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Abstract

In this thesis I present the results of studies on the influence of solar photospheric

back–scatter on Hard X–Ray (HXR) flare diagnostics. Specifically the thesis pre-

sented is concerned with the effect of back–scatter photons upon the morphology

of the Hard X–Ray photon spectrum and its effect on the inferred parent electron

spectrum.

I present a theoretical investigation into Compton reflected HXR photons,

known as the photospheric Albedo, and explore the effect of photospheric albedo

on observations of global flare hard X-ray spectra for isotropic emission. I ex-

amine, for the Kramers cross-section, the consequences of ignoring the albedo

correction in using observed spectra to infer flare source electron spectra for thin

and thick target interpretations and show that the effects are very significant in

terms of inferred spectral shape, especially for hard spectra.

I extend this investigation to consider the effect of the photospheric albedo

on observations of global flare hard X-ray spectra for anisotropic primary photon

emission by examining, for the Kramers cross-section, the consequences of ignor-

ing the albedo correction in using observed spectra to infer flare source electron

spectra for thin and thick target interpretations. For an energy dependent mul-

tiplier α I find that the results for anisotropic emission are similar in shape to

isotropic emission when I assume a linear model for the anisotropy.

I then explore two complementary techniques for determining the Compton

back-scattered component of the observed photon spectrum using a model inde-

pendent Greens function approach. The first is a matrix based technique devel-

oped by Kontar & Brown (2006) which I extend to include anisotropic primary

photon emission using an Eddington hemispheric approach along with an empir-

ical fit to published data. The second is a full radiative transfer Greens function

approach developed by Poutanen et al. (1996) which I also extend to include

anisotropic primary photon emission again using an empirical fit to published

data.



iv

In both cases I investigate how anisotropic primary photon emission effects

the observed photon spectrum by studying the differences in the size and shape

of the albedo.

In the final chapter I use the results from the anisotropic Eddington hemi-

spheric Greens function approach and the anisotropic full radiative transfer Greens

function approach to investigate the findings published in Kontar & Brown (2006)

using the Stereoscopic electron spectroscopy technique.

I conclude from the results of this comparison that doing a full anisotropic

scattering properly does not fundamentally change the findings Kontar and Brown

which are specifically that the electron distribution (F̄ (E, µ)) is nearly isotropic

to such a degree of confidence that it casts doubt on models which are based upon

beaming such as the collisional thick target (Brown 1971).
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Chapter 1

Solar Flare Activity and
Diagnostics - An Overview

1.1 An Overview of the Sun

As our local star, the Sun is the only star close enough to be studied in great

detail. At an estimated age of 4.6 billion years it is approximately half way

through its lifespan and it affects all activity within the solar system from the

edge of its atmosphere to the outer most reaches of the solar system. It is a

yellowish looking star (it peaks more towards the green part of the spectrum)

and, with an effective surface temperature of 5770K, is classified as a type G2V

star.

It has an approximate equatorial radius of 6.955 x 108 m (≃109 earth radii

(Woan 2000)), and a mass of 1.989 x 1030 kg (3.33 x 105 earth masses), and it

comprises approximately 99.85% of all the mass within the solar system. It is

mainly composed of hydrogen (71% by mass) with helium the next most abundant

element (27% by mass). The heavier elements, which are commonly referred to

as the metals, account for the remaining (2%) of the solar mass. Its luminosity

is 3.85 x 1026 Watts which means that it’s losing 4.3 x 109 kg of its mass every

second as radiation.

1.1.1 The Solar Structure

The solar interior

The energy source of the Sun is the fusion of hydrogen into helium which happens

in the solar core (a region of radius ≈175,000 km) at temperatures up to 15 million

K. Surrounding the core is the radiative zone so called because radiative transfer
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is the dominant energy transport mechanism within this region. The energy

generated as part of the fusion process within the core, although travelling at

the speed of light, is scattered a countless number of times within this region

such that a photon generated within the core takes 105 − 106 years to reach the

outer most regions of the radiative zone. Figure 1.1 gives an indication of typical

temperature and density variation within the solar interior. The interface between

the radiative and convective zones is called the tachocline and it is here where

the changes in fluid (shear) flow velocities are thought to result in a stretching

of magnetic field lines which gives rise to a magnetic dynamo, thought to be

the source of the solar magnetic field and thus solar flares and other types of

activity on the solar surface. The convection zone is the outermost layer of the

solar interior named to reflect the most energetic efficient transport mechanism

there. It extends from 200,000km to the visible surface and within this zone the

plasma fluid has cooled from an estimated 2 million K to the surface temperature

of 5700K. This convective motion can be seen at the solar surface as granulation

and supergranulation.

a. temperature b. density

Figure 1.1: Temperature and density variations with solar radius in
the solar interior. After Christensen-Dalsgaard et al. (1996). Source:
http://solarscience.msfc.nasa.gov/interior.shtml

The Outer Sun

The photosphere is the visible surface of the Sun at optical wavelengths. It is

actually a very thin (optical depth units) layer approximately 100km thick and

most of the familiar features observed on the solar surface such as sunspots,

faculae and granulation occur in this layer. The chromosphere is the layer above
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the photosphere where the temperature fall counter-intuitively reverses (from

4000-6000K to over 20000K) - this is the coolest region of the Sun. The solar

activity within this layer is dominated by magnetic phenomena such as spots,

active regions, coronal holes, loops, flares and post flare loops. The layer between

the chromosphere and the corona is called the transition region, a thin layer where

the temperature within the plasma rises rapidly from 20000K to between 1 & 3

million K. Figure 1.2 shows the sharp transition from chromospheric to coronal

temperatures (ne indicates the electron density, nH0
the neutral hydrogen density

and Te the temperature).

Figure 1.2: Electron density and temperature model of the chromosphere. Source:
Aschwanden (2005)

The outer layer of the Sun is the solar corona. Emission in the corona is so

washed out by the emission from the solar disk that it can only generally be ob-

served by blocking the disk emission during an eclipse or using a coronagraph. It

had long been thought of as a hot placid plasma until the launch of satellites such

as OSO (Orbiting Solar Observatory), SOHO (Solar Heliospheric Observatory)

and recently RHESSI (Ramaty High Energy Solar Spectroscopic Imager). The

insights gained from these missions allowed the true nature of the corona to be

appreciated (Golub & Pasachoff (2001)), namely that the corona is not only very

hot (> 1MK), and very tenuous plasma, but also a very dynamic region of the

Sun. The corona extends to several solar radii before it becomes the solar wind.

This stream of charged particles (such as electrons, protons and helium ions)
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interacts with planetary systems throughout the solar system. We notice these

effects from their interactions with the earth’s magnetic field as auroral light in

the polar regions. The reach of the solar wind is called the heliosphere and is

thought to be about 100 AU (Ridpath 1997). At this distance interstellar gas

pressure becomes sufficient to slow the solar wind at a boundary known as the

heliopause, which defines the limit of our solar system and thus the limits of our

Sun’s influence.

1.1.2 The Solar Cycle

The solar magnetic cycle is about 11 years, during which the magnetic polarity of

the global solar magnetic field is alternately reversed. Output in many wavelength

regions of the spectrum follow this variation of the magnetic field. This cycle was

observed because of the increase and decrease of sunspot numbers and which as

part of active regions, migrate from high latitudes towards lower latitudes near

the equator during a cycle. This can be illustrated by the butterfly diagram of

sunspots, when their latitudinal position is plotted as a function of time (figure

1.3)

Figure 1.3: Observations of sunspots with solar lattitude - the butterfly diagram.
Source: http://solarscience.msfc.nasa.gov/SunspotCycle.shtml

A full cycle of 22 years, after which the original magnetic configuration is re-

stored, is called a Hale cycle. The total magnetic flux reaches a maximum during

the peak of a cycle and drops to a low level during the minimum of the cycle.

Since many radiation mechanisms are directly coupled to the release of magnetic

energy (i.e. solar flares) and related plasma heating, the radiation output in these

wavelengths (e.g., in soft X-rays, hard X-rays, and radio wavelengths) follows the
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peaks and troughs of the solar cycle.

1.2 Solar Flares

Solar flares are amongst the most energetic events in our solar system, releasing

up to 1025J of energy within a period of several minutes (Emslie 1996) and can

last up to a few hours or exceptionally up to a 24 hour period. To give some

context to this figure, this energy could power the human race for centuries.

They are part of a class of magnetic phenomena (with solar flares at one end and

magnetars at the cosmic extreme) which all involve a reconfiguration of stressed

magnetic field lines to a lower energy state which results in a release of energy

across the whole EM spectrum (Tandberg-Hanssen & Emslie 1988).

Although we are approximately 150 million km from the solar surface we

still feel the effects of flare and CME activity in the emission of light in polar

aurorae and disruption to communication satellites. This disruption was first

experienced during World War II when disruption from solar flares led the British

military to believe that the Germans had found a way to jam radar which had

just entered service at that time. More recently solar cycle activity has caused a

power grid failure in Canada (1989) where a transformer in a power station was

effectively destroyed by the current induced in the grid’s power lines by a solar

driven geomagnetic storm.

A more precient worry is the potential for flare activity to damage the GPS

(global positioning system) communication satellite network in the next solar

maximum due in 2011−2 (Hecht (2006)). These satellites provide the worldwide

infrastructure for navigation from GPS-enabled equipment like mobile phones

to in-car navigation and are fundamental to modern shipping and commercial

aircraft navigation. GPS satellites provide a navigational fix via timing signals

transmitted from each of a series of satellite. Receivers use these timing signals to

determine their location - the more satellites that are within view of the receiver

the more accurately the location will be determined. Clearly the loss of a satellite

and the resulting degradation in locational information may not be problematic

for a car driver but the loss of a navigational fix for an airliner using GPS to

assist landing in poor visibility may result in loss of life. Indeed as we build ever

more sophisticated and sensitive communication equipment within commercial

satellites we expose ourselves more to the effects of solar flare and space weather

disruption than ever before.
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Flares are found generally in the Sun’s activity belts at low latitudes below and

above the equator and are closely associated with sunspots. Sunspots are regions

of the photosphere that are cooler (4000K) and thus dimmer than the surrounding

material. The low sunspot temperatures result from stronger magnetic fields that

inhibit convection of hotter material from deeper regions and conduction of heat

from surrounding regions. Strong magnetic fields form a central role in flare

theories. The magnetic fields originating in sunspots are of one polarity or the

other with field lines leaving one sunspot, rising into the corona, and eventually

returning to the photosphere via another nearby sunspot of the opposite polarity

or via magnetic network fields where there are no sunspots. There can be many

such sunspot pairs in a local group of sunspots and a line can always be drawn

between them - dividing the photosphere in regions of +ve and -ve magnetic field

lines. This line known as a neutral line, (vertical component of magnetic field =

0 or neutral). It is along these magnetic divisions that flares are most commonly

seen (Tandberg-Hanssen & Emslie 1988).

It is generally accepted that the origin of the energy in the coronal magnetic

field is the solar dynamo which is generated by the magnetic shearing of fluid

within the tachocline. Generally the plasma and magnetic fields are frozen to-

gether - the plasma follows the magnetic field or vice versa depending upon which

type of pressure (magnetic or gas) dominates. In the tachocline the plasma will

rise due to convective buoyancy carrying the magnetic field lines with it through

the convective region eventually pushing through the photosphere as the familiar

coronal loops. Since β (which is the ratio of the thermal to magnetic pressure

Pthermal/Pmagnetic ) ≫ 1 at the photosphere the magnetic field lines effectively fol-

low the plasma flows. This leads to the kinetic energy in the plasma flows being

converted into magnetic energy in the twisted/stressed fields in the corona where

β ≪ 1. The plasma flows originate where the plasma fluid become convectively

unstable and a bulk movement of the plasma occurs. This manifests itself visibly

in the photosphere as granulation. Where these twisted field lines become suffi-

ciently close such that they are effectively “touching” - or more accurately within

close proximity - reconnection occurs - the Flare. The process of reconnection is

a local process (Tandberg-Hanssen & Emslie 1988) but with global effects and

releases energy as particle acceleration, specifically electrons and fast-ions, heat,

flare mass motion1 and radiation. It also allows the non-potential energy stored

1Craig & McClymont (1976) emphasised that strong temperature and pressure gradients
established in the flare atmosphere would result in significant mass motion
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within a stressed magnetic field to be released and allows the magnetic field to

relax to a lower energy state (Tandberg-Hanssen & Emslie 1988).

1.2.1 Flare Morphology

Figure 1.4 shows the typical radiative energy release spectrum in a solar flare

versus time for various frequencies and illustrates the pre-flare, impulsive, flash,

and gradual phases.

Figure 1.4: Energy release in a flare with time. Source: Priest (1984)
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A solar flare often begins with a pre-flare phase, indicated by a gradual rise in

SXR and EUV in the region of the eventual flare, and is followed by an impulsive

phase. Much of the emission within this phase is related to acceleration of particle

to very high energies resulting in short lived HXR emission, (sometimes) gamma

rays and emission across a broad range of frequencies. An extended slower re-

lease phase or equilibrium phase follows the impulsive phase. Although the HXR

emission has died away by the gradual phase, the SXR and EUV (i.e. thermal

emission) initially continues to rise and decays over the space of a few hours.

1.2.2 Flare Spectroscopy

Modern satellites allow the study of flare spectra across the full range of the EM

spectrum. Figure 1.5 (Aschwanden 2004) shows the wavelength bands studied by

spacecraft. It can be seen that the HXR/EUV band all benefitted from spacecraft

missions from the 1960s onwards - EM ranges which cannot be studied from

ground based observatories.

Figure 1.5: Spacecraft missions and their energy range of study. Source: As-
chwanden (2004)

Flare observations have been taken in most of the parts of the EM spectrum

from radio waves to energies exceeding 10MeV (HXR and γ rays).With each new

mission we gain a step improvement in spatial and temporal resolution such that



1.2: Solar Flares 20

it is now possible to follow super-heated plasma flows and directly calculate the

energies involved.

The analysis of spectra in order to gain insight into the physical conditions is

a crucial diagnostic in studying solar flares. From the shapes and strengths and

magnetic splitting of spectral lines we gain an idea of the physical conditions in

the magnetized plasma at the point the light is emitted. Traditional observation

focussed on the visible part of the spectrum and indeed the most energetic flare

emit in the visible continuum (white light flares - Carrington (1859)). Equally

important is the information derived from the X-ray and γ ray regions of the

spectrum. This was only realised with the more recent space missions such as

RHESSI. This thesis is devoted to using the energy spectra or count spectra from

spacecraft such as RHESSI.

Flare spectra result from a variety of emission mechanisms. Prior to the

70’s the free free and free bound electrons transitions in atoms and ions in non-

relativistic conditions (which dominate the visible EM emission) were studied in

great detail. Later research has concentrated on X, γ ray and radio emissions

initially by SMM later Hinotobi and Yohkoh or more recently RHESSI.

Higher energy photons in flares are mainly generated by Bremsstrahlung and

by nuclear reactions, following electron and ion acceleration. Most relevant to the

work presented in this thesis is the Bremsstrahlung emission modified by Compton

Scattering which dominates observations in the deka-keV (10keV-100keV) energy

range.

1.2.3 Radiative Processes Resulting in HXR Emission

Radiation is not only an important diagnostic of conditions within flares but it

accounts for a significant component of the overall energy budget (Tandberg-

Hanssen & Emslie 1988). One of the main tools for analyzing this radiation or

emission is the photon (flux) spectrum illustrated by Figure 1.6. The analysis of

the photon spectrum is the main diagnostic that will be used in chapters 4 and

5. Figure 1.6 below shows the composite high energy photon spectrum of a large

flare, extending from soft X-rays (1-10 keV), hard X-rays (10 keV-1 MeV), to

gamma rays (1 MeV-10 GeV), mostly produced by thermal, and nonthermal or

highly-energetic electrons. Gamma-ray line emission and parts of the gamma-ray

continuum are produced by interactions of accelerated protons, neutrons, ions,

and by pion decay (Ramaty 1987).
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Figure 1.6: Composite photon spectrum. Source: Aschwanden 2002

As most of the flaring plasma is highly ionised this means that more than one

half of the particles present are free electrons. Thus electrons play a dominant

role in many radiative processes, and they are also more easily accelerated than

ions. At reconnection sites particles (electrons and ion species) are accelerated up

to a fraction of the speed of light along the magnetic field lines. These particles

collide (or interact) and thus lose energy within the surrounding (atmospheric)

plasma. Different radiative mechanisms are important for different parts of the

electromagnetic spectrum and in different atmospheric regions. Here we consider

radiation from Coulomb interactions of electron with heavier particles and the

scattering of the resulting photons on coronal electrons.

1.2.4 Bremsstrahlung

This is the most common HXR emission mechanism in flares in the 10-100keV

(deka-keV) energy range. In this energy range it can be described classically but

at higher energies, approaching ǫ ≈ mec
2 relativistic corrections apply. It is also

known as free-free emission since the electron remains free after its interaction

with an ion.

Classical electromagnetism predicts that an accelerated electron will emit ra-

diation throughout its acceleration (Kramers 1923) derived an expression, used
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in chapters 2 and 3, for the radiation rate in free free transitions as a function of

the acceleration of the electron. In quantum physics, we describe this radiation

as being composed of discrete quanta of energy (photons) whose characteristics

depend on the size and direction of the perturbing force.

For distant encounters the force is small thus the photon energy is small

which means that the photons are not HXR photons. But close binary collisions

between electrons and heavier particles (or between electrons) result in HXR

photons. For such close interactions a quantum mechanical description is really

required for precise results but in chapters 2 and 3 we use an approximation to

this analysis, as commonly done in the literature.

In general we describe Bremsstrahlung interactions in terms of differential

cross sections d2σ
dEdΩ

(per unit energy and solid angle) for which Koch & Motz

(1959) tabulated many cross sections. At higher energies relativistic corrections

apply and for high values of photon energy ǫ to Electron energy E, the cross

section is highly anisotropic. The effects of anisotropic emission is studied in

chapters 3 to 6. However for the deka-keV energy range the Bethe Heitler (1.1

and chapter 2) cross-section formula applies reasonably well

σB(ǫ, E) =
7.9 × 10−25Z̄2

ǫE
ln

(

1 + (1 − ǫ
E

)
1

2

1 − (1 − ǫ
E

)
1

2

)

cm2keV −1 (1.1)

where

• σB(ǫ, E) is the cross section which is differential in photon energy ǫ but

includes all possible directions of the outgoing and all possible directions and

polarization of the outgoing photon (Tandberg-Hanssen & Emslie 1988).

• E the energy of the electron.

• Z is the atomic number of the scattering ion.

• Z̄2 is the abundance-weighted value of the atomic number of the scattering

ion. Z̄2 ≈ 1.4 for solar abundances.

1.2.5 Bremsstrahlung as a Flare Diagnostic - The Photon
Spectrum

To use bremsstrahlung flux as a diagnostic of the processes within a solar flare

we must make a further assumption : whether the electrons are thermal or non-

thermal (Figure 1.6). Electrons are thermalised if their energy is similar to the
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energy of the background plasma. We are interested here in the non thermal

regime where ǫ, E ≫ kT of the background plasma - the electron population that

has been accelerated in the impulsive phase of the flare. We must also consider

the nature of the conditions in the flaring target which determines the photon

flux spectrum I(ǫ) as being produced by a thin or thick target.

What we actually observe is the HXR bremsstrahlung flux I(ǫ) (photons

cm−2s−1keV −1) at the earth resulting from the injection of a beam of suprather-

mal energetic electrons with a differential energy spectrum F (Eo) (electrons

cm−2s−1keV −1) over flare area S.

In a thin target electrons are injected through a ’thin’ tenuous region such as

the corona where the electron loses only part of its energy. In a thick target the

electrons are stopped: this applies to electrons emitted downwards into the dense

chromospheric plasma. In the latter case the important thing is the injection rate

spectrum Fo(Eo) and we must modify F (E) as it evolves through the target.

For a thin target Brown (1971) (chapter 2 and 3) I(ǫ) can be described as

I(ǫ) =
S∆N

4πR2

∫

∞

ǫ

F (Eo)σB(ǫ, E)dE (1.2)

where ∆N =
∫

np(s)ds - the column density of the source, np(s) is the proton

density which is a function of distance along the injected electron path, S is the

flare area, and R is 1 astronomical unit (AU).

For the thick target F (E) is not the injected spectrum but the target averaged

flux spectrum (Brown 1971). However, in order to gain an insight into the particle

acceleration mechanisms it is more meaningful to have information on the actual

injected spectrum Fo(Eo). The relationship between the target averaged F (E)

and the injected Fo(Eo) is obtained by considering the energy losses suffered

by the bremsstrahlung producing electron in the target. For simple energy loss

processes such as coulomb collisions on ambient particle the energy loss rate can

be described in terms of the energy loss cross section σE(E). The number of

photons emitted per unit energy, centered on ǫ, by an electron of initial energy

Eo is (Brown 1971)

m(ǫ, Eo) =

∫ Eo

ǫ

σB(ǫ, E)

EσE(E)
dE (1.3)

The Bremsstrahlung flux spectrum (observed at Earth at distance R) is ob-

tained by integrating m(ǫ, Eo) over the injected spectral rate Fo(Eo) and over the

flare area S
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I(ǫ) =
S

4πR2

∫

∞

Eo=ǫ

F (Eo)

∫ Eo

ǫ

σB(ǫ, E)dE

EσE(E)
dEo (1.4)

which for Coulomb losses give the following for the thick target (Emslie 1978).

I(ǫ) =
S

4πR2

(

2πe4lnΛ
)

−1
∫

∞

Eo=ǫ

F (Eo)

∫ Eo

ǫ

EσB(ǫ, E)dEdEo (1.5)

where lnΛ is known as the Coulomb logarithm. This is the factor by which small-

angle collisions are more effective than large-angle collisions in Coulomb losses

(typically 10 to 20 for a warm plasma (Woan 2000)).

Brown (1971) developed an analytic solution to the recovery of the mean

electron spectrum F̄ (E) from the Bremsstrahlung emission where the electron

spectrum is not locally Maxwellian (non-thermal) for the Kramer’s and non-

relativistic Bethe–Heitler cross sections. It was found that the problem can be

expressed in terms of an Abel equation and thus an analytic solution can be found

for the F (E) and Fo(Eo) needed for any photon spectrum. In chapters 2 and 3

we use approximations to Equations (1.2) and (1.5) in this analytic approach to

investigate the inferred error in the electron spectrum for an assumed form of the

photospheric backscattering (see next section).

1.3 Photospheric Backscatter - Compton Reflec-

tion

Emission observed from flares at the Earth is composed of both the directly emit-

ted photons (upwards from the solar surface) and those emitted towards the pho-

tosphere then backscattered. These bremsstrahlung photons undergo Compton

scattering within the dense plasma and those which are scattered back into the

direction of the observer at earth are said to have undergone Compton reflection

and become part of the observed photon flux. At a few keV Thomson scatter-

ing results in coherent or elastic scattering but at deka–keV energies scattering

is dominated by Compton scattering. Compton scattering involves a change in

wavelength of a photon when it collides with an electron resulting in some of the

photon’s energy being transferred to the particle and the photon being re-radiated

at a longer wavelength.

If the direction of the photon changes by θ it can be shown that
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λ2 = λ1 +
h

mc
(1 − cosθ) (1.6)

where ∆λ = λ2 − λ1 is the Compton shift (in Angstroms, Å)2 and cosθ is the

angle through which the photon momentum vector changes. When expressed in

terms of energy this shows that Compton scattering reduces the energy of the

scattered photon - energy degradation (chapter 2-4) which is the cause of the

physical characteristic of the albedo ”bump” in I(ǫ) discussed at length in this

thesis.

In Tomblin (1972), it was first stated that, in the few keV region of the spec-

trum, the Compton backscattering effects manifest themselves as a wavelength

shift of X-Ray emission lines such as the Fe K line at 6.6keV. At energies near

1 keV the Compton process is less than 4 percent of the photoabsorption cross-

section but at a few deka-keV photoabsorption is negligible compared to Compton

scattering. This shift generates a tail on the long wavelength side of the emission

lines. Also, since the strength of Compton backscattering intensity is a function

of the photo-absorption processes (which are strongly dependent), it will itself be

strongly energy dependent - this is readily seen in the results presented in the

subsequent chapters in this thesis.

Compton backscatter of solar flare emission has several interesting effects on

solar X-Ray spectra on the solar disk. The rapid decrease in the photoelectric

cross-section causes the Compton backscattering contribution to increase from 5

to 50 percent in the 30-50keV range which implies that a substantial correction

to primary photon spectra obtained from HXR solar events must be made to

compensate for the reflected component of the spectrum.

The ratio of the backscattered intensity to the incident intensity is referred

by Tomblin as the ’Compton reflectivity’ (R(ǫ)) however we use the alternative

term ’photospheric albedo’ (A(ǫ)) in chapters 2 and 3. Compton reflectivity

is thus dependent on both the scattering and the absorption properties of the

atmosphere.

The Compton reflectivity is defined as

R(ǫ) = A(ǫ) =
Iobs

Io

(1.7)

2The ratio h
mc

≡ λc is referred to as the Compton wavelength, which for electrons is h
mec

=

0.024Å
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where Iobs is the observed photon spectrum and Io is the primary photon spec-

trum.

The total ’reflectivity’ R at all energies obtained by summing the various

contributions of the Thomson and Compton scatterings and the photoelectric

absorption from the Sun was calculated by Tomblin (1972), extended to higher

energies in Santangelo et al. (1973), and extended to include polarisation later

by Bai (1978) (chapter 2). Magdziarz & Zdziarski (1995) and Poutanen et al.

(1996) have also calculated Compton reflectivity in cosmic disks which we apply

here within a solar context. Kontar et al. (2006) later built upon the work in

Magdziarz & Zdziarski (1995) to develop a model independent matrix Green’s

function approach to the albedo problem. These papers show that the albedo

problem does not simply involve a coloured reflection A(ǫ) but rather a convolu-

tion/transfer function.

The effect of this is that a power law photon spectrum in the region 10-50keV

(especially if the flare is at the disk centre) would be hardened due to Compton

scattering.

1.4 “Stereoscopic” Electron Spectroscopy and

Photospheric Backscatter

In Kontar & Brown (2006) the authors emphasise that the albedo spectral com-

ponent within the observed photon spectrum offers valuable insight into the

anisotropy of the flare fast electron distribution. They maintain that, given that

the primary emission and albedo bump have very distinct signatures, the strength

of the albedo bump (introduced in chapter 2) in the observed spectrum will be an

indicator of the degree of downward beaming of the electron distribution. This

is indeed the premise of the work presented in this thesis.

This insight in turn can be used to constrain the directivity of the flare elec-

trons so strongly that the conventional models such as the collisional thick target

(CTT) (Brown 1972) with downward beaming or collimated beaming may be

excluded. We investigate this further in chapter 6.

1.5 Structure of Thesis

In Chapter 2 we explore the effect of the photospheric albedo on observations of

global flare hard X-ray spectra and derive an expression to allow approximate
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correction for this in the case of primary power-law photon spectra. We also

examine, for the Kramers cross-section, the consequences of ignoring the albedo

correction in using observed spectra to infer flare source electron spectra for thin

and thick target interpretations and show that the effects are very significant in

terms of inferred spectral shape, especially for hard spectra.

In Chapter 3 we extend the work in chapter 2 to investigate the influence of

anisotropy on the inferred electron spectrum. Again we examine, for the Kramers

cross section, the consequences of ignoring the albedo correction in using observed

spectra to infer flare source electron spectra for thin and thick target interpre-

tations by introducing a simple hemispheric (Eddington approximation), energy

dependent, anisotropic approach.

In Chapter 4 we discuss in more detail the influence of the albedo on the Hard

X–Ray photon spectrum in terms of a convolution from input to output energies.

We demonstrate a model independent approach for studying the effect of the

albedo on the primary photon spectrum Io(ǫ) using the Green’s operator approach

initially developed by Kontar et al. (2006). We extend Kontar’s approach to

include anisotropy by using an energy dependent empirical fit to published data.

We also demonstrate that one of the dominant influences on the photospheric

albedo is simply a geometric effect - a consequence of the photospheric area that

an observer can see.

In Chapter 5 we introduce a full anisotropic radiative transfer approach ini-

tially developed by Poutanen et al. (1996) for studying Compton scattering in the

accretion disks of AGNs. We initially compare Poutanen’s approach against the

Eddington approximation approach developed by Kontar et al and then extend

the radiative transfer approach to investigate the effects of anisotropic emission

by using a simple empirical anisotropic form in the primary photon spectrum.

Finally we use an empirical fit to published data to examine the effects of a more

realistic anisotropic form on the primary photon spectrum.

In Chapter 6 we combine the work in chapters 4 and 5 to test whether using a

full radiative transfer approach alters the findings published in Kontar & Brown

(2006) using the Stereoscopic electron spectroscopy technique. Specifically we

test whether by using a proper anisotropic scattering approach we confirm as

claimed by Kontar and Brown that the electron distribution F̄ (E, µ) (µ = cosθ

is the angle of primary photon emission) is nearly isotropic to such a degree of

confidence that it casts doubt on models which are based upon beaming such as

the collisional thick target (Brown 1972).



