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Abstract 

Chronic IL-6 signalling contributes to the pathophysiology of many diseases including 

prostate cancer. Relevant to prostate cancer is the ability of the pro-inflammatory cytokine 

IL-6 to activate the oncogenic signalling protein STAT3, thus inhibition of STAT3 

activation is a popular avenue of research to augment prostate cancer therapies. In this 

study, the endogenous anti-inflammatory molecule cAMP was investigated as a 

mechanism by which to inhibit IL-6-induced STAT3 activation in the DU145, LNCaP and 

PZ-HPV-7 prostate epithelial cells. 

 

Elevation of cAMP attenuated IL-6-mediated activation of STAT3 which was mimicked 

via selective activation of the exchange protein activated by cAMP. Inhibition of protein 

kinase A (PKA) alone also attenuated IL-6-induced STAT3 activation, suggesting a role 

for PKA activity in sustained IL-6 signalling in these cells. In DU145 and PZ-HPV-7 cells, 

the inhibitory effect of cAMP elevation was correlated with an increase in protein levels of 

suppressor of cytokine signalling 3. However, this was not the case in LNCaP cells in 

which cAMP elevation was instead associated with morphological changes consistent with 

neuroendocrine-like differentiation associated with terminal disease. 

 

PKA activation was required for cAMP-mediated changes in LNCaP cell morphology and 

could be recapitulated by reagents which inhibited RhoA/ROCK signalling, suggesting that 

cAMP elevation is able to inhibit RhoA activation via a PKA-dependent pathway. 

Additionally, cAMP elevation activated ERK1/2 and selective blockade of ERK signalling 

attenuated the effects of cAMP elevation on cell morphology. Selective activation of 

ERK1/2 did not induce the early changes in cell morphology associated with increased 

intracellular cAMP concentrations, suggesting that another, related pathway was 

responsible for this phenomenon. Genetic or pharmacological inhibition of the 

MEK5/ERK5 signalling pathway significantly attenuated the rapid cAMP-mediated 

changes in LNCaP cell morphology, suggesting this pathway may be a possible target by 

which to inhibit the onset of neuroendocrine differentiation. 

 

To summarise, this study demonstrates that whilst the ability of intracellular cAMP 

elevation to inhibit STAT3 activation is common to the prostate epithelial cell lines used, 

the downstream effects of cAMP elevation can vary dramatically. Thus, whilst modulation 

of cAMP signalling may represent a suitable therapeutic strategy when considering some 

aspects of prostate cancer, the impact on other signalling events must be considered. 
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2 Abbreviations 

4OHT 4-Hydroxytamoxifen 

6-Bnz-cAMP N6-Benzoyl-3', 5'- cyclic monophosphate 

8-pCPT-cAMP 8- (4-Chlorophenylthio)- 2'- O- methyladenosine- 3', 5'- cyclic 

monophosphate 

A Acidic domain 

A2AAR   A2A adenosine receptor 

AC   Adenylyl cyclase 

AdV    Adenovirus 

AKAP   A kinase anchoring protein 

AndR   Androgen receptor 

ANOVA   Analysis of variance 

Arp    Actin-related protein 

ATF    Activating transcription factor 

BCA   Bicinchoninic acid 

BMI    Body mass index 

BSA   Bovine serum albumin 

C   Catalytic subunit of PKA 

C1/2   Cytosolic domain 1/2 of AC 

C3T   C3 Transferase 

CAC   Colitis-associated carcinoma 

cAMP   3’,5’-cyclic adenosine monophosphate 

cAMP-A  High affinity cAMP binding site 

cAMP-B  Low affinity cAMP binding site 

CBP   CREB-binding protein 

CEBP   CCAAT-enhancer binding proteins 

cGMP   cyclic guanosine monophosphate 

CHAPS 3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate 

hydrate 
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CHD   Cytokine homology domain 

CLC   Cardiotrophin-like cytokine 

CNG   Cyclic nucleotide-gated ion channel 

CNrasGEF  Cyclic nucleotide Ras GEF 

CNS   Central nervous system 

CNTF   Ciliary neurotrophic factor 

Co   Cofilin homology 

CRE   cAMP response element 

CREB   CRE-binding protein 

CREM   CRE modulator 

CST   Cell Signalling Technology 

DBD   DNA binding domain 

DAB   Diaminobenzadine 

DEPC   Diethyl pyrocarbonate 

DMEM   Dulbecco’s minimal essential medium 

DMSO  Dimethylsulphoxide 

DOK-1  Downstream of kinase 1 

DPBS   Dulbecco’s phosphate buffered saline 

ECL    Enhanced chemiluminescence 

Eg   Erythropoietin receptor/gp130 chimera 

EGF   Epidermal growth factor 

eGFP   Enhanced green fluorescent protein 

EGM-2  Endothelial growth medium 2 

Em   Emetine 

EtOH    Ethanol 

EPAC   Exchange protein activated by cAMP 

ER   Oestrogen receptor 

ERK    Extracellular signal-regulated kinase 
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F-actin  Filamentous actin 

FBS   Foetal bovine serum 

FERM   Protein 4.1, ezrin, radixin, moesin 

FGF   Fibroblast growth factor 

fMLP   formyl-Met-Leu-Pro 

Fsk   Forskolin 

G-actin  Globular actin 

GAP   GTPase activating protein 

GAPDH  Glyceraldehyde-3-phosphate dehydrogenase 

G-CSF  Granulocyte colony stimulating factor 

GDI    GDP-dissociation inhibitor 

GEF   Guanine nucleotide exchange factor 

GFAP   Glial fibrillary acidic protein 

GFP   Green fluorescent protein 

GPCR   G-protein coupled receptor 

gp130   Glycoprotein 130 kDa 

H89 N-[2-(p-bromocinnamyl) amino) ethyl]-5-isoquinoline-sulfonamide 

dihydrochloride 

HB-EGF  Heparin-binding EGF-like factor 

HCC   Hepatocellular carcinoma 

HCN Hyperpolarisation-activated, cyclic nucleotide-gated ion channel 

HDAC    Histone deacetylase 

HEK    Human embryonic kidney 

hGH   Human growth hormone 

hGHR   Human growth hormone receptor 

HIF    Hypoxia-induced factor 

HPV   Human papillomavirus 

HRP   Horse radish peroxidase 
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HUVEC  Human umbilical vein endothelial 

IBD    Inflammatory bowel disease 

IBMX    Isobutylmethylxanthine 

ICER    Inducible cAMP early repressor 

Ig   Immunoglobulin 

IFN    Interferon 

ifu    Infectious unit 

IHC    Immunohistochemical 

IκB   Inhibitory κB 

IKK    IκB kinase 

IL    Interleukin 

JAK   Janus kinase 

JH   JAK homology 

JNK    c-Jun NH2-terminal kinase 

KIR    Kinase inhibitory region 

KSFM   Keratinocyte serum free medium 

LB    Luria-Bertani 

LBAmp   LB supplemented with ampicillin 

LBKan   LB supplemented with kanamycin 

LBTet   LB supplemented with tetracycline 

LIF    Leukaemia inhibitor factor 

LIFR    LIF receptor 

LIMK    LIM kinase 

LPS   Lipopolysaccharide 

mAb   Monoclonal antibody 

MAP    Microtubule-associated protein 

MAPK   Mitogen activated protein kinase 

MAPKK  Mitogen activated protein kinase kinase 
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MAPKKK   Mitogen activated protein kinase kinase kinase 

MEF   Murine embryonic fibroblasts 

MEM    Minimal essential medium (Eagle’s) 

memIL-6R  Membrane-associated IL-6 receptor 

MeOH   Methanol 

MG132  Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal 

MMP    Matrix metalloproteases 

MOI    Multiplicity of infection 

MT   Microtubule 

mycRaf1:∆∆∆∆ER myc-tagged Raf1:oestrogen receptor chimera 

myrPKI 14-22  Myrsitoylated PKA inhibitor 14-22 amide 

NE   Neuroendocrine 

NEM    N-ethyl maleimide 

NFκB   Nuclear factor kappa B 

NGF   Nerve growth factor 

NK    Natural killer 

NLS   Nuclear localisation signal 

NPF   nucleation-promoting factors 

NPN   Neuropontin 

NSAID  Non-steroidal anti-inflammatory drug 

NSE   Neuron-specific enolase 

ORF   Open reading frame 

OSM   Oncostatin M 

OSMR  OSM receptor 

pAb   Polyclonal Ab 

PACAP  Pituitary adenylyl cyclase activating protein 

PAGE   Polyacrylamide gel electrophoresis 

PBS   Phosphate buffered saline 
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PBST   PBS containing 0.1 % (v/v) Tween 20 

PCa   Prostate cancer 

PDE   Phosphodiesterase 

PE   Phycoerythrin 

PIAS   Protein inhibitors of activated STATs 

PKA   Protein kinase A 

PKA-C  Constitutively active PKA 

PKC   Protein kinase C 

PKN   Protein kinase novel 

PLC   Phospholipase C 

PLD   Phospholipase D 

PMSF   Phenylmethanesulphonyl fluoride 

pRb   Retinoblastoma protein 

PSA   Prostate-specific antigen 

pSer   Phospho-serine 

pThr   Phospho-threonine 

pTyr   Phospho-tyrosine 

qRT-PCR  Quantitative real time polymerase chain reaction 

R   Regulatory subunit of PKA 

RA   Ras-associating 

RArt   Rheumatoid arthritis 

Rec   Receptor 

Rec*   Activated receptor 

REM   Ras-exchange motif 

RGS   Regulators of G-protein signalling 

rhu   Recombinant human 

RIPA    Radio-immunoprecipitation assay 

RNS   Reactive nitrogen species 
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ROCK   Rho-associated protein kinase 

ROS   Reactive oxygen species 

RPMI    RPMI 1640 medium 

SDS   Sodium dodecyl sulphate 

SFK   Src family kinases 

SH   Src homology 

SHP   SH2-containing phosphatase 

sIL-6R  Soluble IL-6R 

SOCS   Suppressor of cytokine signalling 

SRE   STAT-responsive element 

STAT   Signal transducer and activator of transcription 

STAT3-C  Constitutively active STAT3 

SUMO  Small ubiquitin-like modifier 

TAD    Transactivator domain 

t-Bu-SATE  2’,5’-dideoxy-3’-AMP-bis(t-Bu-SATE) 

TBS   Tris buffered saline 

TBST   Tris buffered saline containing 0.1 % (v/v) Tween 20 

TBST-M   TBST containing 5 % (w/v) non-fat milk powder 

TCA    Trichloroacetic acid 

TcR   T-cell receptor 

TE   Tris-EDTA buffer 

TGF   Transforming growth factor 

TLR   Toll-like receptor 

TNF   Tumour necrosis factor 

TORC   Transducer of regulated CREB 

Trk    Tropomyosin-receptor-kinase 

U0126   1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene 

Ub   Ubiquitin 
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UC   Ulcerative colitis 

V   Verprolin homology 

VEGF   Vascular endothelial growth factor 

VIP    Vasoactive intestinal peptide 

WAS   Wiskott-Aldrich syndrome 

WASP   WAS protein 

WAVE   WASP-family verprolin-homologous domain 

WHO    World Health Organisation 

Y27532 (1)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) 

cyclohexanecarboxamide dihydrochloride 
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3 Introduction 

3.1 Cancer 

Cancer is an ancient disease, detected in human remains from circa 2000 BC (Greaves, 

2000) and currently describes a group of approximately one hundred potentially fatal 

conditions accounting for 13% of all global annual deaths (WHO, 2006). The term 

“cancer” is generically ascribed to the growth of malignant tumours which develop in 

tissues following abnormal cellular growth and subsequent neoplasm development. The 

terms neoplasm and tumour are used interchangeably to describe multicellular masses 

which develop in tissues as a result of abnormal cell growth and can subsequently progress 

to malignancy dependent on the tumour environment (Pierce & Damjanov, 2006). 

 

Neoplasms are cellular masses composed of parenchymal cells and stroma which grow at 

an elevated rate with respect to the surrounding normal tissues, regardless of an inciting 

stimulus. Tumour parenchymal tissue may resemble either normal tissue or be poorly 

differentiated and undergo rapid proliferation. Contrary to popular belief, the majority of 

neoplastic cells do not undergo more rapid cell cycle progression in comparison to normal 

cells but rather neoplasm growth occurs so rapidly due to the larger number of neoplastic 

cells which are proliferating (Pierce & Damjanov, 2006). 

 

Neoplasm development occurs via a number of stages and requires an initiating stimulus. 

Stimuli may be mechanical, such as tissue injury, or be chemical in nature, including 

tobacco smoke and chemical irritants (Coussens & Werb, 2002;Pierce & Damjanov, 2006) 

and result in a reversible change in cellular phenotype, a process known as metaplasia 

(Pierce & Damjanov, 2006). Continued stimulation results in changes in cellular 

organisation and subsequent abnormal growth produces dysplastic tissue which may 

progress to malignant growth following continued stimulation (Clevers, 2004;Pierce & 

Damjanov, 2006). 

 

Following development of a solid mass, tumours may be categorised as either benign or 

malignant neoplasms. Benign tumours are typically composed of well differentiated cells 

which divide slowly (Pierce & Damjanov, 2006). Morphologically and functionally, 

benign tumours resemble normal tissue and only rarely cause damage as a result of tumour 

expansion and compression of normal tissues. In contrast, malignant tumours are 
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composed of pleomorphic cells of variable shape and size and display an ability to grow 

uncontrollably, culminating in invasion of adjacent tissue (Pierce & Damjanov, 2006). 

Growth of malignant cells along tissue spaces, especially nerves, allows invasion of 

vascular and lymphatic vessels whereupon single or clumps of malignant cells may 

become detached from the tumour and disseminate to distal tissues via a process known as 

metastasis. Metastatic cells can then give rise to secondary tumours at sites distinct from 

the primary tumour (Pierce & Damjanov, 2006). Metastases are associated with over 90% 

of all cancer-related deaths (WHO, 2006) and thus represent a poor prognosis for the 

patient. 

 

Cancer arises due to a collection of stochastic events which result in genomic alterations in 

a cell (van Kempen et al., 2006). Typically, these mutations act to promote cellular 

proliferation via either gain-of-function mutations in genes which promote progression 

through the cell cycle (oncogenes) or loss of functions in genes which impede cell cycle 

progression (tumour suppressor genes) (Hanahan & Weinberg, 2000;Moeller & Sheaff, 

2006). As a result of these accumulated genomic changes, cancerous cells are exempt from 

normal cell cycle control and are able to proliferate indefinitely, a process known as 

transformation (Hanahan & Weinberg, 2000;Pierce & Damjanov, 2006). 

3.1.1 Features of cancerous cells 

Despite the vast repertoire of human cancers and the variety of organs which are affected 

by malignancies, it has been proposed that all cancerous cells share six common 

characteristics (Hanahan & Weinberg, 2000). The first of these is the ability to grow 

independently of exogenous growth factors. In culture, growth of normal cells is reliant on 

the addition of exogenous, soluble growth factors from either medium supplements or from 

other cell types. The process by which soluble growth factors released from neighbouring 

cells are able to stimulate the growth of normal cells is known as heterotypic signalling 

(Hanahan & Weinberg, 2000). Reciprocal heterotypic signalling between cell types allows 

growth of a diverse cell community. However, growth of cancerous cells frequently occurs 

independently of heterotypic signalling, thus promoting tumour cell growth over that of 

normal tissue cells. There are three broad mechanisms by which independence from 

heterotypic signalling can be achieved. Firstly, cancer cells can themselves produce growth 

factors which they require for growth and thus stimulate their own proliferation via 

autocrine signalling (Hanahan & Weinberg, 2000;Okamoto et al., 1997). Secondly, 

responses to growth factors typically occur downstream of recognition by cell surface 

receptors. Alteration of either the growth factor receptor intracellular or extracellular 
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domains, particularly those domains associated with regulating tyrosine kinase activity, can 

result in growth factor receptors which are constitutively active (Hanahan & Weinberg, 

2000). Consequently, intracellular signalling pathways are activated in a growth factor-

independent manner, therefore receptor modifications can represent a second mechanism 

by which cancer cells can be freed from exogenous growth factor requirements. Alteration 

of integrin expression on cancer cells can also promote proliferation in the absence of 

growth factors required by normal cells (Hanahan & Weinberg, 2000). 

 

In addition to their ability to proliferate in the absence of heterotypic signalling, cancer 

cells are also able to proliferate more readily than normal cells due to their insensitivity to 

normal antigrowth signals. In normal cells, proteins such as the retinoblastoma protein 

(pRb) and transforming growth factor β (TGFβ) inhibit G1 to S phase transition in the cell 

cycle and thus impede proliferation (Moeller & Sheaff, 2006). Cancer cells frequently lose 

responsiveness to TGFβ and contain mutations in the gene encoding pRb which act to 

enhance cancer cell growth and proliferation (Hanahan & Weinberg, 2000). Other common 

features displayed by the majority of cancer cells are an ability to evade apoptosis, an 

unlimited capacity for replication and the metastatic potential of cancer cells to disseminate 

to distal tissues and organs (Hanahan & Weinberg, 2000;Pierce & Damjanov, 2006). In 

order to sustain solid tumour growth, tumour cells also promote sustained angiogenesis 

within developing tumours via elevated levels of the transcription factor, hypoxia-induced 

factor- (HIF-) 1α and the pro-angiogenic signalling molecule vascular endothelial growth 

factor (VEGF) expression (Semenza, 2000). 

3.1.2 Development of cancer 

Cancer cells have distinctly different growth profiles compared to normal cells due to the 

progressive accumulation of mutations within the genome of malignant cells (Hanahan & 

Weinberg, 2000). However, mutations need to accumulate in a number of specific genes in 

order to produce a malignant phenotype. Considering that maintenance of genomic 

integrity is a highly efficient process, accumulation of the required array of mutations by a 

single cell would be expected to occur rarely (Hanahan & Weinberg, 2000). The rate of 

cancer in the global population is greater than would be expected if cancer arose solely by 

random mutation, thus factors other than mutation must predispose cells to malignancy. It 

has been proposed that precancerous cells have an inherently unstable genome due to 

mutation of the p53 tumour suppressor protein (Hanahan & Weinberg, 2000). In normal 

cells, p53 acts to impede cell cycle progression in the presence of DNA damage until such 
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a time that the damage has been repaired (Hussain & Harris, 2006). In circumstances 

where the DNA damage is so extensive as to be irreparable, p53 initiates apoptosis of the 

damaged cell and so prevents inheritance of genomic alterations (Moeller & Sheaff, 2006). 

Mutations in p53 are amongst the most common associated with carcinogenesis (Hussain 

& Harris, 2006) and may thus represent a mechanism by which premalignant cells become 

transformed and subsequently expand into a solid tumour. Of relevance to this project, 

mutations in the gene encoding p53 have been correlated with exposure to conditions 

associated with chronic inflammation (Hussain & Harris, 2006). 

3.2 Inflammation 

The inflammatory response is a critical response to infection and is characterised by the 

four cardinal symptoms of pain, heat, redness and swelling of the affected tissue (Sullivan 

& Linden, 1998). This pro-inflammatory phenotype arises in tissues due to localised 

vasodilation and disruption of the vascular endothelium, resulting in tissue oedema and 

sequestration of circulating leukocytes. Activation of tissue-localised leukocytes further 

propagates the inflammatory response via the release of mediators including cytokines, 

chemokines and lipid mediators, and subsequently results in the clearance of infection 

(Sullivan & Linden, 1998). 

 

There are numerous factors which can induce inflammation in response to pathogen 

invasion. These include the Toll-like receptors (TLRs) expressed on a variety of leukocytes 

including lymphocytes, natural killer (NK) cells, peripheral blood mononuclear cells and 

antigen presenting cells (Muzio & Mantovani, 2001). Members of this receptor family 

recognise specific pathogen virulence motifs and include TLR2 and TLR4 which are 

involved in the recognition of bacterial surface antigens (Muzio & Mantovani, 2001). 

Additionally, pathogens can activate the complement cascade, either via antibody 

recognition or directly binding via lipopolysaccharide (LPS) or surface sugar residues 

(Mollnes et al., 2002), resulting in an inflammatory response (Gerard & Gerard, 2002). 

Some pathogens, such as Aspergillus fumigatus, contain proteases which are able to 

directly cleave some complement components, namely the C3 and C5 components (Nagata 

& Glovsky, 1987). Cleavage of C3 and C5 results in the release of the C3a and C5a 

anaphylatoxins (Nagata & Glovsky, 1987;Wetsel et al., 2000) which are potent 

inflammatory mediators and act at their respective G-protein coupled receptors (GPCRs) to 

mediate pro-inflammatory events. Anaphylatoxins can promote inflammation via directly 

promoting chemotaxis and activation of leukocytes or indirectly via the induction of 

cytokine release (Gerard & Gerard, 2002;Mollnes et al., 2002;Wetsel et al., 2000). 
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Irrespective of the mechanism by which the inflammatory response is activated, the 

ultimate goal is to clear infection. However, a prolonged, systemic inflammatory response 

can be fatal as evidenced by the 53-63% mortality associated with individuals suffering 

from septic shock (Balk, 2000). Chronic inflammation is implicated in the pathophysiology 

of numerous diseases including rheumatoid arthritis, sepsis and atherosclerosis (Gomez & 

Sitkovsky, 2003;Sands & Palmer, 2005;Shouda et al., 2001;Sitkovsky, 2003). Tissue 

remodelling and changes in cellular responses are frequently associated with persistent 

inflammation. Similar alterations are seen during malignancy development and thus 

chronic inflammatory responses are frequently associated with carcinogenesis. 

3.3 Chronic Inflammation and Cancer 

Inflammation has been proposed to play a key role in carcinogenesis since the 19th century 

when Virchow described inflammatory cell infiltrates in solid tumours (Moss & Blaser, 

2005). Several links between cancer and inflammation have been described since this 

hypothesis was originally suggested. Chronic inflammation contributes to both initial 

tumourigenesis and subsequent promotion of tumour growth via multiple mechanisms 

(Fig. 1).  

3.3.1 Chronic inflammation promoting carcinogenesis  can arise due to 

a multitude of factors 

Gastric cancer is the second most common fatal human malignancy and is responsible for 

12% of all cancer deaths (Schottenfeld & Beebe-Dimmer, 2006). Initiation of gastric 

cancer is one of the first to be directly attributed to a chronic inflammatory response 

perpetuated in response to chronic infection with the Gram negative bacterium 

Helicobacter pylori (Moss & Blaser, 2005;Schottenfeld & Beebe-Dimmer, 2006). 

Infection can promote carcinogenesis via multiple mechanisms, including ligand-

independent activation of intracellular signalling cascades, release of pro-inflammatory 

cytokines and secretion of anti-pathogen antibodies (Moss & Blaser, 2005). Chronic 

antibody secretion has been associated with an antibody-dependent initiation of 

tumourigenesis in de novo skin carcinogenesis arising from chronic inflammation in mice 

expressing the E7 protein of human papillomavirus (HPV) (de Visser et al., 2005). 

 

In addition to H. pylori, other infectious agents promote a chronic inflammatory response 

and potentiate carcinogenesis. Incidence of hepatocellular carcinoma (HCC) is strongly 
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associated with chronic hepatitis arising due to persistent Hepatitis C or Hepatitis B virus 

infection (Schottenfeld & Beebe-Dimmer, 2006). Other infectious agents associated with a 

chronic inflammatory response and subsequent tumourigenesis include Schistosoma 

haematobium which is associated with bladder cancer, HPV types 16 and 18 which are 

involved in cervical cancer (Schottenfeld & Beebe-Dimmer, 2006) and the LMP1 protein 

of Epstein Barr virus which is associated with nasopharyngeal carcinoma (Tsao et al., 

2002). 

 

Chronic inflammation also contributes to the development of cancer independently of 

infection. Several chronic inflammatory diseases are associated with an increased risk of 

cancer. One such disease is ulcerative colitis (UC), a form of inflammatory bowel disease 

(IBD) associated with inflammation of the intestinal epithelium and an increased risk of 

developing colorectal carcinoma (Greten et al., 2004). Inflammation-induced activation of 

the NFκB signalling pathway has been shown to potentiate tumour development in a 

murine model of non-virally-induced HCC (Pikarsky et al., 2004). Numerous other 

inflammatory diseases are associated with carcinogenesis including oesophageal cancer 

and gastroesophageal reflux, gall bladder cancer and choleostatis-induced inflammation 

and prostate cancer (PCa) and inflammatory atrophy (Schottenfeld & Beebe-Dimmer, 

2006). 

3.3.2 Chronic inflammation contributes to carcinoge nesis via 

numerous mechanisms 

As described above, chronic inflammation can contribute directly to carcinogenesis arising 

due to infections and chronic inflammatory diseases such as IBD and inflammatory 

atrophy. Following the establishment of chronic inflammatory responses, there are several 

mechanisms by which carcinogenesis can be promoted (Fig. 3.1). 

 

Activation of phagocytic cells such as macrophages or neutrophils can induce respiratory 

burst which results in the generation of reactive oxygen (ROS) and reactive nitrogen 

species (RNS). ROS and RNS are free radicals and the high levels of these compounds 

present during a chronic inflammatory response can be sufficient to overwhelm 

endogenous antioxidants, resulting in damage to cellular proteins and DNA (Finkel & 

Holbrook, 2000;Jackson et al., 2002;Jezek & Hlavata, 2005). Consequently, signalling 

through pathways may be altered and genetic mutations may arise, contributing to cancer 

development. ROS generation has been associated with skin carcinogenesis  
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Figure 3.1: Mechanisms by which chronic inflammatio n can contribute 

to carcinogenesis 
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(Dhar et al., 2002). In addition, generation of NO can regulate tumourigenesis and is 

hypothesised to promote mutations in p53, resulting in cell cycle dysregulation and 

subsequent risk of cancer development (Hussain & Harris, 2006). 

 

A further mechanism by which inflammation can contribute indirectly to cancer 

development is to facilitate the recruitment and activation of leukocytes which promote 

tumour growth via heterotypic signalling. In the inflammation-induced model of CAC 

described above, deletion of IKKβ in myeloid cells resulted in both a 50% decrease in 

tumour incidence and also a decrease in overall tumour size (Greten et al., 2004). This 

result suggests that a pro-inflammatory microenvironment is important for initial 

tumourigenesis and that activation of NFκB in myeloid cells promotes subsequent tumour 

growth (Greten et al., 2004). Similarly, in breast carcinomas, elevation of the chemokine 

CCL2 is associated with accumulation of tumour-associated macrophages and is believed 

to promote release of macrophage-derived growth and angiogenic factors such as VEGF 

and Interleukin- (IL-) 8 (CXCL8) to promote tumour growth. It has been suggested that 

CCL2 also promotes initial tumourigenesis in vivo in breast carcinoma models (Rollins, 

2006). The pro-inflammatory chemokines CXCL12 and CCL25 have also been similarly 

implicated in cancer progression (Rollins, 2006). 

 

In addition to the role in which chronic inflammation can play in promoting tumour 

progression, the inflammatory tumour microenvironment can also act to prevent 

surveillance and subsequent removal of cancerous cells by the immune system. T-

lymphocytes and natural killer (NK) cells play important roles in the immunosurveillance 

of tumours. However, within a chronic pro-inflammatory environment, T-lymphocyte and 

NK cell immunosurveillance can be dysfunctional due to multiple reasons including 

decreased T-cell receptor (TcR) activation (Baniyash, 2006), decreased natural killer (NK) 

cell activation (Oppenheim et al., 2005) emergence of anti-inflammatory regulatory T-cells 

and release of IL-10 and tumour growth factor β (TGFβ) which promote immune tolerance 

(Basoni et al., 2005;Bergmann et al., 2007;Laouar et al., 2005;Li et al., 2006a;Steinbrink 

et al., 1997). Treatment with TGFβ inhibitors is being developed as an anti-cancer therapy 

to alleviate tumour-induced immunosuppression and so accelerate the removal of 

cancerous cells (Wojtowicz-Praga, 2003). 
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Activated leukocytes have also been associated with tumour metastases via the release of 

matrix metalloproteases (MMPs) and subsequent degradation of the extracellular matrix, 

enabling tumour expansion into interstitial spaces (van Kempen et al., 2006). MMP 

expression is correlated with the expression of specific chemokine receptors in multiple 

malignancies (van Kempen et al., 2006). Whilst this is somewhat expected in 

haematopoietic malignancies, the expression of chemokine receptors in epithelial 

malignancies implies a role for chemotaxis during cancer progression and is hypothesised 

to play a role in directing metastasis (Rollins, 2006). 

3.3.3 The NFκB pathway links inflammation to cancer 

Another method by which inflammation can promote tumour progression is via activation 

of the nuclear factor kappa B pathway (NFκB), one of the key intracellular pathways 

activated in response to inflammatory stimuli including LPS, viruses and cytokines such as 

IL-1β and tumour necrosis factor (TNF) α (Karin, 2006;Osborn et al., 1989). Activation of 

NFκB and subsequent altered gene expression has been shown to form a mechanistic link 

between inflammatory signalling and cancer (Karin, 2006).  

 

There are five members of the NFκB transcription family, RelA, RelB, c-Rel, p50/NFκB1 

and p52/NFκB2 which all contain a Rel homology domain (RHD). The RHD facilitates 

multiple functions including DNA binding whilst the transactivation domain found in RelA 

(p65), RelB and c-Rel enables them to initiate transcription of NFκB-regulated genes. In 

contrast, NFκB1 and NFκB2 lack transactivator activity and require dimerisation with one 

of the other family members in order to initiate gene transcription (Bhoj & Chen, 2009). In 

the absence of stimulation, NFκB family members remain dormant in the cytoplasm of 

cells due to association with inhibitor of NFκB (IκB) proteins (Fig. 3.2). Several members 

of the IκB family exist, with IκBα, β and ε being of most importance in mammalian 

systems due to the presence of N-terminal regions required for signal induced degradation 

(Karin & Ben Neriah, 2000). Cellular interaction with an inciting stimulus, increases 

activity of the IκB kinase (IKK) complex as a result of hierarchal protein activation and 

degradation incorporating signalling molecules such as the IRAK1/TRAF6 complex and 

the TAB1/TAB2/3/TAK1 complex (Bhoj & Chen, 2009). The IKK complex consists of the 

IKK α and IKKβ catalytic subunits and is regulated by the IKKγ subunit. IKKγ interacts 

with IKKβ and is required for full activation of the IKK complex although the mechanism 

by which IKKγ regulates IKK activation is unknown (Hacker & Karin, 2006;Rothwarf et 

al., 1998). Phosphorylation of IκB occurs primarily due to IKKβ kinase activity and 

creates a binding site for the SCFβTrCP ubiquitin ligase, resulting in polyubiquitination and  
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Figure 3.2: Activation of NF κB signalling via the classical IKK-I κB pathway 

Pro-inflammatory stimuli result in activation of the IKK complex, resulting in IκB 

phosphorylation and subsequent polyubiquitination and degradation. The released NFκB 

transcription factors translocate to the nucleus and activate transcription 
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proteasomal degradation of the IκB (Hatakeyama et al., 1999;Karin, 2006). The released 

NFκB dimers are then able to translocate to the nucleus and activate transcription of 

NFκB-regulated genes including the pro-proliferative cytokine IL-6 and anti-apoptotic 

proteins such as Bcl-XL and the caspase 8 inhibitor c-FLIP (Karin, 2006). 

 

IKK γ-mediated activation of IKKβ is frequently referred to as the classical pathway of 

NFκB activation and results in activation of IκBα-bound dimers within minutes of pro-

inflammatory stimulation (Hacker & Karin, 2006). A non-classical pathway of NFκB 

activation involving NFκB-inducing kinase (NIK), IKKα and NFκB2 activation has been 

described, although this pathway is found mainly in B-cells and is reviewed in Bhoj and 

Chen (Bhoj & Chen, 2009;Hacker & Karin, 2006;Ling et al., 1998). 

 

In murine models of UC, it has been suggested that initial development of colitis-

associated carcinoma (CAC) is due to activation of the NFκB signalling pathway, a key 

pathway activated during signal transduction downstream of pro-inflammatory stimuli. In 

this study, Greten et al (Greten et al., 2004) demonstrated that deletion of IKK β in 

intestinal epithelial cells resulted in a 75% decrease in tumour incidence in response to 

chronic inflammatory stimuli in comparison to control animals in which IKKβ function 

was maintained (Greten et al., 2004). IKKβ is a component of the NFκB pathway which is 

essential for NFκB activation downstream of pro-inflammatory cytokine stimulation, thus 

activation of NFκB in response to chronic inflammation can drive tumourigenesis in CAC 

(Greten et al., 2004). The pro-oncogenic role of NFκB activation in CAC was hypothesised 

to be due to the anti-apoptotic activities of NFκB. Deletion of IKKβ in the intestinal 

epithelium resulted in greater areas of apoptosis in response to inflammatory stimulus in 

comparison to littermate control animals. This increase in apoptosis was shown to be 

independent of p53 or sustained JNK activity, but was hypothesised to involve alterations 

in the activation of the anti-apoptotic factor Bcl-XL. IKKβ deletion animals showed 

decreased induction of Bcl-XL compared to control specimens (Greten et al., 2004). 

However, there was no observed difference in the size of tumours between the two animals 

groups, suggesting that NFκB signalling in intestinal epithelial cells does not play a vital 

role in maintaining tumour growth but is more important in initial tumorigenesis (Greten et 

al., 2004). Inflammation-induced activation of the NFκB signalling pathway in a murine 

model of non-viral-induced HCC promoted tumour growth via protecting cancerous cells 

from apoptosis (Pikarsky et al., 2004). 
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To summarise, although the inflammatory response is vital for the clearance of infection, 

unsuccessful resolution of acute inflammation can result in chronic inflammation which 

can be detrimental. Whether arising from persistent infection or from inflammatory 

diseases, chronic inflammation can act to promote carcinogenesis, tumour progression and 

metastasis via a number of distinct mechanisms. There are numerous well-established links 

between inflammation and the progression of various cancers and treatments involving 

antioxidants and non-steroidal anti-inflammatory drugs (NSAIDs) have been effective 

complements to traditional chemotherapy (Thun et al., 2002). Thus, further understanding 

and manipulation of the inflammatory response may be of future benefit when treating 

human cancers. 

3.4 Interleukin-6 Family Cytokines 

3.4.1 Interleukin –6 cytokine family 

The term cytokine describes a group of extracellular proteins of approximately 200 amino 

acids which mediate intercellular signalling and regulate a vast array of physiological 

phenomena ranging from immune functions to cellular survival (Chow et al., 2002). The 

IL-6 family of cytokines play an important role in governing haematopoiesis (Heinrich et 

al., 2003) and regulate a number of cellular functions including differentiation, 

proliferation and apoptosis (Heinrich et al., 2003;Mitsuyama et al., 2006). Members of the 

IL-6 cytokine family traditionally include IL-6, IL-11, leukaemia inhibitory factor (LIF), 

oncostatin M (OSM), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), 

neuropoietin (NPN) and ciliary neurotrophic factor (CNTF) with IL-27 and IL-31 recently 

entering this family (Heinrich et al., 2003;Mitsuyama et al., 2006). 

 

All IL-6 family member cytokines require the gp130 signal transduction molecule for 

efficient intracellular signal transduction following interaction of the cytokines with their 

cognate receptors (Chow et al., 2002). The receptors function typically as tetramers, 

consisting of two molecules of a non-signalling receptor which recognises the cognate 

cytokine and two monomers of signal transducing receptors. In case of the IL-6 receptor, 

IL-6Rα forms the non-signalling receptor and the fully activated signalling complex is 

formed from two monomers each of IL-6, IL-6Rα and gp130, although other members of 

the family form different higher order signalling complexes (Bravo & Heath, 2000). The 

formation of these high affinity receptor signalling complexes is dominated by the 

interaction between the cytokine and its non-signalling receptor (Bravo & Heath, 2000). 

Each member of the IL-6 cytokine family displays the characteristic up-up-down-down 



23 

four helix cytokine topology, comprising two pairs of antiparallel helices joined by 

polypeptide loops (Heinrich et al., 2003). All four helices are straight within IL-6 and IL-

11, whilst OSM, LIF and CNTF have a kink in helix A (starred in Fig. 3.3) which may 

account for differences in receptor complex recruitment and quaternary structure (Heinrich 

et al., 2003;Skiniotis et al., 2008). 

 

The interaction between human growth hormone (hGH) and its receptor (hGHR) has long 

been the paradigm for receptor-cytokine interaction, in which hGH interacts with hGHR 

via two distinct sites (Bravo & Heath, 2000). However, the IL-6 family cytokines are 

thought to diverge from this model due to three points of interaction between the cytokine 

and its receptor (Fig. 3.3). The three sites involved in the recognition of the receptor 

signalling complex by IL-6 are termed Site I, Site II and Site III. Members of the IL-6 

cytokine family engage their signalling receptors via interaction with Sites II and III whilst 

Site I is involved in a relatively high affinity interaction with the non-signalling receptor 

(Bravo & Heath, 2000). The use of Site I to recognise the non-signalling receptor may 

represent a mechanism by which IL-6 cytokine family members overcome low affinity 

interactions at Site II with the signalling receptors such as gp130 (Bravo & Heath, 2000). 

 

As indicated in Fig. 3.3, the different receptor interaction sites of IL-6 occupy distinct 

regions with Site I being located on helix D, Site II comprising a cluster of residues in 

helices A and C and Site III being formed by F156 and K159 and is involved with 

interaction of the Ig-like domain of gp130 (Bravo & Heath, 2000;Chow et al., 2001b). Site 

I in IL-6 and IL-11 is dominated by an arginine residue towards the C-terminus of helix D 

which is thought, based on similarities to the IL-4/IL-4Rα interaction, to form a salt bridge 

with an aspartate residue on IL-6Rα (Bravo & Heath, 2000). A conserved glycine residue 

is central to Site II and, due to a lack of side chain, forms a hydrophobic pocket within the 

site to interact with the cytokine receptor homology domain of gp130 (Bravo & Heath, 

2000). Successful cytokine-receptor interaction initiates the formation of the higher order 

signalling complexes required for intracellular signal transduction (Chow et al., 2001a). 

3.4.2 The IL-6 family cytokine receptors 

The IL-6 family cytokine receptor family can be divided into two groups, dependent on 

their role in signal transduction. The non-signalling α-receptors IL-6Rα, IL-11Rα and 

CNTFRα are responsible for binding their respective ligands and are required for effective 

signal transduction (Bravo & Heath, 2000;Heinrich et al., 2003). In contrast, LIFR and 
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OSM do not require non-signalling receptors for effective ligand-receptor interaction and 

can interact directly with the signalling receptors (Heinrich et al., 2003). LIFR, OSMR and 

gp130 comprise the signalling receptors of the IL-6 cytokine family and are responsible for 

activation of intracellular signal transduction (Heinrich et al., 2003). All IL-6 family 

cytokines require at least one molecule of gp130 for efficient commencement of cellular 

responses. IL-6 and IL-11 signal via gp130 homodimers whilst the remaining IL-6 family 

cytokines signal via gp130/LIFR heterodimers (Fig. 3.4). OSM is unique amongst this 

family due to its ability to recruit a gp130/OSMR heterodimer for signal transduction 

(Heinrich et al., 2003). It has recently been suggested that IL-27 signals via a unique 

gp130/WSX-1 heterodimer (Pflanz et al., 2004). The signalling receptors lack intrinsic 

kinase activity and so are reliant on constitutively associated Janus kinases (JAKs) for 

effective signal transduction. JAK1, JAK2 and Tyk2 have all been shown to activate 

intracellular signalling downstream of IL-6 family cytokines (Heinrich et al., 2003). 

 

Interaction between cytokine receptors and their cognate ligand and subsequent receptor 

activation is mediated by a number of extracellular motifs. All family members contain a 

cytokine receptor homology domain (CHD) consisting of a seven-stranded β-sandwich 

which contains a signature WSXWS sequence in the second, C-terminal motif (Bravo & 

Heath, 2000) and mediates protein-protein interactions (Bischoff et al., 1992). OSMR and 

LIFR contain two CHD motifs whilst gp130 and all three non-signalling receptors possess 

only a single CHD (Bravo & Heath, 2000). Interaction between a non-polar CHD residue 

and the hydrophobic cleft of site II is proposed to be important in receptor recognition of 

cytokines. The presence of an Ig-like domain at the C-terminus of the membrane proximal 

CHD has been detected in all IL-6 family cytokine receptors and mediates interaction with 

site III on the cytokine (Bravo & Heath, 2000). In the case of IL-6 signalling, the presence 

of the Ig-like domain is required for formation of the hexameric signalling complex (Chow 

et al., 2001b) 

 

The third and final motif conserved across all IL-6 family cytokine receptors consists of 

arrays of fibronectin type III domains which play an undefined role in mediating IL-6 

family cytokine receptor signalling. Truncation of these domains attenuates cytokine-

mediated signalling and it is hypothesised that the domains position gp130  transmembrane 

domains in proximity (Skiniotis et al., 2005). Indeed, the fibronectin domains of gp130 

have been shown to bend towards each other when complexed with IL-6 and IL-6Rα and 

thus enable initiation of intracellular signalling (Skiniotis et al., 2005). Association of  



25 

Fig. 3.3: Ribbon structures of IL-6 and OSM 

The ribbon structures of IL-6 (left) and OSM (right) indicating the position of 

the four helices. The sites of interaction with IL-6Rα and gp130 are circled 

on the structure of IL-6. The kink in helix A of OSM is indicated with a star. 

 

Taken from Heinrich,P.C. et al. (2003)  
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gp130 transmembrane domains is critical in facilitating signal transduction and forced 

dimerisation of these domains can activate intracellular signalling and act to inhibit 

embryonic stem cell differentiation in the absence of cytokine (Stuhlmann-Laeisz et al., 

2006).  

 

Following successful cytokine-receptor interaction, IL-6 family cytokines activate 

intracellular signalling via the JAK-STAT pathway (see section 3.3). IL-6 signals primarily 

through activation of STAT3 but can also activate STAT1 following IL-6-IL-6R 

interaction. In addition to coupling to the JAK-STAT pathway, IL-6 family receptors can 

also activate mitogen activated protein kinase (MAPK) signalling. LIFR can activate the 

Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in a manner 

independent of the classical LIFR/JAK/STAT pathway and subsequently acts to arrest 

growth of medullary thyroid cancer cells (Park et al., 2003). OSM can activate the p38 

MAPK, ERK1/2 and c- Jun N-terminal kinase (JNK) following successful activation of 

OSMR. Tyr 861 of OSMR is required for activation of each of these different signalling 

molecules and JAK1 is essential for initiation of p38 activity (Boing et al., 2006). The Src-

homology 2- (SH2-) containing phosphatase SHP2 has been shown to act as an adapter 

linking the IL-6R to ERK activation (Terstegen et al., 2000). SHP2 interacts with pTyr759 

of gp130 and acts to recruit Gab1 which, in turn, is involved in the activation of ERK1/2 

(Takahashi-Tezuka et al., 1998). Gab1 also acts with SHP2 to recruit components of the 

ERK5 signalling cascade to gp130 (Nakaoka et al., 2003), a pathway required for 

cardiomyocyte hypertrophy induced by CT-1 (Takahashi-Tezuka et al., 1998) 

Interestingly, activation of ERKs via protein kinase C (PKC) has been shown to decrease 

IL-6-induced STAT1 and STAT3 phosphorylation in manner dependent on Tyr759 of 

gp130. This residue is the site of suppressor of cytokine signalling (SOCS) 1 and SOCS3 

recruitment to gp130 and it is proposed that ERK activation can induce SOCS3 expression 

and so act to attenuate JAK-STAT signalling (Terstegen et al., 2000) (see section 3.5) 
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Fig. 3.4: The IL-6 family cytokine receptors. 

Cytokines are represented as grey circles whilst the α-receptors are shown in light grey. Signal transducing receptors are 

shown in light pink (LIFR and OSMR) or dark pink (gp130). IL-6 and IL-11 signal via gp130 homodimers whilst other 

members of the IL-6 cytokine family utilise heterodimers containing gp130 and either LIFR or OSMR. 

Taken from Heinrich,P.C. et al. (2003)  
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3.4.3 IL-6 trans-signalling 

The IL-6 family cytokines play a crucial role in regulating key physiological responses and 

thus can activate a variety of cell types. The presence of non-signalling receptors acts to 

increase the pool of target cells due to a phenomenon known as trans-signalling, which has 

been best described for IL-6 (Kallen, 2002). The IL-6Rα/gp130 complex is expressed by 

some cells as a membrane bound form (memIL-6R) and mediates intracellular signalling 

following binding of IL-6 (Kallen, 2002). However, the expression of memIL-6R is 

relatively restricted whilst expression of gp130 is ubiquitous. A soluble form of IL-6R 

containing the non-signalling IL-6Rα (sIL-6Rα) can be released and acts to increase the 

pool of IL-6 responsive cells (Scheller et al., 2006). Release of sIL-6Rα can arise from 

either shedding of memIL-6R by a cell surface-localised sheddase or as a result of protein 

expression arising from alternative splicing of memIL-6R mRNA (Kallen, 2002). 

Circulating IL-6 interacts with sIL-6Rα and becomes recruited to gp130 homodimers 

expressed on cells, resulting in activation of intracellular signalling and perpetuation of the 

inflammatory response. 

 

Interestingly, it is possible that sIL-6Rα can also play an anti–inflammatory role by 

“mopping up” excess circulating IL-6 (Mitsuyama et al., 2006). Shedding of sIL-6Rα is 

enhanced in inflammatory conditions and thus promotes formation of IL-6/sIL-6Rα 

complexes which can interact with gp130 on cell surfaces. However, a soluble form of 

gp130 has also been described. Interaction of IL-6/sIL-6Rα complexes with this soluble 

form of gp130 would remove the complexes from the circulation and prevent them from 

interacting with cellular gp130 to promote cell signalling. In this context it appears that 

sIL-6Rα is acting to “mop up” excess IL-6 and so attenuate activation of IL-6 signalling 

pathways (Kallen, 2002).  

3.4.4 IL-6 and disease states 

Given the ability of IL-6 to activate signalling through the JAK-STAT pathway, it is hardly 

surprising that elevation of IL-6 is correlated with numerous inflammatory conditions. 

Increased IL-6 concentrations have been associated with an increased frequency of 

atherosclerotic plaque rupture and subsequent risk of ischaemic stroke (Yamagami et al., 

2004). Elevation of both circulating and intestinal IL-6 concentrations has been detected in 

patients with IBD. Increased mucosal and serum IL-6 levels correlate with active IBD and 

treatment with anti-IL-6R monoclonal antibodies ameliorates symptoms in a model of 

ulcerative colitis (Mitsuyama et al., 2006). Due to the elevation of IL-6 levels in active 
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IBD it may be possible to use IL-6 concentrations as a marker for disease severity in a 

manner similar to that proposed for ankylosing spondylitis (Bal et al., 2007). Furthermore 

IL-6 has been shown to be important in other inflammatory diseases including rheumatoid 

arthritis, diabetes mellitus, multiple sclerosis, Alzheimer’s disease and heart disease 

(Deepa et al., 2006;Kallen, 2002;Koenig et al., 2006;Shouda et al., 2001). 

 

In addition to the role of IL-6 in inflammatory diseases, the cytokine has also been 

associated with various malignancies. Increased IL-6 concentrations have been detected in 

colorectal carcinomas and levels are associated with disease severity and tumour 

progression (Esfandi et al., 2006). The growth of cholangiocarcinomas is also potentiated 

by IL-6 due to aberrant promoter methylation (Wehbe et al., 2006). IL-6 has long been 

thought to act as a potent growth factor in multiple myeloma (Hodge et al., 2005) but use 

of IL-6 as a marker for disease progression may not be reliable (Greco et al., 1994). 

Increased serum IL-6 in metastatic breast carcinoma is correlated with the degree of 

metastasis and worse survival (Salgado et al., 2003). Similarly, in prostate carcinoma, IL-6 

is associated with cachexia and an increased risk of fatality arising from malignancy 

development without treatment (Kuroda et al., 2007). Furthermore, increased IL-6 levels 

can indicate a poor prognosis (Nakashima et al., 2000) and are frequently observed in 

hormone refractory prostate carcinoma which represents an advanced stage of prostate 

carcinoma associated with metastasis to the bone and other organs (Crawford et al., 1999). 

 

Given the association of elevated IL-6 levels with numerous inflammatory conditions and 

malignancies, it is unsurprising that the signalling pathways downstream of the IL-6R have 

been the focus of much research. As mentioned above, activation of the IL-6R complex 

primarily promotes activation of the JAK-STAT and ERK1/2 signalling cascades. 

3.5 The JAK-STAT pathway 

Inflammatory responses are perpetuated by the actions of specific cytokines at their 

cognate receptors. In section 3.1, the role of the NFκB was discussed as a signalling 

pathway downstream of receptors for inflammatory stimuli such as LPS and IL-1. 

However, whilst activation of the NFκB pathway may occur early in the inflammatory 

response, it is by now means the only signalling pathway the inflammatory response. 
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In addition to NFκB, one of the principal pathways involved in signal transduction 

downstream of cytokine receptors is the JAK-STAT pathway, which is comprised of the 

Janus kinases (JAKs) and the signal transducers and activators of transcription proteins 

(STATs) (Aaronson & Horvath, 2002). Cytokines binding to the class I or II cytokine 

receptors typically mediate their effects via activation of the JAK-STAT intracellular 

signalling cascade (Kotenko & Pestka, 2000). Class I and II cytokine receptors are 

categories within a group of receptors which lack kinase domains in their intracellular 

domain and require an associated kinase for signal transduction. There is little difference in 

the tertiary structures between class I and II cytokine receptors, rather the receptors are 

classified dependent on the cellular responses they elicit (Krause & Pestka, 2005). Class I 

cytokine receptors are typically involved in regulating the differentiation or expansion of 

tissues and include the IL-6 family cytokines whereas class II receptors are involved in 

limiting damage following a tissue insult and include the IFN receptors (Kotenko & 

Pestka, 2000;Krause & Pestka, 2005). In the case of the IL-6 receptor family, gp130 is 

associated with both JAK1 and JAK2 in the absence of IL-6 stimulation, indicating a 

constitutive association between JAKs and the gp130 signalling molecule (Lutticken et al., 

1994;Stahl et al., 1994). Tyk2 is also activated by IL-6 as indicated by an increase in 

phosphorylated Tyk2 following IL-6 stimulation (Stahl et al., 1994). 

3.5.1 Janus Kinases 

To date, four JAK family members have been described in mammals, birds and fish, 

comprising JAK1, JAK2, JAK3 and Tyk2 (Kotenko & Pestka, 2000;Leonard & O'Shea, 

1998). Encoded by genes comprising approximately 20 exons, JAKs are relatively large 

proteins with a molecular mass ranging between 120–140 kDa, rendering study of their 3D 

structure somewhat challenging (Yamaoka et al., 2004). However, primary structure 

analysis indicates that JAKs contain seven conserved domains known as the JAK 

homology (JH) domains 1-7 (JH1-7) (Fig. 3.5). Numbered from the carboxyl-terminus, 

JH1 displays significant homology to typical eukaryotic tyrosine kinase domains, the 

sequence of which is mostly associated with tyrosine kinases belonging to the 

Src/epidermal growth factor (EGF) receptor family (Yamaoka et al., 2004). The JH1 

domain contains the activation loop which impedes substrate access in the absence of 

tyrosine phosphorylation (Leonard & O'Shea, 1998). In the case of JAK3, 

autophosphorylation of Tyr980 within the activation loop is associated with an increase in 

kinase activity. However, autophosphorylation of tyrosine residues within the activation 

loops of JAKs is not necessarily associated with activation of JAK kinase activity as 
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autophosphorylation of Tyr891 of JAK3 negatively regulates kinase activity (Zhou et al., 

1997). 

 

The JH2 domain is believed to encode a pseudokinase domain which, despite lacking 

kinase activity, is hypothesised, to regulate function of the JH1 domain. In a mechanism 

analogous to other protein tyrosine kinases, an intramolecular interaction between JH1 and 

JH2 within JAK2 is proposed to inhibit JH1 activity in the absence of stimulus (Saharinen 

et al., 2003). Successful cytokine receptor interaction results in a conformational alteration 

that relieves JH1 inhibition, rendering the JAK catalytically active and competent for 

signal transduction. Interestingly, deletion of JH2 elevates basal JH1 activity but also 

liberates JAK activation from the constraints of ligand-dependent activation (Saharinen et 

al., 2003). The JH3 and JH4 domains together comprise an SH2-like domain which, in 

other proteins, acts as a docking site for tyrosine phosphorylated proteins. At the amino-

terminus, JH6-7 form a 300 amino acid Protein 4.1, ezrin, radixin, moesin (FERM) domain 

which has been implicated in interactions with transmembrane proteins, including cytokine 

receptors (Yamaoka et al., 2004). 

3.5.2 Signal transducers and activators of transcri ption 

There are seven described mammalian members of the STAT protein family; STAT1, 

STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6, all of which are involved in 

mediating signal transduction downstream of cytokine receptors. STAT1, STAT3, STAT4, 

STAT5a, and STAT5b range in size from 750-795 amino acid whilst STAT2 and STAT6 

are approximately 850 amino acids in length due to the presence of an extended C-terminal 

region (Darnell, 1997). Despite the difference in C-terminal length, all STAT proteins 

display conservation of domain organisation with each family member containing a 

dimerisation domain, a STAT family DNA binding domain (DBD), an SH2 domain and a 

transactivation domain (Fig. 3.6) (Becker et al., 1998;Hoey & Schindler, 1998). 

 

Following receptor-ligand interaction and subsequent JAK activation, STATs become 

activated via JAK-mediated phosphorylation on a conserved Tyr located at approximately 

residue 700 such as Tyr701 and Tyr705 of STAT1 and STAT3 respectively (Darnell, 

1997;Hoey & Schindler, 1998). In the case of STAT3 activation arising from IL-6-IL-6R 

interaction, a conserved pTyr-X-X-Gln motif on gp130 acts as the STAT3 binding site 

(Lim & Cao, 2006). Activated STATs form V-shaped homo- or heterodimers mediated by 
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Fig 3.5: JAK domain organisation 

Schematic representation (not to scale) of the structure of JAKs 

indicating the organisation of the kinase, pseudokinase, SH2 and 

FERM domains. 
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the N-terminal region of the STAT proteins with the dimerisation interface located at the 

apex of the V (Hoey & Schindler, 1998). Reciprocal interaction between the pTyr of one 

STAT monomer and the central SH2 domain of the other facilitates STAT dimerisation, 

which is required for nuclear import. Several STAT structural features including the DBD, 

N-terminus and coiled-coil domains have been implicated in regulating nuclear import of 

STAT dimers (Lim & Cao, 2006;Liu et al., 2005;Ma & Cao, 2006). Nuclear-localised 

STAT dimers are able to directly induce expression of STAT-responsive genes such as 

VEGF due to the presence of the C-terminal DBD. The DBD contains a stretch of acidic 

amino acids and structurally resembles p53 and NFκB due to the presence of an Ig-fold 

(Hoey & Schindler, 1998). The transactivation domain of many of the STAT proteins 

contains a conserved Ser residue, corresponding to Ser727 in STAT1 and STAT3. Along 

with protein kinase Cδ, the p38, ERK1/2 and JNK MAP kinases are all able to 

phosphorylate this residue. Serine phosphorylation is required for full activation of STAT-

mediated transcription but does not enhance STAT DNA binding activity (Lim & Cao, 

2006). In contrast, p300/CBP-mediated acetylation of Lys685 of STAT3 enhances nuclear 

import, DNA binding and transactivation of STAT3 responsive genes (Wang et al., 2005). 

3.5.3 Activation of the JAK-STAT pathway 

The mammalian STAT proteins are activated following receptor-ligand interaction 

between class I or II cytokine receptors and their cognate ligand (Kotenko & Pestka, 2000). 

Such cytokine receptors typically exist as pre-formed dimeric pairs that lack intrinsic 

kinase activity. Thus, although the receptor is able to bind cytokine, successful signal 

transduction is reliant on the presence of constitutively associated JAKs (Heinrich et al., 

2003;Krebs & Hilton, 2001;van de Geijn et al., 2004). Ligand binding is thought to induce 

receptor clustering and thus brings JAKs associated with neighbouring receptors into close 

proximity. JAK activation is achieved following auto- and trans-tyrosine phosphorylation 

events on juxtaposed JAKs, rendering them competent for initiating signal transduction 

(Aaronson & Horvath, 2002;Kimura et al., 2004;Krebs & Hilton, 2001). In the case of 

JAK3, autophosphorylation of Tyr980 is associated with an increase in kinase activity 

(Zhou et al., 1997).Analogous tyrosine residues are located at positions 1054 and 1055 in 

Tyk2, indicating a common form of regulation (Gauzzi et al., 1996). Such a hypothesis is 

confirmed by evidence that mutation of Tyr1033 but not Tyr1034 of JAK1 results in 

decreased ligand-independent phosphorylation of STAT5a in COS7 cells (Liu et al., 1997). 

JAK3-mediated phosphorylation of a peptide corresponding to the activation loop of JAK1 

demonstrated that alanine substitution of Tyr1033 is poorly phosphorylated by JAK3 (Wang 

et al., 2003). These results suggest that JAKs are able to phosphorylate other family 
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members and that the first Tyr residue in the YY doublet is important in JAK activation. 

Interestingly the FERM domain of JAKs has also been implicated in regulation of JAK 

kinase activity. In the case of JAK1, mutation of Tyr281 and Tyr112 within the FERM 

domain is associated with enhanced basal and IFNγ-induced phosphorylation of the kinase 

(Haan et al., 2008). Activated JAKs phosphorylate the intracellular domains of the 

cytokine receptor on conserved tyrosine residues. These phosphotyrosine (pTyr) residues 

can then act as docking sites for the intracellular signalling molecules involved in the 

signal transduction cascade. In the case of gp130, JAK1-mediated phosphorylation of 

Tyr759 is associated with recruitment and subsequent activation of the SH2-containing 

phosphatase (SHP) -2 (Schaper et al., 1998). 

 

STAT proteins associate with receptor pTyr residues via an interaction between the pTyr 

and the central SH2 domain found in all STAT proteins (Calo et al., 2003;Shuai et al., 

1994). The specificity of the receptor-STAT interaction is thought to arise from sequence 

variation within the STAT SH2 domain, which enables the STATs to recognise different 

phosphorylated motifs (Leonard & O'Shea, 1998). For instance, STAT1 is activated 

downstream of the activated IFNγ receptor via interaction with a pTyr-Asp-Lys-Pro-His 

motif between residues 440 and 444 but can also be activated downstream of IL-6R 

(Greenlund et al., 1995;Hemmann et al., 1996). It has been demonstrated that two pTyr-X-

Pro-Gln motifs at Tyr905 and Tyr915 of a chimeric erythropoietin/gp130 receptor (Eg) act as 

sites for STAT1 recruitment via its SH2 domain. STAT3 was also recruited to Eg 

following receptor activation but bound to motifs associated with Tyr767 and Tyr814 in 

addition to the Tyr905 and Tyr915 motifs described for STAT1. Mutation of a conserved 

arginine in the STAT SH2 domain abolished STAT-Eg interaction, indicating that this 

domain is essential for interaction of STATs with activated receptors (Hemmann et al., 

1996). The differential ability of these STAT recruitment sites to bind STAT1 or STAT3 is 

due to structural differences in the SH2 domain of the STAT proteins. Unlike STAT3, 

binding of STAT1 to receptor phosphotyrosines requires the presence of the downstream 

Pro-Gln sequence in order to correctly position the glutamate residue. The binding pocket 

of the STAT3 SH2 domain is larger than that of STAT1 and so can accommodate the large 

glutamate side chain without the requirement for proline-mediated positioning (Hemmann 

et al., 1996). Receptor-associated STATs then undergo phosphorylation by activated JAKs 

on conserved tyrosine residues in the transactivation domains, corresponding to Tyr701 in 

STAT1 (Shuai et al., 1993) and Tyr705 in STAT3 (Calo et al., 2003;Kaptein et al., 1996). 
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Schematic representation (not to scale) of STAT protein domain organisation indicating the relative 

positions of the dimerisation, coiled-coil, DNA binding, SH2, conserved Tyr and transactivation domains. 
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Tyrosine phosphorylated STATs then dissociate from the receptor and dimerise via 

reciprocal interaction between the pTyr of one STAT monomer and the SH2 domain of the 

other to form STAT homo- and heterodimers (Lim & Cao, 2006). Although the exact 

mechanism governing STAT dissociation from the activated receptor is unclear, it has been 

suggested that the nature of the interaction between two STAT monomers is preferable to 

that between the individual STAT monomers and their docking site and so formation of the 

first STAT pTyr – STAT SH2 coupling acts to displace STATs from the receptor. In 

addition to dimerisation, tyrosine phosphorylation is required for successful nuclear 

translocation of STATs (Calo et al., 2003). STAT dimers directly activate transcription via 

binding of a β-sheet rich DNA binding domain STAT binding consensus sequences (Calo 

et al., 2003). The 9-10 bp motifs bound by STAT dimers are typically semipalindromic 

sequences known as IFNγ-activated sequence (GAS) motifs or STAT-responsive elements 

(SREs) and have the consensus sequence TTCN(3-4)GAA (Leonard & O'Shea, 1998). The 

DNA binding activity of STATs can be enhanced via association with the p300/CREB-

binding protein complex which is thought to acetylate STAT3 at Lys685 (Wang et al., 

2005). Acetylation at this residue also augments nuclear accumulation and transcriptional 

activation of STAT3 although the mechanism by which this occurs is currently unknown 

(Wang et al., 2005). Additionally, serine phosphorylation potentiates the activity of the 

transactivation domain but does not affect binding of the activated STAT to DNA (Lim & 

Cao, 1999;Lim & Cao, 2006). 

 

In addition to JAK-mediated phosphorylation, STATs can also become activated via SFK-

mediated tyrosine phosphorylation (Ingley & Klinken, 2006). This is particularly important 

in malignant diseases as STAT3 activation is an important event in Src-mediated 

transformation (Smith & Crompton, 1998). 

3.5.4 The role of JAK-STAT in disease 

The JAK-STAT pathway is an important pathway involved in signal transduction of 

downstream of cytokine receptors (Aaronson & Horvath, 2002;Kotenko & Pestka, 

2000;Krause & Pestka, 2005). Thus it is of little surprise that dysregulation of JAK-STAT 

activity has been associated with diseases associated with chronic inflammatory conditions 

(Elliott & Johnston, 2004;Pernis & Rothman, 2002;Shouda et al., 2001). For example, 

targeted JAK-STAT inactivation is being investigated as a potential therapeutic strategy in 

the treatment of rheumatoid arthritis (RArt) due to the detection of elevated IL-6 levels in 

the synovial fluid of patients with RArt and the ability of this cytokine to induce synovial 

cell proliferation, exacerbating the disease (Shouda et al., 2001). JAK-STAT activation has 
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also been implicated in airway hyper-responsiveness in patients with chronic asthma 

(Pernis & Rothman, 2002). The JAK3-selective inhibitor, CP-690550 promotes 

immunosuppression in both non-human primates and murine models of inflammation due 

to a reduction in circulating NK-1.1+ cells (Conklyn et al., 2004;Kudlacz et al., 2004). CP-

690550 is currently in clinical trials to assess its efficacy as an immune modulator in stable 

renal allograft patients (van Gurp et al., 2009). 

