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SUMMARY 

This thesis presents a study of punching shear capacity of flat slab-column 
junctions. A three dimensional nonlinear finite element program based on 20 node 
isoparametric solid element was used for the investigation. The non-linear 3-D elastic 
isotropic model proposed by Kotsovos was used to describe the behaviour of concrete 
before cracking or crushing. After cracking, an yield criteria for 2-D model similar to 
Kupfer-Hilsdorf was used and concrete was assumed to be anisotropic. No softening 
in compression is assumed. Smeared crack approach with simple tension stiffening 

and shear retention equations were employed to mimic the post-cracking behaviour of 

concrete. Reinforcing bars were represented by one dimensional element embedded in 

the solid elements and for both tension and compression, linear elastic-plastic 
behaviour is assumed. 

A comparison was first made between the predictions of slab behaviour using 
Kotsovos' model (In-house program) and plasticity based model used in the 

commercial package ABAQUS. From this it was concluded that Kotsovos' concrete 
model is a good model for the three dimensional analysis of punching shear problem 
but ABAQUS model was unsuitable. 

In order to achieve an accurate and economical solution for the non-linear 

analysis, a parametric study was carried out to choose a suitable analytical model. 
After having chosen the "best" concrete model, over 175 slabs from different sources 

were analysed using a constant set parameters. The analysis includes various types 

connections (interior, edge and comer) with and without shear reinforcement, 

subjected to shear force alone or to a combination of shear force and unbalanced 

moment. These slabs cover most of the factors affecting punching shear strength, such 

as slab thickness, flexural reinforcement ratios, concrete strength, and column size. 
This study also includes the effect of in-plane restraint on punching shear strength of 

slabs. 

This study placed particular emphasis on the predicted mode of failure and 

other responses to load being in agreement with observed values. The classification of 

modes of failure was based on the structural response (deflection, crack pattern, strain 

in steel and concrete) which agree with experimental observations. The finite element 

predictions show good agreement with available test data. It was concluded that the 

present finite element model is capable of simulating realistically the structural 
behaviour of slab-column junctions. Hence, this program can be confidently used to 

obtain good lower bound predictions in actual design practice. 
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ChapLer I Intoduction 

Chapter I 

INTRODUCTION 

1.1 Problem statement 

Flat slab is an ideal structural form for architects and contractors. Its flush 

soffit makes the formwork construction, wiring and ducting work easy. Without using 
beams, flat slab provides more headroom or lower storey height. It can thus allow for 

more storeys than other types of slab systems within the same building height. But flat 

slab has inherent weaknesses. The connections between the floor slab and column in a 
flat slab structure are generally the most critical part as far as the strength is concerned 
because it is a region where large moments and shear forces are concentrated. 

Despite an extensive amount of experimental research work on shear strength 
of reinforced concrete slab, there is still no single theory that can accurately predict 
the shear strength of a reinforced concrete slab and the corresponding mode of failure. 
With the advancement in computing technology and numerical modelling of 
constitutive relationship of reinforced concrete, many features have been implemented 
into the finite element model to describe the behaviour of r9inforced concrete 
rationally. Therefore, the time has come to use the finite element method for studying 
the behaviour of reinforced concrete flat slabs and see how well it can predict the 

actual behaviour. A brief review of the research on the prediction of shear strength of 
slab using finite element in the literature includes the following :- 

Jofriet and McNeice (1971) studied experimentally and numerically a slab where the 

comers were prevented from lifting and subjected to a point load at the centre. They 

used plate element for their numerical analysis. This slab was subsequently analysed 
by many other investigators. The main emphasis was on predicting behaviour in 

flexure. 

de Borst and Nauta (1984) using axisymmetric element with smeared crack model 

analysed two simply supported slabs subjected to concentrated load which were tested 

at Delft University. 

Gonzalez, Kotsovos and Palvovic (1988) used 8 node axisymmetric elements with 

smeared crack model to investigate reinforced concrete slabs under symmetric 

punching loads. They analysed two series of slabs. The first series comprised of four 

circular slabs tested by Kinnimen et al (1978); the second series consists of five square 

slabs tested by Elstner and Hognestad (1956). 

I 



Chqjzter I Intoduction 

Gonzalez, Kotsovos and Palvovic (1991) used 20 node solid elements with smeared 
crack model to investigate a plain concrete prism, a reinforced concrete beam and a 
reinforced concrete slab. 

Malvar (1992) used 8 node solid element with smeared crack model to simulate a 
reinforced concrete pier deck subjected to a patch load. He analysed only one bridge 
deck tested by himself 

Abbasi et al (1992) investigated the effect of flexural reinforcement ratios and edge 
restraints on punching capacity of reinforced concrete slabs. They used a multilayered 
plate element with smeared crack to analyse slabs tested by Taylor and Hayes (1965). 

Marzouk and Chen (1993), used shell element with layered approach to study the 
behaviour of high strength concrete slab. The post-cracking behaviour of concrete was 
represented by smeared crack model. They analysed fourteen slabs tested by Marzouk 

and Hussein (1991 a). 

The brief literature reviews shows that :- 
" Some investigators used two dimensional analysis as the aim was to understand 

flexural behaviour. Punching shear is a three dimensional problem, and three 
dimensional analysis is necessary; 

" only a small number of slabs from one source were analysed; 
" Analysis included only simply supported slabs without shear reinforcement. The 

applicability of the model to slabs with shear reinforcement is thus in doubt. 

" emphasis was on the prediction of ultimate load only; 

" Specimens chosen did not cover all the important parameters governing punching 
shear capacity; 

" No attempt was made to study whether there is agreement between experimental 
and computed modes of failure and other structural responses. 

1.2 Scope of the study 

Non-linear finite element has been used to predict the experimentally observed 
behaviour. But, the prediction from numerical analysis can vary over a wide range 
depending on the "tuning factors " such as concrete strength, tension stiffening factor, 

shear retention factor, etc. In addition, only a small number of experimental tests from 

one resource which do not cover all the factors influencing the behaviour of reinforced 

concrete slab have been analysed. In other words, the generality of anyone of these 
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Chiai2ter I Inloduction 

models has not been established and it is difficult to judge which model gives best 

predictions for any kind of structure. 
The purpose of this study is to attempt to find out the features of a finite 

element model which is able to predict, with reasonable accuracy, the ultimate load 

and the correct mode of failure for a large number of slabs which cover all factors 

affecting the behaviour of reinforced concrete slabs. The study will use three 
dimensional element with Kotsovos' concrete model (1979a & 1979b) to study the 
behaviour of slabs with different types of column-slab connections (i. e., Interior 

column-slab connections, Comer column-slab connections and Edge column-slab 
connections). 

1.3 Layout of the thesis 

Chapter 2 focuses on the Punching shear in reinforced concrete slabs. 
Chapter 3 describes the features available in the program used in the study. This 
includes the finite element method and material modelling (steel and concrete). 

Chapter 4, describes a study of three dimensional finite element analysis using 
two different concrete constitutive models, namely the non-linear elastic isotropic 

model proposed by Kotsovos (I 979a & 1979b) and the plasticity-based concrete 
model proposed by Chen and Chen (1975) used in the commercial package 
ABAQUS. 

In Chapter 5, a parametric study of the major factors affecting the prediction of 
shear strength of interior slab-column connections is presented. The purpose of the 

parametric study is to "calibrate" the parameters used in the study, in order that a set 
of "constant " parameter can be used for the analysis of a large number of slabs. 

The following two chapters present the analysis results for different types of 
slab-column connections from different sources. Chapters 6 presents the results of 
analysis for interior column-slab connections subjected to shear only. Chapters 7 

presents the results of analysis for column-slab connections subjected to a 

combination of shear and unbalanced moment. This study includes interior slab- 
column junctions with moment transfer, edge column-slab connections and comer 

column-slab connections. Only typical results are presented in these chapters, results 
and details of all the specimens are included in Appendix C. 

Chapter 8 is presents an investigation of the effect of inplane restraint on the 

punching shear strength of reinforced concrete slabs. Finally, conclusions and 

recommendations for future research are given in Chapter 9. 
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Chapter 2 

PUNCHING SHEAR IN REINFORCED 
CONCRETE SLABS 

2.1 Introduction 

This chapter will first briefly describe the parameters which influence the 
behaviour and shear strength of slabs as studied from experimental observations and 
theoretical model. Later on, it discusses how these parameters govern punching shear 
strength of solid slabs. It is followed by a review of the failure mechanism of different 
types of slab-column connections and classification of the mode of failure of slab 
based on experimental observations. Finally, design against punching shear failure as 
presented in BS81 10 is reported. 

2.2 Beh iviour of slabs failing by punching 

In experimental work on punching shear failure of interior slab-column 
junction, the slabs are loaded at the centre through steel plates or column stubs and are 
simply supported around their edges. This section describes the observed behaviour of 
slab with this type of configuration. 

When the load is applied to the slab, the first crack to form is roughly a 
circular crack around the perimeter of the loaded area due to negative bending 

moments in the radial direction. Radial cracks, due to negative bending moments in 
the circumferential direction, then extend from that perimeter (see Fig 2.1a). After a 
significant increase in load, tangential cracks form around the loaded area at some 
distance out from the column in the slab. And at about the same time, inclined or 
shear cracks form on the truncated surface (Figure 2.1 b). 

The critical sections of the slab for moment and shear are both at or close to 
the perimeter of the loaded area, and hence it would be expected that moment-shear 
interaction would occur. This complicates the classification of the modes of failure at the 

connection. However, there is a change in the characteristic of the failure mode and 
load-deflection curves measured for slabs with different reinforcement ratios. Figure 
2.2 is taken from Criswell (1974b) illustrates the situation. Curves 1-3 show brittle 
behaviour which clearly represent the behaviour of slabs failing by primary punching 
while curves 6-8 display large ductility which is basically flexural behaviour. The 

slabs represented by curves 4 and 5 reached their yield line strengths but must be 

regarded as having failed in punching in view of lack of ductility. 
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If the shear strength of the slab is reached, punching shear failure occurs along 

a truncated cone caused by the diagonal tension crack around the column. The failure 

surface runs through the slab at a mean inclination of about 25 to 30 degrees to the 
horizontal. All rotations in the compression region of the slab are virtually within a 
hinge adjacent to the column. The deflected profiles of the compression side are 

practically linear while those on the tension face generally show a slight discontinuity 

in the region where the shear crack intersects the reinforcement. The discontinuity 

becomes more significant if the shear crack is not crossed by flexural reinforcement 
(i. e. if the steel is arranged in the rings around the column as shown in Figure 2.3c). 
The work by Kinnunen and Nylander (1960) in Figure 2.3d illustrates the difference. 

it can be seen from this figure that the discontinuity across the shear crack can be 

considered a consequence of the rotation of the outer slab portion about its centre, of 
rotation CR. 

The strains in concrete at the compressed surface reach their highest values 
adjacent to the column. The strain in the radial direction decreases very rapidly with 
increasing distance from the column (Figures 2.4-2.6). For circular slabs on round 
columns the tangential strain seems always to be higher than the radial strain, and the 

radial strain near the column often decrease before failure, sometimes changing from 

compression to tension (Figure 2.4 & 2-5). 
The distribution of strains at the faces of rectangular columns show 

concentrations of stress at comer as illustrated in Figure 2.7 (Moe, 1961). The 

concentration generally increases with larger square or rectangular column but is 

absent in slabs with circular column (Figure 2.8). 
Experimental observations clearly show that the behaviour of slabs is 

influenced by reinforcement ratios, arrangement of reinforcement and column shape. 
The influence of these parameters on the load carrying capacity of slab will be 

discussed in section 2.4. 

plan 

(a) 

section 

(b) 
Figure 2.1 Cracks of slab subjected to concentrated load 
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2.3 Theoretical approach (Kinnunen and Nylander Model) 

To date, Kinnunen and Nylander model seems to be the most rational model 
for predicting the punching shear failure of slabs. This model has been used by many 
investigators. They modified it to cater for different types of situations. For example; 
Broms (1990) modified it to include unsymmetrical punching, Marzouk et al (1991 b) 

modified it to analyse high-strength reinforced concrete slabs. Different versions of 
Kinnunen and Nylander model will be discussed to illustrate the dependence of the 
theoretical punching resistance on the influential parameters. 

2.3.1 Model for symmet--ical punching 

The following models treated punching failure in a similar manner and used 
same parameters for predicting punching capacity, although the definition of the 
failure criteria are different. So, only the equations for Kinnunen and Nylander's 
model are listed below. 

2.3.1.1 Kinnunen-Nylander Model (K&N moddý 

The model discussed here is the original model developed by Kinnunen and 
Nylander (1960). This model is based upon observations of tests on circular slabs, 
centrally supported on circular columns, and loaded at the free edges. It consists of a 
central truncated cone confined by the shear crack and segmental slab parts, divided 
by radial cracks. Each segment is assumed act as a rigid body supported by an 
imaginary compressed conical shell between the column and the root of the shear 
crack (Figure 2.9c&2.9d). 

When subjected to load, each rigid segment rotates about CR the centre of 
rotation, and is acted upon by the resultant forces. The internal forces are functions of 
the angle of rotation and the mechanical properties of the concrete and steel. The 

equations of equilibrium of the segment and a criterion of failure determine the 
ultimate load. Failure is assumed to occur when the circumferential concrete strain at 
the bottom surface of slab, at a point located vertically under the root of the shear 
crack, reaches a critical value. At the same time, the concrete stress in the tangential 
direction at the same point and the stress in the conical shell reach its critical stress at 
failure. 
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At failure, the flexural reinforcement within a slab area of radius rs is yielded. 
Outside this area, the reinforcement is in elastic state. If the ratio of reinforcement, p, 
is low then rs>112 at failure, yielding is reached in all the reinforcement, and the 

ultimate load is equal to the flexural failure load. If the ratio of reinforcement, p, is 
high then rs<112 at failure, i. e., reinforcement within rs is yielded and reinforcement 
outside rs is in elastic state, and the ultimate load is less than the flexural failure load. 

The theoretical punching load is calculated from equations (2.3) and (2.4) 

given below. Equation 2.3 indicates that punching shear resistance of a slab is highly 
dependent on the ratio of column width to effective depth of slab i. e. (cla). These 

equations are based on stress and the strain criteria mentioned. The calculation 
involves iterative process on the value of the neutral axis depth (x) until the predicted 
load by the two failure criteria coincide. This model was originally formulated for the 

slab with ring reinforcement where the dowel effect is not signicant. For two way 
orthogonal reinforcement, dowel effect was taken into consideration by ýmultiplying 
the calculated load by a factor of 1.1. 
From vertical equilibrium (see Figure 2.9), 

P= Tsina (2.1) 
T= acs -Acs (2.2) 

where P Punching Load; 
T Compressive force in conical shell 
(X angle of the compressive force in the conical shell 
CFCs stress in the conical shell; 
Acs cross-section area ofthe conical shell; 

P=c+ 
2x )aj 

(a)d 2 (2.3) 
dd c+x 

Taking moments about the point of intersection of TAy/(27r) in the conical shell and 
the resultant of the forces, R4 (see Figure 2.9), gives 

P= 
27c [Cl + C2 ]pfyd (2.4) 
Ky 

where f (cc) = 
tan cc (I - tan (x) (2.5) 

(1 + tan' cc) 

Ky = 
3(1 - c) (2.6) 

2(3d - x) 
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if rs ýý CO C, = (r, - C,, ) + r, In C2 = Co'6ýCP 
(//2 

if rs: 5 Co C, = r,, ln(/2 C 
)I 

C2 
0 

c diameter or equivalent diameter ofcolumn; 
d effective depth of slab; 
fy yield stress offlexural steel, ý 
1 diameter (span) or equivalent diameter ofslab; 
x neutral axis depth; 
CO radius ofshear crack 
rs radius of the area ofyielded reinfbrcement, ý 
AT angle ofsector element; 
P flexural reinforcement ratio. 

Kinnunen and Nylader model shows that punching load of slab is governed by 
the compressive strength of concrete, column size, slab thickness and flexural 

reinforcement ratio. The influence of these parameters on the failure load of slab will 
be discussed in section 2.4. 

2.3.1.2 Modified Model by Shehata (1989) 

This model treated punching failure in a manner similar to Kinnunen and 
Nylander but utilised the generally recognised values for concrete properties and 
different failure criteria. Punching failure is considered to take place either by splitting 

under principal tensile stresses or by crushing in the radial or tangential direction. The 

failure criteria are defined as follows : 
Failure by splitting of concrete is assumed to occur when the angle a of the 

compressive force at the column face reaches 20'. 

0 If the average radial strain on the compressed face-reaches a value of 0.0035 in the 

plastic length starting from the column face, there is radial crushing of the 

concrete. Based on the experimental ultimate rotations, Shehata assumed the 

plastic length as 150mm. 

40 If the tangential strain of the compressed face reaches a value of 0.0035 at a 
distance x from the column face, there is tangential crushing of the concrete. This 

criterion is expressed by the equation 0.0035='V[YI501 (see Figure 2.9c for the 

definition of y). 
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This model basically used the same parameters in the equations for the 
punching resistance as K&N model. The main differences between this model and 
K&N model can be summarised as follows: 

" This model allows deformation of the part of the slab on top of the column which 
is assumed remain underformed in Kinnunen and Nylander model. 

" The slab may fail in diagonal tension. 

" The compression failure is controlled by strain. 
" The contributions by dowel effect are calculated from equilibrium conditions. 

This model indicates that punching failure is caused not only by the 
destruction of the conical shell, but it may also be initiated by a diagonal tension 
crack. Thus punching shear strength may be controlled by the tensile strength of 
concrete. 

2.3.1.3 Model for-high strength concrete 

Marzouk and Hussein (1991b) adopted the model modified by Sliehata, but 
excluded the failure criterion for tensile splitting. They made this assumption 
probably due to the following reasons: 
" They observed that the angle of failure surface for high strength concrete slabs 

varied between 32" and 38'. This indicated that the contribution of tensile stress to 
the punching strength is less than the punching strength based on a=20*. i. e. the 
effect of tensile strength is less significant. 

" Although the ratio of tensile strength to fc' for high strength concrete is smaller 
than for normal strength concrete, still the absolute value can be large. 

This model indicates that the influence of tensile strength on punching 
capacity is less important for high strength concrete. 

2.3.2 Model for unsymmetrical punching 

Broms (1990) modified K&N model by assuming different compression zone 
heights for tangential (Figure 2.10) and radial directions strain failure mechanisms 
(Figure 2.11) and using normal value for concrete ultimate stress and strain. This 

model was then extended to include unsymmetrical punching for interior slab with 
moment transfer. 

Punching is assumed to occur either when the radial compressive stress 
reaches 1.1 fc' or tangential compressive strain reaches 0.008. This strain value is 

assumed to be valid for thick slabs with a concrete strength of fc'=25MPa. It can be 

modified according to the concrete grade and height of the equivalent rectangular 
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stress block at flexure in tangential direction when punching occurs (refer to equation 
2.10). 

C 

1Ih 

Figure 2.10 High tangential compression strain failure mechanism (Broms, 1990) 
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Figure 2.11 High radial compression stress failure mechanism ( Broms, 1990) 
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When there is a moment transferred between the column and the slab, the 

effect of the unbalanced moment was included by the shear-moment interaction 

relationship as illustrated in equation (2.7). The contributions to the punching capacity 
by torsional moment was considered to be negligible. 

v+m 

VI? MR 
(2.7) 

where VR = lesser of V6 and V. (see equations 2.8,2.11) 
MR = lesser ofM6 and Mo. (see equations 2.9,2.12) 

unbalanced moment 

The shear and moment capacities of the slab are calculated separately according to the 
failure mechanisms. The punching load of slab is the smaller of the two calculated 
values (Ve and V. ). 

High I-angenfi-al compression strain failure mecbanism (Refer to Figure 2.10) 

47rMr 
vr - 

In. +I 
(I_ 

C2) 

c2F 

(2.8) 

The flexural capacity Me of the slab (see figure 2.12) by the expression 

pcr., d' I-P- 
d 

(2.9) 

:50.0008ý 
150.25 

)0.333 

EC 
ý YX 

High radial compressive stress failure mechanism (Refer to Figure 2.11) 

V zO. 46(c+3.5x)xfc 
(3001 0.333 

\. X) 
(2.11) 
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150 )0.333 (0.5h 
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2 

W= 70 - (c+]. 75h) (2.13) 
2 

Ec = 0.002r 
150.25 

)0.333 

(2.14) 
ý0.5h fc' 

where 0=1 7-0.5+ 
2 (1-7), (2.15) 

71 31 

7 
Sy (y=0.5 if s,: 5cj (2.16) 
&C 

Ec= strain of concrete at the extremefibre ofcompression zone 

scy 

a, = E., c., < f, 

overall thickness ofslab 

Failure criteria for this model are similar for both symmetrical and 
unsymmetrical punching. It includes the influence of unbalanced moment by the 
interaction formula for unsymmetrical punching. 

2.3.3 Model for symmetrical punching with known inplane 
restraints 

The collapse in punching shear mode involves rotations and in-plane 
deformation of the slab edge. Such movement occur freely without restraint in the 
circular test slabs. However, they will normally be resisted in the flat slab, because of 
the restraints imposed by the surrounding structure. Restraining forces induced lead to 

enhancement of the failure load. The magnitude of the restraining forces depends 
highly on the stiffness of the surrounding structure and are usually not exactly known. 
if the restraining forces are known, they can be incorporated into this mechanical 
model as boundary forces. This theory yields good agreement with the test results as 
shown by Hewitt and Batchelor (1975). 
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2.4 Parameters governing shear strength of solid slabs 

Kinnunen and Nylander model shows that strength of concrete, ratio of 
reinforcement, column size, thickness of slab and surrounding restraints will affect the 
theoretical failure load of slab. This section reviews, based on the experimental 
evidence, the influence of these parameters on the punching shear strength for solid 
slabs without shear reinforcement. 

2.4.1 Concrete strength 

Moe (1961) believed that shear failures are controlled primarily by concrete 
tensile splitting. He assumed that the shear strength is dependent on 4fc' because 
tensile strength of concrete is generally assumed to be proportional to Ac'. However, 
based on the tests for interior slab with moment transfer, Hawkins (1971 a) concluded 
that the shear strength of concrete is more likely to be proportional to the cubic root of 
concrete strength. The ratio of nominal ultimate shear stress to qfc' shows significant 
scatter in practice due to the scatter in tensile strength of concrete. 

From Section 2.3, Kinnunen/Nylander model assumed that the punching 
failure occurs due to the crushing of concrete. This implies that compressive strength 
of concrete influences the shear strength of reinforced concrete slab. 

2.4.2 Reinforcemen 

2.4.2.1 Ratio of flexural reinforcemen 

Percentage of flexural reinforcement is often used as an index for the dowel 

effect. Shear strength is expected to increase with increasing flexural reinforcement 
ratios and increasing concrete strength. However, according to the work on dowel 

action in reinforced concrete beam (Baumann et al, 1970), the rate of increase of shear 
strength decreases at higher concrete strengths and flexural reinforcement ratios. 

Kinnunen and Nylander (1960) tested a number of slabs with ring 
reinforcement in which steel ratios was equal to those in other tests with two way 

reinforcement (Figure 2.12). By comparisons, they concluded that dowel action 

carries about 30% of the total shear. However, Criswell (1974a) (quoting Moe's 

(196 1) results) concluded that this effect is not important. 

The failure modes of the dowel mechanism defined by Vintzeleou and Tassios 

(1986) might explain the reason for the contradiction noted above. They stated that 

there are two possible failures model of dowel mechanisms: 
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(1) yield of the steel bar and concrete crushing under the dowel; 

(2) concrete splitting. 
Concrete cover is the main parameter upon which dowel mechanism depends. For 

small cover (less than 6 to 7 times the bar diameter), the mechanism is governed by 

splitting of concrete. 
In view of the above statement, because of the small cover in slabs, concrete 

splitting and the lack of stirrup reinforcement decrease the dowel force which can be 
developed in any given bar (see Figure 2.14). However, if the cover is thick enough, 
concrete splitting is unlikely to occur. In comparison with the situation in a beam, the 

width (circumference) of concrete involved in the dowel action is large resulting in a 
large number of bars passing through the inclined crack. This probably results in the 
dowel forces carrying a greater proportion of the shear in slabs than in beams. 

2.4.2.2 Arrangement of flexural reinforcemen 

Elstner and Flogncstad (1956) and Moe (1961) conducted tests on slabs with 
flexural reinforcement concentrated in the column region. The dimensions of the slabs 
tested by Elsner and Hognestad were 254mm thick with side length of 1830mrn. The 

square column stubs at the ccntrc were 254mm and 356mm. The tensile reinforcement 
was uniformly spaced and with 50% concentrated within a distance d (effective depth) 

of the column. Moe (196 1) conducted tests in which the total amount of steel was held 

constant and the spacing varied between uniform spacing and an arrangement in 

which 82% of the total steel was placed within a distance d of the column. Both tests 
indicated that the concentration of reinforcement does not increase the ultimate load 

of slab. In some slabs, concentration of reinforcement even reduced the ultimate load 

of slab. The results are not suprising because the concentration leaves large radial 

sector almost unreinforccd (Figure 2.13). From these tests results, Hawkins (1974a) 

concluded that concentration causes a slight decrease in strength and a reduction of 
ductility. 

Alexander and Simmonds (1992) studied the effects of concentration of 

reinforcement by adding extra reinforcement placed over the column strip of 450mm 

(i. e. different amount of steel) resulting in spacings of 50mm, 75mm and 150mm at 

the column region. Considering the densities of reinforcement, decreasing the spacing 
increases the load capacity but decreases ductility. Although all slabs failed in 

punching, but the bar force profiles indicate that anchorage failure occurred in the 

centre bar in slab with a spacing of 50mm. From this observation, they suggested that 

in those slabs tested by Elstner and Hognestad (1956) and Moe (1961) failure was 

actually anchorage failure. They concluded that the above observation may explain 
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why the concentrating of reinforcement through the column region does not increase 
punching capacity. 

However, concentration of flexural reinforcement in the column region 
(critical perimeter) is to be encouraged because it improves the behaviour of the slab 
in the service load range. Concentration increases the stiffness of the slab, increases 
the load for the first yielding of the flexural reinforcement, and consequently results in 
smaller maximum crack widths for a given loading. 

---. 
- -. 

Ring Reinforcement Two way reinforcement 
Figure 2.12 Ring reinforcement and two way reinforcement 
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Figure 2.13 Concentration of flexural reinforcement 
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2.4.2.3 Compr i-. nforcemen 

Manterola (1966) tested a series of twelve slabs in which the ratio of 
compression steel to tension reinforcement was zero, 0.5 and 1.0. He reported that the 

compression reinforcement had negligible effect on ultimate strength of the slab when 
the ratio of tension reinforcement is small. However, when the ratio of tension 

reinforcement is large enough to make a doubly reinforced section, increasing the 

compression area from zero to an equal amount to the tension reinforcement increased 

the ultimate capacity of the slab by about 30%. The test results indicated that 

compression reinforcement may increase the flexural capacity of slabs and there is no 
direct evidence as to how the compression reinforcement will affect the shear strength 
of slab. 

Pan and Mochle (1992) tested slabs under combined gravity and lateral loads. 
They observed that if the compression reinforcement (bottom bar) in the slab 
continues through the column, then it can act as a suspension net holding tile slab to 
the column and thus support some load after punching failure occurred (Figure 2.14). 
Top steel is not effective in providing post punching resistance because it tends to tear 
out of the slab when punching occurs due to concrete cover over this steel splitting 
off Therefore, properly detailed bottom reinforcement in the slab may prevent 
catastrophic failure. 

2.4.3 Inplane Restraints 

Taylor and Hayes (1965) carried out a series of tests on the effect of edge 
restraint. The slabs were divided into three groups depending on the amount of tension 

reinforcement which was zero, 1.57% and 3.14%. The restraint was imposed by a 
heavy wcýilded steel frame which surrounded the slabs, i. e. the edges of slab were 

restrained against lateral movement. All slabs without reinforcement were tested in 

the restrained condition. For pairs of slab with reinforcement, one of each pair was 

tested in the simply supported condition and the other in the restrained condition. 
The test results indicated that for slab with low percentage of reinforcement, 

the restraint significantly increased the ultimate load up to 60%. This group 

of slabs exhibited high ductility and were more likely to fail in flexural mode. Tile 

ductile behaviour allowed compressive membrane forces (Figure 2.15a) to fully 

develop. The flexural capacity was thus significantly increased as observed by other 

researchers (Roberts 1969, Kuang and Morley 1992). However, for slabs with high 

reinforcement ratio, the enhancement by restraint was less significant and in some 

cases there was virtually no increase in strength. Punching shear failure is critical for 

this group of slabs and the slabs suddenly rupture. It is possible that the slab fails 
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before the membrane action has developed. Others (Aoki and Seki 1971, Tong and 
Batchelor 1971, Rankin and Long 1987) observed that restraint will enhance punching 
shear strength of slab in all cases. 

Kuang and Morley (1992) tested a total twelve slabs which were supported 
and restrained on all four sides by edge beams. Different degrees of edge restraint was 
provided by different sizes of edge beam. They observed that a restrained slab with 
low percentage of steel failed in punching shear mode when subjected to concentrated 
loading. This indicated lateral restraint may also change the mode of failure because 
the membrane forces developed enhances the shear and flexural capacity of the slab 
and at the same time reduces the ductility of the slab. 

It is apparent that from the above test results that the restraint can considerably 
enhance the load carrying capacity of slab, but reduce the ductility of the slab. 
However, the degree of the enhancement in strength due to the membrane action is 
difficult to quantify since it depends on the in-plane restraint provided by the 
surrounding structure. 

2.4.4 Size of Loaded area (column) 

Moe (1961) assumed a linear variation in slicar strength with side dimension 
of tile column based on test data when the side length of loaded area was between 
0.75d and 3.0d, where d is the slab thickness. Regan (1986) tested five slabs where the 
loaded area is the only significant variable. Tile shapes of loaded area are : circular 
with diameters of 54mm, 110,150 170mm and 102xlO2t-nm square. The test results 
confirmed the linear relationship for tile loaded dimension provided that it exceeds 
0.75d. When the loaded area is very small (side dimension less than about 0.75d) , tile 
slab failed in local crushing and therefore the strength of slab is far below that 
predicted by tile linear relationship. 

In view of the above, if the loaded dimension is greater than 0.75d, the length 

of critical section become greater as the loaded area increases, resulting in an increase 
in shear strength of slab. Therefore it is very common in practice to provide drop 

panels or capitals (Figure 2.16) to increase the punching shear resistance rather than 
increasing the column size. 

The majority of available test data from literature indicate that slab loaded 

through a circular area are stronger than those loaded through square areas with the 

same perimeter. The improved shear strength is apparently a result of the absence of 
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stress concentrations which occurs at the comers of rectangular column (see Figures 
2.7 & 2.8). 

Hawkins et al (1971b) carried out a series of tests on nine slabs in which the 
length of the perimeter was held constant but the aspect ratio was varied. He found 
that if the aspect ratio is increased, the shear strength of slab decreases because the 
behaviour of slab transform form two way bending to one-way bending. Therefore 
beam action shear tends to develop at the long faces of the loaded area. This also 
reflects the tendency for the shear force to be concentrated at the end of a wide 
column (Figure 2.17) as observed in the experiment. He concluded that when the 
aspect ratio for a rectangular column is greater than two, strength can be lower than 
that for a square column. 

2.4.6-Size efferWpan-(Ie I 

Regan (1986) tested six specimens where the main variable was the thickness 
of slab. The effective depths were 80mm, 160mm and 250mm. Test results show that 
nominal shear strength increased as d decreased (Figure 2.18). These results also 
agree reasonably well with the size factor (Flld) used in the BS81 10. Regan quoted 
that the range of the slab depth in his test is limited but the tests carried out by 
Kinnunen et al (1978) with effective depth up to 619mm further confirmed the fourth 
root relationship. 

John and David (1990) tested a series of slabs of constant thickness (I 00mm) 
with varying span-depth ratios. They concluded that the punching shear strength was 
significantly increased for the span-depth ratio below six (Figure 2.19). The strength 
enhancement may be due to tile development of compression struts forming an arch 
mechanism in the slabs and in plane compressive forces resulting from friction at the 
support. 

2.4.7 Concrete cover 

Alexander and Simmonds (1992) tested a series of eight isolated interior 

column-slab connections where three specimens were used to study the effect of tile 
clear cover to tension reinforcement. The clear covers were I Imm, 19mm and 38mm. 
The experimental load-deflection relationship is shown in Figure 2.20. Slabs with 
II nim and 19mm cover exhibit stiffer response due to the higher value of flexural 
depth (Figure 2.20), but the slab with 38mm cover failed at a load which was 3% 
higher than the rest. They observed that slab with smaller cover suffered larger bond 
deformation. From the test results, they concluded that for a given slab thickness, the 
elevation of the flexural reinforcement does not greatly affect the punching shear of 
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Chapter2 Punching Shear in reillforced concrete stab 

the connection since a change in the flexural depth is offset by a corresponding 
change in the cover. Thus the cover of the reinforcement is as significant to punching 

shear as the effective depth. 
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Figure 2.14 Post-punching behaviour of slab-column connections 
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Figure 2.15 Membrane action 

Figure 2.16 Capital and drop panel 

23 



Concrete 
Strain 
x 10 3 

18" 

I kip = 4.45 kN 
50 kips = 222.5 kN 
(Hawkins et al, 197 1 b) 

Figure 2.17 Concrete strain on column (specimen 7, Aspect Ratio=3) 
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Figure 2.20 Effects of clear cover 

Building structures should be designed in such a way that they exhibit ductile 
failure mode when subjected to catastrophic loading. Large deformations ( large 
deflection and excessive cracking ) give clear warning of impending failure. Shear 

reinforcement not only increases the load carrying capacity of the flat slab, but it also 
improves the ductility of slab. Shear reinforcement not only provides resistance to the 
tensile stress across the shear crack, but it also provides confinement to concrete. 
However, this tensile stress cannot develop unless the shear reinforcement is 

effectively anchored (Figure 2.21). The importance of anchorage of shear 
reinforcement has been confirmed experimentally by John and David (1990) and 
Broms. C. E. (1990). Due to the difficulty of achieving effective anchorage in thin slab, 
the use of shear reinforcement is generally not recommended for slab with overall 
thickness less than 200mm. 

Another important factor is the spacing of shear reinforcement. The resistance 
to punching is provided by shear steel and concrete and according to truss mechanism, 
the shear resistance contributed by concrete is less for lower inclination of concrete 
strut. Thus, if shear links are too widely spaced in the tangential direction, it is 
ineffective in enhancing shear strength of slab as reported by Langhor et at (1976). In 

order to ensure that there is a shear resistance contribution from the concrete between 

shear links, it is required to limit the spacing of shear links (e. g. a spacing of 0.75d 

proposed by BS81 10). 
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Figure 2.21 Length of the embedment of shear reinforcement 

2.6 Failure mechanisms 

Most research on the shear strength of slab has concentrated on generating 
experimental data to develop empirical equations for design. Very little work has been 
done on understanding the mechanisms of shear failure in slabs. This deficiency is 
largely due to the difficulties of observing the development of failure mechanism 
which takes place inside the slab and is generally not visible on an exposed surface. 

A two-way slab may fail in shear as a wide beam (Beam action) or due to 

punching. In beam action or one-way shear (Figure 2.22a), the slab fails as a wide 
beam (diagonal crack forming across the full width of the slab). This type of shear 
failure can be treated by beam shear theories and will not be discussed further here. 

Punching shear or two-way shear failure occurs around the column (concentrated 
load). The failure is caused by diagonal tension crack around the column in the shape 
of a truncated cone (Figure 2.22b). 

Inclined crack 

. 00, 
Mool 

(a) One-way shear 
Figure 2.22 Shear failure in a slab 
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2.6.1 Symmetrical punching 

This section will discuss mechanisms of symmetrical punching around the 

critical section. Symmetrical punching occurs when the load is applied without 
eccentricity with respect to the critical section of the slab. 

Before cracking, the shear force is carried by the entire depth of the slab. After 
diagonal tension cracking has occurred in the vicinity of the critical section of the slab 
around the column, the slab carries the shear force by shear across the compression 

zone, aggregate interlock and dowel action. 
When the load is applied to the slab, the first crack appears as a roughly 

circular crack around the perimeter of the loaded area due to negative bending 

moments in the radial direction. Radial cracks, due to negative bending moments in 

the tangential direction, then extended from the critical perimeter. Because the radial 

moment decreases rapidly away from the loaded area, a significant increase in load is 

necessary before the tangential cracks form around the loaded area at some distance 

out in the slab. At about half of the failure load, the diagonal tension crack develop in 

the slab and this crack is thought to tend to originate near the mid-depth of the slab. 
The stiffness of the slab surrounding the cracked region tends to control the opening 

of the diagonal tension cracks, thus preserving the shear transfer by aggregate 
interlock at higher loads. Punching shear failure eventually occurs with or without the 

yielding of reinforcement. 

2.6.2 Punching with unbalanced moment 

In a flat slab floor carrying only gravity loading, there will in general be 

transfer of both shear and a small amount of unbalanced moment. However when flat 

slab structures are subjected to horizontal loading due to wind or earthquake, there is 

substantial unbalanced moment to be transferred at every connection. The transfer of 

unbalanced moment causes the distribution of shear stress around the column to 

become non-uniform. This reduces the shear strength of the connections. The shear 
force and unbalanced moment are transferred by combined bending, torsion and shear 

at the faces of the critical section in the slab around the column. 
Figure 2.23 illustrates the situation near an edge column. Mu and Vu are the 

unbalanced bending moment and shear force transferred to the column. Let us look at 

the free body diagram at the slab's critical section. The shear force is transferred partly 
by Vl at the front face and the remainder by V2 at each side face. The moment 

transfer occurs partly as the moment M1 at the front face of the critical section, and 
the remainder as torsional moment T2 at each side face. At an interior column, 
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transfer of forces also occurs at a back face of the critical section (Figure 2.24). At a 
comer column, there is only one side face (Figure 2.25). 

If the shear strength of the slab is reached, the slab will fail in diagonal tension 

on the side of the column where the vertical shear stress is highest (e. g. if V1 

exceeded shear strength of the slab, failure will take place in front face of the critical 
section) as shown in Figure 2.26, resulting in the column punching through the slab 
and the top reinforcing bar splitting off the cover concrete. 

face of 
al section 

it face of 
; al section 

Sid 
crit 
sec 

Figure 2.23 : Transfer of forces between floor and edge column 
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Figure 2.25 : Transfer of forces between floor and corner column 

,lý 
Figure 2.26 : Punching shear failure under combined shear and unbalanced moment 

e for slabs without shear reinforcement 

The observed modes of failure of slabs can be classified into three categories, 
depending on whether failure was initiated by the yielding of the reinforcement 
(flexure), crushing of concrete or by internal diagonal cracking (shear punching) or a 

combination of both (flexural punching). 