Chapter 2

An Empirical Albedo Correction
of RHESSI Spectra for
Photospheric Albedo and its
Effect on Inferred Electron
Spectra

2.1 Introduction

As detailed in Chapter 1, one of the main aims in studying solar flare spectroscopy

is not only to understand the origin of observed spectroscopic features but also

to use these observed features to infer conditions within the flare plasma itself

(which can’t be directly observed) and in particular the electron acceleration

mechanism.

Radiation emitted from accelerated electrons in the electrostatic field of ions

is an important source of X-Ray emission from astronomical plasmas (Craig &

Brown 1986). This emission, known as Bremsstrahlung, or braking radiation, is

produced in collisions between electrons and ambient plasma ion species (mainly

protons) and specifically within flare emitting regions, viz electron-ion collisional

bremstrahlung, this is the dominant emission mechanism in the 20-100keV Hard

X-Rays (HXR) energy range. The HXR energy spectrum that results thus pro-

vides a test of the available models of solar flares and since the observed HXR

photon spectrum can be coupled to its parent electron spectrum, a powerful diag-

nostic has been developed to allow the interpretation of the ambient conditions

within the plasma acceleration region from observed spectroscopic features.

This is particularly relevant with the launch of the spacecraft RHESSI which is
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capable of high HXR spectral resolution. This has created the chance for precise

study of source electron spectra provided the observed spectra are well corrected

for non–primary effects at the Sun including albedo, directivity, polarisation,

source ionisation variations and the like. However a general treatment of all

of these is theoretically complex and computationally intensive for each source

model one wants to try.

2.1.1 Photospheric Compton Backscatter

It was initially noted by Tomblin’s investigation into the effects of Compton

scattering on solar X-Ray photons (Tomblin 1972) (primarily for line emission

/ 20keV )) and later by Santangelo et al. (1973) which extended the energy range

of this investigation to include up to the 100keV energy, that photons emitted

towards the photosphere in the deka-keV energy range in the optically thin solar

atmosphere have a high probability of being Compton scattered back from the

photosphere (termed albedo). These albedo photons come from an extended area

and arrive with a spread of delay times, depending on the primary source height.

Indeed, it has been suggested (Brown, McClymont and van Beek 1975) that

careful imaging or time delay (Bai 1978) studies could help infer source heights.

Recently researchers such as Schmahl & Hurford (Schmahl et al. 2004) have used

source profiles to identify albedo patches from RHESSI image data by forward

fitting.

These backscattered photons add to the primary photons emitted upwards in

the observed signal and thus the immediate consequence of this backscattering of

photons is that the observed hard X-ray photon spectra are in fact a combination

of photons directly emitted into the observers direction and those which have been

backscattered from the solar photosphere via Compton scattering. As noted by

many authors (Santangelo et al 1973, Bai & Ramaty 1978, Johns & Linn 1992

and Alexander & Brown 2002) the photospheric Compton backscatter makes a

significant contribution to observed hard X-Ray (HXR) spectral fluxes over the

RHESSI energy range and should be allowed for in spatially integrated HXR

spectral interpretation.

As previously stated the albedo as a spectral feature of the HXR photon

spectrum can be used as a powerful diagnostic of the intrinsic conditions within

the plasma emitting region. Specifically removing the effects of the albedo from

the observed photon spectra, leaving the primary photon spectrum, can be used
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to recover the parent electron spectrum and give the true nature of the conditions

within the flare plasma.

Other authors have developed general techniques for calculating the fully an-

gularly dependent Compton scattering (Poutanen Nagendra & Svensson (1996))

and their work will be addressed within chapter 5 of this thesis.

2.1.2 Characteristics of Compton Backscatter

The simulations of Bai & Ramaty (1978) show that the reflectivity of the photo-

spheric albedo can be characterised by the following (section 1.3):

1. Absorption due to the photoelectric effect. At lower energies as noted in

Tomblin (1972) the Compton reflectivity is greatly reduced by absorption;

however, as stated in Bai & Ramaty (1978), even at ǫ = 100keV one-third

of the incident photons are absorbed.

2. Energy degradation i.e. the reduction in energy of Compton scattered pho-

tons due to electron recoil. Bai and Ramaty state that this reduces the

reflectivity mainly at higher energies and, because of energy degradation,

at these energies, the reflectivity is larger for flatter spectra.

3. Compression in energy space. This results from the fact that the energy

degradation becomes larger with increasing energy. This accentuates the

’bump’ (peak albedo) around the 30-50keV energy range arising from (1)

and (2).

These properties are evident in figure 2.1 which shows the characteristic form

of the photospheric albedo for a power law HXR photon spectra, resulting from

the Bai and Ramaty 1978 simulations (shown for a primary photon spectral index

(γ) of 2,3,4 and 5). The reflectivity axis is a measure of the Compton reflection

from the photosphere; the energy axis is the photon energy in keV .
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Figure 2.1: Photospheric albedo as simulated by Bai & Ramaty 1978 for a photon
spectral index (γ) range of 2 to 5

2.2 A Simplified Approach for Empirically Cor-

recting Photospheric Albedo

The main need for empirical simplification is the fact that albedo correction is

not just a spectral correction factor (like a ‘coloured’ mirror) but strictly speaking

a convolution. That is, the fractional albedo addition A(ǫ) at photon energy ǫ

to the primary photon spectrum Io(ǫ) itself depends on the functional form of

Io(ǫ), since Compton scattering shifts photons in energy i.e. the photon-electron

Compton interaction produces a number of HXR photons ’smeared’ across a range

of lower energies.

Thus recovery of Io(ǫ) from the total observed spectrum I(ǫ) involves inversion
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of a convolution of Io(ǫ) with the scattering and absorption processes.

Indeed if we recognise that electron-ion collisional Brehmstrahlung is both di-

rectional and polarised (Elwert & Haug (1970), Brown (1972), Leach & Petrosian

(1983), Magdziarz & Zdziarski (1995), Poutanen et al. (1996)), then it becomes

apparent that the full correction problem is nonlinear and messy. Here we offer a

simple approximate first order correction procedure for global HXR spectra based

on empirical fits to published albedo simulations. We do so primarily to illustrate

the impact of this correction on inferred electron spectra for the thin and thick

target models, never previously recognised prior to our work.

In this chapter we present the effects of the albedo contribution on the spec-

trum of the HXR source as a whole, based on function fits to the Bai & Ramaty

(1978) results given in Figure 2.1. The spectral distribution of the albedo contri-

bution was studied in detail by Bai & Ramaty (1978) via Monte Carlo Compton

scattering simulation allowing for photon absorption, bremsstrahlung directivity

and polarization.

A general treatment of the impact of albedo on electron spectrum inference

should be an eventual goal for the work presented in this chapter and such treat-

ments are now being developed by Kontar inspired by our work. Here we present

our simpler basic first order correction of spectral data ( after optimal removal of

the already complex instrumental effects). In this chapter we implement such an

approach for correction of the photospheric albedo.

2.3 Empirical Correction of RHESSI Spectra for

Photospheric Albedo

Suppose the primary HXR source emission rate is Io(ǫ) (photons cm−2s−1 per

unit ǫ) as seen at the Earth. The total observed rate Itot(ǫ) can be written

approximately as

Itot(ǫ) = Io(ǫ)(1 + AIo
(ǫ)) (2.1)

where AIo
(ǫ) is the fractional albedo contribution at energy ǫ. In general,

because of effects (2) and (3) above this depends on Io(ǫ) itself as well as on ǫ

explicitly. In fact AIo
also depends somewhat on the source geometry; specif-
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ically on the source height above the photosphere and the heliocentric–angle1

of the source, since Compton backscatter is angle and energy dependent. Since

variation across the disk is not large and is more of a scale factor than a spectral

distortion, here we ignore it and use angle–averaged results for AIo
from Bai &

Ramaty (1978), though our approach could be extended to apply to each flare

heliocentric angle separately by fitting of our empirical form to the appropriate

Bai & Ramaty results for that angle.

Bai & Ramaty computed AIo
(ǫ) for the specific forward problem of a simple

power–law input Io(ǫ) ∼ ǫ−γ (given in figure 2.1) and for these cases we can write

AIo
(ǫ) = Aγ(ǫ) (2.2)

As a simplified procedure to estimate Io(ǫ) from I(ǫ) allowing for the influence

of A(ǫ) we do the following

1. Since A, while significant, is never large or rapidly varying, obtain a first

approximation to the primary Io(ǫ) as a power–law ∼ ǫ−γ by best fitting the

total data Itot(ǫ) to a power–law index γ (essentially taking A = constant

to zeroth order).

2. Use the best fit γ from 1 with the Bai & Ramaty results on Aγ(ǫ) for that

power law Io(ǫ) to obtain a first order estimate of AIo
(ǫ) using Eq. 2.2.

3. Adopt this Aγ(ǫ) in Eq. 2.1 to derive a first order albedo–corrected Io(ǫ) =

Itot(ǫ)/(1 + Aγ(ǫ)).

To make this easy to do in practice we have explored convenient parameterized

forms of Aγ(ǫ) and best fit the (γ dependent) parameters to the Bai & Ramaty

results for each of the four different γ values which they simulated. We found a

convenient form was

Aγ(ǫ) = Ao(γ) (ǫ)a(γ) e−b(γ)(ǫ) (2.3)

where ǫ is in units of 10keV and the best fit values for of A0, a, and b are given in

Table 2.3. In figure (2.2) (a)–(d) we show the Bai & Ramaty Aγ(ǫ) results with

our best fit superimposed.

1The heliocentric angle is the angle between the solar surface normal and the line of sight
to the observer.
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γ Ao a b

2 0.0077 1.53 0.31
3 0.0088 1.46 0.34
4 0.0098 1.41 0.37
5 0.0111 1.34 0.38

Table 2.1: Best fit parameters to the Bai & Ramaty data

a. γ = 2 b. γ = 3

c. γ = 4 d. γ = 5

Figure 2.2: Plots of best fit parameters, along with the Bai & Ramaty data.
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Figures 2.2.a.–2.2.d. show the plots of the best–fit parameters given in Table 2.3

for Ao(γ), a(γ), & b(γ) substituted into (2.3) (full line) compared with the Bai

& Ramaty data plots for the four values of γ studied (crosses).

Bai & Ramaty only computed 4 cases of γ. To extend these fits empirically to

general γ we show in Figures 2.3.(a).–2.3.(c). plots of Ao(γ), a(γ), & b(γ) versus

γ with smooth fits through these 4 points.

a. Linear fit for parameter Ao versus γ

b. Linear fit for parameter a versus γ

c. Linear fit for parameter b versus γ

Figure 2.3: Plots of linear fits for the parameters Ao(γ), a(γ), & b(γ)
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Figures 2.3.a.– 2.3.c. show the plots of the best–fit parameters given in Table

2.3 for Ao(γ), a(γ), & b(γ). A smooth fit straight line through the data points is

shown for each parameter.

2.4 Effect of Albedo Correction on Inferred Elec-

tron Spectra

2.4.1 Formulation

Given Io(ǫ), one can derive the source mean electron spectrum F̄ (E) (“thin–

target”) and the collisional thick target electron injection spectrum Fo(Eo) by

inversion of the bremstrahlung spectral integral. This was shown analytically

by Brown (1971) for the Bethe–Heitler cross section and by Brown and Emslie

(1988) for the Kramers Cross–Section. Here we use the Kramer’s analytic case

to demonstrate how large the effect of A(ǫ) can be on the inference of source

electron spectra. Specifically we:

• (a) consider cases where the primary electron spectra are in fact power–law

(thin target E−δ or thick target E−δ
o ), resulting in power–law ǫ−γ in both

cases (with γ = δ + 1, δ − 1 respectively)

• (b) generate the total Itot(ǫ) = Io(ǫ)(1+A(ǫ)) that would be observed using

equation (2.3).

• (c) Use the analytic inversion formulae to find out what F̄ (E), Fo(Eo) would

be derived from that Itot(ǫ) if albedo were ignored, i.e. if it were assumed

that Io = Itot.

The Kramers approximation to the bremstrahlung cross–section is

Q(ǫ, E) =
Qo

ǫE

where Qo is a constant.
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2.4.2 Thin Target Inversion

For this case the solution for the mean (thin target) electron spectrum F̄ (E) in

a source of mean density n̄p, volume V is (Brown & Emslie 1988)

F̄ (E) =
1

n̄pV Qo

E

[

−
d

dǫ
(ǫItot(ǫ))

]

ǫ=E

(2.4)

We can evaluate the expression within the brackets as follows

[

d

dǫ
(ǫIo(ǫ))

]

= Io(ǫ) + ǫI
′

o(ǫ) (2.5)

which in the case of a power law

Io(ǫ) = Cǫ−γ (2.6)

where

I
′

o(ǫ) = −γCǫ−γ−1 = −
γ

ǫ
Cǫ−γ = −

γ

ǫ
Io(ǫ) (2.7)

gives

d

dǫ
(ǫIo(ǫ)) = (1 − γ)Io(ǫ) (2.8)

and substituting (2.8) into (2.5) and then in turn (2.5) into (2.4) yields

F̄ (E) ≡ F̄o(E) =
(γ − 1)C

n̄pV Qo

E−γ+1 (2.9)

However, in reality we observe as the true solution Itot = Io(1 + A(ǫ)) rather

than Io so that

[

d

dǫ
(ǫItot(ǫ))

]

=
d

dǫ
[ǫIo(ǫ) (1 + A(ǫ))] (2.10)

=
d

dǫ
[ǫIo(ǫ)] (1 + A(ǫ)) + ǫIo(ǫ)

d

dǫ
(1 + A(ǫ)) (2.11)

=
[

Io(ǫ) + ǫI
′

o(ǫ)
]

(1 + A(ǫ)) + ǫIo(ǫ)A
′

(ǫ) (2.12)

The derivative of our form (2.3) for A gives

A
′

(ǫ) = aAoǫ
a−1e−bǫ + (−b)Aoǫ

ae−bǫ (2.13)

A
′

(ǫ) = Aoǫ
ae−bǫ

(a

ǫ
− b
)

(2.14)
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A
′

(ǫ) = A(ǫ)
(a

ǫ
− b
)

(2.15)

Substituting (2.15) and (2.7) into (2.12) gives

(Io(ǫ) − γIo(ǫ)) (1 + A(ǫ)) + ǫIo(ǫ)A(ǫ)(
a

ǫ
− b) (2.16)

and grouping by Io(ǫ) terms gives

[

d

dǫ
(ǫItot(ǫ))

]

= Io(ǫ)
[

(1 − γ)(1 + A(ǫ)) + ǫA(ǫ)(
a

ǫ
− b)

]

(2.17)

simplifying (2.17) gives

Io(ǫ) [1 − γ + A(ǫ) (1 + a − (γ + bǫ))] (2.18)

inserting (2.18) into (2.4) gives

F̄ (E) = −
1

n̄pV Qo

E [Io(ǫ) [1 − γ + A(ǫ) (1 + a − (γ + bǫ))]]ǫ=E (2.19)

and evaluating (2.19) gives

F̄ (E) = −
1

n̄pV Qo

E [Io(E) [1 − γ + A(E) (1 + a − (γ + bE))]] (2.20)

We can now see that if we ignore the albedo correction by misidentifying Itot

((2.1) & (2.6)) with Io then by (2.4), we would infer

F̄ (E) =
(γ − 1)C

n̄pV Qo

E−γ+1

[

1 − AoE
ae−bE (1 + a − (γ + bE))

γ − 1

]

(2.21)

which is shown in Figures 2.4.(a).– 2.4.(d). or equivalently a mean electron spec-

trum wrong by a fractional error

fthin(γ) =
∆F̄ (E)

F̄o(E)
=

F̄ (E) − F̄o(E)

F̄o(E)
=

AoE
ae−bE [(γ + bE) − (a + 1)]

γ − 1
(2.22)

which is shown in Figure 2.5.
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2.4.3 Thick Target

Here the relevant electron spectrum is the total thick target electron injection

rate Fo(Eo) electrons per s−1 per unit Eo and for the Kramers QB is given from

the photon spectrum by Brown & Emslie (1988) (with K = 2πe4Λ and Λ is the

coulomb logarithm)

Fo(Eo) =
K

Qo

[

d2

dǫ2
(ǫIo(ǫ))

]

ǫ=Eo

(2.23)

Now for a primary power law Io(ǫ), (2.6), when the albedo is neglected then

the differentiation gives

[

d2

dǫ2
(ǫIo(ǫ))

]

=
d

dǫ

[

d

dǫ
(ǫIo(ǫ))

]

=
d

dǫ
[(1 − γ)Io(ǫ)] =

γ(γ + 1)

ǫ
Io(ǫ) (2.24)

therefore for a primary power law Io(ǫ) this leads to

Fo(Eo) =
K

Qo

C(γ − 1)E−γ−1
o (2.25)

while if the albedo correction is added to Io we must evaluate the expression

within the brackets as follows. We can differentiate (2.10) as follows

d2

dǫ2
[ǫI(ǫ)] =

d

dǫ

[

d

dǫ
(ǫI(ǫ))

]

=
d

dǫ

[

(Io(ǫ) + ǫI
′

o(ǫ))(1 + A(ǫ)) + ǫIo(ǫ)A
′

(ǫ)
]

(2.26)

If we express (2.26) as

d

dǫ

[

(Io(ǫ) + ǫI
′

o(ǫ))(1 + A(ǫ))
]

+
d

dǫ

[

ǫIo(ǫ)A
′

(ǫ)
]

(2.27)

we can evaluate the first part of equation (2.27) as follows

d

dǫ

[

(Io(ǫ) + ǫI
′

o(ǫ))(1 + A(ǫ))
]

=
d

dǫ

(

(Io(ǫ) + ǫI
′

o(ǫ))(1 + A(ǫ))
)

+

[

(Io(ǫ) + ǫI
′

o(ǫ)

]

d

dǫ
(1 + A(ǫ)) (2.28)

which gives

(

2I
′

o(ǫ) + ǫI
′′

o (ǫ)
)

(1 + A(ǫ)) +
(

Io(ǫ) + ǫI
′

o(ǫ)
)

A
′

(ǫ) (2.29)
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We can also evaluate the second part of equation (2.27) to give

d

dǫ

[

ǫIo(ǫ)A
′

(ǫ)
]

=
(

Io(ǫ) + ǫI
′

o(ǫ)
)

A
′

(ǫ) + (ǫIo(ǫ)A
′′

(ǫ)) (2.30)

Finally combining (2.29) and (2.30) gives

d2

dǫ2
[ǫI(ǫ)] = (2I

′

o(ǫ) + ǫI
′′

o (ǫ))(1 + A(ǫ)) + (Io(ǫ) + ǫI
′

o(ǫ))A
′

(ǫ)+

(Io(ǫ) + ǫI
′

o(ǫ))A
′

(ǫ) + ǫIo(ǫ)A
′′

(ǫ)

(2.31)

Using the derivatives of A
′

(ǫ) (2.15) and I
′

(ǫ) (2.7) which are given by

A
′′

(ǫ) = A(ǫ)
[

(
a

ǫ
− b)2 −

a

ǫ2

]

(2.32)

and

I
′′

o (ǫ) =
d

dǫ

[

−
γ

ǫ
Io(ǫ)

]

=
γ(γ + 1)

ǫ2
Io(ǫ) (2.33)

we can substitute (2.33),(2.32), (2.15) and (2.7) into (2.31) to give

d2

dǫ2
[ǫI(ǫ)] = (−2

γ

ǫ
Io(ǫ) + ǫ

γ(γ + 1)

ǫ2
Io(ǫ))(1 + A(ǫ))+

(−
γ

ǫ
Io(ǫ) + ǫ(−

γ

ǫ
Io(ǫ)))A(ǫ)

(a

ǫ
− b
)

+

(Io(ǫ) + ǫ −
γ

ǫ
Io(ǫ))A(ǫ)

(a

ǫ
− b
)

+ ǫIo(ǫ)A(ǫ)
[

(
a

ǫ
− b)2 −

a

ǫ2

]

(2.34)

and grouping together like terms and inserting into (2.23) gives Fo(Eo) if Itot is

misinterpreted as Io, namely

F(Eo) =
K

Qo

CE−γ
o ×

[

γ

Eo

(γ − 1) + Aoǫ
ae−bǫ

(

(γ − 1)(
γ

Eo

− 2(
a

Eo

− b))+

Eo

(

(
a

Eo

− b)2 −
a

E2
o

))]

(2.35)

which is incorrect by a fractional amount

fthick(γ) =
F(Eo) −Fo(Eo)

Fo(Eo)
=

Aoǫ
ae−bǫEo

γ(γ − 1)
×

[

(γ − 1)(
γ

Eo

− 2(
a

Eo

− b))+

Eo

(

(
a

Eo

− b)2 −
a

E2
o

)]

(2.36)

which is shown in Fig. 2.7
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2.4.4 Resulting Correction for the Kramers Cross Section

a. γ = 2 b. γ = 3

c. γ = 4 d. γ = 5

Figure 2.4: Plots of the Kramers recovered thin target electron spectra

Figures 2.4.(a).–2.4.(d). show the plots of the Kramers recovered thin target

electron spectra (full lines) along with their respective primary electron spec-

trum (broken lines) for the four values of γ studied. The error in the recovered

spectrum can be observed as a ‘bump’ in the spectrum.



2.4: Effect of Albedo Correction on Inferred Electron Spectra 42

Figure 2.5: Fractional difference between the observed and primary thin target
(Kramer’s) electron spectrum showing the fractional difference decreasing with
increasing γ

Figure 2.5 shows the fractional difference decreasing as γ increases. It also shows

that the inferred electron flux at ‘X’ keV will be greater by ‘Y’ percent when the

effect of an albedo has been included. This percentage also varies with energy.

For example, at 100 keV, an error of approximately 35 percent is obtained for

γ = 2.
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a. γ = 2 b. γ = 3

a. γ = 4 b. γ = 5

Figure 2.6: Plots of the Kramers recovered thick target electron spectra

Figures 2.6.(a).–2.6.(d). show the log plots of the Kramers recovered thick target

electron spectra F(Eo) (full lines) along with their respective primary electron

spectra Fo(Eo) (broken lines) for the four values of γ studied.

Figure 2.7 shows the fractional difference decreasing as γ increases. As previously

mentioned for the thin target case, there is an energy dependent difference in the
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Figure 2.7: Fractional difference between the observed and primary thick target
electron spectrum

inferred electron flux where the effect of an albedo has been included. It is also

apparent from Figure 2.7 that the error in the thick target is significantly greater

than in the thin target case.
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2.5 Discussion

RHESSI spectra have not been reported as exhibiting evident spectral bulges like

those shown in Figures 2.4.(a)–2.4.(d) and 2.6.(a)–2.6.(d).

In order to redress this apparent discrepancy the following explanations might

be offered:

1. The primary spectrum Io(ǫ) has a dip where A(ǫ) has a bulge, the two

offsetting one another. This seems too much of a coincidence to be plausible.

2. The bulges are present but have not been specifically noticed or reported

as such since they are usually rather small on a log plot. Subsequent to

our present work on this, Kontar and others have claimed that the feature

may be present in data and the ’unphysical dips’ exhibited in some RHESSI

electron spectra can be accounted for by including the albedo.

3. In fact, the lower energy end of the bulge is down around 10keV which

may be lost in the thermal emission component. The middle and upper

end energy range of the bulge looks somewhat like a downward knee in

the deka-keV range. Such features are regularly seen in data - cf. discus-

sion in Kontar, Brown and McArthur (2002) Albedo may thus be a partial

explanation of these.

4. There are other corrections - especially that for non-uniform target ionisa-

tion in the case of thick target primary sources discussed by Kontar, Brown

and McArthur (2002) which have been ignored in this chapter. Depending

on the depth (’energy’) of the transition region , this correction might tend

to either augment or hide the effect of albedo on the spectrum.

5. The assumption of an isotropic, point source (Bai & Ramaty 1978) which

provided our source data for A(ǫ) may require modification.

2.6 Conclusion

In this chapter we have explored the effect of photospheric albedo on observations

of global flare hard X-ray spectra and derived an expression to allow approximate

correction for this in the case of primary power-law photon spectra. We have also

examined, for the Kramers cross-section, the consequences of ignoring the albedo
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correction in using observed spectra to infer flare source electron spectra for thin

and thick target interpretations and shown that the effects are very significant

in terms of inferred spectral shape, especially for hard spectra. We have not ex-

tended the analysis to other cross sections but we note that the effects of albedo

on deriving electron spectra will be even larger for more realistic smoother cross-

section approximations, such as the Bethe Heitler, than for Kramers because they

filter the electron spectral features even more. This is confirmed by our prelimi-

nary results for the Bethe Heitler case, to be presented in future work. We also

note that the effects of albedo should be considered alongside other corrections

such as that of nonuniform target ionisation in the case of the thick target beam

model as discussed by Kontar, Brown and McArthur (2002).

In the following chapters some of the assumptions will be revised such as

anisotropic source emission (directivity) and by using more sophisticated inver-

sion techniques such as those developed by Kontar and Poutanen to be able to

approximate more closely actual solar conditions.



Chapter 3

An Empirical Albedo Correction
of Anisotropic Power Law
Primary Photon Emission and its
Effects on Recovered Electron
Spectra

3.1 Introduction

In chapter 2 we studied the effects of ignoring the albedo on the inferred parent

electron spectrum from an isotropically emitted photon spectrum. We argued

that as we observed Itot = Io(1+A(ǫ)) rather than Io then ignoring albedo would

lead to an incorrect electron spectrum and found that both the form and mag-

nitude of this error was dependent on the cross section assumed in the inversion

(Kramers or Bethe–Heitler). In order to investigate this effect analytically we

adopted a simplified, empirical approach. Here we extend that approach to the

case of an anisotropic primary photon source, for the case of Kramers cross-section

(chapter 2).

3.2 Anisotropic Emission - The Eddington Hemi-

spheric Approximation

We use a simple method to approximate anisotropic emission in this chapter based

upon the Eddington approximation (equation 3.1). The Eddington approximation

originates from the study of radiative transfer and is the assumption that the

ratio of the second moment of the radiation field to the mean intensity is equal
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everywhere, to the value of the ratio for an isotropic field (Tandberg-Hanssen &

Emslie 1988).

Here we use the Eddington approximation to simulate anisotropy within the

primary photon emission. We do this as follows:

1. We can treat the emission as two separate hemispheres - the upwards and

the downwards hemisphere (relative to the surface of the photosphere) -

Iup
o and Idown

o respectively. We assume that the emission within each hemi-

sphere is isotropic i.e. averaged in θ ( and φ - the emission is azimuthally

symmetric).

2. The amount of emission into each hemisphere can be varied to simulate the

degree to which the emission is anisotropic.

We can express the primary photon spectrum mathematically as

Io(ǫ, µ) =

{

Iup
o (ǫ) 0 ≤ µ < 1

Idown
o (ǫ) −1 ≤ µ < 0

(3.1)

where µ = cos(θ) the angle at which primary HXR photons are emitted1.

We can illustrate the Eddington hemispheric approach to anisotropy by using a

surface area analogy. This is illustrated in Figure 3.1 below.

1µ is measured relative to the normal to the solar surface with µ = −1 representing the
downwards direction.
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a. Isotropic emission

b. Slightly anisotropic emission

c. Highly anisotropic emission

Figure 3.1: Polar diagram or surface area represention of the anisotropic HXR
photon spectrum using the Eddington approximation. The size of each hemi-
sphere represents the fraction of emission emitted into the respective hemisphere
but it is important to note that total emission remains the same.
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We introduce the idea of a simple model of anisotropic emission into (3.1) by

the use of a multiplier α(ǫ)down which represents the fraction of the total primary

photon spectrum emission which is emitted into the downward hemisphere at

energy ǫ2.

Clearly to conserve emission then

α(ǫ)up = 1 − α(ǫ)down (3.2)

where α(ǫ)up represents the fraction of the total primary photon spectrum emis-

sion which is emitted into the upward hemisphere at energy ǫ.

We now express the primary emission in an anisotropic form using an α however

we need to ensure that our anisotropic model is compatible with the isotropic

model of Alexander & Brown (2002). We do this by considering the following

reasoning.

Suppose Io is the same for all µ and the primary source at some specific

energy ǫ has specific intensity Io(µ). For the isotropic case, the total source

power L =
∫

IodΩ at energy ǫ is 4πIo.

The resulting observed isotropic photon spectrum I(ǫ) in that case is thus

I(ǫ) = Io(ǫ) + A(ǫ)Io(ǫ) = Io(ǫ) [1 + A(ǫ)] (3.3)

note that I = 2Io(ǫ) if A(ǫ) = 1. For Eddington anisotropy, using (3.2), we can

express (3.3) as

I(ǫ) = 2 [(1 − α)Io(ǫ) + A(ǫ)αIo(ǫ)] (3.4)

We note that in the isotropic case (α = 1
2
) equation (3.4) reduces to (3.3) and

conserves

L = 2πIup + 2πIdown = 4π [(1 − α)Io + αIo] = 4πIo (3.5)

A second issue when extending Alexander & Brown 02 to include anisotropy is

what to keep constant when looking at the error in the inferred F̄ (E) and F(Eo)

when ignoring the albedo.

