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Abstract 

Previous research has shown that computer-aided breath sounds analysis can be 

a non-invasive objective method to help in evaluating respiratory system 

conditions. However, some problems need to be solved. One is that investigators 

use various measurement systems without calibration, thus it is impossible to 

compare results directly. Another is that there is not yet a reliable means of 

quantification of adventitious sounds. For continuous adventitious sounds- 

wheeze, which is a sign of airway obstruction, the previous automatic detection 

algorithms are not reliable enough. In addition, those algorithms have only been 

validated by subjective methods. 

This thesis aims at investigating these problems. Existing breath sound 

measurement systems and possible new methods have been critically 

investigated. The frequency response of each part of the measurement system 

has been studied. Emphasis has been placed on frequency response of acoustic 

sensors; especially, a method to study a diaphragm type air-coupler in contact use 

has been proposed. Two new methods of breath sounds measurement have been 

studied: laser Doppler vibrometer and mobile phones. It has been shown that 

these two methods can find applications in breath sounds measurement, however 

there are some restrictions. 

A reliable automatic wheeze detection algorithm based on auditory modelling has 

been developed. That is the human's auditory system is modelled as a bank of 

band pass filters, in which the bandwidths are frequency dependent. Wheezes are 
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treated as signals additive to normal breath sounds (masker). Thus wheeze is 

detectable when it is above the masking threshold. This new algorithm has been 

validated using simulated and real data. It is superior to previous algorithms, being 

more reliable to detect wheezes and less prone to mistakes. 

Simulation of cardiorespiratory sounds and wheeze audibility tests have been 

developed. Simulated breath sounds can be used as a training tool, as well as an 

evaluation method. These simulations have shown that, under certain 

circumstance, there are wheezes but they are inaudible. It is postulated that this 

could also happen in real measurements. It has been shown that simulated 

sounds with predefined characteristics can be used as an objective method to 

evaluate automatic algorithms. 

Finally, the efficiency and necessity of heart sounds reduction procedures has 

been investigated. Based on wavelet decomposition and selective synthesis, heart 

sounds can be reduced with a cost of unnatural breath sounds. Heart sound 

reduction is shown not to be necessary if a time-frequency representation is used, 

as heart sounds have a fixed pattern in the time-frequency plane. 
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Chapter 1 Introduction 

1.1 Background 

Since Laennec invented the stethoscope and published his book describing the 

meaning of sounds, auscultation has been one of the routine clinical methods to 

assess pulmonary situations. Doctors can distinguish between normal and 

abnormal breath sounds characteristics depending on their experience. The 

advantage of auscultation is that it is quick, non-invasive, and needs minimum co- 

operation, thus it is especially useful for all those who could not perform 

conventional respiratory function tests. However, there are a few drawbacks. It 

lacks a method of recording, has insufficient sensitivity, offers no quantitative 

description, and is prone to observer variability. 

Early objective measurement and analysis of breath sounds was attempted in the 

1920s. More recently, the success of radiography, which can provide more 

accurate information of structural abnormalities in the lung, led to the decline in the 

status of auscultation (Forgacs 1978). However, obstructive diseases which affect 

the airways are not easily diagnosed by radiography (Druzgalski et al. 1980). The 

research of Forgacs (1967; 1969; 1971; 1978) intrigued many investigators. With 

the development of electronic devices, computer technology, and signal 

processing, investigators are active in improving the understanding of the 

mechanisms for the production of breath sounds and developing automatic 

systems to classify breath sounds. However, there are some problems that need 

to be solved. One is that investigators use various measurement systems without 

calibration, thus it is impossible to compare results directly. Another is that 
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quantification of adventitious sound is important. For a specific type-wheeze, 

which is a sign of airway obstruction, the previous automatic detection algorithms 

are not reliable enough. In addition, those algorithms are only validated by 

subjective methods-visual inspection of expanded waveform and/or listening. 

1.2 Aims and Objectives 

The aims of this project are: 

" to critically investigate existing breath sounds measurement systems and 

possible new methods, 

" to develop a reliable automatic wheeze detection algorithm, 

9 to investigate the necessity of heart sounds reduction, 

" to develop breath sound simulation procedures, 

" to validate the wheeze detection algorithm using real and simulated data. 

Investigating the performance of a breath sounds measurement system is 

important. Each part of a system may distort the signal. Studying the frequency 

response of each part can help in choosing suitable devices. The frequency 

response can also be used to calibrate a measured signal for comparison 

purposes. 

Two new methods have been investigated. One is the laser Doppler vibrometer, 

which is a non-contact sensor. The other is the mobile phone. 

Automatic wheeze detection algorithms can provide a parametric description of 

wheeze characteristics, such as frequency, duration, number etc. These values 
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have the potential to be incorporated in a patient's record, which will facilitate 

patient monitoring and management. 

1.3 Outline of the Thesis 

Previous research is briefly reviewed in chapter 2. Stress is put on work which is 

closely related to this thesis. The methodology to study frequency characteristics 

of each part of a measurement system is presented in chapter 3. The focus is on 

the acoustic sensors' frequency responses. Heart sounds reduction using wavelet 

decomposition and selective synthesis is described in chapter 4. Simulation of 

cardiorespiratory sounds and wheeze audibility tests are discussed in chapter 5. 

An automatic wheeze detection algorithm based on auditory modelling is proposed 

in chapter 6. Both simulated data and real data have been used to validate the 

algorithm. 

1.4 Originality 

In chapter 3, measurements using LDV and mobile phones, study of contact 

frequency response of a diaphragm type air-coupler, and added noise to improve 

mobile phone recording sound quality are all original. In chapter 5, simulation of 

wheezes and wheeze audibility tests are novel. The automatic wheeze detection 

algorithm in chapter 6 is original too. 
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Chapter 2 Review of Previous Research 

Previous research carried out in the field of acoustic study of breath sounds is 

presented briefly in this chapter. More detail is given where the research relates 

closely to this thesis. 

2.1 History of Acoustic Research in Breath Sounds 

Loudon (1985) described research in respiratory sounds over three successive 

time periods: immediate auscultation, stethoscope auscultation and electronic 

observation. 

Immediate auscultation involves directly listening to the patient's chest, which 

could date back to its use by Hippocrates in the 4th century BC (Gavriely and 

Cugell 1995). This shows that auscultation was considered important long ago. 

But obviously this method was not always practicable. 

Then immediate auscultation was replaced by the stethoscope auscultation after 

Laennec invented the stethoscope in 1816 (Gavriely and Cugeil 1995). The 

stethoscope has greatly improved our understanding of the sounds heard from the 

body surface with pulmonary conditions. The stethoscope can assist cheap, 

simple, non-invasive diagnosis, and is therefore still today the most frequently 

used medical device (Weitz and Mangione 2000). 

In the 1920s, researchers (Cabot and Dodge 1925; Hannon and Lyman 1929) 

started to record and analyse breath sounds using electronic systems, which led to 
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the modern objective observation. Big advances have been made since early use 

of purely analogue techniques to today's computer assisted techniques. Today 

qualitative and quantitative analysis are able to provide more objective and 

accurate information, which forms the basis of our understanding of the 

mechanism of respiratory sounds generation and propagation, and also helps 

assess pulmonary situations. With continuous advances of analogue and digital 

devices and signal processing techniques, further improvements in resolution and 

accuracy can be expected. 

2.2 Categories of Breath Sounds 

2.2.1 Normal Breath Sounds 

Normal lung sounds (vesicular sounds). A lung sound is detected through the 

chest wall of a healthy subject. This is characterised by a faint low-frequency noisy 

sound, heard throughout inspiration and at the beginning of expiration. The 

expiration has a lower pitch, lesser intensity and shorter duration than inspiration 

(Forgacs 1978; Gavriely and Cugell 1995; Pasterkamp et aL 1997). 

Normal tracheal sounds (bronchial sounds). A tracheal sound is detected on 

the neck. This is characterised by a broader spectrum of noise than the normal 

lung sounds from the chest wall, audible throughout inspiration and expiration 

(Forgacs 1978; Gavriely and Cugell 1995; Pasterkamp et al. 1997). 

2.2.2 Adventitious Sounds 

Wheezes. These are continuous sounds with a musical character. Acoustically, 

they are characterised by periodic waveforms, with a dominant frequency usually 
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over 100Hz and with duration greater than about 100ms. They can be classified 

according to pitch (high or low), complexity (monophonic or polyphonic), duration 

(long or short) and timing (inspiration and expiration; early and late; random and 

sequential) (Forgacs 1978; Pasterkamp et al. 1997; Sovijarvi et al. 2000b). 

Crackles. Crackles are discontinuous, short, explosive non-musical sounds. There 

are two types: fine crackles and coarse crackles, which can be classified 

according to waveform, duration, and timing. A fine crackle has a high pitch, low 

amplitude and short duration, whereas a coarse crackle has a low pitch, high 

amplitude and long duration (Forgacs 1978; Pasterkamp et al. 1997; Sovijarvi et 

al. 2000b). 

Other adventitious sounds have been identified, such as rhonchus and squawks, 

but are less studied, so they are not defined here. 

2.3 Production and Propagation of Breath Sounds 

Much research has been based on lung sounds, and relatively recently research 

based on tracheal sounds has increased. Typical sites of recording breath sounds 

on chest and neck have been recommended (Rossi et aL 2000; PixSoft Inc. and 

Medi-wave Inc. 2001). As investigators intended to relate the recording sounds to 

the physiological or pathological respiratory system, the origin of normal and 

abnormal breath sounds and their propagation is one of the research focuses. The 

precise anatomical origin of breath sounds and mechanisms of generation are not 

known, and this area is still under investigation. 
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2.3.1 Production of Breath Sounds 

Normal Breath Sounds 

Some doctors believe that the apparent normal lung sound originates in the larger 

airways due to turbulent flow and is subsequently transmitted to the chest wall. 

The study by Austrheim and Kraman (1985) compared the amplitudes of breathing 

air and He-02 gas (20% oxygen and 80% helium) at trachea and chest sites under 

the target flow rate. They suggested that tracheal and expiratory lung sounds were 

produced by turbulent flow, which is density dependent; while inspiratory lung 

sounds were produced by some other unknown mechanism. Pasterkamp and 

Sanchez (1996) repeated the above experiment but extended to the higher 

frequencies. Their findings draw the conclusion that flow turbulence is the 

dominant mechanism for the production of lung sounds at higher frequencies. 

These experiments seem to infer that production of the normal tracheal sounds 

and lung sounds are not identical. 

Normal tracheal sounds. According to Fahr (1927), Martin and Muller (1923) 

recorded graphically the vibrations set up in the airway system up to certain 

branch generations. They demonstrated that bronchial sounds were produced in 

airways with a diameter of 4 mm or above. Fahr confirmed these observations, 

and showed that the glottis played a minor part in the production of tracheal 

sounds. The turbulent flow has been observed within cast models of central 

airways from larynx to segmental bronchi above critical flow rate (West and Hugh- 

Jones 1959; Dekker 1961; Olson et al. 1973). This turbulent flow has been 

suggested as the dominant source of tracheal sounds (Forgacs et al. 1971; Olson 

et aL 1984; Austrheim and Kraman 1985; Pasterkamp and Sanchez 1996). 
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Normal lung sounds. As early as 1884, Bullar (1884) designed a series of 

experiments to study the production of respiratory sounds. He concluded that 

sounds were produced at those parts of the respiratory tract where the air passes 

from a narrower to a wider space, and pointed out that vesicular sound was 

produced in the lungs. 

Later studies suggest that at least the inspiratory component of the lung sound is 

produced locally, within each lung and probably within each lobe (Ploy-Song-Sang 

et al. 1977; Kraman 1980; 1981; 1985b; Pasterkamp et al. 1997; Kompis et al. 

2001). The expiratory component of the lung sound originates from the larger 

central airways in comparison with the inspiratory sound (Kraman 1980; 1981; 

Gavriely 1983; Kompis et aL 2001). Hardin and Patterson (1979) speculated that 

the mechanism to produce normal lung sounds was the unsteady movement of 

vortices in the lung. 

Adventitious Sounds 

Crackles. Crackles are usually of a recurrent rhythmical pattern (Forgacs 1967; 

1978; Nath and Capel 1974a; Mori et aL 1980), to be heard much more often 

during inspiration than during expiration, and are sensitive to posture changes 

(Forgacs 1967; 1978). Forgacs hypothesised that the quick equalisation of gas 

pressures that follows the reopening of previously closed small airways produces 

implosive sound waves (Forgacs 1967; 1978). However Fredberg and Holford 

(1983) stated that their stress relaxation quadruploe model may be preferable. 

Their theory is that the elastic stress in and near the airway wall in transition 

between static equilibrium after a closed airway opens suddenly can be detected 
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as a crackle via parenchyma. Experiments do seem to provide evidence that at 

least the inspiratory crackles are due to opening of small airways (Nath and Capel 

1974a; Mori et al. 1980; Munakata et al. 1986), but crackles are probably 

produced by more than one mechanism (Loudon and Murphy 1984; Olson and 

Hammersley 1985; Raymond and Murphy 1985). In addition to the above 

mechanism, crackles may result from air bubbling through secretions. This is 

based on the observation of crackles from patients with secretion in their airways 

or pulmonary oedema (Urquhart et al. 1981; Banham et al. 1984). In these cases 

crackles appear in both phases of respiration and at random (Forgacs 1969). 

Wheezes. It seems likely that a coupling of airflow and airway wall vibration 

causes wheezing. Forgacs (1967; 1978) speculated that wheezes were produced 

by a mechanism similar to the reed in a toy trumpet, with the mass and elasticity of 

airway walls contributing to the pitch of the wheezes. However the two 

prerequisites of producing wheezes are: (i) the airway calibre should be reduced to 

closure and (ii) the flow velocity should reach a critical value. Based on a 

mathematical fluid dynamic flutter model (Grotberg and Davis 1980; Grotberg and 

Gavriely 1989), wheezes are produced by the interaction of fluid forces and friction 

and airway wall elastic-restoring forces and damping. This theory has been 

examined by Gavriely and associates (Gavriely et al. 1984b), and can explain the 

results well. The model showed that wheezes will be always accompanied by flow 

limitation, but flow limitation will not always produce wheezes. These are 

supported by experimental observations (Gavriely et al. 1984a; 1987; 1989; 

Spence et aG 1996; Doherty et al. 1998). The theory inferred that two types of 

1 Flow limitation appears when the flow rate is independent on the driving pressure (pressure difference 
between upstream pressure and downstream pressure). 
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airway vibrations may result from the interaction of the flow and the elastic airway 

wall. One is stable airway oscillation, which may account for end expiratory 

wheezes. The other is unstable oscillation, which may account for all other 

wheezes. The model also predicted that gas density has a minor effect on wheeze 

pitch, which is consistent with observations (Forgacs 1978; Shabtai-Musih et al. 

1992). 

2.3.2 Transmission of Breath Sounds 

The tracheal sounds are not conducted within the airways where internal 

diameters are less than 3mm (Fahr 1927). At high frequencies the larger airways 

are rigid because of their inertance and sound travels at relatively high speed 

(Rice 1980). At very low frequencies, sound propagation is much slower (Rice 

1985). 

The lung is a bad sound conductor (Bullar 1884). Sound travels very slowly in 

parenchyma as the lung is a homogeneous mixture of gas and tissue (Kraman 

1983b; Rice 1983; Bergstresser et al. 2002). Sound attenuation increases with 

higher frequency and is suggested to occur in the parenchyma, which is supported 

by experimental observation (Hannon and Lyman 1929; Gavriely et al. 1981; 

1983) and theoretical models (Rice 1983; Wodicka et al. 1989; Vovk et aL 1995). 

The chest wall exhibits strong fundamental resonance over different lung regions 

and at different lung volumes (Ploy-Song-Sang et al. 1977) according to body size 

(Wodicka and Shannon 1990). This resonance may have particularly important 
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effects on sound transmission at low frequencies, where the parenchyma 

attenuation seems to be small (Wodicka and Shannon 1990) . 

As the parenchyma acts as a low pass filter, lung sounds have little high frequency 

component. The thorax further attenuates the lung sound transmission (Rice 1983; 

Vovk et at 1995). In contrast, tracheal sounds have richer high frequencies and 

louder intensity (Kraman and Austrheim 1983; Wodicka and Shannon 1990). 

Conditions, such as consolidation or large pleural effusion, decrease the 

absorption in parenchyma, and thus increase the measured sound intensity over 

the chest at higher frequencies. 

In short, abnormal pulmonary situations differ from normal ones in the production 

mechanism and transmission properties of breath sounds. It is postulated that 

these differences can be reflected in the measured breath sounds. 

2.3.3 Acoustic Models of the Respiratory System 

Acoustic models of the respiratory system have been proposed based on the 

understanding of the production mechanism and the transmission property of 

breath sounds and appropriate simplification. 

The respiratory tract consists of the vocal tract and subglottal airways. The 

branching airway structures within the thorax have been modelled to study 

transmission and reflection properties (Ishizaka et al. 1976; Jackson et aL 1989; 

Wodicka et al. 1989) and to predict tracheal sounds characteristics (Harper et al. 
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2001; 2003). The tract system can be simply modelled as a soft-walled tube of 

effective length with an open-end (Ishizaka et al. 1976; Jackson et al. 1989). Large 

airways vibrate in response to airway pressure oscillations; thus a significant 

acoustic energy is coupled directly from within large airways to surrounding 

parenchyma (Wodicka et al. 1989). The important airway geometry and properties 

and glottal open size determine the characteristics of tracheal sounds (Harper et 

aL 2001; 2003). 

The lung parenchyma surrounds the intrathoracic tracts. It can be modelled as a 

homogeneous medium of air bubbles in a liquid in the audible frequency range 

(Rice 1983) with sound attenuation effect. The chest has been acoustically 

modelled as a large cylinder (Wodicka et al. 1989; Vovk et aL 1994). A further 

refined model included muscular-rib and muscular-fatty layers (Vovk et al. 1995). 

The mismatch of acoustic impedances of the chest wall and parenchyma leads to 

further attenuation of breath sounds detected at the chest surface (Rice 1983; 

Vovk et al. 1995). 

These models reflect the respiratory sound transmission from central airway to the 

chest surface. The predicted results from the models compared reasonably well 

with experiment data. 

2.4 Measurement System 

Although the mechanism of respiratory sounds generation is not exactly 

understood, it does not prevent investigators from measuring and analysing these 

sounds. 
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Measurement is the basis for analysis. The measurement systems used in breath 

sounds analysis have been improved consistently with the development of 

electronic devices. 

Acoustic sensor " Amplifier " Filter [-ºý A/D " Processing 

Flow sensor 

Figure 2.1 Structure of measurement system. 

Figure 2.1 schematically shows the common structure of a digital data acquisition 

system, though various instruments used by different research groups. From the 

viewpoint of an engineer it seems that investigators have not paid much attention 

to the construction of a particular measurement system. In many medical and 

engineering papers, analysis methods and clinical applications are the most 

important parts of a paper. Little detail is given about why that particular system is 

used. Relatively few studies were focused on measurement techniques, such as 

sensor properties (Druzgalski et aL 1980; Pasterkamp et al. 1993; Gavriely and 

Cugell 1995) , air-coupler properties (Wodicka et al. 1994; Kraman et al. 1995), 

and filter characteristics (Sun et al. 1998). 

2.4.1 Acoustic Sensor 

The whole measurement system determines the quality of measured data. The 

first critical stage is the sound sensor. Two kinds of acoustic sensors are 

commonly used: one is an air-coupled sensor and the other is surface vibration 

sensor. 
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Air-coupled sensors. Air-coupled sound sensors measure the sound pressure. 

Various types and models of microphones have been used by researchers. 

According to Druzgalski (1980), an ideal microphone for recording should have a 

dynamic range greater than 40-500, with high sensitivity and signal-to-noise 

ratio, and flat frequency response. Electret condenser microphones have a flat 

frequency response, light-weight, good sensitivity and wide dynamic range, as well 

as being relatively cheap, so they were widely used in breath sounds recording 

(Druzgalski et aL 1980; Charbonneau et al. 1983; Austrheim and Kraman 1985; 

Spence et aL 1992; Malmberg et al. 1995; Doherty et al. 1998). 

However electret microphones cannot be put on the body surface to collect the 

breath sound signal directly because of the impedance mismatch between body 

surface and microphone membrane. Some kind of rigid chamber is needed to 

couple the microphone to the body surface. An air cavity between the microphone 

and body surface will affect the characteristics of breath sounds. Work done by 

Wodicka et al (1994) and Kraman (1995) suggested that an optimal air coupler 

should be light-weight, conical, shallow depth, and either not vented or vented with 

a very thin tube. 