 

Given the association of JAK-STAT activation with chronic inflammatory diseases, it is 

hardly surprising that this pathway has also been implicated in a variety of malignancies. 

Constitutive activation of STAT5a/b has been associated with many neoplasms, especially 

haematological malignancies (Calo et al., 2003). STAT1 has been proposed as a tumour 

suppressor whilst activation of STAT3 has been associated with neoplastic progression and 

inhibition of apoptosis (Calo et al., 2003). The Hodgkin lymphoma-derived cell lines 

HDLM-2 and L540 display elevated JAK phosphorylation and increased tyrosine 

phosphorylated STAT1, STAT3, STAT5 and STAT6. The elevation in tyrosine 

phosphorylated STATs was correlated with constitutive association of STATs with DNA, 

suggestive of sustained expression of STAT-responsive genes such as the anti-apoptotic 

Bcl-XL. Indeed, inhibition of continuous JAK-STAT activity resulted in elevated apoptosis 

and decreased levels of the anti-apoptotic proteins Bcl-XL and Bax (Cochet et al., 2006). 

SOCS-1 deficient mice also display STAT3 hyperactivity and spontaneously develop 

colorectal carcinomas in an IFNγ-dependent manner (Hanada et al., 2006). STAT3 

hyperactivation is also associated with human gastric carcinoma (To et al., 2004) and 

abnormal dendritic cell differentiation in cancer (Nefedova et al., 2004). Many STAT3-

responsive genes are implicated in apoptosis, cell cycle progression and promotion of 

tumour growth including Bcl-XL, cyclin D1 and VEGF (Cochet et al., 2006;Leslie et al., 

2006;Xu et al., 2005). In prostate carcinoma, autocrine IL-6 stimulation and elevated 

STAT3 phosphorylation is associated with resistance to apoptosis, androgen-independent 

growth and metastasis (Barton et al., 2004;Culig et al., 2005;Michalaki et al., 2004;Shariat 

et al., 2001). Currently, multiple strategies are being investigated to inhibit STAT 

activation in cancer including inhibition of JAK activity, anti-sense oligonucleotides to 

STAT mRNA and inhibition of STAT dimerisation (Jing & Tweardy, 2005). Cucurbitacin 

B is a plant-derived compound which profoundly inhibits activation of STAT3 and STAT5 

in human pancreatic cancer cell lines. Treatment with Cucurbitacin B is also associated 

with an increase in apoptosis and a decrease in Bcl-XL expression and synergises with 

gemcitabine, a chemotherapeutic which acts to both inhibit DNA synthesis and promote 

apoptosis, to prevent cellular growth (Mini et al., 2006;Thoennissen et al., 2009). More 
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relevant to a new therapeutic, Cucurbitacin B acts to impede xenograft growth in vivo as 

well as displaying in vitro efficacy (Thoennissen et al., 2009). Additionally, the use of 

decoy oligonucleotides has been investigated as a means to inhibit STAT-responsive gene 

expression in malignancies. These oligonucleotides resemble the SRE found within the 

promoter regions of STAT-responsive genes and interact with activated STAT dimers, thus 

competitively blocking interaction with chromosomal STAT-responsive promoters and so 

impair STAT-mediated gene transcription. Recently, intramuscular administration of a 

STAT3 decoy oligonucleotide has been shown to inhibit both phosphorylation of STAT3 

and cyclin D1 expression in non-human primates and did not display any systemic or 

localised signs of toxicity. Combined with observations that STAT3 decoy 

oligonucleotides can inhibit cancer cell proliferation both in vitro (Zhang et al., 2007) and 

in vivo (Xi et al., 2005), this therapeutic strategy is currently very attractive as a new 

treatment for solid tumours. 

3.5.5 Negative Regulation of JAK-STAT 

Due to their crucial role in mediating signal transduction downstream of pro-inflammatory 

cytokine receptors and the damaging effect of chronic inflammatory responses, it is 

necessary to strictly regulate JAK-STAT activation. Several mechanisms have been 

described by which attenuation of JAK-STAT activity can be achieved, including post-

translational modifications, protein degradation and inhibition of protein binding to both 

receptors and DNA. 

3.5.5.1 Dephosphorylation 

Due to the crucial role for tyrosine phosphorylation in promoting STAT dimerisation and 

subsequent transactivator activity, it is not surprising that this stage of STAT activation 

represents a locus at which STAT activity can be modulated. The SH2-containing 

phosphatases SHP-1 and SHP-2 have both been implicated in regulating the direct 

dephosphorylation of STATs. SHP-1 has been shown to decrease tyrosine phosphorylation 

of STAT6 in response to IL-4 stimulation by targeting cytoplasmic phospho-STAT6 

(pSTAT6) for dephosphorylation (Hanson et al., 2003). Similarly, SHP-2 has been shown 

to directly dephosphorylate cytoplasmic pSTAT5 (Yu et al., 2000). In addition to its role in 

direct dephosphorylation of STATs, SHP-1 has also been shown to impede JAK-STAT 

signal transduction at the level of JAKs. SHP-1 can impede JAK phosphorylation 

following their recruitment to receptors (Starr & Hilton, 1999) and also targets JAK1 in the 

HTB26 breast cancer cell line for degradation via a proteasome-dependent pathway (Wu et 

al., 2003). It is also possible to inhibit tyrosine phosphorylation independently of SHP-1 or 

SHP-2 activity via activation of the JNK MAPK. JNK activity is induced by cellular 
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stresses and acts to promote phosphorylation of Ser727 in STAT3 (Lim & Cao, 1999). In 

the same study however, tyrosine phosphorylation of STAT3 and subsequent DNA binding 

and transcriptional activation was impeded via a mechanism dependent on JNK activation 

(Lim & Cao, 1999). Interestingly, stimulation of the Jurkat T-cell line activates the protein 

tyrosine phosphatase CD45 which is associated with recruitment of the downstream of 

kinase (DOK) -1 protein. Over-expression of DOK-1 in the K562 leukaemic cells line 

attenuates IL-3 and IFNα-induced activation of JAK1, JAK2 and STAT5. It is 

hypothesised that, upon activation, CD45 recruits DOK-1 to the cell surface where DOK-1 

acts as an adaptor to recruit SHP-1 and so negatively regulate JAK-STAT signalling via 

promotion of protein phosphorylation (Wu et al., 2009). 

3.5.5.2 Polyubiquitylation 

The ubiquitin-proteasome system plays a crucial role in regulating levels of cellular 

proteins via controlled protein degradation. Proteasome-mediated regulation of STAT 

levels has been described for several members of the family. IFNγ-induced activation of 

STAT1 promoted poly-ubiquitylation of tyrosine phosphorylated STAT1 (pTyr701STAT1) 

and levels of the protein were stabilised in the presence of proteasome inhibitors, 

indicating a role for proteasomal degradation in regulating STAT proteins (Kim & 

Maniatis, 1996). Degradation of activated STAT5a in the nucleus of 32D cells occurs due 

to polyubiquitylation by the E3 ubiquitin ligase Ubc5 and is dependent on proteasomal 

function (Chen et al., 2006). An amphipathic helix between residues 751 and 762 acts as a 

transcriptional activation domain and is necessary for Ubc5-mediated polyubiquitylation of 

STAT5a (Chen et al., 2006). The recently identified protein SLIM is a nuclear protein 

which acts to regulate levels of STAT1 and STAT4 via its E3 ubiquitin ligase activity 

(Tanaka et al., 2005). Over-expression of SLIM results in impaired STAT1 and STAT4 

signalling due to a decrease in STAT protein levels. Conversely, deficiency in SLIM levels 

results in elevation of STAT proteins levels and enhanced transcriptional responses 

(Tanaka et al., 2005). Furthermore, treatment with osteopontin leads to SLIM-mediated 

STAT1 degradation and a decrease in STAT1-responsive genes in RAW264.7 

macrophages, indicating a role for STAT polyubiquitylation in the regulation of immune 

function (Gao et al., 2007). Stable expression of the deubiquitinating enzyme DUB-2 also 

results in prolonged STAT5 phosphorylation and impedes apoptosis following withdrawal 

of IL-2 (Migone et al., 2001). 

3.5.5.3 SOCS proteins 

The suppressor of cytokine signalling (SOCS) proteins comprise eight mammalian proteins 

designated CIS and SOCS1-7 that are directly induced by activated STATs and so act to 
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attenuate cytokine-induced JAK-STAT signalling via functioning as part of a classical 

negative feedback loop (Croker et al., 2003;Fischer et al., 2004;Kile & Alexander, 

2001;Kimura et al., 2004;Naka et al., 1997;Starr et al., 1997). The SOCS proteins are 

characterised by a C-terminal 40 amino acid “SOCS box” and a central SH2 domain, 

whilst the N-termini show greater diversity in both length and primary sequence between 

individual family members (Kile & Alexander, 2001). Of all eight members, the 

mechanisms by which SOCS1 and SOCS3 inhibit JAK-STAT signalling have been most 

intensely studied. SOCS1 associates with the activation loop of phosphorylated JAKs via 

the central SH2 domain of SOCS1 (Endo et al., 1997). SOCS1 and SOCS3 both contain a 

12 residue kinase inhibitory region (KIR) which is required for inhibition of JAK activity 

(Yasukawa et al., 1999). The KIR of both proteins resembles the activation loop of JAKs 

and is proposed to act as a pseudosubstrate, occluding the active site of JAKs and thereby 

preventing phosphorylation of JAK substrates to attenuate JAK-STAT signalling (Endo et 

al., 1997;Kile & Alexander, 2001;Yasukawa et al., 1999). Although SOCS1 is reported to 

associate with cytokine receptors via interaction with JAKs, SOCS3 recruitment requires 

tyrosine phosphorylation of receptor cytoplasmic chains in order to inhibit JAK activity 

(Ilangumaran et al., 2004). The recruitment of SOCS3 to receptor pTyr residues represents 

a second mechanism by which SOCS proteins attenuate JAK-STAT signalling (Kile & 

Alexander, 2001). Both CIS1 and SOCS3 have been proposed to sterically hinder 

recruitment of signalling molecules, including STATs, to activated receptors via binding to 

membrane proximal receptor pTyr residues (Ilangumaran et al., 2004). Finally, the SOCS 

proteins form ubiquitin E3 ligases due to the ability of the SOCS box to interact with 

elongins B and C, cullins 2 and 5, Roc1/Rbx1 and an E2 ubiquitin conjugating enzyme 

(Johnston, 2004;Kamura et al., 1998). The SOCS E3 ligase can subsequently target 

proteins with which it interacts for polyubiquitin-mediated proteasomal degradation and so 

act to attenuate signal transduction at the level of protein stability. For example, JAK2 can 

be targeted for degradation by SOCS-mediated polyubiquitylation (Johnston, 2004;Kile & 

Alexander, 2001). 

3.5.5.4 PIAS proteins 

The protein inhibitors of activated STATs (PIAS) proteins comprise a family of five 

proteins, PIAS1, PIAS3, PIASxα, PIASxβ and PIASy (Liao et al., 2000;Rogers et al., 

2003). PIAS1 and PIAS3 inhibit signalling following STAT1 and STAT3 activation and 

act to attenuate responses to IFNs and IL-6 respectively (Liao et al., 2000). The PIAS1-

STAT1 association is dependent on STAT1 phosphorylation and dimerisation and involves 

a direct interaction between residues 392-541 of PIAS1 and residues 1-191 of STAT1 
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(Liao et al., 2000). The N-terminal region of PIAS1 is implicated in regulating this 

interaction despite not interacting directly with STAT1 (Liao et al., 2000). The N-terminal 

region of PIAS proteins contains a LXXLL motif, corresponding to L20-Q21-M22-L23-L24 of 

PIASy (Liu et al., 2001). In the case of PIASy, this motif is required for inhibition of 

STAT1 transactivator activity but not for interaction with STAT1 (Shuai & Liu, 2005). 

PIAS proteins are able to both positively and negatively regulate cellular signalling 

pathways, principally via altering transcriptional activation. PIAS1 can inhibit STAT1 

binding to DNA and thus impede transcription of STAT-1-responsive genes whilst PIASx 

inhibits IL-12-induced activation of STAT4-responsive genes via recruitment of histone 

deacetylases (HDACs) and subsequent chromatin remodelling (Shuai & Liu, 2005). PIAS 

proteins are also able to act as small ubiquitin-like modifier (SUMO) E3 ligases and 

SUMOylation of STAT proteins has been implicated in regulating their transactivator 

activity. In the case of PIAS1-mediated SUMOylation of STAT1, SUMOylation at Lys703 

is associated with a decrease in transcription from STAT1 promoter genes (Ungureanu et 

al., 2005). In addition, PIAS proteins can recruit the CBP/p300 complex to target proteins 

such as Smad3 which can potentiate Smad3 transcriptional activation in response to TGFβ 

(Long et al., 2004). 

 

With respect to STAT proteins, PIAS interaction has, thus far, been shown to attenuate 

JAK-STAT signalling with interactions described between STAT1, STAT3 and STAT4 

and PIAS1, PIAS3 and PIASx respectively (Shuai & Liu, 2005). Additionally, an 

interaction between PIASy and STAT1 has been described (Liu et al., 2001;Shuai & Liu, 

2005;Starr & Hilton, 1999). PIAS1 and PIAS3 block the DNA binding activity of STAT1 

and STAT 3 whilst PIASy and PIASx are believed to act primarily by recruiting co-

repressor molecules such as HDACs in order to repress STAT1 and STAT4 signalling (Liu 

et al., 2001;Shuai & Liu, 2005). The SUMO E3 ligase activity of PIAS proteins has also 

been implicated in the negative regulation of cellular signalling. For example, PIASx-β-

mediated SUMOylation of p53 acts to impede the activity of p53 (Shuai & Liu, 2005). 

PIAS1 has been demonstrated to SUMO modify STAT1 on Lys703 but in vitro and in vivo 

studies indicate that SUMOylation of STAT1 does not alter transcriptional activation 

(Rogers et al., 2003). Mutation of Lys703 does not alter the ability of either STAT1 to 

induce expression of STAT1-responsive genes or the capacity of PIAS1 to act as an 

inhibitor of STAT signalling (Rogers et al., 2003;Song et al., 2006). Thus it is currently 

unclear what role PIAS-mediated SUMOylation plays in the regulation of JAK-STAT 

signalling. 
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3.5.5.5 Methylation 

Arginine methylation of various STAT proteins has been implicated in the regulation of 

JAK-STAT signalling. Methylation of STAT6 at Arg27 augments IL-4-mediated STAT6 

phosphorylation, nuclear transport and transcriptional activity (Chen et al., 2004). 

Similarly, STAT1 activation induced by IFNα/β is enhanced by arginine methylation at 

Arg31 (Mowen et al., 2001). However, this data is somewhat controversial and thus it is 

currently unclear whether arginine methylation genuinely acts to modulate STAT 

activation. 

 

Activation of the JAK-STAT pathway is regulated via a number of distinct mechanisms 

which may not be surprising given the crucial nature of this signalling pathway in 

inflammation and cellular survival. Aberrant or sustained activation of STAT signalling 

contributes to the pathology of multiple disease and thus inhibition of these signalling 

molecules represents an attractive therapeutic strategy. With regards to malignant disease, 

inhibition of STAT3 signalling in particular has been investigated as a treatment strategy 

and pharmaceuticals targeting this pathway may well prove a vital addition to complement 

the current arsenal of chemotherapeutics. 

3.6 The MAP kinases 

The mitogen-activated protein kinases (MAPKs) form a group of evolutionary conserved, 

proline-targeted serine/threonine kinases that have been identified in prokaryotic and 

eukaryotic organisms (Fox & Smulian, 1999;Turjanski et al., 2007;Wang & Tournier, 

2006). Due to their activation by growth factors and cellular stress, MAPK signalling 

cascades play essential roles in regulating vital cellular functions including proliferation, 

migration, differentiation and apoptosis (Turjanski et al., 2007). To date, eleven members 

of the MAPK family have been described in humans which can be further sub-divided into 

6 groups based on their sequence homology (Turjanski et al., 2007). Full activation of 

MAPKs is achieved via phosphorylation on the conserved TXY activation motif arising 

from sequential activation of MAPK-kinase-kinases (MAPKKKs) and MAPK-kinases 

(MAPKKs). The currently described MAPKKs include MKK3 and MKK6 for p38 

MAPKs, MKK4 and MKK7 for JNKs, MAPK/ERK kinase (MEK) 1 and MEK2 for 

ERK1/2 and MEK5 for ERK5 (Wang & Tournier, 2006). MAPKKs are activated 

following serine and threonine phosphorylation by the appropriate upstream MAPKKK.  
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Generally, MAPKs consist of two domains joined by a flexible linker, the orientation of 

which plays an important role in regulating catalytic activity (Turjanski et al., 2007). In 

contrast to the mostly α-helical C-terminal domain, the N-terminal domain contains an 

extensive amount of β-sheet along with the αC and αL16 helices (Turjanski et al., 2007). 

The catalytic site is found at the junction of the two domains, containing the ATP-binding 

site and two binding sites for Mg2+. MAPKs are discriminated from other members of the 

kinase superfamily by the presence of a 50 residue MAPK insertion in the C-terminus 

(Turjanski et al., 2007). Dual phosphorylation of the conserved Thr-X-Tyr (where X is a 

defining feature of different MAPKs) motif located in the MAPK activation loop is 

required for full enzymatic activity of MAPKs (Turjanski et al., 2007). Traditionally, 

MAPKs have been grouped based on the amino acid located at the centre of the 

phosphorylation motif, which in part determines the substrate specificity of the upstream 

MAPKK (Turjanski et al., 2007). In the case of ERK1/2 and ERK5, the activation motif 

consists of a TEY motif corresponding to residues 202-204 and 218-220 for human ERK1 

and ERK5 respectively (Cook et al., 1997;Payne et al., 1991;Zhou et al., 1995). Of the 

MAPK family members, this study is most concerned with ERK1/2 and ERK5 due to their 

association with IL-6 signalling and cancer. 

3.6.1 ERK1/2 

ERK1/2 are described as the “classical” MAPKs with ERK1 being identified as a kinase 

activated in response to insulin (Boulton et al., 1990;Rossomando et al., 1989) and ERK2 

first described via low-stringency screening of a rat brain cDNA library (Boulton et al., 

1991). Whilst sharing common mechanisms of activation, ERK1 and ERK2 do not mediate 

identical intracellular effects following their activation as each MAPK can activate a 

distinct pool of transcription factors. Of the two MAPKs, ERK2 is most characterised and 

can be activated by multiple growth factors. Activation of growth factor receptors induces 

phosphorylation of conserved residues within the receptor that act as recruitment sites for 

signalling proteins such as SHP2 which can recruit Grb2 and the related protein Gab1 in 

order to activate the ERK1/2 signalling cascade (Fig. 3.7). In the case of gp130, SHP2 is 

recruited to pTyr759 (Takahashi-Tezuka et al., 1998) can subsequently recruit Gab1 

(Takahashi-Tezuka et al., 1998) or Grb2 (Fukada et al., 1996). In the case of Grb2-

mediated ERK1/2 activation, the Son of Sevenless (SOS) protein is constitutively 

associated with Grb and mediates Ras activation by potentiating the exchange of GDP for 

GTP. Activated Ras then activates members of the Raf family, with Raf-1 being the most 

commonly activated. Raf-1 in turn activates MEK1/2 which subsequently activates 

ERK1/2 (Turjanski et al., 2007). Dual phosphorylation of the activation motif is associated 
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with a 600,000-fold increase in overall ERK2 catalytic activity arising mainly from an 

increase in the rate of phosphoryl group transfer (Prowse & Lew, 2001). In addition to Ras, 

Raf-1 can also interact with Rap1 although formation of the Rap1/Raf-1 complex does not 

result in activation of Raf-1, suggesting that Rap1 may act as a natural inhibitor of Raf-1-

mediated ERK1/2 signalling. However, interaction of B-Raf with Rap1 can result in 

activation of B-Raf and subsequent activation of MEK1/2 and ERK1/2 (Peyssonnaux & 

Eychene, 2001). Activated ERK1/2 proteins can exert both cytosolic and nuclear effects 

via phosphorylation of their downstream effectors. ERK1/2 can phosphorylate numerous 

transcription factors including Ets-1, Sap-1, c-Jun, c-Myc and members of the CCAAT 

enhancer binding protein (C/EBP) family to promote transcription of ERK1/2-responsive 

genes (Chang et al., 2003;Park et al., 2004) whilst phosphorylation of substrates such as 

p90RSK promotes activation of transcription factors such as CREB which are not directly 

phosphorylated by ERK1/2. In addition, ERK1/2 can phosphorylate kinases involved in 

cell cycle regulation such as Cdk2 and can promote cellular survival via indirectly 

activating the NFκB signalling pathway as a result of IKK phosphorylation (Chang et al., 

2003). 

 

Activation of ERK1/2 plays an important role in governing key cellular processes 

including cellular proliferation and cell growth. Sustained activation of ERK1/2 until late 

G1-phase is required for successful entry into, but not completion of, the S-phase of the 

cell cycle (Meloche & Pouyssegur, 2007). However, hyperactivation of ERK1/2 signalling 

can induce cell cycle arrest due to p21 induction and Cdk2 inhibition (Meloche & 

Pouyssegur, 2007). Due to their activation by both external stimuli and small G-proteins 

which play important roles in governing cellular proliferation, it is hardly surprising that 

aberrant regulation of ERK1/2 signalling is a frequent event in cancers. 

3.6.2 ERK5  

ERK5 was simultaneously identified in 1995 as a MEK-5 interacting protein in a yeast 

hybrid screen (Zhou et al., 1995) and via screening of a placental cDNA library for 

MAPK-related sequences (Lee et al., 1995). ERK5 is also known as big MAPK 1 due to a 

396 amino acid C-terminal insertion containing the nuclear export and nuclear localisation 

signals (NES and NLS respectively) required for nuclear shuttling of ERK5 (Fig. 3.8). In 

addition, the C-terminus of ERK5 undergoes auto-phosphorylation following MEK5-

mediated dual phosphorylation and has two proline rich regions (PR1 and PR2) that are 

thought to facilitate interaction of ERK5 with proteins containing SH3 domains and may 

be involved in cytoskeletal targeting of ERK5 (Zhou et al., 1995). The N-terminus 
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performs vital roles in the ability of ERK5 to undergo association with MEK5, 

oligomerisation and cytoplasmic targeting and displays approximately 50% homology to 

ERK1/2 (Wang & Tournier, 2006). Similar to ERK1/2, the activation motif of ERK5 

consists of Thr218-Glu219-Tyr220, which may partially explain the ability of drugs previously 

thought to be MEK1/2-selective, such as U0126, to also attenuate ERK5 activation (Mody 

et al., 2001;Wang & Tournier, 2006). ERK5 is preferentially phosphorylated by MEK5 on 

Thr218, a process which has been suggested to induce a conformational change that enables 

ERK5 to auto-phosphorylate Tyr220 (Mody et al., 2003). Dual phosphorylation of the TEY 

motif is associated with an 80% increase in kinase activity of ERK5 towards MBP (Mody 

et al., 2003). In addition to auto-phosphorylation of Tyr220, ERK5 also undergoes auto-

phosphorylation within the C-terminus which is important in enhancing ERK5-mediated 

transcription factor activation following dual phosphorylation of TEY218-220 by MEK5 

(Morimoto et al., 2007). It is possible that MEK5-mediated phosphorylation may stabilise 

C-terminally phosphorylated ERK5 in an active conformation (Wang & Tournier, 2006) 

and thus enhance its ability to activate transcription factors. Furthermore, it has been 

demonstrated that the C-terminal region of ERK5 has potent transactivator activity which 

is required for induction of myocyte-specific enhancer factor (MEF) 2 activity and can 

directly activate transcription from the Nur77 promoter in T-cells (Kasler et al., 2000).  

 

Many factors including hyperosmolarity, growth factors and oxidative stress promote 

MEK-5 mediated dual phosphorylation of ERK5. These phosphorylation events are 

thought to promote stabilisation of ERK5 in an active conformation. Activation of MEK5 

occurs downstream of MEKK2 and MEKK3 dependent on cell type and stimulus with 

WNK1 being identified as an upstream kinase for MEKK2/3 (Wang & Tournier, 2006). 

 

Activated ERK5 is able induce activation of transcription factors such as MEF2 and Sap-1 

(Raman et al., 2007). The similarities between the transcription factors activated by ERK5 

and ERK1/2 may help to explain their similar roles in promoting cellular survival. The 

presence of ERK5 is required for normal cardiac development with erk5-/- embryos 

displaying cardiac defects (Wang & Tournier, 2006). In Xenopus, the MEK5/ERK5 

pathway is essential for neuronal differentiation. Antisense morpholino-mediated 

knockdown of either protein reduces neuronal differentiation, indicating the essential 

nature of the pathway in this process (Nishimoto et al., 2005). 
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 ERK5 has been implicated in cellular proliferation by regulating entry into mitosis (Zen et 

al., 2009) and indeed, like ERK1/2 can be activated by mitogenic stimuli including serum 

(Kato et al., 1997). 

3.6.3 ERKs and cancer 

Given the regulation of both ERK1/2 and ERK5 by mitogenic stimuli and activation of 

ERK1/2 by the small G-proteins Ras and Raf, it is unsurprising that both MAPKs have 

been investigated as therapeutic strategies. Mutations of Ras resulting in activation of the 

protein have been described in numerous malignancies including pancreatic, colon cancer 

and papillary thyroid cancer (Roberts & Der, 2007). Similarly, mutational activation of B-

Raf has been described in a similar spectrum of malignancies, particularly melanoma, 

indicating a role for downstream signalling cascades in malignancy progression (Dankort 

et al., 2009;Roberts & Der, 2007). In HEK293 cells, Raf-1 function is required to activate 

ERK1/2 downstream of mitogenic stimuli such as serum and phorbyl-12-mysrate-13-

acetate (PMA) and also to activate ERK1/2 following stimulation with oncogenic stimuli 

such as v-Src. In NIH3T3 cells, activation of ERK1/2 synergised with the ability of v-raf to 

induce cellular transformation. Together, these results suggest a central role for Raf1-

mediated ERK1/2 activation in cellular transformation (Troppmair et al., 1994). Mutations 

in the ras gene resulting in constitutive activation of the protein result in tumourigenesis 

both in vitro and in vivo and can be mimicked by over-expression of MEK1 in cell culture 

models of transformation. It is possible that Raf-1-dependent activation of ERK1/2 is not 

required for tumour development as Ras mutants which are unable to interact with Raf-1 

are able to induce comparable tumourigenesis as Ras mutants which are fully capable of 

interaction with Raf-1 (Webb et al., 1998). However, Raf-1-interacting Ras induces 

tumourigenesis more rapidly in murine models and is associated with increased metastasis, 

indicating a crucial role of Raf-1 in metastasis (Webb et al., 1998). Furthermore, loss of 

constitutive ERK1/2 signalling in these models inhibits metastasis but not tumour 

development, suggesting that Raf-1-mediated activation of the MEK1/2-ERK1/2 signalling 

cascade is required for tumour metastasis (Webb et al., 1998). Activating mutations in Ras 

are a frequent occurrence in colorectal carcinoma yet effective therapeutic strategies to 

target Ras activation remain to be discovered. Attention has therefore been focussed on 

signalling pathways activated downstream of Ras, including activation of ERK1/2. 

Treatment of colorectal carcinoma cell lines with U0126 and the more recent MEK1/2-

selective inhibitor CI-1040 inhibited anchorage-independent growth of cells, indicative of 

a loss of tumorigenic capacity (Yeh et al., 2009). 
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Fig. 3.8: Schematic representation of human ERK1/2 and ERK5 

 

The N-terminal kinase domain is shown in blue and is flanked by N- and C-terminus extensions of varying lengths (grey). The 

percentage identity of the kinase domain with ERK1 is indicated. The activation loop phosphorylation motif is indicated, the 

transactivation domain and nuclear localization sequence within ERK5 are indicated by TAD and NLS respectively. 

 

Taken from Coulombe and Meloche (2007) 
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The MEK1/2-selective inhibitor CI-1040 has been shown to have anti-tumour effects in 

vitro and in vivo and, in a phase I clinical trail, was able to reduce ERK1/2 phosphorylation 

by 46 – 100 % in tumours from patients with a variety of malignancies including 

lymphoma, melanoma, sarcoma (LoRusso et al., 2005). However, further clinical studies 

of this inhibitor demonstrated poor antitumour activity in patients. Other MEK1/2-selective 

inhibitors such as PD035901 which demonstrate improved bioavailability, potency and 

efficacy compared to CI-1040 are currently under assessment as anti-cancer therapeutics 

(LoRusso et al., 2005). Interestingly, Yeh et al. (2009) demonstrated that ERK1/2 

phosphorylation may be higher in normal vs. neoplastic tissue, suggesting that inhibition of 

ERK1/2 activation may not be a suitable therapeutic strategy due to concerns regarding 

cytotoxicity in normal cells. Similarly, metastatic PCa lesions display decreased ERK1/2 

phosphorylation in comparison to localised lesions (Grubb et al., 2009), suggesting that 

use of ERK1/2 phosphorylation as an indicator of therapy efficacy may not be suitable at 

all stages of a malignancy. 

 

In addition to the role that ERK1/2 plays in regulating tumour development and metastasis, 

the signalling cascade is also important in preventing apoptosis of cancerous cells, an 

effect previously thought to be mediated predominantly by activation of the PI3K pathway. 

Activated ERK1/2 is able to phosphorylate both the FOXO3a transcription factor and one 

of its regulated proteins, the pro-apoptotic BIM protein (Balmanno & Cook, 2009). 

Phosphorylation of FOXO3a promotes its polyubiquitination and proteasomal degradation, 

thus impeding transcription of BIM mRNA, whilst ERK1/2-mediated phosphorylation of 

BIM itself promotes proteasomal degradation of the protein and so regulates BIM 

apoptotic activity at a post-translational level (Balmanno & Cook, 2009). Conversely, 

activation of ERK1/2 is associated with an increase in expression of the anti-apoptotic Bcl-

2, BCLXL and Mcl-1 proteins possibly via an ERK1/2 → RSK or MSK → CREB 

signalling cascade (Balmanno & Cook, 2009). Inhibition of MEK decreases Bcl-2, Bcl-XL 

and Mcl-1 in pancreatic cancer cells and is associated with an increase in apoptotic cell 

number (Boucher et al., 2000). 

 

Similar to ERK1/2, ERK5 has also been implicated in cancer progression. In the MCF7 

and BT549 breast cancer cell lines, anti-ERK5 siRNA inhibited anchorage-dependent cell 

growth (Sirvent et al., 2007). In hepatocellular carcinoma, knockdown of ERK5 inhibits 

cell growth and ERK5 becomes phosphorylated during the G2/M phases of the cell cycle 

to regulate mitotic entry (Zen et al., 2009). However, activation of ERK5 is not solely 

associated with enhanced cellular proliferation. High expression of ERK5 in oral squamous 
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cell carcinoma is associated with lymph node metastasis, indicating that ERK5 may play a 

role in tumour metastasis (Sticht et al., 2008). The presence of the C-terminal NLS 

promotes nuclear localisation of ERK5 in the absence of phosphorylation. In the BT474 

and SKBR3 breast cancer cell lines, ERK5 is predominantly localised to the nucleus, a 

process which may be enhanced by phosphorylation of Thr218 and Tyr220, and nuclear 

localisation of ERK5 is associated with resistance to apoptotic signalling via TRAIL 

(Borges et al., 2007). 

 

Due to the central roles that ERK1/2 and ERK5 play in regulating cellular proliferation and 

resistance, it is unsurprising that these signalling cascades are being investigated as 

potential targets for cancer therapies. However, due to the abilities of these proteins to 

activate multiple transcription factors important in cellular survival, the use of ERK 

signalling inhibitors as cancer chemotherapeutics may be associated with significant 

cytotoxic effects in non-malignant cells. Furthermore, due to the apparent differences in 

the correlation of ERK phosphorylation between both different malignancies and different 

disease stages of the same cancer, use of ERK pathway signalling inhibitors in cancer 

therapies must be carefully assessed. 

3.7 cAMP signalling 

3.7.1 cAMP generation 

The ubiquitous second messenger, 3’,5’ cyclic adenosine monophosphate (cAMP) is 

generated from intracellular adenosine triphosphate (ATP) by adenylyl cyclases (ACs) 

(Serezani et al., 2008). Nine membrane-associated and one soluble form of mammalian 

AC have been described with AC-encoding genes being distributed across multiple 

chromosomes rather than clustering to a specific region of the genome (Sunahara & 

Taussig, 2002). Of the 10 AC isoforms, most are expressed highly in the brain with AC6 

and AC7 showing ubiquitous tissue expression (Sunahara & Taussig, 2002). AC activation 

in response to growth factors or hormones is primarily mediated by the stimulatory Gα 

(Gαs) protein which forms part of a hetero-trimeric G-protein signalling complex 

downstream of G-protein coupled receptors (GPCRs, see Chapter 10 for further detail) 

(Sunahara & Taussig, 2002). In addition to Gαs, other G-proteins can modulate AC activity 

with inhibition via interaction with the inhibitory Gα protein (Gαi) and the Gβ/Gγ-protein 

complex. The PKC signalling pathway can also modulate AC activity (Daniel et al., 1998). 

In contrast to the membrane-bound forms of AC, soluble AC is expressed mainly in the 

testes and is regulated by bicarbonate ions rather than Gαs. Two splice variants of the 
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soluble AC have been identified in human and rat testicular tissue and both are thought to 

contribute to sperm motility (Jaiswal & Conti, 2001).  

 

Membrane-bound ACs show similar domain organisation with a short, cytosolic amino 

terminus (C1), followed by two repeats of a six transmembrane domain (TMD) and a C-

terminal cytosolic domain (C2). of approximately 40 kDa (Tesmer et al., 1997). Both of the 

cytosolic domains are important in catalysis and are also associated with regulation of AC 

activity. Basal interaction between the cytosolic domains of AC and Gαs is weak with 

activation and subsequent GTP-loading of Gαs required for high affinity interaction 

between the two proteins. In vitro, the C1 domain of AC5 and the C2 domain of AC2 can 

form functional heterodimers which resemble the structure of the AC5 C1 homodimer 

(Tesmer et al., 1997). A long, shallow trough which bisects one face of the AC5 C1/AC2 

C2 heterodimer acts as a binding pocket for AC-activating substrates such as the diterpene 

forskolin (Fsk). A wide cleft at the interface between the two cytosolic domains functions 

as the binding site for Gαs and interacts with the switch II helix on the G-protein (Tesmer 

et al., 1997). 

 

Following activation of AC and conversion of ATP to cAMP, there are numerous effectors 

by which elevation of intracellular cAMP concentrations can modulate cellular functions. 

Whilst cAMP levels within cells may be globally upregulated following AC activation, 

intracellular compartmentalisation of proteins involved in cAMP signalling are thought to 

“fine tune” cAMP concentrations into microdomains of high and low cAMP concentration. 

This compartmentalisation is mainly achieved via interaction of signalling proteins with A 

kinase anchoring proteins (AKAPs) (Baillie et al., 2005). These proteins act as a scaffold 

for signalling proteins and can recruit the cAMP effector molecules such as protein kinase 

A (PKA) and exchange proteins activated by cAMP (EPACs) (Baillie et al., 2005). In the 

case of PKA, an amphipathic helix on the AKAP interacts with the regulatory subunit of 

the inactive holoenzyme (Carr et al., 1992). However, the AKAP signalling complex is not 

just associated with positive regulation of cAMP signalling as phosphodiesterases (PDEs) 

can also interact with AKAPs. To prevent sustained elevation of cAMP, the cyclic 

nucleotide is degraded via the actions of PDEs. Of particular interest are the PDE4 family 

members which are cAMP-specific PDEs and are the target of a number of therapeutic 

strategies for diseases such as chronic pulmonary obstructive disease (COPD) and 

pulmonary hypertension (Baillie et al., 2005;Brown, 2007;Dony et al., 2008;Giembycz, 

2006). Thus, dependent on the complement of signalling proteins associated with specific 
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AKAPs, efficient compartmentalisation of intracellular cAMP concentrations can be  

achieved. 

3.7.2  Protein Kinase A 

Protein kinase A (PKA) is thought of as the “classical” cAMP effector molecule and is 

found in vivo as a holoenzyme, consisting of two regulatory (R) and two catalytic (C) 

subunits (Fig. 3.9) (Daniel et al., 1998). Each R subunit of PKA contains two cAMP 

binding sites, termed site A and site B which undergo a conformational change upon 

binding of cAMP (Murray, 2008). The two binding sites are non-identical, but show 

similar structural organisation, and thus display different affinities for cAMP with site A 

exchanging cAMP more rapidly than site B. Studies using site A and site B-selective 

cAMP analogues demonstrate that binding of cAMP to both sites synergistically enhances 

kinase activity (Robinsonsteiner & Corbin, 1983). 

 

It is thought that cAMP binding to R subunits of PKA acts to stabilise the protein via 

interaction with Arg209 found in the Site A cAMP binding pocket (Dostmann, 1995). As a 

result of cAMP binding, the C subunits of PKA are released and are able to phosphorylate 

Ser/Thr residues within the canonical PKA phosphorylation motif on target proteins. The 

cAMP analogue, Rp-cAMPS inhibits holoenzyme dissociation via breaking the interaction 

between Arg209, which interacts with the phosphate group, and Asp170 and locks PKA as a 

holoenzyme (Dostmann, 1995). 

 

Following dissociation of the C subunits from the R subunits, PKA is able to exert its 

intracellular effect via Ser phosphorylation of target proteins which contain the XRRXRSX 

motif (Kemp & Pearson, 1990). Activated PKA regulates a number of cellular processes 

including enzymes, ion channels, cytoskeletal apparatus and transcription factors (Daniel et 

al., 1998). One of the principal downstream targets of PKA is the cAMP responsive 

element (CRE) binding protein (CREB) which binds the CRE consensus sequence 

TGACGTCA (Sassone-Corsi, 1998). PKA-mediated phosphorylation of CREB on Ser133 

within the RRPSY motif is an important step in CREB activation (Alberts et al., 1994) and 

is associated with recruitment of the p300/CREB binding protein (CBP) coactivator to the 

promoter of CREB-responsive genes, ultimately resulting in initiation of gene transcription 

(Mayr & Montminy, 2001). However multiple kinases can phosphorylate CREB on Ser133 

including the MEK/ERK1/2 pathway, glycogen synthase kinase (GSK) 3, p38 MAPK and 

calmodulin kinase (Johannessen et al., 2004) thus other factors are required to regulate 
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Fig. 3.9: Activation of the PKA holoenzyme by cAMP 

The regulatory subunits of PKA (denoted as R) contain the A and B cAMP binding sites 

and, in the absence of cAMP, are associated with the catalytic subunits (denoted as C). 

Binding of cAMP results in a conformational change and releases the catalytic subunits 

which phosphorylate their downstream targets via transfer of phosphate from the 

associated ATP. 

 

Taken from Murray (2008) 
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CREB-responsive genes in response to cAMP elevation. The transducers of regulated 

CREB (TORC) proteins potentiate the ability of CREB to initiate gene transcription in 

response to increases in intracellular cAMP, an event which occurs independently of Ser133 

phosphorylation (Conkright et al., 2003). TORC proteins associate with the promoter 

region of CREB-responsive genes with a requirement for a proximal TATA box element 

(Conkright et al., 2003). Thus, in order to promote CREB-mediated transcription, the 

TORC proteins must be localised to the nucleus. Nuclear translocation of TORCs is 

promoted by cAMP elevation and TORC function is required for CREB-responsive gene 

expression following cAMP elevation (Bittinger et al., 2004). Thus combined activation by 

PKA and subsequent interaction with nuclear-localised TORCs promotes the transcription 

of CREB-regulated genes in response to cAMP elevation. 

 

In order to prevent constitutive activation of CREB, the protein is desphosphorylated by 

the Ser/Thr phosphophatases PP-1 and PP-2A which return the protein to its basal state 

(Alberts et al., 1994;Mayr & Montminy, 2001). In addition to CREB, PKA can also 

activate the CRE modulator (CREM) and activating transcription factor (ATF) -1 

transcription factors which belong to the same protein family as CREB. However, whilst 

cAMP elevation induces PKA activation, this event does not always promote gene 

transcription. In addition to CREB, PKA also activates the inducible cAMP early repressor 

(ICER) which potently represses gene expression in response to elevated cAMP (Sassone-

Corsi, 1998). The ICER open reading frame (ORF) correlates to the C-terminal, DNA-

binding domain of CREM and thus lacks the transactivator activity of the full length 

protein (Stehle et al., 1993). Expression of ICER is driving by a second, intronic promoter 

within the CREM gene and is strongly induced by cAMP elevation (Sassone-Corsi, 1998). 

Therefore, cAMP-driven expression of ICER acts to impede transcription of cAMP-

responsive genes by binding to CRE elements and thus blocking binding of full-length 

CREM or CREB. ICER is also able to bind its own promoter, thus inhibiting its own 

expression and so acting to “reset” gene transcription in response to cAMP elevation 

(Molina et al., 1993). 

3.7.3  EPAC 

For many years, PKA was thought to be the sole effector activated by increases in 

intracellular cAMP concentrations. However, in 1998, the ability of cAMP to activate the 

Rap-1 signalling protein was found to occur independently of PKA, indicating the presence 

of another cAMP effector (de Rooij et al., 1998). In the same paper, de Rooij et al (1998) 

identified a putative cAMP-responsive GEF by searching for sequences with homology to 
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both cAMP binding domains and to GEFs specific for Ras and Rap. Subsequently, this 

group identified and cloned a guanine nucleotide exchange factor (GEF) which contains an 

N-terminal cAMP binding domain and activates Rap-1 in response to cAMP elevation (de 

Rooij et al., 1998). This protein was termed exchange protein activated by cAMP (EPAC) 

and the mRNA of EPAC was found to have ubiquitous tissue expression, although higher 

expression levels were detected in kidney and brain tissue (de Rooij et al., 1998). In 

addition to the originally described EPAC protein, hereafter referred to as EPAC1, a 

second, related cAMP-GEF was identified which is expressed predominantly in the brain 

and adrenal gland (Kawasaki et al., 1998). This protein was termed EPAC2 and displays 

structural and sequence homology to EPAC1 (Kawasaki et al., 1998). 

 

The EPAC proteins are multi-domain proteins in which the C-terminal catalytic activity is 

regulated by the N-terminus (Fig. 3.10). The Dishevelled, Egl-10, Pleckstrin (DEP) domain 

of the N-terminus is involved in the association of the EPACs with cellular membranes and 

is proximal to cAMP binding domains. EPAC1 contains a single, high affinity binding site 

for cAMP (cAMP-B) whilst EPAC2 contains two cAMP binding sites which flank the 

DEP domain (Roscioni et al., 2008). The extreme N-terminal cAMP binding site of 

EPAC2 displays a lower affinity for cAMP (cAMP-A) than the cAMP-B site and, as yet, 

the biological function of this site is unknown. A Ras-exchange motif (REM) is situated 

between the regulatory domains and the catalytic domains and is proximal to a Ras-

associating (RA) domain. Activated Ras has been shown to interact with EPAC2 but not 

EPAC1 in vitro (Li  et al., 2006b). The interaction between EPAC2 and activated Ras 

results in cytosol to membrane translocation of activated Ras and is associated with 

increase membrane activation of Rap1. Combined stimulation with EGF and cAMP 

elevation promoted membrane translocation of EPAC2. It is thought that the membrane 

translocation of EPAC2 requires EGF-mediated activation of Ras whilst conformational 

changes of EPAC2 associated with cAMP are required for the association of the GEF with 

activated Ras (Li et al., 2006b). Thus activation of EPAC2 and its association with Ras 

alter the intracellular location of EPAC2 and can modulate the effector pool activated in 

response to cAMP elevation (Li et al., 2006b). The ability of EPACs to act as GEFs for 

their downstream proteins is conferred by a C-terminal domain which shows homology to 

Cdc25 (Roscioni et al., 2008). 

 

Following activation by cAMP binding, EPACs are able to modulate their downstream 

effectors by promoting the exchange of GDP for GTP. EPACs are able to activate 

members of the Rap families and to regulate modulators of exocytosis and microtubule 
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Fig. 3.10: Domain organistion of the human EPAC pro teins 

Schematic indicating the domain organisation of the EPAC1 and EPAC2 proteins. cAMP-A = low 

affinity cAMP binding domain, cAMP-B = high affinity cAMP binding domain; DEP = Dishevelled, 

Egl-10, Pleckstrin domain; REM = Ras exchange motif; RA = Ras-associating domain; CDC25HD = 

Cdc25 homology domain 

 

Taken from Roscioni et al (2008). 



57 

dynamics (Roscioni et al., 2008). Thus it is hardly surprising that EPAC activation has 

been associated with a number of cellular processes. EPAC activation has been implicated 

in modulation of inflammatory processes via inducing expression of the anti-inflammatory 

SOCS3 protein in HUVECs (Sands et al., 2006) (see Chapter 7) and by activation of PKCε 

which mediates inflammatory pain perception (Hucho et al., 2005). These two process may 

not be unrelated as indicated by the observation that EPAC1-mediated induction of SOCS3 

expression requires PKC activation (Borland et al., 2009). EPAC activation is also an 

important regulator of endothelial barrier function with knockdown of EPAC1 associated 

with an increase in permeability in HUVECs (Sehrawat et al., 2008). Associated with this 

phenomenon is the ability of EPAC1 to dynamically and positively regulate MT growth 

(Sehrawat et al., 2008) which may be mediated via interaction of EPAC1 with the light 

chain 2 of microtubule associated protein (MAP) 1A (Magiera et al., 2004). This 

interaction is associated with an increased ability of EPAC1 to activate Rap1 through 

increased sensitivity to cAMP and an increase in cellular adhesion (Gupta & Yarwood, 

2005). Given their ability to regulate a number of key cellular signalling pathways, it is 

unsurprising that research into the EPACs is an expanding field. 

3.7.4 Other cAMP sensors  

Although PKA and EPACs comprise the most studied cAMP effectors, they are by no 

means the only cAMP sensors. In addition to EPACs, which function as GEFs for Rap and 

Ras family members, the cyclic nucleotide Ras GEF (CNrasGEF) has also been shown to 

activate Ras in response to cGMP and cAMP (Pham et al., 2000). Like EPAC, CNrasGEF 

has a Cdc25 homology domain associated with GEF activity and an RA domain. 

Immobilisation of cAMP on agarose beads is able to precipitate GST-bound CNRasGEF in 

vitro. Mutation of a cyclic nucleotide binding domain at the N-terminus of CNRasGEF 

reduces the ability of cAMP-agarose to precipitate over-expressed CNrasGEF from 

HEK293 cells, demonstrating that this domain is involved in cAMP binding (Pham et al., 

2000). Unlike EPACs, CNrasGEF is activated by both cAMP and cGMP (Pham et al., 

2000), suggesting the protein may be able to regulate an even wider range of cellular 

process than the EPACs. Association of CNrasGEF with the β1-adrenoceptor results in Ras 

activation and is reliant on Gαs-generated cAMP (Pak et al., 2002). It is thought that the 

frequent association of cAMP-activated Ras with melanomas is due to Ras-mediated 

activation of ERK1/2 downstream of CNrasGEF. Indeed, CNrasGEF is highly expressed in 

B16 melanoma cells and knockdown of CNrasGEF is associated with a decrease in Fsk-

induced ERK1/2 phosphorylation, suggestive of a role for this protein in melanogenesis 

(Amsen et al., 2006). Of concern are the observations that CNrasGEF is unable to bind 
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physiologically relevant concentrations of cAMP in vitro and constitutively activates Ras 

when expressed in Rat1 cells. Such results raise the question of whether CNrasGEF is truly 

cAMP responsive (Kuiperij et al., 2003). 

 

In addition to direct activation of intracellular signalling proteins, cAMP elevation can also 

activate transmembrane ion channels. Two classes of cyclic nucleotide-responsive ion 

channels have been described, the cyclic nucleotide-gated (CNGs) and the 

hyperpolarisation-activated, cyclic nucleotide-gated (HCNs) ion channels. CNGs are 

activated directly by binding of cyclic guanosine monophosphate (cGMP) or cAMP whilst 

HCNs are voltage regulated (Biel, 2009). Whilst widely expressed in peripheral and central 

neurones, CNGs and HCNs also play distinct roles in signal transduction systems. CNGs 

are important in signal transduction from olfactory and visual stimuli whilst HCNs play 

crucial roles in maintaining cardiac function (Biel, 2009). Both types of ion channel 

display cytosolic localisation of their N and C termini and contain a transmembrane 

channel comprised of 6 α-helices with the ion-conducting core located between loops 5 and 

6 (Biel, 2009). CNGs act as conduit for K+ and Na+ and display no preference for either 

cation whilst HCNs show greater transport of K+ compared to Na+. In addition to 

monovalent cations, CNGs also provide a channel for transportation of Ca2+ across the cell 

membrane, enabling influx of Ca2+ and activation of calcium-sensitive signalling pathways 

(Biel, 2009). Recently, a more minor role of HCN2 as an ion channel for Ca2+ in the 

presence of both K+ and Na+ has been described (Michels et al., 2008). HCNs 

preferentially bind cAMP whilst cGMP is a more potent activator of CNGs (Biel, 2009). 

Activation of HCNs has been implicated in a diverse physiological processes including 

vision (Barrow & Wu, 2009) and regulation of cardiac function (Schulze-Bahr et al., 

2003). 

 

Given the important role of cAMP elevation in a number of cellular systems, it is 

unsurprising that study of this pathway is of interest to a number of research groups. Of 

particular relevance to this study is the observation that cAMP elevation can inhibit IL-6-

induced pTyr705STAT3 via induction of the SOCS3 protein (Sands et al., 2006). It is 

possible that modulation of cAMP levels may be of benefit in malignancies such as PCa 

which are associated with hyperactivation of STAT3 and elevated IL-6 levels (see sections 

3.1 and 3.2). However, in addition to pathways associated with transformation, the ability 

of malignant cells to metastasise is a key event in tumour development. 
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3.8 Actin polymerisation and cell motility 

Changes in actin polymerisation play a crucial role in the ability of cells to adhere to the 

substratum, form membrane protrusions and migrate. The Rho family GTPases comprise 

the Rac, Cdc42 and Rho sub-families, with all three controlling different aspects of actin 

polymerisation. Rac1 is involved in the formation of lamellipodia, Cdc42 in filopodia 

extension and Rho in the formation of stress fibre formation and focal adhesions. Due to 

the differing roles that these related proteins play in governing actin dynamics, each of 

them regulate actin polymerisation via different signalling pathways. For example, Rac1 

regulates WAVE-dependent activation of Arp2/3 via binding to IRSp53 whilst Cdc42-

induced Arp2/3 activation is facilitated by interaction with WASP (Pullikuth & Catling, 

2007;Takenawa & Suetsugu, 2007). In contrast to Rac1 and Cdc42, Rho activation limits 

the formation of membrane protrusions due to the ability of its effectors, such as mDia and 

ROCK, to stimulate actin bundling into stress fibres (Pullikuth & Catling, 2007). 

 

The Rho GTPases are key regulators of cellular motility due to their ability to regulate the 

actin cytoskeleton. Migrating cells have a distinct morphology with a ruffled leading edge 

followed by a flat, broad lamella and a tail retracting at the rear of the cell. Within the cell 

itself, there is little similarity between cell types in the nature of actin organisation 

although protrusion at the leading edge appears to be a common factor driving the 

migratory process (Wittmann & Waterman-Storer, 2001). Leading edge protrusions arise 

due to the formation of new actin filaments with new subunits being incorporated at the 

barbed ends of the existing actin filament (Fig. 3.11) (Pollard & Borisy, 2003). However 

the barbed ends themselves remain stationary with reference to the substratum and it is de 

novo polymerisation which drives extension of the leading edge (Verkhovsky et al., 1999). 

In contrast to the leading edge, actin filaments at the rear of the cell are highly associated 

with an accumulation of myosin II (Verkhovsky et al., 1999). Myosin II is important, but 

not essential, for the retraction of the posterior edge via mediating movement of actin 

filaments past each other (Jay et al., 1995). 

3.8.1 The WASP-WAVE protein network 

The Wiskott-Aldrich syndrome (WAS) protein (WASP) was originally identified as the 

causative gene of WAS, an X-linked recessive disease resulting in eczema, 

thrombocytopenia and immunodeficiency. Expression of WASP is restricted to 

haematopoietic cells although later description of the related, so-called neural-WASP (N-

WASP) proteins was described in neural and other tissues (Takenawa & Suetsugu, 2007). 
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Fig 3.11: Mechanism for actin-mediated protrusion o f the leading 

edge downstream of extracellular stimuli 

 

Taken from Pollard and Borisy (2003). 
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The proteins share three conserved domains, comprising the C-terminal verprolin-

homology domain (V), a central cofilin-homology domain (Co) and an acidic domain (A). 

Collectively, these three domains enable WASP proteins to interact with monomeric actin 

and the actin-related protein 2/3 (Arp2/3) complex (Takenawa & Suetsugu, 2007). 

Screening for proteins containing a similar VCoA arrangement resulted in identification of 

WASP-family verprolin-homologous protein (WAVE) family that include mammalian 

WAVE-1, WAVE-2 and WAVE-3 (Suetsugu et al., 1999). In humans, WAVE-2 is 

expressed ubiquitously, except in skeletal muscle, whilst WAVE-1 and WAVE-3 show 

particular enrichment in the brain compared to other body tissues (Takenawa & Suetsugu, 

2007). Both WASP and WAVE proteins are able to induce generation of new actin 

filaments via activation of Arp2/3 and subsequent de novo nucleation of actin monomers. 

This process is dependent on a conserved amphipathic helix located in the C region of the 

proteins (Panchal et al., 2003;Takenawa & Suetsugu, 2007). There appears to be negligible 

difference in the ability of WAVE and WASP proteins to induce actin filament formation 

in vitro (Suetsugu et al., 1999), indicating that their activation is of equal importance in 

regulating actin polymerisation. In addition to roles in actin polymerisation, WAVE-1 is 

able to recruit signalling proteins such as PKA and Abl to the actin cytoskeleton. In the 

case of PKA, this interaction requires Ile505 and Ile509 which interact with the regulatory 

subunit of PKA, resulting in anchorage of PKA to the actin cytoskeleton (Westphal et al., 

2000). Thus WAVE-1 may form a link between cAMP signalling and modulation of actin 

polymerisation. 

3.8.2 The Arp2/3 complex 

The Arp2/3 complex contains seven polypeptides in total and was first isolated from 

Acanthamoeba castellanii due to its affinity for profilin. Alone, the Arp2/3 complex 

exhibits little biochemical activity and requires interaction with nucleation-promoting 

factors in order to become activated and instigate formation of new actin filaments (Goley 

& Welch, 2006). There are several mechanisms by which formation of actin filaments may 

be initiated. Whilst it is possible for actin to spontaneously dimerise, this intermediate is 

highly unstable and thus actin nucleation does not proceed to the trimeric actin nucleus 

required for subsequent polymerisation. However, association of actin with nucleation-

promoting factor proteins (NPFs) such as the Arp2/3 complex, spire proteins and the 

formins promote actin polymerisation without the need for spontaneous nucleation (Goley 

& Welch, 2006). In the case of Arp2/3, the active complex is thought to contain Arp2 and 

Arp3 in close proximity to each other which, due to their sequence homology to actin 

itself, causes the Arp2/3 complex to act as an actin-like heterodimer and bind monomeric 
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actin to facilitate formation of a trimeric actin-like nucleus and subsequent polymerisation 

(Goley & Welch, 2006). 

 

Actin, Arp2 and Arp3 are all capable of binding ATP which promotes actin 

polymerisation. ATP-bound actin filaments undergo more rapid polymerisation and slower 

dissociation than ADP-bound filaments (Zheng et al., 2007). Loss of Arp2/3 ATP binding 

attenuates polymerisation activity, possibly due to the 25-fold more rapid dissociation of 

Arp2/3 from ADP-bound actin (Zheng et al., 2007). Conversely, proteins such as cofilin, 

which promote depolymerisation of actin, associate more readily with ADP- bound actin. 

In addition to ATP hydrolysis, actin polymerisation can also be regulated by interaction 

with NPFs as described above. NPFs can be subdivided into class I and class II NPFs 

dependent on both the mechanism by which actin polymerisation is induced and the effect 

on actin branching. 

 

The class I NPFs include the WASP and WAVE proteins, which are activated by the Rho 

GTPases Rac1 and Cdc42 whilst the class II NPFs include actin-binding protein-1 of 

Saccharomyces cerevisiae. Class I NPFs bind Arp2/3 through an acidic domain and 

globular actin (G-actin) through their conserved WASP-homology-2 (WH2) domain to 

produce a trimeric Arp2/Arp3/G-actin nucleus for subsequent elongation (Goley & Welch, 

2006). Class II NFPs which activate Arp2/3 contain an acidic domain, enabling their 

interaction with Arp2/3 but lack a WH2 domain required for binding of G-actin. 

Consequentially, the mechanism by which class II NFPs activate actin polymerisation is 

currently unknown. It is possible that class II NFPs may act to stabilise filamentous actin 

(F-actin) branches in the developing microfilament as members of this subgroup remain 

associated with F-actin following formation of a new branch whilst class I NFPs dissociate 

following branching (Goley & Welch, 2006). 

 

Arp2/3-mediated nucleation can also be activated via preformed actin filaments in a 

process which is thought to be auto-catalytic as the rate of polymerisation increases with 

the length of actin filament. Formation of new actin branches is thought to be derived from 

the sides of existing filaments rather than from the fast-growing barbed ends of filaments 

which are the site of de novo actin polymerisation in the extending filament. In keeping 

with the hypothesis that actin polymerisation occurs more rapidly in the presence of ATP-

bound actin, side branching is restricted to areas of the barbed ends of actin filaments 

containing ATP-bound actin (Goley & Welch, 2006). Formation of branched actin plays 
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important roles in regulating cytoskeletal dynamics and has been implicated in dendrite 

spine and synapse formation (Wegner et al., 2008). 

3.8.3 RhoGTPases and actin dynamics 

The Rho family of GTPases exert their effects on cytoskeletal dynamics via activation of 

downstream targets. Within the Rho GTPase superfamily, the sub-family designated as 

Rho comprise the RhoA, RhoB and RhoC. Although other proteins have been designated 

as Rho proteins, e.g. RhoG, this naming refers more to their inclusion in the Rho GTPase 

superfamily than to similarities to RhoA, B or C (Schmandke et al., 2007). Of most interest 

to this study is the role of RhoA in regulating actin polymerisation. In the case of RhoA, 

activation of the downstream kinase ROCK promotes activation of LIM kinase (LIMK) 

which in turn phosphorylates cofilin. LIMK-mediated phosphorylation of cofilin on Ser3 

inhibits the depolymerising activity of cofilin and thus leads to actin filament stability (Fig. 

3.12) (Maekawa et al., 1999). In addition, ROCK can phosphorylate and inhibit myosin 

light chain phosphatase to promote actomyosin contractility and the formation of stress 

fibres downstream of myosin light chain kinase activity (Maekawa et al., 

1999;Papakonstanti & Stournaras, 2008). Finally, RhoA can activate mDia which also 

binds profilin and so promotes F-actin polymerisation downstream of RhoA activation 

(Watanabe et al., 1997). Similar to RhoA, Rac1 can also promote activation of LIMK 

through activation of PAKs and subsequently stabilise F-actin filaments via LIMK-

mediated inhibition of cofilin. However, Rac1 and RhoA play very different roles in 

modulating cellular morphology which may arise from differential targeting to cell 

membranes as a result of post-translational modification (Ridley, 2006). 

 

Whilst RhoGTPases are able to directly induce actin polymerisation, they also regulate, 

and are regulated by, microtubule (MT) function. MT dissociation is associated with 

increased Rho activity due to an increase in GTP-Rho, resulting in bundling of actin into 

stress fibres and subsequent cellular contraction (Pullikuth & Catling, 2007). In the case of 

RhoA, the GTPase itself does not directly bind MTs but is thought to become activated 

following association of RhoA GEFs such as p190RhoGEF with the MT network. 

Consistent with the opposing roles of Rho and Rac on membrane protrusion formation, MT 

assembly promotes Rac activity and subsequent lamellipodia formation which may be 

mediated by activation of TrioGEF which activates RhoG, an upstream activator of Rac 

and Cdc42. Although neither TrioGEF nor RhoG directly bind MTs, their subsequent 

activity is dependent on an intact MT network. Activation of Rho family proteins can also 

promote MT stability through Rho-mediated mDia activation and activation of PAK1 by 
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Cdc42 and Rac. PAK1 serves to stabilise MT by both activating tubulin cofactor B to 

promote tubulin heterodimerisation and inhibiting the MT destabilising protein stathmin 

(Pullikuth & Catling, 2007). Furthermore, in Xenopus oocytes, physical interactions 

between the MT network and F-actin have been demonstrated to dynamically modulate F-

actin characteristics in a process which requires cytosolic factors (Waterman-Storer et al., 

2000). It is thus possible that RhoGTPases and MT may act co-ordinately to regulate actin 

cytoskeletal dynamics via MT promotion of RhoGTPase activity which in turn acts to 

stabilise the MT network. 

3.8.4 RhoGTPases and cancer 

An important event in late-stage malignancies is the emergence of metastatic tumours 

which are correlated with increases in cellular motility. Given the important role of actin 

polymerisation in regulating cellular motility, it is unsurprising that Rho GTPases have 

been implicated in tumour metastasis. Over-expression of Rac1 has been demonstrated in 

leukaemias and siRNA against Rac1 in cell line models of leukemia which also over-

expression Rac1 promoted a decrease in colony formation and proliferation. The Rac1 

inhibitor NCS23766 mimicked the effects of Rac1 knock-down and also impaired cellular 

migration (Wang et al., 2009). Such decreases in cellular migration and tumour invasion 

are also seen in colorectal carcinoma cells in which Rac1 knock-down has been achieved 

(Zhao et al., 2009a), indicating an important role for this protein in regulating tumour 

metastasis. In addition to roles in metastasis, RhoA has also been implicated in cellular 

transformation with TGFβ-mediated activation of RhoA required for efficient 

transformation by constitutively active Ras and B-Raf (Fleming et al., 2008). 

