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Abstract 
 

The main focuses of this research were to examine the capabilities of solution 

techniques to attempt to monitor the nucleation process in crystallisation, and to 

investigate structural outcomes of crystallisation processes, with reference to 

polymorphism and intermolecular interactions.   

 

To achieve this, work on the investigation of nucleation and early-stage crystallisation 

was carried out at the Department of Pharmaceutical Sciences at the University of 

Strathclyde and also at the central synchrotron facility of Station 2.1 at the SRS 

Daresbury.  Small angle X-ray scattering (SAXS) was carried out on solutions of 

methyl-4-hydroxybenzoate (pMHB) and 2-bromobenzoic acid.  These studies were 

carried out after developing solution methods to enable us to determine the point at 

which crystals emerged from solution.  This was achieved using Focussed Beam 

Reflectance Measurements.  Structural studies were also carried out on pMHB to 

examine its polymorphic behaviour and crystal structures were solved at various 

temperatures from 100K to 300K.  The crystal structure of methyl-2,5-

dibromobenzoate was also solved at 100K after discovering it sublimes at room 

temperature.  This structure could only be solved from a twinned crystal and indicated 

the appearance of interesting halogen interactions occurring. 

 

Structural studies have also been carried out using the bromanilic acid molecule as a 

focus to generate a number of co-crystal complexes to examine their halogen bonding 

capability and to determine any structural significances in their formation. 

 

Co-crystal complexes of bromanilic acid and a variety of molecules were made in 1:1 

and 1:2 ratios to see if any additional halogen interactions could be observed or 

induced, in addition to the expected hydrogen-binding interactions.  The co-crystals 

included a range of picolines and lutidines as well as bromo-substituted pyridines to 

attempt to induce halogen interactions.  This generated a number of new compounds 

whose structures were determined using single crystal X-ray diffraction and the 

interactions were monitored to observed whether any defined patterns with regards to 

the tendency of bromanilic acid co-crystallisations to produce predictable patterns of 

intermolecular interactions could be determined. 
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Chapter 1. Introduction 

 

1.1: Polymorphism 

 

Polymorphism in molecular crystals is defined as the ability of a substance to exist in 

different molecular arrangements or different molecular conformations within the 

lattice under similar external conditions.  The wide range of molecules that exhibit 

polymorphism can be explained by Ostwald’s law of stages, which states that “when 

leaving an unstable state, a system does not seek out the most stable state, rather the 

nearest metastable state which can be reached with loss of free energy”1.  This 

describes the idea that when crystallisation occurs the molecules, as they assemble, 

will simply fall to the nearest minimum energy state with a loss in free energy and can 

then continue to seek out the most stable form.  This can ultimately result in changes 

in the polymorphic form adopted even after an apparently stable structure appears to 

be found.  The co-crystal structure of carbamazepine and isonicotinamide shows that 

through a solvent mediated transformation the initial needles produced (form II) will 

be replaced with plate like crystals of form I over time2. 

 

Polymorphism can generally be traced back to the work of Mitscherlich in the early 

1800s and he is widely credited with the first recognition of the phenomenon from his 

studies on crystals of certain phosphates and arsenates3.  Since this discovery 

polymorphism has become an area of huge study and of critical importance in many 

areas, including the food and speciality chemicals industries, however arguably the 

most significant of these would be the pharmaceutical industry.  This can be 

highlighted in many major studies including that of Ritonavir1, a drug developed for 

the treatment of HIV.  The discovery of a second more thermodynamically stable 

form of Ritonavir, changing the physical properties and characteristics and making the 

original formulated form disappear from the production process, led to a complete 

stop on production and ultimately cost the manufacturer (Abbot Laboratories) 

millions of dollars in lost sales and in R&D for reformulation.  It should be mentioned 

that even after a polymorphic form ‘disappears’ it can be possible to generate this 

initial form again but a different route will have to be found.  There are many other 

examples of disappearing polymorphs4,5,6, causing a great deal of concern among 
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researchers in the field as this finding shows that an apparently ‘simple’ process such 

as crystallisation in fact could not be controlled.   

 

Another common example of polymorphism in pharmaceuticals is the case of 

paracetamol, a widely used analgesic that has for a long time been known to have two 

distinct crystal forms in which single crystals can be produced.  Form I, the common 

form, is monoclinic7, while form II is known to be orthorhombic8.  Subsequent studies 

using variable temperature x-ray diffraction, on Form II,9 and neutron diffraction, on 

Form I,10 have been carried out to characterise the structures fully.  Form I is the 

thermodynamically stable modification9 at room temperature, whereas form II is the 

metastable form under ambient conditions.  This is a rather simple example of 

polymorphism where the two forms that can be solved by single crystal diffraction 

have unique crystal systems (Figure 1.1.1). 

 

 

 

Figure 1.1.1: The packing motifs of the two polymorphs of paracetamol 

 

There are also several more complicated instances of polymorphism, many of which 

have been widely studied over the course of many years.  One of these is the heavily 

studied anticonvulsant drug carbamazepine (Figure 1.1.2).  There are four known 

polymorphs of carbamazepine11,12,13,14
, however solvates and hydrates are also known 

to exist and in one particular automated parallel crystallisation study Forms I-III were 

found along with one hydrate form and no fewer than 8 organic solvates15.   
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O
H2N

 

Figure 1.1.2: Structure of carbamazepine 

 

Due to the significant polymorphism present in this material computational studies 

have also been carried out as there are clear advantages in being able to predict any 

occurrence of polymorphism.  The computational studies carried out were concerning 

the predictability of forms II-IV, as current computational prediction models do not 

permit the study of structures where Z’ is greater than 1.  The two monoclinic 

polymorphs forms III and IV were found to be the most stable structures alongside a 

third, currently unobserved structure.  Forms I and II were 6 and 8 kJ/mol above the 

global minimum, where the energy for Form I was generated from the known crystal 

structure, and along with many other potential structures in the energy landscape 

would have been unlikely to be suggested as possible polymorphs16.  This study 

emphasises how important it is to develop computational techniques further, with the 

aim of benefiting crystal structure prediction. 

 

The material with the most known polymorphs is 5-methyl-2-[(2-nitrophenyl)amino]-

3-thiophenecarbonitrile (ROY; Figure 1.1.3)).  This is known as ROY due to the 

characteristic colours of the distinguishable polymorphs that are known to exist.  

These forms are orange needles, yellow prisms, red prisms, orange plates, yellow 

needles and orange-red plates17. 
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Figure 1.1.3: Molecular structure of ROY 

 

The six polymorphs mentioned above are all available in single crystal forms from 

recrystallisation from solvents, with no solvates known.  This is a unique case and 

makes ROY the organic compound with the most available polymorphs from simple 

recrystallisation.  There are also now three further polymorphs that have been 

discovered from less studied routes18,19.  This goes to show the importance of 

alternative approaches to polymorph screening to include not only solvent 

crystallisations, but also allowing for the discovery of further polymorphs via unusual 

routes. 

 

The terminology surrounding polymorphism is a major area of ambiguity with many 

terms relating to small subtle changes in the crystal structure, which may or may not 

be evidence of a new polymorph being produced.  These include 

pseudopolymorphism and conformational polymorphism1.  The first of these relates to 

the formation of solvates and hydrates of which there are many in a wide range of 

studied compounds as highlighted by Jacco van de Streek20.  The second is a much 

more complicated term as any small changes in crystal structures, with reference to 

changing temperature or pressure, etc, of a specific study could be described by the 

author as an incidence of conformational polymorphism.  The potentially narrow 

scope of this field in trying to attribute the occurrence of polymorphism can be 

identified in the study of methyl 4-hydroxybenzoate where a stable crystal structure 

was known to exist21.  Further work was carried out on the crystal structure and a 

reported conformational polymorph was discovered22.  The small changes with 

reference to the original crystal structure, solved at room temperature, were largely 

due to a torsion angle change of less than 6o.  This prompted further discussion and 
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disagreement23, illustrating how an apparent polymorphic transition can sometimes be 

defined at the authors’ discretion. 

 

The relationship between polymorphs and their most stable forms can be described as 

monotropic or enantiotropic24.  If the polymorphs are related monotropically, 

transformation from the metastable form to the stable form is irreversible independent 

of the physical processes that are applied to the structure – a return to the metastable 

crystal structure will not occur.  If the polymorphs are related enantriotropically 

however, the transformation is reversible.  In this case a transition point exists, where 

the free energies are identical, and at temperatures above this, one form is more 

thermodynamically stable than the other, whereas this is the opposite at lower 

temperatures.  There are two proposed mechanisms for such transitions, solid state 

transitions (SST) and solution mediated transformations (SMT)25.  SST are influenced 

by the environment of the crystal, such as pressure and temperature, and also by the 

presence of crystal defects and impurities.  SMT typically occur in solvent and can be 

driven by the change in solubility between the two forms, however at higher 

temperatures it is also possible for a second, less stable, state to be accessed due to the 

increase in energy as a result of heating.   

 

The massive increase in the study of polymorphism has given rise to a significant 

improvement in techniques for monitoring the modifications in crystal structure.  The 

instrumentation available for the detection, characterisation and identification of new 

polymorphs has increased at a significant rate in terms of both in-situ techniques and 

also off-line techniques.   

 

With regards to off-line techniques that are used most regularly these can typically be 

subdivided into four areas; crystallographic, spectroscopic, microscopic and thermal.  

Crystallographic techniques include both single crystal diffraction and powder 

diffraction, from both X-ray and neutron sources.  The significant increase has come 

increasingly in the powder diffraction side with it now becoming routine to solve 

crystal structures to a publishable standard using the quality of powder data and 

structure solution programs now widely available.  Spectroscopic techniques include 

infrared spectroscopy and Raman spectroscopy, and while not able to solve structures 

in terms of the 3-dimensional connectivity, these can give quick analysis of samples 
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to indicate similarities and changes from the starting materials.  Microscopic analysis 

is used to examine the optical properties of crystals for example using electron 

microscopy.  Thermal techniques include differential scanning calorimetry (DSC) and 

thermal gravimetric analysis (TGA) and these are routinely carried out together to 

examine changes in the physical properties of the compounds. 

 

X-ray powder diffraction (XRPD) is still the most routinely used and arguably the 

most important technique for quick determination of products.  It is now possible in 

high throughput labs to produce hundreds of samples each day and using XRPD to 

carry out analysis quicker than ever.  However these techniques require preparation of 

appropriate samples and especially in the example of XRPD, grinding of the samples 

into a fine powder is sometimes able to in itself produce enough energy to produce a 

new polymorph26,27. 

 

1.2: Nucleation 

 

Crystal nucleation is generally viewed as essentially a two-step process, which 

involves the initial formation of clusters followed by the organisation of these clusters 

into ordered crystalline arrangements28.  These clusters are determined to be at 

nucleation when the critical nuclei size is reached.  This point is unique for every 

system investigated and even for polymorphic forms of the same molecule this can be 

different. 

 

Homogeneous nucleation, in which nucleation will occur spontaneously with only 

molecules of the crystallising materials present, will very rarely occur in large 

volumes of solution as these are highly difficult to prepare without the presence of 

impurities.  It is believed that homogeneous nucleation can be controlled 

experimentally by many variables including solubility and temperature2.  

Precipitation in small volumes has been used to study homogeneous nucleation 

processes.  An example of this is the generation of the metastable polymorph of 

nabumetone via capillary based crystallisation29.  Due to the increased evaporation 

time this can also promote the growth of larger crystals in an environment much more 

likely to induce homogeneous nucleation than that of the common sample vial.  

Further studies include the use of emulsion systems to study homogeneous 
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nucleation, this involves the separation of heteronuclei in the dispersion of a melt and 

from the remainder of the drop homogeneous nucleation can occur30,31.  This 

technique was carried out on meta-chloronitrobenzene (m-cnb) from 2 solutions 

containing a mixture including para-chloronitrobenzene (p-cnb).  This also involved 

seeding with m-cnb and the resulting crystallisation resulted in a highest purity of 

99.7% for both of the solutions prepared. 

 

Heterogeneous nucleation processes are significantly more important in 

pharmaceutical systems since extra surfaces can act as nucleation points to promote 

the crystallisation of different crystal structures.  This process can occur via many 

pathways from scratching of the walls of the vessel to accidental nucleation by dust or 

a strand of hair.  This sensitivity to environment is what makes the nucleation process 

so hard to define.  In laboratory and large-scale crystallisations it is often found that 

the nucleation process appears to originate in one section of the reaction vessel.  This 

can be at different areas such as at a cooling spot or the surface of a liquid.  It can also 

be found that a particular spot on the vessel wall or the stirrer can also be the centre 

around which nucleation occurs, this is generally due to faults in the glassware, which 

are impossible to avoid.  In the case where the same glassware is being used for 

another experiment, there may be a seed left behind that will lead to erroneous 

results32.  

 

Whilst thermodynamic models are available to predict polymorphism 

computationally, they do not currently accommodate kinetic factors such as 

nucleation and crystal growth resulting in an inclination to overestimate the tendency 

to form polymorphs15.  There are three well defined regions associated with 

crystallisation (Figure 1.2.1).  The first is a stable, unsaturated, zone where 

crystallisation is impossible.  The second is the metastable zone between the 

solubility and supersolubility curves, where crystallisation is improbable, however if 

seeds were to be implanted in a metastable solution then growth would occur on it33.  

This is the preferred region to carry out controlled crystallisations as this helps to 

prevent any unwanted nucleation from occurring34.  Crystallisation within the 

metastable zone is not common due to the stability of the solution and beyond this 

metastable zone the system is said to be labile, and this is where spontaneous 

nucleation can occur.  Tuning the cooling rate of a supersaturated solution until the 
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first indications of crystallisation can be seen, can control the onset of nucleation.  

This is referred to as the nucleation point.  
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Figure 1.2.1: Illustration of the metastable zone incorporating solubility curve and 

supersolubility curve. 

 

In many cases the best way to control the crystallisation product is to add seeds from 

previously grown crystals35,36 thus being able to control the final product of the 

crystallisation.  Seeding can be carried out either intentionally or unintentionally, 

which leads to the idea of homogeneous and heterogeneous nucleation.  The 

effectiveness of crystal seeding in controlling crystallisation outcomes relies on the 

potential of solid surfaces to promote heterogeneous or secondary nucleation, while 

avoiding heterogeneous nucleation mediated by unknown contaminants.  Roger 

Davey, through the simple example of brown sugar, highlights this theory where just 

one granule is used to produce numerous others of a uniform size and shape37. 

 

 

1.3: Small angle x-ray scattering (SAXS) 

 

Metastable 
Zone 
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X-ray and also neutron small angle scattering are both powerful probing techniques 

that can be used in-situ to study the growth of particles and monitor solution 

changes38,39.  SAXS is widely used to analyse low resolution structure and 

conformational changes of native biological macromolecules in solution40 and has 

come a long way since A. Guinier developed the main principles behind the technique 

during his studies of metallic alloys39.  Progress in these fields have led to the 

manufacturing of significant high – flux dedicated x-ray synchrotron radiation beams, 

such as station 2.1 at the SRS, Daresbury Laboratories, which was used to collect 

some of the data presented in Chapter 4 and 5.  Such a beamline can generate huge 

amounts of data during in-situ experiments, though the analysis of these can be 

difficult and time-consuming. 

 

Low angle scattering can be important for studying the onset of crystallisation in 

solution as at the onset of crystallisation there is no crystallinity, merely the start of 

ordering of molecules in solution.  This allows larger d-spacings to be investigated.  

Such studies are hugely important and could in principle be used to aid in the 

prediction of polymorphism if ever a reliable kinetic profile of crystallisation can be 

produced.  SAXS can also be used as a complementary technique with wide angle x-

ray diffraction (WAXS) which can also be used to study structural changes in 

solution.  When used together they provide complementary methods for determining 

size, size distribution, structural profile and ‘order’ in the solution state.  SAXS 

focuses on the low scattering angles, <10o, and WAXS from 3/4-60o.  

 

SAXS measurements typically are concerned with scattering angles <10o. As dictated 

by Bragg's Law (nλ=2dsinθ), the diffraction information about structures with large d-

spacings lies in this region.  In Bragg’s law, n is an integer, λ is the wavelength of the 

incident and diffracted beam, d is the spacing between the planes in the crystal and θ 

is the scattering angle.  Therefore the SAXS technique is commonly used for probing 

large length scale structures such as high molecular weight polymers, biological 

macromolecules and self-assembled superstructures.  When used in the study of 

proteins and other macromolecules it routinely provides information on the size, 

shape and the radius of gyration of the sample under study.  SAXS measurements are 

technically challenging because of the small angular separation of the direct beam 

(which is very intense) and the scattered beam.  Large specimen-to-detector distances 
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and high quality collimating optics are used to achieve good signal-to-noise ratio in 

the SAXS measurement.  This relies on the availability of SAXS programs which can 

reveal significant signal from the scattering region at low scattering angles.   

 

SAXS has been used in conjunction with Raman spectroscopy in the study of fibrillin 

rich microfibres41.  This enabled the packing of the microfibres contained in the tissue 

and the organization to be monitored.  A combination of these techniques enabled 

changes within the microfibrils to be noted on a macromolecular and submolecular 

level to be noted when the tissue was extended and strained.  With the development of 

SAXS it is possible to carry out experiments such as this and determine the overall 

change in structure on such small scales. 

 

Amorphous carbon films have also been studied using SAXS to develop the technique 

away from purely biological science, and be applied to determine their porosity.  The 

films studied were produced by plasma enhanced chemical vapour deposition 

(PECVD)42, which deposits films at varying argon pressure.  As SAXS probes the 

whole structure, the changes in pore size were able to be determined using GNOM43.  

This enabled 8nm pores to be detected in carbon films produced at high argon 

pressure.  With such determination at small sizes the possibilities for the technique are 

very wide ranging. 

 

SAXS has also been used to monitor solution structures.  This can lead to significant 

prospects with regards to molecular binding in the body.  Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was studied in relation to the method by which it 

transported into the cell surface where glycolytic enzymes are not routinely found38.  

Crystallographic studies found that GAPDH formed dimers whereas all other GAPDH 

type structures formed tetrameric structures.  Through SAXS studies, however, it was 

noted that the protein was in fact tetrameric in solution but it is the arrangement of the 

dimers that alters from previous studies.  Using SAXS it was also possible to monitor 

the impact of the structure upon binding to NAD+, which contracted significantly.  

 

A further study involving solution structures was carried out on the human natural 

killer inhibitory receptor Irp6040.  SAXS data was able to determine that Irp60 is 

monomeric in solution with distinct molecular shape.  This is even though there is no 
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crystallographic data available for this specific protein, showing that in the absence of 

such data SAXS is still able to determine shape in solution. 

 

 

1.4: Studies in the Solid State 

 

Crystal engineering is the design and production of molecular solid state structures 

based upon their functional group capabilities.  This can be done with the aim of 

controlling subsequent physical properties that the molecules will possess.  Crystal 

engineering has become an area of wide scale study and has been developed widely in 

terms of predictability of interactions that are likely to occur. Being able to predict 

structures is still proving a great challenge, including computationally, so there is still 

a lot of knowledge to be gained before crystal engineering will result in confident 

predictions.  This area is open to a great deal of ongoing work and relies on a lot of 

experimental trial and error before reliable predictions will ever be made. 

 

The basic technology project; CPOSS (Control and Prediction of the Organic Solid 

State) project was set up to try and combine the theoretical prediction of 

polymorphism with the practical side of growing polymorphs to push the boundaries 

of polymorph prediction, which would ultimately lead to the ability to confidently 

predict the lowest energy conformation of a specific compound, and the number of 

polymorphs present.  The project, led from University College London, reaches out to 

experimentalists carrying out high throughput XRPD and monitoring early stage 

polymorph formation using solid state NMR and links in with computational studies.  

These computational studies produce energy landscapes to show what is predicted to 

be the lowest energy polymorph.  There have been occasions that this has been able to 

generate the most stable polymorph even taking into account hydrates44, however the 

kinetics behind crystal growth are not well enough understood to be incorporated into 

the calculations and for this reason relative energies of known polymorphs are not 

always predicted correctly, and many possible polymorphs are missed. 

 

The progress incorporated in such a research activity can be measured when both 

experimental data and computationally predicted structures are combined such as in 

the case of the 5-substituted uracils45.  This approach compared the experimentally 
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produced crystal structures of twelve uracils substituted at the 5-position and the 

energy predictions associated with the most likely forms.  The computational studies 

in this work calculated the experimentally produced crystal structures to be within 3kJ 

mol-1 of the global minimum.  This implies that these structures produced were 

indeed within reasonable range of the computationally produced global minimum and 

are determined to be thermodynamically feasible.  

 

The computational methods currently in place still rely purely on energy calculations 

but through computational program development, crystal structure prediction is now 

able to study compounds with Z’>1, more flexible compounds and now co-crystals.  

There are obvious limitations in the reliability of polymorph prediction using the 

current techniques, however there has been progress in terms of crystal structure 

prediction and a way to evaluate this is via the four blind tests carried out so 

far46,47,48,49.  These blind tests, organised by the Cambridge Crystallographic Data 

Centre, are on compounds without widely available structural data and in fact an 

independent figure holds the structural data for the compounds in the tests.  Each of 

the groups that takes part is allowed three predictions, ranked, for each molecule.  For 

the first time in blind test 4 it has been possible for a group (Neumann, Leusen and 

Kendrick) to predict all four molecules correctly and as their top ranked guess, 

however the technique used requires a great degree of computational time.  This 

however proves that significant progress has been made since the first blind test where 

from many attempts only seven guesses were ‘classified as correct’ though with 

numerous structures available around the global minimum even this was inconclusive.  

For this reason it is essential that efforts to improve crystal structure energy prediction 

continue and that inclusion of kinetic factors is developed to aid with the difficulties 

that lie within polymorph prediction. 

 

 

1.5: Pre-Nucleation Studies and Crystallisation Within the Metastable Zone 

 

Pre-nucleation studies are fundamental with respect to increasing knowledge about 

how crystallisation occurs.  Using focussed beam reflectance measurements (FBRM) 

and particle vision and measurement (PVM) it has been possible to monitor a 

polymorphic transition of mannitol50,51.  These techniques enable in-situ monitoring of 
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particle changes without sampling and whilst FBRM records the changes in the chord 

length distribution, PVM enables visual monitoring.  This can have benefits with 

regards to monitoring dissolution and recrystallisation to examine the forms as they 

are being produced.  This also eliminates the need for supplementary techniques to 

examine whether a change has occurred such as XRPD, which as mentioned above in 

itself can sometimes promote a polymorphic transition due to the grinding necessary. 

 

FBRM has also been used to monitor the particle size changes in solution52,53.  The 

FBRM probe has a measurement range of 1-1000µm and can collect data 

measurements every five seconds and transfer them to chord length distribution plots 

(CLD).  Making use of this with an imaging technique such as process video imaging 

(PVI) provided evidence that below 1µm the FBRM was not highly sensitive 

signifying that although the FBRM probe generates an idea of what is in solution it is 

not sufficiently sensitive to provide any evidence on crystallisation kinetics. 

 

Other techniques involved in solution studies include the use of attenuated total 

reflectance ultra-violet (ATR-UV).  This is another in-situ technique that has been 

successfully developed to monitor concentration changes of an organic compound54.  

The UV absorption data acquired can be simply transformed to concentration using 

the Beer Lambert law for the absorbance 

 

A = e c l.   

 

where A is the absorption coefficient, e is the molar absorptivity of the absorber, c is 

the concentration and l is the path length. 

 

The metastable zone refers to the region of supersaturation where spontaneous 

nucleation cannot occur and a seed of the crystal is required to initiate growth.  The 

width of the metastable zone indicates the stability of the solution, the larger the zone 

width the more stable the solution33. 

 

A solute is maintained in solution until a sufficiently high level of supersaturation has 

been developed; this in turn encourages spontaneous nucleation to occur.  It is 
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important to characterize the metastable zone width (MZW) under a specific set of 

operating conditions, which relate closely to the conditions of the final scale 

crystallisation.  The polythermal technique55 involves cooling a saturated solution at a 

fixed rate until nucleation occurs.  This is repeated several times at a variety of 

cooling rates until a reliable MZW can be determined.  The MZW can be considered 

to be characteristic for each crystallisation system as each is unique.  The induction 

period of nucleation is defined as the time that elapses between the instant when the 

supersaturated state is generated and the point of time at which solid phase particles 

become detectable.  This includes the time required for the generation of a critical 

nucleus in supersaturation and the growth to a detectable range, which can be as low 

as 1µm in the FBRM56. 