2.7.1 Pure flexural failure 

For slabs which fail in flexural mode, a small number of large flexural cracks 
develop before failure. The crack pattern might approach the full yield line pattern as 

shown in Figure 2.27(a). This type of failure often occurs in slabs with a small amount 

of reinforcement. The slab fails in a ductile mode with large deflection developing 
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prior to failure. The flexural reinforcement yields before final failure and yielding 
spreads over a wide area of slab at failure. 

2.7.2 Flexural Punching failure 

This type of failure is somewhere between the pure flexural failure and pure 
punching failure as shown in Figure 2.27(b). Yield line pattern is not fully developed 

and ultimate failure is by punching accompanied by yielding of steel. The yielding of 
reinforcement takes place only locally around the column. 

For slabs failing in shear mode, a large number of fine flexural cracks (radial 

and tangential) develope before failure but without the yielding of reinforcement. This 
type of failure often occurs in heavily reinforced slab. The large amount of 
reinforcement will increase the flexural capacity of slab substantially. The large bi- 

axial compression due to bending plus the vertical applied load cause the slab to more 
likely fail in crushing of concrete than yielding in flexural steel. Finally the slab fails 
in a local area around the column in the shape of truncated cone. For slab with large 

amount shear reinforcement or small column size, the slab may fails in local 

compression failure as shown in Figure 2.27(c). This type of failure is brittle in nature 
and take place with small deflection. 

I r§R- ff-i 

a) Full yield line pattern b) Partial yield failure mode C) Compression failure mode 

Figure 2.27 Modes of Failure 

2.8 Treatment of punching shear by BS8110 

2.8.1 Shear strength for slab without shear reinforcemen 

With no single theory of punching failure being generally accepted, code 
recommendations are empirical and are expressed in term of nominal shear stress. 
British standard BS81 10 determines punching shear strength from equation(2.18). The 
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critical shear perimeter is taken as a rectangle at a distance of 1.5d from column faces 

regardless of whether the columns are rectangular or circular in section (Figure 2.28). 
This nominal shear stress is very sensitive to the location of the critical section. The 

nominal stress decreases rapidly with increasing distances from the loaded area. 

Vnon) ": ": 

V 

,: ý Vý (2.17) 
ud 

X (PXf vc = const C', 
113 

x (400 / d) 1/4 (2.18) 

where V Shearforce due to the ultimate load 
d Effective depth of the slab ( 40% . 5t 1.0) d 
It perimeter at 1.5dfrom the columnface 
fCU characteristic cube strength of concrete 
P percentage offlexural steel ( p: 5 3 

VC concrete shear stress 

Equation (2.18) implies that the shear capacity of concrete is influenced by the 

strength of concrete, ratio of flexural reinforcement and size effect. BS8110 

recommends that p be calculated for a width equal to those of columns plus 1.5d to 

each side. Thus for a given total amount of steel, the code predicts an increase of 

punching resistance if the reinforcement is heavily concentrated toward the column 
lines. Section 2.4.2.2 shows that test results do not entirely support this. 

No matter with or without shear reinforcement , maximum shear capacity at 
the column face should not exceed 0.84fcu or 5 N/MM2 whichever is smaller. The 

limitation is to prevent local crushing. It also implies that the size of loaded area is 

taken into consideration. But the code does not take into account the reduction in 

shear resistance for rectangular or wall shaped supports. In such cases, there is shear 

stress concentration in the comers as explained in section 2.4.5. 

As discussed in section 2.4.6, the punching shear strength is significantly 
increased for the span-depth ratio below 6. BS81 10 allows enhancement of strength 
for perimeters at a distance less than 1.5d from the face of the loaded area, vC can be 

increased by a factor of 1.5dlav, where av is the shear span of the slab. 

2.8.2 Shear strength for slab with moment transfer 

If a slab transmits an unbalanced moment M to a column, the distribution of 

shear is uneven and the load capacity is reduced. In BS81 10, this effect is expressed 
by determining a maximum nominal shear stress. 
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(i) The effective shear force, Vff required for interior slab-column connections at the 
critical section is : 

V, ff =v+1.5M (2.20) 
x 

where X= The side length ofthe perimeter consideredparallel to the axis ofbending. 
M= Moment transmittedfrom the column to the slab 
V= Shearforce transferred to the column. 

In the absence of calculations, for internal column in braced structures with 
approximately equal spans, it will be satisfactory to take Vff as : 

V, ff = 1.15V 

where V is calculated on the assumption that the maximum design load is applied to 

all panels adjacent to the column considered. 

(ii) At edge and comer column connections where bending about an axis parallel to 
the free edge is being considered, as shown in Figure 2.29, the effective shear 
strength is calculated from : 

V 1.25V (2.22) eff 

For edge column connections when bending about an axis perpendicular to the free 

edge is being considered, the effective shear strength should be calculated using the 
following equation: 

V, ff = 1.25 + 
1.5M 

x 
(2.23) 

Alternatively , VIff may be taken as 1.4 V for approximately equal spans. 

32 



Perimeter Perimeter 
rr--------------- 

L ------- I. ------- J 1,7 
1p = Multiple of 0.75d (where d is the effective depth of slab) 
Figure 2.28 Definition of perimeter 

Corner 
column 

-1 

Edge 
column 

Use Equation (2.22) 

C M CL U) 

Use Equation (2.23 

7-T Internal 
column L 

Use Equation I -Eý I 

Perimeter 

I-i 

Shear perimeter 

Mt for span .X 

Use Equation (2.20) 
1 

Value X to be used 
in equation (2.20) for 915an'A' 

Figure 2.29 Use of effective shear equations for various cases 

33 



2.8.3 Shear strength for slab with shear reinforcement 

If the shear stress exceeds vc, shear reinforcement should be provided if the 

slab thickness is not less than 200mm. Shear reinforcement is to be provided at 
at-least two perimeters, one close to the control parameter and one not more than 0.5d 
from the column (Figure 2.30). The shear resistance Vs provided by shear steel is 

equal to the difference between the applied shear, V and the resistance of concrete 

alone Vc (i. e. V_Vc). Vs must be greater than (udxOAN1mm2). Further layers of shear 

reinforcement are to be provided to reinforce zone further from the column until the 

applied load is less than the shear resistance calculated from equation 2.18. It is 

recommended that the calculation should be made in steps with the distance from the 

column to the control perimeter augmented by 0.75d at each increment as shown in 
Figure 2.3 1. 

It is helpful to relate the design and detailing of shear links to the various 
modes of failure in slab with shear reinforcement. In general, there are three types of 
shear failure as shown in Figure 2.32. These are :- 

0 failure between the column and the innermost shear reinforcement; 
failure through some or all of the shear reinforcement; 
failure outside the shear reinforcement. 

Punching between column and the innermost shear reinforcement : This 

is generally prevented by positioning the first shear link at a distance of 0.5d from the 

column face. This forces a steep inclined crack which will enhance the shear 

resistance. 

Failure within the shear reinforcement region : In this region, the shear 

strength is provided by a combination of component Vc from the concrete and Vs from 

the shear steel. i. e. V=VC + Vs 
VC = the resistance ofa slab without shear reinforcement; 
Vs = the resistance of two layer shear steel crossing the inclined surface. 

Failure outside shear reinforcement zone : This can be treated by applying 

equation 2.18 to a control perimeter outside the shear reinforcement region. 
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Chapter 3- Finite Element and Material 
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Chapter 3 

FINITE ELEMENT AND MATERIAL 
MODELLING 

3.1 Introduction 

Finite element method is the most widely used numerical technique in the 
engineering field. With the advancement in the understanding of material properties of 
concrete, various constitutive laws and failure criteria have been developed to model 
the behaviour of concrete. Therefore, an increasing number of researchers are using 
finite element to study the response of reinforced concrete structures. 

Finite element method and material modelling of concrete has been 

extensively covered in many books (Zienkiewicz O. C. and Taylor R. L. 1989, Bathe 
K-J. 1996, Hinton E, and Owen D. R. J. 1989, Bangash M. Y. H. 1989, Kotsovos M. D. 

and Palvlovic M. N. 1995, Chen W. F. 1982), and it is not the purpose of this chapter to 

review the vast literature in this field. Instead, the objective of this chapter is to 
describe the features available in the, prograrn used in the study. 

3.2 Finite Element Method 

3.2.1 Discretisation by Finite Elements 

In any continuum, the actual number of degrees of freedom is infinite and, 
unless a closed form solution is available, an exact analysis is impossible. In finite 

element method, the continuum is divided by imaginary boundaries into elements, the 

elements are then assumed to be inter-connected at a finite number of nodal points at 
element comers or on element boundaries. There is no unique way of discretizing a 
structure. The analyst will have to rely on his experience to choose an appropriate 
finite element mesh. 

For structural applications, the governing equilibrium equations can be 

obtained by minimising the total potential of the system. The total potential, 7E, can be 

expressed as : 

7r = 0.5f (a} T {s}dv -f {8) " lp)dv -f 
(8) T fq)ds-IP}{5}7' (3.1) 

vvN 
where a and s are the stress and strain vectors respectively, 5 is the displacement at 
any point, p is the body force per unit volume, q is the applied surface tractions, and P 
is the concentrated nodal force vector. Integration is carried over the volume v of the 
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structure and loaded surface area s. The first term on the right hand side of equation 
(3.1) represents the internal strain energy and the remaining terms are the work 
contributions of the external forces p, q and P respectively. 

In the displacement method, the displacement is assumed to have unknown 

values only at the nodal points so that the variation within any element is described in 

terms of the nodal values by means of interpolation functions. Thus 

f5) = {8e) (3.2) 

where N is the vector of interpolation functions termed as shape functions, and 5e is 

the vector of nodal displacements of the element. The strains within the element can 
be expressed in terms of the element nodal displacement as : 

{E} = [B]. {5') (3.3) 

where B is the strain matrix generally composed of derivatives of shape functions. If 

the material is elastic, stress, a may be related to the strains by use of an elasticity 

matrix D as : 

ju} = [D]fs) (3.4) 

The total potential energy of the continuum will be the sum of the energy 

contributions of the individual elements. Thus 

7r =E 71, (3.5) 

where 7ýe represents the total potential energy of an element e. By using equation 
(3.1), 7ce can be written as follow: 

0.5f {8e}T [B]T [D]T [B]{80}dv- 
V. 
f 15e)T[N]T{PldV_f {8o)T[N]T {qlds (3.6) 
V. S, 

where Ve is the element volume, Se is the loaded element surface area. Minimisation 

Of 7ce for element e with respect to the element nodal displacement 8e results in 
PL' 

=f [B]T [D]T [B]18'ldv- 
f [N]T {p)dv -f [N]T jq}ds 

a8e V, V. S. 
= [K'] {5'j - {F'l =0 (3.7) 
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where IP) f [N]T {P)dV +f [N]T fq)ds (3.8) 
V. S, 

are the equivalent nodal forces for the element, and 

[KO] f [B]"[D]T [B]dv 
11, 

(3.9) 

is termed the element stiffness matrix. The summation of the terms in equation (4.7) 

over all the elements, when equated to zero, results in a system of equilibrium 
equations for the complete continuum, i. e. 

{FI = [K]. {51 

where ffl is the equivalent nodal forces for the continuum, [K] is the stiffness matrix 
of continuum and f 8) is the nodal displacement of the continuum. 
These equations are then solved by any standard technique to yield the nodal 
displacements. Once the displacements are determined, the strains and thereafter the 

stresses in each element can be evaluated by using equations (3.3) and (3.4) 

respectively. 

3.2.2 Element Choice 

The selection of element type is always related to the type of problem to be 

analysed. As mentioned in section I-1, some investigators have used two dimensional 

analysis (plate and shell elements) to study punching shear problem. The plate and 
shell elements are very attractive on account of both simplicity and economy, but are 
these elements suitable for the study of punching shear problem the nature of whose 
behaviour is three dimensional ?. 

The main differences between plate element and solid element are as follows: 
The formulation of plate/shell is based on the two principal stress (a, and a2), i. e. 
without a3 in the yield criteria (Figure 3.1). This implies that there is no triaxial 

effect. Punching failure often occurs at location where large bending moment and 
shear forces are concentrated. The effect Of a3 could be significant. 
The formulation of plate/shell elements assume that the distribution of strain 
through the thickness is linear (Figure 3.2). The actual distribution of strain 
through the thickness of plate is not necessarily linear, and solid element allows 
non-linear distribution of strain. 
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Apart from the differences in the formulations, it is difficult to simulate shear 
reinforcement (steel in z-direction) and column in plate/shell elements. Therefore it is 

recommended that the study of punching shear problem use three dimensional solid 
element. 

* CY 

V 

CY 

Figure 3.1 Stress resultants for plate/shell 

Sending 
bw de ormation - bx 

CY 
XY 

Ail 

CY 

z 
face 

21dsur "c 
-Fiber after defor; 

; 
nation - 

..... . ........... ....... ......... 

L 

Normal to midsurface 
x 

................ 1'ýý .................... L............. Fiber before 
deformation 

Figure 3.2 Assumption Regarding deformation of a plate/shell 

netric element representing concrete 

Three most commonly used solid elements are shown in the Figure 3.3. It has 

been recognised that 8 noded solid elements produce very stiff response and have 

shear locking problem. While the 32 noded solid element can be quite expensive to 
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use, involving 96 degrees of freedom and a fairly high order of integration for the 

element stiffness matrix. Therefore the 20 noded solid isoparametric element is used 
to represent concrete. Each node has three degrees of freedom. In order to cope with 
curved boundaries, this program uses an isoparametric element. 

5 

3 

13 

I 

1212 

(a) 8 noded (b) 20 noded 
30 29 28 27 

31 

32 22 , '20 23 25 
26 

19 
21 24 

176 
16 18 Is 

91 8 
I1 10 14 7 1340 

g16 

7 

234 

(c) 32 noded 
Figure 3.3 Solid isoparametric elements 

3.2.3.1 Shape functions 

16 

17 

15 

10 

4 

The fundamental property of the shape (interpolation) function Ni is that its 

value in the natural co-ordinate system is unity at node i and is zero at all other nodes. 
The shape functions define the variation of the. displacement within the element in 

terms of the nodal displacement. 
The efficiency of any particular element type will depend on the how well 

shape function are capable of representing the true displacement field. Polynomials 

are often selected as shape functions because they are relatively easy to manipulate 
mathematically, particularly with regard to integration and differentiation. However, 

the degree of polynomial chosen will clearly depend on the number of nodes and the 
degree of freedom associated with the element. The shape function for 20-noded solid 
element are given by the following equations in curvilinear co-ordinate ý, il and ý: 

19 18 T7, ý", Uj 
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For corner nodes ýi =±I, qi = ±1 ýi = ±1 : 

Ni (ý, T14) =I (I + ý4j)(l + 1111j)(I + ipli +ýýj -2) (3.11) 
8 

For mid-side nodes 4i =±0,11i 

Ni (ý, ij, ý) =IG- V)(I + 1171Y, (3.12) 
4 

For mid-side nodes 1,71i = ±O 

N, (ý, TI, ý) = (I + (3.13) 
4 

For mid-side nodes 4i =±1, Ili 

N, (ý,, q, ý) = (1 +ý41)0 + (3.14) 
8 

where ý, il and ý are the intrinsic co-ordinates of any point within the element: 
The displacement at any point inside the element, namely u, v and iv, can be 

expressed in terms of these shape functions as follows : 

20 

zt=ZNJýoj, ý)-u, (3.15) 
/-I 

20 

V=ZNJý, 114)-Vi (3.16) 
W 

20 

IV N, (4, Ti, ý)- IV, 

it should be noted that the displacements u, v and ip are parallel to the x, y and z, and 

not to the 4,11 and ý axis. Similarly, the position at any point within the element in 

global co-ordinates is given by : 

20 

x=ZAýj(4ol, ý)-xi (3.18) 
i-I 

20 

Y=zNA, Tl4)-Y, (3.19) 
i-I 

20 

Z=zNA, 'l4)-zi (3.20) 
/=I 
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3.2.3.2 Strain Matrix 

For the three dimensional element, the strain-displacement relationships in 

matrix form are given below: 

Ex 00 

SY 0 yey 0 - 
s. 00 va. u 

[EI = YDY 51ax 0 
(3.21) 

0 %.. yay w 

LY=J LVJ-- 0 Vat J 

where Fx, sy, E, are the normal strain components and 7xy, yyz, yzx are the shear 

strain components. Using the finite element idealisation, matrix (3.21) can written as 

20 

or simply expressed as 

aN, 
lax 

0 0 
0 

0 

aAy' 
ay 

0 

0 

aN1 
a. 

Ui 

ONX 
ay 

0 

av Y& 

a. 
aNI 

0 
y 

09ý ay 
aN 

vi 

-1vi- 

aN1 
a. 0 aN lav j 

20 

1-1 

(3.22) 

(3.23) 

where [Bi] is the 6x3 strain matrix in equations (3.22) which contains the cartesian 
derivatives of the shape functions. Since the shape functions Ni are defined in terms of 

the local co-ordinates of the element (ý, il, ý), a transformation from local to global 

co-ordinates is required to obtain the [B] matrix in equation (3.22). This is done 

through the well known Jacobian matrix which is written as : 

1% - [J] ' Oy/ a on' /O 

thus 

(3.24) 
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20 

ON, aN, IN, 
Y4- . X, a4 . Y, a4 zi 

rj] = E -, IV, 
. Xi 

Ev, 
.A 

ýNj 
. all on on Z, (3.25) 

i=l aN, DNI ON, 

5ý- . X, Oý Y, aý . 
Zi 

the inverse of the Jacobian matrix will be 

aý 
(3.26) Fy- Ty- -5; 7 

BNI ON, 

therefore the cartesian derivatives are given by 

alvi ON, 
wW 
a, v, aNI (3.27) aq 

aiv, 

3.2.3.3 Stress-Strain Relationship 

For the linear analysis of uncracked concrete, the stress-strain relationship may 
be expressed in the following form : 

{al = [D]. (s} 

where [D] is the elasticity matrix given by : 

v v 0 0 0 (I-v) (I-v) 

v 0 0 0 
(I-v) 

' 1 0 0 0 
E(I-v) 

[DI (1-2v) 
symmetry 2(I-v) 

(1-2v) 

(1-2v) 
2(I-v) 

(3.28) 

(3.29) 

where E is the Young's modulus of elasticity, and v is the Poisson's ratio. The 

cracking and crushing of concrete are the major sources of nonlinearity in most 

reinforced concrete structures. All changes in material properties due to cracking and 

crushing are taken into account in a new elasticity matrix. This will be discussed later 

in section 3.3-4.1 

44 



Chal2ter 3 Finite Element and Material modelling 

3.2.4 Embedded line element representing reinforcement 

Steel bars are simulated by line elements embedded in the concrete element at 
specified locations in the structure. A three -noded line element corresponds to the 20 

noded solid element used in the present study. This line element can carry axial load 

only. The line element must lie parallel to one of the curvilinear axis of the 

solid element as shown in Figure 3.4. This line element can be anywhere in the solid 
element with maximum curvilinear co-ordinates ý=±l, il=-+l and ý =±I. 

constant 

line elements Y. 

E: f, =constant- 
Y, X. -solid c1cments 
Z, Y, 4 ZýI 

Z, 
n= '71] - conslant x 
r= r, 

1-11 

Figure 3.4 : Embedded reinforcement in 3D concrete element 

The displacement {u) of any point on the bar is written as : 

{u} = [7cr] 
(3.30) 

[7} = 

such that 
71 : -- 11C ,ý= ýc (constant) 

where N is the shape function of concrete element and 18}e is the nodal displacement 

vector. 

The virtual work of the line element (steel bar) can be written as : 

8u = 4., f 5cl. al. dl (3.31) 
1 

where dU = internal virtual work in the steel bar; 

As cross-sectional area of steel bar; 
dI line segment along the steel bar; and 
(71,61 = the longitudinal stress and strain along line segment, respectively. 
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v 

For a horizontal bar parallel to the x-axis, 

cr, cr 

dl dx 

Equation (3.3 1) becomes 

8u = A, f 5sx. crx. dx 
x 

(3.32) 

At any point in the line element, the local Cartesian axis X is tangential to the 

curvilinear axis. The local strain in the steel bar can be calculated as follows: 

ex 
ax 1 

where X, Y' and Z' are local co-ordinates at a point, and it', V and W are the 

corresponding displacements. 

Using the displacement transformation, 

Ex =1 (11 au 
+ M, 

Dv 
+ n, 

öw) 
L aý öý aý 

where I,, nil, nj are the direction cosines of the X' axis and are written as 

11 = 
"X IL 
aý 

mi = 
aylL 

öý 

ml = 
"Z IL 
aý 

= 
V(0-XIaý)2 

+ 
(a L ýV/a4)2 + 

(azla4)2 
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In terms of the shape function deriatives is written as 

U, 

Vi 

W, 

The strain in steel can be written as 

c= BY 

5c = B8(8') 

where B is the nodal displacement-strain matrix. The relation between the stress and 
strain in the steel bar is : 

cy = Es 

And the stiffness of the embedded bar can be expressed as 

A., g, fBT Bdx 
x 

dx = 
dx 

dý = J,. dý 
4 

K., = A., E, BTB 
dý 
J., 

(3.33) 

where Es is the Young's modulus of steel bar and Js is the Jacobian for steel element. 
The same steps can be repeated for bars parallel to y and z axis. 
The final expression for the composite element stiffness is simply evaluated by adding 
the stiffness matrices for concrete and steel together, as follows : 

K, = K, + Ký, (3.34) 

where Ke is the stiffness matrix for the composite element, Kc and KS are the element 

concrete and steel stiffness matrices respectively. 
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3.2.5 Numerical Integration, 

The element stiffness matrix, [KC], in equation (3.9) is given by: 

[K'] f [B]T [D][B]dv 
V. 

Since it is difficult or perhaps impossible to perform the closed form integration, some 
form of numerical integration is essential. In this study, Gauss-Legendre quadrature 
rules have been used because of their higher efficiency over other forms of 
quadrature. These rules are particularly suitable for isoparametric elements since the 
limits of integration are ±1 which coincide with the local co-ordinate system ±1 on 
element boundary. A 3x3x3 gauss rule is adopted in the present study. 

- .3 Material modelling 

in this study, the behaviour of concrete is assumed to be non-linear-elastic 
isotropic while the current state of stress does not violate the strength envelope based 

on the concrete model developed by Kotsovos (1979a & 1979b). After cracking, 

smeared crack approach with simple tension stiffening and shear retention equations 
are employed to mimic the post-cracking behaviour of concrete. Standard elastic- 

plastic (Nýith/without hardeniýg) material model is used to describe the behaviour of 
the steel reinforcement. The stress-strain relationships for steel in compression and 
tension are assumed to be identical and only uniaxial behaviour is assumed. 

3.3.1 Modelling of concrete 

Modelling of reinforced concrete in non-linear finite element analysis is not 
straight forward, because of the complexities involved in the behaviour of concrete. 
Experimental evidence shows that the behaviour of concrete is non-linear even for 
low stress levels. The significant non-linear behaviour of concrete is mainly due to 

various forms of softening behaviour, especially cracking because it occurs at a low 
level of loading. So, an appropriate finite element model of cracking is essential to get 

satisfactory results. 
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A concrete structure is generally under the action of multiaxial stress state. 
Under certain stress combinations, concrete can carry loads that are considerably in 

excess uniaxial cube crushing strength. However, under other stress combinations, it 

is possible that the concrete will fail even though the stress acting is lower than 

uniaxial cube crushing strength. Thus, a proper description of the multiaxial behaviour 

of concrete is a key factor for a successful analysis. A brief summary of multi-axial 
behaviour of concrete is given in this section. 

3.3.1.1 Uni-axial stress 

Typical stress strain curves of concrete in uniaxial compression under 

monotonic short term loading are shown in Figure 3.6. Under this condition, concrete 
has a nearly linear-elastic behaviour up to some fraction of the compressive strength. 
There after, the strain increases rapidly with stress up to cylinder compressive strength 

at a strain of about 0.002, beyond which the stress-strain curve has a descending part 

until crushing failure occurs at some ultimate strain. Thus concrete has limited 

ductility in compression. The higher the concrete strength, the steeper are both the 

ascending and the descending portions of the curve. 
The ratio of the uniaxial tensile strength to compressive strength may vary 

considerably but usually ranges from 0.05 to 0.1. The uniaxial tensile stress-strain 

relationship is almost linear up to a relatively high level (See Figure 3.5). The shape 

of curve shows many similarities to the uniaxial-compression curve. 
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Figure 3.5 Uniaxial tensile stress-strain curves 
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Figure 3.6 Uniaxial compressive stress-strain curve for different strength of concrete 

3.3.1.2 Bi-axial stress 

Under biaxial stresses, the work by Kupfer et al (1969) is often employed to 
describe the behaviour of concrete. Figure 3.7 shows the strength in the principal 
directions compared with the uniaxial strength. One of the conclusions of Kupfer et al 
is that the strength of concrete subjected to biaxial compression may be up to 27% 

higher than the uniaxial compressive strength. The compressive strength of concrete 
however decreases with the applied tensile stress under biaxial compression-tension as 

shown in Figure 3.8b. Under bi-axial tension, the tensile strength is not much different 

from uniaxial tensile strength (Figure 3.8c). 
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3.3.1.3-Tri-axial stress 

Although many triaxial test results are available in the literature, most of them 

are test results for tri-axial compression and little information exists for the stress state 
in which at least one stress is tensile. 

In triaxial state of stress, the strength of concrete can increase considerably 
above the uniaxial strength, in particular under hydrostatic stress conditions. Figures 
3.9 and 3.10 show stress-strain curves from tests by Hobbs et al (1977) and Attard and 
Setunge (1996). The tests were conducted under different confining pressures. All the 

stress-strain curves basically followed a similar pattern. The initial tangent modulus 
was approximately the same for all confining pressure, with linear portion of the 

ascending curve. extended with increasing confining pressure. The peak strength 
increased with increasing confining pressure. These two graphs also show that 
different stress states can affect the ultimate strains of the test specimens. 

Figure 3.7 Biaxial strength envelope of concrete (Kufer and Hilsdorf, 1969) 
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Figure 3.8 Stress-strain curve of concrete for biaxial stress 
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Figure 3.9 Stress-strain curve of concrete under triaxial compression (Uc=fcu) 
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3.3.2 Kotsovos' Concrete model 

The mechanical properties of the non-linear elastic isotropic model proposed 
by Kotsovos was based on experimental data obtained at Imperial College London 
from tests on the behaviour of concrete under complex stress states (Kotsovos, 
1979a&197b). The testing techniques used to obtain this data, have been validated by 

comparing them with those obtained in an international co-operative programme of 
research into the effect of different test methods on the behaviour of concrete. The 

main reason why this model is chosen for this study is because it- shows good 
correlation with the experimental data and its capability to describe the behaviour of 
concrete under uniaxial, biaxial and triaxial stress conditions. This model is intended 
for concrete subjected to monotonic short-term loading and applicable to concrete 
with unixial cylinder compressive strength (fc') range from 15 to 65 N/mm2. 

The main features of this model are as follows: 

" it needs only one parameter to define the behaviour of the concrete under 
different stress states; 

" it consists only of ascending branch in compression (i. e no softening in 

compression); 

" it considers the effect of volume dilation of concrete just before the peak stress 
level. 

3.3.2.1 
-State of stress at a point 

The state of stress at a point is expressed in terms of the principal stresses a I, 
c72, c73, If the orthogonal co-ordinate system cr1, cr2, G3 is transformed into a cylindrical 

co-ordinate system q, r, 0 such that q coincides with the space diagonal (Crff(72ýCT3) 

of the original system, r and 0 are the radius and rotational variables respectively on 
the plane perpendicular to the axis q (octahedral plane). The two co-ordinate systems 

are related by the following equations: 

q 
«: rl + C72 + CF3 ) 

JJ (3.35a) 

)2 )2 Cyl )2 
r= V3= (3.35b) 

JV(al 
-CY2 + (CF2 

- CF3 + (CY3 

coso =I (al + a2-2a3) 
r NF6 

(3.35c) 
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The variable q and r are related to the hydrostatic and deviatoric components 

respectively, where as the variable 0 defines the direction of the deviatoric component 

on the octahedral plane. The q and r components can be expressed in terms of the 

normal (cr. ) and shear (ro ) octahedral stresses, which are defined as follows: 

cr 0= 

(a] +G2 +CF3)= q- (3.36a) 
3 -ý3 

,r0 -"ý 

1 ý«71 
- (72 )2 + (C72 

- (73 )2 +«73 _ Cyl )2 
=r (3.36b) 

3 -73 

Similarly, the octahedral normal (&0) and shear (yo) strains are defined as follows : 

F, 
0 

= 

(EI +E2 +E3) 
(3.37a) 

3 

1 
62 )2 +(62 -63 

)2 +(63-6 (3.37b) 
3 

where r- 1,62ý E3 are the principal strains. 
For the deformational properties, use has been made of the secant bulk (Ks) 

and secant shear (Gs) moduli expressed as follows : 

K, 
ý 

cF" (3.38a) 
3E,, 

(3.3 8b) 
2y,, 

3.3.2. Z Deformational Properties 

The defon-national behaviour of concrete under increasing stress can be 

completely described by the relationship between: 

(a)- hydrostatic stress ao, and volumetric strain Xoh, 
(b)- deviatoric stress jo, and deviatoric strain , yo, 
(c)- deviatoric stress j02 and volumetric strain Xod, (under deviatoric stress). 

(Note that for metals, cod is not affected by co, but this may not be so for other 

materials which exhibit volume dilation under shear stress) 
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The cro - Soh and vo, - yo relationship can be described by the mechanical 
properties of the model as follows: 

I- for 222 < 2, or 
Cr" c K,, 

I for a" >2 
K,, 

1+ 26-1 bA -2b (b- )A 
fc, 

d-I 

I+ C(fl, 

(3.39) 

(3.40) 

where KO and Go (in kN/mm2) are the initial values of the moduli Ks and Gs, and A, 

b, C, d are parameters which depend on the material properties such that: 

K,, = 11.0 + 0.0032 (f, 1)2 

10-11(f, )1.213 G, = 9.224+0.136f, '+3.296x 

A=0.516 

A=0.516 2397 1.0+0.0027(f'ý-31.7) 

10-8(f o)4.461 
c 2.0+1.81 xi 

for f, ':! ý 31.7 ýY and 

for f, '> 31.7 

C=3.573 

(3.41) 

for f, ': 5 31.7 %, , and 

c 3.573 for f,, '> 31.7 
1.0 + 0.0 13 4 (f, '-3 1.7) 1.414 

d=2.12 + 0.0183f, ' 

d=2.7 

for f, '> 31.7 and 

for f, '< 31.7 
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In order to evaluate the effect of internal stresses on deformation, use is made 

of the artificial concept that the volumetric strain (6od) under deviatoric stress is due 

to the hydrostatic component of such stresses so that 

ai. t ý 31ý, E,, d (3.42) 

the, ro - sod relationship was expressed in a non-climensionalised fonn as follows: 

(Tim 
= M(, ro 

)dl 

fII 
c 

fc 

where M=" 
I+d2 I 

(Ilxfý 

1)", 

4.0 
0)0.23 1.0+ 1.087(f, 1-15. 

1.0 

d, = 0.3124 + 0.0217f, ' 

(3.43) 

(3.44) 

for f, ": 5 31.7 and 

for f, '> 31.7 %, 

d2 = 0.222 + 0.01086fý'-O. 000 1 22(fý o)2 (3.45) 

d3= -2.415 for f,:: ý 31.7 and 

d3 -3.5 308+0.03 52f,, ' for f, '> 31.7 

The hydrostatic component (aint) is equivalent to the three principal stresses, 

al "': a2 : --(y3 ý CFint , and its effect on deformation will be the deformational response 

of the model under these principal stresses. 
Equations (3.41) and (3.42) when used with equation (3.40), the total 

octahedral normal strain will be 

So = Ch + Cod (3.46) 

)perties of concrete 

The strength of concrete under multiaxial stresses is a function of the state of 

stress consisting of six components. Based on an analysis of strength data, Kotsovos 

derived mathematical expressions to described the strength properties of concrete 

under biaxial or triaxial stress states which can be presented as follows: 
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Toe is the value ofTo at the ultimate strength level for 0= 01 

Toc is the value ofTo at the ultimate strength level for 0= 60* 

the value of rou at the ultimate strength level for any values 0 such that 0' <0< 601, 
is given by the following expression: 

2 r,,, (T 2_T2 )cosO+T,, (2, r,,, -, r,,, )V4(, r2 _T2 )COS2 0+ R2 -4T T oc oe oc 
- -- 

oe 
- oe oc -oe (3.47) Toll 

4 (T2 _T2 ) COS2 0+ (Toc 
-2T,, e 

)2 
oc oe, 

This expression describes in the deviatoric plane a smooth convex curve with 
tangents perpendicular to the directions of -roe and -roc at rotational angle 0=0' and 60" 

respectively (see Figure 3.11). 
As the concrete is assumed to be initially isotropic, equation (3.47) will define 

a six-fold symmetric ultimate strength surface, provided the variations of 'roe and -10c 
with cro are established. 

Figure 3.12 shows the normalised combinations of octahedral stresses (with 

respect to the uniaxial cylinder compressive strength fc') at the ultimate strength level 

obtained from triaxial tests. The envelopes in Figure 3.12 are considered to describe 

adequately the strength of most normal strength concretes likely to be encountered in 

practice. For a given value of octahedral normal stress ao, the value of ultimate 

octahedral shear stresses are calculated from the following equations; 

0.857 

=0.633 ýý"-+0.05 

(3.48) 
0.724 

L"'-=0.944 
-1"-+0.05 ff 

c 
fc I 

Equation (3.48) represents two open ended convex envelops whose slope tends 

to become equal to that of the diagonal as cTO tends to infinity. These expressions 
together with equation (3.47) are used in this work to define an ultimate strength 

surface which conforms with the generally accepted shape requirement such as six- 
fold symmetry, convexity with respect to the space diagonal, and open ended shape 

which tends to become cylindrical as ao tends to infinity. 
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Figure 3.11 Strength Envelope of Concrete 
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Figure 3.12 Octahedral Normal and Shear Stress Relationship 

3.3.3 Failure Criteria of Concrete 

In general, concrete failures are divided into two types, tensile type and 

compressive type. Tensile and compressive types of failure are generally characterised 
by brittleness and ductility, respectively. With respect to the present definition of 
failure, tensile type of failure is defined by the formation of cracks and compressive 
type of failure is due to crushing of concrete. After the state of stress reaches the 

strength envelope, the material stiffness matrix is modified to account for cracking or 

crushing. 
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3.3.3.1 Concrete Compressive- Failure Criteria 

In this study, it is assumed that the crushing of concrete occurs when: 
(a) the current state of stress reaches the strength envelope presented in section 

3.3.2.3 and all the principal stress components are compressive, or 
(b) the maximum compressive strain is greater than the specified value (which is 

taken as 0.0035 according to BS81 10) 
Condition (a) holds for isotropic (uncracked) concrete material, and it is found 

that condition (b) will never be satisfied prior to condition (a) as long as the material 
is isotropic. But when a crack exists, condition (a) is not applicable thus only 
condition (b) is valid. 

After crushing, a complete loss of load carrying capacity occurs. Therefore the 
rigidity matrix [D] becomes a null matrix. 

3.3.3.2 Concrete Tensile Failure Criteria 

In thisstudy, it is assumed that the cracking of concrete occurs when 
(a) the current state of stress reaches the strength envelope presented in section 

3.3.2.3 and at least one of the principal stresses is tensile, or 
(b) the maximum tensile principal stress is greater than the specified value. A value 

equal to ft/2, is approximately the value on the failure surface for uniaxial tensile 
stress state ( ft is ultimate uniaxial tensile strength of concrete obtained from split 
cylinder test) 

Condition (a) holds for isotropic (uncracked) concrete material. Under 

multiaxial stress state, condition (b) will never be satisfied prior to condition (a) as 
long as the material is uncracked. When at least one crack exists at any point due to 

condition (a), only condition (b) is applicable to check against a second or third crack. 
After cracking, the tensile stress across the crack is simulated by tension 

stiffening. However, material parallel to the crack is assumed to carry stress according 
to the uniaxial or biaxial conditions prevailing parallel to the crack. Further detail of 
modelling of post-cracking behaviour is discussed later in this chapter. 

3.3.4 Modelling of post-cracking behaviour of cOncrete 

In finite element analysis of reinforced concrete structures, two basic 

approaches have been employed for crack modelling namely discrete cracks at 
element nodes and smeared crack within the element with fixed or variable directions. 
The discrete model (Figure 3.13) introduces extra nodes on the craclf faces where 
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tensile stresses exceed the limit of the strength envelope of concrete in tension. In the 

smeared crack model (Figure 3.14), the isotropic behaviour of concrete before 

cracking is replaced by orthotropic behaviour when the current state of stress violates 
the failure surface in tension. Since the discrete model requires changing the mesh 
topology, it is not easy to program and needs much effort, so the smeared crack model 
is adopted in the present study. 

Figure 3.13 Discrete cracking model , 

t 

ick model 

Smeared crack model assumes that the cracked concrete remains a continuum, 
i. e., the cracks are smeared out in a continuous fashion. In this study, the fixed crack 
direction approach is used. Once a crack occurs, the crack's direction is fixed and 

remains constant throughout the analysis. The direction of the crack is assumed to be 

perpendicular to the direction of the maximum principal stress. However, the crack is 

allowed to close or reopen again depending on the current value of strain across the 

crack. A second or third crack at the same Gauss point occurs when the tensile failure 
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Figure 3.14 Smeared cracking model 
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criterion is reached again. These new crack directions must be orthogonal to the first 

crack and to one another as shown in Figure 3.15. 

03 

Figure 3.15 Cracks in concrete 

Since smeared crack approach is employed to simulate concrete cracking, the 

cracked concrete is assumed to remain as a continuum when a crack occurs at the 
Gauss point. Before cracking, the isotropic incremental constitutive matrices are used. 
After cracking has occurred, the cracked concrete becomes an orthotropic material and 

new incremental relationship must be derived. The presence of cracks are taken into 

account by modifying material stiffness matrix [D]. This can be done by reducing the 

modulus of elasticity 'E' (by tension stiffening) and shear modulus 'G' (by shear 

retention) across the crack. 
In order to improve the realism of the present Model, the possibility of closing 

of a crack is considered. This behaviour may take place due to the redistribution of 

stresses during an iteration or upon further loading. In the present work, the possibility 

of cracking at any Gauss point is re-examined within each iteration until the numerical 

solution converges. After convergence, the direction of crack is fixed. The fictitious 

principal strain normal to the crack is monitored to assess the state of the cracks in the 

cracked concrete. If this strain is a negative value, then the crack is assumed to close 

and the modulus of elasticity normal to the crack is restored to the initial value 'E'. 