 

Of particular relevance to this study is the observation that stimulation of the AGS gastric 

carcinoma cell line with IL-6 promotes cell invasion through Src-mediated activation of 

RhoA and is correlated with increased tumour cell aggression. Furthermore, increased 

staining of RhoA was found in later stage tumour tissue compared to normal colonic 

epithelium in gastric cancer patients (Lin et al., 2007). Ectopic expression of both 

constitutively active and wild-type RhoA in human primary mammary epithelial cells 

promoted cellular transformation. Interestingly, a mutant of RhoA which was unable to 

interact with ROCK or mDia was also able to induce cellular transformation (Zhao et al., 

2009b). Interestingly, over-expression of constitutively active or wild-type RhoA also 

promotes transcription of STAT3-responsive reporter genes via a mechanism dependent on 

a functional STAT3, indicating that the RhoA signalling cascade can also play a role in 

STAT3 activation. This hypothesis was confirmed by evidence that expression of 
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Fig. 3.12: Regulation of signalling pathways by Rho  

RhoA is able to phosphorylate mDia to promote activation of profiling and subsequently 

promote actin polymerisation. Additionally, RhoA phosphorylates ROCK to promote 

LIMK phosphorylation which inhibits cofilin activity via phosphorylation on Ser3. ROCK 

also inhibits myosin phosphatise activity and thus promotes phosphorylation of myosin 

light chain and increased actomyosin contraction. 

 

Taken from Maekawa et al (1999)  
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constitutively active RhoA promoted an increase in pTyr705STAT3, indication that 

activation of RhoA does indeed promote activation of STAT3 (Aznar et al., 2001).   This 

observation could, in part, explain the role of RhoA in cellular transformation as activation 

of STAT3 has been shown to be directly oncogenic (Azare et al., 2007;Bromberg et al., 

1999). Inhibition of ROCK impairs nuclear import of STAT3 whilst expression of active 

ROCK potentiates nuclear accumulation of STAT3. Furthermore, STAT3 is required for 

stress fibre formation, a RhoA-mediated event, and for RhoA-dependent cellular 

transformation, indicating a possibly positive feedback loop between STAT3 and RhoA 

activation (Debidda et al., 2005). 

 

Whilst the relevance of the described interactions between the RhoA and STAT3 signalling 

networks has yet to be determined in vivo, they may provide a new route by which to 

modulate intracellular signalling in malignant cells. Importantly, in addition to possible 

roles in cellular transformation, reciprocal activation of the RhoA and STAT3 signalling 

pathways may contribute to the cellular metastasis and resistance to chemotherapeutics 

characteristic of latter stages of cancer. 

3.9 Project Rationale 

Given the association between various malignancies and aberrant IL-6 or STAT3 

signalling, it is possible that attenuation of STAT3 activation may be of therapeutic 

benefit. Of particular interest to this study is PCa as elevation of IL-6 levels is associated 

with every stage of the disease and is correlated to poor patient prognosis, patient cachexia 

and death (Kuroda et al., 2007). Previously, elevation of cAMP was found to inhibit IL-6-

induced activation of STAT3 through EPAC-mediated induction of SOCS3 expression 

(Sands et al., 2006). Thus, elevation of intracellular cAMP levels in cell line models of 

PCa may also attenuate IL-6-induced activation of STAT3. Both anti-apoptotic proteins, 

such as Bcl-XL, and proteins associated with cell cycle progression, e.g. cyclin D1, are 

STAT3-responsive genes, thus blockade of STAT3 activation should promote apoptosis 

and a decrease in proliferation of PCa cell lines (Cochet et al., 2006;Leslie et al., 2006;Xu 

et al., 2005). Indeed, selective blockade of STAT3 has been demonstrated to increase 

apoptosis in cellular models of PCa (Barton et al., 2004). However, the approach used in 

the Barton et al. (2004) study utilised a dominant negative and anti-sense oligonucleotides 

to inhibit STAT3 signalling. Given that cAMP elevation appears to be an endogenous 

inhibitor of inflammatory responses, it is possible that manipulation of physiological anti-

inflammatory pathways may prove a more suitable therapeutic strategy to inhibit STAT3 

activation by IL-6. 
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To this end, the responses to exogenous cytokines were characterised in three prostate 

epithelial cell lines representing normal, early-stage and late-stage PCa. Having established 

suitable conditions in which to investigate IL-6-induced activation of STAT3 in these cell 

lines, the ability of cAMP to inhibit IL-6-induced increases in pTyr705STAT3 was 

investigated in each cell line. As a result of these experiments, the ability of cAMP 

elevation to modulate the differentiation and morphology of prostate epithelial cells 

formed the focus of the latter part of this study. 
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4 Materials 

Abcam, Cambridge, UK 

Mouse monoclonal antibody to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Cat. 

# ab8245), goat polyclonal antibody to mouse IgG phycoerythrin- (PE-) conjugated (Cat. # 

ab7002), rabbit polyclonal antibody to pSer133CREB (Cat. # ab30651), rabbit polyclonal 

antibody to SOCS3 (Cat. # ab16030),  

 

Addgene, Cambridge, MA, USA 

pRK5.MycRhoA.N17 (plasmid 15901) 

 

American Type Culture Collection, Teddington, UK 

DU145 prostate epithelial cells, LNCaP prostate epithelial cells, PZ-HPV-7 prostate 

epithelial cells 

 

American Radiolabelled Chemicals, St. Louis, MO, USA 
3H-ZM241385 

 

Beckman Coulter, High Wycombe, UK 

Ultra-Clear ultracentrifuge tubes 

 

Biolog, Bremen, Germany 

8- (4-Chlorophenylthio)- 2'- O- methyladenosine- 3', 5'- cyclic monophosphate (8Me-

pCPT-cAMP) 

 

Biorad Laboratories Ltd, Hemel Hempstead, Hertfordshire, UK 

Precision plus protein markers, Mini-protean III mini-gel kit 

 

Boehringer Ingelheim, Bracknell, UK 

BIX02188 

 

Brandel Inc, Gaithersberg, MD, USA 

GF/CGlass fibre filters 
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Cell Signalling Technology, 

Mouse monoclonal antibody to pThr202pTyr204ERK1/2 (Cat. # 9106), rabbit polyclonal 

antibody to pThr218pTyr220ERK5 (Cat. # 3371) mouse monoclonal antibody to 

pTyr701STAT1 (Cat. # 9171), mouse monoclonal antibody to pTyr705STAT3 (Cat. # 9138), 

rabbit polyclonal antibody to STAT1 (Cat. # 9172), rabbit polyclonal antibody to STAT3 

(Cat. # 9132), rabbit polyclonal antibody to JAK1 (Cat. # 3332), rabbit polyclonal antibody 

to JAK2 (Cat. # 3772), rabbit monoclonal antibody to RhoA (Cat. # 2117), rabbit 

polyclonal antibody to phospho-PKA substrate (Cat. # 9621) 

 

Clontech, Sainte-Germaine-en-Laye, France 

pEGFP-N1 

 

Inverclyde Biologicals, Bellshill, Lanarkshire, UK 

Whatman Protran nitrocellulose membrane 

 

Invitrogen, Paisley, UK 

Dulbecco’s PBS, Keratinocyte serum free medium kit containing bovine pituitary extract 

and recombinant epidermal growth factor (Cat. # 37010-022), rhodamine-conjugate 

phalloidin, Lipofectamine 2000 transfection reagent, Optimem, RPMI 1640 medium 

 

Lonza Group Ltd, Basel, Switzerland 

Human umbilical vein endothelial cells, Endothelial growth medium 2 

 

Merck Chemicals Ltd, Nottingham, UK 

Forskolin (7β-Acetoxy-8,13-epoxy-1α,6β,9α-trihydroxy-labd-14-en-11-one), H89 (N-[2-

(p-bromocinnamyl)amino)ethyl]-5-isoquinoline-sulfonamide dihydrochloride), MG132 

(Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal), myristoylated PKA inhibitor 14-22 amide 

(myrPKI14-22), N6-Benzoyl-cAMP (6-Bnz-cAMP) rabbit polyclonal antibody to 

pSer188RhoA, U0126 (1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene), 

Y27632 ((1)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide 

dihydrochloride)  

 

Perkin-Elmer Life Sciences, Waltham, MA, USA 
3H-Leucine, Western Lightning Plus Enhanced chemiluminescence substrate (Cat. # 

NEL103001EA) 
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Qiagen, Crawley, West Sussex, UK 

HiPerFect siRNA reagent, Qiagen Maxi Plasmid kit, QIAPrep Spin Miniprep kit, 

 

R&D Systems 

Recombinant human IL-6  

 

Santa Cruz Biotechnology Inc, Santa Cruz, CA, USA 

Rabbit polyclonal antibody to ERK5 (Cat. # sc-5626), rabbit polyclonal antibody to 

EPAC2 (Cat. # 9383), Horseradish peroxidise (HRP)- conjugated swine anti-mouse 

Immunoglobulin (Ig) G (sc-2463) 

 

Sigma-Aldrich, Poole, Dorset, UK 

30% Acrylamide/bisacrylamide solution, 3-[(3-Cholamidopropyl)dimethylammonio]-1-

propanesulfonate hydrate (CHAPS), Dulbecco’s minimal essential medium, Eagle’s 

Minimal Essential Medium, Emetine dihydrochloride, Endothelial cell trypsin, Foetal 

bovine serum, HRP- conjugated goat anti-mouse Immunoglobulin (Ig) G , HRP-conjugated 

goat anti-rabbit IgG, Nocodazole, Penicillin/streptomycin solution, Poly-D-Lysine 

Hydrobromide, 4-Hydroxytamoxifen, Trypsin-EDTA solution,  

 

Tocris, Avonmouth, Bristol, UK 

ZM241385  

 

Universal Biologicals Ltd, Cambridge, UK 

Cell-permeable C3 transferase from Clostridium botulinum (C3T, Cat. # CT04) 
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5 Methods 

5.1 Cell culture 

All cells were cultured at 37oC, 5% (v/v) CO2 in a humidified atmosphere. 

5.1.1 Culture of DU145 cells 

DU145 cells were maintained in Eagle’s minimal essential medium (MEM) supplemented 

with 10% (v/v) foetal bovine serum (FBS), 1 mM L-glutamine, 100 U/ml penicillin, 100 

µM streptomycin and 1 mM sodium pyruvate. Cell populations were maintained in tissue 

culture sterile 150 cm2 flasks and sub-cultured at approximately 80% confluency. 

 

During cell passage, tissue culture medium was removed and retained in sterile 50 ml 

centrifuge tubes. DU145 cells were washed with 5 ml Dulbecco’s phosphate buffered 

saline (DPBS) lacking both Ca2+ and Mg2+. DPBS was discarded and 2 ml of 1x trypsin-

EDTA added to the cells. DU145 cells were incubated for 5 – 10 min to allow detachment 

of the cell monolayer which was aided via gentle tapping. The proteolytic actions of 

trypsin were neutralised via addition of 5 ml of the retained tissue culture medium and 

cells pelleted via centrifugation at 200 x g for 5 min at room temperature. Cells were then 

resuspended in a suitable volume of fresh, supplemented MEM and seeded as required. 

 

To store the DU145 cell line, cell pellets were prepared as described during cell passage 

and the pellets resuspended in supplemented MEM containing 5% (v/v) 

dimethylsulphoxide (DMSO). Cells were immediately frozen at –80oC overnight prior to 

transfer to liquid nitrogen for long term storage. To resurrect frozen cells, cell stocks were 

rapidly defrosted at 37oC and centrifuged at 200 x g for 5 min at 4oC to remove traces of 

DMSO. The resultant cell pellet was resuspended in 10 ml of fresh medium and the cells 

maintained as described above. 

5.1.2 Culture of LNCaP cells 

LNCaP cells were maintained in RPMI 1640 medium supplemented with 10% (v/v) FBS, 1 

mM L-glutamine, 100 U/ml penicillin, 100 µM streptomycin and 1 mM sodium pyruvate. 

Cell populations were maintained in tissue culture sterile 150 cm2 flasks and passaged at 

approx. 80% confluency. To aid adhesion of LNCaP cells, all tissue culture plastic was 

coated with 0.1 mg/ml poly-D-lysine hydrobromide prior to use. 
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LNCaP cells were passaged and cryopreserved in supplemented RPMI 1640 medium via 

an identical process to that described for DU145 cells above. 

5.1.3 Culture of PZ-HPV-7 cells 

PZ-HPV-7 cells were maintained in keratinocyte serum free medium (KSFM) 

supplemented with 5 ng/ml recombinant epithelial growth factor, 0.05 mg/ml bovine 

pituitary extract, 100 U/ml penicillin and 100 µM streptomycin. Cell populations were 

maintained in tissue culture sterile 150 cm2 flasks and passaged at approximately 80% 

confluency. 

 

PZ-HPV-7 cells were passaged and cryopreserved in supplemented KSFM via a process 

similar to that described for DU145 cells above. Due to the sensitivity of this cell line to 

trypsin, cells were passaged with 0.5x trypsin-EDTA which was washed briefly over the 

monolayer surface and removed prior to incubation at 37oC, 5% (v/v) CO2 to detach the 

cell monolayer. In order to cryopreserve PZ-HPV-7 cells, KSFM was supplemented with 

10% (v/v) FBS and 5% (v/v) DMSO prior to freezing. 

5.1.4 Culture of HEK293 cells 

Human embryonic kidney (HEK) 293 cells were maintained in Dulbecco’s minimal 

essential medium (DMEM) supplemented with 10% (v/v) FBS, 1 mM L-glutamine, 100 

U/ml penicillin and 100 µM streptomycin. Cell populations were maintained in tissue 

culture sterile 150 cm2 flasks and passaged at approximately 80% confluency. 

 

HEK293 cells were passaged and cryopreserved in supplemented DMEM via an identical 

process to that described for DU145 cells above except that cell lines were frozen in 

DMEM supplemented with 10% (v/v) DMSO. 

5.1.5 Culture of HUVECs 

HUVECs were obtained from commercial sources and maintained in endothelial cell 

growth medium-2 (EGM-2) supplemented with 2% (w/v) foetal bovine serum, 

hydrocortisone, ascorbate and recombinant growth factors as recommended by the supplier 

in tissue culture sterile 150cm2 flasks and passaged at 80% confluency. Passage of 

HUVECs was as described for PZ-HPV-7 cells except that 1 x endothelial cell trypsin was 

used to detach HUVECs from the tissue culture flasks. In order to prevent passage-related 

changes in endothelial cell characteristics, HUVEC cells were not used beyond passage 

five. 
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5.2 Transfections 

5.2.1 Cell transfection with cDNA plasmids 

Cells were plated at the density required for each experimental procedure and allowed to 

adhere overnight at 37oC, 5% (v/v) CO2. The following day, plasmid DNA was introduced 

to cells using the Lipofectamine 2000 transfection reagent. Briefly, for one well of a 6 well 

plate, 100 µl Optimem was mixed with 4 µl Lipofectamine 2000 in a sterile microfuge tube 

prior to incubation at room temperature for 5 min. In a separate, sterile microfuge tube, a 

total of 1 µg DNA was added to 100 µl Optimem and mixed by gentle tapping. Following 

incubation, the entirety of the Lipofectamine 2000/Optimem mixture was added to the 

microfuge tube containing DNA. The contents were mixed by gentle tapping and incubated 

at room temperature for 20 min. Cell culture medium on cells was discarded and replaced 

with 2 ml/well of antibiotic-free, supplemented growth medium. 200 µl of transfection 

mixture was added per well and cells incubated overnight at 37oC, 5% (v/v) CO2. At 24 h 

post-transfection, growth medium was discarded and replaced with 1.5 ml of supplemented 

growth medium containing antibiotics. Cells were maintained for a further 24 h at 37oC, 

5% (v/v) CO2 prior to use in experiments. 

5.2.2 Transfection of cells with siRNA 

Cells were plated in 6-well tissue culture plates and grown to 50 – 60 % confluence in the 

appropriate growth medium. On the day of siRNA transfection, transfections were 

performed as per manufacturer’s recommendations with minor alterations appropriate to 

the cells types used. All volumes stated are for appropriate for siRNA transfection of one 

well of a 6-well plate. Briefly, cell culture medium was replaced with 2.3 ml/well of 

supplemented cell culture medium lacking antibiotics. To prepare the transfection 

mixtures, 100 pmol/well of the appropriate siRNA was diluted in 100 µl of Optimem I and 

mixed by vortexing. Subsequently, 12 µl of HiPerFect transfection reagent was added to 

the diluted siRNA and the transfection mixture vortexed to ensure uniform mixing of the 

reagents. The transfection mixtures were then incubated for 10 min at room temperature to 

allow formation of transfection complexes and the transfection mixture added to the cell 

monolayer in a drop-wise fashion. Cells were incubated overnight at 37oC, 5 % (v/v) CO2 

and culture medium replaced the following day. Cells were then incubated for a further 24 

h at 37oC, 5 % (v/v) CO2 and used in experiments at 48 h post-transfection. 
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5.3 Molecular biology 

5.3.1 Plasmid DNA constructs 

pRK5 plasmids encoding Myc-tagged wild-type RhoA and constitutively active RhoA 

(mycRhoAWT and mycRhoAQ63L respectively) were a kind gift from Professor Alan 

Hall (University College London, London, UK). A plasmid expressing a Myc-tagged 

dominant-negative RhoA mutant (mycRhoAT19N) was obtained from Addgene. 

 

Plasmids encoding a Myc-tagged Raf1:Oestrogen receptor chimera (mycRaf1:∆ER), a 

wild-type ERK5 and dominant negative ERK5-AEF were a generous gift from Dr. Simon 

Cook (Babraham Institute, Cambridge, UK). 

 

A plasmid encoding an enhanced green fluorescent protein (pEGFP-N1) was obtained 

from Clontech. 

5.3.2 Bacterial Strains and Media 

Eschericia coli XL1 Blue bacteria were used for the propagation of plasmid vectors. E. coli 

were grown in sterile Luria-Bertani (LB) media (1% (v/v) bacto-tryptone, 0.5% (v/v) yeast 

extract, 1% (v/v) NaCl, pH 7) supplemented with either 50 µg/ml ampicillin (LBAmp), 50 

µg/ml tetracycline (LBTet) or 50 µg/ml Kanamycin (LBKan) as appropriate for selection. 

Agar plates were prepared by inclusion of 1.5% (w/v) agar in the appropriate LB media. 

Plates were stored at 4oC prior to use. 

5.3.3 Preparation of competent E. coli 

Overnight cultures of E. coli XL1 Blue were prepared in 3 ml LBTet and used to inoculate 

250 ml LBTet the following day. Cultures were grown at 37oC with agitation until OD600= 

0.35. E. coli were transferred to sterile, pre-chilled 250 ml centrifuge tubes and incubated 

on ice for 60 min. Bacteria were harvested via centrifugation at 6000 x g, 20 min, 4oC and 

the supernatant discarded. Pellets were washed in 60 ml ice-cold, sterile 0.1 M MgCl2 prior 

to centrifugation at 6000 x g, 20 min, 4oC. Pellets were resuspended in ice-cold, sterile 0.1 

M CaCl2 and incubated on ice for 20 min. Competent E. coli were then harvested via 

further centrifugation 6000 x g, 20 min, 4oC and resuspended in ice-cold 15% (v/v) 

glycerol in 0.1 M CaCl2. The bacterial suspension was divided into 250 µl aliquots which 

were rapidly frozen using dry ice/methanol prior to storage at –80oC. 
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5.3.4 Transformation of competent E. coli 

Aliquots of competent E. coli XL1 Blue were thawed on ice for up to 30 min and 40 µl per 

transformation transferred immediately to chilled sterile microfuge tubes containing 10 – 

50 ng DNA. Cells were incubated on ice for 15 min prior to heat shock at 42oC for 45 sec. 

The tubes were returned to ice immediately for 2 min prior to addition of 1 ml per 

transformation of LB media. E. coli were incubated at 37oC, 200 rpm for 1 h prior to 

plating of 100 µl and 800 µl of transformed bacteria onto selective LB agar plates. Plates 

were allowed to dry under sterile conditions and incubated in a static incubator overnight at 

37oC to enable bacterial growth. 

5.3.5 Preparation of glycerol stocks 

Single colonies were picked from selective LB agar plates and grown to mid-log phase 

(OD600 = 0.3) in LBAmp or LBKan as appropriate. For each glycerol stock, 0.7 ml of 

bacterial culture was mixed with 0.3 ml sterile 50% (v/v) glycerol in a sterile cryovial. 

Vials were mixed thoroughly, prior to rapid freezing on dry ice and storage at –80oC. 

5.3.6 Preparation of plasmid DNA 

Plasmid DNA was purified from overnight cultures using either a QIAPrep Spin Miniprep 

kit or a Qiagen Maxi Plasmid kit following manufacturer’s instructions. 

5.3.6.1 Plasmid DNA preparation using QIAPrep Spin Miniprep 

Single colony glycerol stocks were used to inoculate 5 ml of selective LB and cultures 

were grown overnight at 37oC, 200 rpm. Bacteria were harvested via centrifugation at 13, 

200 x g for 10 min, 4oC and the resultant pellet resuspended in 250 µl buffer P1 (50 mM 

Tris.Cl, pH 8.0, 10 mM EDTA, 100 µg/ml RNase A) supplemented with LyseBlue reagent 

at a ratio of 1:1000. Bacterial lysis was achieved via addition of 250 µl buffer P2 (200 mM 

NaOH, 1 % (w/v) SDS) and incubation at room temperature for a maximum of 5 min. 

Lysates were mixed by inversion until a homogenous blue colour was achieved. To 

neutralise lysis, 350 µl of buffer P3 (3 M potassium acetate, pH 5.5) was added and lysates 

mixed immediately by inversion. Lysates were then centrifuged at 13, 200 x g for 10 min, 

room temperature to pellet precipitated potassium dodecyl sulphate, SDS-denatured 

proteins, genomic DNA and cellular debris. Lysates were then applied directly to a 

QIAPrep spin column and centrifuged at 13, 200 x g for 10 min. Supernatants were 

discarded and the column was then washed once with 750 µl buffer PE. Following 

centrifugation at 13, 200 x g for 1 min, supernatant was discarded and residual buffer PE 

removed via further centrifugation at 13, 200 x g for 1 min. DNA was eluted via addition 



76 

of 50 µl sterile DEPC H2O and centrifugation of QIAPrep spin columns at 13, 200 x g for 

1 min. DNA preparations were stored at –20oC until use. 

5.3.6.2 Plasmid DNA preparation using Qiagen Maxi P lasmid kit 

Single colony glycerol stocks were used to inoculate 5 ml of selective LB and cultures 

were grown for 8 h at 37oC, 200 rpm. This starter culture was then used to inoculate 400 

ml of selective LB and the culture grown overnight at 37oC, 200 rpm. Following 

incubation, bacteria were harvested via centrifugation at 6, 000 x g, 15 min, 4°C and 

pellets resuspended in 10 ml of buffer P1 supplemented with LyseBlue reagent as 

described above. Cells were lysed via addition of 10 ml buffer P2 for up to 5 min as 

described in section 5.3.6.1. To neutralise lysis, buffer P3 (see section 5.3.6.1) was added, 

lysates mixed immediately by inversion and the lysates incubated on ice. Lysates were then 

cleared via two centrifugation steps at 20, 000 x g, 10 min, 4oC and the resultant 

supernatant applied to a Qiagen-tip 500 which had been pre-equilibrated with 10 ml buffer 

QBT (750 mM NaCl, 50 mM MOPS, pH 7.0, 15 % (v/v) isopropanol, 0.15 % (v/v) Triton 

X-100). The supernatant was allowed to enter the resin via gravity flow and the tip was 

then washed twice with 30 ml buffer QC (1 M NaCl, 50 mM MOPS, pH 7.0, 15 % (v/v) 

isopropanol). DNA was eluted via the addition of 15 ml buffer QF (1.25 M NaCl, 50 mM 

Tris, pH 8.5, 15 % (v/v) isopropanol) and precipitated via the addition of 10.5 ml of 

isopropanol at room temperature. Following incubation for 30 min, DNA was pelleted via 

centrifugation at 15, 000 x g, 15 min, 4oC. The DNA pellet was then washed with 5 ml of 

70% ethanol at room temperature and harvested via centrifugation at 15, 000 x g, 15 min, 

4oC. The resultant pellet was then allowed to air-dry for 10 min and resuspended in 400 µl 

sterile TE buffer (10mM Tris-Cl, pH 7.5, 1 mM EDTA). DNA preparations were stored at 

–20oC until use. 

5.3.7 Determination of DNA purity and concentration  

DNA preparations were thawed on ice and diluted in sterile, DEPC-treated water. DNA 

concentration was determined by measuring the absorbance at 260 nm (A260) and 

calculated based on the assumption that, with a path length value of 1, a 50 µg/ml solution 

of DNA has an A260 value of 1. DNA purity was assessed by measuring the absorbance at 

280 nm (A280) based on the assumption that, for a pure DNA solution, A260/A280 = 1.8. 
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5.4 Generation and maintenance of recombinant adenovirus 

5.4.1 Generation of myc-tagged human A 2AAR-expressing adenovirus 

Recombinant adenovirus encoding the myc-tagged human A2AAR (myc.A2AAR) was 

generated by Dr William Sands and Dr. Elaine Strong (University of Glasgow, Glasgow, 

UK) using the “AdEasy” system (He et al., 1997) and has been described previously 

(Sands et al., 2004). 

 

The pAdEasy1 plasmid contains an open reading frame encoding GFP which is maintained 

in the recombinant adenovirus and so viral infection of HEK 293 cells can be monitored by 

fluorescence microscopy. Three - six days post-infection, HEK 293 cells were harvested 

and disrupted by freeze-thawing to release adenovirus particles. Cleared lysate was used to 

infect two 150 cm2 tissue culture flasks of 70 % confluent HEK 293 cells. Following 

successful infection, cells were harvested and viral particles collected as before in order to 

infect twenty 150 cm2 flasks for a large scale preparation. 

 

Recombinant adenovirus encoding GFP alone was kindly donated by Professor Robert 

White (Beatson Institute for Cancer Research, Glasgow, UK). 

5.4.2 Large-scale preparation of recombinant adenov iruses 

Pure high titre stocks of recombinant adenovirus were obtained by amplification and 

purification with reference to the method described by Nicklin and Baker (1999). 

Confluent 150 cm2 flasks of low-passage HEK 293 cells were infected with either crude 

viral extract from previously infected HEK 293 cells or with plaque-purified recombinant 

adenovirus at an MOI of 0.1-10 per flask and incubated for 2-6 days at 37 °C, 5 % (v/v) 

CO2. Once the cytopathic effect of the virus had caused the cells to detach from the flasks, 

cells were harvested and pelleted by centrifugation (250 g, 10 min, RT). Pellets were 

stored at - 80° C, ready for viral harvesting and purification. 

 

Cell pellets from twenty 150 cm2 flasks were defrosted at room temperature and pooled by 

resuspension in a total volume of 10 ml room temperature PBS followed by centrifugation 

(250 x g, 10 min, RT). The resultant single pellet was resuspended in 5 ml PBS and cells 

were lysed by 5 cycles of freeze/thawing in a dry ice/methanol bath followed by incubation 

with agitation in a 37 °C water bath. The cell suspension was vortexed vigorously for 30 



78 

seconds between cycles to encourage cell breakage. The lysate was cleared by 

centrifugation (7000 x g, 10 mins, 4 °C) and the supernatant containing the adenovirus was 

collected for further purification. 

 

Adenovirus obtained by the freeze/thawing method is contaminated with cellular protein 

and viral debris which may be cytotoxic when used in vitro. To obtain a pure preparation, 

the supernatant from the previous step was separated on a discontinuous CsCl density 

gradient. The CsCl gradient was created by underlying 3 ml of 1.2 g/ml CsCl solution with 

1.5 ml of 1.4 g/ml CsCl solution in a 14 × 95 mm Ultra-Clear centrifuge tube (Beckman). 

The crude adenovirus extract was applied to the top of the gradient and centrifuged (90 000 

x g, 1.5 h, 8 °C) with zero deceleration to produce a translucent white band between the 

two layers of CsCl, representing pure adenovirus. Zero deceleration was selected during 

the centrifugation step to prevent disruption of the delicate band by turbulence during 

braking. The adenovirus band was extracted using a syringe and a 21-gauge needle to 

puncture the side of the centrifuge tube and then transferred to a 3 ml Slide-A-Lyser 

dialysis cassette. The extract was dialysed overnight at 4 °C in 600 ml TE buffer (10 mM 

Tris, pH 7.4, 1 mM EDTA, pH 8.0) with three changes. The following day, the purified 

adenovirus was diluted in an equal volume of sterile storage buffer (10 mM Tris, pH 8.0, 

100 mM NaCl, 0.1 % (w/v) BSA, 50 % (v/v) glycerol) and stored at – 80 °C in 10 µl 

aliquots. 

5.4.3 Titration of adenoviruses 

Purified adenovirus was titred using a Cell Biolabs Inc QuickTitre Adenovirus 

Immunoassay Kit according to the manufacturer’s instructions. HEK 293 cells were seeded 

in poly-D-lysine-coated 24-well tissue culture plates and incubated for 1 hour at 37 °C, 5 

% (v/v) CO2. A series of 10-fold dilutions of the CsCl-purified adenovirus preparation was 

prepared and used to infect the HEK 293 cells in duplicate. Forty-eight hours later, cells 

were fixed using ice-cold methanol and then immunostained using a primary antibody 

directed against the adenoviral capsid protein, hexon (supplied) and a secondary 

horseradish peroxidise (HRP)-conjugated antibody which recognises the anti-hexon 

antibody (supplied). Binding of the HRP-conjugated antibody was detected by incubation 

with a solution of the HRP substrate, diaminobenzidine (DAB; supplied). DAB undergoes 

oxidative polymerisation in the presence of HRP to produce a dark brown precipitate. 

Adenovirus-infected cells stained rapidly and were clearly visible under light microscopy 

as discrete brown patches in the cell monolayer. Positively stained cells were counted in 
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ten fields at a virus dilution that gave 5-50 positive cells/field when viewed using a 10 × 

objective. The mean result was determined and used to calculate the number of infected 

cells per ml of the original adenovirus preparation to give a titre value in infectious 

units/ml (ifu/ml). 

5.4.4 Infection of LNCaP cells with recombinant ade novirus 

LNCaP cells were seeded at a density of 2 x 105 cells per well into 6 cm tissue culture 

plates coated with 0.1 mg/ml poly-D-lysine hydrobromide. To allow adherence, cells were 

maintained at 37oC, 5% (v/v) CO2 in RPMI 1640 medium supplemented as described in 

section 5.1.2 for 24 h. Following adherence, cell culture medium was replaced with fresh 

RMPI 1640 supplemented as described in section 4.1.2. LNCaP cells were infected with 

recombinant adenovirus (AdV) containing a construct expressing either GFP (AdV.GFP) 

or a Myc-tagged A2AAR (AdV.A2AAR) at the appropriate MOI. Cells were subsequently 

incubated for 24 h at 37oC, 5% (v/v) CO2 to allow recombinant protein expression. At 24 h 

post-infection, culture medium was discarded and replaced with fresh, supplemented RPMI 

1640 medium. Cells were imaged as described in section 5.7.4 and incubated for a further 

24 h at 37oC, 5% (v/v) CO2 prior to use as described in individual experiments. 

5.4.5 Radioligand binding assay 

LNCaP cells were seeded into 75 cm2 tissue culture flasks coated with 0.1 mg/ml poly-D-

lysine HBr at a density of 8.3 x 105 cells per flask and allowed to adhere overnight. The 

following day, cells were infected with AdV.GFP or AdV.A2AAR at an MOI = 6 ifu/cell 

and incubated for 24 h at 37oC, 5 % (v/v) CO2. In order to maintain cell viability, cell 

culture medium was replaced at 24 h post-infection and the cells incubated for a further 24 

h at 37oC, 5 % (v/v) CO2. The following day, cell culture medium was removed and the 

monolayer washed 3 times with 7 ml ice-cold PBS. Cell membranes were prepared on ice 

by addition of 7 ml of ice-cold lysis buffer containing 10 mM HEPES and 5mM EDTA, 

pH 7.5. Cells were transferred to a 7 ml glass Douce homogeniser which had been pre-

chilled on ice and homogenised by 20 up-and-down strokes. The membrane fraction was 

extracted following transfer to a pre-chilled centrifuge tube and centrifugation at 13500 x g 

at 4oC for 30 min and the subsequent pellet resuspended in 400 µl of 50/10 ligand binding 

buffer containing 50 mM HEPES and 10 mM MgCl2, pH 6.8. 50 µl of this suspension was 

retained for subsequent determination of protein concentration. The volume of the 

remaining membrane suspension was then adjusted to 4 ml with 50/10 ligand binding 

buffer which was supplemented with 1 U/ml adenosine deaminase. Membranes were 

transferred to a pre-chilled glass Douce homogeniser and resuspended by 20 up-and-down 
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strokes. Membranes were then used immediately in the ligand binding assay described 

below. 

 

In order to accurately assess radioligand binding, a six point ligand binding curve was 

performed with each point performed in duplicate in a total volume of 250 µl comprising 

50 µl of the radio-labelled ligand, 150 µl of the membrane suspension and 50 µl of either 

competing ligand or H2O. Concentrations of 3H-ZM241385, an A2AAR-selective inverse 

agonist, were prepared in 50/10 binding buffer and used in the assay at final concentrations 

ranging from 0.25 – 8 nM. In order to assess non-specific binding, membranes were 

incubated with 50 µM of the competing ligand NECA, a non-selective adenosine receptor 

whilst incubation with 50 µl H2O in order to assess total binding of 3H-ZM241385. 

Incubations were performed at 37oC for 60 min and samples harvested via vacuum 

filtration using a Brandel harvester and glass fibre filters pre-soaked in 0.3 % (v/v) 

polyethylimine. Filters were washed three times in 50/10/1 wash buffer containing 50 mM 

HEPES, 10 mM MgCl2 and 1 mM EDTA supplemented with 0.03 % (w/v) CHAPS. Filters 

were then resuspended in 5 ml scintillation fluid and stored at 4oC overnight to both 

maximise radioligand extraction and to decrease background chemiluminescence. Binding 

of 3H-ZM241385 was determined by liquid scintillation counting. 

5.5 Stimulation of prostate epithelial cells with exogenous 

cytokine 

Cells were seeded and grown to appropriate confluency as described in section 5.1.1-3. In 

order to ensure that resultant protein activation arose due to the actions of exogenous 

agents rather than from growth factors, etc. secreted into the medium during cell growth, 

culture medium was removed prior to experiments and replaced with an appropriate 

volume of fresh, supplemented growth medium. To prevent temperature-dependent 

alterations in cell responses, medium was pre-warmed to 37oC prior to use. Cells were then 

stimulated as described for individual experiments and harvested for analysis by western 

blotting as described below. 

5.5.1 Membrane translocation of RhoA 

LNCaP cells were seeded into 10 cm tissue-culture dishes and grown to 60 -70 % 

confluence. Upon the day of experiment, culture medium was replaced with 5 ml/dish of 

fresh, supplemented RPMI 1640 medium and stimulated as described for individual 

experiments. Following simulations, cells were washed 3 times in 5ml/dish ice-cold PBS 

and harvested into 300 µl of ice-cold PBS. Cells were pelleted via centrifugation at 300 x g 
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for 5 min at 4oC and subsequently resuspended in 500 µl of ice-cold KCl relaxation buffer 

containing 100 mM KCl, 50 mM HEPES pH 7.2, 5 mM NaCl, 1 mM MgCl2, 0.5 mM 

EGTA, 100 µM PMSF, 2 µg/ml benzamidine, 2 µg/ml soyabean trypsin inhibitor and a 

complete protease inhibitor. Lysates were sonicated for 2 x 20 seconds on ice prior to the 

removal of unbroken cells and nuclei via centrifugation at 700 x g for 7 min at 4oC. The 

resultant supernatant was transferred to a 13 x 51 mm Ultra-ClearTM centrifuge tube and 

volumes were adjusted to 5 ml in KCl relaxation buffer. Cell membranes were harvested 

by subsequent ultracentrifugation at 50, 000 x g for 45 min at 4oC. The supertantant was 

discarded and the resultant pellet washed in 5 ml of KCl relaxation buffer as described. 

The washed cell pellet was resuspended in 100 µl of RhoA translocation buffer containing 

0.25 M Na2HPO4, 0.3 M NaCl , 2.5 % (w/v) SDS, 100 µM PMSF, 2 µg/ml benzamidine, 2 

µg/ml soyabean trypsin inhibitor and a complete protease inhibitor. To ensure sufficient 

solubilisation of the cellular membranes, the lysates were incubated on a rotating wheel at 

room temperature prior to determination of protein content and SDS-PAGE-fractionation. 

5.6 Analysis of proteins by western blotting 

5.6.1 Whole cell lysate preparation 

Following incubation with appropriate stimuli, stimulation was quenched via discarding 

the supernatant and washing cells 3 times in ice-cold PBS. Cells were lysed in 100 µl 

RIPA+ (50 mM HEPES pH 7.5, 150 mM sodium chloride, 1% (v/v) Triton X-100, 0.5% 

(w/v) sodium deoxycholate, 0.1% (w/v) SDS, 5 mM EDTA pH 8, 10 mM sodium fluoride, 

10 mM sodium phosphate, 2 µg/ml benzamidine, 2 µg/ml soyabean trypsin inhibitor, 100 

µM phenylmethanesulphonyl fluoride (PMSF), 100 µM sodium orthovanadate, and a 

complete protease inhibitor cocktail) and left to solubilise on ice for 30 min. Lysates were 

transferred to 1.5 ml microfuge tubes and stored at –80oC prior to analysis by SDS-PAGE 

fractionation and western blotting. 

5.6.2 Determination of protein content 

Whole cell lysates were thawed on ice and centrifuged at 9500 x g for 15 min at 4°C to 

remove insoluble cellular debris. The protein concentration of each sample was then 

estimated using the bicinchoninic acid (BCA) assay performed in a 96-well plate. Briefly, 

2 µl of each sample was added to 8 µl of RIPA+ buffer in the absence of protease 

inhibitors. Standard protein concentrations (0-2 mg/ml) were prepared by performing serial 

dilutions of a stock 2 mg/ml bovine serum albumin (BSA) in the RIPA+ buffer described 

above. All samples were assayed in duplicate. 
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BCA reagent (1% (w/v) 4,4-dicarboxy-2,2-biquinoline disodium salt, 2% (w/v) anhydrous 

sodium carbonate, 0.16% (w/v) sodium potassium tartrate, 0.4% (w/v) sodium hydroxide 

and 0.95% (w/v) anhydrous sodium bicarbonate) was mixed with 4% (w/v) copper (II) 

sulphate solution in a ratio of 49 parts BCA reagent to 1 part 4% (w/v) copper (II) sulphate. 

70µl of this solution was added to each well and the plate incubated for 15 min at room 

temperature. Following incubation, the protein content was quantified by determining the 

absorbance at 490nm and extrapolation of protein concentration from the BSA standard 

curve. 

5.6.3 Immunoblotting 

Following the BCA assay, samples were equalised for protein content (typically 10 – 50 

µg) and volume. Samples were then denatured via addition of an equal volume of SDS 

loading buffer containing 50 mM Tris pH 6.8, 10% (v/v) glycerol, 12% (w/v) SDS, 0.1 M 

dithiothreitol and the tracking dye bromophenol blue prior to fractionation via sodium 

dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE). In order for efficient 

separation of proteins, resolving acrylamide gels were prepared ranging from 8 – 15 % 

(w/v) acrylamide. Proteins were separated by 1D electrophoresis in a Tris-Glycine buffer 

containing 24.7 mM Tris, 0.19 M Glycine and 0.1% (v/v) SDS at 130 V. 

 

Subsequently, fractionated proteins were transferred via electrophoresis to a 0.2 µm 

diameter Protran nitrocellulose membrane for 45 mins, 400 mA in transfer buffer 

comprising 24.7 mM Tris, 0.19 M glycine and 20% (v/v) methanol. 

 

To prevent non-specific antibody binding, membranes were incubated for 1 h with Tris-

buffered saline (TBS) pH 7.6 containing 0.1% (v/v) Tween 20 (TBST) and 5% (w/v) non-

fat milk powder (TBST-M). Membranes were then washed twice for 5 min in TBST prior 

to addition of the primary antibody as described in Table 4.1. Following incubation with 

the appropriate primary antibody, membranes were washed five times for 5 min in TBST 

prior to addition of the appropriate secondary horse radish peroxidase- (HRP-) conjugated 

antibody. HRP-conjugates were diluted 1 in 1000 in TBST-M from the stock antibody 

solution. Membranes were incubated on a rotator for 1 h at room temperature with the 

secondary antibody conjugates prior to washing three times for 5 min in TBST and 

visualisation of antibody staining using enhanced chemiluminescence (ECL) and X-ray 

film (Kodak, UK) are per manufacturer’s instruction. 
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5.7 Fsk-induced dendrite outgrowth 

5.7.1 Fsk-induced NE differentiation in LNCaP cells  

LNCaP cells were seeded at a density of 2-3 x 105 cells per well into 6 cm tissue culture 

plates coated with 0.1 mg/ml poly-D-lysine hydrobromide. To allow adherence, cells were 

maintained at 37oC, 5% (v/v) CO2 in RPMI 1640 medium supplemented as described in 

section 5.1.2 for 2 days. Prior to stimulation, tissue culture medium was discarded and 

replaced with 3 ml per dish of fresh, supplemented RPMI 1640 containing either vehicle 

(0.1% EtOH) or 10 µM Fsk. LNCaP cells were incubated in a humidified atmosphere at 

37oC, 5% (v/v) CO2 for 5 h prior to imaging using phase contrast light microscopy (see 

section 5.7.4) . Cells were incubated for a further 19 h and imaged again at 24 h post-

stimulation prior to harvesting for immunoblotting as described previously. 

5.7.2 Effect of inhibitors on Fsk-induced NE differ entiation 

BIX02188 was a generous gift from Boehringer Ingelheim. LNCaP cells were seeded at a 

density of 2-3 x 105 cells per well into 6 well tissue culture plates. To allow adherence, 

cells were maintained at 37oC, 5% (v/v) CO2 in supplemented RPMI 1640 for 48 h. Prior 

to stimulation, medium was removed and replaced with 1 ml per well of fresh, 

supplemented RPMI 1640 containing vehicle (0.1% DMSO, 0.1% EtOH) or the 

appropriate inhibitor. To enable effective inhibition, cells were incubated for 1 h at 37oC, 

5% (v/v) CO2 prior to imaging using phase contrast light microscopy (see section 5.7.4). 

LNCaP cells were then stimulated with vehicle or 10 µM Fsk and incubated for a further 1 

h at 37oC , 5% (v/v) CO2 prior to imaging using phase contrast light microscopy (see 

section 5.7.4). In order to assess inhibitor efficacy, control wells were stimulated with the 

appropriate agonist in the presence and absence of inhibitor as indicated in results. LNCaP 

cells were then harvested for immunoblotting as described in section 5.6. NE 

differentiation was assessed by determining the changes in Fsk-induced dendrite outgrowth 

as described in section 5.7.4. 

5.7.3 3H-Leucine incorporation assay 

LNCaP cells were seeded into 24-well plates coated at a density of 4 x 104 cells/well and 

allowed to adhere for 48 h. Prior to assay, culture medium was discarded and replaced with 

500 µl/well of fresh, supplemented RPMI 1640 medium containing emetine at 

concentrations ranging from 0 – 1000 µM with all samples performed in triplicate. Cells 

were incubated for 2 h at 37oC, 5 % (v/v) CO2 prior to labelling with 7.4 KBq/well of 3H-

Leu for 3 h at 37oC, 5 % (v/v) CO2. Following labelling, stimulation was quenched via 
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washing of cells 2 times in 250 µl/well ice-cold 5 % (w/v) tricholoroacetic acid (TCA). 

Cells were then washed 3 times in 250 µl/well ice-cold dH2O. Finally, cells were lysed into 

200 µl/well 1 M ice-cold NaOH and transferred to 5 ml scintillation fluid. Incorporation of 
3H-Leu was determined via liquid scintillation counting. 

5.8 Microscopy techniques 

5.8.1 Determination of dendrite outgrowth 

Phase contrast light microscopy images were captured at 40x magnification using a Zeiss 

AxioCam MRc 5 camera attached to a Zeiss Axiovert 40 CFL microscope. Five random 

fields per treatment were captured and analysed using Image J software 

(http://rsbweb.nih.gov/ij/). Dendrite outgrowth was determined by measuring the greatest 

distance between the cell body and the tip of the extended dendrite. Thirty cells per field 

were analysed at random and each experiment was repeated three times to ensure accuracy 

and reliability of data.  

5.8.2 Immunofluorescence 

LNCaP cells were seeded into 6 well plates (approx. 3 x 105 cells/well) and grown on 

sterile coverslips coated with 0.1 mg/ml poly-D-lysine hydrobromide for 48 h. Culture 

medium was discarded and cells treated with agonist as described for individual 

experiments. Cell stimulation was halted by washing coverslips three times in 2 ml ice-

cold PBS  

 

Cell stimulation was halted by washing coverslips three times in 2 ml/well ice cold PBS. In 

order to fix the cell monolayer, coverslips were incubated for 15 min at room temperature 

in 2 ml 4% (w/v) paraformaldehyde in 5% (w/v) sucrose-PBS. Coverslips were washed 3 

times in 2 ml PBS prior to solubilisation with 2 ml 0.1% (v/v) Triton X100 in PBS for 2 

min at room temperature. Following 3 washes with 2 ml PBS, coverslips were blocked for 

30 min at room temperature in the presence of 2 ml PBS containing 5% (w/v) BSA (5% 

(w/v) BSA-PBS) to prevent non-specific antibody staining. Specific antibodies were 

diluted as appropriate in 5% (w/v) BSA-PBS and coverslips stained with 100 µl of this 

preparation overnight at 4oC whilst protected from light.  

 

To remove unbound antibody, coverslips were washed three times in PBS and, where 

primary antibodies were not directly conjugated to the appropriate fluorophore, incubated 

with the appropriate secondary antibody at a 1:200 dilution in 5% (w/v) BSA-PBS for 1 h  
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Table 5.1 Antibodies used in immunoblotting 

 

Antibody Species Company Catalogue 

number 

Diluent Dilution 

pSer133CREB Rabbit pAb Abcam 30651 5% (w/v) 

BSA-

TBST 

1:500 

EPAC1 Mouse mAb Johannes 

Bos 

In-house TBST-M 1:500 

EPAC2 Goat pAb Santa Cruz sc-9383 TBST-M 1:1000 

pThr202pTyr204 

ERK1/2 

Mouse mAb CST 9106 5% (w/v) 

BSA-

TBST 

1:1000 

ERK1/2 Rabbit pAb CST 9102 TBST-M 1:1000 

pThr218pTyr220 

ERK5 

Rabbit pAb CST 3371 5% (w/v) 

BSA-

TBST 

1:500 

ERK5 Rabbit pAb Santa Cruz Sc-1284-R TBST-M 1:500 

GAPDH Mouse mAb Abcam 8245 TBST-M 1:20 000 

JAK1 Rabbit pAb CST 3332 TBST-M 1:1000 

JAK2 Rabbit pAb CST 3773 TBST-M 1:1000 

Myc (9E10) Mouse ascites In-house  TBST-M 1:1000 

Phospho-PKA 

substrate 

Rabbit pAb CST 9621 5% (w/v) 

BSA- 

TBST 

1:1000 

RhoA Rabbit mAb CST 2117 TBST-M 1:1000 

pTyr705STAT3 Mouse mAb CST 9138 5% (w/v) 

BSA-

TBST 

1:1000 

STAT3 Rabbit pAb CST 9132 TBST-M 1:1000 

pTyr701STAT1 Rabbit pAb CST 9171 5% (w/v) 

BSA-

TBST 

1:1000 

STAT1 Rabbit pAb CST 9172 TBST-M 1:1000 
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at room temperature. Due to the sensitivity of fluorophores to incident light, subsequent 

washing and incubation steps were performed in the dark. Coverslips were washed three 

times in 2 ml PBS and subjected to nuclear staining using Hoescht stain diluted 1:1000 in 

5% (w/v) BSA-PBS for 5 min. Coverslips were washed a further three times in 2 ml PBS 

prior to mounting on glass slides using 40% (v/v) glycerol-PBS. Fluorescent proteins were 

visualised on a Zeiss fluorescent microscope using 40x objective and images captured as 

described previously. 

5.9 Densitometric and statistical analysis 

In order to perform densitometric analysis, scanned images of a minimum of three separate 

immunoblots were analysed. To ensure that images used represented results acquired in 

which the response of film was in a linear relationship with the signal intensity, multiple 

exposures of each immunoblot were collected. Images were analysed using the 1D gel 

analysis option in TotalLab software and results normalised to vehicle stimulated 

responses which were given an arbitrary value of 100. To analyse increases in protein 

phosphorylation, the ratio of phosphorylated protein to either total protein or to a loading 

control was calculated for each sample and then converted to a percentage of the maximal 

response detected. 

 

Statistical analysis was performed using the GraphPad Prism4 software package. Where 

appropriate, normality was assessed using the Kolmongorov-Smirnov test and data 

subsequently assessed for statistically significant changes using one way analysis of 

variance (ANOVA) with appropriate post-tests. In cases where data failed the 

Kolmongorov-Smirnov test, one way ANOVAs were performed with the Dunn’s 

correction for non-parametric distributions and significance compared using the 

appropriate post-test. 
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6 Characterisation of prostate epithelial cell resp onses 

to exogenous cytokines 

6.1 Introduction 

Whilst the inflammatory response is a crucial innate immune response to infection, chronic 

inflammation contributes to the pathophysiology of numerous disease states including 

atherosclerosis, diabetes, rheumatoid arthritis and cancer (Deepa et al., 2006;Hodge et al., 

2005;Kallen, 2002;Koenig et al., 2006;Shouda et al., 2001). Key amongst the pro-

inflammatory signal transduction pathways is the JAK-STAT pathway which becomes 

activated in response to pro-inflammatory cytokine release and is responsible for signal 

transduction downstream of many class II cytokine receptors including members of the IL-

6 cytokine family (Heinrich et al., 2003). 

 

The IL-6 cytokines comprise a group of cytokines which signal via the gp130 signal 

transduction molecule (Heinrich et al., 2003). The IL-6 receptor complex of this family 

exists as a tetramer of two monomers of the IL-6-recognising receptor (IL-6R) and two 

monomers of gp130 which is required for signal transduction (Bravo & Heath, 2000;Chow 

et al., 2001a). Expression of membrane-associated IL-6R/gp130 tetramers (memIL-6R) is 

relatively restricted although many cells have the potential to respond to free IL-6 due to 

the fairly ubiquitous expression of gp130 (Scheller et al., 2006). In addition to the memIL-

R complex, activated cells can release a soluble form of IL-6R (sIL-6R) which is able to 

bind free IL-6 and recruit it to cell-associated gp130, thus increasing the number of IL-6 

responsive cells, a phenomenon known as trans-signalling (discussed in detail in section 

3.2) (Scheller et al., 2006). Pro-inflammatory stimuli can also promote the release of sIL-

6R via ADAM10 and ADAM17 sheddase-mediated cleavage of memIL-6R (Mezyk-

Kopec et al., 2009;Scheller et al., 2006). Following successful interaction of IL-6 with the 

IL-6R/gp130 complex, activation of intracellular signalling is mediated by the action of 

JAKs which are constitutively associated with gp130 (Scheller et al., 2006). The gp130 

molecule itself lacks intrinsic kinase activity and thus is reliant on kinase recruitment to 

promote intracellular signalling. In reference to IL-6 signalling, JAK1, JAK2 and Tyk2 are 

all implicated in the activation of STAT1 and STAT3 downstream of IL-6R/gp130 with 

STAT3 being the predominant STAT family member activated in response to IL-6, 

although STAT1 is also activated (Heinrich et al., 2003). 

 



88 

STAT proteins become activated following JAK-mediated phosphorylation of conserved 

C-terminal tyrosine residues corresponding to Tyr701 and Tyr705 in STAT1 and STAT3 

respectively. The tyrosine phosphorylated STAT monomers then dimerise via reciprocal 

interactions between the central SH2 domain of one monomer and the pTyr residue of the 

other. Dimerised STAT proteins then translocate to the nucleus where they bind to the 

promoters of STAT responsive gene and promote transcription via their C-terminal 

transactivation domain (Heinrich et al., 2003). 

6.1.1 STAT3 activation in prostate cancer 

PCa is one of the most prevalent male-specific malignancies in the Western world. In the 

UK alone, over 34,000 new cases of PCa are diagnosed every year, corresponding to 

diagnosis rate of 1 case every 15 minutes (Cancer Research UK, 2005). 

 

Common to many malignancies, development of PCa is correlated with a chronic 

inflammatory response. In reference to the IL-6 signalling pathway, elevation of IL-6 

levels has been correlated with every stage of PCa from early hyperplasia through to 

patient cachexia and death. As a pre-diagnostic tool, the clinical value of circulating IL-6 

levels is somewhat controversial as the results from large cohort studies are influenced by 

multiple factors such as grouping classifications. In a study of 22,071 male physicians, 

there was no correlation in prediagnostic plasma IL-6 levels between patients which later 

developed PCa and healthy individuals. However, when patients were grouped based on 

their BMI, there was a significant correlation between plasma IL-6 concentrations and 

onset of PCa development in healthy weight participants (Stark et al., 2009). In patients 

suffering from early stage PCa, levels of serum IL-6 in excess of 7 pg/ml are associated 

with poor patient prognosis (Nakashima et al., 2000) whilst levels of IL-6 and IL-6R are 

increased in non-metastatic tumours (Giri et al., 2001). In later stages of PCa, levels of IL-

6 are correlated with terminal disease progression, patient cachexia and death (Kuroda et 

al., 2007). 

 

As might be anticipated from the importance of IL-6 in PCa, malignant tissue also displays 

hyperactivation of STAT3 which has been demonstrated to contribute to Src-mediated 

transformation possibly due to the ability of Src to phosphorylate Tyr705 of STAT3 (Smith 

& Crompton, 1998). Sustained STAT3 activation contributes to carcinogenesis in multiple 

malignancies including colorectal carcinoma, hepatocellular carcinoma and PCa (Hodge et 

al., 2005). The pro-oncogenic effects of STAT3 hyperactivation are principally believed to 

arise from the ability of STAT3 to induce expression of both anti-apoptotic proteins and 
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those involved in cell cycle regulation (Hodge et al., 2005). Amongst the anti-apoptotic 

proteins, STAT3 is thought to contribute to the high levels of Bcl-XL observed in head and 

neck cell squamous carcinomas (Grandis et al., 2000). Due to its anti-apoptotic and pro-

proliferative roles, hyperactivation of this signalling pathway is of particular concern in 

PCa due to the ability of STAT3 to interact with the N-terminal domain of the androgen 

receptor (AndR), enhance AndR transactivation and to promote AndR activation in the 

absence of androgen (Culig et al., 2005;De Miguel et al., 2003;Ueda et al., 2002) Such 

androgen independence is associated with the emergence of the androgen refractory stage 

of PCa, subsequent failure of conventional therapeutic strategies and progression to 

terminal disease. 

 

There have been many studies linking the importance of STAT3 activation to PCa in vitro. 

In the DU145 prostate epithelial cell line, inhibition of STAT3 activation using the JAK 

inhibitor AG490 promoted apoptosis, demonstrating the anti-apoptotic role of STAT3 in 

these cells (Barton et al., 2004). A constitutively active mutant of STAT3 (STAT3-C) has 

been generated due to cysteine substitution of A661 and N663, resulting in STAT3 

dimerisation and constitutive transactivator activity in the absence of tyrosine 

phosphorylation (Bromberg et al., 1999). Injection of nude mice with cells expressing 

STAT3-C resulted in tumour formation indicating that STAT3-C is directly oncogenic and 

that STAT3 activation therefore contribution to carcinogenesis (Bromberg et al., 1999). 

Similarly, expression of STAT3-C in the RWPE-1 prostate epithelial cell line promotes 

cellular transformation and anchorage-independent growth in vitro. Furthermore, STAT3-

C expression in these cells enhances cell migration, indicative of an increased metastatic 

capacity. However, immunohistochemical (IHC) analysis of primary prostate tumours 

failed to demonstrate a correlation between increased pTyr705STAT3 and tumour stage, 

Gleason score or PSA levels (Azare et al., 2007). Nevertheless, other studies have 

demonstrated clear links between STAT3 activation and PCa progression in vivo. In 

prostatic tissues from PCa patients, elevation of pTyr705STAT3 was demonstrated in 

comparison to patients without PCa. Within tissues from PCa patients, it was found that 

pTyr705STAT3 levels were greater in cancerous vs. normal tissues (Barton et al., 2004). In 

a separate study, tissue samples derived from PCa patients displayed greater STAT3 DNA 

binding activity in comparison to patients with no evidence of prostate pathology. 

However, within the tissue derived from PCa patients, there was no significant difference 

in STAT3 DNA binding activity between normal and malignant tissue (Dhir et al., 2002). 
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6.2 Cell systems 

In order to study the effects of cAMP elevation on IL-6-induced STAT3 activation, an in 

vitro cell culture system was used. Although it could be argued that such a system is not 

physiologically relevant, it provides an ideal model for studying intracellular responses 

directly attributable to rhuIL-6 stimulation due to the lack of other cell or tissue types 

which may alter IL-6-mediated signalling via heterotypic signalling. 

 

The cell lines used throughout this study were chosen due to their rudimentary 

representation of different stages of PCa. The PZ-HPV-7 cell line has been used as a 

representation of normal prostate epithelial cell responses to exogenous stimulation and 

was produced by transformation of normal prostate epithelial tissue with DNA encoding 

the E6 protein of HPV18 (Weijerman et al., 1994). The LNCaP cell line was derived from 

a PCa metastasis to the left supraclavicular lymph node of 50 year old Caucasian man and 

represents an androgen-sensitive cell line indicative of early PCa (Horoszewicz et al., 

1983). In contrast, the DU145 cell line, derived from a metastatic lesion to the brain of a 69 

year old Caucasian man, represents an androgen-insensitive cell line which is indicative of 

late stage PCa (Stone et al., 1978). Regarding basal STAT3 activation, STAT3 activation 

by exogenous IL-6 is thought to be entirely inducible in PZ-HPV-7 cells, somewhat 

controversial in LNCaP cells, whilst DU145 cells are thought to display basal STAT3 

activation in the absence of exogenous stimulation due to autocrine production of IL-6 

(Okamoto et al., 1997). In order to perform subsequent analysis of any inhibitory effects of 

cAMP elevation on STAT activation, the responses of these cells to exogenous cytokines 

were initially investigated. 

 

DU145, LNCaP and PZ-HPV-7 cells were seeded as described for individual experiments, 

grown to 80% confluence in the case of DU145 and PZ-HPV-7 cells, and 60-70% 

confluence for LNCaP cells. DU145 and PZ-HPV-7 cells were grown to 80% confluence 

to ensure a high protein yield from cell lysates but were not grown to 100% confluency to 

prevent cells from becoming quiescent which might alter cellular responses to exogenous 

IL-6. This is particularly important when considering DU145 cells as these cells are 

reported to be androgen-insensitive and perpetuate their growth in the absence of 

androgens via autocrine release of IL-6 (Okamoto et al., 1997). Thus, highly confluent 

DU145 cells may have sufficiently high endogenous IL-6 and subsequent activation of the 

JAK-STAT pathway such that stimulation with exogenous cytokine would fail to result in 

further activation of the pathway. LNCaP cells were grown to a lower confluency as these 

cells have a tendency to grow on solid substrata in loosely adherent clumps. Growing of 
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LNCaP cells to a high percentage confluency results in a greater degree of cell clumps 

which may affect responses to exogenous cytokine due to a decrease in the relative number 

of cells which are located on the media-exposed surface of the cell clump. To aid 

adherence of LNCaP cells to tissue culture plasticware, plates were coated with 0.5 mg/ml 

poly-D-lysine hydrobromide. Poly-D-lysine is a positively charged amino acid polymer 

which aids cellular adherence by electrostatic interaction with negatively charged cell 

surface molecules such as phospholipids (Jacobson & Branton, 1977). 

 

Given the differences between the cell types used in this study in both the stage of PCa 

which they represent and their culture conditions, it was necessary to characterise the 

responses of DU145, LNCaP and PZ-HPV-7 cells to exogenous cytokine stimulation. The 

results presented in this chapter demonstrate differences in IL-6-induced STAT signalling 

between the cell lines used with the tumour-derived cell lines demonstrating preferential 

activation of the oncogenic STAT3 signalling pathway rather than the tumour suppressive 

STAT1 pathway in comparison to control cells. 

6.3 Results 

Prior to stimulation, the culture medium was replaced with fresh medium to ensure that 

any observed activation of STAT proteins was due to addition of exogenous cytokine 

rather than basal STAT activation. In all three cell types tested, treatment with 10 ng/ml 

recombinant human IL-6 (rhuIL-6) resulted in increased detection of STAT3 protein 

phosphorylated on Tyr705 (pTyr705STAT3). This residue is critical for STAT3 activation, 

dimerisation and subsequent transcriptional activation (Calo et al., 2003;Kaptein et al., 

1996), thus elevation of pTyr705STAT3 following rhuIL-6 treatment indicates activation of 

STAT3. To ensure that changes in pTyr705STAT3 were a result of protein activation rather 

than due to changes in the total amount of STAT3 or protein loading, cell lysates were 

immunoblotted for total STAT3 protein and the loading control glyceraldehye-3-phosphate 

dehydrogenase (GAPDH). The increases in pTyr705STAT3 could not be explained by 

changes in either STAT3 levels or protein loading across the gel, indicating that the results 

seen are a genuine reflection of STAT3 activation in prostate epithelial cells lines. Similar 

results were seen for STAT1 activation, with activation of STAT1 being inferred by an 

increase in detected STAT1 phosphorylated at Tyr701 (pTyr701STAT1). Following 

normalisation for protein loading, the ratio of tyrosine phosphorylated STAT protein to 

total STAT protein was calculated and expressed as a percentage of the maximal value 

obtained. 
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6.3.1 Treatment of prostate epithelial cells with r huIL-6 results in 

tyrosine phosphorylation of STAT3 

In order to perform subsequent studies investigating attenuation of JAK-STAT signalling 

downstream of the IL-6R, it was first necessary to determine a suitable time point at which 

to detect tyrosine phosphorylation of STAT1 and STAT3. Previous work in our laboratory 

has indicated that STAT protein activation can be detected downstream of the IL-6/sIL-

6Rα trans-signalling complex at 15 – 30 min post-stimulation. In keeping with this, 

DU145, LNCaP and PZ-HPV-7 cells were stimulated with rhuIL-6 for 0 – 60 min. Given 

expression of both gp130 and the IL-6-binding receptor in DU145, LNCaP and PZ-HPV-7 

cells (Palmer et al., 2004), it was not necessary to stimulate the cells with the trans-

signalling complex and instead only rhuIL-6 was used to stimulate these cells. 