If we take L and Io as constant and use equations (3.3) to (3.4) for I to find F

then there are two sources of error - the first is assuming isotropy and the other

is neglecting albedo. Even if A(ǫ) = 0 we would get the wrong F (ǫ) because I(ǫ)

2This is only a convenient definition used to simplify the mathematical calculation.
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is not equal to Io(ǫ). What is actually fixed is what the observer sees, namely

Iup = 2(1 − α)Io(ǫ) in the absence of albedo.

We can now use the formulation to infer how large an albedo error occurs in

F̄ (E), Fo(Eo) by applying the Brown and Emslie inversion expression to Iobs(ǫ)

ignoring the fact that this is not the primary Io(ǫ) but modified by albedo and

anisotropy.

3.2.1 Effect in Inferred F̄ (E)

Brown & Emslie (1988) find (for Kramers cross section, Q)

F̄ (E) =
1

n̄pV Qo

E

[

−
d

dǫ
(ǫI(ǫ))

]

ǫ=E

(3.6)

which gives, using equation 3.4

F̄ (E) =
2E

n̄pV Qo

[

−
d

dǫ
[ǫ (Io(ǫ)[(1 − α) + A(ǫ)α])]

]

ǫ=E

(3.7)

We now refer to αdown
3 as simply α and assume that I(ǫ) and Io(ǫ) refer to the

anisotropic case unless otherwise stated.

Differentiating the expression within the brackets in (3.7) gives

d

dǫ
[ǫI(ǫ)] = I(ǫ) + ǫI

′

(ǫ) (3.8)

and differentiating (3.8) in turn gives

I
′

(ǫ) =
d

dǫ
[2Io [(1 − α) + Aα]] (3.9)

Substituting (3.9) and (3.8) into (3.8) gives

d

dǫ
[ǫI(ǫ)] = 2I

′

o(ǫ) [(1 − α) + 2Aα] + Io(ǫ)(αA
′

(ǫ)) (3.10)

At this point (3.10) makes no assumptions about the form of I(ǫ), A(ǫ). We

now evaluate (3.10) using the functional forms detailed in chapter (2)

I
′

o(ǫ) = −
γ

ǫ
Cǫ−γ = −

γ

ǫ
Io(ǫ) (3.11)

and

A
′

(ǫ) =
d

dǫ
[A(ǫ)] =

d

dǫ

[

Aoǫ
ae−bǫ

]

=
A(ǫ)

ǫ
(a − bǫ) (3.12)

3αup can be expressed as αup.
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and substituting (3.11) and (3.12) into (3.10) we can express I
′

(ǫ) as

I
′

(ǫ) = −
γ

ǫ
Io(ǫ) [(1 − α) + Aα] + αIo(ǫ)

(

A(ǫ)

ǫ

)

(a − bǫ) (3.13)

and substituting (3.13) and (3.4) into (3.8) gives

d

dǫ
[ǫI(ǫ)] = Io(ǫ) [((1 − α) + A(ǫ)α) (1 − γ) + αA(ǫ)(a − bǫ)] (3.14)

Finally inserting (3.14) into (3.6) we obtain the mean anisotropic thin–target

electron spectrum as

F̄ (E) =
2E

n̄pV Qo

[Io(E) [((1 − α) + A(E)α) (γ − 1) − αA(E)(a − bE)]] (3.15)

From Alexander & Brown (2002) we see that if we actually observe an isotropic

spectrum (3.11) then we would infer a mean thin–target electron spectrum of

F̄ (E) ≡ F̄o(E) =
(γ − 1)C

n̄pV Qo

[E−γ+1] (3.16)

while for the anisotropic case we would get

F̄ (E) ≡ F̄o(E) =
2(γ − 1)(1 − α)C

n̄pV Qo

[E−γ+1] (3.17)

Thus we would infer an anisotropic mean electron spectrum wrong by a fractional

error of

∆F̄ (E)

F̄o(E)
=

F̄ (E) − F̄o(E)

F̄o(E)
(3.18)

which substituting (3.15) and (3.17) into (3.18) above gives

∆F̄ (E)

F̄o(E)
=

[((1 − α) + A(E)α) (γ − 1) − αA(E)(a − bE)]

(γ − 1)(1 − α)
− 1 (3.19)

Results are shown in Figures 3.2 to 3.9 for values of α =0.0625, 0.125, 0.25, 0.5,

0.75, 0.875, 0.95, 0.99.
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Figure 3.2: Fractional difference between the true and albedo corrupted thin
target electron spectra F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.0625 - mostly

emitted upwards)

Figure 3.3: Fractional difference between the true and albedo corrupted thin
target electron spectra F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.125)
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Figure 3.4: Fractional difference between the true and albedo corrupted thin
target electron spectra F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.25)

Figure 3.5: Fractional difference between the true and albedo corrupted thin
target electron spectra F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.5)
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Figure 3.6: Fractional difference between the true and albedo corrupted thin
target electron spectra F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.75)

Figure 3.7: Fractional difference between the true and albedo corrupted thin
target electron spectra F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.875)
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Figure 3.8: Fractional difference between the true and albedo corrupted thin
target electron spectra F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.95)

Figure 3.9: Fractional difference between the true and albedo corrupted thin
target electron spectra F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.99 - mostly

emitted downwards)
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The fractional differences inferred using the Kramer cross section, in the electron

spectra given in Figures (3.2) to (3.9) are immediately recognizable as generating

the bumps in the electron spectra errors given in chapter (2) figures 2.4.a to 2.4.d.

In Figures (3.2) to (3.9) as α increases (representing the degree of downward

beaming towards the solar photosphere) the effect is to increase the fractional

error inferred in the electron spectrum by a scalar constant in this case. Note

that the fractional difference becomes infinite at α = 1 since all the emission is

in the downwards direction.

3.3 Energy Dependent Anisotropy - α(ǫ) for a

Thin Target

We now extend the energy independent anisotropy error analysis to investigate

the error in the inferred thin-target electron spectrum (F̄ (E)) if the fraction of

the primary photon emission emitted into the downward hemisphere is energy

dependent - ( α = α(ǫ)), again treating the albedo as a multiplier not a convolu-

tion. In reality, however, the Compton scattering of incoming photons results in a

spread of scattered photons at lower energies. Using this approach we can there-

fore generalise the fraction representing the anisotropic emission between the two

hemispheres, using an Eddington approximation approach, as α(ǫ) rather than α.

The Eddington approach used here is described more comprehensively in section

3.2 of Chapter 4.

We rewrite (3.1) in terms of α(ǫ) as

I(ǫ) = 2Io(ǫ) [(1 − α(ǫ)) + A(ǫ)α(ǫ)] (3.20)

which we can substitute into (3.6) to give the inferred mean thin target electron

spectrum to give

F̄ (E) =
2E

n̄pV Qo

[

−
d

dǫ
[ǫIo(ǫ) [(1 − α(ǫ)) + A(ǫ)α(ǫ)]]

]

ǫ=E

(3.21)

We can therefore differentiate the expression within the brackets of (3.7) using

(3.8) and express (3.6) in terms of an anisotropic I(ǫ) as
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d

dǫ
[ǫI(ǫ)] = I(ǫ) + ǫI

′

(ǫ)

= Io(ǫ)((1 − α(ǫ)) + α(ǫ)A(ǫ))

+ǫ
d

dǫ
[Io(ǫ)((1 − α(ǫ)) + α(ǫ)A(ǫ))] (3.22)

Differentiating I(ǫ) in (3.22) for a power law photon spectrum gives

I
′

(ǫ) = Io(ǫ)

[

−
γ

ǫ

(

(1 − α(ǫ))

+α(ǫ)A(ǫ)

)

+ǫα
′

(ǫ)(a − bǫ) + α(ǫ)

(

A(ǫ)

ǫ

)

(a − bǫ)

]

(3.23)

substituting (3.22) into (3.23) gives

d

dǫ
[ǫI(ǫ)] = Io(ǫ) ((1 − α(ǫ)) + α(ǫ)A(ǫ))

+ǫ
(

I
′

o(ǫ) [(1 − α(ǫ)) + α(ǫ)A(ǫ)]

+Io(ǫ)
[

α
′

(ǫ)(A(ǫ) − 1) + α(ǫ)A
′

(ǫ)
])

(3.24)

= Io(ǫ) [((1 − α(ǫ)) + α(ǫ)A(ǫ)) (1 − γ)

+α(ǫ)A(ǫ)(a − bǫ) + ǫα
′

(ǫ)(A(ǫ) − 1)
]

(3.25)

and substituting (3.25) into (3.21) gives the electron spectrum that would be

inferred for an anisotropic photon spectrum (I(ǫ)) as

F̄ (E) =
2E

n̄pV Qo

Io(E) [((1 − α(E)) + α(E)A(E)) (γ − 1)

−α(E)A(E)(a − bE) − Eα
′

(E)(A(E) − 1)
]

(3.26)

Now if we misidentify I(ǫ) for Io(ǫ) (3.26) and thus observe the photon spec-

trum as

I(ǫ) = 2(1 − α(ǫ))Io(ǫ) (3.27)

which can be differentiated to give
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I
′

(ǫ) = 2(−α
′

(ǫ))Io(ǫ) + 2(1 − α(ǫ))I
′

o(ǫ) (3.28)

= 2Io(ǫ)
[

−
γ

ǫ
(1 − α(ǫ)) − α

′

(ǫ)
]

(3.29)

now substituting (3.28) and (3.29) into (3.8) gives

d

dǫ
[ǫ((1 − α(ǫ))Io(ǫ))] = 2Io(ǫ)

[

(1 − α(ǫ))
(

1 −
γ

ǫ

)

− α
′

(ǫ)
]

(3.30)

which we can substitute into (3.6) to give the mean thin target electron spectrum

as

F̄o(E) =
2E

n̄pV Qo

[

Io(ǫ)
[

(1 − α(ǫ))
(

1 −
γ

ǫ

)

− α
′

(ǫ)
]]

ǫ=E
(3.31)

therefore given (3.31) then we would infer a fractional error in the electron spec-

trum as

∆F̄ (E)

F̄o(E)
=

(

1

(γ − 1)(1 − α(ǫ))
× [((1 − α(ǫ)) + α(ǫ)A(ǫ)) (γ − 1)

−α(ǫ)A(ǫ)(a − bǫ) − ǫα
′

(ǫ)(A(ǫ) − 1)
]

)

− 1 (3.32)

3.3.1 The Functional Form of α(ǫ)

In equation (3.32) a general functional form for α(ǫ) was assumed in order to

estimate the effect of anisotropic emission under real flare conditions. We here

introduce a simple linear fit1 for the anisotropy data published by Leach & Pet-

rosian (1983).

In Leach & Petrosian (1983, Figure 1) the magnetic field structure of a flare

is modelled as a semi circular loop in the corona with a vertical component in

the transition layer and chromosphere. Each model is parameterized in terms of

the spectral index of the electron spectrum δ, the mean magnetic field direction

B at depth τ and the pitch angle of the electrons αo. The model parameters

are summarized in Leach & Petrosian (1983, Table 1). Leach and Petrosian give

their results in the form of a X-Ray directivity which is given in Figure 3.10.

1A linear fit was used as a more complicated interpolation in energy would not yield addi-
tional benefits
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We use the ADS data plot extraction application, Dexter (Demleitner et al.

2001) to extract the data points given in Figure 3.10 and this data is given in

Table 3.1 below. The full angular digitised data can be found in table 5.1 but in

this chapter we convert the data into a hemispherical average - α(ǫ).

Figure 3.10: X-Ray directivity as a function of the polar angle θ (taken from
Leach and Petrosian (1983), Figure 4. Zero degrees is the vertical direction away
from the photosphere. The dashed line shown (model 5 within LP83) is given for
photon energies of 22 keV (upper set), and 210keV (lower set).

We can determine a simple functional form for α(ǫ) as follows:

1. Using (Leach & Petrosian 1983, Table 1) we choose model 5 (long dashed

line) shown in figure 3.10 as this has the closest morphological match for

our purposes. As the effects of the albedo can easily be seen in hard photon

spectra (small values of γ) we choose the model which will produce X-Ray

photon spectrum that is relatively hard (γ ≈ 3 for model 5) and has a small

pitch angle αo suggesting high directivity.

2. The emission is modelled using the Leach and Petrosian directivity values
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emitted at θ = 0o and θ = 180o in order to be compatible with the Edding-

ton approach detailed in section 3.2 where the emission occurs within the

two separate hemispheres.

3. We then obtain a value for the ratio of the emission into the upward and

downward hemispheres at θ = 0o and θ = 180o at the 22 keV and 210 keV

energies.

4. Using the ratios, we obtain the fractions of the emission emitted into each

hemisphere. This subsequently yields values of α22keV and α210keV for these

two energies.

5. Finally we use a simple linear interpolation between the two energy data

points to arrive at a linear relationship for α(ǫ).

ǫ
(keV )

θ = 0o θ = 180o

22 0.5 1.5
210 0.1 2.25

Table 3.1: Directivity of the emission at 22keV and 210keV

As we are interested in the directivity of the emission and the fraction α

emitted into each hemisphere, we can convert the values given in table 3.1 into

emission fractions into each hemisphere give using the ratio of the emissionup :

emissiondown which is reflected in table (3.2) below

ǫ
(keV )

θ0 θ180

22 1
4

3
4

210 2
47

45
47

Table 3.2: Fraction of the emission into the upward and downward hemisphere
at 22keV and 210keV

From table (3.2) we can obtain two data points in the form (ǫ, α(ǫ)). Interpo-

lating between the points provides a crude functional form for α(ǫ) and we can

express this in the form of a straight line as

α(ǫ) = Gǫ + H (3.33)
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Figure 3.11: The fractional differences inferred within the Kramers electon spec-
trum are given in Figure (3.11) for a range of spectral indexes (γ = 2 to 5), for
our empirically derived α(ǫ)

and then evaluating the values of G and H we can express the functional form of

α(ǫ) as

α(ǫ) =

(

39

35344

)

ǫ + 0.726 (3.34)

Finally we substitute (3.34) into (3.32) to obtain the fractional difference in

the inferred electron spectrum for the empirically fitted form for α(ǫ).

3.3.2 Resulting Error Inferred for an Energy Dependent
Anisotropic Correction - α(ǫ)

A comparison of figure (3.11) with (3.2) to (3.9) shows that the main effect of

an energy dependent anisotropy within the inferred fractional difference is in the

shape of the fractional difference. Whilst the energy independent anisotropic

correction resulted in a simple ’scaling factor’ of ∆F̄ (E)
F̄o(E)

, the energy dependent

anisotropic case results in an increase in the negative value of ∆F̄ (E)
F̄o(E)

as energy
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increases. This physically represents the photon emission becoming more beamed

in the downward direction at higher energies.

The energy range in Figure 3.11 has been restricted due to the approximate

nature of the empirical fit which causes α(ǫ) to become unphysical (greater than

1) above 250keV. We can again use the energy range over which α(ǫ) is physically

valid to calculate the fractional difference in F̄ (E).

3.4 Thick–target

From Brown & Emslie (1988) the thick–target electron spectrum F(Eo), (total

injection rate of electrons per second per unit Eo) is given for an isotropic primary

photon spectrum I(ǫ) by

Fo(Eo) =
K

Qo

[

d2

dǫ2

(

ǫI(ǫ)

)]

ǫ=Eo

(3.35)

where K = 2πe4Λ and Λ is the coulomb logarithm (section 1.2.5), and

d2

dǫ2
[ǫI(ǫ)] = 2I

′

(ǫ) + ǫI
′′

(ǫ) (3.36)

which allows us to determine the inferred error in the parent thick target elec-

tron spectrum given an anisotropic observed photon spectrum assuming either

an energy-dependent or eergy-independent α.

3.4.1 Energy Independent Eddington Anisotropy - α

Differentiating the energy independent anisotropic I
′

(ǫ) (3.13) (given in section

3.3) for a power law photon spectrum gives

I
′′

(ǫ) =
d

dǫ

[

Io(ǫ)

(

−
γ

ǫ
((1 − α) + αA(ǫ)) + αA

′

(ǫ)

)]

(3.37)

= Io(ǫ)
d

dǫ

[

−
γ

ǫ
((1 − α) + αA(ǫ)) + αA

′

(ǫ)

]

+I
′

o(ǫ)
(

−
γ

ǫ
((1 − α) + αA(ǫ)) + αA

′

(ǫ)
)

(3.38)

= Io(ǫ)

[

γ

ǫ2
((1 − α) + αA(ǫ)) −

γ

ǫ
αA

′

(ǫ)

+αA
′′

(ǫ) +
γ

ǫ

[γ

ǫ
((1 − α) + αA(ǫ)) − αA

′′

(ǫ)
]

]

(3.39)
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Differentiating (3.12), the energy independent A
′

(ǫ), gives

A
′′

(ǫ) = −
A(ǫ)

ǫ
b + (a − bǫ)

[

A
′

(ǫ)

ǫ
−

A(ǫ)

ǫ2

]

= −
A(ǫ)

ǫ
b + (a − bǫ)

[

A(ǫ)

ǫ2
(a − bǫ) −

A(ǫ)

ǫ2

]

=
A(ǫ)

ǫ2

[

(a − bǫ)2 − (a − bǫ) − bǫ

]

(3.40)

and substituting (3.13), (3.39), (3.12) and (3.40) into (3.36) gives

d2

dǫ2

[

ǫI(ǫ)

]

= Io(ǫ)
[[ γ

ǫ2
((1 − α) + αA(ǫ))

−
γ

ǫ
α

A(ǫ)

ǫ
(a − bǫ) + α

A(ǫ)

ǫ2

[

(a − bǫ)2 − a
]

+
γ

ǫ

[γ

ǫ

(

(1 − α) + αA(ǫ)
)

− α
A(ǫ)

ǫ2

[

(a − bǫ)2 − a
]

]

(3.41)

Finally, substituting (3.41) into (3.35) gives

Fo(Eo) =
K

Qo

[

Io(ǫ)
[[ γ

ǫ2
((1 − α) + αA(ǫ))

−
γ

ǫ
α

A(ǫ)

ǫ
(a − bǫ) + α

A(ǫ)

ǫ2

[

(a − bǫ)2 − a
]

+
γ

ǫ

[γ

ǫ

(

(1 − α) + αA(ǫ)
)

− α
A(ǫ)

ǫ2

[

(a − bǫ)2 − a
]

]]

(3.42)

Now if we misidentify I(ǫ) for Io(ǫ) in (3.35) and differentiate (3.11) evaluating

each component in turn and substituting them into (3.36) gives

d2

dǫ2
[ǫI(ǫ)] = 2I

′

(ǫ) + ǫI
′′

(ǫ)

= −4
(γ

ǫ

)

(1 − α)Io(ǫ) + 2ǫ
γ

ǫ2
(1 − α)(1 + γ)Io(ǫ)

= 2
(γ

ǫ

)

(1 − α)(γ − 1)Io(ǫ) (3.43)

given that
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I(ǫ) = 2(1 − α)Io(ǫ)

I
′

(ǫ) = 2(1 − α)I
′

o(ǫ)

= −2
(γ

ǫ

)

(1 − α)Io(ǫ) (3.44)

I
′′

(ǫ) = 2
( γ

ǫ2

)

(1 − α)Io(ǫ) + 2
(γ

ǫ

)2

(1 − α)Io(ǫ)

= 2
( γ

ǫ2

)

(1 − α)(1 + γ)Io(ǫ) (3.45)

for

I
′′

o (ǫ) =
d

dǫ

[

−
γ

ǫ
Io(ǫ)

]

=
γ

ǫ2
Io(ǫ) −

γ

ǫ
I

′

o(ǫ)

=
γ

ǫ2
(γ + 1)Io(ǫ) (3.46)

and finally substituting (3.43) into (3.35) for Io(ǫ) gives

Fo(Eo) =
K

Qo

[

2
(γ

ǫ

)

(1 − α)(γ − 1)Io(ǫ)
]

ǫ=Eo

(3.47)

which gives a fractional error in the thick target electron spectrum as

∆F̄ (E)

F̄o(E)
=

((γ

ǫ

)

(1 − α)(γ − 1)
)

−1
[

(γ

ǫ

)

(1 − α)(γ − 1) + αA(ǫ)×

(

(γ − 1)(γ − 2α(a − bǫ)) + ((a − bǫ)2 − (a − bǫ) − bǫ)
)

]

−1 (3.48)

3.4.2 Resulting Thick–target Errors for Energy Indepen-
dent Anisotropic Correction - α

The fractional differences inferred (using the Kramers cross section) for electron

spectra given in Figures (3.12) to (3.19) are immediately recognizable as being

similar to bumps in the electron spectra given in chapter (2) figures 2.6.(a).–

2.6.(d). In figures (3.2) to (3.5) as α increases this has the effect of increasing

the fractional error inferred in the electron spectrum by a scaling factor (a scalar

constant in this case). As in the thin–target case, the fractional difference becomes

infinite at α = 1 since all emission is into the downwards direction.
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Figure 3.12: Fractional difference between the true and inferred thick target
(Kramer’s) electron spectrum F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.0625 -
mostly emitted upwards)

Figure 3.13: Fractional difference between the true and inferred thick target
(Kramer’s) electron spectrum F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.125)
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Figure 3.14: Fractional difference between the true and inferred thick target
(Kramer’s) electron spectrum F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.25)

Figure 3.15: Fractional difference between the true and inferred thick target
(Kramer’s) electron spectrum F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.5)



3.4: Thick–target 68

Figure 3.16: Fractional difference between the true and inferred thick target
(Kramer’s) electron spectrum F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.75)

Figure 3.17: Fractional difference between the true and inferred thick target
(Kramer’s) electron spectrum F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.75)
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Figure 3.18: Fractional difference between the true and inferred thick target
(Kramer’s) electron spectrum F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.5)

Figure 3.19: Fractional difference between the true and inferred thick target
(Kramer’s) electron spectrum F̄ (E) for spectral indexes (γ) of 2-5 (α = 0.99 -
mostly emitted upwards)
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3.5 Energy Dependent Anisotropy - α(ǫ) for a

Thick–target

Again we extend the energy independent correction to calculate the inferred frac-

tional difference in the thick–target electron spectrum F(Eo) if the photon spec-

trum we observed was produced in a thick target where the emission of the

photons was beamed into the forward direction but the extent of this beaming

was energy dependent. As before this energy dependent anisotropy is represented

by an energy dependent multiplier α(ǫ). We do this using the same approach as

we used for the energy independent thick target.

Given (3.35), the thick target electron spectrum, we can differentiate the

expression within the brackets using (3.36) for an energy dependent anisotropy.

For an observed photon spectrum as given from (3.20)

I(ǫ) = 2Io(ǫ) [(1 − α(ǫ)) + α(ǫ)A(ǫ)] (3.49)

We need to derive expressions for the first and second order derivatives of this

as follows:

I
′

(ǫ) = 2

[

I
′

o(ǫ) ((1 − α(ǫ)) + α(ǫ)A(ǫ))

+Io(ǫ)
(

−α
′

(ǫ) + α
′

(ǫ)A(ǫ) + α(ǫ)A(ǫ)
)

]

(3.50)

and for a power law photon spectrum of the form Io(ǫ) = Cǫ−γ we can express

(3.50) in term of Io(ǫ) as

I
′

(ǫ) = 2

[

−
(γ

ǫ

)

Io(ǫ) ((1 − α(ǫ)) + α(ǫ)A(ǫ))

+Io(ǫ)
(

−α
′

(ǫ) + α
′

(ǫ)A(ǫ) + α(ǫ)A(ǫ)
)

]

(3.51)

which can be simplified to give the first order derivative of the observed photon

spectrum I(ǫ) as

I
′

(ǫ) = −
(γ

ǫ

)

I(ǫ) + 2Io(ǫ)
[

α
′

(ǫ)(A(ǫ) − 1) + α(ǫ)A
′

(ǫ)
]

(3.52)

We can subsequently differentiate (3.52) as follows
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I
′′

(ǫ) =
d

dǫ

[

−
(γ

ǫ

)

I(ǫ)
]

+
d

dǫ

[

2Io(ǫ)
[

α
′

(ǫ)(A(ǫ) − 1) + α(ǫ)A
′

(ǫ)
]]

(3.53)

I
′′

(ǫ) =
γ

ǫ2
I(ǫ) −

γ

ǫ
I

′

(ǫ) +
d

dǫ

[

2Io(ǫ)
[

α
′

(ǫ)(A(ǫ) − 1) + α(ǫ)A
′

(ǫ)
]]

(3.54)

Now

d

dǫ

[

2Io(ǫ)
(

α
′

(ǫ)(A(ǫ) − 1) + α(ǫ)A
′

(ǫ)
)]

= 2
[

I
′

o(ǫ)
(

α
′

(A(ǫ) − 1) + α(ǫ)A
′

(ǫ)
)

+Io(ǫ)
(

α
′′

(ǫ)(A(ǫ) − 1) + 2α
′

(ǫ)A
′

(ǫ) + α(ǫ)A
′′

(ǫ)
)]

(3.55)

which can be shown to give

2Io(ǫ)
[

(A(ǫ) − 1)
(

α
′′

(ǫ) −
γ

ǫ
α

′

(ǫ)
)

+ A
′

(ǫ)
(

2α
′

(ǫ) −
γ

ǫ

)

+ αA
′′

(ǫ)
]

(3.56)

substituting (3.56) into (3.54) gives

I
′′

(ǫ) =
γ

ǫ2
I(ǫ) −

γ

ǫ
I

′

(ǫ)

+ 2Io(ǫ)
[

(A(ǫ) − 1)
(

α
′′

(ǫ) −
γ

ǫ
α

′

(ǫ)
)

+ A
′

(ǫ)
(

2α
′

(ǫ) −
γ

ǫ

)

+ αA
′′

(ǫ)
]

(3.57)

and substituting (3.50) into (3.57) gives

I
′′

(ǫ) =
γ

ǫ2
I(ǫ) +

(γ

ǫ

)2

I(ǫ)

−
2γ

ǫ
Io(ǫ)

[

α
′

(ǫ)(A(ǫ) − 1) + α(ǫ)A
′

(ǫ)
]

+2Io(ǫ)
[

(A(ǫ) − 1)
(

α
′′

(ǫ) −
γ

ǫ
α

′

(ǫ)
)

+A
′

(ǫ)
(

2α
′

(ǫ) −
γ

ǫ

)

+ αA
′′

(ǫ)
]

(3.58)

and grouping like terms gives
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I
′′

(ǫ) =
γ

ǫ2
I(ǫ)(γ + 1) + 2Io(ǫ)

[

(A(ǫ) − 1)

(

α
′′

(ǫ) −
2γ

ǫ
α

′

(ǫ)

)

+A
′

(ǫ)

(

2α
′

(ǫ) −
2γ

ǫ
α(ǫ)

)

+ α(ǫ)A
′′

(ǫ)

]

(3.59)

Now substituting (3.59) and (3.50) into (3.36) gives

d2

dǫ2
[ǫI(ǫ)] = −

2γ

ǫ
I(ǫ) + 4Io(ǫ)

(

α
′

(ǫ) (A(ǫ) − 1) + α(ǫ)A
′

(ǫ)
)

+
γ

ǫ
I(ǫ) (γ + 1) + 2ǫIo(ǫ)

[

(A(ǫ) − 1)

(

α
′′

(ǫ) −
2γ

ǫ
α

′

(ǫ)

)

+A
′

(ǫ)

(

2α
′

(ǫ) −
2γ

ǫ
α(ǫ)

)

+ α(ǫ)A
′′

(ǫ)

]

(3.60)

which can be shown to give

d2

dǫ2
[ǫI(ǫ)] =

γ

ǫ
I(ǫ) (γ − 1)

+2Io(ǫ)
[

(A(ǫ) − 1)
(

ǫα
′′

(ǫ) + 2α
′

(ǫ)(1 − γ)
)

+A
′

(ǫ)
(

2ǫα
′

(ǫ) + 2α(ǫ)(1 − γ)
)

+ ǫα(ǫ)A
′′

(ǫ)
]

(3.61)

finally substituting (3.61) into (3.35) gives

Fo(Eo) =
K

Qo

[γ

ǫ
I(ǫ) (γ − 1)

+2Io(ǫ)
[

(A(ǫ) − 1)
(

ǫα
′′

(ǫ) + 2α
′

(ǫ)(1 − γ)
)

+A
′

(ǫ)
(

2ǫα
′

(ǫ) + 2α(ǫ)(1 − γ)
)

+ ǫα(ǫ)A
′′

(ǫ)
]]

ǫ=Eo

(3.62)

which we can simplify to give

Fo(Eo) =
2K

Qo

[

Io(ǫ)

(

(γ − 1)
[γ

ǫ
((1 − α(ǫ)) + α(ǫ)A(ǫ)) − 2(α

′

(ǫ)(A(ǫ) − 1) + α(ǫ)A
′

(ǫ))
]

+ǫ
[

α
′′

(ǫ)(A(ǫ) − 1) + 2α
′

(ǫ)A
′

(ǫ) + α(ǫ)A
′′

(ǫ)
]

)]

ǫ=Eo

(3.63)

If we were to mistake Io(ǫ) for I(ǫ) in (3.35) then using (3.36) we would infer a

thick target electron spectrum as follow:
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Given the observed photon spectrum, I(ǫ), as

I(ǫ) = (1 − α(ǫ))Io(ǫ) (3.64)

which we can differentiate to give the first order derivative as follows

I
′

(ǫ) = −α
′

Io(ǫ) + (1 − α(ǫ))I
′

o(ǫ)

−α
′

Io(ǫ) −
γ

ǫ
(1 − α(ǫ))Io(ǫ)

−
[

α
′

+ −
γ

ǫ
(1 − α(ǫ))

]

Io(ǫ)

(3.65)

again differentiating each part in turn we obtain the second order derivative as

I
′′

(ǫ) = −α
′′

(ǫ)Io(ǫ) − α
′

(ǫ)I
′

o(ǫ) − α
′

I
′

o(ǫ) + (1 − α(ǫ))I
′′

o (ǫ)

= −α
′′

Io(ǫ) − 2α
′

I
′

o(ǫ) + (1 − α(ǫ))I
′′

o (ǫ) (3.66)

Now inserting (3.65) and (3.66) into (3.36) gives

d2

dǫ2
[ǫI(ǫ)] = 2I

′

(ǫ) + ǫI
′′

(ǫ)

= 2
[

−
[

α
′

(ǫ) + −
γ

ǫ
(1 − α(ǫ))

]

Io(ǫ)
]

+ǫ

[

−α
′′

Io(ǫ) − 2α
′

(

−γ

ǫ

)

Io(ǫ) + (1 − α(ǫ))
(γ

ǫ

)2

Io(ǫ)

]

(3.67)

which can be shown to give

d2

dǫ2
[ǫI(ǫ)] = Io(ǫ) ×

[

−(1 − α(ǫ))
(γ

ǫ

)

(γ − 2) + 2α
′

(ǫ)(γ − 1) − ǫα
′′

(ǫ)
]

(3.68)

and thus inserting into (3.35) gives

Fo(Eo) =
2K

Qo

[

Io(ǫ)

(

(

(1 − α(ǫ))
(γ

ǫ

)

+ 2α
′

(ǫ)
)

(γ − 1) − ǫα
′′

(ǫ)

)]

ǫ=Eo

(3.69)

and thus using (3.63) and (3.69) we obtain a fractional error of
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∆F̄ (E)

F̄o(E)
=

[

(

(

(1 − α(ǫ))
(γ

ǫ

)

+ 2α
′

(ǫ)
)

(γ − 1) − ǫα
′′

(ǫ)

)

−1

×

(

(γ − 1)
[γ

ǫ
((1 − α(ǫ)) + α(ǫ)A(ǫ)) − 2(α

′

(ǫ)(A(ǫ) − 1) + α(ǫ)A
′

(ǫ))
]

+ǫ
[

α
′′

(ǫ)(A(ǫ) − 1) + 2α
′

(ǫ)A
′

(ǫ) + α(ǫ)A
′′

(ǫ)
]

)]

− 1 (3.70)

The fractional difference inferred within the Kramers electron spectrum and

described by equation (3.70) is shown in figure 3.20 below.