Electronic stethoscopes have an air cavity of the shape and size of an ordinary 

stethoscope (diaphragm or bell) but integrate the microphone and following 

amplifier and filter stages. Telephones and mobiles can also be considered in this 

category. 
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Surface vibration sensors. Compared to air-coupled sensors, surface vibration 

sensors are put on the body surface directly without air couplers. Vibration on the 

body surface can be measured by a vibrometer or an accelerometer. Quite a few 

groups preferred these surface type sensors, such as Gavriely's group (Gavriely et 

aL 1981; 1984b; 1992; 1995), Pasterkamp's team (Pasterkamp et al. 1984; 1989; 

1992; 1996; Harper et aL 2003) and some others (Fenton et aL 1985; Vovk et al. 

1995). 

Not all the industrial vibrometers or accelerometers are suitable for detecting 

respiratory sounds (some preliminary unreported studies at Glasgow University). 

Heavy sensors or those needing firm contact could not be used in respiratory 

sounds recording, as they induce distortions by changing the transmission 

characteristics of the chest. 

The choice between microphones and contact sensors may be decided by the 

availability, cost and maintenance. Though Vovk's (1994) model preferred surface 

type transducers to detect vibration velocity or acceleration on the body surface, 

they are more expensive and fragile. 

Studies of sound sensors (Druzgalski et al. 1980; Pasterkamp et aL 1993) showed 

that the frequency responses of the sensors were not flat. It's understandable that 

frequency characteristics differ among different sensors, but even sensors of the 

same model showed significant difference. Others also measured frequency 

responses of acoustic sensors (with coupler) (Kraman 1980; Gavriely et aL 1981). 
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2.4.2 Amplifiers 

Signals from sound sensors are normally too small to reach the level that the 

successive stage (A/D or tape recorder) requires. Thus amplifiers are used to 

amplify the output signal from the sound sensor. Various types of amplifiers were 

used among researchers. Quite a few researchers didn't mention what kind of 

amplifier was used (Austrheim and Kraman 1985; Anderson et al. 1990; Gavriely 

and Herzberg 1992; Shabtai-Musih et al. 1992). Others chose from built-in 

amlifiers in electronic stethoscopes (Baughman and Loudon 1984; Lessard and 

Wong 1986; Bohadana et al. 1994) , built-in amplifiers incorporated with filters 

(Homs-Corbera et al. 2000; Fiz et al. 2002), and instrumentation amplifiers 

(Benedetto et al. 1983; Shykoff et al. 1988; Malmberg et al. 1995). The important 

parameters to choose an amplifier should be the flatness of frequency response 

and bandwidth. 

2.4.3 Filters 

High pass filters were used to reduce low frequencies (such as heart sounds), 

where their high energy may saturate the sampling channel or reduce high 

frequency resolution. Low pass filters were used to provide an anti-aliasing 

function, in which the cut-off frequency will depend on the sampling rate. 

Sometimes band-pass filters were used to achieve both the above functions. 

Various filter types and orders as well as different cut-off frequencies were used. 

For example: Fenton and colleagues (1985) used a 5th order elliptic low pass filter 

with cut off frequency of 1000Hz and a sampling rate of 2560Hz. Anderson and 

associates (1990) employed a 4th order Chebychev low pass filter with cut off 

frequency of 3kHz and a sampling rate of 9600Hz. Pasterkamp and co-workers 
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(1996a) utilised a 6th order Butterworth low pass filter with cut off frequency of 

2400Hz and a sampling rate of 10240Hz. Broersen and de Waele (2000) used a 

4th order Bessel band pass filter with cut off frequencies of 100Hz and 1500Hz, 

and a sampling rate of 5000Hz. 

Sun and associates (1998) proposed several methods to study the frequency 

response of high pass filters. This is because a high pass filter would significantly 

affect the signal wave shapes in the time domain (Katila et al. 1991; Sun et al. 

1998), which would affect values of parameters based on the waveform. 

2.4.4 Digitisation 

Purely analogue techniques were used in early studies. For example, Cabot and 

Dodge (1925) compared sound intensity and frequency character with and without 

electric filters. In some cases, an oscilloscope was used to show results directly 

(Hannon and Lyman 1929; Forgacs et aL 1971; Kraman 1980; 1981; Ploy-Song- 

Sang et al. 1977; 1983). In most current work the signals are either recorded on a 

tape then digitised, or digitised and stored on a computer disk directly. The most 

commonly used A/D resolution was 12-bit (Fenton et al. 1985; Anderson et al. 

1990; Gavriely et al. 1995; Broersen and de Waele 2000), some were 10-bit 

(Gavriely et al. 1984b; Bohadana et al. 1994) and 13- bit (Malmberg et al. 1994; 

Sovijarvi et al. 1996; Vanderschoot et aL 1998). The higher the resolution, the 

wider the dynamic range, and the more accurate the discrete data; however higher 

resolution is more expensive. 
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2.4.5 Flow Sensor 

Flow rate affects the sound intensity (Leblanc et al. 1970; Banaszak et al. 1973; 

Dosani and Kraman 1983; Kraman 1984; Olson et al. 1984; Shykoff et al. 1988). 

From most of the studies, the relation between sound amplitude a and flow rate f 

can be expressed as a= cfb , where b and c are constants. But the value b is not 

consistent among investigators (Kraman 1984; Olson et al. 1984; Shykoff et al. 

1988; Gavriely and Cugell 1996). The spectral components of breath sounds are 

dependent on flow rate below a certain flow rate (Charbonneau et al. 1983; 

Lessard and Wong 1986; Schreur et al. 1994), but are independent above that 

critical flow rate (Kraman 1986; 1998; Mussell et al. 1990; Gavriely and Cugell 

1996; Harper et al. 2003). For these reasons, many investigators made their study 

under monitored flow rate conditions by using a flow sensor. 

The most frequently used flowmeter is a pneumotachograph with a differential 

pressure transducer (Dosani and Kraman 1983; Shykoff et al. 1988; Soufflet et al. 

1990; Gavriely et al. 1995). However studies with and without a flow sensor 

(Urquhart 1983; Mussell et aL 1990) showed that the flowmeter had significantly 

distorted the `true' breath sounds. It can be presumed that different flow sensors 

may have distinct distortions. 

2.4.6 Calibration 

As mentioned above in sections 2.4.1 to 2.4.5, various sensors, amplifiers, filters 

etc were used by different research groups. It would be sensible to expect that 

characteristic variations exist among measurement systems. 
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For comparison purposes, calibration of the system is necessary. A few 

calibrations have been done when two or more identical measurement channels 

were used (Ploy-Song-Sang et al. 1977; 1979; Dosani and Kraman 1983; Kraman 

1984; Austrheim and Kraman 1985; Gross et al. 2000; Kompis et aL 2001). In 

breath sounds measurement, relative calibration is sufficient. However, maybe the 

lack of standard calibration signals hampered the investigators calibrating their 

system. When direct comparisons are impossible, indirect comparisons are made 

via clinical parameters. 

2.5 Analysis Methods 

Except when displaying the results directly on an oscilloscope (Forgacs et al. 

1971; Ploy-Song-Sang et al. 1977; 1983; Kraman 1980; 1981), almost every signal 

processing method has been used in analysing breath sounds. 

2.5.1 Time-domain Methods 

Phonopneumography 

Phonopneumography is the visual display of breath sounds, either alone or with 

other simultaneously measured signals, usually airflow (Kraman 1985a). 

Phonopneumography has found applications in teaching and training medical 

students (Cugell 1971; Weiss and Carlson 1972). It was also used to study the 

relationship between sound amplitude and airflow (Banaszak et al. 1973) and 

breath sound generation (Kraman 1980; 1981). 
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Phonopneumography could not provide quantitative parameters, but it is still useful 

as an assistant visual display to show the profile of breath sounds in the time 

domain. 

Time-expanded Waveform Analysis 

Murphy (1977) first proposed the time-expanded waveform method, which 

rescaled the original signal time axis to show the locally detailed waveform. 

Although this is quite an easy method, it shows the fast transient events such as 

crackles (Murphy, Jr. et al. 1977; 1984; Mori et aL 1980; Workum et al. 1982; 

Munakata et aL 1991; al Jarad et al. 1993) and monophonic wheezes quite well 

(Murphy, Jr. et al. 1977; Forgacs 1978). Detailed characteristics of crackles such 

as initial deflection width (IDW)l and two-cycle duration (2CD)2 can be measured 

by this method. 

The drawback is that the segments of interest should be manually located, maybe 

with the help of listening, before they could be visually examined. Thus it is time 

consuming with possible large inter-observer variability. 

Time series models 

Theoretically, an unknown linear stationary stochastic process can be modelled by 

at least one of the three time series models: Autoregressive (AR), Moving Average 

(MA), and mixed ARMA. AR-based classification of breath sounds was achieved 

by Cohen and Landsberg (Cohen and Landsberg 1984; Cohen 1990) and Sankur 

et al (Sankur et al. 1994; Kahya et aL 1999). lyer and associates (1989) and 

1 IDW is the duration of the first deflection in a crackle waveform. 
2 2CD is the duration of a crackle from the beginning of the initial deflection to the end of two cycles. 
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Hadjileontiadis and Panas (1997b) used AR modelling to estimate a lung sounds' 

source and transmission characteristics. Gavriely and Herzberg (1992) described 

normal lung sounds with a 6-8 orders AR model and normal tracheal sounds with 

a 12-16 orders AR model. Vanderschoot and Schreur (1991; 1992; 1994) found 

that AR parameters of normal lung sounds depend strongly on the flow and 

volume. Broersen and de Waele (2000) used AR and ARMA models to detect 

methacholine. 

Respiratory sounds are non-stationary stochastic signals. While using time series 

models which are applied to stationary stochastic processes, the choice of which 

segments and how long the segments of the respiratory sounds should be to 

represent a stationary period is important. If the segments are too long, then the 

assumption that the signal is locally stationary is invalid; but if they are too short, 

then the estimated parameters will be erroneous and have big variance. 

Otherwise, some methods of removing the non-stationary component are 

necessary. 

2.5.2 Frequency Domain Methods 

Most research has been done in the frequency domain. Based on the discrete 

Fourier transform (DFT) or fast Fourier transform (FFT), amplitude spectra or 

power spectra were used to represent the frequency characteristics. Parameters 

extracted from the spectrum such as median frequency, F501, (Anderson et al. 

1990; Spence et al. 1992; Malmberg et al. 1994; 1995; Sovijarvi et al. 1996; Fiz et 

a/. 1999), maximum frequency, Finax2, (Malmberg et al. 1994; Lenclud et al. 1996; 

1 F50 is defined as the frequency below which 50% of the energy of the signal lies. 
2 F. is defined as the frequency of maximum power 
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Gross et al. 2000), slopes of regression lines of spectrum (Gavriely et al. 1984b; 

1995), index composite of spectrum based parameters (Charbonneau et al. 1983) 

were used to characterise normal and abnormal breath sounds, or for comparison 

before and after some challenge or medicine. 

The advantage of spectrum-based parameters is that one or a few indices can 

describe or compare frequency characteristics. But as pointed by Whittaker et al., 

(2000), these indices are dependent on the frequency range to be calculated as 

well as the number of FFT points and the type of windowing function. 

However, DFT or FFT don't display time resolution, i. e. they cannot reflect 

frequency changes with time. Breath sounds are non-stationary signals, especially 

when adventitious sounds appear. On the one hand, when adventitious events are 

short compared to the respiratory cycle, they may not have enough bearing on the 

spectral shape. On the other hand, the timing of those adventitious sounds has 

clinical importance. Thus time-frequency representation, which can show 

frequency content evolution with respect to time, such as short time Fourier 

transform (STFT) or Wigner distribution (WD) will be more suitable. 

STET based spectrographs have shown different patterns of normal and abnormal 

breath sounds obtained at different sites in the time-frequency plane (Pasterkamp 

et aL 1989; Sovijarvi et al. 2000a; PixSoft Inc. and Medi-wave Inc. 2001). WD 

based mapping of cardiovascular and respiration signals reflect their 

instantaneous frequency changes (Novak and Novak 1993). STET based 

automatic wheeze detection algorithms (Waris et al. 1998; Homs-Corbera et al. 
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2000) and WD based crackle analysis methods (Pasika and Pengelly 1994) have 

been developed. 

2.5.3 Wavelets 

Since the wavelet emerged, this time-scale multiresolution method has been 

widely used in signal processing applications. The wavelet is capable of detecting 

transient events, so it has been used to detect crackles (Sankur et al. 1996; 

Hadjileontiadis and Panas 1997c) and to reduce heart sounds interference 

(Charleston et al. 1997; Hadjileontiadis and Panas 1998). Wavelet packet 

decomposition is an extension of the wavlet transform. Pesu and associates 

(1996; 1998) used a wavelet packet to classify respiratory sounds. Ademovic and 

colleagues utilised a wavelet packet to optimally segment respiratory sounds 

(1998a) and segment wheezes (1998b). And Bahoura and co-workers (1998) 

employed a wavelet packet to de-noise respiratory sounds. 

The discrete wavelet analysis is an orthogonal decomposition. The choice of 

mother wavelet is somewhat empirical, and is data orientated. 

2.5.4 Others 

Other signal processing methods include pattern recognition (Urquhart et aL 1981; 

1983; Banham et al. 1984; Cohen and Landsberg 1984; Anderson et al. 1986; 

Sankur et al. 1994; Oud et al. 2000), neural networks (Pesu et aL 1996; 1998; 

Malmberg et al. 1996; Rietveld et al. 1999; Waitman et al. 2000), high-order 

statistics (Hadjileontiadis and Panas 1997a; 1997b), fuzzy inference systems 

(Tolias et al. 1997; 1998; Mastorocostas et al. 2000), fractal dimension (De 
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Oliveira -et aL 1998), digital filtering (Ono et al. 1989; Plante et al. 1998), and 

imaging processing (Waris et al. 1998). 

2.5.5 Wheeze Detection 

As mentioned above in 2.5.1 to 2.5.4, various signal-processing methods have 

been used in analysing respiratory sounds. One of the aims of the current work is 

automatic wheeze detection; so more details are described here about previous 

wheeze detection algorithms. 

In the frequency domain 

Baughman and Loudon (1985) analysed respiratory sounds recorded on the chest. 

50 segments of 250ms during 5 minutes were chosen for analysis using FFT. 

Each spectrum was analysed for the presence or absence of a sharp peak at a 

frequency between 150 and 1000Hz with amplitude more than 3 times larger than 

the baseline. The occupation of wheezes T,, /Ttot was estimated as the ratio of 

number of spectrums with peaks and number of total spectrums over a five-minute 

period. Later, they used similar criterion on 100ms segments (1989). A peak was 

associated with wheezing when its frequency was higher than 200Hz and its 

amplitude was 3 times greater than the baseline and lasted for more than 200ms. 

The former criterion was also used by Schreur et at. (Schreur et al. 1994). 

Fenton and associates (1985) also proposed a similar automatic wheeze detection 

algorithm. Segments of 100ms over the trachea and chest were analysed. 

Wheezes were detected as a large peak, which was above 200Hz, at least 15 

times large than average power between 110-1200Hz. Then sequential 100ms 
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data were classified as normal or wheezing, and were used to derive the duration 

of wheezes. 

These segment-by-segment peak-pick methods are computationally simple, but 

the threshold for a sharp peak is data-dependent. Thus louder wheezes will be 

much more easily identified than quieter wheezes. As for quieter wheezes, their 

corresponding peak amplitudes won't be high. Wheeze duration estimation is a 

useful parameter to relate to asthma severity. But it could not answer the timing of 

the wheezes, and their evolutions with time. 

In time-frequency plane 

As early as 1955, McKusic and associates (McKusic et al. 1955) presented a 

novel analogue sonographic imaging technique for respiratory sounds by playing 

respiratory sounds repeatedly through an adjustable filter. The filter's central 

frequency and bandwidth was tuned progressively with the repeated playback. 

The intensities of various frequency components were recorded as different grey 

shades. In 1989, Pasterkamp and colleagues (Pasterkamp et al. 1989) proposed a 

computer-calculated spectrogram which was based on STFT. Respiratory sounds 

were presented in the time-frequency plane, and the sound intensities displayed 

on a colour scale. This kind of spectrogram can provide an image of time- 

frequency localisation of wheezes. 

Ademovic et al. (1998b) used Malvar's wavelet to optimally represent a signal in 

the time-frequency plane. The Malvar's wavelet decomposition achieves an 

adaptive segmentation in the time domain and a spectral analysis on each 

25 



segment. Under optimal parameters, the results provide optimal visual clues of the 

stationary (wheezes) and non-stationary (normal breath sounds) components of 

a signal. 

Visual clues provide useful information about wheeze duration, frequency location, 

and its evolution, but they are not enough to provide quantitative parameters 

automatically. 

Waris and associates (1998) proposed an image processing scheme to detect 

wheezes automatically. First, based on a spectrogram, an edge detection method 

was used to test every pixel. An edge was found at a pixel when the absolute 

value of the gradient exceeded a threshold. Wheezes were detected by searching 

for horizontal or nearly horizontal edges. Some of the edges represented different 

parts of a single wheeze. In the next step, a labelling method was used to group 

these components together. Then an exponential criterion was added, that was, 

the shorter the labelled component, the stronger it had to be. Finally two 

components, which were less than 30Hz and 150ms, were connected together. 

The results, which were validated by a pulmonary physician, had a best average 

sensitivity' of 68% and predictivity2 of 70%. It had problems in detecting wheezes 

shorter than 125ms, which are quite easy for human ears to detect. 

Shabtai-Musih and co-workers (1992) proposed a scoring scheme. After 

normalising the spectrum, peaks were picked up. Then according to 8 rules the 

sensitivity=true positives/(true positives + false negatives) 
2 predictivity=true positives/(true positives + false positives) 
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peaks were assigned a score. The peaks which had a score bigger than 3 were 

regarded as wheezing peaks. 

Homs-Corbera and associates (Homs-Corbera et aL 2000; Fiz et aL 2002) 

improved Shabtai-Musih's method by adding a grouping algorithm. They first 

picked up peaks; then scored the peaks according to six empirical rules with 

empirical values. Peaks with a score greater than 3 were considered wheezing 

peaks. Then the grouping method grouped individual peaks, which are less than 

25.6 to 51.2ms and 50 to 65Hz, to the nearest wheezing peaks. The results, which 

were validated by a pneumology specialist, had reported accuracy from 100%, 

87.8% to 71%, at high, middle and low flow rate respectively. Parameters 

concerning wheeze numbers, mean frequencies, and duration (percentage) were 

derived. 

These methods can detect the time and frequency characteristics of wheezes in 

the time-frequency plane. Such results may provide useful information in 

diagnosis. As their results showed, at lower flow rate, when the respiratory sounds 

were quieter, the accuracy decreased. And when wheezes were short, the 

accuracy degraded. The peaks or edges detection is dependent on FFT numbers 

and windowing. Thus the sensitivity could be changed under different conditions, 

making it inferior to human ears. For the scoring scheme, the score rules to 

determine a wheezing peak were empirical; it could be better to use different 

parameter values under different flow rates, as those parameters were data- 

dependent. 
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Classification 

A lot of methods were proposed to classify normal and abnormal respiratory 

sounds (Cohen and Landsberg 1984; Sankur et al. 1994; Malmberg et al. 1996; 

Pesu et al. 1996; 1998; Rietveld et al. 1999; Waitman et aL 2000). Most of them 

used an artificial neural network method. Those that could classify asthmatics 

(wheezes) are discussed here. 

Malmberg and associates (1996) classified respiratory sounds based on FFT 

spectra and a self-organising map (an artificial neural network). The correct 

classification of asthmatics was moderate. 

Pesu et al. (1996; 1998) classified respiratory sounds based on wavelet packet 

decomposition and an artificial neural network. First, wavelet packet 

decomposition was performed and the best wavelet packet coefficients were 

searched. Secondly, the feature vectors were constructed based on the results of 

the first stage. Then a neural network was used to classify respiratory sounds. For 

wheeze detection, their results had average sensitivity of 58.7% and predictivity of 

37.3%. 

By using neural networks, training data play an important role. Results may be 

improved by using typical training data. However, inter- and intra-subject variations 

of respiratory sounds make it not an easy task. 

Oud and associates (2000) explored an algorithm to classify degrees of airway 

obstruction. First, based on DFT normalised power spectra or Welch power 
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spectra in the frequency range of 100-1300Hz, a Box-Cox transformation was 

performed. Then k-nearest neighbour classification with k=1 was applied to 

classify spectral vectors into classes of airways obstruction. Under optimal 

parameters, about 60%-90% of data can be classified correctly according to their 

corresponding FEV11-value. 

