced depths. The assumed 

depths were chosen such that the predicted deflection did-not exceed 
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the limiting deflection of span/250. The results of the analysis of 

these slabs are given in Figures (5.20) to (5.22), and a summary is 

given in Table (5-5). 

5.4.4 Conclusions: 
(1) The service behaviour of all slabs in this series was satisfactory. 

An average of 0.76 Pd was obtained for the service deflection 

load and 0.75 Pd for the first yield load. 

(2) The response of the slabs in this series is sensitive to the 

early cracking of the elements on the free edges. As this method 

provides gradual distribution of steel, it is to be expected 

that the service behaviour will be governed by the*conditions on 

the free edge. For better performance, it is suggested here that 

the steel on each strip to be provided according to the maximun 

moment in the strip, without. curtailment. Adequate anchorage 

of the reinforcement on the free edges should be provided to 

ensure full transfer of load to the supports. 

An average enhancement in the ultimate load of about 12% is 

obtained for the slabs in this series. The enhancement is 

caused by the developed menbranC- action on the slabs. 

5.4.5 Test Series 3 

This includes th e test runs NUMEX 16 to NTJMF. X 20. The slabs 

in this series were all simply supported on two adjacent edges and 

supported on a colu= on the opposite corner, while the other two 

edges were free. The slabs were designed for a uniform load of 

20 KN/M2. and the analysis was intended to study the behaviour for 

various sides ratios. In all slabs, the long free edgewas always 

along the X-axis. 
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The distribution of the design moments for the slabs in this 

series are given in Figures (5-9) and Figures (D49-D56). Figure 

(5. *28)*gives the distribution of the support reactions, for the 

five cases considered. From these figures, it is found that the 

load dispersion is dependsnt upon the sides ratios of the slab. 

For a square slab, 37.5% of the total load goes to each of the 

supported edges. The column at the opposite corner always takes 25% 

of the total load, -irrespective of the the sides ratio of the slab. 

As the sides ratio increasess more load is carried to the long side 

support. For a side ratio of 2. the load carried by the long support 

is 1.4 times that carried by the short side support. But in general, 

the bending moments in the long span strips are almost equal to those 

in the short span direction,, and represent the maximuca moments in the 

slab as a whole. It is also very interesting to note that, the 

variation of the design moments along each strip is very gradual, and 

is almost constant. The reaction at the end of the long free edge, 

Figure (5.28) indicates that a large proportion of the load dispersed 

in this direction is carried by the strips closer to the free edge. 

Results of the nonlinear analysis of the slabs in this series are 

shown in Figures (5.23) to (5.27). and a suamary is given in Table (5.6). 

In general, apart from the square slab, the maximum deflection in the 

slab occurs at a distance of Lx 13 from the column, along the long free 

edge. For the square slab the point of maximum deflection is at a 

distance of 0-53L from the column along the diagonal. The deflections 

plotted in Figure (5.23) refer to these points. Points of ax-Imum 

strains are at 0.3 L from the column , on the free edge. 
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5.4.6-coriclusions: 
(1) The service behaviour of all slabs in this series was satisfactory. 

The deflection li=*t of spanJ250 was reached at an average load 

of 0.70 Pd. 

(2) Yield of steel started at an average load of 0.67 Pd. The spread 

of yield starts on the long free edge strips and progresses 

inward towards the centre. 

The distribution of the long span moments at the design load is 

very close to that predicted by the elastic analysis. With 

increase in sides ratio, the moment in the other direction at 

ultimate load is very much less than that predicted by the 

elastic analysis, except on the strips close to the short free 

edge. 

Similar to the slabs in the previous series, the behaviour is 

governed by the stress conditions on the free edges. Reinforce- 

ment in these edges can be provided based on the maximum on the 

strip without curtailment. Adequate anchorage has to be 

provided to transmit the load to the supports. 

5.4.7 Test Series 4: (Slab-Bean Systems)* 

This series includes the test runs NWEX 21, NUMEX 22 and 

N= 23. The slabs were ass=ed to be monolithically cast with 

their supporting beams. All three slabs had the same dimensions, 

and had identical supporting beams. but differed in the amount and 

distribution of reinforcement. The dimensions of the slabs and the 

beams are given in Table 

The tests in this series were aimed at studying the behaviour 

of the slabs designed by the proposed direct design procedure, and 
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to compare the methoawith designs based on the yield line theory. 

Accordingly, NUM 21, ana N= 23 were designed for a uniformly 

distributed load of 20.8 KNjm2 . which was the design load for 

NTJMEX 22 by the yield line theory. N= 22 was in fact designed 

and tested by Hayes and Taylor 
(84) 

t by combining the composite 

rectangular mode and the diagonal mode of the slab, Figure (5-29). 

Accordingly, these slab-beam systems were designed to carry a 

uniform load of 20.8 KN/m2. 

In NUMEX 21, only flexural forces (M 
x, 

My, M 
-V 

) were considered, 

and the model was designed using the design equations of Section (3.4). 

However, NUMEX 23, which was also designed by the direct design 

approach, was designed for combined flexural and membrane forces. 

A sandwich model (Section 3.7) was used in this case, and the model 

was designed using the design equatioms. of. Section (3.6). 

A comparison between the design moments and steel volumes in 

the two.. methods is given in Figures (5-31), and Table (5.8). At the 

middle of the slab, both the yield line theory and the present design 

procedure (for flexure only) give an ultimate moment Of -SL 
2 

24 

In this particular case, both the upper and lower bourid'solutions 

coincide, when considering the diagonal collapse mode for the slab. 

On the other hand, if the compressive membrane force at the centre 

of the slab is taken into account, the corresponding moment of 

resistance required at the middle of the slab reduces by 15% of 

that required by the design for pure flexure (see Table 5-8). But 

the edge beams moments increase by about 18%, and is about 55/'-', 

above that required by the yield line analysio. Thus$ the reduction 

in the slab reinforcement is more than offset by an. increase in the 

reinforcement of the supporting beans. 
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Figure (2.29): Possible Collapse Modes in Square Slab-Beams Systems 
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Although the unfilled sandwich model used here requires more 

steel than that required for flexure only, the increase in this 

particular case is only slight, and Table (5-8) gives a difference 

of only 7/% between the two designs for the particular case at hand. 

But still both designs are more economical than the corresponding 

yield line design. A saving of up to 30% was achieved in this case. 

The results of the nonlinear analysis for the slabs in this 

series are given in Figures (5-30) to (5.35) 
. which are simmarized 

in Table (5-7). From these results, the following conclusions can 

be drawn: 

5.4.8 Conclusions. 

1. All the slabs in this series had identical service behaviour. 

In all cases, both deflections and steel strains were vithin 

the acceptable limits in the woetting load range* 

2. First yield of steel occurred at different loads in the slabs. 

In case of yield line design (NUMEX 22), first yield of steel 

started at the centre of the edge beams at 0.75 Pd, whereas in 

the systems designed by the present direct design approach 

(NUMEX 21,23), yield of steel started at the corner at the 

junction between the two beams at about 0.67 Pd. 

3. The initiation of yield at the corners of NUMEX 21 and NUMEX 23 

was followed by yield spreading along the diagonalvof the slab. 

The diagonal collapse mode formed in these slabs before the 

reinforcement in the beams started t6 yield. 

4. The slight increase in reinfoxcement volume due to the 

consideration of membrane forces in the design of this system 
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produced slightly less deflections in the slab within the 

service load range, but did not affect the deflections after 

first yield in the slab. 

Extending the midspan reinforcement in the beams of ITUM 22 

along the full length of the beam had the effect of enforcing a 

rectangular mode of failure. In such case, the diagonal mode 

did not form at all. 

Under the present direct design approach, several simultaneous 

modes of collapse formed when the design load was reached. 

No significant difference between the behaviour of the two slabs 

NUMEX 21 and NUMEX 23 was obtained. Accordinglyq whether membrane 

forces were taken into account in the design or not, both systems 

designed by this method would behave satisfactorily-. 

5.4.9 Test Series 5: 

Two slabs in this series were considered. Th6 slabs were simply 

supported on three sides, free on the fourth long edge, with a side 

ratio of 2.0. Both slabs had the same dimensions and were designed 

for an ultimate load of 20 KN/m2-. The test slabs were designated 

NUMEX 15 and HILLERBORG, and were intended to study the behaviour 

of slabs designed adcording to the two design procedures, viz., 

the direct design (NUMEX 15). and the strip method (HILLERBORG). 

In HILLERBORG, the shear modulus G=0 in the elastic analysis 

(Torsionless analysis), while the nonlinear analysis was performed 

on the slab with G00, in the normal way. 

A comparison of the design moment fields in the two slabs is 

given in Figures (D21, D22, D239 D24) in Appendix (D). And as has 
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Table (5.8): Comparison of Steel Quantities in the 

Slab-Beam Systems in Series 4. 

NUMEX 21 NTJMEX 22 NUMEX 23 

Design Load (KN/mý) 20.8 20.8 20.8 

Method of Design Direct design Yield line Direct design 
for flexure Theory for combined 

flexure and 
membrane forces 
(unfilled sandwich 

model) 

Maximum Slab Moment 
Ma 

. 
(Nmm/mm) 2800 2880 2344 

Maximum edge beam 

moment Mb (Nmm/mm) 87000 6gooo 103000 

Steel volume in 

beams (MM3) 2.606 x los 2.7 )( 10S 3.119 x 105 

Steel volume in 2.034 x 105 3.392 x 105 1.851 x 105 
slabs (=ý) 

,, r ume, Total st el 1 

I-- 

4.644 x 105 

1- 

X 105 6.092 

1- 

4.97 x 105 

II 

* For reinforcement layout in NUMEX 22 see Figure (5.30) 

11 
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been shown in Section(5-2-3)s the design moments in the two cases are 

quite different. 

Resulti of the nonlinear analysis of the two slabs are given 

in Figure (5-36), tO Figure (5-38), and a siumary is given in Table 

(5.7). 

5.4.10 Conclusions 

1. The increased amount of steel in the outer strips of (HILLERBORG) 

had the effect of raising the cracking load of the slab. 

2. The service behaviour of both slabs was satisfactory. A 

deflection limit of span/250 was f irst reached in NTJMEX 15 at 

0.69 Pd. 

In thq post yield behaviour, the slab designed by the direct 

design method (NTJMEX 15) behaved in a more fle. xible way than 

the one designed by the strip method. Both deflections and steel 

strains were very much greater in NUMEX 15 than in HILLERBORG. 

The spread of yield in the two cases was quite different. 

Yield in HILLERBORG started at loads closer to the design load, 

and was concentrated on the strips near the free edge. Yield 

in thý inner strips occurred either at or after the design 

load. In the case of NTJMEX 15, yield started on the free edge 

at 0.65 Pd. Subsequent spread of yield covers most of the slab 

area, and does not follow a r'egular pattern. 

The distribution of the long-span moments under the design 

load is identical to that predicted by the elastic analysis. 

in the two cases. The other no=al moment is quite different 

in both cases at the design load. 

. 1,1 
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Both slabs supported loads in excess of their design load. 

While NUMM 15 recorded 12% above the design load, HILLERBORG 

recorded 22% enhancement at failure. 

Enhancement in the ultimate loads is caused by the induced 

compressive membrane force, which was higher in HILLERBORG 

than in NUMEX 15. 

In the exanples given here, although the proposed direct 

design procedure requires about 35% more steel than the simple 

strip method, the slab designed by the strip method behaved in 

a better way than that designed by the direct design method. 

The effect is caused by concentrating the reinforcement in the 

free edge strips in the strip method. 
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EXPERIMENTAL MESTIGATION 

6.1 INTRODTTCTION 
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The theory given in Chapter Three has been used in the design 6f 

the experimental slabs. The work is intended to provide information 

on the practical problems involved in implementing the proposed 

design method, and give a clear insight into the behaviour of the 

models designed accordingly. In this chapterl full account of the 

experimental work is given. 