 

Understanding the MZW is of fundamental importance in being able to control crystal 

growth and is widely studied in this field1.  In depth solubility studies and 

supersolubility studies of a single compound are needed and temperature control is 

crucial.  Reliable dissolution profiles can be determined and these are fundamental in 

the pharmaceutical industry in particular.  This is due to the increase in discovery of 

new polymorphic forms of molecules and the corresponding changes in their key 

physical properties such as solubility.  For this reason it is vitally important to be able 

to carry out these experiments in a clean and controlled environment as even the 

smallest contaminant such as a speck of dust can be known to initiate nucleation. 

 

 

1.6: Experimental Structure and Hydrogen Bonding in Molecular Crystals 

 

Hydrogen bonding is known to be the strongest non-bonding interaction with the 

strongest being similar in strength to that of some conventional covalent bonds.  It is 

proven to be vitally important in both structural chemistry and biology where 

hydrogen bonds provide, for example, vital interactions in the structure of DNA.  

Hydrogen bonds are known to affect the smallest of molecules, such as ice and 

essentially provide the glue that holds a structure together.  Techniques such as 

infrared spectroscopy and NMR can be used to monitor the dynamics and strengths of 

hydrogen bonding systems, however crystallography can tell us precise information 
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about the atomic positions in specific crystal systems and hence about the detailed 

geometry of hydrogen bonds.   

 

From a crystallographic perspective, hydrogen bonding interactions are known to be 

the strongest non covalent interactions with energies ranging from 0.5 – 40 kcal mol-1.  

Pauling first freely used the term hydrogen bond in 1935 to account for the 

interactions in ice57, though the prospect of hydrogen bonding had been advanced 

previously by Latimer and Rodebush (1920)58 and Huggins (1922)59 and has been 

progressively used since.  Pauling stated that in a hydrogen bonding system, X-H- - - 

A, only if X and A were highly electronegative would there be an electrostatic 

interaction between H and A that would in turn be sufficiently high to be termed a 

hydrogen bond60.  This theory however restricts the phenomenon of hydrogen 

bonding to interactions where X and A are any of; F, O, Cl, N, Br or I.  This has led 

to further quantification and led Steiner and Saenger in 1993 to put forth their own 

definition that ‘any cohesive interaction X-H- - - A where H carries a positive and A a 

negative charge and the charge on X is more negative than on H’ can be deemed to be 

a hydrogen bond60.  This definition still holds value today. 

 

Hydrogen bonding is routinely split into three types according to their energy: weak < 

4 kcal mol-1, moderate 4-15 kcal mol-1 and strong 15-40 kcal mol-1 61.  Unusually 

activated donors and acceptors, often in an intramolecular situation, form very strong 

hydrogen bonds60.  Most often they are formed between an acid and its conjugate 

base, X-H- - - X-, or between a base and its conjugate acid, X+-H- - - X.  The 

distinctive characteristic of such interactions is that their bonding is covalent in 

character, for example the X-H and H-A distances are comparable.  An energy range 

of 15-40 kcalmol-1 is to be found for this category.  The main examples include [F- - - 

H- - - F]- and [N- - - H- - - N]+.   

 

The moderate region with regards to hydrogen bond strength is the most common and 

is frequently observed in organic compounds.  Many functional groups that have 

hydrogen bonding capabilities are to be found in this region.  This area of hydrogen 

bonding represents a change from the almost covalent nature of the bonding involved 

in the very strong hydrogen bonds, towards the electrostatic character that is typical 

of hydrogen bonding systems.  These systems are also known to be most common for 
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undergoing hydrogen transfer between donor and acceptor compounds and have been 

widely studied62,63.  For example Schmidtmann et al. studied hydrogen transfer in 

pentachlorophenol – dimethylpyridine (lutidine) complexes64.  By matching the pKa 

of these compounds they could examine how a change in which lutidine isomer was 

used would affect the hydrogen atom position, since even though the lutidine isomers 

are from the same family, their pKas are not identical.   

 

Weak hydrogen bonds are numerous throughout most crystal structures but are not 

widely studied due to the presence of stronger interactions, which are common in 

many crystal structures.  The strongest of these bonds such as O-H- - - π, are 

electrostatic in nature and have energies that are comparable to a bond such as O-H- - 

- O-H.  The energy of these interactions typically lies in the 2-4 kcal mol-1 range.  

This is in contrast to the weakest of the interactions containing C-H donors, which are 

barely stronger than dipole-dipole interactions or dispersion forces60. 

 

Hydrogen bonds are long range and directional interactions and because of this a 

group X – H can be bonded to more than one acceptor at the same time.  In a situation 

where there are two acceptors, A1 and A2, this is called a bifurcated hydrogen bond 

(Figure 1.6.1). 
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Figure 1.6.1 a and b: An example of a bifurcated hydrogen bond donor and 

acceptor 

 
The term bifurcated can also be used to describe the action of an acceptor molecule.    

This has mainly been observed for systems containing weak hydrogen bonds or in 

organometallic compounds.  This is because organometallic systems can be donor rich 

when weak donors are taken into account and in these circumstances bifurcated 

acceptors can occur frequently depending on the ligands surrounding the metal centre.  

This is not a new discovery and in fact can be found to exist in important compounds 

such as glycine65, while a study of tetrachlorohydroquinone also discovered bifurcated 
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hydrogen bonding66.  The three angles associated with a bifurcated hydrogen bond can 

also be used to give an example of the environment of the hydrogen.  That is to say 

that if the three angles add up to 360o, the hydrogen will lie in the plane of the 

hydrogen bonds, however the smaller the angle becomes the more raised above the 

plane the hydrogen atom becomes.  In the literature it is often noted that a bifurcated 

hydrogen bond is written as X-H- - - A1(A2)
60.  This is due to the presence of a 

dominant hydrogen bond and in many cases the weaker bond will be ignored.  It is 

very rarely, if at all, seen that the hydrogen atom will lie equidistant from both 

acceptor atoms.  The dominant interaction will always have the shorter bond distance 

and the angle associated will lie closer to 180o.  This will become apparent in the co-

crystallisation work carried out in Chapter 7 with bromanilic acid. 

 

 

1.7: Crystal engineering and the importance of halogen bonding 

 

Hydrogen bonding has always been recognised as the strongest intermolecular 

interaction due to its directionality resulting in strong crystal networks.  In this regard 

conventional strong hydrogen bonds such as O-H- - - O and N-H- - - O can form a 

predictable network of interactions and are routinely used in terms of crystal 

engineering building blocks.  These interactions are not the only ones currently being 

studied in terms of crystal engineering and there are currently a lot of investigations 

into trying to use weaker interactions such as X- - - O, X- - - N and even X- - - X 

where X represents a halogen atom.  These interactions are considered to be similar in 

strengths to moderate hydrogen bonds, with energies in the region of 4-15 kcal mol-1. 

 

It is known that the halogens Cl, Br and I form short non-bonded interactions in 

crystal structures60.  These close contacts between halogens are deemed to be 

potentially significant in stabilising a structure based on the distance between them 

being less than the sum of their respective van der Waals radii.  These contacts are 

also of high importance in crystal engineering as they form the basis of the “4Å 

chloro rule” described by Schmidt for planar dichloroaromatic compounds67.  This 

rule in itself is however questionable and the nature of the interactions is the cause for 

some debate.  Price et al68 believe that these short contacts are the result of 

anisotropy, whereas Desiraju69 believes that there are special attractive forces present 
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between halogen atoms in the crystal lattice.  Atomic polarisation is an important 

factor as this induces directional interactions formed by the halogens with O and N 

atoms and has been studied in terms of crystal engineering70.  Halogens can give rise 

to a variety of interactions depending on their size and environment where it is most 

likely that fluorine and chlorine atoms will interact mainly in terms of C – H- - - X 

and less in terms of X- - - X, while bromine and iodine atoms tends towards X- - - O 

interactions60.  This is likely to be due to the increased polarisability of the heavier 

halogen atoms giving more directionality. 

 

Whilst halogen bonds, X- - - O, N, have been found to exhibit orientation preferences 

this is not true for halogen – halogen interactions.  It is recognised that halogen 

bonding may be strong enough to be of prime importance in the arrangement of 

molecules in a crystal lattice, however this is certainly not true of halogen – halogen 

interactions.  Nyburg and Faerman71 found the sum of van der Waals radii of the 

halogens varies as a function of the direction of the interaction, i.e. head-on or side-

on.  The values are noticeably higher in the side-on position indicating the importance 

of anisotropy of the electron density of the atom.  Halogen bonding has been studied 

with regards to four p-phenyl-substituted cis-9,10-diphenyl-9,10-dihydroanthracene-

9,10-diols, with the para substituent being either chloro, bromo, iodo or methyl 

substituted72.  This study showed that the O-H- - - O hydrogen bond was present 

throughout, however the methyl substituted compound was found to crystallise in the 

monoclinic P21/c space group whereas the other three halogen containing compounds 

were discovered to crystallise in the P-1 space group each containing competing 

halogen – halogen interactions.  This also provides further evidence against the 

existence of a chloro-methyl exchange rule. 

 

Christer Aakeröy et al. have studied the effect of combining hydrogen bonding and 

halogen bonding interactions in terms of developing supramolecular strategies to 

generate target molecules.  This was done via a series of co-crystallisation 

experiments between a molecule containing two sites with possibilities of hydrogen 

or halogen bonding and a secondary molecule containing a weak and a strong 

hydrogen bond donor and a potential halogen bond donor, where bromo, chloro and 

iodo substitutions were all attempted in this secondary molecule73.  These co-crystal 

studies proved that the strong hydrogen bond interactions, in this case oxime dimers, 
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are always formed.  Only in the iodine-containing secondary molecule was a halogen 

bond formed, for the chloro and bromo substituted molecules the weak hydrogen 

bond was formed (figure 1.7.1).   

 

 

 

Figure 1.7.1 a and b:  The crystal structures of the iodo and bromo substituted co-

crystal compounds studied by Aakeröy73. 

 

Figure 1.7.1 a shows the I- - - N halogen bond formed alongside the F- - - F halogen – 

halogen interactions.  In the bromo substituted analogue only Br- - - F halogen – 

halogen interactions are found to exist, these link the molecules in three dimensions. 

 

Further work has, however, led to the successful generation of halogen bonds to 

supplement the presence of strong hydrogen bonds in co-crystal compounds74. 

 

 

1.8: Co-crystallisations 

 

Co-crystallisations are becoming more widely used with regards to trying to develop 

complexes with specific physical properties, and there is a large market for this in the 

pharmaceutical industry in particular.  An example of this is where a co-crystal can be 

formed to encourage the formulation of an active pharmaceutical ingredient in a form 

that will be taken up in the body, for example with favourable solubility properties.  

In crystallography terms the terminology surrounding co-crystals can still be slightly 
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contentious, especially with regards to co-crystals involving hydrogen transfer where 

these may be more accurately referred to as salts.  Co-crystals are commonly 

described as ‘structurally homogeneous crystalline materials that contain two or more 

neutral building blocks’75.  This definition however can lead to ambiguity as any co-

crystal that shows hydrogen transfer should be described as a salt.  Problems can then 

arise if studying the hydrogen transfer as a function of temperature as the hydrogen 

atom has sometimes been shown to migrate towards an acceptor atom as a function of 

temperature, meaning originally the two were neutral, however as temperature has 

changed this is no longer the case.  During the work presented here, these will be 

referred to as co-crystals to remove any ambiguity with regards to situations where 

hydrogen transfer occurs and others where hydrogen transfer does not occur.   

 

Co-crystals are often produced in an attempt to generate a specific interaction and to 

determine how reliable such an interaction is in a family of related molecules.  The 

production of such an interaction may not ultimately be successful, however it is still 

important to try and determine which interactions occur and are therefore more 

dominant.  A lot of this chemistry is however trial and error with regards to crystal 

engineering, however there is more progress being noted in this field also.  A crystal 

engineering approach was recently undertaken with caffeine to attempt to produce a 

co-crystal that is stable at high relative humidities76.  Caffeine was co-crystallised 

with a series of dicarboxylic acids and a predicted intermolecular hydrogen bond 

motif was produced.  
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Chapter 2: Theory 

 

2.1 Crystallography 

 

Crystallography is the best way of obtaining detailed atomic structural information 

from a well ordered solid material.  This allows analysis of crystalline solids most 

commonly by use of X-ray or neutron diffraction.  These techniques allow the 

examination of a wide range of materials and provide precise information about the 

location of atoms in the structure.  X-ray diffraction is the most commonly used and is 

the most widely available especially in terms of in-house equipment.  Neutron 

diffraction is less widely used due to the specialised sources and equipment required 

and this tends to involve significant cost and time at specialised central facilities such 

as ISIS, RAL, Oxfordshire, UK or the ILL (Institut Laué Langevin) facility in 

Grenoble, France.  It should also be noted that high intensity X-rays are also available 

at central facilities, at synchrotron radiation sources such as the Diamond Light 

Source in Oxfordshire, and previous to that at SRS, Daresbury Laboratory.  The high 

intensity of these synchrotron sources allow the study of very small or weakly 

scattering samples, for example, that are not amenable to study in the home 

laboratory. 

 

X-ray and neutron diffraction are very different to each other because of the different 

mechanism by which they interact with the crystal.  X-rays are electromagnetic 

radiation and interact with the electron clouds of atoms via an electrostatic interaction, 

whereas neutrons interact with the nuclei of atoms via the strong nuclear force.  The 

X-ray scattering factors increase strongly with atomic number (~Z, with intensities 

varying as Z2), whereas the neutron scattering length shows a fairly random trend of 

value with increasing atomic number; there is a very slight tendency to increase with 

Z, but there is a large amount of fluctuation in the absolute values.  For this reason 

neutron diffraction is highly important with regards to finding precise hydrogen atom 

positions as these can often be poorly resolved, or hidden by the presence of heavier 

atoms when studying by X-ray diffraction especially in the presence of many heavy 

atoms.   
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The hydrogen atom position found via X-rays is also generally not accurate, with 

shortened bond distances due to the electron (from which the X-rays scatter) being 

pulled into the covalent bond.  For this reason it is recognised when considering 

hydrogen bonds then it is best to use donor – acceptor distances from X-ray 

determinations rather than distances from the calculated hydrogen atom position.  

This is not the case in neutron experiments where the nuclear position is found and 

due to the scattering length of hydrogen being negative for neutrons, hydrogen atoms 

appear as a very distinctive trough in a difference Fourier map rather than the usual 

peaks.  Neutrons also travel much further through crystals than X-rays probing far 

more of the material, due to only weak interactions with matter.  However, this, 

combined with the fact that the sources have a low flux, means that larger crystals are 

required to be generated before neutron diffraction can be carried out.  Both single 

crystal techniques make use of the same fundamentals of diffraction theory, however 

there are advantages and disadvantages for the use of either. 

 

Single crystal crystallographic techniques are employed to determine details of the 

molecular and crystal structure of the solid – bond lengths, bond angles, 

intermolecular interactions – and are the source of some of the most precise data on 

these structural features.   

 

X-ray diffraction is a technique routinely carried out in-house making it a reasonably 

accessible source for crystal structure determination.  It should also be stated that both 

neutron and X-rays have powder diffraction capabilities and whilst X-ray powder 

diffraction is still routinely used for sample identification purposes there are now 

emerging examples of crystal structure determination from powder diffraction alone77.  

This has been made possible due to high resolution powder data being available and 

also the substantial progress in the programs available for solving structures from 

powder data.   

 

 

2.2: Diffraction Theory 

 

Much of the theory that is fundamental to crystallography and solving crystal 

structures was known well before it was trialled experimentally on a crystalline 
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material.  The fundamentals rely on the theory of diffracted light and also the use of 

mathematical models describing the geometry of crystal lattices.  This, coupled with 

the discovery of X-rays78 enabled von Laue to demonstrate that crystals could diffract 

X-rays79.  The first structure solved was the structure of salt in 191380.  From this the 

field of crystallography has grown and become a significant process in terms of 

chemistry, materials science and biology.  Diffraction methods are often used not only 

with regards to crystal structure determination but also to distinguish between 

different polymorphs of the same material, examine the purity of a product and also to 

closely examine the bonding and interactions within a crystal structure. 

 

2.2.1: The Unit Cell and Crystal Lattice 

 

A crystal is built up of a basic pattern of points repeated in three dimensions; this is 

called the crystal lattice.  A repeating motif can be placed onto each lattice point to 

build up the three dimensional structure by translation, which occurs whether there are 

any other forms of symmetry or not.  If each repeating molecule is represented by a 

single point, the result of this translation will show a regular array of points, which 

indicate the repeating motif.  This array of points is the lattice. 

   

Defining the repeating geometry of the structure, the unit enclosed by lattice points 

that is repeated by translation to produce the crystal is called the unit cell, where the 

unit cell usually contains the equivalent of one lattice point (though this can be more).  

The unit cell can contain either one molecule, or a combination of many molecules.  

In three-dimensions, each unit cell has a shape size defined by six parameters; lengths 

a, b and c and angles α, β and γ (Figure 2.2.1.1). 
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Figure 2.2.1.1: A three dimensional unit cell. 

 

Rotation and reflection symmetry impose restrictions on the unit cell parameters and 

while every three-dimensional lattice has inversion symmetry, the restrictions applied 

result in crystal systems being divided into seven types (Table 2.2.1.2).  In addition to 

these seven crystal systems, the presence of different numbers of lattice points inside 

the unit cell (called cell centrings) generates the Bravais lattices, and internal 

symmetry elements present within the unit cell lead to the definition of the space 

group defining the overall symmetry of the crystal contents, which is dependent on 

the crystal system.  The crystal system adopted by a crystal does limit the number of 

space groups available.   

 

Crystal System Unit Cell Restrictions Unit Cell Types 

Triclinic No restrictions P 
Monoclinic α = γ = 90o, β ≠ 90o P, C 
Orthorhombic α = β = γ = 90o P, C, I, F 
Tetragonal a = b, α = β = γ = 90o P, I 
Trigonal a = b, α = β = 90o, γ = 120o R 
Hexagonal a = b, α = β = 90o, γ = 120o P 
Cubic a = b = c, α = β = γ = 90o P, I, F 
P = primitive, C = centred, I = body – centred, F = face-centred, R = rhombohedral 
 
Table 2.2.1.2: Unit cell types with associated unit cell requirements and possible 

Bravais lattices. 
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A primitive unit cell contains lattice points only at all 8 corners and all of these are 

equivalent, however centred cells are sometimes used, generating a larger cell which 

contains more than one lattice point.  When lattices are described in this manner the 

six primitive lattices must be combined with eight centred lattices and this generates 

the 14 Bravais lattices.  The asymmetric unit is the most basic repeating unit, which 

relates molecules in one unit cell to each other.  This is only usually a small part of the 

unit cell and when the symmetry operations are carried out on the asymmetric unit the 

unit cell contents can be defined and thus the entire crystal can be generated.  Adding 

the symmetry elements to the possible lattices leads to a total of 230 unique space 

groups into which every regular structure must belong.  The space group is the 

collection of all symmetry elements for an infinitely repeating pattern. 

 

Molecules can undergo rotation symmetry in crystals, however only certain rotations 

are permitted in the crystal system, these are C2, C3, C4 and C6.  Other symmetry 

elements can be observed in crystals by combining translation symmetry with rotation 

or reflection to generate screw axes and glide planes.  In a simple two-dimensional 

example of glide plane symmetry, this would include a reflection and a displacement 

of half the repeating unit pattern.  A screw axis involves a rotation followed by 

translation along the direction of the axis. 

 

Systematic absences arise when glide planes and screw axes cause particular subsets 

of reflections to have zero intensity, due to patterns of destructive interference of X-

rays that are completely out of phase because of the unit cell symmetry, leading to no 

scattering being observed.  These are distinct for the various space groups.  For 

example the space group P21/n produces a unique set of systematic absences in its 

diffraction pattern.  The screw axis, parallel to the b axis causes reflections 0k0 to be 

absent when k is odd.  The glide plane, perpendicular to the b axis, and with its glide 

plane direction along the ac face diagonal, causes reflections h0l to be absent when 

h+l is odd. 

 

2.2.2: Miller Indices 

 

When the atoms present in a crystal diffract X-rays, a series of spots with defined 

positions and intensities are produced and these relate to the symmetry and specific 
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atoms present in the crystal.  This is to say that a bromine atom would scatter X-rays 

with a greater intensity than that of carbon for example due to the extra electrons 

possessed by the bromine atom.  The planes which give rise to these observed 

reflections are called lattice planes and their orientation may be defined by Miller 

indices h, k and l.  The unit cell is bound by the (100), (010) and (001) planes and the 

Miller indices are defined by their intercept with the a, b and c axes respectively.  A 

simple example of this would be to examine the intercepts halfway along each axis.  

The Miller indices would thus be described as a/2, b/2, c/2 = a/h, b/k, c/l and thus 

describing the (2 2 2) plane (Figure 2.2.2.1).   

 

 

Figure 2.2.2.1: Miller indices showing the (222) plane. 

 

These Miller indices then correspond to a reciprocal lattice point in the diffraction 

pattern. 

 

 

2.2.3: Bragg's Law 

 

A diffraction spot of measurable intensity is only generated when the diffracted beams 

from a series of parallel planes are in phase and give constructive interference (Figure 

2.2.3.1).  For this to happen, the path difference between these two diffracted beams 

must be equal to an integral number of wavelengths.   
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Figure 2.2.3.1: Bragg's law. 

 

This leads to Bragg's Law: 

 

Equation 2.1:  nλ = 2d sinθ 

 

In Bragg's law, n is an integer, λ is the wavelength of the incident and diffracted 

beam, d is the spacing between the planes in the crystal and θ is the scattering angle. 

 

2.2.4: The Ewald Sphere 

 

The analysis of X-ray diffraction patterns can be aided by the use of the Ewald sphere.  

This is centred on the crystal (C) and a circle with radius 1/λ is drawn around it such 

that its edge sits on the origin of the reciprocal lattice.  From Bragg's law a reflection 

is superimposed and the reflected beam cuts the sphere at point P.  Figure 2.2.4.1 

indicates that a diffraction spot will be observed if the scattering vector is equal in 

length and in the same direction as the reciprocal lattice vector QP.  Thus to satisfy 

Bragg’s law the reciprocal lattice point must touch the surface of the Ewald sphere. 
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Figure 2.2.4.1: The construction of an Ewald sphere. 

 

Figure 2.2.4.1 shows a simplistic two-dimensional view of an Ewald sphere with 

parallel planes representing Bragg's law and layers of diffraction.  From this it can be 

seen that Bragg's law is only adhered to if scattering from the next layer produces a 

diffracted beam in phase with the one shown and a reciprocal lattice point located on 

the surface of the sphere.   

 

2.3: Structure Determination 

 

2.3.1: Diffraction patterns and Structural Information  

 

The experimental diffraction pattern collected for a crystal structure allows 

determination of the unit cell parameters, the space group and the intensity data 

related to each individual diffraction spot, which each have their unique Miller indices 

corresponding to their positions.  Each individual diffraction spot of intensity I(hkl) 

has a related structure factor, Fo
hkl, where 

2o
hklFI ∝ , which results in the phase 

problem.  These are converted via a Fourier transformation into the observed 

scattering density, the problem in carrying out this transformation being that initially 

there is no phase information available in the observed structure factors.  Each Fourier 

component, the structure factors Fo
hkl, can have a different value, which depends on 
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the internal atomic structure of the unit cell.  The structure factor can thus be written 

in terms of scattering from individual atoms making up the crystal structure: 

 

Equation 2.2:   Fo
hkl = ∑ fj exp [2πi(hxj + kyj + lzj)] 

 

where the summation is over j atoms in the unit cell at coordinates (xj, yj, zj).  The 

scattering of each atom in the cell is given by the atomic scattering factor fj. 

 

There are several factors that can affect the structure factor including the temperature 

factor as indicated by the Debye-Waller effect.  This describes the fact that as each 

atom is not in a fixed position and vibrates around their equilibrium position that the 

structure factor will be reduced as a factor of temperature and this affects each atom 

individually.  This amount will depend on the local environment in which the atom 

sits within the structure.  This will be reflected in the scattering factor fj indicated in 

equation 2.2.  