Although these classification methods avoided the clinic interests of wheeze 

characteristics, such as pitch, duration and timing, they proved that airway 

obstruction could be inferred from respiratory sounds in asthmatics. 

Pasterkamp and colleagues (1987) compared assessments of wheezes between 

professionals and computer analysis. They found objective analysis was more 

reproducible than subjective assessment. Rietveld and associates (1999) studied 

the classifying capacity of untrained human examiners according to spectrograms 

vs. artificial neural networks. Three groups were classified: asthma in 

exacerbation, asthma in remission, and normal. They found the examiners 

incapable of differentiating the spectrograms in accordance with three groups. 

While for a supervised neural network, almost all training vectors and half of the 

test vectors could be classified correctly. 

The objective analysis and classification of wheeze can provide more reproducible 

qualitative and quantitative performance than subjective evaluation. 

1 FEVI is defined as the forced expiratory volume in one second. 
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2.6 Miscellaneous 

The mainstream literature has focused on the mechanisms of respiratory sounds 

production and propagation, relations between measured respiratory sounds and 

physiological and pathological pulmonary conditions, and various analysis 

algorithms. Some work has been done on other aspects. 

2.6.1 Noise Reduction 

Ambient noise, heart sounds, muscle contraction sounds, and noise due to friction 

of skin and hair can easily contaminate breath sounds measurement. 

Heart sounds reduction 

During recording of breath sounds, heart sounds, which are louder than breath 

sounds in most of the chest and neck sites, are a perpetual noise source. High- 

pass filtering can remove heart sounds effectively, as most energy of heart sounds 

is below 100Hz. However it distorts the breath sounds due to the inherent 

overlapping of the low frequency region. So adaptive filtering such as the least- 

mean-square adaptation algorithm (lyer et al. 1986; Kompis and Russi 1992), 

Kalman filtering (Charleston and Azimi-Sadjadi 1996), high-order statistics 

(Hadjileontiadis and Panas 1997a), and wavelets (Hadjileontiadis and Panas 

1998; Charleston et al. 1997) were proposed. Results of moderate to good heart 

sounds reduction performance were reported. 

Ambient noise reduction 

Except for a few measurements which were done in a sound-proof room, most 

tests were done under quiet conditions. Ambient noises can interfere with 
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respiratory sound measurement. Traditional filtering is ineffective due to the 

frequency overlap between respiratory sounds and ambient noise. Adaptive 

filtering (Suzuki et aL 1995; Patel et al. 1998) and wavelet packet based denoising 

were much more effective (Bahoura et al. 1998). If clean breath sounds can be 

obtained under general conditions, it will benefit routine clinical usage and remote 

monitoring where quiet circumstances are not always available. 

2.6.2 Simulation 

Computer-based respiratory sounds simulation (Kompis and Russi 1997; 

Cardionics Inc 2002) has been developed as an educational tool. Such a tool can 

produce various simulated normal and abnormal respiratory sounds, with easily 

changed parameters. These well-defined and reproducible data could also be 

useful to evaluate respiratory sounds analysis algorithms. 

Kiyokawa et al. questioned if auscultation is a reliable reference standard for 

crackles (2001). They added simulated crackles into recorded normal sounds. 

Then these synthesised sounds were played for auscultation. Under some 

circumstances, simulated crackles were inaudible due to masking' . 

2.7 Clinic Applications 

2.7.1 Applications Based on Normal Breath Sounds 

As described in 2.3, normal lung sounds heard on the chest wall contain 

information about their origin and transmission. Even in normal individuals, the 

1 Masking is defined as the process by which the threshold of audibility for one sound is raised by the 
presence of another (masking) sound. 
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intensity and spectrum vary according to various factors: flow rate (Kraman 1984; 

Shykoff et al. 1988; Gavriely and Cugell 1996), pick-up sites (O'Donnell and 

Kraman 1982; Dosani and Kraman 1983; Kompis et al. 2001), volume (Kraman 

1986; Vanderschoot and Schreur 1991; 1992; 1994; Kiyokawa and Pasterkamp 

2002), respiration phases (Dosani and Kraman 1983; Gavriely et aL 1995; 1996), 

age (Kanga and Kraman 1986; Hidalgo et aL 1991; Pasterkamp et aL 1996a; 

Gross et al. 2000) , sex (Gavriely et al. 1995; Gross et aL 2000), as well as 

intersubject variations and temporal variations (Mahagnah and Gavriely 1994). 

The compensated lung sound intensity has been used to evaluate regional 

ventilation, distribution of regional ventilation and sequences of regional ventilation 

(Ploy-Song-Sang et al. 1977; 1978; 1979; 1983). 

For the same flow rate, no significant difference in lung sound intensity was found 

between emphysema patients and normal subjects (Schreur et al. 1992); while the 

apparent normal lung sounds from stable symptoms-free asthmatics were 

distinguishable from those of normal subjects (Schreur et al. 1994). Mild degrees 

of obstruction during bronchial challenges were detectable (Anderson et al. 1990; 

Bohadana et al. 1994a; 1995; Malmberg et aL 1994). 

Recently, microphone arrays have been used to map the chest wall acoustically, 

which can reflect the regional structural and functional properties (Kompis et al. 

2001). Similar arrays have been used to study breath sound transit time, which 

can reflect tissue property (Bergstresser et a/. 2001). 
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There is a strong relation between flow rate and tracheal sound intensity and 

spectrum. Usually the higher the flow rate, the higher the intensity, but the 

relationship is not linear. The spectral shape does not change with different flow 

rates if they are above a critical value (Mussell et al. 1990; Kraman et al. 1998; 

Harper et al. 2003), and there is no significant difference between respiration 

phases (Kraman et al. 1998). However the spectral characteristics are dependent 

on body height (airway length) (Sanchez and Pasterkamp 1993; Kraman et al. 

1998), airway geometry and properties (Pasterkamp et al. 1996b; Harper et al. 

2001; 2003), and gas density (Pasterkamp and Sanchez 1996). 

Tracheal sounds have been used to examine apnoea (Cummiskey et al. 1982; 

East and East 1985; Pasterkamp et al. 1996b) and to diagnose tracheal 

obstruction and upper airway dysfunction (Pasterkamp and Sanchez 1992; 

Yonemaru et al. 1993). Flow rate can be estimated according to tracheal sound 

intensity if the relationship has been derived (Charbonneau et al. 1987b; Soufflet 

et al. 1990). 

2.7.2 Diagnosis Based on Adventitious Sounds 

Wheezes can be heard in several diseases (Waring et a!. 1985; Meslier et a!. 

1995). Healthy people can also produce wheezes during forced expiration 

(Gavriely et a!. 1987; Charbonneau et aL 1987a; Ploysongsang et aL 1988; Beck 

and Gavriely 1990; Shabtai-Musih et a!. 1992). However, more wheezes were 

found in obstructive airway patients than that of normal subjects during forced 

expiration (Fiz et a!. 2002). Wheezes are clinical signs of obstructive airway 

diseases if they are heard during spontaneous respiration or during induced 
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airway narrowing. Various patterns of wheezes may relate to different obstructions 

(Forgacs 1969; 1978; Waring et al. 1985). 

The relationship between wheezes and the severity of airway obstruction has been 

widely studied (McFadden et aL 1973; Marini et al. 1979; Baughman and Loudon 

1984; Pasterkamp et al. 1985; Bohadana et al. 1994b; Kiyokawa et al. 1999). No 

prediction could be made between absence or presence of wheeze and the 

degree of airflow obstruction (McFadden et al. 1973; Marini et al. 1979). No 

correlation was found between the intensity of wheezing and degree of obstruction 

(Baughman and Loudon 1984; Marini et aL 1979). Also no relation existed 

between pitch and pulmonary function (Pasterkamp et a/. 1985). But the proportion 

of breath sounds occupied by wheezing corresponded to the severity of airway 

obstruction (Baughman and Loudon 1985; Fenton et al. 1985; Pasterkamp et al. 

1985). 

The relationship between wheezes and the severity of airway obstruction during 

bronchial provocation has also been extensively studied (Avital et al. 1988; ; 

Noviski et al. 1991; Beck et al. 1992; Spence et aL 1992,1996; Bohadana et al. 

1994b; Sprikkelman et al. 1996; Yong et aL 1999). In the majority of the patients, a 

correlation of presence of wheeze and a 20% fall in FEV1 was found. 

In summary, breath sounds contain enough information for airway obstruction 

estimation. Automatic wheeze detection algorithms facilitate the wheeze analysis 

(Fenton et aL 1985; Baughman and Loudon 1985; 1989; Shabtai-Musih et al. 
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1992; Ademovic et al. 1998b; Waris et al. 1998; Homs-Corbera et al. 2000; Fiz et 

al. 2002), so it is possible to assist the assessment of airway obstruction. 

Wheeze and asthma. Most but not all asthmatics wheeze during deterioration of 

their disease. In early stages, wheezing may be heard over central airways during 

expiration. As asthma becomes more severe, it can be detected over the chest 

both in inspiration and expiration. When asthma becomes even more severe, 

wheezing may disappear (Loudon and Murphy 1984; Bohadana et al. 1995). The 

transmission of wheezes through airways is better than through the lung to the 

chest wall. So in most asthmatics, the trachea is superior to the chest for detection 

of wheezes (Pasterkamp et al. 1984; Fenton et aL 1985). Extensive investigation 

has been performed to detect wheezes in asthmatics (Baughman and Loudon 

1984; Spence et al. 1992; 1996; Rietveld et al. 1995; 1996; Sprikkelman et al. 

1996; Springer et al. 2000; Anderson et al. 2001). As the symptoms of asthma 

may be worse during the evening (BTS 2003), nocturnal wheeze detection has 

been attempted to trace the bronchoconstriction changes (Baughman and Loudon 

1985; Lenclud et al. 1996; Kiyokawa et al. 1999). 

Crackles usually correlate to different diseases (Raymond and Murphy 1985), but 

they can also be heard in healthy people during slow inspiration from residual 

volume (Workum et al. 1982; Thacker and Kraman 1982). It is generally accepted 

that fine and coarse crackles are associated with different conditions and so have 

diagnostic importance. 
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Many investigators have explored the potential correlation between crackle 

features and certain diseases (Nath and Capel 1974b; Epler et al. 1978; Shirai et 

a/. 1981; Piirila et al. 1991; al Jarad et aL 1993; Vanderschoot et al. 1998). Nath 

and Capel pointed out that early inspiratory crackles are related to obstructive lung 

disorder while late inspiratory ones to restrictive dysfunction (Nath and Capel 

1974b). Properties of crackles have been reported to change as the course of 

pneumonia progressed (Piirila 1992; Vanderschoot of al. 1998). Spectral shapes 

were distinct between asbestosis and pulmonary oedema patients (Urquhart et al. 

1981; Banham et al. 1984). Various algorithms to detect and characterise crackles 

automatically have been developed (Urquhart et al. 1981; Pasika and Pengelly 

1994; Sankur et aL 1996; Hadjileontiadis and Panas 1997c; Tolias et al. 1998; 

Vannuccini et aL 1998). 

2.7.3 Self and Remote Monitoring 

Self-monitoring and remote monitoring (Bhat et al. 1985; Rietveld et al. 1999; 

Scanlon 1999; Anderson et al. 2001; Woodward et al. 2001; Young et al. 2001) 

may benefit patients at work or at home in several aspects. In breath sounds 

monitoring there are two important factors. One is the measurement device, which 

should be compact and portable. The other is the quality of sounds, as these 

sounds are captured in spontaneous breath without registering flow rate under 

general conditions. 

2.8 Standardisation Need 

As mentioned above in 2.4 and 2.5, it is not possible to compare results from 

different research groups directly, because the data are often measured using 
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different measurement systems without calibration and analysed using different 

parameters. Murphy and Kramann were aware of the standardisation need 

(Murphy, Jr. et al. 1977; Kraman 1983a). This need was emphasised by Mussell 

later on (1992). The European project of CORSA (Computerised Respiratory 

Sound Analysis) aimed to provide a guideline for standardisation. The guideline 

was published in the European Respiratory Review (2000, vol 10). 
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Chapter 3 Study of Measurement System 

This chapter focuses on the frequency characteristics of the measurement system. 

As described in section 2.4, investigators may choose different measuring systems 

to measure breath sound. Due to lack of standardisation of equipment, results may 

be difficult to compare directly between research groups. 

Investigators don't care what the absolute S. P. L. (RMS sound pressure level) or 

the absolute vibration speed is at the body surface. Under repeatable conditions, 

they are interested in what frequency components occur and how much power is 

contained in measured breath sounds, so relative calibration is sufficient. 

The aims of this chapter include: 

1. Using a simple experimental set-up to test each component of the measurement 

system. 

2. Using such equipment to build confidence in measurement data. 

3. Verifying the stability of the measurement system. 

3.1 General Setup of Measurement System 

Figure 3.1 shows schematically the system structure in the study. Three 

measurement systems were investigated. 

1. Two commercial electronic stethoscopes with an A/D device. The two 

stethoscopes have built-in amplifiers and filters. The outputs from the 

stethoscope were input to a sound card or a data acquisition device for 

digitisation. 
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2. A customised electronic stethoscope with or without filter and an A/D device. 

The customised electronic stethoscope was made from a high fidelity 

microphone with a matched amplifier; using an ordinary stethoscope's head as 

its air-coupler (refer to Figure 3.2). The signals from the microphone amplifier 

were either fed to a filter or not, then input to a sound card or a data acquisition 

device for digitisation. 

3. Landline telephones and mobile telephones. They comprised the whole 

measurement system. By using a voice mail service (http: //www. yac. com/), 

digitised signals were received directly. 

Acoustic sensor 111111, Amplifier llllý Filter ND 

Figure 3.1 Schematic illustration of measurement system 

iy 

E-Scope 

Figure 3.2 Electronic stethoscopes: left-Escope; middle-Hp Stetho; right- 

customised. 
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3.2 Linear Time-invariant System 

Each part of the measurement system was studied as a linear time-invariant 

system. The class of linear systems is defined as obeying the principle of 

superposition, stated as (Oppenheim 1989) 

y[n] =f {ax, [n]+bx2 [n]} = of {xl [n]}+bf {x2 [n]} (3.1) 

where y[n] is a discrete-time output sequence from the system; xl [n] and x2 [n] 

are discrete-time input sequences to the system; and a, b are constants. 

Any discrete-time sequence can be expressed as a sum of scaled, delayed 

impulses: 

m 

x[n]= t x[k]8[n-k] (3.2) 
k=-m 

where 

, ný 0 
8[n] =0 (3.3) 

1, n=0 

Specifically, let hk [n] be the response of the system to 8[n-k], i. e., 

hk [n] =f {8[n-k]} (3.4) 

then for system y [n] =f Ix [n]) 
, from equation (3.2) 

y[n]=f 
jx[k]S[n-kjj (3.5) 

and from equations (3.1) and (3.4) 

Y[n] _ x[k] f {8[n 
- k]} =j x[k] hk [n] (3.6) 

According to equation (3.6), the system response to any input can be described in 

terms of the response of the system to ä[n-k]. 
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Time invariance means the properties do not vary with time. A time-shift in the 

input leads to a time-shift in the output. If h[n] is the response to S[n], then the 

response to 8[n-k] is h[n-k]. Thus equation (3.6) becomes 

y[n]= x[k] h[n-k]=x[n]*h[n] (3.7) 

where * denotes convolution. 

As a result of equation (3.7), a linear time-invariant (LTI) system is completely 

characterised by its impulse response, h[n]. That is, given h[n], it is possible to 

use equation (3.7) to compute the output y [n] due to any input x[n] . 

1ý [n] hz [n] 

x[n] y[n] 

ý4 [n] *k [n] 

x[n] y[n] 

Figure 3.3 Two LTI systems with same responses 

In a cascade connection of systems, the output of the previous system is the input 

to the next. The output of the last system is the overall output. Two linear time- 

invariant systems in cascade correspond to a linear time-invariant system with an 

impulse response that is the convolution of the impulse responses of the two 

systems. This is illustrated in Figure 3.3. 

Since the frequency response and impulse response are directly related through 

the Discrete Time Fourier Transform (DTFT), the frequency response, assuming it 

exists, provides an equally complete characterisation of LTI systems. 
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The FT of the system input and output are related by 

Y(w)=H(a)X(to) (3.8) 

where X(w)and Y(co) are the FT of the system input x[n] and output y[n] 

respectively, H (w) is the transfer function (TF) or frequency response. With the 

frequency response expressed in polar form, the magnitude and phase of the FT 

of the system input and output are related by 

IY ((O)I =IH (co)I IX (w)l (3.9) 

LY(w) =ZH (w)+LX (w) (3.10) 

where II and L denotes magnitude and phase respectively. IH (m)I is the 

magnitude response or gain of the system, and LH (co) is the phase response or 

phase shift of the system. 

Frequency-preservation is a major property of linear systems. That is the output 

can only contain the same frequency components as the input. 

The true transfer function of a LTI system is not always known, so the transfer 

function can be estimated by analysing the relationship between input and output. 

If the input signal can properly excite the system, then the TF can be estimated 

reasonably. Normally used input signals include swept sinusoidal signals, white 

noise etc which contain all frequency components of the LTI system. 
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3.3 Frequency Characteristics of Data Acquisition Device 

An A/D converter is the last stage to digitise analogue data; its bandwidth and 

accuracy should not be a limit to the measurement of respiratory sounds. The 

device under investigation was a DAQPad-6200E, a product of National 

Instruments. 

Manually swept sinusoidal signals of known amplitude and frequency from an 

analogue signal generator were used to test the device. The magnitude response 

at each frequency was calculated by the ratio of the root-mean-squared (RMS) 

value of the measured data to the RMS of the input signal. Details of the test 

process are in the appendix A. 

Results 

The test results (refer to Figure A. 1, A. 2 in the appendix) are comparable with the 

device's specifications (National Instruments 1998). Thus this device is suitable to 

sample respiratory sound signals. 

3.4 Frequency Characteristics of Sound Card 

3.4.1 TBS-2000 sound card as an AID 

TBS-2000 can act as a 16-bit digital sound recording device with selectable 

sampling rate from 4kHz to 48kHz. 

Materials and methods 

A 1V 1 Hz square wave from the signal generator (SERVOMEX) was used. The 

square signal was more convenient than manually adjusted sinusoidal signals. 
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And the Fourier transform of the square signal contains all frequency components 

below the Nyquist frequency. The signal was fed to the line-in socket of the sound 

card and to one of the channels of the DAQPad simultaneously. The lineout signal 

from the sound card was connected to another channel. The sound card volume 

control was tuned to make the recording amplitude near full scale but avoid signal 

clipping. An existing LabView program was utilised to control and sample DAQPad 

signals. The sampling rate was 11025Hz. The sample length was about 1 Os. 

Then 100mv, 10mv square waves were measured sequentially under the same 

volume level. 

Next, a1 00mV 1 Hz square wave signal was input to the sound card. This time the 

sound card volume control was adjusted to make the recording amplitude near full 

scale again. Then signals of amplitude 1 OmV were tested under this volume level. 

Results 

The DC offset was removed before calculation. The magnitude response and 

phase response based on Welch's method (equation 3.11) (The Mathworks 1999) 

are shown in Figure 3.4 and Figure 3.5 respectively. Calculation using 1048 

samples with a Hanning window of the same length with 50% overlap was 

undertaken in Matlab. 

H (0j) =P 
(ý) 

(3.11) 
P. 

( 
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Where P is the Welch's method of estimation of the power spectral density 

(Welch 1967). xis the input signal and y is the output signal. P), is the cross 

power spectral density of x and y; and P. is the power spectral density of x. 

The coherence between x and y was calculated to act as a signal-to-noise ratio 

(SNR) index. 

c_ Pý(w)z 
p ((0) Pte, (w) 

(3.12) 

That is, Cam, (w) >_ 0.75 means good SNR at the frequency co. So the estimated 

H (w) at w from equation 3.11 is acceptable. 

-15 

-20 

-25 

-30 

ii 

-35 

-40 L- 
101 104 

1I11II1II 
I111111111II11111111I111111111I111I1II 

11I11111I11I1111 
111111111 III II 11 t 

------1 --I-- 4-1--1-I-4-1-I---------1-- -I-ý-I-1-111-----}--ý- 1111 
11I 11 IIIII111111III1It111I1I111111I11111I1111I1111111I1I11111 

---- -4 -__1--dJ--4 - I-I_I 1------I---I--4--1_a-I-: -: -4 1I-----+__'a-_I_+-4.4.4 
I11I1I 11 111111111111I1111111111111VII11 

11 t111 
J_-_L1-LJ_LLLL J J-I-IJ-_---1J LLJJJ 

''. 
'III1II11It 

I1I-. 