6.2 PARAMETERS OP STUDY: 

Only rectangular slabs have been considered. Laxge scale models 

with a minimt= dimension of 2000 mm were tested. Since the design 

procedure would yield a continuously varying reinforcement patternp 

the use of such large dimensions is obligatorypin order that the 

vaxiation in steel can be properly represented. The thickness of-Jký--\ 

all designed slabs was chosen to comply with the limiting span/depth 

ratios'specified by Section (3-3-8) of Cp, 10(5). A fixed span length 

of about 2000 mm is used in all the slabs tested, and accordingly, the 

depth, was fixed at 100 mm. The other length of the models was va--ied 

from 2000 mm to 3000 =, covering three sides ratios of 1.0,1.30 and 

1.5. 

The support conditions considered included the simple support, 

point support, and integral slab-beam systems. For each tests the 

following were recorded: 

1. Lateral deflections 

2. Steel and concrete strains 

Crack widths and development of cracks 

Fail=e loads. 
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6.3 SLABS DESIGNATION: 

In all, six Silabs were tested. Table (6.1) gives the details 

of boundary conditions and the dimensions of each slab. 

Tab Tested Slabs-designation and dimensions 

Test Designation Su . pp . or 
.t.. c. o. n. d. i. ti OnS Dime ns io ns 

1 Model 1 ý5imply supported on all 3100 x 2140 x 100 
sides 

2 Model 2 it 2600 x 2140 x 100 

3 'Model 3 2100 x 2140 x 100 

4 Model 4 2040 x 2000 x 100 

5 Model 5 simply supported on all 100 x 2140 x 3 100 
sides . 

Model 6 1 3120 x 2180 x 100 

All beans axe 
200 x 300 mm 

slab-beam system monolithic cast.. 

6.4 DESIGN OF THE MODELS 

For a given load, the design moments axe obtained by performing 

an elastic analysis on the slab using the finite element prograrip and 

the design equations of Chapter Three. For a given calculated design 

moments (M* 
9 M* ) the reinforcement at any point on the slab is 

xy 
designed according to the limit state theoryq with all safety factors 

on both loads and materials taken as unity, and the design is made 

according to the assumed'stress block shown in Appendix A. This 

results in a variable reinforcement pattern like the-one given in 

Fig=e (6.1). The amounts of steel given at any point axe per unit 



215 

length. Two methods can be used to repls; Lce the distributed steel 

axeas by reinforcing bars: 

(a) Since the variation of the distributed steel areas is not severe 

from point to pointt these areas can be averaged over a certain 

width. The total steel area is then obtained by =ultiPlYing 

the average value, by the corresponding width, and hence can 

be replaced by one bar of an equivalent sectional area. 

(b) Over a certain width, the design can be based on the maximum 

value of the distributed steel areas. Total steel area needed 

over such a width can thus be obtained by multiplying by the 

co=esponding width. 

For the range of. problems tested herel the reinforcement in each 

element was approximately constantp and accordinglyt the design was 

based on averaging the distributed steel areas within each element. 

This reduces the problem to one of providing reinforcing bars in 

parallel stripsg each having a width equal to the width of one element. 

The procedure can best be illustrated by the aid of Figures (6.2), 

(6-3)* 

Along the strips, the averaging process was done only when the 

distributed ste'el areas do not differ by more than 25Y6 of the larger. 

Normallythe variation of steel from element to element along one 

strip is smooth, as can be seen from FigL=e (6.2)9 and accordingly, 

an average value or a maximum value can be used until the difference 

exceeds the 259% value of the maximum. In cases where there is a high, 

stress gradient within a strip, as is usually seen in those containing 

concentrated loadsq an average value is-used throughout the strip 

length, and the extra steel needed over the average provided is added 

locally across the elements containing the load. The average reinforce- 

ment in this area is usually carried right 4-o the supports to ensure 



216 

adequate transmission of load to the edges. 

In cases where no steel is needed over an element, it might 

still happen that a bar has to be carried on to the supports. This 

is done in order to comply with code requirements. S)-ich areas are 

normally found near the supportsq where shear stresses might be high, 

and thus extending some bars in this region is ýustified as providing 

increased shear resistance. Since the p=ogram does not take shear 

stresses into account, a check has to be made to ensure that the slab 

will not have a premature shear failure. Accordinglyq the sheax 

requirements of Section (3-3.6) in Cpllo(5) were followed. In one 

caseq shear reinforcements had to be provided over the concentrated 

corner support of model 

Torsional reinforcement was also needed for the supporting beams 

in model 6. The flexural reinforcement in the beam was provided by 

the finite element program, but the additional torsional steel had to 

be provided in accordance with Section (3-3-7) of CpjjO(5). Erheax 

reinforcement in the form of stirrups was only provided in the 

supporting beams of model 6, according to CP110. 

One important factor in choosing the reinforcing baxs is the 

bond stress. The designer may have to changd the layout of the 

bars more than one timet until he is sure that the permissible bond 

stress is nowhere exceeded. In this work, each bar was hooked at 

both ends, and was adequately secured so that the bars formed a 

strong mesh, and the. bond requirements of Section (3.11.6) of C2110(5) 

were strictly followed. 

In trying to achieve a reinforcement distribution close to that 

requirea by the elastic analysis, and at the same time to comply with 

the code regulations, the total steel volume provided is in general 



t. . 
21 

much more than what is required. 'Table (6.2) 'gives, a comparison 

between the theoreticýi steel needed 'Wýd that provided for the six 

models tested in this investigation. Figures (6.4) to (6.9) give 

the reinforcement provided in each model. 

6.5 MATERMS 

Cement: Ordinary Portland Cement was used in all tests. 

Aggregates: Hynford sand and gravel were used for all mixes. 

The maximurn size of the uncrushed gravel used was 10 =, and the sand 

grading was Zone 2. 

Concrete mixes: The concrete mixes were designed to give an 

average cube strength of 40 N/mmZ at 28 days. Two mixes with the 

same strength but different workabilities were used. A medium 

workability mix was used for the models for which the mix was produced 

in the laboratory, and a high workability was used for ready made 

mixes,, supplied by a ready mix Company, and was used to cast models 

Nos-1,5 and 6. These models had very large sizes, and therefore it 

was convenient to use ready made mixes rather than make the concrete 

in the laboratory. For the other models, the mix is produced in 14 to 

18 batches of 70 kg each. 

For each model, the control specimens were eight 100 mm cubes 

and eight 150 mm diameter cylinders. Half the control specimens 

was cured in water, the other half was kept near the model under 

a polythene cover. 

All control specimens were tested on the same day as their 

respective =dels. 

Standard tests to determine the cube compressive strengths 

cylinder splitting tests, and the static modulus of concrete were 
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conducted according to the British Standards 
(61). 

No. BS. 1881: 1970- 

The concrete tensile strength obtained from the cylinder splitting 

test as 

ft 2P 

7r DL 

as shown in Figure (6.10)o Average values for the materials 

properties for each model were calculated and are given in Table (6.3). 

Reinforcement: High yield deformed bars were used in all 

models, except model 6. Because a considerable amount of reinforcement 

involving different bar sizes have been used, only certain random 

samples were cut off from the batches of the steel bars for different 

sizes, and were tested in an Oslen testing machine, fitted with an 

S-type electronic extensometer. The testing procedure followed the 

rnnufacturer's instruction manilal. The yield point for the high yield 

steels used was taken as the . proof stress corresponding to 0.2% strain. 

Figure (6.11) gives the stress-strain curve for the type of steel used. 

Tests on several bars gave an average yield point of 4T3 N/mm2q and an 

initial modulus of 214 KN/mm2 . 

For model No. 6, the amouniS of reinforcement in the slab was 

very small,, due to the effect of surrounding beams. Since the smallest 

available bar diameter was 8 mm, for high yield steel, it was discarded$ 

and mild steel was used instead. The stress-strain curves for the type 

of steel used is given in Figure Average values obtained were 

300 Ný=Z for the yield point, and 214 KNJmm2 for Young's modulus. 

6.6'STPAIN GAUGES: 

Prior to casting each model, strain. gauges were attached to the 

reinforcing bars. The strain gauges used were electrical resistance 
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gauges of the type F-A-06-250BG-120 with 1PO-0 n 0.15% resistance 

and 2.095 ±*0.5% gauge factor - 
at 750F. The gauges are 

. 
made of a 

thin foil of Constantan in combination with a tough, flexible, 

polyl'=*de backing. The constantan alloy is made in self temperature- 

compensated form. The strain gauges were attached to the reinforcing 

bar after filing off the ribs of the bar, and were bonded using an 

M-bond 200 adhesive following the namufacturer's instructions. The 

connection wires are then soldered to the strain gauges and were 

protected against humidity and temperature by an air drying acrylic 

M-coat-D after the connections have been thoroughly checked. To 

protect the gauges against mechanical damage during the casting process., 

the gauges were coated with Araldite rapid hardening epoxy adhesive. 

The strain gauges were then connected to a data logger. 

6.7 CASTING AND CURING: 

After fixing the strain gauges on the steel$ the reinforcing mesh was 

assembled on the form after the proper positions of the bars have been 

marked by a marking pen. Each model was then cast in several batches 

of concrete, and was properly compacted using an immersion type vibrator. 

When casting and compacting yas complete, the model was left for about 

5 hours to dry in the open air. The position of the holes on the model 

were checked by measuring the positions of the bolts provided for that 

purpose. These bolts would later be used to lif t the model from the 

framework to the loading rig, and the holes which they leave on the 

model were later used for loading the slab. 

After the concrete has-set, the whole of the model together with 

the control specimenswere then covered with a polythene cover, to 
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control the humidity. The cover is then removed after three days 

from the day of casting, and left to dry in the natural conditions 

of the laboratory. The model was lifted off the forms after a further 

five days using the electric crane in the laboratory, and was placed 

over the load supports. 

6.8 suppons 

The simple support system used for the first five models consisted 

of two steel flats 12 = thick separated by a round 25 = diameter 

black invar bar as a roller, Figure (6-13a). This supports system 

extends over the whole length of the model, except at the corners. 

Proper seating of the slab on the supports was effected by applying 

a thin layer of gypsum plaster between the flats and the slab. 

For a slab supported all around and transversely loadeds the 

corners are liable to lift up, and might thus reduce the ultimate 

capacity of the slab. To prevent this, all corners were held down 

using a separate "corner supports". This supports system, shown 

in Figure (6-13b) consisted of a system of orthogonal flats-rollers 

to provide free rotation in all directions just like a ball seat, 

and a high tension steel bar 5 mm in diameter passing through the 

orthogonal flats-rollers system at their midpoint. The steel bar 

had an ultimate strength of 1750 N/mm2, and was made to pass through 

a hole in the slab corner provided at the time of casting, then through 

the orthogonal flats-rollers system, and was anchored to the loading 

rig. Figure (6.14) shows the corner arrangement in one of the models. 

Spreader plates were used on the top surface of the slab corner to 

prevent high shear stresses resulting from the corner pulls. To 

keep the corner arrangement intact, the steel bar in the arrangement 
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was slightly pretensioned before the start of the'test. 

Each slab allowed'100 mm overhang beyond the'centreline 

of the support. The slabs dimensions given in Table (6.1) are gross 

values. The effective dimensions are obtained from these by 

subtracting the overhang over each support. 

For Model 6, the beams which were monolithically cast with the 

model, were supported by sets of orthogonal Vees-rollers and orthogonal 

flat-rollers at alternate corners. The system is so arranged that 

each beam will act as if it were pinned at one end and freely supported 

at the other, Figure (6.15). 

6.9 LOADING RIG AND LOADING SYSTEMS: 

All models were tested on the loading rig shown in Figure (6.16). 

The rig was designed for testing slabs subjected to lateral loads only. 

It was designed to support slabs with various sides ratio including 

1.09 1.25o 1.509 1.75 and 2.0. Thi longer span can vary from 1m up 

to 3.0 metres. The rig was'made of universal steel beams and stanchions, 

and was designed to support loads up to 600 KN, with a safety factor 

of 1.5. A height of 1.5 m under the slab bottom surface is provided 

by the rig, to facilitate studying the bottom surface of the tested 

models. 

Loads were applied as concentrated loads. This was done by using 

loading cables passing through holes provided in the slab at the time 

of castings and corresponding holes in the floor of the laboratory. 