3.3.4.2 Material Stiffness Matrix for Cracked Concrete 

It has been mentioned earlier in the finite element method that the material 

stiffness matrix [D] for uncracked concrete is given by 

Iv v 0 0 0 (I-V) (I-V) 
1 v 0 0 0 

(I-V) 

1 0 0 0 
E(I-v) [D] ll+v)(1-2v) (1-2v) (3.49) 

symmetry 2(1-v) 
0 0 

(1 -2 v) 0 
2(1-v) 

(1-2v) 
2(1-v) 
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in principal stress space, and with reference to the adopted cracking criterion, if the 

concrete is cracked in direction 1, the material matrix will be: 

D, 01D, *2D, *3000 
D22 D23 000 

[D, ], 
D33 000 

(3.50) 
symmetry OG 00 

D55 0 

PG 

where Dij are the corresponding values in the [D] matrix. For D, -., the Young modulus 
'E' will be adjusted according to tension stiffening model depending on the strain 
across the cracks. P is the shear retention factor, 0:! ýP: 51 and 'G' is the shear modulus 
which is obtained from constitutive laws prior to cracking. 

If the concrete is cracked in direction 2, then the material matrix will be 

DI, DI*2 D13 000 

D'2 D*3 
22000 

[D, 12 
D33 000 

(3.51) 
symmetry PG 00 

PG 0 
D66 

and if the concrete is cracked in direction 3, then the material matrix will be 

DI, D12 DI*3 000 
D2 D22 *3 000 

[DJ3 
Dý*3 000 

(3.52) 
symmetry 

D44 

PG 

L PGJ 

Depending on the stress situation, cracks may occur in more than one direction 

at a single Gauss point. In this case combination between [Dc] 1, [Dc12 and [DC13 may 
be necessary as follows: 
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a) If cracks occurr in direction I and 2, then [D] ma 
D1*1 D, -2D, -300 

D2*2 D23' 00 

D33 00 

Symmetry PG 0 
PG 

trix is given by 
0 
0 
0 
0 

(3.53) 

0 
PG 

b) If cracks occurr in direction 2 and 3, then [D] matrix is given by 
D, I D, -2D, -3000 

D2*2 D23 000 

[D, 12,3 
D33 000 

(3.54) 
Symmetry PG 00 

PG 0 
PG 

c) If cracks occurr in direction 3 and 1, then [D] matrix is given by 

Dj*j DI*2 D, *3000 
D2 D22 *3 000 

1Dc 13.1 
D33 

1000 (3.55) 
symmetry OG 00 

PG 0 
PG 

and finally if cracks occurred in all three directions, it is assumed that at this Gauss 

point [D] matrix is a null matrix. 
' [Dc] 1,2,3 ': - 101 (3.56) 

3.3.4.3 Tension stiffening 

When a reinforced concrete member is subjected to a sufficiently high tensile 

stress, concrete cracks at discrete sections. Concrete between cracks continues to carry 
tensile stress and the stiffness of the member is therefore larger than that of a fully 

cracked section. This effect is known as "tension stiffening". Tension stiffening has 
been studied by many researchers. Several models have been developed; Scanlon and 
Murray (1974) proposed a stepped stress-strain curve as shown in Figure 3.16a. In 
1975, Lin and Scordelis used a gradual unloading curve , Figure 3.16b. Gilbert and 
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Warner (1978) used several variations of Scanlon-Murray and Lin-Scordelis curves. 
In addition, they employed a new curiýe consisting of a small drop in strength 
immediately after cracking followed by piecewise linear unloading, which is shown in 

Figure 3.16c. Gupta and Maestrini (1990) have studied in detail a concrete member 

reinforced by a single bar allowing for bond-slip. They concluded that the tensile 

stress carried by concrete is a function of bond, area of bar and strength (tensile 

strength of concrete and yield strength of steel) parameters which is not used by other 
tension stiffening relationships. Even so, the model developed by Gupta and Maestrini 

has a trend similar to that of others (Figure 3.16d). 

(Vft 

0.6 
0.39 

0.5 ý 

7.8 E/C 
crack 

(a) Stepped response after cracking (Scanlon and Murray 1974) 

ajt 
1 

Fje 
crack 

(b) Gradual unloading after cracking (Lin and Scordelis 1975) 

CVf t 0.8 

10 excrack 

(c) Discontinuous unloading after cracking (Gilbert and Warner 1978) 
0.5 1 
0.4 ,6 

B Rferimental 
0.3 aa points 

0.2 

0.1 c 

0.0 23 

. 103 

(d) Simplified effective tensile stress-strain curve (Gupta and Maestrini 1990) 

Figure 3.16 Concrete Tensile stress-strain curves 
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Experimental data shows that strain softening can exist in plain concrete 
subjected to tensile stress. The term "tension stiffening" is used here to denote the 
tensile stress carried by the cracked concrete for both plain and reinforced concrete. 
Therefore a unique tension stiffening curve will be used for a'structure regardless of 
the amount of reinforcement in the element. 

In the present study, a tensile stress-strain curve as shown in Figure 3.17 is 

used. The ascending part is assumed to be linear elastic until cracking occurs. The 
descending part is taken as a linear function of principal strain normal to the crack 
direction and, the resistance becomes zero when the principal strain exceeds a certain 
maximum strain. The tensile strength immediately after cracking is defined as a 
fraction "A" of the tensile strength of concrete before cracking. 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

I A=1.0, emax=0.003 

--*- -A=1.0, emax=0.002 

---- A=0.7, emax=0.00'3 

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 

strain 

Figure 3.17 Tension stiffening curves 

3.3.4.4 Shear Retention 

Experimental results indicate that, both plain and reinforced cracked concrete 

can exhibit significant shear stiffness. A considerable amount of shear stress can be 

transferred across the rough and irregular surfaces of cracked concrete by aggregate 
interlocking and friction forces. Also, the dowel action of steel bars contributes to the 

shear stiffness across cracks. Experimental evidence shows that the primary variable 
in the shear transfer mechanism is the crack width (Figure 3.18 & 3.19), although 

aggregate size, reinforcement ratio and bar size also have a certain influence. 
A common procedure to account for aggregate interlock and dowel action in a 

smeared crack model is to use an appropriate value to the cracked shear modulus (G'). 

66 



aggter I- Finite Element and material modellin 

In this study, the transfer of the shear stresses across cracks is modelled by means of 
the 'shcar retention' factor, 0, which defines the slicar modulus of cracked concrete as 
GC=PG, where G is the elastic shcar modulus of the uncracked concrete. P taken as a 
function of the average of the three principal strains at any cracked point as follows 

fl =B 
S' (3.57) 
en 

%vllcrc t: 
er = 

fp 
= 0.0001 

Eýý 

f, 
p =splilling cylinder tensilestrength= 0.53Ffý* 

Er= ) oung's ii: o(hiht. v of concrete = 4730Ffý, ' 

+C2 4-C, 
3 

nunicricil constant 
Three values orl) will be used in this study as shown in Figure 3.20. 

I 

1' 
4 

4 

Initial cmck Nvidtl 
spcciinen I=0.125nim 

specimen 4=0.250 nim 
specimen 7=0.350 nim 

a ot I is 2 
WoCAA WF. A. - "ý 

(a) Test results for specimens with 12mm bars and different initial crack widdis 

0 

4' 

. 44 

E7 4 
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4 
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specimen 4=2 nos 16 mm ý bar 

specimen 5=2 nos 12 mm ý bar 

specimen 6=2 nos 8 mm ý bar 

"" SLIP. A* - Wý 

(b) 'rest results for specimens with 0.251nni initial crack width and different 

reinforcement 
Figure 3.18 Shear trunsfer in cracked reinforced concrete (Millard and Johnson 1985) 
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Figurc 3.19 Dowel load -crack opening relationship (Soroushian ct al, 1986) 
(fy=416 Nhmn2, fc'= 44N/ni, 112, Bar perpendicular to crack) 
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Although Kotsovos' concrete model requires only cylinder compressive 
strength to define the behiviour of concrete, the program also requires. other 
parameters such as elastic Young's modulus (Ec) and Poisson's ratio (v) of concrete as 
a starting value for thc analysis. The material properties of concrete required for input 
daware taken as follows : - 

Young's modulus (Ec) of concrete obtained from E= 4730 V-f, N/mM2 
Poisson's ratio of concrete set at constant value as 0.2 
the cylinder compressive strength (fc) of concrete was taken as 0.8 fcu, where fct, 
is cube strength of concrete. 
'lliesplittitigcylitidertciisilestreiigtlifsli: =0.53ýlfc' N/mM2 
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3.4 Non-linear Analysis 

. 3.4.1 Solution leclu * 
.= 

As pointed out in section 3.3, the behaviour of concrete structure is highly 

non-lincar. A non-linear problem is often tackled on the basis of linearly-elastic 

concept, i. e. solving a series of linear equation such that the appropriate nonlinear 
conditions are satisfied. Unlike linear analyses, nonlinear systems cannot be solved 
directly but rely oil repeated solutions (iterative) of linear systems until a specified 
degree of accuracy (convergence tolerance) is achieved. In this study, modified 
"Newton-Raphson" method has been used in conjunction with frontal method to solve 
the equations mentioned earlier. Tile main feature of the frontal method is that, it 

assembles the equations and eliminates the variables at the same time. lience the 
complete structural stiffiiess is never formed, and this reduces computer storage 
significantly. I'lic stiffnesses are evaluated using a secant rigidity matrix and it Nvas 
updated tit the second iteration in each increment. 

The solution of non-lincar problems by finite element method are usually 
attempted by one of the following basic techniques: 

incremental method 
Iterative method 
1 ncremcntal -item, tive (mixed procedure) 

'llic details of these methods are described in many books (Zienkiiewicz O. C. 

and'raylor ILL. 1989, Bathe K-J. 1996, I-linton E, and Owen D. R. J. 1989, Kotsovos 
NI. D. and Palvlovic M. N. 1995). The mixed incremental/iteration procedure is 

adopted in the study. In this method, the load is applied in increments and the 
solutions are obtained iteratively until equilibrium is achieved to an acceptable level 

of accuracy. 'llie stiffness is calculated by using secant modulus approach (because 
the concrete constitutive la%v requires the use of secant modulus) as a starting value 
for the iterative process. 11c stiffness is then updated at the second iteration of each 
increment. 

'I'lic equilibrium conditions are checked by evaluating "residual forces". The 
basic technique of this method is that, at any stage, a load system evaluated from tile 
stress in the structure, is checked against the applied load system. The difference 
between these two will result in a set of residuals. '17hese residuals are then applied to 
the structure to restore equilibrium. Tile process is then continued to dissipate the 
residual forces to a suiliciently small value. 
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3.4.2 Conyergenge criterion 

It is important to include reliable convergence criteria which will ensure the 
gradual elimination of the residual forces and terminate the iterative process when the 
desired accuracy has been achieved. However, it is difficult and expensive to check 
the decay of residual forces for every degree of freedom, therefore an overall 
evaluation is preferable. '17his is achieved by out-of-balance force (or residual) norms 
as follows : 

VR" 
x 100 <Toter 

,,, 
fA-7r. 

where 
x 

,ä ir, 0=Z (F.. ") , 
J. 1 
IV 

A' = total number of nodal points in the systcm 

Ri = the residual force at node i at rth ileratioll 

r-.,, = the total external applied load at node i 

(3.58) 

Finally, it should be noted that thc rate of convergence very much depends on 
the method used in the solution. For example, the constant stiffness will lead to slow 

convergence and this leads to many iterations, which is without doubt a very costly 

operation. 
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Chapter 4 

KOTS OV OS'- MODEL A ND ABAQIIS' 
MOD EL -A COMPARISO 

Finite clement method is often used to predict the response of reinforced and 
prestressed concrete structures. Ilic results from Finite Element analysis are very 
much dependent on the constitutive model used for concrete and its failure criteria, 
simulation of steel and inten, ction between the steel and concrete. In order to obtain a 
reliable prediction, a suitable constitutive model should be used in tile analysis. 
However. there are a large number of three dimensional concrete constitutive models 
availuble in the literature. The question is which model is most suitable for the study 
of punching shear problem in slabs? In this work, two widely used concrete models 
havc been selected for detailed study. Ilicy are : 

1. Non-lincar elastic isotropic model proposed by Kotsovos (I 979a & 1979b). 
2. I'lasticity-based concrete model proposed by Chen and Clien (1976) used in the 

commercial package ABAQUS. 

The validity of the models is verified against experimental results of 27 
interior slab-column junctions tested by Rankin (1982). 11is study covered models 
with variations in the important pamnieters such as: thickness of slab, flexural 

reinforcement ratios and concrete strengths (Table 4.1). 
Kotsovos'concrete constitutive la%v has been described in the previous chapter, 

so only the concrete inodel and numerical method used in the ABAQUS package are 
briefly described here. 

ABAQUS is a weil established commercial finite element code. Its 

constitutivc model treats concrete as a continuous isotropic linearly elastic-plastic 
strain hardening-fracturc material. 17he stress-strain characteristics of this model can 
best be described by the idealised uniaxial stress-strain curve shown Figure 4.1. 
Iniatially, the concrete is assumed to be linear-elastic for both tensile and compressive 
stress state. At stress levels - (pointel) andfi, concrete yields. Strain hardening takes fC 
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place until the stresses reach -fc'(point B) andf, '9 respectively. At stress level -fc, the 
concrete becomes perfectly plastic until crushing occurs (point C) at a compressive 
strain of -c. and the stress drops suddenly to zero. Tlie concrete is assumed to have a 
limited tensile strength offi'and limited tensile strain cl. 

B 
CrushinS 

11 

I 
comprosion 

lee Cr&cWng failure 
Softening 

D 

Figure 4.1 Idealised uniaxial stress-strain curve for concrete 

The initial yield surface (point A) is assumed to take the sarne form as failure 

surface, thus this surface and the subsequent loading surfaces are of similar shape as 
the failure, surfacc (Figure 4.2). I'lic failure surfaces can be expressed in terms of first 

and second stress invariants, p and q, as shown in the figure 4.3. 

where P=- 
111 (4.1) 
3 

NF3 
(4.2) q= 

ýjl 

11 = first invariant of the stress tensor 
= CrI + C12 + C13 

J. ) = second invariant of the deviatoric stress tensor. 
1 

4 CF2 -a3)2 + 1)2 
(al -C'2)7 +( (Cy 

3- Cy 

and cy, . cr-3, o3 arc the principal stresses. 

Cracking is assumed to occur when the stress reaches a failure surface, which 
is called the "crack detection surface". Once a crack has been detected its orientation 
is stored. Subsequent cracking at the same point is assumed to be orthogonal to this 
direction. Smeared crack model is used to represent cracking. After cracking, the 
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behaviour of concrete is modelled by tension stiffcning and shear retention factors. 
'nic tension stiffcning model used in the ABAQUS concrete model is similar to the 
tension stifficning used in the in-house program, which is linear for both the ascending 
and the descending portions of the curve (Figure 4.4). However, the equations for 

shear retention are slightly different in these two models (the definition of P is 
di fferent). 'nic 0 for ABAQUS concrete model defined as 

P=B I- "" (4.3) 

In order to make comparisons valid, 20 noded solid clement was chosen to 
represent concrete as in the in-house program. Steel bars were represented by one 
dimensional clement embedded in the solid clernents(concretc). Standard elastic- 
plastic (with/without strain hardening) material model was used to describe the 
behaviour of the reinforcing steel. 

I'lie computation is perfornied by incremental loading, with iterations in each 
increment. Modified Riks algorithm (Arc-length method) is used to perform the non- 
linear analysis. The fundamental concept of this method is that the solution is viewed 

as the discovery of a single equilibrium path in a space defined by the nodal variables, 
and the loading parameter (Figure 4.6). This is done by moving a given distance (P I) 

along the tangent line to the current solution point (AO). Once the point A, is found 

(distance between Al and equilibrium surface equal to PI), then the next point (A2) 

which passes through equilibrium surface is obtained by projecting a line 

perpendicular to the same tangent line at point (AI). A detailed description of this 

method is given in A13AQUS manual (1989). 

4.3 Matra-i-al 1r pertics 

Although two different material models were used, most of the material 
properties were kept identical, and were defined using the uniaxial cylinder 
compression strengthfC'in N/mM2. If the compressive strength of concrete for tile test 
is measured by the cube test, the corresponding cylinder compressive strengtlifc' was 
taken to be 0.8 of cube strength (fcu). Initial Young's modulus (Ec) of concrete was 

taken as Ec= 4730\rfc. N/mm2 and Poisson's ratio of 0.2 was assumed. 'I'lic splitting 

cylindcr tensile strength (fp) was calculated as fg= 0.53\ffc' N/mm2. Ilic stress- 

strain relationship in tension was assumed to be linear up to fp and afterwards the 

stress decreased linearly with strain and was zero at the maximum strain of 0.002 (i. e. 
A= 1.0 and c1na. X=0.002) as shown in Figure 4.4. In order to match the two curves for 
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shear retention factor as closely as possible, the values for B and emax were taken as 
0.4 and 0.0012 respectively for ABAQUS code. While for the in-house program, B 

was taken as 1.0 (Figure 4.5). For steel, the measured values of the elastic modulus 
and yield stress were used and a perfectly elastic-plastic behaviour was assumed. 
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Figure 4.2 Failure and initial yield surfaces in principal stress space 
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Figure 4.4 -Tension Stiffening curve 
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4.4 Numcrical modelling Qf slab 

Ilie tested slabs were simply supported along the four edges with comers free 
to lift and subjected to a concentrated load at the centre as shown in Figure 4.7. 
Owing to symmetry, only one-quarter of the slab was modelled (see Figure 4.8a). The 

applied load was simulated by uniformly distributed load over the element 
representing the loading stub, and vertical restraint for comer node was released to 
mirnic corner lifting. Concrete slab was discretised by using one layer of solid 
elements. 

At tile beginning of the study, only a 5x5 mesh (Figure 4.8a) was used, but 
later it was found that the solid element using ABAQUS concrete model gave very 
poor predictions. Inan attempt to find out why ABAQUS predicted such poor results, 
coarser meshes were used to re-analyse the same batch of slabs. For tile sake of 
simplicity, these meshes do not include the portion of slab beyond the support and the 
applied load was simulated by a concentrated load (Figure 4.8b & 4.8c). 

slab suppolts 

100 

700 

640 1 
Vatiable values 
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d(avorage): 35 0-53 5 

6 mm ribbod Load 
teinfoicoment 

Figurc 4.7 : Rankin's slab-colunin modcls 
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(a) Sx5 mesh 
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(b) 3x3 mcsh (c) 2x2 mesh 
Figure 4.8 : Typical finite element mcsh 
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4.5 Validation of numerical results 

'Mis section will briefly look into the predicted behaviour and mode of failure 

to validate the mathematical model. 'flic validation %vas based on the correlation 
between the experimental and predicted values on three aspects of observed structural 
behaviour : 
1. ) 'nic ultimate load capacity of slab. 
2. ) I'lic load-deflection response. 
3. ) Strains in steel and concrete near the loading stub. 

The mode of failure was classified in a simplistic manner as follows: 

Flext ral mudc 
" Ductile 

" Steel yields 

shmmodv, 
Brittle 
Steel does not yield 

Ins. I Kotsovos, ciluract! Q model (In-house Prograni) 

The computed ultimate load of slabs using Kotsovos'concrete model are given 
in Table 4.1. The ratio of predicted to measured ultimate load ranged from 0.65 to 
1.02, with an average value of 0.89 and a standard deviation of 0.08. 

For the slabs with low reinforcement ratio (p<0.7%), pure flexural failure is 

expected. The predicted load-deflection response before cracking follows 

experimental results vcry closely. After cracking, the numerical load-deflection 

response is stiffer than the experimental results, but the gradient of the load-deflection 

response prior to failure is very low (Figure 4.9). Although no experimental 

measurement of strain in steel and concrete for lightly reinforced concrete slab is 

available, the predicted steel strains reach yield values (0.0024) and steel strain in 

some slabs was as high as 5% (Table 4.1). All these indications show that these slabs 
failed in a flexural mode. 

This concrete model is particularly suitable for heavily reinforced slabs with 

steel ratio (p > 1.50,1o). Computed variation of deflection, steel and concrete strain with 
load followed the test measurements closely. The gradient of load-deflection response 
is steep (Figure 4.10). The predicted strains in the flexural steel remain below the 

yield value (Figure 4.11) and the predicted concrete strain approaches crushing strain 
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(0.0035) as sho%%m in Figure 4.12. All these indications shows that the slab failed in 

shear mode. 
As shown in Figure 4.13, mesh size has little effect on the numerical response 

and ultimate load of slab. A detailed study of effect of mesh size will be given in tile 
next chapter. 

From the predicted ultimate load and structural response, it can be seen that 
Kotsovos'concrete model gives reasonably good results. 
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Figure 4.9 : Load-deflection response for slab failed in flexural mode 
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Figure 4.10 : Load-deflection response for slab failed in shear mode 

79 

2 

Deflection (mm) 



5train in flexural steel at colum n-padphervjs lab "4C") 

a 

z 

0 

C, 

a. a. 

120 

100 

80 

Go- 

40 - 

20 

0 
0 0.2 0.4 0.6 

strain/yield strain 

,a Experiment 

# Kotsovos 

- ABAQUS 

0.8 1 
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Figure 4.13 : Effect of mesh size (In-house Program) 

4.5.2 ABAQUS Concrete model 

The ultimate load predicted by ABAQUS concrete model is much lower than 
the experimental results (Table 4.2). These results show that the finer the mesh, the 
lower the predicted ultimate load which indicates that ABAQUS concrete model is 

highly mesh dependent. A very coarse mesh (2x2) gave a reasonably good prediction 
in which the predicted average ratio and standard deviation were 0.76 and 0.14 

respectively. Marzouk and Jiang (1996) used a very coarse mesh in their 3D analysis 
using ABAQUS to study punching shear problem for high strength concrete slabs. 
Their results showed that very coarse mesh gave reasonably good prediction. 

Due to the poor prediction by finer mesh, only structural response for very 
coarse mesh (2x2) is discussed here. The load-deflection response is stiffer than 

experimental measurement (Figures 4.9 & 4.10). Furthermore, the predicted strain in 

steel is far lower than the measured value (Table 4.2). Marzouk and Jiang (1996) also 
predicted a much stiffer load-deflection response when compared to the test results. 
However, they did not show any predicted strain in steel. So, it is not clear how well 
the strain in steel was predicted in their analysis. 

Although a very coarse mesh predicted a reasonably accurate ultimate load of 
slabs, there is no clear indication of mode of failure (see Table 4.2). From this study, 
it can be concluded that at present three dimensional analysis using ABAQUS 

concrete model is not suitable for the study of punching shear problem. 
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Table 4.1: 
-Prediction of Ultimate Load and mode of failure by In-house Program 

(Rankin) 

Slab fCU P Experimental Numerical Prediction 
No (N/mm2) Ptest 

(kN) 
Failure 
Mode 

N/E deflection Steel 
(strain/ys) 

Failure 
Mode 

1 38.40 0.423 36.42 y 0.949 y 5.54 y 
2 38.40 0.558 49-08 y 0.831 y 3.12 y 
3 38.40 0.691 56.55 y 0.683 y 2.00 y 
4 43.50 0.821 56.18 y 0.688 y 0.91 S/Y 
5 43.50 0.883 57.27 y 0.654 s 0.70 S/Y 
6 43.50 1.026 65.58 s 0.743 s 1.25 S/Y 
7 37.10 1.163 70.94 s 0.660 s 0.94 s 
8 37.10 1.292 71-09 s 0.709 s 1.32 S/Y 
9 37.10 1.454 78.60 s 0.756 s 0.96 s 
10 37.40 0.517 43.50 y 0.842 y 2.04 y 
11 37.40 0.802 55.00 y 0.648 y 0.95 S/Y 
12 37.40 1.107 67.06 s 0.676 y 1.2 y 
13 42.50 0.601 49.39 y 0.842 y 1.39 y 
14 42.50 0.691 52-45 y 0.789 s 1.17 S/Y 
15 42.50 1.994 84.84 s 0.792 s 0.89 s 
IA 36.00 0.422 45.19 y 0.918 y 2.67 y 
2; ý- 36.00 0.691 66.24 y 0.789 y 1.71 y 
3A 36.00 1.293 89.72 s 0.762 s 0.94 s 
4A 38.60 1.992 97-43 s 0.838 s 0.85 s 
IB 47.10 0.423 28.85 y 1.027 y 2.38 y 
2B 47.10 0.690 37-63 y 0.867 y 2.17 y 
3B 4ý7 10 1.292 56.67 y 0.711 s 0.98 ý s 
4B 38.60 1.994 72-52 s 0.720 s 0.95 s 
IC 34.80 0.423 62-74 y 0.845 y 1.51 y 
2C 40.50 0.690 87-86 s 0.713 s 1.06 S/Y 
3C 40.50 1.288 124-14 s 0.749 s 0.97 s 
4C 34.80 1.993 125.94 s 0.834 s 0.95 s 

Average 0.892 
STDEV 0.081 

N-O-tg 
N/E=Predicted/Experimental load 

y= flexure failure mode 
s= shear failure mode 
ys=yield strain of steel 
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Table 4.2; Prediction of Ultimate Load by ABAQUS 
(Rankin's slabs) 

Experimental Numerical 
Slab Ptest Failure *Steel *Failure Numerical/Exp. failure Load 

(kN) Mode strain/ys Mode 4 solids 9 solids 25 solids 
1 36.42 y 0.71 s 0.865 0.457 0.220 
2 49.08 y 0.55 s 0.683 0.375 0.212 
3 56.55 y 0.53 s 0.698 0.352 0.186 
4 56.18 y 0.83 S 0.731 0.374 0.214 
5 57.27 y 0.71 s 0.762 0.372 0.236 
6 65.58 s 0.30 s 0.725 0.352 0.233 
7 70.94 s 0.36 s 0.641 0.265 0.228 
8 71.09 s 0.30 s 0.656 0.264 0.253 
9 78.60 s 0.30 s 0.619 0.261 0.254 
10 43.50 y 1.00 y 0.721 0.399 0.202 
11 55.00 y 0.28 s 0.676 0.313 
12 67.06 s 0.35 s 0.657 0.268 
13 49.39 y 0.55 S 0.762 0.436 
14 52.45 y 0.59 s 0.777 0.360 
15 84.84 s 0.35 s 1.162 0.287 
IA 45.19 y 0.19 s 0.883 0.429 
2A 66.24 y 0.32 s 0.725 0.337 
3A 89.72 s 0.39 s 0.559 0.267 
4A 97.43 s 0.34 s 0.857 0.298 
1B 28.85 y 0.53 s 1.004 0.605 
2B 37.63 y 0.90 s 0.813 0.714 
3B 56.67 y 0.69 s 0.793 0.639 
4B 72.52 s 0.56 s 1.046 0.243 
IC 62.74 y 0.59 s 0.627 0.431 
2C 87.86 s 0.38 S 0.717 0.331 
3C 124.14 s 0.82 s 0.708 0.303 
4C 125.94 s 0.60 s 0.762 0.295 

Average 0.764 0.371 0.224 
STDEV 0.136 0.119 0.022 

Note 
*strain and mode of failure here are for 4 solid element model 
ys=yield strain of steel 
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4.6 Discussion 

In order to find out why ABAQUS concrete model gave such a poor prediction 
for punching shear problem, a concrete element subjected to tri-axial (Figure 4.14) 

and pure shear loading was examined. The compressive cylinder strength of the 

element was assumed to be 45N/mM2 and the tensile strength as 3.6N/mM2. 
From Figure 4.15, it can be seen that when the state of stress is dominantly 

compressive (11 is high), the allowable tensile stress in the third direction goes up to 
30% of compressive strength. This value is far too high compared to actual tensile 

strength of concrete. This implies that when stresses in the element is compressive 
dominant (high 11), the third direction will never crack due to the high allowable 
tensile stress. From table 4.3, ABAQUS concrete model is stronger than Kotsovos' 

concrete model in both tension and compression under multiaxial stress. Clearly, this 
is not the reason why ABAQUS code predicted such a low ultimate load. 

Figure 4.16 shows the results of a study into strength envelope of concrete in 

term of octahedral stresses for both constitutive models. This figure shows that 
Kotsovos' model gives higher shear strength than ABAQUS model under large 

octahedral stress (ao/fc>0.9). But stress combination for a slab is unlikely to reach this 

region. For small octahedral stress (ao/fc<0.1), Kotsovos' model gave higher shear 

resistance than ABAQUS model (Figure 4.17) for certain combination of stress. From 

the results of slabs analysed (octahedral stress for every Gauss point) from both 

models (Figures 4.18-4.21) confirmed that octahedral stress for slab structure 

subjected to concentrated load have a tendency to lie in this region. Test of single 

element subjected to pure shear loading (Table 4.4) also show that Kotsovos' model 
have higher shear resistance. The above finding may be the reason for the analysis 

using solid element with ABAQUS concrete model, predicted such a low ultimate 
load. Unfortunately, there is no source code available for ABAQUS program to check 

where the error lies. 

4.7 Conclusion 

From a comparison between the predictions by Kotsovos' and ABAQUS' 

concrete model, the following conclusions can be drawn: 

Kotsovos' concrete model is more suitable for three dimensional analysis because 

its prediction proved to be very close to experimental observation in terms of 

ultimate load, structural response and mode of failure. 
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" The prediction by ABAQUS concrete model is not reliable, even though very 
coarse mesh predicted reasonably good results for ultimate load of slabs. The 

prediction does'not give a clear indication of mode of failure and for some slabs 
even wrong mode of failure was given. 

" The behaviour of concrete under triaxial loading simulated by Kotsovos is closer 
to experimental results (see figure 3.12). 

" ABAQUS concrete model cannot mimic the true tri-axial effect of concrete. 

The comparison, between the predictions of Kotsovos and ABAQUS models 
leads to the conclusion that non-linear elastic isotopic model proposed by Kotsovos is 

a good model for predicting the behaviour of reinforced concrete slab. Therefore 
Kotsovos concrete model will be used for the later study. 

n r- 

aFc 

ocFc 

Figure 4.14 : An element subjected to Triaxial loadings 
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Table 4.3 Allowable stress under triaxial loading 

Loadings Maximum Allowable stress (N/mm2) 
ABAQUS *Kotsovos 

Tri-axial Tension +2.964 +1.575 

Bi-axial Tension +2.763 +1.800 

Uni-axial Tension +3.600 +1.980 

Tri-axial compression infinity -72.000 
Bi-axial compression -54.520 -49.200 
Uni-axial compression -45.000 -45.000 
Bi-axial compression & Tension see Figure 4.12 see Figure 4.12 

* Kotsovos' model usefsp12 for tensile strength 

Table 4.4 Allowable stress under pure shear loading 

Loadings Maximum Allowa ble stress (N/mm2) 
ABAQUS Kotsovos 

Zý- 1 2.23 2.61 

+1.22 1.56 

0.82 1.20 
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Figure 4.17 : Strength envelope of concrete (Magnified for ao/fc: 5 1.0) 
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Figure 4.18 : Stress combinations for 2x2 mesh analysed by ABAQUS 
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Combinations of octhabedral stressas at Ultimate strength (ABAOUS. 9 element) 

- ABAGUS 

a. /f, 

Figure 4.19: Stress combinations for 30 mesh analysed by ABAQUS 
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Figure 4.20: Stress combinations for 5x5 mesh analysed by ABAQUS 
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Figure 4.21 : Stress combinations for 5x5 mesh analysed by Kotsovos' model 

90 

0.1 0.3 0.5 0.7 0.9 



Chgj2ter 5 Parametric studýy- 

Chapter 5 

PARAMETRIC STUDY 

5.1 Introduction 

There are many parameters which affect the finite element prediction of the 
behaviour of slabs. Generally these parameters can be classified into two categories. 
The first category contains numerical parameters such as solution procedure, size of 
load increment, maximum, number of iteration per increment. - the convergence 
tolerance, mesh size, type of element, order of numerical integration, simulation of 
boundary conditions and applied loads. The second category contains material 

parameters such as compressive and tensile strengths of concrete, Young's modulus, 
Poisson's ratio, tension stiffening factor, shear retention factor and yield strength of 

reinforcement. 
The objective of the parametric study is to see how these parameters affect the 

behaviour of the slab. In this section, the parameters are varied one at a time. As the 

number of variations is large, the computation will be confined to a small number of 
typical slabs. The final values of the parameters chosen is based upon those giving the 
best comparison with the experimental results. The comparison between the 

experiments and predicted values was based on the following aspects of structural 
behaviour : - 

The ultimate load capacity of the slab; 
The load-deflection response; 
Strains in flexural reinforcement; 
Distribution of strains and stresses in concrete within the compressive zone; 
Crack pattern; 
The mode of failure. 

After having chosen the "best" concrete model, all the analysis will use this set 

parameters for the analysis of a large number of slabs from different sources. 

A modes of failure 

A set of general rules were laid down for the classification of modes of failure 

based on following structural responses from experimental observations: - 
Load-deflection response; 
Strain in flexural reinforcement; 
Principal compressive stress and strain in concrete; 

0 Crack pattem. 
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5.2.1 Load deflection response/Load-rotation respons-c 

Section 2.2 stated that slabs which display large ductility, basically fail in 
flexural mode, while brittle behaviour represents slabs failing by primary punching. 
However, this is only rough classification. From the experimental load-deflection 

curve (Figure 5.1), it can be observed that lightly reinforced slab have three stages of 
behaviour: 

1. ) Stiffness for uncracked concrete; 
2. ) After flexural cracks have formed, there is an obvious decrease in the stiffness of 

the slab. 
3. ) Yielding of flexural reinforcement leading to a further decrease in stiffness. 

For slabs which fail in brittle (shear) mode, the load-deflection curve consists 
of first two stages only because very often steel does not yield. 

Experimental load-deflection response also shows that the gradient of the 

curve prior to failure is low for slabs which fail in flexure mode and is steep for slabs 
which fail in shear mode. Therefore, if the gradient prior to failure is low, the slab is 

said to have failed in flexure mode. Conversely, if the slope is very steep the slab is 

said to have failed in shear mode. 
For corner and edge column-slab connections, the failures are more likely to 

occur at the column-slab junction. Because of lack of symmetry, there is considerable 
rotation involved. Thus, judging ofýmode of failure for these two types of connections 
will include rotation of slab at the junction. 

5.2.2 Strain in flexural reinforcemen 

Judging of modes of failure from strain in flexural reinforcement is done as 
follows :- 

Flexural failure 
If flexural steel yields well before failure and yielding spreads over a wide area 

of the slab at failure, the slab is said to have failed in pure flexural mode. 

Flexural punching failure 

If the flexural steel yields at failure and the yielding of reinforcement is 

confined to a small area locally around the column, the slab is said to have failed in 

flexure punching mode. 
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Pure punching failure 

If there is no yielding of reinforcement, the slab is said to have failed in 

punching shear mode. 

5.2.3 Principal compressive stress and strain of concrete in 
compression zone 

Kinnunen-Nylander's model indicates that slabs failing in punching shear 

mode are highly stressed. It assumes that punching occurs when the stress and strain 
in the conical shell reaches critical values (see section 2.3.1.1). In the present study, 

concrete crushing is assumed to occur when the maximum compressive strain 

exceeded 0.0035 (see section 3.3.1.1). Therefore, when either principal compressive 

stress greater than fc'. or principal compressive strain reaches or exceeds 0.0035, the 

slab is said to fail in punching. 

5.2.4 Crack Pattern 

Fixed crack model (section 3.3.4) is used in the present study. Once a crack 

occurs, its direction is fixed and remains constant during subsequent loadings. Crack 

direction is perpendicular to the direction of first principal strain and in the vector plot 
diagram, the crack length is plotted as proportional to the magnitude of first principal 

strain. 
From experimental observation, pure bending action produces vertical cracks 

and pure shear action will produces inclined cracks. Thus, if the cracks in the vicinity 

of the column are vertical, it indicates that the slab has failed in flexure mode (Figure 

5.2a). Conversely, if the cracks are inclined, it indicates that the slab failed in shear 

mode (Figure 5-2b). 

The notations used to represent different modes of failure are defined as 
follows: 

y= pure flexural failure 

fp = flexural punching 

s= punching failure 

c= crushing of concrete 
For slabs with shear reinforcement, shear failure is defined as 

out = punching occurs outside shear reinforcement region 
in = punching occurs within shear reinforcement region 
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yielding of steel :, 
" 

CL 
< .6 cl 

cracking of concrete 

Flat =* K8=small 

Steep => K8=large 

where K8= AP/ Ad 

Figure 5.1 Load-deflection curve for slab failing in ductile mode 

CL 

I . 

Ct 

(a) Flexure mode 

: :: j . I\'. NN\ ' 

(b) Shear mode 

Figure 5.2 Crack pattern (elevation) 

5.3 Conventional slab-column specimens tested by Rankin 

Rankin (1982) tested 27 conventional slab-column specimens without shear 

reinforcement. These slabs cover most of the important parameters (thickness of slab, 
flexural reinforcement ratio, concrete strength, etc. ) governing punching shear 

strength. A parameteric study was done on five slabs only. These slabs are models 
"IB", "IC", "W', "3C" and "4C". These slabs are chosen because they failed in 

different failure modes (i. e. flexural failure and punching shear failure) and 

experimental data is available to verify the proposed concrete model (Table 5.1). 
These slabs were simply supported along the four edges with comers free to 

lift and subjected to a concentrated load at the centre of slab as shown in Figure 5.3. 

Concrete strength ranged from 36-47 N/MM2. Flexural reinforcement only was 
included in the models and this varied over the range of 0.4-2.0%. The sPan/depth 
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(L/h) ratios varied over a range of 25-35. The reinforcement had a well defined yield 
point with no strain hardening (fy = 530 N/mm2). A summary of details of these slabs 
is presented in Table 5.1. 

Owing to symmetry, only one-quarter of the slabs was modelled. The applied 
load was simulated by uniformly distributed load over the element representing the 
loading stub. The slab was generally discretised by using one layer of twenty node 
solid elements. 

Slab supporls 

0 
0 
F- 

640 

Variable values 
-Th: 45.5-64.0 

d(average): 35-0-53.5 
6 mm q5 ri , 

bbed t 
Load 

reinforcement 

Figure 5.3 : Rankin's slab-column models 

bs, IB, IC-4C (Rankin. 1282-) 

Slab fc U 
(N/mM2) 

d 
(mm) 

p 

-N 

Ptest 
(kN) 

Failure 
Mode 

IB 47.10 35.00 0.423 28.850 y 
IC 34.80 53.50 0.423 62.740 y 
2C 40.50 53.50 0.690 

- 
87.860 s 

--Tc- 40.50 53.50 1.28 8 124.140 s 
Tc- 34.80 53.50 1.993 125.940 s 

where d effective depth 
IOOA 

P bd 
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5.4 Numerical Parameters 

The main purpose of the study of the effect of numerical parameters on slabs 
behaviour is to choose the values of parameters to achieve an accurate, and at the 

same time economical solution for the non-linear analysis. Five parameters which 
have significant effect on the computational cost and Finite Element prediction was 
studied. These parameters are 
i) Convergence tolerance, 
ii ) Size of load increment, 

iii) Mesh size, 
iv) Number of elements through the thickness of slab, 
v) simulation of boundary conditions. 