_J--_L1_L J_I- LLI_----J---1--L_ 

TF at wlume control 2 
L 'L' 

TF at wulme control 1 

111111 

102 
Frequency 

103 

Figure 3.4 Magnitude response of TBS-2000 under different volume 

It can be seen from Figure 3.4 that the TBS-2000 had a flat gain from 20Hz to the 

Nyquist frequency with ± 3dB. The two lines were almost superimposed. Figure 
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3.5 shows the phase response. Figure 3.6 shows that the measurement is linear at 

the same volume level. Thus the volume control acts like a linear amplifier. 
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Figure 3.5 Phase response of TBS-2000. 
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Figure 3.6 Magnitude response of TBS-2000 under same volume 
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The test results are comparable with the device's specifications. Therefore the 

sound card is suitable to sample signals above 20Hz at a certain volume level. 

3.4.2 Sound card as an audio output 

The TBS-2000 also can act as an 8-bit playback device. In the later sections, the 

sound card is connected to a loudspeaker, which is used to produce a sound field 

for sensor tests. 

Materials and methods 

A programmed 0-4kHz band limited white noise wave' was played via the sound 

card. The signal from the line-out socket was sampled by the DAQPad-6200E. 

Then the programmed wave was played under different playback volumes. 

Results 

The TBS-2000 had a flat gain from 20Hz to the Nyquist frequency with ± 3dB 

(refer to Figure A. 3). The volume control acts like a linear amplifier. 

3.5 Frequency Characteristics of Filters 

A low pass filter and a high pass filter (both BARR and STROUD) were studied. 

Both filters featured tuneable cut-off frequency. 

Materials and methods 

A square wave from the above-mentioned signal generator was input to the filter 

under test. Two channels of the DAQPad-6200E were used to sample input and 

output signals simultaneously at 11025Hz sampling rate. 

1 All programmed wave files were in PCM format. 
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Results 

An example measurement of the low pass filter with cut-off frequency 3000Hz is 

shown in the appendix (Figure A. 4). An example of the high pass filter with cut-off 

frequency 1 00Hz is shown in Figure A. 5. 

3.6 Sensors 

Figure 3.7 shows schematically the sensor test system. Wave files were played via 

the TBS-2000 sound card. The line out signal from the sound card was input to a 

DAQPad-6200E channel, and the speaker out signal from the sound card was 

connected to an 8-ohm loudspeaker. The loudspeaker was the sound source. A 

membrane was stuck on the loudspeaker frame to be a contact surface. When a 

sensor was placed onto or near the loudspeaker, it measured vibration speed or 

sound pressure. Signals from the sensor were fed to another DAQ channel. 

Sampled data were saved in text files for subsequent processing. 

Speaker 

Wave file out 
Ch2 

Sound Card Speaker Sensor AID PC 

Line out 
Chi 

Figure 3.7 Schematic of sensor test system. 

3.6.1 Loudspeaker Frequency Response 

The sensor test system was considered as a cascade LTI system. So the 

loudspeaker's frequency response was studied first. 
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Materials and methods 

Programmed wave files containing 0-4kHz band limited white noise were played 

via the sound card under fixed volume control. The loudspeaker (JVC SP- 

MX1 BKE) was covered with a membrane to form a contact surface. 

A high quality microphone (CANFORD MB-C550) was placed close to the 

loudspeaker to measure the sound pressure. A laser Doppler vibrometer (LDV, 

Polytec OFV 303) was used to measure the vibration velocity at the membrane 

centre. As the membrane is non-reflecting, a tiny piece of reflective tape was stuck 

on the membrane centre. 

Results 

For a one-dimensional sound wave travelling along in a tube, the relationship 

between pressure and velocity is (Turner and Pretlove 1991): 

as 

P -'° at 
(3.13) 

where pis pressure, pc is characteristic impedance, s is displacement, as 
at is 

velocity. 

Assuming the microphone was measuring the sound pressure at the membrane 

surface, then when the input signal (lineout signal from soundcard) is the same, 

the estimated transfer functions (TFs) of the loudspeaker should have the same 

shape. 
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But as the placement of microphone influenced the free field sound pressure, the 

velocity was measured at one point, and due to the influences of immeasurable 

noises, the two curves in Figure 3.8 did not have the same shape. They are 

similar in the frequency range of 100Hz-2kHz. 
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Figure 3.8 Estimated transfer function of the loudspeaker. 

In later experiments, the TF of the loudspeaker estimated using the microphone 

signal was used, because this TF relates the pressure produced by the 

loudspeaker to its input signal, and the tested sensors were sound pressure 

transducers. 

The linearity of the relationship between vibration speed and sound card volume 

was also checked. There is a linear relationship (refer to Figure A. 6). 
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3.6.2 Non-contact Frequency Response 

Materials and Methods 

Programmed wave files containing band-limited white noise were played via the 

sound card under a fixed volume control. The sensor under test was placed close 

to the loudspeaker to measure the sound pressure. 

Two methods were tried. 1. The input signal was `coloured' to make the membrane 

vibration signal a white noise. Thus the input signal (sound pressure) to the sensor 

is a white noise. The magnitude response of the sensor could then be estimated 

by: 

IH(w)I _ 
Pri (w) 

(3.14) 

where Pri is the power spectral density of the sensor output signal, and c is a 

constant which represents the white noise spectral level. 

When the TF of the loudspeaker is obtained, say H, (cv), then the colouring noise 

at the input of the loudspeaker is calculated as: 

x[n] = sRe ifft (Hl(ý))e'B (3.15) 

where 0 is a random phase distribution between 0 and 2; r, ifft is the inverse fast 

Fourier transform, Re is real operator, and s is a constant scale to make I x[n]I <_ 1. 

(The amplitude of a wave of PCM format should not be greater than 1). 
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2. Considering the loudspeaker as cascaded with the sensor, the TF of the whole 

is estimated, which is H (w) 
. Because the TF of the loudspeaker is known, i. e. 

H, (co), the TF of the sensor H2 (CO) could be deduced from: 

H2 (wý _H 
(wýý 

(ýý (3.16) 

Although the two methods were different, the physical meaning was the same. 

Experiments showed that when the coloured noise was played via the 

loudspeaker, the sound pressure the loudspeaker produced was roughly `white 

noise'. But using equation 3.15 to estimate the TF would induce some errors, as 

the actual noise spectrum level was not a constant. So the second method was 

employed. The following sensors were tested: three electronic stethoscopes- 

Escope (Cardionics), Hp Stetho (Hewlett Packard), and a microphone (Canford 

MB-C550) with a Littmann chestpiece; and a Nokia 331 Oe mobile phone. 

The lineout signal from the sound card was the input signal, and the output from 

the sensor was the output signal. The sampling rate was 8000Hz to be consistent, 

because the GSM 06.10 sampling rate is 8000Hz. 

The pathway of signals from a mobile phone was different from the electronic 

stethoscopes. By dialling a number provided by a voicemail service 

(http: //www. yac. com, the acoustic signal captured by the mobile phone was sent 

to an email address as an attached file. The attachment was a wave file in GSM 

06.10 format (13 bit sampling at 8000Hz) with a time stamp. 
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Results 

The transfer function was estimated by using equation 3.11. Figure 3.9 shows the 

non-contact TFs of the sensors. None of the sensors has a flat response. The Hp 

Stethos transfer function in diaphragm mode is comparable with its manual 

specification (Hewlett Packard 1999). A mobile phone's frequency bandwidth is 

from 300Hz to 3400Hz. 
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Figure 3.9 Estimated TFs. 

3.6.3 Validation of non-contact frequency response 

Materials and methods 

A procedure was performed to see by calibration whether the calibrated spectrum 

would be same as the true spectrum. A wave file containing normal tracheal 

breath sounds was played via the sound card. The sensors were again placed in 

front of the loudspeaker to collect signals. 
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Results 

Figure 3.10 shows that the power spectral density (PSD) after calibration is more 

similar to the true PSD than that before calibration. The peak around 300Hz in the 

PSDs of the measured signal was mainly due to the loudspeaker (refer to Figure 

3.8). 
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3.6.4 Simplified Model of Chest Wall as a SDOF System 

Gavriely (Gavriely and Cugell 1995) used a simplified single degree of freedom 

(SDOF) model of the chest wall to study the mechanical impedance and natural 

frequency of the chest wall. This model was used here to study the sensor's load 

effect on the chest (or trachea). 

1. Without a sensor 

The part of chest wall to be under sensor is modelled as below. 

k 

1EIIH0 c 
IY 

Figure 3.11 SDOF model of chest wall. k is stiffness, c is viscous damping, m is 

mass, f is acoustic force acting at the chest wall, and x is displacement. 

The equation of motion is expressed as below when the excitation force is 

harmonic f (t) = FO sin (wt), 

Fosin((vt)=m. +cz+kx (3.17) 

The solution to this equation is 

x(t)=c, xc(t)+c2xx(t) (3.18) 

where cl and c2 are constants, xc (t) is the complimentary solution, and x, (t) is 

the particular solution. 

xx (t) = e-{`o^` xo cos (wdt)+ v° + cwnxo 
sin (wdt) (3.19) 

wd 

xo and vo are the initial (t=0) position and velocity respectively. 
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(3.20) 
2mc)n 

Ct)n =k 
(3.21) 

m 

Cod = UJn1- V (3.22) 

xp (t) = 
F° 

sin wt - tan-' 
k 

ý2 I (3.23) 
j(k 

-mav 
2 +(cw2 J 

2. With a sensor 

The chest wall and the sensor are modelled as below. 

ms 

i 0. x 

Figure 3.12 SDOF model of chest wall with a sensor, ms is mass of sensor. 

From the above equations, it can be deduced that the additional sensor mass will 

change x(t) from that without the sensor. That is, the measured signal on the 

surface of the chest wall will be distorted by the presence of the sensor. 

3.6.5 Hydraulic Transmission of an Air-coupler 

The air-coupler (stethoscope chestpiece) between body surface and microphone 

is regarded as a hydraulic system. Movement of the diaphragm causes a pressure 

change inside the air chamber. According to Boyle's law: 
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V'P=V2P2=C 

where V and P are volume and pressure respectively, C is a constant. 

micro hone 

diaphragm 

Figure 3.13 Graph of stethoscope's head. 

(3.24) 

Assuming that the volume of the air-coupler is VO and pressure is Po when it is not 

placed on the body, that when it is placed on the body, the body surface vibration 

induces the diaphragm motion. The amplitude of the diaphragm motion, xd , 

involving its area, Ad, causes a volume change of A, and a pressure change of 

Ap. From the above equation 3.24, 

VoPo =(Vo+A, )(Po+A, ) (3.25) 

Expanding the right side of the equation and ignoring the product A, AP 9 

A =_po 
A& 

_-CAd xd (3.26) 
V0 Va 

The pressure change at the microphone is equal to OP, where the wave length is 

much larger than the coupler length (Gavriely and Cugell 1995). The microphone 

output is proportional to Op , thus is proportional to diaphragm displacement xd . 

When taking OP as the output and xd as the input, the transfer function of the 

electronic stethoscope is determined. 
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When the stethoscope contacts the body, the initial volume is V, but not 

VO (contact air) due to the diaphragm deformation under force. Thus, the transfer 

function of the stethoscope in air (non-contact) is different from that in contact. 

However, if diaphragm is very rigid, then transfer functions are the same. 

3.6.6 LDV Measurements 

As the LDV is a non-contact vibrometer, its application to the breath sounds 

measurement was attempted. 

Materials and methods 

Measurements were undertaken on the chest wall and over the trachea of sitting 

normal subjects. On any measurement site, a tiny piece of reflective tape was 

stuck on the skin to reflect the laser beam. The subjects tried hard to hold their 

posture still during deep breathing. The LDV output was sampled by the DAQPad 

with 11025Hz sampling rate. 

Results 

During breathing the subject's unconscious body movement usually induced 

strong `noise'. Meantime two factors, the body expanding and contracting with the 

breath cycle and heart-beating impulses, led to great energy in the low frequency 

region. When played back, the breath sounds could be heard clearly. An example 

of a measured tracheal signal in the time domain is shown in Figure 3.14. The 

digital high pass filtered counterpart is shown in Figure 3.15, which shows the 

normal breath pattern (spikes correspond to noise). 
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Figure 3.14 LDV signal of tracheal sounds. 
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Figure 3.15 Digital high pass filtered LDV signal. 
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3.6.7 Contact Frequency Response 

Because the sensors contact the human body in practice, therefore the sensors' 

characteristics under contact were tested. 

Materials and methods 

The procedure was the same as described in 3.6.2 except that the sensor was 

stuck onto the membrane using double-sided adhesive tape (mobile phone was 

hand held). 

Results 
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Figure 3.16 PSDs on thick surface. 

The power spectrum of each sensor on a thick surface was calculated (see section 

3.6.8 for a description of the "thick" surface). Figure 3.16 shows the outcomes. It is 

not unexpected that the results show differences. One reason is that different 
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sensors were used. The other reason is that when the membrane is loaded with a 

sensor its vibration response will change. This effect is reflected in the results. 

3.6.8 Effects of Contact 

There are two effects between an air-coupled sensor in contact with the 

membrane. One is on the membrane and the other is on the sensor. For the 

former, when the membrane is loaded with a sensor, its vibration response is 

changed, thus its sound transmission properties changed. For the latter, when an 

air-coupler sensor is in contact with the membrane, the pressure between them 

changes the acoustic properties of the air-coupler as well. 

Materials and methods 

The Escope was selected for the test as it could be disassembled easily. Three 

materials were chosen to be stuck on the loudspeaker: a piece of loudspeaker 

cover paper, a 3mm thick piece of synthetic rubber with one side of stiff plastic, 

and a 5mm thick piece of synthetic rubber. Again programmed white noise was 

played as an input signal to the loudspeaker. The Escope was stuck onto the three 

materials surfaces consecutively. Its output signal was sampled by the DAQPad- 

6200E. The LDV was used to measure the vibration velocity. 

First, the velocity at the centre of the thick surface was measured by the LDV. 

Secondly, the chestpiece of the Escope without the diaphragm was stuck onto the 

middle of the surface. The velocity at the centre of the thick surface was measured 

again. Then the chestpiece with the diaphragm was stuck onto the middle of the 
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surface. The velocities of the surface centre and diaphragm centre were measured 

respectively. 

Then the thick surface was replaced by the thin surface, and the above 

procedures repeated. 

Results 

Experiments showed that the Escope's contact TF with paper was almost the 

same as that of non-contact, as shown in Figure A. 7. This indicates that the paper 

was `acoustically transparent'. Thus, the paper was excluded from further study. 
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Figure 3.17 PSDs without and with load. Left- on thick; right- on thin. 

Figure 3.17 shows the spectrum difference with and without load, especially in the 

frequency range of about 200 - 1200 Hz. The mass loading of the surface changed 

the surface vibration. Figure 3.18 shows the effects of contact between the Escope 

and different surfaces. The results also show that the diaphragm could almost 

follow the vibration of the surface (refer to Figure A. 8). 
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Figure 3.19 Escope contact TFs estimated on thick and thin materials. 

Figure 3.19 shows the contact TFs of the Escope, excluding the contact effects. 

The two lines have similar shape below 3kHz. Due to bad signal-to-noise ratio 

above 3kHz, the TFs estimated above 3kHz are unreliable. 
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Figure 3.20 PSDs of LDV, uncalibrated Escope and calibrated Escope data. 

3.6.9 Validation of contact measurements 

Although LDV measurement data is not a perfect reference, it contains information 

on vibration velocity at the body surface without mass loading. As the Escope's 

contact frequency response has been studied, it was possible to compare LDV 

data with calibrated Escope data. 

Materials and methods 

The LDV and Escope were used simultaneously to measure tracheal breath 

sounds of a sitting normal subject. The Escope was stuck on the right of the neck 

(refer to Figure 3.23 point 3), a tiny piece of reflective tape was stuck on the left 

symmetric position (point 4). The subject undertook deep breathing. These two 

channel signals were sampled by the sound card at a sampling rate of 8000Hz 

with 16-bit accuracy. 

Results 
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It can be seen in Figure 3.20 that the calibrated Escope spectrum differs from the 

uncalibrated one mainly in a frequency range of 100 to 500Hz. The biggest 

difference is around 200Hz, where there is a trough in the calibrated spectrum, 

while it is flat in the uncalibrated spectrum. The calibrated spectrum is more similar 

to the LDV spectrum than the uncalibrated one. 

3.7 Repeatability 

The following experiments were done to study the factors that could influence 

repeatability. The recording site was on a sitting healthy subject's extrathoracic 

trachea as this site was relatively easy to measure. 

3.7.1 Flow Rate 

Materials and Methods 

The Escope was stuck on the subject's anterior cervical triangle (refer to Figure 

3.23 point 1) with double-sided adhesive tape. The subject tried to keep each 

breath cycle repeatable. Two measurements were taken for quiet breathing and 

deep breathing. For each breathing method, 5 cycles of breath sounds were 

sampled by the sound card with a sampling rate of 8000Hz. 

Results 

The PSDs were calculated based on 512 samples, using a Hanning window with 

256 samples overlap. It can be seen from Figure 3.21 that flow rate (quiet breath, 

deep breath) influences spectrum level and shape. Deep breath produces higher 

power and more peaks than quiet breath. 
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Under the same conditions, the measurements are acceptably repeatable. An 

example is shown in Figure A. 9. 
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Figure 3.21 PSDs of deep breath and quiet breath. 

3.7.2 Pressure 

Materials and Methods 

Three measurements of deep breath were taken under light pressure (no hand 

pressure), middle pressure (moderate hand pressure) and heavy pressure (higher 

hand pressure). Other conditions were the same as described in 3.7.1. 

Results 

Figure 3.22 shows that the spectrum shapes are similar but there is some change 

in frequency and level of the peaks. Assuming flow rates were the same during 

continuous measurements, then the pressures between the Escope and trachea 
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affected the spectrum shape. The results of the repeatability tests are shown in 

Figure A. 10. 
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Figure 3.22 PSDs of different pressure at same position during deep breath. 

3.7.3 Position 

Materials and Methods 

The conditions were the same as described in 3.7.1. except 3 more positions were 

tested. Point 1 was at the anterior cervical triangle; point 2 was above point 1. 

Point 3 was beside the right artery and parallel with point 1; and point 4 was 

beside the left artery and parallel with point 1. That is point 3 and 4 were 

symmetrical (refer to Figure 3.23). 

JS\ý4L 

Figure 3.23 Test positions on trachea. 
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Results 

It can be seen from Figure 3.24 that the spectrum shape and level differ a little at 

the different positions; assuming the flow rates were the same during 

measurements. The spectral shapes are similar when measurements were 

undertaken at symmetric positions. 
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Figure 3.24 PSDs at different positions. 

3.8 Landline phones and mobile phones in practical use 

_»n 

Using voicemail as mentioned in 3.6.2,16 patients were asked to take a two week 

monitoring of breath sounds and peak expiratory flow rate using their mobile 

phones (unpublished data, refer to table A. 1 in the appendix). When listening to 

these data, it was found that recordings from some mobile phones were quiet 

noises, which didn't correspond in any way to normal or abnormal breath sounds. 
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Due to the algorithms implemented between the sending end and receiving end, 

breath sounds collected by a mobile phone could be either treated as background 

acoustic noises or as speech signals. For the former, the received signals could 

lose their time-variant properties, with the resulting signals not being consistent 

with breath sounds. For the latter, the received signals are consistent with 

normally recorded breath sounds. The following experiments were therefore 

designed to avoid tracheal sounds being treated as noise. 

Materials and methods 

A purposely-produced noise (high-frequency narrow band noise) was played from 

the JVC loudspeaker to accompany the tracheal sounds recording using a landline 

telephone or mobile phone. 

Results 

Under certain situations, i. e., when the mobile phone or telephone was put on the 

trachea, the breath sounds reaching the mobile phone were stronger than the 

sounds from the loudspeaker, and measurements were improved. Figure 3.25 

shows the spectrogram of an example. For comparison, an example without 

purposely-produced noise is shown in Figure 3.26. 
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Figure 3.25 Recorded tracheal sounds by Nokia 331 0e with a noisy background. 
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Figure 3.26 Recorded tracheal sounds by Nokia 3310e without a noisy 

background. 
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3.9 Discussion 

DAQ and filters test 

Section 3.3 to 3.5 dealt with the TF estimation of the data acquisition devices and 

filters. Different input signals were used. For the DAQPad-6200E, manually 

stepped sinusoidal signals were used, so that the amplitude and frequency of the 

signal could be controlled. But use of this signal source was time-consuming. 