 

Treatment of DU145 cells with 10 ng/ml rhuIL-6 resulted in an increase in pTyr705 STAT3 

at 15, 30 and 60 min post-stimulation (Fig. 6.1). Basal activation of STAT3 was detected 

in these cells, consistent with the autocrine release of IL-6, but was sub-maximal as 

treatment with 10 ng/ml rhuIL-6 resulted in an increase in pTyr705STAT3 at 15 min post-

stimulation (p < 0.05 vs. 0 h) and showed a decline in pTyr705STAT3 back to basal levels 

by 60 min post-stimulation (Fig. 6.1). Similar results were observed in LNCaP cells, where 

treatment with rhuIL-6 resulted in an increase in pTyr705 at 15 min post-stimulation (Fig. 

6.2). However, unlike DU145 cells where detected pTyr705STAT3 levels returned to basal 

at 30 and 60 min post-stimulation, treatment of LNCaP cells with exogenous IL-6 resulted 

in sustained elevation of pTyr705STAT3 at 30 and 60 min (p < 0.01 vs. 0 h) (Fig. 6.2). In 

PZ-HPV-7 cells, treatment with 10 ng/ml rhuIL-6 resulted in elevation of pTyr705STAT3 at 

15 min and 30 min post-stimulation (Fig. 6.3, p < 0.01 vs. 0 h) which declined to basal 

levels at 60. Taken together, these results indicate that 15 min post-stimulation with rhuIL-

6 is a suitable time point at which to observe activation of STAT3 as evidenced by an 

increase in pTyr705STAT3 in each cell type. 

 

In contrast to the similarities in STAT3 activation between the different cell types when 

treated with rhuIL-6, there were marked differences in STAT1 phosphorylation between 

the tumour-derived DU145 and LNCaP cell lines when compared with PZ-HPV-7 cells 

which were derived from transformation of normal prostate epithelium. Whilst treatment 

with rhuIL-6 resulted in an increase in pTyr701STAT1 at 15 min post-stimulation in PZ-

HPV-7 cells (Fig. 6.3, p < 0.01 vs. 0 h), parallel treatment of DU145 and LNCaP cells 

failed to induce a significant increase in pTyr701STAT1 (Fig. 6.1 and Fig. 6.3). PZ-HPV-7 

cells treated with 10 ng/ml rhuIL-6 for 15 min were included as a positive control for 
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antibody reactivity, indicating that the lack of detected pTyr701STAT1 does not arise due a 

failure of the antibody. In DU145 cells, no detectable increase in pTyr701STAT1 was 

detected across all repeats of the experiment (Fig. 6.1), indicating a deficiency of DU145 

cells to activate STAT1 in response to rhuIL-6 stimulation. In LNCaP cells a variable and 

weak increase in pTyr701STAT1 in response to rhuIL-6 stimulation was seen (Fig. 6.2) 

which was considerably less robust than that detected in PZ-HPV-7 cells and varied from 

weakly detectable to completely absent across experiments. These results suggest that there 

is some defect in the ability of LNCaP cells to activate STAT1 downstream of IL-

6R/gp130 signalling. Samples were equalised for protein content both across the different 

cell types and across gels, thus the difference in STAT1 tyrosine phosphorylation is 

unlikely to arise from differences in protein loading or STAT1 expression as all cell types 

tested expressed STAT1 protein with no apparent differences in levels of STAT1 protein. 

Furthermore, no difference in the apparent molecular weight of STAT1 was observed 

between the cell types, suggesting that the differences in STAT1 activation following IL-6 

treatment do not arise from expression of a truncated STAT1 mutant which lacks the C-

terminal region containing Tyr701. Cleavage by caspase-3 can truncate STAT1 in at Asp694 

and is thus unable to become activated due to the lack of Tyr701  However, due to the 

limitations of resolving proteins via 1D gel electrophoresis, it is not possible to exclude the 

possibility that DU145 and LNCaP cells express a variant of STAT1 which is resistant to 

tyrosine phosphorylation. 

6.3.2 Basal activation of STAT3 in prostate epithel ial cell lines 

Having determined a suitable time point at which to investigate rhuIL-6-mediated 

activation of STAT3, the basal activation status of STAT3 in the prostate epithelial cell 

lines was examined. This is particularly important as DU145 cells are reported to display 

constitutive activation of STAT3 due to autocrine IL-6 production whilst data surrounding 

the basal STAT3 activation status in LNCaP cells is more controversial.  

 

DU145, LNCaP and PZ-HPV-7 cells were seeded into 6-well plates and grown to 

appropriate confluency with cell culture medium being changed every 48 h in order to 

maintain cell growth. Spent culture medium was collected and retained as conditioned 

medium. Prior to stimulation, cell culture medium on cells was replaced with either 

conditioned medium or fresh growth medium. Cells were then stimulated with 10 ng/ml 

rhuIL-6 for 15 min prior to cell harvesting, SDS-PAGE fractionation and subsequent 

analysis of pTyr705STAT3 levels by immunoblotting. 
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Figure 6.1: Treatment of DU145 prostate epithelial cells with 10 

ng/ml rhuIL-6 induces tyrosine phosphorylation of S TAT3 but not 

STAT1  

DU145 cells were seeded into 6-well plates and treated with 10 ng/ml rhuIL-6 for 0 –

60 min prior to fractionation by SDS-PAGE and subsequent immunoblotting. Phospho-

specific antibodies were used to detect pTyr701STAT1 and pTyr705STAT3 as indicators 

of STAT protein activation whilst total levels of STAT1 and STAT3 were used to 

demonstrate that changes in detected tyrosine phosphorylation of STAT proteins 

reflected changes in protein phosphorylation and not protein levels. Blots are 

representative of n = 3 individual experiments and densitometry results represent mean 

values ± SEM. PZ-HPV-7 cells treated with 10 ng/ml rhuIL-6 for 15 min were 

included as a positive control for antibody reactivity. * = p < 0.05 vs. 0 h  
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Figure 6.2: Treatment of LNCaP prostate epithelial cells with 10 ng/ml 

rhuIL-6 induces tyrosine phosphorylation of STAT3 b ut not STAT1  

LNCaP cells were seeded into poly-D-lysine coated 6-well plates and treated with 10 ng/ml 

rhuIL-6 for 0 –60 min prior to fractionation by SDS-PAGE and subsequent immunoblotting. 

Phospho-specific antibodies were used to detect pTyr701STAT1 and pTyr705STAT3 as 

indicators of STAT protein activation whilst total levels of STAT1 and STAT3 were used to 

demonstrate that changes in detected tyrosine phosphorylation of STAT proteins reflected 

changes in protein phosphorylation and not protein levels. Blots are representative of n = 4 

individual experiments and densitometry results represent mean values ± SEM. PZ-HPV-7 

cells treated with 10 ng/ml rhuIL-6 for 15 min were included as a positive control for antibody 

reactivity  ** = p < 0.01 vs. 0 h 
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Figure 6.3: Treatment of PZ-HPV-7 prostate epitheli al cells with 10 

ng/ml rhuIL-6 induces tyrosine phosphorylation of S TAT3 and  

STAT1  

PZ-HPV-7 cells were seeded into 6-well plates and treated with 10 ng/ml rhuIL-6 for 0 –

60 min prior to fractionation by SDS-PAGE and subsequent immunoblotting. Phospho-

specific antibodies were used to detect pTyr701STAT1 and pTyr705STAT3 as indicators 

of STAT protein activation whilst total levels of STAT1 and STAT3 were used to 

demonstrate that changes in detected tyrosine phosphorylation of STAT proteins 

reflected changes in protein phosphorylation and not protein levels. Blots are 

representative of n = 7 individual experiments and densitometry results represent mean 

values ± SEM. PZ-HPV-7 cells treated with 10 ng/ml rhuIL-6 for 15 min were included 

as a positive control for antibody reactivity  ** = p < 0.01 vs. 0 h 
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In all three cell types studied, the ability of rhuIL-6 to induce phosphorylation of Tyr705 in 

STAT3 was not affected by the medium in which the cells were stimulated (Fig. 6.4 – 6.6). 

Cells grown in conditioned medium did not display increased basal pTyr705STAT3, 

suggesting that, in this experimental system, any basal STAT3 activation is below the 

detection limit if the immunoblotting procedure. This result was particularly surprising in 

the case of DU145 cells as these are reported to express autocrine IL-6 (Giri et al., 2001) 

and thus would be expected to display basal pTyr705STAT3. It may be the case that 

autocrine stimulation with IL-6 activates endogenous negative regulatory pathways in 

DU145 cells and thus limits basal STAT3 activation. Indeed, it was found that treatment of 

DU145 cells in conditioned rather than fresh medium had a trend to show a smaller 

increase in pTyr705STAT3 following stimulation with rhuIL-6 (Fig. 6.4). However, this 

difference was found to be statistically insignificant. In LNCaP and PZ-HPV-7 cells, no 

discernible difference between IL-6-mediated tyrosine phosphorylation of STAT3 was 

observed in cells stimulated in conditioned or fresh medium (Fig. 6.5 and Fig. 6.6). 

6.3.3 The ability of rhuIL-6 to induce STAT3 activa tion is concentration 

dependent 

Ultimately, this study aims to investigate mechanisms by which STAT3 activation may be 

attenuated, thus it was necessary to ensure that a suitable concentration of rhuIL-6 is used 

throughout the study. Stimulation of the cell lines under investigation with too high a 

concentration of rhuIL-6 may result in an inability to observe any inhibitory effects of 

cAMP elevation due to supra-maximal activation of STAT3. DU145, LNCaP and PZ-

HPV-7 cells were plated as described above and stimulated with 0 – 100 ng/ml rhuIL-6 for 

15 min. In all cell types tested, stimulation with increasing concentrations of rhuIL-6 

resulted in an increase in detected pTyr705STAT3. In DU145 cells, treatment with rhuIL-6 

concentrations of less than 1 ng/ml failed to induce a detectable increase in pTyr705STAT3 

above basal levels (Figure 6.7). Treatment with 1 – 100 ng/ml rhuIL-6 resulted in a 

concentration-dependent increase in pTyr705STAT3 with maximal STAT3 activation being 

observed when DU145 cells were treated with 10 ng/ml rhuIL-6 (p < 0.01 vs. 0 ng/ml 

rhuIL-6). A further increase in pTyr705STAT3 was not observed in DU145 cells when 

treated with 100 ng/ml, indicating that 10 ng/ml rhuIL-6 was a suitable concentration of 

rhuIL-6 to use in future experiments. 
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Figure 6.4: Effect of conditioned and fresh medium on rhuIL-6-induced 

pTyr 705STAT3 in DU145 prostate epithelial cells

In order to assess basal tyrosine phosphorylation of STAT3, DU145 cells were seeded into 

6-well plates and grown prior to stimulation with vehicle or 10 ng/ml rhuIL-6 for 15 min 

in either conditioned medium in which cells had been growing for 48 h (C) or in fresh 

growth medium (F). Immunoblotting using an antibody specific for pTyr705STAT3 was 

used to determine activation of STAT3 whilst an antibody against total STAT3 was used 

to demonstrate that changes in detected pTyr705STAT3 did not arise due to changes in 

STAT3 protein levels. Results are displayed as representative blots and mean values ±

SEM for n = 4 separate experiments. * = p < 0.05 vs. vehicle, ** p < 0.01 vs. vehicle, n.s. 

= p > 0.05
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Figure 6.5: Effect of conditioned and fresh medium on rhuIL-6-induced 

pTyr 705STAT3 in LNCaP prostate epithelial cells

In order to assess basal tyrosine phosphorylation of STAT3, LNCAP cells were seeded 

into poly-D-lysine HBr coated 6-well plates and grown prior to stimulation with vehicle or 

10 ng/ml rhuIL-6 for 15 min in either conditioned medium in which cells had been 

growing for 48 h (C) or in fresh growth medium (F). Immunoblotting using an antibody 

specific for pTyr705STAT3 was used to determine activation of STAT3 whilst an antibody 

against total STAT3 was used to demonstrate that changes in detected pTyr705STAT3 did 

not arise due to changes in STAT3 protein levels. Results are displayed as representative 

blots and mean values ± SEM for n = 3 separate experiments.
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Figure 6.6: Effect of conditioned and fresh medium on rhuIL-6-induced 

pTyr 705STAT3 in PZ-HPV-7 prostate epithelial cells

In order to assess basal tyrosine phosphorylation of STAT3, PZ-HPV-7 cells were seeded 

into 6-well plates and grown prior to stimulation with vehicle or 10 ng/ml rhuIL-6 for 15 

min in either conditioned medium in which cells had been growing for 48 h (C) or in fresh 

growth medium (F). Immunoblotting using an antibody specific for pTyr705STAT3 was 

used to determine activation of STAT3 whilst an antibody against total STAT3 was used 

to demonstrate that changes in detected pTyr705STAT3 did not arise due to changes in 

STAT3 protein levels. Results are displayed as representative blots and mean values ±

SEM for n = 3 separate experiments. *** = p < 0.001 vs. vehicle, n.s. = p > 0.05
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Similar results were obtained in LNCaP cells which showed an increase in pTyr705STAT3 

levels following stimulation with 1 ng/ml rhuIL-6 (Fig. 6.8, p < 0.05 vs. 0 ng/ml rhuIL-6), 

10 ng/ml rhuIL-6 (Fig. 6.8, p < 0.05 vs. 0 ng/ml rhuIL-6) and 100 ng/ml rhuIL-6 (Fig. 6.8, 

p < 0.001 vs. 0 ng/ml rhuIL-6). Unlike DU145 cells, stimulation of LNCaP cells with ≥ 10 

ng/ml did not result in maximal detection of pTyr705STAT3, indicating that concentrations 

of rhuIL-6 greater than 100 ng/ml are required to maximally activate STAT3 in LNCaP 

cells. Stimulation of PZ-HPV-7 cells with ≥ 1 ng/ml rhuIL-6 resulted in an increase in 

pTyr705STAT3 which increased further when cells were treated with 10 ng/ml (p < 0.01 vs. 

0 ng/ml rhuIL-6) and 100 ng/ml (p < 0.001 vs. 0 ng/ml rhuIL-6) of exogenous cytokine. 

The results obtained in PZ-HPV-7 cells regarding the concentration dependency of rhuIL-

6-induced STAT3 Tyr705 phosphorylation were comparable to those obtained in LNCaP 

cells in that saturation of STAT3 activation was not observed even when cells were 

stimulated with 100 ng/ml rhuIL-6. 

 

However, the ability of concentrations of rhuIL-6 greater than 100 ng/ml to induce tyrosine 

phosphorylation of STAT3 were not investigated as this would cause supra-maximal 

activation of STAT3 in DU145 cells and may therefore mask any inhibitory actions of 

cAMP elevation in subsequent studies. 

 

6.3.4 Prostate epithelial cell lines display differ ent responses to STAT-

activating cytokines 

Previously, treatment with rhuIL-6 induced an increase in pTyr701STAT1 in PZ-HPV-7 

cells but not in either of the tumour-derived LNCaP and DU145 cell lines. STAT1 has 

been described as a putative tumour suppressor and it is therefore possible that malignant 

cells have uncoupled STAT1 activation from IL-6-mediated activation of memIL-6R in 

order to maximise the oncogenic effects of STAT3 activation. However, it is not clear 

whether DU145 and LNCaP cells have a defect in STAT1 activation in general or whether 

this phenomenon is solely restricted to the IL-6 signalling pathway. 

 

To address this question, DU145, LNCaP and PZ-HPV-7 cells were treated in parallel with 

1000 U/ml recombinant human interferon- (IFN-) α, a STAT1 activator, for 15 or 30 min. 

Treatment with 10 ng/ml rhuIL-6 was included as a positive control for normal cellular 

responses to exogenous cytokine as indicated by increases in pTyr705STAT3. 
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Fig. 6.7: Effect of IL-6 concentration on STAT3 act ivation in DU145 

cells 

DU145 cells were seeded into 12-well tissue culture plates and grown to 80 % confluency 

prior to stimulation for 15 min (37oC, 5 % (v/v) CO2) with concentrations of rhuIL-6 

ranging from 0 (vehicle) – 100 ng/ml. Activation of STAT3 was assessed by 

immunoblotting for pTyr705STAT3 whilst equal protein loading was determined by 

immunoblotting for STAT3. Blots are representative of n = 3 separate experiments and 

results shown as mean values ± SEM* = p < 0.05 vs. vehicle, ** = p < 0.01 vs. vehicle 
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Fig. 6.8: Effect of IL-6 concentration on STAT3 act ivation in LNCaP 

cells 

LNCaP cells were seeded into 0.1 mg/ml poly-D-lysine HBr coated 12-well tissue 

culture plates and grown to 70 % confluency prior to stimulation for 15 min (37oC, 5 

% (v/v) CO2) with concentrations of rhuIL-6 ranging from 0 (vehicle) –100 ng/ml. 

Activation of STAT3 was assessed by immunoblotting for pTyr705STAT3 whilst equal 

protein loading was determined by immunoblotting for STAT3. Blots are 

representative of n = 3 separate experiments and results shown as mean values ± SEM 

** = p < 0.01 vs. vehicle 
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Fig. 6.9: Effect of IL-6 concentration on STAT3 act ivation in PZ-

HPV-7 cells 

PZ-HPV-7 cells were seeded into 12-well tissue culture plates and grown to 80 % 

confluency prior to stimulation for 15 min (37oC, 5 % (v/v) CO2) with 

concentrations of rhuIL-6 ranging from 0 (vehicle) – 100 ng/ml. Activation of 

STAT3 was assessed by immunoblotting for pTyr705STAT3 whilst equal protein 

loading was determined by immunoblotting for STAT3. Blots are representative of 

n = 3 separate experiments and results shown as mean values ± SEM ** = p < 0.01 

vs. vehicle 
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PZ-HPV-7 cells treated with 10 ng/ml rhuIL-6 for 15 min were included as a positive 

control for elevation of pTyr701STAT1 and pTyr705STAT3. In DU145 cells, treatment with 

1000 U/ml IFNα resulted in an increase in detected pTyr701STAT1 at 30 min post-

stimulation (p < 0.001 vs. vehicle at 30 min) but not 15 min post-stimulation. In keeping 

with previous results, treatment with rhuIL-6 resulted in elevation of pTyr705STAT3 at 15 

and 30 min post-stimulation (p < 0.05 vs. vehicle at respective time points), indicating that 

DU145 cellular responses were comparable to those seen in previous experiments. The 

results obtained indicate that DU145 cells express STAT1 which is competent for signal 

transduction due to their ability to tyrosine phosphorylate STAT1 in response to treatment 

with IFNα. Interestingly, although DU145 cells displayed increased pTyr701STAT1 

following treatment with 1000 U/ml IFNα, no increase in pTyr705STAT3 was observed. 

IFNα has been shown to activate STAT3 in other cell types (Humpolikovβ-Adβmkovβ et 

al., 2009) and it is possible that the lack pTyr705STAT3 in response to IFNα stimulation 

represents a defect in the IFNα signalling pathway. However, despite IFNα-mediated 

increases in pTyr701STAT1, DU145 cells fail to induce STAT1 activation upon stimulation 

with rhuIL-6. It is possible, given the oncogenic role of STAT3 in prostate cancer and the 

hypothesised tumour suppressor role of STAT1, that DU145 cells preferentially activate 

STAT3 in response to IL-6 stimulation rather than STAT1 in order to potentiate cellular 

proliferation and survival. It is unclear which mechanism is responsible but may include 

defects in STAT1-gp130 interaction. 

 

Similar to DU145 cells, treatment of LNCaP cells with 10 ng/ml rhuIL-6 resulted in 

elevation of pTyr705STAT3 at 15 and 30 min post-stimulation (p < 0.01 vs. vehicle at 15 

and 30 min post-stimulation). In contrast to DU145 cells, treatment of LNCaP cells with 

1000 U/ml IFNα failed to increase pTyr701STAT1 at either time point (p > 0.05 vs. vehicle 

at 15 and 30 min). It is therefore possible that LNCaP cells display defects in STAT1 

activation in response to cytokine stimulation. This might arise due to a number of reasons 

including defective JAK activity, STAT1/JAK interaction, STAT1/gp130 interaction or 

point mutations in STAT1. Unlike DU145 and PZ-HPV-7 cells, LNCaP cells displayed no 

increases in pTyr701STAT1 following stimulation with IFNα or rhuIL-6, suggesting that 

there is a global defect in the ability of these cells to activate STAT1 rather than defects in 

specific signalling pathways. 
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Fig. 6.10: Effect of STAT activating cytokines on S TAT1 and STAT3 

activation in DU145 cells 

DU145 cells were seeded into 6-well tissue culture plates and grown to 80 % 

confluence prior to stimulation with vehicle (0.1 % (v/v) PBS) or 1000 U/ml rhuIFNα, 

10 ng/ml rhuIL-6 or 125 ng/ml leptin for 15 min or 30 min. Cell lysates were 

fractionated by SDS-PAGE and activation of STAT1 and STAT3 assessed by increases 

in detected tyrosine phosphorylation of Tyr701STAT1 and Tyr705STAT3. PZ-HPV-7 

cells stimulated with 10 ng/ml rhuIL-6 for 15 min were used as a positive control (+) for 

antibody reactivity. Results are displayed as representative blots and mean values ± 

SEM for n = 3 separate experiments. *** = p < 0.001 vs. vehicle 
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Fig. 6.11: Effect of STAT activating cytokines on S TAT1 and STAT3 

activation in LNCaP cells 

LNCaP cells were seeded into 6-well tissue culture plates and grown to 80 % confluence prior 

to stimulation with vehicle (0.1 % (v/v) PBS) or 1000 U/ml IFNα, 10 ng/ml rhuIL-6 or 125 

ng/ml leptin for 15 min or 30 min. Cell lysates were fractionated by SDS-PAGE and activation 

of STAT1 and STAT3 assessed by increases in detected tyrosine phosphorylation of 

Tyr701STAT1 and Tyr705STAT3. PZ-HPV-7 cells stimulated with 10 ng/ml rhuIL-6 for 15 min 

were used as a positive control (+) for antibody reactivity. Results are displayed as 

representative blots and mean values ± SEM for n = 3 separate experiments. *** = p < 0.001 

vs. vehicle 
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Fig. 6.12: Effect of STAT activating cytokines on S TAT1 and 

STAT3 activation in PZ-HPV-7 cells 

PZ-HPV-7 cells were seeded into 6-well tissue culture plates and grown to 80 % 

confluence prior to stimulation with vehicle (0.1 % (v/v) PBS) or 1000 U/ml IFNα, 

10 ng/ml rhuIL-6 or 125 ng/ml leptin for 15 min or 30 min. Cell lysates were 

fractionated by SDS-PAGE and activation of STAT1 and STAT3 assessed by 

increases in detected tyrosine phosphorylation of Tyr701STAT1 and Tyr705STAT3. 

PZ-HPV-7 cells stimulated with 10 ng/ml rhuIL-6 for 15 min were used as a positive 

control (+) for antibody reactivity. Results are displayed as representative blots and 

mean values ± SEM for n = 3 separate experiments. *** = p < 0.001 vs. vehicle 
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Whilst the densitometric results indicate that rhuIL-6 was able to induce pTyr701STAT1 at 

15 and 30 min post-stimulation, it is thought that this result might be an experimental 

artefact as, when bands are present, the appear only as faint bands which may arise from 

cross-reactivity with pTyr705STAT3 in conditions where STAT3 is strongly activated. Such 

a phenomenon has been observed with this antibody in previous studies (Haan et al., 

2005). 

 

Similarly, in PZ-HPV-7 cells, treatment with 1000 U/ml IFNα failed to induce 

Tyr701phosphorylation of STAT1 at 15 or 30 min post-stimulation (p > 0.05 vs. vehicle at 

15 and 30 min) whilst 10 ng/ml rhuIL-6 resulted in robust elevation of pTyr701STAT1 at 15 

min post-stimulation (p < 0.001 vs. vehicle). Similar to previous experiments, treatment 

with 10 ng/ml rhuIL-6 resulted in an increase in pTyr705STAT3 at 15 and 30 min post-

stimulation (p <0.001 vs. vehicle at respective time points). PZ-HPV-7 cells represent the 

normal prostate epithelial responses in this study and display expected STAT1 and STAT3 

activation responses to rhuIL-6. It is surprising that these cells do not respond to IFNα with 

an increase in either pTyr701STAT1 or pTyr705STAT3 as IFNα is involved in the anti-viral 

response and thus should activate STAT1 and STAT3 in most cell types, even in the 

absence of STAT tyrosine phosphorylation induced by stimulation with other cytokines 

such as rhuIL-6. In all three cell lines used, there was no response to leptin at the 

concentration used despite this concentration previously producing robust STAT3 

responses in HUVECs (Woolson et al., 2009), suggesting that the cell lines lack expression 

of the Ob receptor required for leptin-mediated signalling. 

 

Taken together these results imply that there is defective activation of STAT1 in tumour-

derived prostate epithelial cell lines in response to stimulation with rhuIL-6 which is not 

observed in cells derived from normal prostate epithelium. Such modification of the 

cellular responses to IL-6 suggests that tumour cells dynamically modify cell signalling 

pathways in order to maximise tumour development. However, the ability of DU145 but 

not LNCaP cells to activate STAT1 in response to IFNα suggests that the mechanism by 

which cells uncouple IL-6R activation from signal transduction to STAT1 is not universal. 

6.3.5 Ectopic expression of JAK1 restores the abili ty of LNCaP cells to 

activate STAT1 in response to rhuIL-6 

It has previously been demonstrated that LNCaP cells are unable to respond to IFNγ 

stimulation due to a lack of JAK1 expression. As JAK1 has been implicated as a major 

activator of STAT1 and thus it is possible that the inability of LNCaP cells to activate 
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STAT1 in response to rhuIL-6 arises due to a lack of JAK1 expression. In order to 

determine whether this was the case, LNCaP cells were seeded into 6-well plates prior to 

transfection with either the empty vector pcDNA3 or wild-type JAK1 as described in 

Chapter 5. Cells were then stimulated with vehicle, 1000 U IFNα or 10 ng/ml rhuIL-6 for 

15 and 30 min prior to SDS-PAGE fractionation and subsequent determination of STAT1 

and STAT3 activation via immunoblotting. 

 

LNCaP cells transfected with pcDNA3 and JAK1 both showed increases in detected 

pTyr705STAT3 at 15 and 30 min post-stimulation with rhuIL-6 (Fig. 6.13), indicating 

normal cellular responses to exogenous cytokine. No increase in pTyr701STAT1 was 

observed following stimulation with rhuIL-6 in LNCaP cells transfected with pcDNA3. 

Similar to results obtained in non-transfected cells, treatment with 1000 U/ml IFNα or 

vehicle failed to induce STAT1 or STAT3 activation in LNCaP cells transfected with 

vector or the JAK1 construct. However, expression of JAK1 in LNCaP cells resulted in an 

increase in detection of pTyr701STAT1 following stimulation with 10 ng/ml rhuIL-6 at 15 

min post-stimulation. These results indicate that, whilst JAK1 expression is not required 

for the ability of rhuIL-6 to activate STAT3 in LNCaP cells, it is required for IL-6-

mediated activation of STAT1. Interestingly, although expression of JAK1 restored the 

ability of LNCaP cells to activate STAT1 in response to rhuIL-6, expression of JAK1 did 

not restore their ability to respond to IFNα, suggesting that defects in STAT1 activation in 

these cells differ between stimuli. 

6.4 Discussion 

PCa is the second largest cancer-related killer of men in the Western world, with one new 

case being diagnosed every 15 minutes in the UK alone (Cancer Research UK, 2005). 

Many factors contribute to PCa development, including dietary intake of saturated fat 

(Crowe et al., 2008), body mass index (BMI) (Stark et al., 2009) and chronic inflammatory 

conditions such as inflammatory atrophy (de Visser et al., 2005). Concomitant with 

sustained inflammation are the presence of pro-inflammatory cytokines and subsequent 

activation of associated signalling pathways. Important to this project are the roles which 

the cytokine IL-6 and subsequent activation of the STAT3 signalling molecule play in PCa 

progression. To this end, three prostate epithelial cell lines were characterised for their 

ability to respond to exogenous rhuIL-6. 
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Fig. 6.13: Expression of JAK1 in LNCaP cells restor es STAT1 

phosphorylation in response to rhuIL-6 

LNCaP cells were transfected with 1 µg pcDNA3 or JAK1 cDNA prior to 

stimulation with vehicle, 1000 U IFNα or 10 ng/ml rhuIL-6 for 15 min or 30 min. 

Cell lysates were fractionated by SDS-PAGE and activation of STAT1 and STAT3 

assessed by increases in detected tyrosine phosphorylation of Tyr701STAT1 and 

Tyr705STAT3. Results are displayed as representative blots and mean values ± SEM 

for n = 3 separate experiments. * = p < 0.05 vs. vehicle, ** = p < 0.01 vs. vehicle, 

++ = p < 0.01 vs. pcDNA3 
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The DU145 cell line was originally isolated from a CNS lesion in a 69 year-old Caucasian 

male suffering from widespread, metastatic PCa (Stone et al., 1978). These cells are 

representative of a highly aggressive, androgen-independent cell line and as such are being 

used throughout this study as a late stage model of PCa (Okamoto et al., 1997). It has been 

reported that DU145 cells secrete IL-6 which acts as both an autocrine and paracrine 

growth factor (Okamoto et al., 1997), thus it might be expected that DU145 cells should 

display basal activation of STAT3 in the absence of exogenous cytokine. However, when 

DU145 cells were grown in conditioned medium and analysed for basal tyrosine 

phosphorylation of STAT3 by immunoblotting, no basal pTyr705STAT3 was observed with 

levels of pTyr705STAT being comparable to those observed in cell stimulated in fresh 

culture medium (Fig. 6.4). Furthermore, treatment of cells grown in conditioned medium 

with 10 ng/ml resulted in an increase in pTyr705STAT3 but to a lesser extent than that 

observed in cells stimulated in fresh culture medium. Whilst this result was unexpected, it 

is possible that the perpetual stimulation of IL-6R by secreted IL-6 in DU145 cells results 

in activation of endogenous inhibitors of the IL-6 signalling pathway and thus impedes 

further activation of STAT3. Strong candidates for such endogenous inhibitory signalling 

pathways include induction of the SOCS family proteins which impede JAK-mediated 

STAT activation (Endo et al., 1997;Ilangumaran et al., 2004;Kile & Alexander, 2001) and 

activation of the SHP2 tyrosine phosphatase which has been reported to dephosphorylate 

activated STAT3 in endothelial cells (Ni & Wang, 2003). Both pathways would result in 

the inhibition of STAT3 tyrosine phosphorylation unlike PIAS3, which specifically 

interacts with STAT3, and impairs both the DNA-binding and transactivator potential of 

STAT3 downstream of Tyr705 phosphorylation (Chung et al., 1997). 

 

In contrast to the DU145 cell line, the LNCaP, used here as a model of early PCa, and PZ-

HPV-7, indicative of normal prostate epithelial response, cell lines showed no difference in 

the ability of IL-6 to activate STAT3 when cells were stimulated in conditioned vs. fresh 

growth medium. Similarly, no basal pTyr705STAT3 was detected in these cells which was 

anticipated as there are no current reports of IL-6 secretion by either of these cells.  

 

In all three cell lines, the ability of IL-6 to induce STAT3 activation increased with the 

concentration of rhuIL-6 used above an IL-6 concentration of 0.1 ng/ml (Figs. 2.7-2.9). 

None of the cell types displayed saturation of STAT3 activation even following treatment 

with 100 ng/ml rhuIL-6, indicating that the responses observed are not supramaximal and 

may be inhibited in subsequent studies. Whilst DU145 and PZ-HPV-7 cells demonstrated 
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transient increases in pTyr705STAT3 (Fig. 2.1 and Fig. 2.2 respectively), the duration of 

rhuIL-6-induced STAT3 activation was more sustained in LNCaP cells (Fig. 2.3), 

remaining elevated at 60 min post-stimulation. Whilst activation of STAT3 in response to 

rhuIL-6 at 15-30 min post-stimulation is expected and correlates with published data 

regarding the activation and nuclear accumulation of STAT3 (Pranada et al., 2004), this 

response is rarely prolonged in cells due to the induction of endogenous inhibitory 

mechanisms required to prevent sustained pro-inflammatory signalling and subsequent 

tissue damage. It is unclear why the response is prolonged in LNCaP cells compared to the 

other cell types but may be associated with the observation that chronic IL-6 stimulation 

can induce differentiation of LNCaP cells to a neuroendocrine phenotype via activation of 

gp130 (Palmer et al., 2005).  

 

Of particular interest was the observation that treatment of PZ-HPV-7, but not DU145 and 

LNCaP cells, with rhuIL-6 resulted in a transient increase in pTyr701STAT1. Although 

STAT3 is the major STAT family member activated downstream of IL-6R, STAT1 also 

becomes activated by IL-6 (Gerhartz et al., 1996). All three cell types express comparable 

levels of STAT1 protein of the same apparent molecular weight, excluding the possibility 

that the inability of IL-6 to induce STAT1 activation in DU145 or LNCaP cells arises due 

to a lack of STAT1 expression. It is possible that these cell lines express a variant of 

STAT1 that lacks the C-terminal Tyr701 required for activation downstream of cytokine 

receptors (Shuai et al., 1992). However, due to the resolution limits of one dimensional 

SDS-PAGE, only a gross truncation of STAT1 would be detectable, which was not 

apparent in any of the experiments performed. Further experimental data indicated that the 

inability of rhuIL-6 to induce robust activation of STAT1 in the tumour-derived cells lines 

arose due to defects in IL-6 signalling rather than in STAT1 expression. Given the 

oncogenic properties of chronic STAT3 activation (Azare et al., 2007;Barton et al., 

2004;Bromberg et al., 1999), it is possible that DU145 and LNCaP cells, both tumour-

derived cell lines, have potentiated activation of STAT3 rather than STAT1 in response to 

rhuIL-6 in order to promote tumour growth and metastasis. Both cell lines are derived from 

metastatic lesions, a process which can be enhanced by STAT3-mediated integrin 

switching (Azare et al., 2007) whilst activation of STAT1 is reported to exert a tumour 

suppressor effect (Hodge et al., 2005) thus preferential activation of STAT3 compared to 

STAT1 activation would clearly be beneficial for the maintenance of tumour cell 

populations. It is also possible that the presence of STAT3 in the DU145 and LNCaP cell 

lines may prevent activation of STAT1 downstream of the IL-6R as has been shown in 
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mouse embryonic fibroblasts (MEFs). Wild-type cells do not respond to IL-6 stimulation 

with a sustained increase in STAT1 activation and thus do not increase expression of 

STAT1-regulated genes in response to IL-6 stimulation. However, when STAT3 knock-out 

MEFs are stimulated with IL-6, a sustained increase in pTyr701STAT1 is observed which is 

correlated with an increase in STAT1-regulated genes (Costa-Pereira et al., 2002).  

 

To assess whether the inability of rhuIL-6 to induce activation of STAT1 in the tumour-

derived DU145 and LNCaP cell lines was due to cellular defects in STAT1 activation, 

cells were treated in parallel with either 1000 U/ml rhuIFNα or 10 ng/ml rhuIL-6 for 15 or 

30 min. The ability of rhuIFNα to increase detected pTyr701STAT1 in DU145 cells 

indicates that these cells express a STAT1 protein which is competent for signal 

transduction downstream of cytokine receptors and that the lack of rhuIL-6-mediated 

increases in pTyr701STAT1 arise due to specific aberrations in the IL-6-signalling pathway. 

Treatment with 1000 U/ml IFNα of either the LNCaP or PZ-HPV-7 cell lines in parallel 

experiments failed to induce activation of STAT1, which is unexpected given the 

importance of this cytokine in the innate immune response. PZ-HPV-7 cells retained 

rhuIL-6-induced Tyr701 phosphorylation of STAT1, indicating that the cells are still 

competent to respond to exogenous cytokine and that the lack of STAT1 activation seen 

with IFNα treatment is specific to the IFNα pathway. 

 

In subsequent experiments (see Chapter 7), it was noted that LNCaP cells, unlike DU145 

and PZ-HPV-7 cells, do not express detectable levels of JAK1. It has been suggested that 

JAK1 is the major JAK family member required for STAT1 activation downstream of the 

IL-6 receptor (Haan et al., 2005) and LNCaP cells are reported to be insensitive to IFNγ 

due to a lack of JAK1 expression (Dunn et al., 2005). It was therefore possible that lack of 

JAK1 expression may account for the inability of both rhuIL-6 and rhuIFNα to induce 

STAT1 activation in this cell line. To assess this, LNCaP cells were transfected with 

cDNA encoding either pcDNA3 or wild-type JAK1 and treated with vehicle, rhuIFNα or 

rhuIL-6 for 15 or 30 min. In cells transfected with JAK1, but not pcDNA3, LNCaP cells 

displayed increased pTyr701STAT1 upon treatment with rhuIL-6, indicating that the JAK1 

expression restores STAT1 responses to IL-6. However, expression of JAK1 failed to 

elevate STAT1 tyrosine phosphorylation in response to IFNα treatment, indicating 

signalling defects downstream of the IFNα receptor. 
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It is perhaps unsurprising that LNCaP cells display defective activation of STAT1 in 

response to IFNα stimulation as impaired IFN signalling is a feature of many cancers. A 

study by Critchley-Thorne et al (2009) demonstrated impaired cellular responses to IFNα 

and IFNγ from breast cancer, melanoma, and gastrointestinal cancer patients although the 

exact nature of this impairment varied between cancer type. However, it is unusual that 

PZ-HPV-7 cells do not respond to IFNα treatment with an increase in pTyr701STAT1 as 

these are thought to represent normal prostate epithelial responses to cytokines. As these 

cells respond to rhuIL-6 stimulation with a robust increase in detected pTyr701STAT1, it 

would appear that the lack of response to IFNα is a defect specific to the IFNα signalling 

pathway. 

 

To test whether these cells expressed a functional STAT1 signalling pathway, DU145, 

LNCaP and PZ-HPV-7 cells were treated with vehicle, 1000 U IFNα or 10 ng/ml rhuIL-6 

for 15 and 30 min. All cell types tested responded to exogenous rhuIL-6 with an increase 

in pTyr705STAT3, indicating that cells were undergoing normal responses to exogenous 

cytokines. At 30 min post-stimulation, DU145 cells showed an increase in pTyr701STAT1 

when treated with IFNα, indicating that these cells do indeed express a functional STAT1 

signalling pathway and that there is some defect in STAT1 activation downstream of the 

IL-6R. Whilst DU145 cells responded to IFNα treatment with an increase in 

pTyr701STAT1, neither PZ-HPV-7 cells nor LNCaP cells showed responses to IFNα which 

is unusual given the essential role of this cytokine in the immune response. Treatment of 

PZ-HPV-7 cells with rhuIL-6 induced the transient tyrosine phosphorylation of STAT1 as 

described previously, indicating that the inability of IFNα to activate STAT1 is not due to 

passage-related changes in signalling pathways. It is possible that PZ-HPV-7 cells lack 

IFNα receptor expression, thus rendering them insensitive to IFNα stimulation, although 

this would appear to be a rare event. 

 

Whilst the lack of STAT1 activation in LNCaP cells appears to be due to the lack of JAK1 

expression, the mechanism by which IL-6-mediated STAT1 activation in DU145 cells is 

attenuated appears more complex. The ability of IFNα to induce STAT1 activation in 

DU145 cells indicates that there are no defects in the ability of JAKs to activate STAT1 in 

this cell line nor that these cells express STAT1 isoforms which lack Tyr701. Given the 

observed activation of STAT1 in response to IFNα it seems reasonable to presume that the 

inability of IL-6 to induce tyrosine phosphorylation of STAT1 in DU145 cells is a 

phenomenon specific to the IL-6R/gp130 signalling module. Many cancer cells display 
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dysregulation of important pathways involved in the ensuring maintenance of genomic 

integrity whilst the microenvironment surrounding the tumour is often rich in mutation-

promoting factors such as ROS (Dhar et al., 2002;Finkel & Holbrook, 2000;Jackson et al., 

2002). As the DU145 cell line is derived directly from a malignant lesion, it is therefore 

possible that these cells may have accumulated mutations in the gp130 molecule which 

may prevent efficient docking of signalling modules such as JAK1 or STAT1 to 

phosphotyrosine residues within gp130. Use of a chimeric erythropoietin/gp130 receptor 

indicates differences in the docking sites used by STAT1 and STAT3. Whilst STAT3 is 

reported to bind to pTyr767 and pTyr814, STAT1 has been shown to bind to a further two 

pTyr residues in this model, corresponding to Tyr905 and Tyr915 (Gerhartz et al., 1996). It is 

possible that DU145 cells have mutations in these STAT1-specific docking sites which 

may prevent IL-6-mediated STAT1 activation, whilst binding of STAT3 to Tyr767 and 

Tyr814 may sterically hinder STAT1 recruitment to these sites. Such a hypothesis is 

supported by the observation that deletion of STAT3 in MEFs promotes sustained 

activation of STAT1 rather than the transient activation seen in wild-type cells (Costa-

Pereira et al., 2002), suggesting that IL-6-mediated STAT3 activation can hinder activation 

of STAT1. 

 

To summarise, all three cell types phosphorylate STAT3 in response to treatment with 

exogenous rhuIL-6, indicating that the system is suitable for further use as an in vitro 

model of IL-6-induced cellular signalling in PCa. However, despite similarities in IL-6-

mediated STAT3 activation, there were clear differences in the ability of rhuIL-6 to induce 

STAT1 with the tumour-derived cell lines failing to activate STAT1 in response to 

exogenous IL-6. It is possible that this phenomenon arises due to the tumour suppressive 

activities of STAT1 activation. In LNCaP cells, the inability of IL-6 to activate STAT1 is 

due to a lack of JAK1 expression whilst the mechanism by which this is achieved in 

DU145 cells is currently unclear. 
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7 Elevation of cAMP attenuates STAT3 phosphorylatio n 

in prostate epithelial cells 

7.1 Introduction 

Elevation of serum IL-6 levels is associated with a poor patient prognosis at diagnosis and 

with terminal, androgen refractory disease (Kuroda et al., 2007;Michalaki et al., 2004). Of 

particular interest is the ability of IL-6 to activate STAT3 via phosphorylation of Tyr705 

and subsequent increases in expression of proteins associated with cell cycle progression 

and the prevention of apoptosis (Hodge et al., 2005). Constitutively active STAT3 is 

directly oncogenic in vivo (Azare et al., 2007;Bromberg et al., 1999) and is of particular 

interest in PCa. Both IL-6 and STAT3 can activate the AndR independently of androgen 

stimulation and thus may provide a mechanism by which activation of STAT3 signalling 

can promote the androgen-independent growth associated with terminal PCa (Culig et al., 

2002;Ueda et al., 2002). Barton et al (2004) demonstrated that inhibition of STAT3 

signalling results in apoptosis of PCa cells (Barton et al., 2004) and thus the IL-6/JAK-

STAT3 signalling pathway is of particular interest as a therapeutic target for PCa. 

 

Traditionally, inflammatory diseases have been treated with steroidal drugs which can have 

undesirable side effects such as osteoporosis when used for long periods (Canalis et al., 

2007). With reference to STAT3 activation, many strategies currently exist for inhibiting 

STAT signalling in vitro and in vivo including inhibition of JAK activity, disruption of 

STAT dimerisation (Jing & Tweardy, 2005) and the presence of decoy oligonucleotides to 

impede interaction of STAT3 with its genuine promoters (Sen et al., 2009;Zhang et al., 

2007) (see Chapter 3). However, the efficacy of these “next generation” inhibitors has not 

yet been proven in the clinic although use of decoy oligonucleotides has shown promise in 

non-human primates (Sen et al., 2009). One strategy which has demonstrated clinical 

efficacy has been the blockade of IL-6R signalling using the humanised anti-IL-6R 

antibody Tocilizumab. In April 2008, Tocilizumab was approved for use in juvenile 

idiopathic arthritis and RArt in Japan (Mima & Nishimoto, 2009). Monotherapy with 

Tocilizumab has proven effective in cases of RArt which respond poorly to conventional 

therapies. However, treatment with Tocilizumab is associated with an increase in serum 

cholesterol and hyperlipidemia which can be associated cardiovascular disease in some 

patients (Mima & Nishimoto, 2009). It is possible that a better mechanism by which to 

attenuate IL-6-induced activation of STAT3 may be to manipulate endogenous anti-

inflammatory pathways. 
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The anti-inflammatory and immunomodulatory roles of cAMP elevation are of particular 

interest as this second messenger can play an important role in a number of inflammatory 

diseases. In a murine model of allergic pleurisy, elevation of cAMP due to inhibition of 

PDE4 activity or treatment with Fsk or cAMP analogues decreased the number of 

eosinophils in the pleural cavity and was associated with an increase in eosinophil 

apoptosis due to inhibition of the PI-3-kinase (PI3K) and NFκB pathways (Sousa et al., 

2009). Inhibition of the cAMP-specific PDE, PDE7A, results in a decrease in NK T (NKT) 

-cell function and cytokine production (Goto et al., 2009). NKT cells are required for the 

development of airway hyperreactivity in allergic asthma, indicating that these cells play 

an important role in inflammation-associated diseases (Kim et al., 2009). Deficiency in the 

A2A adenosine receptor (AR), which elevates intracellular cAMP upon interaction with 

adenosine (Ado) (see Chapter 10) is associated with increased inflammatory responses in 

vivo and impaired tracheal relaxation in murine models of asthma (Nadeem et al., 

2007;Ohta & Sitkovsky, 2001) Inhibition of PDE4 activity has been investigated as a 

treatment for chronic obstructive pulmonary disorder (COPD) and other PDE inhibitors 

have already been approved for clinical use. Ibudilast is a non-selective PDE inhibitor 

which is approved for use in Japan to treat ischaemic stroke and bronchial asthma. 

Cilomilast is a PDE4-selective inhibitor which has entered phase III clinical trials as a 

treatment for COPD (Brown, 2007). In animal models of allergic skin disorders, topical 

application of the PDE4 –selective inhibitor AWD 12-281 reversed ovalbumin-induced 

allergic skin weals (Hoppmann et al., 2005). It is possible that cAMP elevation in 

inflammatory skin disorders, such as atopic dermatitis, can attenuate inflammatory cell 

infiltration via a decrease in chemokine secretion downstream of the initial pro-

inflammatory stimulus and prevent the establishment of a chronic inflammatory 

environment. Treatment of the HaCat keratinocyte cell line with Fsk resulted in a decrease 

in both IFNγ and TNFα-induced chemokine secretion and activation of the NFκB and p38 

MAPK signalling pathways (Qi et al., 2009). Given that the establishment of a chronic 

inflammatory environment is associated with defective anti-tumour immunosurveillance 

and subsequent tumour expansion, it is possible that modulation of the inflammatory 

response downstream of cAMP activation may be of therapeutic benefit. 

 

With particular reference to cancer, elevation of cAMP may be of importance when 

promoting apoptosis or inhibiting proliferation of malignant cells. Elevation of cAMP 

inhibits cell cycle progression of myeloid precursor cells following stimulation with 

granulocyte colony stimulating factor (G-CSF). This effect was mediated by a decrease in 
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Rb phosphorylation arising from decreased levels of cyclins D2 and D3 and the cyclin 

dependent kinase 4 (Ward et al., 1996). Phosphorylation of Rb is associated with release of 

transcription factors such as E2F which are required for cell cycle progression (Ward et al., 

1996). Treatment of Ewing’s sarcoma CHP-100 cells with the cell-permeable cAMP 

analogue 8-chloro-cAMP resulted in a decrease in cellular viability which was 

synergistically enhanced when combined with retinoic acid (Srivastava et al., 1998). Such 

results suggest that cAMP elevation may prove a suitable therapeutic intervention to 

complement existing chemotherapeutic options when treating inflammation-associated 

malignancies. 

 

Of particular relevance to this study is the ability of cAMP elevation to attenuate IL-6/sIL-

6Rα-induced activation of STAT3 in HUVECs. In these cells, elevation of intracellular 

cAMP resulted in attenuation of STAT3 activation following stimulation with the IL-

6/sIL-6Rα trans-signalling complex via an increase in SOCS3 expression. Activation of 

EPAC1, but not PKA, was required for this phenomenon as cAMP-mediated induction of 

SOCS3 was insensitive to PKA inhibition but was recapitulated following selective 

activation of EPAC1 (Sands et al., 2006). This response has been shown to require both 

C/EBPβ and δ as deletion of either isoform abolishes the ability of cAMP elevation to 

induce SOCS3 expression in MEFs (Yarwood et al., 2008). Both cAMP elevation and 

selective activation of EPAC promoted an increase in C/EBP reporter gene expression, 

indicating that activation of C/EBPβ and C/EBPδ are required for this phenomenon 

(Yarwood et al., 2008). Activation of the ERK1/2 signalling pathway is required for 

cAMP-induced SOCS3 expression in COS1 cells. EPAC-mediated activation of both 

PKCα and PKCδ is required for cAMP-induced SOCS3 expression with elevation of 

intracellular cAMP promoting activation of PKCα simultaneously with activation of 

ERK1/2 (Borland et al., 2009). It is likely that the effects of PKC activation are mediated 

downstream activation of phospholipase C (PLC) ε as selective ablation of PLCε 

expression via siRNA decreased the ability of cAMP elevation to induce SOCS3 

expression (Borland et al., 2009). 

 

Current studies investigating the ability of cAMP to attenuate IL-6-induced STAT3 

phosphorylation suggest that it is a common modulator of inflammatory signalling in 

HUVECs (Sands et al., 2006), MEFs (Sands et al., 2006) and the U937 myeloid precursor 

cell line (Mullan and Palmer, unpublished observations). It is thus anticipated that 

elevation of cAMP in the DU145, LNCaP and PZ-HPV-7 cell lines will attenuate IL-6-
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induced activation of STAT3 which could be of relevance when considering the key role 

this signalling pathway plays in PCa development and progression. 

 

In order to investigate the role of cAMP elevation in attenuation of intracellular signalling 

downstream of the IL-6R, DU145, LNCaP and PZ-HPV-7 cells were treated with the AC-

activating compound Fsk for 5 h prior to stimulation with rhuIL-6. In all three cell lines, 

pre-treatment with Fsk resulted in a decrease in IL-6-induced increases in pTyr705STAT3 

via pathways requiring activation of both PKA and EPAC. In DU145 and PZ-HPV-7 cells, 

the level of decrease in STAT3 phosphorylation was correlated with increases in detected 

SOCS3 expression, indicating that SOCS3 is required for this phenomenon. In the case of 

LNCaP cells, cAMP elevation did not induce changes in SOCS3 expression, suggesting 

that a different mechanism is responsible for cAMP-mediated attenuation of IL-6 

signalling in these cells. 

7.2 Results 

7.2.1 Effect of Fsk on IL-6-mediated activation of STAT3 

Prostate epithelial cells were seeded into 6-well tissue culture dishes as described 

previously and allowed to grow to appropriate confluence. Cells were then stimulated with 

either vehicle (0.1 % (v/v) EtOH) or10 µM Fsk for 5 h as this has previously been 

demonstrated to induce optimal expression of SOCS3 in HUVECs. Cells were then 

stimulated with 10 ng/ml rhuIL-6 for 0 – 240 min in order to induce activation of STAT3. 

It has previously been demonstrated that expression of the A2A adenosine (Ado) receptor 

(A2AAR) in HUVECs can induce a decrease in STAT3 activation via promoting the 

polyubiquitination and subsequent proteasomal degradation of activated STAT proteins 

(Safhi and Palmer, submitted for publication). As the A2AAR is a Gαs-coupled receptor, 

activation of the receptor will stimulate AC activity and so promote elevation of 

intracellular cAMP. It is thus possible that treatment with Fsk could mimic these events 

and so promote degradation of activated STAT3. Sustained stimulation with rhuIL-6 was 

undertaken in order to exclude the possibility that any effects of cAMP elevation on 

STAT3 activation did not occur due to degradation of STAT3. 

 

Treatment of DU145, LNCaP and PZ-HPV-7 cells with 10 ng/ml rhuIL-6 resulted in an 

increase in pTyr705STAT3 in both vehicle and Fsk-stimulated cells (Fig. 7.1 – Fig. 7.3). 

However, pre-treatment with 10 µM Fsk significantly inhibited IL-6-mediated increases in 

pTyr705STAT3 in all three cell types (Fig. 7.1 – Fig. 7.3, * =  p < 0.05 vs. vehicle-treated 
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Fig. 7.1: Inhibition of IL-6-induced STAT3 activati on in DU145 prostate 

epithelial cells 

DU145 cells were seeded into 6-well plates and stimulated with either vehicle (0.1 % (v/v) 

EtOH) or 10 µM Fsk for 5 h prior to stimulation with 10 ng/ml rhuIL-6 for 0 –240 min. 

Cell lysates were fractionated via SDS-PAGE and STAT3 activation assessed via 

immunoblotting for pTyr705STAT3. Results are shown as mean values ± SEM for cells 

pre-incubated with vehicle (solid line) or 10 µM Fsk (dashed line) with blots 

representative for n = 3 separate experiments. * = p < 0.05 vs. vehicle-treated cells 
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Fig. 7.2: Inhibition of IL-6-induced STAT3 activati on in LNCaP 

prostate epithelial cells 

LNCaP cells were seeded into 6-well plates and stimulated with either vehicle 

(0.1 % (v/v) EtOH) or 10 µM Fsk for 5 h prior to stimulation with 10 ng/ml 

rhuIL-6 for 0 –240 min. Cell lysates were fractionated via SDS-PAGE and 

STAT3 activation assessed via immunoblotting for pTyr705STAT3. Results are 

shown as mean values ± SEM for cells pre-incubated with vehicle (solid line) or 

10 µM Fsk (dashed line) with blots representative for n = 3 separate 

experiments. * = p < 0.05 vs. vehicle, ** = p < 0.01 vs. vehicle 
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Fig. 7.3: Inhibition of IL-6-induced STAT3 activati on in PZ-

HPV-7 prostate epithelial cells 

PZ-HPV-7 cells were seeded into 6-well plates and stimulated with either 

vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 5 h prior to stimulation with 10 

ng/ml rhuIL-6 for 0 –240 min. Cell lysates were fractionated via SDS-PAGE 

and STAT3 activation assessed via immunoblotting for pTyr705STAT3. 

Results are shown as mean values ± SEM for cells pre-incubated with vehicle 

(solid line) or 10 µM Fsk (dashed line) with blots representative for n = 3 

separate experiments. * = p < 0.05 vs. vehicle-treated cells, ** = p < 0.01 vs. 

vehicle-treated cells 



124 

cells, ** =  p < 0.01 vs. vehicle-treated cells), indicating that cAMP elevation can inhibit 

STAT3 activation. The ability of Fsk to inhibit IL-6-induced activation of STAT3 was not 

correlated with a change in total STAT3 protein levels in any of the cell types tested (Fig. 

7.1 – Fig. 7.3), suggesting that degradation of activated STAT3 is not responsible for this 

phenomenon. The effect of cAMP elevation on IL-6-inudced STAT3 phosphorylation was 

more subtle in PZ-HPV-7 cells in comparison to the tumour-derived cell lines, suggesting a 

potential mechanism by which to selectively inhibit tumour cell growth. Given previous 

observations in HUVECs, it is possible that the ability of Fsk to attenuate IL-6-induced 

activation of STAT3 in prostate epithelial cells is due to induction of SOCS3 expression. 

7.2.2 The role of de novo protein synthesis in Fsk-mediated 

attenuation of STAT3 activation 

It was previously demonstrated that the ability of cAMP elevation to attenuate IL-6/sIL-

6Rα-mediated activation of STAT3 in HUVECs was associated with an increase in 

SOCS3 mRNA (Sands et al., 2006), indicative of a requirement for de novo transcription 

and concomitant protein synthesis. In order to assess whether de novo protein synthesis 

was important in Fsk-mediated attenuation of STAT3 activation in prostate epithelial cells, 

DU145, LNCaP and PZ-HPV-7 cells were seeded as described previously and incubated 

with either vehicle (1 % (v/v) DMSO or 100 µM emetine dihydrochloride, an inhibitor of 

protein translation (Grollman, 1968), for 2 h prior to incubation with either vehicle (0.1 % 

(v/v) EtOH) or 10 µM Fsk for 5 h. Cells were then stimulated with 10 ng/ml rhuIL-6 for 15 

min prior to determination of pTyr705STAT3 levels via immunoblotting.  

 

In all three cell types, treatment with rhuIL-6 resulted in an increase in pTyr705STAT3, 

indicating activation of STAT3. In keeping with previous data, treatment with Fsk 

attenuated increases in pTyr705STAT3, supporting the hypothesis that cAMP elevation can 

inhibit STAT3 activation (Fig. 7.4 – Fig. 7.6, *** =  p < 0.001 vs. IL-6, ### = p < 0.001 

emetine vs. vehicle pre-treatment). Pre-incubation of prostate epithelial cells with 100 µM 

emetine had no effect on basal levels of tyrosine phosphorylated STAT3 but inhibited IL-

6-induced activation of STAT3 in both the presence and absence of Fsk (Fig. 7.4 – 7.6 *** 

= p < 0.001 vs. IL-6, # = p < 0.05 emetine vs. vehicle pre-treatment ## = p < 0.01 emetine 

vs. vehicle pre-treatment, ### = p < 0.001 emetine vs. vehicle pre-treatment). It was 

therefore not possible to assess whether de novo protein synthesis was required for the 

ability of Fsk to attenuate IL-6-induced increases in pTyr705STAT3. 
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To investigate the mechanisms responsible for emetine-mediated attenuation of STAT3 

activation, the expression of JAK1 and JAK2 was determined. Of all the receptor-

associated signalling components involved in IL-6/gp130 signalling, JAKs undergo the 

most rapid turnover (Siewert et al., 1999). Thus it is likely that the effect of emetine on IL-

6-induced STAT3 phosphorylation arises due to blockade of de novo JAK synthesis. As 

expected, in DU145 and PZ-HPV-7 cells, treatment with emetine resulted in a decrease in 

JAK1 expression in comparison to cells incubated with vehicle (Fig. 7.4 and Fig. 7.6 # = p 

< 0.05 emetine vs. vehicle pre-treatment ## = p < 0.01 emetine vs. vehicle pre-treatment, 

### = p < 0.001 emetine vs. vehicle pre-treatment). The decrease in JAK1 expression in 

PZ-HPV-7 cells was statistically significant (Fig. 7.6 # = p < 0.05 emetine vs. vehicle pre-

treatment ## = p < 0.01 emetine vs. vehicle pre-treatment, ### = p < 0.001 emetine vs. 

vehicle pre-treatment), indicating that emetine pre-treatment inhibits IL-6-mediated 

activation of STAT3 via decreasing JAK1 expression. In DU145 cells, a trend towards 

decreased JAK1 levels following pre-incubation with emetine was displayed but this was 

not found to be statistically significant. As JAK1 is constitutively associated with gp130, it 

is possible that, particularly in PZ-HPV-7 cells, JAK1 is the major JAK associated with 

STAT3 activation following IL-6/memIL-6R interaction. In contrast to DU145 and PZ-

HPV-7 cells, LNCaP cells did not express JAK1 and thus expression of JAK2 in these cells 

was determined. Similar to results obtained in DU145 cells regarding JAK1 expression, 

treatment with 100 µM emetine resulted in a trend towards decreased JAK2 expression in 

LNCaP cell but this was not statistically significant (Fig. 7.5, # = p < 0.05 emetine vs. 

vehicle incubation, ## = p < 0.01 emetine vs. vehicle incubation). Thus these results are 

only suggestive that decreases in JAK2 expression are responsible for the decrease in IL-6-

mediated tyrosine phosphorylation of STAT3 in LNCaP cells. 

 

The decrease in JAK expression in prostate epithelial cells treated with emetine is highly 

suggestive that emetine is efficacious in this system. However, in order to truly ascertain 

whether emetine was blocking de novo protein synthesis, LNCaP cells were pre-incubated 

with concentrations of emetine ranging from 0 – 1000 µM for 2 h at 37oC, 5 % (v/v) CO2. 

Cells were then incubated with 3H-Leu for 3 h at 37oC, 5 % (v/v) CO2 and harvested as 

described in Chapter 5. Successful radioisotope incorporation was assessed via liquid 

scintillation counting of TCA-precipitated proteins. Treatment of LNCaP cells with 

emetine concentrations in excess of 1 µM resulted in a concentration-dependent decrease 

in 3H-Leu incorporation, indicative of a decrease in de novo protein synthesis (Fig. 7.7). 

These results demonstrate that emetine is efficacious in this system and that 100 µM is 

sufficient to block protein synthesis. Therefore, the effect of emetine on STAT3 activation  
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Fig. 7.4: Effect of emetine on Fsk-induced attenuat ion of STAT3 

activation in DU145 cells 

DU145 cells were seeded into 6-well tissue culture dishes and grown to 80 % 

confluence as previously described. Cells were then incubated with either vehicle 

(1 % (v/v) DMSO) or 100 µM emetine (Em) for 2 h at 37oC, 5 % (v/v) CO2 prior to 

incubation with either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 5 h. LNCaP 

cells were then stimulated with 10 ng/ml rhuIL-6 for 15 min and effects on 

pTyr705STAT3 assessed via immunoblotting (panels A and B). Effects on JAK1 

and JAK2 expression were also investigated (panels A, C and D). Results shown 

represent mean values ± SEM for n = 3 separate experiments with blots 

representative of n = 3 experiments. *** = p < 0.001 vs. IL-6, # = p < 0.05 emetine 

vs. vehicle incubation ### = p < 0.001 emetine vs. vehicle incubation 
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Fig. 7.5: Effect of emetine on Fsk-induced attenuat ion of STAT3 

activation in LNCaP cells 

LNCaP cells were seeded into 6-well tissue culture dishes and grown to 60 –70 % 

confluence as previously described. Cells were then incubated with either vehicle 

(1 % (v/v) DMSO) or 100 µM emetine (Em) for 2 h at 37oC, 5 % (v/v) CO2 prior 

to incubation with either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 5 h. 

LNCaP cells were then stimulated with 10 ng/ml rhuIL-6 for 15 min and effects 

on pTyr705STAT3 assessed via immunoblotting (panels A and B). Effects on 

JAK1 and JAK2 expression were also investigated (panels A and C) with PZ-

HPV-7 cell lysate (PZ) included as a positive control for JAK1 antibody 

reactivity. Results shown represent mean values ± SEM for n = 3 separate 

experiments with blots representative of n = 3 experiments. *** = p < 0.001 vs. 

IL-6, ### = p < 0.001 emetine vs. vehicle incubation 
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Fig. 7.6: Effect of emetine on Fsk-induced attenuat ion of STAT3 

activation in PZ-HPV-7 cells 

PZ-HPV-7 cells were seeded into 6-well tissue culture dishes and grown to 60 –

70 % confluence as previously described. Cells were then incubated with either 

vehicle (1 % (v/v) DMSO) or 100 µM emetine (Em) for 2 h at 37oC, 5 % (v/v) 

CO2 prior to incubation with either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 

5 h. PZ-HPV-7  cells were then stimulated with 10 ng/ml rhuIL-6 for 15 min and 

effects on pTyr705STAT3 assessed via immunoblotting (panels A and B). Effects 

on JAK1 and JAK2 expression were also investigated (panels A and C). Results 

shown represent mean values ± SEM for n = 3 separate experiments with blots 

representative of n = 3 experiments. *** = p < 0.001 vs. IL-6, # = p < 0.05 

emetine vs. vehicle incubation, ## = p < 0.01 emetine vs. vehicle incubation, ### 

= p < 0.001 emetine vs. vehicle incubation 
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Fig. 7.7: Efficacy of emetine in LNCaP cells 

LNCaP cells were seeded as described previously and incubated with 0 – 1000 µM 

emetine for 2 h at 37oC, 5 % (v/v) CO2 prior to labelling of de novo synthesis 

peptides with 2 kBq/well 3H-Leu for 3 h at 37oC, 5 % (v/v) CO2. Cells were 

harvested by washing in 5 % (w/v) TCA, followed by washing in ice-cold dH2O. 