 

The Fourier transformation relating the scattering density to the observed structure 

factors can be expressed as: 

 

Equation 2.3:   ρ(x,y,z) = (1/V) ∑ Fhkl exp[-2πi(hx + ky + lz)] 

 

where (x,y,z) represent the fractional coordinates in the unit cell.  It is the 

interpretation of this scattering density, which enables atoms to be identified in the 

crystal structure.  This summation is carried out over all values of h, k and l and 

therefore all reflections in the diffraction pattern contribute towards it. 

 

The Debye-Waller effect reduces the scattering factor as it leads to a reduction in 

intensity due to smearing of the electron density as a function of thermal motion.  This 

leads to a reduction of the structure factor by: 

 

Equation 2.4:   (Fo
hkl)T ~ exp[-BTj(sin2

θ/λ2) Fhkl 

 

where each atom has a separate temperature factor Bj.  B=8π2U, where U represents 

the thermal parameters.  This is accounted for in modern refinement programs where 
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the refinement is carried out allowing the average amplitudes of vibration for each 

atom in the structure to vary independently, and in fact these are usually allowed to 

adopt non-spherical vibrations, undertaking anisotropic thermal vibrations.  From 

equation 2.4 it can also be seen that those reflections at smaller Bragg angles will be 

less affected than those at larger Bragg angles.   

 

The atomic form factor reflects the strength of scattering of an individual atom (for X-

rays this is proportional to the number of electrons), and also how rapidly the intensity 

of reflections decrease with increasing diffraction angle.  Figure 2.3.1.1 indicates how 

rapidly this occurs for hydrogen and carbon atoms.  Also shown in this figure is the 

fact that this form, factor fall-off does not occur for neutron scattering. 

 

Figure 2.3.1.1: Atomic form factor drop off with increasing angle for X-ray form 

factors (and absence of fall-off for neutron scattering lengths). 

 

2.3.2: The Phase Problem 

 

To be able to solve a crystal structure it is necessary to know the intensity, 
2o

hklFI ∝ , 

and the phase of the individual reflections, however the structure factor can only be 

determined from the observed scattering intensity, thus the phase information is lost.  

The structure factor 2 can be expressed as: 

 

Equation 2.5:   Fo
hkl = | Fo

hkl | exp(iαhkl) 



31 
 

 

where | Fhkl | represents square-root of the measured intensity and αhkl is the phase.  

The phase information is not collected experimentally however so only the magnitude 

is known.  This means that a simple Fourier transform will not generate the electron 

density and this is referred to as the phase problem.  There are now several methods 

for solving this phase problem and the most commonly used include: direct methods, 

the Patterson method and heavy atom methods. 

 

2.3.3: Direct Methods 

 

Direct methods is the most commonly used method for solving the phase problem and 

is incorporated in most structure solution programs.  These can examine the 

relationships between the intensities of the reflections and lead directly to solving the 

phase problem.  The mathematical constraints used for direct methods are based on 

fundamental features of electron density, that the integrated electron density must be 

positive and finite, as defined by Sayre.  The methods currently employed can be 

directly related to the work of Karle and Hauptman who received the Nobel Prize for 

Chemistry in 1985.  This is based on the triplet relationship which relates the values 

of the three phases of reflections involved in the triplet for example if the intensities 

of three reflections such as (3 2 1), (–2 –1 0) and (-1 -1 -1), where the sum of the 

indices within the triplet are (0 0 0), are all strong, then it is probable that the sum of 

their phases will be close to zero.  Many of these probabilistic relationships can be set 

up in a diffraction data set and the method performs many trials to generate the best 

set of estimated phases producing a model with the best figure of merit, which 

subsequently can be used to determine atomic positions from the calculated electron 

density map.  This technique is known to have a high success rate for small – medium 

sized organic compounds. 

 

2.3.4: The Patterson Method 

 

The Patterson method avoids the phase problem by making use of the known 

intensities.  The Paterson method generates a map of interatomic vectors (u, v, w) via 

|Fo
hkl|

2 values.   
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Equation 2.6:   Puvw = 1/V ∑|Fo
hkl|

2. cos[2π(hu + kv + lw)] 

 

The origin of the cell (000) will always have the highest peak as every atom will be 

mapped onto itself.  The Patterson function is a map of vectors between pairs of atoms 

in the structure.  Therefore for every peak seen in the Patterson map (u, v, w), there 

must be two atoms in the structure whose x coordinates differ by u, y coordinates 

differ by v and z coordinates differ by w.  These Patterson peaks show where the 

atoms lie with respect to each other but not with regards to the unit cell origin, which 

is essentially what we are most interested in.   

 

When an organic molecule containing many of the same atoms is mapped via 

Patterson methods the resulting map will be hard to interpret due to the presence of 

many overlapping vectors, however when dealing with structures containing heavy 

atoms these vectors will be strong and the separations of two lighter atoms will give 

much smaller peaks.  Using the phases calculated from the heavy atoms positions now 

determined, a subsequent Fourier synthesis should determine the positions of the 

lighter atoms. 

 

2.3.5: Heavy Atom Method 

 

The heavy atom method as suggested relies on the presence of one or more heavy 

atoms being present in the unit cell.  These heavy atoms can be found via a map of the 

interatomic vectors and from this position a set of phases can be produced.  This can 

then be built up to generate phase information for the whole structure.  The heavy 

atoms present need to scatter with a significant difference in scattering power from the 

rest of the atoms for this method to succeed.  If such an atom is present the phases can 

be deduced from this atom and a build up of phases for the structure can be generated 

until such stage that a Fourier map will be able to determine the positions of the 

remaining atoms. 

 

2.4: Structure Refinement 
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The aim of a structure refinement is to generate calculated structure factors that best 

fit the observed structure factors.  It is possible to map the measured reflection 

intensities by value of an electron density map, also known as a Fourier map. 

 

Equation 2.7: ρ(x,y,z) = ∑ |Fo
hkl| exp(-2πi(hx + ky + lz) + αc

hkl) 

 

With each Fourier map produced a better model of the structure is produced and this 

improves the phase information to be used in the next cycle of Fourier calculations.  

This creates a cycle that ultimately closes in on the most accurate crystal structure 

available from the measured diffraction intensities. 

 

The positions of the atoms are known to be the peaks on the Fourier map, however to 

model the structure correctly a description of the atoms has to be refined to give a 

model that best fits the observed data.  Varying the positional and thermal parameters 

for each atom using the least squares method gives the best structure refinement.  

Even for small molecule crystallography the number of parameters that can be varied 

is high so during the least squares refinement an R factor is used to rate how good the 

structure model is. 

 

Equation 2.8: 
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The R-factor is used to assess the agreement between the measured amplitudes and 

those calculated from atomic positions during refinement.  If the model and the 

structure are identical the R-factor would be zero, however this is unlikely to occur as 

there are always errors present throughout data collection and analysis.  The lower the 

R-factor the better and ideally the R-factor would be between 0.02 and 0.08 for 

publication of small molecule structures.  The weighted R-factor ( w R) works in the 

same way but is based on the squared structure factor values where each structure 

factor has its own weighting factor.  A better model results in a better R-factor, with 
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the improving phase information generating better Fourier maps and thus generating a 

better model for refinement. 

 

Another important value for evaluating the structure quality is the goodness of fit, S.   

 

Equation 2.10: 
( )( )

pn

FFw
S

hkl
c

hkl
o

−

−
=
∑

22

 

 

In terms of refinement, the more successfully collected reflections the better the data 

set providing better information to refine the structure.  The more parameters that are 

refined the more data is required – typically data/parameter ratios of greater than 10 

should be sought.  The value for the goodness of fit for a good data set should be 

roughly 1 though can be marginally below or above. 
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Chapter 3: Techniques and Instrumentation 

 

3.1: Focussed Beam Reflectance Measurements and Attenuated Total 

Reflectance Ultra Violet 

 

There has been significant development in in-situ techniques that do not require 

sampling and give real time data analysis such as Attenuated Total Reflectance – 

Ultra Violet (ATR-UV), Focussed Beam Reflectance Measurements (FBRM) and 

Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR).  The theory 

of attenuated total reflectance is based on light passing from a material of high 

refractive index, for example a crystal, to a material of lower refractive index, for 

example a solution.  Light travels to the reflection surface and can be partially 

absorbed by the solute before being reflected back to the probe.  The reflected light is 

therefore attenuated, causing a measurable reduction in the output signal dependent on 

the absorbance of the solution54.  Each probe has two fibre optic cables, one for 

transmission of the light from the light source to the measuring head of the immersion 

probe, while the second conducts the signal, which is the light that has passed through 

the sample and back to the spectrophotometer.  ATR-UV probes are suitable for the 

direct measurement of strongly absorbing solutions in which the UV absorption of the 

solvent does not mark the solute absorption.   

 

The main advantage of using an ATR-UV probe (Figure 3.1.1) for measuring 

solubility and crystallisation in solution is that no sampling is required and that this is 

a real time process.  Other advantages are that the probe is relatively insensitive to the 

presence of particles in solution as the probe is based on surface measurements and 

the probe is suitable for an easy set up.  However in deciding to use the ATR-UV 

probe it must also be considered whether the solute has a significant UV absorption 

compared to the solvent in which the process is carried out so that it can be measured 

in the presence of the solvent.  The UV absorption of the solute is directly 

proportional to the concentration of the solution according to the Beer-Lambert law 

and so provides a convenient method for accurate in-situ real time measurement of 

solute concentration when compared to other techniques.  This process comes into its 
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own during cooling crystallisation processes, enabling a significant solubility profile 

to be compiled from solubility to crystallisation. 

 

 

Figure 3.1.1: The ATR-UV probe showing the clear crystal window through 

which all light passes. 

 

ATR-UV can also be used in connection with Focussed Beam Reflectance 

Measurements (FBRM).  FBRM uses a highly focussed laser beam projected through 

the sapphire window of the FBRM probe to rapidly scan over a small region.  The 

beam is rotated at a fixed high velocity allowing rapid scans across particles flowing 

across the path of the beam.  This high speed scanning movement of the beam is 

significant as this means that the motion of the particles is insignificant.  A particle 

entering the beam path produces back scattered light, which is picked up by a 

stereoscopic system.  The crystal continues to back-scatter light until the beam 

reaches the other edge of the crystal.  The time period of back-scattering is recorded 

and multiplied by the scan speed of the beam to give the distance between one edge of 

the crystal and the other53; this is known as the chord length.  These chord lengths that 

are measured are profiled in a chord length distribution (CLD) plot.   

 

The Mettler Toledo Multi Max system (Figure 3.1.2) installed in the solid state 

research laboratory in the Strathclyde Institute of Pharmacy and Biomedical Sciences 

(SIPBS) was used to carry out all experimental work using Attenuated Total 
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Reflectance – Ultra Violet (ATR-UV) and incorporating Focussed Beam Reflectance 

Measurements.   

 

 

 

 

Figure 3.1.2: The Multi-Max system at SIPBS.  This shows the reactor vessels in 

their independent compartments, the possibility for dilution and also the FBRM 

probe. 

 

The Mettler Toledo Multi-Max system gives a great degree of control over the desired 

reaction conditions mainly involving the temperature of the reactor vessel and the rate 

at which the solution is stirred.  The reactor vessels, by means of the control box, 

allow simultaneous reactions to be measured without adversely affecting either 

reaction, for example one reactor vessel could be heated whilst the other is being 

cooled and the reactor temperatures are maintained independently.  By running the 

ATR-UV probe in parallel with the Multi-Max system, it is possible to see changes in 

UV absorbance as the reaction proceeds, with an accurate knowledge of the 

temperature at which any changes occur.  This is required during calibration and 

subsequent dissolution methods. 

Reactor vessels Dilution 
Control 

FBRM 
Probe 
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This is achieved via an automated set up which enables the Multi-Max, ATR-UV and 

FBRM to be linked.  The FBRM and ATR-UV measurements are all computer 

controlled and independent of each other, however the data can be extracted and 

comparisons can be made as a function of time, which leads to knowledge being 

generated about the crystallisation process under precise conditions.  This enables 

experiments to be carried out in-situ and data collected while experiments are ongoing 

with no need for sampling.  This is of course a huge advantage as with real time 

measurements and no sampling required, analysis can be carried out while 

experiments are in progress. 

 

For each different part of the liquid studies that had to be carried out as part of the 

present work a distinct method had to be followed.  The three distinct areas that have 

to be studied to develop a reliable metastable zone width include calibration, 

dissolution to produce the solubility curve, and finally the metastable zone width 

experiments themselves.  The calibration procedure, carried out before any sample 

measurements are made, are the same for every compound and it is imperative that 

these are reliable.  These calibrations are compound dependent as each compound has 

differing solubilities, and thus the range of the study has to incorporate this.  

Furthermore, different compounds have different melting points and this does play a 

part in determining the range of temperatures through which the experiments can be 

carried out.  Calibration profiles rely upon a range of solutions being prepared and 

controllably ramped from the low T range to the high T range.  At defined intervals, 

the temperature is kept steady and left to equilibrate for a period.  This ensures that 

the absorbance is constant and therefore a specific concentration at each point is 

calculated.  This is subsequently carried out for the full range of temperatures 

required. 

 

Dissolution experiments are usually carried out on pharmaceutically important 

compounds to determine the rate of uptake into solution, however this is not required 

for the studies being carried out by us as chemists.  The fundamental differences 

between the interests of pharmacologists and chemists is that pharmacologists are 

interested in how much can be dissolved into an aqueous medium and how quickly, 

thus adding of the solute is not carried out until the experiment is running.  Whereas 
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from a chemistry viewpoint the important feature is the concentration, which is a 

measure of the amount of material dissolved at a certain point.  For this reason, and 

because of the high solubility of the compounds selected, the solute was already 

present in the reactor vessel prior to the experiment commencing.  Dissolution 

experiments rely on controlled heating to set temperatures and then leaving for long 

periods to ensure that full dissolution has occurred at each temperature.  This is 

carried out at a series of temperatures and a full solubility curve can then be 

calculated. 

 

Metastable zone width experiments are the only set of experiments that require all 

three components of the Multi-Max, ATR-UV and FBRM to be linked together.  

These experiments rely upon a solubility curve that is reliable and solutions are 

prepared according to this.  The solutions prepared correspond to a specific point on 

the solubility curve and then controlled cooling is carried out while the FBRM 

monitors any changes that are occurring in solution.  Recrystallisation is easily 

observed by the sudden increase in particles detected by the FBRM and the sharp 

decrease in UV absorbance.  These experiments have to be repeated many times to 

ensure a reliable point for crystallisation under these conditions has been determined 

and for many different solutions lying on the solubility curve until a supersolubility 

curve can be generated and a metastable zone width defined. 

 

3.2: Synchrotron Radiation 

 

A synchrotron is a huge scientific machine designed to produce very intense beams of 

X-rays, infrared and ultraviolet light, called synchrotron light.  Electrons generated in 

the electron gun are accelerated to very high speeds by the linear accelerator, the 

booster synchrotron and finally maintained at high speed in the storage ring.  The 

storage ring (Figure 3.2.1) is made up of bending magnets, which are used to steer the 

electrons around the ring, and in 3rd generation synchrotrons, insertion devices that are 

more complicated arrays of magnets.  As the electron beam encounters each magnet it 

is accelerated by changing direction and this results in the emission of radiation that 

can be channelled into each beamline in the form of light.  Light generated 

by electrons in the storage ring passes into beamlines, where the experiments are 

carried out.  Each beamline is optimised for a different kind of experiment, but each 
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beamline contains an optics hutch, where the light is filtered and focussed, and an 

experimental hutch, where the experiments are carried out.  There is also a control 

hutch where the experiment is programmed. 

 

Figure 3.2.1: A schematic showing the process of how synchrotron radiation is 

generated. 

 

The synchrotron radiation generated has many uses from chemistry and materials 

science to life science and earth science, showing the wide range of studies that can be 

carried out at synchrotron sources.  The original synchrotron radiation source in the 

UK was the Synchrotron Radiation Source (SRS) at the Daresbury Laboratory.  The 

SRS, at which the SAXS studies described here were carried out, operated from 1981 

until 2008, when it was superseded by the development of the new 3rd generation 

Diamond Light Source synchrotron in Oxfordshire. 

 

3.3: X-ray Diffraction Studies of Liquids – Synchrotron and Lab Based Sources 

 

Station 2.1 at the SRS Daresbury Laboratory (Figure 3.3.1) was a fixed wavelength 

small angle X-ray scattering station.  The station was widely used in the field of 

structural biology to obtain structural information relating to the shape and size of 

their compounds.  The wavelength at station 2.1 was fixed at 1.54Å, with a variable 
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camera length between 1 and 8.25m.  This enabled the user to examine a wide range 

of d-spacings. 

 

 

 

Figure 3.3.1 a and b: Station 2.1 at Daresbury showing the beamline (left) and 

the sample holder (right). 

 

Before each experiment, the instrument has to be calibrated and the beam collimated 

and centred without a sample in place.  The sample window is designed to be very 

narrow, and the camera length determines how much scattering is observed and the 

range of scattering angles accessible.  In the experiments carried out during this work, 

liquid samples were used, in which it was hoped to induce nucleation/crystallisation 

assemblies that could be observed.  Scattering from liquids is weak and therefore most 

scattering is observed on the detector in regions around the beam stop.  The 

temperature control in the sample holder system used (Figure 3.3.1) was simple and 

experiments had to be paused in between temperature changes to enable heating or 

cooling to be carried out.  As the mica window is in the vertical position, there is a 

potential problem as it cannot be reliably predicted where any crystallisation event 

will occur.  It is thus difficult to ensure that this lies in the path of the beam and not 

around the sides of the sample holder where it will not be detected. 

 

SAXS can also be carried out in the laboratory rather than at the synchrotron.  Prof 

Tim Wess and his group in the Optometry school at Cardiff University have helped 

install and develop the Bruker AXS Nanostar small angle scattering system.  This has 

enabled the highest flux beam that is currently possible for SAXS studies outwith 

synchrotron sources.  The Bruker AXS Nanostar, with its intense, collimated primary 
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beam and 2-dimensional detector, has a similar design to a synchrotron SAXS 

beamline.  The Nanostar features a strong X-ray source, which combined with multi-

layer optics, provides an intense and narrow incident beam upon the sample.  As 

mentioned in Chapter 1, SAXS yields information such as particle sizes and size 

distributions from dimensions of 1 to 100 nm, as well as shape and orientation 

distributions in liquid, powders and bulk samples.  The Wess group routinely use such 

techniques for the study of collagen samples to examine the structure and probe the 

mechanical properties. 

 

A further development in the instrumentation for studying liquids that was attempted 

in work related to this project is the Rigaku R-axis/Rapid Curved Image plate 

diffractometer, used as a WAXS instrument in this context.  This contains a large 

curved image plate, which enables scattering to large angles to be measured in a 

single image.   

 

Solutions for SAXS studies of crystallisation must be prepared in a clean place and 

filtered into sample vessels to avoid any possible contamination or undissolved 

particulate being found in solution.  It is ideal to prepare as concentrated a solution as 

possible that will not recrystallise spontaneously in a sealed solution, or in contact 

with the droppers required to load the sample vessel.     

 

3.4: General Approach to Crystallisations 

 

There are almost endless ways in which crystallisation can occur as it is ultimately a 

random process and still nearly impossible to control fully due to the lack of 

knowledge about the early stages of crystallisation.  In this sense, the approach to 

crystallisation that is taken is fairly simple.  The main variables that are often changed 

include temperature, whether that be constant temperature or a temperature profile 

involving controlled heating and cooling regimes, or varying fractions of solute, this 

is true for both co-crystals and single component samples and solvents, where there is 

a huge library potentially available. 

 

Recrystallisation can have two meanings in the study of chemistry.  Firstly in the 

organic chemistry field recrystallisation is often incorporated in the purification and 
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synthesis of compounds.  This involves rapid precipitation to improve yields and 

would not be routinely used by crystallographers.  In a crystallographic sense where 

the object is to generate large single crystals the recrystallisation has to be carried out 

slowly via a variety of methods.  The main methods used for crystal growth are 

solution methods.  Recrystallisation from solvents is by far the must widely used via 

slow evaporation, however if the solution dries out crystals can become deformed and 

not single.  Anti-solvents (solvents in which the molecule is not soluble) can also be 

used to help crystal growth as this reduces the solubility and can enable larger crystals 

to grow.  A variety of methods exist for crystal growth from solution including: 

cooling from a hot, near saturated solution; convection which relies on the presence of 

a temperature gradient across the solution, and various diffusion techniques.   

 

Following recrystallisation to produce a solid, often polycrystalline, sample, it is 

generally commonplace to obtain X-ray powder diffraction (XRPD).  For a single 

component system this is generally to see if there has been any polymorphic 

transitions during the recrystallisation or solvent/hydrate formation depending on the 

conditions.  Powder generation can occur naturally in the recrystallisations vial or can 

be produced from grinding of a single crystal.  Grinding is known however to produce 

enough energy to initiate reactions that may not be desired, so must be employed with 

caution.  Other techniques that are routinely used to ascertain whether any changes 

have occurred during a reaction include techniques such as infrared spectroscopy (IR), 

differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA).  

DSC and TGA can be used simultaneously to monitor energy and weight changes as 

the molecule is heated up towards the melting point, often this can show polymorphic 

changes occurring or whether a single phase is present throughout. 

 

Often the use of single crystal diffraction is beneficial to allow structure determination 

and refinement.  There are many novel ways to attempt to grow single crystals, from 

the traditional slow evaporation through to more modern machines such as the React 

Array Microvate used routinely throughout this work.  This instrument allows twelve 

separate rows of independently temperature controlled conditions for crystallisation to 

be trialled simultaneously and with four individual vessels in each row this allows for 

up to 48 different experiments in twelve separate temperature conditions to be carried 

out simultaneously.  These are small scale vessels, typically containing mg of 
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material, and can give results in a far shorter time period than slow evaporation 

techniques.  The Microvate allows ramping and cooling profiles to be set up in each 

row and can lead to positive identification of the conditions that may lead to the best 

crystal growth.  If a single crystal is grown successfully, it is necessary to examine its 

quality under the microscope to check whether it is single, more than one crystal or 

even whether there are deformations on the surface, prior to running the sample on the 

single crystal diffractometer for structure determination.   

 

3.5: Laboratory Based X-Ray Single Crystal Diffraction 

 

With X-ray diffraction having developed much in recent years it is now routine to 

solve crystal structures from crystals as small as 0.1mm x 0.1mm x 0.1mm, using 

laboratory based single crystal methods (Figure 3.5.1).  Crystal selection is carried out 

using an optical microscope with cross polarisers used to determine the extinction of 

the crystal.  A crystal with clean edges and faces is selected to ensure no cracks or 

defects are present on the crystal.  When a suitable crystal has been selected it is 

necessary to mount it on a glass fibre and onto the pip of the goniometer before 

mounting on the diffractometer.  The goniometer head is then attached onto the 

diffractometer, which has screws to adjust the alignment and ensure the crystal is 

central in the X-ray beam.  This can be viewed using the built in microscope. 
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Figure 3.5.1: Chart of requirements prior to publishing crystal structures81. 

 

The single crystal X-ray diffraction work carried out and reported here was carried out 

on a Bruker AXS Apex II single crystal CCD detector diffractometer and the 

structures solved and refined using either SIR82 incorporated in CRYSTALS83 or 

SHELXS84
 and SHELXL84 in the WinGX program85.   

 

These programmes, together with the Apex II software for data collection and 

processing86, can be used for all single crystal structure determinations.  The 

diffractometer software provides a quick and easy way to assess crystal quality and to 

set up the data collection.  Incorporated in the instrument software, the primitive unit 

cell can be determined using a preliminary set of frames.  The reflections in these 

frames are indexed to generate a primitive unit cell and crystal orientation, which can 

be done manually by selecting the sharpest, best-defined reflections with no sign of 

smearing or double spots, or automatically and then are refined.  The orientation 

matrix is the solution which best indexes the observed peaks.  At this point it is 

important not to overestimate the symmetry of the molecule or else not enough 

reflections may be collected to enable a full crystal structure determination. 
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Within the diffractometer software, a strategy can be determined to maximise the 

detection of unique reflections corresponding to the crystal system selected and ensure 

a complete dataset as far as it can be reasonably expected.  For example, the more 

symmetry that is present in a crystal structure, the less crystal orientations have to be 

measured, less reciprocal space has to be explored, and thus the data collection will be 

shorter.  This can be illustrated as in the absence of any symmetry (triclinic) a crystal 

would have to undergo an 180o rotation to collect all the reflections needed, and due 

to Friedel’s law, this will result in a multiplicity of two.  However if there is a four-

fold axis of symmetry present in the crystal, then providing the correct 45o angle can 

be found, only a 45o rotation is required.  A data collection strategy can last for a few 

hours to a day or longer depending on the size of the crystal, the strength of the 

diffraction and its symmetry.  On completion of the data collection an hkl file is 

produced after integrating the data and introducing correction factors such as; 

absorption, extinction and Lorentz corrections.  The hkl file is then input into either 

CRYSTALS83 or WinGX85 where the structure can be solved by direct methods, and 

refined. 