The loading cables were high yield prestressing 7-wires tendons, having 

an ultimate strength of 150 KN. According to the total load applied 

on each models the methods of load application can be divided in the 

fol lowing mariner. * 

I $I 
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(1) Tvo_'poirits_system: 

This was used for model 4 and consisted of one loading cable 

passing through a hole at the centre of the model. The cable 

transmits its load to the slab at two Points 500 mm apart, using a 

short simply supported spreader beam. 

(2) Four Points sZstem: 

This was used for model 3 only. In this case, four loading 

cabless symmetrically arranged about the model centre lines, were 

passed through four holes in the slab. The cables were then 

anchored on the top surface of the model, and a spreader flat 

200 nm x 200 mm x 10 mm was used to distribute the load at each point. 

(3) Eight-points-system: 

This system is a combination of the previous two systems. 

Each of-the four loading cables transmits its load at two points by 

a spreader beam. Accordingly, the load on the slab is applied at 

eight points, using only four cables. This system of loading was 

used for the rest of the models. The loading systems are shown in 

Figure (6-17). , 

Each loading cable is tensioned by a 20 ton-hydraulic jack 

resting against the bottom surface of the floor of the laboratory. 

tach jack was connected via hoses to a regulating electric pump, capable 

of sustaining up to 10000 psi of oil pressure. The four hoses were 

connected to the pump at one connection points using a distributor. 

This arrangement was made to ensure equal pressure distribution in 

the four jacks, and would thus eliminate unequal frictional effects 

on the-separate jacks. 

Loads on the top surface of the slabs were measured using 50 tons 
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electrical load cells. 

Prior to-tests the load cells were calibrated. Each loading 

cable was passed through 4 load cell and, was anchored on its top 

using a flat spreader. Figure (6.18) shows the details of the 

loading arrangement. 

Corner reactions were also measured using small electrical load 

cells of 5 tons capacity each. All the load cells are then connected 

to a load amplifier, and further to a data logger. 

6.10 FURTHER INSTRUMENTATION: 

Deflections were measured by electrical transducers,, which were 

linear displacement potentiometers manufactured by Nouatech of Surrey. 

The transducers were mounted on an independently supported measuring 

frame. Transducers capable of measuring up to 50 mm were used, 

Each transducer was then given an identification number and was then 

connected to the data logger for data processing. A. cross check for 

the transducers is provided by a dial gauge located under the slab 

bottom at the centre. The dial gauge used was capable. of measuring 

up to 50 mm, reading up to 0.01 mm. 

The data logger was used to measure the loads., the strains and 

deflections. This was an IBM 5000 type which has 'an MB-Metals 200 

channels data logger controlled by a PDP8 computer using the language 

FOCAL. Programs were written to process the results of each test. 

The output at each loading step consists of the load values read on 

the load cells in DVM (Digital Voltmeter) units, deflections in (mm. ) 

measured by the transducers, and then the strains in micro mm/mM. 

The DVM units are later converted to loads using the calibration 

curves for each load cell. 
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The underside of each. test model was illuminated using four 

powerful light sources. Cracks on the bottom surface of the slab 

were monitored with the aid of a magnifying glass. Crack widths 

were measured under the load pointspusing a crack measuring microscope, 

reading up to 0.01 mm. 

6.11 TEST PROCEDURE: 

All electrical connections were first checked by the computer. 

Deflection transducers were then checked to ensure that they were 

truly vertical$ and they would operate properly under test. The 

strain gauges were also checked and defective ones were immediately 

disconnected. The load cells were also checked by applying a small, 

load to the slab, and then unloading. Leaks on the hoses and the 

jacks also appear during the initial test loading and unloading$ 

and if detected, they were soon remedied. Wh en all primary checks 

have been made, the test was started by applying the load in increments 

of 5 KN per load cell. An amplifier read the loads on the load cells, 

and when the desired load level was reached, the computer was started 

for a complete scan. Results for this load increment were then printed. 

The loading was maintained for about 10 minutes, while the underside 

of the slab was studied for cracks. The dial reading was also taken 

at this stage. The pump was started, a new load increment was applied, 

and the whole procedure was repeated until the ultimate load was reached. 
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FigL=e (6.14) Holding the Corners using "Corner Holders"* 
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(a) Two points Loading System. 
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'CHAPTER'SEVEN 

'CONPARISONS; 'DISCUSSIONS AND'CONCLUSIONS 

T-1* INTRODUCT ON 

In this chapter the results of tests on the large "models" 

described in chapter 6, are presented. The behaviour of the slabs under 

increasing load is examined. The tests were designed to: 

(a) Check the validity of the proposed design procedure, 

with respect to service and ultimate behaviour. 

(b) Provide information on the deýailing problems associated 

with this method, and the resulting effects on the slab 

behaviour. 

(c) Carry out a detailed numerical analysis on these Uabs 

to gain a proper understanding of the redistribution of 

forces at high levels of loading. 

A32 the slabs were tested under the action of concentrated loads. 

Details of the test slabs, material properties and method of testing 

have been given in the previous chapter. 

T. 2 GENERAL DESCRIPTION'Of THE BERAVIOUR OF THE MODELS 

7.2.1 Model 1, (L 
x 

/L 
y=1.5, simply supported): 

This was a rectangular simply supported slab with an aspect 

ratio (L_, /L 
y) of 1.5. The slab was designed for a total load of 

416 KN. This design load was chosen in order to obtain reasonable 

percentages of steel in the structure. The steel bars were curtailed 

exactly at the'points where they were no longer needed. The curtailment 

of steel was done using the design bending moments in each strip of 
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Figure (7-1) A Slab Model Under Test 
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elements, according to the method described in section (6.4). Welding 

was used to connect bars of different diameterss and was carried out 

according to CP110 rules 
(5). 

The total volume of steel provided in 

this model, including hooks etc., is given in Table (6.2). 

The load-central deflection curve for this model is given in 

Figure (7.2). First visible dracking started at about 0.29 Pd, but a 

slight nonlinearity in the curve is visible at a load of 0.18 P d* 

This is caused by the early microcracks, which probably formed during 

the loading and unloading prior to test. 

The first cracks were observed under the load points and were a 

maximum width of 0.13 mm at 0.29 Pd* With increasing loads, the cracks 

tended to spread from the load points and to cover the central zone 

bounded by the load points. Subsequently* they spread along theý 

diagonals towards the corners. There was a general tendency to form 

new cracks rather then widening of the existing cracks. Deflections 

continued to increase at a higher rate, and at 0.4 P the central d' 

deflection was 8 mm. This represents the permissible service deflection 

according to CP110 
(5). 

At this load, the cracks covered the entire 

central zone. 'The maximum crack width reached 0.3 mm at a load of 0.45 

P d' 
directly under the points of application of the load. 

Yield of steel was first observed at 0.69 Pd . This occurred in 

the short span direction at the centre of the slab. - 
At this load-, 

tiny visible cracks in a narrow band along the diagonals reached the 

corners of the slab. UP to this stage, no major crack had formed, and 

the 
4ý9 

vere evenly distributed over the bottom surface of the slab. 

At about 0.63 Pcjq a few cracks appearecl on the top surface of 

the slab at the four corners near the-corner hold6: rs. * By a load of 0.73 PdI 
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a well defined yield line pattern was developing. The strains in the 

reinforcing steel were also small (see Figure 7-3) and only the steel 

at the centre was yielding. At 0.8 Pd, when the'deflection was about 

0.38 h. a sudden shear failure. occurred. This was a deep long crack 

running near and parallel to the long supported edges. The concrete 

cover on the bottom surface of the slab spalled off along the shear 

crack. Due to the sudden shear failure., the whole of the central zone 

dropped down significantly relative*to the supports with a clinking 

sound. This was a bit unfortunate. However a check on the shear 
(5) 

strength using CP110 revealed that the slab was in fact weak in 

shear. 

7.2.2 Model 2 (L 
x 

/Ly -2 1.3, simply supported): 

This is a rectangular simply supported slab with an aspect ratio 

(LX/L 
y) of 1.3. The slab was designed for a load of 213 KN. A 

photograph of the crack pattern on the underside is given in Figure 

(7-5). As in the previous model, the load was applied in increments 

of 5 KN per load cell. 

The load-central deflection curve for this model is shown in 

Figure (T. 6), and a summary of the behaviour is given in Table (7-1). 

Similar to the previous model, first visible cracking was observed at 

a load of 0.56 P d* Also these first cracks appeared under the load 

points, and were in the direction of the diagonals. 

The maximum width of these cracks under the cracking load was 

0.12 Between a load of . 56 P and 0.8 P cracks spread all over d d' 

the central. zone bounded by the load points, while the deflections 

increased to twice their values before the cracking load. The spread 

of cracks in the central zone tended to be along the diagonals. During 



Figure (7-5) Crack Pattern on the 'Underside of Model 2 

54 
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the next load increment, which corresponds to a total load of 0.9 P d' 

new surface cracks spreaa further covering most of the'central zone 

between the loads, and verir near the corners of the slab. But only 

at Pd did they reach the slab boundaries. Thus a well defined yield 

line pattern formed under this load. 

The deflection limit of spanJ250 was reached at 0.75 Pd2 and a 

crack width limit of 0.3a= at 0.85 P d* This definitely represents a 

very high service load. In addition, the strain measurements showed 

that steel did not yield at all at this high service load. First yield 

of reinforcement was detected in the short span steel around the slab 

centre. This first yield occurred at 0.94 Pd. -However, a rapid increase 

in steel strains was observed after the first yield load, as can be 

seen from Figure (7.7). After a load of 0.98 P., cracks tended to 

intensify and increase in width. The sound of concrete cracking could 

clearly be heard at this stage. 

At 1.13 PdI 'nost of the strain gauges on the steel bars indicated 

strains higher than yield strain for steel. At this load level top 

the dial gauge at the surface cracks started to appear. At 1.31 Pds 

centre of the slab was rotating freely and the load on the load cells 

started to drop. It was very difficult, --* to maintain the load at that 

level. 

The load of 1.31 P was then taken as the failure load for this d 

slab. An ultimate deflection of 50 nm at the centre of the slab was 

the value taken just before the dial was removed. 

A clear well defined yield lines pattern has already developed 

Fhen the slab failed. Each corner reaction measured onlY 7% of the 

failure load at collapse. 
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10 T. 2.3*Model 3 (LX/L 

y=1.0, simply supported): 

This is a square simply supported slab which was designed for 

a total load of 210 KN. The'load was applied as a four-points-load 

system, as can be seen from Figure (T-13). The model was loaded in 

increments of 5 KN per load cell. 

The load7deflection curve for this slab is given in Figure (T-11). 

First visible cracking was observed directly under the four load points 

at about 0.38 Pd and measured a maximum of 0.04=. Under the cracking 

load, no cracks appeared in the central zone of the slab. The first 

of these cracks in this zone was observed at about 0.48 Pd' and were 

along the slab diagonals. The spread of surface cracks in this model 

was faster than in the previous two models. Under the load of 0.48 P d' 

the surface cracks continued to extend towards the boundaries - (see 

Figure 7-9). 

The limiting deflection of span/250 was attained at about 0.72 Pd, 

while the crack 1=**t width of 0.3mm was reached at 0.67 Pd* At 0.76 

Pd the diagonal cracks were running right through to the corners, 

although some new cracks continued to form outside the central square 

bounded by the loading points. 

Intensive cracking represented by fast development of new cracks 

and further widening of the diagonal cracks occurred after a load of 
I 

o. 86 Pdo The newly developed cracks fo=ed outside the central zone 

on the slab, formed by the four load points (Figure (7-13)). Top 

surface cracks also appeared near the corners of the slab at this load 

level (Figure (7-10)). At 0.95 P more corner cracks were forming. 
d. W- 

Beyond this load, the deflections increased rapidly. 