LNCaP cells were lysed into 1 M NaOH and radioisotope incorporation assessed 

via liquid scintillation counting. Results shown are mean values ± SEM for n = 2 

separate experiments 
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in prostate epithelial cells is likely due to blockade of translation and, most notably, 

blockade of JAK synthesis. 

7.2.3 Contribution of PKA and EPAC to Fsk-mediated attenuation of 

STAT3 activation 

It has previously been demonstrated that the ability of cAMP elevation to attenuate Il-

6/STAT3 signalling in HUVECs is mediated by EPAC-induced expression of SOCS3 

(Sands et al., 2006). To assess whether the ability of cAMP to attenuate STAT3 activation 

in prostate epithelial cells was PKA-dependent, DU145, LNCaP and PZ-HPV-7 cells were 

incubated with either vehicle (0.1 % (v/v) DMSO) or 10 nM of the PKA-selective inhibitor 

myrPKI14-22 for 1 h prior to stimulation with either vehicle (0.1 % (v/v) EtOH) or 10 µM 

Fsk for 5 h. In order to assess the role of EPAC in this phenomenon, cells were incubated 

in parallel with 200 µM of the EPAC-selective agonist 8Me-pCPT-cAMP for 5 h 

(Rehmann et al., 2003). Cells were then stimulated with either vehicle (0.1 % (v/v) PBS) 

or 10 ng/ml rhuIL-6 for 15 min to induce increases in pTyr705STAT3. In order to assess 

efficacy of myrPKI14-22, cells were incubated in the presence of vehicle or the inhibitor as 

described above prior to stimulation with 10 µM Fsk to induce an increase in pSer133CREB 

as an indicator of PKA activation. The efficacy of 8Me-pCPT-cAMP was determined by 

incubating HUVECs with 200 µM 8Me-pCPT-cAMP for 5 h in the presence of 6 µM 

MG132 and subsequent immunoblotting for SOCS3 expression (Sands et al., 2006). 

 

In DU145 cells, treatment with rhuIL-6 resulted in increased levels of pTyr705STAT3 

which was inhibited by pre-incubation with Fsk as determined in previous experiments 

(Fig. 7.8, ** = p < 0.01 vs. IL-6). Interestingly, treatment with myrPKI14-22 alone also 

resulted in a significant decrease in IL-6-induced activation of STAT3 (Fig. 7.8, * = p < 

0.05 vs. IL-6), suggesting that PKA function is required for optimal activation of STAT3 

downstream of the IL-6R complex. Combined treatment with myrPKI14-22 and Fsk resulted 

in an increase in IL-6-mediated Tyr705 phosphorylation of STAT3 but this was not found to 

be statistically significant. Thus, it is currently unclear whether PKA activation plays a 

significant role in Fsk-mediated attenuation of STAT3 activation in DU145 cells. In 

contrast, treatment with 200 µM 8Me-pCPT-cAMP resulted in attenuation of STAT3 

activation (Fig. 7.8, *** = p < 0.001 vs. IL-6), suggesting that EPAC activation is 

important in this phenomenon. The EPAC-selective agonist was shown to be efficacious as 

expression of SOCS3 in HUVECs, an EPAC-mediated event (Sands et al., 2006), was 

detected. 
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Fig. 7.8: The contribution of PKA and EPAC to Fsk-m ediated 

attenuation of STAT3 activation in DU145 cells 

DU145 cells were seeded as previously described and incubated with either vehicle (0.1 % 

(v/v) DMSO) or 10 nM myrPKI14-22 for 1 h prior to incubation with vehicle (0.1 % (v/v) 

EtOH) or 10 µM Fsk for 5 h. Cells were incubated in the presence of 100 µM 8Me-pCPT-

cAMP for 5 h to induce activation of EPAC. Treatment with 10 ng/ml rhuIL-6 was used to 

induce increases in pTyr705STAT3. Efficacy of myrPKI14-22 was assessed via 15 min 

incubation with 10 µM Fsk to induce increases in pSer133CREB (indicated by ++ ) whilst 

HUVECs incubated for 5 h with 100 µM 8Me-pCPT-cAMP and 6 µM MG132 (H) to 

induce SOCS3 expression served as a positive control for 8Me-pCPT-cAMP efficacy. 

Results and blots shown are representative of n = 3 separate experiments with values 

displayed as mean ± SEM. * = p < 0.05 vs. IL-6, ** = p < 0.01 vs. IL-6, *** = p < 0.001 

vs. IL-6 
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Fig. 7.9: The contribution of PKA and EPAC to Fsk-m ediated attenuation 

of STAT3 activation in LNCaP cells 

LNCaP cells were seeded as previously described and incubated with either vehicle (0.1 % 

(v/v) DMSO) or 10 nM myrPKI14-22 for 1 h prior to incubation with vehicle (0.1 % (v/v) 

EtOH) or 10 µM Fsk for 5 h. Cells were incubated in the presence of 100 µM 8Me-pCPT-

cAMP for 5 h to induce activation of EPAC. Treatment with 10 ng/ml rhuIL-6 was used to 

induce increases in pTyr705STAT3. Efficacy of myrPKI14-22 was assessed via 15 min 

incubation with 10 µM Fsk to induce increases in pSer133CREB (indicated by ++ ) whilst 

HUVECs incubated for 5 h with 100 µM 8Me-pCPT-cAMP and 6 µM MG132 (H) to 

induce SOCS3 expression served as a positive control for 8Me-pCPT-cAMP efficacy. 

Results and blots shown are representative of n = 3 separate experiments with values 

displayed as mean ± SEM. ** = p < 0.01 vs. IL-6, *** = p < 0.001 vs. IL-6 
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Fig. 7.10: The contribution of PKA and EPAC to Fsk- mediated 

attenuation of STAT3 activation in PZ-HPV-7 cells 

PZ-HPV-7 cells were seeded as previously described and incubated with either vehicle (0.1 

% (v/v) DMSO) or 10 nM myrPKI14-22 for 1 h prior to incubation with vehicle (0.1 % (v/v) 

EtOH) or 10 µM Fsk for 5 h. Cells were incubated in the presence of 100 µM 8Me-pCPT-

cAMP for 5 h to induce activation of EPAC. Treatment with 10 ng/ml rhuIL-6 was used to 

induce increases in pTyr705STAT3. Efficacy of myrPKI14-22 was assessed via 15 min 

incubation with 10 µM Fsk to induce increases in pSer133CREB (indicated by ++ ) whilst 

HUVECs incubated for 5 h with 100 µM 8Me-pCPT-cAMP and 6 µM MG132 (H) to 

induce SOCS3 expression served as a positive control for 8Me-pCPT-cAMP efficacy. 

Results shown are representative of n = 3 separate experiments with values displayed as 

mean ± SEM. * = p < 0.05 vs. IL-6, ** = p < 0.01 vs. IL-6, *** = p < 0.001 vs. IL-6 
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In LNCaP cells, similar results were obtained where treatment with Fsk resulting in 

attenuation of IL-6-induced STAT3 activation (Fig. 7.9, ** = p < 0.01 vs. IL-6). This effect 

could be mimicked by incubation with myrPKI14-22, suggesting a role for PKA in STAT3 

activation in these cells (Fig. 7.9, ** = p < 0.01 vs. IL-6). Furthermore, combined treatment 

with Fsk and myrPKI14-22 resulted in an increase in IL-6-induced tyrosine phosphorylation 

of STAT3, although this was not statistically significant, as also observed in DU145 cells. 

Incubation with 8Me-pCPT-cAMP partially recapitulated the effect of Fsk treatment (Fig. 

7.9, *** = p < 0.001 vs. IL-6), again suggesting that the ability of cAMP elevation to 

inhibit IL-6-mediated activation of STAT3 requires EPAC activation. These results were 

also repeated in PZ-HPV-7 cells (Fig. 7.10, * = p < 0.05 vs. IL-6, ** = p < 0.01 vs. IL-6, 

*** = p < 0.001 vs. IL-6), indicating that there is no difference between the different PCa 

cell lines regarding the role of PKA and EPAC in cAMP-mediated attenuation of STAT3 

activation. 

7.2.4 Fsk-mediated decreases in IL-6-induced STAT3 activation 

correlate with increases in SOCS3 

In previous studies, the ability of cAMP elevation to attenuate STAT3 activation has been 

shown to be mediated by induction of SOCS3 expression (Sands et al., 2006). To assess 

whether this was the case in prostate epithelial cells, cells were incubated for 5 h at 37oC 

with either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk in the presence or absence of 6 µM of 

the proteasome inhibitor MG132. MG132 was included as SOCS3 can be 

polyubiquitinated on Lys6 and targeted for degradation (Sasaki et al., 2003). Thus blockade 

of the proteasome should enable accumulation of SOCS3 protein and detection of changes 

in protein expression via immunoblotting. Following incubation with Fsk and/or MG132, 

prostate epithelial cells were stimulated with 10 ng/ml rhuIL-6 for 15 min prior to 

assessment of pTyr705STAT3 levels via immunoblotting. 

 

Treatment of prostate epithelial cells with either Fsk, MG132 or a combination Fsk and 

MG132 did not alter basal levels of pTyr705STAT3 in any of the cell lines tested, indicating 

that any effects on STAT3 activation are due to effects on IL-6 signalling and not non-

selective effects. 

 

In DU145 cells, treatment with Fsk alone resulted in a decrease in IL-6-induced increases 

in pTyr705STAT3 (Fig. 7.11, panels A and B, ** = p < 0.01 vs. IL-6) which was enhanced 

in the presence of MG132 (Fig. 7.11, panels A and B, *** = p < 0.001 vs. IL-6). 

Interestingly, treatment with MG132 alone also significantly attenuated activation of 
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STAT3 in response to exogenous rhuIL-6 (Fig. 7.11, panels A and B, *** = p < 0.001 vs. 

IL-6). The degree to which STAT3 activation was inhibited in DU145 cells following 

treatment with Fsk and/or MG132 was associated with an increase in detected levels of 

SOCS3 protein. Treatment with Fsk alone resulted in an increase in detected SOCS3 in the 

presence and absence of rhuIL-6 which was enhanced when cells were co-incubated with 

MG132 (Fig. 7.11, panels A and C, * = p < 0.05 vs. IL-6, *** = p < 0.001 vs. vehicle). 

Interestingly, pre-treatment with MG132 alone resulted in a similar increase in SOCS3 

levels as that seen following co-incubation with Fsk and MG132 (Fig. 7.11, panels A and 

C, * = p < 0.05 vs. IL-6, *** = p < 0.001 vs. vehicle). These results suggest that the ability 

of Fsk and MG132 to attenuate STAT3 activation in DU145 cells may be due to a 

combined stabilisation of endogenous SOCS3 and promotion of de novo synthesis arising 

from cAMP elevation.  

 

Treatment of LNCaP cells with rhuIL-6 induced a robust increase in pTyr705STAT3 which 

was attenuated following MG132 or combined Fsk and MG132 pre-treatment (Fig. 7.12, 

** = p < 0.01 vs. vehicle). Treatment with Fsk alone showed a tendency to decrease IL-6-

induced pTyr705STAT3 but this was not found to be statistically significant, suggesting that 

MG132 is potentiating this effect. Of particular interest is the observation that no SOCS3 

expression can be detected in LNCaP cells, even after combined Fsk and MG132 treatment 

which was able to induce SOCS3 expression in HUVECs (Fig. 7.12). These results suggest 

that the ability of Fsk and MG132 to attenuate STAT3 activation in LNCaP cells is not 

mediated via induction of SOCS3 and that another pathway is required for this 

phenomenon. 

 

In PZ-HPV-7 cells, similar results were obtained, whereby treatment with Fsk resulted in a 

decrease in IL-6-mediated pTyr705STAT3 which was enhanced in the presence of MG132 

(Fig. 7.13, panels A and B, *** = p < 0.001 vs. vehicle). Comparable to results obtained in 

DU145 cells, treatment of PZ-HPV-7 cells with MG132 alone resulted in a decrease in 

STAT3 activation (Fig. 7.13, panels A and B, *** = p < 0.001 vs. vehicle). Treatment of 

PZ-HPV-7 cells with Fsk alone did not result in a detectable increase in SOCS3 

expression, however combined treatment of PZ-HPV-7 cells with Fsk and MG132 resulted 

in a significant increase in detected SOCS3 levels (Fig. 7.13, panels A and C, *** = p < 

0.001 vs. vehicle). Incubation of PZ-HPV-7 cells with MG132 alone did not result in a 

significant increase in SOCS3 levels, suggesting that Fsk treatment is required for this 

phenomenon. These results support the hypothesis that cAMP elevation induces SOCS3 

expression in PZ-HPV-7 cells. 
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Fig. 7.11: Fsk-mediated attenuation of STAT3 activa tion in 

DU145 cells is correlated with an accumulation of S OCS3 

protein 

DU145 cells were seeded as previously described and incubated with either 

vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 5 h in the presence or absence of 6 

µM of the proteasomal inhibitor MG132. Cells were stimulated with 10 ng/ml 

rhuIL-6 for 15 min to induce activation of STAT3. Following SDS-PAGE 

fractionation, the effect of Fsk and MG132 on detected levels of pTyr705STAT3 

(panels A and B) and SOCS3 (panels A and C) was assessed via immunoblotting. 

Results shown are representative of n = 3 experiments with values corresponding 

to mean values ± SEM. * = p < 0.05, ** = p < 0.01 and *** = p < 0.001 vs. IL-6 

(panel B) or vehicle (panel C) 
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Fig. 7.12: Fsk-mediated attenuation of STAT3 activa tion in LNCaP cells 

is not correlated with an accumulation of SOCS3 pro tein 

LNCaP cells were seeded as previously described and incubated with either vehicle (0.1 % 

(v/v) EtOH) or 10 µM Fsk for 5 h in the presence or absence of 6 µM of the proteasomal 

inhibitor MG132. Cells were stimulated with 10 ng/ml rhuIL-6 for 15 min to induce 

activation of STAT3. Following SDS-PAGE fractionation, the effect of Fsk and MG132 

on detected levels of pTyr705STAT3 and SOCS3 was assessed via immunoblotting. PZ-

HPV-7 cells incubated with 10 µM Fsk and 6 µM MG132 (PZ) for 5 h were included as a 

positive control for SOCS3 antibody reactivity. Results shown are representative of n = 3 

experiments with values corresponding to mean values ± SEM. * = p < 0.05 vs. IL-6, ** = 

p < 0.01 vs. IL-6 and *** = p < 0.001 vs. IL-6  
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Fig. 7.13: Fsk-mediated attenuation of STAT3 activa tion in PZ-HPV-

7 cells is correlated with an accumulation of SOCS3  protein 

PZ-HPV-7 cells were seeded as previously described and incubated with either 

vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 5 h in the presence or absence of 6 µM 

of the proteasomal inhibitor MG132. Cells were stimulated with 10 ng/ml rhuIL-6 for 

15 min to induce activation of STAT3. Following SDS-PAGE fractionation, the effect 

of Fsk and MG132 on detected levels of pTyr705STAT3 (panel A and B) and SOCS3 

(panel A and C) was assessed via immunoblotting. Results shown are representative 

of n = 3 experiments with values corresponding to mean values ± SEM. *** = p < 

0.001 vs. IL-6 (panel B) or vehicle (panel C) 
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7.3 Discussion 
The ability of cAMP to modulate cytokine signalling has been described in a number of 

systems. It has previously been demonstrated that cAMP elevation can attenuate 

inflammatory cytokine signalling in HUVECs, COS1 cells and MEFs via induction of 

SOCS3, an endogenous inhibitor of STAT signalling (Borland et al., 2009;Sands et al., 

2006). However, this phenomenon is not restricted to vascular endothelial cells although 

the mechanism of SOCS3 induction may differ between cell types. The IL-6 family 

member LIF plays an important role in signalling in the hypothalamo-pituitary-adrenal 

(HPA) axis with sustained LIF signalling being correlated with excessive glucocorticoid 

expression and subsequent immunosuppression which can promote tumour progression 

(Bousquet et al., 2001). Treatment of the AtT20 pituitary adenoma cell line with cAMP- 

elevating agonists or cAMP analogues additively increased LIF-induced socs3 mRNA 

levels. Unlike HUVECs in which SOCS3 expression following elevation of intracellular 

cAMP requires EPAC (Sands et al., 2006), cAMP-mediated induction of SOCS3 in AtT20 

cells occurred via a mechanism which required PKA activation (Bousquet et al., 2001). In 

3T3-L1 adipocytes, treatment with isoproterenol promoted increases in socs3 mRNA via a 

pathway dependent on β-adrenergic receptor and subsequent AC activation (Fasshauer et 

al., 2002). Such studies support the hypothesis that cAMP elevation is an important 

mechanism by which to induce SOCS3 expression and so inhibit specific cytokine receptor 

signalling. 

 

In all three cell lines used in this study, it was found that Fsk-mediated elevation of 

intracellular cAMP resulted in inhibition of IL-6 mediated activation of STAT3. These 

results are consistent with previous data identifying cAMP- elevating agents or analogues 

as important regulators of inflammatory signalling. Increases in levels of SOCS3 protein in 

DU145 and PZ-HPV-7 cells were correlated with a decrease in pTyr705STAT3, suggesting 

that SOCS3 accumulation was responsible for the ability of Fsk and MG132 to attenuate 

IL-6-mediated activation of STAT3. However, it must be noted, that whilst these results 

strongly suggest that SOCS3 is responsible for the cAMP-mediated attenuation of STAT3 

activation, they do not demonstrate that SOCS3 is responsible for this phenomenon. 

Selective knockdown of SOCS3 expression via selective siRNA or construction of stable 

shRNA-expressing cell lines would enable the essential role of SOCS3 in this phenomenon 

to be demonstrated. Preliminary attempts to knockdown SOCS3 expression in the prostate 

epithelial cell lines have been unsuccessful due to cell death and lack of specific 

knockdown (data not shown). It is possible that transfection of these cells with a plasmid 
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encoding a suitable shRNA may be a suitable alternative strategy if future siRNA attempts 

were ineffective (see section 11.2). 

 

Whilst cAMP-induced attenuation of IL-6-mediated STAT3 activation was correlated with 

increases in SOCS3 expression in both DU145 and PZ-HPV-7 cells, no detectable levels of 

SOCS3 expression could be observed in LNCaP cells. Due to the important role of STAT3 

activation in various malignancies (Hodge et al., 2005), it might be expected that 

endogenous inhibitors of STAT3 might be inactivated in tumour-derived cell lines in order 

to promote tumour growth and disease progression. Indeed, hypermethylation of the 

SOCS1 promoter has been shown to prevent SOCS1 expression in HCC (Miyoshi et al., 

2004). Similarly, hypermethylation of both the SOCS1 and SOCS3 promoters has been 

described in head and neck carcinoma and introduction of wild-type SOCS3 into cancer 

cells is correlated with an increase in cellular apoptosis and inhibition of cell growth 

(Weber et al., 2005). It is possible that the SOCS3 promoter is hypermethylated in LNCaP 

cells and that treatment with demethylating agents such as 5’-aza-2’-deoxycytidine may 

restore SOCS3 expression (Wilson & Jones, 1983). 

 

Interestingly, it is apparent that the conditions in which LNCaP cells are cultured may play 

a role in SOCS3 expression. In LNCaP cells cultured in the absence of IL-6 in the culture 

medium (LNCaP-IL-6-) , no basal detection of SOCS3 expression could be detected 

(Bellezza et al., 2006). However, establishment of the IL-6 refractory cell line, LNCaP-IL-

6+ resulted in detectable levels of basal SOCS3 mRNA and protein, although the 

SOCS3/GAPDH ratio varied greatly between individual experiments (Bellezza et al., 

2006). The LNCaP-IL-6+ cell line is generated via culture of LNCaP cells for ≥20 passages 

in the presence of 5 ng/ml rhuIL-6. In LNCaP cells not cultured in the presence of IL-6 the 

cytokine inhibits cell growth at this concentration (Hobisch et al., 2001). However, 

LNCaP-IL-6+ cells display higher basal proliferation rates than LNCaP-IL-6- cells and 

decreased binding of IL-6, which may promote resistant to the growth inhibitory effects of 

IL-6 in LNCaP-IL-6- cells (Hobisch et al., 2001). Of particular note in the study by 

Bellleza et al (2001) is the observation that treatment with rhuIL-6 did not lead to increases 

in SOCS3 expression in either LNCaP-IL-6- or LNCaP-IL-6+ cells. As IL-6/STAT3-

induced SOCS3 expression is well established as a classical negative-feedback loop for 

STAT3 inactivation (Starr et al., 1997), these results suggest that LNCaP cells may display 

general defects regarding induction of SOCS3. In LNCaP-IL-6+ cells, treatment with 

rhuIL-6 did not result in an increase in SOCS3 expression above that seen basally whilst in 

the LNCaP-IL-6- cell line, no basal or IL-6-induced SOCS3 expression was noted 
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(Bellezza et al., 2006). The inability of a classical inducer of SOCS3 expression to 

promote an increase in protein expression in the LNCaP-IL-6- cells supports the 

observation in the current study that cAMP elevation, potentially another common inducer 

of SOCS3 expression (Barclay et al., 2007;Borland et al., 2009;Bousquet et al., 

2001;Fasshauer et al., 2002;Sands et al., 2006;Yarwood et al., 2008), failed to induce 

SOCS3 and supports the hypothesis that induction of SOCS3 expression is defective in 

these cells. 

 

It might be argued that, as SOCS3 expression can be induced following long-term 

treatment with rhuIL-6, the inability of cAMP elevation to induce increases in SOCS3 

expression in LNCaP cells is due to defects in cAMP-responsive elements in the SOCS3 

promoter of these cells. However, it has been demonstrated that treatment of LNCaP-IL-6+ 

cells with dibutryl-cAMP resulted in a concentration-dependent increase in detected levels 

of SOCS3 protein (Bellezza et al., 2006), indicative that promoter sequences responsive to 

cAMP-regulated transcription factors are functional in these cells. However, dibutryl-

cAMP-induced increases in SOCS3 expression in LNCaP-IL-6+ cells were analysed at 48 h 

and 72 h post-stimulation with the cAMP analogue (Bellezza et al., 2006) as opposed to 

the 5 h post-stimulation used in the current study. Whilst expression of SOCS3 could be 

detected in DU145 and PZ-HPV-7 cells at this time point, signalling differences between 

the three cell types used might potentially result in temporal variations in cAMP-induced 

SOCS3 expression. It is to be noted that the ability of dibutryl-cAMP to induce SOCS3 

expression was only investigated in LNCaP-IL-6+ cells and not in LNCaP-IL-6- or wild-

type LNCaP cells (Bellezza et al., 2006). It is possible that prolonged exposure of LNCaP 

cells to IL-6 might result in alterations of the SOCS3 promoter rendering it more receptive 

to cAMP-mediated activation. Interestingly, chronic IL-6 signalling has been implicated in 

systemic lupus erythematosus as a mediator of promoter hypomethylation via inhibition of 

DNA methyltransferase expression (Garaud et al., 2009). It is thus possible that chronic 

exposure of LNCaP cells to IL-6 during the production of the LNCaP-IL-6+ cells may have 

altered the methylation status of the SOCS3 promoter and subsequently rendered it 

sensitive to cAMP elevation as observed by Bellezza et al (2001). 

 

It is currently unclear as to the mechanism by which cAMP elevation inhibits IL-6-

mediated activation of STAT3 in LNCaP cells. Published data predominantly ascribes 

cAMP-mediated attenuation of cytokine signalling to induction of SOCS3 expression 

(Borland et al., 2009;Sands et al., 2006;Yarwood et al., 2008). It is possible that another 

SOCS family member is responsible for this phenomenon in LNCaP cells. SOCS1 
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expression has been described in a number of PCa cell lines including parental LNCaP 

cells obtained from the American Type Culture Collection as used in this study. 

Furthermore, unlike SOCS3 expression, treatment of LNCaP-IL-6- cells with rhuIL-6 

results in an increase in detected SOCS1 protein and is associated with growth inhibition of 

these cells (Neuwirt et al., 2009). Although the authors did not investigate the effect of 

SOCS1 expression on IL-6-mediated activation of STAT3, it has previously been 

demonstrated that over-expression of SOCS1 can inhibit STAT3 activation downstream of 

gp130 (Schmitz et al., 2000). Thus, it is possible that SOCS1 rather than SOCS3 mediates 

the inhibitory effect of cAMP elevation on IL-6-mediated STAT3 activation in LNCaP 

cells. 

 

An interesting result from this experiment was the observation that treatment of all three 

prostate epithelial cell lines with the PKA-selective inhibitor myrPKI14-22 resulted in a 

decrease in IL-6-induced activation of STAT3 in the absence of cAMP elevation. This was 

unexpected as cAMP elevation induces SOCS3 expression via activation of EPAC and, 

previous data in HUVECs has demonstrated that inhibition of PKA had no effect on the 

ability of IL-6 to induce tyrosine phosphorylation of STAT3 (Sands et al., 2006). 

However, it is possible that cell type-specific difference in cell signalling pathways may be 

responsible for the observed differences between HUVECs and the prostate epithelial cell 

lines used in this study. The results obtained in this study indicate that activation of PKA 

plays an important role in IL-6-mediated activation of STAT3. Whilst unanticipated, a role 

for PKA in cytokine-induced STAT activation is not without precedent. In the murine 

AML-12 hepatocyte cell line, treatment with TGF-β1 resulted in sustained increase in 

pTyr705STAT3 (Yang et al., 2006). However, either pre-treatment of AML-12 cells with 

the PKA-selective inhibitor H89 or vector-mediated expression of PKI in these cells 

resulted in attenuation of TGF-β1-induced STAT3 activation (Yang et al., 2006). These 

results corroborate those from the current study which suggest that PKA activation can 

potentiate tyrosine phosphorylation of STAT3 although the signalling pathway by which 

this is achieved is unknown. Results obtained in murine splenocytes demonstrate that PKA 

activation is required for histamine-induced activation of STAT1 downstream of Ca2+-

mediated activation of PKC (Sakhalkar et al., 2005). Interestingly, IL-6 was recently 

demonstrated to induce an increase in cytosolic Ca2+ concentration in the rat carotid body 

glomus (Fan et al., 2009). Similar results were observed in skeletal muscle cells where 

treatment with 20 ng/ml IL-6 promoted a transient increase in intracellular Ca2+ 

concentration (Weigert et al., 2007). It is possible that IL-6-mediated increases in Ca2+ 

may promote STAT3 activation in a similar manner to that observed following STAT1 
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activation downstream of histamine stimulation (Sakhalkar et al., 2005). As the latter 

observation has a requirement for PKA activation, cross-talk between an IL-6/Ca2+/PKC 

signalling pathway and PKA may potentially explain the requirement for this enzyme in 

sustained IL-6-mediated STAT3 induction. 

 

Whilst the effect of PKA inhibition on IL-6-mediated STAT3 activation in prostate 

epithelial cells was unexpected, the ability of the EPAC-selective agonist 8Me-pCPT-

cAMP to inhibit IL-6-induced STAT3 activation corroborates published data. In HUVECs, 

the ability of cAMP to inhibit IL-6-mediated STAT3 activation was mediated via EPAC 

activation (Sands et al., 2006). Similar results have been observed in COS1 cells (Borland 

et al., 2009), indicative that EPAC rather than PKA activation is required for cAMP-

induced SOCS3 expression. 

 

The results in this chapter indicate that cAMP elevation in DU145 and PZ-HPV-7 cells are 

mediated via induction of SOCS3 expression. However the pathways involved in this 

process have not yet been determined. Activation of ERK1/2 and EPAC are required for 

cAMP-mediated SOCS3 expression (Sands et al., 2006;Woolson et al., 2009) and, given 

the observation that selective EPAC activation can recapitulate the effect of cAMP in 

prostate epithelial cells, it is possible that similar pathways are important in SOCS3 

expression in prostate epithelial cells. Treatment with selective inhibitors of the ERK1/2 

pathway such as U0126 would help to elucidate the molecular pathways involved in 

SOCS3 induction in prostate epithelial cells. Blockade of protein translation inhibited IL-6-

induced STAT3 activation in the absence of cAMP elevation, most likely due to inhibition 

of JAK synthesis as these components of the IL-6 signalling proteins undergo more rapid 

turnover than STAT3 or SHP-2 (Siewert et al., 1999). Thus it has not been possible to 

determine whether de novo protein synthesis is required for the ability of cAMP to inhibit 

STAT3 phosphorylation. In other cell types, it has been demonstrated that cAMP elevation 

resulted in an increase in socs3 mRNA (Barclay et al., 2007;Sands et al., 2006). Analysis 

of socs3 mRNA expression following cAMP elevation via qRT-PCR would indicate 

whether cAMP elevation promotes an increase of SOCS3 at the transcriptional level.  

 

Whilst cAMP elevation appears to be a common mechanism by which to inhibit IL-6-

induced STAT3 activation in prostate epithelial cells, the mechanisms involved vary 

between cell type. The ability of cAMP to inhibit IL-6-mediated STAT3 activation has 

been described in a number of cell types, suggesting that it may represent a common 

mechanism by which to modulate IL-6 signalling. However, whilst cAMP elevation is 
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associated with protective effects in vascular endothelial cells via promotion of barrier 

function, the use of this intracellular signalling molecule as a modulator of inflammatory 

signalling must be carefully considered in cancer therapy. Over-expression of PKA has 

been described in haematological malignancies and is associated with increases in cell 

growth through PKA-mediated activation of CREB (James et al., 2009;Naviglio et al., 

2009;Shankar et al., 2005). Interestingly the PKI family member, PKIβ, is over-expressed 

in castrastion-resistant PCa with knockdown of PKIβ associated with inhibition of PCa cell 

growth. PKIβ was found to associate with the catalytic subunit of PKA and promote 

nuclear accumulation of PKA, unlike the nuclear export activities of the related protein 

PKIα (Chung et al., 2009). Expression of PKIβ was correlated with activation of Akt and 

may contribute to malignant progression (Chung et al., 2009). Therefore other factors 

which promote activation and nuclear accumulation of PKA such as elevation of 

intracellular cAMP may therefore exacerbate PCa progression. Careful consideration of the 

use of cAMP elevation as a novel therapeutic strategy in PCa must consequently be 

undertaken. 
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8 Elevation of cAMP induces LNCaP differentiation 

8.1 Introduction 

During experiments to determine the effect of cAMP elevation on rhuIL-6-induced STAT3 

activation, it was noted that treatment with Fsk induced morphological changes in LNCaP 

but not DU145 or PZ-HPV-7 cells. It has been published that elevation of cAMP in LNCaP 

cells via either β2-adrenergic receptor agonists or Fsk treatment induces differentiation of 

LNCaP cells from prostate epithelial cells to a neuroendocrine (NE) -like phenotype 

(Deeble et al., 2001). 

 

The human prostate is a complex gland comprising epithelial parenchyma embedded in a 

matrix of connective tissue. Until puberty, epithelial cells in the prostate exist as multiple 

layers of immature cells which differentiate into a two-layered epithelium upon reaching 

puberty containing columnar secretory epithelial cells surrounded by outer cuboidal basal 

layer comprised principally of basal, secretory luminar and NE cells. The exocrine 

compartment of the prostate consists of the terminally differentiated secretory luminar cells 

which secrete prostate-specific antigen (PSA) and are the predominant cell type in normal 

and hyperplastic prostate epithelium (Lang et al., 2009). Luminar cells express high levels 

of AR and thus are androgen-dependent for growth. The basal cells lie adjacent to the 

basement membrane and do not rely on androgens for growth due to low/no AndR 

expression. NE cells are predominantly found within the basal compartment of the prostate 

and are non-proliferating, terminally differentiated, androgen-differentiated cells (Lang et 

al., 2009). 

8.1.1 NE cells in the prostate 

NE cells represent a group of cells which share structural, metabolic and functional 

characteristics with neuronal cells and secrete hormones in response to stimulation (Shariff 

& Ather, 2006). In the immature prostate, NE cells are thought to play an important 

paracrine role in governing tissue growth and differentiation. Unlike NE cells described in 

the pituitary and adrenal system, prostatic NE cells are thought to arise from an epithelial 

stem cell rather than from the neural crest due to the expression of epithelial markers such 

as PSA and AndR (Cox et al., 1999). Although NE cells can be seen scattered throughout 

the mature prostate as morphologically heterogeneous cells with irregular dendrite-like 

extensions, their role in the mature gland is less well understood (Cox et al., 1999). It has 

been suggested that NE cells may regulate secretory functions in the mature prostate gland 

(Shariff & Ather, 2006).  
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Although NE cells comprise a small proportion of the mature prostate gland, expansion of 

the NE population indicates a poor patient prognosis and has been investigated as a marker 

for disease progression (Yuan et al., 2007). Due to the reliance of normal prostate 

epithelial cells on androgens for growth, traditional therapies for PCa typically involve 

androgen ablation. However, such therapies select for androgen-independent cells, the 

expansion of which is associated with subsequent disease progression due to the failure of 

conventional therapeutics. NE cells are such an example of androgen-independent cells 

within the prostate and are resistant not just to androgen ablation therapy but also to pan-

malignancy chemotherapies which are only efficacious against actively dividing cells. 

Furthermore, whilst NE cells represent a non-proliferating cell population, they are able to 

promote the growth of neighbouring cells due to the release of mitogenic factors such as 

bombesin (Noordzij et al., 1996). Tumours comprising solely of NE cells are rare and 

represent highly aggressive malignancies. More commonly, NE cells are found within 

tumours as foci of non-dividing cells surrounded by rapidly proliferating epithelial cells 

(Noordzij et al., 1996). 

 

Recently, much research has been conducted into the value of NE-like cells as a marker for 

PCa progression. Currently, established methods for monitoring PCa progression include 

measurement of serum PSA levels and Gleason score. However, these methods of 

screening are not infallible and therefore other methods of detecting PCa progression have 

been investigated. The emergence of NE cells as a marker for PCa is somewhat 

controversial with some studies demonstrating a clear link between NE emergence and 

PCa stage and others finding no correlation between NE cell populations and disease 

progression . 

8.1.2 LNCaP differentiation to a NE-like phenotype 

Due to their importance in PCa progression, much research has been conducted into the 

mechanisms by which cells undergo differentiation to NE cells. Many stimuli can induce 

differentiation of normal prostate epithelial cells to a NE-like phenotype including 

androgen deprivation, cAMP elevation and chronic stimulation with IL-6 (Chen et al., 

1992;Deeble et al., 2001). 

 

LNCaP cells have previously been used as a model for NE-like differentiation in response 

to a multitude of stimuli. Of particular importance for PCa patients undergoing androgen 

ablation therapy, androgen deprivation can induce differentiation of LNCaP cells to NE-
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like cells (Saeed et al., 1997). Additionally, chronic stimulation with IL-6 (Deeble et al., 

2001) or over-expression of constitutively active gp130 subunits can induce NE-like 

differentiation in LNCaP cells , indicating that activation of the gp130 signalling cascade 

plays an important role in the differentiation process (Palmer et al., 2005). It is thus 

possible that the ability of IL-6 to induce NE-like differentiation in LNCaP cells arises due 

to activation of STAT3. Interestingly, treatment with cAMP-elevating agents, which has 

been demonstrated to inhibit IL-6-induced activation of STAT3 (see chapter 7) also 

induces NE differentiation of LNCaP cells. 

 

LNCaP cells treated with dibutryl-cAMP and the non-selective PDE inhibitor IBMX 

undergo differentiation to a neuron-like morphology. This change in cellular morphology 

is coupled with an increase in neuronal markers such as neuron-specific enolase (NSE) and 

the presence of dense-core granules which are characteristic of differentiated 

neurosecretory cells (Bang et al., 1994). Similarly, treatment with Fsk induces NE-like 

differentiation in LNCaP cells, the effect of which can be recapitulated with β2-adrenergic 

agonists such as isoprotenolol and epinephrine (Deeble et al., 2001). These results indicate 

that cAMP elevation can induce NE-like differentiation in LNCaP cells. Further evidence 

for the role of cAMP in NE differentiation comes from the observation that over-

expression of constitutively active catalytic PKA subunits can induce NE-like 

differentiation in LNCaP cells (Cox et al., 2000). 

 

Whilst much research has been conducted concerning long-term differentiation of LNCaP 

cells to a NE-like phenotype, fewer studies have focussed on the signalling pathways 

regulating the morphological change of LNCaP cells in response to cAMP elevation. 

Disruption of the early responses involved in NE-like differentiation may prove to be an 

important complementary therapy to androgen ablation and so prevent NE-like 

differentiation and expansion of this cell population during chemotherapeutic regimes. 

 

It was found that treatment with Fsk resulted in changes in LNCaP cell morphology 

consistent with differentiation to a NE-like phenotype, but had no effect on DU145 or PZ-

HPV-7 cells. The changes in LNCaP cell morphology predominantly occurred in the first 1 

h post-stimulation and, in accordance with published data, were mediated by activation of 

PKA. Treatment of LNCaP cells with anti-EPAC1 siRNA indicated that there was no role 

for this pathway on Fsk-induced changes in LNCaP morphology. Unexpectedly, inhibition 

of the RhoA-Rho-associated protein kinase (ROCK) signalling pathway mimicked the 

effect of Fsk stimulation, indicating that cAMP in LNCaP cells acts to inhibit RhoA 
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activation. It is hypothesised that Fsk-induced changes in LNCaP morphology are 

mediated through PKA-mediated inhibition of RhoA signalling and subsequent effects on 

the actin cytoskeleton. 

8.2 Results 

8.2.1 Phase contrast microscopy analysis of changes  in LNCaP cell 

morphology 

Many previous studies have focussed on gross changes in LNCaP morphology, which are 

not quantitative and so may overlook subtle contributions of various signalling pathways to 

this phenomenon. In order to address this issue, increases in the distance between the cell 

body and the tip of the longest dendrite-like extension for each cell was used as a 

quantitative assessment of changes in LNCaP cell morphology consistent with 

differentiation to a NE-like phenotype (Das et al., 2005). However, although the phrase 

“mean dendrite length” is used throughout the study to describe this assessment, it should 

be stressed that the use of the term dendrite or neurite to describe these projections may not 

be entirely accurate because prostatic NE cells are thought to arise from an epithelial rather 

than neural progenitor (Shariff & Ather, 2006) and LNCaP cells do not express 

conventional neuronal markers such as glial fibriliary acidic protein (GFAP) (Bang et al., 

1994). However, in the absence of published methods for quantifying LNCaP 

differentiation via histological methods, this is method would appear to be suitable. In 

order to ensure sufficiently representative sampling of changes in dendrite length, 30 cells 

per field for 5 random will be analysed per treatment for each time point. 

8.2.2 Treatment with Fsk rapidly induces changes in  LNCaP 

morphology 

During the experiments investigating the ability of cAMP elevation on rhuIL-6-induced 

increases in pTyr705STAT3, it was noted that LNCaP cells treated for 5 h with 10 µM Fsk 

displayed changes in morphology consistent with differentiation to NE-like cells. As the 

ability of Fsk to inhibit rhuIL-6-mediated tyrosine phosphorylation of STAT3 was 

universal across the three cell lines tested in this study, cells were stimulated with either 

vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 0 – 24 h with images captured as described in 

Chapter 5. DU145 and PZ-HPV-7 cells treated with either vehicle or 10 µM Fsk displayed 

no changes in cell morphology at any of the time points observed (Fig 8.1, panel A).
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Similarly, LNCaP cells treated with vehicle also displayed no change in cellular 

morphology at any of the time points investigated (Fig. 8.1, panels B and C), indicating 

that any subsequent changes in LNCaP morphology in Fsk-treated cells rise due to the 

actions of Fsk and not due to vehicle effects. In contrast, LNCaP cells treated with 10 µM 

Fsk displayed a rapid change in cell morphology, which was apparent within 1 h post-

stimulation. This morphology is consistent with differentiation to a NE-like phenotype and 

cells were scored for an increase in mean dendrite length as an assessment of NE-like 

differentiation. The greatest period of increase in dendrite length was observed within the 

first hour post-stimulation with mean dendrite length increasing from 18.47 ± 0.61 µm at 0 

h post-stimulation to 29.20 ± 0.97 µm at 1 h post-stimulation, rate of increase of 

approximately 10 µm/h (Fig. 8.1, panels B and C, p < 0.001 vs. 0 h and vs. vehicle 

stimulated cells at same time point). Between 1 h and 24 h post-stimulation, a continued 

increase in mean dendrite length was observed with mean dendrite length increasing to a 

maximum of 39.43 ± 1.21 µm at 8 h post-stimulation. However, the rate of increase in 

mean dendrite length over this time period corresponds to only approximately 1.3 µm/h, 

indicating that the maximum rate of increase in mean dendrite length occurs in the first 1 h 

post-stimulation. Whilst the effects of sustained cAMP elevation on LNCaP differentiation 

to a NE-like phenotype have long been studied, less work has focussed on the pathways 

mediating the rapid change in morphology arising from Fsk treatment. For this reason, 

subsequent studies in this project have focussed on the pathways involved in this change in 

cellular morphology. 

8.2.3 Early changes in LNCaP cells morphology do no t require de 

novo protein synthesis 

Many differentiation processes require de novo protein synthesis arising from altered gene 

expression profiles. In order to assess whether this was the case in Fsk-induced changes in 

LNCaP cells, LNCaP cells were seeded as previously described and incubated with 100 

µM emetine. Unlike other protein synthesis inhibitors such as cycloheximide, emetine acts 

to irreversibly block protein translation (Grollman, 1968) by preventing elongation of the 

nascent protein chain (Tscherne & Pestka, 1975) due to actions on the 40s ribosomal 

subunit (Jimenez et al., 2002). In order to prevent Fsk-induced changes in protein 

expression, LNCaP cells were incubated for 2 h prior to stimulation with 10 µM Fsk and 

subsequent assessment of changes in cell morphology as described previously. 

 

In accordance with previous data, treatment of LNCaP cells with vehicle or emetine in the 

absence of Fsk failed to induce any changes in cellular morphology (Fig. 8.2, panels A and 
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Figure 8.1: cAMP elevation induces morphological ch anges 

in LNCaP cells but not in DU145 or PZ-HPV-7 cells 

DU145, LNCaP and PZ-HPV-7 cells were seeded into 6 cm dishes and 

stimulated with vehicle (0.1 % (v/v) EtOH or 10 µM Fsk for 0 –24 h with 

images captured at the time points stated (Panel A for DU145 and PZ-HPV-7 

cells, panel B for LNCaP cells). LNCaP cell differentiation to a NE-like 

phenotype was assessed by measuring increases in the maximum distance 

between the edge of the cell body and dendrite tip per cell (Panel C). Results 

are shown as mean values ± SEM for n = 3 separate experiments. *** = p < 

0.001 vs. 0 h, ### = p < 0.001 vs. vehicle at same time point. 
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C, p > 0.05), indicating that subsequent increases in mean dendrite length arising from Fsk 

stimulation occur due to the actions of Fsk and not vehicle effects. Interestingly, treatment 

with emetine slightly increased the mean dendrite length of LNCaP cells immediately prior 

to stimulation, but as the increase was of approximately 5 µm, it is not believed to be 

biologically significant in comparison to the approximately 20 µm increase in mean 

dendrite length induced by Fsk treatment. 

 

It was found that treatment with emetine had no effect on Fsk-induced increases in mean 

dendrite length at 1 h post-stimulation (Fig. 8.2, panels B and C, p > 0.05 vehicle pre-

treatment vs. emetine pre-treatment) with cells pre-treated with 100 µM emetine displaying 

a mean dendrite length of 30.53 ± 0.69 compared to a mean dendrite length equal to 31.09 

± 0.70 µm in LNCaP cells which had not been pre-incubated with emetine (Fig. 8.2 panels 

B and C, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle). However, at 3 h and 5 h 

post-stimulation with Fsk, LNCaP cells which had been pre-treated with emetine displayed 

no further increase in mean dendrite length (Fig. 8.2 panels B and C, mean dendrite lengths 

= 33.81 ± 0.87 µm and 30.74 ± 0.91 µm at 3 h and 5 h post-stimulation respectively, +++ = 

p < 0.001 Fsk + emetine vs. Fsk at each time point). In contrast, LNCaP cells which had 

been stimulated with Fsk in the absence of pre-incubation with emetine displayed a further 

increase in mean dendrite length at 3 h (mean dendrite length = 43.53 ± 0.91 µm) and 5 h 

(mean dendrite length = 50.64 ± 1.13 µm, Fig. 8.2 panels B and C, *** = p < 0.001 vs. 0 h, 

### = p < 0.001 vs. vehicle, $$$ = p < 0.001 vs. 1 h). 

 

These results suggest that the early response of LNCaP cells to Fsk does not require de 

novo protein synthesis and such an event is important only in later stages of NE-like 

differentiation. 

8.2.4 Fsk-induced changes in LNCaP cell morphology depends on an 

intact microtubule network 

Microtubule (MT) transport plays an important role in extension of neurite and dendrite-

like extension from the body with transport of membranous vesicles along MTs classically 

considered the most important role of MTs in neurite extension. The shaft of mature 

neurite-like structures contain a central MT core which plays an important role in 

trafficking between the axon head and the cell body, either through the delivery of 

signalling proteins or adhesion molecules required for neurite initiation or through delivery 

of membranes to promote the growth of the developing neurite (Dehmelt & Halpain, 

2004). 
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Fig. 8.2: The ability of Fsk to induce prolonged bu t not initial 

changes in LNCaP morphology requires de novo protein synthesis  

LNCaP cells were seeded into 6-well plates and grown to 40 – 50 % confluence. LNCaP cells 

were incubated with vehicle (0.1 % (v/v) H2O) or 100 µM emetine for 120 min prior to 

stimulation with vehicle (0.1 % (v/v) EtOH, panela A and C) or 10 µM Fsk (panels B and C) 

for 0 –5 h.  Results are presented as mean values ± SEM for n = 3 experiments. *** = p < 

0.001 vs. 0 h, ### = p < 0.001 vs. vehicle at same time point, +++ = p < 0.001 vs. Fsk 

treatment., $$$ = p < 0.001 vs. 1 h. Results are shown for vehicle treated cells (closed squares), 

emetine treated cells (open squares), Fsk (closed circles) and Fsk plus emetine (open circles). 

C 
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Nocodazole depolymerises MT in vitro (De Brabander et al., 1976), thus LNCaP cells 

were treated with either vehicle (0.5 % (v/v) DMSO) or 10 µM nocodazole for 30 min to 

depolymerise the MT network prior to stimulation with vehicle (0.1 % (v/v) EtOH) or 10 

µM Fsk for 1 h with phase contrast images captured as described previously immediately 

prior to nocodazole treatment and immediately post-stimulation. In order to assess 

nocodazole efficacy, immunofluorescence was performed on LNCaP cells plated in 

parallel onto poly-D-lysine coated coverslips and stained with anti-tubulin antibody 

Successful tubulin staining was visualised using goat AlexaFluor468-conjugated anti-

mouse IgG and images subsequently captured using a Zeiss CFL-40 epi-fluorescent 

microscope as described in Chapter 5, with treatment with nocodazole completely 

abolishing the MT network (Fig. 8.3, panel B). 

 

Treatment with vehicle failed to elicit any changes in LNCaP cell morphology whilst 

treatment with 10 µM resulted in an increase in mean dendrite length as observed in 

previous experiments (Fig. 8.3, panel A). Incubation with nocodazole did not inhibit Fsk 

induced changes in LNCaP morphology but Fsk-induced dendrite-like structures appeared 

to be morphologically distinct following nocodazole pre-treatment to those dendrites 

arising in cells which had been pre-incubating Fsk. Evidence of damage to Fsk-induced 

dendrites following pre-incubation with nocodazole was apparent with dendrites appearing 

far thinner and, indeed, almost completely disintegrated (Fig. 8.3, panel A, arrows indicate 

damaged dendrites). These results suggest that an intact MT network is essential for 

maintenance, but not initiation, of Fsk-induced changes in LNCaP cell morphology. 

8.2.5 The ability of Fsk to induce increases in mea n dendrite length 

requires adenylyl cyclase activity 

In order to induce intracellular cAMP elevation, Fsk activates membrane ACs to promote 

the conversion of ATP to cAMP. In order to ensure that the observed effects of Fsk on 

LNCaP morphology were indeed mediated through activation of AC, LNCaP cells were 

incubated with either vehicle (0.4 % (v/v) DMSO) or 10 µM of the AC-selective inhibitor 

2’,5’-dideoxy-3’-AMP-bis(t-Bu-SATE) (t-Bu-SATE) for 1 h prior to stimulation with 

vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 1 h with images captured immediately prior 

to and post-stimulation. 

 

Treatment with vehicle did not result in any discernible changes in LNCaP morphology at 

0 h or post-stimulation (Fig. 8.4, panels A and B). Pre-incubation with vehicle followed by  
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Fig. 8.3: Fsk-induced changes in LNCaP morphology r equire an intact 

microtubule network 

LNCaP cells were either seeded onto glass coverslips or 6 well tissue culture dished coated 

with 0.1 mg/ml poly-D-lysine and grown to 50-60 % confluence. Cells were treated with either 

vehicle (0.5 % (v/v) DMSO) or 10 µM nocodazole prior to incubation with vehicle (0.1 % (v/v) 

EtOH) or 10 µM Fsk for 1 h with images captured via phase contrast microscopy at 0 h and 

post-stimulation (panel A). Cells for immunofluorescence were washed 3 x 2 ml/well in cold 

PBS prior to fixation in 4 % (w/v) paraformaldehyde in 5 % (w/v) sucrose-PBS. Cells were 

permeabilised at room temperature for 15 min in 0.1 % (v/v) Triton X100-PBS prior to 

blocking with 5 % (w/v) BSA-PBST and incubation overnight with mouse mAb to tubulin 

(1:200 in 5 % (w/v) BSA-PBST). Following 3 x 10 min washes in PBST, LNCaP cells were 

incubated with AlexaFluor468-conjugated anti-mouse IgG (1:250 in 5 % (w/v) BSA-PBST, 1 

h, room temperature) followed by a further 3 x 10 min washes in PBST and visualisation of 

antibody staining using a Zeiss CFL fluorescence microscope at 40 x objective (panel B, 

arrows indicate disruption of the MT network. Results shown are representative of n = 3 

separate experiments. 
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treatment with 10 µM Fsk promoted an increase in mean dendrite length from 25.15 ± 0.64 

µm to 32.74 ± 0.67 µm post-stimulation (Fig. 8.4 panels A and B, *** =  p < 0.001 vs. 0 

h,### = p < 0.001 vs. vehicle). Similar to treatment with vehicle, incubation of LNCaP 

cells with t-Bu-SATE in the absence of Fsk failed to induce an increase in mean dendrite 

length post-stimulation (Fig. 8.4, panels A and B, p > 0.05). However, in LNCaP cells pre-

incubated with t-Bu-SATE, the subsequent ability of Fsk to induce an increase in mean 

dendrite length was significantly decreased with mean dendrite length increasing from 

24.59 ± 0.60 µm to 28.93 ± 0.64 µm post-stimulation (Fig. 8.4, panels A and B, ** =  p < 

0.01 vs. 0 h, ### = p < 0.001 vs. vehicle, +++ = < p < 0.001 vs. Fsk). 

 

The above results indicate that selective inhibition of AC impedes the ability of Fsk to 

induce NE-like differentiation of LNCaP cells and that Fsk-mediated differentiation to a 

NE-like phenotype requires AC activation. 

8.2.6 Treatment with H89 mimics the effects of Fsk on LNCaP 

morphology 

Based on published literature which demonstrates that NE-like differentiation in LNCAP 

cells is dependent on PKA activation (Cox et al., 2000), it was decided to test whether 

selective inhibition of PKA inhibited Fsk-induced changes in LNCaP morphology. 

 

LNCaP cells were treated with either vehicle (0.1 (v/v) % DMSO) or 5 µM of the PKA-

selective inhibitor H89 for 1 h prior to stimulation with vehicle (0.1 (v/v) EtOH) or 10 µM 

Fsk. Images of five random fields were captured for each treatment immediately prior to 

incubation with vehicle or H89 and again following cell stimulation. LNCaP cells treated 

with vehicle displayed no change in cell morphology or mean dendrite (18.33 ± 0.49 µm 

and 18.00 ± 0.43 µm at 0 h and post-stimulation respectively, Fig 8.5, panels A and B). In 

keeping with previous data, LNCaP cells pre-incubated with vehicle and then treated with 

10 µM Fsk for 1 h displayed changes in cell morphology consistent with NE-like 

differentiation and an increase in mean dendrite from 19.64 ± 0.48 µm at 0 h to 33.09 ± 

0.65 µm post-stimulation (Fig. 8.5, panels A and B, *** = p < 0.001 vs. 0 h, ### = p < 

0.001 vs. vehicle post-stimulation). Surprisingly, LNCaP cells treated with 5 µM H89 

alone displayed an increase in mean dendrite length at the end of the experiment with mean 

dendrite length increasing from 19.31 ± 0.53 µm at 0 h to 34.11 ± 0.73 µm post-stimulation 

(Fig. 8.5, panels A and B, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle post- 
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Fig. 8.4: Treatment with the AC-selective inhibitor  t-Bu-SATE 

inhibits the effect of Fsk on LNCaP morphology 

LNCaP cells were seeded into 6-well plates and incubated with either vehicle (0.1 % 

(v/v) DMSO) or 10 µM t-Bu-SATE for 60 min at 37oC, 5 % (v/v) CO2 prior to 

stimulation with vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for a further 60 min at 

37oC, 5 % (v/v) CO2. Images of five random fields per treatment were captured at 

each time point and changes in LNCaP morphology assessed by measuring mean 

dendrite length for 30 random cells per field per treatment (panels A and B). Results 

are presented as mean values ± SEM for n = 3 experiments. ** = p < 0.01 vs. 0 h, *** 

= p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle at same time point, +++ = p < 0.001 

vs. Fsk at 1 h. 
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stimulation). Combined pre-incubation with 5 µM H89 and subsequent treatment with 10 

µM Fsk induced a similar increase in mean dendrite length from 18.05 ± 0.41 µm at 0 h to 

39.10 ± 0.77 µm post-stimulation (Fig. 8.5, panels A and B,  *** = p < 0.001 vs. 0 h, ### = 

p < 0.001 vs. vehicle post-stimulation).These results suggest that the ability of Fsk to 

induce changes in LNCaP morphology is mediated by pathways that act independently of 

PKA activation and that PKA activity may actually act to suppress morphological changes 

in LNCaP cells consistent with NE-like differentiation. These results are surprising and 

contravene published data implicating a central role for PKA in Fsk-induced 

morphological changes. It is possible that the results obtained may arise from non-selective 

effects of H89 on targets other than PKA. 

8.2.7 Treatment with myr.PKI 14-22 inhibits the effect of Fsk on LNCaP 

morphological changes 

In order to assess whether the effects of H89 on LNCaP morphology arose from inhibition 

of PKA activity or due to non-selective effects on non-PKA targets, LNCaP cells were 

incubated with the structurally unrelated PKA-selective inhibitor PKA inhibitor 14-22 

amide (PKI14-22) which had been myristoylated (myrPKI14-22) to aid cellular permeability. 

MyrPKI14-22 is based on an endogenous peptide inhibitor of PKA which is thought to 

exclusively bind the catalytic subunits of PKA in vivo and mimic the inhibitory effect of 

the regulatory subunit (Murray, 2008). Endogenous PKI is thought to be exclusively 

specific for PKA and thus myrPKI14-22 is thought to be a more potent inhibitor than H89 

which competitively antagonises ATP binding to PKA (Murray, 2008). 

 

LNCaP cells were seeded into 6-well plates as described earlier and incubated with either 

vehicle (0.1 % (v/v) DMSO) or 10 nM myrPKI14-22 for 1 h at 37OC, 5 % (v/v) CO2 prior to 

stimulation with either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 1 h. Images of LNCaP 

cells were captured immediately prior to stimulation and immediately post-stimulation as 

described in Materials and Methods (Chapter 4). Treatment of cells with vehicle failed to 

promote an increase in mean dendrite length throughout the experiments (Fig. 8.6, panels 

A and B, mean dendrite length = 21.86 ± 0.71 µm and 20.45 ± 0.67 µm at 0 h and post-

stimulation respectively, p > 0.05). Similarly, incubation of LNCaP cells with myr.PKI14-22 

followed by incubation with EtOH did not promote NE-like differentiation in LNCaP cells 

with mean dendrite lengths of 22.50 ± 0.76 µm at 0 h and 21.03 ± 0.71 µm post-stimulation 

(Fig. 8.6, panels A and B, p > 0.05) Treatment with Fsk in the absence of myrPKI14 

promoted an increase in mean dendrite length from 22.41 ± 0.78 µm to 33.28 ± 0.99 µm 

(Fig. 8.6, panels A and B, *** = p < 0.001 vs. 0 h, ### =  p < 0.001 vs. vehicle). In LNCaP  
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Fig. 8.5: Treatment with the PKA-selective inhibito r H89 mimics the 

effect of Fsk on LNCaP morphology 

LNCaP cells were seeded into 6-well plates and incubated with either vehicle (0.1 % 

(v/v) DMSO) or 5 µM H89  for 60 min at 37oC, 5 % (v/v) CO2 prior to stimulation with 

vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for a further 60 min at 37oC, 5 % (v/v) CO2 .  

Images of five random fields per treatment were captured at each time point and 

changes in LNCaP morphology assessed by measuring mean dendrite length for 30 

random cells per field per treatment (panles A and B). Results are presented as mean 

values ± SEM for n = 3 experiments. *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. 

vehicle at same time point, +++ = p < 0.001 vs. Fsk at 1 h. 

B 
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Fig. 8.6: Treatment with the PKA-selective inhibito r myrPKI 14-22 

mimics the effect of Fsk on LNCaP morphology 

LNCaP cells were seeded into 6-well plates and incubated with either vehicle (0.1 % 

(v/v) DMSO) or 10 µM myrPKI14-22 for 60 min at 37oC, 5 % (v/v) CO2 prior to 

stimulation with vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for a further 60 min at 37oC, 

5 % (v/v) CO2 . Images of five random fields per treatment were captured at each time 

point and changes in LNCaP morphology assessed by measuring mean dendrite length 

for 30 random cells per field per treatment (panles A and B). Results are presented as 

mean values ± SEM for n = 3 experiments. *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. 

vehicle at same time point, +++ = p < 0.001 vs. Fsk at 1 h. 
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cells pre-incubated with myrPKI14-22, treatment with 10 µM Fsk was still able to induce an 

increase in mean dendrite length from 20.57 ± 0.63 µm to 26.44 ± 0.86 µm (Fig. 8.6, 

panels A and B, *** = p < 0.001 vs. 0 h, ### =  p < 0.001 vs. vehicle). However, the ability 

of Fsk to induce an increase in mean dendrite length was impaired following incubation 

with myrPKI14-22 with mean dendrite length post-stimulation decreasing from 33.28 ± 0.99 

µm in the absence of myrPKI14-22 to 26.44 ± 0.86 µm following pre-incubation with 

myrPKI14-22 (Fig. 8.6, panels A and B, +++ = p < 0.001 vs. Fsk at 1 h). 

 

The ability of myr.PKI14-22 to significantly inhibit Fsk-mediated increases in mean dendrite 

length suggests that the ability of cAMP elevation to promote changes in LNCaP 

morphology consistent with NE-like differentiation require activation of PKA. Such 

observations are in keeping with the accepted model of LNCaP differentiation but 

contradict the previous observation that H89-mediated inhibition of PKA induced increases 

in mean dendrite length in the absence of cAMP elevation. It is thought that, of the two 

inhibitors, PKI-based inhibitors represent a more selective inhibitor family than the  

competitors of ATP binding such as H89 or KT 5720 (Murray, 2008). It is therefore more 

likely that myr.PKI14-22-mediated inhibition of Fsk-induced dendrite outgrowth represents 

the true effect of PKA inhibition on cAMP-induced NE-like differentiation in LNCaP cells 

and that the ability of H89 to induce morphological changes in these cells arises from non-

selective effects. 

8.2.8 Inhibitors affecting cAMP signalling are effi cacious in the 

experimental system used 

In order to demonstrate that the used, t-Bu-SATE, H89 and myrPKI14-22, were efficacious 

in this experimental system, LNCaP cells were seeded into 6-well plates and grown to 70 – 

80 % confluence. In order to obtain sufficiently high protein concentrations, it was not 

possible to perform this analysis on LNCaP cells which had been plated in order to observe 

dendrite outgrowth as these must be grown to a lower confluence in order to allow 

dendrites belonging to individual cells to be distinguished. Where possible, analysis of 

inhibitor efficacy was done in parallel with dendrite outgrowth experiments and always 

with the same batch of inhibitor used. LNCaP cells were pre-treated with the respective 

inhibitors for 1 h prior to stimulation with 10 µM Fsk for 15 min. Inhibitor efficacy was 

assessed by a decrease in pSer133CREB, a downstream substrate of PKA, and also via 

immunoblotting for a decrease in pThr202pTyr204ERK1/2 as a secondary indicator because 

multiple kinases phosphorylate CREB on Ser133. Therefore inhibitor treatment may not  
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Fig. 8.7: Efficacy of inhibitors of cAMP signalling   

LNCaP cells were seeded into 6-well tissue culture plates and grown to 70 % 

confluence prior to pre-incubation with vehicle (0.4 % (v/v) DMSO), 10 µM t-

Bu-SATE, 5 µM H89 or 10 nM myrPKI for 1 h. Cells were then stimulated with 

vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 15 min prior to immunoblotting 

for pSer133 CREB and pThr202pTyr204ERK1/2 as indicators of PKA activation. 

Equal protein loading was determined by immunoblotting for ERK1/2. Blots 

shown are representative of 3 separate experiments. 
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completely abolish serine phosphorylation of CREB but may promote inhibition of 

pThr202pTyr204ERK1/2, thus demonstrating their efficacy. Treatment with t-Bu-SATE only 

partially abolished Fsk-induced phosphorylation of CREB and ERK1/2. In preliminary 

experiments, this is the only concentration of t-Bu-SATE which promoted a decrease in 

CREB or ERK1/2 phosphorylation (data not shown). As t-Bu-SATE is an AC inhibitor, it 

is possible that the magnitude of Fsk-induced AC activation in LNCaP cells is 

supramaximal and thus cannot be completely inhibited by the concentration of t-Bu-SATE 

used. Pre-treatment with H89 completely abolished Fsk-induced increases in 

pThr202pTyr204ERK1/2 but only partially abolished Fsk-induced phosphorylation of CREB. 