 

It is also possible to carry out variable temperature single crystal data collection 

making use of the Oxford Cryosystems low temperature device installed in the 

diffractometer.  This enables reliable temperature control to 100K in the laboratory 

and undertaking data collections every 50K between 100K and 300K is now 

commonplace to monitor any temperature-dependent effects, such as disorder, that 

may occur.  For the study of disorder in hydrogen bonding systems, a common theme 

in the group, this can be used to give supporting evidence in terms of proposals for 

beamtime at a neutron source where the hydrogen atoms will be able to be located 

with less error.  In the case where multiple temperature data sets are collected, the 

sample has to be recentred for each data collection to account for any contraction or 

expansion of the sample during each run. 
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Chapter 4. Liquid Studies on Substituted Aromatic 

Molecules 

 
4. Methyl 4-hydroxybenzoate 

 
4.1: Introduction 
 

Alkyl hydroxybenzoate compounds are used in foods, drugs and cosmetics as 

preservatives due to their antimicrobial properties.  Methyl 4-hydroxybenzoate 

(pMHB; Figure 4.1.1) has also been well studied for many years due to its potential 

use as a nonlinear optical material87.  Lin Xianti et al first solved the crystal structure, 

using X-ray diffraction, and published it in 198321.  It was found to be monoclinic 

with the space group Cc, and unit cell dimensions of a = 13.568(5) Å, b = 16.957(7) 

Å, c = 12.458(6) Å and β = 130.10(3)o.  Solubility and metastable zone width studies 

had also been carried out varying both pH and temperature87.  Presented here are the 

new approaches taken to monitor the solubility curve and then subsequently generate 

the metastable zone, for this reason it was imperative to have models for comparison.  

This also made use of techniques outlined previously for a different system54.  The 

aims were to monitor concentration changes in situ before further nucleation studies 

could be carried out. 

 

 

Figure 4.1.1: Methyl 4-hydroxybenzoate 
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4.2 Dissolution and Metastable Zone Width Studies. 

 

Methyl-parahydroxybenzoate (pMHB) was selected as the initial compound to test 

and develop dissolution methods and to determine the metastable zone width (MZW).  

This work took place in the Department of Pharmaceutical Sciences in the Strathclyde 

Institute of Pharmacy and Biomedical Sciences at the University of Strathclyde where 

analysis of the pure compound was carried out.  X-ray powder diffraction (XRPD) 

was used to identify the physical form before and after recrystallisation from 

methanol to ensure that this was a suitable solvent for our studies.  The scan was 

carried out over a 4-40o 2θ range at room temperature.  Differential Scanning 

Calorimetry (DSC) was also carried out on samples of pMHB before and after 

recrystallisation to ensure that only one physical form was present.  The DSC 

apparatus was programmed to cool to -40oC then heated past the melting point at 125-

129oC before being crash cooled back to -40oC and heated back up to the melting 

point again.  This is used to assess the stability of the compound even in the harshest 

of conditions and to ensure that rapid cooling would not cause transformations in the 

subsequent liquid studies.  To assess the stability of the compound, a range of 

recrystallisations were carried out in a wide variety of solvents available in the solvent 

library at the University of Strathclyde solid-state laboratory.  The recrystallised 

material was analysed by IR spectroscopy and XRPD to assess any changes that may 

have occurred from the raw material. 

 

4.2.1 X-ray Powder Diffraction 

 
Figure 4.2.1 shows the XRPD pattern collected from the bottle-fresh (pure) pMHB 

and the recrystallised form.  All peaks are found to match and are aligned, thus the 

only slight changes between the two patterns are in the intensity of the peaks.  This 

would indicate that either form would be able to be used in the solubility studies, 

which is necessary as pMHB is found to have very high solubility in methanol, which 

is to be used for the liquid studies. 
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Figure 4.2.1: XRPD data from pure and recrystallised pMHB.  The pure material is 

shown in black and the recrystallised in red. 

 

4.2.2 Infrared Spectroscopy 

 
Recrystallisations were carried out in a wide variety of solvents and analysed by IR 

spectroscopy to examine if there were any possible differences and potential 

polymorphs being produced.  The IR data (Figure 4.2.2) shows an overlay between 

pMHB pure material (red) and a sample of pMHB recrystallised in methanol (blue).  

This shows that all peaks are present in both spectra and only the reflectance of these 

peaks varies. 
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Figure 4.2.2: IR data collected on pure and recrystallised pMHB.  The pure material 

is shown in red and the recrystallised material in blue. 

 

On comparison of the IR data from the raw material and from the solvents tested, it is 

suggested that the compound did not recrystallise in any other polymorphic forms.   

 

 

4.2.3 Calibrations 

 

A calibration series is necessary to assess dissolution concentrations and was carried 

out using the MT Multi-Max system in conjunction with the ATR-UV probe.  

Calibrations were carried out over a constant temperature ramp starting from 25oC 

and increasing up to 55oC over a 6 hour time scale, with a stirring rate of 1000rpm.  

This time scale allows gradual heating between temperatures to ensure minimisation 

of temperature errors, which occur when the solutions are heated too quickly.  The 

ATR-UV probe was blanked in air above the solution before being placed in the 

solution where readings would be taken every minute.  Taking so many readings 

allows the ability to monitor the absorbance changes of the solution as a function of 

temperature.  Unlike previous solubility work carried out on the compound87 where 

the temperature range investigated was 20oC to 50oC, it was decided that readings 
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would be taken at 5oC increments from 25oC to 55oC inclusive thus producing a 

calibration series that is closer to the boiling point of methanol, the solvent to be used 

during the experiments. 

 

To provide the most accurate calibration standard possible, five solutions were 

prepared; 5%, 12.5%, 20%, 27.5% and 35%w/w (solute/solvent) solutions; this is in 

comparison to only three concentrations that were used in the published method.  All 

weighings were carried out manually and solutions filtered into the reactor vessel to 

try to protect the system from any impurities affecting the results. 

 

A sample solution was run under these conditions from 200-700nm to determine 

where the maximum absorbance of the solution occurred.  As a result of this, the 

study was focussed over the 200-300nm range and each solution was run individually 

over this scale (Figure 4.2.3).  In this region the absorbance of methanol is negligible 

so any change in the UV spectra is solely due to the presence of pMHB in the 

solution. 
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Figure 4.2.3: Absorbance changes with wavelength using varying concentrations of 

solutions at a fixed temperature.   

 

The major absorbance peak at roughly 260nm was used for the concentration 

calculations.  It should also be noted that the UV absorbance for methanol at this 
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wavelength is negligible and there is better separation between concentrations of 

solution. 
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Figure 4.2.4:  Calculated calibration results using varying concentrations of solutions 

at a fixed temperature. 

 

Figure 4.2.4 shows the results of a calibration carried out at 25oC.  The darker line is 

the experimental results and as expected there is an increase in UV absorbance with 

increased concentration of solution.  The equivalent values obtained from the Area 

Max software for the theoretical absorbance, calculated from a manually input 

concentration of solution, gives an almost perfect agreement. This is vital before 

carrying out dissolution experiments as at 25oC this calibration result will be used to 

calculate the concentration of the saturated solution in the presence of excess pMHB. 

 

Similar calibrations were carried out at all the measured temperatures indicated and 

all calibration results showed similar profiles, all with a very high degree of similarity 

to the experimental results.  This indicates that the ATR-UV probe, which is used for 

monitoring concentrations in situ, is highly accurate and can be used to reliably 

calculate solution concentrations. 
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4.2.4 Solubility Studies 

 

Solubility experiments are fundamental when investigating pharmaceutical 

compounds as this is the method by which the solubility of the compound is assessed.  

For the purpose of this work however, the solubilities at set temperatures are 

fundamental for the knowledge of the concentrations of solutions to be prepared for 

the metastable zone width studies.  This is required as a reliable solubility curve must 

be determined prior to the generation of a supersolubility curve and thus the 

metastable zone being determined.  The method again makes fundamental use of the 

MT Multi-Max system and the ATR-UV probe in unison. 

 

Two solubility experiments were carried out to directly compare the results and 

increase the reliability of solubility curve for pMHB when compared with previously 

collected data87.  The experiments were carried out using 150g of methanol as the 

solvent - this allowed results to be produced that could be directly compared against 

the calibrations previously carried out where the ratio used was grams of pMHB per 

100g of methanol. 

 

An experimental protocol was set up to ramp to each of the desired temperatures and 

then held until the maximal absorbance remained stable.  The stirring rate was again 

set at 1000rpm, however unlike most dissolution experiments where the compound is 

added during the experiment, due to the tremendous solubility of the compound in 

methanol, the compound was added directly to the vessel in prepared solution before 

it was sealed.  The first temperature that was used was 25oC and the solution was held 

at that temperature until the absorbance was stable before being increased by 1oC 

every 4 minutes to 30oC where the next absorbance was monitored.  The temperature 

ramp had to be increased very slowly at this stage to minimise any over-shoot in 

reactor temperature when it reached the desired temperature.  Due to the excellent 

control of the Multi-Max system it should be possible at this rate to minimise this 

occurring and generate the most accurate dissolution profile possible.  This was 

carried out at the same seven temperatures as in the calibration sequence increasing 

the temperature in the same manner by 5o each time.  During these experiments, 

especially at higher temperatures, the solution had to be monitored to ensure that 

there was always an excess of the compound in the solution. 
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The ATR-UV absorbance readings, during the dissolution experiments, were taken 

every 30 seconds as this gave a continual monitoring of the UV absorbance and 

enabled the user to see easily when the absorbance reached a plateau.  When 

analyzing the results from the dissolution, the calibrations were used, in conjunction 

with the Aspect Plus program, to calculate the concentration of the solution at any 

given temperature. 
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Figure 4.2.5: Absorbance changes against wavelength at varying temperatures for a 

fixed concentration of solution. 

 

Figure 4.2.5 shows the ATR-UV data from the solubility experiments and from this it 

is easy to notice the change in absorbance as a function of temperature.  As expected, 

the solubility increases as a function of temperature.  These values were the basis for 

the MZW experiments to aid with the preparation of near supersaturated solutions. 
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Figure 4.2.6: The solubility curves calculated from solubility experiments. 

  

Figure 4.2.6 shows the two solubility curves calculated from the UV absorbance data 

collected at each temperature.  This was carried out using the Area Max program, 

which took the experimental UV absorbance data and used the calibration profile at a 

set temperature to calculate the concentration of the solution at the set temperature.  

This was subsequently used as the solubility curve.  The two curves show a close 

correspondence to each other and to the previously published results87.  There is a 

slight difference in the two solubility experiments, however, this can be explained by 

the difference between using fresh pMHB and pMHB which had been recrystallised 

from a previous experiment.   

 

 

4.2.5 MZW Studies: 

 

Metastable zone width (MZW) studies monitor the changes in chord length of the 

solution as the temperature is cooled and give a clear idea of the point at which the 

particles start to emerge from solution.  It is important at this stage to note that this 

point need not necessarily be the nucleation point for the molecule: it is simply the 

point at which the probe can detect the presence of particles in the solution and not 

necessarily the formation of a critical nucleus.  This links the MT Multi-MaxTM, the 
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ATR-UV probe and also the FBRM probe, since when the particles start to emerge 

from solution this will result in a decrease in the UV absorbance of the solution.  The 

set up is defined so as to monitor the fine particles in solution, resulting in a highly 

sensitive method that is able to analyse any change in the solution.  The FBRM probe 

can be set up to monitor up to eight different characteristics simultaneously.  For the 

interests of the MZW studies only four were of extreme significance, these were: 

 

1. number of chords per second, no weighting factor, 9-27 microns 

2. number of chords per second, no weighting factor, 24-90 microns 

3. number of chords per second, no weighting factor, 88-102 microns 

4. number of chords per second, no weighting factor, 93-102 microns 

 

Using these sets of conditions it was expected that as the particles started to emerge 

from the solution the number of chords per second picked up by the probe of the 

smallest length would be increased greatly and this would indicate where the 

nucleation point occurred.  The significant values to monitor during the MZW 

experiments are shown above as these clearly show the particles emerging from 

solution and the subsequent growth that occurs after nucleation. 

 

To carry out the MZW studies, saturated solutions, using concentrations obtained 

from the dissolution experiments, had to be prepared manually at the relevant 

temperatures.  The first solution was prepared at 25oC and cooled at 0.25oC per min 

until the emergence of particles from solution was detected by the FBRM probe.  The 

stirring rate was kept constant at 1000rpm and this was repeated to assess the 

reliability of the results.  The solutions were prepared by using a hot plate with 

stirring function and a sealed container and then filtered into the reactor vessel to 

prevent contaminants entering the system. 

 

The same method was used for all of the seven temperatures before the metastable 

curve could begin to be populated.  This will be plotted against the calculated 

solubility curve thus giving an indication of the width of the zone width of the 

molecule. 
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Figure 4.2.7: Chord length distribution profile of the crystallisation process from 

dissolution to recrystallisation.  The temperature profile for the experiment is shown 

in red. 

 

Figure 4.2.7 shows a chord length distribution (CLD) profile collected during MZW 

experiments.  Initially as the temperature is ramped the particles all start to dissolve 

into the solution.  The solution is then maintained at a constant temperature for a 

period of time to ensure that all particles are stable in solution and not going to 

emerge without a cooling ramp being applied.  The solution is then cooled at a steady 

rate until particles start to emerge from the solution.  This occurs rapidly for smaller 

particles (yellow) then gradually for larger particles (green and orange).  The 

nucleation point occurs as soon as the first signs of emergence are detected by the 

FBRM probe. 

 

This can be easily observed when looking at small particles in the 9-27µm range.  

Values are taken every minute from the initial starting temperature until the 

nucleation point is reached and the particles all emerge from solution.  The other 

values that the FBRM were set up to monitor were not as significant when monitoring 



58 
 

the emergence of particles from solution and can therefore be ignored when it comes 

to viewing the results graphically.  This is due to nucleation already having occurred 

and therefore only the significant data is shown. 
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Figure 4.2.8: Change in CLD as solution is cooled and crystallisation occurs. 

 

Figure 4.2.8 shows the number of chords that are detected in the 9-27µm and in the 

24-90µm range and how these both grow at a rapid rate from the nucleation point as 

the particles start to emerge from solution.  The solutions were then reheated and the 

process was carried out again to try and duplicate results to assess the reliability of the 

data that is being generated. 

 

From Figure 4.2.8, it is clear that the chord count remains constant until the nucleation 

point, when the chord count then increases rapidly as the particles emerge from the 

solution.  The chord count is not zero due to the stirring of the solution generating 

bubbles which are picked up by the FBRM probe and thus result in a chord count 

even though all the particles are still in solution.  This is the same pattern that is 

noticed when cooling from all temperatures.  After recrystallisation has occurred, the 

profile for the 9-27µm region starts to decrease.  This is due to crystal growth 

occurring as a subsequent result of crystallisation.  The profile for the larger chord 
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lengths will subsequently start to grow at this point, though this region is not 

significant for determining the metastable zone width. 

 

Figure 4.2.9 shows the UV changes as the MZW experiments progress.  When the 

solution is cooled from the starting point, determined from the dissolution 

experiments, there is an initial small increase in the UV absorbance.  This is due to 

the solvent evaporation that occurs from the solution.  This results in an increase in 

the concentration of the solution and therefore an increase in the UV absorbance as 

determined by ATR-UV.  This is maintained until the particles start to emerge from 

solution and at this stage the absorbance drops rapidly as crystallisation and 

subsequent crystal growth occur. 
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Figure 4.2.9: UV absorbance changes as the metastable zone width experiment 

progresses and temperature is decreased. 

 

Preparing the solutions by using vacuum filtration ensured that the solution had no 

small elements of crystalline material present in the reactor vessel.  The cooling rate 

of the solution and the stirring rate of the solution were maintained at 0.25oC/min and 

1000rpm respectively.  This has led to the successful generation of the MZW graph, 

Figure 4.2.10. 
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The results for the MZW experiments were extremely positive considering nucleation 

is an entirely random process and to attain results of this quality shows that in the 

right conditions it should be possible to control crystallisation from solution.  Having 

to prepare the solutions at set temperatures prior to filtering into the reaction vessels 

leads to a slight decrease in the concentration of the solution present for the reaction.  

This is due to the fact that a small amount crystallises during filtration due to the 

changes in temperature between the solution and the filtering equipment. 
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Figure 4.2.10: The metastable zone width results plotting the dissolution curve and 

the best fit curve for the nucleation points as observed during the MZW experiments. 

 

The significance of the MZW can be understood due to its width.  In this sense the 

wider the metastable zone the easier it would be to control crystallisation within this 

zone via methods such as seeding.  The narrower the metastable zone signifies that 

the solution in itself is not inherently stable and that if left long enough then 

crystallisation is likely to be automatic. 
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4.3 Small Angle X-ray Scattering Studies of Nucleation 

 

The main objectives behind the SAXS studies were to find a range of data for the 

initial nuclei, including their number, size and type, from organic materials that may 

exhibit polymorphism.  This is carried out using SAXS to probe solution studies as 

crystallisation occurs.  The particle size distribution in nucleating solutions is 

important in distinguishing the factors involved in competitive crystallisation within 

solutions, while also providing information on particle homogeneity and uniformity.  

The structural information obtained from macromolecules in solution obtained by 

SAXS has been used to provide confirmation of computationally modelled protein 

structure39 and this furthers the belief that vast information can be obtained from 

SAXS studies. 

 

Two days beam time on Station 2.1 at the SRS Daresbury were allocated for a 

preliminary SAXS study to investigate the pre-nucleation solution scattering of our 

test material methyl p-hydroxybenzoate.  SAXS is generally used to look at larger 

molecules in solution, such as proteins, however this project involved trying to 

monitor pre-nucleation of small organic materials and to determine the initial particle 

size, which exist in solution prior to crystallisation and whether these are mono- or 

polydisperse in nature.  It was anticipated that these particles would vary in size as a 

function of temperature as the temperature can significantly affect the formation of 

the crystals (in terms of both their quality and size and in terms of which polymorph 

may form) during the crystallisation experiments. 

 

During the experiment, time was spent developing the techniques required, including 

preparing suitable sample cells.  The low viscosity of the solutions dictated that extra 

care had to be taken to seal the cell and prevent the solution from leaking from the cell 

during the data collection.  This problem was compounded by the ready crystallisation 

of the samples when in contact with a surface as this acts as a nucleation site and 

subsequently promoted crystal growth due to the high concentration of the solution. 

The sample cell used (Figure 4.3.1) had a volume of 200µl and the solution was 

injected between two mica windows by syringe.   
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Figure 4.3.1: Sample cell used with small window for the solution. 

 

The problems with maintaining a fixed concentration of solution and the fact that it 

was hoped to collect data at two camera lengths meant that much of the data were 

collected with a beam current several orders of magnitude lower in intensity than 

recorded after the refill and the ring was only operating on one refill per day.  The 

statistics of the data from some of the measurements were therefore not sufficiently 

high and overnight data collections were not effective.  Data were collected at 5oC 

intervals between 25oC and 5oC and observed signal above the background and 

solvent level for all cases.  The data were collected over a minimum of 30 mins at 

each temperature and longer when the beam was becoming weaker.  The solution 

used initially was a 0.8g/ml pMHB / methanol solution, however this recrystallised 

too rapidly around the surfaces of the cell and on the syringe used for injecting the 

solution.  Having learned from this, the rest of the data were collected using a 0.7g/ml 

concentration. 

 

Despite these complications, on correcting the data for solvent and background levels, 

it was possible to observe significant scattering arising from the solute. Our results 

show a significant small angle peak due to the solute and then a return to a flat signal 

as seen in pure methanol solution.  This small angle peak is present throughout the 

data collection even at low temperatures, though the intensity does not appear to vary 

radically.  Significant features in a small angle diffraction pattern do not appear as 
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sharp peaks; rather, subtle changes in the slope of the small angle peak and very broad 

peaks at higher scattering angle are observed.  These broad features may not be 

identifiable when looking at the scattering directly, only becoming apparent when a 

Fourier transform of the diffraction data has been calculated.   Determination of the 

particle size in the form of the radius of gyration depends on a number of assumptions 

including the particle shape, which in its simplest case can be modelled as spherical. 

 

 

 

Figure 4.3.2: The detector image of pMHB in methanol at 20oC. 

 

Figure 4.3.2 shows precisely how difficult analysis from SAXS data can be.  The 

majority of the scattering from the X-rays occurs around the beam stop with only 

minimal scattering seen elsewhere and the intensity of the data away from the beam 

stop is not sufficiently high to enable any significant data analysis of this region.  The 

significant scattering that occurs around the beam stop shows low angle scattering and 

represents interactions between the molecules in solution.  
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Using SAXS specific programs, available through Dmitri Svergun43and used routinely 

for assessing protein solution scattering it has been possible to analyse the data to a 

basic extent. 

 

 

Figure 4.3.3: Scattering profile of pMHB (blue) and methanol (red) at 20oC. 

 

Figure 4.3.3 shows the change in scattering profiles between pMHB and pure 

methanol solution.  The significant areas to examine are at the lowest angles as it is 

seen to be that this is the region of scattering where the majority of the signal occurs.  

It should be noted that the scattering from the solute is not highly different from that 

at methanol at the smallest of angles but does lie higher at larger angle.  The slope of 

the small angle peak is also observed to differ.  This does not give the best view to 

changes during the crystallisation process but gives an initial view that scattering from 

the solute is being observed.  It should also be noted that in the pMHB scattering 

profile at 20˚C, a sharp small peak is observed in addition to the main peak.  This is 

likely to be an artefact in the data, as any changes in particle size in solution will give 

rise to only broad features in the scattering pattern.  This sharp feature was not 

observed for any of the other temperature measurements. 
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Figure 4.3.4 shows an overlay of the pMHB data collected at the four separate 

temperatures.  The data were analysed using the program PRIMUS43.  The four lines, 

each corresponding to a separate temperature, show a virtually perfect overlay, which 

indicates that the molecule was stable in the solution.  This could be seen during the 

experiment as no crystallisation appeared to be occurring during the cooling process 

or even when the sample was removed at the end of the experiment.  Due to the small 

volume used in the SAXS studies, especially in comparison to the previous solubility 

studies and less nucleation sites, it proved to be a difficult study.  The SAXS study 

uses 200µl of the concentrated solution prepared, whereas the metastable zone width 

experiments that were carried out all require a minimum of 150ml to ensure that the 

FBRM and ATR-UV probes are submerged in the solution.  This sort of volume 

change, as well as the presence of stirring in the MZW experiments will always 

results in major differences between the two techniques.   

 

Due to the nature of the crystallisation being monitored, organic molecules with no 

heavy atoms to increase scattering, the scattering is much weaker than for the proteins 

routinely studied using this technique, however it should be noted as a positive that it 

has been possible to see scattering from solutions and this will be progressed by 

adding in heavy atoms into the organic molecules being studied.  This theoretically 

will increase the scattering from the solution, for example the presence of bromine 

will increase the scattering of an organic molecule greatly as it is a much larger atom 

than any of the others that are currently involved in the compound.  This works for X-

ray scattering from crystals due to the number of electrons that bromine has so it is 

expected that this will also be the case in enhancing signals in the SAXS studies. 
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Figure 4.3.4: Scattering profile showing an overlay of the data collected at the four 

studied temperatures (5˚C is shown in green, 10˚C in pink, 15˚C in red and 20˚C in 

blue) showing a marginal increase in intensity as a function of temperature. 