A fle-n=al failure, similar to that obtained with model 2, occurred 
I 

I/ 
at about 1.16 Pd* 
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Figure (709) Crack pattern on the underside of Model 3 

ý'igure (7-10) Crack pattern on the tor, face of ', ýOdel 
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Figure (7-11) Load-Deflection Curve for Model 
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Figt=e (7-12_ý Load-Steel S+ýrains in Model 
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m6c '1 -4 (P JL 1.02 T. 2.4 IC y 

This is a square slab (L JL 1.02) simply supported along two y 

adjacent sides only, pinned at o* osite corner. pp The slab was 

designed for a total load of 90 KN, and was applied as two point 

loads. Details of loading and the resulting support reactions are 

ýgiven in Figure (T. 19). 

For deflectionsg the critical points on the slab are point d 

(see Figure (T. 16))9 and the point at the middle of the free edge, 

Figure (7-17). Accordingly, the load-displacement curves for these 

points are given in Figure (7.16) and Figu re (7-17). 

First visible cracks were observed on the underside of the slab 

at t hree points: under the two load points, and around the middle 

of the free edges. These occurred at a load of 0.39 Pd and were 0.04, 

0.05 and 0.06 mm in width respectively. With increasing loads, the 

cracks tended to spread from the centre of tbe slab towards the free 

edgess running almost parallel to the slab diagonal Joining the ends f J0 

the orthogonal supporting system (see Figure (7.14)). Cracks developed 

-over a wide band covering the zone between the load points and the 

propped corner. Cracks reached the confined corner at a load of 0.60 Pd* 

,, A deflection of span/250 was reached at 0.64 P and the maximum crack d 

width measured was 0.3 mm., under one of the point loads. At the centre 

of the free edgeg the maximum crack width measured at this load level 

was only 0.18 mm, and the deflection near the same point was only 6 mm. 

By a load of 0.67 Pa definite Te-e-shaped crack pattern had developed, d 

but still new cracks were developing near the corner prop (see Figure 

ling of steel first (7.14)).. Strain measurements indicated that yielc 

started at the centre between the two load points, at a load equal to 
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Figure (7-14) Crack Pattern on the Underside of Model 4 

FiLn=e (7-15) Crack Pattern on the Top Face of Model 
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the design load, and then at-the centres of the free. edges at 1.1 P d' 

The model failed. by excessive deflection near the'dentre, at a load 

Of 1.1p P The load cell at the corner diagonally opposite to the d* 

propped corner measured a holding reaction of 15% of the failure load 

at collapse. 

The top surface cracks near the held down corner between the two 

supported sides were first formed at a load of 0.94 P d* 

T. 2-5 Model 5 (Simply Supported, L. /L 1-5): 
y 

This model had the same dimensions as model 1. but was designed 

for a lower load of 2.16 KN. The model was reinforced according to the 

average moment in the strips, and steel was curtailed at points where 

it was not needed. Details of the loading arrangement together with the 

r esulting supports reactions are given in Figure (7.24-). Design loads 

and a summary of the slab behaviour are given in Table (7-1). 

The load-central deflection curve for this model is given in 

Figure (7.22). Unlike model 1, cracking in this slab started earlier, 

and was observed at about 0.46 P This early cracking had the effect d' 

of producing flexible behaviour over the slab loading history. This 

could be due to the use of a lower grade of concrete, than in the case of 

model 1, which was 25% higher than model 5. 

The first visible cracks were observed under the load points. 

Similar to previous models, cracks spread in a fine evenly distributed 

pattern, particularly in. the central square defined by the loading holes. 

At the cracking load, maximum crack widths measured, 0.15 mm and 0.18 nm 

nearone load point near the centre, and at the mid point of the slab. 

Cracks-reached the corners of the slab at a load of 0.69 P d. Both the 



Figure (7-20) Crack Pattern on the Underside of Model 5 

Figure (7-21ý Crack Pattern on the Top Face of Model 
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deflection limit of span/250 and the crack width limit of 0.3 nm were 

reached simultaneously at a load of 0.63 P 
d' 

First cracks at the top surface were observed at 0.69 P With d* 
increasing loads new top surface cracks tended to form rather than 

widening the existing cracks, which indicates that a large redistribution 

of forces is not taking place. A well developed yield line pattern on 

the top and bottom of the slab was clearly fo=ed when the design load 

was reached. The slab failed in a flexure mode similar to previous 

models at a load bf 1.07 Pdo 

T. 2.6 Model 6 (A slab-beam system, L /L = 1-5): 
y 

This was a rectangular slab su; ported by monolithic edge beams 

on the four sides. The beams had the same cross-sectional dimensions 

all around. The dimensions, materials properties and design loads for 

this model are given in Table (T-1). 

The elastic analysis of this model by the layered finite element 

model predicts the stress resultants (N., NNMMM 
y XY Xy XY 

due to the shift of the middle plane of the beams, to the level of that 

of the slab. However$ in the design. of reinforcement for this model, 

-the membrane components of the stress resultants were neglected, and 

the system was designed for flexural components only. In addition. ' 

due to the fact that the present layered finite element model under- 

-estimates the torsional forces in the beams (see Section 4.4.4). 

additional torsional reinforcement in the supporting beams was added, 
(5) 

according to CP 1-10 The'torsional reinforcement vas provided in the 

form of longitudinal. bars and links. Also because of the underestimated 

i'torsional forces on the beams, tensile reinforcement on the top surface 



Fi, z=e (7-25) Model 6 TJnder Test 

Figure (7-26) Cracks on the long beam of Model 6 
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between the slab and beams was vex7 small. Accordingly, this reinforce- 

ment was also provided according to CP110 
(5). 

The total design load for this model was 240 KN. Resulting 

reinforcement distribution in the'slab is shown in Figure (6.9a), 

and for the beams in Figure (6.9b). The model was tested to failure 

by applying the load in increments of 5 KN per load cell. Figure (T. 25) 

gives a photograph for this model under test. 

As far as deflections are concerned,, the critical points are 

those at the middle of the slab, and at the mid point of each beam. 

Accordingly, the load-displacement curves at these three points are 

given in Figures (7.29), (7-30) and (7-31). The behaviour of the model 

is generally linear up to a load of 0.38 P d2 when the first visible 

cracks were observed on the inner side of the ribs of the long beams, 

around points in line with the loading holes marked in Figure (7-33). 

By examining the load-deflection curves in Figure (7.29) to (7-31), 

it can be seen that the slab is not very much affected by cracking at 

this load level and was probably behaving in an elastic manner. However, 

nonlinearity in the deflections of the long beams starts earlier than 

this, and can be attributed to invisible microcracking in the edge 

beams. At a total load of 0.46 P d' cracks were spreading in the middle 

third of the inner side of the rib, but did not reach the outer face 

of the long beams. This cracking at the middle third of the beam 

caused tiny cracks to form at the middle of the slab at a load of 0.533 

P d* These tiny cracks were running parallel to the short edge beams, and 

had a maximum width of 0.03 = at 0.533 Pd*- At this load, the cracks 

on the long beams were extending to the bottom face of the rib, and 

reached the outer faces of the beams. The depth of these cracks on 
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FiFare (7-27) 'rack Pattern on the ý: nderside of ', ýIcdell ý-, 
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the inner side of the ribs of the long beams did not reach the -mid 

depth of the rib at this load. A general trend to form new surface 

cracks rather than to open up the existing cracks was observed. The 

maximum crack width in the middle third of the ribs of the long beams 

was 0.10 mm at a load of 0.533 Pd' 

At a load of 0.625 Pd' more new cracks formed in the middle 

third of the long beams. However, the first cracks on the long beems 

at points in line with the loading holes (Figure (7-33)), reached the 

midheight of the ribs at a load of 0.625 Pd* Although this load may 

be taken as the service load for this model, cracks were generally still 

very narrow. The maximurn crack width at this load was only 0.13 mm near 

the inner edge of the ribs of the long beams, at points in line with 

the loading holes. At this load, first cracks were observed on the 

outer face of the short edge beams. These cracks were much smaller in 

width than the cracks in the slab, and thus were not measured. Also 

at this load, the cracks at the centre of the slab were spreading 

outwards towards the long supporting beams, with a general inclination 

of about 350 to the edge beams. Some of these cracks reached the 

loading holes at a load of 0.625 Pd' 

At a load of 0.72 P d' most of the first cracks in the middle 

third of the long beams covered the full height of the rib from inside, 

and reached the junction between the slab and the rib. The Imum 

width of the largest crack measured 0.2 nm, just under the loading 

holes on the inner side of the ribs of the long beams. On the outer 

face of the ribs. most of the cracks extended to about half the total 

depth of the beams. Cracks on the outside of the short beams als. 0 

reached their mid depth, but still no cracks appeared on the inner face 
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of their ribs. On the bottom of the slab . the first cracks to form 

were observed to reach the supporting long beans, indicating the first 

step towards the formation of one collapse mechanism. Crack widths 

on the underside of the slab measured a Tna-ximum of 0.08mm only under 

this load. 

At a load of 0.8 P., the maxilnum total deflection at the slab 

centre was only 8 =. This represents the limiting service deflection 

for this model according to CP110(5). At this load, the first inclined 

cracks on the long beams were formed on the inner side of the rib near 

the supported corner, and were extending to one third the depth of the 

rib, but 4id not form on the outer face of the rib. These cracks were 

generally inclined at about 150 0 with the centreline of the long 

beams, measured from the corner side. The first cracks on the inner 

side of the short beams were also observed at this load and were 

rapidly covering its middle third zone. The maximi= extension of these 

cracks did not exceed one third the rib depth, and did not extend 

beyond the middle of the rib breadth from the bottom face. On the under 

side of the slab, the major cracks at the centre of the slab had reached 

the long beams., and joined with the main crack at the middle of the 

beams. 

At 0-9 Pd more inclined cracks on the long beams appeared near 

the corners. This time this cracking also occurred. on. the outer face of 

the beam ribs and were running in a direction normal to those formed 

on the inside of the ribs. These cracks may be due to the interaction 

between shear and torsional effectd. In the previous load increment, 

this interaction was seen to cancel the simultaneous appearance of the 

torsional cracks onýkthe outer face of the long beams. At this load 

level, the earliest cracks were noticed to widen. The maxi=m crack 
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width was 0.3 = near the loading holes on the ribs of the long beams. 

Th. e change in stiffness of the short beams due to'extensive cracking at 

this load can clearly be seen from Figure (7.30). 

On subsequent load increments, very few new cracks formed, and 

these were confined to the extensions of old cracks near the corners 

of the slab. A major crack through the corner junction between the 

two beams was formed at about a load of 1.19 P d' indicating the 

disruption of the corner connection. Top surface cracks were observed 

around this load near the corners, along the junction between the beams 

and the slab. On the bottom face of the slab, the major crack at the 

centre was wideningt and was continuous with that at the middle of the 

long beams. Deflections rapidly increased by a load'of 1.48 Pd. 9 the 

dial gauge under the centre of the slab was rotating freely,, and it 

was very difficult to maintain the load at a certain value. The 

test was then stopped, due to excessive deflection, and the load of 

1.48 pd was taken as the ultimate load. 

7.3 DISCUSSION OF TEST RESULTS: 

T. 3-1 Ser7iceability_Limit States. 

Table (7-ýI) sin= rizes all the test results. The service load 

is taken as the mininum of two values: one based on a deflection limit 

of span/250, the other on a maximum crack width of 0.3 M(5). 

Accordingly, the general conclusion to be drawn from the table is that 

the service behaviour of all slabs tested is satisfactory, except 

model 1. This model actually failed in shear, due to an error in its 

design. 

In the adoption of the present design procedure, use had been 

made of the elastic stress distribution under the design load by the 
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finite element method. However, such an analysis normally predicts 

"elastic" deflections under the design load. Since elastic uncracked 

stiffnesses have been used'in the analysis, such elastic deflections 

would be a serious underestimation of the true deflections under 

service loads, as has been shown in Chapter However, a valid 

design to Limit Theox7 should satisfy serviceability criteria, and the 

normal practice is to design for the ultimate limit state, and then 

check for serviceability. Accordinglylin the present design procedure, 

since the elastic deflections cannot directly be used to check for 

serviceability, they can'be useful if an effective Partially cracked 

section properties had been used. In this study, the elastic deflections 

have been used with the Branson's method (Section 2.3-1.1), to predict 

the deflections under the service loads. So if 6e is the elastic 

deflection under the design ultimate load, the service deflection will 

be 
r 

6xI c/ ( LF x. I pe9 eff 

where 6p Predicted def lect Ion 
6e elastic deflection, 

19= gross moment of inertia 

I 
eff : '-- effective moment of inertia of the section 

LF = Load Factor 

The method is fully described in Appendix (E). 