First, confidence in the accuracy and bandwidth of the DAQPad is obtained, so 

that it will not distort the measured signals. It was then used to sample the input 

and output signals from other devices; the measured signals were treated as 'true' 

signals. 

A square signal was used to test the sound card and filters, as it was more 

convenient. Both the magnitude response and phase response are obtained by 

applying Welch's method. This is different from Sun and associates' step-response 

method (1998). They reported that the method was sensitive to the window 

position and length. By using equation 3.12, there is no effect from window 

position, although window length affects the frequency resolution. The results are 

comparable with available manufacturer's specifications. 

Frequency response of sensors 

Most of the work was focused on the sound sensors' properties. In the first stage, 

non-contact transfer functions of sensors were studied. The results were 

compared with available manufacturer's specifications. 

This part of the experimental work was similar to previous studies (Ertel et al. 

1966a; 1966b; 1969; Druzgalski et al. 1980; Abella et al. 1992). Ertel and 
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associates used a sound stage as a sound source to a stethoscope's chest piece. 

The sound pressure in the sound stage was maintained at a constant level. One 

microphone was placed beside the chestpiece to measure the input signal; 

another microphone was positioned at the earpiece with an artificial ear to 

measure the output signal. Thus, comparing the output and input signals, the 

stethoscope's acoustic property was obtained. Druzgalski and colleagues applied 

a similar method to study the air-coupler's characteristics. They used a 

loudspeaker to produce sound. A laboratory microphone was used as a reference 

(input), and the signals from a tested microphone with and without an air-coupler 

were recorded (output). Abella and coworkers used two identical microphones. 

One was placed beside the stethoscope chestpiece in front of a white noise sound 

source from a sound coupler (input), and the other was placed at the earpiece with 

an artificial ear (output). Thus they obtained the acoustic transfer function of the 

tested stethoscope. 

Druzgalski's method was also used to study the Escope and Hp Stethos frequency 

response. The input sound pressure at the chestpiece was measured by a 

microphone (CANFORD MB-C550). The result was very similar to that shown in 

Figure 3.9. As the microphone was then used with a Littmann chestpiece, so the 

method described in 3.6.2 was used to maintain consistency. 

A white noise sound source is preferred. However, if a white noise generator is 

used, a sound stage or a sound coupler should be properly designed to make the 

sound source a white noise (Ertel et al. 1966a; 1966b; 1969; Abella et al. 1992). 

As the contact usage of the electronic stethoscope was under investigation, a 
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contact surface was used. When a surface was attached to the white noise sound 

source, the sound source was no longer a white noise because the surface 

affected the sound source. 

A loudspeaker was employed to produce a sound field in the experiments. 

Although programmed white noise signals were played via the loudspeaker, the 

output sound pressures were not at a constant level because of the loudspeaker's 

frequency response. The loudspeaker and the sensor were regarded as a 

cascaded linear time-invariant system. First, the loudspeaker's frequency 

response was obtained. Then the compound TF of the loudspeaker and the 

sensor was estimated. Next the TF of the loudspeaker was deduced to obtain the 

sensor's TF. 

A validation procedure was proposed to verify the usefulness of the TF estimation 

results. The outcomes of the validation show that the designed system is able to 

estimate the sensors' non-contact frequency response. 

In the second stage, the contact response of the sensors was studied using the 

same testing system, but contacting a surface. Results show that the power 

spectra of the sensors are different from each other when measuring the same 

signal (Figure 3.16). It is not surprising that different results are obtained from 

different sensors. Druzgalski et al. (1980) reported the spectrum differences of 

measured data when they put different sensors on a membrane, which was on a 

speaker. Significant spectrum differences were reported by Gavriely (1984) when 

he recorded signals over the trachea; spectral diversities were also reported by 
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Pasterkamp et al. (1993) when they sampled signals from a human thorax using 

different sensors. 

Although some investigators were aware of the contact effects, these effects have 

not been measured. When Ertel and associates studied the diaphragm type 

chestpieces, they deliberately avoided contact between the diaphragm and sound 

stage (Ertel et al. 1966b; 1969). Wodica and colleagues assumed that the 

properties of the diaphragm and its interaction with both the chest wall and air 

cavity dominated the overall frequency response (Wodicka et al. 1994). Vovk's 

acoustic model of the chest wall predicted that the presence of a sensor would 

alter the vibration velocity at the point of contact. They suggested that a transducer 

should be small in area and light in weight to minimise the distortion (Vovk et al. 

1994; Vovk et al. 1995). 

The effects of contact were therefore further studied. Experiments show that under 

mass loading, the vibration of the contact surface changes. This is consistent with 

the modelling prediction in section 3.6.4. Although the model is very simplified, it 

provides a qualitative prediction of the mass effect. A 2-DOF model, which also 

involves the stethoscope chestpiece elastic and damping properties, is probably 

more suitable. A quantitative description is possible only if all the model's 

parameters are known. 

The electronic stethoscope's contact frequency response changes compared to 

that of its non-contact characteristics. This is also predicted in section 3.6.5. When 

in the free field, no extra pressure acts on the diaphragm. When in contact, an 

extra pressure is applied on the diaphragm. Thus, the initial air volumes of the 
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chestpiece are different. This is likely to explain the differences between the 

Escope's non-contact TF and contact TF. While under the same pressure, the 

estimated TFs were almost the same (Figure 3.19). Similarly, when different 

pressures are applied on the surface, the frequency response will also be different. 

This is supported by the results obtained using different pressures (3.7.2). 

The diaphragm's property may also change under pressure. Howell and Aldridge 

(1965) speculated that increasing strain within the diaphragm would suppressed 

low frequency sounds. This effect was not studied in the current experiments. 

Thus when the mutual effects of contact are removed, the `true' contact TF of a 

stethoscope could be obtained. The comparison between a LDV spectrum and 

calibrated Escope spectrum (Figure 3.20) shows the similarity, especially in the 

frequency range of 100-500Hz. However, the difference may be explained by the 

mass of the Escope changing the sound pressure beneath it. 

The above conclusion is obtained from limited experiments. On the one hand, for 

the Escope materials having similar properties to human skin and flesh would 

provide more persuasive results. On the other hand, experiments described in 

3.6.8 could not be applied to those air-coupler sensors that were not easily 

disassembled. 

Using the LDV, which is capable of non-contact measurement, made direct 

experimental study of the mass loading effects possible. The LDV has been 

reported as being used to study the sound-induced motion of the body walls of 
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some kinds of amphibian (Hetherington 2001). Experiments show that the LDV 

can also be used to measure breath sounds. When the LDV signals were played 

back, the breath sounds could be heard clearly. Although the time domain 

waveforms didn't look like normally recorded breath sounds, the digital filtered 

counterparts did have the similar patterns. However, there are some limitations in 

using the LDV. It needs patients to restrict their body movement during breathing, 

which needs quite a few practices, and the LDV is expensive. For these reasons, 

the LDV is not likely to be a common choice of transducer for breath sounds 

measurements. Nevertheless, as the LDV is capable of non-contact measurement, 

it could be used to monitor a patient's cardiorespiratory system in special 

situations, such as during anaesthesia. 

Even in-vivo study of the contact effects between the human body and the sensor 

could be carried out as described in 3.6.8 with some modifications. Band-limited 

white noise could be introduced into the mouth of human subjects (Kraman and 

Austrheim 1983; Wodicka and Shannon 1990). However, the difficulty is that the 

subjects should keep the posture still for quite a long time for the described 

procedure in 3.6.8 to be completed. The results shown in Figure 3.18 seem to 

imply that even if using the same sensor on different subjects the effects of contact 

may be different. This would increase the difficulties of making measurements 

comparable. 

Repeatability 

Factors that could influence repeatability are also studied. Flow rates affect the 

intensity and spectral shape (Figure 3.21), which is consistent with previously 
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reported results (Charbonneau et aL 1983; Lessard and Wong 1986; Soufflet et al. 

1990; Gavriely and Cugeil 1996). Pressure (Figure 3.22) and position (Figure 3.24) 

also play a role in affecting measurements; the latter factor has been briefly 

reported before (Gavriely 1984). Under the same conditions, the measurements 

were repeatable (Figure A. 9, A. 10). Thus keeping measurement conditions as 

constant as possible is a prerequisite to obtaining repeatable results. 

Mobile phone usage 

In the previous study (Anderson et aL 2001), the mobile phones showed the 

potential to be an easily available tool to capture breath sounds on the trachea. 

Tracheal sounds contain richer frequency components and are louder than lung 

sounds and they may hold useful information about asthmatics. 

The signal pathway from a mobile phone to the received end point could be 

viewed as follows. The acoustic signals at the sent end were coded as background 

frames and speech frames, which contained frequency and level information. 

Whether it would be a background frame or a speech frame was decided by a 

Voice Activity Detection algorithm (ETSI 2000c). A speech signal is coded and 

updated continuously. The encoding was an adaptive speech compressive 

algorithm (ETSI 2000a). At the received end the signals were synthesised 

according to received speech frames with added comfort noise (ETSI 2000b) 

according to background noise frames. 

So when a mobile phone is used to collect tracheal sounds, the signals could be 

either treated as background acoustic noises or speech signals. For the former, 

the received signals could lose the time-variant property, which makes the signals 
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sound different from breath sounds. For the latter, the received signals sound like 

those using normal recording techniques. (Wheezes are more likely than normal 

sounds to be treated as speech signals). 

Under certain conditions, i. e. when the mobile phone or telephone was put on the 

trachea, the breath sounds reaching the mobile phone were stronger than the 

other purposely-added stationary background noise, and measurements were 

improved. If the purposely-added background noise can be easily separated from 

the breath sound signal, then the true breath sounds can be acquired. In this 

study, the narrow band high frequency noise is above the tracheal sound 

frequency range. Thus low pass filtering the received signals will recover the 

tracheal sounds. However, insufficient experiments have been carried out to check 

whether this method would work on all those mobile phones that treat normal 

breath sounds as noises. If it is a general solution, then it is the simplest way to 

improve measurement quality without many extra devices. Accordingly, it may be 

possible to make and provide to patients a small portable device that can play the 

purposely-designed background noise in the future. Patients will then be able to 

play the noise to accompany the recording of the tracheal breath sounds. At the 

processing side, incorporating a pre-processing method by digital filtering can 

extract the measured breath sounds. 

Alternatively, the scheme of Woodward et al. (2001) can be considered, that is, 

using a mobile phone's data transmission capability. However, this method 

requires acoustic sensors to capture the breath sounds. Then the signals should 
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be pre-processed by functions, such as store, compress, frame etc, before they 

are sent to a data transmission capable mobile phone via an infrared port. 

It is worth pointing out that when doing self or remote monitoring of breath sounds 

necessary training should be provided to patients, so that measured signals are 

carried out under similar conditions for which the influential factors are minimised. 

Should there be any variations between the recordings they will be explained as 

manifesting the variations of the pulmonary system. 

In summary, each part of the available measurement system has been studied. 

The non-contact frequency responses of electronic stethoscopes and a mobile 

phone have been obtained, using easily set-up devices. The estimated TFs have 

been verified, and demonstrate that the procedure of estimating TFs is correct 

The contact frequency response of the Escope has been estimated when mutual 

contact effects have been isolated. This contact frequency response has also 

been validated. Under the same measurement conditions the measured data were 

repeatable. Mobile phones could be a convenient tool to monitor breath sounds if 

sound quality could be guaranteed. 
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Chapter 4 Heart Sounds Reduction 

Heart sounds are an inherent interference in lung sound analysis. They may mask 

lung sound in auscultation and alter the power spectral density (PSD) distribution 

in the spectrum. Normally, there are two methods used to minimise heart sounds 

interference. One is to choose measurement positions where the heart sounds are 

faint. The other is filtering, including conventional high pass filtering (Shykoff et al. 

1988; Gavriely et al. 1995; Homs-Corbera et al. 2000) and adaptive filtering (Iyer 

et aL 1986; Kompis and Russ! 1992; Charleston and Azimi-Sadjadi 1996; 1997; 

Hadjileontiadis and Panas 1997; 1998). Adaptive filtering is better because it 

retains the overlapped low frequency part of the lung sounds. In this chapter, an 

attempt to reduce heart sounds by using Hadjileontiadis' (1998) method is 

described. 

4.1 Wavelet Analysis 

4.1.1 Continuous Wavelet Transform (CWT) 

For any square-integrable function f (t), the continuous wavelet transform is 

defined as (Vidakovic 1999): 

C(a, b)=ff (t) yiäb(t)dt (4.1) 

where " denotes the complex conjugate, and Y'a, b 
(t) is a family of wavelets, 

which can be derived from the mother wavelet yr(t) : 

Vfa. a 
(t) _Vt 

ab 
(4.2) 

. %Fa 

() 
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a, b are scaling and translation parameters respectively, and are continuously 

variable. V is for energy normalisation across the different scales. 

4.1.2 Discrete Wavelet Transform (DWT) 

The CWT maps a one-dimensional time signal to a two-dimensional time-scale 

domain that is highly redundant. To improve the efficiency, scaling and translation 

parameters in the wavelet can be discretised: 

ýVmn ýtý 
-1m jý/ 

t- nboao (4.3) 
ao ao 

where m, n are integers, and ao > 1, bo # 0. 

Usually ao = 2, bo =1 are chosen, which is called dyadic sampling. It is possible to 

construct VI(t) such that the set of scaled and translated versions of Vann (t) forms 

an orthonormal basis so that no redundancy exists (Vetterli and Herley 1992). That 

is: 

ýýmn (t) 
k \t/ (smjunk (4.4) 

By discretisation of time, the discrete wavelet transform is: 
m 

Dmn =2 2ýf(k)Vw(2 mk-n) (4.5) 
k 

For signal processing, a wavelet is a band-pass filter, and a set of scaled and 

translated wavelets is a band-pass filter bank. By introducing a low-pass filter, 

scaling function, whose spectrum covers the left space of wavelets, the number of 

wavelets used to analysis a signal is limited (Vetterli and Herley 1992). 
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4.1.3 Wavelet Decomposition and Reconstruction 

The DWT can be achieved effectively by using a filtering algorithm. By using half- 

band high pass and low pass decomposition filters and downsampling, the DWT 

coefficients of a signal can be obtained. Reversibly, by using associated 

reconstruction high pass and low pass filters and upsampling, a signal can be 

reconstructed perfectly from the DWT coefficients. 

4.1.4 Wavelet Thresholding 

For selective wavelet reconstruction, a threshold A should be defined to 

distinguish large and small coefficients. There are two kinds of thresholding; hard 

thresholding and soft thresholding, which are defined in equations (4.6), (4.7) 

respectively (Ogden 1997). 

Sti x) 
x, 

IxI>X 

= O, IxI: 5 2 
(4.6) 

x-X, x>X 
S'(x)= 0, IxI<-X (4.7) 

x+X, x<-X 

Coefficients larger than A are kept (hard thresholding) or shrunk (soft 

thresholding), but smaller ones are set to 0. Via this non-linear operator on the 

wavelet coefficients, selective (denoised) wavelet reconstruction can be achieved. 

A is application dependent. Choosing a very large one will result in an 

oversmoothing; while choosing a very small one will result in undersmoothing 

(Ogden 1997). 
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4.2 Materials and Methods 

Lung sounds were recorded on a sitting healthy subject's anterior left and right 

chest simultaneously by using two Escopes, sampling at 11025Hz using the TBS- 

2000 sound card. The idea of the Hadjileontiadis' method was that the mixture of 

lung sounds and heart sounds was considered as a non-stationary signal (heart 

sounds) with a stationary noise (lung sounds). Daubechies wavelet of order 4 was 

used for the calculation, since this wavelet family has been shown to be 

appropriate in early work (Hadjileontiadis and Panas 1998; Hall et al. 2000). 

Applying wavelet decomposition and hard thresholding, large coefficients were 

used to reconstruct hearts sounds, while small coefficients were used to 

reconstruct breath sounds. This procedure was repeated several times until the 

difference between updated lung sounds and previous lung sounds was very 

small. 

4.3 Results 
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Figure 4.1 Measured signal at the left chest. 
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Two results are shown in Figures 4.1 to 4.6. Figure 4.1 is a measured signal at the 

left of the chest. Figure 4.2 and 4.3 are reconstructed heart sounds and lung 

sounds. Figure 4.4 is a measured signal at the right of the chest. Figure 4.5 and 

4.6 are reconstructed heart sounds and lung sounds respectively. 
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Figure 4.2 Reconstructed heart sounds. 
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Figure 4.3 Reconstructed lung sounds. 
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Figure 4.4 Measured signal at the right chest. 
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Figure 4.5 Rreconstructed heart sounds. 
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Figure 4.6 Reconstructed lung sounds. 

It can be seen from Figures 4.3 and 4.6 that for measured locations corresponding 

to strong heart sounds, the heart sounds peaks are reduced. 

4.4 Discussion 

This wavelet based decomposition and selective synthesis method was reported 

to have good heart sounds reduction when the signals to be processed were 

recorded at positions where heart sounds were most intensive (Hadjileontiadis and 

Panas 1998). This method was chosen to be investigated because it does not 

require a reference signal. In practice the recording positions are not where the 

heart sounds are most intensive. For this situation, Figures 4.2 and 4.5 show that 

some content of lung sounds are contained in heart sounds. 
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Playing back the extracted sounds, the heart sounds sound almost natural. But the 

lung sounds do not, because part of their content is lost. Actually, the more 

intensive the lung sounds in the measured signals, the worse the processed 

results (refer to Figures 4.5 and 4.6), which is expected because of the 

thresholding. 

Heart sounds have low frequency components with high intensity. Their reduction 

is necessary when measured indices are based purely on the breath sound 

spectrum. An example of such an index is F501, where the low frequency heart 

sound components would have a significant influence on its value. 

If time-frequency (or time-scale) representation is chosen, then heart sound 

reduction is not necessary, as heart sounds have a fixed pattern in the time- 

frequency plane. For breath sounds where the abnormalities do not appear in 

regions of the spectrogram occupied by heart sounds, the abnormalities can be 

detected by visual examination of the spectrogram or by extracting quantitative 

data. Also when breath sounds abnormalities do occupy the regions of the heart 

sounds, they still can be detected visually or quantitatively, but will be more 

diff icult. 

So if spectrum based indices are chosen, the measurement sites should be 

selected carefully to avoid strong heart sounds. Time-frequency analysis is the 

best choice wherever possible. 

F50 is defined as the frequency below which 50% of the energy of the signal lies. 
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P. i 

Chapter 5 Breath Sounds Simulation {t, 

Although real breath sounds data can be obtained experimentally or commercially, 

simulation can produce characteristic predefined breath sounds, which can be 

used to evaluate algorithms for automatic computer-aided breath sounds analysis. 

Simulation work is described in this chapter. 

5.1 Autoregressive (AR) Process 

A time series is a set of data obtained sequentially in time. Assuming the present 

value of a stationary time series depends on the immediate past values together 

with a random error, this time series is an autoregressive (AR) process, expressed 

as (Chatfield 1989): 

P 

xn - 
2: 

aixn-i -ý 8n ý5.1) 

i=1 

where x,, is the current value, p is the order, a; are coefficients, xn_, are previous 

values, and e,, is the error. 

From a signal processing point of view, the signal x modelled by AR of order p 

can be realised by filtering white noise e through ap th order all-poll infinite 

impulse response (IIR) filter. 

5.2 Methods 

The Kompis' method (1997) with modification was used for simulation. The idea 

was that a normal breath sound could be modelled as an AR process. Heart 

sounds, continuous (wheezing) and discontinuous (crackle) sounds could be 
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added to the normal sounds to simulate lung or tracheal normal and abnormal 

breath sounds. 

5.2.1 Normal Breath Sounds 

AR modelling should be applied on stationary processes, but a real normal breath 

sound is not stationary as its variance changes with flow rate. Using Kompis' 

method of segmentation of the breath sounds, that is, assuming within each 

segment the signal is stationary, then the AR modelling could apply to that 

segment. Eight segments in each inspiration and expiration were made with equal 

length. Each segment was modelled as a 4th order AR process, i. e., 8 sets of IIR 

filter coefficients and white noise variance for each inspiration and expiration. 

Transitions between successive filter coefficient sets caused abrupt changes in 

data, which contaminated the signal with a 'clicking' sound. This effect was 

smoothed in a way different from Kompis' method. Using the final conditions from 

preceding filter data as the initial conditions to the successive filter assured data 

continuity. 

Simulation for lung sounds and tracheal sounds uses different coefficient sets, as 

these two sounds have different characteristics. 