For this study, material parameters were kept constant as follows : 

0 the cylinder compressive strength of concrete (fc') was taken to be 0.8 feu, where 
fcu is the compressive cube strength of concrete 
Young's modulus of concrete, E, = 4730Ff, ' N/mM2 

Poisson's ratio 0.2 

Tensile strength of concrete, 
f'ý/2 

and the splitting cylinder tensile strength, 
f 

,P=0.53Ff, 
' N/mM2 

The tension stiffening is taken as a linear function of the principal strain. There is 

no reduction of tensile strength'immediately after cracking. Maximum strain Cmax 
was kept constant at 0.003 (Refer to Figure 3.17). 
The shear retention factor is kept constant as P=0.5 Fcr/6n (Refer to Figure 3.20). 

For steel, the measured values of the elastic modulus and yield stress were used. 
An elastic perfectly plastic behaviour was assumed. 

ergence tolerance 

A 6x6 mesh on plan, with one layer of solid element to represent the thickness 

of slab as shown in Figure 5.4 was used in this study. For this study, the size of load 

increment was kept constant as 5% of experimental failure load for all the increments. 

The tolerance factors studied were 1%, 5% and 10%. 
In the numerical procedure, convergence tolerance is used to monitor the 

gradual elimination of the out-of-balance residual forces until desired accuracy is 

achieved. Theoretically, small tolerance is required but it can be very expensive 
because it requires a large number of iterations. Figures 5.5-5.11 show that the results 
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for load-deflection and strain in steel, the structural response are exactly similar for 
different values of tolerance factor except that smaller value'of tolerance predicted 
lower ultimate load. Table 5.3 shown the number of iterations per increment required 
for different slabs analysed. Table 5.3 shows the variation of the ratio of 
predicted/experimental failure load with the tolerance limits. The predicted ultimate 
load for tolerance of 1% is about 82% of the ultimate load predicted by tolerance of 
10%, but the number of iterations increased by 300%. However, the ultimate load 

predicted for tolerance of 5% and 10% are almost same (see table 5.2), but using 
tolerance of 5% will increase computational cost by 60% as measured by the solution 
time (see table 5.3). The above study indicates that smaller tolerances do not show 
much difference in the structural behaviour other than increasing the computational 
cost. Therefore, a 5% tolerance will be used throughout the present investigation. 

PLAN 

ELEVATION 
Figure 5.4: Finite Element Mesh 

Table 5.2 : Effect-of convergence tolerance on Ultimate Load 

Slab Ptest Numerical/Exp. failure Load 
(kN) TOL=I% TOL=5% TOL=10% 

IB 28.850 0.865 1.027 1.027 
1C 62.740 0.696 0.895 0.945 
2C 87.860 0.738 0.787 0.836 

3c 124.140 0.532 0.822 0.822 
4C 125.940 0.858 0.858 0.858 

Average 0.738 0.878 0.897 
STDEV 0.137 0.093 0.087 
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Table 5.3: Effect of convergence tolerance on Numbers of Iterations 

Numbers of iterations 

Slab "I B" Slab "I C" Slab "2C" Slab 'W" Slab "4C" 

Inc 1% 5% 10% 1% 5% 10% 1% 5% jo% 1% 5% 10% 1% 5% 10% 
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 1 1 1 1 1 1 11 1 1 2 1 1 2 1 1 
3 2 1 1 1 1 1 2 1 1 2 2 2 2 2 2 
4 2 2 1 2 2 2 

_4 
2 2 3 2 2 3 2 2 

5 2 4 2 2 2 2 3 2 2 4 2 2 3 2 2 
6 2 2 2 3 2 2 4 2 2 4 2 2 4 2 2 
7 3 2 2 4 2 2 4 3 2 4 2 2 4 2 - 2 
8 4 2 2 4 2 2 4 2 2_ 6 3 2 6 3 2 
9 4 2 2 4 2 2 5 3 2 8 4 2 7 3 2 

10 3 2 2 5 31 2 7 4 21 11 5 3 8 4 2 

11 7 2 2 7 4 2 9 5 3 13 6 3 10 5 2 

12 5 3 2 9 5 3 10 6 4 50 7 4 27 5 

13 7 
_4 

3 13 1 
- 7 4 13 8 5 - 31 4 30 23 33 

_ 14 10 5 3 20 9 5 18 10 6 - 10 9 12 7 3 
_ 15 17 9 61 50 19 6 23 12 71 -1 30 7 14 6 4 

16 29 15 7 - 27 9 50 19 10 - 27 14 23 8 4 

17 50 22 10 - 22 16 - 50 50 - 22 21 40 11 4 

18 - 29 15 - 29 17 - 50 1 50 15 1 21 4 

19 - 50 35 - 50 32 - 50 50 50 

20 - - 50 - - 50 - 
7- 152 159 150 127 191 162 159 132 103 109 208 132 262 159 96 
ST 57 62 56 1 45 76 62 

. 
70 60 43 1 41 68 1 43 75 

Note: ST denote Solution Time in minutes 
Total no-of iteration for 5 analysis (*, at similar number of increments) 

I% of convergence tolerance 
4% of convergence tolerance 
10 % of convergence tolerance 

809 (ST=288 minutes) 
422 (ST= 164 minutes) 
264 (ST= 98 minutes) 

ST is not a good criterion to judge the computational cost, because the number of 
people using the computer at the same time will affect the solution time. Total 

number of iterations is, perhaps, a better indication of cost of solution. 
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Figure 5.5: Effect of convergence tolerance (Slab "IB ") 
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Load-deflection response (2C) 
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Figure 5.7 Effect of convergence tolerance (Slab "2C) 
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Load-deflection response (4C) 
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Figure 5.9 : Effect of convergence tolerance (Slab "4C") 
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Strain in steel at column periphery (4C) 
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Figure 5.11 Effect of convergence tolerance (Slab "4C) 

5.4.2 Effect of the size of load increment 

In order to keep the computational cost at a reasonable level, three different 
load increment sizes were studied : 10%, 5% and 2.5% of experimental failure load. 
This study adopted 6x6x I mesh as shown on Figure 5.4. 

From table 5.4, load increment size of 10% predicted the highest average value 
of ratioýof numerical to experimental ultimate load along with the highest standard 
deviation, STDEV (i. e. less consistent). However there is not much'difference in the 
numerical ultimate load between load increment sizes of 5% and 2.5%. Larger value 
of load increment also produced stiffer response (refer to figures 5.9-5.15). Load 
increment size of 10% predicted overstiff response when compared to experimental 
results (deflection and strain in steel) especially for slabs with low amount of 
reinforcement. Load increment sizes of 5% and 2.5% predicted response that matched 
very well with experimental results for all slabs no matter what the amount of 
reinforcement in the slab was. From figures 5.9-5.15, it can be observed that at low 
load level (around 20% of experimental failure load), there is not much difference in 

response for all the three load increment sizes. 
From the above analysis, it can be concluded that applying small load 

increment for highly non-linear parts and large load increment whenever nonlinearity 
is not significant will give reasonably good results. In order to reduce the 
computational cost, it was decided to use in the present work load increment size of 
10% for the first two increments and of 5% for the remaining increments. 

102 

0 0.2 0.4 0.6 0.8 1 



Chal2ter 5 Parametric studLE 

Table 5.4 : Effect of load Increment size on Ultimate Load 

Slab Ptest Numerical/ Experimental failure Load 
(IN) 10% 5% 2.5% 

1B 28.850 1.190 1.027 1.000 
ic 62.740 0.995 0.945 0.845 
2C 87.860 0.885 0.836 0.738 
3C 124.140 0.870 0.822 0.870 
4C 125.940 0.858 0.858 0.834 

Average 0.960 0.898 0.857 
STDEV 0.140 0.087 0.094 
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Figure 5.12 : Effect of load increment size (Slab "lB") 
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Figure 5.14 : Effect of load increment size (Slab "2C") 
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Load-deflection response (49) 
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Figure 5.16: Effect of load increment size (Slab "4C) 
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Strain In steel at column periphery (4C) 
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Figure 5.18 Effect of load increment size (Slab "4C) 

5.4.3 Mesh size 
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For slabs subjected to a concentrated load at the middle, the element 
representing the loading stub will be the smallest element. In order to reduce 

computational cost, elements further away from loading stub should be larger. The 

study of mesh refinement was conducted mainly for the elements within and near the 
failure region (i. e. element representing the loading stub and elements beside the 
loading stub). Three different mesh arrangement with number of elements of 25,36 

and 49 respectively (Figure 5.19) were used to study the effect on predicted structural 

response from slabs. 
The results of analysis are shown in Table 5.5, it can be seen that the finest 

mesh (49 elements) predicted results with lowest standard deviation (i. e. consistent 

results). While the analysis using coarse mesh (25 elements) predicted results with 
highest standard deviation (i. e. less consistent). The aspect ratios for 49 and 36 

elements mesh were 1.2 and 1.0 respectively, and the aspect ratio for 25 elements 

mesh was 1.8. This indicates that large aspect ratio produced less consistent results. 
Comparing the load deflection response and strain in steel (Figures 5.20-5.26), the 

mesh size has little effect on the ultimate load and behaviour of the slabs. 
The results of this mesh size study show that mesh size (within the range of 

the chosen meshes) have a little effect on the ultimate load and behaviour of the slab, 
i. e. the results are not particularly mesh dependent. But elements with large aspect 

ratio give less consistent predictions. 
- 
Therefore, it was 'concluded that if a mesh is 

reasonably fine, further refinement will not improve the prediction but only increase 

computational cost. In order to achieve a consistent, accurate and economical solution, 
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the aspect ratio for element beside loading stub should not be more than 1.5 and 
element size can be gradually increased when it is further away from loading stub. 

T6 25 eiements 

Figure 5.19 Finite Element meshes 

Table 5.5 : Effect of mesh sizc 

49 elements 

Slab Ptest Numerical/Experimental failure Load 
(kN) 25 elements 36 elements 49 elements 

1B 28.850 1.081 1.027 1.027 
IC 62.740 0.995 0.945 0.895 
2C 87.860 0.788 0.836 0.885 
3C 124.140 0.773 0.822 0.822 
4C 125.940 0.905 0.858 0.858 

Average 0.908 0.898 0.897 
- STDEV 0.132 0.087 70 : 0:: 7: 8ý 
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Figure 5.20 : Effect of mesh size Ratio (Slab "IB ") 
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Figure 5.21 : Effect of mesh size (Slab "IC") 
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Figure 5.22 : Effect of mesh size (Slab "2C") 
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Load-deflection response (3C) 
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Figure 5.23 : Effect of mesh size (Slab "3C") 
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Figure 5.24 : Effect of mesh size (Slab "4C") 
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Strain in steel at column periphery (2C) 
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Figure 5.25 : Effect of mesh size (Slab "2C") 
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Figure 5.26 : Effect of mesh size (Slab "4C") 
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5.4.4 Number of elements through the thickness of slab 

Increasing the stress calculation points (Gauss points) through the thickness to 
cater for nonlinearity of concrete as cracks propagate through the thickness of slab, is 
done by increasing number of elements through the thickness. But slab is a very thin 
member and increasing number of elements through the thickness will also increase 

the aspect ratio of the element. This might result in inconsistent prediction as shown 
in the previous study. 

Three types of arrangement (1,2,3 elements through the thickness) were 
analysed using the layout of the mesh shown in Figure 5.4. Analysed results show that 
increasing the number of element through the thickness has little effect on the load vs. 
strain and deflection of the slabs (Figures 5.27-5.33), but it had significant effect on 
the ultimate load of heavily reinforced slab (e. g. slabs 3C & 4Q. Generally, the 

analysis terminated because it could not achieve the prescribed limit of convergence 
tolerance. However, the analysis for specimens 3C (2 layers) and 4C (3 layers) 

terminated due to the divergence of the solution. 
This study shows that increasing the number of elements through the thickness 

did not improve the prediction but doubled (or trebled) the computational cost and in 

some cases caused the solution to diverge. It is very important in the numerical 
analysis to prevent divergence of the solution and by comparing with the experiment 
results, one element through the thickness of slab predicted reasonably accurate 
results. Therefore, generally one-element through the thickness of slab was used for 

the later study. Two or more elements through the thickness of slab will be use only 
when it required to limit the aspect ratio of the element near critical region to about 
1.5 (see section 5.4.3). 

Table 5.6 : -Effect of Number of element through the thickness 

Slab Ptest Numerical/ Experimental failure Load 
(kN) I Layer 2 Layer 3 Layer 

IB 28.850 1.027 1.027 0.973 
IC 62.740 0.945 0.995 0.995 
2C 87.860 0.836 0.836 0.787 
3C 124.140 0.822 0.677 0.773 
4C 125.940 0.858 0.762 0.572 

Average 0.898 0.860 0.820 
STDEV 0.087 0.150 

Note :I Layer--I element through the thickness, Aspect Ratio=1.02 
2 Layer--2 elements through the thickness, Aspect Ratio=2.04 
3 Layer--3 elements through the thickness, Aspect Ratio=3.06 
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Load-deflection response (29) 
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Figure 5.29 : Effect of layer 
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Load-deflection response (4C 
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Figure 5.31 : Effect of layer 
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Steel strain at column periphery (4C) 
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Figure 5.33 : Effect of layer 
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boundary conditions (vertical restraint) 

As mentioned earlier, the comers of slabs are free to lift when subjected to a 

concentrated load at the middle, but we do not know exactly which portion of slab 
will lift. In order to find out the effect of vertical restraint, the vertical restraint for 

support nodal point was released node by node from the comer of the slab (Refer to 
Figure 5.34). 

Figures 5.35 and 5.36 show that the effect of vertical restraint is insignificant 

for both the ultimate load and response of slab. Therefore it was decided that in all 

analysis only nodal points for comer element will be released (e. g. Res=22). 

Res=25 Res=22 'Nodes released Res=18 

*Res=number of nodes where the vertical movement is restrained 
Figure 5.34 : Slabs with various number of vertical restraint 

Res=14 
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Load-deflection response (4C) 
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Figure 5.35 : Load-deflection response (Effect of vertical restraint) 
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5.4.6 Conclusions, 

From the parametric study for the numerical parameters, the following 

conclusions can be drawn : - 
" Convergence tolerance generally does not greatly affect the predicted structural 

response, but smaller value of tolerance will increase the computational cost 
tremendously. From this study, 5% tolerance predicted good results with relatively 
low computational cost. Therefore, 5% tolerance was deemed acceptable for use in 
later study. 

" Load increment size will affect the predicted ultimate load and structural response. 
Larger load increment size predicted higher ultimate load and stiffer structural 
response. In order to reduce the computational cost, it was decided to apply large 
load increment at the initial stages and small load increment for highly non-linear 
part. Thus, load increment size of 10% for the first two increments and 5% for the 

remaining increments is suitable. 

" Within limits, mesh size has little affect on the ultimate load and structural 

response of the slab. But, large aspect ratio may cause the divergence of the 

analysis and finer mesh is very costly. Therefore, finer mesh arrangement (aspect 

ratio close to unity) is needed for elements within and near the failure zone and 
coarser mesh for the elements further away from the failure region is 

recommended. 

" Number of elements through the thickness of slab has little affect on structural 

response. But increasing the number of elements through the thickness of slab will 

greatly increase the computational cost and may cause divergence of the solution. 
Therefore, generally one element through the thickness of slab was used in the 
later study. 

40 Number of vertical restraint released. had little affect on the ultimate load and 

structural response of the slab. Therefore only support nodes for the corner 

element will be released. 
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5.5 Material Parameters 

Four parameters which may have significant effect on the ultimate load, mode 
of failure and behaviour of slab was studied. These parameters are: 

1. Tensile strength of concrete, 
2. Tension stiffening factor, 

3. Shear Retention factor. 

4. Confinement effect (for slabs with shear reinforcement only) 

For this study, the following parameters were kept constant for all slabs 

analysed. 

The load steps for the first two increments was 10% of experimental failure load 

and 5% of the experimental failure load for the remaining increments. 

The convergence criteria based on the residual forces tolerance of 5%. 
The maximum number of iterations per increment is 50. 

The study was based on the mesh arrangement of 36 elements, aspect ratio for the 

element beside loading stub of 1.2, and only the support nodal point for comer 
element being released (see Figure 5.4). 

The predicted failure load is the load at the last converged increment. 

The Poisson's ratio is kept constant at 0.2 

Young's modulus, Ec= 4730Ffc' N/MM2. 

For steel, the measured values of the elastic modulus and yield stress were used, 
assuming a perfectly elastic-plastic material behaviour. 

A of concrete 

For this part of study, tension stiffening curve corresponding to A=0.7, 

Emax ý- 0.003 i. e. immediately after cracking, tensile strength drops to 70% of the 

strength at the time of cracking ( see Figure 3.17) and the shear retention factor P= 0.5 

Scr/En were kept constant. Three types of tensile strength of concrete versus fc' was 

studied : 
i Denoted as ftl, the splitting tensile strength obtained from equation 

f, 
P = 0.53Ffc' (value recommended by Rankin, 1982). 

ii Denoted as ft2, the splitting tensile strength obtained from equation 
fsp= 1.4(fcu/I 0)2/3 (tensile strength recommended in CEB-FIP Model Code, 1990). 
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iii) Denoted as ft3, the splitting tensile strength obtained from equation 
f, 

P=0.33Ff, 
(value recommended in ACI code for direct tension test). 

Figure 5.37 showsfsp as a function of fcý 

6 

--C 5-. L_. a 
_a_ 

4 

f, 
p 31 

13 
---" 

2- 

0 
0 10 20 30 40 50 60 

f'. 

Figure 5.37 Estimating tensile strength from compressive strength 

<3 - ft2 
U 

Results in Table 5.7 show that the effect of tensile strength of concrete on the 

ultimate load of slab is insignificant. Taking ftl as a reference, increasing the tensile 

strength of concrete by 20% (ft2), increased the ultimate load by 3% and reducing 
tensile strength of concrete by 40% (ft3), reduced the ultimate load by 5% (If we 
ignore model 'W", the reduction of ultimate load is not significant). But too low a 
tensile strength might cause divergence of the solution, like for example analysis of 

model "2C" which diverged at a relatively low load level. Figures 5.37-5.44 show that 

the magnitude of tensile strength affects the stiffness of the slab. This effect is more 

significant in slabs with low amount of reinforcement than in slabs with high amount 

of reinforcement. In order to achieve consistent results, the divergence of the solution 

at low load level must be avoided. Therefore, when the tensile strength is not given, 
fti (f., P = 0.53 was used in the later study and tensile strength from experiment IV C 
was used if available. 

The fact that changes in the values of tensile strength did not affect the 

ultimate of "heavily" reinforced slabs, was a bit suprising. In order to make sure that 

the result was reliable, three more slabs (slabs 9,15 and 413) all failing in shear were 

analysed. The results are presented in Figures 4.44a to 4.44f, The results clearly 
indicate that the conclusion is justified. 
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Table 5.7 : Effect of tensile strength of concret 

fcu Tensile strength(N/MM2) Ptest Num/ Exp failure Load 
Slab (N/mm2) fI t ft2 ft3 (kN) ft I ft2 ft3 
IB 47.10 3.253 3.934 2.026 28.850 0.973 0.973 0.919 
1C 34.80 2.796 3.215 1.741 62.740 0.845 0.895 0.845 
2C 40.50 3.017 3.557 1.878 87.860 0.787 0.836 0.639 
3C 40.50 3.017 3.557 FE 1.878 E 124.140 0.773 0.822 0.773 

34.80 2.796 3.215 1.741 125.940 0.905 0.905 0.858 
Average 0.857 0.886 0.807 
STDEV 0.084 0.061_ 
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Figure 5.42 Effect of tensile strength of concrete ("4C") 
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Strain In steel at column periphery (4CI 
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Figure 5.44 Effect of tensile strength of concrete ("4C") 
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Steel strain at column periphery (Slab "9") 
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Figure 5.44b Effect of tensile strength of concrete ("9") 

80 - 
70 

60 

e 50 

2 0 
.1 

40 

CL 

20 

10 

0 

-a-ftl 
- -* -«2 

-0- ff1 

-A- ff2 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Deflection (mm) 

Figure 5.44c Effect of tensile strength of concrete (" 15") 

Load-deflection response (15) 

___---A 

124 



Chaj2ter 5 Par metric stu 

80 
70 

_e .. x 60 x 

50 -A- x 
-o-- fti 0 40 

U 
x 

30 X. CL CL X. 
20 ý .. X. 

10 - 

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

strain/ys 

Figure 5.44d Effect of tensile strength of concrete 15 

Load-deflection response 14B) 

70 

60 

40 - 

90 30 - 22 
CL 
CL 

20 

10 

0 
a12345 

DeflectIon (mm) 

Figure 5.44e Effect of tensile strength of concrete ("413") 

6 

Experiment 
o-- ftl 

ft2 
ft3 

7 

125 



Chaý2ter 5 Parametric stildy 

Steel strain at-column periphery (4B 
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Figure 5.44f Effect of tensile strength of concrete ("413") 

5.5.2 Effect of Tension Stiffening 

Experiment 
ftl 
ft2 

The objective of this section is to see the effect of tension stiffening on the 
behaviour of slabs and mode of failure. The shear retention factor is kept constant as 

0.56crlcn and cylinder splitting strength of concrete is obtained from f ;=0.53 AP 
Three types tension stiffening variation as shown in Figure 5.45 were studied: 

There is no reduction of tensile strength of concrete immediately after cracking 
and maximum strain Emax taken as 0.003 (A= 1.0, emax=0.003). 

ii There is no reduction of tensile strength of concrete immediately after cracking 
but maximum strain Emax taken as 0.002 ( A=1.0, emax=0.002). 

iii) Tensile strength of concrete immediately after cracking is reduced to 0.7ft and 
maximum strain Emax taken as 0.003 ( A=0.7, emax=0.003). 
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Figure 5.45 Tension stiffening curves 
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The effect of tension stiffening model used on the results can be surnmarised 
as follows: 

It has significant effect on the behaviour of slabs with low percentage of steel 
(Figures 5.46-5.47) but less significant effect on the behaviour of slabs with high 

percentage of steel (Figures 5.48-5.52). The predicted load-deflection response by 
tension stiffening curves (A=1.0, emax=0.003 and A=1.0, emax=0.002) for slabs 
with low percentage of steel are overstiff immediately after cracking occurs. Thus, 
loss of stiffness due to cracking of concrete is not shown. However, reducing the 
tensile strength immediately after cracking (i. e. A=0.7, emax--0.003) reflected the 
loss of stiffness due to cracking of concrete. 
Tension stiffening does not affect the strain in concrete at early stage of loading. 
However, it affects the concrete strain prior to failure of slab (Figure. 5.53) 
Generally, tension stiffening does not affect the crack pattern (Figure 5.54). 
The influence of tension stiffening on the load versus strain in steel is 
insignificant. However, it affected the load at first yield (Tables 5.9) and the 

ultimate load of slab. Tension stiffening model (A=1.0, emax=0.003) predicted 
highest failure load in all cases. It allowed yielding of steel develop. Compared to 

experimental results, it predicted incorrect mode of failure for slabs "2C" and "4C" 
(Figure 5.55). 
Generally, reducing the tensile strength immediately after cracking or reducing 
maximum strain at which tensile strength becomes zero, reduced the ultimate load 

of the slab. 

From the above observation, tension stiffening curve (A=0.7, emax=0.003) was 
deemed to be the best model because it can reflect the loss of stiffness due to cracking 
of concrete and predicted reasonably accurate results (standard deviation--8.4% and 
correct mode of failure). Therefore this tension stiffening curve was chosen for use in 

later study. 

jije 5.8 : Effect of Tension Stiffening on failure load 

Slab Ptest Num/Exp failure lo ad 
(kN) A=1.0, emax=0.003 iA=1.0, emax=0.002 A=0.7, emax=0.003 

1B 28.850 1.027 0.973 0.973 
1C 62.740 0.945 0.895 0.845 
2C 87.860 0.885 0.787 0.787 
3C 124.140 0.822 0.725 0.773 
4C 125.940 0.858 0.858 0.905 

Average 0.907 0.848 0.857 
ýTDEV 0.081 0.096 0.084 
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Table 5.9 : Effect of tension stiffening on mode of failur 

Test Numerical Predictions 
A= 1.0, emax=0.003 A= 1.0, emax=0.002 A=0.7, emax=0.003 

Slab Failure 
Mode 

Loadat 
I st yield 

(kN) 

Failure 
Mode 

Load at 
I st yield 

(kN) 

Failure 
Mode 

Load at 
I St Yield 

(kN) 

Failure 
Mode 

-IB y 25.0 y 23.4 y 21.8 y 
IC y 43.7 y 43.7 y 40.6 y 
2C s 60.5 y 56.2 y 51.8 y 
3C s 84.0 y 78.0 fp 78.0 s 

--7-C s 108.0 s 108.0 s 108.0 s 
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Figure 5.46 Effect of tension stiffening ("IB") 
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Figure 5.50 Effect of tension stiffening ("40') 
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Figure 5.52 Effect of tension stiffening ("4C") 
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5.5.3 Effect of Shear retention factor 

For this part of study, tension stiffening curve (A=0.7, Emax=0.003) is used 
and splitting tensile strength of concrete is obtained from f,, 

p = 0.53Ff, '. Three types 

of shear retention variations was studied, that is 

_Gc,,,, k =P=B6' G crack 
612 

B=1.0,0.5,0.25 

where Ecr ý 0-000 1 

En normal strain to perpendicular to crack 

0.75 

0.6- 

0.25 

0 
Ccr Ccr 

(a) Pý scrIEn (B=1.00) 

£er c 

(c) P= 0.25Ecrl6n (B=0.25) 

Figure 5.56 Shear Retention curves 

0.56crlcn (B=0.50) 

LaLl- ,! Effect of shear retention factor on ultimate load T )lc 5,10 * 

Slab Ptest Numerical/Experimental failure load 
(kN) B=0.25 B=0.50 B=1.00 

IB 28.850 0.865 0.973 0.973 
IC 62.740 0.845 0.845 0.895 
Rý- 87.860 0.738 0.787 0.885 
3C 124.140 0.773 0.773 0.822 
4C 125.940 0.810 0.905 0.858 

Average 0.806 0.857 0.887 
STDEV 0.052 0.084 0.056 
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Table 5.11 : Effect of shear retention factor on mode of failur 

Slab Exp Numerical Failure Mode 

F. Mode B=1.00 B=0.50 B=0.25 

IB y y y y 
IC y y y y 
2C s y y fp 

3C s fp s s 
4C s s s 

The effect of shear retention on behaviour of slabs (ultimate load, load- 

deflection response, strain in steel, concrete strain and crack pattern) and modes of 
failure can be surnmarised as follows: 

The effect of shear retention factor on deflection of slabs (Figures 5.57-5.61) and 

strain in flexural steel (Figures 5.62-5.63) are insignificant. 

Figures 5.64-5.68 show that shear retention factor does not affect concrete strain at 

early stage because its comes into operation only after cracking occurs. However, 

it affects the subsequent response of concrete. 
It affects the failure load of slabs (Table 5.12). The higher the "B" value, the 

higher failure load predicted and vice-versa. But high "B" value might predict 
incorrect mode of failure especially for slabs failing in shear mode. For example, 
from test observation, specimen "2C" failed in shear mode. Analysed results using 
B=1.0 show that yielding of flexural reinforcement spread over a wide area of slab 
(Figure 5.71) which indicates that this slab failed in flexure mode. With B=0.5, the 

area of where steel has yielded was smaller (Figure 5.72) and when B=0.25, the 

yielding was concentrated over the column only (Figure 5.73). Obviously, B=0.25 

predicted the correct mode of failure. 

Generally, the shear retention factor does not affect the crack pattern of lightly 

reinforced concrete slabs. However, too large a shear retention factor (B=1.00) 

might change the crack pattern for the slabs with large amount of reinforcement 
(Figure 5.70). 

From the predicted load-deflected response, area of slabs where steel yielded, concrete 

strain and crack pattern, the modes of failure were determined (based on general rule 
described in section 5.2) as shown in table 5.11. Compared. Tp experimental results, it 

shows that too large the shear retention factor (B=1.0) may over estimate the failure 
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load. It may also lead to the mode of failure for slabs (especially heavily reinforced 

slab) which fail in shear being predicted as flexural. This comparison leads to the 

conclusion that small value of shear retention factor (B=0.25) is preferable because 

the correct of mode of failure is predicted. 
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Load-deflection response (2C) 
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Load-deflection response (4C) 
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Figure 5.63 Effect of shear retention factor ("4C"), shear failure (test) 
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Figure 5.65 Principal compressive stress and strain of concrete ("I C") 
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Figure 5.66 Principal compressive stress and strain of concrete ("2C") 
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Figure 5.67 Principal compressive stress and strain of concrete ("3C") 
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Figure 5.68 Principal compressive stress and strain of concrete ("4C") 
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Figure 5.69 Crack pattern (elevation) for slab "I C" 

(L 

I\N NN\ ''' 

(a) Elevation (B=0.50) 

(b)Plan (B=0.50) 

Figure 5.70 : Crack pattern for slab "4C" 
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NB. : The numbers on the drawinIgn indicate strain in steel at collapse expressed as a ratio of yield strain 
Figure 5.71 : Yielding of flexural steel, specimen "2C" (B=1.00) 
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NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
Figure 5.72 : Yielding of flexural steel , specimen "2CII (B=0.50) 

symm- 
Symm 

NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
Figure 5.73 : Yielding of flexural steel, specimen "2C" (B=0.25) 
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5.5.4 Confinement effec 

The purpose of this section is to study the effect of confinement of concrete 
due to the presence of shear links in the slab. Many investigators have assumed 
allowable uniaxial compressive strength higher than fc' due to this effect (for example 
Steven, et al. 1991; Vecchio 1992 and Abdel Kader 1993). In the present study, this 

was done by either increasing the compressive strength fc' by 28% or increasing both 

the compressive strength fc' by 28% and maximum compressive strain to 0.007 for the 

elements within the shear reinforcement region. Three cases were studied : 

) Case 1, no confinement effect; i. e. fc=fc' and maximum compressive strain equal 
to 0.0035; 

ii ) Case 2, fc=1.28fc'and maximum compressive strain equal to 0.0035; 

iii) Case 3, fc=1.28fc'and maximum compressive strain equal to 0.007. 

The material parameters in the previous section were kept constant as follows : - 
Tension stiffening curve corresponding to (A=0.7, cmax=0.003), shear retention 
factor as P= 0.256crlcn and the splitting tensile strength of concrete is obtained from 

f. 
sp = 0.53Vf, ' - 

Two types of shear reinforcement were studied: - 
Stirrup as shear reinforcement; 
Universal beam off cut section as shear reinforcement. 

Slabs tested by Chana and Desai (1992) which used stirrup as shea 

c and slabs tested by Gomes (1991) which used off-cut sections of 

ersal I beam as shear reinforcement were chosen for study of confinement effect. 
The details of these slabs are summarised as follows: 

-Chana-and-D)ImL31aha 
These specimens were 3m square, and the thicknesses were 228mm , 240mm and 
250mm. The loading was applied at points equally spaced along the circumference of 

a circle of 2.4 m diameter and supported by a square column at the centre of slab. The 

shear reinforcements for these slab were located at perimeters of 0.5d or 1.25d. The 

finite element mesh used is shown in Figure 5.74. 

, ý3La Dames La 
These specimens have the same amount of flexural steel of diameter 16mm bar at 

spacing of 100mm and compression steel of TS @ 140 c/c. These specimens were 
200mm thick with side length of 3000 mm, the central columns (or loaded areas) were 
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200mm square. Load was applied through either a column stub or a steel plate at the 

centre of the slab. The reactions were provided by four high tensile steel bars at each 

edge. In order to prevent local failure at support nodal points, the vertical restraint 

along the edges were restrained as shown in Figure 5.75. The shear reinforcement was 

of off-cut sections of universal I beam arranged either radially or in a cross shape on 

plan (refer to Figure 6.24). 

Shear reinforcement was simulated by line element in the transverse direction 

(i. e. z-direction). For the properties of shear reinforcement, measured values of the 

elastic modulus and yield stress were used, a perfectly elastic-plastic behaviour was 

assumed. 
Analysed results for slabs reinforced by sti=i a (referred to Table 5.12) show 

that Case I (no confinement effect) cannot reflect the presence of shear reinforcement 

and generally predicted lower ultimate loads than the experiments ultimate load. 

Increasing only the compressive strength of concrete by 28% (Case 2), reflected better 

the Presence of shear reinforcement (i. e. higher ultimate load for slab with more shear 

reinforcement and vice-versa). Increasing both the compressive strength of concrete 
by 28% and the maximum compressive strain to 0.007 (Case 3), also reflected the 

presence of shear reinforcement but overestimated the ultimate load for some slabs. 
Result of analysis for slabs reinforced by Universal beam off cut section 

showed that the failure load predicted by Case I (no confinement effect) were less 

than the actual failure load. Increasing only the compressive strength of concrete by 

28% (Case 2) reflected the presence of shear reinforcement for slabs with a low 

amount of shear reinforcement only. Increasing both the compressive strength of 

concrete by 28% and maximum compressive strain to 0.007 (Case 3) reflected the 

presence of shear reinforcement for all the slabs (i. e. higher ultimate load for the slab 

with more shear reinforcement and vice-versa) and the predicted structural response 

agreed well with the experiment results (Figures 5.76-5.78). From these figures, it is 

obvious that the structural response for all three cases follow similar path. This 

indicates that considering the confinement effect does not change the structural 

response. It only prevents the slab from failing in local crushing. Consequently it 

yielded higher ultimate load for the slab. The predicted ultimate load of slabs are 

summarised in Table 5.13. 
Two important conclusions can be drawn from the above observations. 

It is necessary to include the confinement effect due to the presence of shear 

reinforcement. 
Universal I beam (with flange) provide a higher degree of confinement than 

stirrup (without flange). 
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Table 5.12 shows that Case 2 predicted a more consistent result for slabs 

reinforced by stirrups. While Table 5.13 shows that Case 3 is more suitable for slabs 

reinforced by shear reinforcement with flange (such as I beam off cut section and 

shear stud). Therefore, for slab with shear reinforcement, the compressive strength of 

concrete for the elements within shear reinforcement region was increased depending 

on the type of the shear links in the slab. For slabs with stirrup as shear reinforcement, 

use fc=1.28fC', maximum compressive strain=0.0035. And for slabs with universal I 

beam off-cut sections as shear reinforcement, use fc=1.28fc, maximum compressive 

strain--0.007 is recommended. 

i PLAN 0 Point Load 

ELEVATION 

Figure 5.74 Arrangement of mesh for slabs C2-C9 

for slab C2-C9 (Chapa and Desai) 

Slab Ptest Num/Exp failure load 
(kN) Case I Case 2 Case 3 

C2 1094.0 0.709 0.858 1.082 
C4 1302.0 0.595 0.877 0.971 
Cý- - 1-3820 0.790 0.903 1.016 
C6 1283.0 1.013 1.094 1.094 
C7 1492.0 0.788 0.826 0.826 
C8 1324.0 0.689 0.870 0.870 
CT I 1135.0 0.775 0.804 0.804 

Average 0.766 0.890 0.95 
STDEV 0.130 0.096 0.120 
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PLAN 

11 1-- 111 

ELEVATION 

Figure 5.75 Arrangement of mesh for slabs G2-G8 

Tabl, - 5.13 : Predictions of specimens G2-G8 (Gomes 

Slab Ptest Num/Exp failure load 
(kN) Case 1 Case 2 Case 3 

G2 693.0 0.909 0.952 0.952 
G3 773.0 0.854 0.893 0.893 
G4 853.0 0.774 0.809 0.949 
G5 853.0 0.809 0.949 0.949 
G6 1040.0 0.727 0.727 0.831 
(TT 1120.0 0.739 0.739 0.804 
ý8 LMCO ýO 0.594 0.660 0.810 

__ Average 0.772 0.818 0.884 
STDEV 0.101 0.116 0.068 
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Figure 5.76 Confinement effect on load-deflection response for slab G4 
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Figure 5.77 Confinement effect on strain in shear reinforcement for slab G4 
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Figure 5.78 Confinement effect on stress and strain in concrete (slab G4) 
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5.5.5 Conclusions 

From the - parametric - study for the material parameters, the following 

conclusions can be drawn :-- 

" The effect of tensile strength of concrete on the ultimate load is insignificant. It is 

more significant to the structural response of lightly reinforced slab and less 

significant for heavily reinforced slab. Low tensile strength of concrete may cause 
divergence of the solution at low load levels. This should be avoided. 

" Tension stiffening has more significant effect on the structural response for thin 

slabs with low percentage of reinforcement and less significant effect on slabs 

with high percentage of steel. Generally, reducing the tensile strength immediately 

after cracking or reducing maximum strain at which tensile strength becomes zero, 

reduced the ultimate load of the slab. Reducing the tensile strength immediately 

after cracking can reflect better the loss of stiffness due to cracking of concrete for 

lightly reinforced concrete 
The effect of the shear retention factor on the structural response is insignificant. 

The difference in structural behaviour is more likely to be caused by 

reinforcement ratio, span/depth ratio, concrete strength etc. But higher value of 

shear retention factor predicted higher ultimate load. Small value of shear 

retention factor (B=0.25 or 0.50) predicted good lower bound to ultimate load and 

correct mode of failure. Too large a shear retention factor (B= 1.0) may over 

predict the ultimate load and change the mode of failure from shear to flexure. 

For slab with shear reinforcement, it is necessary to include the confinement effect 

of concrete due to the presence of shear links in the slab. Considering confinement 

effect does not change the structural response of the slab. It only prevents the slab 
from failing in local crushing. Different types of shear reinforcements provide 
different degrees of confinement. For example off cuts of universal I beam provide 
higher degree of confinement than stirrup. To reflect the different degrees of 

confinement, for slabs with stirrup as shear reinforcement, in the analysis use 
fc=1.28fc' and maximum compressive strain equal to 0.0035. For slabs with 

universal I beam off-cut sections as shear reinforcement, in the analysis use 
fc=1.28fc'and maximum compressive strain equal to 0.007. 
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Chapter 6 

SIMPLY SUPPORTED SLABS 

6.1 Introduction 

This chapter presents the results of analysis of internal slab-column junctions 

without moment transfer from different sources. The chosen slabs were with and 
without shear reinforcement, and these slabs cover the important parameters 
. governing punching shear strength such as : thickness of slabs, flexural reinforcement 
ratios, concrete strength and size of loaded area. The analysis used the same 
'parameters held constant as follows: 

Numerical -12arameters 
The load step for the first two increments was 10% of experimental failure load 

and 5% of the experimental failure load for the remaining increments. 
The convergence criterion was based on the residual forces with a tolerance of 5%. 

" The maximum number of iterations per increment is 50. 

" The aspect ratio for the element within and near the failure region (i. e. element 
representing the loading stub and element beside the loading stub) should not be 

more than 1.5 and element size was gradually increased when it is further away 
from loading stub. 

" only support nodal points for comer element was released. 