3.5.1 Resulting Error Inferred for an Energy Dependent
Anisotropic Correction - α(ǫ)

Figure 3.20: The fractional difference inferred within the Kramers electron spec-
trum are given in Figure (3.20) for a range of spectral indexes (γ = 2 to 5), given
an empirically derived α(ǫ)
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A closer examination of figure 3.20 indicates that it is similar in shape to its

thin target counterpart. As a consequence of the assumed functional form of α(ǫ),

which was chosen to be a linear, second order terms in (3.70) were zero and thus

the shape is dominated by the first order terms. Thus it will look similar to the

thin-target case.

However it should be noted that if we were able to use a more complex form

for α(ǫ) based on more complete data being available then this would result in

a more complex fractional difference in (3.70) and thus a more complex form in

figure 3.20.



Chapter 4

A Hemispheric Eddington
Green’s Function Approach to
the Albedo and the Influence on
the Hard X-Ray Photon
Spectrum

4.1 Introduction

In Chapters 2 and 3 we studied the effects of ignoring the albedo and the effect

on the inferred parent electron spectrum. This was done for a specific functional

form of the observed photon spectrum which was chosen to have a power law

primary photon spectrum with an albedo feature which has a power law rise and

an exponential decay. These properties along with an empirical fit to Bai and

Ramaty results (Bai & Ramaty 1978) allowed the use of an analytic approach.

However it is apparent that this technique would not be useful as a more general

technique applied to a real observed photon spectrum which would require a

numerical approach. In this chapter we study the effects of the albedo present

within the observed photon spectrum, I(ǫ) by forward modelling. We adopt a

generic, model independent, approach which uses Green’s functions to calculate

the Compton backscattered component within the observed photon spectrum

using the work presented in Kontar et al. (2006).
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4.1.1 Inversion Techniques

The production of the photon spectrum from a mean electron spectrum is a for-

ward modelling problem (chapter 4) where we start with an assumed form of

the electron spectrum, we predict using a model for the emission process (brem-

strahlung) and end with a photon spectrum that would be produced for that

assumed electron spectrum.

However, what we have in reality is the reverse of the forward fit - we start with

the observed photon spectrum (the data function) and have to use the process of

inversion to recover the electron spectrum (the source function) and possibly its

anisotropy that would produce the observed photon spectrum.

Inversion is extremely important in flare spectroscopy as it allows us to inves-

tigate the physical conditions at the acceleration sites and given its importance

it is worthwhile to provide a brief overview of the process of inversion (and reg-

ularisation) which forms the basis of the “Stereoscopic” electron spectroscopy

technique Kontar & Brown (2006).

4.1.2 Forward Modelling

The scientific method is based upon the premise of hypothesis testing. This can be

summarised as the development of a model and testing if the model compares to

the data or observation. Mathematically, this is a form of convolution where the

model and method of testing it are in essence, convolved (Craig & Brown 1986).

This form of convolution is known as forward modelling. It is demonstrated ex-

tensively in previous chapters (2) – (5) where the observed photon spectrum I(ǫ)

is a combination of the primary (or true) photon spectrum Ip(ǫ) emitted towards

the observer and the reflected photon spectrum from the solar atmosphere.

The general mathematical form of the convolutions studied in previous chap-

ters is given in Craig & Brown (1986) where the mapping properties for an integral

equation are described as

K[f(y); x] = g(x) (4.1)

where f(y) is the source function and g(x) is the data function and K is the

operator associated with the kernel k of the equation and the relevant limits.

Within this thesis, depending on the context, we use g(x) to represent the

observed photon spectrum I(ǫ) , f(y) represents the primary photon spectrum

Ip(ǫ) with the kernel K encapsulating all the physical processes acting on the
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source emission or g(x) to represent the primary photon spectrum Ip(ǫ), f(y)

represents the mean electron spectrum F̄ (E) with the kernel K encapsulating all

the physical processes acting on the source emission

Figure 4.1: Illustration of the mapping properties of a typical integral equation
(taken from Craig & Brown (1986), Figure 1.3)

Figure 4.1 illustrates that for the forward direction a wide range of F̄ (E) or

F̄ (E, µ) can be mapped to a narrow range of Ip(ǫ). This is not a problem for the

forward direction as in chapters (2) – (5) we are specifying our starting conditions

by defining a specific form for Ip(ǫ) and we have calculated the kernel from the

known physics of the scattering processes present at the source.

Conversely Figure 4.1 also demonstrates that no matter how well I(ǫ) or

I(ǫ, µ) is determined (or measured) and we can therefore determine Ip(ǫ, µ), many

F̄ (E, µ) may be obtained when working backwards. Specifically the deconvolution

here refers to the recovery of a primary photon spectrum Ip(ǫ) from data – I(ǫ).

This ultimately limits what can be concluded from work that naively uses the

deconvolution process but Craig & Brown (1986) discuss several techniques for

dealing with deconvolutions – the most relevant to the work presented in this

thesis are discussed later in this chapter.
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4.1.3 Deconvolving - The Inverse Problem

In reality we observe photon counts from satellites such as RHESSI and these

counts, binned by energy, give us the familiar observed photon spectra - I(ǫ).

However I(ǫ) does not represent the data function g(x) because the integral equa-

tion Kf = g (4.1) describes an idealised problem.

Unfortunately in all practical applications of (4.1) we have to take into ac-

count systematic errors such as rounding errors in the computer hardware or

measurement errors in the recording of the data (Craig & Brown 1986). We can

therefore rewrite (4.1) as

K(f + δf) = g + δg (4.2)

which we can write in a shorthand notation as

Kf̂ = ĝ (4.3)

where f̂ and ĝ are known as the actualisation of f and g. In the context

of the work presented in this thesis ĝ in equation (4.3) actually represents the

observed photon spectrum I(ǫ) along with all its errors. Unfortunately no matter

how exacting the measurement process of I(ǫ) within the RHESSI spacecraft the

nature of the noise processes present in I(ǫ) (and thus the realisation of the data

function δg) will only ever be partially known.

It is apparent that, as a consequence of equation (4.2), a whole family of

solutions of f̂(y) is defined by (4.1). Some of these solutions will be close to the

true solution of Kf = g. However others will be entirely spurious as illustrated

by Figure 4.1.

4.1.4 Regularisation

Regularisation is used to force which solutions are close to the true source func-

tion from those that are spurious according to some subjective criterion such as

smoothness. The classical solution f̂ = K−1ĝ to (4.1) is not strong enough to

eliminate all the bad solutions. In fact ‖f − f̂‖ may be arbitrarily large (Craig

& Brown 1986).

This is illustrated in figure 4.2 which highlights that two functions that differ

by a small high frequency ripple in data space can be arbitrarily far apart in
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function space (derivative space) and indicates that the backward solution is

unstable to high frequency components within the data (Craig & Brown 1986).

Regularisation introduces a smoothness condition on the source function, in

effect adding the extra information required to stabilise the inversion or to com-

plete the definition of the problem.

A solution is thus obtained by solving

‖Kf̂ − ĝ‖2 + λ‖Kf‖2 = min (4.4)

where λ is the regularisation parameter.

Alternatively the condition is arrived at by minimising the function Kf and

bounding the residuals though it is generally convenient to associate the regular-

isation parameter with the smoothness parameter (Kontar & Brown (2006) used

in chapter 6).

This means in practice that by varying the smoothness parameter we can vary

the constraint on the regularized solution. But this is ultimately a trade off as

too much smoothing leads to a source function which has lost all of information

that we are interested in studying. Alternatively too little smoothing and the

source function becomes oscillatory i.e. unphysical.

Figure 4.2: Illustration that the data functions gi which are close to the extract
data can result in unphysical source function upon inversion (taken from Craig
& Brown (1986), Figure 3).
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Ideally, as discussed within Craig & Brown (1986) the aim is to use different

sources of data or observations to provide an independent verification of the model

by the additional information on the source that this data will provide. In this

way the source function and the kernel can be constrained. But this is not easily

done as it depends not only upon the different, independent sources of data used

along with the nuances that these add to the problem.

Craig & Brown (1986) provide an in depth discussion of the underlying theory

of forward fitting and the inverse problem, and their implications in astronomy.

4.2 A Green’s Operator Approach to Compton

Reflection

Green’s functions have been obtained for Compton scattering from Monte Carlo

studies in Galactic Black holes and Active Galactic Nuclei (AGNs) by authors

such as White et al. (1988), Poutanen et al. (1996) and others. These were

determined by making specific assumptions about the angular distribution of the

incident radiation field and were not a full anisotropic angular Compton reflection

Green’s function.

They consider radiation reflected from a semi infinite slab and averaged over

all viewing angles, and resulted in an angle averaged Green’s function Ĝ(ǫ, ǫ
′

)

which describes the relationship between inbound photons ǫ
′

and outbound scat-

tered photons ǫ. Although these studies were extended in some cases to yield

solutions for specific viewing angles, a general angular dependent treatment was

not developed until the work published by Magdziarz & Zdziarski (1995). Their

work was also based on a Monte Carlo approach but resulted in an angular depen-

dent Compton Green’s function for spatially integrated reflected flux Ḡ(µ, ǫ, ǫ
′

)

such that we can express the reflected photon spectrum from a semi infinite slab

as an integral over the Green’s function and the downward emitted, primary

photon spectrum (for any specific observer direction)

Ir(ǫ) =

∫ 1

−1

∫

∞

ǫ

Ḡ(µ, ǫ, ǫ
′

)Io(ǫ
′

)dǫ
′

dµ (4.5)

Magdziarz & Zdziarski derived approximations to Green’s function G(µ, ǫ, ǫ
′

)

for the Compton scattering of X-rays and γ-rays by electrons for an isotropic

incident flux on a semi infinite slab of matter, specifically for accretion disks

surrounding Active Galactic Nuclei and Galactic Black holes but a semi infinite
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slab also applies to the solar photosphere.

In practice the Compton scattered (or albedo) component presented by Magdziarz

& Zdziarski 1995 is implemented as a set of analytic functional forms, fitted to

data which combine to represent a Compton reflection Green’s operator which ex-

tends over an energy range from a few keV to several MeV. Although the Green’s

function obtained in this way is angle dependent, Magdziarz & Zdziarski, pre-

calculated the Green’s function at pre-defined angular intervals. As such it was

referred to as a semi angular Compton Green’s function in Poutanen et al. (1996)

in which a general, fully angular, Green’s function was published for Compton

scattering. This Green’s function was later applied within the context of solar

flare plasmas by Kontar et al. (2006) for the case of isotropic primary photon

emission Io(ǫ)isotropic.

In this Chapter we extend the work of Kontar et al. (2006) to include anisotropic

emission (Appendix A.1). Kontar’s algorithm was implemented in Interactive

Data Language (IDL) which is a computer programming language used to de-

velop software for visualisation of complex data sets and was used to develop the

data analysis software for the RHESSI mission (Lin et al. 2002).

Here we use that environment to investigate the effects of an anisotropic emis-

sion model on the albedo using a Green’s function approach as given in equation

(4.5). Specifically we build upon the isotropic model by extending it to include

anisotropic emission in the form of an energy independent multiplier (Appendix

A.2) and an energy dependent multiplier (A.3) empirically fitted to published

data.

Studying the effects of an energy dependent anisotropy upon the albedo will

allow us to determine what physical effects such as aberration or beaming influ-

ence the observed spectrum. Aberration will cause the photon emission to become

preferentially beamed into the forward direction and thus causes the emission to

be anisotropic. As such this is very important in the study of models such as

the Collisional Thick target (CTT) model of Brown (1971) where the emission

of photons is beamed into the forward direction and this anisotropic emission is

itself a function of energy.
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4.3 An Angular Dependent Green’s Function

The HXR photon spectrum as seen by an observer at Earth I(ǫ) is a combina-

tion of the primary photon energy spectrum Io(ǫ) emitted directly towards the

observer and that which has been emitted towards the solar photosphere and

(Compton) backscattered in the direction of the observer Ir(ǫ).

Figure 4.3: Flare source geometry (taken from Tomblin 1972)

Figure 4.31 illustrates diagrammatically the flare source geometry (Tomblin

1972). Figure 4.3 does not show the component of the emission that is directly

emitted towards the observer.

We can express the observed photon spectrum as seen by an observer at earth as

Iobs(ǫ) = Io(ǫ) + Ir(ǫ) (4.6)

In (4.6) the reflected component Ir(ǫ) represents, the physical scattering re-

sponse of the photospheric plasma to those incident primary photons emitted

downward towards the photosphere. This can be represented as a (mathemat-

ical) convolution of the primary photon spectrum Io(ǫ) with an albedo function

A(ǫ) as

1Note that α here refers to the heliocentric angle.
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Ir(ǫ) = A(ǫ)Io(ǫ) (4.7)

Substituting (4.7) into (4.6) we can express the observed photon spectrum in

terms of the primary photon spectrum gives

Iobs(ǫ) = Io(ǫ) + A(ǫ)Io(ǫ) (4.8)

which is just a more general form of equation (2.1) given in Chapter 2.

In equation (4.8) the function A(ǫ) is a specific instance of the Green’s function

operator Ĝ for Compton scattering as given in (4.5) (studied in Chapters 2 and 3).

We can therefore use the more general form of the operator, instead in expressions

(4.7) to (4.8) to describe the Compton reflection of HXR photons.

4.4 The Discrete Compton Green’s Function

Kontar et al. (2006) developed a discrete version of the Green’s function which

was produced in the form of a Matrix Gij which could more readily be used within

IDL simulations.

Using this discrete form of Gij we can express (4.5) as a matrix equation and

obtain an expression for the observed photon spectrum in terms of the discrete

Green’s function as

(Iobs)µ = (Io)µ +

∫

dµ

∫

∞

ǫ

Ḡ(µ, ǫ, ǫ
′

)I(ǫ
′

)dǫ
′

(4.9)

we can re-write (4.9) in the form of a matrix equation as

Iobs = Ip + ĜIp (4.10)

and the ith element Iobs
i of Iobs (for an observed angle µ) can be written as

(Iobs)i = (Ip)i + ΣjĜ
µ
ij(Ip)j (4.11)

4.4.1 Isotropic Green’s Correction to a Power Law Pri-
mary Photon Spectrum

We initially use an isotropic primary photon spectrum Io given by
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Io(ǫ) =
(γ − 1)

4πǫo

(

ǫ

ǫo

)γ

(4.12)

Substituting (4.12) into (4.11) we get the observed photon spectrum Iobs(ǫ) using

the Green’s function.

In previous chapters we used the albedo to investigate the error inferred in

the parent electron spectrum for both isotropic and anisotropic primary photons

emission. However here we are interested in studying how the isotropic and

anisotropic primary photon emission effects the size and shape of the Compton

reflected spectrum (or albedo) itself and not the abolute value of the observed

photon spectrum. Therefore in order to allow a comparison between the isotropic

and anisotropic results it is more meaningful to use the albedo (spectrum) R(ǫ)

defined as

R(ǫ) =
Ir(ǫ)

Io(ǫ)
(4.13)

where R(ǫ) is the albedo spectrum, Io(ǫ) is the primary and Ir(ǫ) represents the

observed spectrum in equation (4.13).

By studying the size and shape of R(ǫ) rather than the absolute value of the

primary photon spectrum Io and the observed photon spectrum Iobs the differences

between isotropic and anisotropic emission will be apparent later in this chapter.

Results - Isotropic Green’s correction

Figure 4.4.(a) shows the results of R(ǫ) as given in expression (4.13). It is the

albedo for a power–law primary spectrum of γ = 4 (chosen to represent a rea-

sonably soft spectrum) and scaled to a photon energy ǫo of 30keV. It shows the

characteristic albedo features as a peak reflectivity around 30keV. The lower part,

4.4.(b), shows the effect of the albedo upon the photon spectrum as seen by an

observer at earth for a primary power–law photon spectrum emitted isotropically

into the downward hemisphere or towards the photosphere.
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a. Reflection albedo spectrum R(ǫ)

b. Primary (solid line) , total (dashed line), and albedo (dotted line) spectra

Figure 4.4: Isotropic Greens correction for primary photon spectrum Io(ǫ) with
γ = 4
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4.5 Anisotropic Emission - The Eddington Hemi-

spheric Approximation

In section 3.2 we introduced the Eddington hemispheric approximation for anisotropic

emission which represents anisotropic emission as a fraction emitted into an up-

ward and downward hemisphere.

In reality each hemisphere represents the integration of Io(ǫ, µ) over µ (µ =

cos(θ)) in that hemisphere (
∫ 1

−1
Io(ǫ, µ)dµ) and we will use this in a later chapter to

compare the differences between the anisotropic Eddington hemispheric approach

and a full anisotropic radiative transfer approach.

We can express the primary emission in an anisotropic form using an α as

I(ǫ) = 2Io(ǫ)((1 − α) + αA(ǫ)) (4.14)

Expression (4.14) gives the photon spectrum emitted from a photospheric

source with A(ǫ) as the Compton reflection or albedo component and is really

an approximation to the Green’s operator. Therefore, given equations (4.5) and

(4.6), we can express I(ǫ) in terms of α(ǫ) and a Green’s function analogous to

(4.9) as

I(ǫ, µ) = Io(ǫ, µ)(1 − α(ǫ)) +

∫

∞

ǫ

Ḡ(µ, ǫ, ǫ
′

)α(ǫ
′

)I(ǫ
′

, µ
′

)dǫ
′

(4.15)

We can write (4.15) in term of an Eddington hemispheric approximation as

I(ǫ) = Io(ǫ)up(1 − α(ǫ)) +

∫

∞

ǫ

Ḡ(µ, ǫ, ǫ
′

)α(ǫ
′

)I(ǫ
′

)downdǫ
′

(4.16)

which we can write in its discrete form as an energy independent anisotropic

Green’s correction.

Thus the ith element of Iobs, Iobs
i for an observer angle of µ can be written as

Iµ
i = (Iup

p )i(1 − α) + ΣjĜ
µ
ijα(Idown

p,i )j (4.17)
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4.6 Results - Eddington Hemispheric Anisotropic

Multiplier

The following plots detail the reflection (albedo) spectrum R(ǫ) for different values

of α.

a. Albedo spectrum - alpha=0.5 (isotropic)

b. Albedo spectrum - alpha=0.25

Figure 4.5: Anisotropic Green’s hemispheric correction for a γ = 3
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c. Albedo spectrum - alpha=0.125

d. Albedo spectrum - alpha=0.0625

Figure 4.6: Anisotropic Green’s hemispheric correction for a γ = 3
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Given (4.17) we would expect that an energy independent α will simply result

in the peak value of R(ǫ) being scaled with the value of α and this can be clearly

seen in Figures (4.5) and (4.6)2.

We now extend this approach to the more interesting case of an energy depen-

dent α, α(ǫ) which we will use to model the energy dependent beaming suggested

by the Collisional Thick Target model (Brown 72).

4.7 An Angular Dependent, Energy Dependent

Green’s Function Approach

In this section we extend the discrete form of the Compton Green’s function to

be anisotropic (Appendix A.3), where the anisotropy itself is a function of energy.

Until now we have introduced anisotropy into our models using a simple mul-

tiplier or energy dependent multiplier. However care must be taken in the intro-

duction of an energy dependent anisotropy into the Green’s function approach as

the Green’s function as given in equation (4.9) also depends upon the inbound

energy and is within an integral i.e. the introduction of an additional energy

dependent α(ǫ) into (4.9) has the effect of changing Ḡ(µ, ǫ, ǫ
′

) and this will inval-

idate the pre-calculated values of the discrete form of the Green’s function Gij as

used within (4.11) which we use in the IDL routines.

Clearly we cannot introduce α(ǫ) into (4.9). However we can circumvent this

by considering the primary photon spectrum as being composed of a sum of

discrete pulses of photons each emitted at energy ǫ and apply the anisotropy as

a simple multiplier αǫ which has a value dependent upon each different energy3.

If we express equation 4.6 in terms of anisotropic emission as

I(ǫ, µ) = Io(ǫ, µ) + Ir(ǫ, µ) (4.18)

Where µ = cos(θ) here is the angle between the observer and the plane of

emission4.

We can now express the Compton reflected spectrum (equation 4.5) in an

anisotropic form as

2An analogous scaling effect can be seen in the energy independent anisotropic fractional

difference (∆F̄ (E)

F̄o(E)
) of recovered electron spectra given in Figures (3.2) to (3.9).

3As X-Ray photon emission at energy ǫ is independent of emission at other energies then
it is valid to consider the total X-Ray photon emission as consisting of a sum of the emission
from each individual energy ǫ in this way.

4the plane of emission here is assumed to be normal to the photosphere.
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Ir(ǫ, µ) =

∫

dµ
′

∫

G(µ, µ
′

, ǫ, ǫ
′

)Io(ǫ
′

, µ
′

)dǫ
′

(4.19)

Therefore we can re-write (4.9) in an isotropic form as

I(ǫ, µ) = Io(ǫ, µ) +

∫

dµ
′

∫

G(µ, µ
′

, ǫ, ǫ
′

)Io(ǫ
′

, µ
′

)dǫ
′

(4.20)

where µ
′

= cos(theta) in this instance is the angle of photon emission.

we can write equation 4.20 in a discrete form as a matrix equation as

Iǫ,µ = Σǫ
′

[

(Io)ǫ
′
,µ + Σµ

′

(

αǫĜǫ,ǫ
′
,µ,µ

′ (Io)ǫ
′
,µ

)]

(4.21)

or, in its discrete form the ith energy element Ii of the observed photon spectrum

at observer angle µ, as

(Iµ
i ) = Σk

[

(Io)
µ
i + ΣjαiĜ

µ
ijk(Io)

µ
j

]

(4.22)

which we can sum to give the anisotropic, angular and energy dependent observed

photon spectrum I(ǫ).

To complete the energy and angle dependent Green’s function approach we

now apply this to a particular form of Io. We do this using the empirical fit which

was introduced in Chapter 2.

4.7.1 Empirical Fit to Leach & Petrosian Data (Edding-

ton Hemispheric Approach)

In this section we develop a discrete version of the empirical fit, given in Section

3.3.1)5. The fit is based on data taken from Figure 3.10 which gives the directivity

D of the X-Ray photon emission as a function of polar angle θ for flare models

at two photon energies 22keV and 210keV .

We include an Eddington Hemispheric approach in the empirical fit by con-

verting the directivity D into an equivalent value which represent the emission

in that hemisphere (α) by assuming that the value of the directivity D at θ = 0

(upwards) and θ = 180 (downwards) applies isotropically within that hemisphere.

This hemispheric equivalent directivity (α) is shown in equation 4.24 below.

5This results in a more convenient expression that was used in the IDL simulation
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Given section 3.3.1 we now express table 3.1 in terms of the directivity D.

These are given in table 4.1 below

ǫ(keV ) Dθ=0◦ Dθ=180◦

22 1 3
210 1 22

Table 4.1: Empirical fit - ratio of emission into each hemisphere.

Using the values given in Table 4.1 we extend the directivity to be energy de-

pendent by applying a linear interpolation between the two data points which

gives

D(ǫ) =
19.0

188
ǫ(keV ) + 0.78 (4.23)

We then express the relationship for directivity (4.23) in terms of an energy

dependent α(ǫ) as

α(ǫ) =
1

D(ǫ) + 1
(4.24)

or, in its discrete form the jth element (or energy) αj of the directivity, as

αi =
1

Di + 1
(4.25)

where ǫ ranges from 1keV to 300keV.

Finally substituting (4.25) into (4.22) gives

(Iµ
i ) = Σk

[

(Io)
µ
i + Σj

(

1

Di + 1

)

Ĝµ
ijk(Io)

µ
j

]

(4.26)

Equation (4.26) describes an empirically fitted expression for the discrete,

energy and angular dependent hemispheric Green’s observed photon spectrum.
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4.7.2 Results - The Anisotropic, Angular Dependent Green’s

Function

Using the albedo spectrum R(ǫ) we now show the influence of an energy dependent

anisotropic emission on the albedo component of the spectrum for the angular

hemispheric Green’s function approach.

a. Albedo spectrum - γ = 2

b. Albedo spectrum - γ = 3

Figure 4.7: Anisotropic Green’s correction
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a. Albedo spectrum - γ = 4

b. Albedo spectrum - γ = 5

Figure 4.8: Anisotropic Green’s correction
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a. Albedo spectrum - µ = 0.05 (limb)

b. Albedo spectrum - µ = 0.25

Figure 4.9: Anisotropic Green’s correction
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a. Albedo spectrum - µ = 0.45

b. Albedo spectrum - µ = 0.60

Figure 4.10: Anisotropic Green’s correction
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a. Albedo spectrum - µ = 0.90

b. Albedo spectrum - µ = 0.95

Figure 4.11: Anisotropic Green’s correction

Figures 4.7 and 4.8 shows the variation of the albedo spectrum for γ = 2 to γ = 5

for various viewing angles µ. Figures 4.9 and 4.11 shows the variation of the

albedo spectrum with viewing angles for spectral indices γ = 2 to γ = 5. The
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peak at 7keV is due to Iron (K-edge) line absorption. This results in an increase

in the Compton-backscattered radiation at energies slightly less than 7keV.

It is apparent from these Figures that the shape of the reflection spectrum

itself has been modified from the isotropic case between the 30 and 200 keV

photon energies. The effect of the empirical fit to the Leach and Petrosian data is

particularly apparent for hard photon spectra (γ = 2, 3). The direct consequence

of this is that in assuming a power law photon spectrum with a simple isotropic

reflection component will underestimate the resulting observed photon spectrum

within the 30keV to 200keV energy range.

4.8 Discussion

We demonstrated a model independent approach for studying the effect of the

albedo upon the primary photon spectrum Io(ǫ). We use model independent here

to reflect that this approach does not require us to make specific assumptions

about the form of the primary photon emission6 and the form of the albedo

which would be required for an analytic approach. The Green’s operator approach

initially developed by Kontar was extended to include anisotropic effects using

an energy independent factor α.

We extended the energy independent approach to study the effects of energy

dependent anisotropy on the photon spectrum using an empirical fit to Leach and

Petrosian data. We note that using such an empirical fit is simplistic, specifically

that

1. The empirical fit was based upon two data points (Leach and Petrosian

1983). This allows only a linear fit to the data points below 250 keV - the

fit above this energy becomes unphysical.

2. The excess introduced into the reflected spectrum is only valid for energies

below 250 keV.

3. Ideally as and when further data points become available then this will

allow a more complex empirical fit to be introduced into our models and

allow the model to be refined.