A sunmary of the predicted behaviour. of all test models is given 

in Table (7.2). Deflections have been predicted, using the simplifying 

assumptions for cracked sections(Appendix E). Due to the fact that 

in most tested slabs the li-ve load is about 10 times the dead load, 

the serýice load is taken as Pd/1.6 (i. e. 0.625 Pd). 
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As can be seen from Table (7.2) except for model 1. that the 

adopted procedure yields excellent predictions. Accordingly, the 

adoption of elastic deflections nodified by the-cracked transformed 

section properties, will yield acceptable checks on the serviceability 

of the slab. The large deviation in-the case of model 1 is due to the 

fact that this model has got a low ratio of P 
cr/pd* 

The Tria i TnlTn crack width in each test slab is shown in Figwe (7-34), 

as a function of the total load on the slab. The crack having the 

maximum width had always been one of the first cracks to appear on the 

underside of the model. This crack had always been 'under the load 

pointso except in model 6. where the crack having the maximum width 

occurred on the soffit of the long supporting beams . in line with the 

points of application of the'loads. 

The rate of increase in the me imum crack width is smooth and 

uniformg as can be seen from the figures. No sharp increase or rapid 

rate occurs, which is a natural result of even spread of cracks on the 

surface of the slabs. ' In cases where the distribution of the reinforcement 

departs from the elastic analysis of the stresses, sharp and rapid increase 

in crack widths is liable to occur.. Opposed to this, in all the models 

tested heres new cracks were always forming, and the behaviour was not 

governed by few major cracks, until the design load is exceeded. 

In texms of service behaviour, all tested models behaved in a 

satisfactory manner (except Model 1). Both serviceability limits were 

reached either simultaneously or at loads close to each other (Table 

Accordingly, if a limit deflection of spanJ250 is taken as a criterion, 

then service loads are defined by deflections xather than by crack 

widths. An average limit state of deflection load of 0.735 Pd is obtained 

for the last five models. 
J, 
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The slab in model 6. showed an excellent service behaviour. Both 

serviceability limits were reached at loads close to the design load. 

It should be mentioned here that the deflection values referred to in 

table (7-1) actually refer to the total values at the centre of the 

slab. If the deflections relative to the edge beams were considered, 

the deflection limit on the slab wýLs reached at a load of 1.29 Pd 

(Figure 7.31). Furthermore, the LizLtinj crack width was reached at 

1.2 Pd* 

7.3.2 Ultimate Limit State: 

Table (7-1) suanarizes the results obtained concerning the ultimate 

behaviour- of the tested models. The behaviour will be considered from 

two criteria, viz. the first yield,, and the failure loads. 

As far as first yield loads are concerned, no yield of steel 

took place within the service load range in all models. Even the slab 

in model ls although its steel was highly stressed due to early cracking, 

the reinforcement did not yield within the service load. An average 

value for the first load in all models was equal to o. 88 P d' 

The measured failure loads were all in excess of the design loads 

for all models, except model 1. The shear failure of this model 

truncated the "flexural" ultimate behaviour of the slab. For'the 

rest four models without edge beams, an average enhancement of 16% 
possooLy indicates 

in the design load is observp-d. This 
-/, 

that very little 

redistribution had actually taken place before the slab became a 

mechanism. 

The slab-beam system. in model 6 recorded a higher load enhancement. 

In fact, both the service and ultimate behaviour of this model are 
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affected by the presence of the strong supporting beams. The effect 

of having strong supporting beems is to restrain the'lateral inplane 

movements in the slab. This results in the development of compressive 

membrane forces at the . centre of the slab. which will, considerably 

enhance its load carrying capacity. This compressive me=brane action 

in the slab is different from the tensile membrane action which develops 

at high loads. The latter would Occur only when the slab undergoes 

very large deflections, and in most cases, the crack at the centre of 

the slab runs right through the slab depth. This of course will depend 

on the amount of strain in the reinforcement, because at very large 

strains the reinforcing bars may rupture altogether. This will then 

prevent the development of the tensile membrane action. 

In the models tested here, it was not possible to reach this 

stage. Although at failure, the slabs were undergoing. very large 

deflections, no increase in the loads was observed. The central 

deflections of the slabs were rapidly increasing, which made it 

extremely difficult to maintain the loads. In case of model 6, 

perhaps the failure of the corner connection, and the top connection 

between the slab and the supporting beans (Figure (7.28)), prevented 

the development of the tensile membrane action. In any case, this 

model recorded an enhancement of 48% in its design load. The factors 

contributing to this enhancement in the ultimate loads will be discussed 

in the following section. 

7.3.3'Pogsible'Reason8'f6t'the'DiffLir6rices*B6tv66h'thO-'A: Atumed 

.. ýElastic-'F'lelds)*and'Tru6'Ultimat6'Behavi6ur'6f*the'Md6ls. 

To explain some of the phenomena enco-untered during the experiments 

on the models, the following factors contributed to the deviations 
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between the assumed (elastic) and real distribution of forces at 

ultimate loads. 

(i) Cönörete Strerigth 

This factor does not affect the design procedure. The -effect of 

concrete strength on the amounts of steel needed is almost insignificant 

as has been shown in Chapter 5. Clark 
(80) 

and Morley(71) showed that 

the yield criterion used (equation 3.14) is exact only for concrete 

with infinite strength. For concrete with finite strength,, the yield 

criterion is not as exact, but the inaccuracy was shown to be insig- 

nificent 
(80) 

0 
But the variation in concrete strength has significant effects 

on the stiffness of the slab, particularly in the post cracking range. 

The concrete strength relates to Young's modulus and the tensile 

strength both of which control the slab deflections. and the cracking 

load of the slab. As the slab stiffness within the working load is 

affected by crack initiation and propagation, which are in turn governed 

by the concrete strength, the higher the strength the higher will be 

the stiffness. This factor contributed to the good service behaviour 

of the slab-beam system in model 6. 

(2) Increased amounts of steel 

Affects both the service and the ultimate behaviour of the slab. 

In the former case, by providing extra stiffness to the slab (although 

not affecting the cracking load significantly) leads to improved 

deflection characteristics. Crack spread over the slab surface will 

'not. be affecteds but the factor has the desirable influence of 

restricting crack depths. Consequently$ less crack widthss and hence 

slow stiffness degradation* The'total effect-is an overall improvement 

in the service behaviour. 
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Increasing the amount of steel provided delays the initiation 

of yield. In the experiments. both model 2 and model 6 were provided 

with extra steel, as can be seen from Table (6.2). In case of model 2, 

the extra steel was not an additional steel, but rather resulted from 

not curtailing the reinforcing bars near the supports to avoid shear 

failures. In case of model 6, the model had been designed for flexure 

only, and additional steel was added to resist the excess torsional 

stresses over those predicted by the layered model (see Section 4.4.4). 

And definitely some of this additional steel has contributed to the 

improved behaviour of the model. This effect will be discussed in 

detail in Section (7.4). 

(3) Strain hardening of'steel 

Table (7-3) lists the properties of the steel used in the experiments. 

Typical stress-strain curves are given in Figures (6.11) and (6.12). 

As can be seen from Table (7-3), the type of steel used had a good 

reserve of strength after the yield, both in the case of high yield 

and ordinary mild steel. This factor defini. t6ly does not affect the 

service behaviour, but generally contributes to the ultimate strength 

of the. slab (as will be shown in Section 7.4). 

(4) Membrane forces 

Inplane forces resulting from edge restraints in laterally loaded 

slabs can be classified in two groups: - 

(a) Compressive membrane action developing at low deflections, 

which contributes to the increase in ultimate loads. Although every 

effort wasmade to eliminate edge restraints in the experiments, still 

some frictional resistance between the rollers and the flats (see 

Figure 6.13) is bound to occur. In any case, the effect of this factor 
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is probably not significant in the first five models. as can be seen 

from the low enhancement obtained in the ultimate load. But in 

model 6, the strong edge beans provided a strong restraint to the 

outward movement of the' slab bottom surface. Such a restraint is 

represented by the observed inward bowing of the long beams and the 

outward bowing of the short beams. Accordingly, an induced compressive 

membrane force sets up in the slab, which contributed to the enhancement 

in the ultimate load of this model. Fortunatelys the layered finite 

element model can deal with this problem, as wi3.1 be shown in the next 

section. 

(b) Tensile membrane action developing at large deflection, and 

happens ý. t high loads. At this stageg bottom surface cracks would run 

through the whole of the slab thickness. and the load will be carried 

by the tension bars with slab acting as a cat46nary. Literature (99) 

reveals that this action occurs when the deflection is approximately 

equal to the slab thickness. 

This situation could not be achieved in all the models tested, 

due to the limitation of the. loading apparatus. Unfortunately, the 

present finite element model cannot treat this probIem, since it ignores 

large displacement effects. 

7.4'NONLINEAR ANALYSIS OF THE'TESTMODELS. - 

Using the nonlinear finite element program developed in this 

study, an incremental analysis of the test models was perfo=ed. 

Details of the materials properties, mesh size, load increment size 

and the number of iterations used in the analysis of each. model are 

gi-7en in Table (7-5). The materials properties used are those 
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Table 
. 
(794): Results of the nonlinear analysis of the 

experimental models 

Model F Service-Load Design Lo d P /% 
No. p -61162 s l/s, -. 2 6dl/6d2 Cd 1 d2 

ul 2 

cr2 

1 0-75 1-09 1015 - 

2 0.90 0-68 0-82 100 0 73 0.98 

3 0-83 0.98 0,, 72 0.98 1-15 0*97 

4 0-93 1-0 0-83- 0-81 0-54 0,, 97 

5 0-87 0-86 0078 1-00 0-85 1-00 

6 1-00 1-00 1*12 1-12 1 04 1-00 

P The Cracking Load 

Maximum deflection under service load (0-625 Pd) 

es = Maximum steel*st=ain under service load 
-- 

6d' = Maximum deflection under design load (Pd) 

P= Ultimate load of the slab 
Suffix 1 for theoretical results 
Suffix 2 for experimental results 



298 

n LN Ul\ Lr% 
-p 

CY 

C) 
bi 

u2 

. S., le \. 0 \o CD Ict cl- 
02 
Q) 

x 
kt %Z %M Co le t- 

MIN 
l; t 

l =A \I \ o c) C) 

G2 
C\i c"i CNJ r4 C\i CM 

iý 
c 

%, 0 
t- 

CD 
%Z 

CD 
%I0 

N'\ 
cl- 

K"% 
r, - 

C) 
0 

4 xt Kil -e -e Igt 

Ul% C) 

5 cq 
lý 
CM CM CM 

cý 
c"i cli 

C" t- 
T Cý 
CM rc\ 

N_ý CM K'\ CD KN 

Id 0 cli 
0 

(D 

Cd 
-P Cd 
Id 

r-4 
Cd 

(D 
Id 0 

M 
r-q 
Cd 

0 
F1 

4-4 
0 

0 
0 

P4 

4-4 
0 

C/I 

H 
Cd 

H 
4) 
CD 

%-o 

E-4 



299 

measured in the. laboratory on the same day the model was tested. 

For models 1 to 5. the idealiz ed stress-strain curves. given in 

Figure (7.35) has been used. This idealization takes into account the 

strain hardening in the reinforcement after the bars attain their yield 

strength. In the case of model 6,, no strain harden#g was assumed. 

The reason for this can be seen from Figure (6.12) for the actual 

stress-strain curve for the type of mild steel used. Strain hardening 

in such a type of steel starts after a long horizontal plateau. 

All models analysed were designed for flexure only. Due to the 

edge restraints produced by the eccentric supporting beams in model 6, 

significant membrane forces are predicted by the elastic enalysis. 