5.2.2 Wheezes 

In the time domain, wheezes have periodical waveforms. In the time-frequency 

domain, wheezes look like a nearly straight line or a sinusoidal curve. Thus 

wheezes can be simulated by frequency modulation. A very low frequency (say 

1 Hz) sinusoidal signal x with small random amplitude variations was first 
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produced. Then the signal x was frequency modulated with a carrier frequency 

(mean wheezing frequency) f, thus simulation of wheezes could be achieved 

x(t) = At cos(2rt) (5.2) 

y(t) =A cos{27[f,, +x(t)]t} (5.3) 

where A is a small random amplitude variation, A is amplitude, f, is carrier 

frequency, and t is the time point. 

5.2.3 Crackles 

Kiyokawa's method (2001) for simulation of crackles was employed. The crackle 

signal y (t) could be simulated as: 

lo ( 

yo (t) = sin 41rt log(to) (5.4) 

A(t) = 0.5{1+cos[22r(t°'5 -0.5)]} (5.5) 

y (t) = A(t) yo (t) (5.6) 

where 0< t51 , to is first positive t-intercept. 

Tuning to can achieve fine, middle and coarse crackles. Randomised crackle 

events made each cycle sound similar but not exactly the same. 

5.2.4 Heart Sounds 

Tran's (1995) method for simulation of heart sounds was used. Only normal heart 

sounds were simulated in this work. The heart sound signal y(t) could be 

produced by: 

yo(t)=sin(27r(fo+bt)t) (5.7) 
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-S` 2.52t ea = 1- eT sin T 
(5.8) 

d 

-xsr 0.5zt 1i1 

ed =eT cos T 
(5.9) 

y(t)=eaedyo(t) (5.10) 

where yo (t) is a chirp signal, whose instantaneous frequency changes with time 

from fo with a slope of b. T is heart sounds duration, a and d are attack and 

decay constants respectively. 

The first and second heart sounds are produced using the same equations but 

with different parameters. 

5.3 Results 

The simulation has been implemented in Matlab. A graphical user interface (Figure 

5.1) has been developed to facilitate the parameter changes. Changeable 

parameters are: 

1. breath cycle parameters-breath rate (how many seconds per breath cycle), 

what percentage is occupied by inspiration (the rest occupied by expiration), 

how many cycles to be simulated; 

2. heart sounds parameters (selective) -heart rate (how many beats per minutes) 

and loudness; 

3. site-lung or trachea; 

4. type-normal, wheeze or crackle; 
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5. abnormal sounds parameters-in which phase (inspiration/expiration ), at which 

part (early/middle/late), frequency and loudness. (These parameters are 

changeable only when 'wheeze' or `crackle' is chosen. ) 

6. operation-construct, play and save simulation data as wav files. 
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Figure 5.1 Graphical User Interface of simulation 

5.4 Audible Tests of Wheezes 

Simulated tracheal late expiratory wheezes were produced to test their audibility. 

All other parameters were kept constant, except that wheezing frequencies and 

amplitudes were altered. The loudness of wheezing was represented as a 

percentage of RMS' of normal tracheal sound amplitude (NTSA). 

' RMS-root mean squared 
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Figure 5.2 shows an example of part of a simulated wheeze signal around 280Hz 

with amplitude of 15% RMS of NTSA. It was audible. (It was inaudible when its 

amplitude is less than 4% RMS of NTSA. ) When this part was embedded in 

simulated normal tracheal sounds, wheezes were inaudible. By visually examining 

the wave expanded part of the corresponding segments (refer to Figure 5.3), the 

periodical waveforms do not appear. 
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-2 

Figure 5.2 Waveform of simulated wheezes. 
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Figure 5.3 Expanding waveform of a wheezing segments. 
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When the average wheezing frequency was within the normal tracheal sound 

frequency range and remote from the frequency peaks, it was audible when its 

amplitude was greater than 15% RMS of NTSA. When the average wheezing 

frequency was near the peaks, it was audible when its amplitude was greater than 

20% RMS of NTSA. When the average wheezing frequency was above the normal 

frequency range, it was audible when its amplitude was greater than 2% RMS of 

NTSA. 

5.5 Discussion 

The normal lung or tracheal sounds simulations were realised by modelling them 

as a 4th order AR process. But higher orders were used by Gavriely (1992). In 

order to minimise the non-stationary nature of breath sounds, the sounds were 

normalised by their amplitude envelopes. Lung sounds were found to require at 

least order 6, and tracheal sounds require at least order 12. The higher the order, 

the more detailed spectral information can be modelled, but the greater the 

calculation burden. Higher orders have not been used in the current work. 

Wheezes can be classified as monophonic and polyphonic. Only monophonic 

wheezes were simulated in the current work. Harmonic type polyphonic wheezes 

can be easily implemented by adding harmonic parts, that is, multiples of 

fundamental frequencies. But inharmonic wheeze simulation needs more 

adjustable parameters. 

The phase and timing of abnormal sounds are of importance. In this work, limited 

combinations were provided. More combinations are possible by providing more 

94 



selectable items. In some diseases, both crackles and wheezes can be heard. 

Currently, either crackle or wheeze events could appear, but their combination is 

also possible. 

Only normal heart sounds were simulated. Abnormal heart sounds can be 

simulated by selecting suitable parameters in equations (5.7)-(5.10). 

The breath sounds simulation has found applications in training (Kompis and 

Russi 1997; Cardionics Inc 2002). Both advantages and disadvantages are that 

the simulated parameters can be altered freely. For training purposes, a great 

variability in breath sounds should be available. This could be achieved easily by 

altering simulation parameters properly. The simulated sounds should sound as 

natural as possible, thus some restrictions should be put on the simulation 

parameters. Otherwise, some exaggerated parameters will make the simulated 

sounds unnatural. 

The breath sounds simulation can also be used for evaluation purposes. Breath 

sounds with pre-defined characteristics could be produced and reproduced without 

much effort. Simulated crackles embedded in recorded real breath sounds have 

been used to test their audibility. In some situations the crackle alone is audible 

but inaudible when embedded in normal sounds (Kiyokawa et al. 2001). 

Similar to the above phenomena, wheezes which are of small amplitude and 

frequency components within normal sounds frequency range, are audible alone 

but inaudible when added to the normal sounds. This happens when wheeze 

amplitude is less than about 15% RMS of normal sound amplitude. 
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When Gavriely and associates (1989) studied the mechanism for wheeze 

generation, they found oscillations were generated that produced a loud honking 

noise (wheeze) under selected pressure-flow conditions. It is unclear whether 

wheezes always appear with strong sound energy. Even if this is the case, it is 

possible that wheezes are inaudible at the recording site due to transmission loss 

or by being masked by normal sounds. 

In addition, these simulated sounds could be used to test the usefulness and 

effectiveness of signal processing algorithms for a computer-aided breath sounds 

analysis system. Simulated normal and wheezy sounds have been used to test 

analysis algorithms in this work. Details are described in the next chapter. 

In summary, this flexible simulation environment integrates simulated algorithms of 

normal, crackle, wheeze, and heart sounds. It can be used to evaluate abnormal 

sounds' audibility and automatic algorithms. Though at present it is not a perfect 

cardiorespiratory sound simulator, further performance improvement may be 

achieved with the aid of medical experts. 
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Chapter 6 Automatic Wheeze Detection 

A wheeze may be a sign of some diseases, but the presence or absence may not 

reflect the severity of the associated disease. The clinical status of the patient may 

be better defined by parametric characteristics of wheezes, such as duration, 

timing, dominant frequencies. 

As described in 2.5.5, some studies of wheeze detection were validated by a 

physician listening. In this chapter, the possibility of detecting wheezes based on 

auditory system modelling is investigated. 

6.1 Some Hearing Principles 

6.1.1 Hearing Mechanism 

The human hearing system consists of three sections: the outer ear, the middle 

ear and the inner ear. The outer ear helps to locate sound sources and enhances 

some frequencies with respect to others (Howard and Angus 2001). The major 

function of the middle ear is to achieve the efficient transfer of sound from the air 

to the inner ear, i. e. cochlea (Moore 1997). The cochlea converts mechanical 

vibrations into nerve firings that will be processed by the brain (Howard and Angus 

2001). The cochlea is divided along its length by two membranes; one of them is 

the basilar membrane. This membrane is responsible for carrying out a frequency 

analysis of input sounds. In a normal, healthy ear each point on the basilar 

membrane is sharply tuned, responding with high sensitivity to a limited range of 

frequencies (Moore 1997). 
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6.1.2 Auditory Sensitivity 

Absolute thresholds of loudness 

The minimum detectable level of a sound in the absence of any other sounds is 

the absolute threshold of that sound. In the audible frequency range of 20Hz to 

20kHz, the absolute threshold is a non-linear function of frequency. In the 

interesting frequency range of up to 4kHz, the ear is most sensitive around 3-4kHz 

in free field, below which the thresholds increase; while using an earphone, the ear 

is most sensitive around 1 or 2kHz depending on the earphone type (Moore 1997; 

Yost 2000). 

Temporal integration 

A signal must have some critical amount of energy to be detectable. The process 

of integration of the power is completed in 300ms. If the duration is less than 

300ms and greater than 1 Oms, then the power of the signal must be increased to 

make it audible (Yost 2000). 

6.1.3 Masking and Critical Band 

It is intuitive that a sound (signal) should be more intensive to be heard when 

another sound appears. Sometimes when the other sound is much more intensive 

than the signal, the phenomena of masking occurs. Masking has been defined as 

the process by which the threshold of audibility for one sound is raised by the 

presence of another sound. The peripheral auditory system behaves as if it 

contains a bank of band pass filters (also named as critical band, auditory filters), 

with overlapping pass-bands. When a listener attempts to detect a signal in a 

noisy background, he is assumed to use a filter with a centre frequency close to 
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that signal. Thus ignoring noise outside the filter band, only the components in the 

noise that pass through the filter have a masking effect on that signal. It is 

assumed that the threshold for the signal to be detected corresponds to a certain 

signal-to-noise ratio at the output of the filter (Moore 1997). 

The bandwidth of such an auditory filter is called `critical bandwidth'. Practically, 

the equivalent rectangular bandwidth (ERB) of the critical band can be calculated 

as (Moore 1997) 

ERB, =24.7(4.37J+1) (6.1) 

where f is centre frequency in kHz. 

6.1.4 Co-modulation Masking Release (CMR) 

Co-modulation means the components of a masker have the same amplitude 

modulation pattern in different frequency regions. In this situation, the masking 

threshold will decrease (Moore 1997). 

6.2 Short-Time Fourier Transform (STFT) 

6.2.1 Fourier Transform and Discrete Fourier Transform (DFT) 

The Fourier transform of a function f(t) is defined by 

F. (w) _jf (t) e-i"'dt (6.2) 

The discrete Fourier transform of a sequence 
. 
1. [n] (n =0,1,... N-1) is defined by 

F[k]=jf[n]e iA»" (6.3) 

�=0 
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6.2.2 Short-time Fourier Transform (STFT) 

If a signal changes over time, then the classic Fourier transform could not reflect 

the signal's time-varying nature. An easy way to overcome the shortcomings of the 

normal Fourier transform is to compare the signal with elementary functions 

located in time and frequency simultaneously, that is (Qian and Chen 1996), 

STFT(to,, w) _ 
Jf (t)h`(t-to)e-'"'dt (6.4) 

where f (t) is the signal, and h(t) is a window function. 

The window function /z(r) has short time duration. The Fourier transform of the 

signal J '(t) windowed with h(t) shifted by to is calculated. Thus the signal's local 

frequency characteristics could be reflected. 

If the time duration and frequency bandwidth of h(r) are A, and A,,, respectively, 

then according to Heisenberg's uncertainty principle (Qian and Chen 1996), 

AAA 
_ 

0.5 (6.5) 

That is, good time resolution and frequency resolution can not be obtained 

simultaneously. There must be a trade-off between the time resolution and 

frequency resolution. 

Discrete calculation of the STFT is realised by breaking J'[nj into windowed 

frames and applying the DFT to each frame. 
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6.3 Spectrogram 

Normal breath sounds are time-dependent signals as they are changing with flow 

rate. In a breath cycle the flow rate increases from 0 to a maximum then 

decreases to 0 again, both in inspiration and expiration. When abnormal sounds 

appear, their timing and/or evolution with time are important. 

The analogue spectrograph (McKusic et al. 1955) and later on the digital 

spectrograph based on STFT ( Kraman 1983; Pasterkamp et al. 1989) provided a 

useful visual tool to distinguish normal and abnormal sounds after some training. 

Nowadays the digital spectrogram is relatively easy to realise due to the progress 

of computing capacity, and is normally used as a representation of the results. 

A spectrograph represents a breath sound in the time-frequency plane, with sound 

intensity displayed with a grey or colour scale. Figure 6.1 shows a normal tracheal 

sound of a breath cycle. Figure 6.2 shows an abnormal tracheal sound containing 

wheezes in expiration, where the wheezes are indicated by arrows. Shown in 

Figures 6.1 and 6.2, inspiration and expiration phases are clearly distinguished. 

Compared to the normal breath sounds, the abnormal breath sounds show a 

prolonged expiration phase, and especially some irregular wavy lines (wheezes). 

Although the frequency and duration of wheezes can be read from the 

spectrograph, it is time consuming when samples are huge. The realisation that 

wheezes can be detected and quantified automatically will relieve investigators 

from tedious work and overcome subjective variations. 
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Figure 6.2 Spectrogram of a wheezing tracheal breath sound. 
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6.4 Algorithm 

By the definition in 2.2, wheezes are audible signals that have a `musical' nature. 

Considering the continuous adventitious sounds are the tonal sounds (signal) 

additive to the apparent normal breath sounds (noise), then the detection of 

wheezes is like detection of a signal in a masker (noises). If the signal is above the 

threshold of the masking, then the signal is audible. 

The overall aim of this algorithm is to detect wheezes automatically. This is done 

by first identifying audible tonal signals and then sorting them to find the signals 

that correspond to wheezes. 

The threshold is based on the results of Reed and Bilger (1973). Their results 

have shown that the masking threshold is frequency and noise level dependant. 

The intensity of the signal energy must exceed that of the noise spectrum level' by 

amounts varying from 8 dB at 250 Hz to 14 dB at 4 kHz. The effect of noise level 

is less, making the above threshold values change by only around 1 dB. To simplify 

the calculation, only three threshold levels are used in the algorithm. The baseline 

threshold level th is given by: 

th = 9.5 + 3.481og 10(f) -101og(ERB f) (6.6) 

where f is the signal frequency in kHz. 

For duration of around 100 ms, if the ratio of signal energy to noise energy, 

(ES /EN expressed in dB) is greater than or equal to th, then the signal is audible. 

1 Noise spectrum level is the average noise power per Hz. 
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In this work, the STFT time resolution (At) is 32ms, so 96ms (3At) is used as the 

baseline duration. Two more threshold levels are defined: th+3, corresponding to 

64ms (20t) and th+4.8, corresponding to 32ms (At). See table 6.1 for a summary 

of this information. 

Table 6.1 Threshold 

Duration (ms) 1OIogEs-1OlogEN (dB) 

96 th(= 9.5 + 3.48log(f) - 10 logERBf) 

64 th +3 

32 th + 4.8 

The procedure is illustrated in Figure 6.3 and details are described in the 

following steps: 
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Calculate STFT matrix A 

Initialise matrix B (size of A)=0 

Find peaks 

Calculate Es (energy of peak) 

Calculate EN (energy of noise in bandwidth ERB) 

Es-EN>th? 
No 

Yes 4, 

B(location(peak))=1 

Label B 

Calculate the length of same label B(i) 

Length=(Al) II Length=(2At) II Length>=(30, ) 

Es-En>th+4.8 

No 

Yes 

Es-En>th+3 

No 

Ignore Inaudible peaks 

Yes 

Ignore Inaudible peaks I Keep audible peaks 

Connect audible peaks 

Produce spectrogram 
Calculate wheeze parameters 

Ignore the peaks 

Figure 6.3 Schematic representation of wheeze detection algorithm. 
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1. Construct a time-frequency matrix A by calculating the STET with the following 

parameters: 512 samples, using a Hanning' window with the same length, 50% 

overlap. The sampling rate was 8000Hz. Each cell of the matrix contains the 

power spectrum value (I STFT (to, (0)I2) at [to -O1, to +L, ] and [w-OW, w+OW] . 

Initialise to zero all elements of a binary matrix B (the same size as the matrix 

A). Matrix B is used as a way of 'tagging' the identified peaks. 

2. Find peaks along the columns (along time axis). The peaks may either belong 

to wheezes (signal) or noises. 

3. Regarding a peak as corresponding to a signal component, calculate the 

energy of the signal, and the energy of the noises that pass through the 

auditory filter that centres the signal. The filter bandwidth is calculated 

according to equation (6.1). If the signal-to-noise ratio is above the threshold, 

mark that peak with 1 in matrix B. 

4. Label B using a `connected component labelling' algorithm (Seul et al. 2000) 

with minor modifications. (Peaks in a column separate at least two frequency 

bands as a result of step 3. ) 

Search the matrix column by column and assign a value greater than 1 (a 

label) to each non-zero cell. The value is decided by the labels of three 

neighbours, as shown in Figure 6.4. 

2ir (n-1) 
' h(n) =0.5[l -cos( )] , where n =1,2,... N, N is window length. 

N-1 
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" If all the neighbours of c (i, j) are 0, c (i, j) is assigned a new unused label. 

" If there is one neighbour cell with a non-zero label, assign the label to the 

cell c (i, j). 

c (i-1, j+1) 

c (i-1, j) c (i, j) 

c (i-1, j-1) 

Figure 6.4 Neighbours definition in labelling algorithm. 

5. According to the length (continuity in time) of the same label (continuity in 

frequency), identify signals of less than 96ms and use the threshold values in 

table 1 to remove the tags in the B matrix corresponding to shorter signals 

which do not exceed the higher threshold values. 

6. Normal breath sounds have a strong relationship with flow rate (Kraman 1984; 

Shykoff et al. 1988; Souff let et aL 1990; Gavriely and Cugell 1996; Harper et al. 

2003). That is, all frequency components of the spectrum change with flow 

rate: the higher the flow rate, the higher the spectral power. So the signal 

(wheezes) and the noise (apparent normal sounds) are considered to be co- 

modulated by the flow. The co-modulation masking release phenomena has 

the effect of decreasing the masking threshold (Moore 1997). This effect may 

mean that separately identified wheezes in step 5 are actually two components 

of the same wheeze. To compensate for this, detected peaks from step 2 

which are neighbours of a wheezing component are relabelled so that they 
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each have the same label, thereby connecting two wheeze signals (neighbour 

definition is the same as in step 4). 

7. Produce a spectrograph with wheezes marked. Calculate the average 

frequency (a wheeze usually has a frequency change from the beginning to the 

end), standard deviation of wheezing frequency, duration of each wheeze, and 

percentage occupation of wheeze in each respiratory phase. (The duration of 

each phase was estimated because of lack of reference signals such as flow 

rate. ) Only average wheezing frequency and occupation in each phase are 

displayed to keep the results display compact. 

6.5 Implementation 

The algorithm described above was implemented in Matlab. A GUI shown in 

Figure 6.5 was developed to incorporate displays of phonopneumography, 

spectrogram, spectrum, and the following adjustable parameters and operations: 

1. Upper frequency-this parameter is used to limit the shown frequency range of 

the spectrogram and the spectrum (up to the Nyquist frequency). 

2. Load signal-a standard Windows open file dialog box appears for the user to 

load PCM format wave files. 

3. Select/Restore-visible alternately. If Select is visible, clicking this button 

brings out a cross cursor. Moving and clicking the left mouse button to select 

start and end points of the signal segment of interest, then corresponding 
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expanded phonopneumograph, spectrogram and spectrum will be displayed. If 

Restore is visible, click this button to restore displays to their originals. 

4. Analysis-perform automatic wheeze detection, results are shown in a pop up 

window. The mean wheezing frequency and occupation (%) in each phase are 

shown. Results can be exported to an Access file if required. In case of no 

wheeze detected, 'no wheeze' will be displayed. 

5. Play sound-playing sound with cursor tracking the signal part being played. 

Only the displayed part of the signal is played. 

0.1 

ö 0.05 

m o 

a 0.05 

-0.1 

20 

10 

0 

-10 

-20 

-30 

-40 

-50 

-60 

Time domain 

02468 10 12 14 16 1010 
Time(seconds) Log of PSD Play Sound Close 

Figure 6.5 A GUI for display and analysis of breath sounds. 
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6.6 Samples 

First, simulated data were used to validate the algorithm. Then three sets of real 

data were employed. 