6To be physically realistic the primary photon emission must remain approximately power-
law.
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Finally, using the energy dependent anisotropic Green’s hemispheric approach,

we found that in assuming an isotropic power law primary photon spectrum we

underestimate the reflection spectrum R(ǫ) and therefore the primary spectrum

is the overestimated within the 30keV to 250 keV energy range.



Chapter 5

A Full Radiative Transfer
Approach with Anisotropy

5.1 Introduction

Current research directed at using recovered electron spectra as a diagnostic of

the electron emission processes within flare plasmas is dependent upon the ob-

served photon spectrum (I(ǫ)) being corrected for the effects of the photospheric

backscattering of X-ray photons which are present within the observed signal to

give the primary photon spectrum (Ip(ǫ)). However this was predominantly done

for photon spectra that were produced by isotropic X-Ray radiation field which

we refer to as an isotropic photon spectrum.

However models such as the thick target (Brown 1973) within which electron

emission is (forward) beamed would require that the primary radiation field is in

fact anisotropic and thus the primary photon spectrum in anisotropic. This was

investigated in the previous chapter using a hemisphere averaged, semi angular

dependent, Green’s function approach of Kontar et al. (2006). These authors

developed a data based, Green’s operator, technique for removing the reflection

component from a photon spectrum thus allowing Ip(ǫ) to be recovered from an

arbitrary I(ǫ). This technique was applied from Magdziarz & Zdziarski (1995) in

which Green’s function operators were developed primarily for the study of AGN

and galactic black holes candidates.

Prior to this, the existing treatment of Green’s functions only produced angle

integrated Green’s functions. The results of Magdziarz and Zdziarski’s monte

carlo method produced angle dependent approximations to green’s functions G

for the Compton reflection of X-Ray and γ-Rays by cold electrons that were de-

pendent upon the viewing angle of the reflecting slab. Crucially this work does
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Figure 5.1: Poutanen model layer geometry

not account for anisotropic emission or is able to calculate Green’s functions for

an arbitrary (viewing) angle. Thus the fully angular, Green’s operator radiative

transfer method developed by Poutanen should be thought of as the ’gold stan-

dard’ for the production of the Green’s Compton spectrum as it does not make

any averaging assumptions that the methods make.

Poutanen uses a discrete ordinate finite difference method (Grant & Hunt

(1969a) and Grant & Hunt (1969b)) for numerically solving the polarized radia-

tive transfer equation derived within Poutanen et al. (1996) for radiation incident

on an optically thick planar slab of neutral matter accounting for both angle and

polarization properties as seen in figure 5.1 below.

Figure 5.1 shows the diagramatic representation of the flare slab geometry

(taken from Poutanen et al. (1996))1.

This results in a general Green’s matrix able to correct an arbitrary (power-

law like) photon spectrum at any viewing angle in the forward direction.

1Note that using this model each slab only reflects photons or allow photons to pass through
- no part of the emission originates in the slab itself.
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5.2 A Radiative Transfer Green’s Function Al-

gorithm

5.2.1 An Overview

The work presented in Poutanen et al. (1996) was implemented in the form of a

programming language algorithm (specifically, in Fortran 77).

Here we use the Fortran 77 version of the algorithm but in order to preserve

the integrity of the science implemented in it and to ensure we do not add errors,

we use the algorithm as a ‘black box’. This is achieved by arranging the code in

such a way that all of the code that is required to define the photon spectra that

we are trying to study is provided within externally supplied routines, distinct

from the main algorithm. This in practice means that we provide a primary

photon spectrum to it (the input) and it gives the observed photon spectrum

(the output) and crucially we are not concerned with the internal workings of the

algorithm which we assume to be correct.

The full listing of the Poutanen algorithm is extensive and it is not necessary

or feasible to list it in its entirety. However our aim in this section is to describe

the points relevant to the work presented in this thesis.

The physical program can be broken into 3 parts: the ’black box’ calculation of

the reflection spectrum, the externally supplied definition of the outgoing photon

spectrum (I(ǫ, µ)) and a ’driver’ routine within which the energy and angular

values are setup and subsequently used within the call to the Compton reflection

calculation part.

5.2.2 The Driver Routine

The driver routine (Appendix C.1) manages the file input and output for the

results of the Compton spectrum calculation. It also allocates the memory and

sets up the arrays of variables - the (µ), (ǫ) values, the escaping flux (I(ǫ, µ))

and the incoming primary photon spectrum (Io(ǫ
′

, µ
′

)) for the main part of the

program.

The driver routine computes the following:

1. The cosine of angles (µ) where reflected spectrum is computed.

2. The photon energies (in units of mec
2) where the reflected spectrum is

computed (ǫ).
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3. Call the external library to provide the following:

(a) The total escaping flux in a given direction; generally this can be a

function of energy, angle and anisotropy.

(b) The specific intensity of the incoming photon spectrum as a function

of photon energy and angles photon energies in mec
2 - I(ǫ

′

, µ
′

).

4. The Compton spectrum, R(ǫ, µ), is calculated at each output angle for the

provided primary photon spectrum2.

5.2.3 The Externally Supplied Models

The input spectrum Io(ǫ, µ) is supplied in the form of specific intensity as a

function of both energy ǫ and angle µ. This is done in the form of an externally

supplied routine written in the ’C’ programming language3.

This external routine takes a value for ǫ and µ and the spectral index γ and

returns a value for I(ǫ, µ) to the main algorithm4.

5.2.4 Limits on the Techniques

The fully angular Green’s method assumes that the input photon spectrum is

power law like. Whilst an arbitrary form did cause the algorithm to break -

indicated by an incomplete or infinite solution, in practice, it was found that some

departure from the power law photon spectrum was tolerated by the algorithm,

enough to allow a thermal component and a high energy cut off. In reality this

is sufficent to handle most of the flare models in the other parts of this thesis.

5.3 Compton Reflection from an Isotropic Source

Here we use the radiative transfer method to obtain the Compton reflection spec-

trum for a power law photon spectrum. By applying this technique in the isotropic

limit we will be able to verify the results that were suggested in Poutanen et al.

2This part of the calculation is treated as a ‘black box’ as we are only concerned with
providing the input parameters to the function and reading the output values returned to the
driver routine.

3C was chosen for convenience as any 3rd generation programming language would be suit-
able

4This allows the models to be changed without changing the main routine and thus to
preserve it as a black box.
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(1996, section 4.2.3), specifically that Poutanen found that the results for fully

radiative transfer method agreed with those of Magdziarz & Zdziarski (1995) to

≈ 6% for an unpolarized isotropic power law spectrum.

This is an important point - as Magdziarz & Zdziarski (1995) is the under-

lying basis for both Poutanen et al. (1996) and Kontar et al. (2006) discretized

Green’s method; both methods should be similar in the isotropic limit. Further-

more we now have an independent method for verifying the work done using the

hemisphere averaged Green’s operator approach albeit in its isotropic limit but

it does provide confidence in the anisotropic extension.

This provides a powerful technique which allows the comparison between the

fully radiative transfer (Green’s) method and the Green’s method of Kontar et al,

which as stated previously is based on the results in Magdziarz & Zdziarski (1995)

and is a result of functions empirically fitted to energy ranges in the spectrum.

Therefore the results that we obtained using the Kontar et al. Green’s method

should be within 10 percent of our results obtained from using the radiative

transfer technique. This will be explored in more detail later in this chapter.

As the Poutanen et al. approach is a radiative transfer solution to Compton

reflection and not an empirical fit, we consider it as a ’gold standard’. The two

approaches are different in that one is empirical and the other is a radiative

transfer solution, it is expected that there will be small differences due to the

different assumptions - the approximations introduced by empirical fitting to

data, and the theoretical simplifications made to arrive at a valid model and

allow integration of the model.

5.3.1 Results - Simple Isotropic Radiative Transfer Solu-
tion

Figures 5.2.a, 5.2.b, 5.3.a and 5.3.b give the reflection (albedo) spectrum R(ǫ) =

I(ǫ)/Io(ǫ) for γ = 2 − 5 for various values of µ. Figures 5.4 (a)-(h), 5.5 (a)-(h),

5.6 (a)-(c) show the plots of the albedo spectrum for γ = 2−5 for various viewing

angles µ. The peak at 7keV which is visible in all of the results given here is due

to Iron (K-edge) absorption.

5.3.2 Comparison of the Two Approaches

The figure below (5.7) shows the results for the two methods for γ = 2 and an

observing angle µ = 0.95 - effectively on the disk centre.
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a. Reflection spectrum for γ = 2 (isotropic)

b. Reflection spectrum for γ = 3 (isotropic)

Figure 5.2: Isotropic albedo using a radiative solution
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a. Intrinsic reflection spectrum Hemisphere averaged

b. Intrinsic reflection spectrum Full angular greens

Figure 5.7: Isotropic Green’s correction for µ = 0.95

Figure 5.7.(a) shows the reflection spectrum R(ǫ) in the hemisphere average

approach for γ = 3 − 5 whilst figure 5.7.(b) shows the reflection spectrum R(ǫ)

for the full radiative transfer approach for γ = 2− 5, both for a viewing angle of

µ = 0.95. It can be seen that both techniques agree well for spectra at the disk
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centre µ > 0.90 in both scale and shape. However as we demonstrate later in this

thesis even small differences between the photon spectra may be amplified when

the photon spectrum is inverted into electron space.

As stated earlier in this section a difference of ≈ 6% was found between the

results obtained by Poutanen et al. (1996) and those of Magdziarz & Zdziarski

(1995) (used in Kontar et al. (2006) and thus in chapter 4) for unpolarised

isotropic power law incident flux and intensity. The difference between the two

approaches given in Figure 5.7 at their peak values is ≈ 10% and is therefore

consistent with the difference indicated in Poutanen et al. (1996, Section 4.2.3)5.

5.4 Compton Reflection from an Anisotropic Source

As previously stated both the semi angular Green’s function developed by Kontar

et al. (2006) and the fully angular method developed by Poutanen et al. (1996) are

based upon an empirical fit Green’s function presented in Magdziarz & Zdziarski

(1995).

The semi angular Green’s function of Magdziarz & Zdziarski (1995) and con-

sequently the implementation of it by Kontar et al. (2006) assumes a primary

radiation field (prior to scattering) that has been averaged.

Kontar precalculates the Green’s function as a matrix array at preset an-

gles (implemented as an IDL routine). Critically, this method does not allow an

energy dependent anisotropic emission in Ip(ǫ)
6. Although this is due to limita-

tions intrinsic to the way the precalculated matrix is made, we circumvented this

limitation by introducing an energy dependent anisotropy as a series of primary

spectrum input Ip(ǫ) at each energy ǫ, calculating the reflection, and effectively

constructing I(ǫ) by repeating the calculation for each photon energy value in

turn. On the other hand the Poutanen method allows an energy dependent

anisotropic primary photon spectrum - Ip(ǫ, µ).

One question which can be investigated with a fully angular Green’s function

is: does the averaging of the source emission affect the resulting observed photon

spectrum in the situation where the source emission is anisotropic such as in

the thick target where the emission would be forward beamed. In this section

we will investigate the effects of an anistropic primary photon spectrum on the

5Given that the two approaches agree in the limit of isotropic photon emission we can there-
fore make a meaningful comparison between both approaches for anisotropic photon emission.

6We found in the previous chapter (4) that energy independent anisotropy simply introduces
a scaling factor in R(ǫ)
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albedo using the fully angular Green’s function approach (Poutanen). Initially

we introduce this using a simple functional form which will model the anisotropy

within the polar angle θ
′

which is illustrated in Figure 5.8 below.

Figures 5.8.a.–5.8.d. show, diagramatically, the anisotropic HXR photon spec-

trum for a fully angular anisotropic primary radiation field - the primary photon

spectrum. Specifically figure 5.8.a.–5.8.d. represents the emission profile that

would be expected with increasing photon energies 7.

5.4.1 Anisotropic Photon Spectrum Assuming a Simple
Functional Form for Anisotropy

Here we take the model described in Figure 5.8 and assume a simple functional

form for the anisotropic emission as

I(ǫ, θ) = Aoǫ
−γ(cos(θ))n (5.1)

where Ao is a normalisation constant, and n is even8.

In section 5.3.1 we defined the albedo as R(ǫ) = Ir(ǫ)
Ip(ǫ)

In the fully anisotropic case we have a primary emission of Ip(ǫ, µ) thus it

is clear that we must integrate the primary emission over µ to get the primary

spectrum that will be reflected at that energy.

We can rewrite the albedo as

R(ǫ) =
I(ǫ)

∫ 0

−1
Ip(ǫ, µ)dµ

(5.2)

Although equation 5.1 is separable in ǫ and θ, this property of the functional

form is not important for this model as we are investigating the effect of the

anisotropy on the Compton reflection spectrum here9.

7it should be noted that in practice photons of energy ǫ will have been emitted from electrons
at energies < 2ǫ. This is an important consideration for the albedo as the photon emission at
the albedo peak (around 30keV) will mainly come from electrons which have energies of 60keV
or less.

8This is to ensure that the emission remains non negative at all θ.
9However our ultimate aim is to use an empirical fit to published data to provide a physically

realistic model with energy dependent anisotropy.
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5.4.2 Results - Simple Anisotropic Radiative Transfer So-

lution

The following Figures 5.9.a, 5.9.b, 5.10.a and 5.10.b give the intrinsic reflection

spectrum R(ǫ) for γ = 2 − 5 for various values of µ.

a. Reflection spectrum for γ = 2 (anisotropic)

b. Reflection spectrum for γ = 3 (anisotropic)

Figure 5.9: Anisotropic albedo using a radiative transfer solution at spectral
indexes γ = 2, 3 for various observer angles µ (n=0 - isotropic)
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c. Reflection spectrum for γ = 4 (anisotropic)

d. Reflection spectrum for γ = 5 (anisotropic)

Figure 5.10: Anisotropic albedo using a radiative transfer solution at spectral
indexes γ = 4, 5 for various observer angles µ (n=0 - isotropic)
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a. Reflection spectrum for γ = 2 (anisotropic)

b. Reflection spectrum for γ = 3 (anisotropic)

Figure 5.11: Anisotropic albedo using a radiative transfer solution at spectral
indexes γ = 2, 3 for various observer angles µ (n=2)
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c. Reflection spectrum for γ = 4 (anisotropic)

d. Reflection spectrum for γ = 5 (anisotropic)

Figure 5.12: Anisotropic albedo using a radiative transfer solution at spectral
indexes γ = 4, 5 for various observer angles µ (n=2)
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a. Reflection spectrum for γ = 2 (anisotropic)

b. Reflection spectrum for γ = 3 (anisotropic)

Figure 5.13: Anisotropic albedo using a radiative transfer solution at spectral
indexes γ = 2, 3 for various observer angles µ (n=4)
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a. Reflection spectrum for γ = 4 (anisotropic)

b. Reflection spectrum for γ = 5 (anisotropic)

Figure 5.14: Anisotropic albedo using a radiative transfer solution at spectral
indexes γ = 4, 5 for various observer angles µ (n=4)
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a. Reflection spectrum for γ = 2 (anisotropic)

b. Reflection spectrum for γ = 3 (anisotropic)

Figure 5.15: Anisotropic albedo using a radiative transfer solution at spectral
indexes γ = 2, 3 for various observer angles µ (n=6)
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a. Reflection spectrum for γ = 4 (anisotropic)

b. Reflection spectrum for γ = 5 (anisotropic)

Figure 5.16: Anisotropic albedo using a radiative transfer solution at spectral
indexes γ = 4, 5 for various observer angles µ (n=6
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c. Reflection spectrum for γ = 4 (isotropic)

d. Reflection spectrum for γ = 5 (isotropic)

Figure 5.3: Isotropic albedo using a radiative solution
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a. µ = 0.05 b. µ = 0.10

c. µ = 0.15 d. µ = 0.20

e. µ = 0.25 f. µ = 0.30

g. µ = 0.35 h. µ = 0.40

Figure 5.4: Albedo spectrum for γ = 2 − 5 for various viewing angles µ
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a. µ = 0.45 b. µ = 0.50

c. µ = 0.55 d. µ = 0.60

e. µ = 0.65 f. µ = 0.70

g. µ = 0.75 h. µ = 0.80

Figure 5.5: Albedo spectrum for γ = 2 − 5 for various viewing angles µ
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a. µ = 0.85 b. µ = 0.90

c. µ = 0.95

Figure 5.6: Albedo spectrum for γ = 2 − 5 for various viewing angles µ
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a. Isotropic emission (low ǫ) b. Slightly anisotropic emission

c. anisotropic emission d. Highly anisotropic emission (high ǫ)

Figure 5.8: Fully angular anisotropic primary emission
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a. µ = 0.95 b. µ = 0.60

c. µ = 0.45 d. µ = 0.30

e. µ = 0.15 f. µ = 0.05

Figure 5.17: Anisotropic albedo using a radiative transfer solution at various
observer angles µ for spectral indexes γ = 2 − 5 (n=0).
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a. µ = 0.95 b. µ = 0.60

c. µ = 0.45 d. µ = 0.30

e. µ = 0.15 f. µ = 0.05

Figure 5.18: Anisotropic albedo using a radiative transfer solution at various
observer angles µ for spectral indexes γ = 2 − 5 (n=2).
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a. µ = 0.95 b. µ = 0.60

c. µ = 0.45 d. µ = 0.30

e. µ = 0.15 f. µ = 0.05

Figure 5.19: Anisotropic albedo using a radiative transfer solution at various
observer angles µ for spectral indexes γ = 2 − 5 (n=4).



5.4: Compton Reflection from an Anisotropic Source 125

a. µ = 0.95 b. µ = 0.60

c. µ = 0.45 d. µ = 0.30

e. µ = 0.15 f. µ = 0.05

Figure 5.20: Anisotropic albedo using a radiative transfer solution at various
observer angles µ for spectral indexes γ = 2 − 5 (n=6).
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Figures (5.9) - (5.16) and (5.17) - (5.20) show the plots of the albedo spectrum

for various degrees of anisotropy (n) and for a chosen functional form of photon

emission.

These figures are similar to the isotropic reflection spectra (section 5.3.1) but

the influence of the anisotropy can be seen as a flattening of the slope of the

reflection spectra R(ǫ) in the 50keV − 200keV energy range.

5.5 Empirical Fit to Leach & Petrosian Data

In this section we describe an empirical fit to data published on the primary HXR

anisotropic spectra emitted by an electron beam within Leach & Petrosian (1983).

Although we applied an analogous technique for the Eddington approximation

in Section 4.7, the fully angular Green’s solution requires a slightly modified

approach.

We do this as a 2 stage process:

1. A 3 parameter empirical fit to the angular data given in figure 4 in reference

Leach and Petrosian at the two data points (22keV and 210 keV respec-

tively). This is achieved using a least squares fit on the angular data given

in table 5.1 below.

2. A linear interpolation of these angular parameters between the data points

in energy to give an energy dependent angular anisotropic fit.

5.5.1 The Anisotropic Emission Model

We introduce a 3 parameter fit or model here as

I(θ)ǫ = (aǫ + bǫcos(θ))
ζǫ (5.3)

at photon energies ǫ where

1. a - the value of the emission at θ = 0

2. b and ζ fit the anisotropy of the emission
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θ 22(keV ) 210(keV )
0 0.50 0.095

30 0.55 0.12
60 0.60 0.30
90 0.80 0.55

120 1.10 1.15
150 1.15 1.50
180 1.20 1.60

Table 5.1: Data points digitised from Leach & Petrosian (1983, Figure 4)

5.5.2 The Least Squares Fit

We can use a least squares fit to obtain values for a, b and ζ for the given model in

equation 5.3. The fitting algorithm is implemented as an IDL routine (Appendix

D) using the curve fitting and optimisation routine CURVEFIT (IDL Online Help

(March 06(2007)) and this routine supplied a value for the χ2 fit for the given

least squares fit.

Here we present an algorithm which can be summarised by the following:

1. choose an initial minimum and maximum value, along with the size of the

step increment for parameters

2. scan the parameter space for these parameters from a minimum to the

maximum

3. evaluate equation 5.3 at each of the values and test the model against the

data points from figure 4, Leach and Petrosian using a least squares fit

4. at the end of the scan of all of the parameter spaces we will obtain a value

for a, b and ζ at which the χ2 test is a global minimum10.

The above algorithm is repeated at both energies (22keV and 210keV ) which

gives the energy independent form of the fit.

Using the data plot extraction application, Dexter (Demleitner et al. (2001)),

the data points for I(θ) were extracted from figure 4 (Leach and Petrosian figure

4). These are given in Table 5.1 below.

Using these 2 data points in Table 5.1 as a reference point for the scan of the

parameter space in the the least square fit routine (Appendix D) the following fit

10As any minimum value obtained may be a local minimum all of the parameter space must
be scanned to ensure that we have a global maximum
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ǫ/keV a b ζ
22 0.9 −0.2 1.95

210 0.8 −0.5 1.95

Table 5.2: Least squares fit parameters

was obtained for the fit parameters aǫ, bǫ and ζǫ at 22keV and 210 keV respec-

tively, for the given model in equation (5.3).

The resulting best fit parameters are given below in table 5.2

5.5.3 Extending the Empirical Fit to be Energy Depen-
dent

In order to extend our anisotropic emission model to be energy dependent we

apply a linear interpolation between the empirically fitted parameters from the

least squares fit11.

Thus we express the three parameters above, in the form of a straight line

y = mx + c, in an energy dependent form as

a(ǫ) = −
0.1

188
ǫ + 0.912 (5.4)

b(ǫ) = −
0.3

188
ǫ − 0.165 (5.5)

ζ(ǫ) = 1.95 (5.6)

It is noted that ζ is constant however for consistency with the other fitted

parameters we will continure to refer to ζ(ǫ). Thus we can re-express equation

5.3 in an energy dependent, empirical fitted, anisotropic form as

I(ǫ, θ) = Aoǫ
−γ × (a(ǫ) + b(ǫ)cos(θ))ζ(ǫ) (5.7)

Equation (5.7) can therefore be implemented within a new version of the

external routine and used within the Poutanen ’black box’ algorithm.

11A linear fit for energy dependence between the two data points (22keV and 210 keV) given
by Leach & Petrosian (1983) could be viewed as simplistic however this approach allows the
model to be updated upon the publication of more comprehensive data.
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5.5.4 Results - Empirically Fitted Angular Dependent Anisotropic

Green’s Function (Radiative Transfer) Solution

We can use the energy dependent anisotropic emission model defined in equation

(5.7) within the algorithm of Poutanen et al. (1996).

The following figures 5.21(a)–(b) and 5.22 (a)–(b) give the intrinsic reflection

spectrum R(ǫ) for γ = 2 − 5 for various values of µ.

a. Reflection spectrum for γ = 2 (isotropic)

b. Reflection spectrum for γ = 3 (isotropic)

Figure 5.21: Radiative transfer solution: anisotropic albedo for an empirical fit
to Leach and Petrosian data
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c. Reflection spectrum for γ = 4 (isotropic)

d. Reflection spectrum for γ = 5 (isotropic)

Figure 5.22: Radiative transfer solution: anisotropic albedo for an empirical fit
to Leach and Petrosian data
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a. µ = 0.05 b. µ = 0.10

c. µ = 0.15 d. µ = 0.20

e. µ = 0.25 f. µ = 0.30

g. µ = 0.35 h. µ = 0.40

Figure 5.23: Plots of albedo spectrum for γ = 2 − 5 for various viewing angles µ
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a. µ = 0.45 b. µ = 0.50

c. µ = 0.55 d. µ = 0.60

e. µ = 0.65 f. µ = 0.70

g. µ = 0.75 h. µ = 0.80

Figure 5.24: Plots of albedo spectrum for γ = 2 − 5 for various viewing angles µ
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a. µ = 0.85 b. µ = 0.90

c. µ = 0.95

Figure 5.25: Plots of albedo spectrum for γ = 2 − 5 for various viewing angles µ

Figures 5.23.(a)–(h), 5.24.(a)–(h), and 5.25.(a)–(c) show the plots of the albedo

spectrum for γ = 2 − 5 for various viewing angles µ. The figures show the usual

form of the Compton reflection spectrum and the peak at 7keV which is due to

Iron line (K-edge) absorption.

5.5.5 Analysis & Discussion

As can be seen from Figure (5.7) a comparison of the fully angular Green’s func-

tion of Poutanen et al and the Eddington hemisphere averaged Green’s function

of Kontar et al shows that they are similar both in shape and scale for an isotropic

primary photon spectrum. Given that Magdziarz & Zdziarski (1995) is the scien-

tific basis for both methods, it was important to verify that both methods agree

in the isotropic limit (Poutanen found that both methods agreed to within 6

percent of each other).

We extended the radiative transfer method using a simple anisotropic func-
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tional form. This tested that the differences in the observed photon spectrum

between the Eddington, hemisphere averaged Green’s function and the fully an-

gular dependent Green’s function correction, in essence, depend upon how the

anisotropic radiation field in the fully angular (Poutanen) case is redistributed

into the equivalent representation in the hemisphere averaged case.

From Figures (5.21), (5.22), (5.23.(a)–(h)), (5.24.(a)–(h)) and (5.25.(a)–(c))

it can be seen that the anisotropic emission appears to have an effect on both the

scale and form of the reflection spectrum R(ǫ). This was apparent for primary

photon spectra with a hard spectral index (γ = 2) but progressively decreased

for spectra with higher spectral indices.

Clearly the effects of using a linear interpolation (in energy ǫ) within the

empirical fit to the Leach and Petrosian data can be seen in the results of figures

(5.21) and (5.22). This results in a ‘straight line bulge’ in the Compton reflection

spectra for hard photon spectra (γ = 2, 3) in the 50 and 300keV energy range.

However a simplistic model of the energy dependence is being used here12

and this is illustrated at relativistic energies > 500keV which would result in a

different energy dependence from the emission, for the same functional form, at

non relativistic energies. This is the best model that we have at present, and

it is hoped that as and when more data points become available then a linear

interpolation can be improved upon.

One property of the spectra is that those produced using the radiative transfer

solution do not fall to zero (say above 200keV) as quickly as in the hemisphere

averaged method. This is evident from figures (5.9), (5.10), (5.2), (5.3), (5.21)

and (5.22) for spectra away from the disk centre i.e. µ ≤ 0.40. This is more

evident towards the limb.

12it is accepted that the empirical anisotropic model of the primary photon emission becomes
unphysical above 400keV due to the linear fit in energy between the two data points - 22keV
and 210keV.



Chapter 6

Inference of Electron Spectrum
Anisotropy from Photon Spectra
- Effect of Albedo Approximation

6.1 Introduction

In chapters (4) and (5) we investigated how isotropic and anisotropic primary

photon emission altered the photospheric albedo and its effect on observed photon

spectra. We initially used a hemisphere averaged approach which we referred to

as the Eddington approximation (chapter 4) and subsequently we looked at a

radiative transfer solution approach provided by Juri Poutanen (chapter 5).

In this chapter we use these results to investigate how the full anisotropic

analysis affects the recovery of anisotropic mean electron spectra when using the

Stereoscopic electron spectroscopy technique of Kontar & Brown (2006). This

technique known more familiarly as the Dentist Mirror1 allows the recovery of

angle dependent F̄ (E, µ) from observed photon spectra. Here we are using syn-

thetic anisotropic observed photon spectra to see how the conclusion of that paper

are changed when we use the full anisotropic albedo rather than the Eddington

approach. Specifically does the fully anisotropic albedo treatment confirm or con-

flict with their assertion that the electron distribution F̄ (E, µ) must be nearly

isotropic.

Clearly this is an important test as the conclusion of Kontar and Brown casts

doubt on models such as the collisional thick target that involve beamed (or

1Here the solar surface is being used as a mirror to reflect downward emitted primary HXR
photons back into the direction of the observer in an analogous way to a dentist using a small
mirror to view a patients teeth.
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anisotropic) photon emission.

6.2 “Stereoscopic” Electron Spectroscopy and

Photospheric Backscatter

In Kontar & Brown (2006) the authors emphasise that the albedo spectral com-

ponent within the observed photon spectrum offers valuable insight into the

anisotropy of the flare fast electron distribution. in particular to constrain the

directivity of the flare electrons so strongly that the conventional models such as

the collisional thick target (Brown 1972) with downward beaming or collimated

beaming may be excluded.

6.2.1 An Overview of the Two Directional Spectroscopic
Inversion

Kontar and Brown represent the photon flux observed at earth, I(ǫ), in terms of

a direct upward and backscattered downwards component at the flare source.

Therefore the flux towards an observer Io(ǫ, θ) can be written as

Io(ǫ) =
n̄V

4πR2

∫

∞

ǫ

[

QF (ǫ, E)F̄u(E) + QB(ǫ, E)F̄d(E)
]

dE (6.1)

where F̄u,d = (n̄V )−1
∫

Fu,d(E, r)n(r)dV

The electron spectrum F (E, θ) is described in a two directional approximation

where Fu(E) and Fd(E) are the density weighted volumetric mean flux spectra of

electrons directed towards the observer upwards and downwards, averaged over

δθ ≈ 45o.

As previously demonstrated in chapters (2) to (5) X-Ray photons directed

downwards towards the solar surface undergo backscattering and absorption in

the dense photosphere. This can be represented as a convolution of the downward

photon emission with a Green’s function for Compton reflection. Kontar and

Brown use the Magdziarz and Zdziarski Green’s function for angle-dependent

Compton reflection (Magdziarz & Zdziarski 1995) given in chapter 4 as

Ir(ǫ, µ) =

∫

∞

ǫ

G(µ, ǫ, ǫ
′

)Id(ǫ
′

)dǫ
′

(6.2)
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where Id(ǫ) is the downward directed flux and G(µ, ǫ, ǫ
′

) is the Magdziarz and

Zdziarski Green’s function for Compton reflection.