Typical variations of the normal moments and membrane forces along the 

long and the short centre line of model 6 are shown in Figure (T. 49) 

and (T-51) respectively. The effect of such distributions is that, the 

predicted compressive membrane forces in the slabs are balanced by 

tensile membrane forces in the supporting beams. However, two types 

of analysis had been undertaken here for this model. In the first, the 

model was designed for flexure only, and the membrane forces were 

completely ignored. The design for this case was done using the equations 

for flexure in section (3.4). In the second analysis'. the model was 

designed for conbined flexure and membrane forces, using the open 

sandwich modelq as has been described in section (3-7). In this 

sandwich model, the core (filling) contribution in resisting the forces 

is completely. ignored. 

The results of all analyses'are given in 7igures (7.2) to (7-51), 

and are surmarized in Table (7.4). In general, a very good agreement 

between theory and experiment can be seen from, these results. In the 

case of model 4, it can be se6n that the response up to the service load 
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is very Fell predicted by the finite element model. But at high loads, 

the theoretical model shows a stiffer response than the'experiment. 

This stiffening effect can be seen from Figures (7.16,7.17 and 7.42) 

beyon'd the service load range. The effect is a numerical one, and 

is caused by poor rate of convergence after the first yield in the 

slab. To eliminate this, a larger number of 'iterations could be used, 

and probably with a smaller size of load increment. However, this 

would lead to an expensive analysis, but would definitely yield the 

desired result. As the analysis conducted here was successful up to 

80% of the ultimate load, there does not seem any need to refine the 

analysis after that. And thus the results are considered satisfactory. 

The analysis of the first five models indicated that the enhancement 

in the ultimate loads can be attributed to membrane forces, strain 

hardening, and increase in the amounts of steel. To quantify the 

effects of individual parameters on the response, Figure (T-36) has been 

computed. The problem considered was model 2. As can be seen from 

the figure, the concrete strength influences the. service behaviour of 

the slab under working loads, but does not contribute much to the 

ultimate strength of the section. On the other hand, the strain 

hardening does not affect the service response, but contributes very 

slightly to the ultimate behaviour of the slab. The biggest influence 

on ultimate behaviour are those due to the increased amount of steel, 

and the membrane forces. The effect of increasing the amount of steel 

on the section is to increase the ultimate moment at'the section. 

Similarly, the existence of conpressive membrane action on the section 

will' considerably enhance its ultimate moment capacity, as has been 
(4) 

shown by Wood Figures (7.40) to, (7.48) also show this fact. 
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IIhe moments capacity at the critical sections in the test models 

increased due to the induced compressive menbrane forces at high load 

levels. The analytical results of the analysis of model 6 (designated 

Analysis A in Fig. (7.29)) were slightly more flexible than the experi- 

ncntal curve at high load levels. This is mainly caused by the torsional 

Stiffness of the supporting beams, being underestinated in the analysis. 

Since in the design of model 6, the membrane forces were completely 

iLmored, it was thought worthwhile to investigate the effect of including 

mein-brane forces in the design. In order to do thisl an analysis (designated 

Analysi. -; B in Fig. (7.29)) was done on a hypothetical model (no experimental 

equivalent) with identical dimensions, design loads and materials strengths 

to those of model 6. The min difference was thatt in this-analysis, 

both membrane forces and flexural forces were considered in the design, 

using the open sandwich model (Section 3-7)- It was found that the 

reinforcement in the slab was generally less than that needec, for 

-"l-xure only (Analysis A). But as a result of the tensile forces in 

the edge beams, the reinforcement in them was higher than that-required 

for flexure only (Analysis A). However, an increase of 25% in the total 

reinforcement over that needed by disregarding membrane forces is required. 

This additional strength to the supporting beams which justifies the 

improved service response of this mdql. The analysis of the model 

whether for flexure or combined flexure and membrane forces show that in 

both cases the designed system will behave satisfactorily under service 

loadd, althought designs for combined flexural an'ý membrane forces would 

0 

behave better. 
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T-5 CONCLUSIONS 

The general conclusions to be'drawn from these tests can be 

siumnarized as follows: - 

The proposed method of design provides a practical layout of 

steel. Although the theoretical elastic Tnoment fields are of 

continuously varying nature. when linked with the yield criterion 

(Equation 3.14) results in a gradual variation of steel pattern. 

T"his statement is strictly true within a reasonable strip width, 

and does not necessarily cover very wide strips. The maximum 

width of a strip considered here was L/8, where L is the span 

length in any direction. 

2. Tests results indicated that the behaviour of the slabs designed 

by the proposed method was satisfactory. Both deflections and 

crack widths in the working load range were within acceptable 

limits, as defined by Cpllo(5) , deflections not greater than 

span/250 and crack widths <0.3 mm. 

No yield of steel occurred in all tests within the service load 

range. First yield loads were very close to the design loads, 

and an average of 90% of the design load was obtained. 

Whether the design of the steel is based on the maximum or the 

average design moment in the strips, the resulting service 

behaviour will be satisfactory. Two examples in this case were 

given by model 2 and model 5. If the maximum moment in the strips 

or the exactly curtailed pattern is used, both the service and 

ultimate load behaviours will be greatly improved. 

The ultimate behaviour of all models-was satisfactory, with the 

reinforcement yielding at loads very blose to the design loads. 
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Failure loads in all models were in excess of the design loads. 

An average load enhancement in the ultimate loads of 16% were 

mainly caused by the*induced compressive action and the strain 

hardening of the reinforcement. 

In the case of slab-beam systems, no saving in steel can be 

achieved by considering membrane action. In fact the proposed 

design method. required 25% more steel when menbrane forces 

were considered than when neglected. A reduction in the slab 

reinforcement is overbalanced by a larger increase in the beam 

reinforcement. 

In slab-beam systems, whether membrane forces are considered in 

the design of the system or not, the system designed by the 

proposed method will behave sati$factorily in the two cases. 

Consideration, of membrane forces in the design (Sandwich Models) 

produces improvements on the behaviour of the system than when 

neglected. 

Both the experiments and theoretical analysis by the finite elements 

on slab-beams systems, indicated the importance of the corner 

connection. Initiation of failure at the corner junction between 

the two beams expedites the collapse of the system, due to the 

fact that the torsional fixity of the beams is considerably 

reduced. 

Prediction of the sersrice behaviour can be made using any of the 

methods described in Chapter 2. If the assumptions in Appendix 

(E) are adopted, the use of an effective moment of inertia using 

a cracked transfo=ed section can very well predict the service 

behaviour of the slabs designed by the present method. The 
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accuracy and reliability of the method of calculation depends 

on the cracking load of the slab. With cýacking loads in 

excess of 40% of the design load, this method predicts the 

service behaviour. of the slabs designed by the proposed direct 

design procedure, with acceptable accuracy. 

10. The nonlinear,, layered finite element model developed in this 

study proved to be a powerful tool for the analysis of reinforced 

concrete slabs and slab-beans systems. Excellent agreement 

between the theoretical predictions made by the finite element 

method and the actual slab behaviour has been obtained. 
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.' MAPTER'EIGHT 

'CONCLUSIONS'AND*SUGGESTIONS*FOR'FUTURE*WORK 

Although each chapter has been provided with a set of conclusions 

at its end,, for. -clarity the most important of these will be summarized 

below: - 

8.1 Conclusions: 

(1) In the finite element analysis, a mesh division which is 

satisfactory for the elastic analysis is also adequate 

for nonlinear analysis of reinforced concrete planar 

structures. A numerical integration order of 2x2 is 

quite sufficient to produce acceptable results for 

laterally loaded slabs and slab-beam systems. 

Using the formulation of the layered finite element 

suggested in this study, accurate predictions for the 

response of concrete slabs can be obtained by demanding 

equilibrium at each load level. Acceptable predictions 

can also be obtained with reasonable norms prior to 

yield, and by reducing the size of the load increment 

and allowing a limit iterations nunber to be reached. 

In this study, it was found that an average of 10 

iterations per load increment is quite adequate to 

produce acceptable predictions for the response of 

concrete'slabs, provided thats the increment is about 

0.10 of the cracking load. In the case of slab-bean 

systems, an average number of 30 iterations may be needed. 
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(3) In the analysis of slab-beam systems by the'method 

proposed heres. accurate predictions of the flexural 

response can be obtained in'any case using the 

limitations on the load increment and nmaber of 

iterations described above. . One disadvantage of 

this method is that it underestimates the torsional 

stresses and stiffness of the supporting beams, due 

to the neglect'of the vertical shear component (see 

Chapter 4). Accordingly$ if the direct design 

procedure is used, a check on the torsional strength of 

the beams has to be made. In this research, it was 

assuned that the torsional moments on the edge beams 

predicted by the finite element model used here, represent 

only half the actual torsional moments. An element that 

includes the vertical shear component in its formulation 

is strongly recommended. 

A comparison between the direct design and the Hillerborg's 

(Torsionless) methods showed that the two methods produce 

stress distributions, which are generally different. By 

considering additional "torsional steel" at the corners 

as suggested in Cp 110(5) in the Hillerborg's method, the 

tvo methods produce moment volumes close to each other. 

Unlike'the torsionless analysis, the direct design procedure 

produces in most cases a- smooth variation of the design 

moments in the slab. The design can then be based on 

either the maximum or the average moment in the strip, 

without departing far from the original distribution. 
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In the case of slab-beam system undex uniform load 

considered in Chapter (5), 
* the yield line solution 

requires 30% more steel over that needed by the direct 

design method. In the system designed by the direct 

design procedure, yield starts near the cornerss and 

this type of yield would eventually cause the disruption 

of the corner connection, which reduces the torsional 

strength of the system by reducing the rotational 

restraints. By appreciating the fact that this zone 

is subjected to a very complex stress system, it may 

be advisable to add more steel in the beans near the 

corners. Following cpl, 10(5)9 50% of the steel at 

midspan section can be carried on to the end of the 

beam, and properly anchored. 

In the slab-been systems, consideration of membrane 

forces in the design of the reinforcement, although 

reduces the reinforcement in the slab, requires more 

steel in the supporting beams. Designs including 

membrane forces require about 7% more steel than those 

for flexure only, for the case of uniform lateral loads. 

For concentrated loads, the difference in the total 

steel volume could be as high as 25% and sometimes even 

=re. 

Whether membrane forces axe considered in the design of 

slab-beam systems$ or not, the system des. igned by the 

proposed direct design procedure will beliave satisfactorilY. 

Inclusion of membrane forces in the design produces 

improvements in the service behaviol4r of the system. 
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All the slabs considered in this study which were 

designed by the direct design method-behaVed satisfactorily 

under working loads. Results indicated that both the 

deflections and crack widths were within acceptable lizaits 

in the working load range. No yield of steel occurred 

in all tests within the working load range (Chapter 7). 

In fact, first yield loads were very close to the design 

loads, with an average of 90% of the design load. 

(10) Crack spread in a fine evenly distributed pattern. At 

all stages of loading, there was a tendency to form new 

cracks rather than to open the already formed cracks. 

Accordingly, the behaviour at any stage was not governed 

by a few wide cracks. This process was observed even 

after the attainment of the design loads. 
. 

All the slabs designed by the direct design approach 

recorded failure loads very close to their design loads. 

In most cases, an average enhancement of 16% in the 

ultimate load was obtained, which is attributed mainly to 

membrane action, and strain hardening of the reinforcing 

bars. 

(12) The nonlinear layered finite element developed here proved 

to be a powerful tool*for the analysis of reinforced concrete 

slabs and slab-beams systems. Excellent agreement between 

the theoretical predictions and actual slab behaviour has 

been obtained, in most cases. 



324 

8.2'SUGGESTIONS FOR FUTURE. WORK 

The procedure suggested here can be extended to include 

exper=ental and theoretical studies on skew slabs with various sides 

ratios and support conditions. The nost effective steel orientation 

can thus be found by systematic study of the various parameters involved. 

The layered finite element using isoparametric formulation provides an 

effective means of treating this problem. 