MWedal pqume em L 
" the cylinder compressive strength of concrete (fc) was taken to be 0.8fcu, where 

fcjj is the compressive cube strength of concrete 

" Young's modulus for concrete, E, = 4730jc' N/mm2 

0 Poisson's ratio 0.2 

Tensile streng th of concrete, f, = 
f'12 

and the splitting cylinder tensile strength, 
f., 

P=0.53Ff, 
N/mm2 

The tension stiffening is taken as a linear function of the principal strain, tensile 

strength of concrete immediately after cracking is reduced to 0.7ft, maximum 
strain Emax is taken as 0.003 i. e. A=0.7, emax=0.003 (Refer to Figure 5.43). 
The shear retention factor P taken as 0.25 6crI6n ie. B=0.25 (Refer to Figure 5.56). 

For steel, the measured values of the elastic modulus and yield stress were used 

directly. Perfectly elastic-plastic behaviour was assumed. 
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9 For slabs with shear reinforcement, the compressive strength of concrete for the 

elements within shear reinforcement region was increased depending on the type 

of the shear links in the slab. For slabs with stirrup as shear reinforcement, 
fc=1.28fc' and maximum compressive strain--0.0035 were used. For slabs with 

universal I beam off-cut sections or shear stud as shear reinforcement, fc=l. 28fc' 

and maximum compressive strain=0.007 were used. 

The analysis took into account the following observed structural behaviour for 

deciding on the mode of failure (section 5.2): - 

o The ultimate load capacity of the slab; 

" The load-deflection response; 

" Strains in flexural reinforcement; 

0 Distribution of strains and stresses in concrete within the compressive zone; 

0 Crack pattem; 

iltimate load of slabs according to BS81 10 

The study also used British Code BS81 10 to see how well it can predict the 

load carrying capacity of slabs and the mode of failure. The ultimate load of slabs 

without shear reinforcement are calculated as follows 

" Pc is the shear force at column face; given by 

Pc=column perimeter xdx (4fcu or 6.25 N/mM2 whichever is smaller) 

" Pv is the shear force at I st perimeter; given by 

Pv=(perimeter at 1.5d from column face) xdx vc 
Pf is the flexural capacity of the slab, calculated by using equation in clause 
3.4.4.4 BS8 110. 

0 Pu is the ultimate load of the slab = smallest of [Pc, Pv, and Pf]. 

For slabs with shear reinforcement, the possibility of punching taking place outside 

shear region was included. Thus the Pv was calculated for two perimeters; 

" Pv(in) is the shear force at I st perimeter; calculated by 

Pv(in) = Pv + Ps 

Ps = shear strength provided by the shear reinforcement within the I st perimeter 

" Pv(out) is the shear force at a perimeter outside of shear reinforcement region; 
Pv(out) = (perimeter just outside shear reinforcement zone) xdx vc 

where vc=0.79(10OAs/(bd))1/3(400/d)1/4(fcu/25)1/3 
d= effective depth of slab 

The above analysis was calculated based on the safety factor = 1.0. Sample 

calculations are presented in Appendix A. 
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6.3 Slabs without shear reinforcement 

6.3.1 Conventional slab-column specimens tested by Rankin 

Rankin (1982) tested a series of 27 conventional slab-column specimens 
without shear reinforcement. These slabs cover most of the important parameters 
(thickness of slab, flexural reinforcement ratio, concrete strength) governing punching 
shear strength. 

These slabs were simply supported along the four edges with comers free to 
lift and subjected to a concentrated load at midspan as shown in Figure 5.3. Concrete 

strength ranged from 36-47 N/mm2. Flexural reinforcement only was included in the 

models and this varied over the range 0.4-2.0%. The span/depth (L/h) ratios varied 
over a range of 25-35. The reinforcement had a well-defined yield point with no strain 
hardening (fy = 53 0 N/mm2). A summary of slabs' details is presented in Table 6.1. 

Owing to symmetry, only one-quarter of the slabs was modelled (Refer to 
Figure 5.2). The applied load was simulated by uniformly distributed load over the 

element representing the loading stub. Concrete slab was discretised by using one 
layer of twenty node solid elements. 

Predicted ultimate load is presented in Table 6.2. It ranges from 66% to 97% 

of the experimental values. The average of predicted ultimate load is 81% of 
experimental ultimate load with 8.3% standard deviation. The predicted load gives a 
good lower bound value. Table 6.4 shows that the present model can predict more 

accurate ultimate load for slabs which failed in flexure mode (Average 84.5%, 

SD=6. I %) than slabs which failed in shear mode (Average 76.7%, SD=8.9%). 
The predicted mode of failure is presented in Table 6.2.25 out of 27 slabs 

were predicted with correct mode of failure. The two slabs for which predicted mode 

of failure was incorrect are slabs "6" and "2C". These slabs failed in shear mode from 

experiment observation, but numerical model does not give a clear indication of mode 

of failure (the predicted load-deflection response and steel strain show that these slabs 
failed in shear mode, but concrete strain and crack pattern show that these slabs failed 

in flexure mode). The percentage of reinforcement was such that the failure mode 

could be either flexural or shear. In the case of thin slabs, slabs with steel percentage 

of less than 0.8% failed in pure flexural failure and slabs with steel percentage of 

more than 1.2% failed in pure punching shear mode. Specimen "6" is a thin slab 
(Ild=16) and contains a moderate amount of reinforcement (1.026%). It lies in the 

region between flexure and shear failure. However, specimen "2C" is a thick slab 
(Ild=12) with a relatively low amount of reinforcement (0.69%). Rankin (1982) 

mentioned that the punching strength of the thick slabs levels off at a lower 
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reinforcement ratio than for the thin slabs (for slabs with constant steel ratio, an 
increase in the thickness of slab will increase its flexural capacity), so it changes from 
the flexural to the shear mode of punching failure. This table also shows that 

compression failure of concrete only occurs for the slabs with extremely heavy 

reinforcement (15,4A, 313,3C, 4C) as observed by Rankin in the experiment. For the 

remaining slabs which failed in shear mode, failure was more likely initiated by 
internal diagonal cracking because the concrete had not failed in compression. The 

spread of yielding of flexural reinforcement is shown in Figures 6.4 & 6.5. For slab 
which failed in flexure mode, yielding of steel was spread over a large area of slab 
(Figure 6.4). However, for slabs which failed in shear mode, the flexural steel either 
did not yield or yielding was confined to an area around the loading stub (Figure 6.5). 

Figure 6.1 shows that lightly reinforced slabs displayed large ductility while a 
brittle behaviour was shown by heavily reinforced slabs. The strain profile of flexural 

steel for lightly reinforced slab has a shape similar to the bending moment diagram 
(Figure 6.2) indicating that flexure is dominant. Conversely, strain profile for heavily 

reinforced slab within a certain distant was similar to the shape of shear force diagram 
(Figure 6-3). 

The predicted ultimate load and mode of failure by using BS8110 are 
presented in Table 6.3. The average of predicted ultimate load is 86.3% of 
experimental ultimate load with 6.4% standard deviation. Although BS81 10 predicted 
reasonably accurate ultimate load, it often predicted incorrect mode of failure for slabs 
with moderate amount of reinforcement (0.8% to 1.2%). 
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Figure 6.1 The influence of reinforcement ratio on the ductility of slabs 
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Table 6.1-: Details of Rankin's conventional slabs 

Slab h 
(MM) 

d 
(MM) 

fcu 
(N/MM2) 

p 
(%) 

Ptest 
(kN) ý 

1 51.00 40.50 38.40 0.423 36.42 

2 51.00 40.50 38.40 0.558 1 49.08 

3 51.00 40.50 38.40 0.691 56.55 

4 51.00 40.50 43.50 0.821 56.18 

5 51.00 40.50 43.50 0.883 57.27 
6 51.00 40.50 43.50 1.026 65.58 

7 51.00 40.50 37.10 1.163 70.94 
_ 8 51.00 40.50 37.10 1.292 71.09 

9 51.00 40.50 37.10 1.454 78.60 

10 51.00 40.50 37.40 0.517 43.59 

11 51.00 40.50 37.40 1 0.802 55.00 

12 51.00 40.50 37.40 1.107 67.06 

13 51.00 40.50 42.50 0.601 49.39 

14 51.00 40.50 42-50 1 0.691 52.45 

15 51.00 40.50 42.50 1.994 84.84 

IA 57.00 46.50 36.00 0.422 45.19 

2A 57.00 46.50 36.00 0.691 66.24 

. 3A 57.00 46.50 36.00 1.293 89.72 

4A 57.00 46.50 38.60 1.992 97.43 

IB 45.50 35.00 47.10 0.423 28.85 

2B 45.50 35.00 47.10 1 0.690 37.63 

3B 45.50 35.00 47.10 1.292 56.67 

4B 45.50 35.00 38.60 1.994 72.52 

Ic 64.00 53.50 34.80 0.423 62.74 

2C 64.00 53.50 40.50 1 0.690 87.86 

3C 1 64.00 53.50 40.50 1.288 124.14 
-4 ýCý 16 4.0 0 53.50 34.80 1.993 1 125.94 
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Table 6.2 : Ultimate-load and mode of failure for Rankin's conventional slabs 

Experimental results Numerical Predictions 
Slab Ptest 

(kN) 
Failure 
Mode 

Pnum 
(kN) 

Failure 
Mode 

PnumlPtest 

1 36.42 y 32.40 y 0.890 

2 49.08 y 40.79 y 0.831 

3 56.55 y 44.90 y 0.794 

4 56.18 y 42.14 y 0.750 

5 57.27 y 51.83 y 0.905 

6 65.58 s 53.78 fp 0.820 

7 70.94 s 46.82 s 0.660 

8 71.09 s 46.78 s 0.658 

9 78.60 s 55.41 s 0.705 

10 4159 y 35.52 y 0.815 

11 55.00 y 42.24 y 0.768 

12 67.0 s 47.08 s 0.702 

13 49.39 y 42.82 y 0.867 

14 52.45 y 44.16 y 0.842 

15 84.84 s 75.60 s 0.891 

IA 45.19 y 41.03 y 0.908 

2A 66.24 y 50.41 y 0.761 

3A 89.72 s 72.94 s 0.813 

4A 97.43 s 91.20 s 0.936 

IB 28.85 y 24.96 y 0.865 

2B 37.63 y 36.50 y 0.969 

3B 56.67 y 49.00 s 0.864 

4B 72.52 s 50.40 s 0.695 

IC 62.74 y 34.80 y 0.845 
- 2C 87.8 s 53.02 fp 0.738 

3C 124.14 s 95.9 s 0.773 

4C 125.94 s 102.10 s 0.810 
Average 0.810 
STDEV 0.083 

y=flexural failure, s=shear failure 

* Appendix C presents full details of result of analysis. 
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Table 6.3 : Ultimate Load and Mode of failure predicted by using BS8110 

(Rankin's slab) 

Test results Predictions by BS8 110 
Slab Ptest 

(kN) 
Failure 
Mode 

PU 
(kN) 

Failure 
Mode 

PulPtest 

1 36.42 y 29.15 y 0.800 

2 49.08 y 38.15 y 0.777 

3 56.55 y 46.55 y 0.823 

4 56.18 y 55.04 s 0.980* 

5 57.27 y 56.39 s 0.985* 

6 65.58 s 59.28 s 0.904 

7 70.94 s 60.28 s 0.850 

8 71.09 s 62.43 s 0.878 

9 78.60 S 64.94 s 0.826 

10 43.59 y 35.45 y 0.815 

11 55.00 y 53.24 y 0.968 

12 67.06 S 59.46 S 0.887 

13 49.39 y 41.16 y 0.833 

14 52.45 y 46.90 y 0.894 

15 84.84 s 73.98 s 0.872 

IA 45.19 y 40.15 y 0.888 

2A 66.24 y 60.17 s 0.908* 

3A 89.72 s 74.15 s 0.826 

4A 97.43 s 87.65 s 0.900 

IB 28.85 y 21.77 y 0.755 

2B 37.63 y 35.21 y 0.936 

3B 56.67 y 53.10 s 0.937* 

4B 72.52 s 60.65 s 0.836 

IC 62.74 y 50.86 y 0.811 

2C 87.86 s 75.27 s 0.857 

3C 124.14 s 92.67 s 0.747 

L IC 125.94 s 102.33 s 0.813 
- Average 0.802 

STDEV 0.170 

Y=flexural failure, s=shear failure 

* wrong mode of failure predicted 
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Table 6.4 : Comparison between slabs which failed in different modes 
(Rankin's slab) 

Slabs failed in flexure mode Slabs failed in shear mode 
Slab Num/Exp Slab Nurn/Exp 

1 0.890 6 0.820 
2 0.831 7 0.660 
3 0.794 8 0.658 
4 0.750 9 0.705 
5 0.905 12 0.702 
10 0.815 15 0.891 
11 0.768 3A 0.813 
13 0.867 4A 0.936 
14 0.842 4B 0.695 
IA 0.908 2C 0.738 
2A 0.761 3C 0.773 
1B 0.865 4C 0.810 
2B 0.969 
3B 0.864 
1c 0.845 

Average 0.845 Average 0.767 
STDEV 0.061 STDEV 0.089 

Strain profile f6r steel along mid-span ("I C") 
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Figure 6.2 Strain variation for flexural steel along mid-span ("I C"), Flexural failure 
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Strain profile for steel along mid-span ("4C") 

3- 

LF=0.3 
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LF=0.6 
Lo 

LF=0.7 

LF=0.8 

LF=0.85: 
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Figure 6.3 Strain variation for flexural steel along mid-span ("4C"), Shear failure 

Symm 

2 

2 

Symm 

NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 

(e. g. 5=5 times yield strain of steel) 

Figure 6.4 : Yielding of flexural reinforcement for Slab "213" (Flexural failure) 
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Symm 

Syrnm 

NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
Figure 6.5 : Yielding of flexural reinforcement for Slab " 15" (Shear failure) 
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6.3.2 Simply supported slabs-tested byRegan 

This section deals with the analysis of a number of slabs (31 specimens) tested 
by Regan. These slabs were simply supported along the four edges with comers free 
to lift and subjected to a concentrated load at the slab centre. They were divided into 
four groups: 
1, SSI-SS7(CIRIA220) 
The variables in these slabs were the amount and the arrangement of flexural 

reinforcement. 
2. SS8-SS II (CIRIA 22D) 

These tests are concerned with scale effects. Three sizes of slab were tested. 
3. VI -V5 (Regan. 1986) 

The only significant variable in these tests was the size of the loaded area. 

The main variable of this series was the shear span/depth ratio of the slab. 

6.3.2.1 Arrangement of flexural reinforcement (SSI-SS7ý 

These seven slabs were 2.0 m square and 100mm thick with central column 
stubs 200mm square projecting on both faces. The clear span of the slabs was 1.83m. 
The finite element mesh used is shown in Figure 6.6. The variables of this series were 
the amount and arrangement of flexural reinforcement. The arrangement was either of 
uniform spacing or varied in accordance with the theoretical elastic distribution of 
moments. The first six slabs formed three pairs, with the slabs of a pair having the 

same total amount of reinforcement but detailed either uniformly or according to the 

elastic field. The seventh slab was almost similar to the sixth except for the addition 

of compression bars passing through the column. 

Ialie 6.5 Details and Predictions for slabs SS1-SS7 (Regan) 

Slab fc u 
(N/mm2) 

d 
(MM) 

p 
(%) 

Detailing Ptest 
(kN) 

Failure 
Mode 

Load at 
I st yield 

Num/Exp 
failure load 

SSI 32.30 77.00 1.200 elastic 194.00 s No yield 0.841 
SS2 29.30 77.00 1.200 uniform 176.00 s 70% 0.764 
ssý- 34.30 77.00 0.920 elastic 194.00 s 75% 0.792 
SS4 40.40 77.00 0.920 uniform 194.00 s 60% 0.742 
SS5 35.20 79.00 0.750 elastic 165.00 S 80% 0.890 
SS6 27.40 79.00 0.750 uniform 

' 
165.00 s 60% 0.791 

SS7 38.00 79.00 0.800 1 uniform 1 186.00 s 65% 0.877 
I Average 

-- 
0.814 

FS TDEV 0.057 
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PLAN 

IIIII1 

11.1 ELEVATION 

Figure 6.6 : Arrangement of mesh for specimens SS I -SS7 

Figure 6.7 shows that the predicted load-deflection response has a trend 

similar to the experimental observation, i. e. the response was generally less stiff for 

slabs where the flexural reinforcement was detailed uniformly. This is because the 

slabs detailed uniformly yielded much earlier than slabs detailed elastically (refer to 

Table 6.5). Present model generally predicted a slightly higher load for slabs detailed 

elastically. This may be due to the finite element method dividing the slab into 

elements, leading to the elements at critical region having more reinforcement in slabs 
detailed elastically than slabs spaced uniformly. For slabs which failed in shear mode 

(S SI -S S6) regardless of the arrangement of steel, generally yielding was confined to a 

small area around the column (Figures 6.8 & 6.9). For slabs which failed in flexure 

mode, yielding of flexural steel was spread over a wide area of slab (Figure 6.10). 
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Figure 6.7 : Numerical Load-deflection response (SSI-SS6) 

ST 

I 
., 

Figure 6.8 Spreading of yielding of flexural reinforcement (SS3); shear failure 

NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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sy- 

NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
Figure 6.9 Spreading of yielding of flexural reinforcement (SS4); shear failure 

Sy- 

NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
Figure 6.10 Spreading of yielding of flexural reinforcement (SS7); flexural failure 
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6.3.2.2 Scale effects (SS8-SSII) 

This series consisted of six slabs of three different overall thicknesses in 

millimetre of 250 (20mm aggregate), 160 (20 and 10mm aggregate) and 80mm (20, 
10 and 5mm aggregate). The slabs were made from concrete of different maximum 
size of aggregate as indicated above. Since the experimental results show that size of 
aggregate does not affect the cube strength of concrete and punching shear strength of 
slabs, only specimens cast from concrete with maximum aggregate size of 20mm are 
chosen for analysis, i. e. SS8, SS9 and SS 11. As in the previous group, the slabs were 
simply supported at four edges and centrally loaded. The loads were applied through a 
circular steel plate. Since the diameter of loaded area is similar to the thickness of 
slabs, the slab was discretised by two layers of solid elements to avoid large aspect 

ratio (Figure 6.11). The dimensions such as bar sizes and spacings were scaled 
linearly (i. e. all'slabs have almost the same percentage of reinforcement as shown in 

table 6.6. ) 
The predicted mode of failure of all three slabs was punching shear. In order to 

compare the structural response, numerical predictions were plotted in non- 
dimensional format. All three slabs predicted almost exactly similar response (Figures 

6.12-6.17) regardless of the scale of slab. 

Ct - 
ef PLAN 

ft 

lid ELEVATION 

Figure 6.11 : Arrangement of mesh for SS8-SS II (and VI-V5) 
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Table 6.6 : Details and Predictions for slabs SS8-SS II (Regan) 

Slab fcu Dime nsions Flexural Ptest Num/Exp_ 
(N/mm2) h(mm) d(mm) D(mm) I(mm) steel (kN) failure load 

SS8 43.6 250 200 250 2745 Y25@250 825.0 1.038 
SS9 41.6 160 128 160 1800 Y16@160 390.0 0.886 

- SS11 41.6 
. 

80 
. 

64 80 900 Y8 @ 80, 117.0 0.769 

D= size of loaded area, p=0.90% for all the slabs. 

1.2 - 

O's 

0.6 

0.4 

0.2 

0 

8/d 
--0 b-. 

SS8 
SS9 
ssll 

Deflectionleffective depth 

Figure 6.12 : Numerical load-deflection response (SS8, SS9 and SS 11) 
Pnurn "': Numerical ultimate load 

Strain profile for steel along midspan(SS8) 

3- 

s LF=0.5 

--a- LF=0.6 

% LF=0.7 

X LF=0.8 

X LF=0.9 

--o- LF=1.0 

0 ____ 
0 500 1000 1500 

Distance (mm) 

Figure 6.13 : Predicted strain-profile for flexural steel along mid-span (SS8) 

'fl r p 
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cu 

Strain profile for steel along midspan(SS91 

200 400 600 

Distance (mm) 

1-4- LF=0.5 
LF=0.6 

LF=0.7 

X LF=0.8 

X LF=0.9 

800 1000 

Figure 6.14 : Predicted strain-profile for flexural steel along mid-span (SS9) 

Strain profile for steel along midspan(SSI 1) 

3- 

LF=0.5 

--U- LF=0.6 

LF=0.7 
LF=0.75 

0 A-- - 
&. 1 

0 100 200 300 400 500 

Distance (mm) 

Figure 6.15 : Predicted strain-profile for flexural steel along mid-span (SS 11) 
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Figure 6.16 Crack Pattem for slab "SS8" 
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Figure 6.17 : Principal compressive stress and strain variation in concrete 

6.3.2.3 Size of loaded area (YI-V5) 

The thickness of these slabs was 150mm. The overall dimensions was 
1.6xl. 6m and the slabs were simply supported on all four edges giving an effective 

span of 1.5m. They were reinforced with 12mm. bars at 120mm centres both ways 
(p=0.80%). The mean effective depth was 118mm. The only significant variable in 

these slabs was the detail of loaded area. In slabs VI-V4 the size of loading plate are 

varied, while slab V5 the load was applied through a precast concrete cylinder cast 
into the slab. In the present analysis, the applied load was simulated by uniformly 
distributed load over an element representing the loading stub (Figure 6.11). 

The predicted mode of failure of all the slabs was punching shear. Figure 6.19 

shows that the size of loaded area does not. affect the deflection of the slabs,, but small 
size of loaded area reduced the failure load of the slab due to the local crushing 
(Figure 6.18, slab VI shows highý compressive stress at a relatively low load level). It 

can be seen that present model predicted reasonably accurate ultimate loads for these, 

slabs (Table 6.7). 
Table 6.7: Details and Predictions for specimens SS1-SS7 (Reganlý 

Slab fcU Loaded Ptest Failure Num/Exp 
(NImm2) area (mm) (kN) Mode failure load 

V, 0 32.3 1 diameter 54 170.0 s 0.939 
V2 29.30 diameter 170 280.0 s 0.874 
V3 34.30 diameter 110 265.0 s 0.996 
V4 40.40 102 x 102 285.0 s 0.960 
V5 35.20 diameter 150 285.0 s 1.010 
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EP3 =r:, 3 =maximurn compressive principal strain 

Figure 6.18 : Principal compressive stress-strain relationship of concrete 
(Effect of size of loaded area) 
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Figure 6.19 : Load-deflection response for specimens VI, V2 and V3 

6.3.2. Shear span (SPl-SP18) 

The specimens in this series were square slabs with uniformly distributed 

reinforcement in two directions and loaded by square columns. Six types of meshes 

were used depending on the loaded area, span, and thickness of slab as shown in 

Figure 6.20. The cube strength of concrete for slabs SP 12 and SP 13 was 15.40 N/mM2 
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which is very low indeed (concrete strength for Kotsovos' model ranges from 18.75 
N/mM2 to 81.25 N/mm2 in terms of cube strength). Therefore, the cube strength of 
concrete for these two slabs was taken as 18.75 N/mM2. This has perhaps lead to some 
inaccuracy. 

Numerically, all slabs failed in punching shear. From the results of this 

analysis, it can be seen that for slabs with a span-depth ratio of 4.67 or less (av/d less 

than 1.7), present model over predicted the ultimate load of the slabs except for model 
S1117. This may be due to the fact that for slabs with low span/depth ratio are 
subjected to low bending and high shear, and this results in lower principal strain in 

the slabs (Figure 6.21). Since tile tension stiffening in present model is taken as a 
linear function of principal strain, low principal strain means that the concrete can 
carry relatively high tensile stress after cracking occurs. Consequently the stiffness 
deteriorates at a slower rate than what happen in real structure. Figure 6.22 shows that 

when span-depth ratios are low, the behaviour of slabs will be shear dominant. 

Table 6.8-: Defidis and Prefflefoons fOr slabs SPI-SPIS (Regan 

Slab fell 
(N/m, 112) 

d 
(11,111) 

av 
(min) 

av/d I/d p 
(%) 

Ptest 
(kN) 

Failure 
Mode 

Num/Exp 
failure load 

Sill 28.70 75.0 350 4.67 11.33 1.00 197.0 s 0.827 
S112 31.60 75.0 225 3.00 8.00 1.00 227.0 s 0.894 
S113 36.00 1 75.0 100 1.33 4.67 1.00 235.0 s 1.226 
SIN 35.20 75.0 125 1.67 4.67 1.00 185.0 s 1.035 
S115 35.20 75.0 75 1.00 4.67 1.00 338.0 s 1.193 
S118 44.60 75.0 125 1.67 4.67 0.50 172.0 s 1.005 
S119 44.60 75.0 75 1.00 4.67 0.50 284.0 s 1.014 
S1,10 48.10 75.0 75 1.00 4.67 1.00 421.0 s 1.204 
SI'll 48.10 75.0 125 1.67 4.67 1.00 182.0 s 1.302 
SP12* 15.40* 75.0 75 1.00 4.67 1.00 221.0 s 1.213 
SP13* 15.40* 75.0 125 1.67 4.67 1.00 109.0 s 1.064 
SP14 47.80 75.0 50 0.67 4.00 1.00 623.0 s 1.102 
S1115 47.80 75.0 100 1.33 4.67 1.00 368.0 s 1.041 
S1116 47.80 75.0 50 0.67 2.67 1.00 451.0 s 1.05-3) 

ýl 7 37.60 I 60.0 =00 -0.6-31 -2.50 0.75 1 1099.0 s 0.955 
S1118 1 37.60 1 _ 75.0 1 50 0.67 1 2.67 0.75 1 142.0 y 1.3 8 

Average 1.090 
STDEV 0.142 

d=effective depth, av=sliear span, I=effective span 
* Analysis used fcu=l 8.75 N/mM2 
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Figure 6.20 Arrangement mesh for slab S11 I -SI318 

171 



Chaafer 6 Siml2ji, sila orted slabs v 

300 -- -- 

250 

200 

150 

-1 100 - 'o, 
i 

so 10 1 

Vd-11.33 Vd-8.0 

0 

: 4.67 

SP3/(. 'or EP310.0036 

Note: S113ýa3=maxinium compressive principal stress 
EP3=r-3=maximum compressive principal strain 

Figure 6.21 : Principal compressive stress-strain relationship of concrete 
(Effect of span/depth ratio) 
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Figure 6.22 Strain variation for flexural steel along mid-span (SP3) 

6.3.2.5 Summary of pre(loct*ons for Regan's slabs 

A summary of the predicted ultimate loads and the corresponding mode of 
failure by the present model is presented in Table 6.9. It ranges from 74.2% to 125.5% 

of the experimental values. The average of predicted ultimate load is 94.3% of 

experimental ultimate load with 13.1% standard deviation. Although the ultimate load 

for some of the slabs was over predicted, the present model predicted correct mode of 
failure. 
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The predicted ultimate load and mode of failure by using BS81 10 is presented 
in Table 6.10. The average of predicted ultimate load is 80.2% of experimental 
ultimate load with 17.0% standard of deviation. BS8110 generally underestimates 
ultimate load for slab with span/depth ratio less than 5 (or av/d less than 1.7). 

Table 6.9-: 111imate load of Regan's simlib, supported slab (Regan) 

Experimental results Numerical Predictions 
Slab av/d 1) test 

(kN) 
Failure 
Mode 

Pnum 
(kN) 

Failure 
Mode 

PnumIPtest 

SSI 10.58 194.0 s 182.6 s 0.841 
SS2 10.58 176.0 s 134.5 s 0.764 
SS3 10.58 194.0 s 154.0 s 0.792 
SS4 10.58 194.0 s 144.0 s 0.742 
SS5 10.32 165.0 s 146.9 s 0.890 
SS6 10.32 165.0 s 130.5 s 0.791 
SS7 10.32 186.0 y 163.1 y 0.877 
SS8 6.24 825.0 s 856.0 s 1.038 
SS9 6.41 " 390.0 s 345.6 s 0.886 
SSII 6.41 117.0 s 90.0 s 0.769 
VI 6.13 170.0 s 160.0 s 0.939 
V2 5.64 280.0 s 245.0 s 0.874 
V3 5.89 265.0 s 264.0 s 0.996 
V4 5.92 285.0 s 274.0 s 0.960 
V5 5.72 285.0 s 288.0 s 1.010 
SPI 4.67 197.0 s 163.0 s 0.827 
SP2 3.00 '-) 2 7.0 s 203.0 s 0.894 
SP3 1.33 235.0 s 288.0 s 1.226 
SP4 1.67 185.0 s 191.5 s 1.0335 
SP5 1: 00 338.0 s 403.2 s 1.193 
SP8 1.67 172.0 s 172.8 s 1.005 
SP9 1.00 284.0 s 288.0 s 1.014 

SPIO 1.00 421.0 s 507.0 s 1.204 
SPI 1 1.67 182.0 s 237.0 s 1.302 
SP12 1.00 221.0 s 268.0 s 1.213 
SP13 1.67 109.0 s 116.0 s 1.064 
SP14 0.67 623.0 s 686.4 s 1.102 
SP15 1.33 368.0 s 383.0 s 1.041 
S1116 0.67 451.0 S 475.0 s 1.053 
SP17 0.63 1099.0 s 1049.0 s 0.955 
S1118 0.67 142.0 187.2 fp 1.318 

Average 0.988 
STDEV 0.161 

y=flexural failure, s=shear failure, fp=flexural punching 
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Table 6.10 : Ultimate Load and Mode of failure predected by using BS8110 

(Regan 

Experiment results Predictions by BS81 10 
Slab av/d Ptcst Failure P11 Failure PU/Ptest 

(k-N) Mode (kN) Mode 
SSI 10.58 194.0 s 183.2 s 0.945 
SS2 10.58 176.0 s 177.4 s 1.008 
SS3 10.58 194.0 s 171.1 s 0.882 
SS4 10.58 194.0 s 180.1 s 0.928 
SS5 10.32 165.0 s 153.8 y 0.930* 
SS6 10.32 165.0 s 149.5 y 0.906* 
SS7 10.32 186.0 y 163.9 y 0.881 
SS8 6.24 825.0 s 742.2 s 0.900 
SS9 6.41 390.0 s 339.9 s 0.871 
SSII 6.41 117.0 s 100.5 c 0.864* 
VI 6.13 170.0 s 125.1 c 0.736* 
V2 5.64 280.0 s 287.9 s 1.028 
V. 33 5.89 265.0 s 254.8 c 0.962* 
V4 5.92 285.0 s 236.3 c 0.829* 
V5 5.72 285.0 s 276.9 s 0.971 
SM 4.67 197.0 s 155.6 S 0.790 
S11-2 3.00 227.0 s 160.7 s 0.708 
SN 1.33 235.0 s 176.2 s 0.750 
SIN 1.67 185.0 s 144.4 s 0.780 
SI)5 1.00 -338.0 s 233.2 s 0.690 
S118 1.67 172.0 s 119.6 s 0.695 
SP9 1.00 284.0 s 193.1 s 0.680 
S1,10 1.00 421.0 s 243.4 s 0.578 
SPI 1 1.67 182.0 s 147.3 c 0.803* 
SP12 1.00 221.0 s 189.9 s 0.859 
SP13 1.67 109.0 s 102.7 c 0.942* 
SP14 0.67 623.0 s 294.5 C 0.473 * 
SP15 1.33 368.0 s 208.6 s 0.567 
S1116 0.67 451.0 s 147.3 c 0.327* 
SP17 0.63 1099.0 s 616.4 c 0.561 * 
SP18 0.67 142.0 y 144.5 c 1.018* 

Average 0.802 
STDEV 0.170 

N. B. c=local crushing 
s=shcar failure 

y=flcxure failure 
* wrong mode of failure predicted 
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6.4 Slabs with shear reinforCement 

These slabs were 3m square, and the thicknesses were 228mm, 240mm and 
250mm. The load was applied at points equally spaced along the circumference of a 
circle of 2.4 in diameter and supported by a square column at the centre of slab. These 

slabs were reinforced by stirrup as shear reinforcement, and the shear reinforcements 
were located at perimeters at distance of 0.5d or 1.25d from column face. Specimen I 
had no shear reinforcement. Specimen 3 had the same number and location of links as 
specimens 2. The difference between these two specimens is how the link was 
anchored. Present model assumed perfect bond between concrete and steel 
irrespective of the detailing of reinforcement, so specimen 3 was not analysed. The 
details of slabs are summarised in Table 6.11. The finite element mesh for these 
specimens shown in the Figure 6.23. 

1'hIe 6.11: I)e(ails of slabs C1-C9 (Chana and Dcsai) 

Slab fc U d Column p Link No of 
- - - ' 

links at 
(N/mm2) (111m) size (%) Diameter 6. 5 j 7 1.25 d 

C1 40.3 200.0 300 0.79 T8 0 0 
C2 44.4 200.0 300 0.79 T8 12 12 
C3 41.1 200.0 300 0.79 T8 12 12 
C4 45.4 200.0 300 0.7ý T8 24 24 
C5 38.3 210.0 400 0.86 TIO 12 20 
C6 43.4 210.0 400 0.86 TIO 20 12 
C7 40.4 210.0 400 . 86 TIO 32 0 
C8 39.7 210.0 400 0.86 T8 12 

- - 
20 

C9 42.5 188.0 300 ; 00 0.86 TR 1 907 T 

The predicted ultimate load for specimen I (slab without shear reinforcement) 
and Specimen 2 (slab with 24 no of links) were 686.8kN and MAN respectively. 
Clearly there is a gain of 251.6kN due to the presence of shear reinforcement. 
Specimens 2 to 4 are intended to study the influence of quantities of shear 

reinforcement on the ultimate load of the slab. The predicted results show that slab 
with more shear reinforcement failed at a higher ultimate load. Specimens 5 to 7 
investigated the effect of different distribution of links between the perimeters. 
Experimental results show that the distribution of links between the two parameters 
(at 0.5d and 1.25d from the column) in the first failure zone had no significant effect 
on the shear capacity. The predicted results also show that within the variations used, 
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the distribution of links generally do not affect the shear capacity. The higher ultimate 
load predicted for specimen 6 is mainly attributed to the higher concrete strength, and 
this was confirmed by re-analysis specimen 6 with the concrete strength of specimen 
5. Table 6.12 shows the numerical results of Chana and Desai's slabs. Mean value of' 
(Nurnerical/experimental load) is 0.885 with standard deviation of 0.090. All tile slabs 

were predicted to fail either in flexure punching or shear mode. 

PLAN 0 Point Load 

ELEVATION 

Figure 6.23 Arrangement of rnesh flor slabs CI -C9 

Experimental results Numerical predictions 
Slab 11test (kN) Failure Mode Prium (kN) Failure Mode PnumIPtest 

805.0 s 686.8 s 0.850 
1094.0 s 938.4 s 0.858 

T -4 1302.0 s 1142.4 fp 0.877 
C-5 1382.0 s 1248.0 s 0.903 

1283.0 s 1404.0 fp 1.094 
1492.0 s 1232.0 s 0.826 

C-8 1324.0 s 1152.0 s 0.870 
C-9 1135.0 s 912.0 fp 0.804 

_Average 
0.885 

STDEV 0.090 
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6.4.2 Interior slab-column connections tested by Gomes 

Gomes (1991) tested a series of 10 conventional slab-column specimens with 

shear reinforcement. The shear reinforcement which were off-cuts from universal I 

beam were arranged either radially or in a cross shape on plan as shown in Figure 
6.24. Thesc specimens have the same amount of flexural steel i. e. tension steel 16mm 
(&, 100 c/c and compression steel of T8 qt 140 c/c. The dimensions of these specimens 
were 200mm thick with a side length of 33000 mm. The column at the centre (or 
loaded areas) were 200mm square. The load was applied at the centre of slab acting 
on either a column stub or a steel plate. The reactions were provided by four high 

tensile steel bars at each edge. In order to prevent local failure at support nodal points, 
the vertical restraints along the edges were provided as shown in Figure 6.25. Slab 

"(; I" without shear reiril'orcement was tested as a control specimen. Shear 

reinforcement details for slabs G2-G II are given in Table 6.13. 

412, 
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(b) Radial Pattern 

F- -- -. (c) Typical off-cut section 
Figure 6.24 Universal I beam offcut as shear reinforcement 

Figure 6.26 shows that predicted strains in shear reinforcements agree 

reasonably well with the experiment measurements. This figure shows that the first 

layer of shear reinforcement strained at 300 kN, second layer of shear reinforcement 

strained at 500 M third layer of shear reinforcement strained at 620 kN and fourth 

layer of shear reinforcement strained at 680 kN. This indicates that the innermost 

layer was the first to be strained, successive layers were strained as the load increased. 

As a general rule, the more remote the shear reinforcement was from the column, the 
higher the load needed to strain it. 
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'Fable 6.14 shows the predictions for Gomes' slabs. The mean value Of 

numerical to experimental load is 0.876 with standard deviation of 0.091. The 

predicted results show that slabs with more shear reinforcement failed at higher 

ultimate load as observed in the experiment. Figure 6.27 shows that shear 

reinforcement not only increased the failure load of slabs, it also increased the 
ductility substantially. Analysis predicted that all slabs failed by punching. In most of 
the slabs, failure was accompanied by crushing of concrete (Figure 6.28). 

PLAN 

ELEVATION 

Figure 6.25 Finite element mesh for Gomes' slabs 

Table 6.13 : Details of slabs G I-G II (Gomes) 

Slab fcu d Details of shear reinforcement 
(N/mm2) (nim) Pattern layer Area(mm2) 

50.3 159.0 - - 
G2 43.1 153.0 cross 2 28.3 
G3 49.0 158.0 cross 2 33 7.6 
(A 40.1 159.0 cross 3 50.3 
G5 43.4 159.0 cross 4 78.5 
G6 46.7 159.0 radial 4 78.5 
G7 42.3 159.0 radial 5 113.1 
Cj8 42.6 159.0 radial 6 113.1 
G9 50.0 159.0 radial 5 117.5 
G9 

- 
4 78.5 

IýJT-l 0 44.2 154.0 radial 5 28.3 
43.2 154.0 radial 5 37.6 

178 



Chapler 6 SiMI213z supý2orted slabs 

Table 6.14 ; Predictions for sPecimens GI -G II (Gomes) 

Slab Test results Numerical predictions PIIUIII/Ptest 
Ptest (kN) Failure mode 

-Pnum 
(kN) Failure mode 

GI 560.0 s 579.6 s I. 03-5 
G2 693.0 s 660.0 s 0.952 
G3 773.0 s 690.0 s 0.893 
G4 853.0 s 810.0 s 0.949 
G5 853.0 s 810.0 s 0.949 
G6 1040.0 fp 864.0 fp 0.83) 1 
G7 1120.0 f-P 900.0 fp 0.804 
G8 1200.0 I-P 972.0 fp 0.810 
G9 1227.0 fp 1008.0 fp 0.822 

110 800.0 s 720.0 s 0.900 
907.0 fp 684.0 fp 0.754 

Average 0.876 
1 1 0.0917: 1 

N. B. s=shear failure, I'p=flexure punching 
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Yamada et al (1992) tested two series of slabs to study the influence of tile 

amount and type of shear reinforcement on punching shear strength of monolithic 

slab-column connections. The first series used hat-type shear reinforcement and the 

second series used hook-type shear reinforcement (Figure 6.29). The experimental 

results showed that the hat-shape shear reinforcement was not effective due to lack of 

anchorage and wide spacing. Present model assumes perfect bond between concrete 

and steel. Thus possible anchorage problem could not be investigate in the present 

model. So. only slabs with hook-type of shear reinforcement will be analysed. The 

dimensions of the slabs were 2m square by 200mm thick, with a centrally located 

column 300rnm square. The central column extended above and below the slab for a 
length of' 300mm. Downward load was applied at eight points symmetrically 
distributed around the column centre at a distance of 750 mm diameter. Lower column 

stLib acted as the reaction support. Finite element meshes for these specimens are 

shown iii the Figure 6.30. These specimens have the same amount of flexural steel, 

i, e. 16mm diameter spaced at 80 mm ( p=1.53% ) in both tension and compression 

zone. The flexural steels were symmetrically distributed in the orthogonal X and Y 

directions with a minimum cover of 20mm. All the shear reinforcements were placed 

within a distance of 170mm (1.4 times the effective depth) from the column. Two 

different spacings for shear reinforcement were obtained by placing a bars at every 

node of the longitudinal reinforcement grid (interval=l) or at every second node 
(interval=2) as shown in the Figure 6.29. The details of slabs are summarised in Table 

6.15. 