Thus the reflected photon flux can be written as

Ir(ǫ, µ) =
n̄V

4πR2

∫

∞

ǫ

G(µ, ǫ, ǫ
′

)dǫ
′

∫

∞

ǫ
′

[

QF (ǫ
′

, E)F̄u(E) + QB(ǫ
′

, E)F̄d(E)
]

dE

(6.3)

The total observed flux as seen by an observer at earth (Chapter 4) is given by

the sum of the upwards and downward component as Iu(ǫ)+Ir(ǫ). By regularized

inversion of 6.3 Kontar and Brown were able to find F̄u(E) and F̄d(E) essentially

because the forms of QF and QB are different.

Kontar and Brown found that the ratio F̄u(E)

F̄d(E)
was close to unity. They con-

cluded that the electron distribution was so close to isotropic that it would rule

out the models that relied on anisotropic emission such as the collisional thick

target (Brown 1972). The Kontar and Brown work was based on an Eddington

approximation treatment of the albedo radiative transfer. Here we investigate

whether the Kontar and Brown conclusions are changed if one instead uses a full

anisotropic treatment of the scattering process. In short the absence of a strong

albedo feature precludes the basic models that involve beaming.

6.2.2 The Technique

In Chapters 4 and 5 we studied how anisotropy affects the albedo by using an

empirical fit to published data. We did this by using an Eddington hemispheric

approach (chapter 4) and a radiative transfer approach (chapter 5). A comparison

between the two approaches showed that whilst they agreed for isotropic emission

differences appeared when the emission became anisotropic and was very appar-

ent using the empirical fit.

The two directional spectroscopic inversion presented in Kontar & Brown

(2006) was implemented in the form of a IDL algorithm (4.2). Again (as in

chapter (5)) we use the algorithm as a ’black box’ and we are not concerned with

the internal workings of the algorithm which we assume to be correct. However

as we provide a synthetic observed photon spectrum to the algorithm instead

of a raw RHESSI data file (as originally implemented) we must modify the IDL

algorithm slightly however we do so in such a way as to preserve the integrity of

the science implemented in it and to ensure we do not add errors.
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We now use the results in Chapters 4 and 5 to test the findings of Kontar and

Brown:

1. We use the results from section 4.7.2 (the empirical fit to the Green’s hemi-

spheric approach in chapter (4)) as input to the spectroscopic inversion

algorithm.

2. We similarly use the results from section 5.5.4 (the empirical fit to the

radiative transfer approach in chapter 5) as input to the algorithm.

3. By comparing the differences between the two sets of results from the in-

version we can determine if a full anisotropic radiative transfer approach

alters the conclusion of Kontar and Brown.

The full listing of the stereoscopic inversion algorithm used in this chapter is

extensive and it is not feasible to list it here. Instead the listing of the algorithm

can be found in Appendix E - The fit2d routine.

6.2.3 The Inversion Routine

We use the inversion routine developed by Kontar and Brown as a black box, as

such we are not concerned with the inner workings of the algorithm but only with

the inputs (the photon spectra) and the outputs (the electron spectra).

The electron spectra that are recovered from the Hemispheric Eddington

Green’s function results and the full radiative transfer results are given in Figures

(6.1) - (6.4) and Figures (6.5) - (6.8) below.
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6.2.4 Stereoscopic Electron Spectroscopy from Anisotropic

Photon Spectra - Eddington Hemisphere Averaged
Approximation

a. µ = 0.95 b. µ = 0.90

c. µ = 0.60 d. µ = 0.45

Figure 6.1: The recovered electron spectra (bottom plot) and the forward fitted
photon spectra (top plot) from the hemispheric Eddington Green’s function
results for a spectral index of γ = 2
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a. µ = 0.95 b. µ = 0.90

c. µ = 0.60 d. µ = 0.45

Figure 6.2: The recovered electron spectra (bottom plot) and the forward fitted
photon spectra (top plot) from the hemispheric Eddington Green’s function
results for a spectral index of γ = 3
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a. µ = 0.95 b. µ = 0.90

c. µ = 0.60 d. µ = 0.45

Figure 6.3: The recovered electron spectra (bottom plot) and the forward fitted
photon spectra (top plot) from the hemispheric Eddington Green’s function
results for a spectral index of γ = 4
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a. µ = 0.95 b. µ = 0.90

c. µ = 0.60 d. µ = 0.45

Figure 6.4: The recovered electron spectra (bottom plot) and the forward fitted
photon spectra (top plot) from the hemispheric Eddington Green’s function
results for a spectral index of γ = 5
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6.2.5 Stereoscopic Electron Spectroscopy from Anisotropic

Photon Spectra - Radiative Transfer Solution Ap-
proach

a. µ = 0.95 b. µ = 0.90

c. µ = 0.60 d. µ = 0.45

Figure 6.5: The recovered electron spectra (bottom plot) and the forward fit-
ted photon spectra (top plot) from the radiative transfer solution results for a
spectral index of γ = 2
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a. µ = 0.95 b. µ = 0.90

c. µ = 0.60 d. µ = 0.45

Figure 6.6: The recovered electron spectra (bottom plot) and the forward fit-
ted photon spectra (top plot) from the radiative transfer solution results for a
spectral index of γ = 3
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a. µ = 0.95 b. µ = 0.90

c. µ = 0.60 d. µ = 0.45

Figure 6.7: The recovered electron spectra (bottom plot) and the forward fit-
ted photon spectra (top plot) from the radiative transfer solution results for a
spectral index of γ = 4
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a. µ = 0.95 b. µ = 0.90

c. µ = 0.60 d. µ = 0.45

Figure 6.8: The recovered electron spectra (bottom plot) and the forward fit-
ted photon spectra (top plot) from the radiative transfer solution results for a
spectral index of γ = 5
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1. The lower plot in figures 6.1 – 6.4 show the two mean electron spectra

F̄ (E, µ) (F̄u (upper line) and F̄d (lower line)) for the hemisphere averaged,

empirically fitted, Green’s function (Eddington) approach to albedo predic-

tion. The upper plot shows the photon count flux along with the forward

fit.

2. The lower plot in figures 6.5 – 6.8 show the two mean electron spectra

F̄ (E, µ) (F̄u (upper line) and F̄d (lower line)) for full radiative transfer

anisotropic (Poutanen) treatment of albedo. Again the upper plot shows

the photon count flux along with the forward fit.

6.3 Analysis & Discussion

The mean results for F̄u(E) and F̄d(E) for the two approaches to albedo are very

similar for µ = 0.95 (close to the disk centre) but it is clear that the error bars

in the results from the Poutanen approach are considerably worse than in the

equivalent Eddington results. For both approaches for γ = 2 the error bars are

tiny on both F̄u (up) and F̄d (down) but get progressively worse with increasing γ.

Given that the criteria for an acceptable solution (lower plot in each subfigure)

using the stereoscopic technique is a continuous regularised solution for F̄u(E)

and F̄d(E) it appears that the hemisphere averaged approach yields acceptable

solutions for γ = 2, 3, 4 but only γ = 2, 3 gives positive results for the Poutanen

approach.

In fact the results given here are consistent with the sort of instability expected

when the model used becomes more complex than the information content of the

data can justify (section 4.1.4) and this manifests itself as gaps in the regularised

solution and as the high frequency oscillations (at higher energies) in the Count

flux of Figures 6.1 – 6.4 and 6.5 – 6.8. We can therefore maintain that the

Poutanen results are “less invertable” for larger γ than the hemispheric approach

using the stereoscopic technique given the instability in the regularised solution

and the oscillations in the Count flux.

However, one important caveat is that Kontar and Brown’s algorithm inter-

nally uses averaging such that the electron spectrum is approximated by beams

in two directions averaged over angle. This is similar to the Eddington approach

studied in Chapter 4 and the hemisphere average, empirically fitted, anisotropic

photon spectra used in this chapter to verify their results. Indeed the similar-
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ity to the Eddington approach may be a source of the larger error bars within

the Poutanen regularised solution as the differences between the hemispheric and

Poutanen Green’s function approaches will be amplified upon inversion. Whilst

this does not affect the conclusion of the work presented here we should be mind-

ful that this averaging in the stereoscopic routine may “wash out” some of the

anisotropic detail present in the input photon spectra and therefore lead us to

conclude that the electron distribution is more isotropic that it actually is.

It therefore appears that the Kontar and Brown conclusions that F̄ (E) is near

isotropic holds up even when albedo is treated fully rather than in the Eddington

approximation.

6.3.1 Conclusion

Using synthetic anisotropic ’observed’ photon spectra generated from a hemi-

sphere averaged, empirically fitted, Green’s function approach (Chapter 4) and

a full radiative transfer solution approach (Chapter 5) we have confirmed the

findings published by Kontar & Brown (2006) using the Stereoscopic electron

spectroscopy technique.

To conclude, given the results in figures 6.1 – 6.4 and 6.5 – 6.8 above, doing

a full anisotropic scattering properly does not fundamentally change the findings

that the electron distribution (F̄ (E, µ)) is nearly isotropic to such a degree of

confidence that it casts doubt on models which are based upon beaming such as

the collisional thick target (Brown 1972).



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In Chapter 2 we have explored the effect of photospheric albedo on observations

of global flare hard X-ray spectra and derived an expression to allow approximate

correction for this in the case of primary power-law photon spectra. We also ex-

amined, for the Kramers cross-section, the consequences of ignoring the albedo

correction in using observed spectra to infer flare source electron spectra for thin

and thick target interpretations and shown that the effects are very significant

in terms of inferred spectral shape, especially for hard spectra. We extended the

analysis to other cross sections such as Bethe Heitler and found that the effects of

the albedo were enhanced when compared with the Kramers case. This is consis-

tent with the effects of albedo on deriving electron spectra which is expected to

be even larger for more realistic smoother cross-section approximations, because

they filter the electron spectral features even more. We also emphasised that the

effects of albedo should be considered alongside other corrections such as that

of nonuniform target ionisation in the case of the thick target beam model as

discussed by Kontar et al. (2002) and Kontar et al. (2003).

In Chapter 3 we extended the work presented in Chapter 2 to investigate, for

the Kramers cross-section, the consequences of ignoring the anisotropic albedo

correction in using observed spectra to infer flare source electron spectra for thin

and thick target interpretations. We evaluated expressions for the thin and thick

target electron spectra by introducing an energy dependent anisotropy into the

observed photon spectrum in the form of a hemisphere average fraction. This

again demonstrated that the effects, in the case of an energy dependent anistropy,

are very significant in terms of inferred spectral shape, especially for hard spectra.
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In Chapter 4 we demonstrated a Hemispheric Eddington Green’s function

approach to the Albedo and the influence on the Hard X-Ray photon spectrum.

We also extended the discrete Compton Green’s operator approach developed

by Kontar to examine energy dependent anisotropic effects in the photospheric

albedo by introducing this by using a Hemispheric Eddington approximation to

represent the anisotropy. We investigated this for both a simple energy dependent

anisotropic relationship and an empirical fit derived from published solar data by

Leach and Petrosian. We show that energy dependent anisotropic effects have a

significant effect upon the spectral shape of the observed photon spectrum this

is most noticeable with in increasing photon energy. Finally we found that in

assuming an isotropic power law primary photon spectrum we underestimate the

reflection spectrum R(ǫ) and therefore the observed photon spectrum within the

30keV to 200keV energy range.

In Chapter 5 we used a full radiative transfer green function approach, de-

veloped by Poutanen, for studying the effect of full angular dependent photon

emission on the observed photon spectrum. We examined the consequence of this

on the photospheric albedo for isotropic photon emission and extended this tech-

nique to a fully angular anisotropic analysis using an energy dependent empirical

fit derived from published solar data by Leach and Petrosian. We then compared

the observed photon spectra produced by the radiative transfer and hemisphere

average green function approaches and found that both methods agree well in the

isotropic limit but for anisotropic emission the full radiative solution approach

appears to have an effect upon both the scale and form of the albedo.

In Chapter 6 using synthetic anisotropic observed photon spectra generated

from a hemisphere averaged, empirically fitted, Green’s function approach and

a full radiative transfer solution approach we have confirmed the findings pub-

lished by Kontar & Brown (2006) using the Stereoscopic electron spectroscopy

technique. To conclude, we found that doing full anisotropic scattering prop-

erly does not fundamentally change the findings that the electron distribution

(F̄ (E, µ)) is nearly isotropic to such a degree of confidence that it casts doubt on

models which are based upon beaming such as the collisional thick target.
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7.2 Future Work

The full radiative transfer solution (Chapter 5) is currently implemented as a

Fortran application however it is hoped to provide this functionality to the wider

solar community using IDL. This can be achieved by providing the functionality as

a library which can be accessed from RHESSI software or related modules. Clearly

this preserved the algorithms at the expense of having to use an external library

from within IDL. It would also be possible to re-engineer the algorithms from

Fortran 77 into IDL which would provide a great consistency with the existing

RHESSI software.

The Solar Orbiter mission (7.1) is part of the ESA Cosmic Vision 2015-2025

Science programme and is ESAs contribution to the International Living with a

Star (ILWS) programme. The primary goal of this 6 year mission is to produce

images of the Sun at an unprecedented resolution and perform closest ever in-situ

measurements in the visible, extreme ultra-violet and X-rays energies. One of the

payloads of the Solar Orbiter is the X-ray Imager (STIX): it provides imaging

spectroscopy of solar thermal and non-thermal X-ray emission and quantitative

information on the timing, location, intensity, and spectra of accelerated electrons

as well as of high temperature thermal plasmas, mostly associated with flares

and/or microflares.

Clearly this will provide an important opportunity for obtaining high quality

data. It will also provide data which can help improve the empirical fit used within

this thesis. In particular the Leach and Petrosian data used (two data points in

energy) allowed only a linear fit. STIX will hopefully provide the directivity of

primary HXR photons for a range of energies and allow a more complex empirical

fit.

The “Stereoscopic” electron spectroscopy technique developed by Kontar and

Brown 2006 (The dentist mirror approach) uses averaging such that the elec-

tron spectrum is approximated by beams in two directions averaged over angle.

Although the Eddington approximation is consistent with this assumption, the

results of the radiative transfer approach of Chapter 5 assume the electron emis-

sion would have a full angular distribution. Clearly there is some inconsistency

between the assumptions in the forward modeling that produced the photon spec-

tra and the inversion used within the dentist mirror technique. Whilst this does

not invalidate the work presented in this thesis a dentist mirror approach as-

suming a full angular distribution for the electron emission would allow a more
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accurate comparison.

Finally as noted by Kontar & Brown (2006), the directly emitted solar HXR

photons and those that are Compton reflected have distinct signals. One idea is

to exploit this difference in the detection of extra solar planet by using the direct

signal from the star and the albedo signal from an extrasolar planet. Initial

calculations indicate that to detect extra solar planets by this technique would

require 3 to 4 orders of magnitude of improvement in the sensitivity of current

spacecraft detector. However by exploring this idea it is hoped that the work

may inform some design aspects of the design of detectors in future spacecraft.
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Figure 7.1: An illustration of the ESA Solar Orbiter spacecraft
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Appendix A

Greens Function Correction to a
Power Law Spectrum

A.1 Isotropic Simulation Algorithm

;+

; PROJECT: P.hD.

; NAME: simple_greens_correction

;

;

; PURPOSE: To calculate the green’s corrected albedo

; for a given primary photon spectrum

;

;

; CATEGORY:

;

;

; CALLING SEQUENCE:

;

; simple_acorrect , anisotropy=X (X-variable)

;

;

; INPUTS:

; anisotropy - a coeficient showing the ratio of the flux in

; observer direction to the flux downwards

;

; if anisotropy=1 (default) the source is
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; isotropic

;

; outfile - the root name for the output files

;

; USES precomputed green functions from files

; green_compton_mu***.dat, where *** is cos(theta)

;

; OUTPUTS:

; files containing the primary, observered, and albedo spectrum.

;

; SIDE EFFECTS:

; none

;

; RESTRICTIONS:

; None

;

; PROCEDURE:

; none

;

; MODIFICATION HISTORY:

; calum@astro.gla.ac.uk, 8-feb-2005

;-

function normal_spec, x, gamma, e_o

;

return, (1/(2*!PI*e_o))*(gamma-1)*((x/e_o)^(-gamma))

;

END

pro simple_greens_correction, anisotropy, outfile

;

; global variables

;

e_o=30.0

gamma=4.0

flux_scale=1.0

;
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if n_elements(anisotropy) EQ 0 then begin

print,’Setting the value for the anisotropy to its default value (=1).’

return;

endif;

print,’Calculating the Greens corrected albedo for: ’ + $

strtrim(anisotropy,2)

if n_elements(outfile) EQ 0 then begin

print, ’You must supply a root filename for the output spectra.’

return;

endif;

primary_photon_file=outfile + ’.’ + strtrim(anisotropy,2) + ’.primary.dat’

total_photon_file=outfile + ’.’ + strtrim(anisotropy,2) + ’.total.dat’

albedo_photon_file=outfile + ’.’ + strtrim(anisotropy,2) + ’.albedo.dat’

; get the greens compton file - these should be stored within the

; calling directory

restore,’compton_data/green_compton_mu095.dat’

;

; this part loads the greens correction

;

aa=p.albedo

ee =p.edges

ee2=(ee-3.)^2/max(ee-3.5)+3.

;

; e1 if the photon energy

;

e1 =(ee(0,*)+ee(1,*))/2.

de1=(ee(1,*)-ee(0,*))

;
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; define the primary spectrum

;

flux=fltarr(n_elements(e1))

for i=0,n_elements(e1)-1 do begin

flux(i)=normal_spec(e1(i), gamma, e_o)

endfor

; scale up the flux

flux = flux_scale*flux;

;

; calculate the reflected spectrum here.

;

; note that the anisotropy is just a constant multiplier

; so can be applied after the matrix multiplication

;

a1=(aa##(anisotropy*flux)) ; anisotropy constant here

;

; the albedo is the ratio of the reflected to the incident spectrum

; so just divide

;

albedo=a1/flux

;

; The observed spectrum is just the sum of the primary and the

; reflected spectrum

;

total_flux=flux+a1

;

; The rest of the procedure plots/saves the data

; in various formats

;
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window,0, retain=2

!P.Multi=[0,1,2]

plot,e1,albedo,/xlog,yrange=[0,1], PSYM=3

plot_oo,e1,flux

oplot,e1,a1,line=1

oplot,e1,total_flux,line=2

!P.Multi=0

print,’Completed ...................................OK’

;stop

tstamp=timestamp()

set_plot, ’PS’

device, filename=’simple_isotropic_refl_spec_’+strtrim(tstamp,2) + $

’.albedo.ps’, xsize=24,ysize=17,xoffset=2,yoffset=2,ENCAPSULATED=0

plot,e1,albedo,/xlog,yrange=[0,1], line=3, xtitle=’keV’, $

ytitle=’Normalised Units’

device, /close

set_plot, ’X’

set_plot, ’PS’

device, filename=’simple_isotropic_refl_spec_’+strtrim(tstamp,2)+$

’.spectrum.ps’, xsize=24,ysize=17,xoffset=2,yoffset=2,ENCAPSULATED=0

plot_oo,e1,flux, xtitle=’keV’, ytitle=’Normalised Units’,yrange=[1e-7,1]

oplot,e1,a1,line=1

oplot,e1,total_flux,line=2
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device, /close

set_plot, ’X’

openw,11,primary_photon_file

for i=0, n_elements(e1)-1 do begin

if e1(i) GT 298.000 then break;

printf,11, e1(i)-0.5, e1(i)+de1(i)-0.5, flux(i), sqrt(flux(i))

endfor

close,11

openw,11,total_photon_file

for i=0, n_elements(e1)-1 do begin

if e1(i) GT 298.000 then break;

printf,11, e1(i)-0.5, e1(i)+de1(i)-.5, total_flux(i), sqrt(flux(i))

endfor;

close,11

openw,11,albedo_photon_file

for i=0, n_elements(e1)-1 do begin

if e1(i) GT 298.000 then break;

printf,11, e1(i)-0.5,e1(i)+de1(i)-.5,albedo(i), sqrt(flux(i))

endfor

close,11

end
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A.2 The Energy Independent Greens Anisotropic

Correction - Simulation Algorithm

We implement Equation (4.17) detailed page 87 within the IDL routine given

below.

;+

; PROJECT:

; PhD

;

; NAME:

; aniso_ang_correct_norm.pro

;

;

; PURPOSE:

; Calculates the simple anisotropic greens reflection for a given

; Spectral Ind & Ang

;

; CATEGORY:

; Spectra, Modeling, inversion, regularisation

;

; CALLING SEQUENCE:

;

; CALLS:

;

; INPUTS:

; spec_idx - spectral index

; ang - angle of observer

;

; OPTIONAL INPUTS:

;

; OUTPUTS:

;

;

; OPTIONAL OUTPUTS:

; none
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;

; KEYWORDS:

; none

;

; COMMON BLOCKS:

; none

;

; SIDE EFFECTS:

;

;

; RESTRICTIONS:

; angle must be a multiple of 5 in the interval 005 <= cos(theta) <= 0.95

;

; PROCEDURE:

;

; MODIFICATION HISTORY:

; Version 1, calum@astro.gla.ac.uk, 3 Jul 2006

; IDL version:

;

;---------------------------------------------

; supporting functions section

;---------------------------------------------

function comp_spec, x, gamma, e_o

;

; The emission has been integrated over mu

;

; this is for a mu=0, gamma=4

;

;gamma=4

;mu=0

;e_o=30.0; keV

;

return, (1/(2*!PI*e_o))*(gamma-1)*((x/e_o)^(-gamma))

;

END

;
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pro aniso_ang_correct_norm, anisotropy, spec_idx, ang

data_path=’./compton_data’

results_path=’results/normalised_angular’

;greens_file=’green_compton_mu0’

if not keyword_set(anisotropy) then begin

print, ’Defaulting Anisotropic Coefficient to 1’;

anisotropy=1.0;

endif;

if not keyword_set(spec_idx) then begin

print, ’Defaulting Gamma to 2.0’;

anisotropy=1.0;

endif;

if ang mod 5 ne 0 then begin

print, ’Angle must be a multiple of 5’;

return;

endif else begin

if ang eq 5 then begin

greens_file=’green_compton_mu0’+’05’+’.dat’

endif else begin

greens_file=’green_compton_mu0’+strcompress(ang+0,/remove_all)+’.dat’

endelse;

print, greens_file;

endelse;

restore, data_path +’/’ + greens_file

aa=p.albedo

ee =p.edges

output_filename=’anicorr.’+strn(anisotropy)+’.’+strn(spec_idx) + $

’.’ + strcompress(strtrim(ang),/remove_all)
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ee2=(ee-3.)^2/max(ee-3.5)+3.

e1 =(ee(0,*)+ee(1,*))/2.

de1=(ee(1,*)-ee(0,*))

; thermal

;flux=exp(-e1/2.)+1./e1^(5)

;simple power law

;flux=1./e1^(spec_idx)

flux=fltarr(n_elements(e1))

eps_o=30.0 ; keV

for i=0,n_elements(e1)-1 do begin

flux(i)=comp_spec( e1(i), spec_idx, eps_o )

endfor

; normalise the flux

; pre multiply the upwards primary flux by

; (1-anisotropy)

flux=(1-anisotropy)*flux

;pout_flux=rd_tfile(’mc_g2.isotropic.dat’,2,/auto,/convert)

;flux=pout_comp_spec(e1)

a1=fltarr(n_elements(aa(*,0)))

; anisotropy constant here

a1=(aa##(anisotropy*flux*e1))/e1

;stop

Set_plot, ’PS’

Device, filename=output_filename+’.ps’, xsize=17,ysize=24,$

xoffset=2,yoffset=2,ENCAPSULATED=0
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!P.multi=[0,1,2]

plot,e1,a1/flux,/xlog,yrange=[0,1],PSYM=3, xtitle=’energy, $

kev’,ytitle=’Normalised Units’, title=’Reflection Spectrum’

plot_oo,e1,flux, xtitle=’energy, kev’,ytitle=’Counts’, $

title=’Primary, Reflected, & Observed Spectrum’

oplot,e1,a1,line=1

oplot,e1,flux+a1,line=2

DEVICE, /CLOSE

SET_PLOT, ’X’

window,0

!P.Multi=[0,1,2]

plot,e1,a1/flux,/xlog,yrange=[0,1],PSYM=3, xtitle=’energy, kev’,$

ytitle=’Normalised Units’, title=’Reflection Spectrum’

plot_oo,e1,flux, xtitle=’energy, kev’,ytitle=’Counts’, $

title=’Primary, Reflected, & Observed Spectrum’

oplot,e1,a1,line=1

oplot,e1,flux+a1,line=2

!P.Multi=0

; write out the data to the file

openw, lun, output_filename+’.dat’, /get_lun

for j=0, n_elements(e1)-1 do begin

printf, lun, e1(j), flux(j), a1(j)

endfor

free_lun, lun

;cmd=’ps2pdf output_filename+’.ps’
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;spawn, cmd

cmd=’mv ’+ output_filename+’.ps’+’ ’+ results_path

print, cmd

spawn, cmd

cmd=’mv ’+ output_filename+’.dat’+’ ’+ results_path

print, cmd

spawn, cmd

print,’Completed ...................................OK’

;stop

end
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A.3 The Energy Dependent Greens Anisotropic

Correction - Empirical Fit Algorithm

;+

; PROJECT:

; PhD

;

; NAME:

; var_aniso_ang_cmp_lp.pro

;

;

; PURPOSE:

; Calculates the simple anisotropic greens reflection for a given

; Spectral Ind & Ang

;

; CATEGORY:

; Spectra, Modeling, inversion, regularisation

;

; CALLING SEQUENCE:

;

; CALLS:

;

; INPUTS:

; spec_idx - spectral index

; ang - angle of observer

;

; OPTIONAL INPUTS:

;

; OUTPUTS:

;

;

; OPTIONAL OUTPUTS:

; none

;

; KEYWORDS:

; none
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;

; COMMON BLOCKS:

; none

;

; SIDE EFFECTS:

;

;

; RESTRICTIONS:

; ang must be a multiple of 5 in the interval 005 <= cos(theta) <= 0.95

;

; PROCEDURE:

;

; MODIFICATION HISTORY:

; Version 1, calum@astro.gla.ac.uk, 16 Jul 2006

; Version 1.1, calum@astro.gla.ac.uk, 9 Aug 2006 (clean up)

; Version 2.0, calum@astro.gla.ac.uk, 10 Aug 2006 (added integration

; into routine)

; Version 2.1, calum@astro.gla.ac.uk, 28 Aug 2006 (clean up)

; IDL version:

;

;---------------------------------------------

; supporting functions section

;---------------------------------------------

pro var_aniso_ang_cmp_lp, spec_idx, ang

; Program Initialisation

; set up the results path information

data_path=’./compton_data’

results_path=’results/lp_anisotropy’

if not keyword_set(spec_idx) then begin

print, ’Defaulting Gamma to 2.0’;

spec_idx=2.0;

endif;
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if ang mod 5 ne 0 then begin

print, ’Angle must be a multiple of 5’;

return;

endif else begin

if ang eq 5 then begin

greens_file=’green_compton_mu0’+’05’+’.dat’

endif else begin

greens_file=’green_compton_mu0’+$

strcompress(ang+0,/remove_all)+$

’.dat’

endelse;

print, greens_file;

endelse;

; this loads the greens correction matrix

; from the raw datafile into the idl data structure

restore, data_path +’/’ + greens_file

; data structure assignment

aa=p.albedo

ee=p.edges ; the energy(s) are the edges of the data bins

output_filename=’anicorr’+’.’+strn(spec_idx) + ’.’ + $

strcompress(strtrim(ang),/remove_all)

ee2=(ee-3.)^2/max(ee-3.5)+3.

e1 =(ee(0,*)+ee(1,*))/2.

de1=(ee(1,*)-ee(0,*))

; allocate the memory for the photon spectrum

flux=findgen(n_elements(e1)) ; should be photon spectrum

flux_down=fltarr(n_elements(flux))

; the input parameters here represent a
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; power law primary spectrum of spectral index spec_idx

a=[0.0, 1.0, 10000000, spec_idx, 0.0, 0.0, 0.0]

flux=spectral_model( e1, a)

for k=0, n_elements(flux)-1 $

do flux_down(k)=fractional_downwards_emission(e1(k))*flux(k)

;stop

a1=fltarr(n_elements(aa(*,0)))

a1_intrinsic=fltarr(n_elements(aa(*,0)))

; we have to create a unit matrix such that

; the matrix albebra provides a cross section of the

; correct dimension

unit_matrix = fltarr(n_elements(aa(*,0)),n_elements(aa(*,0)))

print, ’stage 2’

;stop

for i=1, n_elements(aa(*,0))-1 do begin

unit_matrix[i,i]=1.0

endfor

; create the matrices to represent the emission into the

; upward and the downward hemisphere -- eddington approximation

up_emission_matrix = fltarr(n_elements(aa(*,0)),n_elements(aa(*,0)))

down_emission_matrix = fltarr(n_elements(aa(*,0)),n_elements(aa(*,0)))

; now loop through the energies and calculate the

; directivity from leach & petrosian (83)

; this will be used in the cross section (matrix)

for i=1, n_elements(e1)-1 do begin

; ; if eph(i) GT upper_lim then break;

; reset the emission (matrices) to be zero apart

; from the current ith value
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for j=1, n_elements(aa(*,0))-1 do begin

up_emission_matrix[j,j]=0.0

down_emission_matrix[j,j]=0.0

endfor

; to represent our mono-energetic experiment for the ith value

; we need to ensure the correct matrix algebra - The emission matrix

; needs to be a diagonal of the nxn matrix

;up_emission_matrix[i,i]=1.0

;down_emission_matrix[i,i]=1.0

;up_emission_matrix[i,i]=0.5

;down_emission_matrix[i,i]=0.5

; Emission vectors:

;

; The upwards:downwards ratio is based upon the results of

; leach and petrosian 1983ApJ...269...713 Figure 4

; The results are only really 2 data points in photon energy - the

; directivity varies depending upon the model specified in the paper

; (9 in total).