However, myrPKI14-22 completely abolished Fsk-induced increases in both 

pThr202pTyr204ERK1/2 and pSer133CREB. The results shown in Fig. 8.7 suggest that the 

inhibitors of cAMP-mediated signalling used are indeed efficacious in the experimental 

system. 

8.2.9 Inhibition of Rho-ROCK signalling mimics the effect of Fsk 

treatment 

It was previously found that pre-treatment of LNCaP cells with the PKA-selective inhibitor 

H89alone was able to simulate the effects of Fsk on LNCaP morphology and that 

combined treatment with H89 and Fsk failed to produce a synergistic increase in mean 

dendrite length, indicating that the two are acting via a common pathway. Such data 

contravenes published data indicating a requirement for PKA activation in cAMP-mediated 

NE-like differentiation of LNCaP cells (Cox et al., 2000). However, subsequent treatment 

with the peptide-based myrPKI14-22 blocked Fsk-induced changes in LNCaP morphology, 

indicating that this event is PKA-dependent. The mechanisms by which H89 and 

myrPKI14-22 act to inhibit PKA are very different and so may explain their different effects 

on Fsk-induced increases in mean dendrite length in LNCaP cells. Myr.PKI14-22 is based on 

an endogenous peptide inhibitor of PKA which mimics the regulatory subunit of PKA and 

holds the catalytic subunits in an inactive state. Endogenous PKI is highly selective for 

PKA and the catalytic subunits are thought to be its only in vivo substrate (Murray, 2008). 

In contrast, H89 and the related compound KT 7520, are both competitive antagonists of 

ATP binding and may therefore show decreased selectivity for PKA in comparison to 

myr.PKI14-22
 (Murray, 2008). It has been demonstrated that treatment of both the 3T3-L1 

adipocyte and the NG 108-15 neuroblastoma-glioma cell lines with H89, at similar 

concentrations to those used in these experiments, induced cellular differentiation in the 

absence of other stimuli (Kato et al., 2007;Leemhuis et al., 2002). Of particular note is the 

observation that in NG 108-15 treatment with H89 can induce neurite outgrowth via 
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inhibition of Rho-activated kinase (ROCK) (Leemhuis et al., 2002). Similarly, H89 was 

able to induce differentiation in adipocytes via a process which could be mimicked by the 

ROCK-selective inhibitor Y27632, again indicating that H89 is exerting inhibitory effects 

on ROCKs rather than PKA (Kato et al., 2007). It is possible that actions of H89 on 

ROCKs in LNCaP cells may explain the opposing effects of myr.PKI14-22 and H89 on 

LNCaP morphology. 

 

To test this hypothesis, images of LNCaP cells were captured prior to incubation with 

either vehicle (0.1 % (v/v) DMSO) or 5 µM of the ROCK-selective inhibitor Y27632 

(Ishizaki et al., 2000) at 37oC, 5 % (v/v) CO2. LNCaP cells were then incubated for 1 h in 

the presence of either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk and images captured post-

stimulation. In keeping with previous experiments, incubation with vehicle did not result in 

a change in LNCaP morphology (Fig. 8.8, panels A and B, p > 0.05 at post-stimulation vs. 

0 h) and pre-incubation with vehicle did not inhibit Fsk-induced increases in mean dendrite 

length from 17.86 ± 0.47 µm at 0 h to 32.79 ± 0.76 µm post-stimulation (Fig. 8.8, panels A 

and B, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle at same time point). As 

anticipated, incubation with Y29632 in the absence of Fsk induced an increase in mean 

dendrite length from 16.42 ± 0.43 µm to 25.40 ± 0.57 µm although the increase in mean 

dendrite length was not as great as seen with Fsk treatment alone (Fig. 8.8, panels A and B, 

*** =  p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle at same time point, +++ = p < 0.001 vs. 

Fsk). However, combined treatment of LNCaP cells with 5 µM Y27632 followed by 

stimulation with 10 µM Fsk did not produce a synergistic increase in mean dendrite 

outgrowth with mean dendrite length increasing from 17.42 ± 0.46 µm to 35.77 ± 0.77 µm 

throughout the experiment (Fig. 8.8, panels A and B, *** =  p < 0.001 vs. 0 h, ### = p < 

0.001 vs. vehicle at same time point, +++ = p < 0.001 vs. Fsk). Whilst the increase in Fsk-

induced dendrite outgrowth was found to be significantly greater following pre-incubation 

with Y27632, it is unlikely that an increase in mean dendrite length of 3 µm represents a 

biologically significant change and is more a result of the large number of cells measured.  

 

In order to assess the efficacy of Y27632 in this experimental system, LNCaP cells were 

grown on coverslips coated with 0.1 mg/ml poly-D-lysine prior to incubation with Y27632 

and Fsk as described above. The actin cytoskeleton was then visualised via staining with 

10 U/ml rhodamine-conjugated phalloidin as described in Materials and Methods and 

images subsequently captured using a Zeiss Pascal Exciter laser scanning confocal 

microscope. Treatment with Y27632 resulted in an increase in punctate regions of actin 
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staining, indicative of a decrease in actin polymerisation and inhibition of ROCK 

signalling (Fig. 8.8, panel D, arrows indicate punctate regions) 

 

The ability of Y27632 to mimic the effect of Fsk on LNCaP morphology suggests that 

inhibition of ROCK signalling can promote NE-like differentiation in LNCaP cells. 

Furthermore, in conjunction with the experiments using myrPKI14-22, the results support 

the hypothesis that the effects of H89 on cell morphology arise due to inhibition of ROCK  

activity rather than PKA-selective effects. The inability of combined Y27632 and Fsk 

incubation to exert additive effects on increases in mean dendrite length suggest that the 

two agents act through a common pathway. 

8.2.10 Inhibition of RhoA activity mimics the effec ts of Fsk on 

LNCaP morphology 

Incubation with the ROCK-selective inhibitor Y27632 induced an increase in mean 

dendrite length in LNCaP cells and failed to potentiate Fsk-induced increases in mean 

dendrite length. These results indicate that Fsk may inhibit ROCK activation to promote 

differentiation to a NE-like morphology. Activation of ROCK occurs downstream of 

RhoA, therefore it is possible that inhibition of RhoA may also promote the observed 

changes in LNCaP morphology seen with Y27632. To address this issue, a cell permeable 

inhibitor of RhoA derived from the C3 transferase (C3T) of Clostridium botulinum was 

used. C3T acts to ADP-ribosylate N41 of RhoA and inhibits activation of RhoA by 

increasing the steady state GTPase activity of RhoA by 50 – 80 % and thus reducing the 

time frame in which RhoA is in its GTP-bound, active form (Mohr et al., 1992). 

 

LNCaP cells were seeded into 6-well plates as described previously and grown to 

approximately 50 % confluency. Prior to each experiment, cell culture medium was 

replaced with fresh culture medium containing either vehicle (2 % (v/v) PBS) or 4 µg/ml 

cell permeable C3T. Images were captured at 0 h post-incubation with C3T and again at 6 

h post-stimulation at which point robust inhibition of RhoA by C3T should have been 

achieved. LNCaP cells were then stimulated with vehicle (0.1 % (v/v) EtOH) or 10 µM 

Fsk for 1 h and images captured post-stimulation as described previously. Treatment with 

vehicle failed to induce any changes in mean dendrite length at 0 h (20.04 ± 0.57 µm), 6 h 

(20.63 ± 0.61 µm) and post-stimulation (20.94 ± 0.55 µm, Fig. 8.9, panels A and C), 

indicating that any changes in mean dendrite length do not arise from vehicle effects. In 

keeping with previous data, LNCaP cells pre-incubated with vehicle show no change in 

mean dendrite length at 0 h (23.08 ± 0.66 µm) or 6 h (23.48 ± 0.70 µm) but stimulation  
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Fig. 8.8: Inhibition of ROCK signalling by Y27632 r ecapitulates the 

effect of Fsk on LNCaP morphology 

LNCaP cells were seeded into 6-well plates and incubated with either vehicle (0.5% 

(v/v) DMSO) or 5 µM Y27632 for 60 min at 37oC, 5 % (v/v) CO2 prior to stimulation 

with vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for a further 60 min at 37oC, 5 % (v/v) 

CO2 . Images of five random fields per treatment were captured at each time point 

(panel A) and changes in LNCaP morphology assessed by measuring mean dendrite 

length for 30 random cells per field per treatment. Results are presented as mean values 

± SEM for n = 3 experiments (panel B). *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. 

vehicle at same time point, +++ = p < 0.001 vs. Fsk at 1 h. To assess the efficacy of 

Y27632, the disruption of stress fibres was visualised by rhodamine-conjugated 

phalloidin staining of the actin cytoskeleton (panel C). Arrows denote regions of 

punctate actin cytoskeletal staining, indicative of a decrease in polymerised actin and 

inhibited ROCK signalling. 
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with 10 µM Fsk results in an increase in mean dendrite length to 31.49 ± 0.74 µm (Fig. 8.9, 

panels A and C, *** = p < 0.001 vs.0 h, ### = p < 0.001 vs. vehicle). As expected, 

treatment with 4 µg/ml C3T resulted in an increase in mean dendrite length from 20.03 ± 

0.63 µm at 0 h to 28.45 ± 0.85 µm at 6 h and 31.29 ± 0.85 µm at the end of the experiment 

(Fig. 8.9, panels B and C, *** = p < 0.001 vs.0 h, ### = p < 0.001 vs. vehicle). Similar 

results were obtained in the LNCaP cells which pre-incubated with C3T for 6 h with mean 

dendrite length increasing from 21.87 ± 0.65 µm at 0 h to 35.30 ± 0.88 µm at 6 h post-

stimulation stimulation (Fig. 8.9, panels B and C, *** = p < 0.001 vs.0 h, ### = p < 0.001 

vs. vehicle). Stimulation with Fsk failed to induce further increases in mean dendrite length 

from that seen at 6 h post-incubation with Fsk (34.63 ± 0.87 µm, Fig. 8.9, panels B and C, 

*** = p < 0.001 vs.0 h, ### = p < 0.001 vs. vehicle, p > 0.05 vs. 6 h). 

 

Membrane translocation of RhoA is associated with activation of the protein (Thibault et 

al., 2000), thus to assess whether Fsk was able to inactivate RhoA, the presence of RhoA 

in LNCaP membranes was detected. LNCaP cells were treated in serum-free medium for 6 

h in the presence of either vehicle (0.1 % (v/v) PBS) or 1 µg/ml C3T prior to stimulation 

with either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 1 h. Membranes were prepared as 

described in Chapter 5 and the presence of RhoA in the membrane preparations assessed 

via immunoblotting. As observed in Fig. 8.9 (panel D), treatment with 10 µM Fsk in the 

presence or absence of C3T resulted in a decrease in detected RhoA in LNCaP cell 

membrane preparations, suggestive that Fsk is able to inhibit RhoA activation. It must be 

noted however that equal loading could not be determined due to high background staining 

of anti-Gαi antibodies which were used as loading controls for membrane fractions. 

 

The ability of C3T to recapitulate the effects of Fsk on LNCaP morphology suggests that 

inhibition of RhoA activity is important in the development of this phenotype. 

Furthermore, the lack of additive increases in mean dendrite length following combined 

C3T and Fsk treatment imply that the ability of these two compounds to induce NE-like 

morphological changes in LNCaP cells is mediated by a common signalling pathway. It is 

possible that treatment with Fsk may act to directly inhibit RhoA. Of particular concern is 

the observation that TRIO-GEF plays a role in axon guidance and is able to activate RhoG 

and RhoA/Rac-1 via its two distinct GEF domains to promote changes in cell morphology 

(Bellanger et al., 2000). Due to the lack of published data regarding the specificity of C3T 

for RhoG in comparison to RhoA, the peptide sequences of all described human Rho 

family members were aligned using the clustalW algorithm (Thompson et al., 1994) and 

examined for the presence of key residues implicated in recognition of RhoA by C3T (Fig.  
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C

Fig. 8.9: Inhibition of RhoA causes changes in LNCa P 

morphology consistent with NE-like differentiation 

LNCaP cells were plated into 6-well plates and incubated for 6 h with either 

vehicle (2 % (v/v) PBS) (panel A) or 4 µg/ml C3T (panel B) prior to stimulation 

with either vehicle (0.1% (v/v) EtOH) or 10 µM Fsk for 1 h. Images were captured 

as described at 0 h (0 h), 6 h post-stimulation (6 h) and following stimulation with 

Fsk (post-stimulation). Changes in LNCaP morphology consistent with NE-like 

differentiation were assessed via increases in mean dendrite length (panel C). 

Activation of RhoA was assessed via an increase in membrane localised RhoA 

(panel D). Results are represented as mean values ± SEM for n = 3 separate 

experiments. *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle 
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8.10). The 90 N-terminal residues of RhoA have been demonstrated to provide the 

minimum sequence required for recognition by C3T with the combined presence of the 

basic Arg5Lys6 sequence with the acidic Glu47/Glu54 motif resulting in an increase in C3T-

mediated ADP-ribosylation and promotes binding of RhoA to C3T (Wilde et al., 2000). 

Mutation of Rac, a non-C3T substrate, to include these motifs promotes interaction with 

C3T but required the inclusion of mutations either side of the Asp residue (equivalent to 

S43V and M47E of Rac) to enable full ADP-ribosylation of Rac, indicating that the 

equivalent residues are important in C3T-mediated ADP ribosylation of RhoA (Wilde et 

al., 2000). Indeed these residues have been implicated in correct formation of the 

C3T/NAD+/RhoA ternary complex required for ADP-ribosylation (Wilde et al., 2000). Of 

importance is the observation that only RhoA, RhoB and RhoC have the correct 

configuration of residues to mediate recognition and ADP-ribosylation by C3T, thus 

providing evidence that the ability of C3T to induce dendrite outgrowth in LNCaP cells 

arises due to inhibition of RhoA rather than effects on other Rho family members including 

RhoG. 

8.2.11 Expression of constitutively active RhoA blo cks Fsk-

induced increases in mean dendrite length 

Pharmacological blockade of RhoA/ROCK signalling mimics the effect of cAMP elevation 

on LNCaP cell morphology. Such results suggest that activation of RhoA would therefore 

block Fsk-induced changes in LNCaP cell morphology. In order to address this, LNCaP 

cells were transfected with 1 µg of cDNA encoding either vector (pRK5), wild-type RhoA 

(myc.RhoAWT), a dominant negative RhoA (myc.RhoAT19N) or a constitutively active 

RhoA (myc.RhoAQ63L). 

 

LNCaP cells transfected with either vector or myc.RhoAWT displayed no difference in 

mean dendrite length, indicating that any effects of myc.RhoAT19Nor myc.RhoAQ63L 

expression are not due to the transfection procedure or to over-expression of RhoA. Fsk 

stimulation of LNCaP cells transfected with myc.RhoAWT resulted in an increase in mean 

dendrite length comparable with that seen in vector-treated cells, indicating that over-

expression of RhoA does not alter cellular responses to Fsk. Expression of the 

constitutively active myc.RhoAQ63L resulted in a decrease in mean dendrite length in the 

absence of Fsk stimulation (Fig. 8.11 panels A and B, +++ = p < 0.001 vs. other constructs) 

and prevented Fsk-induced increases in mean dendrite length (Fig. 8.11 panels A and B, 

+++ = p < 0.001 vs. other constructs). These results suggest that activation of RhoA is able 

to block Fsk-induced changes in LNCaP cell morphology. In contrast, it was expected that  
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P61586_RhoA          --------------------------------MAAIRKKLVIVGDGACGKTCLLIVFSKD 28 
P62745_RhoB          --------------------------------MAAIRKKLVVVGDGACGKTCLLIVFSKD 28 

P08134_RhoC          --------------------------------MAAIRKKLVIVGDGACGKTCLLIVFSKD 28 

O00212_RhoD          ------------------MTAAQAAGEEAPPG--VRSVKVVLVGDGGCGKTSLLMVFADG 40 

P61587_RhoE          --------------MKERRASQKLSSKSIMDPNQNVKCKIVVVGDSQCGKTALLHVFAKD 46 

Q9HBH0_RhoF          ------------------MDAPGALAQTAAPGPGRKELKIVIVGDGGCGKTSLLMVYSQG 42 

P84095_RhoG          ----------------------------------MQSIKCVVVGDGAVGKTCLLICYTTN 26 

Q15669_RhoH          ---------------------------------MLSSIKCVLVGDSAVGKTSLLVRFTSE 27 

O95661_RhoI          MGNASFGSKEQKLLKRLRLLPALLILRAFKPHRKIRDYRVVVVGTAGVGKSTLLHKWASG 60 

Q9H4E5_RhoJ          ----------------MNCKEGTDSSCGCRGNDEKKMLKCVVVGDGAVGKTCLLMSYAND 44 

P52198_RhoN          -----------------------------ME-GQSGRCKIVVVGDAECGKTALLQVFAKD 30 

P17081_RhoQ          ----------------MAHGPG------------ALMLKCVVVGDGAVGKTCLLMSYAND 32 

                                                           : *:** .  **: **  ::   

 

P61586_RhoA          QFPEVYVPTVFENYVADIEVDGKQVELALWDTAGQEDYDRLRPLSYPDTDVILMCFSIDS 88 

P62745_RhoB          QFPEVYVPTVFENYVADIEVDGKQVELALWDTAGQEDYDRLRPLSYPDTDVILMCFSVDS 88 

P08134_RhoC          QFPEVYVPTVFENYIADIEVDGKQVELALWDTAGQEDYDRLRPLSYPDTDVILMCFSIDS 88 

O00212_RhoD          AFPESYTPTVFERYMVNLQVKGKPVHLHIWDTAGQDDYDRLRPLFYPDASVLLLCFDVTS 100 

P61587_RhoE          CFPENYVPTVFENYTASFEIDTQRIELSLWDTSGSPYYDNVRPLSYPDSDAVLICFDISR 106 

Q9HBH0_RhoF          SFPEHYAPSVFEKYTASVTVGSKEVTLNLYDTAGQEDYDRLRPLSYQNTHLVLICYDVMN 102 

P84095_RhoG          AFPKEYIPTVFDNYSAQSAVDGRTVNLNLWDTAGQEEYDRLRTLSYPQTNVFVICFSIAS 86 

Q15669_RhoH          TFPEAYKPTVYENTGVDVFMDGIQISLGLWDTAGNDAFRSIRPLSYQQADVVLMCYSVAN 87 

O95661_RhoI          NFRHEYLPTIENTYCQLLGCSHGVLSLHITDSKSGDGNRALQRHVIARGHAFVLVYSVTK 120 

Q9H4E5_RhoJ          AFPEEYVPTVFDHYAVTVTVGGKQHLLGLYDTAGQEDYNQLRPLSYPNTDVFLICFSVVN 104 

P52198_RhoN          AYPGSYVPTVFENYTASFEIDKRRIELNMWDTSGSSYYDNVRPLAYPDSDAVLICFDISR 90 

P17081_RhoQ          AFPEEYVPTVFDHYAVSVTVGGKQYLLGLYDTAGQEDYDRLRPLSYPMTDVFLICFSVVN 92 

                      :   * *:: :              * : *: .      ::         .:: :.:   

 

P61586_RhoA          PD 90 

P62745_RhoB          PD 90 

P08134_RhoC          PD 90 

O00212_RhoD          PN 102 

P61587_RhoE          PE 108 

Q9HBH0_RhoF          PT 104 

P84095_RhoG          PP 88 

Q15669_RhoH          HN 89 

O95661_RhoI          KE 122 

Q9H4E5_RhoJ          PA 106 

P52198_RhoN          PE 92 

P17081_RhoQ          PA 94 
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Fig 8.10: Identification of residues within the N-t erminus of human Rho 

family members which are important for interaction with C3T 

Protein sequences corresponding to the known human Rho family members were retrieved 

from the UniProt knowledge base and aligned using ClustalW. The N-terminus of RhoA 

was then compared to other family members in order to assess whether they showed 

similar motifs to those implicated in the binding of C3T to RhoA and subsequent ADP 

ribosylation. X = site of ADP-ribosylation, equivalent to N41 X = residues involved in 

C3T recognition, equivalent to R5, K6, E47 and E54 X = residues involved in correct 

ternary complex formation between Rho, C3T and NAD+, corresponding to E40 and V43. 

All amino acid positions refer to the position of these residues in RhoA. 
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expression of myc.RhoAT19N in LNCaP cells would both mimic the effect of Fsk on 

LNCaP cell morphology in the absence of other stimuli and potentiate Fsk-induced 

dendrite outgrowth. However, whilst expression of myc.RhoAT19N resulted in an increase 

in mean dendrite length in some transfected wells, this effect was minor in comparison to 

Fsk-induced changes in mean dendrite length and was not uniform for all wells transfected 

with myc.RhoAT19 (Fig. 8.11 panels A and B, +++ = p < 0.001 vs. other constructs).  

 

Furthermore, expression of myc.RhoAT19N did not potentiate Fsk-induced changes in 

LNCaP cell morphology and caused an increase in mean dendrite length comparable with 

that observed in cells transfected with prK5 or myc.RhoAWT (Fig. 8.11, panels A and B, 

*** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle). When comparative expression of the 

different myc.RhoA constructs was determined via immunoblotting for the myc epitope, it 

was found that expression of myc.RhoAT19N was lower than that of the other constructs 

(Fig. 8.11, panel C). 

 

To determine whether the lack of effect of RhoAT19N expression on Fsk-induced dendrite 

outgrowth was a result of lower expression of myc.RhoAT19N, LNCaP cells were 

transfected with 1.5 µg of myc.RhoAT19N. To ensure that any effects of myc.RhoAT19N 

expression were not a result of increases in the amount of cDNA used, LNCaP cells were 

transfected in parallel with 1.5 µg of pRK5. LNCaP cells were also transfected with 1 µg 

of either myc.RhoAWT or myc.RhoAQ63L as per previous experiments. Whilst LNCaP 

cells transfected with pRK5, myc.RhoAWT or myc.RhoAQ63L appeared healthy post-

transfection, expression of myc.RhoAT19N resulted in cell detachment and death (Fig. 

8.11, panel D), indicating that higher expression of dominant negative RhoA in LNCaP 

cells was not possible. 

8.2.12 Actin depolymerisation mimics the effects of  Fsk on 

LNCaP cell morphology 

Given the importance of the RhoA-ROCK signalling pathway in regulating actin 

cytoskeletal dynamics, the ability of Fsk to induce dendrite outgrowth in the absence of a 

functional actin network was assessed. LNCaP cells were seeded onto glass coverslips 

coated with 0.1 mg/ml poly-D-lysine and grown to 50-60 % confluence. Cells were pre-

incubated with either vehicle (1 % (v/v) DMSO) or 100 mg/ml cytochalasin B for 1 h at 

37oC, 5 % (v/v) CO2 in order to disrupt the actin cytoskeleton prior to stimulation with 

either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 1 h. Images were captured at 0 h and 

post-stimulation. In order to determine the efficacy of cytochalasin B, the actin 
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Fig. 8.11: Expression of a dominant negative RhoA b locks Fsk-

induced changes in LNCaP cell morphology 

LNCaP cells were plated into 6-well plates and transfected with 1 µg of either pRK5, 

myc.RhoAWT, myc.RhoAT19N, myc.RhoAQ63L as described in Chapter 5. Cells 

were then stimulated with vehicle and 10 µM Fsk and mages were captured as 

described at 0 h (0 h) and 1 h post-stimulation (ps) (panel A). Changes in LNCaP 

phology consistent with NE-like differentiation were assessed via increases in mean 

dendrite length (panel B). Expression of RhoA mutants was assessed via 

immunoblotting for the myc epitope (panel C). In order to increase cellular 

expression of RhoAT19N, LNCaP cells with 1.5 µg of pRK5 and myc.RhoAT19N 

(panel D). Results are represented as mean values ± SEM for n = 3 separate 

experiments. *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle, +++ = p < 0.001 vs. 

pRK5 
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cytoskeleton was visualised using rhodamine-conjugated phalloidin as described in chapter 

4 and images captured using a 63 x magnification oil immersion objective on a Zeiss 

Pascal Exciter 5 laser scanning confocal microscope. 

 

Treatment with cytochalasin B promoted morphological changes consistent with Fsk-

induced NE-like differentiation in LNCaP cells in the absence of Fsk stimulation and failed 

to synergise with Fsk to promote an increase in mean dendrite length (Fig. 8.12, panels A 

and B). Although treatment with cytochalasin B effectively induced a similar morphology 

as that seen with Fsk treatment, it must be noted that dendrites occurring following 

treatment with cytochalasin B appeared less robust than those seen following Fsk treatment 

as evidenced by gaps in the extensions (Fig. 8.12, panel A, indicated by arrows). As 

anticipated, treatment with cytochalasin B effectively disrupted the cytoskeleton with a 

decrease in stress fibres observed between vehicle (Fig. 8.12, panel C, arrow a) and 

cytochalasin B-treated cells (Fig. 8.12, panel C, arrow B). 

 

These results suggest that the Fsk is able to modulate actin cytoskeletal dynamics in a 

similar way to that seen with cytochalasin B treatment and indicate that Fsk is able to 

inhibit actin polymerisation. Such a result is consistent with the hypothesis that Fsk 

promotes NE-like differentiation of LNCaP cells through inhibition of RhoA-ROCK 

signalling. 

8.2.13 Selective activation of PKA recapitulates th e effect of Fsk 

on LNCaP cell morphology 

Whilst previous results indicate that the ability of Fsk to induce changes in LNCaP cell 

morphology is mediated through activation of PKA and simultaneous inhibition of RhoA 

activity. In order to demonstrate that PKA is indeed the predominant cAMP sensor 

involved in this phenomenon, LNCaP cells were treated with either vehicle (1 % (v/v) 

DMSO), 100 µM of the PKA-selective agonist N6-Benzoyl-cAMP (6-Bnz-cAMP), 10 µM 

Fsk or a combination of Fsk and 6-Bnz-cAMP for 1 h. Phase contrast images were 

captured at 0 h and post-stimulation in keeping with previous experiments and LNCaP 

cells assessed for increases in mean dendrite length. 

 

In keeping with previous data, treatment with vehicle alone failed to induce a change in 

LNCaP cells morphology, indicating that any effects of Fsk or 6-Bnz-cAMP arose from 

pharmacological activity of these drugs. Treatment with 10 µM Fsk resulted in an increase 

in mean dendrite length from 18.14 ± 0.45 µm at 0 h to 35.11 ± 0.71 µm post-stimulation  
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Fig 8.12: Disruption of the actin cytoskeleton reca pitulates the 

effects of Fsk treatment on LNCaP cell morphology 

LNCaP cells were plated onto glass coverslips coated with 0.1 mg/ml poly-D-lysine 

and grown to 60-70 % confluency. Cells were then incubated with either vehicle (1 

% (v/v) DMSO) or 100 mg/ml cytochalasin B for 1 h to disrupt the actin 

cytoskeleton prior to incubation with vehicle (0.1 % (v/v) EtOH) or 10 µM for 1 h. 

Phase contrast images were captured at 0 h and post-stimulation. Following 

incubation, LNCaP cells were fixed in 4 % (w/v) paraformaldehyde prior to 

blocking in 5 % (w/v) BSA-PBST for 30 min and staining with 10 U/ml rhodamine-

conjugated phalloidin overnight at 4oC. Successful actin staining was visualised on a 

Zeiss Pascal Exciter 5 laser scanning confocal microscope using a 63 x 

magnification, oil immersion objective. 

B 
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Fig. 8.13: Selective activation of PKA mimics the e ffect of Fsk on 

LNCaP cell morphology 

LNCaP cells were plated into 6-well plates and incubated for 1 h with either vehicle 

(1 % (v/v) DMSO, 0.1 % (v/v) EtOH), 100 µM 6-Bnz-cAMP, 10 µM Fsk or a 

combination of 10 µM Fsk and 100 µM 6-Bnz-cAMP (panel A). Images were 

captured as described at the time points indicated and changes in LNCaP 

morphology consistent with NE-like differentiation were assessed via increases in 

mean dendrite length (panel B). The ability of 6-Bnz-cAMP and Fsk to mediate 

increases in phospho-PKA substrates was used to indicate efficacy with a 15 min 

stimulation included as a positive control (panel C) Results are represented as mean 

values ± SEM for n = 3 separate experiments. *** = p < 0.001 vs. 0 h, ### = p < 

0.001 vs. vehicle, ++= p < 0.001 vs. Fsk 
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(Fig. 8.13, panels A and B, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle). Treatment 

with 100 µM 6-Bnz-cAMP promoted a similar increase in mean dendrite length from 18.68 

± 0.49 µm at 0 h to 31.03 ± 0.65 µm post-stimulation (Fig. 8.13, panels A and B, *** = p < 

0.001 vs. 0 h, +++ = p < 0.001 vs. vehicle, +++ = p < 0.001 vs. Fsk). Co-stimulation of 

LNCaP cells with 10 µM Fsk and 100 µM 6-Bnz-cAMP caused an increase in mean 

dendrite length from 18.49 ± 0.48 µm at 0 h to 32.28 ± 1.29 µm post-stimulation (Fig. 

8.13, panels A and B, *** = p < 0.001 vs. 0 h, +++ = p < 0.001 vs. vehicle, +++ = p < 

0.001 vs. Fsk). Whilst treatment with 6-Bnz-cAMP and co-stimulation with Fsk and 6-

Bnz-cAMP resulted in a significant decrease in mean dendrite length compared to Fsk 

stimulation alone, the difference in mean dendrite lengths is of approximately 4 µm and 

thus is unlikely to be biologically significant. 

 

Selective activation of PKA can entirely recapitulate the ability of Fsk to induce changes in 

LNCaP cell morphology, confirming previous observations that PKA activation was the 

predominant cAMP effector involved in LNCaP cell differentiation to a NE-like 

phenotype. This conclusion is further supported by the lack of additive effects following 

co-stimulation with Fsk and 6-Bnz-cAMP, indicating that activation of other cAMP 

sensing molecules as a result of Fsk-mediated increases in intracellular cAMP plays an 

insignificant role in morphological changes in LNCaP cells in comparison to the role of 

PKA. 

8.2.14 Investigation into a role for EPAC in Fsk-me diated changes 

in LNCaP cell morphology 

Whilst it is likely that the changes seen in LNCaP cells during the first hour post-

stimulation with Fsk are PKA driven, given the lack of additive effects between 6-Bnz-

cAMP and Fsk, a role for EPAC activation must be excluded from this model. In order to 

establish this, LNCaP cells were treated with 100 pmol of either control or EPAC1 siRNA 

for 48 h prior to stimulation with either vehicle or 10 µM Fsk for 1 h. Phase contrast 

images of LNCaP cells were taken at 0 h and immediately post-stimulation as described in 

previous experiments. There was no initial difference between mean dendrite length in 

control and EPAC1 siRNA treated cells, indicating that knockdown of EPAC1 had no 

effect on cellular morphology. Treatment of either LNCaP cells treated with either control 

or EPAC1 siRNA with 10 µM resulted in an increase in mean dendrite length from 12.48 ± 

0.79 µm at 0 h to 26.76 ± 2.75 µm post-stimulation and from 12.79 ± 0.73 µm to 26.83 ± 

1.23 µm for control and EPAC1 siRNA treated LNCaP cell respectively (Fig. 8.14, panels 

A and B, *** =  p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle). These results suggest that 
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Fig. 8.14: Effect of EPAC1 siRNA on Fsk-induced cha nges in LNCaP 

cell morphology 

LNCaP cells were seeded into 6-well tissue culture dishes and transfected with 100 pmol 

of either control or EPAC1 siRNA as described in Chapter 5. Cells were stimulated at 48 h 

post-transfection with either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 1 h and phase 

contrast images captured at 0 h and 1 h post-stimulation as described previously (panel A). 

Mean dendrite length was assessed as described in section 8.2.1 and results presented as 

mean ± SEM for n = 3 separate experiments (panel B). *** = p < 0.001 vs. 0 h, ### = p < 

0.001 vs. vehicle Successful knockdown of EPAC1 was assessed via immunoblotting for 

EPAC1 with HUVEC cell lysates (H) included as a positive control for antibody reactivity 

(panel C). Expression of EPAC2 was assessed separately in LNCaP cells stimulated with 

either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk for 5 h and lysates of rat brain cortex  

included as a positive control for antibody reactivity (panel D). Non-specific bands 

indicate equal protein loading (*) 
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activation of EPAC1 has no role in Fsk-induced changes in LNCaP cell morphology. 

However, when cell lysates were immunoblotted for knockdown of EPAC1, detection of 

the protein in LNCaP cells was not robust, despite loading 100 µg of protein and strong 

detection of EPAC1 in a HUVEC cell lysate used as a positive control for antibody 

reactivity (Fig. 8.14, panel C). Therefore, it is not possible to conclude whether EPAC1 

was successfully knocked down in LNCaP cells and so a role for the EPAC proteins in this 

phenomenon cannot be excluded. Importantly, it was demonstrated that LNCaP cells also 

express EPAC2 (Fig. 8.14, panel D) which may play a more dominant role than EPAC1 in 

Fsk-induced changes in LNCaP cell morphology and selective knockdown of EPAC2 

should be performed to address this. However, it must be stressed that the data obtained in 

section 8.2.13 indicate no synergistic or additive actions between 6-Bnz-cAMP and Fsk, 

suggesting that any role for EPAC in this phenomenon may be minor in nature. 

8.3 Discussion 

During work investigating the ability of Fsk-mediated cAMP elevation to inhibit IL-6-

induced STAT3 phosphorylation, it was noted that LNCaP cells displayed an altered 

morphology when stimulated with 10 µM Fsk in comparison with vehicle-stimulated 

LNCaP cells. Following a time course of Fsk stimulation, it was apparent that this 

phenomenon was restricted to LNCaP cells and did not occur in DU145 or PZ-HPV-7 cells 

(Fig.8.1). In LNCaP cells, Fsk-induced changes in cell morphology were associated with 

rounding of the cell body, dendrite extension and dendritic branching and are consistent 

with LNCaP cell differentiation to a NE-like phenotype. Whilst much work has focussed 

on the ability of Fsk to induce long-term, functional changes in LNCaP cells by promoting 

NE-like differentiation, less work has examined the mechanisms by which LNCaP cell 

morphology becomes so dramatically altered. Data obtained in this study indicates that, 

using an increase in mean dendrite length as an assessment of NE-like differentiation, the 

majority of morphological changes in LNCaP cells following Fsk treatment occur within 

the first hour post-stimulation with Fsk (Fig. 8.1). This time point was therefore chosen for 

subsequent studies of Fsk-induced changes in LNCaP cell morphology. 

8.3.1 The roles of PKA and EPAC in LNCaP differenti ation 

It was found that treatment of LNCaP cells with the PKA-selective inhibitor myr.PKI14-22 

effectively inhibited the ability of Fsk to induce increase in mean dendrite length, 

indicating that PKA activation is important for this phenomenon. This observation is 

consistent with previous work by Cox et al (2000) who demonstrated that treatment of 

LNCaP cells with agents, including 5 µM Fsk, which induce NE-like differentiation 
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promoted a significant increase in PKA activity as measured by increased phosphorylation 

of the synthetic substrate malantide (Cox et al., 2000). Furthermore, expression of 

constitutively active PKA catalytic subunit (PKA-C) mutants encoding single codon 

changes at positions 87 (H→Q) and 196 (W → R) (Orellana & Mcknight, 1992) promoted 

NE-like differentiation in LNCaP cells in the absence of any other stimulus. The ability of 

PKA-C to be activated in the absence of stimulation with cAMP-elevating agents appears 

to be due to loss of regulation by the regulatory subunits of PKA (Orellana & Mcknight, 

1992) which would normally bind cAMP in order to release the active catalytic subunits. 

Combined with data obtained in this study, it would appear that the ability of Fsk to induce 

NE-like differentiation in LNCaP cells is dependent on PKA activity.  

 

However, whilst PKA activation has been shown to be sufficient to induce NE-like 

differentiation in LNCaP cells, it was necessary to establish a role for the more recently 

described EPAC in this phenomenon. In PC12 cells, simultaneous activation of EPAC and 

PKA is associated with neuronal differentiation whilst exclusive activation of PKA is 

associated with proliferation of PC12 cells through PKA-mediated phosphorylation of the 

EGFR and subsequent transient but robust activation of ERK1/2 (Kiermayer et al., 2005). 

These results suggest that activation of both EPAC and PKA is important for mediating 

cAMP-induced neuronal differentiation. Indeed it has been shown that treatment of PC12 

cells with 8Me-pCPT-cAMP synergistically enhances neurite extension induced by both 6-

Bnz-cAMP and NGF, indicating the important role of EPAC in this phenomenon 

(Christensen et al., 2003). Such interactions between EPAC and PKA may also be 

applicable in the case of cAMP-induced NE-like differentiation in LNCaP cells, although 

cell line-specific responses cannot be discounted. In PC12 cells, selective activation of 

either PKA via the PKA-selective cAMP analogue 6-Bnz-cAMP fails to induce 

neuritogenesis except in the presence of the EPAC-selective cAMP analogue 8Me-pCPT-

cAMP. Similarly, treatment with 8Me-pCPT-cAMP alone failed to induce neurite 

outgrowth but promoted strong increases in the number of cells with neurites when 

combined with 6-Bnz-cAMP (Christensen et al., 2003). In contrast to PC12 cells, active 

PKA alone appears necessary to induce NE-like differentiation of LNCaP cells with 

expression of PKA-C promoting NE-like differentiation in the absence of other stimuli 

(Cox et al., 2000). However, this study only investigated gross morphological changes, 

which are not a quantitative measure of differentiation, and did not compare the abilities of 

Fsk and PKA-C to induce LNCaP cell differentiation. Therefore, subtle differences in the 

respective abilities of PKA-C and Fsk to induce changes in LNCaP cell morphology 

arising may have been overlooked. In this study, pre-treatment of LNCaP cells with 10 nM 
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myrPKI14-22 significantly but incompletely inhibited Fsk-induced increases in mean 

dendrite length despite completely blocking Fsk-mediated phosphorylation of Ser133CREB 

at this concentration. These results suggest that, whilst PKA may play the predominant role 

in Fsk-induced changes in LNCaP cell morphology, EPAC activation may contribute to 

this phenomenon. 

 

Indeed, in HUVECs, treatment with 8Me-pCPT-cAMP has been reported to promote actin 

polymerisation co-ordinately with increased microtubule growth, indicating that EPAC1 is 

important in mediating cross-talk between the actin cytoskeleton and the MT network 

(Sehrawat et al., 2008). As depolymerisation of the MT network in LNCaP cells prior to 

stimulation with Fsk resulted in dendrites which were morphologically distinct from those 

seen in cells pre-incubated with vehicle (Fig. 8.3), it is possible that EPAC may play a role 

in governing dendrite integrity. However, incubation of LNCaP cells with 6-Bnz-cAMP 

totally recapitulated the effects of Fsk treatment on cellular morphology and no additive or 

synergistic actions were seen between Fsk and 6-Bnz-cAMP (Fig. 8.13). These results 

support the hypothesis that activation of PKA is the predominant effect in governing 

changes in LNCaP cell morphology following cAMP elevation and indicate that any role 

played by EPAC1 is more minor at the early time points studied. However, a role for the 

EPAC proteins later in LNCaP differentiation cannot be discounted and it must be stressed 

that only a role for EPAC1 has been investigated. As LNCaP cells also express EPAC2, it 

is possible that this protein may play a greater role in governing Fsk-induced changes in 

LNCaP cell morphology (Fig. 8.14). 

 

It is important to note that, at the time points studied, it is unlikely that any contribution of 

de novo protein synthesis to changes in LNCaP cell morphology will be detected. Indeed, 

pre-treatment with 100 µM emetine did not inhibit Fsk-induced increases in mean dendrite 

length at 1 h post-stimulation with effects on Fsk-induced increases in mean dendrite 

length observed at 3 and 5 h post-stimulation (Fig. 8.2). Given the rapid increase in mean 

dendrite length observed within the first hour post-stimulation with Fsk (Fig. 8.1), it is 

more likely that the changes in cellular morphology are due to immediate cytoskeletal 

alterations rather than as a result of de novo synthesis. It is therefore unlikely that any gene 

products regulated downstream, EPAC proteins will make any significant contribution to 

the phenotype measured at 1 h post-stimulation with Fsk. Extension of these experiments 

to look at later time points may well reveal a role for EPAC proteins in this phenomenon. 
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Such predominance of PKA in this effect may be a reflection of the greater ability of 

cAMP to activate PKA in comparison to EPAC. Whilst both human EPAC1 and PKA 

holoenzyme display similar affinities for cAMP (Dao et al., 2006), half-maximal activation 

(EC50) of EPAC occurs at cAMP concentrations in the micromolar range (EC50 = 45 µM, 

(Rehmann et al., 2003). In contrast, the purified PKA holoenzymes of both honeybees and 

Candida albicans show EC50 values of approximately 0.1 nM (Leboulle & Muller, 

2004;Zelada et al., 1998), indicating that the cAMP is 500 times more potent at activating 

PKA than it is EPAC1.  

 

Whilst the results obtained strongly support the hypothesis that the ability of Fsk to induce 

NE-like differentiation in LNCaP cells is largely PKA-dependent, the fact that neither 

combined inhibition nor activation of EPAC and PKA has been investigated in the current 

study cannot be ignored. It is possible that combined activation of EPAC and PKA via 

treatment with 8Me-pCPT-cAMP and 6-Bnz-cAMP respectively may act to induce 

changes in LNCaP cell morphology. Preliminary investigations of the ability of 8Me-

pCPT-cAMP alone to induce increases in LNCaP cell morphology failed to indicate a role 

of EPAC in this phenomenon (data not shown). However, in order to accurately assess 

changes in mean dendrite length, it is necessary to grow LNCaP cells to sub-confluence 

which may affect the efficacy of 8Me-pCPT-cAMP as our laboratory has previously noted 

that the ability of 8Me-pCPT-cAMP to induce SOCS3 expression (Sands et al., 2006) is 

reduced at lower cell confluences (unpublished observations). Therefore, a better 

experimental strategy to determine whether the contributions of PKA and EPAC1 to Fsk-

induced increases in mean dendrite length are synergistic or additive may well be to 

determine the effect of combined EPAC1 siRNA with PKA inhibition on Fsk-induced 

dendrite outgrowth. 

8.3.2 Inhibition of RhoA mediates Fsk-induced chang es in LNCaP cell 

morphology 

Whilst elucidating the role of PKA in Fsk-mediated changes in LNCaP morphology, it was 

found that treatment with the PKA-selective inhibitor H89 at a concentration of 5 µM 

could induce increases in mean dendrite length in the absence of cAMP elevation. The 

ability of low micromolar concentration of H89 to induce changes in cellular morphology 

is not unprecedented as treatment of both 3T3-L1 adipocytes and NG 108-15 

neuroblastoma cells can induce changes in cellular morphology due to non-selective 

inhibitory effects of H89 on the ROCK pathway (Kato et al., 2007;Leemhuis et al., 2002). 

In the case of NG 108-15 cells, treatment with H89 induces neurite outgrowth, a 
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phenomenon similar to that seen in LNCaP cells, indicating that inhibition of ROCK 

signalling can induce dendrite outgrowth in LNCaP cells (Leemhuis et al., 2002). This 

hypothesis was supported by the observation that selective inhibition of ROCK signalling 

with Y27632 (Ishizaki et al., 2000) could recapitulate the effects of Fsk treatment on 

LNCaP morphological changes. Furthermore, selective inhibition of RhoA, a major 

upstream activator of ROCK, could also mimic the effects of Fsk treatment, indicating that 

Fsk acts to inhibit RhoA. In order to assess this via a genetic approach, LNCaP cells were 

transfected with cDNA encoding either vector, wild-type, a dominant negative or 

constitutively active RhoA. Expression of vector or wild-type RhoA failed to affect the 

ability of Fsk to induce increases in neurite outgrowth. Expression of constitutively active 

myc.RhoAQ63L effectively blocked Fsk-induced increases in mean dendrite outgrowth. 

However, expression of the dominant negative myc.RhoAT19N failed to recapitulate the 

effect of Fsk in the absence of stimulation or following treatment with 10 µM Fsk for 1 h. 

However, expression of this mutant was lower than that of myc.RhoAWT or 

myc.RhoAQ63L, which may explain the lack of phenotype associated with 

myc.RhoAT19N expression. Subsequent attempts to increase myc.RhoA.T19N expression 

were unsuccessful due to cell death following transfection of the myc.RhoA.T19N cDNA. 

It is hypothesised such effects arose due to increased expression of a dominant negative 

RhoA which may act to impede normal cellular adherence and so promote cell death 

through detachment from the substratum. Cells transfected with equal amounts of vector 

cDNA did not display such pronounced decreases in cell viability, indicating that the 

effects seen are specific to the expression of myc.RhoAT19N and not due to effects of 

increasing the amount of cDNA used in the transfection. 

 

Although expression of myc.RhoAT19N failed to potentiate Fsk-induced increases in 

mean dendrite length, the ability of constitutively active myc.RhoAQ63L to block the 

effects of Fsk-induced increases in mean dendrite length in LNCaP cells and the 

observation that incubation with C3T can mimic Fsk-induced changes in LNCaP 

morphology strongly suggest that inhibition of RhoA/ROCK signalling is an important 

requirement for this phenomenon. Furthermore, the inability of Y27632 or C3T to 

potentiate Fsk-induced increases in mean dendrite length in LNCaP cells suggest that the 

two mechanisms are acting through a common pathway and that Fsk acts to inhibit RhoA 

activation. 

 

This hypothesis is further supported by the earlier observations that the ability of Fsk to 

induce NE-like differentiation in LNCaP cells is PKA-dependent. It has been demonstrated 
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in multiple cell types that cAMP elevation can inhibit RhoA activation via PKA-mediated 

phosphorylation of Ser188. Indeed, in the SH-EP neuroblastoma cell line, alanine 

substitution of Ser188 is protective against Fsk-induced changes in morphology similar to 

those seen in LNCaP cells (Dong et al., 1998). In the SGC-7901 gastric carcinoma cell 

line, treatment with the cell-permeable cAMP analogue CPT-cAMP was associated with a 

decrease in the ability of lysophosphatidic acid (LPA) to activate RhoA and concomitantly 

with an increase in pSer188RhoA (Chen et al., 2005). Of particular reference to this study is 

the observation that expression of a S188A RhoA mutant in the PC3 prostate cancer cell 

line prevented CPT-cAMP-mediated antagonism of LPA-induced RhoA activation (Chen 

et al., 2005). These results suggest that the ability of cAMP to inhibit RhoA activation 

requires phosphorylation of RhoA on Ser188
. Phosphorylation of this residue is thought to 

inhibit RhoA activity by promoting interaction of RhoA with the GDP dissociation 

inhibitor (GDI) (Ellerbroek et al., 2003). GDI binds to the C-terminus of RhoA and can 

inhibit both GDP dissociation from RhoA and GTP hydrolysis by RhoA (Hakoshima et al., 

2003). GDI also plays a crucial role in shuttling RhoA between the cytoplasm and the 

membrane and interaction with GDI is thought to sequester GDP-bound RhoA in an 

inactive cytosolic complex (Forget et al., 2002;Qiao et al., 2003). This mechanism of 

RhoA inhibition may well be conserved in higher eukaryotes as phosphorylation of yeast 

cellular membranes with the catalytic subunit of PKA promoted extraction of RhoA via a 

GDI-dependent mechanism and is associated with serine phosphorylation of RhoA (Forget 

et al., 2002). 

 

In addition to direct inhibition of RhoA via Ser188 phosphorylation and subsequent 

interaction with GDI, serine phosphorylation of RhoA also impedes interaction with 

ROCK, thus preventing downstream activation of effectors (Dong et al., 1998). In addition 

to inhibiting activation of ROCK it is also possible that activation of PKA affects other 

downstream effectors of RhoA. MEFs in which the type 1A regulatory subunit of PKA has 

been knocked out (Prkar1a-/-) show increased motility with treatment of cells with Fsk 

resulting in an increase in pSer3cofilin, indicative of activation of LIMK (Nadella et al., 

2009). As activation of LIMK occurs downstream of ROCK, it may initially appear that 

this data contravenes previous publications indicating that PKA activation inhibits RhoA-

ROCK signalling. However, LIMK has two sites at Ser323 and Ser596 which are thought to 

be targets of PKA in vivo suggesting that PKA can directly modulate the activity of RhoA 

effectors (Nadella et al., 2009). It has been proposed that activation of PKA and 

subsequent phosphorylation of RhoA on Ser188 may only affect activation of ROCK-

dependent pathways as treatment with PKA inhibits association of RhoA with ROCK but 
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not protein kinase novel (PKN) (Nusser et al., 2006). PKN is a protein kinase showing 

homology to yeast protein kinase C-related proteins and has been implicated in 

morphological roles during development (Zhao & Manser, 2005). 

 

In addition to selective inhibition of RhoA effectors, activation of PKA may also affect 

other small GTPase signalling pathways. In addition to RhoA, PKA is also able to 

phosphorylate β1Pix, a GEF for Cdc42 and Rac1. PKA-mediated phosphorylation of β1Pix 

is associated with interaction with 14-3-3β, and subsequent inhibition of β1Pix GEF 

activity towards Rac1 and so impaired Rac1-mediated signalling in HEK293 cells (Chahdi 

& Sorokin, 2007). In contrast, PKA activation had no effect on the GEF activity of β1Pix 

towards Cdc42 (Chahdi & Sorokin, 2007), indicating that cAMP elevation can 

differentially regulate the Rho family GTPases. Indeed, it has been shown that endothelin-

1 can activate Cdc42 via a PKA-dependent pathway . 

 

Given the current observations, it is believed that Fsk-mediated elevation of cAMP in 

LNCaP cells results in activation of PKA which then acts to inhibit RhoA via Ser188 

phosphorylation. Subsequent inhibition of ROCK signalling may therefore potentiate the 

extension of cellular process such as dendrites through Rac1/Cdc42-mediated pathways 

rather than the adhesive pathways associated with RhoA and result in the NE-like 

differentiation of LNCaP cells. 
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9 The role of ERK activation in Fsk-induced changes  in 
LNCaP morphology 

9.1 Introduction 

In the previous chapter, the pathways by which cAMP elevation induced morphological 

changes in LNCaP cells were investigated. The results suggest that PKA-mediated 

inhibition of RhoA activity was a major contributor to cAMP-induced dendrite extension 

in these cells. However, other signalling pathways can modulate cytoskeletal dynamics and 

dendrite outgrowth in particular. Key amongst these is activation of the ERK1/2 signalling 

pathway. 

9.1.1 NGF-induced neurite extension 

The PC12 phaeochromacytoma cell line has long been the model of choice when 

investigating neuronal differentiation. PC12 cells undergo differentiation to neuronal cells 

following treatment with a number of stimuli including the neurotrophin nerve growth 

factor (NGF) (Greene & Tischler, 1976), basic fibroblast growth factor (FGF) (Pollock et 

al., 1990), cAMP analogues (Schubert & Whitlock, 1977) and pituitary adenylyl cyclase 

activating peptide (PACAP) -38 (Deutsch & Sun, 1992). NGF-mediated differentiation of 

PC12 cells is mediated by altered gene transcription downstream of the NGF receptor 

(TrkA). The NGF receptor belongs to the tropomyosin-receptor-kinase (Trk) family and, 

following binding of NGF, is activated via tyrosine phosphorylation on residues 

corresponding to Tyr679
, Tyr683 and Tyr684 of the rat NGF receptor (Gryz & Meakin, 

2000;Ng et al., 2009). In addition to Tyr683 and Tyr684, phosphorylation of Tyr794 of the rat 

TrkA enables recruitment of Grb2 and so act as an adaptor to intracellular signalling 

pathways (MacDonald et al., 2000).  

 

One of the pathways activated downstream of TrkA is the ERK1/2 signalling pathway. 

Treatment with NGF results in a sustained activation of both Ras and ERK1/2 which is 

required for the differentiation of PC12 cells (Qiu & Green, 1992). 

 

Dexamethasone-induced expression of oncogenic N-Ras promotes neuronal differentiation 

of PC12 cells in the absence of NGF stimulation. Blockade of ERK activity in PC12 cells 

expressing N-Ras prevents the neurone outgrowth, indicating that Ras-mediated activation 

of ERK1/2 signalling is required for this phenomenon (Qiu & Green, 1992). Furthermore, 

it appears that sustained rather than transient activation of ERK1/2 signalling is required 
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for neuronal differentiation of PC12 cells. EGF fails to differentiate PC12 cells and is 

associated with transient activation of both MEK1/2 and ERK1/2. In contrast, treatment 

with NGF resulted in sustained activation of ERK1/2 which was coupled with neurite 

extension (Traverse et al., 1992). The essential role of ERK activation in PC12 

differentiation was demonstrated by Cowley et al (1994). Over-expression of constitutively 

active MEK1 alone in PC12 cells resulted in changes in morphology consistent with NGF-

induced neuronal differentiation. The ability of constitutively active MEK1 to induce 

neurite outgrowth in PC12 cells requires functional ERK1, which lends further support to 

the essential role of ERK1/2 signalling in neurite outgrowth (Cowley et al., 1994). Similar 

results were obtained in PC12 cells in which a constitutively active, nuclear-localised form 

of ERK2 was expressed (Robinson et al., 1998). 

 

Member of the Ras superfamily are important upstream activators of ERK1/2 (see section 

3.4) and much research has been directed towards identifying the signalling pathways 

required for sustained activation of ERK1/2 during neurite outgrowth. Phosphorylation of 

Tyr490 within TrkA acts as a recruitment site for the adaptor protein Shc. Upon 

phosphorylation of Shc, this protein can then associate with the Ras/SOS complex and so 

promote activation of the Ras-Raf-MEK1/2-ERK1/2 signalling cascade (Huang & 

Reichardt, 2003). A role for Rap1 in NGF-mediated activation of ERK1/2 has been 

proposed as treatment of PC12 cells with NGF promotes sustained activation of ERK1/2 

and also transiently increases GTP-associated Rap1. Although transient, the ability of NGF 

to induce activation of Rap1 was more sustained that EGF-induced increases in Rap1-GTP, 

suggesting that activation of Rap1 may contribute to the sustained ERK1/2 response 

(Obara et al., 2004). Further studies into the respective roles of Ras and Rap1 in promoting 

sustained activation of ERK1/2 indicate that it is Ras activation which dictates the 

amplitude of the initial ERK1/2 response and that Rap1 activation is important the 

sustained activation of this signalling pathway (Bouschet et al., 2003;York et al., 1998). 

However the role of Rap1 in neurite outgrowth is unclear as expression of the Rap1 

interfering mutant, Rap1N17, blocks sustained ERK1/2 activation in response to NGF, but 

does not inhibit NGF-induced neurite outgrowth in PC12 cells. These results suggest that 

neurite outgrowth does not require Rap1 (York et al., 1998). In a recent study, expression 

of constitutively active mutants of H-Ras and M-Ras but not Rap1 could induce neurite 

outgrowth in PC12 cells (Sun et al., 2006). Similarly, expression of the two Ras mutants, 

but not active Rap1, was associated with an increase in phosphorylated ERK1/2. 

Interestingly, expression of dominant negative mutants of all three GTPases inhibited 
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NGF-induced neurite outgrowth. Selective inhibition of M-Ras protein expression using 

siRNA effectively blocked NGF-induced neurite outgrowth, indicating that this protein is 

required for neurite outgrowth in PC12 cells. NGF promoted sustained activation of only 

M-Ras but not three other classical Ras isoforms tested, suggesting that this Ras isoform 

may be important in mediating the sustained activation of ERK1/2 in response to NGF 

(Sun et al., 2006). M-Ras is highly expressed in the brain and was originally identified as 

promoting the formation of microspikes via reorganisation of the actin cytoskeleton in 

Swiss 3T3 fibroblasts (Matsumoto et al., 1997). Thus, it is hardly surprising that M-ras has 

been implicated in neuronal differentiation. 

 

Whilst NGF has been predominantly studied as an inducer of neuronal differentiation, 

other factors can also promote neurite outgrowth. Treatment with the 38 amino acid 

peptide, PACAP-38 can induce neuronal differentiation in a number of neuronal cells and 

is associated with activation of AC (Deutsch & Sun, 1992;Hoshino et al., 1993). PACAP-

38 induces neurite outgrowth in SH-SY5Y cells via elevation of cAMP and subsequent 

activation of ERK and p38 MAPK. Furthermore, it was suggested that these events were 

found to be PKA-independent as selective activation of EPAC in these cells promoted 

ERK1/2 activation and increased the number of neurite bearing cells (Monaghan et al., 

2008). 

9.1.2 The role of cAMP elevation in neurite outgrow th 

The results obtained by Monaghan et al (2008) demonstrate that activation of AC 

downstream of the PACAP receptor induces increases in intracellular cAMP required for 

neurite outgrowth in PC12 cells. The ability of cAMP to induce neurite outgrowth has long 

been described (Schubert & Whitlock, 1977). It has been found that, in the early stages of 

neuronal differentiation, cAMP analogues synergise with both NGF and FGF to promote 

neurite outgrowth (Ho & Raw, 1992;Richter-Landsberg & Jastorff, 1986). In the Richeter-

Landsberg study (1986), cAMP analogues and Fsk did not induce neurite extension in the 

absence of NGF, however it has been demonstrated by other groups that treatment with 

cAMP elevating agents such as Fsk can induce neurite outgrowth in the absence of other 

stimuli (Chijiwa et al., 1990). Similar to NGF, treatment of PC12 cells with Fsk or cAMP 

analogues can result in ERK1 activation which remains elevated at 2 h post-stimulation 

(Yao et al., 1998a). However, it must be stressed that, whilst sustained activation of 

ERK1/2 is important in neurite outgrowth, the ability of cAMP to activate this pathway 

differs between cell types (Creedon et al., 1996). 
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9.1.3 The roles of cAMP in ERK1/2 activation 

The ability of cAMP to activate ERK1/2 differs between cell types. In the Wistar rat 

thyroid cells, Fsk-induced cAMP elevation activates Ras by a mechanism which is 

independent of PKA activation (Tsygankova et al., 2000). In B16 melanoma cells, 

increases in ERK1/2 phosphorylation and both B-Raf and Ras activity were observed 

following treatment of cells with a combination of Fsk and isobutylmethylxanthine 

(IBMX), a PDE inhibitor which non-selectively targets all members. Similar to results 

obtained by Tsygankova et al (2000), the ability of Fsk and IBMX to induce activation in 

these cells was found to occur independently of PKA (Busca et al., 2000). However, the 

signalling pathways responsible for cAMP-induced ERK1/2 activation differ between cell 

types and stimuli. For example, treatment of PC12 cells with a combination of Fsk and 

IBMX activates ERK1/2 through Rap1 rather than Ras (Busca et al., 2000). However, 

when these cells were stimulated with NGF, increases in active Ras were observed (Busca 

et al., 2000), suggesting that the mechanism of ERK1/2 activation differs between stimuli. 

 

There is disparity within current data as to the relative requirement for PKA and EPAC in 

the sustained activation of ERK1/2 during neurite outgrowth. The results of Monaghan et 

al (2008) suggest that PACAP38-mediated neurite outgrowth arises due to activation of 

EPAC rather than PKA. The EPAC-dependency of this result is corroborated by the 

observation that activation of EPAC induces a rapid, sustained activation of ERK1/2 in 

PC12 cells and was associated with increases in neurite outgrowth (Kiermayer et al., 

2005). In the study by Kiermayer et al (2005), activation of PKA was associated with a 

proliferative response rather than the differentiation signal mediated by EPAC activation 

(Kiermayer et al., 2005). However, the role of EPAC and PKA appears to vary between 

experimental designs as treatment of PC12 cells with either EPAC or PKA-selective 

agonists alone fail to induce neurite outgrowth and only do so when cells are treated with 

both agonists simultaneously (Christensen et al., 2003). However, when considering the 

requirement for sustained activation of ERK1/2 in neurite outgrowth, it unsurprising that 

activation of EPAC following cAMP elevation is linked to neurite outgrowth. EPAC2 is 

highly expressed in neuronal tissue and, following interaction with cAMP, is able to 

interact with activated Ras (Li et al., 2006b). The interaction between EPAC2 and Ras 

recruits EPAC2 to the plasma membrane where it potentiates activation of membrane-

bound Rap1 and subsequent activation of ERK1/2 (Li et al., 2006b). Indeed, loss of Ras-

binding prevents EPAC2 from activating Rap1 (Liu et al., 2008), which may explain the 

roles of both of these GTPases in neurite outgrowth. 



216 

 

However, although the above studies suggest a predominant role of EPAC in cAMP-

induced neurite outgrowth, a role for PKA cannot be discounted given the observation that 

activation of both PKA and EPAC is required for neurite outgrowth in response to cAMP 

elevation (Christensen et al., 2003). Interestingly, a link between NGF and cAMP 

elevation has been identified whereby NGF can induce activation of a soluble AC via a 

calcium-dependent mechanism (Stessin et al., 2006). Activation of PKA is required for 

sustained activation of ERK1/2 and gene expression following NGF stimulation (Yao et 

al., 1998a). However, given the observations by Kiermayer et al (2005), the relative 

contributions of EPAC and PKA to NGF-induced neurite extension in PC12 cells are 

currently unclear. 

 

Previous work in LNCaP cells demonstrated that the ability of cAMP to induce changes in 

cellular morphology arose due to PKA-mediated inhibition of RhoA. However, the role of 

ERK1/2 activation in this response has not been investigated. Activation of ERK1/2 

signalling using heparin-binding EGF-like factor (HB-EGF) induces NE differentiation of 

LNCaP cells in the absence of STAT3 phosphorylation or androgen deprivation (Kim et 

al., 2002). Similarly, vasoactive intestinal peptide (VIP) induces NE differentiation of 

LNCaP cells via a PKA-dependent pathway . Such results indicate that ERK1/2 activation 

is an important inducer of NE differentiation in LNCaP cells. 

 

In this study, LNCaP cells were found to rapidly activate ERK1/2 upon stimulation with 

Fsk and treatment with U0126 blocked the effect of Fsk on cell morphology at 1 h post-

stimulation. However, selective activation of ERK1/2 induced an increase in mean dendrite 

length only at 8 h post-stimulation, suggesting that the rapid effects of Fsk are mediated by 

another pathway. Along with MEK1/2, treatment with U0126 can also block MEK5 

activation and subsequent ERK5 signalling pathways. Expression of a dominant-negative 

ERK5 construct mimicked the effect of U0126 on Fsk-induced changes in LNCaP cell 

morphology. A predominant role for ERK5 in early morphological changes in LNCaP cells 

was further supported by the observation that the MEK5-selective inhibitor BIX02188 

blocked Fsk-induced dendrite outgrowth at 1 h post-stimulation. The results suggest that it 

is cAMP-mediated activation of ERK5 rather than ERK1/2 that is required for the early 

changes in cell morphology in LNCaP cells upon stimulation with Fsk. 
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9.2 Results 

9.2.1 Fsk induces Thr 202 and Tyr 204 phosphorylation of ERK1/2 in 

LNCaP cells 

In PC12 cells, stimulation with NGF induces neurite outgrowth associated with sustained 

ERK1/2 activation and can be reversed following treatment with the MEK1/2-selective 

inhibitor PD 98059 (Waetzig & Herdegen, 2003). PKA can mediate the sustained 

activation of ERK1/2 in these cells (Yao et al., 1998a) and it is possible that there are 

similarities between the cellular pathways employed in PC12 and LNCaP cells. To assess 

whether a similar pathway holds true in LNCaP cells, the ability of cAMP elevation to 

activate ERK1/2 was determined. LNCaP cells were seeded into 6-well plates coated with 

0.1 mg/ml poly-D-lysine HBr and grown to 70 % confluency. Prior to stimulation with 

Fsk, LNCaP cells were serum-starved for 2 h to decrease basal activation of ERK1/2. 