 

The scattering profiles for both pMHB and methanol solutions showed similar traits, 

however with an increased scattering coming from the solute.  The intensity of signal 

is maximised at low angle, due to the lack of scattering ability of solutions.  The 

intensity of scattering drops significantly and results in an almost constant level of 

scattering that is the background for the solute.  This range is not as significant as the 

low angle region as most of the interactions in solution occur around this region 

leading to increased ordering and intensity.  This is clearly visible even in the solution 

scattering that is occurring from such a small molecule.   

 

Figure 4.3.5 shows an overlay of the data collected at each temperature for pMHB and 

for the control experiments containing purely methanol.  This is the best way to 

visualise the changes that occurred between the control experiments and the 

experiments that were carried out containing pMHB.  This clearly shows that there is 

not a significant difference in the scattering in the temperature range studied but does 
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indicate that there is scattering visible from the solute.  This is indicative of broad 

range ordering in the solution. 

 

 

Figure 4.3.5: All the data collected on station 2.1, indicating increased scattering 

from the solute.  The methanol solutions all show significantly lower scattering at 

higher angles and show very little variation as a function of temperature. 

 

The analysis of this data was not to a sufficient standard due to the weak scattering 

and it was therefore not possible to determine an accurate radius of gyration (Rg) for 

the molecules coming together in solution in spite of a range of attempts to carry this 

our reliably.  This will therefore not be reported.  The data were analysed using 

PRIMUS43 and GNOM43 and the scattering pictures available via FibreFix43, however 

these programs are all specifically designed for much larger molecules where the 

observed scattering is significantly distant from the beam stop.  To increase the 

scattering from the solution it would be necessary to collect data for a much greater 

length of time on a more powerful beam and then it may be possible to progress our 

knowledge of the process of crystallisation by monitoring the interactions before 

crystallisation occurs. 
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SAXS studies were also carried out at the University of Cardiff in collaboration with 

Professor Tim Wess and Dr Donna Lammie using the Bruker AXS NanostarTM.  This 

has a similar design to a synchrotron SAXS system, however the intensity of the beam 

is obviously reduced.  This resulted in further reduced scattering from the solute and 

no significant data were produced to augment the Station 2.1 data reported above. 

 

4.4 Conclusions: 

 

Although initial liquid studies were successful in the generation of a MZW, the 

ultimate goal was to attempt to study the nucleation process.  In this sense the model 

compound that was selected was not ideal for the purpose.  Scattering was observed 

due to the pMHB being present, however a more suitable target molecule containing 

heavy atoms would scatter X-rays more strongly and perhaps be able to produce data 

that can be analysed using the available analysis programs.  This study has therefore 

been significant in the development of reliable solubility and the use of MZW data 

that is required for SAXS studies on highly concentrated solutions.  However it is our 

belief that to be able to make significant progress a target molecule with heavier 

atoms would be more beneficial. 
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Chapter 5. X-ray diffraction studies of methyl 4-

hydroxybenzoate – an investigation of possible 

conformational polymorphism 

 
 
Methyl 4-hydroxybenzoate (pMHB; Figure 5.1) is a well studied non-linear optical 

material87.  The crystal structure of pMHB was originally solved by Lin et al. at room 

temperature21.  It shows no signs of other polymorphic forms.  Given this, it had been 

assumed that the most stable form was already known. However, a recent study, by 

Vujovic et al22 has indicated the possibility of a low temperature phase transition, 

claiming to have discovered a previously unknown form at low temperature. This 

study, carried out at 113K, led to the postulation of a new polymorph, although both 

forms crystallised in the monoclinic non-centrosymmetric Cc space group with three 

Z’=3 and Z=12.   

 

 

 

Figure 5.1: pMHB indicating the two torsion angles discussed in relation to possible 

conformational polymorphism 

 

In the low temperature structure, there is a lengthening of the b axis and an apparent 

twist in the ester group (shown by changes in the torsion angles indicated in Figure 

5.1), when compared with the original structure. These factors result in changes in the 

calculated powder X-ray patterns that were deemed to be sufficient enough to indicate 

that a conformational polymorph had been found. In the case of pMHB, any 

conformational polymorphism occurring would be thought to be due to a ‘displacive’ 

phase transition where a small change would not have to overcome significant energy 

barriers24
 and that can be readily reversed. 
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This finding has been disputed by Threlfall et al23
, who argue that, although slight 

differences can accumulate over a large temperature or pressure range to produce a 

substantial structural difference, this does not of itself produce a new phase or new 

polymorph.  He further states that the slight changes in lattice parameters can be 

justifiably accounted for in terms of minor conformational changes.  This latter 

interpretation has been backed up by the work presented here using variable 

temperature X-ray powder diffraction and single crystal studies. 

 

 

5.1 Variable temperature XRPD 

 

To investigate these reported changes in calculated powder patterns a variable 

temperature XRPD study was carried out to examine any changes that may show up 

as temperature was increased from 100K to 300K.  These experiments were carried 

out using a Bruker-AXS D8 powder diffractometer with temperature control provided 

by an Oxford Cryosystems low temperature Cryostream device.  Any significant 

changes in crystal structure will result in changes to XRPD patterns and will easily be 

determined as a function of temperature and the temperature range in which these 

changes occur.  For this reason diffraction patterns were collected every 50K over a 

scattering angle range of 5-55o 2θ at 1o per minute.  Figure 5.1.1 shows that as 

temperature was increased the peaks at 16.5-18, 25-26 and 27.4-28.4o 2θ (marked * in 

the Figure) start to get closer together until there is ultimately one single strong peak 

at 300K.  This is a typical process in all powder data in which the unit cell dimensions 

are varying as a function of temperature and should be noted, does not represent a 

significant change in structure.  Throughout the variable temperature XRPD 

experiment, all the peaks are present throughout or can be accounted for by this 

gradual coalescence of peaks into one single peak at high temperature. 
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Figure 5.2: XRPD patterns collected during VT XRPD study (from bottom to top, 

100K, 150K, 200K, 250K, 300K). 

 

At low temperatures the XRPD thus does not give any supporting evidence for the 

claim of a phase transition reported to occur at 113K, and can merely be explained by 

a thermal expansion of the unit cell as the temperature is increased. 

 
 
5.2 Variable Temperature Single Crystal Studies 

 

Variable temperature single crystal X-ray diffraction studies have been carried out 

using a Bruker AXS Apex II diffractometer and through this it has been possible to 

generate good quality structure determinations at various temperatures between 100K 

and 300K.  It was found that throughout the study that pMHB crystallized in the 

monoclinic non-centrosymmetric Cc space group with three independent molecules in 

the asymmetric unit and Z=12.  This was in agreement with previous studies and also 

it was found that the b-axis did elongate as temperature was decreased.  This is 

unusual as it is common for all three axes to contract with decreasing temperature, 

however the reason for this elongation is unknown.  The crystal structures shown in 

 * 

 * 

* 

2θ 
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Figure 5.2.1 were determined at 100K, 200K and 300K.  These are viewed along the 

b-axis and generally show the same characteristics throughout. 

 

 

 

 

Figure 5.2.1: The crystal packing of pMHB as viewed along the b-axis at (top) 100K, 

(middle) 200K and (bottom) 300K. 
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Figure 5.2.2 shows the trend in the unit cell parameters determined from the single 

crystal studies as a function of temperature (unit cell determinations were also carried 

out at 140 and 260K).  This further supports the hypothesis that a simple unit cell 

contraction is occurring as the temperature is cooled, and there is no abrupt change 

that would indicate a polymorphic transition. 
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Change in axis c with temperature
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Figure 5.2.2: The trend in unit cell parameters and cell volume of pMHB with 

respect to temperature, from the single crystal experiments. 
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  τ1 
o Change o τ2 

o Change o 

Molecule 1 100K -2.8(5) 2.6 0.9(5) 5.0 

 LT -4.3(2) 1.1 0.7(2) 4.8 

 RT -5.4  -4.1  

 300K -3.0(4) 2.4 1.0(4) 5.1 

Molecule 2 100K 2.9(6) 0.2 -0.2(6) 3.0 

 LT 1.5(2) 1.6 1.4(2) 1.4 

 RT 3.1  2.8  

 300K 3.0(5) 0.1 -0.6(4) 3.4 

Molecule 3 100K -1.6(6) 3.9 -0.2(5) 6.8 

 LT 3.0(2) 0.7 -1.1(2) 5.9 

 RT 2.3  -7.0  

 300K -2.0(4) 4.3 -1.2(4) 5.8 

 

Table 5.1: Torsion angle data from low temperature form (LT), room temperature 

form (RT), our 100K data and our 300K data.  (See figure 5.1 for a definition of the 

torsion angles.) 

 

Having produced single crystal structures, the torsion angles were investigated to 

assess the likelihood of conformational polymorphism being present.  Comparing the 

torsion angles in the 100K and 300K structures (Table 5.1) showed no significant 

differences, and allied with the continuous nature of the development of the XRPD 

patterns as a function of temperature, argue against this. 

 

 

5.3 Conclusions 

 

These single crystal studies, backed up with XRPD data, enable us to give the opinion 

that there is not a low temperature phase transition as postulated in the literature22. 

This is merely a contraction of the unit cell occurring as temperature is decreased.  

The results verify that there is an expansion of the b axis as temperature is decreased 

and a contraction of the a and c axis resulting in an overall unit cell contraction. 
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Through these studies, the changes in torsion angles between 100K and 300K are not 

as severe as stated in the literature22.  We have found no overall changes in torsion 

angles of greater than 7o for torsion two and only one over 4o for torsion one (Figure 

5.1), which was calculated to be 4.3o.  This is therefore not believed to be a 

significant change in the crystal structure to allow it to be deemed a conformational 

polymorph and a simpler explanation of a unit cell contraction and minor changes in 

the molecular geometry as the temperature is lowered is justified. 
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Chapter 6. Scattering studies of bromo-substituted 

compounds: towards signal enhancement and halogen 

interactions 

 

6.1: Dissolution and MZW studies of Methyl 2, 5-dibromobenzoate 

 

Following on from the initial liquid studies carried out on methyl 4-hydroxybenzoate 

(pMHB), it was decided to also study a second molecule containing heavier atoms, 

which may scatter X-rays better and potentially lead to distinctive signatures that can 

be identified in liquid scattering studies.  For this part of the work, a related molecule 

containing two bromine atoms was selected, methyl 2,5-dibromobenzoate (MDBB; 

Figure 6.1.1).  

 

 

Figure 6.1.1: Methyl 2,5-dibromobenzoate 
 

An added benefit of selecting this molecule was that its crystal structure was 

previously unknown, so all studies on this molecule including its initial 

crystallisation, while linking in with previous work would give a new understanding 

of the solution behaviour as well as revealing its solid-state structure and packing.  All 

molecules behave differently in solution so all solution studies on this new system had 

to be carried out as for the first case study presented in Chapter 4, using the same 

techniques and instrumentation, to see any changes in behaviour that may occur.  Due 

to the low melting point value of 48-51oC for MDBB, dissolution and metastable zone 

width studies were carried out from 20 to 35oC, at 5oC intervals as before.  This 

resulted in a narrower range of study than before but was carried out to the same 
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accuracy.  It was also decided to study a mixed solvent system, in this case ethanol 

and water, to decrease the concentrations of the solutions used.  MDBB is soluble in 

ethanol but not in water and it was hoped that the presence of this antisolvent would 

help produce good quality crystals for analysis. 

 

The wavelength range used in the ATR-UV studies was 200 – 270nm as the 

maximum UV absorbance occurs at ~ 237nm.  This is smaller than that used for 

pMHB.  For the calibration stage, five solutions were set up; 3%, 7%, 12%, 16% and 

20% w/w MDBB/solvent (Figure 6.1.2).  The temperature was ramped from 20oC at a 

rate of 1o every 6 mins up to 35oC.  This enabled a suitable mixing time and accurate 

measurements using the ATR-UV could be taken.  As before, this was crucial as 

unknown concentrations were assessed against these calibration results at each 

temperature during the dissolution and metastable zone width experiments. 
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Figure 6.1.2: The absorbance changes for each calibration solution as a function of 

temperature. 
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The dissolution experiments were carried out in 150ml of solvent (1:1 v/v, ethanol : 

water), generating solubility curves using both out of the bottle and recrystallised 

MDBB.  The process was changed from that of pMHB due to the lower solubility and 

lower temperature range that could be studied.  In this instance, the MDBB was still 

added before the experiment commenced, however due to the mixed solvent system 

being studied, the solutions were left at the four temperatures for longer to ensure 

complete dissolution.  Figure 6.1.3 shows the two dissolution curves that were 

produced, where the blue curve is for straight from the bottle MDBB and the pink 

curve is using recrystallised MDBB.  It is noted that as previously, there is no big 

difference between these results and therefore either can be used for the MZW 

determination. 
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Figure 6.1.3: Solubility curves of MDBB from dissolution experiments. 

 

The concentrations generated from the mixed solvent system were also decreased 

from the pMHB case and this is highly beneficial for crystallisation purposes 

considering the large scale of the reactor vessel. 
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Metastable zone width experiments were carried out based upon these results.  

Solutions were prepared at each of the temperatures and left to sit in the sealed vessel 

for two hours to ensure that crystallisation was not going to be spontaneous.  The 

solutions were then cooled at 0.1oC min-1 until the FBRM detected that particles were 

emerging from solution.  This was noted as the crystallisation point for the 

experiment, and the MZW was then defined as the area between the solubility curve 

and the point where crystallisation occurred (Figure 6.1.4). 
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Figure 6.1.4: Solubility and supersolubility curves for MDBB indicating the 

metastable zone. 

 

It should be noted that the crystallisation profiles for the two test compounds are 

completely unrelated.  The MZW for MDBB is narrower than for that of pMHB, 

which would indicate that the solution is not as stable i.e. that over a shorter time 

period, crystallisation would be more likely to occur within the metastable zone.  This 

can be explained by the simple notion that for any point within the metastable zone, 

the distance to the supersolubility curve is less for MDBB than for pMHB and thus 

any loss of solvent would result in the solution becoming more concentrated and 

spontaneous crystallisation would be more likely to occur.  This, of course, could be 

anticipated as no two molecules are likely to have similar solution behaviour 

especially when the crystal structures show them to be completely unrelated.  
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Crystallisation is a complex process governed by both thermodynamics and kinetics, 

so therefore it is impossible to predict exactly how these molecules will react in 

solution and is impossible to have a feel for crystallisation profiles before carrying out 

the experiments. 

 

 

6.1.1: Conclusions on MZW Experiments 

 

Throughout the metastable zone width (MZW) experiments, it has been possible to 

monitor crystallisation in-situ; however it should be remembered that this pre-

crystallisation work is on the micron scale and crystallisation, and its onset, occurs at 

much shorter length scales than this.  The work carried out during these experiments 

has generated a new method for monitoring solubility and concentrations in solution.  

This is a highly advantageous technique that has been developed, as it is now possible 

to calculate concentration changes as experiments are being carried out without the 

need for sampling and trying to maintain the sample at the desired temperature.  This 

is of huge benefit in the pharmaceutical industry especially, where solubility studies 

are of vital importance during the drug development stage.  The complimentary 

techniques of using FBRM and ATR-UV, in-situ, provide the further benefit of being 

able to detect the sizes of particles present in solution, and arguably their shape.  This 

is due to the scanning of the laser over the particles in solution, which detects particle 

sizes of distinct lengths and separates these in a chord length distribution (CLD) plot.  

The theory behind being able to analyse shape relies on the assumption that each 

shape will have varying lengths that will be scanned and identifies the proportionality 

of each length being scanned by the laser.   

 

This theory has been studied in smaller scale crystallisations51 and is of importance 

when monitoring the possible changes in polymorphs (and the associated particle 

morphology) that can occur.  These changes in polymorph that do not affect the 

solubility in solution would go unnoticed using the technique which has been adopted 

in this work, however using purely FBRM and detailed analysis it should be possible 

to determine when relevant shape changes have occurred.  

 



82 
 

 

6.2 Structural Studies of Methyl 2,5 dibromobenzoate 

 

One of the reasons that MDBB was chosen was that it had an unknown crystal 

structure and no studies had been carried out to investigate polymorphism via 

crystallisation with other solvents.  A quick solubility study showed that MDBB was 

soluble in only polar solvents and these results were analysed by X-ray powder 

diffraction to see if there was any change caused by recrystallisation from different 

solvents. 

 

Single crystal studies have shown that even though a literature value of the melting 

point is given as 48-51ºC for this compound, it sublimes at room temperature when 

given enough time.  This was observed when carrying out single crystal studies when 

the diffraction from the crystal seemed to ‘disappear’.  When the run was repeated 

with the crystal attached to the pip with superglue, the same thing occurred, indicating 

that the disappearance of the diffraction was not due simply to the crystal merely 

falling off.  To prove what was happening some single crystals of MDBB were left on 

a slide at room temperature and over time these crystals also ‘disappeared’ to indicate 

that sublimation was occurring.   

 

The diffraction data for MDBB were collected on the Bruker AXS Apex-II 

diffractometer at 100K and solved and refined using SHELXS84 in the WinGX85 

program.  Although it was only possible to collect data on a twinned crystal, from this 

it was still possible to deduce the crystal structure.  The molecule was found to 

crystallise in the triclinic space group 1P , and cell parameters a=4(2)Å, 

b=7.1682(9)Å, c=16.0658(16)Å, α=76.995(3), β=89.205(15) and γ=84.943(15), cell 

volume = 433.545Å3, with Z = 2.   

 

Figure 6.2.1 shows the crystal structure viewed along the a axis and from this it is 

interesting to notice the halogen contacts involved in the crystal packing.  Halogen 

bonding (X···O, X···N) has been known to exist for many years and is commonly 

understood to have the strength of a moderate hydrogen bond (i.e. 4-15 kJ mol-1)61.  In 

this molecule, however, as well as the presence of a Br . . . O halogen bond, there is 
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also the weaker halogen – halogen (Br···Br) interaction present.  Although this type of 

interaction is weaker, with no hydrogen bonding possible in this particular case, it is 

an interesting observation that may indicate this interaction may contribute to the 

packing in the crystal structure.  This could be studied further in the presence of 

hydrogen bonds to assess whether this is a significant contribution to the structure of 

the molecule or definitely a secondary interaction. 

 

 

  

Figure 6.2.1: Crystal structure of MDBB viewed along the a axis, with halogen - 

oxygen bonds and halogen – halogen interactions highlighted and the distances shown 

in Å. 

 

While the strength of the interactions were not calculated, by looking at the sum of the 

van der Waals radii these can be determined to be a close contact and likely to be 

significant in the absence of any other stabilising interactions.  The contact distance of 

the halogen bond, Br···O, was measured to be 3.188(2)Å, which corresponds to 94.8% 

of the sum of the van der Waals radii, while the halogen interaction, Br···Br, is found 

to be 3.5(1)Å, corresponding to 95.4% of the sum of the van der Waals radii.  Whilst 

it is recognised that these contacts are not significantly less than the sum of their 
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respective van der Waals radii, they are likely to be important and can be further 

investigated in other studies. 

 

Due to the difficulties in being able to solve the crystal structure from single crystal 

analysis, XRPD was also carried out for a direct comparison against the powder 

pattern calculated from the solved single crystal structure.  This confirms that the 

correct structure had been produced – the calculated powder pattern from the structure 

solved and refined from the twinned crystal at 100K is shown in Figure 6.2.2.  When 

compared with the pattern collected from the powder sample on the Bruker AXS D8 

diffractometer at room temperature, it can be seen that the two patterns generally 

match well.  There is some indication of splitting of peaks from the predicted pattern, 

but this is known to occur for some peaks during the temperature range of 100 – 300K 

due to lattice expansion and is not a significant effect in this case.  The first five peaks 

from the predicted pattern correspond almost perfectly with the first five peaks from 

the pattern collected experimentally and thus a close correspondence is observed.  

This supports the conclusion that the correct crystal structure has been solved even 

though it was from a twinned crystal. 

 

 

 

Figure 6.2.2: Predicted powder pattern of MDBB calculated from the crystal structure 

solved from the twinned crystal at 100K. 
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Figure 6.2.3: Powder pattern of MDBB collected at 300K. 

 

 

6.3 Preliminary SAXS studies of 2-bromobenzoic acid 

 

During the beam time that was granted at Daresbury on Station 2.1, SAXS studies of 

2-bromobenzoic acid were carried out.  This sample was chosen as a substitute to the 

planned system, due to the fact that the concentrated solutions of methyl 2,5-

dibromobenzoate that were prepared tended to crystallise whenever a sample was 

taken from the stock solution and prior to SAXS studies commencing on the 

beamline.  Concentrated solutions of 2-bromobenzoic acid were thus used as an 

alternative sample.  The choice of 2-bromobenzoic as an alternative to MDBB 

revolves around the fact that the compound is known to crystallise in the carboxylic 

acid dimer motif (Figure 6.3.1) and also contains a heavy (Br) atom, which was the 

prerequisite following on from the initial studies carried out on methyl 4-

hydroxybenzoate, with the aim of enhancing the X-ray scattering in the system due to 

the presence of the heavier Br atom.   
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Figure 6.3.1: Typical dimer of 2-bromobenzoic acid, with hydrogen bonds and 

halogen bonds labelled in blue88. 

 

 

 

 

Figure 6.3.2: Scattering profile of MDBB. 

 

SAXS studies were carried out using the identical method as for pMHB described in 

section 4.3.  Figure 6.3.2 shows the scattering profile from the 2-bromobenzoic acid 

solution.  From this it is easily noticeable that, as before, the scattering produced from 

the solution is focussed at very small angles around the beam stop and for this reason 
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analysis is not easy to carry out.  The programs that are routinely used for the analysis 

of protein solutions were again used, including Fibrefix, GNOM and Primus, which 

are all available on line through the web-site of their author, Dmitri Svergun43.  

Unfortunately due to the weak scattering that was produced from the solutions 

studied, in depth analysis was not possible using these programs, especially 

considering that such a small molecule system was being investigated. 

 

It was however, possible to notice the overall changes in the scattering being observed 

from the pure methanol solution compared with that from the pMHB (Chapter 4) and 

2-bromobenzoic acid solutions.  Our hypothesis was indeed correct in suggesting that 

increased scattering would be observed from the 2-bromobenzoic acid solution due to 

the heavy atom present.  This is shown in Figure 6.3.3 where the scattering profiles 

are overlaid, with obvious increases in scattering evident for the systems with solute 

present. 

 

 

 

Figure 6.3.3: Scattering profile measured on Station 2.1 showing variations between 

the scattering from solutions of the two molecules investigated (2-bromobenzoic acid 
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in blue, pMHB in red, both in methanol solvent) and the control (methanol solvent-

only) experiment (in pink). 

 

It can be easily observed from this graph that the scattering patterns cannot overlay 

perfectly.  This is due to the increased scatter observed for the solutions with solute 

present.  The profile for the 2-bromobenzoic acid shows differences even at lower 

angle.  The slope of the peak is seen to vary more significantly than for pMHB.  This 

is as expected due to the presence of the bromine atom in the molecule being studied, 

however, even with this increased observed scattering, attempting to deduce any 

structural information from this was not possible with the analysis tools available. 

 

One observation from the 2-bromobenzoic acid study that was not present in the 

pMHB study, was that of a slight temperature effect; it is not clear how important this 

may be.  One of the initial hypotheses underlying this work was that prior to 

crystallisation, the particles in solution would become more ordered and increase the 

scattering from solution – this may be expected to lead to an increase in scattering as 

the temperature is lowered, potentially inducing more crystallisation.  This turned out 

not to be the case in our experiments, during which crystallisation did not occur.  

However there is a small change observed in the scattering profiles of the 2-

bromobenzoic acid solution between 10 and 20ºC.  This is shown in Figure 6.3.4 and 

can perhaps be attributed to changes in kinetics and thermal motion.  It is to be 

expected that at higher temperatures particles move about a lot more than at lower 

temperatures and although the temperature change in this case is just 10ºC this may 

explain the differences in scattering.   
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Figure 6.3.4: Scattering profile showing the variations in scattering of 2-

bromobenzoic acid with temperature, with the increase between 10oC (red) and 20ºC 

(blue) evident. 

 

6.3.1: Conclusions 

 

Through the SAXS studies that have been carried out it has been possible to observe 

scattering from the solutions containing our test molecules.  This is a significant 

achievement considering the size of the molecules involved in the study and the 

shortage of studies carried out in this field to date.  It is of course, a disappointment 

that there has not been an opportunity to get any structural information from the 

observed scattering, however this would require extra specialist analysis programs 

that are not currently available.  Differences in the small angle liquid scattering for 2-

bromobenzoic acid have however been observed as a function of temperature and this 

requires further investigation. 
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Chapter 7: Co-crystals of Brominated Compounds.   