; Assumption:

; Directivity does vary with theta (theta=0 is vertically upward).

; I have taken theta=0 and theta=180 for the "absolute" directivity

; d(theta=0)=0.1 and d(theta=180)=2.0 would give a Directivity D=20

; for 220KeV. Also D should be normalised to avoid the problem of

; adding extra photon spectra with increasing photon energy eps.

; Therefore if D=1 (isotropic) 1/2 goes into the upwards hemisphere

; (2 parts) if D=2 twice the emission is downward to upwards (3 parts)

; so 1/3 of the emission is upwards, in general D=X=> 1/(X+1) is emitted

; upwards; downwards emission is 1-upwards emission.

; commented out for poutanen comparison

; up_emission_matrix(i,i) = 1/(directivity(flux(i))+1)

; down_emission_matrix(i,i) = 1-up_emission_matrix(i,i)
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;

; Changed to be consistant with poutanen

;

down_emission_matrix(i,i)=fractional_downwards_emission(e1(i))

up_emission_matrix(i,i) = 1-down_emission_matrix(i,i)

print, i, up_emission_matrix(i,i),down_emission_matrix(i,i)

; stop

; main calculation algorithm

; the unit_matrix is added for clarity

cross_section=(aa##down_emission_matrix);+(up_emission_matrix##unit_matrix)

; anisotropy constant here for each mono energetic input/experiement energy

; but varies with energy (c.f. leach & petrosian)

; what we end with is the (greens method) resulting spectra for a series

; of mono-energetic ’experiments’. When these experiements are added

; together/integrated across the photon energy range we get the

; resulting observed spectrum a1 from the input primary spectrum containing

; the albedo ’correction’

a1=a1+(cross_section##(flux))

a1_intrinsic=a1_intrinsic+(cross_section##(flux_down))

;a1=(cross_section##(flux))

endfor

;stop

scaled=a1/flux

openw, lun, output_filename+’.dat’, /get_lun
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for j=0, n_elements(e1)-1 do begin

printf, lun, e1(j), flux(j), a1(j)

endfor

close, lun, /all

openw, lun, output_filename+’.intrinsic.dat’, /get_lun

for j=0, n_elements(e1)-1 do begin

printf, lun, e1(j), flux_down(j), a1_intrinsic(j)

endfor

close, lun, /all

Set_plot, ’PS’

Device, filename=output_filename+’scaled_lp.ps’, xsize=17,ysize=24,$

xoffset=2,yoffset=2,ENCAPSULATED=0

!P.multi=[0,1,2]

plot,e1,a1/flux,/xlog,yrange=[0,2],PSYM=3, xtitle=’energy, kev’,$

ytitle=’Normalised Units’, title=’Reflection Spectrum’+’ (’+$

output_filename+’)’

plot_oo,e1,flux, xtitle=’energy, kev’,ytitle=’Counts’, $

title=’Primary, Reflected, & Observed Spectrum’+’ (’+$

output_filename+’)’

oplot,e1,a1,line=1

oplot,e1,flux+a1,line=2

DEVICE, /CLOSE

SET_PLOT, ’X’

Set_plot, ’PS’

Device, filename=output_filename+’.albedo.ps’, xsize=17,ysize=24,$

xoffset=2,yoffset=2,ENCAPSULATED=0



A.3: The Energy Dependent Greens Anisotropic Correction - Empirical Fit
Algorithm 176

plot,e1,a1/flux,/xlog,yrange=[0,2],PSYM=3, xtitle=’energy, kev’,$

ytitle=’Normalised Units’, title=’Reflection Spectrum’+’ (’+$

output_filename+’)’

DEVICE, /CLOSE

SET_PLOT, ’X’

Set_plot, ’PS’

Device, filename=output_filename+’.spectrum.ps’, xsize=17,ysize=24,$

xoffset=2,yoffset=2,ENCAPSULATED=0

plot,e1,flux, xtitle=’energy, kev’,ytitle=’Counts’, $

title=’Primary, Reflected, & Observed Spectrum’+’ (’+output_filename+’)’

oplot,e1,a1,line=1

oplot,e1,flux+a1,line=2

DEVICE, /CLOSE

SET_PLOT, ’X’

window,0

!P.Multi=[0,1,2]

plot,e1,a1/flux,/xlog,yrange=[0,2],PSYM=3, xtitle=’energy, kev’,$

ytitle=’Normalised Units’, title=’Reflection Spectrum’+’ (’+$

output_filename+’)’

plot_oo,e1,flux, xtitle=’energy, kev’,ytitle=’Counts’, $

title=’Primary, Reflected, & Observed Spectrum’+’ (’+$

output_filename+’)’

oplot,e1,a1,line=1

oplot,e1,flux+a1,line=2

!P.Multi=0
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window,3

plot_oo,e1,flux, xtitle=’energy, kev’,ytitle=’Counts’, $

title=’Primary Spectrum’+’ (’+output_filename+’)’

;

; move the generated files to the output directory

;

cmd=’mv ’+ output_filename+’*.ps’+’ ’+ results_path

print, cmd

spawn, cmd

cmd=’mv ’+ output_filename+’*.dat’+’ ’+ results_path

print, cmd

spawn, cmd

print, ’Calculation complete’;

;stop

return

end



Appendix B

An Explanation for
Non-Power-law Behavior in the
Hard X-ray Spectrum of the July
23, 2002 Solar Flare

The following paper was published in Astrophysical Journal Letters, Issue 2 (2003

October 1).
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Appendix C

Full Radiative Transfer, Greens
Function, Solution

C.1 Original, Isotropic Algorithm

program reflection

IMPLICIT REAL*8(A-H,O-Z)

parameter(nr=400,nco=2,kko=nco*nr,nrefl=2)

PARAMETER(MAXFRE=71,MAXANG=3,MAXSC=25)

PARAMETER(II=MAXFRE,NC=MAXANG,ND=1,KK=II*NC,LL=ND*KK)

PARAMETER(NEX=II+II*(II-1)/2,NCX=NC+NC*(NC-1)/2)

COMMON/QQCM2/A(II),UANG(NC),AANG(NC),AC(LL),AINT(LL),CINT(LL)

COMMON/WFRE/XX(II),XLOG(II),XKEV(II),EXXY(NEX),S0(II)

real*8 direct_out(kko),compsp(kk),xr(nr),frefl(kko),angout(nco)

real*8 aout(nco)

C reflected spectrum (scaled)

real*8 frefl_2

C

real*4 par_refl(nrefl)

C placeholder for processing command line arguments

CHARACTER*40 argument

INTEGER*4 option

c debug switch

INTEGER*4 debug

C end of command line processing

ioniz=0

irefl=0
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c count the number of arguements passed from the command line

n=iargc()

if(n.ne.1) then

write(*,*) ’Invalid number of Arguments’

write(*,*) ’Usage: <program_name> <option>.’

write(*,*) ’Exiting...’

return

endif

C use a test routine to check the comand line

do i=1,n

call getarg(i,argument)

C print *, argument

READ(UNIT=argument, FMT=’(I5)’) OPTION

C print *, option

end do

if(option.lt.1) then

write(*,*) ’Invalid Option’

write(*,*) ’Usage: <program_name> <option>.’

write(*,*) ’Exiting...’

return

endif

if(option.gt.3) then

write(*,*) ’Invalid Option’

write(*,*) ’Usage: <program_name> <option>.’

write(*,*) ’Exiting...’

return

endif

c compute angular nodes (cos of angles) and weight

c (Gaussian quadrature)
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CALL QDRGSDO(UANG,AANG,NC)

DO 20 L=1,NC

UANG(L)=0.5D0*(1D0+UANG(L))

AANG(L)=AANG(L)*5D-1

c write(*,*) UANG(L)

c write(*,*) AANG(L)

write(*,*) ’UANG:’, acos(UANG(L))*360/(2*3.14)

write(*,*) ’AANG:’, acos(AANG(L))*360/(2*3.14)

20 CONTINUE

read * , debug

c return

c (cosine of) angles where reflected spectrum is computed

c (here we also use the Gaussian quadrature, but one can use

c anything you like)

c CALL QDRGSDO(ANGOUT,AOUT,NCO)

DO 30 L=0,NCO-1

ANGOUT(L)=cos((180.0*L/(NCO-1))*(3.1415926536/180))

AOUT=1/(NCO-1)

c write(*,*) ’Refl ang:’, 180.0*L/(NCO-1), ANGOUT(L)

30 CONTINUE

L=0

ANGOUT(L)=cos(0.0)*(3.1415926536/180)

L=1

ANGOUT(L)=cos(180.0)*(3.1415926536/180)

read *, debug

c CALL QDRGSDO(ANGOUT,AOUT,NCO)

c DO 30 L=0,NCO-1

c ANGOUT(L)=0.95

c AOUT=1/(NCO-1)

c write(*,*) 180.0*L/(NCO-1), ANGOUT(L)

c 30 CONTINUE
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c return

c DO 50 text=0,NCO-1

c write(*,*) acos(angout(text))*(180/3.1415926536)

c 50 CONTINUE

c return

c photon energies (in units of m_e c**2) where reflected spectrum

c is computed

do i=1,nr

c x=10**(-1d0+.05d0*i)

x=10**(-3d0+.012d0*i)

xr(i)=x

enddo

c***************************************************************

c INPUT PARAMETERS

c FOR THE DIRECT RADIATION

c spectral energy index of the direct radiation

c for thermal bremsstrahlung alpha=0d0

c for typical spectra from black holes in Seyferts alpha=-1d0

alpha=0d0

c cutoff energy in m_e c**2

c for solar flares ecut is ~ 100 keV, i.e. =0.2

c for black holes in Seyferts ecut ~ 100 keV, i.e. =0.2

ecut= 0.2d0

c ecut= 2.0d0

C ecut= 20000.0d0

c***************************************************************

c IMPORTANT! - THIS IS THE DIRECT RADIATION

c total escaping flux in a given direction
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c of the direct radiation

c here: for isotropic source

do i=1,nr

x=xr(i)

do j=1,nco

k=j+(i-1)*nco

C direct_out(k)=x**alpha*dexp(-x/ecut)

C direct_out(k)=x**(-4.0)

c generally this can be a function of angles and energy

C direct_out(k)=direct_ang(x,angout(j))

C call the external wrapper function for calculate for the

c desired model

direct_out(k)=spectral_model(x,angout(j),option)

c write(*,*) x, direct_out(k)

enddo

c write(*,*) x, direct_out(k)

enddo

c THIS HAS TO BE MODIFIED TO INCLUDE THE ANISOTROPIC RADIATION

c EMITTED IN THE DOWNWARDS HEMISPHERE

open(26,file=’output.reflected.debug.dat’)

c write(26,1000) (angout(j),j=1,nco)

c incoming photon spectrum

c specific intensity of radiation

c as a function of photon energy and angles

c

c watch out for the resolution of the floats 1e-8

c

do i=1,ii

c photon energies in mc**2

x=10**(-5.d0+.10d0*i)

xx(i)=x

xlog(i)=dlog10(x)

do j=1,nc

k=j+(i-1)*nc
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c this is the log of the values not the values themselves

c compsp(k)=x**alpha/UANG(j)*dexp(-x/ecut)

c compsp(k)=x**alpha/UANG(j)*dexp(-x/ecut)*angout(j)/UANG(j)

c generally this is a function of angles and energy

c compsp(k)=direct(x,-UANG(j)) /UANG(j)

c compsp(k)=spectral_model(x,angout(j)/UANG(j),option)*dexp(-x/ecut)

C compsp(k)=log10(100000000*spectral_model(x,UANG(j),option))

c

c We have to premultiply the spectral model values by a constant

c to avoid infinities in log space

compsp(k)=dlog10(10000*spectral_model(x,UANG(j),option))

c compsp(k)=compsp(k)-4

compsp(k)=compsp(k)*dexp(-x/ecut)

write(*,*) x, compsp(k), i, j,

spectral_model(x,UANG(j),option), uang(j)

c factor 1/UANG(j) appears because we need here specific intensity

c minus sign in the argument, because the radiation is going down

write(26,1030) xx(i),compsp(k), spectral_model(x,UANG(j),option)

enddo

enddo

close(26)

c log of Fe abundance

par_refl(1)=0.

c log of "metal" abundance

par_refl(2)=0.

C*****************************************************

C PRINTING RESULTS OF CALCULATIONS

C*****************************************************
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open(20,file=’output.angles.dat’)

open(22,file=’output.direct.dat’)

open(24,file=’output.reflected.dat’)

call PNSrefl(compsp,xr,frefl,angout,

+ par_refl,nrefl,nr,kko,nco,ioniz,irefl)

c print outgoing angles

C write(*,*) nco

write(20,1000) (angout(j),j=1,nco)

c write(20,1010)

write(22,1000) (angout(j),j=1,nco)

c print direct radiation intensity going to the observer

do i=1,nr

write(22,1030) xr(i),(direct_out(J+(I-1)*NCO),J=1,nco)

c write(22,1030) xr(i),(compsp(J+(I-1)*NCO),J=1,nco)

enddo

c print reflected radiation FLUX going to the observer

c write(20,1020)

write(24,1000) (angout(j),j=1,nco)

do i=1,nr

frefl_2=frefl(J+(I-1)*NCO)/4

c write(24,1030) xr(i),(frefl(J+(I-1)*NCO)*angout(j),J=1,nco)

write(24,1030) xr(i),(frefl_2*abs(angout(j)),J=1,nco)

enddo

close(20)

close(22)

close(24)

C end of printing

C the number of arrays write to the file is determined here

C*****************************************************

stop

1000 format(’ cos of outgoing angles’,/ 40d13.5)

1010 format(’ energy flux of direct radiation’)

1020 format(’ energy flux of reflected radiation’)
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1030 format( 40d13.5)

end

C.2 External C Library - Empirical Fit

The following C code is the external library used in Section 5.5 of Chapter 5.

/*

R.C. Alexander (PhD.) 01.11.2006

Ammeded after Alec M discussion 11.09.2007

Ammeded after debugging 01.12.2007

Externally called poutanen function:

This will calculate I(eps,mu) for a given functional form

to allow comparison with the Greens approach.

*/

/* external rountine called from fortran */

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "ext_proc.h"

static const double eps_o=30.0; // (keV)

static const double emass=511.0; // (m_e c^{2} in keV)

// (introduced due to low photon counts)

static const double photoncount=1.0;

static float a=0.0,b=1.0; // 0.0 < mu <= 1.0

static double A_const=1.0;

/* these are need for the integration routine parameter passing */
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double g_gamma=3.0,g_eps=1.0;

int g_nth_order=0;

/*

* These are the declaration of the parameter

* interpolation functions.

*/

double a_param(double eps);

double b_param(double eps);

double eta_param(double eps);

/*

* function forward declarations

*/

double PrimaryIntensity(double *eps,

double *theta,

double *gamma,

int nth_order);

double Normalise(double *eps,

double *theta,

double *gamma,

int nth_order);

// new part

// should really use a macro

// but I want to see it work in the debugger

inline float mu(float theta) {

// return cos(theta);

return theta;



C.2: External C Library - Empirical Fit 192

}

/*++

The functional form of Intensity:

Refer to Ph.D. thesis, chapter 5

--*/

double PrimaryIntensity(double *eps,

double *theta,

double *gamma,

int nth_order)

{

double v_rtn=0.0;

float v_temp=0.0;

double v_theta;

A_const=(photoncount/(2*M_PI*(eps_o/emass)));

//#ifdef __DEBUG_

fprintf(stdout, "eps:%lf\ttheta:%lf\tgamma:%lf\tnth_order:%d",

*eps,*theta,*gamma, nth_order);

//#endif

g_eps=(*eps)*emass; // convert to Mec^2

g_gamma=*gamma;

g_nth_order=nth_order;

v_theta=*theta;

/* Important

* Angular, energy dependant function

* using the empirical fit to Leach and Petrosian
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* data

*/

v_temp=A_const* \

pow((g_eps/eps_o),-(g_gamma))* \

pow((a_param(g_eps/eps_o)+ \

b_param(g_eps/eps_o)*v_theta),eta_param(g_eps/eps_o));

fprintf(stdout," return from func %f for %f (%f) \n",

v_temp,(g_eps),(g_eps/(eps_o+g_eps)));

v_temp*=*eps;

#ifdef __DEBUG_

fprintf(stdout,"return from func %f for %f \n",v_temp,(*eps));

#endif

v_rtn=(double)v_temp;

//v_rtn*=*eps;

#ifdef __DEBUG_

fprintf(stdout, "\t%f\n",v_rtn);

#endif

return v_rtn;

}

/*++

The functional form of Intensity:

Refer to Ph.D. thesis, chapter 5

--*/

double Normalise(double *eps,
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double *theta,

double *gamma,

int nth_order)

{

double v_rtn=0.0;

float v_temp=0.0;

A_const=(photoncount/(2*M_PI*(eps_o/emass)));

#ifdef __DEBUG_

fprintf(stdout, "eps:%lf\ttheta:%lf\tgamma:%lf\tnth_order:%d",

*eps,*theta,*gamma, nth_order);

#endif

g_eps=(*eps)*emass; // convert to Mec^2

g_gamma=*gamma;

g_nth_order=nth_order;

g_nth_order=0.0;

v_temp=((g_nth_order)+1)*A_const*(g_gamma-1)* \

pow((g_eps/eps_o),-(g_gamma))* \

pow(2,(((g_eps/(eps_o+g_eps))*g_nth_order)+1))/ \

((((g_eps/(eps_o+g_eps))*g_nth_order)+1));

#ifdef __DEBUG_

fprintf(stdout, "Normalise \t%f\n",v_temp);

#endif

v_temp*=*eps;

v_rtn=v_temp;

#ifdef __DEBUG_

fprintf(stdout, "Normalise \t%lf\n",v_rtn);
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#endif

return v_rtn;

}

/*++

This function is a wrapper for the spectal model function simply to

provide a consistant interface for the fortran module and to allow the

spectral mode to be changed undernith.

--*/

/*

underscore is for fortran compatibility

use __NOUNDERSCORE__ of the compiler allow it

*/

double spectral_model__(double *eps,

double *theta,

double *gamma,

double *nth_order)

{

double v_rtn=0;

int v_nth_order=(int)(*nth_order);

fprintf(stdout,"nth_order %d\n",v_nth_order);

v_rtn=PrimaryIntensity(eps,

theta,

gamma,

v_nth_order);

#ifdef __DEBUG_

fprintf(stdout,"Spectral Model Return:\t%d\n", v_rtn);

#endif
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return v_rtn;

}

/*

underscore is for fortran compatibility

use __NOUNDERSCORE__ of the compiler allow it

*/

double spectral_normalisation__(double *eps,

double *theta,

double *gamma,

double *nth_order)

{

double v_rtn=0;

int v_nth_order=(int)*nth_order;

v_rtn=Normalise(eps,

theta,

gamma,

v_nth_order);

#ifdef _DEBUG_

fprintf(stdout,"PrimaryIntensity Return:\t%f\t%f\n",

(*eps)*511.0, v_rtn);

#endif

return v_rtn;

}

/*

* Empirical fit parameter function for a supplied

* energy (Chapter 5, thesis)

*/
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double a_param(double eps) {

return (double) ((-0.1*eps)/188) + 0.912;

}

double b_param(double eps) {

return (double) ((-0.3*eps)/188) -0.165;

}

double eta_param(double eps) {

return (double) 1.95;

}

/*

* Leach and Petrosian model fits

* & eddington approximation functionality

*

*/

double directivity(double eps)

{

return (double) 0.78+((19.0*(eps))/188.0);

}

double fraction_up__(double* eps) {

double alpha=(1/(directivity(*eps)+1));

return alpha;

}

double fraction_down__(double* eps)

{

double alpha=1-(1/(directivity(*eps)+1));

return alpha;
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}

/*

underscore is for fortran and C compatibility

use __NOUNDERSCORE__ if the compiler allow it

*/

double str2num_dbl__(char *numnchr)

{

double v_rtn;

v_rtn = (double)strtod(numnchr,NULL);

#ifdef _DEBUG_

fprintf(stdout,"Return:\t%lf\n", v_rtn);

#endif

return v_rtn;

}

float str2num_flt__(char *numnchr)

{

double v_rtn;

v_rtn = strtod(numnchr,NULL);

#ifdef _DEBUG_

fprintf(stdout,"Return:\t%lf\n", v_rtn);

#endif

return (float)v_rtn;

}

float str2num_int__(char *numnchr)

{
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int v_rtn;

v_rtn = atoi(numnchr);

#ifdef _DEBUG_

fprintf(stdout,"Return:\t%d\n", v_rtn);

#endif

return v_rtn;

}

inline double fround(double n, unsigned int d)

{

return floor(n*pow(10.,d)+0.5 )/pow(10.,d);

}

void form_ext__(double *gamma, double *nth_order, double *angle, char* ext)

{

int v_order=(int)*nth_order, v_angle=(int)(fround((*angle)*100,0));

// fprintf(stdout,"%lf\n",*gamma);

sprintf(ext,"g%1.0lfn%dmu0%d",*gamma, v_order,v_angle);

return;

}

/*

* Driver routine: only used to test the external functions

*

*/

#ifdef _DEBUG_DRIVER_

/*

This is purely for debugging the integration routines (22.11.2006)
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*/

int main(int argc, char** argv)

{

int idx=0;

double v_total=0.0;

double eps=1.0, *p_eps=&eps;

double theta=0.0, *p_theta=&theta;

double gamma=3.0, *p_gamma=&gamma;

int nth_order=2, *p_nth_order=&nth_order;

/*

for(idx=0;idx<360;idx++)

{

fprintf(stdout,"%d\t%lf\t%lf\t%lf\t%lf\n",idx

, AngularCmpt(idx,2)

, AngularCmpt(idx,3)

, AngularCmpt(idx,4)

, AngularCmpt(idx,5)

);

}

*/

theta=0.0;

nth_order=2;

for(eps=1.0;eps<511;eps++)

{

fprintf(stdout,"%lf\t", *p_eps);

for(theta=0.0;theta<180.0;theta+=60)

{

for(nth_order=2;nth_order<8;nth_order+=2)
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{

fprintf(stdout,"%lf\t", PrimaryIntensity(p_eps,

p_theta,

p_gamma,

p_nth_order));

}

}

fprintf(stdout,"\n", *p_eps);

}

return 0;

}

#endif
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A Least Squares Empirical Fit

D.1 The Algorithm

;

; Fitting Routine

;

pro gfunct, x, a, f, pder ; Function + partials

bx = exp(a(1) * x)

f=(a[0]+a[1]*cos((!PI/180)*x))^a(2) ;Evaluate the function

IF N_PARAMS() ge 4 THEN $ ;Return partials?

pder= [[bx], [a(0) * x * bx], [replicate(1.0, N_ELEMENTS(f))]]

end

;

; Driver Routine

;

pro main

i=0.0

i_min=0.0

i_max=1.0

i_iter=0.05

j=0.0

j_min=0.0

j_max=1.0
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j_iter=0.05

k=0.0

k_min=-2.0

k_max=2.0

k_iter=0.05

x=[0,30,60,90,120,150,180] ;Define indep & dep variables.

y=[0.5,0.55,0.6,0.8,1.1,1.15,1.2]; 22keV data

;y=[0.095,0.12,0.3,0.55,1.15,1.5,1.6]; 210keV data

Weights=0.25/y ;Weights

openw,lun,’chi_results.dat’,/get_lun, width=300

a=[0.25,-0.9,0.3] ;Initial guess

yfit=curvefit(x,y,Weights,a,sigma,function_name=’gfunct’,ITER=100)

printf, lun, ’’

printf, lun, ’Function parameters: ’,a,yfit

printf, lun, ’’, i

i=i_min;

j=j_min;

k=k_min;

while i lt i_max do begin

while j lt j_max do begin

while k lt k_max do begin

a[0]=i

a[1]=j

a[2]=k

yfit=curvefit(x,y,Weights,a,sigma,function_name=’gfunct’,ITER=100)

if total(abs(y-yfit)) lt 0.3 then begin
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printf, lun, ’’

printf, lun, ’Function parameters: ’,a,yfit

printf, lun, y

printf, lun, y-yfit

printf, lun, ’Fit’,total(abs(y-yfit))

printf, lun, ’GOOD FIT’

end

k=k+k_iter

endwhile

j=j+j_iter

k=k_min

endwhile

i=i+i_iter

j=j_min ;

endwhile

close, /all

end
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The Fit2d Routine

The fit2d listing has been formatted for printing. The symbol $ denotes where a

line has been split to allow the line to fit on the page.

function fbar, x,a

IF a[0] LT 0. THEN a[0] =0.

;a[5]=a[3]

;IF (a[5] LT -1.) THEN a[5]=-1.

; fbar1=a[0]*exp(-x/a[1])/sqrt(a[1])+((x LT a[4]) AND $

(x GT 3.))*a[2]*(a[4]/x)^a[3]+(x GE a[4])*a[2]*(a[4]/x)^a[5]

fbar1=(x GT 10.)*a[0]*(50./x)^a[1]

;fbar2=(x GT 10.)*a[2]*(50./x)^a[3]

;fbar1=a[0]*exp(-x/a[1])/sqrt(a[1])+(x GT 10.)*a[2]*(50./x)^a[3]

;EB=50.

;Fbar1=a[0]*exp(-x/a[1])/sqrt(a[1])+ $

(x LT a[4])*a[2]*(a[4]/x)^a[3]+(x GE a[4])*a[2]*(a[4]/x)^a[5]

;Fbar2=a[0]*exp(-x/a[1])/sqrt(a[1])+ $

(x LT a[8])*a[6]*(a[8]/x)^a[7]+(x GE a[8])*a[6]*(a[8]/x)^a[9]

fbar2=fbar1



206

;Fbar=[(2.-1.97*exp(-sqrt(x/100.)))*a[2]*Fbar1,Fbar2]

;fbar=a[0]*(50./x)^a[1]

;fbar=fbar*x

Fbar=[Fbar1,Fbar2]

return, fbar

end

PRO fit_function, X, A, F

;thermal + powerlaw

COMMON SHARE1,CrossSection,ee_long,const,drm,de,matrix,bg,Msun,Mup

;f0=fltarr(n_elements(ee_long))

;for i=0, n_elements(ee_long)-1 do f0(i)=fbar(ee_long(i),a)

f0=fbar(ee_long,a)

;f1=(CrossSection##(f0*de))

;f=drm#transpose(f1)

;f=MATRIX#(f0*[de,de])

f=transpose(MATRIX##f0)

;f=(Mup+4.*Msun)#(f0*de)+bg

;********************************************************

END

pro fit2d, ph_fname

COMMON SHARE1,cs_long,ee,R2pi4,drm,de,matrix,bg,Msun,Mup

;inversion using SVD method + regularisation

;method by Piana, 1994

z=1.2 ;z- Mean atomic number of the target plasma.
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R=1.496e+13 ; 1AU distance in cm

R2pi4=((4.*!PI*R^2)/1e+28)

EE_max=400

; upper limit for electrons

; SIMULATION OF MAX ENERGY

; we need to get the edges data from the cross section

;restore, ’brm_cross_poutanen_ee.3.00000.95.0.00000.dat’

restore, ’ang_brm_cross.dat’

; we want to import the observed photon spectrum file here

; not a spex file

; ph_spectr_file=’data/Poutanen/Poutanen.g4n6mu095.data.rhessi_data’

; poutanen

; ph_spectr_file=$

;’thesis_work/poutanen/anisotropic/empirical/empirical_results/’+ ph_fname

; poutanen isotropic check

ph_spectr_file=’thesis_work/poutanen/isotropic_check/isotropic/’+ ph_fname

; eddington

; ph_spectr_file=$

;’thesis_work/forward_greens_conv/results/lp_anisotropy_working/’+ ph_fname

; eddington isotropic check

; ph_spectr_file=$

;’thesis_work/forward_greens_conv/results/lp_isotropic_check/’+ ph_fname

ph_data=rd_tfile(ph_spectr_file, 5, /auto, /convert)

; we need 100 datapoints

tweak=0.01
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; restore, ph_spectr_file

; stop

; bg=fltarr(n_elements(eps_data))

eps=fltarr(2,n_elements(ph_data[0,*]))

eps[0,*]=ph_data[0,*]

eps[1,*]=ph_data[1,*]

; obsi=ph_data[2,*]

; primary spectrum

; obsi=ph_data[3,*]*10000*(1+ph_data[4,*])

; observed spectrum

obsi=ph_data[3,*]*10000*(1+ph_data[4,*])

eobsi=fltarr(n_elements(ph_data[0,*]))

ebacki=fltarr(n_elements(ph_data[0,*]))

print, ’Photon file loaded.’