Table 6.15 : Details and Predictions of slabs Kl-K7 (Yamada ct al) 

shear reinforcement Nurn/Exp 
Slab I, c 

(N/mm2) 
Diameter 

(rnm) 
Ps 

(%) 
d 

Interval 
Ptest 
(kN) 

Pnurn 
(kN) 

failure 
load 

K1 26.00 - 0.00 - 658.0 640.0 0.972 
2 27.17 6.0 0.25 2 950.0 924.0 0.972 

25.90 6.0 0.50 1 1183.0 1064.0 0.899 
27.37 10.0 0.55 2 1153.0 1064.0 0.923 
26.00 10.0 1.11 1 1440.0 1064.0 0.739 
26.39 13.0 

- - 
0.99 2 1274.0 1080.0 0.848 

-IýT 27.76 TTO 1 1.98 1 1498.0 1080.0 0.721 

psýI0OAsv/bd Average 0.868 
AsvýTotal area of shear reinforcement in the slab STDEV 0.103 
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FigUre 6.29 Type of shear reinforcement 

The predicted ultimate load for specimen KI (slab without shear 

reinforcement) and specimen K2 were 640. OkN and 924. OkN respectively. The 

ultimate load of the slabs increased with the increased quantity of shear reinforcement 

until specimen K4. For specimens K5 to K7, there was no further gain in ultimate load 

with the higher amount of shear reinforcement when compared to specimen K4. From 

the predicted structural response, there are two possible reasons for the failure of slabs 
K5-K7. In these slabs, either concrete failed in compression at the critical zone 
(Figure 6.3 1) or punching occurred outside the reinforcement region (Figure 6.32). 

Specimens K5 to K7 were then re-analysed with the cube strength increased by 50%. 

The predicted results were similar. Therefore, it is concluded that numerically 

punching occurred outside the shear reinforcement region. A stronger concrete or 

providing extra amount of shear reinforcement within the perimeter of 170mm would 

not have increased the failure load any further as the failure could always occur 

outside the reinforced zone. Another layer of shear reinforcement is needed to 
increase the failure load of the slab. Table 6.15 shows the numerical results of 
Yamada et al slabs. Mean value of predicted to actual failure load is 0.868 with 

standard deviation of 0.103. All the slabs were predicted to fail in shear mode. 

182 

fiexural bars 



Chqý21er 6 Simply slip 
. j2ortedslubs 
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Figure 6.30 Arrangement ofmesh for slabs Kl-K7 
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Figure 6.31 Compression failure of concrete (slab K5) 
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Figure 6.32 Punching occurred outside shear reinforcement region (slab K5) 
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6.4.4 Slabs with preassembled shear reinforcing units 

Scible et al (1980) tested seven full size slab-column specimens With 

preassernbled shear reinforcement. Three types of shear reinforcement were used. 

which are off-cut sections of universal I beam (SC7), welded wire fabric (SC8-SC 10) 

and headed shear stud (SC I 1- 13). Specimens SC 12 and SC 13 differ only in the size of 
the shear stud heads to study the performance of the anchorage. As mentioned in the 

previous section, present model assumes perfect bond between concrete and steel. So 

it cannot simulate the differences in anchorage bond. Therefore specimen SC 13 will 

not be analysed. The details and arrangement of shear reinforcement are summarised 

in 'Fable 6.16. All slabs have the same amount of flexural steel, all average 

reinforcement ratio in the x and y direction is p=1.17% using 12.7 mm diameter bar. 

The average concrete strength was fc'=33.6 N/MM2. The dimensions of these 

specimens were 200mm thick with side length of 1800 mm. The central column was 
II Onim square. These slabs were Simply Supported along the slab edges and sub 

. jected 

to a point load at the centre of slab. In the finite element idealisation, the load was 

simulated by a uniformly distributed load over the element representing the foot print 

ofcolunin stub as shown in the Figure 6.33. 

'Fable 6.17 shows the results of Seible's slabs. The mean value of the ratio of 

numerical to experimental failure load is 0.893 with a standard deviation of 0.065. 

The experimental results show that specimen SC7 failed at the highest ultimate load 

due to the best anchorage provided by the flanges of I-beam, and specimens SCIO 

failed at the lowest load because of the premature failure of the anchorage of the shear 

reinforcement. But the numerical predictions do not reflect the differences in 

anchorage provided by different type of shear reinforcement because present finite 

element model assumes perfect bond for all types of shear reinforcement. In this 

series. all the slabs used the same concrete strength and similar amount of flexural 

steel. The load carrying capacity of the slab will only vary according to the quantity of 

shear reinforcement. Therefore specimens SCIO-SC12 predicted higher ultimate load 

due to the higher amount of shear reinforcement. The predicted results further 

confirmed that the distribution of links within the same perimeter does not affect the 

shear capacity of the slab. The predicted mode of failure of all the slabs was flexural 

punching. 
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Table 6.16 : Details of shear reinforcement (Seible et A 

Slab Cross Top Type Area/leg Number 
Section View (MM2) 

SC7 I I-beam 62 28 

d segments 

SC8 I welded 25.2 72 

d III HIM 
wire fabric 

S('9 welded 25.2 72 
wire fabric 

SCIO I 

IL 

welded 25.2 80 

2F 3 
r, 

11111 
wire fabric 

SCI I 
I 

shear 31.0 64 
Q 

studs 

M 

SC 12 1 . shear 31.0 64 
t ý MM studs ý/ 

Qd 0.24 d 7 n 

Slab Ptest (kN) Pnum (kN) Num/Exp failure load 
S'C 7 623.0 510.0 0.819 
SC8 592.0 510.0 0.861 
SC9 594.0 510.0 0.859 

- Sc 10 537.0 540.0 1.006 
ý-c 1-1 596.0 540.0 0.906 
ý-C 1-2 595.0 540.0 0.908 

Average 0.893 
STDEV 0.065 
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PLAN 

ELEVATION 

Figure 6-331 Finite element mesh 

The code BS81 10 gives reasonably good predictions for slabs with shear 

reinforcement. Generally, for slabs which contain large quantity of shear 

reinforcement, the code underestimate the ultimate load of slabs due to the control of 

concrete crushing criterion (ýfcLý or 6.25 N/MM2 whichever is less). The confinement 

effect and triaxial action definitely allow higher compressive stress to build up. This 

exercise shows that it is necessary to consider all possible failure modes to ensure a 

good prediction. 
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Table 6.18--: Ultimate Load and Mode of failure predicted by using BS81 10 
(Gomes, Yamada et al and Seible et al) 

Test results Predictions by BS8 110 
Slab Ptest 

(kN) 
Failure 
Mode 

Pu 
(kN) 

Failure 
Mode 

PtestIPu 

GI 560.0 s 542.60 s 0.969 
G2 693.0 s 699.61 s 1.010 
G3 773.0 s 778.57 s 1.007 
G4 853.0 s 795.00 c 0.932* 
G5 853.0 S 795.00 c 0.932* 
G6 1040.0 fp 795.00 c 0.764* 
G7 1120.0 fp 795.00 c 0.710* 
G8 1200.0 fp 795.00 c 0.663* 
G9 1227.0 fp 795.00 C 0.648* 
G10 800.0 s 749.13 s 0.936 
GII 907.0 fp 770.00 c 0.849* 
C1 805.0 s 731.00 s 0.908 
C2 1094.0 s 1137.68 out 1.040 
C4 1302.0 s 1137.68 out 0.874 
C5 1382.0 s 1328.97 out 0.961 
C6 1283.0 s 1348.35 out 1.051 
C7 1492.0 s 1075.21 out 0.721 
C8 1324.0 s 1344.97 out 1.016 
C9 1135.0 s 1042.81 y 0.919* 
KI 658.0 s 688.78 s 1.047 
K-2 950.0 s 869.02 S 0.915 
K3 1183.0 s 974.78 out 0.824 
K4 1153.0 s 992.50 out 0.861 
K5 1440.0 s 975.78 out 0.676 
K6 1274.0 S 980.76 out 0.770 
K7 1498.0 s 997.32 out 0.666 
SC7 623.0 fp 644.05 y 1.034* 
SC8 592.0 fp 644.05 y 1.088* 
SC9 594.0 fp 644.05 y i. o84* 
SCIO 537.0 fp 644.05 y 1.199* 
SCI 1 596.0 fp 644.05 y 1.081 
SC12 595.0 fp 644.05 y 1.082* 

Average 1.026 
STDEV 0.080 

N. B. c=local crushing 
s=punching occurs within shear reinforcement zone 
out=punching occurs outside shear reinforcement zone 
f=flexure failure 

* wrong mode of failure predicted 
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6.5 Numerical Model and Comparisons with K&N mOdel and 
RSS 110 

Previous sections show that the predictions by the present finite element model 
are close to experimental observations in terms of ultimate load, structural response 
and mode of failure. In terms of predictions of the ultimate load, it is useful to make a 
comparison between the predictions by the present model, K&N model and BS 8110. 
Figures 6.34 and 6.35 show the predictions by the present model for the slabs without 
shear reinforcement tested by Rankin and Regan. Similarly figure 6.36 shows the 

predictions by the present model for slabs with shear reinforcement. Figure 6.37 

shows in one diagram predictions for all the slabs analysed. Similar comparison is 

shown in figures 6.38 for predictions by BS 8110. Figure 6.39 shows a similar 
comparison for K&N model. However, since K&N model does not include the effect 
of shear reinforcement, calculations were done assuming that there was no shear 
reinforcement and the failure load of slabs with shear reinforcement was calculated 

using the empirical formula 

P 
shear ýP UN (l+ Ps)* 

where p, =IOOAsv/bd: 5 1.0 
Asv=Total area of shear reinforcement in the slab 
d= effective depth 
b= width of slab 

Since the predictions are reasonably good, these models can be utilized to do a few 

numerical experiments to study the influence of different parameters (such as 
reinforcement ratio, effective depth etc. ) on shear strength. 

Results of these parametric studies shown in Figures 6.40-6.43, lead to the 

conclusion that the present model correlates very well with test data and gives good 
agreement with theoretical K&N model and code prediction. From this, it can be 

concluded that the present finite element model mimics realistically the structural 
behaviour of slab-column junctions. It should be noted that in figures 6.41 to 6.43, 

the experimental failures loads have been normalized for a constant cube strength of 
37.1 N/mM2, by multiplying the experimental failure load by (fcu/37.1)113. 
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Figure 6.35 Numerical predictions for Regan's slabs 
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Figure 6.36 Numerical predictions for slabs with shear reinforcement 
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Figure 6.38 Predictions of ultimate loads by BS81 10 
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6.6 Conclusions 

Following conclusions can be drawn from the results of analysis of interior 

slabs subjected to shear force only from various sources :- 

Present model predicted reasonably accurate results (ultimate load, structural 

responses and mode of failure) for slabs with span-depth ratio more than 5 (or 

av/d more than 1.7). For slabs with span-depth ratio of 5 and lesser, present model 

may over predict the ultimate load of the slabs. This is because slabs with low 

span/depth ratio are subjected to low bending and high shear, resulting in lower 

principal strain in the slab. Tension stiffening model in present work is taken as a 
linear function of principal strain. Low principal strain means that the concrete can 

carry relatively high tensile stress after cracking occurs. Consequently in the 

analysis, stiffness deteriorates at a slower rate that what happen in real structure. 

Analysis of results for slabs with shear reinforcement further confirmed the 

experimental finding (Chana and desai, 1992) that the distribution of links within 
the same perimeters does not affect the shear strength of slabs. 

The trend of the parameters governing punching shear strength predicted by the 

present model correlates very well with test data, theoretical K&N model and 
BS81 10 (Figure 6.40-6.43). 

For slabs with span-depth ratio of more than 5 (or av/d more than 1.7), BS81 10 

predicted a reasonably accurate ultimate load but in some cases it predicted 
incorrect mode of failure. For slabs with span-depth ratio of 5 or less, the code 

generally underestimates the ultimate load of slab (Figure 6.38). 

K&N model predicted a reasonably accurate ultimate load for simply supported 

slabs without shear reinforcement (Figure 6.39). The results also show that the 

empirical equation 6.1 is suitable for slabs with shear reinforcement at spacings of 

about 0.75d. However, it over predicted the failure load for slabs with shear 

reinforcement closely spaced because punching takes places outside shear 

reinforced region. 
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Chapter 7 

SLAB-COL UMN CONNEC TIONS WITH 
HEAR AN DM OMENT TRA NSFER 

7.1 Introduction 

This chapter presents the analysed results for slabs subjected to punching shear 
with moment transfer such as interior slab-column junctions with moment transfer , 
edge column-slab junctions and comer column-slab junctions from different sources. 
The chosen slabs were with and without shear reinforcement. The analysis was done 

using a set of "constant" parameters similar to that described in section 6.1. 

7.2 Interior slabs 

7.2.1 Interior column-slab connections reported in CIRIA 
(1979), SM series 

These slabs were all 2. Om square and 80mm. thick, with spans of 1.83m. They 

were generally simply supported on four edges (Figure 7.1a) but in one slab (SM6) 

two opposite edges were free (Figure 7.1b). Load was applied to the slab through a 

column stub at the centre of slab. The main flexural reinforcement was the same in all 
the specimens and was a simple square mesh (Y8 c/c @80) giving an average steel 

ratio of 1.05%. In addition to this quantity of steel, the last three specimens were 

provided with extra reinforcement as follows: 

" SM 10, a lighter compression steel mesh (Y6 c/c @80) was added. 

" SM 11, extra steel (6 nos of Y8) passing the column in the direction 12emendicular 
to the unbalanced moment (see Figure 7.2). 

" SM12, extra steel (6 nos of Y8) passing the column in the direction parallel to the 

unbalanced moment (see Figure 7.2). 

The variables for this series were the size and shape of the column, steel 
details, load eccentricity and in one slab the arrangement of the supports. The details 

and test results are surnmarised in Table 7.1. 
Owing to symmetry, only one-half of the slabs was modelled. The applied 

load was simulated by a uniformly distributed load over the loading stub (Figure 7.1 c 
& 7.1d). Horizontal restraints were provided at the left hand side support to prevent 

rigid body movement. Finite element meshes used are shown in Figure 7.1. 

195 



Slab-Column connections with she! 2r and moment frunsto- 
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Figure 7.1 : Finite element mesh and boundary conditions 
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Figure 7.2 : Direction of unbalanced moment 
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Analysis predicted that all slabs failed by punching as observed in the 

experiment. The predicted ultimate load of slabs (Table 7.1) and structural response 
both. generally agree reasonably well with the experimental observation. For slabs 
with concentric loads (e=O),, the crack pattern (Figure 7.3) and yielding of flexural 

reinforcement (Figure 7.4) was symmetrical. However, when the loading was 
eccentric, punching takes place only at the side where shear strengthýwas exceeded 
(Figures 7.5 & 7.6). 

The configuration of slabs SM4 and SM6 are exactly identical except for 

support conditions. In the experimental observation, the pattern of failure and ultimate 
load for these slabs was generally similar except for larger deflection for SM6. The 

predicted crack pattern and yielding of flexural steel for these slabs are also similar as 
larger deflection for slab SM6. Numerically, lower ultimate load was predicted for 

slab SM6. This slab might have failed in one way shear resulting in lower shear 

capacity for the slab. However, the predicted crack pattern (Figure 7.8) shows that the 

cracks are slanting in both directions (i. e. the failure surface in the shape of truncated 

cone). Therefore, it is concluded slab SM6 failed in punching shear mode. 
Several important points can be noted from this series of tests and analysis: 

" The influence of column size on the ultimate is less significant for slabs sub ected 

to concentric load (SM1, SM4, SM7) than for slabs subjected to eccentric load 

(SM3, SM5, SM8). 

" Additional reinforcement through the column (SMI 1, SM12) does not increase 

ultimate load of the slabs, bul produced stiffer response. 

Tab] ;M series (CIRIA 220) 

Slab 
No 

*Column 
size (mm) 

e 
(mm) 

fcu 
N/mM2 

Vtest 
(kN) 

Vnurn 
(kN) 

Num/Expt 
failure load 

SMI 240x240 0 30.20 122.00 91.20 0.748 
SM3 240x240 220 41.60 95.00 76.80 0.808 
SM4 240x120 0 32.90 101.00 72.00 0.713 
SM5 240xI20 220 40.00 72.00 54.00 0.750 
SM6 240xI20 0 35.70 105.00 62.40 0.594 
SM7 120x120 0 35.70 105.00 72.00 0.686 
SM8 l20x12O 220 32.40 49.00 44.20 0.902 
SM9 240x120 110 47.10 97.00 66.00 0.680 
SM10 240xI20 220 47.10 88.00 57.20 0.650 
SMI. 1 240x240 220 46.10 91.00 69.00 0.758 
SM 220 

. 
77ý 88.00 61.60 0.700 

Average 0.726 

_STDEV 
0.082 

* dimension parallel to moment given first 
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Figure 7.3 Crack pattem for slab SMI (e=O), symmetrical punching 
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Figure 7.4 Yielding of flexural steel for slab SMI (e=O) 

NB. The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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Figure 7.5 Crack pattern for slab SM3 (e=220), punching occurs at one side only 
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Figure 7.6 Yielding of tension steel for slab SM3 (e=220) 
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Load-deflection response 
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Figure 7.7 Effect of boundary conditions on deflection of slab 
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Figure 7.8 Crack pattem for slab SM6 (e=' 0) 

7.2.2 Interior column-slab connections with shear reinforcement 

Elgabry and Ghali (1987) conducted a series of tests on five full scale 

specimens of reinforced concrete interior flat slab-column connections subjected to 

shear and unbalanced moment. The dimensions of these slabs were 1.9m square and 
150mm thick. They were all simply supported on four edges over a span of 1.8m. The 

shear force was applied vertically through the column and unbalanced moment was 
introduced by two equal and opposite horizontal loads near the column tips (Figure 

7.9). The detailing of flexural reinforcement was generally similar in all the specimens 
(see Figure 7-9) with a slightly different steel ratio in the vicinity of the column within 

a distance of (column width +3x slab thickness). 
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The first slab had no shear reinforcement, while the remaining four contained 
various arrangements of stud shear reinforcement. The stud-shear reinforcement was 
arranged around the column in a cross shape on plan. The main variable for these 

slabs was the spacing and diameter of the shear reinforcement. Details are presented 
in Table 7.2. 

One-half of slab was modelled with aII x6 mesh. The vertical load was 
simulated by uniformly distributed load over the column while the horizontal load 

was simulated by a line load along the tips of column (Figure 7.10). In the 

experiment, vertical loads and moment were applied alternately before service load 
level. After reaching the service load, the unbalanced moment was cycled 10 times, 
then shear force was increased to Vtest (Table 7.3) and kept constant. Subsequently 

the unbalanced moment was-increased until failure. However, in the numerical study, 
these loads were applied simultaneously. 
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Figure 7.9 : Details and dimensions for specimens 1-5 
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PLAN 

Figure 7.10 : Finite element mesh and boundary conditions 

Table 7.2: Details of Nbear reinforcement (Elgabry and Ghalji 

Slab Number Diameter ly v Stud row spacing 
No (mm) N/MM2 

-W-l 
r- C 

AM2 32 12.7 460 2.75 d 

I Q_7! ý ý)Zý xd 
- . 50 0.7i 

AM33 48 12.7 460 4.2 5d 

TTT TLL 
=7 P7ý 97,5 xd 

06.75 0.76 

AM4 32 9.5 500 2.75dý 

TT TT 
95 xd I 

* 095 
0.3 5 

AM5 48 9.5 500 
4.25 d 

TTTT T-L - 

) 

5097- Q-97 xd 
Ný 

' 6.60 O. 9T 0 ý ý 
0 5 

fyv=yield stress of shear stud 
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The numerical predictions of ultimate load and mode of failure are presented 
in Table 7.3. The mean value for the ratio of numerical-to-experimental load is 1.05 

with standard deviation of 0.08. It can be seen that the ultimate load of slabs is 

generally over estimated. This is probably due the fact that present analysis does not 
include the effect of cyclic loading. 

Although the ultimate load of slabs is slightly over predicted, there was an 
excellent agreement between the predictions and test observation in terms of mode of 
failure. Slab AM1 (without shear reinforcement) was predicted to fail by punching 
and small deflection. In slabs AM2-AM5, the predicted compressive stress is about 
two times the compressive cylinder strength of concrete which indicates compression 
failure in slab around column region (Figure 7.14). However, a vector plot of crack 

pattern (Figure 7.11) indicates that these slabs failed in punching. Therefore, it is 

concluded that the punching shear failure was accompanied by compression failure 

near the column. The crack patterns for all these slabs were similar. Shear failure 

occurred near the column face at the right hand side, as shown in Figure 7.11. This is 

because unbalanced moment caused the shear stresses near face of column at right 
hand side to be larger than shear stresses at the other faces. There is also another 
indication given by the crack pattern, which is that punching shear failure in slabs 
AM2-AM5 took place within the shear reinforced zone as observed in the experiment. 

Specimens AM2 and AM3 were over reinforced for shear. Therefore the studs 
in these slabs did not yield (Figure 7.15). The predicted strains in shear reinforcement 
for specimen AM3 and AM4 are almost similar Mest and Mtest for these slabs are 

also almost similar), but the corresponding strain in studs for specimen AM4 is higher 

at failure because the studs are located nearer to the column (Table 7.2). 

This series of slabs also demonstrate that the shear reinforcement not only 
increased-the ultimate load of slab, but it also increased the ductility of slabs (Figure 

7.13). Slabs AM3-AM5 failed at a large deflection accompanied by yielding of 
flexural steel at the side where the punching occurred (Figure 7.12). This yielding 

caused a ductile failure mode. 

Shear reinforced zone 

t� 

Figure 7.11 Crack pattern for Specimen AM3, punching occurs within shear 

reinforced zone 
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Table 7.3. Summary of test results and numerical predictions (Elgabry & Ghali) 

Test results Numerical results 
Specimen fc, 

N/MM2 
*P 

(%) 
Vtest 
(kN) 

Mtest 
(kNm) 

failure 
mode 

Num/Exp 
ratio** 

failure 
mode 

AMI 35.00 1.10% 150 130 s 0.95 s 
AM2 33.70 1.10% 150 162 s 1.10 s 
AM3 39.00 1.23% 300 142 fp 1.15 fp 
AM4 40.80 1.39% 300 150 fp 1.15 fP 
AM5 55.60 1.39% 450 105 fp 1.05 fp 

Average 1.05 
STDEV 0.084 

*the steel ratio within a distance ot (column wicith +: 3 times slab thickness) at column region 
** In the numerical analysis, proportional loading was used . 

Therefore the quoted ratio applies to both V and M. 

$Yin -- 

13 

- -sylil 

r. 
Figure 7.12 Yielding of flexural steel for Specimen AM3 
(The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain) 
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Figure 7.13 Predicted Load-deflection response for slabs AMI-AM5 
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7.3 Edge column-slab connections 

7.3.1 Edge column-slab connections tested by Zakaria (19M 

Eight edge column-slab specimens tested by Zakaria, were analysed. These 

slabs were supported on two rectangular edge columns which extended above the slab, 
the ends of the columns were restrained by strut made of two channels (127x64 back 

to back) at the upper ends and by one 13mm. diameter tie bar at the lower ends. Loads 

were applied to the slab at eight points to give a reasonably uniform distribution 

(Figure 7.16). This type of arrangement allows the transfer of shear and moment to 

develop naturally in response to the loading of slab. 
The main variables for this series were : the percentage of reinforcement at the 

slab-column junction and the size of column. Concrete strength ranged from 34.3 to 

55.2 N/mM2. Only specimens SE3 contained shear reinforcement. The details are 

surnmarised in Table 7.4. 
Owing to symmetry, only one-quarter of the slab was modelled. The applied 

load was simulated by concentrated load acting at a nodal point. Concrete slab was 
discretised by using one layer of twenty node solid elements. Column was discretised 

by one element on plan and four elements from upper/lower end. Vertical restraints 

were applied to the mid-side nodes only at the lower end of the column (Figure 7.17). 

The element at the lower end of the column was represented by linear elastic element 

to prevent local crushing. The tie and strut were represented by linear elastic element 

at the end of the column. The stiffness of these elements was equivalent to the 

stiffness of tie and strut respectively. 

ýst results of Zakaria's edge slabs 

Slab *Column 
Size(mm) 

Top steel 
(%) 

Btrn steel 
(%) 

fcu 
N/mrn2 

Vtest 
(kN) 

Mtest 
(kNm) 

Failure 
Mode 

SEI 300x2OO 1.04 1.33 44.6 198.0 39.5 s 
SE2 300x2OO 0.58 1.33 54.6 192.0 34.0 y 
SE3 300x2OO 0.58 1.33 45.8 256.0 32.5 y 

-TE-4 200x3OO 1.04 1.33 34.3 152.0 30.5 s 
SE5 200x3OO 0.82 0.62 55.2 164.0 38.5 fp 
§-E6- 200x3OO 0.65 0.88 40.0 1490 27.5 fp 
SE7 200x3OO 0.75 0.37 49.5 129.0 31.7 fp 
SE8 300xlOO 0.82 0.62 52.0 136.0 1 33.7 s 

*First figure = dimension perpendicular to free edge 
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Figure 7.17 : Finite element model and boundary conditions for edge supported slabs. 
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Analysed results are presented in Table 7-5. The average of predicted-to- 
experimental ultimate load is 1.012 with 0.095 standard deviation. Some of 
experimental measurement are available for this series of slabs, so this section will 
discuss in detail the behaviour and mode of failure of slabs. 

Table 7.5: Results of Zakarials edge slabs SEI-SE8 

Slab Experimental Numerical 
No. fCu Vtest Mtest Failure Num. /Exp Failure 

N/mm2 (kN) (kNm) Mode V IM Mode 
SEI 44.6 198.0 39.5 s 0.859 0.958 s 
SE2 54.6 192.0 34.0 y 1.128 1.001 y 
SE3 45.8 256.0 32.5 y 1.000 1.158 y 
SE4 34.3 152.0 30.5 s 1.000 1.102 s 
SE5 55.2 164.0 38.5 fp 0.950 1.047 fp 
SE6 40.0 149.0 27.5 fp 0.969 1.052 fp 
SE7 49.5 31.7 fp 1.042 1.280 fp 
SE8 52.0 1 136.0 33.7 s 1.150 1.092 s 

Average 1.012 1.086 
STDEV 0.095 0.100 

Behaviour of slabs 

The forces in the strut and tie developed at equal rate until general cracking 
commenced in the slab. The force in the strut then began to decrease and the force in 

the tie continued to increase as observed in the experiment (Figure 7.18). The change 
in the behaviour was a direct result of the formation of cracks in the top and bottom 

surfaces of the slab. Figure 7.19 shows that the relationship between restraining 
moment and applied load was approximately linear for specimen SEL The 

relationship for other specimens do not differ substantially from what is shown in 
Figure 7.19. 

Strains in the top reinforcement was far higher in the vicinity of the column 
and steel outside a radius of two times the effective depth was virtually unstrained 
(Figures 7.20). However the strains in the bottom reinforcement were fairly similar 
along the width of the slab (Figure 7.21). This is typical of the behaviour of one way 
slab. 
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The crack pattern at top surface was of elliptical shape (Figure 7.22). The 

crack pattern shows that punching shear failure originated near the inner face of the 

column and punching surface grew around the column, eventually reaching the free 

edge. Numerical results shows that concrete at the top surface (Figure 7.23a) and at 

soffit of slab (Figure 7.23b) adjacent to column had crushed. The crushing of concrete 

at the soffit was due to the flexural action in the longitudinal direction. However, the 

, concrete at the top surface has crushed because of compressive membrane action 
(Figure 7.24). 

The slab tends to expand due to the formation of cracks in the top and bottom 

surfaces. As the column is very stiff, it restrains element No. 2 (see Figure 7.17) from 

expanding. Consequently, this results in a compressive force in that section and this is 

known as compressive membrane action. The development of compressive membrane 

action was confirmed by checking the third principal strain in element No. 2. There is 

a very large compressive strain throughout the depth of the slab. 
Shear strain along the inner face of column was fairly uniform (Figure 7.25). 

However, shear strain along the face of column perpendicular to the free edge is 

minimum at the outer corner and maximum at the inner comer (Figure 7.26). These 

two figures clearly show that the shear strain is the resultant of direct shear Vu and 

shear due to unbalanced moment Myy (Figure 7.27). 
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Figure 7.18 : Forces in Struts and Ties (SEI) 
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Column's Load and moment (SEJJ 
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Figure 7.23 Crushing of concrete near at the slab-column junction 
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The predicted mode of failure agrees well with the experimental observation 
(Table 7.5). Slab SE2 with rather low percentage of top reinforcement in the 
longitudinal direction and slab SE3 which contains shear reinforcement were both 

predicted to fail in flexure mode. The steel bar near the columns yielded well before 

failure and yielding was spread across the width of the slab (Figure 7.28). Predicted 

load-rotation response (Figure 7.30) displays ductile behaviour of the slab and crack 

pattern (Figure 7.33) also indicates that the slab failed in flexure mode. 
Specimens SE5, SE6 and SE7 displayed a certain degree a ductility (Figure 

7.331). The yielding of top steel was confined to the column region (Figure 7.29). 

These slabs eventually failed in punching, but the failure certainly showed a relatively 
ductile behaviour. So, these slabs were categorised as having failed in flexure 

punching mode. 
Predicted rotation in slab at the junction (Figure 7.32) displays brittle 

behaviour of slab SE4 (similarly for SEI and SE8). Predicted strain in top steel is 

below the yield value at collapse and strain in concrete near the column-slab junction 

exceeded 0.0035. All these indications show that these slabs failed in punching. 

c 
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El 

Figure 7.28 Yielding of top steel for slab SE3, flexure failure 

(The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain, 

T means the ratio is ý! 10) 

21 3) 

ýim 



Chapter 7 51ub-(. ojjjmn connections with shear and moment tra"ýkr 

IT : I I I I 

Exp 
Num 

C. 
-I-A- 

Figure 7.29 Yielding of top steel for slab SE6, flexure punching 

(The nUmbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain) 
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Figure 7.32 Load-rotation curve (SE6), flexure punching 

Figure 7.33 Crack pattern in elevation of slab SE3, flexural failure 

CL 

215 

Figure 7.34 Crack pattern in elevation of slab (SE4), shear failure 



Chapter 7 Slab-Column connections with shear andmoment transfer 

7.3.2 Edge column-slab connections with shear reinforcement 

Mortin and Ghali (1991) tested six full-scale reinforced concrete edge column 
flat-slab connections subjected to shear and moment transfer. These specimens were 
rectangular, simply supported on three sides, with a column stub located at the centre 
of the unsupported side (Figure 7.35). Axial force and unbalanced moment were 
applied to the column stub. The dimension of these specimens are shown in Figure 
7.35. The top flexural reinforcement ratios parallel and perpendicular to the free edge 
are given in Table 7.6. The bottom reinforcement ratio was 0.4% in both direction in 

all specimens, with two bars passing through the column. 
All specimens except JSI and JS4 were provided with shear reinforcement. 

The shear reinforcement consisted of shear combs arranged in the vicinity of the 
column, as shown in Figure 7.37. The variables for this series were the arrangement of 
the studs within the spandrel strip, the number of rows of studs and size of the shear 
reinforced zone which varied over the range of 1.8d-2.5d, where d=effective depth. 

Finite element mesh and simulation of applied loads are shown in Figure 7.38. 
Restraint in y and z direction were provided along the simple support and the 

symmetry line respectively. In order to prevent rigid body motion in x-direction, a 
node at the edge of slab was restrained. 

Numerical failure loads and failure modes for all six specimen are given in 
Table 7.6. Figure 7.39 shows the applied load vs. deflection for slabs JS2 (with shear 
studs) and JS4 (without shear studs). Apparently, shear reinforcement increased both 

the strength and ductility. The stiffer response of slab JS4 must be attributed to the 

much higher concrete strength. This figure also highlights the fact that regardless of 
the amount of shear reinforcement, flexural steel yielded almost at the same load 
level. 

The predicted mode of failure generally agrees well with experimental 
observation (Table 7.6). The specimens without shear studs failed in a brittle punching 
mode, as can be seen in the predicted crack pattern (Figure 7.41) and small deflection 

at failure (Figure 7.39). Those with shear studs failed in a ductile flexural mode with 
large deflection at failure(Figure 7.39) and the cracks were vertical at the slab near the 

column (Figure 7.40). 
In Figure 7.42, the strains in shear studs in Specimen 2 are plotted against the 

applied load. The distributions of strain show that the studs near the inner face of 
column resisted larger shear force. This agrees with the assumption made by 
Kinnunen (1971) for the edge slab analysis, that part of the moment transmitted to the 

column is assumed to be provided by torsions at the side faces, and these torsions are 
assumed to create downward forces near the inner comers of the column and upward 
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forces near the edge (Figure 7.43). This is probably the reason why the ultimate loads 

of these slabs do not vary very much. 
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Figure 7.3 5: Dimensions, loading and simple support for specimens JS I -JS6 
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FIgUre 7.338 : Finite element mesh and boundary conditions 

Table 7.6: Summary of test results and numerical predictions (Mortin and Ghali) 

Slab Experimental results Numerical results 
No. fc, Flexural steel Vtest Mtest failure Num/Exp failure 

N/MM2 Px(%) PX(%) (kN) (kNm) mode ratio mode 
Ps 1 43.20 0.60 0.95 140.9 60.5 S 1.05 s 
i ý'-2 49.00 0.80 1.28 231.0 95.3 y 0.89 y 
J ý' 44.70 0.80 1.28 212.3 89.5 y 1.00 y 
JS4 32.20 0.80 1.28 141.0 60.3 s 0.97 s 
JS5 35.80 0.80 1.28 212.3 86.4 fp 0.96 y 
JS6 33.90 0.80 1.28 201.0 85.6 y 0.95 y 

Average = 0.970 
STDEV = 0.053 
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FIgUre 7.40 Crack pattern for slab JS2 (flexural failure) 

Figure 7.41 Crack pattern for slab JS4 (shear failure) 
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7.4 Corner column-slab connections 

7.4.1 Corner column-slab connections without shear 
reinforcemen 

Walker (1980) tested a series of seven comer column-slab specimens without 
shear reinforcement. Specimens SC6 was not analysed because top steel is arranged 
diagonally and the in-house program does not have the facility to simulate the 

reint'orcement in the diagonal direction. These slabs were supported on four square 

corner columns which extended above the slab. The end of the columns were 

restrained by four struts at the upper ends and four ties at the lower ends (for 

elevation, refer to Figure 7.16). Load were applied to the slab at twelve points to give 

a reasonably uniform distribution. The loads were applied by six hydraulic jacks 

anchored below the floor and a system of spreader beams (Figure 7.44). 
The main variables for this series were : the percentage of reinforcement at the 

slab-column junction and the size of column. Concrete strength ranged from 48 to 
61.4 N/rnm2. Reinforcement in slab SC7 was exactly the same as for slab SC5, but the 

test procedure was modified so that column moments were applied externally and not 

allowed to developed naturally. The horizontal loads were applied by tightening tics 

and struts. The details ot'slabs are given in Table 7.7. 

Owing to symmetry, only one-quarter of the slabs was modelled. The applied 
load was simulated by a concentrated load acting at a nodal point. The slab was 
discretised by one layer of twenty node solid elements and the column was 

represented by eight elements along the height. Vertical restraints were applied to tile 

two diagonal corner nodes only at the lower end of the column (Figure 7.45) to 

simulate ball joint at the lower end of column. The tie and strut were represented by 

linear elastic element at the end of column. The stiffness of these elements was 

equivalent to the stiffness of tie and strut respectively i. e. (AEIL), where L=half the 
length between the columns, AE=Axial rigidity. 

Slab Column 
Size(mm) 

Top steel 
(%) 

Btm steel 
(%) 

Vtest 
(kN) 

Mtest 
(kN) 

Failure 
Mode 

scl 300 0.41 0.26 81.00 36.40 fp 
SC2 300 0.28 0.36 75.00 35.70 s 
scý- )00 0.52 0.17 74.00 45.60 fp 
SC4 220 0.41 0.26 64.00 24.00 fp 

-5 220 0.60 0.41 82.00 26.90 s 
ý-C -7 220 0.60 0.41 82.00 39.00 s 
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F'igure 7.44 . Test arrangement for corner column supported slabs. 
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Figure 7.45 : Finite element model and boundary conditions for corner supported 

slabs. 
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Table 7.8 : Predictions of slabs SCI-SC5 (Walker) 

Experimental Numerical 
Slab Vtest Mtest Failure Num/Exp Failure 

(kN) (kNm) Mode V M Mode 
sci 81.00 36.40 fp 1.100 1.595 fp 
SC2 75.00 35.70 s 1.000 1.372 s 
SO 74.00 45.60 fp 0.963 1.038 fp 
SC4 64.00 24.00 fp 1.031 1.666 fp 
SC5 82.00 26.90 s 1.024 1.579 s 
S( 39.00 s 1.150 1.150 s 

Average 1.045 1.400 
STDEV 0.068 1 0.260 

The predicted ultimate loads are presented in Table 7.8. The average of the 

ratio of predicted-to-experimental shear capacity is 1.04 with a standard deviation of 
0.07 

. The results for the restraining moment give a much higher mean and standard 
deviation of 1.40 and 0.26, respectively. Obviously, the restraining moment was over 

predicted. The analysis predicted that the trend of force development in the tie and 

strut was similar to experimental measurements. However, there was disagreement 

regarding the absolute value of the forces developed. In general, the predicted values 

was larger than the measured values (Figure 7.46). 