The study can also be extended to include built-in panels of 

various sides ratios to check if any significant redistribution will 

occur. In the finite element method, use can be made of the progressive 

relaxation of edge rotation technique developed by Johnarry 
(43). 

A 

detailed finite element study will be involved in applying the technique 

to the element developed here, before it can be used for checking the 

direct design procedure. 

More experimental work is needed on slab-beams systems. In the 

present research, the membrane forces were not considered in the design 

of the experimental model. It is suggested that such forces to be 

taken into consideration. A comparison between designs based on open 

and filled sandwich models can also be underta1zen by experiments. 

The design of slab-beams systems in this study tended to overestimate 

the ultimate loads by nearly 50%. A more detailed study of the 
I 

phenomena is-needed before a more economical design can be recommended. 

I 
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Calculation of the ýteel required for a certain design moment 

M* per unit width. 

Using the ultimate limit state theorys it can be assumed that the 

stress distribution in the section will have the form shown in the 

Figure below: 2f 
cu 3 

C 

d 

Ast 

I 

X1 

T 

T, 

Taking the partial safety factors on both concrete-and steel 
I 

equal to unity. and by considering the horizontal equil. ibrium of the 

section for no net force: 

then c=T (1) 

Using the stress distribution at ultimate 

2 f xl =Af (2) 
cu st 

Y 
= 1.5 A =. 1.5dp f Jf (3) 

st, fy cu 
. cu 

where 0= Astjd = reinforcement ratio. 

if 
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Taking moments about the compression force and equating external 

and internal moments,, then' 

T. (d 

Af . (d - 1.5 O'd f /2 f 
st yy cu 

: -- *P9 f (1 - 1.5 Pf /2 f 
yy cu 

p ef - . 75 p2ef 21f 
yy cu 

arranging we get the quadratic in. ý: 

(. 75 p+ 
M* 0 (5) 

fcu e fy 

Solving and substituting p=A st 
jd 

f 
cu d3 

ýM* A 
st 1.5 fy d2- f 

cu 

Equation (6) is used for both top and bottom steel. 
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APPENDIX B 

PROGRAM DESCRIPTION AND IMPLEMENTATION 

This part is intended to give a brief description of the main 

features of the computer program used in this study. The program 

stems from an existing program developed by Johna=y(43) in Strathclyde 

University. Extensive modifications were introduced and these included: 

element reformulation, cracking and plastification of concreteg yielding 

of steelt details of which was given in Chapter 4 of this study. 

Mod6fications also included the introduction of design routines and 

omission of some routines in the previous program. 

One basic feature of this new program is the omission of back 

store facilities. Accordingly, the program running time is greatly 

reduced. 

The program is built up of twelve subroutines which are listed in 

the followling 

1. Program FEM 

2. Subroutine INTEGRATION 

Sul=outine LSTIF 

Subroutine BUTX 

Sul=outine MA=A 

Subroutine RMULT 

7- Subroutine LNSRKM 

8. Subroutine BOUNDARY 

9. Subroutine NORSOL 

10. Subroutine REACTIONS 

11. Subroutine DESIGN 

12. Subroutine LNPLANM 

in addition, the standard master library routine FOLA. AF is used to 
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invert a matrix. pin obtaining the coefficients matrix of the displace- 

ments polynomials (section 4.2.1)9 which is needed in both the stiffness 

and uniform load vector formulations. 

The following sections will describe in brief the functions of 

the vaxious subroutines, and the structure and organization of the 

main program. 

1. Program FEM: 

This is the monitoring mod-ale in which all other routines are 

called in appropriate places. Allfinput data is first read in this 

modulev and control data pertaining to mesh generation, a=angement 

of nodal parameters are all computed at the beginning-of the program. 

The flow operation in this module is well explained as follows: 

a. Major data is read, and control data is computed. 

b. Stiffness matrix is formed and assembled in a, )banded form. 

c. The load vector made up of uniform loadt concentrated loads 

or membrane force cont-xibutions, is assembled. 

d. The stiffness matrix is decomposed using the Gaussian 

elimination(31) proced: ure, and the equations are solved 

for the nodal displacements. 

e. Middle plane strains and curvatures axe computedg and strains 

and stresses at the Gauss points are computed. 

f. Results axe then scaled up or down to these co=esponding to 

the load causing the first cracks in the most highly stressed 

point, and step c to e are repeated. Subsequent load 

increments axe later gi7en in terms of this cracking load 

P 
or 

g. The state of stress at a Gauss point is checked and a set Of 

pseudoforces is found. 
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h. The structure is reanalysed under the effect of these 

pseudoforces, until equilibrium is maintained. 

i. Results output. 

2. Subroutine INTEGRATION: 

This routine is called only once at the beginning of the FEM 

module. The routine sets the Gauss points coordinates and weigh-ting 

factorst according to the order of integration specified in the data. 

Subroutine LSTIF: 

This routine calculates the equivalent D matrix for a layered 

element from the layers contributionst using equation (4-17). The 

routine is called everytime the stiffness of a layer is needed. 

Subroutine MTX: 

This routine performs two functions: 

a. Calculates the coefficient matrix (matrix C'in equation 4-5) 

using the displacement polynomial functions defining the 

elements, equations (4-1) to (4-3)t and the corner 

coordinates of the element. 

b. Calculates the strain matrix B using the strain-displacement 

relationshipsg given by equation (4-10)- 

Both the interpolation and the strain matrices axe dependant on 

the element dimensions only and axe independent of the layering system. 

The routine is called whenever a different element type defined by 

its sides lengths is encountered. The routine is called during the 

stiffness formation phase, and the coefficient matrix is needed only 

in the calculation of the consistent load vector from uniform loads. 

Different elements strain matrices axe stored and used in the stiffness 

phase, middle plane strains phase, and later used when integrating the 
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stress resultants to get the internal nodal force vector. 

Subroutine WMA: 

The element load vector (nodal forces) computed for a given 
I 

intensity of uniform lateral load is calculated in this routine. 

These nodal forces axe obtained from 
(68): 

F cc] -1 
1T 

I/ I-P IT qdx dy 

where matrix C is the coefficient matrix obtained from the previous 

routine. P is the polynomial function given in equation (4-3)9 and 

is the intensity of the unifo= load. The inte6Tation is ca=ied 

explicitly and formulated in the routine. The integrand depends on 

the element dimensions, and accordingly, the routine is called whenever 

a different type of element is encountered. 

Subroutine RMULT: 

This routine multiplies two matrices to produce a third. 

Accordingly it is used in more than one position in the program. 

Subroutine INS M: 

This routine inserts elements stiffness matrices in their proper 

places in the global stiffness matrix. Since the program employs a 

constant stiffness methodg this routine is called once only for each 

element in the stiffness formation phase. 

8. Subroutine BOUNDARY: 

This routine identifies the restrained boundary degrees of freedom. 

A restrained displacement is given a code of 1. Later in the solution 

phase, such degrees of freedom axe removed from the stiffness matrix., 

Prescribed displacements at the nodes axe not treated as restraints on 

the'nodes. This routine, need be called only once in the program. 
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Subroutine NMSOL: 

In this routineq the banded stiffness matrix is first decomposed 

into a triangular form using the Gaussian elimination method 
(31). 

The stiffness matrix is decomposed only on first entry to the routine. 

In subsequent entriesp only the load vector is decomposed, and the 

nodal displacements are obtained by back substitution into the 

decomposed matrix. 

This is the most extensively used routine. It is called at the 

beginning of each load incrementg and once during each iteration. 

10. Subrautine REACTIONS: 

This subroutine computes the nodal reactions on the boundary 

nodes. The routine is called only once, and reactions axe obtained 

only for the first load incrementq and during the design phase. 

11 . Subroutine DESIGN: 

This routine is called only when a design for the flexural 

reinforcement is needed. The design is done according to the equations 

of section (3.4: ). This is an optional routine, and need be entered 

only once. 

12. Subroutine IlqPLANED: 

This routine is called only when a design for membrane reinforcement 

is needed. The design is done according to the equations of section 

This is an optional routinev and need be entered only once. 
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User Inst=uctions Manual to the Program FEM 

CAýýd Tormat 
No 

'. Desdpýiý. tion 

'1 20 A4 TITLE: Any sentence defining the problem. 
2 1594F10 Nonelastic, Elastiov UDULTInATE9 DPB, TIEAM 

If nonlinear analysis needed, NONELASTIC = 10 

and zero otherwise. 
To design flexural steel use Elastic = 1.0. 

2 UDULTIMATE is the design uniform load in N1mm 
DPB---; -*1.0 Deep beams with elastic design for the 

reinforcemdnt. DPB = 2.0 for Deep beams with a 
given reinforcement. For slabs put DPB = 0.0 

TBEAM = depth of slab dnd supporting'bbans. 
3 2015 IQUTPUT = nodes numbers for which displacements 

6utput is required. 
4 2015 ICUTPUT = Elements numbers for which stresses and 

strains axe requested in output. 
5 1415 NREF11 NREF29 NREF3P NREF4s NREF59 NG9 NPNODES9 

NDIFEL, NPOINT LOADS9 NBCS9. NLC9 INPLAY9 MOMEL9 

NSTIF. 

Control data t NREP1 = 1- for unbounded plasticity - 
NREF2 =1f or --ýbounded. Only one of these should 
be ý 0. NREF3 node number for relaxation analysis 
(ý 0 only when NREF4 ý 0)- =4 1 For fixed 

slabs only, otherwise = 0. NREF5 1 For nontorsional 

analysis, otherwise = 0. NG = No. of Gauss points in 

the element (4 or 9) NPODES = No. of Inplane point 
loads. NDIFEL = No. of different elements types. 

NPOINTLOADS = No. of point loads. NBCS = No. of 
boundaxy conditions. NLC = Total No. of load 

increments. INPLAY 1 for additional steel to any 

element. MOMEL = Element No. for which a summary will 
be given at the end of the analysis. NSTIP = No. of 

additional stiffnesses. 
6 SLX9 SLY, DIVX9 DIVY9 REGULAR9 SPANX9 SPANY, GMOD- 
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. Card 
oA No. ' 

SLX &'SLY are lengths 'of the slab'(or beam) 

DIVX*, DIVY divisions in the X and Y directions 

REGULAR = 1.0 for equal subdivisions in the two 

directions, otherwise = 0. 
SPANX & SPANY axe total spans in the two directions 

GMOD ntý-ed be specified only when Nr6O in card 5 
is ý 0. GMOD is the shear modulus of concrete. 

1595P10 ITERTOTI SCALE LOADO DISNORM9 FNORM, ACCELERATCR9 
TTN- 

ITERTOT = Max. No, of iterations in a load increment 
SCALELOAD = size of the load increment as a ratio 
of-thýi-cracking load. Use around 0.1 
DISNORM = convergence limit for displacement norm. 
Use 0.00001 

FNaRM = convergence limit for force norm. Use 0.01 

to 0.1 

ACCELERATCR = 1.0 

TTN = Tension stiffening factor c in Figure (4.6) 

use between 1.0 and 10. 

88 F10 PCUt FST, FTC, EC, ES9 Pq HARD1; HARD2 

FCU = concrete compressive strength in NIMM 2 

2 
FST = steel yield point in Nl= 

FTC = concrete tensile strength in I, /Mm 2 

EC = concrete modulus in- N/MM2 

ES = steel modulus in NIMM2 

P= Poisson's ratio for concrete 
H. ARD1. = hardening modulus 1 

HARD2 = hardening modulus 2. 

q6 Flo SXEWq STEELANG19 STEELANG29 Tq ASTXq ASTY, 
4 F5 LS19 LS2, Lq3j LS4 

SKEW = angle of skew in degrees (900 for orthogonal) 
STEELANG"J. = the angle the steel in the first 

direction makes with the x axis (OofOZ 03ýthogar. al) 
STEELANG2 = the angle the steel in the second 

direction makes with the x axis (goo for orthogonal) 



334 

, -0 6. -6 C1 
-. 