I. Bromanilic acid with picolines 

 

7.1: Methyl 4-bromobenzoate 

 

The structural studies of methyl 2,5-dibromobenzoate (Section 6.2), showed that 

halogen – halogen interactions and the stronger Br . . . O halogen bond were present in 

the crystal structure.  The related methyl-4-bromobenzoate was studied to examine 

whether these interactions were more significant in the absence of other ‘stronger’ 

interactions.   

 

Br

O
CH

3

O

 

Fig 7.1.1: Methyl-4-bromobenzoate 

 

The structures of the iodo- and chloro- analogues of methyl-4-bromobenzoate have 

previously been studied, although there are no three dimensional coordinates available 

for the chloro analogue89, the iodo- has been solved by means of single crystal 

diffraction90.  The iodo- substituted derivative was found to crystallise in the Pbca 

space group and was found to contain I···O halogen bonds, but no halogen – halogen 

interactions.  The halogen bonds formed have a length of 3.203(4)Å and a C-I···O 

angle of 172.5(2)o.  This is equivalent to 91.5% of the sum of the van der Waals radii. 



91 
 

 

Fig 7.1.2: Crystal structure of methyl-4-iodobenzoate viewed along the b axis, with 

an O···I halogen bond highlighted. 

 

A systematic recrystallisation study was carried out on methyl-4-bromobenzoate using 

a variety of solvents and conditions and analysed using XRPD to assess the 

possibilities for polymorphism.   

 

Fig 7.1.3: Overlay of representative XRPD patterns of methyl-4-bromobenzoate 

collected from samples recrystallised from different solvents. 
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Figure 7.1.3 shows an overlay of two data sets collected on a Bruker AXS D8 powder 

diffractometer.  This clearly shows that although intensities may vary, that each peak 

is accounted for in both patterns.  Only two patterns have been overlaid here to make 

it simple to notice the similarities between the patterns, however many more patterns 

were collected and all contain the same peaks, which would indicate that there is only 

one form present.   

 

Following on from this initial analysis, a variable temperature single crystal X-ray 

diffraction analysis was carried out.  The crystals were grown at room temperature 

using the slow evaporation technique from methanol solvent.  Data were collected on 

a Bruker AXS Apex II diffractometer.  The structure was solved using SIR82 within 

CRYSTALS83
 and refined using SHELXL84.  It was found to crystallise in the 

orthorhombic Pbca space group, with Z = 8, at all the temperatures that were 

investigated.  Structures were solved every 50K between 100 and 300K so that 

analysis over a wide temperature range could be carried out. 

 

  

 

Fig 7.1.4 a-c: Crystal structures of methyl 4-bromobenzoate viewed along the b axis 

produced at 100, 200 and 300K respectively, with the halogen bond highlighted. 

a b 

c 
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Figure 7.1.4a shows the crystal structure and packing of methyl-4-bromobenzoate 

along the b axis at 100K.  This packing motif is the same across the temperature range 

studied and no phase transition was observed.  The only variation is in the length of 

the bromine – oxygen contact.  In the absence of hydrogen bonding in this system, 

halogen bonding is the strongest interaction present.  At 100K, the Br . . . O halogen 

bond measures 3.040(2)Å and represents 90% of the sum of the van der Waals radii, 

and the C-Br . . . O angle was found to be 172.1(1)o.  The length of this interaction 

varies as a function of temperature and is elongated to 3.122(3)Å at 300K, this 

however still represents 92.6% of the sum of the van der Waals radii with the C-Br ··· 

O angle found to be 173.1(1)o.  

  

 

Figure 7.1.5: The variation of the thermal ellipsoids at 100K(a) and 300K(b) for 

methyl-4-bromobenzoate indicating that although the precision of the structure 

remains similar, the thermal motion, specifically around the methyl hydrogens 

increases considerably as would be expected for a librating methyl group. 

 

The crystal structure is isostructural with that of the iodo derivative and shows no 

signs of polymorphism.  During this study the crystal structure was published from a 

determination at 173K91 and is found to be in close agreement with the data we 

collected at 200K. The published halogen bond distance measures 3.047(3)Å and the 

C-Br ··· O angle is 172.3(1)o.  This study indicates that in the absence of hydrogen 

bonding, halogen bonding interactions are important intermolecular interactions in the 

stabilising of the crystal structure.  The crystallographic data from the variable 

temperature study is available in Appendix 2. 

(a) (b) 
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7.2: Co- crystallisations of Bromanilic Acid – potential intermolecular halogen 

interactions 

 

7.2.1: Introduction to bromanilic acid 

 

Bromanilic acid belongs to a family of widely used and studied anilic acids with 

importance in organic synthesis92 and also widely studied in for its ferroelectric 

properties93.  It is the aim of this part of the project to examine the possibilities for 

potential uses in crystal engineering, due to the ability of bromanilic acid to hydrogen 

and halogen bond readily. 

Br

Br

OH

HO O

O

 

Fig 7.2.1: A schematic diagram of bromanilic acid, systematic name: 2,5-dibromo-

3,6-dihydroxyl-1,4-benzoquinone. 

 

Bromanilic acid, unlike other members of its family, is soluble in many solvents and 

crystallises mainly in deep purple cuboidal shapes.  It is possible for bromanilic acid 

to co-crystallise with target molecules and lose either one or two protons to an 

acceptor on another molecule in a similar way to that seen for the related chloranilic 

acid92,94.  In studies carried out to date, there is only two examples of complete 

hydrogen atom transfer from both hydroxyl groups of the bromanilic acid 

molecule9295.  

 

Robl solved the crystal structure of bromanilic acid from X-ray diffraction data in 

198796 and it was found to crystallise in the space group P21/n.  The most interesting 

characteristic of the crystal structure is that each bromanilic acid molecule has four 

hydrogen bonds to four separate bromanilic acid molecules.  This without doubt is the 
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most stabilising interaction in the crystal structure with other weaker interactions such 

as Br ··· Br being formed a result of the former interactions.  The hydrogen bond 

formed is a moderate strength O-H···O interaction and these are formed from each 

oxygen atom in the crystal structure (O···O distance 2.781Å, O-H···O angle 147.55o).  

The Br···Br close contact of 3.434Å is measured as being 92.8% of the sum of the van 

der Waals radii. 

 

Figure 7.2.2: Crystal structure of bromanilic acid viewed along the c axis showing the 

four hydrogen bonds that are present from each bromanilic acid molecule96. 

 

Bromanilic acid has high potential for co-crystallisation due to the many routes by 

which it could potentially form intermolecular interactions to strengthen a crystal 

lattice.  The obvious main routes would be through hydrogen bonding, with the ketone 

and hydroxyl groups present and there is a strong possibility of forming bifurcated 

hydrogen bonds as seen for the related chloranilic acid97.  The larger halogen atoms 

Br and I are known to form close contacts with themselves or with atoms such as 

oxygen, whereas F and Cl are more likely to interact with hydrogen atoms.  Studies 

have shown that Cl . . . Cl interactions are longer than Br···Br interactions60 thus 

backing this theory.  For this reason it would be suggested that there should be a 

greater deal of halogen bonding, Br···O, and halogen – halogen interactions, Br···Br, 
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than in the associated chloranilic acid co-crystal compounds.  There is also the 

possibility of halogen bonds and many other weaker interactions including π – π 

stacking interactions.  Hydrogen bonds are directional interactions and can be 

distinguished in their strength in the range of angles (∠D-H···A) between strong 

(~180o) and weak cases (>90o).  Due to the significant hydrogen bonding capability 

there is also the likelihood of solvates, most significantly hydrates, forming during co-

crystallisation studies98.   

 

There are two instances of bifurcated hydrogen bonding involving bromanilic acid.  

Both of these instances are found in the same study carried out by Zaman et al.92.  The 

first of these, a co-crystal complex of bromanilic acid with bis(4-(2-

pyridyl)pyridinum) forms a three molecule interaction in a two to one ratio of the 

pyridinium to bromanilic acid.  This results in deprotonation on both sides of the 

bromanilic acid and bifurcated hydrogen bonds forming.  The second of these 

involves a co-crystal of bromanilic acid with ethyne-1-(4-pyridyl)-2-(4’-pyridinium) 

also in a two to one ratio as previously.  This time however deprotonation only occurs 

on one side of the bromanilic acid. 

 

Interestingly, on further examination of the CSD there are also two instances of Br···O 

halogen bond interactions92,99 with interactions of 3.190 and 3.251Å, which are both 

shorter than the sum of the van der Waals radii of 3.37Å.  Zaman et al.92 show the 

complex interactions surrounding the anilic acids.  Their study focuses on the co-

crystallisation of 2,2’-bipyrimidine with cyanilic acid, chloranilic acid and bromanilic 

acid.  The chloranilic acid and bromanilic acid co-crystal structures are both stabilised 

by hydrogen bonding from water molecules and interestingly both generate halogen – 

halogen interactions.  These studies do not emphasise the significance of halogen 

bonding which has been found to be significant in previous crystal structures.   

 

Bromanilic acid is soluble in a wide variety of solvents, which enables a variety of 

conditions to be used throughout the studies.  Many of these trials were set up using 

the Microvate Reactaray™, which allows 12 different temperature conditions to be 

used in parallel.    This enables products to be collected in a much shorter time and 

screened by XRPD before altering conditions to promote the growth of single crystals.  
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Co-crystals incorporating bromanilic acid can exist in both 1:1 and 2:1 ratios 

depending on the experimental set up in terms of the ratio of starting materials, and 

other factors. 

 

 

7.2.2: Initial studies of Bromanilic acid 

 

A crystal structure is a compromise between interactions of varying strengths, 

directionalities and distance-dependence properties.  Interactions in an organic crystal 

are numerous and of a range of strengths, therefore can the effect of hydrogen bonds 

and halogen bonds be studied in co-crystals with the possibility to contain both?  For 

many years it has been known that there exists three separate types of hydrogen 

bonding for small molecules.  The strengths of these interactions are upwards of 15 kJ 

mol-1 for the very strong hydrogen bond and 4-15 kJ mol-1 for the moderate hydrogen 

bonds and <4 kJ mol-1 for weak hydrogen bonds61.  In terms of small molecule 

crystallography, studies invariably centre around moderate strength hydrogen 

bonding.  The hydrogen bonding in these small molecule systems has been studied for 

many years and now has an element of predictability associated with it.  For this 

reason, it is the purpose of this work to examine the effect of additional halogen atom 

interaction capabilities in the construction of the co-crystals studied.  This is a topic of 

great interest in terms of crystal engineering as halogen bonding is known to be a 

significant non-covalent interaction. 

 

The crystallographic studies reported in Chapter 5 on methyl-2,5-dibromobenzoate, a 

material which was used in the metastable zone width studies, showed that there were 

two distinct interactions occurring in the absence of any hydrogen bonding.  These 

were halogen – halogen interactions e.g. Br···Br and halogen bonding interactions e.g. 

O···Br; the latter of these is predominant and known to be comparable in strength to 

that of weak hydrogen bonds60.   

 

Co-crystallisation of bromanilic acid with a series of co-molecules has been used to 

try and monitor and possibly engineer these close halogen bonding interactions even 

in the presence of hydrogen bonding.  These close halogen contacts have the potential 

to play a significant role in the crystal structure especially where only weak hydrogen 
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bonding is found to occur.  Hydrogen bonding and possible halogen bonding patterns 

were evaluated with the aim of prediction of certain patterns that are likely to occur in 

related crystal structures. 

 

Previous studies involving the related chloranilic acid show a significant number of 

Cl···Cl interactions and also the presence of halogen bonding interactions with both 

nitrogen atoms and oxygen atoms indeed both are found in the co-crystal structure of 

chloranilic acid and piperazine-2,5-dione100.  Indeed the crystal structures of pure 

chloranilic acid, and indeed the hydrated form, are found to contain Cl···Cl 

interactions101,102.  In related studies involving the co-crystallisation of chloranilic acid 

with the family of picolines there appears to exist a relationship between the ratio and 

the packing sequence.  It has been found that the 1:1 chloranilic acid (C) : picoline (P) 

structures tend to form a P:C:C:P type structure, whereas the 1:2 structures tend 

towards P:C:P due to the hydrogen atoms being transferred from both hydroxyl 

groups of the bromanilic acid94,103. 

 

A systematic co-crystal study of bromanilic acid and a family of compounds, 

picolines and lutidines was thus completed in this work, to see if any halogen 

interactions were present and determine whether there were any cases in which it 

could be a short enough contact to compete with any hydrogen bonding involved. 

 

N

CH
3

          
NCH

3

CH
3

 

Fig 7.2.3: An example of a picoline and a lutidine molecule, in this example (a) 4-

picoline and (b) 2,3-lutidine. 

 

The molecules studied are all related and it is merely the positions of the methyl 

groups in the isomeric picolines and lutidines that vary.  The main interactions 

expected in these co-crystal compounds would be hydrogen bonding between the 

nitrogen of the ring and the hydroxyl hydrogens on the bromanilic acid with only 

weak halogen interactions present if any at all.  This could be altered by the presence 

of a halogen on the secondary molecule to compete for the interaction around the 

(a) (b) 
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hydroxyl group of the bromanilic acid molecule.  Following on from this study it was 

decided to investigate whether the presence of a bromine atom on the 2nd molecule 

involved in the co-crystal would have any effect on the likelihood of halogen bonding 

or halogen – halogen interactions occurring.  The hypothesis behind this is that by 

involving a halogen atom in the 2nd molecule this will enable competition between 

hydrogen bonding and halogen bonding, with the added possibility of halogen – 

halogen interactions between the bromine atoms.   

 

Picolines, (chemical formula C6H7N) come in three isomeric forms, 2-, 3- and 4-

picoline.  They are all colourless liquids with a strong smell and have a high affinity 

for protons.  For this reason it was hypothesised that hydrogen bonding would occur 

with the hydroxyl group after extracting a H atom and/or possibly forming a 

bifurcated hydrogen bond with a second interaction to the ketone group as well.  This 

was anticipated to be the major stabilising interaction in the 2:1 co-crystal compounds 

studied, however in the 1:1 co-crystal studies it was suspected to be more likely that 

competing interactions from halogen bonding would occur. 

 

Before commencing the co-crystal study, single crystals of bromanilic acid were 

grown from  methanol by the slow evaporation method.  Data were collected on a 

Bruker AXS Apex II diffractometer at 100 K and solved using SHELXS84 using direct 

methods.  The structure was refined using CRYSTALS83 and found to crystallise in 

the monoclinic P21/c space group, with cell parameters of a=5.4365(5) Å, 

b=7.3128(6) Å, c=9.5880(8) Å and β=99.435(6)º, and a cell volume of 376.02(6)Å3.  

This was found to be in agreement with previously published data96. 
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Fig 7.2.4: Crystal structure of bromanilic acid collected at 100K.  Close contacts are 

shown with dashed lines. 

 

Figure 7.2.4 shows the crystal structure of bromanilic acid with the hydrogen bonding 

extended.  The hydrogen bonding is of the moderate variety forming zigzag chains of 

bromanilic acid molecules, which are highly symmetrical.  For this reason, the full 

three-dimensional structure is held together by hydrogen bonding and any other close 

contacts are constrained to be present by these interactions.  This initial survey of 

solvent and temperature crystallisation conditions yielded only one product and this 

indicated that no hydrates should be expected. 
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Figure 7.2.5: XRPD data from recrystallised sample of bromanilic acid 

 

 

7.3: Co-crystallisation Studies of Bromanilic acid and Picolines 

 

Co-crystallisation experiments were carried out using 2-, 3- and 4-picoline using a 

series of solvents and temperature regimes.  Co-crystallisations were carried out 

attempting to crystallise in both 1:1 and 2:1, picoline : bromanilic acid ratios.  All 

solid materials were initially characterised by XRPD.  The co-crystallisations in this 

case used a liquid material as a second component.  In spite of this, the XRPD 

patterns of the initially solid materials are crucial in such studies as this is always the 

first check when assessing whether a new co-crystal has been produced.  The 

bromanilic acid spectra collected allows initial comparison with powder data collected 

from the co-crystals and this can indicate if bromanilic acid was crystallising out as 

the product, a valid and useful conclusion even in the absence of powder data for the 

other co-crystal molecules.  The screening showed that new molecular complexes had 

been formed and single crystals were selected from these solid products.  Single 

crystal data were collected from all new complexes.  Higher quality single crystal data 

were collected from the 2:1 co-crystals, however the data collected from the 1:1 co-

crystals also gave rise to some interesting features.  
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All crystals unless stated were grown via the slow evaporation method from alcohol 

solvents at room temperature.  These were generated using molar quantities of the two 

components. 

 

For all the reported structures, data were collected on a Bruker AXS Apex II 

diffractometer with a CCD detector and graphite monochromated Mo Kα radiation (λ 

= 0.7103Å) at 100K.  Structures were solved by direct methods (SHELXS-9784) and 

refined (SHELXL-9784) by full matrix least-squares methods, as implemented in the 

WinGX software package85.  Absorption corrections were applied.  Hydrogen atoms 

were introduced at calculated positions and refined isotropically. 

 

 

7.3.1.  Bromanilic acid 3-picoline co-crystal structures 

 

 

 

 

Figure 7.3.1: Crystal structure of bromanilic acid and 3-picoline in a 1:1 ratio viewed 

down the a axis collected at 100K. 
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Figure 7.3.1 shows the crystal structure of the 1:1 bromanilic acid and 3-picoline co-

crystal collected at 100K.  The crystal was grown from a methanol solution containing 

10mg bromanilic acid and 31mg 3-picoline to account for the 1:1 ratio.  This is a very 

intriguing co-crystal complex as it bears out the complexity of bromanilic acid due to 

the many states in which it can exist.  It was found to crystallise in the 1P  space 

group, the complex has crystallised in a one picoline to 0.5 fully protonated 

bromanilic acid to 0.5 completely deprotonated bromanilic acid ratio.  This is possible 

due to the symmetry of bromanilic acid, however this motif has never previously been 

generated.  This also promotes the idea of salts or co-crystals.  In this co-crystal 

complex one half has been deprotonated and the other remains fully protonated so by 

definition this could be determined to be a half salt, half co-crystal.  To avoid 

confusion, all such structures will be described as co-crystals to avoid any 

terminology difficulties. 

 

There is the presence of a bifurcated hydrogen bond between the 3-picoline and the 

fully deprotonated bromanilic acid molecule with N···O distances of 2.724(2)Å and 

2.858(2)Å and angles equal to 148(2)o and 122(2)o respectively (Figure 7.3.2).  There 

are also hydrogen bonds formed from the fully protonated bromanilic acid to the fully 

deprotonated measuring 2.587(2)Å with an angle of 152(2)o and further more the 

presence of two Br···O halogen bonds measuring 3.311(2)Å and 3.337(1), which due 

to the distances involved must be considered to be as a result of the stronger hydrogen 

bonding interactions rather than as a contributing interaction resulting in extra 

stabilisation of the crystal structure. 

 

The three-dimensional structure is linked via these halogen bonding interactions, so 

they do play an important role in the crystal structure.  The stabilisation of the 

deprotonated bromanilic acid molecule comes from the conjugation in the system.  

This is evident when compared with the C-O bond lengths from the protonated 

bromanilic acid.  In the deprotonated form the C-O hydroxyl bond contracts 

(1.251(2)Å) and the carbonyl C=O elongates (1.246(2)Å) in comparison to the 

protonated form (1.316(2)Å and 1.220(2)Å). 
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Figure 7.3.2: Crystal structure of bromanilic acid and 3-picoline in the ratio 1:2 

viewed down the a axis, collected at 100K. 

 

The crystal structure of bromanilic acid and 3-picoline in the 1:2 form was collected 

at 100K and found to crystallise in the monoclinic form with space group P21/c.  The 

co-crystal was grown from a methanol solution containing 12mg bromanilic acid and 

75mg 3-picoline left to slowly evaporate at room temperature.  Due to the presence of 

two picoline molecules, this can fully deprotonate both sides of the bromanilic acid 

and it is found that the bromanilic acid exists in the fully deprotonated state and all 

picoline molecules have been protonated.  In this instance only N-H···O(O) bifurcated 

bonds were found to be present, once again in a major and minor variety.  The major 

interaction, N···O, measures 2.601(1)Å, with the angle determined to be 168(2)o.  This 

follows the same hydrogen bonding motif as found for that of chloranilic acid94 and 

again the bromanilic acid is found to be stabilised through conjugation with C-O bond 

lengths measuring 1.240(1)Å and 1.265(1)Å.  In this 1:2 co-crystal compound, the 

weaker interactions that generate the 3-dimensional crystal structure again appear to 

involve the bromine with a close contact to the carbon atoms of the bromanilic acid 

molecule which lies perpendicular to the bromine atom (Figure 7.3.3).   
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Figure 7.3.3: Close contacts involving bromine and the carbon atoms of the 

bromanilic acid molecule involved in the bifurcated hydrogen bonding with 3-

picoline. 

 

 
 

Figure 7.3.4: XRPD data showing the 1:1 and 1:2 co-crystal products of co-

crystallisations of bromanilic acid and 3-picoline. 
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Figure 7.3.4 shows a cropped selection of the powder patterns collected for both the 

1:1 and 1:2 bromanilic acid : 3 picoline complexes.  These show very little similarity 

as would be expected considering there is no relationship between the two crystal 

structures and that the bulk products of both are different. 

 

7.3.2 Bromanilic acid 2-picoline co-crystal structures 

 

Bromanilic acid and 2-picoline only produced high enough quality single crystals in 

the 1:2 bromanilic acid : 2-picoline form for single crystal X-ray diffraction studies.  

The crystal used was grown from a methanol and water solution containing 8mg of 

bromanilic acid and 50mg 2-picoline.  The solution was left to crystallise at 5oC and 

crystals were produced.  The single crystal data collected for the 1:1 co-crystal was 

not of high enough quality to prodice a reliable refined structure.  As with the 2:1 3-

picoline : bromanilic acid co-crystal, the bromanilic acid was found to be fully 

deprotonated and found to crystallise in the monoclinic P21/c space group. 

 

 

 

Figure 7.3.5: Crystal structure of Bromanilic acid and 2-picoline in the ratio 1:2 

viewed along the b axis, collected at 100K 
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Once again the predominant interactions are bifurcated hydrogen bonds as a result of 

the hydrogen transferring over to the picoline molecule (Figure 7.3.5).  However in 

this instance the dominant bifurcated hydrogen bond measures 2.841(4)Å, at an angle 

of 164(3)o.  The hydrogen bonding incorporated in this crystal structure results in 

additional halogen bonding, Br···O, being present in the 2-picoline co-crystal structure 

where none was visible in the 3-picoline structure.  This Br···O interaction is of length 

3.357(2)Å and an angle of 162.5(1)o and again these halogen bonds are found to be 

important in producing the three-dimensional crystal structure linking via halogen 

bonding to the carbonyl group.  The conjugation present again helps to stabilise the 

deprotonated bromanilic acid molecule with C-O bond distances measuring 1.241(6) 

and 1.255(5)Å.  

 

 

 
Figure 7.3.6: XRPD data showing the 1:1 and 1:2 bromanilic acid 2-picoline co-

crystal products. 

 

Figure 7.3.6 shows the XRPD data collected on result of the recrystallisation trials of 

both the 1:1 and 1:2 co-crystallisation attempts.  From this it can be seen that both 

patterns show a great similarity to each other and from this it is understandable why 

only the 1:2 co-crystal structure could be obtained.  Though showing marginal 
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changes, mainly in intensity, the peaks for both the 1:1 and 1:2 crystallisation 

products show enough to indicate that only the 1:2 product was successfully grown.  

This shows that even though crystallisations were prepared in a 1:1 ratio, only a 1:2 

product was obtained.  These trials were carried out in sample vials and further 

investigations using the Reactarray Microvate TM did not prove to be any more 

successful in producing the 1:1 complex. 