Under normal growth conditions, serum present in cell culture medium can activate 

ERK1/2 (Scimeca et al., 1991) which can potentially prevent agonist-induced changes in 

ERK1/2 activation from being observed. Thus, following serum starvation, LNCaP cells 

were stimulated with 10 µM Fsk for 0 – 30 min prior to immunoblotting for 

pThr202pTyr204ERK1/2. These residues are phosphorylated by the upstream MEK1/2 and 

are required for the activation of ERK1/2 (Seger et al., 1992). The extent of 

phosphorylation of ERK1/2 correlates directly with kinase activity as determined by 

comparing the ability of immunoprecipitated ERK1 to phosphorylate myelin basic protein 

(Cook et al., 1997). Therefore, assessment of pThr202pTyr204ERK1/2 levels via 

immunoblotting acts as an indirect readout for ERK1/2 activity. Equal protein loading was 

assessed by immunoblotting for total ERK1/2 and the ability of Fsk to induce increases in 

intracellular cAMP was determined by detection of increases in pSer133CREB, a 

downstream substrate of PKA. 

 

Treatment with 10 µM Fsk induced an increase in pThr202pTyr204ERK1/2 in LNCaP cells 

which was apparent at 5 min post-stimulation and reached maximal levels at 10 min post-

stimulation (Fig. 9.1, ** = p < 0.01 vs. 0 min). Continued stimulation of LNCaP cells with 

Fsk for longer than 10 min resulted in no further increase in detected levels of activated 

ERK1/2 and levels of pThr202pTyr204ERK1/2 did not decrease throughout the remainder of  
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Fig. 9.1: Treatment with Fsk activates ERK1/2 in LN CaP cells  

LNCaP cells were plated into 6-well plates coated with 0.1mg/ml poly-D-lysine HBr 

and grown to 70 % confluency. Cells were serum-starved for 2 h prior to stimulation 

with 10 µM Fsk for 0 – 30 min. ERK1/2 activation was assessed via immunoblotting 

for pThr202pTyr204 ERK1/2 whilst the ability of Fsk to induce increases in intracellular 

cAMP was determined by immunoblotting for pSer133CREB. Blots shown are 

representative of n= 3 experiments. Results are displayed as mean ± SEM for n = 3 

experiments. ** = p <  0.01 vs. 0 min time point. 
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the experiment (Fig. 9.1). The increase in pThr202pTyr204ERK1/2 was accompanied by 

parallel increases in pSer133CREB, consistent with the hypothesis that this phenomenon is 

mediated through elevation of intracellular cAMP (Fig. 9.1). 

9.2.2 Selective inhibition of the ERK1/2 pathway im pairs Fsk-induced 

changes in LNCaP morphology 

Having demonstrated that treatment with Fsk can induce activation of ERK1/2 in LNCaP 

cells, the role of this signalling protein in the Fsk-induced changes in LNCaP morphology 

was then assessed. LNCaP cells were plated into 6 well plates as described and grown to 

50 % confluence in order to reliably assess changes in dendrite length. Images of LNCaP 

cells were captured as described prior to incubation with either vehicle (0.01 % (v/v) 

DMSO) or 10 µM of the MEK1/2-selective inhibitor U0126 (Favata et al., 1998) for 1 h at 

37oC, 5 % (v/v) CO2. Cells were then stimulated with either vehicle (0.01 % EtOH) or 10 

µM Fsk for 1 h and further images captured in order to assess changes in mean dendrite 

length as described previously. 

 

In order to assess the efficacy of U0126, LNCaP cells were plated in parallel and serum-

starved for 2 h prior to incubation with U0126 as described above. These cells were then 

stimulated for 15 min with 10 µM Fsk as this was previously shown to be a suitable time 

point at which to determine ERK1/2 activation in LNCaP cells. It is necessary to serum-

starve LNCaP cells prior to assessment of ERK1/2 activation due to the ability of serum to 

activate this signalling cascade. However, serum starvation of LNCaP cells also induces 

differentiation to a NE-like morphology via androgen deprivation (Chen et al., 1992) , and 

thus serum starvation may mask the ability of Fsk to modulate this process. It was 

therefore necessary to determine U0126 efficacy separately from the effect this inhibitor 

may have on Fsk-induced dendrite outgrowth. Efficacy of U0126 was assessed by 

immunoblotting for a decrease in Fsk-induced  pThr202pTyr204ERK1/2 in the presence of 

U0126. It was found that pre-incubation with U0126 abolished the ability of Fsk to induce 

an increase in pThr202pTyr204ERK1/2 in LNCaP cells, indicating efficacy of the inhibitor 

(Fig. 9.2, panel C). 

 

Treatment of LNCaP cells with either vehicle or 10 µM U0126 had no apparent effect on 

LNCaP cell morphology (Fig. 9.2, panels A and B). In keeping with previous data, 

treatment with 10 µM Fsk for 1 h induced an increase in mean dendrite length from 16.53 

± 0.41 µm to 30.29 ± 0.67 µm (Fig. 9.2, panels A and B, *** = p < 0.001 vs. 0 h, ### = p < 
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0.001 vs. vehicle). LNCaP cells pre-incubated with 10 µM U0126 displayed an increase in 

dendrite length when treated with 10 µM Fsk from 16.20 ± 0.40 µm to 23.90 ± 0.57 µm 

(Fig. 9.2, panels A and B, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle). However, 

the ability of Fsk to induce an increase in mean dendrite length was reduced by 

approximately 44 % in the presence of U0126 (Fig. 9.2, panels A and B, +++ = p < 0.001 

vs. Fsk at 1 h), indicating MEK1/2 activity is required, at least in part, for this 

phenomenon. 

 

These results suggest that activation of ERK1/2 is required for the ability of Fsk to induce 

morphological changes in LNCaP cells consistent with differentiation to a NE-like 

phenotype. However, these experiments do not address whether activation of ERK1/2 

alone is sufficient for this phenomenon. 

9.2.3 Selective activation of ERK1/2 does not mimic  the effect of Fsk 

treatment in LNCaP cells 

It was been demonstrated that selective inhibition of ERK1/2 activation in LNCaP cells 

inhibits the ability of Fsk to induce morphological changes in these cells, indicating that 

activation of ERK1/2 is required for this phenomenon. However, the question of whether 

activation of ERK1/2 is sufficient to induce these changes in morphology has not been 

addressed. Due to the essential nature of ERK1/2 in regulating cellular survival, it is not 

possible to address this problem via siRNA approaches, thus selective activation of 

ERK1/2 via a myc-tagged Raf1:oestrogen receptor (ER) chimera (myc.Raf1:∆ER) was 

employed. The chimera encodes amino acids 305 – 648 of human Raf1 which encodes the 

CR3 kinase region fused to the hormone binding domain of the oestrogen receptor 

(Samuels et al., 1993;Weston et al., 2003). Treatment of cells expressing myc.Raf1:∆ER 

with 4-hydroxytamoxifen (4OHT) results in activation of ER and subsequent activation of 

Raf1 which can then activate the MEK1/2-ERK1/2 signalling pathway. 

In order to assess whether treatment of LNCaP cells transfected with myc.Raf1:∆ER could 

induce changes in LNCaP morphology through selective activation of ERK1/2, it was first 

necessary to demonstrate that 4OHT was able to induce pThr202pTyr204ERK1/2 in these 

cells. LNCaP cells were transfected with 1 µg of either vector (pCMV5) or myc.Raf1:∆ER 

as described previously  and serum-starved for 2 h to decrease basal pThr202pTyr204ERK1/2 

prior to stimulation with 4OHT. LNCaP cells were stimulated with 100 nM 4OHT for 0 – 

60 min and the ability of 4OHT to induce activation of ERK1/2 assessed by 

immunoblotting for pThr202pTyr204ERK1/2.  
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Fig. 9.2: The ability of Fsk to induce changes in L NCaP morphology 

requires MEK1/2 activity 

LNCaP cells were seeded into 6-well plates and grown as described. In order to block 

activation of ERK1/2, cells were pre-incubated with vehicle (0.1% (v/v) DMSO) or 10 

µM of the MEK1/2-selective inhibitor U0126 for 60 min prior to stimulation with 

vehicle or 10 µM Fsk for 1 h. Cells were assessed for changes in mean dendrite length as 

an indicator of differentiation to a NE-like morphology (panels A and B). U0126 

efficacy was established in parallel experiments in LNCaP cells seeded as described and 

serum-starved for 2 h prior to incubation with vehicle or 10 µM U0126 for 60 min and 

subsequent stimulation with vehicle (0.1% EtOH) or 10 µM Fsk for 15 min. the ability of 

U0126 to inhibit MEK1/2 was assessed by a decrease in pThr202pTyr204ERK1/2 as 

detected via immunoblotting (panel C) Results are presented as mean values ± SEM for 

n = 3 experiments. *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle at same time 

point, +++ = p < 0.001 vs. Fsk at 1 h.  
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Figure 9.3: Expression of Myc.Raf1: ∆ER allows selective activation of 

ERK1/2 

LNCaP cells were transfected with 1 µg of vector (pCMV5) or myc.Raf1:∆ER and 

serum starved for 2 h prior  to simulation with 100nM  4OHT for 0 – 60 min. The 

ability of 4OHT to induce activation of ERK1/2 was assessed via immunoblotting for 

pThr202pTyr204ERK1/2 and successful expression of myc.Raf1:∆ER determined via 

immunoblotting for the myc epitope. Results for LNCaP cells transfected with  

pCMV5 are represented by open circles whilst results for LNCaP cells transfected with 

pCM5.Myc.Raf1:∆ER are represented by closed circles. Blot is representative of n = 3 

experiments. Results are represented as mean values ± SEM for n = 3 experiments. * = 

p < 0.05, ** = p < 0.01 vs.  0 h treatment.  
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LNCaP cells transfected with pCMV5 displayed no increase in pThr202pTyr204ERK1/2 

following treatment with 100 nM 4OHT (Fig. 9.3), indicating that any changes in ERK1/2 

activation result from activation of myc.Raf1:∆ER and not from non-selective effects on 

endogenous steroid hormone receptors. In contrast to cells transfected with pCMV5,  

LNCaP cells transfected with myc.Raf1:∆ER displayed a robust increase in 

pThr202pTyr204ERK1/2 at 5 min post-stimulation which increased to maximal levels by 20 

min post-stimulation (* = p < 0.05 vs. 0 h, ** = p < 0.01 vs. 0 h). These results indicate that 

treatment of LNCaP cells expressing myc.Raf1:∆ER is able to selectively activate ERK1/2 

in response to 4OHT stimulation. 

 

To assess whether selective activation of ERK1/2 was sufficient to induce changes in 

LNCaP morphology, LNCaP cells were plated into 6-well plates and transfected with 1 µg 

CMV5 or myc.Raf1:∆ER as described. On the day of experimentation, cell culture medium 

was replaced with 1 ml of fresh medium and images of LNCaP cells captured as described. 

Cells were then stimulated with vehicle (0.1% (v/v) EtOH) or 100 nM freshly prepared 

4OHT for 18 h with images captured at the appropriate time points post-stimulation. In 

order to assess efficacy of 4OHT, LNCaP cells transfected with pCMV5 or myc.Raf1:∆ER 

were stimulated with 100 nM 4OHT for 15 min immediately prior to the end of the 

experiment and activation of ERK1/2 assessed by immunoblotting for 

pThr202pTyr204ERK1/2. Expression of myc.Raf1:∆ER was confirmed by immunoblotting 

against the myc epitope. 

 

Treatment with vehicle did not alter cellular morphology in LNCaP cells transfected with 

either pCMV5 or myc.Raf1:∆ER (Fig. 9.4, panels A, B and C, p >0.05). Similarly, LNCaP 

cells transfected with pCMV5 showed no changes in morphology when stimulated with 

100 nM 4OHT for 0 – 18 h (Fig. 9.4, panels B and C, p > 0.05). In contrast, LNCaP cells 

transfected with myc.Raf1:∆ER displayed an increase in mean dendrite length at 8 h post-

infection with an increase in dendrite length from 14.93 ± 0.399 µm at 4 h post-stimulation 

to 22.07 ± 0.586 µm at 8 h post-stimulation (Fig. 9.4, panels B and C, *** = p < 0.001 vs. 

0 h, ### = p < 0.001 vs. pCMV5 at same time point, +++ = p < 0.001 vs. vehicle-

stimulated myc.Raf1:∆ER). Successful expression of myc.Raf1:∆ER and efficacy of 

4OHT was confirmed via immunoblotting for the myc epitope and pThr202pTyr204ERK1/2 

respectively (Fig. 9.4, panel D). The results suggest that selective activation of ERK1/2 can 

induce changes in LNCaP morphology consistent with NE-like differentiation. However, it 

must be noted that selective activation of ERK1/2 in these cells does not induce a  
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Fig. 9.4: Selective activation of ERK1/2 results in  changes in LNCaP 

morphology but at later time points than seen follo wing Fsk treatment 

LNCaP cells were seeded into 6-well plates coated with 0.1 mg/ml poly-D-lysine and 

transfected with 1 µg of either pCMV5 (panels A and B) or myc.Raf1:∆ER cDNA (panels C 

and D). Cells were then stimulated with either vehicle (0.1% (v/v) EtOH, panels A and C) or 

100 nM of freshly prepared 4OHT for 0 – 18 h (panels B and D) with images captured at 

appropriate time points. Differentiation to a NE-like phenotype was determined by an increase 

in mean dendrite length (panel C) with results represented as mean values ± SEM for n = 3 

separate experiments. LNCaP cells expressing pCMV5 are shown as open or closed squares 

for vehicle and 100 nM 4OHT-stimulated cells respectively whilst results for cells expressing 

myc.Raf1:∆ER are shown as open (vehicle) or closed (100 nM 4OHT) circles (panel E). *** = 

p < 0.001 vs. 0 h, ### = p < 0.001 vs. pCMV5 at same time point, +++ =  p < 0.001 vs. vehicle 

stimulated cells at same time point. In order to assess 4OHT efficacy, LNCaP cells were 

stimulated with 100 nM 4OHT for 15 min immediately prior to the end of the experiment and 

cell lysates immunoblotted for pThr202pTyr204ERK1/2 (panel F). Expression of myc.Raf1:∆ER 

was confirmed by immunoblotting for the myc epitope (panel F). Blot shown is representative 

of n = 3 separate experiments. 
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detectable change in cellular morphology until 8 h post-stimulation (Fig. 9.4, panels B and 

C), whilst it has previously been demonstrated that the majority of Fsk-induced 

morphological changes in LNCaP cells occur within the first 1 h post-stimulation. 

 

These data suggest that activation of ERK1/2, which appears important for later stage 

dendrite extension, may not be a key pathway important in the early stages of dendrite 

outgrowth. It could be argued that this conclusion contradicts the earlier observation that 

pre-incubation with U0126 partially blocks the ability of Fsk to induce dendrite outgrowth 

in LNCaP cells (Fig. 9.2). However, this may not be the case when considering published 

data demonstrating that many inhibitors which were previously thought to selectively 

inhibit the MEK1/2-ERK1/2 pathway also have inhibitory effects on the MEK5-ERK5 

pathway (Mody et al., 2001). U0126 numbers amongst such inhibitors, thus it is possible 

that the inhibitory effect of U0126 on Fsk-induced dendrite extension arises not from 

blockade of ERK1/2 activation but from inhibitory effects on ERK5. 

9.2.4 Expression of a dominant negative ERK5 inhibi ts Fsk-induced 

increases in mean dendrite length 

In order to test the hypothesis that the ability of U0126 to inhibit early Fsk-induced 

morphological changes in LNCaP cells arose due to effects on the ERK5 pathway rather 

than blockade of MEK1/2-mediated ERK1/2 activation, a genetic approach was first 

adopted. LNCaP cells were transfected with 1µg either vector cDNA (pBabePuro), cDNA 

encoding wild-type ERK5 (ERK5) or cDNA encoding a dominant negative mutant of 

ERK5 (ERK5-AEF) as described previously. Vector cDNA was used as a control to 

demonstrate that any effects of expressing the ERK5 constructs on Fsk-induced changes in 

LNCaP morphology did not arise as a result of cDNA transfection. LNCaP cells were 

transfected with wild-type ERK5 to demonstrate that any effect of expressing a dominant 

negative ERK5 was not due to an effect of over-expressing ERK5. The dominant negative 

ERK5 used in this experiment represents ERK5 in which the Thr218Glu219Tyr220 (TEY) 

activation motif has been mutated to Ala218Glu219Phr220 (AEF) and is thus resistant to 

MEK5-mediated activation (Kato et al., 1997). 

 

Prior to stimulation, culture medium on LNCaP cells was replaced with 1 ml of fresh 

culture medium and images of cells captured as described previously. Cells were then 

stimulated with either vehicle or 10 µM Fsk for 1 h and images captured at the end of this 

time period. Cells were harvested as described and activation of ERK5 confirmed via 
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immunoblotting for pThr218pTyr220ERK5 (Fig. 9.5 panel C). Successful expression of the 

ERK5 constructs was confirmed by immunoblotting for total ERK5. 

 

As seen previously, treatment of cells with vehicle failed to elicit any changes in LNCaP 

morphology whilst treatment of vector-transfected cells with 10 µM Fsk promoted an 

increase in mean dendrite length from 15.90 ± 0.4315 µm at 0 h post-stimulation to 28.09 

± 0.5572 µm at 1 h post-stimulation (Fig. 9.5, panels A and B, *** = p < 0.001 vs. 0 h, ### 

= p < 0.001 vs. vehicle-stimulated cells at 1 h). Transfection of LNCaP cells with wild-type 

ERK5 did not enhance Fsk-induced increases in mean dendrite length with mean dendrite 

length increasing from 16.06 ± 0.4003 µm at 0 h post-stimulation to 27.52 ± 0.5757 µm at 

1 h post-stimulation (Fig. 9.5, panels A and B, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. 

vehicle-stimulated cells at 1 h). In contrast, expression of ERK5-AEF partially inhibited 

the ability of Fsk to induce increases in mean dendrite length with an increase in mean 

dendrite length from 18.21 ± 0.5205 µm at 0 h to 22.93 ± 0.4819 µm at 1 h post-

stimulation (Fig. 9.5, panels A and B, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle-

stimulated cells at 1 h, +++ = p < 0.001 vs. vector and wild-type ERK5 at 1 h post-

stimulation with Fsk). This corresponds to an almost 60 % decrease in the ability of Fsk to 

induce dendrite outgrowth in the presence of ERK5-AEF. The fact that expression of wild-

type ERK5 had no effect on the ability of Fsk to induce morphological changes in LNCaP 

cells indicates that the inhibitory effect of ERK5-AEF on Fsk-induced changes in LNCaP 

morphology is due to the dominant negative effect of ERK5-AEF. When detected by 

immunoblotting, comparable levels of ERK5 were observed, indicating equal expression of 

the recombinant proteins. However, it must be noted that when for pThr218pTyr220ERK5 

was detected by immunoblotting, it appeared that treatment with Fsk promoted a decrease 

in dual-phosphorylated ERK5 whilst an increase in pThr218pTyr220ERK5 was seen in 

LNCaP cells transfected with ERK5-AEF, suggestive of ERK5 activation. Whilst these 

results suggest that the ERK5-AEF is unsuitable for use as a dominant-negative construct, 

it is also possible that the results seen are an experimental artefact (see Discussion).  

These results suggest that expression of a dominant negative ERK5 can impair the ability 

of Fsk to induce morphological changes in LNCaP cells, indicating that ERK5 activity is 

important for this phenomenon. It is therefore possible that the observed inhibitory effects 

of U0126 on Fsk-induced changes in LNCaP morphology arise due to impairment of 

ERK5 activation rather than ERK1/2 as was previously supposed. 
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Fig. 9.5: Ectopic of dominant ERK5 impairs the abil ity of Fsk to 

induce morphological changes in LNCaP cells 

LNCaP cells were seeded into 6-well plates and transfected with 1µg either vector 

cDNA (pBabePuro), cDNA encoding wild-type ERK5 (ERK5) or cDNA encoding a 

dominant negative mutant of ERK5 (ERK5-AEF) as described previously. Cells were 

then stimulated with either vehicle (0.1 % (v/v) EtOH) or 10 µM Fsk and images 

captured at 0 h and 1 h post-stimulation (panel A). Differentiation to a NE-like 

morphology was assessed via an increase in mean dendrite length (panel B) and values 

represent mean values ± SEM for n = 3 separate experiments. *** = p< 0.001 vs. 0 h, 

### = p < 0.001 vs. vehicle, +++ = p < 0.001 vs. vector and wild-type ERK5. Activation 

of ERK5 was determined via immunoblotting for pThr218pTyr220ERK5 whilst successful 

construct expression was determined via immunoblotting for ERK5. Blot shown is 

representative for n = 3 separate experiments. 
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9.2.5 Selective inhibition of MEK5 blocks Fsk-media ted changes in 

mean dendrite length in LNCaP cells 

Whilst over-expression of dominant negative ERK5 effectively blocked the ability of Fsk 

to induce increases in mean dendrite length, the use of protein over-expression alone is not 

the ideal method by which to dissect the roles of intracellular signalling molecules. It is  

possible that temporal or spatial separation of signalling partners may be disrupted or that 

signalling pathways may be altered due to supraphysiological levels of a particular protein. 

In order to verify the role of ERK5 in Fsk-induced dendrite outgrowth in LNCaP cells, the 

MEK5-selective inhibitor BIX02188 was used. Until recently, no selective inhibitors of the 

MEK5-ERK5 pathway were available, with pharmacological inhibition of this pathway 

only achievable via inhibitors such as U0126 which were previously thought to act 

exclusively on the MEK1/2-ERK1/2 signalling pathway. To date, BIX02188 and its sister 

compound BIX02189 are the only published MEK5-selective inhibitors demonstrating 

high selectivity for MEK5 in vitro (IC50 = 4.3 nM and 1.5 nM for BIX02188 and 

BIX02189 respectively) (Tatake et al., 2008). In comparison, the IC50 vs. MEK1 and 

MEK2 was in excess of 6000 nM, indicating the high degree of selectivity of BIX02188 

and BIX02189 for the MEK5-ERK5 pathway in comparison to ERK1/2 (Tatake et al., 

2008). However, these studies determined the IC50 for BIX02188 against purified kinases 

and thus concentrations required for inhibition of MEK5 in intact cells are likely to be 

higher. It has recently been published that treatment with 30 µM BIX02189 inhibited NGF-

induced neurite outgrowth in PC12 cells (Obara et al., 2009). To assess if this 

concentration of BIX02188 inhibited Fsk-mediated increases in mean dendrite length in 

LNCaP cells, cells were plated into 6-well tissue culture plates and incubated with either 

vehicle (0.3 % (v/v) DMSO) or 30 µM BIX02188 for 1 h at 37oC, 5 % (v/v) CO2 prior to 

incubation with either vehicle (0.1 5 (v/v) EtOH) or 10 µM Fsk for 1 h. Phase contrast 

images were captured at 0 h and immediately post-stimulation and analysed for changes in 

mean dendrite length as described previously. 

 

As found previously, treatment with vehicle did not affect mean dendrite length (mean 

dendrite length = 17.43 ± 0.50 µm and 15.80 ± 0.42 µm at 0 h and post-stimulation 

respectively, Fig. 9.6, panels A and B). Similarly, treatment with BIX02188 alone had no 

effect on mean dendrite length with mean dendrite lengths measuring 17.78 ± 0.61 µm at 0 

h and 15.46 ± 0.41 µm post-stimulation (Fig. 9.6, panels A and B). Treatment with Fsk 

resulted in an increase in mean dendrite length from 17.93 ± 0.42 µm at 0 h to 33.80 ± 0.61  
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Fig. 9.6: The ability of Fsk to induce changes in L NCaP 

morphology requires MEK5 activity 

LNCaP cells were seeded into 6-well plates and grown as described. In order to block 

activation of ERK5, cells were pre-incubated with vehicle (0.3 % (v/v) DMSO) or 0 

µM of the MEK5-selective inhibitor BIX02188 for 60 min prior to stimulation with 

vehicle or 10 µM Fsk for 1 h. Cells were assessed for changes in mean dendrite 

length as an indicator of differentiation to a NE-like morphology (panels A and B). 

BIX02188 efficacy was established in parallel experiments in LNCaP cells seeded as 

described and transfected with 1 µg ERK5 cDNA prior to incubation with vehicle 

(0.3 % (v/v) DMSO) or 30 µM BIX02188 for 60 min and subsequent stimulation 

with vehicle (0.1% EtOH) or 10 µM Fsk for 15 min. Treatment with BIX02188 did 

not alter the ability of Fsk to activate ERK1/2 as detected via immunoblotting (panel 

C) Results are presented as mean values ± SEM for n = 3 experiments. *** = p < 

0.001 vs. 0 h, ### = p < 0.001 vs. vehicle at same time point, +++ = p < 0.001 vs. Fsk 

at 1 h.  
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µm post-stimulation (Fig. 9.6, panels A and B, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. 

vehicle). The ability of Fsk to induce an increase in mean dendrite length was attenuated 

following pre-incubation with 30 µM BIX02188, with mean dendrite length increasing 

from 17.63 ± 0.41 µm at 0 h to just 20.54 ± 0.45 µm post-stimulation (Fig. 9.6, panels A 

and B, *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. vehicle, +++ = p < 0.001 vs. Fsk). 

These results demonstrate that pre-incubation with BIX02188 blocks the ability of Fsk to 

induce changes in LNCaP cell morphology and support previous data in this study 

suggesting that activation of the ERK5 signalling pathway is an important effector in Fsk-

mediated changes in LNCaP cell morphology. 

 

Although BIX02188 is thought to be at least 3 orders of magnitude more selective for 

MEK5 in comparison to MEK1 or MEK2, it is possible that, at the higher concentrations 

used in intact cells, the inhibitor may be exerting non-selective effects on other signalling 

pathways. Of particular concern given the non-selective effects of MEK1/2-selective 

inhibitors such as U0126 on MEK5 is the possibility that ERK1/2 signalling may also be 

inhibited when using BIX02188 at a concentration of 30 µM. To assess whether this was 

indeed the case, LNCaP cells were seeded into 6-well tissue culture dishes as described 

previously and grown to 70 % confluency prior to serum starvation overnight to reduce 

basal activation of both ERK1/2 and ERK5. The following day, growth medium was 

replaced with fresh serum-free RPMI and LNCaP cells incubated for 1 h with either 

vehicle (0.3 % (v/v) DMSO) or 30 µM BIX02188 at 37oC, 5 % (v/v) CO2. Cells were then 

stimulated with either vehicle (0.1 5 (v/v) EtOH) or 10 µM Fsk to induce ERK1/2 

activation. Unfortunately, the amount of protein obtained from these experiments was 

insufficient to determine increases in pThr218pTyr220ERK5, it was possible to determine 

that pre-incubation with BIX02188 had no discernible effect on Fsk-induced increases in 

pThr202pTyr204ERK1/2 (Fig. 9.6, panel C). These results indicate that the effects of 

BIX02188 on Fsk-induced changes in LNCaP cell morphology are due to selective 

inhibition of the MEK5-ERK5 signalling pathway and not due to effects on ERK1/2 

signalling. 

9.3 Discussion 

Treatment with NGF, cAMP analogues and Fsk all result in neurite outgrowth in PC12 

cells. All of these stimuli induce sustained activation of ERK1/2, a process which has been 

shown to be required for neurite outgrowth in PC12 cells. Activation of both PKA and 

EPAC has been implicated in this phenomenon with PKA activation being required for the 
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sustained activation of ERK1/2 (Yao et al., 1998b). In the previous chapter, it was 

demonstrated that selective activation of PKA could mimic the effects of Fsk treatment on 

LNCaP cell morphology, suggesting that this phenomenon is PKA dependent. However, 

the effect of cAMP elevation on ERK1/2 activation in LNCaP cells has not been 

investigated. In this chapter, cAMP elevation promoted an increase in ERK1/2 activation 

as detected by an increase in pTyr202pThr204ERK1/2 and treatment with the MEK-selective 

inhibitor U0126 inhibited Fsk-induced changes in LNCaP cell morphology. However, 

whilst selective activation of ERK1/2 induced changes in LNCaP cell morphology, an 

increase in mean dendrite length was observed only at 8 h post-stimulation, suggesting that 

activation of ERK1/2 is not the primary pathway involved in Fsk-induced changes in 

LNCaP cell morphology. 

 

In addition to MEK1/2, U0126 can also inhibit MEK5 at concentrations similar to those 

used in this study. In PC12 cells, it has recently been demonstrated that activation of ERK5 

plays an important role in neurite outgrowth (Obara et al., 2009), thus there may be a role 

for the MEK5/ERK5 signalling pathway in Fsk-induced changes in LNCaP cell 

morphology. To address this, ERK5-AEF, a dominant negative ERK5 was expressed in 

LNCaP cells. Treatment with Fsk promoted an increase in mean dendrite length in LNCaP 

cells transfected with vector or wild-type ERK5 but not in those expressing ERK5-AEF, 

indicating that ERK5 activation is important in this phenomenon. However, over-

expression studies are not the ideal strategy by which to address the roles of signalling 

proteins as high levels of expression could induce protein interactions which would not 

happen physiologically. Thus, LNCaP cells were treated with the MEK5-selective inhibitor 

BIX02188 prior to stimulation with Fsk. Pharmacological blockade of MEK5 signalling 

prevented an increase in mean dendrite length following Fsk treatment, indicating that the 

MEK5/ERK5 signalling pathway is of importance in this phenomenon. At the 

concentration of BIX02188 used in this experiment, no effects on ERK1/2 activation were 

observed, indicating that the phenomenon is mediated by activation of ERK5. 

 

In addition to MEK1/2, U0126 can also inhibit MEK5 at concentrations similar to those 

used in this study. In PC12 cells, it has recently been demonstrated that activation of ERK5 

plays an important role in neurite outgrowth (Obara et al., 2009), thus there may be a role 

for the MEK5/ERK5 signalling pathway in Fsk-induced changes in LNCaP cell 

morphology. To address this, ERK5-AEF, a dominant negative ERK5 was expressed in 

LNCaP cells. Treatment with Fsk promoted an increase in mean dendrite length in LNCaP 

cells transfected with vector or wild-type ERK5 but not in those expressing ERK5-AEF, 
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indicating that ERK5 activation is important in this phenomenon. However, over-

expression studies are not the ideal strategy by which to address the roles of signalling 

proteins as high levels of expression could induce protein interactions which would not 

happen physiologically. Thus, LNCaP cells were treated with the MEK5-selective inhibitor 

BIX02188 prior to stimulation with Fsk. Pharmacological blockade of MEK5 signalling 

prevented an increase in mean dendrite length following Fsk treatment, indicating that the 

MEK5/ERK5 signalling pathway is of importance in this phenomenon. At the 

concentration of BIX02188 used in this experiment, no effects on ERK1/2 activation were 

observed, indicating that the phenomenon is mediated by activation of ERK5. 

 

It cannot be ignored that in Fig. 9.5, determination of ERK5 phosphorylation demonstrated 

that treatment with Fsk resulted in an increase in pThr218pTyr220ERK5 in LNCaP cells 

transfected with ERK5-AEF, suggestive that the construct is not functioning as a true 

dominant negative. Furthermore, treatment with Fsk promoted a decrease in endogenous 

pThr218pTyr220ERK5 which suggests that Fsk is not able to activate ERK5 in these cells. 

However, whilst such observations dispute the conclusion above that ERK5 activation is 

an important mediator of Fsk-induced dendrite outgrowth in LNCaP cells, the 

immunoblotting results obtained may be experimental artefacts. Due to the poor quality of 

anti-pThr218pTyr220ERK5 antibodies or low abundance of ERK5, cells were lysed directly 

into 12 % SDS sample buffer to maximise the amount of protein used for SDS-PAGE 

fractionation. Thus it was not possible to equalise samples for protein content prior to 

SDS-PAGE and subsequent immunoblotting. Due to the semi-quantitative nature of 

immunoblotting, it is possible that, particularly at the high levels of ERK5 expression seen 

in the transfected LNCaP cells, differences in protein loading would be masked by the high 

intensity of the protein signal. Therefore, the changes in ERK5 phosphorylation detected 

may be a simple result of changes in protein loading. Furthermore, it would be expected 

that only a fraction of the pool of cellular ERK5 would be activated in response to stimuli, 

thus the level of total ERK5 should be in excess to pThr218pTyr220ERK5. This is 

particularly relevant when considering the observation that Fsk inhibits endogenous 

pThr218pTyr220ERK5 (Fig. 9.5, panel C). The endogenous level of pThr218pTyr220ERK5 

detected appears comparable to that seen in lysates from LNCaP cells transfected with 

ERK5 or ERK5-AEF. However, in vector-transfected cells, endogenous ERK5 cannot be 

detected via immunoblotting. If there is insufficient endogenous ERK5 to detect by 

immunoblotting, these results question whether the anti- pThr218pTyr220ERK5 antibody is 

reliably detecting dual phosphorylated ERK5. 
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These results suggest that ERK5 activation is required for cAMP-induced changes in 

cellular morphology. However, the ability of cAMP elevation to activate ERK5 in LNCaP 

cells has not been demonstrated due to problems detecting endogenous ERK5 and its 

activated form (data not shown and above) In HeLa cells, elevation of cAMP is associated 

with a decrease in EGF-induced activation of ERK5 due to PKA-mediated inhibition of 

MEKK2, an upstream kinase involved in ERK5 activation (Pearson et al., 2006). In rat 

neonatal ventricular myocytes, it has been demonstrated that increases in cAMP can inhibit 

serum-induced activation of ERK5 via activation of EPAC rather than PKA, suggesting 

that the mechanisms by which cAMP elevation modulate ERK5 differs between cell type 

(Dodge-Kafka et al., 2005). In DIV5 cortical neurones, treatment with Fsk induced 

activation of ERK1/2 but not ERK5 (Cavanaugh et al., 2001). These results apparently 

contradict the observations in this chapter where it is suggested that treatment with Fsk can 

activate ERK5. However, an important difference between this study and previous data is 

that, in order to accurately measure mean dendrite length, LNCaP cells are stimulated at 

sub-maximal confluence. It has been demonstrated in NIH3T3 cells, that treatment with 8-

Bromo-cAMP and the β2-adrenoceptor agonist isoproteronol can induce activation of 

ERK5 in 80 % confluent cells (Pearson & Cobb, 2002). In 50 % confluent NIH3T3 cell, 

treatment with a combination of Fsk and IBMX resulted in a transient activation of ERK5. 

However, in confluent NIH3T3 cells, cAMP attenuated EGF-induced activation of ERK5 

and treatment with cAMP alone failed to induce ERK5 activation (Pearson & Cobb, 2002). 

Taken together, these results suggest that the ability of cAMP to induce ERK5 activation is 

dependent on cell conditions. Therefore, whilst cAMP elevation may be able to decrease 

ERK5 activation in response to cytokine stimulation, it is possible that, Fsk is able to 

activate ERK5 in sub-confluent LNCaP cells. 

 

In PC12 cells, treatment with di-butryl-cAMP does not induce activation of ERK5 

although robust activation of ERK5 can be induced by NGF. Treatment with NGF induces 

neurite outgrowth and is inhibited either by pre-incubation with BIX02189 or over-

expression of dominant negative ERK5, indicating a crucial role for ERK5 in this process 

(Obara et al., 2009). Although ERK5 activation appears to be critical in neurite outgrowth 

in PC12 cells and LNCaP cells, it is likely that the mechanism by which ERK5 activation 

is achieved varies between the cell types. This hypothesis is strengthened by observations 

in chapter 8 suggesting that the ability of Fsk to alter LNCaP cellular morphology is 

mostly mediated by activation of PKA and that EPAC activation may play a minor role in 



 

 241  

this phenomenon, unlike the synergistic roles which PKA and EPAC are thought to play in 

PC12 cells. 

 

It is hypothesised here that cAMP-mediated activation of ERK5 is important in NE-like 

differentiation of LNCaP cells; however, ERK5 activation has not been satisfactorily 

demonstrated. The ability of BIX02188 to inhibit Fsk-induced dendrite outgrowth in 

LNCaP cells corroborates data demonstrating that expression of ERK5-AEF can inhibit 

Fsk-induced changes in LNCaP cell morphology. However, although the concentration of 

BIX02188 used is consistent with previously published data (Obara et al., 2009), it is 

possible that this compound is having non-selective effects on other pathways. Whilst an 

inhibitory effect of BIX02188 on MEK1/2 activation has been excluded it is possible that 

the compound may be acting on other kinases such as Src. BIX02188 shows far greater 

selectivity for Src in comparison to MEK1/2 at a test concentration of 3 µM (Tatake et al., 

2008) and inhibition of Src could provide an alternative explanation for the BIX02188-

mediated inhibition of Fsk-induced dendrite outgrowth observed in this study. In PC12 

cells, NGF induces neurite outgrowth via a signalling pathway which involves Src-

mediated activation of Ras and subsequent Raf activation (D'Arcangelo & Halegoua, 

1993). Furthermore, as it has been proposed that activation of Rap1 is required for 

neuritogenesis, PKA-mediated activation of Src and subsequent activation of Rap1 has 

been demonstrated in PC12 cells in response to both NGF and cAMP elevation (Obara et 

al., 2004).  If such a pathway was present in LNCaP cells, it is possible that PKA-mediated 

activation of Src could provide a mechanism by which ERK1/2 is activated in response to 

Fsk and by which cAMP elevation induces dendrite outgrowth in these cells. To address 

whether BIX02188 is acting to inhibit Src activation, the phosphorylation status of Src 

substrates, such as Sin and Cas, which have been implicated in neurite outgrowth could be 

assessed (Yang et al., 2002).  Additionally, the role of Src activation in Fsk-induced 

changes in LNCaP cell morphology could be demonstrated via treatment with Src-selective 

inhibitors such PP1. Whilst it is possible that BIX02188 is acting via inhibition of Src, it is 

still possible that ERK5 activation may play a role in Fsk-mediated changes in LNCaP cell 

morphology as ERK5 has been implicated in the activation of Src and subsequent 

limitation of RhoA in NIH3T3 cells (Schramp et al., 2008). 

 

The observation that selective activation of ERK1/2 failed to induce early changes in 

LNCaP cell morphology was surprising as it was demonstrated that both Fsk and 4OHT 

treatment resulted in rapid activation of ERK1/2, indicating that it is important in the early 

stages of neurite outgrowth. It is possible that the signalling pathway which contributes to 
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ERK1/2 activation may play an important role in governing neuritogenesis. It has been 

proposed that sustained activation of B-Raf is important in neurite outgrowth as inhibition 

of p38 MAPK activity downstream of the EGFR results in sustained B-Raf and ERK1/2 

activation. Of particular relevance is the observation that this sustained activation of B-Raf 

is associated with the conversion of EGF to a differentiation stimulus on PC12 cell, 

suggesting that activation of B-Raf, rather than Raf1 is important for neurite outgrowth 

(Yoon et al., 2004). York et al (1998) demonstrated that sustained activation of ERK1/2 

following NGF treatment required Rap1 activation and this was associated with 

downstream activation of B-Raf (York et al., 1998). Indeed, treatment with NGF induces 

activation of B-Raf rather than Raf1 in PC12 cells (Jaiswal et al., 1996) and supports the 

suggestion that B-Raf activation is key to neurite outgrowth. Thus, the role of ERK1/2 in 

this phenomenon cannot be excluded and use of a B-Raf:∆ER chimera to selectively 

activate ERK1/2 may better delineate the role of this signalling pathway in neurite 

outgrowth. However, temporal differences in activation of the different ERK signalling 

cascades cannot be ignored and it may simply be the case that activation of ERK1/2 is 

necessary for later-stage processes necessary for NE-like differentiation in LNCaP cells. 

 

It could be reasonably suggested that treatment with Fsk could induce sustained activation 

of ERK1/2 in LNCaP cells via EPAC2-mediated activation of Rap1 and subsequent 

activation B-Raf to promote neurite outgrowth. However, the previous chapter suggests 

that the effects of Fsk on changes in LNCaP cell morphology are mediated solely by the 

actions of PKA. Interestingly, PKA activation is required for Fsk-induced activation of 

Rap1 in PC12 cells through activation of the C3G Rap1-GEF (Wang et al., 2006). Thus it 

is possible that a cAMP→PKA→C3G→Rap1→B-Raf→ERK1/2 signalling cascade exists 

in LNCaP cells which is important in Fsk-induced changes in LNCaP cell morphology. 

 

It is currently unclear as to whether Raf proteins play a role in mediating activation of 

ERK5 following elevation of intracellular cAMP. It has been reported that activation of 

ERK5 downstream of Ras requires Raf1 and that ERK5 can bind full-length Raf1 in vitro 

and in cells (English et al., 1999). However, in order to demonstrate this, cells were co-

transfected with both the Raf1 and ERK5 constructs of interest (English et al., 1999). Thus 

it is hard to ascertain whether the functional interaction of ERK5 and Raf1 is 

physiologically relevant as these results represent the interaction of over-expressed 

proteins. 

 



 

 243  

It is possible that the predominant role of ERK5 in early changes in LNCaP cell 

morphology is mediated by the kinase exerting effects directly on the cytoskeleton. Given 

the critical role of the actin cytoskeleton in regulating cellular morphology, the ability of 

ERK5 to regulate actin polymerisation is of interest. ERK5 contains two proline-rich 

regions which are believed to target ERK5 to the actin cytoskeleton (Zhou et al., 1995) 

and, importantly, are absent in ERK1/2 (Fig. 9.7). To date, there is no published data to 

demonstrate that ERK5 can interact with the actin cytoskeleton, although this could be 

readily determined by immunofluorescence to demonstrate colocalisation of ERK5 and 

actin. A Cdc24-like motif in MEK5 is associated with an increase in GTP → GDP 

exchange following interaction of CDC24 and CDC42 in Saccharomycese cerevisiae 

(Zhou et al., 1995) and thus the MEK5/ERK5 pathway may dynamically regulate the actin 

cytoskeleton by acting to inhibit Cdc42 activity. Of particular interest to this study is the 

observation that ERK5 can directly limit RhoA activation via induction of RhoGAP7 

expression (Schramp et al., 2008). It is therefore possible that activation of ERK5 as a 

result of cAMP elevation in LNCaP cells can inhibit RhoA activity in conjunction with 

PKA, although given the rapid changes in LNCaP cell morphology following Fsk 

stimulation, it is likely that induction of RhoGAP7 would play a minor role in changes in 

cellular morphology. 

 

Whilst a role for PKA activation in the effects of ERK5 on changes in cellular morphology 

has not yet been determined, it is possible that PKA could directly activate MEKK3, 

MEK5 or ERK5. PKA phosphorylation sites for both proteins have been predicted in 

LNCaP cells (Table 9.1) although these need to be confirmed experimentally. Furthermore, 

as these sites are only predicted, it might be that they have no impact on ERK5 activity and 

thus in vitro and in vivo studies need to be performed to assess whether these sites exert 

regulatory roles on ERK5 activity. Interestingly, motifs for PKC-mediated phosphorylation 

were more frequently identified than PKA phosphorylation motifs and it might be that 

cAMP elevation can mediate activation of PKC in LNCaP cells as has been previously 

described in HUVECs (Borland et al., 2009), neurones (Hucho et al., 2005) and myocytes 

(Oestreich et al., 2009). It is thought that cAMP-mediated activation of PKC occurs 

primarily through activation of EPAC (Borland et al., 2009;Hucho et al., 2005) but it is 

possible that the precise signalling networks responsible vary between cell types. 

 

To summarise, data presented in this chapter suggest that the ability of cAMP elevation to 

induce early changes in LNCaP cell morphology may requires activation of ERK5 and not 

ERK1/2 as was previously proposed. However, the precise nature of the signalling 
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pathways regulating ERK5 activity following cAMP elevation have not yet been defined 

and further work to delineate these may prove beneficial when investigating the emergence 

of NE cells in PCa. 
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ERK1            MAA---------AAAQGGGGGEPRRTEGVGPGVPGEVEMVKGQ----PFDVGPRYTQLQY 47 
ERK2            MAA---------AAAAG-----------AGP------EMVRGQ----VFDVGPRYTNLSY 30 
ERK5            MAEPLKEEDGEDGSAEPPGPVKAEPAHTAASVAAKNLALLKARSFDVTFDVGDEYEIIET 60 
                **          .:*             ...       :::.:     **** .*  :.  
 

ERK1            IGEGAYGMVSSAYDHVRKTRVAIKKIS-PFEHQTYCQRTLREIQILLRFRHENVIGIRDI 106 
ERK2            IGEGAYGMVCSAYDNVNKVRVAIKKIS-PFEHQTYCQRTLREIKILLRFRHENIIGINDI 89 
ERK5            IGNGAYGVVSSARRRLTGQQVAIKKIPNAFDVVTNAKRTLRELKILKHFKHDNIIAIKDI 120 
                **:****:*.**  .:   :******. .*:  * .:*****::** :*:*:*:*.*.** 
 

ERK1            LRAST-LEAMRDVYIVQDLMETDLYKLLKS-QQLSNDHICYFLYQILRGLKYIHSANVLH 164 
ERK2            IRAPT-IEQMKDVYIVQDLMETDLYKLLKT-QHLSNDHICYFLYQILRGLKYIHSANVLH 147 
ERK5            LRPTVPYGEFKSVYVVLDLMESDLHQIIHSSQPLTLEHVRYFLYQLLRGLKYMHSAQVIH 180 
                :*...    ::.**:* ****:**:::::: * *: :*: *****:******:***:*:* 
 

ERK1            RDLKPSNLLINTTCDLKICDFGLAR-IADPEHDHTGFLTEYVATRWYRAPEIMLNSKGYT 223 
ERK2            RDLKPSNLLLNTTCDLKICDFGLAR-VADPDHDHTGFLTEYVATRWYRAPEIMLNSKGYT 206 
ERK5            RDLKPSNLLVNENCELKIGDFGMARGLCTSPAEHQYFMTEYVATRWYRAPELMLSLHEYT 240 
                *********:* .*:*** ***:** :. .  :*  *:*************:**. : ** 
 

ERK1            KSIDIWSVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQEDLNCIINMKARNYLQS 283 
ERK2            KSIDIWSVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQEDLNCIINLKARNYLLS 266 
ERK5            QAIDLWSVGCIFGEMLARRQLFPGKNYVHQLQLIMMVLGTPSPAVIQAVGAERVRAYIQS 300 
                ::**:******:.***:.* :****:*:.**: *: :**:**   ::.:   :.* *: * 
 

ERK1            LPSKTKVAWAKLFPKSDSKALDLLDRMLTFNPNKRITVEEALAHPYLEQYYDPTDEPVAE 343 
ERK2            LPHKNKVPWNRLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHPYLEQYYDPSDEPIAE 326 
ERK5            LPPRQPVPWETVYPGADRQALSLLGRMLRFEPSARISAAAALRHPFLAKYHDPDDEPDCA 360 
                ** :  *.*  ::* :* :**.**.:** *:*  ** .  ** **:* :*:** *** .  
 

ERK1            EPFTFAMELDDLPKERLKELIFQETA-------------RFQPGVLEAP----------- 379 
ERK2            APFKFDMELDDLPKEKLKELIFEETA-------------RFQPGYRS------------- 360 
ERK5            PPFDFAFDREALTRERIKEAIVAEIEDFHARREGIRQQIRFQPSLQPVASEPGCPDVEMP 420 
                 ** * :: : *.:*::** *. *               ****.                 
 

ERK1            ------------------------------------------------------------ 
ERK2            ------------------------------------------------------------ 
ERK5            SPWAPSGDCAMESPPPAPPPCPGPAPDTIDLTLQPPPPVSEPAPPKKDGAISDNTKAALK 480 
                                                                             
 

ERK1            ------------------------------------------------------------ 
ERK2            ------------------------------------------------------------ 
ERK5            AALLKSLRSRLRDGPSAPLEAPEPRKPVTAQERQREREEKRRRRQERAKEREKRRQERER 540 
                                                                             
 

ERK1            ------------------------------------------------------------ 
ERK2            ------------------------------------------------------------ 
ERK5            KERGAGASGGPSTDPLAGLVLSDNDRSLLERWTRMARPAAPALTSVPAPAPAPTPTPTPV 600 
                                                                             
 

ERK1            ------------------------------------------------------------ 
ERK2            ------------------------------------------------------------ 
ERK5            QPTSPPPGPVAQPTGPQPQSAGSTSGPVPQPACPPPGPAPHPTGPPGPIPVPAPPQIATS 660 
                                                                             
 

ERK1            ------------------------------------------------------------ 
ERK2            ------------------------------------------------------------ 
ERK5            TSLLAAQSLVPPPGLPGSSTPGVLPYFPPGLPPPDAGGAPQSSMSESPDVNLVTQQLSKS 720 
                                                                             
 

ERK1            ------------------------------------------------------------ 
ERK2            ------------------------------------------------------------ 
ERK5            QVEDPLPPVFSGTPKGSGAGYGVGFDLEEFLNQSFDMGVADGPQDGQADSASLSASLLAD 780 
                                                                             
 

ERK1            ------------------------------------ 
ERK2            ------------------------------------ 
ERK5            WLEGHGMNPADIESLQREIQMDSPMLLADLPDLQDP 816 
 

Fig. 9.7: Sequence alignment of ERK1, ERK2 and ERK5  indicating proline-

rich regions 
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MEKK3   

Site   Kinase   Score 
--------------------- 
S-9       PKA    0.54 
T-30      PKC    0.78 
S-39      PKC    0.63 
S-43      PKC    0.53 
S-61      PKC    0.76 
T-74     cdc2    0.51 
T-75      PKC    0.78 
S-111     PKC    0.51 
S-111    cdc2    0.52 
S-112     RSK    0.57 
S-122   DNAPK    0.55 
S-122     ATM    0.54 
S-122     PKC    0.79 
S-122    cdc2    0.55 
S-129    cdc2    0.52 
S-130    cdc2    0.51 
S-131    cdk5    0.56 
S-145   DNAPK    0.59 
S-145     PKA    0.58 
T-153     PKC    0.54 
Y-155    EGFR    0.58 
S-162    GSK3    0.50 
S-166     RSK    0.67 
S-166     PKB    0.72 
S-166     PKC    0.54 
S-166     PKA    0.62 
S-168    cdc2    0.55 
S-169   DNAPK    0.64 
S-169    cdc2    0.60 
S-175     PKG    0.51 
S-176    cdk5    0.62 
S-194     RSK    0.54 
S-194     PKA    0.62 
Y-195    INSR    0.51 
S-200    CKII    0.59 
S-200     CKI    0.51 
S-209    CKII    0.51 
S-218    CKII    0.59 
S-223     CKI    0.58 
S-223   DNAPK    0.55 
S-223    cdc2    0.51 
S-225    cdc2    0.55 
S-230    cdc2    0.55 
S-237    GSK3    0.51 
S-239     PKC    0.74 
S-239    cdc2    0.53 
S-243     PKA    0.68 

 

Site   Kinase   Score 
--------------------- 
S-243     PKG    0.57 
S-246     PKC    0.61 
S-246     PKA    0.54 
S-246     PKG    0.51 
S-250     RSK    0.56 
S-250     PKC    0.63 
S-259    CKII    0.62 
T-263   DNAPK    0.51 
T-263     PKC    0.53 
Y-266    INSR    0.53 
T-274     PKC    0.75 
S-282     PKC    0.71 
S-289     PKC    0.66 
T-307    cdc2    0.58 
S-312     PKA    0.57 
S-316     RSK    0.54 
T-317     PKC    0.70 
S-337     RSK    0.56 
S-337     PKB    0.69 
S-337     PKA    0.57 
S-337     PKG    0.56 
S-345    CKII    0.55 
S-355    cdk5    0.58 
T-384    CKII    0.53 
S-399     CKI    0.60 
S-399  p38MAPK   0.61 
S-399    GSK3    0.54 
T-402    CKII    0.54 
S-407    CKII    0.64 
S-450     PKC    0.65 
T-470     PKA    0.63 
T-470     PKG    0.52 
S-478    cdc2    0.51 
S-482     PKC    0.51 
S-499     PKA    0.66 
S-511     PKC    0.70 
T-516     PKC    0.51 
T-516     PKA    0.51 
T-522     PKC    0.60 
T-528     PKG    0.53 
T-530    GSK3    0.51 
T-530    cdk5    0.60 
S-535    cdk5    0.50 
S-552     PKA    0.64 
Y-570     SRC    0.51 
T-581   DNAPK    0.63 
S-590     PKC    0.69 
S-593    cdc2    0.52 
S-612     PKA    0.80 

 
Highest score        0.80 PKA at position 612 
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MEK5  

Site   Kinase   Score 
--------------------- 
S-26      PKA    0.57 
T-57     CKII    0.51 
T-58     CKII    0.58 
T-58      PKG    0.51 
T-71      PKC    0.77 
S-74     CKII    0.66 
S-83      PKC    0.84 
S-83      PKA    0.57 
T-88      PKC    0.71 
S-129     PKC    0.66 
S-132    cdc2    0.58 
S-133  p38MAPK   0.51 
S-133    GSK3    0.54 
S-133    cdk5    0.55 
S-137    cdc2    0.58 
S-142     PKC    0.56 
S-144     PKC    0.69 
S-148    CKII    0.52 
S-148     PKG    0.56 
T-171     PKA    0.54 
T-179     PKC    0.63 

Site   Kinase   Score 
--------------------- 
S-211    CKII    0.62 
S-211    cdc2    0.51 
Y-223    INSR    0.55 
S-238     PKA    0.66 
T-272     PKC    0.58 
S-276     PKC    0.63 
S-287     PKA    0.58 
T-306     ATM    0.54 
T-315     PKC    0.59 
Y-322    EGFR    0.55 
S-329     PKA    0.51 
S-341     CKI    0.52 
S-345    CKII    0.51 
S-345     PKA    0.50 
S-365     PKA    0.74 
S-380  p38MAPK   0.51 
T-397     ATM    0.56 
S-443   DNAPK    0.63 
S-443     ATM    0.59 

 

Highest score 

 

0.84 PKC at position 83 
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ERK5  

Site   Kinase   Score 
--------------------- 
S-31      PKC    0.92 
T-48     CKII    0.55 
Y-55      SRC    0.53 
Y-55     EGFR   0.51 
Y-55     INSR    0.54 
Y-66      SRC    0.53 
S-70      PKC    0.51 
S-71      PKC    0.79 
T-77      RSK    0.52 
T-77      PKA    0.74 
T-94      PKC    0.78 
T-99      PKC    0.78 
S-142    CKII    0.52 
S-150     PKA    0.51 
S-151   DNAPK    0.62 
S-151     ATM    0.58 
S-151     PKA    0.56 
S-175    cdc2    0.50 
T-209     PKC    0.76 
S-210  p38MAPK   0.55 
T-240   DNAPK    0.55 
S-247     PKC    0.71 
T-280    GSK3    0.50 
Y-297    EGFR    0.56 
S-300   DNAPK    0.55 
S-300     PKC    0.62 
Y-313     SRC    0.51 
Y-313    EGFR    0.54 
S-322     PKC    0.63 
S-333    cdc2    0.52 
S-337     PKA    0.66 
S-337     PKG    0.56 
T-373     PKC    0.64 
S-421    GSK3    0.51 
S-426    cdc2    0.54 
S-433    GSK3    0.50 
S-433    cdk5    0.62 
S-472    CKII    0.51 
 

Site   Kinase   Score 
--------------------- 
T-475     PKC    0.72 
S-486     PKC    0.73 
S-489     PKC    0.58 
S-489    cdc2    0.50 
S-496    cdc2    0.55 
S-548     PKC    0.63 
S-585     PKC    0.68 
T-594  p38MAPK    0.51 
T-594     PKG    0.51 
T-594    GSK3    0.52 
T-594    cdk5    0.53 
T-596  p38MAPK    0.51 
T-596    cdk5    0.63 
T-598  p38MAPK    0.52 
T-598    GSK3    0.50 
T-598    cdk5    0.67 
S-604  p38MAPK   0.59 
S-604    GSK3    0.52 
S-604    cdk5    0.55 
S-623    cdc2    0.57 
T-624     PKC    0.57 
S-625    cdc2    0.55 
T-643     PKG    0.59 
T-661    cdc2    0.52 
S-662    cdc2    0.52 
S-668    cdc2    0.56 
S-679    cdc2    0.51 
T-680    cdk5    0.56 
S-703    CKII    0.53 
S-703    cdc2    0.51 
S-720    CKII    0.53 
S-720     ATM    0.60 
T-733  p38MAPK    0.58 
T-733    GSK3    0.51 
T-733    cdk5    0.54 
S-737     PKG    0.53 
S-770    cdc2    0.51 
S-794   DNAPK    0.55 

 

Highest score 0.92 PKC at position 31 
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Table 9.1: Prediction of kinase phosphorylation sit es within members 

of the ERK5 signalling cascade 

The protein sequences for MEKK3, MEK5 and ERK5 were analysed for the presence of 

canonical phosphorylation sequences for a number of kinases using NetPhos 1.0 (Blom et 

al., 2004). The presence of kinase phosphorylation sites were scored from 0 – 1 based on 

their identity to canonical sites with a score approaching 1 indicative of homology with 

known kinase phosphorylation sites. Key: ATM = ataxia telangiectasia mutated kinase, 

cdc2 = cell division cycle 2, cdk5 = cyclin dependent kinase 5, ckII = casein kinase II, 

DNAPK = DNA-activated protein kinase, EGFR = EGF receptor, GSK3 = glycogen 

synthase kinase 3, INSR = insulin receptor kinase, p38MAPK = p8 MAPK, PKA = protein 

kinase A, PKB = protein kinase B, PKC = protein kinase C, PKG =  protein kinase G, RSK 

= ribosomal 6S kinase, SRC= Src kinase 
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10 Expression of the adenosine A 2A receptor alters 
LNCaP morphology 

10.1 Introduction 

Previously it was demonstrated that Fsk-mediated elevation of cAMP in LNCaP cells 

induced differentiation of this cell line to a NE-like phenotype through simultaneous 

inhibition of RhoA and activation of PKA and ERK5 Whilst a useful tool to investigate the 

effect of cAMP elevation on intracellular signalling pathways, treatment with Fsk globally 

activates membrane-associated adenylyl cyclase isoforms (Pinto et al., 2009). It is 

therefore possible that this strategy has limited physiological relevance due to the loss of 

temporal or spatial regulation of AC activation. It has previously been demonstrated that β-

adrenergic receptor agonists such as isoproterenol can induce PKA-mediated NE 

differentiation of LNCaP cells (Cox et al., 2000), indicating that the effects of Fsk can be 

mimicked by endogenous Gαs- coupled GPCR activation . 

 

GPCRs represent a diverse range of cell surface receptors involved in recognition of 

extracellular stimuli and subsequent activation of intracellular signal transduction 

pathways. GPCRs comprise an N-terminal extracellular domain, seven transmembrane 

domains connected by three intracellular and three extracellular loops and a C-terminal 

intracellular domain required for efficient signal transduction (Heilker et al., 2009). The 

intracellular regions of GPCRs are important for coupling to signalling modules within the 

cell, including the hetero-trimeric G-proteins from which this receptor superfamily get 

their name (Heilker et al., 2009;Olah, 1997). 

 

Intact G-proteins comprise of the Gα, Gβ and Gγ subunits and cycle between the active, 

GTP-bound form and the inactive, GDP-bound complex. In the inactive conformation, the 

Gα subunit is GDP-associated and is found in a complex with the Gβ/Gγ heterodimer. 

Receptor activation results in exchange of Gα-associated GDP for GTP and subsequent 

dissociation of active Gα-GTP from Gβ/Gγ. Gα proteins are directly able to regulate AC 

activity with four distinct families of Gα proteins described. Of these, the Gαs and Gαi 

proteins are most relevant to this study as Gαi inhibits whilst Gαs promotes AC activation 

(Birnbaumer et al., 1990;Oldham & Hamm, 2006).  

 

As with all signal transduction pathways, it is necessary to negatively regulate GPCR-

mediated signalling in order to maintain effective cellular homeostasis. This is partly 

intrinsic to the nature of G-protein signalling as Gα subunits possess GTPase activity and 
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so act to attenuate their own activation. The return of GTP-associated Gα to the GDP-

bound conformation can be accelerated via interaction of Gα with regulators of G-protein 

signalling (RGS) which enhance the GTPase activity of Gα (Oldham & Hamm, 2006). 

GDP-Gα subunits are then able to reassociate with Gβγ, ready for further cycles of G-

protein activation (Oldham & Hamm, 2006). 

 

It is possible that tumour-specific expression or activation of Gαs-coupled GPCRs may be 

of therapeutic benefit in malignancies associated with chronic inflammation due to the 

ability of these receptors to activate AC and promote intracellular cAMP accumulation. In 

the case of PCa, it is possible that such an effect may be useful in impeding IL-6/STAT3 

signalling in a similar fashion to that seen with cAMP elevation (see Chapter 7). Whilst it 

could be argued that activation of any Gs-protein coupled GPCR could be therapeutically 

beneficial, the coupling of these receptors to multiple signalling pathways guarantees that 

caution must be exercised in selecting appropriate GPCRs as potential therapeutic targets. 

10.2 The A2A adenosine receptor 

One GPCR with potential for use in cancer-treatment strategies is the A2A adenosine (Ado) 

receptor (A2AAR). The Ado receptor (AR) family comprises the A1, A2A, A2B and A3 ARs. 