Fo=at 
.,, A . . ".. .,. 'i ,, "* , *. ' ,,, '. , '. , '. ,, '. ,,., 

No. Desicrip ion 

.......... T= slab or beam thickness (mm) 

ASTX =1 for main steel in X 
ASTY =u<1 proportion of steel in Y direction 
LS19 LS3 =Y steel layers numbers 
LS29 LS4 =X steel layers numbers 

10 3 P12 UD9 PRXO PRY 
UD = intensity of uniformly distributed load in N/mm 2 

PRX =X prestress in N/MM2 

PRY- =Y prestress in N/mm 2 

11 8 P10 XSIDE(I) = lengths of X divisions. Total No. of 
such divisions should be equal to DM. and more 
oaxds can be used if >8 divisions. IF REGULAR 

= 1.0 in caxd IT6.6, this card is not needed. 
12 8 F10 YSIDE(I) = length of Y divisions. Total No. of 

such divisions should be equal to DIVY, and more 
cards can be used if >8 divisions. IF REGULAR 

1.0 in card No. 6, this card is not needed. 
13 12 F6 TT12(I) = layers 9/cage thicknesses. Up to 12 layers 

can be used. 

14 12 F6 BEAML(I) = layers Ycage thicknesses for T beam elements. 
Up to 12 layers can be used. 

15 2 F6 DN9 DNBEAM 

DN = depth of middle plane of the slab. If 

unspecified, the default value of T/2 will be used. 
DNBEAM = depth of reference plane in Tbeam problems9 
which may be different from its middle plane. 

16 2 179 (NBOUND(I)v (NFIX(ItJ)p J=1,5)9 PRESC (ItJ)9 

5 P10 J=1,5)9 I= l9NB9S- 

NBOUND(I) = boundaxy nodes where restraints axe to 

to be applIed. 
NFIX (Ili) = Fixity code for the five degrees of 

-freedom in the order up v, w, Lw f, aw 
ay x 

If a certain degree of freedom in a node is restrained, 
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.......................................... 

No. ? OTmat, - De-acrivtIori 

........... .... I. 'it 'id 'o6d6 I 'othd: ývii: j6 '0. ' -- 
PRESC(I, J) = the prescribed displacement in the 
direction of any of the degrees of freedom of 
the boundary nodes. 

17 13 12 ((ILjIMOID(IjJ)O J=1912)0 I=1, NDIFEL) 
IL =-secjUential*orde= of'the different elements 

with different layers arrangements. 
LMOD(IqJ) = Type of layers for each type of 
- element.. 'The following codes are used 
IMOD =1 for*concrete layers 
IMOD =2 for steel layers 
IMOD =0 for zero layers 

le 20 14 HEWEL(I), imip(I), I= 11 NDIFEL 
NEWEL = elements = bers with different layering 

systems. 
LDIF = layering system number corresponding to 
IL in previous cards. 
If all elements have the same layering system 
then this caxd may be left blank. 

19 40 12 IELC(LE)q'LE = 19 NEL9 NEL = Total no. of elements. 
IELC = element type no. as it appeaxs on the mesh. 

0- 
According to their sides lengths and layering 

system,. elements can have different element 
type numbers IELC. 

20 15,2F10 NPRES(Iý. FNPX(I)q FNPY(I) 
NPRM(I) = boundary node numbers where inplane 
force in X direction FNPX(I) or in the Y direction 
FNPY(I) are appliedg and the magnitude and 
direction of these forces. These forces axe 
positive if they act in the positive directions 

of the global axes. The number of such cards 

will be equal to NPNODES in card No-5 

21 155 F10 NREST(I)q FIXITY(IjJ)qJ 
NaEST(I) ='node no. at which support stiffnesses 
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'Cd: ed 
No. Format Descripti= 

................................ FIXITY(I, J) in any direction of the five degrees 

6f freedom can be assigned. The mmber of such 
cards will be equal to NSTIF in card 5- 

22 139 F10 LOADPOINTS(I)v POINTLOADS(l), PMOM(ivj)9J=192 

LOADPOINTS(I) = Node nos. at which lateral 

concentrated loads. POINTLOADS(I) and concentrated 
moment in X and Y directions PMOM(IIJ) axe applied. 
Total no. of cards will be equal to NPOINTLOADS 
in Card 5- If an elastic design is required (with 

MASTIC = 1.0 in card 2) this set of cards should 
represent the design point loads and accordinglyv 
another set with small loads (of 1/15th the first 
design loads) axe also to be added. This last 

set of point loads is needed to start the incre- 

mental analysis. 
23 213p F10 NDNODEj LDT_R9 DLOAD 

NDNODE = node no. at which incremental membrane 
force in direction IMIR is to be applied. If 

force DLOAD is in the X direction use IMIR = 19 

and if in Y direction, LDIR = 2. The number of 

such card will be equal to MODES in caxd No-5- 
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Progrm Flow Ch=t 

RMU & F, MM MAJOR DATA 
I 

NO is 
DESIGN 

REQUIRED 

YES 

I FORM GLOBAL STIFIM'ESS CKI I 

I FORM DESIGN LOAD VECTOR LR] I 

SOLVF., PGR THE DISPLACHMENTS F d] , OBTAIN STRAINS9 STRESSES AND DESIGN STEEL lAYEaS 

FORM THE GLOBAL STIFFNESS MATRIX 

INITIALISE TWO LOAD VECTCRS [R] & J-P ] 

INCREMENT ADD A LOAD INCREMENT TO LOAD 

VECTORS, ext R ext 
=R +A P. p =p+Ap 

SOLVE FCR NODAL DISPLACEMENTS USING THE LOAD 

VECTOR P 

ITERATION ITERATION LOOP 

INITILIZE: STRESS, STRAINS BENDING MOM! ENTS, 
X&ABRANE FORC ETC VECTORS 

IN THE FIRST ITERATION 

1 



1 

ELEMENTS 
ELEMENTS LOOP 

COMPUTE MIDDL PLANE STRIANS VECTOR 

LAYERS r LAYERS LOOP 

COMPUTE THE LATERS' DISTANCE FROM MIDDLE PLANE 

INITIALIZE THE STRESS RESULTANT VECTM ELFRT 

GAUSS POINTS GAUSS POINTS LOOP 

338 

COMPUTE STRAINS FROM MIDDLE PLANE STRAINS USING 
THE KIRCHOFFS HYPOTHESIS 

CALCULATE THE ST'RESSESp ADD THE STRESSES & 

STRAINS TO THEIR RESPECTIVE VECTCRS TO GET 
TOTAL VALUES 

COMPUTE PRINCIPAL STRESSES9 STRAINS COMPUTE THE 

STRESS RESULTANTS M, N 

II 

(D 



2 339 

FIND Ut DIAX. PRINCIPAL STRESS RSDIAS & MAX. PRINCIPAL STRAIN 

NO , STEEL \ 'N 
YIELDING CLONCRETE 

AYER ? 

YES 

UPDATE STRESS & 
COMPUTE A SECANT SRMAX 

MODULUS 6*0035? ZERO D MATRIX 

NO 

C11ECK FOR CRACKING, YIELDING UNDER 
BIAXIAL STATES OP STRESS 

MODIFY THE CONSTITUTIVE MATX D, COMPUTE EXCESS 

STRESSES & BRING THE STRESS VECTOR ON THE YIELD 

SURFACE 

COMPUTE LAYER CONTRIBUTION TO THE SMESS 

RESULTANT VECTOR N, M 

USING THE ELEMENT STRtSS RESULTANT VECTCRS N, M JUM 
TEE STRAIN MATRIX B OBTAIN THE INTEGRAND fBTa dv 
& AID TO THE GLOBAL LOAD VECTCR R 

3 
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YES ITERATIONS 
> LIMIT 

EXAMINE EQUILIERIUM 

COMPUTE EXCESS FORCE VECTOR 
F ex R ext R 

ADD F ex TO LOAD VECTOR 

. .. PP+p ex 

SOLVE FOR ITERATION DISPLACEMENTS 

USING F ex 

CALCULATE DISPLACEMENT NORM & CHECK 

FOR CONVERGENCE 

NO 
ISPIACEME 

CIONVERGED? 

OUT PUT RESULTS 

STOP 



341 
C 

'DERIVATION'OF'THE'BOUNDED'PLASTIC*L2ADS 

Using the principle of uniform defo=ation, the plastic load 

increment f may be obtained from the current plastic load R as pp 

Af 
p=XRp 

where 

(1) 

RpZ (R -ZBT 
Ia 

dV) (2) 

a 
in which, Rp total force imbAance vector 

and &f 
P 

increment of plastic load vector 

R load vector 

Assuming the load- displacement curve can be fitted by a second 

degree curve 

y=a0+ alx +a 2x 

the nonlinearity at any stage is 

Rp alx -y 

-a0-a2 X2 

and dR 
p- 

2a2x dx 

for a00 

dR 
p 

/R 
P= 

2dx/x 

or AR 
p= 

Af 
p= 

2R 
pA 

d/d. 

If the degree of nonlinearity is mild, 

Ad/d AR/R 

where d and Ad are deformation vectors. 

Hence the increment of plastic load must be 

Af p= 2R 
p AR/R 
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and ff+. Af 

so that k d. R 
0 

where k is the initial stiffness matrix, and R is the total load 0 

vector. The analysis then continues along the same lines as before, 

but with the incremental plastic loads bounded. 
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APPENDIX (D)- 

Comparison Between Moment Fields Produced by Torsional 

and Torsionless Analyses, for Slabs with Sides Ratios of 

1*5 and 2-0. 

N. B. 

The Strip numbering system in the following figures is 

the same as that in FigL=es (5-3) to (5*9) in Chapter 5- 

4 
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'APPENDIX(Dl) 

Additional torsional reinforcement at discontinuous edges according 
(5). 

to CP110 

According to Section'(3.4-3.2) in CP110, torsional steel has to be 

provided as four layers as shown 
0 2L 

0.2L 

0.75Mrci Ole 

.1//I 

-41 1 

c Where L= short span, Mr= design moment at centre. 

Additional moment volume due to torsional steel-. 

V=4x0.75 Mc x (0.2L )2 
ar 

= 0.1p Mc ýL 2 
r 

which is the'moment volume due to torsional steel at one corner. In a 

simply supported slab with four corners 

V=4x0.12 McL2=0.48 Mc L2 
rr 

vMc 
0"0a= 

'o. 48 = 0.48 aI 
qLqLI 

Where the moment coefficient a=- can be obtained from 
q L2 

Figures (5.3'to 5-9), and from the Appendix Figures Dl to D56. 
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'APPENDIX E 

CALCULATIONS'FOR'SERVICEABILITY 

LIMIT'STATES 

Ass! a2tions: Under the service loadq the following assumptions are 

made. 

1. Tension stiffening in cracked concrete is ignored. 

2. Linear strain distribution across the depth of the section. 

3. Linear elastic behaviour for concrete in compression. 

4. Linear elastic behaviour for the reinforcing steel. 

5. Uniaxial behaviour is assumed for concrete 

hd 

CC 

L7 

For equilibrium: C=T 

EdAEe 
ccnsss 

dEcsI: S 2 -. 1 
.-. A2 mA nEc ec sS ec 

where m= modular ratio =E /E 
c 

But from the strain diagram 

- 'es 
-.. 

d. -7, d 
n 

ec dn 

d2mA (d dn/dn) 
ns 

arranging 

*06 dý + 2m Ad- 2m Ad0 
hsns 

(1) 

(2) 

(3) 

(1. ) 

C 
dn ) 

T 
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solvi. ng gives 

d MA + . 
1/(3nA. )2 + 2(mA )d 

nssb 

The. gross moment of inertia is 

'h3 (d h)2 
+ (m-1) A 

9 12 s2 

and the fully cracked transfo=ed section gives 

b. d3 
I 

cr 
As (d dn )2 

then using the Branson's methods an effective moment of inertia is 

calculated from 
13 3 Mc! M 

ýI=I-+ CM] (8) 
eff g Cr[ 

17 1 M 

in which 

M 
cr = cracking moment =2ft19 /h 

where h= total depth of section and 

f tensile strength of concrete. t 

The deflection under the service load is found from the 

elastic deflection as 

6' =61 /(L. F. I 
seg eff 

where L. F. = average load factor for ultimate conditions. 
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