 

7.3.3.  Bromanilic acid 4-picoline co-crystal structures 

 

The final picoline molecule in the sequence, 4-picoline, was successfully co-

crystallised in both the 1:1 and 1:2 forms.  Both 1:1 and 1:2 crystals were grown from 

acetone solution at 5oC using the MicrovateTM.  The 1:1 co-crystal in this instance 

contains all the non-covalent interactions of interest in the study, possibly helped by 

the methyl group being as far away as possible from the nitrogen on the picoline 

molecule.  In this instance, the bromanilic acid molecule remains fully protonated and 

unlike the 3-picoline co-crystal structure there is only one type of bromanilic acid 

present in the crystal structure.  This results in essentially only a O-H···N hydrogen 

bond being present (Figure 7.3.7), however there is also a close contact between the 

nitrogen and the carbonyl oxygen of the bromanilic acid (3.021(9)Å).  The hydrogen 

bond to the hydroxyl group has an N···O distance of 2.771(9)Å and a reduced angle of 

138.1(5)o.  There is also the presence of Br···O halogen bonding of 3.263(9)Å, angle 

151.1(3)o, and also for the first time halogen – halogen interactions are also observed, 

Br···Br, of length 3.546(1)Å, representing 95.84% of the sum of the van der Waals 

radii. 
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Figure 7.3.7: Crystal structure of bromanilic acid and 4-picoline in a 1:1 ratio 

determined at 100K 

 

The 1:2 co-crystal complex of bromanilic acid with 4-picoline follows the same trend 

as the other 1:2 complexes studied whereby the bromanilic acid is fully deprotonated 

and hydrogen bonding occurs at both sides of the bromanilic acid molecule.  This is 

the complex in which the nitrogen is nearest the centre of the two oxygen atoms of the 

bromanilic acid, however as can be seen there is still one dominant hydrogen bond in 

this case measuring 2.762(2)Å, with an angle measured to be 142(2)o (Figure 7.3.8).  

This is in comparison to the longer N···O distance measuring 2.860(2)Å with an angle 

of 137(2)o.  In comparison to the other bifurcated hydrogen bonds, Table 7.1, this is 

much more of a central bifurcated bond.  This co-crystal complex has no other non-

covalent interactions present.  In this co-crystal structure there are found to be many 

other weaker interactions involved to stabilise the structure in 3-dimensions involving 

the hydrogen in the 2 position of the picoline generating close contacts with the 

oxygen, from the shorter of the two C-O bonds, and the bromine atom of another 

bromanilic acid molecule.  The bromanilic acid molecule in this instance has been 

stabilised significantly by the conjugation of the molecule with C-O distances of 

1.242(2)Å and 1.245(2)Å. 
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Figure 7.3.8: Crystal structure of bromanilic acid and 4-picoline in the ratio 1:2 

viewed along the b axis, collected at 100K. 

 

 

 

Figure 7.3.9: XRPD data showing the 1:1 and 1:2 co-crystal products of bromanilic 

acid with 4-picoline. 



111 
 

 

Figure 7.3.9 shows an overlay of the XRPD data for both the 1:1 and 1:2 co-crystal 

complexes of bromanilic acid and 4-picoline.  This is a pure powder pattern where the 

1:1 pattern (blue) and the 1:2 pattern (red) have completely unique peaks thus 

suggesting that there is only one product in each crystallisation and there are no 

mixtures.  
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Table 7.1: Distances and angles for the bifurcated hydrogen bond in the bromanilic acid (Ba) picoline (pic) complexes and other important close 

contacts.  The angles shown represent the plane of the bifurcated hydrogen bond. 

 

*It should also be noted from the table that there is no bifurcated hydrogen bond for the bromanilic acid : 4-picoline 1:1 cocrystal as the 

hydrogen atom was located on the hydroxyl group. 

 

 

 

 

 

Co-crystal N – O1 
(Å) 

N – O2 
(Å) 

N – H 
(Å) 

H - - O1 
(Å) 

H - - O2 
(Å) 

Br - - O 
(Å) 

Br - - Br 
(Å) 

N-H- - 
O1 (

o) 
N-H - - 
O2 (

o)  
O- - H- - 
O (o) 

Overall 
(o) 

Ba : 2pic 
1:2 

2.841(4) 2.961(4) 0.89(3) 1.98(3) 2.40(3) 3.357(2)  164(3) 121(2) 74(1) 359(3) 

Ba : 3pic 
1:1 

2.724 (2) 2.858(2) 1.07(2) 1.76(2) 2.15(3) 3.311(2) 
3.337(1) 

 148(2) 122(2) 85(1) 355(2.5) 

Ba : 3pic 
1:2 

2.601(1) 3.041(1) 0.83(1) 1.79(1) 2.59(1)   168(2) 116(1) 73.0(5) 357.0(1.8) 

Ba : 4pic 
1:1 

2.771(9) 3.021(9)  0.820(5)*  3.263(9) 3.546(1)     

Ba : 4pic 
1:2 

2.762(2) 2.860(2) 0.76(2) 2.13(2) 2.25(3)   142(2) 137(2) 74.3(8) 353.3(2.4) 
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Table 7.2: The crystallography data produced from single crystal diffraction. 

Compound Ba:2pic 1:2 Ba:3pic 1:1 Ba:3pic 1:2 Ba:4pic 1:1 Ba:4pic 1:2 
Formula C12 H9 Br2 N O4 C12 H9 Br2 N O4 C12 H9 Br2 N O4 C12 H9 Br2 N O4 C12 H9 Br2 N O4 
Molecular 
weight (gmol-1) 

390.51 390.51 390.51 390.51 390.51 

Temperature 
(K) 

100 100 100 100 100 

Space Group P 1 21 / c 1 P-1 P 1 21 / c 1 C c P 1 21/c 1 
a (Å) 16.4608(17) 7.6036(4) 8.9526(7) 18.4569(10) 8.1345(8) 
b (Å) 7.8053(8) 8.4569(4) 9.6149(8) 11.1776(6) 6.1517(6) 
c (Å) 14.5632(15) 11.1195(5) 10.4275(8) 14.0787(7) 17.7868(17) 
α (o)  69.350(2)    
β (o) 99.593(5) 86.849(2) 103.935(4) 117.532(3) 96.177(7) 
γ (o)  74.752(2)    
Volume (Å3) 1844.9(3) 644.96(6) 871.17(12) 2575.6(2) 884.90(15) 
Z 5 2 2 8 3 
θ range (o) 1.255 – 21.035 1.959 – 34.393 2.344 – 28.870 2.21 – 36.21 2.303 – 32.816 
Reflections 
Collected 

11969 17647  10143 13032 14768  

Independent 1970 4832 2280 3526 3237 
Refln Observed 
I > 2σ (I) 

1610 4144 2050 3040 2516 

Rint 0.0455 0.0393 0.0329 0.0485 0.0460 
No. Parameters 283 199 142 353 142 
GooF on F2 0.9733 1.0373 1.3223 1.019 0.8521 
R1 (Observed) 0.0393 0.0344 0.0289 0.0588 0.0403 
R1 (all) 0.0746 0.0396 0.0337 0.0731 0.0579 
wR2 (all) 0.0665 0.0750 0.0740 0.1472 0.1004 
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7.3.4.  Summary 

 

From this study it can be concluded that in terms of predictable stabilising 

interactions, the bromanilic acid and picolines in the 1:2 form will always result in full 

deprotonation with bifurcated hydrogen bonding occurring at both sides of the 

bromanilic acid molecule.  This is entirely predictable given the knowledge of 

picolines to have a high affinity for protons.  This is also in complete agreement with 

work carried out previously94 where a P:C:P structure was generated with picolines 

and chloranilic acid.  This motif stands up here as well with regards to a predictable 

P:B:P structure being produced. 

 

From the crystal structures produced of the 1:1 co-crystals there does not appear to be 

a predictable motif present.  With regards to the bromanilic acid : 3-picoline co-

crystal there is a P:B:P, three molecule interaction present, however as the bromanilic 

acid crystallises in two different types (protonated and deprotonated), this is not 

present throughout.  The protonated bromanilic acid produces a O-H···O hydrogen 

bond and a Br···O halogen bond is also found.  The bromanilic acid : 4-picoline co-

crystal crystallises in a completely different space group and the bromanilic acid is 

found to hydrogen bond only to one picoline molecule with other significant halogen 

bonding present.  Hydrogen transfer to the picoline does not occur for this system.  

For this reason there is currently no specific motif present for the 1:1 structures, 

however these 1:1 structures are more likely to contain additional halogen bonding 

interactions and the only instance of halogen – halogen interactions was with that of 

the 4-picoline co-crystal. 
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Chapter 8: Co-crystals of Brominated Compounds.  II. 

Bromanilic acid with lutidines 

 

8.1: Co-crystallisations of bromanilic acid and the family of lutidine molecules. 

 

Lutidines or dimethylpyridines are commonly found in coal tar and bone oil and are 

strong smelling liquids.  These compounds have been studied routinely in terms of 

organometallic compounds where the lone pair on the nitrogen is attracted to the 

metal centre.  There have been significant studies using a range of lutidine compounds 

in co-crystal studies, including a study by Schmidtmann and Wilson64 in which a 

whole family of co-crystals with pentachlorophenol were produced.  This was 

intended to study hydrogen transfer in the series, however attention should be given to 

2,6-lutidine pentachlorophenol co-crystal where hydrogen transfer has occurred from 

one of the two pentachlorophenol molecules in the crystal lattice64.  Further research 

of structures available on the CSD only provides one further example of a significant 

co-crystallisation study using lutidines and fumaric acid by D.A. Haynes et al104.  

During this work the full family of co-crystals was produced using lutidines with both 

fumaric and succinic acid, which resulted in salt formation.   

 

Ishida et al have also used lutidines to produce co-crystals with chloranilic acid in the 

1:1 ratio97.  These structures all formed a chloranilic acid dimer and the lutidine 

molecule interaction with the hydroxyl group of the other half of the bromanilic acid.  

In only the 2,5-lutidine – chloranilic acid structure can this be described as a 

bifurcated hydrogen bond as the other co-crystals appear to be hydrogen bonded from 

the nitrogen to the hydroxyl group.  An interesting feature in this study is the 

importance of the hydrogens on the lutidine ring and also from the methyl group.  For 

the 2,5-lutidine co-crystal the hydrogen on the 6 position of the lutidine develops an 

interaction with the carbonyl group, whereas in the 2,4- and 2,6-lutidine co-crystal 

compounds, it is a hydrogen on the methyl group that appears to form this close 

contact to stabilise the crystal structure. 

 

The family of lutidine molecules studied involved 2,3-, 2,4-, 2,5- and 3,5-lutidine.  

These present a set of simple molecules to examine structural motifs that may be 
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present and in common between them.  These are similar to the family of picolines 

though containing an extra methyl group on the aromatic ring.  These co-crystals were 

studied in the 1:1 form with bromanilic acid.  This was due to the 1:1 picolines 

showing an increased presence of non-covalent interactions in addition to hydrogen 

bonding.   

 

8.1.1: Bromanilic acid 2,3-lutidine 

 

Bromanilic acid and 2,3-lutidine were found to crystallise in the monoclinic P21/n 

space group at 100K.  Crystals were grown from a 2-propanol solution containing 

6mg bromanilic acid and 16mg 2,3-lutidine, by slow evaporation at room temperature.  

Due to the 1:1 ratio it is unsurprising that deprotonation has only occurred on one of 

the hydroxyl groups of the bromanilic acid molecule and this will be the case in all the 

subsequent lutidine co-crystals, however it is the subsequent interactions that are of 

interest.  Due to this deprotonation a bifurcated hydrogen bond is formed, with a 

dominant interaction being present (Figure 8.1.1).  The conjugation of the bromanilic 

acid molecule changes with the carbonyl and hydroxyl groups shortening on the 

deprotonated side (1.218(3)Å, 1.258(3)Å) and them both elongating on the protonated 

side (1.240(3)Å, 1.335(3)Å).  
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Figure 8.1.1: Crystal structure of bromanilic acid and 2,3-lutidine in a 1:1 ratio 

viewed down the a axis, collected at 100K. 

 

All the data from the bifurcated hydrogen bonds and also the halogen bonds is 

presented in Table 8.1.  However, the major N···O bifurcated bond interaction 

measures 2.772(3)Å and has an N-H- - - O angle of 175(3)o.  This is significant as this 

is similar to that of a strong hydrogen bond even though it is bifurcated and has a 

second significantly weaker interaction (3.039(3)Å, 113(3)o).  The environment of the 

transferred hydrogen is also interesting as the sum of the three angles involved in the 

bifurcated hydrogen bond N-H···O, N-H···O and O···H···O is roughly equal to 360o.  

This shows that the bifurcated hydrogen bond is almost planar in this example. 

 

As well as showing a clear distinction between the major and minor interactions for 

the bifurcated bonds, each bromanilic acid molecule has a Br···O halogen bond 

present (Figure 8.1.2) measuring 2.895(2)Å from the bromine of one bromanilic acid 

molecule to the carbonyl group adjacent to the protonated hydroxyl group.  This is a 

significant discovery in the study as the aim was to investigate halogen bonding and 

this instance is the first that has been discovered where the interatomic distances have 

been sufficiently close to describe this as a major interaction in the crystal structure.  

This is also the main route by which the three-dimensional crystal structure is 

produced.  Another feature of this crystal structure is the availability of a hydrogen on 

each bromanilic acid molecule that is not involved in any hydrogen bonding 

throughout the crystal structure and indeed the only close contacts involving the 

hydroxyl group are to a bromine atom as a result of the significant halogen bond it has 

already formed to the adjoining carbonyl group.  As it is known that hydrogen 

bonding is the strongest non covalent interaction this would not be expected. 
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Figure 8.1.2: All the interactions from one molecule of bromanilic acid in the co-

crystal structure with 2,3-lutidine. 

 

Furthermore as was discovered by Ishida et al97, the methyl group in the two position 

also forms a close contact with the deprotonated hydroxyl group of the bromanilic 

acid. 

 

 

8.1.2: Bromanilic acid 2,4-lutidine 

 

Bromanilic acid and 2,4-lutidine were found to crystallise in the monoclinic P21/c 

space group and had very little resemblance to the crystal structure of bromanilic acid 

and 2,3-lutidine.  The crystal was grown from a methanol and water solution 

containing 10mg bromanilic acid and 26mg 2,4-lutidine left to evaporate at room 

temperature.  The crystal structure in this instance was found to have undergone 

hydrogen atom transfer to the lutidine molecule at each end to form a four molecule 

unit.  The bromanilic acid forms centrosymmetric dimers joined by two O-H···O 

hydrogen bonds (Figure 8.1.3).  The dimers are linked to the lutidine via bifurcated 

bonds on either side forming this four-molecule unit (Figure 8.1.4).  In this example 

the bifurcated bonding is not as strong, as shown by the bond lengths and angles in 

Table 8.1, however the hydrogen atom is exactly planar between all atoms involved in 

the bifurcated bonding.  This crystal structure is also layered and π-π stacking 

interactions are also significant in the crystal structure. 
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Figure 8.1.3: (a) shows the existence of the four molecule interaction in bromanilic 

acid 2,4-lutidine and (b) shows that each of these four molecule interactions has 

staggered four molecule interactions layered below it providing π-π stacking 

interactions. 

 

 

 

a b 
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Figure 8.1.4: Crystal structure of bromanilic acid and 2,4-lutidine in a 1:1 ratio 

collected at 100K showing the halogen bonding and how it links the four-molecule 

units. 

 

Each of these four-molecule units is linked to two other four molecule units via 

halogen bonding to the deprotonated hydroxyl group.  Although this may not be as 

short a contact as that of the 2,3-lutidine co-crystal compound, measuring 3.152(2)Å, 

it is obviously a very important stabilising interaction as it is fundamental in 

producing the three-dimensional structure. 

 

 

8.1.3: Bromanilic acid 2,5-lutidine 

 

The co-crystal used was grown from a methanol and water solution left to evaporate 

slowly at room temperature containing 8mg bromanilic acid and 22mg 2,5-lutidine.  

The bromanilic acid and 2,5-lutidine co-crystal complex crystallised in a similar way 

to the 2,4-lutidine co-crystal in the P21/c space group and forming the same four 

molecule unit, however the subsequent intermolecular interactions vary considerably.  

The bifurcated bonds in this co-crystal do not have as distinct major and minor 

interactions present as the nitrogen is much closer to the centre of the two oxygen 

atoms.  The four molecule unit with the bifurcated N---O distances of 2.882(2)Å and 

2.983(2)Å  indicating that unlike previous examples, this co-crystal has a nearly 

symmetrical interaction with both hydrogens (Figure 8.1.5).  A small twist of the 

lutidine molecule with respect to the plane of the bromanilic acid dimer can also be 

determined, with the torsion angle between the plane of the lutidine and the plane of 

the bromanilic acid measuring 6.6(1)o, and this slight distortion moves the hydrogen 

atom away from being in an exactly planar position. 
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Figure 8.1.5: Crystal structure of bromanilic acid and 2,5-lutidine in a 1:1 ratio 

viewed along the a axis, collected at 100K. 

 

The other main interaction present in the crystal structure is the presence of π-π 

stacking interactions from staggered layers of four molecule interactions (Figure 

8.1.6), which encourages the theory that in the four molecule system present there is 

no requirement for further stabilisations via any other interactions.  This is in contrast 

to the first system studied, which did not have the same four molecule motif and 

therefore the halogen bonding present was a significant interaction. 
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Figure 8.1.6: The layers in the bromanilic acid 2,5-lutidine co-crystal that are present 

as a result of π-π stacking interactions between the four molecule units. 

 

The only other interactions that are present to help generate the three-dimensional 

crystal structure are weaker interactions involving bromine – hydrogen interactions, 

which lie between the layers and link between two lutidine molecules from separate 

layers via interactions with a methyl hydrogen from one lutidine (C-H···Br) and a 

hydrogen on the ring of the other  (π-H···Br).  Whilst these interactions are not 

thought to be overly significant in terms of strength, they do provide a role of 

generating the entire three-dimensional crystal structure. 

 

 

8.1.4: Bromanilic acid 3,5-lutidine 

 

The bromanilic acid and 3,5-lutidine co-crystal that was formed from a 2-propanol 

solution containing 10mg bromanilic acid and 26mg 3,5-lutidine, crystallised in the 

P21/c space group and also follows the same four molecule motif described in the 

structures of 2,4- and 2,5-lutidine (Figure 8.1.7).  In this crystal structure however, the 

O-H- - - O dimer interactions are longer at 2.757(2)Å, which is supplemented by the 

hydrogen bond angle measuring 133(2)o indicating a weaker hydrogen bond 

interaction. The major component of the bifurcated bond however, is clearly present 
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and measures 2.671(2)Å.  This is the shortest N···O interaction found in this co-crystal 

study (Table 8.1).  Br- - - O halogen bonding is also found to be present in the crystal 

structure and plays a significant role in the generation of the three-dimensional crystal 

structure as in the 2,4-lutidine co-crystal complex.  The halogen bonding is from the 

carbonyl group of the deprotonated side of the bromanilic acid molecule and is again 

used to link the central four molecule unit to two other four molecule units. 

 

Figure 8.1.7: Four molecule interaction of bromanilic acid with 3,5-lutidine. 

 

The four molecule interaction shown in Figure 8.1.7 shows a distinct change to the 

others that have been noted in the study.  This is due to a relatively planar O-H - - - O 

interaction between the bromanilic acid molecules, however as can be seen the 

lutidine molecule in this instance is nowhere near co-planar with the bromanilic acid 

dimer.  As a result of this there are no π-π stacking interactions present in the crystal 

structure.  In this case the torsion angle between the plane of the lutidine molecule and 

that of the bromanilic acid is found to be 21.5(1)o, which is considerably higher than 

that of the 2,5-lutidine complex which was found to be 6.6(1)o.  The conjugation of 

the bromanilic acid molecule is similar throughout with the C-O bond distances found 

to be 1.219(2)Å and 1.242(2)Å for the deprotonated side and 1.240(2)Å and 

1.334(2)Å for the protonated side.  This is found to be similar to that of the 2,3-

lutidine co-crystal complex, thus the position of the methyl groups must play a key 

role.  In this case the methyl groups are on symmetrical positions away from the 

bromanilic acid molecule and this extra bulk may play a key role in the significant 

change on torsion angle.   
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Figure 8.1.4.2: Crystal structure of bromanilic acid and 3,5-lutidine in a 1:1 ratio 

viewed along the b axis, collected at 100K. 

 

In the 3,5-lutidine co-crystal complex there are also other weaker interactions that 

help generate the 3-dimensional structure (Figure 8.1.8), however the presence of the 

halogen bonding interactions is highly significant and was found to be so in both the 

2,3- and 2,4-lutidine co-crystal complexes as well. 
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Table 8.1: Distances and angles for the bifurcated hydrogen bond in the bromanilic acid (ba) lutidine (lut) complexes and brominated 

methylpyridines (mepyr) complexes  and other important close contacts.  The angles shown represent the plane of the bifurcated hydrogen bond. 

 
*It should be noted that there is not bifurcated hydrogen bond in the crystal structure of bromanilic acid : 2-bromo-3-methylpyridine. 

Co-crystal N – O1 
(Å) 

N – O2 
(Å) 

N – H 
(Å) 

H - - O1 
(Å) 

H - - O2 
(Å) 

Br - - O 
(Å) 

Br - - Br 
(Å) 

N-H- - 
O1 (

o) 
N-H - - 
O2 (

o)  
O- - H- - 
O (o) 

Overall 

Ba : 2,3lut  2.772(3) 3.039(3) 0.88(3) 1.89(3) 2.59(3) 2.895(2)  175(3) 113(3) 72(1) 360(3.5) 

Ba : 2,4lut 2.839(2) 2.974(3) 0.78(4) 2.07(3) 2.48(4) 3.152(2) 3.6086(6) 167(4) 123(3) 71(1) 360(4)* 

Ba : 2,5lut 2.882(2) 2.983(2) 0.84(2) 2.20(2) 2.32(3)   155(2) 125(2) 72.2(7) 352.2(2.4) 

Ba : 3,5lut 2.671(2) 2.999(2) 1.00(2) 1.79(2) 2.30(2) 3.237(1)  145(2) 126(2) 80.5(8) 351.5(2.4) 

*Ba : 2-
br-3-
mepyr 

2.618(5)  1.75(5) 0.88(5)  2.850(3)      

Ba : 3-br-
4-mepyr 

2.675(3) 2.915(3) 0.78(4) 1.92(4) 2.52(4) 3.114(2) 
3.274(2) 

 164(4) 113(3) 73(1) 350(4) 
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Table 8.2: The crystallography data produced from single crystal x-ray analysis. 

Compound Ba:2,3lut Ba:2,4lut Ba:2,5lut Ba:3,5lut Ba:2br3mepyr Ba:3br4mepyr 
Formula C13 H11 Br2 N1 

O4 
C13 H11 Br2 N1 
O4 

C13 H11 Br2 N1 
O4 

C13 H11 Br2 N1 
O4 

C12 H8 Br3 N1 
O4 

C12 H8 Br3 N1 
O4 

Molecular weight  
(gmol-1) 

405.04 405.04 405.04 405.04 469.91 469.91 

Temperature (K) 100 100 100 100 100 100 
Space Group P 1 21/n 1 P 1 21/c 1 P 1 21/c 1 P 1 21/c 1 P 1 21/c 1 P 1 21/c 1 
a (Å) 4.9786(4) 8.2948(2) 7.7357(4) 11.6766(5) 5.2866(3) 10.2229(4) 
b (Å) 23.181(3) 12.1560(4) 11.1416(6) 10.4926(5) 13.3814(8) 5.5760(2) 
c (Å) 12.2811(13) 13.9544(5) 15.8011(9) 11.5221(5) 20.3576(13) 24.5300(9) 
α (o) 90 90 90 90 90 90 
β (o) 100.794(3) 102.966(2) 94.269(3) 98.834(2) 91.556(4) 95.802(3) 
γ (o) 90 90 90 90 90 90 
Volume (Å3) 1392.3(2) 1371.17(8) 1358.09(13) 1394.92(11) 1439.61(15) 1391.12(9) 
Z 4 4 4 4 4 4 
θ range (o) 1.757 – 23.601 2.247 – 35.962 2.239 – 42.111 1.765 – 31.543 1.821 – 27.237 1.669 – 32.153 
Reflections 
Collected 

9997 23034 39052 14464 14783 21156 

Independent 2053 6064 9404 3817 3202 4796 
Refln Observed 
I > 2σ (I) 

1680 4673 6404 3178 2394 3457 

Rint 0.0442 0.0407 0.0557 0.0304 0.0680 0.0537 
No. Of Parameters 214 214 214 225 205 205 
GooF on F2 0.9544 0.9449 1.0298 0.9901 0.9925 0.9179 
R1 (Observed) 0.0382 0.0381 0.0468 0.0314 0.0513 0.0475 
R1 (all) 0.0568 0.0575 0.0769 0.0423 0.0836 0.0835 
wR2 (all) 0.0873 0.0944 0.0986 0.0588 0.1063 0.1114 
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8.2:  Summary 

 

As can be determined by this study, in the 1:1 crystal structures of bromanilic acid 

with lutidines, the main stabilising interaction that is present is the four molecule 

interaction involving centrosymmetric dimers joined by two O-H···O hydrogen bonds, 

with each bromanilic acid molecule involved in bifurcated hydrogen bonding to the 

lutidine molecule.  Where this motif is present, these are the most significant non-

covalent interactions, however as noted this motif is not present across the whole 

family of lutidines.  In the case of 2,3-lutidine and bromanilic acid, there was only one 

type of hydrogen bonding interaction, a weakly bifurcated hydrogen bond showing a 

large degree of asymmetry and in this instance the presence of a halogen bond 

stabilised the crystal structure.  This however has been the only instance in which 

halogen bonding has had a significant impact on the co-crystallisation behaviour of 

bromanilic acid. 