From the predicted load-rotation response, in the case of specimens SC1, SC3 

and SC4, failure was preceded by large rotation (Figure 7.47). Therefore the failure 

mode was ductile. However, the yielding of top steel was confined to the column 

region. This indicate that these slabs failed in flexure-punching mode. 
For specimens SC2 and SC5, rotations in the slab at the junctions were 

relatively small (Figure 7.48) and the failure was brittle in nature. Furthermore, a 

portion of the slab near the column was crushed and the compressive stress exceeded 

the compressive strength of concrete (Figure 7.50). So, for these slabs the predicted 

mode of failure is punching accompanied by crushing in the portion of slab near the 

column. 
Although the loading procedure for specimen SC7 is different from that used 

for specimen SC5, the predicted ultimate load was slightly higher for specimen SC7 

and the mode of failure was very similar to slab SC5. 
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Figure 7.49 Yielding of top reinforcement (SC3), flexure punching (yielding 

confined to the column region) 
(The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain) 
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7.4.2 Corner column-slab connections with shear reinforcement 
(Hammill and Ghali) 

This section presents the results of analysis of five full scale reinforced 

concrete comer column-slab connections tested by Hammill and Ghali (1994). All 

these specimens contained identical flexural steel in slab (Figures 7.52 & 7.53) and 

reinforcement in column. Figure 7.51 shows the dimensions and locations of forces 

applied to the specimens. 
The variables are the amount of shear reinforcement and the loading 

procedure. Only specimens NH3 and NH5 contained shear reinforcement. The layouts 

of shear studs are shown in Figure 7.54. The remaining three specimens had no shear 

reinforcement. All slabs except NH4 were subjected to both shear and unbalanced 

moment, while specimen NH4 was subjected to unbalanced moment only. The 

experimental loadings are shown in Table 7.9. 
The slab was modelled with a 6x6x I mesh. The vertical load was simulated by 

a uniformly distributed load over the cross section of the column, while the diagonal 

horizontal load was simulated by two point loads at the tips of column, as shown in 

Figure 7.55. Vertical restraint (z-direction) was provided along the simple support, 

and additional horizontal restraint (x and y direction) were provided at the two 

opposite comers of slab to prevent rigid body movement. 

v column stub 

M/1 350 40 

slab edge 

700 
centreline 

1350 of 
150 simple 

supp rt 

700 
L 1075 

M/1350 
2? 

ýý 
250 

Figure 7.51 : Dimensions and loadings for Specimens NHl-NH5 
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The computed predictions are shown in Table 7.9. The mean value for the 
ratio of predicted-to-experimental load is 1.00 with a standard deviation of 0.13. 
Comparing the ultimate loads of specimens N113 and NH5 (with shear reinforcement) 
to NHI (without shear reinforcement), the addition of studs resulted in an increase in 

the shear capacity of 5% and 22% respectively. The reason why the enhancement of 
shear capacity in specimen NH3 is small is because its failure surface basically 

occurred at the same location as specimen NHI (see Figures 7.56 and 7.57), i. e. 
punching took place outside shear reinforced zone. For specimen NH5, this area was 
reinforced by shear studs (Figure 7.59), thus the enhancement of shear capacity is 
higher. Figure 7.58 shows that the slab subjected to unbalanced moment only also 
failed in punching shear mode. 

The main purpose of providing shear reinforcement is to enhance shear 

capacity and to prevent brittle failure. Figure 7.60 shows that provision of shear stud 
increased deflection by a small amount before collapse in all cases. The load- 
deflection response for these three slabs follow each other ý very closely because 

compressive strengths of concrete for these slabs used in the analysis are almost 
identical. In the present study, regions with shear reinforcement are assumed ýto be 

confined and have a value of fcu enhanced by 28%. In the case of slab with shear 

, reinforcement, the actual values of, fcu were 36.40 N/MM2 ý and, 33.20 N/mM2 

respectively. The confinement enhanced value was 1.28 x fc1i (i. e. 46.6 N/mM2 and 

. 
42.5 N/mM2 ). Thefcu for slab without shear reinforcement was 41.5 N/MM2. )Mien 

, the effect of enhancement is taken into account; thevalue offcu used in the analysis 
for these slabs are almost identical. Figure 7.60 also shows that flexural steel reached 
yield strain at about the same load level for all the three slabs. 

The flexural reinforcement for Specimen NH5 reached yield strain at 70% of 

ultimate load, and displayed a more ductile behaviour than the rest (Figure 7.60). The 

crack pattern shows that it failed by punching and yielding of flexural reinforcement 
is confined to the column region (Figure 7.61). Thus, specimen NH5 was categorised 

as having failed in flexure punching mode. The remaining slabs failed with small 
deflection, accompanied by yielding of flexural steel just before failure or flexural 

steel did not yield. All these indications shows that these slabs failed in pure punching 

mode. 
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Table 7.9: Summary of test results and numerical predictions 
(Hammil and Gha- Di 

Test results Numerical results 
Specimen fc, 

N/mm2 
Applied 
forces 

Vtest 
(kN) 

Mtest 
(kNm) 

failure 
mode 

Num/Exp 
ratio 

failure 
mode 

NHI 41.50 V, M 146.9 60.8 s 0.90 s 
NF12 42.20 V, M 139.1 56.9 s 1.05 s 
NH3 36.40 V, M 146.1 58.4 s 0.95 s 
NH4 36.90 M 0 46.6 s 1.20 s 
NH5 33.20 V, M 179.0 79.0 s 0.90 s 

Average 1.00 
STDEV 0.127 

Figure 7.56 Crack pattern for Specimen NHI 

Figure 7.57 Crack pattern for Specimen NH3 
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Figure 7.58 Crack pattern for Specimen NH4 (subjected to unbalanced moment only) 

Figure 7.59 Crack pattern for Specimen NH5 
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Figure 7.61 Yielding of flexural steel for Specimen NH5 
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7.5 Predictions by BS8110 

For slabs under a combination of shear and unbalanced moment, their shear 
capacity cannot be checked as for interior slabs subjected to the symmetrical punching 
discussed in the previous chapter. Instead, the shear and moment capacities need to be 

checked separately. The assumptions made for calculating the punching shear strength 
of slabs are similar to those in the previous chapter, but should include the effect of 
the unbalanced moment. The maximum shear force V,,,,, from the tests are calculated 
as follows : 

V. 
ax ý-- V+m 

x 

where V= Shearforce transferred to the column. 
M= The unbalanced moment 
X= The side length ofthe perimeter considered 12aralle to the axis of bending. 

For edge and comer column-slab junction, the code also limits the amount of moment 
transfer from column to slab (or vice versa). The detail of the code requirement to 

calculate the transfer moment capacity is illustrated in sample calculations presented 
in Appendix A. 

In order to prevent confusion (moment capacity of slab, Mu and moment 
transfer to slab, MO, the notations used in the calculation are defined as follows: 

Mtest unbalanced moment from experiments 
Vtest shear force from experiments 
Melastic, maximum moment per unit length in slab due to applied loads (shear 

force alone or the combination of shear force and unbalanced bending 

moment as appropriate) from linear elastic analysis using shell 
element. This value was obtained from the average of the moments at 
the Gauss points within Im width at critical region. 

Mu moment capacity for Im width of slab provide by flexural steel 
according to BS81 10 with a safety factor of 1.0. 

Mt transfer moment capacity based on the effective width (see Appendix 
A) provide by flexural steel according to BS81 10 with a safety factor 

of 1.0. 

For moment capacity of slab, compare Mu to Melastic 

For moment transferred to slab, compare Mt to Mtest- 
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7.5.1 Interior slab-column connections 

All specimens considered were subjected to the unbalanced moment about one 

axis only. Therefore the value of X is defined as 

X=Cy+3d 

C., -2d 
............ 

: 
............ 

------------------ 

Figure 7.62 : Control perimeter and direction of unbalanced moment 

ioment capacity for interior slabs 

(CIRIA 220, Elgabry and Ghali) 

Slab Mtest 
(kNm) 

Vtest 
(k-N) 

Melastic 
(kNm) 

mu 
(kNm) 

Mulmelastic 

smi 0 122.00 19.60 15.86 0.81 
SM3 20.90 95.00 

. 
20.92 16.47 0.79 

SM4 0 101.00 16.23 16.04 0.99 
SM5 15.84 72.00 22.31 16.41 0.74 
SM6 0 105.00 30.69 16.20 0.53 
SM7 0 105.00 23.67 16.20 0.68 
SM8 10.78 49.00 20.30 16.01 0.79 
SM9 10.67 97.00 23.73 16.66 0.70 
9-m- 10 19.36 88.00 30.47 16.66 0.55 
smil 20.02 91.00 22.60 16.63 0.74 
SM12 19.36 88.00 21.83 16.40 0.75 
AMI 130.00 150 82.70 69.97 0.85 
AM2 162.00 150 98.30 69.72 0.71 
AM3 142.00 300 108.50 78.20 0.72 
AM4 150.00 300 112.30 86.69 0.77 
AM5 105.00 450 113.80 89.00 0.78 

Average I U. 
STDEV F7b7ll 

2.334 
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T car capacities and mode of failure for interior slabs 
(CIRIA 220, Elgabry and Ghali) 

Slab Test results Predictions by BS8 110 
Vmax(test) 

(kN) 
Failure 
Mode 

Pu 
(kN) 

Failure 
Mode 

Pulvmax(test) 

-ýM-l 122.00 s 138.51 s 1.135 
9-M3 144.76 s 152.11 s 1.051 
SM4 101-00 s 142.52 s 1.411 
ý-M-5 109.71 s 130.38 s 1.188 
SM6 105-00 s 125.53 s 1.196 

M7 105.00 s 104.61 s 0.996 
--ýM-8 84.93 s 101.28 s 1.192 
SM9 122.40 s 130.38 s 1.065 

-ýýM-l 0 134.10 s 130.38 s 0.972 
-ý-ml 1 138.67 s 152.11 s 1.097 
SM12 134.10 s 151.99 s 1.133 
AMI 359.00 s 404.84 s 1.128 
AM2 410.45 s 581.25 c 1.416* 
AM3 528.30 fp 581.25 C 1.100* 
AM4 541.16 fp 581.25 c 1.074* 
; ýM-5 618.81 fp 581.25 c 0.939* 

Average 1.131 
STDEV 0.133 

* wrong mode of failure predicted 

Table 7.10 shows that BS8110 underestimated the flexural capacity for all the 

slabs. However, this is to be expected because the comparison is made with the elastic 

moment and as slab is a statically indeterminate structure, and redistribution of 

moment will take place, i. e. the moment at the critical areas are reduced by 

redistribution of stresses to the neighbouring areas which are less stressed. BS81 10 

over predicted the shear capacity for almost all the slabs. This shows that it is 

necessary to include the coefficient of 1.5 in Vff =V+1.5m (see Chapter 2, equation X 
2.20, page 32) to ensure a safe design. 
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-slab connections 

All specimens studied were subjected to an unbalanced moment parallel to the 
free edge only. Therefore the value ofX is defined as X= Cy + 3d (Figure 7.63). 

C., +1.5d 

.......... TAk 
X ---C y +3d 

.......... 

Figure 7.63 : Control perimeter for edge column-slab connections 

Table 7.12 shows that moment capacity of slabs predicted by BS8110 are 
inconsistent. It over predicted the moment capacity of some of Zakaria's slabs and 
gave very poor prediction for the remaining slabs (SE2 and SE3) where the top 

reinforcement perpendicular to the free edge was extremely light. The capacity of all 
slabs tested by Mortin and Ghali (1991) were under estimated. The reason for the 
difference between these two group of slabs must be due to the test configuration. The 

slabs tested by Zakaria consists of a pair of edge columns connected to a slab where 
the other two edges are not supported (Figure 7.64a). On the other hand, the slabs 
tested by Mortin consists of a single edge where the slabs are simple support in the 

other three edge edges (Figure 7.64b). 

Figures in Table 7.13 show that the moment transferred to the slabs, 

particularly for slabs which were poorly detailed (e. g. SE2 and SE3 with very low 

amount of top reinforcement) is underestimated. This implies that the effective width 
be imposed by the code is restrictive (For example, from both numerical and 

experimental observation for specimen SE2, the area of slab where steel yielded 

spread over the full width of slab. So, the actual width-for transfer of moment must be 

greater than be. Conversely, for specimen SE4, yielding of steel confined was to a 
small area around the column. Thus, the width transfer the moment must be smaller). 

Generally, the shear capacities predicted by BS81 10 (Table 7.14) agree well 
with the experimental results. 
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unbalanced 
moment 

(a) Zakaria's slabs 

.................... 

.................. 

Dire6ton of 
unbalanced 
moment 

(b) Mortin and Ghali's slabs 
Figure 7.64 : Support conditions for edge column-slabs 

(Zakaria, Mortin and Ghali) 

Slab Mtest 
(kNm) 

Vtest 
(k-N) 

Melastic 
(kNm) 

mu 
(kNm) 

MulMelastic 

SEI 39.50 198.0 32.5 37.1 1.14 
SE2 34.00 192.0 31.5 8.6 0.27 
SO 32.50 256.0 42.0 8.6 0.21 
§E4 30.50 152.0 25.8 40.9 1.58 
ý ýE- -5 38.50 164.0 27.8 

. 35.9 1.29 
S ýE6 27.50 149.0 25.3 20.3 0.80 
ý ýE- -7 

_31.70 
129.0 21.9 30.4 1.39 

SE8 33.70 136.0 26.4 35.8 1.36 
TS -1 60.50 140.9 49.4 35.6 0.72 
JS2 95.30 231.0 78.1 47.5 0.61 
JS3 89.50 212.3 71.7 47.5 0.66 

-JS4 60.30 141.0 49.4 46.9 0.95 
TS -5 86.40 212.3 71.0 47.2 0.67 
JS6- 85.60 201.0 167.9 47.1 0.69 

Average 0.88 
STDEV 0.42 
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Table 7.13 : Predicted transfer moment --capacity 
for edge column-slab 

ection akariaMQrtin and Gh-M 

Slab Mtest 
(kNm) 

Mt 
(kNm) 

MtIMtest 

SEI 39.50 29.68 0.75 
SE2 34.00 6.91 0.20 
§-E3 32.50 6.91 0.21 
SE4 30.50 24.71 0.81 
SE5 38.50 25.16 0.65 
SE6 27.50 14.18 0.52 
S-E 7 31.70 21.26 0.67 
SE8 33.70 25.07 0.74 
isi 60.50 27.16 0.45 
JS2 95.30 36.22 0.38 
JS3 89.50 36.22 0.40 
JS4 60.30 34.42 0.57 
JS5 86.40 35.99 0.42 
JS6 85.60 35.87 0.42 

Average 0.51 
STDEV 0.193 

connc. Ac i onm-(Zakar haM-flrtiu-anA-GhRW 

Slab Test results Predictions by BS81 10 
Vmax(test) 

(kN) 
Failure 
Mode 

Pu 
(kN) 

Failure 
Mode 

PulVmax(test) 

277.96 s 175.12 s 0.630 
SE2 259.59 s 153.79 s 0.592 
SE') 320.61 s 234.00 out 0.730 
SE4 203.35 s 154.39 s 0.759 
SE5 228.81 s 157.83 s 0.690 
SE6 195.06 s 147.16 s 0.754 
SE7 182.10 s 156.24 s 0.858 

E8 221.53 s 160.88 s 0.726 r 

j isl 238.48 s 208.16 s 0.873 
jj S JS2 384.71 out 292.00 out 0.759 
JSI 356.65 out 292.00 out 0.819 
JS4 238.26 s 229.60 s 0.964 
TS-5 - 351.65 out 292.00 out 0.830 
JS6 339.06 out 306.05 out 0.903 

Average 0.778 
STDEV 0.104 
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7.5.3 Corner column-slab connections 

For comer column-slab junctions, the unbalanced moment exists about both 

axis. Therefore the X is defined as 

X= J(-C 
., 

+1.5d)(Cy + 1.5d) 

C., +1.5d 

........... 

Cy +1.5d 

Figure 7.65 : Control perimeter for comer column-slab connections 

Table 7.15 shows that BS81 10 generally over predicted the moment capacity 
of slabs. This may be due to the fact that the length considered is larger than the 

possible yield line which can develope in the comer slabs (Figure 7.66). However, it 

under-estimates the moment transfer to slab as in the case of edge slab-column 
connection (Table 7.16). 

Table 7.17 shows that the shear strength for all the slabs except specimen 
NH4 (subjected to unbalanced moment only) is underestimated. 

L=lm 

Figure 7.66 : moment resistance for comer column-slab connections 
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ions 

(Walker, Hammil and Ghali) 

9-1ab Mtest 
(kNm) 

Vtest 
(kN) 

Melastic 
(kNm) 

*Mu 
(kNm) 

MulMelastic 
load 

sci 36.40 81.00 37.6 31.1 0.83 
SC2 35.70 75.00 34.8 19.5 0.56 
SO 45.60 74.00 34.3 36.9 1.08 
SC4 _ 24.00 64.00 31.4 33.9 1.08 
SC5 26.90 82.00 30.3 47.0 1.55 
SC7 39.00 82.00 38.0 47.0 1.24 

--T-H- -1 19.36 60.80 48.1 59.4 1.23 
NH2 20.02 56.90 45.5 59.5 1.31 
NH3 19.36 58.40 45.1 59.5 1.32 
NH4 130.00 46.60 55.7 59.5 1.07 

[ýH 5 -105.00 79.00 58.7 59.6 1.02 
Average 1.12 
STDEV 0.27 

! N(21e 

XCOS20+ mysin2o (for orthotropically reinforced slab) Mu= mn= M, 

Mx, my = flexural resistance moments in x and y directions 

A transfer moment capacity for corner column-slab 
ke , miland Ghal-l 

Slab Mtest 
(kNm) 

Mt 
(kNm) 

MtIMtest 

---S-CI - 36.40 26.40 0.73 
SC2 35.70 16.58 0.46 

---ýC---3 45.60 31.32 0.69 
SC4 24.00 21.09 0.88 
SC5 26.90 28.29 1.05 
SC7 39.00 28.29 0.73 
NIH41 19.36 42.00 0.69 
NF12 20.02 42.04 0.74 
NH3 T9.36 42.08 0.72 
NH4 T30 00 42.11 0.90 
NI-15 I U. ). UU 42.15 0.53 

Average 0.740 
STDEV 0.172 
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Table 7.17 : Predicted punching shear strength and mode of failure for corner 

column-slab connections (Walker. Hammil and Ghali) 

Slab Test results Predictions by BS81 10 
Vmax(test) 

(kN) 
Failure 
Mode 

Pu 
(kN) 

Failure 
Mode 

Pulvmax(test) 

SCI 138.20 s 104.37 s 0.755 
Sýý-2 130.73 s 91.11 s 0.697 
SO 146.13 s 111.71 s 0.764 
SC4 109.87 s 83.16 s 0.757 
SC5 133.83 s 92.64 s 0.692 
SC7 157.14 s 92.64 s 0.590 
NHI 247.23 s 126.78 s 0.513 
NH2 233.00 s 126.78 s 0.544 
NI-13 242.47 out 126.78 out 0.523 
NH4 76.90 s 126.78 S 1.649 
NH5 309.37 out 191.43 out 0.619 

Average 0.737 
STDEV 0.317 

r. -Jusims 1.6 on 

Following conclusions can be drawn from the analysis of slabs subjected to 

shear and unbalanced moment :- 

In this chapter, interior slab-column junctions subjected to shear and unbalanced 

moment, edge and comer column-slab junctions have been analysed. The results 

of predictions of the ultimate loads (Figure 7.67) and mode of failure are in good 

agreement with experimental observations. 

Predictions of the moment capacity of slab by BS81 10 is not consistent because 

the comparison is made with the elastic moment. In real structure, redistribution of 

moment will alter the moment distribution from elastic value. 

BS8110 generally underestimates the transfer moment capacity of slabs (Table 

7-10,7.12 and 7.14), particularly for slabs which are poorly detailed (e. g. SE2 and 
SE3 with very low amount of top reinforcement). This implied that the width of 

moment transfer may depends on the amount of tension reinforcement. Using the 

value effective width be as prescribe in BS81 10, the value Mt compared to test 

value is very low. This implies that the value be as prescribed is too small. 
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BS81 10 generally over predicted the punching shear strength of interior slabs with 

unbalanced moment. However, the shear capacities for edge and comer column- 

slabs junction were underestimated except specimen for NH4 (subjected to 

unbalanced moment only). 
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Figure 7.67 : Numerical predictions for slab-column junction subjected to shear and 

unbalanced moment 
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Figure 7.68 : Shear resistance for slab-column junction subjected to shear and 

unbalanced moment predicted by BS 8110 
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Chapter 8 

Restrained slabs 

8.1 Introduction 

This chapter presents the results of analysis of slabs with different degrees of 
in-plane restraint (partially or fully restrained). The restraint was provided either by 
the surrounding slab beyond support or by edge beams. To the author's knowledge, no 
information on the study of punching shear for restrained slabs with shear 
reinforcement is available in the literature. Therefore, only slabs without shear 
reinforcement were analysed. The analysis used same set of "constant" parameters 
described previously in section 6.1. 

column s ecimens tested by Rankin 

In addition to the conventional specimens described in section 6.2.1, Rankin 
(1987) extended the test to a series of full panel slab-column specimens (see Figure 
8.1) to include the effect of compressive membrane action. These slabs were simply 
supported along the four edges with comers free to lift and subjected to a concentrated 
load at the centre of slab. 

The main variable in these slabs was the degree of in-plane restraint which 
depends on the length of the portion of slab beyond the support. The slabs had 

constant span of 640mm, but the size of slabs ranged from 800mm to 1600mm. 
Others variable included, thickness of slab (45.5-64mm), flexural reinforcement ratio 
(0.517%-1.107%) and concrete strength. The details are summarised in Table 8.1. 

Owing to symmetry, only one-quarter of the slab was modelled as shown in 
Figure 8.2. The applied load was simulated by uniformly distributed load over the 

element representing the loading stub. Concrete slab was discretised by using one 
layer of twenty node solid elements. 

Predicted ultimate loads are shown in Table 8.2. It ranges from 69.7% to 
106.8% of the experimental values. The average of predicted ultimate load is 86.9% 

of experimental ultimate load with 10.2% standard deviation. 
All slabs were predicted to fail either in flexure punching mode or pure 

punching mode (see Table 8.2). For slabs with relatively low reinforcement ratio 
(0.5%), the conventional specimen (slab 10, Table 6.3) failed in pure flexure mode. 
However, the large panel specimens (R3-05 and R5-05, Table 8.2) were predicted to 
fail by punching. This shows that lateral restraint not only increased the punching 
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shear capacity, it also changed the mode of failure. Figure 8.3 shows that the higher 

the degree of restraint (longer the portion of slab beyond support, higher the restraint), 

stiffer the response and higher the ultimate load. Slab R5-08 (size=1600) was 

predicted to behave with a much stiffer response and higher ultimate load than the rest 

of slabs. This is because its concrete strength was very much higher than the rest. 
Although the predicted ultimate load of slabs was generally lower than the actual 

ultimate load, the rate of increase in strength with restraint as predicted from 

numerical analysis was higher than that from experimental results (Figure 8.4). 

In order to trace the development of membrane action, vector plot for third 

principal strain shows that the slabs were subjected compressive stress throughout the 
depth of slab (Figure 8.5). 

The predicted ultimate load and mode of failure by using BS8110 are 

presented in Table 8.3. Predictions of ultimate load by BS81 10 were much lower than 

the actual ultimate load (71.2% of experimental ultimate load with 7.9% standard 
deviation) and in addition showed incorrect mode of failure for some of the slabs. 
This table also shows that higher the restraint, poorer the predictions because the code 
does not include the effect of membrane action. 

11 4L 

(a) Conventional specimen 
L 
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(b) Full panel specimen 
Figure 8.1 Loading and support conditions 
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------------------ 

PLAN 

ELEVATION 

Figure 8.2 Finite element mesh 

-ge panel specimens (Rankin) 

Slab Size 
(MM) 

h 
(MM) 

d 
(MM) 

fcu 
(N/mm2) 

p 
(%) 

Ptest 
(kN) 

RI-08 800 51.00 40.50 37.70 0.802 65.22 
R2-08 1000 51.00 40.50 38.90 0.802 64.81 
R3 -ýUF 1200 51.00 40.50 41.10 0.802 69.66 
R4-08 1400 51.00 40.50 33.50 0.802 71. Z7 

R5-08 1600 51.00 40.50 53.80 0.802 77.84 
R2-1 1 1000 51.00 40.50 40.10 1.107 69.73 
R4-1 1 1400 51.00 40.50 4jýA 1.107 81.59 
R5-11 1600 51.00 40.50 38.90 1.107 87.89 
R3-05 1200 51.00 40.50 38.50 0.517 56.16 
R5-05 1600 51.00 40.50 38.50 0.517 62.51 

R3A-08 1200 57.00 46.50 38.30 0.800 96.41 
iý5-A-08 1600 57.00 46.50 39.60 0.800 95.34 
R3B-08 1200 45.50 35.00 36.90 0.799 55.22 
R5B-08 1600 45.50 35.00 39.40 0.799 60.34 
R3C-08 1200 64.00 53.50 41.30 0.800 112.47 
R5C-08 1 1600 64.00 53.50 44.10 0.800 126.27 
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Table 8.2 . Comparisons befiveen experimental results and numerical predictions 
(Rankin 

Test results Numerical Predictions 
Slab Ptest 

(kN) 
*Failure 
Mode 

Pnum 
(kN) 

I Failure 
mode 

PnumýPtest 

RI-08 65.22 s 47.04 fp 0.721 
R2-08 64.81 s 50.40 fp 0.778 
R3-08 69.66 s 62.64 s 0.899 
R4-08 71.47 s 57.60 s 0.806 
R5-08 77.84 s 83.16 s 1.068 
R2-1 1 69.73 s 55.68 s 0.800 
R4-1 1 81.59 s 73.44 S 0.900 
R5-1 1 87.89 s 74.66 s 0.849 
R3-05 56.16 S 54.72 

- - 
fp 0.974 

R5-05 62.51 s C2 
. 
40 s 0.998 

R3A-08 96.41 s 67.20 S 0.697 
R5A-08 95.34 s 81.60 S 0.856 
R-3)B-08 55.22 s 44.93 s 0.814 
R513-08 60.34 s 51.00 s 0.845 
R3C-08 112.47 s 101.52 s 0.903 
R5C-08 126.27 s 124.80 s )88 

Average 0.869 
STDEV 0.102 

*no detail of failure mode is given in the paper, it only stated that all the slabs failed by punching. 
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Table 8.3 : Ultimate Load and Mode of failure predicted by using BS8110 
(Rankin) 

Experiment Predictions by BS8 110 
Slab Ptest 

(kN) 
Failure 
Mode 

PU 
(kN) 

Failure 
Mode 

PulPtest 

Rl-08 65.22 s 53.28 Y* 0.817 
R2-08 64.81 s 53.43 y* 0.824 
R3-08 69.66 s 53.68 y* 0.771 
R4-08 71.47 s 51.47 s 0.720 
R5-08 77.84 s 54.61 s 0.702 
R2-1 1 69.73 s 60.80 s 0.872 
R4-1 1 81.59 s 60.80 s 0.745 
R5-1 1 87.89 s 60.24 s 0.685 
R3-05 56.16 s 35.51 s 0.632 
R5-05 62.51 s 35.51 y* 0.568 

R3A-08 96.41 s 64.50 y* 0.669 
R5A-08 95.34 s 65.22 s 0.684 
R3B-08 55.22 s 39.58 y* 0.717 
R513-08 60.34 s 39.81 y* 0.660 
R3C-08 112.47 s 79.07 s 0.703 
R5C-08 126.27 s 79.07 y* 0.626 

Average 0.712 
I STD V1 0.079---l 

* wrong mode of failure predicted 

Load-deflection response ("Rl-08 to R5-08") 

90 
80 

Z 70 - 
: ýý 60 - 
ö 50 - 
-i .0 40 - 

30 
CL 

< 20 -- 
10 
0 

01234 
Central deflection (mm) 

size= 800 
size=1000 

A size=1200 
)E size=1400 
A size=1600 

56 

Figure 8.3 Predicted load deflection response for constant slab thickness, 
reinforcement ratio and varying slab size 
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Figure 8.4 Predicted load against slab size for constant slab thickness, reinforcement 

ratio and varying slab size 

q 

________ 

(a) Compression flow for RI-08 (size=800) at ultimate load 

q 

(b) Compression flow for R5-08 (size= 1600) at ultimate load 

Figure 8.5 Vector plot for third principal strain 
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8.3 )'lab-beam panels 

Kuang and Morley (1994) tested slabs supported by integral edge beams 

simply supported at the ends. Inplane restrain was provided by edge beams. For all 
these specimens, the clear span of the slab panel was constant at 1.2m. Slab 

thicknesses were 60 and 40 mm. Three levels of reinforcement were used for the 

slabs, i. e. 0.3,1, and 1.6 percent in both directions. The different degree of edge 

restraint imposed at the slab surrounds were provided by different width of the edge 
beams. Details of slabs are summarised in Table 8.4. 

The specimen was placed on four separate pedestals to simulate simple 

support condition for the edge beams (Figure 8.6) and the comers were prevented 
from lifting. The specimens were loaded at their geometric centre through a 120 mm 

square plate, simulating a concentrated load. Owing to symmetry, only one-quarter of 

the slab was modelled (Figure 8.7). 

Predicted ultimate load is shown in Table 8.4. It ranges from 69.8% to 104.8% 

of the experimental values. The average of predicted ultimate load is 83.3% of 

experimental ultimate load with 12.6% standard deviation. All the slabs were 

predicted to fail by punching. A summary of the numerical predictions is presented in 

Table 8.5. 
Inplane restraint has little effect on early behaviour. Deflections are almost 

same at a load level of 20kN as shown Figure 8.8. However, restraint clearly affected 

subsequent behaviour of the slabs. Slabs with higher degree of restraint (with a wider 
beam) display stiffer response and higher ultimate load. Therefore, it appears that 

compressive membrane action plays an important part in the deflection and ultimate 
load of slabs. Figure 8.9 shows that tension developed at the junction between the slab 

and the beam because rotation of slabs was restrained by the edge beam. 

Load carrying capacity of slabs and mode of failure predicted by using 
BS81 10 are presented in Table 8.6. The average of predicted ultimate load is 44.8% of 

experimental ultimate load with 19.8% standard deviation. It can be seen that in all 

cases the experimental failure loads are much higher than those predicted by BS81 10. 

When the reinforcement ratio is 0.3%, the values of experimental failure load are 

approximately 4.4 to 5.3 times higher than those predicted by the code. However, this 

is not suprising because the code does not include the effect of in-plane restraint and it 

is not suitable for analysing restrained slab with low reinforcement ratio where the 

membrane action can have a relatively large effect. For slabs with reinforcement ratio 

of 1% and 1.6% (more likely to fail in shear mode), the actual failure loads are about 
1.4-2.4 times higher than the values predicted by the code. This implies that the 
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influence of restraint is less significant for slabs with high percentage of steel. The 

code gave incorrect mode of failure for almost all the slabs. 
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Table 8.4 , Details-of slab-beam pane SKn nd 

Slab b 
(MM) 

h 
(min) 

d 
(mni) 

fcu 
(N/MM2) 

p 
(%) 

Ptest 
(kN) 

S1 -C03 280 60.0 49.0 48.7 0.3 101.0 
SI-Clo 280 60.0 49.0 33.8 1.0 118.0 
SI-C16 280 60.0 49.0 41.2 1.6 149.0 
S2-CO3 280 40.0 31.0 48.1 - -0.3 49.0 
S2-C 10 280 40.0 31.0 45.8 1.0 70.0 
S2-CI6 280 40.0 31.0 42.6 1.6 68.0 
SI-BIO 140 60.0 49.0 45.9 1.0 116.0 
S2-BO3 140 40.0_ 

-, - 
31.0 50.8 0.3 42.0 

S2-B 10 140 40.0 31.0 
_59.5 

1.0 69.0 
SI-AIO 70 60.0 49.0 - 46.5 - 1.0 99.0 
S2-A03 70 

- 
40.0 31.0 47.8 0.3 43.0 

_S2-AIO 
1 70 40.0 31.0 60.3 1.0 63.0 

width of edges beams 

. 
between exp-crimental results and numerical predictionS 

Kua P- g -. -q -n 
d- M-0 r -Ie-v-) 

Experimental Numerical 
Slab Ptest 

(kN) 
*failur 
Mode 

Pnum 
(kN) 

failure 
Mode 

PnumlPtest 

S1 -C03 101.0 s 105.8 fp 1.048 
sl-ff-10 118.0 s 82.3 s 0.698 
SI-C16 149.0 s 104.2 s 0.699 
S2-CO3 49.0 s 49.0 fp 1.000 
S2-CIO 70.0 s 52.2 s 0.746 
S2-C 16 68.0 s 47.1 s 0.692 
SI-BlO 116.0 s 94.1 s 0.811 
S2-1303 42.0 s 39.9 fp 0.950 
S2-13 10 69.0 s 59.2 fp 0.858 
SI-AlO 99.0 s 93.5 fp 0.944 
S2-AO3 43.0 s 34.6 fp 0.804 
S2-AlO 63.0 s 46.8 fp 0.743 

Average 0.833 
STDEV 0.126 

All the slabs were broadly classified as failing in punching shear mode. 
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Table 8.6 : Ultimate Load and Mode of failure predicted by using BS8110 

(Kuang and M-o-r-le4 

Experiment Predictions by BS8110 
Slab Ptest Failure Pu Failure PUIPtest 

(kN) Mode (kN) Mode 
SI -CO3 101.0 s 22.84 y* 0.226 
si-clo 118.0 s 70.76 y* 0.600 
SI-C16 149.0 s 88.44 s 0.594 
S2-CO3 49.0 s 9.14 y* 0.187 
S2-CIO 70.0 s 29.30 y* 0.419 
S2-C 16 68.0 s 43.69 Y* 0.643 
SI-1310 116.0 s 73.23 y* 0.631 
S2-BO3 42.0 s 9.14 Y* 0.218 
S2-B 10 69.0 s 29.94 y* 0.434 
SI-AIO 99.0 s 73.32 Y* 0.741 
S2-AO3 43.0 s 9.14 Y* 0.213 
S2-AlO 63.0 s 29.97 Y* 0.476 

Average 0.448 
STDEV 1 0.198 

1 
*wrong mode of failure predicted 
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Figure 8.8 Load-deflection for slabs with same thickness, reinforcement ratio and 
different width of edge beam (S2-CO3, S2-1303 and S2-AO3) 

q 

Figure 8.9 Crack pattern for specimen S2-BO3 at ultimate load 
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8.4 ýujly restrained slab 

Taylor and Hayes (1965) tested a series of fully restrained slabs subjected to 

punching shear. The slabs, which were 890 square and 76mm. thick, were loaded at the 

centre by square plates with side length varying between 51 and 152 mm. These slabs 

were supported at their edges on roller bearing giving spans of 864mm. The slabs 

were tested in pairs - in one group lateral expansion was effectively prevented by a 

massive steel frame, while in the other the slabs were free to expand. The flexural 

steels were distributed equally in two directions. The details of slabs are shown in 

Table 8.7. 

ibs and test results (Taylor and hayg4 

Series Slab P 
N 

size of loaded 
area (mm) 

fCU 
(N/mm. 2) 

support 
condition 

Ptest 
(kN) 

2S2 51.0 32.40 simple 71.1 
2R2 51.0 32.40 restrained 82.2 
2S3 76.0 30.70 simple 91.2 
2R3 76.0 30.70 restrained 112.8 

2 2S4 1.57 102.0 29.00 simple 85.8 
2R4 102.0 29.00 I restrained 136.8 
2S5 127.0 27.60 simple 96.6 
2R5 127.0 27.60 restrained 142.2 
2S6 152.0 23.00 simple 96.6 
2R6 152.0 23.00 restrained 154.5 
3S2 51.0 28.50 simple 78.5 
3R2 51.0 28.50 restrained 78.5 

3 3S4 3.14 102.0 28.30 simple 115.2 
3R4 102.0 28.30 restrained 132.4 
3S6 152.0 27.10 simple 150.1 
3R6 152.0 27.10 restrained. 169.2 

The slab geometry and finite element discretization is shown in Figure 5.2. 

The applied load was simulated by uniformly distributed load over the element 

representing the loading plate. Concrete slab was discretised by using one layer of 

twenty node solid elements. For restrained slabs, the lateral movement at slab edges 

were prevented (Figure 8.1 Ob). 

253 



Chapter 8 Restrained slabs 

CZ PLAN 

ELEVATION ELEVATION 
(a) Simply supported (b) Restrained slab 
Figure 8.10 Finite element mesh and boundary conditions 

A summary of numerical predictions is presented in Table 8.8. The ultimate 
loads of all the restrained slabs were over estimated. It is believed that this was due to 

the assumption made in the analysis, that the lateral movement at edge of slabs were 

prevented. But in reality, bowing of steel frame will occur. Thus the lateral movement 

will never be 100% prevented. The average of predicted ultimate load is 100.4% of 

experimental ultimate load with 23.8% standard deviation. This seem like a rather 

poor prediction, but if simply supported slabs are analysed separately, the 

corresponding values are 83.3% and 10.4%. For restrained slabs an average of 124.8% 

with standard deviation of 11.1 % are obtained. 
Most of the simply supported slabs were predicted to fail by punching. 