; stop

set_plot, ’PS’

device, filename=ph_spectr_file+$

’.test.ps’, xsize=24,ysize=17,xoffset=2,yoffset=2,ENCAPSULATED=0

plot, eps[0,*]+eps[1,*]/2, obsi, /xlog, /ylog, title=ph_fname

device, /close

set_plot, ’X’

; return
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; stop

backi=fltarr(n_elements(ph_data[0,*]))

for i=0,n_elements(backi)-1 do backi[i]=0.0

bg=backi

; stop

counts =obsi-bg

ecounts=sqrt((eobsi)^2+(ebacki)^2)

ecounts=(ecounts LT counts*tweak)*counts*tweak+$

(ecounts GT counts*tweak)*ecounts

e_in=p.e_in

ecounts=sqrt(obsi)

; edges=p.edges

edges=p.e2n

; drm=p.drm

; the drm is just a unit matrix

;drm=fltarr(n_elements(ph_data[0,*]),n_elements(ph_data[0,*]))

drm=fltarr(400,400)

;

; we dont want the rhessi drm here but will replace it with

; a square unit matrix diag(99) with the rest of the 99x109 elements 0

;

; stop

for i=0, n_elements(drm[*,0])-1 do begin

; print, i

for j=0, n_elements(drm[0,*])-1 do begin

drm[i,j]=0.0

endfor
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endfor

; stop

for i=0, n_elements(drm[*,0])-1 do begin

; print, ’Unit: ’+string(i)

drm[i,i]=1.0

endfor

; stop

; photon_data=rd_tfile(’data/mc_anicorr.3.00000.95.2.00000.dat’, 3, /auto, /convert)

; plot, photon_data[0,*], photon_data[2,*]/photon_data[1,*], /xlog, yrange=[0,1]

; data_interp=interp(photon_data[1,*], photon_data[0,*], e_c)

e_c =transpose(edges(1,*)+edges(0,*))/2.

de_c=edges(1,*)-edges(0,*)

ee=transpose(e_in(1,*)+e_in(0,*))/2.

de_in=transpose(e_in(1,*)-e_in(0,*))

; stop

; ph_spectr_file=’jcb_test.dat’

for i=0, N_elements(drm(0,*))-1 do drm(*,i)=drm(*,i)/de_c ;(i)

output_file =STRMID(ph_spectr_file, 0, STRPOS(ph_spectr_file, ’.dat’))+$

’_00sol.dat’

output_file2=STRMID(ph_spectr_file, 0, STRPOS(ph_spectr_file, ’.dat’))+$

’_00log.dat’

Foo_file=STRMID(ph_spectr_file, 0, STRPOS(ph_spectr_file, ’.dat’))+$

’_00F0.dat’

ps_file =STRMID(ph_spectr_file, 0, STRPOS(ph_spectr_file, ’.dat’))+$

’_00sol.ps’

ps_file_err=STRMID(ph_spectr_file, 0, STRPOS(ph_spectr_file, ’.dat’))+$
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’_00err.ps’

errors_file=STRMID(ph_spectr_file, 0, STRPOS(ph_spectr_file, ’.dat’))+$

’_00err.dat’

ps_file_fit=STRMID(ph_spectr_file, 0, STRPOS(ph_spectr_file, ’.dat’))+$

’_00fit.ps’

;reader,starte,ende,photon,ephoton,ph_spectr_file

;reads the data from data file

;restore,’jan17F/brm_cross_logbins.dat’

;restore,’jan17F/ang_brm_cross.dat’

;restore,’brm_cross_logbins.dat’

;restore, ’brm_cross_109_597log_ee.dat’

; restore, ’brm_cross_greens_ee.dat’

; restore, ’brm_cross_poutanen_ee.3.00000.95.0.00000.dat’

restore, ’ang_brm_cross.dat’

; stop

print, ’Cross Section’

; stop

;e2N =p.energy

;cs_long=total(p.cross_section(0:5,*,*),1)/$

(1.-cos(60.*!PI/180.))

;cs_long2=total(p.cross_section(10:16,*,*),1)/$

(cos(110.*!PI/180.)-cos(170.*!PI/180.))

e2N =p.e2N

cross_section=p.cs

;cross_section=p.cs[*,1:100]

cs_long=total(cross_section(0:5,*,*),1)/$

(1.-cos(60.*!PI/180.))

cs_long2=total(cross_section(10:16,*,*),1)/$

(cos(110.*!PI/180.)-cos(170.*!PI/180.))
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ThetaH=40.

;**********************************

ss=0.

ss2=0.

fi= findgen (18)*10. +5.

betta=fi

i_theta0=3

for i=i_theta0,i_theta0 do begin

for j=0, 17 do begin

cosTheta= cos(thetaH*!PI/180.)*cos(betta(i)*!PI/180.)+$

sin(thetaH*!PI/180.)*sin(betta(i)*!PI/180.)*$

cos(fi(j)*!PI/180.)

theta = 180.- acos(cosTheta)*180./!PI

cosTheta1= cos(0.*!PI/180.)*cos(betta(i)*!PI/180.)+$

sin(0.*!PI/180.)*$

sin(betta(i)*!PI/180.)*cos(fi(j)*!PI/180.)

theta1 = acos(cosTheta1)*180./!PI

ss=ss+2.*cross_section(round((theta-2.0)/10.),*,*)/$

(1.-cos(180.*!PI/180.))*$

sin(betta(i)*!PI/180.)/Sin(theta*!PI/180.)

ss2=ss2+2.*cross_section(round((theta1-2.)/10.),*,*)/$

(1.-cos(180.*!PI/180.))*$

sin(betta(i)*!PI/180.)/Sin(theta1*!PI/180.)

print,theta,theta1,betta(i),fi(j),round((theta-2.0)/10.)

end

end

cs40 =transpose(ss)*1e22

cs40_2=transpose(ss2)*1e22
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; stop

cs_long =transpose(cs_long)

cs_long2=transpose(cs_long2)

csi=total(cross_section(0:8,*,*),1)/(1.-cos(90.*!PI/180.))

csi=transpose(csi)*1e22

ee=transpose(e2N(1,*)+e2N(1,*))/2.

de=transpose(e2N(1,*)-e2N(0,*))

;restore,’brm_cross_logbins.dat’

;cs_long_ee=p.cs

print, ’Cross section - End processing’

; stop

;restore,’aug20F/green_compton_mu075.dat’

;restore,’jan17F/green_compton_mu080.dat’

;restore, ’green_compton_mu070.dat’

restore, ’compton_data/400/green_compton_mu095.dat’

GREEN1=p.albedo

e2green=p.edges

Neg=n_elements(e2green)/2

Green=fltarr(n_elements(ee),n_elements(ee))

ggg=interpolate(green1,ee,ee,/grid)

;GREEN(0:Neg-1,0:neg-1)=ggg

;for i=0,n_elements(edges)/2-1 do Green1(i,*)=Green1(i,*)*de(i)

; stop
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cs =cs_long*1e22 ;(0:M-1,*)

cs2=cs_long2*1e22 ;(0:M-1,*)

;for i=0, n_elements(cs(0,*)) do cs(*,i)=cs(*,i)

; stop

;drm=rebin(drm,400,400)

for i=0, n_elements(drm[*,0])-1 do begin

; print, i

for j=0, n_elements(drm[0,*])-1 do begin

drm[i,j]=0.0

endfor

endfor

for i=0, n_elements(drm[*,0])-1 do begin

; print, ’Unit: ’+string(i)

drm[i,i]=1.0

endfor

; stop

print, ’Matrix Debug’

; stop

Matrix=drm#transpose(cs) ;drm is required to dimension

;Matrix=transpose(cs)

;Matrix=rebin(matrix,400,400)

; turn the matrix into two dimensional

;for i=0,n_elements(drm(0,*))-1 do Matrix(i,I) = cs(0,i)



215

print, ’Matrix Debug Matrix’

; stop

M1 =transpose(Green1)#transpose(csi)

; M1w=m1

; m1=rebin(m1,400,400)

; m1w=fltarr(400,400)

; m1w=drm

; for i=0,n_elements(drm(0,*))-1 do m1w(i,i) = m1(i)

; m1 = m1w

print, ’Matrix Debug M1’

; stop

M2 =transpose(cs40) +drm#transpose(cs)

print, ’Matrix Debug’

; stop

;M1 =transpose(Green1)#transpose(csi)

;M2 =transpose(cs40);+drm#transpose(cs)

Msun =drm#(transpose(Green1)#transpose(cs)+transpose(cs2))

;Msun =(transpose(Green1)#transpose(cs))+transpose(cs2)

;Msun2=drm#(transpose(Green1)#transpose(cs2))

Mup =drm#(transpose(cs)+(transpose(Green1)#transpose(cs2)))

;Mup =transpose(cs)+(transpose(Green1)#transpose(cs2))

;Mup2 =drm#transpose(cs2)

; stop

; msun1=msun
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; msun=fltarr(400,400)

; for i=0,n_elements(msun(*,0))-1 do msun(i,i)=msun1(i)

; mup1=mup

; mup=fltarr(400,400)

; for i=0,n_elements(mup(*,0))-1 do mup(i,i)=mup1(i)

; m21=m2

; m2=fltarr(400,400)

; for i=0,n_elements(m2(*,0))-1 do m2(i,i)=m21(i)

; cfit_range=where((e_c GE 10.) AND (e_c LT 501.))

; efit_range=where((ee GE 10.) AND (ee LT 1000.))

cfit_range=where((e_c GE 10.) AND (e_c LT 150.))

efit_range=where((ee GE 11.) AND (ee LT 300.))

Matrix =Matrix(min(cfit_range):max(cfit_range),min(efit_range):max(efit_range)

; stop

Msun =Msun(min(cfit_range):max(cfit_range),min(efit_range):max(efit_range))

Mup =Mup(min(cfit_range):max(cfit_range),min(efit_range):max(efit_range))

M1 =M1(min(cfit_range):max(cfit_range),min(efit_range):max(efit_range))

M2 =M2(min(cfit_range):max(cfit_range),min(efit_range):max(efit_range))

;Msun2 =Msun2(min(cfit_range):max(cfit_range),min(efit_range):max(efit_range))

;Mup2 =Mup2(min(cfit_range):max(cfit_range),min(efit_range):max(efit_range))

; stop

counts =counts(min(cfit_range):max(cfit_range))

ecounts=ecounts(min(cfit_range):max(cfit_range))

e_c =e_c(min(cfit_range):max(cfit_range))

bg =bg(min(cfit_range):max(cfit_range))

de_c =de_c(min(cfit_range):max(cfit_range))
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ee =ee(min(efit_range):max(efit_range))

de =de(min(efit_range):max(efit_range))

Matrix=[[Msun],[Mup]]

; stop

;Matrix=[[Msun],[Msun]]

MT =[[M1],[M2]]

;test remove for data

Matrix=transpose(Matrix)

MT=transpose(MT)

for i=0,n_elements(ee)-1 do Matrix(i,*)=Matrix(i,*)*de(i)

for i=N_elements(ee),2*n_elements(ee)-1 do Matrix(i,*)=Matrix(i,*)*$

de(i-N_elements(ee))

for i=0,n_elements(ee)-1 do MT(i,*)=MT(i,*)*de(i)

for i=N_elements(ee),2*n_elements(ee)-1 do MT(i,*)=MT(i,*)*$

de(i-N_elements(ee))

print,’Forward fitting .......................’

;Apar=[1e+8,3.,100.,2.1,100.,2.]

; Apar=[8.e+006,1.20049, 17.2163, 2., 30.438, 2.]

; Apar=[0.0,1.20049, 17.2163, 2., 30.438, 2.]

; Apar=[1.3,3.1]

Apar=[650,2.2]

; stop

;Apar=[3e+5,4.3,26.8,1.,300.,-.5]

rat=.2*ecounts/counts

seed = 1001L ;for gaussian distribution of errors
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fbar0=fbar(ee,apar)

;fbar0(N_elements(ee):2*N_elements(ee)-1)=$

fbar0(N_elements(ee):2*N_elements(ee)-1)

;/(1.+sqrt((ee-10.)/50.))^2

counts=MT##fbar0

ft=fbar0

counts=counts+(randomu(seed,N_elements(counts))-0.5D0)*4.*counts*rat

counts=transpose(counts)

ecounts=rat*counts

;test starts here

plot_oo,ee,fbar0(0:N_elements(ee)-1),ytitle=’Electron flux’,$

xtitle=’Energy,keV’,xrange=[10,1000]

oplot,ee,fbar0(N_elements(ee):2*N_elements(ee)-1),line=2

; stop

openw,1,’test_data_jcb.dat’

for i=0, n_elements(ee)-1 do printf,1,ee(i),fbar0(i),$

fbar0(N_elements(ee)+i)

close,1

openw,1,’test_data_counts_jcb.dat’

for i=0, n_elements(e_c)-1 do printf,1,e_c(i),counts(i),ecounts(i)

close,1

;Apar=[1e+7,1.33,10.8,1.,1800.,1.]

;Apar=[1e+7,1.33,20.8,1.]

;Apar=[9e+8,1.3,4.,2.1,100.,3.2]

;Apar=[1.3,3.1]

weights=1./ecounts^2

loadct,39
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window,3

fbar0=fbar(ee,apar)

plot_oo,ee,fbar0(0:N_elements(ee)-1),ytitle=’Fit’,xtitle=’Energy,keV’

oplot,ee,fbar0(N_elements(ee):2*N_elements(ee)-1),line=2,color=200

oplot,ee,ft,line=2,color=500

print, ’before fitting’

; stop

;**********************************************************

For i=0, 10 do begin

fit = CURVEFIT(e_c,counts,weights,Apar, SIGMA, $

FUNCTION_NAME=’fit_function’, ITMAX=100,/noderivative)

print,’Fit parameters are :’, apar

end

fbar0=fbar(ee,apar)

oplot,ee,fbar0,line=1

print,’Fit parameters are :’, apar

;**********************************************************

res=(counts-fit)/ecounts

;normilised residuals

res_sum=fltarr(N_elements(e_c))

for k=0,N_elements(e_c)-1 do res_sum(k)=total(res(0:k))/(float(k)+1.)

print,’CHI2=’,total(res*res)/float(n_elements(E_c)-n_elements(apar))

window,1,xsize=600,ysize=700,title=’Forward fit results’

!P.MULTI=[0,1,3]

plot_oo,e_c,counts, ytitle=’Count Flux’,xtitle=’Energy, keV’,$

xstyle=1,xrange=[min(e_c),max(e_c)]



220

ERRplot,e_c,counts-ecounts,counts+ecounts

oplot,e_c,fit,line=0,color=220

plot,e_c,res,/xlog,psym=10,ytitle=’Normilised Residuals’,$

xtitle=’Energy, keV’,xstyle=1,xrange=[min(e_c),max(e_c)]

oplot,e_c,e_c/e_c,line=1

oplot,e_c,-e_c/e_c,line=1

plot,e_c,res_sum,xrange=[min(e_c),max(e_c)],$

ytitle=’Cumulative residuals’,/xlog,$

xstyle=1,xtitle=’Energy, keV’,yrange=[-1,1],PSYM=10

oplot,e_c, 1./sqrt(e_c-min(e_c)),line=1

oplot,e_c,-1./sqrt(e_c-min(e_c)),line=1

oplot,e_c, 3./sqrt(e_c-min(e_c)),line=1

oplot,e_c,-3./sqrt(e_c-min(e_c)),line=1

!P.Multi=0

; stop

window,3

plot_oo,ee,fbar0(0:N_elements(ee)-1),ytitle=’Fit’,xtitle=’Energy,keV’

oplot,ee,fbar0(N_elements(ee):2*N_elements(ee)-1),line=1

; stop

Set_plot, ’PS’

Device,filename=ps_file_fit,xsize=12,ysize=18,ENCAPSULATED=1

!P.MULTI=[0,1,3]

!P.CHARSIZE=2

!P.thick=1.5
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plot_oo,e_c,counts, ytitle=’Count Flux’,$

xtitle=’Energy, keV’,xstyle=1,xrange=[min(e_c),max(e_c)]

ERRplot,e_c,counts-ecounts,counts+ecounts

oplot,e_c,fit,line=0,color=220

plot,e_c,res,/xlog,psym=10,ytitle=’Normilised Residuals’,$

xtitle=’Energy, keV’,xstyle=1,xrange=[min(e_c),max(e_c)]

plot_oo,ee,fbar0(0:N_elements(ee)-1),$

ytitle=’Electron flux’,xtitle=’Energy,keV’,xrange=[10,1000]

oplot,ee,fbar0(N_elements(ee):2*N_elements(ee)-1),line=2

;stop

!P.thick=1

!P.CHARSIZE=1

!P.Multi=0

DEVICE, /CLOSE

set_plot,’X’

print,’fitting completed ........................................ OK’

; stop

openw,1,’ff_residuals_jcb.dat’

for i=0, n_elements(e_c)-1 do printf,1,e_c(i),res(i),res_sum(i)

close,1

;stop

;fit=0.

;fbar0=fbar0*1e-8

; preconditioning of the cross-section
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precond1=sqrt(fit)

for i=0,N_elements(fit)-1 do Matrix(*,i)=Matrix(*,i)/precond1(i)

counts =counts/precond1

ecounts=ecounts/precond1

M=2*N_elements(ee)

N=N_elements(e_c)

precond2=sqrt([Msun#fbar0(0:M/2-1),Mup#fbar0(0:M/2-1)])

D0=fltarr(M,M)

For i=0, M/2-1 do D0(i,i)=1./sqrt(fbar0(i))

;For i=M/2,M-1 do D0(i,i)=sqrt(ee(i-M/2))*sqrt(de(i-M/2))/$

sqrt(fbar0(i-M/2));*sqrt(de(i-M/2));/sqrt(i-float(M)/2+1.)

For i=M/2,M-1 do D0(i,i)=1./sqrt(fbar0(i-M/2))

D1=fltarr(M,M)

for i=0, M/2-2 do D1(i,i+1)=1./sqrt(fbar0(i)/ee(i))

for i=0, M/2-1 do D1(i,i) =-1./sqrt(fbar0(i)/ee(i))

for i=M/2, M-2 do D1(i,i+1)=1./sqrt(fbar0(i-M/2)/ee(i-M/2))

for i=M/2, M-1 do D1(i,i) =-1./sqrt(fbar0(i-M/2)/ee(i-M/2))

L=D1

;L=D0+0.01*D1

Fbar0=fbar0;*1e-22

counts=counts-fit/precond1

;stop

;gsvdcsq,Matrix,L, alpha,betta,gamma,U,V,W

inv_gsvdcsq,Matrix,L,alpha,betta,U,V,W

inv_gsvdcsq,Matrix,L,alpha,betta,U,V,W
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print,’Generalized SV decomposition .... ................. OK ’

;opt0=Trace(transpose(Matrix)##matrix)/Trace(transpose(L)##L)

opt0=1.;/total(ephoton*ephoton)

print,’Initial guess .... ’,opt0

;reg_parameter,alpha,betta,U,W,counts,ecounts,ee,opt,opt0

;REG_PARAMETER,Alpha,Betta,u,w,counts,Fbar0,ecounts,ee,opt,opt0

reg_tweak=.95

inv_reg_parameter,Alpha,Betta,U,W,counts,ecounts,Fbar0*0.,reg_tweak,opt

print,’regularisation parameter ................. OK ’

;regularization parameter

;reg_solution,Alpha,Betta,U,W,e_c,ee,counts,opt,n,m,reg_sol

;reg_solution,Alpha,Betta,U,W,starte,ee,counts,Fbar0,opt,n,m,reg_sol

inv_reg_solution,Alpha,Betta,U,W,counts,opt,fbar0*0.,reg_sol

;solving reg solution

print,’regularisation solution ................. OK ’

inv_reg_resolution,Alpha,Betta,opt,W,[ee,ee],[de,de],FWHM

reg_sol=reg_sol;+Fbar0

ph_reg=Matrix##(reg_sol)

counts=counts

;***********************************************************************
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window,7

plot_oo,ee,reg_sol+Fbar0,xtitle=’energy, kev’,ytitle=’Electron flux’

oplot,ee,reg_sol(M/2:M-1)+Fbar0(M/2:M-1),line=1

;oplot,ee,Fbar0,line=1,color=220

;stop

Set_plot, ’PS’

Device,filename=ph_spectr_file+’.electron_split.ps’,$

xsize=24,ysize=17,xoffset=2,yoffset=2,ENCAPSULATED=0

plot_oo,ee,reg_sol+Fbar0,xtitle=’energy, kev’,ytitle=’Electron flux’

oplot,ee,reg_sol(M/2:M-1)+Fbar0(M/2:M-1),line=1

;oplot,ee,Fbar0,line=1,color=220

device, /close

set_plot, ’X’

loadct,39

window,0

plot_oo,e_c,counts+fit/precond1, xtitle=’Photon Flux’,ytitle=’energy, keV’

ERRplot,e_c,counts+fit/precond1-ecounts,counts+fit/precond1+ecounts

oplot,e_c,ph_reg+fit/precond1,line=0,color=220

;*****************************************************************

;res=(counts-ph_reg)/ecounts

inv_residuals,ph_reg+fit/precond1,counts+fit/precond1,ecounts,e_c,’2dfit.ps’

; stop
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;calculating confidence strip

Npass =300

; Init seed for a repeatable sequence:

seed = 1001L

seed = 5L ;for gaussian distribution of errors

Strip_array=fltarr(Npass,N_elements(reg_sol))

for i=0, Npass-1 do begin

;rand_arr=(randomu(seed,N_elements(reg_sol))-0.5D0)*6.*ecounts

rand_arr=(randomn(seed,N_elements(reg_sol)))*ecounts*3.

print,’pass # ’,i,’ out of ’,Npass

photonX=counts+rand_arr

;photonX=(photonX LE 0)*1e-6 +(photonX GT 0)*photonX

optX=opt

;reg_solution,Alpha,Betta,U,W,ee,ee,photonX,optX,n,m,reg_solX

;reg_solution,Alpha,Betta,U,W,e_c,ee,photonX,fbar0,optX,n,m,reg_solX

inv_reg_solution,Alpha,Betta,U,W,photonX,opt,fbar0*0.,reg_solX

Strip_array(i,*)=reg_solX

end

nbins=9

;number of bins for error estimate

reg_sol_err=fltarr(N_elements(reg_sol))



226

Diff = fltarr(Npass,N_elements(reg_sol))

Dist_err= fltarr(Nbins,N_elements(reg_sol))

ERR_fit = fltarr(3,N_elements(reg_sol))

For i=0, N_elements(reg_sol)-1 do begin

Diff(*,i)= strip_array(*,i)-reg_sol(i)

Dist= HISTOGRAM(Diff(*,i),NBINS=7,locations=X_err)

fit_gauss=GAUSSFIT(X_err,Dist,gauss_params,NTERMS=3)

ERR_fit(*,i)=gauss_params

end

for j=0, N_elements(reg_sol)-1 do reg_sol_err(j)=$

max(abs(strip_array(*,j)-reg_sol(j)))

reg_sol_err=err_fit(2,*)

new_sol=total(Strip_array,1)/N_elements(strip_array(*,1))

print,’Confidence strip ............................... OK’

;finished

counts=counts+fit/precond1

ph_reg=ph_reg+fit/precond1

Reg_sol=reg_sol+fbar0

;********************************************

; converting to physical values

reg_sol =(reg_sol)*R2pi4

reg_sol_err=reg_sol_err*R2pi4

;********************************************

res=(ph_reg-counts)/ecounts

res_sum=fltarr(N_elements(e_c))
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for k=0,N_elements(e_c)-1 do res_sum(k)=total(res(0:k))/(k+1.)

loadct,39

window,3,xsize=600,ysize=600

!P.Multi=[0,1,2]

plot_oo,e_c,counts, ytitle=’Counts Flux’,xtitle=’Energy, keV’,$

xrange=[min(e_c),max(e_c)],xstyle=1,yrange=[min(counts),max(counts)]

ERRplot,e_c,counts-ecounts,counts+ecounts

oplot,e_c,ph_reg,line=0,color=220

plot_oo,ee,reg_sol,xrange=[min(ee),max(e_c)],ytitle=’Reg Solution’,PSYM=3

ERRplot,ee,reg_sol-reg_sol_err,reg_sol+reg_sol_err

oplot,ee,reg_sol(M/2:M-1),line=0,color=220

ERRplot,ee,reg_sol(M/2:M-1)-reg_sol_err(M/2:M-1),$

reg_sol(M/2:M-1)+reg_sol_err(M/2:M-1)

!P.Multi=0

;stop

print, ph_spectr_file

Set_plot, ’PS’

Device,filename=ph_spectr_file+’.electron_solution.ps’,$

xsize=17,ysize=24,xoffset=2,yoffset=2,ENCAPSULATED=0

!P.Multi=[0,1,2]

plot_oo,e_c,counts, ytitle=’Counts Flux’,xtitle=’Energy, keV’,$

xrange=[min(e_c),max(e_c)],xstyle=1,yrange=[min(counts),max(counts)]

ERRplot,e_c,counts-ecounts,counts+ecounts

oplot,e_c,ph_reg,line=0,color=220

plot_oo,ee,reg_sol,xrange=[min(ee),max(e_c)],ytitle=’Reg Solution’,PSYM=3

ERRplot,ee,reg_sol-reg_sol_err,reg_sol+reg_sol_err
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oplot,ee,reg_sol(M/2:M-1),line=0,color=220

ERRplot,ee,reg_sol(M/2:M-1)-reg_sol_err(M/2:M-1),$

reg_sol(M/2:M-1)+reg_sol_err(M/2:M-1)

!P.Multi=0

device, /close

set_plot, ’X’

window,4,xsize=600,ysize=600

!P.Multi=[0,1,2]

plot,e_c,res,xrange=[min(e_c),max(e_c)],$

ytitle=’Normilised residuals’,/xlog,xstyle=1,xtitle=’Energy, keV’,Psym=10

plot,e_c,res_sum,xrange=[min(e_c),max(e_c)],ytitle=’Cumulative residuals’,$

/xlog,xstyle=1,xtitle=’Energy, keV’,yrange=[-1,1],Psym=10

oplot,e_c, 1./sqrt(e_c-min(e_c)),line=2,color=170

oplot,e_c,-1./sqrt(e_c-min(e_c)),line=2,color=170

!p.multi=0

;plot_oo,ee(0:80),-dF, ytitle=’d(F/E)’,xtitle=’energy, keV’

;m_coef=1e+50

openw,11,output_file

for i=0, n_elements(ee)-1 do printf,11,ee(i),reg_sol(i),reg_sol_err(i),$

reg_sol(i+M/2),reg_sol_err(i+M/2)

close,11

openw,11,errors_file

for i=0, n_elements(e_c)-1 do printf,11,e_c(i),res(i),res_sum(i)
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close,11

;*********************************************************************

; plot PS files

Set_plot, ’PS’

Device,filename=ps_file, xsize=17,ysize=24,xoffset=2,$

yoffset=2,ENCAPSULATED=0

!P.multi=[0,1,2]

plot,e_c,counts,ytitle=’counts Flux ’,xtitle=’energy, keV’,/YLOG,$

/xlog,xrange=[min(e_c),max(e_c)]

ERRplot,e_c,counts-ecounts,counts+ecounts

oplot,e_c,ph_reg,line=2

plot,ee,reg_sol,xrange=[min(ee),max(ee)],yrange=[1,1e+7],$

ytitle=’Regularized solution’,/ylog,/xlog,xtitle=’Energy,keV’,xstyle=1

ERRplot,ee,reg_sol-reg_sol_err,reg_sol+reg_sol_err

;oplot,ee+FWHM,reg_sol,line=1

;oplot,ee-FWHM,reg_sol,line=1

;oplot,ee,Ftest*R2pi4,line=1

;For i=0,Npass-1 do oplot,ee,(Strip_array(i,*))*R2pi4

DEVICE, /CLOSE

SET_PLOT, ’X’

Set_plot, ’PS’
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Device,filename=ps_file_err, xsize=17,ysize=24,xoffset=2,$

yoffset=2,ENCAPSULATED=0

!P.multi=[0,1,2]

plot,e_c,res,xrange=[min(e_c),max(e_c)],ytitle=’Normilised residuals’,$

xtitle=’Energy,keV’,/xlog,xstyle=1

plot,e_c,res_sum,xrange=[min(e_c),max(e_c)],ytitle=’Cumulative residuals’,$

xtitle=’Energy,keV’,/xlog,xstyle=1

oplot,e_c, 1./sqrt(e_c-min(e_c)),line=2

oplot,e_c,-1./sqrt(e_c-min(e_c)),line=2

!P.multi=0

DEVICE, /CLOSE

SET_PLOT, ’X’

Print,’CHISQ =’,total(Res*Res)/(N_elements(Res))

print,’All completed ...................................... OK ’

;stop

close, /all

end