One set of real sound samples was recorded on the trachea from 20 patients 

using the same mobile phone. The ages of the subjects ranged from 12 to 61 

years, ten of them were women, and seven of them had asthma. 

Another set of real data was recorded on the trachea from 16 adult patients using 

their own mobile phones. Three of them were men. They were asked to take part 

in a two weeks monitoring programme, in which they reported their peak expiratory 

flow (PEF) rate and recorded their tracheal sounds for 5 cycles twice a day. Two of 

the recording sets totally failed. The first contained nothing and the other was 

contaminated by strong ripples, possibly due to electrical interference. Nine of the 

recordings were clear and of normal quality. Five of the recordings were audible 

but did not sound like normal recordings (refer to table A. 1 in the appendix). 

The third set of measured sounds was recorded on the chest from 6 patients using 

the Escope in a hospital ward. The ages of the subjects ranged from 54 to 81 

years, four of them were women. 

6.7 Results 

Figure 6.6 shows an example of simulated normal lung sounds with moderate 

heart sounds. No wheezes are detected in this sample. Figure 6.7 shows an 

example of simulated monophonic wheezy tracheal sounds, with wheeze of mean 
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frequency around 280Hz and duration about 600ms. Detected wheezes are 

marked with black pixels. Analysed results are shown in figure 6.8. 
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Figure 6.6 Simulated normal lung sounds with moderate heart sounds. 
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Figure 6.7 Simulated wheezy tracheal sounds. Black lines trace wheezes. 
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Do you want to save thest results? 
-------------------------------------------------- 
Phase No. Avg. Frq. (Hz) Occupation(%) 
1 0.0 0.0 
2 289.8 40.0 
3 0.0 0.0 
4 285.6 37.5 

No 

Figure 6.8 Analysis results of data displayed in Figure 6.6 and 6.7 respectively. 

Figure 6.9 shows an example of a measured monophonic wheeze occurring in 

inspiration. Figure 6.10 shows an example of measured polyphonic wheezes 

occurring in expiration. For comparison, contours of detected wheezes using this 

new method and previous methods are shown in Figures 6.11- 6.13. Programs to 

produce these contours are in the Appendix B. Figures 6.14 and 6.15 show parts 

of expanded waveforms. Figure 6.16 shows a just audible late expiratory wheezy 

sound. Figure 6.17 shows part of the expanded waveform. In this situation, all 

algorithms failed to detect wheeze correctly. 
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Figure 6.9 Monophonic wheeze in inspiration. 
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Figure 6.10 Polyphonic wheezes in expiration. 

113 



1600 

,. UO 

1400 

1200 

, *. 

00 
600 

400 

°° 
,2f43 

rti. n«ý 

I 

2WO 

1100 

, 800 

1400 

1200 

1000 

ow - 

. 00 

400 - 

e 0 

°° , : : 4 
gym) 

- -- 

gym, 

Figure 6.11 Contours of detected wheezes (same data as in Figure 6.7). Upper 

left-new method; upper right-Baughman's method; lower left-Fenton's method. 
Homs-Corbera's method failed to detect any wheezes. 
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Figure 6.12 Contours of detected wheezes (same data as in Figure 6.9). Upper 

left-new method; upper right-Baughman's method; lower left-Fenton's method; 
lower right-Homs-Corbera's method. 
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Figure 6.13 Contours of detected wheezes (same data as in Figure 6.10). Upper 

left-new method; upper right-Baughman's method; lower left-Fenton's method. 
Lower right-Homs-Corbera's method. 
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Figure 6.14 Wave-expanded part of monophonic wheezes (same data as in Figure 

6.9). 
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Figure 6.15 Wave-expanded part of polyphonic wheezes (same data as in Figure 

6.10). 

Figure 6.18 shows an example of data from a patient during the two weeks 

monitoring programme. It shows cycle to cycle differences of tracheal wheezy 

sounds. Day to day variations also existed. During the monitoring period, this 

patient had persistent wheezes. Figure 6.19 shows the trends of peak expiratory 

flow rate (PEFR) and average expiratory wheeze percentage occupation, which is 

averaged on 2 to 6 expiratory phases of each recording. 

Another example is shown in Figure 6.20. This patient had intermittent wheezes 

during the monitoring period. It shows the trends of PEFR and average expiratory 

wheeze percentage occupation, which is averaged on 2 to 4 expiratory phases of 

each recording. 
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Figure 6.16 Just audible wheezy tracheal sound. 
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Figure 6.17 Expanded waveform of part of data in Figure 6.16. 
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Figure 6.18 Cycle to cycle variation of wheezy tracheal breath sounds captured by 

a mobile phone. 
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Figure 6.19 Trend of peak flow rate and average expiratory wheeze occupation. 
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Figure 6.20 Trend of PEFR and average expiratory wheeze occupation. 

6.8 Discussion 

For the automatic wheeze detection algorithms two questions should be 

answered: what is a wheeze and how to distinguish a wheeze? In this work 

wheeze is defined as an audible tonal signal (in frequency range 100-4000Hz), 

and of duration longer than about 30ms. This broadens previous definitions of 

wheeze to include other clinically meaningful tonal sounds, such as rhonchus and 

squawk. In the frequency domain wheeze is a peak of sufficient power. To 

distinguish such kind of peaks a threshold should be defined. 

A peak is found when its value is a local maximum. Using the Fourier transform, a 

complex signal is decomposed as a sum of sinusoidal signals. Wheezes are 

considered as signals, which are added to the noise (apparent normal sounds). 
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Due to noise fluctuations, a peak does not always mean a sinusoidal signal. So a 

threshold is defined to distinguish a 'true' signal peak from a noise peak. 

Threshold was defined by Fenton et al. (1985) as 15J in the 200-1000Hz range 

for each 1 00ms signal segment, where P, is average power between 110-1200Hz. 

Threshold was defined by Baughman and Loudon (1985) as 3P,, in the 150- 

1000Hz range for each 250ms signal segments , where P,, is baseline power. 

Charbonneau et al. (2000) suggested to define a threshold based on total 

spectrum energy for a given duration. Threshold definition by Homs-Corbera et al. 

(2000) was much more complicated, and was a modification of the work of 

Shabtai-Musih et al. (1992). First the power spectrum was normalised in every 

100Hz band. Then six rules were used to score a peak, which applied 4 empirical 

constants. When a peak was scored more than 3, it was identified as a wheezing 

peak. 

The threshold definition in this study is based on the results of masking 

experiments (Reed and Bilger 1973). Thus, the threshold is not a constant but 

frequency dependent, which is in contrast with the above mentioned threshold 

definitions. The signal energy is compared with noise energy, which passes 

through the auditory filter centering the signal. This is also different from other 

methods, by comparing the signal power with a reference power, which is based 

on global average power or baseline power. 

This algorithm has been validated using simulated data and real data. Results 

show that this algorithm works successfully and is superior to previous algorithms, 
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being more reliable in detecting `true' wheezes with fewer mistakes. Overall, 

Baughman's method had more false detection; Fenton's algorithm missed some 

wheezes; while Homs-Corbera's method was the worst of all methods, detecting 

very few wheezes correctly. One possible explanation is that their thresholds are 

data dependent. 

However, when wheezes are faint, for example just audible, this algorithm failed, 

as did the other algorithms. So human auditory ability is still better than this 

algorithm at detecting faint but audible wheezes. However, the human ear has 

difficulty in quantifying parameters such as wheeze numbers, sequence, 

frequencies, and occupation. Improvement of this algorithm could be achieved by 

refining the technique. 

Frequency resolution is dependent on the sample length (time duration). That is 

why the contours shown in Figures 6.11-6.13 look different. The time resolution in 

this algorithm is 32ms, i. e., the minimum detectable wheeze duration. The window 

function can also affect the frequency resolution (Harris 1978). According to 

Baraniuk and Jones (1993), when the window resembles the signal components, 

excellent time-frequency representation could be achieved. A cosine (Hanning) 

window was used to calculate the time-frequency representation in this algorithm, 

meaning the frequency resolution is reasonably good. 

There is no standard procedure to validate a wheeze. The common procedures 

are by listening, by expanded the waveform, or both. For the example shown in 

Figure 6.9, the wheeze appeared almost throughout the inspiration, which made 
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the visual validation impossible (refer to Figure 6.14). For the example shown in 

Figure 6.10 the wheezes were inharmonic polyphones, which also made the visual 

validation difficult (refer to Figure 6.15). 

Wheeze is one of the symptoms of asthma. The presence of wheeze is a cardinal 

sign of asthma (BTS 2003). Wheezes detected in the asthmatic sound samples 

include different patterns. Wheezes appeared either in inspiration, expiration, or 

both. Wheezes were either monophonic or polyphonic; for the latter, either 

harmonic or not. Cycle-to-cycle as well as day-to-day variations were existent, 

which phenomena were also found by previous investigators (Kiyokawa et al. 

1999). 

The proportion of signal occupied by wheezing has been reported to relate 

inversely to FEV11 (Baughman and Loudon 1985; Fenton et al. 1985; Pasterkamp 

et al. 1985). The number of patients who were wheezing during the mobile phone 

tests was not great enough to come to any real conclusion about the equivalence 

of peak expiratory flow rate (PEFR) measurement and wheeze percentage 

occupation at this stage. It is assumed the patients breathed spontaneously as 

asked during all the recordings, so the absence and presence of wheezes were 

not regarded as being due to breath manoeuvre changes. Because wheezes can 

be produced during forced expiration even in normal subjects. The presence of 

wheezes was considered to reflect airway obstruction. Results in Figure 6.20 show 

that an asthmatic patient had intermittent wheezes during the tests. Wheezes 

occurred when PEFR was below her average value. So the presence and 

1 FEV, is defined as the forced expiratory volume in one second. 
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occupation of wheezes in this instance perhaps reflects variations of airway 

obstruction (BTS 2003). Results in Figure 6.19 show that an asthmatic patient had 

persistent wheezes during the tests. Wheeze occupation was not found to 

correlate with peak flow rate in this patient. A possible explanation for this is due to 

one problem in mobile phone recording. That is, when the signal is weak the signal 

will be treated as noise. In the recording of an asthmatic patient who has a 

prolonged expiratory phase with very weak sound intensity at the end of the 

expiration, the end part is treated as weak noise. Thus the wheezing components 

in that part are undetectable as well as inaudible. This effects the results in that 

the occupation of the wheezes is shorter than that of the actual case. The 

estimation of respiration duration could also induce some errors. The relationship 

between wheeze occupation and PEFR is worth of further investigation. A large 

sample of wheezy patients is required. For self or remote monitoring, 

measurement quality can be improved by providing proper training to patients on 

measuring PEFR and recording breath sounds. 

In summary, the algorithm developed can detect wheezes automatically when 

wheezes are not faint. Parametric results have the potential to be integrated in 

patients' records for management and comparison. Mobile phones may have the 

potential to be a breath sound monitoring tool. 

124 



Chapter 7 Conclusions 

7.1 Conclusions 

Computer-aided breath sounds analysis is a non-invasive objective method to aid 

assessment of the respiratory system. This thesis has fulfilled the proposed aims 

and contributed knowledge in the following aspects. 

A general and improved methodology to study a breath sound measurement 

system is described in chapter 3. The frequency response of each part of the 

system has been estimated. The frequency response of the air-coupled sensors 

has been studied in detail. In particular, a method using a laser Doppler vibrometer 

(LDV) to study a diaphragm type chestpiece (air-coupler) in contact use has been 

proposed. To the author's knowledge, no such work has been previously reported. 

It has been shown from the experiments that there are mutual effects of contact. 

One effect is on the measured signal, that is, the mass loading of the sensor 

distorts the `true' signal. The other effect is on the chestpiece property. The initial 

air volume of the chestpiece in a contact situation is different from that in the free 

field, thus the transfer function in a contact situation may differ from that of non- 

contact for a diaphragm type air-coupler. These mutual effects have been isolated, 

and thus the transfer function for contact use has been obtained for certain types 

of surface. 

The calibrated spectrum of a normal subject's tracheal sounds using estimated 

contact transfer function compares well with that of the LDV in the frequency range 
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100-500 Hz. The differences at other frequency ranges may be explained by the 

mass of the sensor changing the sound pressure beneath it. 

Two possible new methods of measuring breath sounds have been investigated. It 

has been shown that a LDV can be used to measure breath sounds. However, it 

needs patients to restrict their body movement and the LDV is expensive. For 

these reasons, the LDV is not likely to be a common choice of transducer for this 

application. Nevertheless, as the LDV is capable of non-contact measurement, it 

could be used to monitor a patient's cardiorespiratory system in special situations, 

such as during anaesthesia. 

Some mobile phones can be used as self or remote breath sounds monitoring 

tools. Others may need modifications to guarantee sound quality. This is because 

the breath sounds are either treated as a signal or as a background noise. For the 

latter one, the received signals lose the temporal quality. To avoid the breath 

sounds being treated as background noises, a simple practical method has been 

proposed; that is, playing a purposely-designed high frequency narrow-band 

background noise during the breath sounds measurement. For the mobile phone 

and telephones tested, this strategy was very successful and breath sounds could 

be extracted from the wave files. However this method needs to be validated on 

more mobile phones. For the future it may be possible to make and provide to 

patients a small portable device that can play the purposely-designed background 

noise, so that patients play the noise to accompany the recording of the tracheal 

breath sounds. At the processing side, pre-processing of the received signals by 

digital filtering can extract the measured breath sounds. 
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Factors, such as flow rate, pressure and measurement positions, which can 

influence measurement repeatability, have also been studied. Repeatable 

measurements can be obtained only when measurement conditions are kept as 

constant as possible. This implies that for self or remote monitoring of breath 

sounds, necessary training should be provided to patients so that measured 

signals are minimally influenced by these factors. 

Heart sounds reduction using wavelet decomposition and selective synthesis by 

hard thresholding has been attempted in chapter 4. It has been shown that heart 

sounds reduction is achieved at the price of the loss of the breath sounds quality. 

The heart sounds reduction is necessary if parametric indices are based on a 

breath sound spectrum. It is not necessary if a time-frequency representation is 

chosen as heart sounds have a fixed pattern in the time-frequency plane. So if 

spectrum based indices are chosen, the measurement sites should be selected 

carefully to avoid strong heart sounds. Wherever possible time-frequency analysis 

is recommended. 

Techniques for simulation of cardiorespiratory sounds and wheeze audibility tests 

have been developed in chapter 5. A graphical user interface for the simulation 

has been developed. A variety of breath sounds can be easily obtained by 

changing adjustable simulation parameters. Simulated breath sounds can be used 

as a training tool, as well as an evaluation method. Wheeze audibility has been 

tested. Under certain circumstances, when simulated wheezes are of small 

amplitude and are audible on their own, they are inaudible when they are 

embedded in simulated apparent normal breath sounds. This could happen in real 
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measurements, where wheezes exist but are inaudible. Simulated wheezy sounds 

with predefined characteristics have been used as an objective method to evaluate 

the new automatic wheeze detection algorithm. 

Chapter 6 describes the successful development of an automatic wheeze 

detection algorithm based on auditory modelling. The idea is to detect the tonal 

signals, i. e. wheezes, in a masking noise, i. e. the apparent normal breath sounds. 

A signal is detectable when the signal's energy is above the masking threshold, 

which is frequency dependent. The human auditory system is modelled as a bank 

of band pass filters, in which the bandwidths are also frequency dependent. This 

algorithm has been validated using simulated and real data. It is superior to 

previous algorithms, being more reliable in detecting wheezes and less prone to 

mistakes. However, the performance of the algorithm reduces when the wheezes 

are faint. 

A graphical user interface that incorporates the automatic wheeze detection 

algorithm has been developed to facilitate operations. Detected wheezes are 

marked in the spectrogram, while the wheeze parameters, such as mean 

frequency and percentage occupation of each respiratory phase, can be easily 

saved in a database to facilitate patient management and monitoring. 

Using the new wheeze detection algorithm, the relationship between wheeze and 

peak expiratory flow rate (PEFR) for long term monitoring has been investigated. 

This preliminary work showed that in one example of a data set containing 

imminent wheezes, wheezes only appeared when peak expiratory flow rate 
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(PEFR) was below the average value. In another example of a data set containing 

persistent wheezes, wheeze percentage occupation was not found to correlate 

with PEFR. Due to the lack of sufficient relevant data, no conclusion can be made 

at this stage. The relationship between wheeze occupation and PEFR is worth of 

further investigation. 

Overall, the work done in this thesis promises a bright future for breath sounds 

monitoring. 

7.2 Future Work 

Some improvements can be achieved based on the current work. The contact 

effects between the diaphragm chestpiece and skin-and-flesh-like material 

deserve study. Even in-vivo studies could be attempted. It is also worth 

investigating possible methods of studying the frequency response of diaphragm 

type air-coupled transducers which cannot be disassembled. The performance of 

the cardiorespiratory sound simulator needs to be improved if the simulator is 

expected to be a commercial product. More combinations of adjustable 

parameters should be provided. 

By using the flexibility of mobile phones to capture breath sounds on the 

measurement side, and using the wheeze detection algorithm to quantify wheezes 

on the analysis side, it is possible to monitor occupational asthma in the work 

place. This would be a very useful application, to examine the occupational 

hazards, and is well worth developing. Another very useful application, which 
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should be pursued, is evaluation of bronchodilator therapy for asthmatics. This 

could be particularly useful in monitoring young asthmatics with parents' help. 

Wheezes are mainly studied in asthma patients, but other diseases can cause 

wheezes too. It is worth investigating whether different diseases can be 

distinguished by wheeze characteristics. 
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Appendix A 

A. 1 Frequency Characteristics of Data Acquisition Device 

The DAQPad-6020E is a USB-compatible multifunction analogue, digital, and 

timing I/O device for USB-compatible computers (National Instruments 1998). This 

product features a 12-bit ADC with eight differential/16 single-ended channels, 

which function was used here. 

A. 1.1 Materials and methods 

Manually swept sinusoidal signals with amplitude of 1v from an analogue signal 

generator (Servomex) were input to one of the DAQPad's channels. The 

frequency range of the swept Input signals was from 1 Hz to 2000Hz (due to signal 

generator limit). The step was 1 Hz from 1 to 10Hz, 10Hz from 10 to 100Hz, and 

1 00Hz from 100 to 2000Hz. 

During the tests an oscilloscope (Trio CS-1352) was used to monitor the signals. 

An existing Labview program was used to sample the signals; sampling rate and 

gain were selectable. The data were written in text files. 

The signals were sampled at 11025Hz. Each signal was recorded for about 5 

seconds and the middle section from 1 sec to 4 sec was used for the calculation. 

DC-offset was removed from data before calculation. The magnitude response at 

each frequency was calculated by the ratio of the root-mean-squared (RMS) value 

of measured data to the RMS of input data on a dB scale. 
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Then 100mv, 10mv and 2mv signals at frequencies 1000Hz, 100Hz, 10Hz and 

1 Hz were tested under suitable software selectable gains of 20,100 and 100 

respectively. 

A. 1.2 Results 
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Figure A. 1 Magnitude response of DAQPad-6200E 

It can be seen from figure A. 1 that the DAQPad 6200E had a flat gain from 1 Hz to 

2000Hz with± 0.1 dB. Figure A. 2 shows that at different software selectable gains 

the measurements are linear, which implies the device-integrated amplifier is 

linear. 
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Figure A. 2 Linear relationship between input and output signals. 

A. 2 Sound Card as an Audio Output 
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Figure A. 3 Magnitude response of TBS-2000 playback. 

Figure A. 3 shows that the TBS-2000 has a flat gain from20Hz to Nyquist 

frequency with ± 3dB. The volume control acts like a linear amplifier. 
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A. 3 Frequency Characteristics of Filters 
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Figure A. 4 Frequency response of low pass filter with cut-off frequency 3kHz. 
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Figure A. 5 Frequency response of high pass filter with cut-off frequency 100Hz. 

An example of low pass filter with cut-off frequency 3000Hz is shown in the figure 

A. 4. An example of high pass filter with cut-off frequency 100Hz is shown in figure 

A. 5. In pass band the each filter has an almost flat gain, but phase response is not 

linear. 
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Figure A. 6 Relationship between exciting signal and vibration signal. 

A. 5 Transfer functions of the Escope 
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Figure A. 7 Escope non-contact TF; contact TF on paper and its microphone TF. 
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Figure A. 7 shows that the Escope's contact TF with paper was almost the same as 

that of non-contact. This indicates that the paper was 'acousticlly transparent'. 

A. 6 LDV Measurements of Centre Velocities 
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Figure A. 8 PSDs of velocity on surface centre and diaphragm centre respectively. 