A1AR and A3AR inhibit AC whilst A2AAR and A2BAR promote AC activation and 

subsequent accumulation of intracellular cAMP. Whilst tissue levels of Ado are typically 

low, with interstitial concentrations ranging between 1 and 50 nM, respiratory activity, 

inflammation or hypoxia can rapidly promote Ado accumulation of concentrations 

reaching 1000 nM (Rivkees et al., 2001). Accumulation of Ado is ubiquitous amongst 

tissues and thus activation of downstream signalling pathways is achieved by regulation at 

the receptor level with an affinity hierarchy of A1AR>A2AAR>A2BAR>>A3AR (Rivkees et 

al., 2001). Generation of extracellular Ado occurs under conditions of tissue hypoxia, 

inflammation and as a by-product of respiration via the conversion of released ATP to 

AMP by the CD39 ecto-pyrase and subsequently to Ado by the CD73 ecto-5’ nucleotidase 

(Kaczmarek et al., 1996;Lennon et al., 1998) 

10.2.1 A2AAR structure 

The gene structure of the human A2AAR is similar to the other ARs comprising two exons 

with a single intron between the third and fourth transmembrane domains. The open 

reading frame (ORF) of Exon1 of A2AAR spans from +281 to +612 with the ORF of Exon 

2 spanning from +7549 to +8362 (Fredholm et al., 2000). The A2AAR contains seven 

transmembrane helices characteristic of GPCRs and an eighth helix which does not span 
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the membrane and is stabilised via interaction with helix I (Jaakola et al., 2008). The 

transmembrane domains are separated by three intracellular loops spanning residues Leu33 

- Val40, Ile108 - Gly118 and Leu208 – Ala221 and three extracellular loops extending 

from Thr68 to Cys74, Leu141 to Met174 and Cys259 to Trp268 (Jaakola et al., 2008). 

 

The A2AAR is a prototypical Gs-coupled GPCR and is able to activate adenylyl cyclase 

following receptor activation. Many GPCRs are thought to collide randomly with their 

cognate G-protein as they migrate through the lipid bilayer, a process known as collision 

coupling. However, A2AAR displays restricted coupling with Gαs with the two proteins 

displaying an extremely tight association which argues for precoupling of A2AAR and Gαs 

(Charalambous et al., 2008). Restricted movement of A2AAR through the cell membrane is 

required for this precoupling effect and can be decreased following cholesterol 

sequestration. Cholesterol sequestration impairs the ability of A2AAR to couple to Gαs but 

has no impact on agonist/antagonist binding (Charalambous et al., 2008). In addition to 

activation of Gαs and cAMP signalling, A2AAR can activate signalling through the ERK1/2 

pathway via a mechanism independent of Gαs activation (Sexl et al., 1997), although the 

dependency on Gαs signalling varies between cell type (Seidel et al., 1999). 

 

Activation of the receptor promotes accumulation intracellular cAMP due to Gαs activity 

which couples to A2AAR through the amino-terminal region of intracellular loop three of 

the receptor (Olah, 1997). In comparison to the other AR family members, the A2AAR 

possesses an unusually long C-terminal tail, approximately 80 amino acids greater in 

length than the other described AR, including the most closely related A2BAR. This region 

appears not to be involved in governing the fidelity of Gαs-A2AAR coupling but may be 

involved in coupling of the receptor to other intracellular signalling pathways including the 

ERK1/2 pathway (Schulte & Fredhohn, 2003). Activation of the A2AAR results in 

promotes AC activity and the subsequent increases in intracellular cAMP concentrations 

can exert a number of effects, many of which are immunomodulatory. 

 

Of interest in this study are the anti-inflammatory properties of A2AAR activation with the 

receptor displaying non-redundant anti-inflammatory roles both in vitro and in vivo. Ohta 

and Sitovsky (Ohta & Sitkovsky, 2001) demonstrated that mice deficient for A2AAR 

(A2aAR-/-) were hypersensitive to endotoxin challenge. Sub-optimal dosing of A2aAR-/- 

mice resulted in 40% mortality, in comparison to 100% survival in wild-type littermate 

controls. These effects were shown to be independent of altered function of other Gs-

protein coupled receptors indicating a crucial anti-inflammatory role for A2AAR in vivo 
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(Ohta & Sitkovsky, 2001). Additionally, the A2AAR has also been implicated in inhibiting 

pro-inflammatory leukocyte recruitment following tissue trauma. Selective stimulation of 

A2AAR resulted in a 77% decrease in macrophage infiltration and decreased adhesion 

molecule expression inflammation in an in vivo model of carotid ligation (McPherson et 

al., 2001). 

 

In a feline model of ischaemic/reperfusion injury, intravenous treatment with the A2AAR 

agonist ATL313 inhibited apoptosis in the lung, an effect that was abolished following pre-

treatment with the A2AAR-selective inverse agonist ZM241385 (Rivo et al., 2007). The 

protective effects of A2AAR activation in this model are thought to arise due a concurrent 

increase in Bcl-2 and decrease in Bax protein levels in ATL313-treated specimens (Rivo et 

al., 2007). A2AAR activity can also prevent other responses associated with tissue damage 

and inflammation, including T-cell activation (Huang et al., 1997), airway inflammation in 

murine models of allergy (Nadeem et al., 2007) and inhibition of the NFκB signalling 

pathway (Sands et al., 2004). In human neutrophils, cAMP elevation resulting from A2AAR 

occupancy reduced the ability of fMet-Leu-Phe to induce actin polymerisation. It was 

subsequently demonstrated that A2AAR occupancy decreased the ability of fMLP to 

activate phospholipase D (PLD) and translocate Arf and RhoA to neutrophil membranes 

through a PKA-dependent pathway (Thibault et al., 2002). Given that RhoA translocation 

to membranes is indicative of RhoA activation, and that inhibition of actin polymerisation 

arises from A2AAR occupation, it is possible that A2AAR acts to inhibit RhoA. The 

similarities between the pathways involved in A2AAR-mediated inhibition of fMLP effects  

(Thibault et al., 2002) and those seen in Fsk-mediated changes in LNCaP morphology, it is 

possible that A2AAR expression and activation in LNCaP cells might induce a NE-like 

morphology in LNCaP cells. 

 

To this end, we infected LNCaP cells with recombinant AdV expressing a Myc-tagged 

A2AAR (AdV.A2AAR) which contained a second open reading frame encoding GFP in 

order to monitor infection. Infection of LNCaP cells with AdV.A2AAR, but not a control, 

GFP-expressing AdV (AdV.GFP) resulted in morphological changes in LNCaP cells 

consistent with those seen following Fsk treatment. These effects could be inhibited by 

treatment with the A2AAR-selective inverse agonist ZM241385, indicating that receptor 

activation is required for the phenomenon. 
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10.3 Results 

10.3.1 Titration of AdV.A 2AAR in LNCaP cells 

In order to investigate the effects of AdV-mediated expression of the A2AAR, it was first 

necessary to determine a suitable MOI at which to detect A2AAR expression. The ideal 

MOI is the minimal value at which robust expression of the A2AAR is detected but which 

in not associated with cytopathic effects (CPEs). LNCaP cells were seeded into 0.1 mg/ml 

poly-D-lysine coated 6-well tissue culture plates at a density of 3 x 105 cells/well and 

infected with AdV.A2AAR at MOIs ranging from 0 – 20 ifu/cell. MOIs greater than 20 

ifu/cell were not used as these were associated with CPEs in LNCaP cells as indicated by 

cellular detachment and membrane blebbing (data not shown). In order to maintain LNCaP 

cell survival, culture medium was replaced at 24 h post-infection and cells harvested for 

SDS-PAGE fractionation and subsequent immunoblotting at 48 h post-infection. The 

A2AAR construct used to generate the recombinant AdV has a C-terminal Myc tag, thus, 

immunoblotting using an in-house anti-Myc antibody was used to detect AdV-mediated 

A2AAR expression. 

 

As expected, immunoblotting against Myc did not detect any appropriate bands in LNCaP 

cells which had not been infected with AdV.A2AAR, thus verifying that all subsequent 

results are the result of genuine receptor expression and not due to non-specific antibody 

binding (Fig. 10.1). Infection of LNCaP cells with MOI > 2 ifu/cell resulted increased 

A2AAR expression, as detected by the C-terminal Myc epitope, with MOI = 6 ifu/cell 

resulting in consistently high A2AAR expression (Fig. 10.1, ** = p < 0.01 vs. MOI = 0 

ifu/cell). Further increases in MOI did not result in parallel increases in A2AAR expression, 

indicating that MOI = 6 is optimal for AdV-mediated A2AAR expression in LNCaP cells 

and this MOI was chosen for subsequent studies with AdV.A2AAR expression. The 

changes in detected A2AAR were independent from changes in GAPDH levels, indicating 

that the results do not arise from changes in protein loading. The detection of a double 

band at approximately 40 kDa following immunoblotting for the Myc epitope is likely due 

to differently glycosylated forms of the receptor as observed by others (Palmer & Stiles, 

1999;Piersen et al., 1994). 
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Fig. 10.1: Titration of the AdV.A 2AAR in LNCaP cells 

3 x 105 LNCaP cells per well were seeded into poly-D-lysine-coated 6-well tissue 

culture  dishes and infected with AdV.A2AAR (panel A) (MOI = 0 - 20 ifu/cell). 

Medium was replenished at 24 h post-infection to promote cellular survival and 

infection was monitored by eGFP fluorescence. A2AAR expression was detected via 

immunoblotting for the C-terminal Myc tag (panel C). Results are representative of n = 

3 separate experiments with the A2AAR/GAPDH ratio displayed as mean values ± 

SEM.  * = p < 0.05 vs. MOI = 0 ifu/cell, ** = p < 0.01 vs. MOI = 0 ifu/cell 
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10.3.2 Ligand binding assay 

In order to determine subsequent effects of A2AAR expression on cellular morphology, the 

levels of expression of the A2AAR were assessed following infection with AdV.A2AAR or 

the control AdV.GFP recombinant AdV. AdV.GFP encodes the second ORF encoding 

eGFP but not the Myc-tagged A2AAR, thus allowing any effects of AdV.A2AAR expression 

to be attributed to expression of the A2AAR and not due effects of AdV infection. To 

determine comparative receptor numbers, 16.6 x 106 LNCaP cells/flask were seeded into 

0.1 mg/ml poly-D-lysine HBr coated 150 cm2 tissue culture flasks prior to infection with 

either AdV.GFP or AdV.A2AAR. At 48 h post-infection, cell membranes were prepared as 

described in Chapter 5 and incubated immediately with 3H-ZM241385 in the presence of 

either de-ionised water (dH2O) or 50 µM of the non-specific agonist NECA to assess total  

and non-specific 3H-ZM241385 binding respectively. Following harvesting and liquid 

scintillation counting, the number of receptors per µg of protein was calculated as 

described in Chapter 5. 

 

In LNCaP cells infected with AdV.GFP, no specific binding of 3H-ZM241385 could be 

detected, indicating that LNCaP cells do not basally express the A2AAR. In cells infected 

with AdV.A2AAR a concentration-dependent increase in 3H-ZM241385 was detected, 

indicative of an increase in A2AAR expression. Using the Bmax values for individual 

experiments, the number of bound ZM241385 molecules could be determined. Based on a 

1:1 stoichiometric ratio of binding between ZM241385 and the A2AAR the number of 

bound ZM241385 molecules could be directly equated to the number of receptors in each 

reaction. The protein content for each ligand binding assay was determined using the BCA 

assay described in chapter 5 and thus the number of receptors per µg of protein calculated. 

Infection of LNCaP cells with AdV.A2AAR resulted expression of 7.615 ± 1.64 A2AAR/µg 

protein. 

10.3.3 A2AAR expression induces changes in LNCaP morphology 

LNCaP cells were seeded into poly-D-lysine coated 6-well plates and infected with 

recombinant AdV at MOI = 6 ifu/cell as described in section. To ensure that any changes 

in LNCaP morphology arising from infection with AdV.A2AAR occur due to A2AAR 

expression and not as a result of AdV infection, cells were infected in parallel with AdV 

expressing eGFP but not A2AAR. Images were captured using phase contrast and 

fluorescence microscopy for each recombinant AdV at 0, 24 and 48 h post-infection. 
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Fig. 10.2: Binding curve of 3H-ZM241385 in LNCaP cells 

infected with AdV.GFP or AdV.A 2AAR 

LNCaP cells were seeded into a 75 cm2 tissue culture flask at a density of 8.3 x 

105 cells/flask and infected with either AdV.GFP or AdV.A2AAR at MOI = 6 

ifu/ml. Cells were harvested at 48 h and membrane suspensions prepared via 

homogenisation. Membranes were incubated in duplicate with serial dilutions of 
3H-ZM241385 for 1 h at 37oC in the presence of either dH2O or 50 µM of the 

competing ligand NECA to determine total and non-specific binding 

respectively. Membranes were harvested using a Brandel harvester and 

subsequent radioligand incorporation determine via liquid scintillation counting. 

Subsequent determination of the binding curve and Bmax values allowed the 

number of receptors per µg of protein to be determined following infection with 

either AdV.GFP (top) or AdV.A2AAR (bottom). 
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Prior to infection, AdV.GFP and AdV.A2AAR-infected cells displayed no discernable 

difference in cell morphology (Fig. 10.3). Mean dendrite lengths for cells were 10.43 ± 

0.22 µm and 11.32 ± 0.22 µm for AdV.GFP and AdV.A2AAR infected cells respectively. 

Whilst LNCaP cells infected with AdV.GFP displayed no changes in morphology 

throughout the experiment with mean dendrite lengths of 14.08 ± 0.26 µm and 12.95 ± 

0.24 µm at 24 h and 48 h post-infection respectively (Fig. 10.3). In contrast, AdV.A2AAR-

infected LNCaP cells displayed altered morphology with dendrite lengths increasing to 

19.72 ± 0.45 µm at 24 h post-infection and 26.20 ± 0.72 at 48 h post-infection (Fig. 10.3).  

 

These results suggest that AdV-mediated A2AAR expression is sufficient to induce changes 

in LNCaP cells to a NE-like morphology. 

10.3.4 Expression of the A 2AAR is associated with NE-like 

morphological changes in LNCaP cells 

It was demonstrated above that infection with AdV.A2AAR and not AdV.GFP promoted 

changes in cell morphology consistent with NE-like differentiation. However, this result 

does not truly show that those cells expressing the A2AAR are those that have undergone 

morphological changes, only that there is a tendency for A2AAR expression to be 

associated with increases in mean dendrite length. To conclusively determine a correlation 

between A2AAR expression and changes in cell morphology, the bright field and 

fluorescence images used above were merged and 50 random cells per field per experiment 

(750 cells in total) at the 48 h post-infection time point analysed. Cells were scored for 

both eGFP fluorescence, indicating successful AdV infection and recombinant protein 

expression, and also for changes in LNCaP cell morphology consistent with NE-like 

differentiation including rounding of the cell body, increase in dendrite length and 

presence of dendritic branching. The scoring of cells for eGFP fluorescence also enabled a 

comparison of the relative infection efficiencies of each recombinant AdV. 

 

As expected, infection with AdV.GFP, was not associated with acquisition of a NE-like 

morphology with only 12 of the 312 eGFP-positive (eGFP+) cells displaying morphology 

resembling that of NE-like cells (Table 10.1, n.s. = p >0.05 (p = 0.76)). In contrast, 

infection of LNCaP cells with AdV.A2AAR resulted in a highly significant association 

between eGFP fluorescence and NE-like differentiation as determined by the χ2 test (Table 

10.1, *** = p < 0.001). 440 cells were found to be eGFP+ of which 251 displayed a NE- 
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Fig. 10.3: Expression of the A 2AAR in LNCaP cells mimics Fsk-

induced morphological changes 

6 x 105 LNCaP cells were seeded into poly-D-lysine-coated 6 cm tissue culture  

dishes and infected with AdV.GFP or AdV.A2AAR (panel A) (MOI = 6 ifu/cell). 

Medium was replenished at 24 h post-infection to promote cellular survival and 

infection was monitored by eGFP fluorescence. Mean dendrite length was assessed at 

0 h and 48 h post-infection as an indication of NE-like differentiation (panel B) whilst 

A2AAR expression was detected via immunoblotting for the C-terminal Myc tag 

(panel C). Results are representative of n = 3 separate experiments with mean dendrite 

lengths shown as mean values ± SEM.  *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. 
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 AdV.GFP  AdV.A 2AAR 

 NE+ NE- Total  NE+ NE- Total 

eGFP+ 12n.s. 

(11.2) 

300 

(300.8) 

312  251***  

(211.2) 

189 

(228.8) 

440 

eGFP- 15 

(15.8) 

423 

(422.2) 

438  109 

(148.8) 

201 

(161.2) 

310 

Total 27 723 750  360 390 750 

 

Table 10.1: Association between eGFP fluorescence a nd NE-like 

morphology in LNCaP cells 

LNCaP cells were infected with either AdV.GFP or AdV.A2AAR (MOI = 6 ifu/cell) and 

maintained for 48 h post-infection. Five random fields per recombinant AdV were captured 

for n = 3 separate experiments and the fluorescence and phase-contrast images merged to 

allow simultaneous assessment of eGFP fluorescence (eGFP+) and NE-like differentiation 

(NE+) for 50 random cells per field. The results of the three experiments were pooled and 

the association between eGFP+ and NE+ determined via a χ2 test for association. Results 

are represented as the observed and expected values for the pooled data. n.s.= p > 0.05, *** = 

p < 0.001) 
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Fig. 10.4: Infection percentages for AdV.GFP and 

AdV.A 2AAr in LNCaP cells 

LNCaP cells were infected with either AdV.GFP or AdV.A2AAR (MOI = 6 

ifu/cell) and maintained for 48 h post-infection. Five random fields per 

recombinant AdV were captured for n = 3 separate experiments and the 

fluorescence and phase-contrast images merged to allow assessment of 

eGFP fluorescence for 50 random cells per field. The number of eGFP+ 

cells was calculated as a percentage of the total number of cells analysed. 

Results are represented as mean values ± SEM for n = 3 separate 

experiments, n.s. = p > 0.05 
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like morphology in comparison to 109 eGFP- cells which displayed morphological changes 

consistent with NE-like differentiation. These results confirm that AdV-mediated 

expression of the A2AAR in LNCaP cells is indeed associated with NE-like changes in 

morphology. 

 

In order to determine relative abilities of the two recombinant AdV, the number of eGFP+ 

was calculated as a percentage of the total number of cells analysed. The mean percentage 

infection with AdV.GFP was 41.60 ± 5.00 % whilst for AdV.A2AAR the mean percentage 

infection was 58.67 ± 3.42 %. Whilst there was a tendency for AdV.GFP to have lower 

percentage infection than AdV.A2AAR this was not found to be statistically significant as 

determined by an unpaired t-test (Fig. 10.4, n.s. = p > 0.05 (p = 0.639)), indicating similar 

infection efficiencies between the two recombinant AdV. 

10.3.5 The A2AAR-selective inverse agonist ZM241385 blocks 

AdV.A 2AAR-mediated changes in LNCaP cell morphology 

Although expression of A2AAR alone in LNCaP cells induced differentiation of LNCaP 

cells to a NE-like phenotype, it was necessary to demonstrate that a functional receptor 

was required for this phenomenon and that the previous results were not simply an effect 

of receptor over-expression. To this end, LNCaP cells were seeded as described above and 

infected with either AdV.GFP or AdV.A2AAR and grown for 48 h in the presence of 

vehicle or 1 µM of the A2AAR-selective antagonist ZM241385 (Poucher et al., 1995). In 

order to retain ZM241385 activity over the course of the 48 h infection period, cell culture 

medium was replaced at 24 h post-infection with fresh culture medium containing either 

vehicle or 1 µM ZM241385. In order to monitor morphological changes, LNCaP cells 

were photographed at 0 h and 48 h post-infection using both phase contrast microscopy 

and fluorescence microscopy to detect GFP fluorescence. At 48 h post-infection, LNCaP 

cells were harvested and immunoblotted to confirm A2AAR expression. 

 

At 0 h post-infection, the mean dendrite length was comparable across all experimental 

groups, indicating that any subsequent changes in mean dendrite length arise due to 

experimental procedures and not as a result of differing morphology prior to 

experimentation. At 48 h post-infection, LNCaP cells infected with AdV.GFP displayed no 

discernable difference in mean dendrite length whether cells were treated with vehicle or 

ZM241385. The mean dendrite length for AdV.GFP infected cells treated with vehicle for 

48 h was 20.60 ± 0.58 µm at 0 h and 17.97 ± 0.39 µm at 48 h whilst for AdV.GFP-infected  
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Fig. 10.5: Treatment with the A 2AAR-selective inverse agonist ZM241385 inhibits 

AdV.A2AAR-mediated changes in LNCaP morphology

6 x 105 LNCaP cells were seeded into poly-D-lysine-coated tissue culture  dishes and infected with 

AdV.GFP (panel A) or AdV.A2AAR (panel B) (MOI = 6 ifu/cell) in the presence of either vehicle 

(0.1% DMSO) or 1 µM ZM241385, an A2AAR-selective inverse agonist. Medium was replenished at 

24 h post-infection to ensure continued activity of ZM241385 and infection was monitored by eGFP

fluorescence. Mean dendrite length was assessed at 0 h and 48 h post-infection as an indication of NE-

like differentiation (panel C) whilst A2AAR expression was detected via immunoblotting for the C-

terminal Myc tag (panel D). Results are representative of n = 3 separate experiments with mean 

dendrite lengths shown as mean values ± SEM.  *** = p < 0.001 vs. 0 h, ### = p < 0.001 vs. AdV.GFP, 

+++ = p < 0.001vs. vehicle
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LNCaP cells treated with ZM241385 for 48 h, mean dendrite length was found to be 19.91 

± 0.54 µm at 0 h and 18.58 ± 0.46 at 48 h post-infection. 

 

In contrast to LNCaP cells infected with AdV.GFP, vehicle-treated LNCaP cells infected 

with AdV.A2AAR displayed an increase in mean dendrite length from 17.45 ± 0.46 µm at 0 

h post-infection to 103.40 ± 5.80 µm at 48 h post-infection (p < 0.001 vs. 0 h and GFP-

infected cells), supporting previous results that A2AAR expression can induce 

morphological changes in LNCaP cells. However, treatment with 1 µM ZM241385 

blocked the ability of A2AAR expression to induce morphological changes in LNCaP cells. 

In these cells, initial dendrite length was 20.57 ± 0.63 at 0 h post-infection and 18.00 ± 

0.45 at 48 h post-infection, indicating that selective antagonism of A2AAR inhibits 

morphological changes in LNCaP cells. These results strengthen the hypothesis that 

A2AAR expression induces differentiation to a NE-like phenotype in LNCaP cells. 

10.4 Discussion 

LNCaP cells have frequently been reported to undergo differentiation to NE-like cells 

following a number of treatments including androgen deprivation, chronic IL-

6/gp130/STAT3 signalling and elevation of intracellular cAMP levels. Typically, 

intracellular accumulation of cAMP has been achieved by treatment with Fsk or with β-

adrenergic receptor agonists, indicating that physiological stimuli can induce NE-like 

differentiation (Cox et al., 2000;Deeble et al., 2001). In order to further establish a role for 

cAMP elevation in LNCaP differentiation, the Gαs-coupled A2AAR was expressed in these 

cells. It was found that AdV-mediated expression of A2AAR could induce morphological 

changes in LNCaP cells consistent with differentiation to a NE-like phenotype and that this 

effect was blocked by the A2AAR-selective inverse agonist ZM241385. 

 

The ability of ZM241385 to block A2AAR-mediated changes in LNCaP morphology 

indicates that this effect is mediated by activated A2AAR due to the greater affinity of 

ZM241385 for the A2AAR vs. the other adenosine receptor sub-types. ZM241385 is a non-

xanthine A2AAR-selective antagonist, displaying pA2 values two orders of magnitude 

greater than at the closely related A2BAR and approximately four orders of magnitude 

greater than at the A1 and A3 adenosine receptors (Poucher et al., 1995). This conclusion is 

supported by the association of infection with AdV.A2AAR but not AdV.GFP with an 

increase in mean dendrite length. 
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It is unclear why expression of A2AAR induces changes in LNCaP morphology in the 

absence of an agonist. One possible explanation is that adenosine released into the culture 

medium as a result of normal cellular respiration (Sands & Palmer, 2005) causes activation 

of the receptor which is blocked by the binding of ZM241385. This matter could 

potentially be addressed by the addition of adenosine deaminase to the tissue culture 

medium during the infection period (Thibault et al., 2002). However, it may also be the 

case that the apparent basal activation of AdV-expressed A2AAR may arise from simple 

over-expression of the receptor. It has previously been demonstrated that over-expression 

of the A2AAR can result in constitutive activity in dog thyrocytes with increased AC 

activity in the absence of agonist (Maenhaut et al., 1990). Similar observations were made 

in vivo with thyroid-specific expression of the canine A2AAR in mice resulting in severe 

hyperthyroidism (Ledent et al., 1992). This phenomenon is not restricted to A2AAR as 

other class A GPCRs also display constitutive activity as a result of receptor over-

expression. For example, expression of the β2-adrenoceptor in the NG108-15 cell line 

resulted in an increase in basal AC activity only when high levels of receptor expression 

were achieved (Adie & Milligan, 1994). Treatment with the β2-adrenoceptor antagonist 

propranolol partially decreased the basal AC activity displayed in cells expressing high 

levels of β2-adrenoceptor (Adie & Milligan, 1994). Similarly, over-expression of splice 

variants of the metabotropic glutamate receptor 1 (mGluR1) in porcine kidney epithelial 

and HEK 293 cells demonstrated that over-expression of the mGluR1a isoform, but not the 

mGluR1b or mGluR1c, resulted in elevated basal activity of the receptor as determined by 

downstream generation of inositol phosphate generation by phospholipase C (Prezeau et 

al., 1996). This observation is of particular interest to this study as mGluR1a has a far 

longer C-terminal domain in comparison to mGluR1b or mGluR1c, which may act to 

promote better coupling efficacy to either G-proteins or other modulatory protein families 

and so promote agonist-independent receptor activation (Ango et al., 2001;Prezeau et al., 

1996). Given the unusually long C-terminal domain of A2AAR, it is possible that a similar 

mechanism is employed by this receptor to promote activation in the absence of agonist. 

 

Agonist-independent activation of G-protein signalling has been described for multiple 

GPCRs and is not necessarily dependent on supraphysiological expression of the receptor 

of interest but may arise due to mutations within the receptor (Seifert & Wenzel-Seifert, 

2003). A two-state model of GPCR activity has been described which goes some way to 

explain the basis of constitutive GPCR activation in the absence of agonist and the increase 

in basal activation seen when GPCRs are over expressed. It has been proposed that GPCRs 

switch between an active (Rec*) or inactive (Rec) conformation, with the Rec* state being 
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stabilised by interaction with agonist and the Rec state stabilised by inverse agonists 

(Seifert & Wenzel-Seifert, 2003). Supraphysiological expression of a GPCR, whilst 

unlikely to alter the Rec/Rec* equilibrium, will simply increase the number of receptors in 

the Rec* state and thus increase the likelihood of agonist-independent effects. This effect 

may be more pronounced following expression of the A2AAR or other GPCRs which 

display tight coupling between Gαs and the receptor. In the traditional collision coupling 

mode, receptors in their active conformation are then reliant on random collision with their 

cognate G-protein in order to activate intracellular signalling, an event which may not 

occur before the receptor reverts to its inactive state. In the case of receptors, such as 

A2AAR, where the GPCR is thought to be pre-coupled to its G-protein (Charalambous et 

al., 2008), switching of the receptor to its active conformation has a far greater probability 

of activating downstream, signalling pathways and so result in the observed changes in 

LNCaP morphology. 

 

It is also possible that receptor over-expression may enhance agonist-independent A2AAR 

signalling through promoting dimerisation of the receptor via the fifth transmembrane 

domain (Thevenin & Lazarova, 2008). Dimerisation or oligomerisation of GPCRs has been 

associated with more efficient G-protein activation, greater agonist affinity and enhanced 

signal transduction (Baneres & Parello, 2003;Fotiadis et al., 2006;Milligan, 2007). It is 

possible that the high level of A2AAR expression arising from AdV-mediated gene transfer 

may promote high levels of receptor dimerisation or even oligomerisation. Such a response 

may potentiate basal activation of the receptor via more effective G-protein signalling and 

promote the activation of intracellular signalling pathways involved in changes in LNCaP 

morphology. 

 

Previous studies using this recombinant AdV indicate that expression of the receptor is 

sufficient to induce anti-inflammatory effects in the absence of ligand stimulation (Sands et 

al., 2004). It is possible that further enhancement of the morphological changes associated 

with AdV.A2AAR expression might be seen with treatment with the A2AAR-selective 

agonist CGS21680 as has been observed in other experimental systems. CGS21680 is a 

highly selective agonist for A2 adenosine receptors, displaying minimal effects at A1AR 

(Jarvis et al., 1989) and no effects at either the A2BAR (Yakel et al., 1993) or A3AR (Zhou 

et al., 1992). In previous studies, the effect of A2AAR expression could be enhanced by 

treatment with CGS21680 (Sands et al., 2004). However, during preliminary studies in 

LNCaP cells expressing A2AAR, treatment with 10 µM CGS21608, a concentration 

previously shown to be efficacious in numerous other cell lines in our laboratory, failed to 
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elicit an increase in ERK1/2 activation or to potentiate effects on LNCaP dendrite length 

(data not shown), suggesting that AdV-mediated expression of the receptor is sufficient to 

induce these effects. 

 

Whilst expression of A2AAR alone appears to mimic the effect of cAMP elevation on 

LNCaP morphology, the signalling pathways by which this is achieved are yet to be 

elucidated. As the A2AAR is a Gαs-protein coupled GPCR, it is likely that activation of the 

receptor induces changes in LNCaP morphology through activation of Gαs and subsequent 

activation of AC leading to increased intracellular cAMP concentrations. It is to be 

anticipated that a similar pathway is activated in LNCaP cells following A2AAR expression 

as that which follows Fsk treatment as both result in AC activation. 

 

In addition to the hypothesised Gαs-mediated activation of AC downstream of A2AAR in 

LNCaP cells, other pathways activated by A2AAR may also play an important role in 

promoting differentiation to a NE-like phenotype. In addition to AC, A2AAR can also 

promote activation of ERK1/2 in a manner independent of Gαs activation (Sexl et al., 

1997). In the previous chapter, it was found that selective activation of ERK1/2 could 

promote changes in LNCaP morphology but this pathway appeared to play a role later in 

the morphological changes associated with cAMP elevation. It is possible that the same 

holds true in the case of A2AAR expression in these cells although it is more difficult to 

ascertain the contributing role of ERK1/2 in this instance as the separation of Gαs-

dependent and -independent signalling pathways has not been achieved. Thus it is not 

possible to ascertain, at this stage, whether a role for ERK1/2 may arise due to activation 

directly downstream of A2AAR (Sexl et al., 1997) or as a later effect of Gαs-mediated 

cAMP elevation (Seidel et al., 1999) as holds true in the previously described model. 

Future experiments involving the use of the MEK1/2-selective inhibitor U0126 and 

inhibitors of adenylyl cyclase activity such as t-Bu-SATE may help to delineate the roles 

of Gαs and ERK1/2 in this phenomenon. 

 

In addition to impact on the ERK1/2 pathway, A2AAR occupancy may also impact on the 

activation of RhoA, a process which appears to be central to the early changes in LNCaP 

morphology observed as a result of Fsk treatment in the previous chapter. It has been 

demonstrated in human neutrophils that treatment with the chemotactic reagent fMLP 

promoted activation of phospholipase D, a process which requires Rho activation and 

associated translocation of RhoA to the cell membrane (Fensome et al., 1998). The PLD 

isoform PLD1 is believed to play an important role in neutrophil responses to agonists such 
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as fMLP due to its ability to generate the second messenger phosphatidic acid (Fensome et 

al., 1998). Adenosine deaminase-mediated inhibition of adenosine receptor signalling 

enhanced RhoA translocation to the cell membrane following fMLP treatment indicating 

that AR signalling inhibits RhoA membrane translocation. As might be anticipated, 

CGS21680-mediated activation of A2AAR signalling promoted a decrease in fMLP-

mediated activation of PLD which is indicative of an upstream decrease in RhoA activity 

and supported by the observation that treatment with CGS21680 impaired RhoA 

translocation to the cell membrane. These effects could be reversed following treatment 

with A2AAR-selective antagonists, suggesting that A2AAR signalling acts to negatively 

regulate RhoA membrane translocation (Thibault et al., 2000). In later experiments, it was 

determined that the ability of A2AAR signalling to impair RhoA membrane translocation 

and subsequent PLD activation could be mimicked using the cAMP analogue Sp-cAMP, 

indicating a cAMP dependency of this phenomenon. The PKA-selective antagonists H89 

and Rp-cAMP-S could reverse A2AAR-mediated inhibition of RhoA membrane 

translocation (Thibault et al., 2002). Given that the activation of RhoA is associated with 

translocation of the protein to the cell membrane, these results suggest that A2AAR 

activation inhibits RhoA activation via a PKA-dependent pathway, an effect comparable to 

the pathway elucidated in Chapter 8. It is therefore probable that the pathways important in 

Fsk-mediated changes in LNCaP morphology may play similar roles in A2AAR-mediated 

morphological changes and represent a conserved pathway important in early NE-like 

differentiation in PCa. 
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11 Final discussion 

Cancer is a universal condition resulting in abnormal cellular proliferation and survival. 

Whilst many factors can contribute to carcinogenesis, a large number of these potentiating 

factors unite in their ability to inappropriately regulate intracellular signalling pathways 

involved in key cellular process such as cell cycle progression and apoptosis (Hanahan & 

Weinberg, 2000). Of particular interest to this study was the role of chronic inflammatory 

responses in carcinogenesis, particularly the role of the IL-6/JAK/STAT3 signalling 

cascade in PCa. Elevation of serum IL-6 has been associated with every stage of PCa from 

initial diagnosis to terminal disease. (Barton et al., 2004;Kuroda et al., 2007;Michalaki et 

al., 2004;Stark et al., 2009). IL-6 mediates its intracellular effects through activation of the 

JAK/STAT pathway (Heinrich et al., 2003) and hyperactivation of STAT3 has been 

described in a number of malignancies (Hodge et al., 2005;Jing & Tweardy, 2005), 

concomitant with the oncogenic effects of this protein (Bromberg et al., 1999). 

Inappropriate activation of STAT3 is associated with both an increase in cell cycle 

progression via induction of genes such as cyclin D1 and protection from apoptotic effects 

and Bcl-XL (Barton et al., 2004;Grandis et al., 2000;Hodge et al., 2005;Zhang et al., 

2007). Direct inhibition of STAT3 has been shown to induce apoptosis in PCa cell lines 

(Barton et al., 2004), suggesting that targeting of this pathway would be of therapeutic 

benefit. Previously, it was demonstrated that elevation of intracellular cAMP can decrease 

STAT3 activation in vascular endothelial cells via induction of SOCS3 expression (Sands 

et al., 2006). This is of therapeutic interest as chronic IL-6 signalling is associated with 

unstable atherosclerotic lesions and increased rick of thrombosis and stroke (Kes et al., 

2008). 

 

In the current study, it was demonstrated that stimulation of cells with exogenous IL-6 

resulted in increases in tyrosine phosphorylation of STAT3 in all cell lines tested but only 

induced activation of STAT1 in the control cell line used. The tumour-derived LNCaP and 

DU145 cell lines displayed no activation of STAT1 in response to IL-6 stimulation due to 

a lack of JAK1 expression and currently undefined signalling defects specific to IL-6 

signalling respectively. Prolonged activation of STAT3 is an oncogenic event whilst 

STAT1 activation is generally ascribed a tumour suppressor function (Yu & Jove, 2004). 

Thus selective activation of STAT3 rather than STAT1 may act to promote tumour cell 

survival during initial carcinogenesis and subsequent suppression of anti-tumour 

immunosurveillance (Nefedova et al., 2004;Yu & Jove, 2004). Given the association of 
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both elevated IL-6 levels and chronic STAT3 activation with numerous malignancies 

(Azare et al., 2007;Hodge et al., 2005;Jing & Tweardy, 2005;Lin et al., 2007;Nefedova et 

al., 2004;To et al., 2004;Yu & Jove, 2004), preferential activation of STAT3 versus 

STAT1 in response to exogenous IL-6 may be a common feature of cancer cells. 

Expansion of this study to investigate other malignancies associated with hyperactivation 

of IL-6 or STAT3 signalling such as colorectal or gastric carcinoma (Esfandi et al., 

2006;To et al., 2004) might indicate whether defective STAT1 activation in response to 

IL-6 is a general feature of inflammation-associated malignancies. Furthermore, it might 

be that modulating the balance between STAT1 and STAT3 activation following IL-6 

stimulation in favour of STAT1 activation may represent a future avenue of research. 

 

Currently however, strategies which inhibit IL-6-mediated STAT3 activation are being 

pursued as potential therapeutics (Jing & Tweardy, 2005). Previous work has demonstrated 

that elevation of intracellular cAMP can decrease STAT3 activation in vascular endothelial 

cells via induction of SOCS3 expression (Sands et al., 2006). This is of therapeutic interest 

as chronic IL-6 signalling is associated with unstable atherosclerotic lesions and increased 

risk of thrombosis and stroke (Kes et al., 2008). Furthermore, SOCS3 expression has been 

demonstrated to decrease inflammatory disease parameters in models of inflammatory 

RArt, suggesting that expression of this protein is a suitable anti-inflammatory therapy in 

vivo (Shouda et al., 2001). In the current study, elevation of cAMP in prostate epithelial 

cell lines was able to decrease activation of STAT3 downstream of the IL-6R. However, 

whilst the data obtained strongly suggests that this effect is mediated by SOCS3 expression 

in DU145 and PZ-HPV-7 cells, in LNCaP cells no induction of SOCS3 expression was 

observed. The combination of previous observations that cAMP elevation can attenuate IL-

6-induced STAT3 activation in HUVECs, MEFs (Sands et al., 2006), COS1 (Yarwood et 

al., 2008) and monocytic precursor cells (Mullen and Palmer, unpublished observations), 

the observations in this study that cAMP elevation can mediate similar effects in prostate 

epithelial cells suggest that this is a universal mechanism by which to attenuate 

inflammatory signalling. Whilst it has previously been demonstrated that cAMP elevation 

in HUVECs can attenuate IL-6 signalling via SOCS3 induction (Sands et al., 2006), the 

results obtained in this study indicate that this may not be a universal pathway. The ability 

of cAMP elevation to inhibit STAT3 activation in DU145 and PZ-HPV-7 cells was 

correlated with increases in SOCS3 protein expression. However, in LNCaP cells, 

elevation of intracellular cAMP attenuated IL-6-induced STAT3 activation but did not 

alter SOCS3 protein levels, indicating the presence of other inhibitory pathways. It has 

been demonstrated in this study that elevation of cAMP acts to inhibit RhoA activity in 
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order to promote NE-like differentiation in LNCaP cells (Chapter 8). Published data have 

shown that RhoA activity can regulate tyrosine phosphorylation, and thus activation, of 

STAT3 (Aznar et al., 2001;Debidda et al., 2005) and thus it is possible that cAMP 

elevation inhibits STAT3 activation in LNCaP cells via inhibition of RhoA activation. In 

combination with previous data, the results obtained in this study strongly support the use 

of cAMP elevating agents as inhibitors of IL-6/STAT3 signalling. 

 

However, the use of cAMP elevation to manipulate endogenous anti-inflammatory 

pathways may not represent a suitable strategy for all inflammatory conditions. This is of 

particular relevance in PCa as elevation of intracellular cAMP or over-expression of the 

A2AAR, a Gαs-coupled GPCR, promoted NE-like differentiation in LNCaP cells. 

Emergence of a NE cell population is associated with a poor patient prognosis and terminal 

disease (Shariff & Ather, 2006). Whilst tumours deriving solely from prostatic NE cells 

represent a rare and highly aggressive malignancy, these cells are frequently seen as foci of 

non-proliferating cells surrounded by a region of dividing epithelial cells due to the release 

of mitogenic factors such as bombesin (Noordzij et al., 1996). Due to their senescent 

nature (Noordzij et al., 1996), NE cells are often resistant to conventional 

chemotherapeutics which target actively dividing cells and, due to the androgen-

independent nature of their growth, NE cells also resist the androgen ablation therapy 

conventionally used to treat PCa (Chen et al., 1992). Thus whilst treatment of PCa patients 

with therapies which modulate intracellular cAMP concentrations may be therapeutically 

beneficial when considering one aspect of intracellular signalling or one disease it may not 

represent a universal strategy. This is particularly true when considering malignant disease 

as PKA is frequently over-expressed in cancer and thus, whilst elevation of cAMP may 

attenuate cell proliferation and survival mediated by STAT3 activation, the same therapy 

may also potentiate growth of cancer cells through PKA-mediated activation of CREB 

(James et al., 2009;Naviglio et al., 2009;Shankar et al., 2005) and other key cellular 

pathways such as the ERK1/2 signalling pathway. 

 

Indeed, this study has demonstrated that cAMP elevation can promote activation of 

ERK1/2 in LNCaP cells. This pathway is of particular importance in regulating cellular 

proliferation and survival and, whilst NE cell are non-proliferative, activation of ERK1/2 

signalling by cAMP may play a role in promoting the survival of these cells. Activation of 

ERK1/2 plays an important role in neurite outgrowth in PC12 cells (Bouschet et al., 

2003;Kiermayer et al., 2005;Monaghan et al., 2008;Obara et al., 2004;Robinson et al., 

1998) and was shown to be important for later stages of dendrite extension in LNCaP cells. 
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Interestingly, the more recently described ERK5 signalling pathway may play a role in 

mediating the early effects of cAMP elevation on LNCaP cell morphology. It is currently 

unclear as to the interplay between ERK1/2 and ERK5 in this system but the greater 

importance of ERK5 in the early stages of morphological change may arise due to direct 

interaction of this signalling protein with the actin cytoskeleton mediated by the proline 

rich domains in ERK5 (Zhou et al., 1995). It is thus possible that the ERK5 signalling 

pathway may also regulate activation of Rho family GTPases in order to mediate the 

effects cAMP elevation on cellular morphology. 

 

Treatment with Fsk was shown to induce inhibition of RhoA by a PKA-dependent 

pathway. Whilst this was correlated with an increase in pSer188RhoA, the possibility that 

MEK5 could promote GTP → GDP exchange of Rho GTPase family members and so act 

to dynamically regulate cytoskeletal processes has not been excluded (Zhou et al., 1995). If 

such a hypothesis was correct, it may provide an explanation for the role of the 

MEK5/ERK5 signalling pathway in early changes in LNCaP cell morphology. Indeed, 

further study of the ERK5 signalling pathway is likely to ascribe more functions which 

were thought to be ERK1/2-specific to this cascade as, until recently, it was not possible to 

pharmacologically inhibit the ERK5 signalling cascade without also inhibiting ERK1/2 

activation (Mody et al., 2001;Tatake et al., 2008). Future research into the ERK5 

signalling cascade may well demonstrate that this pathway is a key regulator of the actin 

cytoskeleton. As signalling pathways modulating actin polymerisation play a major role in 

many cellular processes such as neuronal differentiation (Nusser et al., 2006) and tumour 

metastasis (Lin et al., 2007;Zhao et al., 2009a) it may be that compounds such as 

BIX02188 and BIX20189 may prove to be important tools for future therapeutic strategies. 

 

Ultimately, whilst intracellular cAMP elevation results in attenuation of STAT3 activation 

in prostate epithelial cells, it is unlikely that therapeutic strategies which modulate cAMP 

signalling will be of future benefit in malignant disease due to potential side effects on 

cellular proliferation and differentiation. Other mechanisms by which to inhibit IL-

6/STAT3 signalling such as JAK inhibitors or decoy oligonucleotides (Jing & Tweardy, 

2005) are likely to be of far greater benefit in treating malignant disease. However, 

elevation of intracellular cAMP may prove beneficial in other diseases involving aberrant 

IL-6 signalling such as atherosclerosis or RArt (Kallen, 2002). Thus, whilst apparently 

representing a universal strategy by which to attenuate IL-6 signalling, elevation of 

intracellular cAMP may not represent a universally suitable strategy and the interplay 

between signalling pathways must be carefully considered. 
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12 Future directions 

12.1 Investigation of gp130-STAT1 interaction in response to IL-6 

stimulation 

In Chapter 6, both of the tumour-derived cell lines failed to activate STAT1 in response to 

exogenous IL-6. In the case of LNCaP cells, this was found to arise due to a lack of JAK1 

expression whilst the mechanism by which this occurs in DU145 cells is currently 

unknown. DU145 cells activated STAT1 in response to exogenous IFNα, indicating that 

the lack of STAT1 phosphorylation in response to IL-6 is an effect specific to this 

signalling pathway. As IFNα stimulation is able to induce phosphorylation of Tyr701 of 

STAT1, it is unlikely that there are alterations in STAT1 which render it unable to interact 

with cytokine receptors and to undergo JAK-mediated activation. It is thus more likely that 

the defects in IL-6-mediated activation of STAT1 arise due to alterations in the IL-

6R/gp130 complex. 

 

It is possible that STAT1 is unable to interact with gp130 in order to promote activation of 

STAT1 following stimulation with IL-6. Immunoprecipitation of gp130 and subsequent 

immunoblotting for STAT1 in IL-6-stimulated DU145 cells could be undertaken in order 

to address whether STAT1 does indeed interact with gp130. If it were found that STAT1 

does not interact with gp130, there are several mechanisms which might prevent 

interaction of the two signalling molecules. Binding of SOCS proteins to cytokine receptor 

is able to sterically hinder STAT recruitment to the receptor/JAK complex (Ilangumaran et 

al., 2004). In the case of SOCS3, this process requires phosphorylation of gp130 arising 

from cytokine stimulation (Ilangumaran et al., 2004). As DU145 cells are the only cells in 

this study both to be described as displaying basal STAT3 activation arising from autocrine 

IL-6 production (Okamoto et al., 1997) and also the only cells to display defects in STAT1 

signalling specifically confined to the IL-6 pathway, SOCS3 could be basally associated 

with gp130 in these cells and so act to inhibit STAT1 activation following IL-6 

stimulation. However, two lines of evidence argue against such a suggestion, firstly the 

lack of basal pTyr705STAT3 detected throughout this study and secondly, if SOCS3 were 

constitutively associated with gp130 in DU145 cells, it would be expected to impede 

activation of STAT3 following IL-6 stimulation which was not observed in this study. 

However, it is possible that constitutive interaction of another SOCS protein such as 

SOCS1 with gp130 is responsible for the loss in STAT1 activation observed. Interaction of 

SOCS1 with pTyr441 of the IFNγ receptor blocks STAT1 activation (Qing et al., 2005) and 

thus it may be that recruitment of SOCS1 to a site on gp130 may sterically hinder IL-6-
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induced activation of STAT1. This could be tested by immunoprecipitation of gp130 and 

immunoblotting for SOCS1. 

 

However, it may also be that the lack of STAT1 activation arsing from IL-6 stimulation in 

DU145 cells is due to alterations in the STAT1 recruitment sites on the cytoplasmic chains 

of gp130. The receptor binding sites for STAT1, but not STAT3, require the presence of a 

proline residue two amino acids C-terminal to the phosphotyrosine (Gerhartz et al., 

1996;Hemmann et al., 1996), thus mutation of the proline residue would be expected to 

inhibit STAT1/gp130 interaction but would not disrupt gp130/STAT3 interaction which 

does not require the Pro-Gln motif (Gerhartz et al., 1996;Hemmann et al., 1996). 

Furthermore, the presence of a leucine residue immediately C-terminal to the 

phosphotyrosine site is also required for STAT1 activation in response to gp130 activation 

(Gerhartz et al., 1996). In the study, by Gerhartz et al (1996) mutation of an IFNγ receptor 

sequence from YDKPH to YFKQH entirely altered subsequent STAT activation from 

predominantly increasing tyrosine phosphorylation of STAT1 to solely activating STAT3 

(Gerhartz et al., 1996). Given these observations, it is possible that the exclusive activation 

of STAT3 rather than STAT1 in DU145 cells following IL-6 stimulation demonstrated in 

this study may arise from mutations within the STAT1 recruitment sites on gp130, 

rendering STAT1 unresponsive to IL-6. The presence of point mutations altering 

STAT1/gp130 interaction could be determined via comparison of gp130 nucleotide 

sequences between DU145 and PZ-HPV-7 cells using RT-PCR. 

 

STAT1 is thought to exert a tumour suppressor function whilst elevation of IL-6/STAT3 

signalling is common in many malignancies (Hodge et al., 2005). Thus it is possible that 

defective gp130/STAT1 coupling could be of importance in a spectrum of cancers. Whilst 

studies have investigated the role of gp130 point mutations in inflammatory diseases, these 

have either artificially introduced mutations in gp130 (Tsuji et al., 2009) or have not 

correlated mutations in gp130 sequence to signalling defects (Rodriguez et al., 1994). 

Screening of tumour cells for mutations in the cytoplasmic regions of gp130 which are 

associated with STAT1 recruitment and activation may identify a common mechanism by 

which oncogenesis can be achieved. 

12.2 The role of SOCS proteins in cAMP-mediated attenuation of 

STAT3 activation 

Previously, the ability of cAMP to attenuate cytokine-induced activation of STAT3 in 

HUVECs was demonstrated to be mediated via induction of SOCS3, an endogenous 
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inhibitor of IL-6 signalling (Sands et al., 2006). However, whilst the decrease in STAT3 

activation in DU145 and PZ-HPV-7 cells was associated with an increase in detected 

SOCS3 protein levels, this did not hold true in LNCaP cells. It is possible, given the lack of 

SOCS3 expression in the LNCaP cell line, that the promoter sequence for SOCS3 in these 

cells is methylated. Indeed, hypermethylation of the SOCS1 and SOCS3 promoters have 

been described in several cancers associated with aberrant IL-6 signalling (Komazaki et 

al., 2004;Miyoshi et al., 2004;Tischoff et al., 2007;To et al., 2004) and thus may represent 

a conserved mechanism by which malignant cells impede the tumour suppressor activities 

of SOCS proteins (Elliott et al., 2008). Expression of SOCS3 following treatment with 

demethylating agents such as 5-aza-2-deoxycytidine (Wilson & Jones, 1983) would 

suggest that promoter methylation is indeed responsible for the lack of SOCS3 expression 

in LNCaP cells. It is possible that hypermethylation of the SOCS promoter is also 

important in the pathogenesis of other chronic inflammatory diseases associated with IL-6 

elevation such as RArt or atherosclerosis (Kallen, 2002). 

 

Importantly, it has not been possible to conclusively demonstrate a role for SOCS3 in this 

phenomenon as selective knockdown of SOCS3 expression using siRNA has been 

unsuccessful. Further optimisation of siRNA protocols is required to demonstrate a role for 

SOCS3 in cAMP-mediated attenuation of STAT3 phosphorylation in DU145 and PZ-

HPV-7 cells. If these continue to be unsuccessful, transient transfection of these cells with 

a plasmid encoding the relevant shRNA or establishment of stable SOCS3 knockdown 

prostate epithelial cell lines expressing the relevant shRNA may represent successful 

alternative strategies. 

 

Importantly, this study has only addressed the role of SOCS3 in cAMP-mediated 

attenuation of STAT3 phosphorylation, and other SOCS proteins may be modulate IL-6 

signalling. Whilst SOCS3 has been predominantly studied as an inhibitor of IL-6 

signalling, SOCS1 has also been demonstrated to directly inhibit IL-6 signalling (Schmitz 

et al., 2000). In order to address this issue, expression of other SOCS protein family 

members could be analysed by immunoblotting as performed in this study. Other than 

SOCS3, SOCS1 is the primary candidate for SOCS-mediated suppression of gp130-

mediated signalling as both have been shown to inhibit IL-6-induced expression of 

STAT3-responsive genes (Schmitz et al., 2000). Although the two SOCS proteins both 

inhibit STAT3 activity, they modulate IL-6/STAT3 signalling via different mechanisms as 

suggested by the observation that SOCS3 but not SOCS1 is recruited to Tyr759
 of gp130. 

(Schmitz et al., 2000) However, given the current poor quality of commercially available 
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antibodies to endogenous SOCS proteins, use of qRT-PCR to determine changes in SOCS 

family mRNA levels may prove an alternative experimental strategy. Caution must be 

exercised when interpreting such results as changes in mRNA levels may not necessarily 

correlate to changes in protein levels. Indeed, several proteins can be regulated via post-

transcriptional mechanisms. 

 

Whilst it has been demonstrated that socs3 mRNA levels increase following stimulation 

with cAMP-elevating agents (Barclay et al., 2007;Sands et al., 2006), this effect may vary 

between cell types. In the PC3-AR PCa cell line, increased SOCS3 protein expression 

following stimulation of the AndR occurs due to increases in translation and not in 

transcription of socs3 mRNA (Neuwirt et al., 2007). Indeed, no significant changes in 

socs3 mRNA were observed following androgen treatment, further indicating that 

transcriptional regulation plays a minor role in regulating SOCS3 expression in PCa cells 

(Neuwirt et al., 2007). Furthermore, control of SOCS protein expression at the translational 

level has been demonstrated for SOCS1 expression in murine thymocytes with changes in 

SOCS1 protein expression occurring independently from changes in socs1 transcript levels 

(Gregorieff et al., 2000). In this case, inhibition of socs1 translation was caused by the 5’ 

untranslated region (UTR) which encodes an upstream ORF containing AUG initiation 

codons. The presence of upstream AUG codons can inhibit protein translation, possibly by 

interfering with ribosomal scanning for the genuine AUG required for protein translation 

(Gregorieff et al., 2000). A similar, but non-identical sequence, is present in human socs1 

mRNA (Gregorieff et al., 2000). Given that both SOCS1 and SOCS3 protein expression 

can be regulated at the translational as well as the transcriptional level, it is possible that 

5’-UTR-mediated suppression of SOCS protein translation represents a conserved 

mechanism by which to regulation SOCS protein expression and thus qRT-PCR methods 

may not represent a suitable method to investigate the role of other SOCS proteins in 

cAMP-mediated suppression of STAT3 activation. 

 

One potential method by which to assess whether other SOCS family members are 

involved in modulation of IL-6 signalling in prostate epithelial cells would be to exploit the 

interaction of these signalling proteins with gp130. Immunoprecipitation of gp130 and 

subsequent immunoblotting or mass-spectroscopic analysis of associated proteins 

following Fsk pre-treatment and subsequent IL-6-mediated activation of gp130 would 

identify proteins interacting with gp130. This might lead to the identification of other 

SOCS family members, or indeed other, novel proteins, involved in the attenuation of IL-

6/STAT3 signalling following cAMP elevation in prostate epithelial cells. However, it 
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must be stressed that such a strategy only allows identification of inhibitory molecules 

which interact directly with gp130 and it may be that other proteins are involved in cAMP-

mediated attenuation of STAT3 signalling in LNCaP cells. Investigation of protein tyrosine 

phosphatase (PTPase) expression and activity may highlight new pathways involved in IL-

6 signalling regulation. Expression of the T-cell PTPase (TC-PTP) or the PTPεC PTPase 

can both promote STAT3 dephosphorylation (Tanuma et al., 2001;Yamamoto et al., 2002). 

It is possible that cAMP elevation may enhance PTPase activity in LNCaP cells in a 

manner similar to the ability of p-CPT-cAMP or Sp-cAMP to induce increases in 

osteotesticular-PTPase expression in rat osteoblasts (Mauro et al., 1996). Thus microarray 

or RT-PCR analysis of PTPase expression could also be considered when investigating the 

mechanisms by which cAMP elevation inhibits IL-6 signalling in LNCaP cells. 

12.3 The role of cAMP compartmentalisation in NE differentiation 

The results obtained in this study demonstrate a key role for PKA activation in mediating 

changes in LNCaP cell morphology following cAMP elevation through inhibition of RhoA 

activation, the effects on Rac and Cdc42 activity are unknown. Further expansion of this 

project to investigate changes in GTP-associated Rac and Cdc42 following stimulation 

with Fsk or 6-Bnz-cAMP would help to determine their roles in this phenomenon. 

Furthermore, fluorescent imaging in real-time may determine whether particular 

subcellular pools of the Rho family GTPases are being mobilised to promote changes in 

LNCaP cell morphology following cAMP elevation. Recently, Fourier transform energy 

transfer- (FRET-) based techniques have been used to determine activation and localisation 

of specific Rho GTPase family members in response to extracellular stimuli in T-cell 

models of the immune synapse (Makrogianneli et al., 2009). Recent advances in image 

analysis now enables direct quantification of Rho GTPase activity from fluorescence 

microscopy data (Tsukada et al., 2008). It might thus be possible to investigate both the 

subcellular distribution and activation status of these signalling molecules in LNCaP cells 

following cAMP stimulation. The intracellular compartmentalisation of Rho GTPase 

signalling is of particular interest due to the emerging importance of subcellular 

compartmentalisation in regulating cAMP-mediated. Currently, the intracellular pools of 

cAMP elevation in LNCaP cells following Fsk treatment are unknown. However, FRET-

based reporters to detect regions of cAMP elevation (Warrier et al., 2005) could be used to 

identify whether LNCaP cells display compartmentalised increases in cAMP 

concentrations and how this relates to dendrite extension and branching. It has also been 

demonstrated that the genes induced in LNCaP cells during NE differentiation varies 

dependent on the stimulus used, although differences between cAMP-elevating agents 
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have not yet been analysed (Mori et al., 2009). Furthermore, whilst Fsk, PACAP and di-

Butyryl-cAMP all induce neurite outgrowth in PC12 cells as a result of cAMP elevation, 

each stimulus differentially regulates subsequent gene expression (Ravni et al., 2008). It is 

possible that the distinct gene expression profiles arise from compartmentalisation of 

cAMP elevation and subsequent signalling pathway activation. As multiple β2-adrenergic 

receptor agonists and Fsk (Deeble et al., 2001) induce NE differentiation in LNCaP cells, it 

would be interesting to see if differences in gene expression profiles arise and whether this 

can be correlated with changes in intracellular distribution of elevated cAMP. Furthermore, 

association of subcellular localisation of cAMP elevation and anchoring of particular PDE 

isoforms may identify novel therapeutic targets to impede NE differentiation during PCa 

progression. It appears that PDE activity is the primary factor governing intracellular 

compartmentalisation of cAMP elevation (Zaccolo & Pozzan, 2002) and thus family- or 

isoform-selective PDE inhibitors are likely to represent future directions in therapeutic 

strategies associated with cAMP signalling. 

12.4 The interplay of the PKA/actin/ERK5 signalling pathways 

Whilst it has been demonstrated that pharmacological or genetic inhibition of the ERK5 

signalling pathway can inhibit the ability of Fsk to induce changes in LNCaP cell 

morphology, the ability of Fsk to activate ERK5 has not been determined. It is possible 

that immunoprecipitation of ERK5 and subsequent immunoblotting for 

pThr218pTyr220ERK5 may enable identification of Fsk-induced activation of ERK5. 

Similarly, it has not been possible to identify endogenous ERK5 in LNCaP cells, an issue 

which may be resolved following improvements in the sensitivity of currently available 

antibodies. The observation that both PKA and ERK5 are important in Fsk-induced 

changes in LNCaP cell morphology begs the question as to whether the two proteins are 

acting via a common mechanism. In Chapter 9, PKA consensus sequences were identified 

on MEKK3, MEK5 and ERK5 using in silico prediction but their relevance has not been 

demonstrated in vitro. It is possible that PKA could activate ERK5, a question that could 

be addressed by treating cells with 6-Bnz-cAMP and observing whether a subsequent 

increase in ERK5 phosphorylation is observed. It would also be interesting to see if PKA 

can directly phosphorylate components of the ERK5 signalling pathway which could be 

implied following co-immunoprecipitation in order to determine whether PKA and 

components of the ERK5 signalling cascade can interact within LNCaP cells. However, 

this approach does not address whether PKA can directly activate components within the 

ERK5 signalling cascade. A yeast two-hybrid screen using recombinant isoforms of the 

PKA holoenzyme and the ERK5 signalling pathway components ERK5, MEK5 and 
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MEKK3 could be used to determine direct interaction between PKA and regulators of 

ERK5 activity. However, such an approach would need to be considered in conjunction 

with the aforementioned immunofluorescence and co-immunoprecipitation as yeast two-

hybrid screens may not identify physiologically relevant interactions due to loss of 

temporal and spatial separation of proteins. Whilst such approaches would identify direct 

interaction of PKA with components of the ERK5 signalling pathway, they do not 

demonstrate that PKA can activate components of the ERK5 signalling pathway. This 

could be investigated using in vitro phosphorylation assays using purified components of 

the signalling cascade and the catalytic subunit of PKA in similar assays as described by 

Ellerbroek (2003). 

 

Given the critical role of the actin cytoskeleton in regulating cellular morphology, the 

ability of ERK5 to regulate actin polymerisation is of interest. ERK5 contains two proline-

rich regions which are believed to target ERK5 to the actin cytoskeleton (Zhou et al., 

1995) and, importantly, are absent in ERK1/2 (Fig. 9.x). Whilst ERK5 has been implicated 

in the inhibition of RhoA activity, there is currently no published data to demonstrate that 

ERK5 can directly interact with the actin cytoskeleton. Theoretically, demonstration of an 

ERK5/actin association could be readily achieved by a combination of co-

immunoprecipitation or yeast 2-hybrid screening to determine protein-protein interaction 

and immunofluorescence to demonstrate colocalisation of ERK5 and actin. Given the 

importance of PKA in Fsk-induced changes in LNCaP cell morphology, it is not 

unreasonable to suppose that PKA may modulate ERK5 activity as suggested above. One 

mechanism by which to achieve specificity in cAMP signalling is to compartmentalise 

signalling proteins into complexes via interaction with scaffolding proteins such as 

AKAPs. ERK5 has already been shown to interact with mAKAP and modulate PDE4D3 

activity (Dodge-Kafka et al., 2005). Furthermore, WAVE1 has been shown to act as an 

AKAP linking PKA signalling and actin polymerisation. Thus, it is possible that a PKA-

ERK5-AKAP-actin–RhoA or RhoGEF signalling complex exists which enables co-

regulation of these pathways in order to facilitate changes in cellular morphology 

(Westphal et al., 2000). Use of immunoprecipitation techniques could enable identification 

of proteins involved in such putative signalling complexes. The Cdc24-like motif in MEK5 

is associated with an increase in GTP → GDP exchange following interaction of CDC24 

and CDC42 in Saccharomycese cerevisiae (Zhou et al., 1995) and thus the MEK5-ERK5 

signalling pathway may co-ordinate to dynamically regulate the actin cytoskeleton. It 

would be of interest to see whether either treatment with disrupting peptides or 

deletion/mutation of the proline-rich domains of ERK5 or the CDC24-like domain of 
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MEK5 alters the importance of this signalling cascade in Fsk-induced changes in LNCaP 

cell morphology. 

 

Altered cytoskeletal dynamics are an important aspect of tumour metastasis as changes in 

actin polymerisation drive the cell motility required for cellular movement. Given that 

increased expression of MEK5 is correlated with PCa metastasis (Mehta et al., 2003), it is 

also possible that dysregulation of MEK5/ERK5 signalling is of importance in the 

metastasis of other cancers. IHC, RT-PCR and immunoblotting analysis of metastatic 

lesions arising from multiple malignancies would indicate whether hyperactivation of the 

MEK5/ERK5 signalling pathway is a common factor to tumour metatases. If this is indeed 

the case, it is possible that use of pharmacological inhibitors of MEK5/ERK5 signalling 

such as BIX02188 and BIX02189 may have a novel application to complement or replace 

existing chemotherapeutic strategies. 
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