However, crushing of concrete occurred over a wide area of all the restrained slabs 

and the flexural steel of these slabs either did not yield or the yielding of steel was 

concentrated near the loading plate. Therefore, all the restrained slab were categorised 

as failing by crushing of concrete. 
Figure 8.11 shows that tensile strain at mid span was very small which means 

the cracks were fine for restrained slab, where as the tensile strain are large (wider 

crack) for simply supported slab. This indicates that compressive membrane action 

plays an important part in the control of cracking in slabs. Similarly, the values of 
deflection were smaller for the restrained slabs than for simply supported slabs(Figure 
8.12). The experimental results shows that the restraint had little effect on failure load 

for heavily reinforced slabs (p=3.14%). Numerical results also exhibited similar trend, 
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but due to the difficulty of simulating real boundary conditions, the increase in failure 

load due to restraint for this series is slightly higher than the experimental values. The 

increase of load carrying capacity due to restraint is more significant for slabs with 
lower amount of flexural reinforcement (p=1.57%), particularly for those slabs loaded 

through larger loading plate. 
The predicted ultimate load and mode of failure by using BS81 10 presented in 

Table 8.9. The average of predicted ultimate load is 101.3% of experimental ultimate 
load with 20.0% standard deviation. The code predicted a reasonably accurate 

ultimate load because most of slabs failed by crushing (i. e. controlled by 
6.25 N/mm2) and the effect of restraint is less significant for heavily 

reinforced slab. 

aA3LWr -qnAB-uW 

Experimental results Numerical predictions 
Series Slab 

Marking 
Ptest 
(kN) 

Failure 
Mode 

Pnum 
(kN) 

Failure 
Mode 

PnumlPtest 

2S2 71.1 s 64.8 fp 0.911 
2R2 82.2 s 102.0 s 1.240 
2S3 91.2 s 68.4 fp 0.750* 
2R3 112.8 s 141.0 s 1.250 

2 2S4 85.8 s 69.1 fp 0.805* 
2R4 136.8 s 157.3 s 1.150 
2S5 96.6 s 81.6 y 0.845* 
2R5 142.2 s 155.8 s 1.095 
2S6 96.6 s 67.2 fp 0.696* 
2R6 154.5 s 184.3 s 1.193 
3S2 78.5 s 79.2 s 1.009* 
3R2 78.5 s 110.9 s 1.413 

3 3S4 115.2 s 103.7 s 0.900* 
3R4 132.4 s 184.8 s 1.400 
3S6 150.1 S 111.6 fp 0.744* 
3R6 s 210.0 s 1.241 

Simply supported Average I. U4U 
STDEV 0.238 

N. B. : No detail of mode of failure is given in the paper, it only mentioned that most slabs failed by 

punching, and extensive yielding of flexural reinforcement occurred in some slabs. 
N_QLe For simply supported slabs Average=83.3%, STDEV=10.4% 

For restrained slabs Average=124.8%, STDEV=11.1% 
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Tahl ý 8.9 : Ultimate Load and Mode of failure predicted by using BS8110 

LTaylo ar And Lhay-W 

Test results Predictions by BS81 10 
Slab Ptest 

(kN) 
Failure 
Mode 

Pu 
(kN) 

Failure 
Mode 

PulPtest 

2S2 71.1 s 76.40 c 1.075 
2R2 82.2 s 76.40 C 0.929 
2S3 91.2 s 111.17 C 1.219 
2R3 112.8 s 111.17 C 0.986 
2S4 85.8 s 119.09 S 1.388 
2R4 136.8 s 119.09 s 0.871 
2S5 96.6 s 117.14 s 1.213 
2R5 142.2 s 117.14 s 0.824 
2ý-6 96.6 s 110.23 s 1.141 
2R6 154.5 s 110.23 s 0.713 
3S2 78.5 s 71.88 c 0.916 
3R2 78.5 s 71.88 c 0.916 
3S4 115.2 s 143.25 c 1.243 
3R4 132.4 s 143.25 c 1.082 
3S6 150.1 s 146.69 s 0.977 
3R6 169.2 s 146.69 s 0.867 

Average 1.013 
STDEV 0.200 

q 

(a) 2S4, simply supported 
q 

_______________________ :: 
(b) 2R4, restrained 
Figure 8.11 Crack pattern for slabs 2S4 and 2R4 at failure 
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Figure 8.12 Load-deflection response for slabs 2S4 and 2R4 

8.5. Punching-with in-plane restraint 

Previous sections show that in-plane restraint will increase the load carrying 

capacity of the slabs. However, those tests only cover the parameters over a certain 

range. Since the present finite element model can mimic the behaviour of restrained 

slabs reasonably well, the influence of the in-plane restraint was studied numerically 

over the full range (i. e. increase the lateral stiffness until there is no further increase in 

ultimate load of slabs). The full panel slab-column specimens (Figure 8.1) tested by 

Rankin (1987) were used for this purpose. The increase of lateral stiffness was 

achieved by increasing the length of portion of slab beyond the support. 
Figure 8.13 shows that punching capacity of slabs were increased due in-plane 

restraint in all cases. However, the enhancement is more significant for lightly 

reinforced slabs and less significant for heavily reinforced slabs. This figure also 
indicates that the maximum enhancement of shear capacity was achieved at a length 

of portion of slabs beyond the support of about 700mm. For further increase in length, 

the beneficial effect is low due to crushing of concrete. 
The effect of thickness of slab for restrained slab (length of the portion of slab 

beyond the support=680mm) is shown in Figure 8.14. It shows that the reinforcement 

ratio has little influence on the ultimate punching capacity for thin slabs since the 

0................... 
................ 
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most likely failure mode is crushing of concrete. However, the influence of 

reinforcement ratio is significant for thicker slabs. Figure 8.15 shows that the higher 

concrete strength, the higher the ultimate load for restrained slabs because the failure 

mode is controlled by crushing of concrete. 
From the above observation, the enhancement of punching capacity due to in- 

plane restraint highly depends on the ductility of slabs (e. g. low reinforcement ratio 

and thin slab). Therefore, it is recommended to provide shear reinforcement for flat 

slab structure to ensure a ductile behaviour. Consequently the enhancement due to 

membrane action can be guaranteed. 
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0 200 400 600 800 1000 1200 1400 1600 1800 2000 

portion of slab beyond the support (mm) 

Figure 8.13 Effect of in-plane restraint on ultimate punching capacity for slabs with 

constant span/depth ratio, concrete strength and varying reinforcement ratio 

(h=5 I mrn, span=640mm, fcu=40 N/mm2) 
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Figure 8.14 Effect of thickness of slab on punching shear capacity for restrained slabs 

(span=640mm, fcu=40 N/mM2, length of the portion of slab beyond support--680mm ) 
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Figure 8.15 Effect of concrete strength on punching shear capacity for restrained slabs 

(h=5 I nim, span=640mm, length of the portion of slab beyond support=680mm ) 
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8.6 7onclusions 

Following conclusions can be drawn from the results of analysis of restrained 

slabs :- 

Generally, the present model predicted correct mode of failure for all restrained 

slabs. However, it slightly over predicted the ultimate load for all fully restrained 

slabs (Figure 8.16). 

The enhancement of punching capacity due to in-plane restraint highly depends on 
the ductility of slabs. If a design is to include the effect of compressive membrane 

action, it is recommended to provide shear reinforcement, so that ductile 

behaviour can be guaranteed. 

BS8110 generally underestimates the failure load of slabs (Figure 8.17) and 

predicted incorrect mode of failure because the code does not include the effect of 
in-plane restraint. 
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Figure 8.16 Numerical predictions of ultimate load for restrained slabs 
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Chapter 9 Conclusions and Recommendations 

Chapter 9 

Conclusions 
-and 

Recommendations 

9.1 General conclusions 

This thesis presents a study of punching shear capacity of Flat slab-column 

connections. The main conclusion from the work is that the current model gives a 
good prediction of the behaviour of slabs failing in punching shear and can be used 

with confidence in practice. From the results of analysis, the following detailed 

conclusions can be drawn: 

From this study, it was concluded that Kotsovos' model is a good model for three 
dimensional analysis of punching shear problem. However, with the limited 

amount of analysis done using ABAQUS,, the predictions were poor; more work 

needs to be done before drawing firm conclusions. 

2. Computational cost can be reduced substantially by using suitable values for the 
following numerical parameters: 

Convergence tolerance generally does not greatly affect the ultimate load and 
behaviour of slabs, but smaller value increase the computational cost 
tremendously. 5% tolerance deemed acceptable. 

" Applying small load increments for highly non-linear parts and large load 
increments at early stage of loading gave reasonably good results. 

" Within limits, the predictions are not mesh dependent. So, a finer mesh 
arrangement near the critical zone and coarser mesh for elements further away 
from failure region is recommended. 

" Generally, using one element through the thickness of slab predicted 

reasonably good results. 

3. The following conclusions can be drawn from the parametric study for material 
parameters : 

Within limits, the effect of tensile strength of concrete on ultimate load of 

slabs is insignificant, but it will influence deflection and strain in steel for 

lightly reinforced slabs. A low tensile strength of concrete may cause 
divergence of the solution. 
Tension stiffening has a more significant effect on the structural response of 
lightly reinforced slabs than on the response of heavily reinforced slabs. 
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Reducing the tensile strength immediately after cracking can better reflect the 
loss of stiffness due to cracking of concrete. 
Shear retention factor generally does not affect the paths of responses vs. load. 
However, a smaller value of shear retention factor is preferable because too 
large a value may lead to overestimation of failure load and also lead to the 

predicted mode of failure of slabs being flexural where as the actual failure of 
the slabs is by punching shear. 
Different types of shear reinforcement provide different degrees of 
confinement. Shear reinforcement, such as off cuts of I-sections and shear 
studs provide a higher degree of confinement than stirrup. It is necessary to 
include the confinement effect of concrete for slabs with shear reinforcement 
to ensure good predictions. 

4. Predictions by the present finite element model generally agree with the 

experimental results in terms of mode of failure and behaviour for various type of 

connections (including restrained slabs) with and without shear under different 

load combinations. But it overestimates the failure load although it predicted the 

correct mode of failure for slabs with shear sl2an-depth ratio (a /d) less than 1.7 

and fully restrained slabs. 

5. The trend of the parameters governing punching shear strength predicted by 

present model correlates very well with test data, Kinnunen-Nylander model and 
BS81 10. 

6. Finally, Figure 9.1 shows the predicted failure load and the corresponding 

experimental load for one hundred and seventy eight slabs. Clearly, if Ppred=0.8 
P., gives a good lower bound and can be used with confidence- in design. 
Correlation between experimental and numerical prediction with 95% confidence 
limits are shown in Figures 9.2 and 9.3. 
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9.2. Recommendations for future work 

This section recommends further research in this field as follows : 

Softening behaviour of concrete in tension for short span slabs. 

2. Influence of in-plane restraint for slabs with shear reinforcement subjected to 

punching shear. 

3. Extension of the investigation to flat slabs with opening and perforated slabs. 

4. There is plenty information on the factors governing punching shear strength for 

interior slabs subjected to shear only. However, no systematic study of the factors 

governing punching shear for slab-column junction subjected to a combination of 

shear and unbalanced moment especially for edge and comer column-slab 
junctions has been undertaken. The in-house program provides a useful tool for 

this task. 

5. The work can clearly be extended to the analysis of prestressed slabs particularly 
for slabs with unbonded cables which are most commonly used in practice. 
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Appendix A: Sample calculations using BS8110 

Al Interior Slab 

Example: Specimen G5 

AM Shear capaci 

Dimensions and d= 159 mm 
Material Properties Lx = 3000 mm 

I 

Cx Ly = 3000 nim 
Ly 

Cx = 200 mm 
CY = 200 mm. 
fcu = 43.4 N/mm2 
fy = 670.0 N/Mm2 

400.0 N/mm2 
Shear force at column PC ý Vniaruod uO 800 mm 
face, Pc vm. = Vf-, 

ý :56.2 5 6.25 N/mm2 Vma, 
PC 795.0 kN 

First perimeter, u CX+3d 677.0 mm 
Cx 43d 

Cy+3d = 677.0 mm 
u 2708.0 mm 

Fý Px = 1.31% 

........... Py = 1.31% 

Pavg = 1.3 1% 
A, = 1256.0 mm2 

- Shear force at first Pv(in) =Vc+Vs VC = 1.26 N/mm2 
perimeter, Pv(in) Vc = v,. ud VC = 542.5 kN 

Vs = fyv. Asv vs = 502.4 kN 

vc 0.79p 1/3 400 
1/4( 

fc 
1 

1/3 
Pv(in) = 1044.9 kN 

Shear force at a 

perimeter outside shear 836 USV = 3344.0 mm 
reinforcement region, Pv(out) = vc-usvd 

PV(Out) cn El CO 

............. 

Pv(out) = 670.0 kN 

Shear Capacity, Pu Smaller of [PC, Pv(in), Pv(out)) Pu = 670.0 kN 
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A1.2 MoMent capasiý 

Moment capacity, M 

0.9x = 
fy A, 

0.67f,,, b 

Take b=1000 mm 

d-0.45x: 5 0.95d 

M =f A. z xv ys 

0.9x = 46.5 mm 
135.8 mm 

MXX = MYY 

Mxx = 183.6 kNm/m 
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A2 Edge Slab 

Example: Specimen JS2 

A2.1 Shear capacity 

Dimensions and d= 122 mm. -7 Material Properties I Lx = 1372 mm cx 
IL= 1880 mm Iy Ly 
ý :]C, 

Cx = 254 min 

ICy= 
254 mm. 

------------------ fcu = 61.2N/mm2 Lx 
fy = 420.0 N/mm2 
fvv = 480.0 N/Mm2 

Shear force at column Pc v .. a,. uod UO 762 mm 
face, Pe V. :56.2 5 vm,, x 6.25 N/mm2 

I PC 581.0 kN 
First perimeter, u* Cx+1.5d= 437.0mm, 

Cx +1.5d 

.......... 
C +3.0d= 620.0mm. y 
u= 1494.0 mm Cy 4ad 

PX 0.80% 

.......... Py 1.28% 
1 04% . Pavg 

A, = 1914.0 mm2 
Shear force at first Pv(in) = Vc + Vs VC = 1.26 N/mm2 
perimeter, Pv(in) Vc = vc. ud VC = 229.6 kN 

. yv. 
Asv Vs =f vs = 918.0 kN 

vc 0.79p 1/3 400 Pv(in) = 1147.6 kN 

Shear force at a 
perimeter outside shear ............ USV = 1900.0 mm 
reinforcement region, Pv(out) = vc. usvd 
Pv(OUt) 823 7 

292.0 kN 

Shear Capacity, Pu Smaller of [PC, Pv(in), Pv(out)] Pu = 191.40 kNI 
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A2.2 Moment capacity 

Width of slab for 

transfer of moment by bb +2( b =C +2Cx y = Cy 
steel 

7 

m 62 m = 762 mrr, 
c: 

bc cy 

] ] 

Moment transfer by 
0.9X 

441 0-9x 10.0 mm 
steel, Mt 0.67f,,, bl z 115.9 mm 

Mt 3 6.2 kNm 
z=d-0.45x: 5 0.95d 

M, = ý A z . ' ' 

Effective width of slab 
for maximum allowable .. Cx be = Cy + Cx 
moment capacity. = 508.0 mm b. 

E 
C, 

Y 

Maximum allowable - moment capacity, 2f MI. 
max = 0.1 5bd 

c,, 52.1 kNm 

EMt. 

max Mt. max 
Moment transfered to M 36.2 kNm 
column, M I 
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A3 Corner Slab 

Example: Specimen NH5 

AM Shear capacity 

Dimensions and d= llgmm 
Material Properties Lx = 1075 mm 

I L= 1075 mm. 
Ly 

II Cx = 250 mm 
cx C= 250 nim y 7 C, 64.5N/mm2 fcu = 

Lx 
. fy = 440.0 N/mm2 

-I fyv = 480.0 N/mm2 

Shear force at column PC v,,,,,,. uod uo 500 mm. 
faceý Pc v. :56.2 5 v,, Iax 6.25 N/mm2 

PC 371.9 kN 
First perimeter, u Cx+ I . 5d = 428.5 mm 

Cy+1.5d = 428.5 mm 
U. = 857.0 mm 

Cx +1.5d px =0.981% 
.......... Py =0.981% 

C, 41.5d Pavg = 0.98 1% 
A, = 567.0 mm2 

Shear force at first Pv(in) = Vc + Vs VC = 1.24 N/mm2 

perimeter, Pv(in) Vc = vc. ud VC = 126.8 kN 
vs = fyv. Asv vs = 272.2 kN 

1/3(400 
1/4 1/3 

vc 0.79p 
) Pv(in) = 399.00 kN 

d 

Shear force at a 

perimeter outside shear USV = 1294.0 mm 
reinforcement region, Pv(out) = vc. usvd 
PV(Out) 

647 

.............. 191.4 kN 

7 

Shear Capacity, Pu I Smaller of [PC, Pv(in), Pv(out)] Pu = 191.40 kN 
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A3.2 Moment capacity 

Width of slab for For slab with square 
transfer of moment by column, 
steel 

bl = b2 
bi =Cx+C y 

500 mm 
b2 Mxx Myy 

Moment transfer by 
0.9X 

441 j f 0-9x 12.2 mm mm 
steel, Mt . 67f,,, bj 

.9 z 112.9 mm mm 
9. Mxx = 29.88 kNm Nm 

z=d-0.45x: 5 0.95d Mt = 42.2 kNm 

M" fy, 4,. z 

M, -M=-+ WY-Y 

Effective width of slab 
for maximum allowable be = Cy + (Cx/2) 
moment capacity. = 375.0 mm 

b. 
Cf 

Maximum allowable 
moment capacity, 2f Mlana, 0 

CU 
Mlmax 0.1 5bd 

cu Mt. max 51.4 kNm 
mt. max 
Moment transfered to M 42.2 kNm 
column, M 
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Appendix B 

Flow chart for the computer program for Kinnunen and 
Nylander's model 

For the definition of notation, please refer to Figure 2.9 (page 10). 
Details of Equations 2.3 and 2.4 are given in pages II and 12. 
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Appendix C 

Numerical results 

This section presents following numerical predictions for all slabs following : 

Ultimate load of slabs 

0 mode of failures 

0 Load-deflection response 

0 Principal compressive stress and strain in concrete 

0 Yielding of flexural steel 

0 Crack pattem 

All computed crack pattern and yielding of flexural steel is shown at the last 

converged increment. 
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Cl Simply sup-ported slabs 

This section presents numerical results for internal slab-column connections 

subjected to shear only. 

For yielding of flexural steel, only shaded area is shown. 

used 

x 

For crack pattem, 

................. 

synim 

synun 
This 
view 
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Rankin's conventional slabs 
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C1.1 Rankin's conventional slab-column specimens (withou 
shear reinforcem "n 

Experimental results Numerical Predictions 

Slab Ptest 
(kN) 

Failure 
Mode 

Pnum 
(kN) 

Failure 
Mode 

PnumIPtest 

1 36.42 y 32.40 y 0.890 
2 49.08 y 40.79 y 0.831 
3 56.55 y 44.90 y 0.794 
4 56.18 y 42.14 y 0.750 
5 57.27 y 51.83 y 0.905 
6 65.58 s 53.78 fp 0.820 

7 70.94 s 46.82 s 0.660 
8 71.09 s 46.78 s 0.658 
9 78.60 s 55.41 s 0.705 

10 43.59 y 35.52 y 0.815 

11 55.00 y 42.24 y 0.768 

12 67.06 s 47.08 s 0.702 

13 49.39 y 42.82 Y- 0.867 

14 52.45 y 44.16 y 0.842 

15 84.84 s 75.60 s 0.891 

1A 45.19 y 41-03 y 0.908 

2A 66.24 y 50.41 y 0.761 

3A 89.72 s 72.94 s 0.813 

4A 97.43 s 91.20 s 0.936 

1B 28.85 y 24.96 y 0.865 

2B 37.63 y 36.50 y 0.969 

3B 56.67 y 49.00 s 0.864 
4B 72.52 s 50.40 s 0.695 

1C 62.74 y 34.80 y 0.845 
2C 87.86 s 53.02 fp 0.738 
3C 124.14 s 95.96 s 0.773 
4C 125.94 s 102.10 s 0.810 

Average 0.810 
STDEV 0.083 
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Yielding of flexural steel for conventinal slabs tested by Ranki 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 

Slab "I" 

Slab "2" 
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Slab "3" 

Slab "4 
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2? 1--21 

Slab "5 

Slab "6" 
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Slab "7" 

Slab "8" 
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Slab 9 

AcII 

Slab " 10 " 
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Slab II 

Slab " 12 " 
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Slab " 13 " 

Slab " 14 " 
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Slab " 15 " 
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II 2 

I I 77 t 

-- 

Slab "IA" 

Slab "2A" 
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Slab "3A" 
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Slab "113" 

-A 

Slab "213" 
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Slab "3B" 

Slab "413" 
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Slab "IC" 

Slab "20' 
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Slab "3C" 

Slab "4C" 
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Conventional slabs tested by Rankin 
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CE, 

11911 
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CL 
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CE 
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Q 

" IB " 

" 2B " 

II tt t 

" 3B " 

" 4B " 
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It ic if 

Q 

\\I i ". ' ' 1 
" 2C " 

Q 

-7 C- 

" 3C " 

CE 

1 "- 
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..... 

� \ \% 

" 4C " 
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Regan's slabs 
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C1.2 Regan's slabs (witho-ut shear reinforeemen! ) 

Experimental results Numerical Predictions 
Slab av/d Ptest 

(kN) 
Failure 
Mode 

Pnurn 
(kN) 

Failure 
Mode 

Pnum/Ptest 

SSI 10.58 194.0 s 182.6 s 0.841 
SS2 10.58 176.0 s 134.5 s 0.764 
SS3 10.58 194.0 s 154.0 s 0.792 
SS4 10.58 194.0 s 144.0 s 0.742 
SS5 10.32 165.0 s 146.9 s 0.890 
SS6 10.32 165.0 s 130.5 s 0.791 
SS7 10.32 186.0 y 163.1 y 0.877 
SS8 6.24 825.0 s 856.0 s 1.038 
SS9 6.41 390.0 s 345.6 s 0.886 

SSII 6.41 117.0 s 90.0 s 0.769 
Vi 6.13 170.0 s 160.0 s 0.939 
V2 5.64 280.0 s 245.0 s 0.874 
V3 5.89 265.0 s 264.0 s 0.996 
V4 5.92 285.0 s 274.0 s 0.960 
V5 5.72 285.0 s 288.0 s 1.010 
SPI 4.67 197.0 s 163.0 s 0.827 
SP2 3.00 227.0 s 203.0 s 0.894 
SP3 1.33 235.0 s _ 288.0 s 1.226 
SP4 1.67 185.0 s 

_ 191.5 s 1.035 
SP5 1.00 338.0 s 403.2 sý 1.193 
SP8 1.67 172.0 s 172.8 s 1.005 
SP9 1.00 284.0 s 288.0 s 1.014 

SPIO 1.00 421.0 s 507.0 s 1.204 
SPI 1 1.67 182.0 s 237.0 s 1.302 
SP12 1.00 221.0 s 268.0 s 1.213 
SP13 1.67 109.0 s 116.0 s 1.064 
SP 14 0.67 623.0 s 686.4 s 1.102 
SP15 1.33 368.0 s 383.0 s 1.041 
SP16 0.67 451.0 s 475.0 s 1.053 
SP17 0.63 1099.0 s 1049.0 s 0.955 
SP18 0.67 142.0 1 y1 187.2 fp 1 1.318 

Average 0.988 
STDEV 0.161 
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Yielding of tension steeL Specimens SSI-SS7 (Regan) 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 

S2 

SS3 
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SS4 

SS5- 
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SS6 

SSI 

Note 

Flexural steel in slab "SSIII did not yield. 
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Yielding of tension steel, Specimens SSB-SS II (Regan) 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 

ssa 

SS9 
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ssil 
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Yielding-QfknsiQn-gg-dýecime, 
-n-S-Y-1--'V5 

(&Vauný 
NB. : The numbers on the drawing indicate strain in steel at Collapse expressed as a ratio of yield strain 

V3 

V4 
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ýL5 

Notg 

Flexural steel in slab WV and "V2" did not yield. 
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Yielding of flexural steel for specimens SP I -SP 18 (Reganký 

NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 

SP8 

SP9 
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SP14 

Note 

Flexural steel in following slabs did not yield : 

SP 1, SP2, SP3, SP4, SP5, SP6, SP7, SP 10, SP 11, SP 12, SP 1 3_, SP 15, SP 16, SP 17, 
SP18. 
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Predicted crack pattem for slabs SSLUlf-C-IRIA 220) 
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" SS7 " 
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Predicted crack pattem for slabs SSR-SS13 CIR 2 
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Predicted crack pattem for slaba VL-V5 4RW. "n 
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Predicted crack pattem for spgQjMýýýý 
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Chana and Desails slabs 
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C1.3 Chana and Desai's slabs (yKith shear reinforceme-ni) 

Experimental results Numerical predictions 
Slab Ptest (kN) Failure Mode Pnum (kN) Failure Mode PnumIPtest 

C1 805.0 s 686.8 s 0.850 

C2 1094.0 s 938.4 S 0.858 

C4 1302.0 s 1142.4 fp 0.877 

C5 1382.0 s 1248.0 s 0.903 

C6 1283.0 s 1404.0 fp 1.094 

C7 1492.0 s 1232.0 s 0.826 

C8 1324.0 s 1152.0 s 0.870 

C9 1135.0 s 912.0 fp 0.804 
Average 1 0.885 1 
STDEV 1 0.090 1 
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for specimens CI -C9 (Chana and Desaj) 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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Flexural steel in slab "Cl" did not yield. 
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Gomes' slabs 
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CIA Gomes' slabs (yKith shear reinforcement) 

Slab Test results Numerical predictions PnumIPtest 
Ptest (kN) Failure mode Pnum (kN) Failure mode 

GI 560.0 S 579.6 s 1.035 

G2 693.0 s 660.0 s 0.952 

G3 773.0 s 690.0 s 0.893 

G4 853.0 s 810.0 s 0.949 

G5 853.0 s 810.0 s 0.949 

G6 1040.0 fp 864.0 fP 0.831 

G7 1120.0 fp 900.0 fp 0.804 

G8 1200.0 fp 972.0 fp 0.810 

G9 1227.0 fp 1008.0 fp 0.822 

GIO 800.0 s 720.0 s 0.900 

GlI 907.0 fp 684.0 fp 0.754 

Average 0.876 
STDEV 0.091 
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Yieldi exural steel lor 5 immos c,, -G,, 
(cornes) 

NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of y1CIO Main 

" G2 " 

" G3 " 

369 



11 G4 " 

" G5 " 

370 



" G6 " 

" G7 " 

371 



" G8 " 

1G J9 if 1 

372 



" GIO " 

" Gll " 

Note 

Flexural steel in slab "GI" did not yield. 

373 



Interior slabs with shear reinforcement tested by Gomes 
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Inter or slabs with-shear reinforcement tested by Gomes 
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Interior slabs with shear reinforcement tested by Gomes 
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Yamada's slabs 
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C1.5 Yamada's slabs (with shear reinforcement) 

Slab Test results Numerical predictions Pnumlptest 
Ptest (kN) Failure mode Pnum (kN) Failure mode 

KI 658.0 s 640.0 s 0.972 
K2 950.0 S 924.0 s 0.972 
K3 1183.0 s 1064.0 S 0.899 
K4 1153.0 s 1064.0 s 0.923 
K5 1440.0 s 1064.0 s 0.739 
K6 1274.0 s 1080.0 s 0.848 
K7 1498.0 s 1080.0 s 0.721 

Average 0.868 
STDEV 0.103 
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Yielding of flexural steel for s ecimens K1 -K7 (Yamada et al) 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 

" K3 " 

" K4 " 
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" K7 " 

Note 

Flexural steel in slabs "K1 "and "K2" did not yield. 
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Predicted crack pattem for specimens KI -K7 (Yamada et al) 
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Seible's slabs 
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C1.6 Seible's slabs (with shear reinforeemeni) 

Slab Test results Numerical predictions Pnumlptest 

Ptest (kN) Failure mode Pnum (kN) Failure mode 
SC7 623.0 fp 510.0 fp 0.819 

SC8 592.0 fp 510.0 fp 0.861 

SC9 594.0 fp 510.0 fp 0.859 

SCIO 537.0 fp 540.0 fp 1.006 

SCII 596.0 fp 540.0 fp 0.906 
[SC12 595.0 fp 540.0 fp 0.908 

Average 0.893 
STDEV 0.065 
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Yielding of flexural steel for specimens SC7-SC 12 (Seible et al) 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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SM series (CIRIA 220) 
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C2 Slab-column connections with shear and moment transfer 

Slab Test results Numerical predictions PnumIPtest 
Vtest (kN) Failure mode 

-Vnum 
(kN) Failure mode 

SMI 122.00 s 91.20 s 0.748 

SM3 95.00 s 76.80 s 0.808 

SM4 101.00 s 72.00 s 0.713 

SM5 72.00 S 54.00 S 0.750 

SM6 105.00 S 62.40 s 0.594 

SM7 105.00 s 72.00 s 0.686 

SM8 49.00 s 44.20 s 0.902 

SM9 97.00 s 66.00 s 0.680 

SNI 10 88.00 s 57.20 s 0.650 

SM11 91.00 s 69.00 s 0.758 

SM12 88.00 s 61.60 S 0.700 
Average 0.726 
STDEV 0.082 

For vidding offlexural reinflorcement, 

used 

For crack pattern, 
............................ 

'ymm 

t 
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view 
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Yielding of tension steel, SM series (CIM (C A. 220) 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 

Slab SMI 

Slab SM3 
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Slab SM7, LF=0.69 

Note 

Flexural steel in slabs SM5, SM8, SM9, SMIO, SMI I and SM12 did not yield. 
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Predicted cr SM series (CIRIA 22! Q) 
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AM series (Elgabry and Ghali) 
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C2.2 Interior slab-column connections with shear reinforcement 
(Elgabry and Ghaij) 

Test results Numerical results 
Specilliell t, c 

N/rnm2 
p 

(%) 

Vtest 

(kN) 

Mtest 

(kNm) 

failure 

mode 

Num/Exp 

ratio** 

failure 

mode 

AMI 35.00 1.10% 150 130 s 0.95 s 
AM2 33.70 1.10% 150 162 S 1.10 s 
AM3 39-00 1.23% 300 142 fp 1.15 fp 

AM4 40.80 1.39% 300 150 fp 1.15 fp 

F: ý: m/ 1 =-5 :ý5.6=0 1.39% 450 105 t-p 1.05 fp 

Average 1.05 

STDEV 0.084 

For yielding offlexural rcinforcement, 

....................... 
used 

......................... 

For crack pattern. 
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NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 

Slab AM I 

Slab AM2 
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Slab AM3 

Slab AM4, tension steel, LF=1.30 
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Slab AM5 
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13 redicted ýrack pattcrn for AM series (Elgabry and Amin) 
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SE series (Zakaria) 
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C2.3 Edge column-slab connections tested bY Zakaria (without 
shear reinforcement) 

Slab Experimental Numerical 
No. fc u Vtest Mtest Failure Num/Exp Failure 

N/mm2 (kN) (kNm) Mode V M Mode 
-1 44.6 198.0 39.5 s 0.859 0.958 s 

ý-E -2 54.6 192.0 34.0 y 1.128 1.001 y 
-3 45.8 

- - 
256.0 32.5 y 1.000 1.158 y 

ý-E -4 3 43 152.0 30.5 s 1.000 1.102 s 
SE5 55.2 164.0 38.5 fp 0.950 1.047 fp 
§-E -6 40.0 149.0 27.5 fp 0.969 1.052 fp 
S E, 7 49.5 129.0 31.7 fp 1.042 1.280 fp 
S E8 -7 5 T2 0 136.0 33.7 s 1.150 1.092 s 

Average 1.012 1.086 
STDEV 0.095 0.100 

N Q-te- 

From numerical results, concrete at most of gauss point near column-slab junction had 

crushed. Therefore it was not possible to plot the principal compressive stress. The 

plot principal compressive strain here was based on the calculation of six strains. 

For yielding of flexural reinl'orcement 
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Yielding of tension steel, SE--series (Zakaria) 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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Note 

Flexural steel in slabs SE1 and SE4 did not yield. 
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Predicted crack pattem br SE series CZ&ada) 
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JS series (Mortin and Ghali) 
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CZA Edge column-slab connections with shear reinforcement 
(Mortin and GhaW 

Slab Experimental results Numerical results 
No. Flexural steel Vtest Mtest failure Num/Exp failure 

N/rnm2 px(%) pý, (%) (kN) (kNm) mode ratio mode 
isl 43.20 0.60 0.95 140.9 60.5 s 1.05 s 

49.00 0.80 1.28 231.0 95.3 y 0.89 y 
S JS3 --44.70 7-0 ). 80 1.28 212.3 89.5 y 1.00 y 

jS ýJS 4 -322-0 0.80 1.28 141.0 60.3 S 0.97 s 
JS5 -5 8-0 0.80 1.28 212.3 86.4 fp 0.96 y 
JS6 733- ý) -0 0.80 1.28 201.0 85.6 y 0.95 v 

Averagý = 0.670 
STDEV = 0.053 

For yielding ot'llexural reinforcement 
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For crack pattern. 
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Yielding of tensi W-Ghwi) NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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Slab JS2 
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Predicted crack pattern for JS series (Mortin and Ghali) 
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SC series (Walker) 

436 



C2.5 Corner column-slab connectiouLtested by Walker (without 
shear reinforcement) 

Experimental Numerical 
--S Ia -b Vtest Mtest Failure Num/Exp Failure 

(kN) (kNm) Mode V M Mode 
SCI 81.00 36.40 fp 1.100 1.595 fp 

--ý-C2 75.00 35.70 s 1.000 1.372 s 
ý-O 74.00 45.60 fp 0.963 1.038 fp 
SC4 64.00 24.00 fp 1.031 1.666 fp 

--ý-C -5 82.00 26.90 s 1.024 1.579 s 
SC7 82.00 39.00 s 1.150 1.150 s 

Average 1.045 1.400 
STDEV 0.680 0.260 

For yielding offlexural reinforcement 
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For crack pattern, 
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Yie J, SC series OYalkerý 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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Predicted! Qrack pattem for SC seriesýWalker) 
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NH series (Hammill and Ghali) 
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C2.6 Corner column-slab connections with shear reinforcement 
(Hammill and G "ali 

Test results Numerical results 
Specimen fc, 

2 N/mm 
ý Applied 

forces 
Vtest 
(kN) 

Mtest 
(kNm) 

failure 
mode 

Num/Exp 
ratio 

failure 
mode 

NI-11 -- 41.50 V, M 146.9 60.8 s 0.90 s 
NI 12 42-20 V, M 139.1 56.9 s 1.05 s 
NH3 36.40 V, M 146.1 58.4 s 0.95 s 
N114 36.90 M 0 46.6 s 1.20 s 
NI-15 -3-3. -20-- r VM 179.0 79.0 s 0.90 S 

Average 1.00 
STDEV 0.127 

For yielding offlexural reinforcement and crack pattern, 
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Yielding of tension steel, NH series (11ammil and Ghaji) 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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)r NH series (Hammill and Amin) 
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This section presents numerical results for restrained slabs. 

For yielding offlexural steel, only shaded area is shown. 
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Full panel specimens (Rankin) 
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C3.1 Full panel-slab-colum 
- ms tested by Rankin 

Test results Numerical Predictions 
Slab Ptest 

(k-N) 
*Failure 
Mode 

Pnurn 
(kN) 

Failure 
mode 

PnumIPtest 

--jE-08 65.22 s 47.04 fp 0.721 
R2-08 64.81 s 50.40 

' 
fp 0.778 

-T35-08 69.66 s 62.64 s 0.899 
R4-08 71.47 s 57.60 s 0.806 
R5-08 77.84 s 83.16 s 1.068 
R2-1 1 69.73 s 55.68 s 0.800 
R4-1 1 81.59 s 73.44 S 0.900 
R5-11 87.89 s 74.66 s 0.849 
R3-05 56.16 S 54.72 fp 0.974 
R5-05 62.51 s 62.46-- s 0.998 

-R3-A-08 96.41 s 67.20 s 0.697 
A-08 95.34 S 81.60 s 0.856 

R313-08 55.22 s 44.93 s 0.814 
R513-08 60.34 s 51.00 s 0.845 
R3C-08 112.47 s 101.52 S 0.903 
R5C-08 126.27 s 124.80 s 0.988 

Average 0.869 
STDEV 0.102 

*no detail of failure mode is given in the paper, it only stated that all the slabs failed 
by punching. 
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Yieldilig of tension steel, Large panel tested by Rankin 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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Predicted crack-patteM for large panel specimen (Rankia) 
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Slab-beam Panels 
(Kuang and Morley) 

476 



C3.2 Slab-beam panels (Kuang and Morle 

Experimental Numerical 
Slab Ptest 

(kN) 
*failure 
Mode 

Pnum 
(kN) 

failure 
Mode 

PnumlPtest 

S1 -C03 101.0 s 105.8 fP 1.048 
SI-Clo 118.0 s 82.3 s 0.698 
SI-CI6 149.0 s 104.2 s 0.699 

--§2-CO3 49.0 s 49.0 fp 1.000 
-ý-2-Cl 0 70.0 s 52.2 s 0.746 

ý-2 - 
-C1 6 68.0 s 47.1 s 0.692 

SI-BIO 116.0 s 94.1 s 0.811 
-T2-BO3 42.0 s 39.9 fP 0.950 

S2-B 10 69.0 s 59.2 fp 0.858 
SI-Al. 0 99.0 s 93.5 fp 0.944 
S2-A03 43.0 s 

-- 
34.6 

- 
fp 0.804 

S- 10 S2_Al 

E 

S2-AlO 63.0 S 
J 46.8 fp 0.743 

Average 0.833 
STDEV 0.126 

* All the slabs were broadly classified as failing in punching shear mode. 
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Yielding of tension steel, Slab-beam panels tested b Kuan 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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Erc1icted crack pattern for slab-beam panels (Kuang and Morley) 

rL 

11 SI-CO3 " 

Q 

" SI-clo of 

Q 

iiII1IIITT 
to Sl-C16 " 

486 



Q 

CL 

" S2-CO3 " 

" S2-C 10 " 

" S2-C16 " 

487 



" Sl-BIO " 

" S2-BO3 " 

" S2-B 10 " 

488 



rL 

" SI-AIO " 

" S2-AO3 " 

rL 

: : 1 1 
" S2-AIO " 

489 



Fully restrained slabs 
(Taylor and Hayes) 
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C3.3 Fully restrained slabs (Taylorand-Hayes) 

Experimental results Numerical predictions 
Series Slab 

Marking 
Ptest 
(kN) 

Failure 
Mode 

Pnum 
(kN) 

Failure 
Mode 

PnumIPtest 

2S2 71.1 s 64.8 fp 0.911 
2R2 82.2 s 102.0 s 1.240 
2S3 91.2 s 68.4 fp 0.750* 
2R3 112.8 s 141.0 s 1.250 

2 2S4 85.8 s 69.1 fp 0.805* 
2R4 136.8 s 157.3 s 1.150 
2S5 96.6 s 81.6 y 0.845* 
2R5 142.2 s 155.8 s 1.095 
2S6 96.6 S 67.2 fp- 0.696* 
2R6 154.5 s 184.3 s 1.193 
3S2 78.5 s 79.2 s 1.009* 
3R2 78.5 s 110.9 s 1.413 

3 3S4 115.2 s 103.7 s 0.900* 
3R4 132.4 S 184.8 s 1.400 
3S6 150.1 s 111.6 fp 0.744* 
3R6 169.2 s 210.0 s 1.241 

* Simply supported Average 1.040 
STDEV 0.238 

N. B. : No detail of mode of failure is given in the paper, it only mentioned that most 
slabs failed by punching, and extensive yielding of flexural reinforcement occurred in 

some slabs. 
hj= For simply supported slabs Average=83.3%, STDEV=10.4% 

For restrained slabs Average=124.8%, STDEV=11.1% 

Predicted strain in flexural steel for all restrained slabs below yield value. 
i. e. flexural steel in slabs 2R2-2R6,3R2-3R6 did not yield. 
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Yielding of tension-steel, Restrained slab tested by Taylor and-Hayes 
NB. : The numbers on the drawing indicate strain in steel at collapse expressed as a ratio of yield strain 
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Predicted -crack l2attem for restrained slabs (Tayla and Haye5) 
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