Left-on thick surface; right-on thin surface. 

Figure A. 8 shows that the diaphragm could almost follow the vibration of the 

surface which it is contacted. 

156 



A. 7 Repeatability tests 
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Figure A. 9 Repeatability tests of effects of flow. Left-quiet breath; right-deep 

breath. 
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Figure A. 10 Repeatability tests of effects of pressure. Left-heavy pressure; right- 

middle pressure. 

Figures A. 9 and A. 10 show that under same conditions, the measurements are 

repeatable. 
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A. 8 Two weeks monitoring using mobile phones 

Table A. 1 Two weeks monitoring using patients' own mobile phones 

Subjects Measure- Mention peak Heard Detected Sound quality 
No. ments flow value wheezes wheezes? (clear? ) 
1 30 yes (missed yes 

once) 
2 12 yes (second audible; not 

time) normal 
2 26 no (first time) audible; not 

normal 
3 27 yes(missed yes yes yes 

once) 
4 28 yes (missed audible; not 

twice) normal 
5 9 yes audible; not 

normal 
6 10 yes (missed audible; not 

twice) normal 
7 20 yes yes 

8 4 yes (missed audible; not 
once) normal 

9 26 yes yes 

10 26 yes yes yes yes 

11 20 yes (missed ripples 
five) 

12 28 yes yes yes yes 

13 23 yes (missed nothing 
twice) 

14 26 yes (missed yes (once in yes(once in yes 
four) one cycle) one cycle) 

15 32 yes yes 

16 8 no yes 

158 



Appendix B 

1. Auditory modeling based automatic wheeze detection program in Matlab 

%wezedetect. m 
%using threshold according to pyscoacoustic principles 

f %plot spectrogram with wheeze marked & wheeze contour 
%threshold using 3.4766*loglO(fO)-0.5--regression from Reed's result 
%estimated inspiration and expiration duration 
%calculate wheeze frequency(mean) and duration(percent) 

clear; 
f=input('Which wav file should be processed? --', 's'); 
[xin, Fs, Bits]=wavread(f); 

X=xin(:, l); %first channel data 
X=detrend(X); %remove DC component 

nfft=512; 
olaps=256; %about 32ms 
[B, F, T]=specgram(X, nfft, Fs, hanning(nfft), olaps); %get STFT of X 
% plot 0 to approximately 2kHz 
nl=round(0*nfft/Fs)+l; %nl for start frequency 
hl=100; %low frequency range, changable; mobile frequency 300-3400Hz 
hf=3400; %high frequency range, changable 
n2=round(hf*nfft/Fs); %n2 for end frequency; 
C=abs(B(nl: n2,: )). ^2; %power 
mineng=min(min(C))/10; % minimum energy 
meaneng=10*loglO(mean(mean(C))); %mean energy in dB 

k=length(T); %columns of T and C 
1=length(F(nl: n2)); %rows of F and C 
D(l, k)=0; %initial D and E, D for audible peaks 
E(l, k)=0; % E for peaks 
G(l, k)=0; %G for labeled wheezes 
H=C; %H for connected wheezes 

%estimate inspiration and expiration time duration 
%base on sum power <300Hz 
m=fix(300/F(2)); 
pbase=sum(C); %sum of power 
pref=5*min(pbase); %reference 

i=1; 

while i<k & pbase(i)<=pref 
i=i+l; 

end 
tinl=i; %start point of inspiration 
while i<k & pbase(i)>pref 

i=i+1; 
end 
tint=i; % end point of inspiration 
tint=(tin2-tinl+l)*T(2); %length of inspiration 

while i<k & pbase(i)<=pref 
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end 
toutl=i; %start point of expiration 
while i<k & pbase(i)>pref 

i=i+1; 
end 
tout2=i; %end point of expiration 
toutl=(tout2-toutl+l)*T(2); %length of expiration 

npeaks=5; %how many peaks, can be changed 
[loc, val)=picksharppeak(C, npeaks, 2); %find sharp peaks along coloum 
floc puts frequency location, and val puts peak value 

for i=1: k %along coloums 
I=find(loc(:, i)>O); %rows 
E(loc(I, i), i)=1; %binary values, 1 for peaks and 0 for others 

end 

%audible peak detection 
for i=l: k %how many columns 

for j=l: npeaks 
Pl=loc(j, i); %position in a coloum 
F0=(P1-1)*F(2); %tonal frequency; centre frequency; 

%F(2)is frequency resolution 
Al=O; %initial 
if FO>=hl & FO<hf % peaks between hl to hf; 

Al=val(j, i); %signal power 
ERB=24.7*(4.37*FO/1000+1); % Critical bandwidth in Hz 
num=ceil(ERB/F(2)); %how many noise band power to be count 
if mod(num, 2)==l %odd 

nl=round(num/2); %how many bands left to the central 
%frequency, more effect on masking 

nr=fix(num/2); %how many bands right to central frequency, 
%less masking effect 

else 
nl=num/2; 
nr=nl; 

end 

%threshold of (Energy of signal)/(Energy of noise)in dB 
%A2 for band power, bandwidth ERB Hz 

A2=0; %noise power 
if P1-nl>1 %within index>=1 

for nn=P1-nl: Pl-1 
A2=A2+C(nn, i); 

end 
else %form index 1 

for nn=1: P1-1 
A2=A2+C(nn, i); 

end 
end 

if P1+nr<1 
for nn=P1+1: P1+nr 

A2=A2+C(nn, i); 

160 



end 
else 

for nn=Pl+l: l 
A2=A2+C(nn, i); 

end 
end 

A1=10*log10(A1); %in dB; 
A2=10*log10(A2); %in dB; 

tmp=Al-A2; 
%threshold for 100ms 
if tmp>=3.4776*loglO(FO)+9.5-10*1oglO(ERB) 

D(Pl, i)=1; %label for value above thresholded 
%power over threshold 
ED(P1, i)=tmp-3.4776*loglO (FO) -9.5+10*loglO (ERB); 

end 
end 

end 
end 

%labelling 
%add timing factor to elimiate short tones less than 32ms 

[wf, wt]=find(D==1); %wf for wheeze frequency location and wt for time value 
lwt=length(wt); 

tag=l; %to label wheeze sections 
if -isempty (wf) 

G(wf(l), wt(l))=tag; 
for i=2: lwt 
%CONTINESOU IN TIME AND FREQUENCY 

if wt(i)>l & wf(i)>=2 & wf(i)+2<=l %k for time coloums; 
%l for frequency columns 

switch D(wf(i), wt(i)) 
case D(wf(i), wt(i)-l) %has same frequency with left cell 

label=G(wf(i), wt(i)-1); %get the label 
G(wf(i), wt(i))=label; %assigne the label to neighbour cell 

case D(wf(i)+l, wt(i)-l)%left cell has higher frequency 
label=G(wf(i)+l, wt(i)-l); 
G(wf(i), wt(i))=label; 

case D(wf(i)-l, wt(i)-l)%left cell has lower frequency 
label=G(wf(i)-1, wt(i)-1); 
G(wf(i), wt(i))=label; 

otherwise %no peaks at left neighbours 
tag=tag+l; 
G(wf(i), wt(i))=tag; 

end 
else 

tag=tag+l; 
G(wf(i), wt(i))=tag; 

end 
end 

end 
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nw=max(max(G)); %number of wheezes sections 
for i=1: nw 

[wf, wt]=find(G==i); 
JT(i)=wt(1); OJT for start time points 
KT(i)=wt(length(wt)); %KT for end time points 
JF(i)=wf(1); 
KF(i)=wf(length(wf)); 

if KT(i)-JT(i)==0 %wheezes last less than 32ms discard 
%no 4.8dB higher power than threshold of 100ms 
if ED(JF(i), JT(i))<4.8 

G(wf, wt)=O; % reset to 0 
JT(i)=0; 
KT(i)=0; 
JF(i)=O; %JF for start frequency points 
KF(i)=0; %KF for end frequency points 

end 
elseif KT(i)-JT(i)==l %wheezes last less than 70ms 

if ED(JF(i), JT(i))<3%no 3dB higher power than threshold 
G(wf, wt)=0; % reset to 0 
JT(i)=O; 
KT(i)=O; 
JF(i)=O; %JF for start frequency points 
KF(i)=O; %KF for end frequency points 

end 
end 

end 

%wf for wheeze frequency location and wt for time value 
for i=1: nw %connect same wheezes-right side 

fl=KF(i); 
tl=KT(i); 
if tl>=1 & f1>1 

while tl<k & fl<l & G(fl, tl) > G(fl, tl+l) ... 
& G(fl, t1) > G(fl-i, tl+l) & G(fl, tl) > G(fi+l, tl+l) 

if E(fi, tl+l)==l%a peak 
G(fl, tl+1)=G(fl, tl); 
tl=t1+1; 

elseif E(fl-1, tl+1)==1 
G(f1-1, t1+1)=G(f1, tl); 
fl=fl-1; 
tl=ti+1; 

elseif E(fl+i, ti+1)==l 
G(fl+l, tl+i)=G(fl, ti); 
fl=fl+1; 
tl=t1+1; 

else 
break; 

end %end if 
end %end while 

endend if 
endend for 

for i=l: nw %connect same wheezes-left side 
f1=JF(i); 
t1=JT(i); 

162 



while t1>1 & fl>2 & fl+l<l & G(fl, tl) > G(fl, t1-1) 
if E(fi, tl-1)==1%a peak, same frequency 

G(fl, tl-l)=G(fl, tl); 
tl=tl-l; 

elseif E(fl-l, tl-1)==1 %lower frequency 
G(fl-l, tl-1)=G(fl, tl); 
fl=fl-l; 
tl=tl-l; 

elseif E(fl+l, tl-1)==1 %higher frequency 
G(fl+l, tl-1)=G(fl, tl); 
fl=f1+1; 
tl=tl-l; 

else 
break; 

end %end if 
end %end while 

end %end for 

%for spectrogram display, mark the wheezes 
[wf, wt]=find(G>=1); 
lwt=length(wt); 
for i=l: lwt 

H(wf(i), wt(i))=mineng; 
end 

%parameters calculation 
j=1; 
AF=[]; 
for i=1: nw 

[wf, wt]=find(G==i); 
if -isempty(wf) %real wheezes 

AF(j)=(mean(wf)-1)*F(2); %mean frequency 
TS(j)=wt(1); 
TE(j)=wt(length(wt)); 
AT(j)=(TE(j)-TS(j)+1)*T(2); %duration of time 
if TS(j)>toutl 

OC(j)=AT(j)*100/toutl; %expiration wheeze ocupation percent 
else 

OC(j)=AT(j)*100/tinl; %inspiration percentage 
end 

j=j+l; 
end 

end 

tmp=O; 
for i=tinl: tin2 

if max(G(:, i))>1 
tmp=tmp+1; 

end 
end 
toci=tmp*T(2)*100/tinl%total inspiration ocupation 

tmp=0; 
for i=toutl: tout2 

if max(G(:, i))>1 
tmp=tmp+1; 
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end 
end 
toce=tmp*T(2)*100/toutl % total expiration ocupation 

if -isempty(AF) 
[SF, SI]=sort(AF); %sort frequency-from low to high 
ST=AT(SI); %coresponding time to SF 
SOC=OC(SI); 

end 

%spectrogram of peaks 
figure(1); 
imagesc(T, F(nl: n2), E), axis xy; colorbar 

%contour 
GG=G; 
[I, J]=find(G>1); 
1=length(I); 
for i=1: 1 

GG(I(i), J(i))=1; 
end 

figure(2); 
contour(T, F(nl: n2), GG); 
colormap(gray); 
h=findobj('type', 'patch'); 
set(h, 'Linewidth', 2); %increase line width to 2 points 
axis([O k*T(2) 0 2000]); 
xlabel('Time(sec)'); 
ylabel('Frequency (Hz)'); 

%spectrogram. with wheezes marked 
figure(3); 
imagesc(T, F(nl: n2), 10*1og10(H+eps)), axis xy; colorbar; 
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2. Other automatic wheeze detection programs in Matlab 

%othermethod. m-using other thresholds 
%l-Fenton's method 
%2-Baughman's method 
%3-Homs-Corbera's 

function othermethod(method) 

error(nargchk(1,1, nargin)); 

if method>3 
error('input number should be between 1 to 3'); 

end 

s=input('Please input file name--', 's'); 
[x, fs]=wavread(s); 

switch method 
case 1 

%using Fenton's threshold 
nfft=fix(0.1*fs); %100ms 
[B, F, T]=specgram(x, nfft, fs, hanning(nfft), 0); 
nl=fix(110/F(2)); 
n2=fix(1200/F(2)); 
B=abs(B). ^2; 
C=B(nl: n2,: ); %power spectrum in 110 to 1200 Hz 
a=15; 
mineng=min(min(C))/10; 
D=C; %initial D 

[loc, val]=pickpeak(C, 5,3); 
[1, m]=size(C); %how many rows & columns 
G(l, m)=O; %binray matix to keep peaks 

for i=1: m 
p=mean(C(:, i)); %mena power at a given time 
for j=1: 5 

if loc(j, i)>200/F(2) &val(j, i)>a*p 
D(loc(j, i), i)=mineng; 
G(loc(j, i), i)=1; 

end 
end 

end 
figure(1); 
imagesc(T, F(n1: n2), 10*log10(C+eps)), axis xy; colorbar; 
figure(2); 
imagesc(T, F(nl: n2), 10*log10(D+eps)), axis xy; colorbar; 

figure(3); 
colormap(gray); 
contour(T, F(nl: n2), G); 
h=findobj('type', 'patch'); 
set(h, 'Linewidth', 2); %increase line width to 2 points 
axis([O m*T(2) 0 2000]); 
xlabel('Time(sec)'); 
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ylabel('Frequency (Hz)'); 

case z 
%Baughman's threshold 
nfft=fix(0.25*fs); %250ms 

(B, F, T]=specgram(x, nfft, fs, hanning(nfft), fix(nfft/2)); 
nl=fix(150/F(2)); 
n2=fix(2000/F(2)); 
B=abs(B). ^2; 
C=B(nl: n2,: ); %power spectrum in 150 to 2000 Hz 
a=3; 
mineng=min(min(C))/10; 
D=C; %initial D 

[loc, val]=pickpeak(C, 3,5); 
[l, m]=size(C); %how many rows & columns 
G(l, m)=O; %binary matrix to keep peaks 

sp=mean(C'); 
plot(sp); 
s=input('define the baseline power: ', 's'); %baseline power 
p=str2num(s); 

for i=1: m 
for j=1: 3 

if val(j, i)>a*p 
D(loc(j, i), i)=mineng; 
G(loc(j, i), i)=1; 

end 
end 

end 
figure(1); 
imagesc(T, F(nl: n2), 10*log10(C)), axis xy; colorbar; 
figure(2); 
imagesc(T, F(nl: n2), 10*log10(D)), axis xy; colorbar; 

figure(3); 
colormap(gray); 
contour(T, F(nl: n2), G); 
h=findobj('type', 'patch'); 
set(h, 'Linewidth', 2); 
axis([O m*T(2) 0 2000]); 
xlabel('Time(sec)'); 
ylabel('Frequency (Hz)'); 

case s 
%using Homs-Corbera's threshold 
nfft=fix(O. 0512*fs); %51.2ms; 
[B, F, T]=specgram(x, nfft, fs, hanning(nfft), fix(nfft/2)); 
B=abs(B). ^2; 
mineng=min(min(B))/10; 
D=B; 
[l, m]=size(B); 
C (l, m) =0; 
G(l, m)=0; %binary matrix for wheezing peaks 
H(l, m)=0; %binary matrix for all peaks 
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E=mean(B'); %spectrum 
EE=zscore(E); % normalized global spectrum 

nl=fix(100/F(2)); %how many rows for 100Hz 
for i=1: m 

for j=1: nl: 1-nl 
%C is normalized power spectrum in 100Hz band 
C(j: j+nl, i)=zscore(B(j: j+nl, i)); 

end 
end 

(loc, val]=pickpeak(C, 5,2); 
for i=1: m 

for j=1: 5 
H(loc(j, i), i)=1; 

end 
end 

%scoring 
for i=1: m 

for j=1: 5 
tag=O; %initial score 
tmp=EE(1oc(j, i)); 
if val(j, i)>0.25*tmp & val(j, i)<1.35*tmp 

if loc(j, i)-3>=1 & ... 
val(j, i)>0.1*mean(C(loc(j, i)-3: loc(j, i)-l, i) 
tag=tag+1; 

end 
if loc(j, i)+3 <=1 & ... 

val(j, i)>0.1*mean(C(loc(j, i)+l: loc(j, i)+3, i); 
tag=tag+1; 

end 
if loc(j, i)-1>=1 & loc(j, i)+1 <=1 & ... 

val(j, i)>C(loc(j, i)-l, i)+0.05 & ... 
val(j, i)>C(loc(j, i)+l, i)+0.05 %rule 3 
tag=tag+1; 

end 
if loc(j, i)-2>=1 & loc(j, i)+2 <=1 & ... 

val(j, i)>C(loc(j, i)-2, i)+0.2 & ... 
val(j, i)>C(loc(j, i)+2, i)+0.2 %rule 4 
tag=tag+1; 

end 
if loc(j, i)-2>=1 & loc(j, i)+2 <=1 

if C(loc(j, i)-l, i)< C(loc(j, i)-2, i) ( 
.. 

C(loc(j, i)+l, i)<C(loc(j, i)+2, i)%rule 5 
tag=tag-1; 

end 
end 
if loc(j, i)-2>=1 & loc(j, i)+2 <=1 & ... 

4*val(j, i)-C(loc(j, i)-1, i)-C(loc(j, i)-2, i)- 
C(loc(j, i)+l, i)-C(loc(j, i)+2, i)>O. 8 %rule 6 
tag=tag+1; 

end 
if tag>3 

%rule 1 

%rule2 
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G(loc(j, i), i)=1; 
end 

end 
end 

end 

%grouping twice 
nl=fix(50/F(2)); 
n2=fix(65/F(2)); 

for k=1: 2 
for i=l: m-2 

I=find(G(:, i)==l); %check for true peaks 
tmp=length(I); 
for j=l: tmp 

if I(j)-nl>=1 & I(j)+nl<1 & ... 
G(I(j), i)==max(G(I(j)-nl: I(j)+nl, i+l)) 
%time distance 25ms&frq dis 50Hz 
[va, lo]=max(G(I(j)-nl: I(j)+nl, i+l)); 
if lo==5 %upper neighbour 

G(lo+I(j)-nl-2, i)=1; 
%include the middle one between two wheeze peaks 

elseif lo==l %lower neighbour 
G(lo+I(j)-nl, i)=1; 

end 
elseif I(j)-n2>=l & I(j)+n2<1 & ... 

G(I(j), i)==max(G(I(j)-n2: I(j)+n2, i+2)) 
%time distance 51ms&frq dis 65Hz 
[va, lo]=max(G(I(j)-n2: I(j)+n2, i+2)); 
if lo>n2 

G(lo+I(j)-n2-2, i+1)=1; 
%include the middle one between two wheeze peaks 

else 
G(lo+I(j)-n2, i+1)=1; 

end 
end 

end 
end 

end 

%elimiate short segments; twice 
for k=1: 3 

for i=3: m-2 
I=find(G(:, i)==1); %check for true peaks 
tmp=length(I); 
for j=l: tmp 

if I(j)-n2>=1 & I(j)+n2<1 
if G(I(j), i)>max(G(I(j)-n2: I(j)+n2, i-2: i-1))... %lonely peek 

& G(I(j), i)>max(G(I(j)-n2: I(j)+n2, i+l: i+2)) 
G(I(j), i)=0; 

elseif G(I(j), i)==max(G(I(j)-nl: I(j)+nl, i-1))... %segs<80ms 
& G(I(j), i)>max(G(I(j)-n2: I(j)+n2, i-2))... 
& G(I(j), i)>max(G(I(j)-n2: I(j)+n2, i+l: i+2)) 

G(I(j), i)=0; 
end 
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end 
end 

end 

end 

for i=3: m-2 
I=find(G(:, i)==1); %check for true peaks 
tmp=length(I); 
for j=l: tmp 

D(I(j), i)=mineng; 
end 

end 

figure(1); 
imagesc(T, F, G), axis xy; colorbar; 
figure(2); 
imagesc(T, F, 10*logio(D+eps)), axis xy; colorbar; 

figure (3); 
colormap(gray); 
contour(T, F, G); 

h=findobj('type', 'patch'); 
set(h, 'Linewidth', 2); 
axis([O m*T(2) 0 2000]); 
xlabel('Time(sec)'); 
ylabel('Frequency (Hz)'); 

end 
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