 

Furthermore the presence of halogen bonding has been found to be significant in three 

of the co-crystal complexes that were produced.  This enables the three-dimensional 

crystal structure to be generated and the absence of this in the 2,3-lutidine co-crystal 

complex was noted, however this complex was found to contain π-π stacking 

interactions from staggered layers of four molecule interactions.  Once again however 

the presence of Br···Br interactions was only produced in the 2,4-lutidine co-crystal 

complex so it is difficult to put any emphasis on this at this stage.
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8.3: Co-crystals of bromanilic acid and other bromo substituted compounds. 

 

Further research was carried out involving co-crystallisations with related compounds 

incorporating extra bromine atoms, to examine the affect these extra bulky atoms 

have on the co-crystal structure involving bromanilic acid. The compounds selected 

were 2-bromo-3-methylpyridine and 3-bromo-4-methylpyridine; these are 

fundamentally similar to the picoline compounds used previously as they contain one 

methyl group on the aromatic ring but also contain a bromine atom to attempt to 

produce halogen bonding interactions with the bromanilic acid molecule. 

 

These co-crystallisation studies were carried out in the same way as the other co-

crystallisation trials, involving dissolving equimolar amounts of both compounds in a 

minimum amount of methanol and left to slowly evaporate.  The co-crystals produced 

were then evaluated by single crystal X-ray diffraction.  The aim was to see if 

crystallisation could be affected by the presence of these heavy atoms, which would 

also act as a possibility for stabilisation as in the case of bromanilic acid and 2,3-

lutidine.  The 1:1 co-crystal structures with picolines reported in Chapter 7 had no 

obvious motif, with the 3-picoline co-crystal showing hydrogen transfer onto the 

nitrogen atom, whereas the 4-picoline co-crystal does not show hydrogen transfer.  In 

the case of the lutidine co-crystal complexes, the most notable motif involved the four 

molecule interaction (P:B:B:P).  The aim of this study however was to try and 

encourage the bromine atoms to play a more significant role in the crystal structure. 

 

8.3.1: 2-bromo-3-methylpyridine : bromanilic acid 

 

The 1:1 2-bromo-3-methylpyridine:bromanilic acid co-crystal structure was found to 

crystallise in the monoclinic P21/c space group when recrystallised from a methanol 

solution containing 10mg bromanilic acid and 14mg 2-bromo-3-methylpyridine left to 

crystallise at 5oC.  In this crystal structure each bromanilic acid molecule is found to 

be fully protonated, each containing four hydrogen bonded interactions and two 

halogen bonding interactions meaning each atom capable of hydrogen or halogen 

bonding is involved.  Due to the symmetrical nature of bromanilic acid these 
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interactions are the same on each side meaning there are three unique non covalent 

interactions (Figure 8.3.1).   

  

Figure 8.3.1 shows the presence of the O-H···N and O-H···O hydrogen bonds and also 

the presence of a Br···O halogen bond, which was found to be crucial in the 

generation of the three-dimensional structure of the lutidine co-crystal complexes.  

The presence of the bromine atom in the 2 position of the methyl pyridine ring could 

also explain the absence of any hydrogen transfer due to the increased bulk around the 

nitrogen acceptor. 

 

 

Figure 8.3.1: Crystal structure of bromanilic acid and 2-bromo-3-methylpyridine 

showing the interactions present around each bromanilic acid molecule collected at 

100K. 

 

The findings from this co-crystal complex are once again intriguing due to the 

relatively long and weaker O-H- - - O hydrogen bond, 2.793(4)Å, short and strong O-

H- - - N hydrogen bond, 2.618(5)Å with an angle of 171(5)o, and the presence of a 

relatively strong halogen bond, 2.850(3)Å for only the second time (Table 8.1). 
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Figure 8.3.2: The crystal packing of bromanilic acid (ba) and 2-bromo-3-

methylpyridine (mp) showing apparent a-b-a-b type layers, when viewed along the a 

axis. 

 

Figure 8.3.2 shows the build up of the 3-dimensional crystal structure, which shows 

an apparent layered motif composed of ba:mp:ba:mp.  The layers of mp form a 

hydrogen bond to a hydroxyl group from the layer below and then the next hydrogen 

bonds to the hydroxyl group from the layer above.  This integrates each layer in the 

crystal structure.  

 

8.3.2: 3-bromo-4-methylpyridine : bromanilic acid 

 

The 3-bromo-4-methylpyridine – bromanilic acid 1:1 co-crystal was found to 

crystallise in the monoclinic P21/c space group when recrystallised from a methanol 

and water solution containing 10mg bromanilic acid and 14mg 3-bromo-4-

methylpyridine left to slowly evaporate at room temperature.  In this structure 

however, the hydrogen atom has transferred onto the nitrogen atom from one half of 

the bromanilic acid molecule, whereas it remains on the oxygen on the other side of 

the molecule to form a similar dimer interaction to that present in the 1:1 bromanilic 
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acid : lutidines complexes (Figure 8.3.3).  As was discussed previously, by moving 

the bulky bromine atom away from the nitrogen acceptor of the methylpyridine 

molecule, this frees up the nitrogen to act as an acceptor in the same way as it did 

previously in the case of the lutidines.  This results in a four molecule interaction 

(Figure 8.3.4), which stabilises the compound and the presence of halogen bonding 

interactions, bromine to the carbonyl adjacent to the deprotonated hydroxyl group as 

seen previously, measuring 3.274(2)Å.  There is  also a halogen bond from the 

bromine of the methylpyridine to the hydroxyl oxygen on the bromanilic acid, 

measuring 3.114(2)Å, which is still protonated and generates the 3-dimensional 

structure.  The halogen bonding is elongated in this cocrystal in comparison to that of 

the 2-bromo-3-methylpyridine structure (Table 8.1), however it has been possible to 

engineer a further halogen bonding interaction to generate the three-dimensional 

structure by including an extra bromine atom on the methylpyridine ring. 

 

 

 
Figure 8.3.3: Crystal structure of bromanilic acid and 3-bromo-4-methylpyridine in a 

1:1 ratio viewed along the b axis, collected at 100K. 
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Figure 8.3.4: Four molecule unit in crystal structure of 3-bromo-4-methylpyridine 

and bromanilic acid 

 

Figure 8.3.4 shows the four molecule unit is highly similar to that found in the 

bromanilic acid and 3,5-lutidine co-crystal structure.  This relies on the bromanilic 

acid molecules being close to planar with the plane of the 3-bromo-4-methylpyridine 

in this case being close to perpendicular with the nitrogen and hydrogen donor 

between the two oxygen acceptors.  This is in contrast to the 2-bromo-3-

methylpyridine and bromanilic acid co-crystal, which does not posses the four 

molecule interaction and contains chains of bromanilic acid molecules interspaced by 

rows of the 2-bromo-3-methylpyridine constituent of the co-crystal. 

 

8.4:  Conclusions/Summary 

 

During these studies it has been possible to engineer a further halogen bonding 

contact with bromanilic acid with the presence of a bromine atom on the 

methylpyridine ring of the 3-bromo-4-methylpyridine co-crystal structure.  This 

resulted in the same four molecule interaction being observed as was in the case of the 

bromanilic acid : lutidine co-crystal complex.  This was further stabilised and the 

three-dimensional crystal structure generated via these halogen bond interactions.  

The halogen bond interactions are found to be shorter in the case of the 2-bromo-3-

methylpyridine cocrystal, however this does not generate the four molecule unit, 

possibly due to the presence of the bromine atom in the 2 position preventing 

hydrogen atom transfer from occurring. 
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Chapter 9: Conclusions and Forward Look 

 

9.1 Liquid Scattering Studies 

 

This aspect of the project was funded under an “adventurous chemistry” theme, due to 

its challenging nature from the outset  - to try and monitor small molecule nucleation.  

Progress has been made with a significant increase in knowledge of the requirements 

and associated challenges, which can only be gained by experience.  It has been a 

huge success to be able to monitor scattering from the small molecule solutions that 

were trialled.  However to develop this work still further, it would be more beneficial 

to trial solutes with heavier atoms present than the ones studied in this work.  

Unfortunately future proposals for beam time were not successful to enhance this 

study.   

 

The metastable zone width work carried out at Strathclyde Institute of Pharmacy and 

Biomedical Sciences (SIPBS) in developing new and more practicable routes to 

monitor crystallisation from solution and carry out solubility studies yielded very 

significant results.  These have been generated without the need for sampling and 

concentration changes can be monitored on-line alongside particle size distribution 

plots, commonly referred to as chord length distribution (CLD) plots.  We have 

successfully produced two robust metastable zone width diagrams by these methods 

with the solubilities of the pMHB from our method in close correspondence with the 

literature values87. 

 

Carrying out these experiments prior to SAXS studies enabled us to prepare suitably 

concentrated solutions that would encourage an increase in the scattering due to the 

likelihood of the presence of nucleating particles.  This also enabled us to ascertain an 

idea of the behaviour of the solution as it was cooled, albeit on a much larger scale 

than that used for the SAXS studies.  To continue these studies still further it would 

be a possibility to attempt these studies, possibly even in a co-crystallisation situation 

by selecting a complex with long range ordering such as halogen – halogen 

interactions and also short-range stronger interactions such as hydrogen bonding, 

however again it would be recommended to attempt these with molecules containing 

heavy atoms. 
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9.2 Structural studies of methylbenzoate derivatives and the assessment of 

conformational polymorphism 

 

This aspect of the project focused on taking the original; target models for the 

dissolution/nucleation studies and carrying out crystallographic studies on their 

structres.  These were successful and included the solution of the previously unknown 

structure of methyl 2,5-dibromobenzoate (MDBB), as presented in Chapter 6. 

 

A wide range of variable temperature crystallographic studies were carried out on 

these systems, with a particular focus on the postulated conformational polymorphism 

in methyl 4-hydroxybenzoate (pMHB), as presented in Chapter 4.  By carrying out 

detailed XRPD scans, backed up by accurate molecular geometry determinations by 

single crystal diffraction, it was shown that this was actually due to a gradual change 

in selected torsion angles and an expected unit cell expansion.  The work thus did not 

support the existence of conformational polymorphism in this material. 

 

9.3 Co-crystal Studies and the Attempts to Engineer Halogen Bonding 

Interactions 

 

The co-crystal studies involving bromanilic acid and the picolines, lutidines and the 

bromo-substituted pyridines enabled a wide range of structures to be produced and 

their bonding motifs to be examined.  The 1:1 co-crystals with the range of picolines 

did not, unfortunately, produce any reproducible, predictable motifs, but instead 

showed a wide range of possible configurations and a higher occurrence of halogen 

bonding than in the 2:1 complexes.  The 4-picoline 1:1 complex was the most 

anomalous, with no proton transfer from the bromanilic acid to the picoline observed; 

instead, the bromanilic acid remains fully protonated and the only halogen-halogen 

interaction in these systems is induced.  In the 1:2 ratio a P:B:P motif is generated.  

This results in complete deprotonation of the bromanilic acid molecule and both 

picolines are fully protonated in the bifurcated hydrogen bond interactions that are 

formed. 
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Following on from this a selection of 1:1 co-crystals were produced with bromanilic 

acid and a range of lutidine molecules.  In all but one of these co-crystal complexes a 

L:B:B:L motif was observed with hydrogen atom transfer occurring on one hydroxyl 

group of the bromanilic acid, and the other being involved in a hydrogen bonded 

dimer with its mirror image on the other molecule.  It should also be noted that in the 

absence of this four molecule interaction such as the case with 2,3-lutidine, the 

presence of a short halogen bonding interaction is present.  Although there are other 

instances of halogen bond interactions in all of the lutidine complexes, it is in the 

absence of the four molecule unit that it becomes shortest and it would be expected 

that at this point it plays a key role in the stabilising of the packing of the molecules in 

the unit cell. 

 

To try and produce further halogen bonding interactions, bromanilic acid was co-

crystallised with bromo-substituted pyridines.  In the case of the 2-bromo-3-

methylpyridine co-crystal complex, there is no hydrogen transfer to the pyridine 

group, possibly due to steric hindrance by the presence of the bromine atom in the 2- 

position.  This means that no bifurcated hydrogen bonding takes place and again the 

bromine plays a more prominent role in the crystal structure.  In the second of these 

co-crystals, this time with 3-bromo-4-methylpyridine, hydrogen transfer does occur 

from the bromanilic acid onto the pyridine group.  This enables the generation of the 

four molecule unit, which once again results in an elongated halogen bonding 

interaction.  However, due to the presence of the bromine on the methylpyridine ring, 

a second halogen bonding interaction is produced, also to an oxygen of a bromanilic 

acid molecule.  This signifies a success in generating extra stabilising interactions in 

these co-crystal systems. 

 

To probe these interactions further co-crystallisations should be targeted where there 

is not the presence of a stabilising interaction such as that of a four molecule 

interaction.  In this instance it could be possible to produce more than one strong 

halogen bonding interaction, even if possible weaker hydrogen bonding is present. 
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Appendix 1: Crystallography data generated from the single crystal studies of pMHB in chapter 5. 

Compound pMHB pMHB pMHB pMHB PMHB 
Formula C8 H8 O3 C8 H8 O3 C8 H8 O3 C8 H8 O3 C8 H8 O3 
Molecular weight 
(gmol-1) 

152.15 152.15 152.15 152.15 152.15 

Temperature (K) 100 150 200 250 300 

Space Group Cc Cc Cc Cc Cc 
a (Å) 12.9679(8) 13.0278(9) 13.1838(7) 13.4110(11) 13.548(3) 
b (Å) 17.2935(8) 17.2195(11) 17.1399(9) 17.0261(14) 16.963(4) 
c (Å) 10.8438(10) 10.8588(7) 10.9015(6) 10.9589(9) 11.039(3) 
α (o) 90 90 90 90 90 
β (o) 119.139(4) 119.288(3) 119.478(2) 119.745(2) 119.857(9) 
γ (o) 90 90 90 90 90 
Volume (Å3) 2124.1(3) 2124.6(3) 2144.5(2) 2172.6(3) 2200.1(9) 
Z 12 12 10 12 12 
θ range (o) 2.149 – 27.476 2.147 - 34.819 2.136 - 28.431 2.119 - 39.502 2.108 - 32.067 
Reflections 
Collected 

21970 35402 1715 22962 44548 

Independent 2428 4588 1664 6385 3792 
Refln observed 
I > 2σ (I) 

1649 3327 1463 3514 2216 

No. Of Parameters 370 370 298 370 370 
GooF on F2 0.9828 1.2988 1.0405 0.8176 1.0420 
R1 (Observed) 0.0317 0.0336 0.0326 0.0508 0.0374 
R1 (all) 0.0452 0.0431 0.0371 0.0904 0.0592 
wR2 (all) 0.0702 0.0444 0.0639 0.1467 0.1039 
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Appendix 2: Crystallography data generated from the single crystal studies of methyl-4-bromobenzoate in Chapter 7. 
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Appendix 3: 

_atom_site_label 
_atom_site_fract_x 
_atom_site_fract_y 
_atom_site_fract_z 
_atom_site_U_iso_or_equiv 
_atom_site_occupancy 
_atom_site_adp_type 
 
Bromanilic Acid : 3 Picoline, 1 : 1 

C1.  0.4625(2) 0.8771(2) 0.45069(15) 0.0094 1.0000 Uani  
C2.  0.3846(2) 1.0717(2) 0.38450(15) 0.0093 1.0000 Uani  
C3.  0.4335(2) 1.1871(2) 0.43963(15) 0.0095 1.0000 Uani  
Br4.  0.34134(3) 1.43029(2) 0.356445(16) 0.0132 1.0000 Uani  
O5.  0.28228(17) 1.12111(15) 0.28996(11) 0.0141 1.0000 Uani  
O6.  0.42281(18) 0.77526(16) 0.39557(12) 0.0137 1.0000 Uani  
C7.  0.1818(2) -0.0184(2) 0.94923(16) 0.0104 1.0000 Uani  
C8.  0.1504(2) -0.0841(2) 1.09632(15) 0.0100 1.0000 Uani  
C9.  -0.0284(2) -0.0617(2) 1.13586(15) 0.0121 1.0000 Uani  
Br10.  -0.06715(3) -0.13980(2) 1.315021(16) 0.0163 1.0000 Uani  
O11.  0.29247(17) -0.15350(16) 1.16703(11) 0.0142 1.0000 Uani  
O12.  0.34376(17) -0.04253(16) 0.91671(12) 0.0149 1.0000 Uani  
C13.  0.1960(2) 0.5441(2) 0.77057(16) 0.0140 1.0000 Uani  
C14.  0.3195(3) 0.3824(2) 0.81357(17) 0.0146 1.0000 Uani  
N15.  0.3831(2) 0.3102(2) 0.93524(14) 0.0149 1.0000 Uani  
C16.  0.3323(3) 0.3881(2) 1.02311(17) 0.0156 1.0000 Uani  
C17.  0.2067(3) 0.5494(2) 0.98529(18) 0.0176 1.0000 Uani  
C18.  0.1402(3) 0.6278(2) 0.85967(18) 0.0163 1.0000 Uani  
C19.  0.1315(3) 0.6248(3) 0.63220(19) 0.0233 1.0000 Uani  
H161.  0.389(3) 0.318(2) 1.111(2) 0.0206 1.0000 Uiso  
H171.  0.167(3) 0.607(3) 1.040(2) 0.0219 1.0000 Uiso  
H181.  0.048(3) 0.749(3) 0.8266(19) 0.0203 1.0000 Uiso  
H191.  0.129(3) 0.718(3) 0.606(2) 0.0257 1.0000 Uiso  
H192.  0.257(3) 0.587(3) 0.587(2) 0.0257 1.0000 Uiso  
H193.  0.023(3) 0.573(3) 0.609(2) 0.0257 1.0000 Uiso  
H1.  0.366(4) 0.327(3) 0.757(2) 0.0500 1.0000 Uiso  
H5.  0.496(4) 0.197(3) 0.963(2) 0.0500 1.0000 Uiso  
H8.  0.351(4) 0.840(3) 0.314(3) 0.0500 1.0000 Uiso  
 
Bromanilic Acid : 3 Picoline, 1 : 2 

C1.  0.47315(12) 0.11327(11) 0.57957(11) 0.0135 1.0000 Uani  
C2.  0.35756(13) 0.08050(11) 0.46586(12) 0.0134 1.0000 Uani  
C3.  0.38778(13) -0.04363(11) 0.38114(12) 0.0133 1.0000 Uani  
O4.  0.28233(9) -0.07389(8) 0.28055(8) 0.0181 1.0000 Uani  
O5.  0.23310(9) 0.14209(8) 0.42753(8) 0.0181 1.0000 Uani  
Br6.  0.434429(13) 0.263929(11) 0.686095(12) 0.0171 1.0000 Uani  
C7.  1.00763(14) 0.35162(12) 0.59764(12) 0.0160 1.0000 Uani  
N8.  1.01585(12) 0.46308(10) 0.67562(10) 0.0178 1.0000 Uani  
C9.  0.89114(15) 0.53639(13) 0.68119(12) 0.0190 1.0000 Uani  
C10.  0.86846(13) 0.30601(11) 0.52009(12) 0.0135 1.0000 Uani  
C11.  0.73842(13) 0.38217(12) 0.52713(12) 0.0158 1.0000 Uani  
C4.  0.74976(14) 0.49704(12) 0.60731(13) 0.0178 1.0000 Uani  
C5.  0.86173(16) 0.18305(14) 0.43151(15) 0.0212 1.0000 Uani  
H71.  1.0932(15) 0.3027(14) 0.5950(12) 0.0194 1.0000 Uiso  
H91.  0.9073(14) 0.6167(13) 0.7376(13) 0.0238 1.0000 Uiso  
H111.  0.6494(15) 0.3573(12) 0.4777(13) 0.0194 1.0000 Uiso  
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H41.  0.6703(15) 0.5470(13) 0.6152(13) 0.0219 1.0000 Uiso  
H51.  0.7811(16) 0.1769(14) 0.3714(14) 0.0259 1.0000 Uiso  
H52.  0.8585(15) 0.1002(13) 0.4767(13) 0.0259 1.0000 Uiso  
H53.  0.9522(16) 0.1666(14) 0.4108(13) 0.0259 1.0000 Uiso  
H6.  1.1053(18) 0.4864(16) 0.7110(15) 0.0500 1.0000 Uiso 
 

Bromanilic Acid : 2 Picoline, 1 : 2 
C1.  0.7783(3) 0.0885(4) 0.1096(2) 0.0344 1.0000 Uani  
C2.  0.7063(3) -0.0042(5) 0.0865(3) 0.0385 1.0000 Uani  
C3.  0.6910(3) -0.0973(5) -0.0098(3) 0.0393 1.0000 Uani  
C4.  0.7484(3) -0.0768(4) -0.0681(2) 0.0374 1.0000 Uani  
C5.  0.8212(3) 0.0193(4) -0.0456(3) 0.0370 1.0000 Uani  
C6.  0.8391(3) 0.1041(4) 0.0533(3) 0.0364 1.0000 Uani  
O7.  0.90612(19) 0.1785(3) 0.07350(16) 0.0513 1.0000 Uani  
O8.  0.87468(18) 0.0408(3) -0.09503(17) 0.0504 1.0000 Uani  
Br9.  0.72794(3) -0.18929(6) -0.18549(2) 0.0556 1.0000 Uani  
O10.  0.62649(19) -0.1856(4) -0.02641(16) 0.0600 1.0000 Uani  
O11.  0.6513(2) -0.0248(3) 0.13430(18) 0.0624 1.0000 Uani  
Br12.  0.79779(3) 0.19975(5) 0.22786(2) 0.0491 1.0000 Uani  
C13.  0.9458(3) -0.2408(5) 0.1371(3) 0.0438 1.0000 Uani  
N14.  0.9780(2) -0.2366(4) 0.0586(2) 0.0407 1.0000 Uani  
C15.  0.9453(3) -0.3239(6) -0.0183(3) 0.0476 1.0000 Uani  
C16.  0.8794(3) -0.4243(5) -0.0176(3) 0.0570 1.0000 Uani  
C17.  0.8447(3) -0.4370(6) 0.0618(4) 0.0624 1.0000 Uani  
C18.  0.8786(3) -0.3472(7) 0.1384(4) 0.0625 1.0000 Uani  
C19.  0.9857(4) -0.1396(6) 0.2167(3) 0.0681 1.0000 Uani  
C20.  0.4680(3) 0.4474(6) -0.1197(2) 0.0472 1.0000 Uani  
N21.  0.4694(2) 0.2795(5) -0.1037(2) 0.0541 1.0000 Uani  
C22.  0.5311(4) 0.1769(7) -0.1188(3) 0.0598 1.0000 Uani  
C23.  0.5959(3) 0.2413(6) -0.1541(3) 0.0574 1.0000 Uani  
C24.  0.5968(4) 0.4119(7) -0.1725(3) 0.0587 1.0000 Uani  
C25.  0.5346(4) 0.5139(6) -0.1549(3) 0.0551 1.0000 Uani  
C26.  0.3963(4) 0.5472(7) -0.1001(3) 0.0746 1.0000 Uani  
H151.  0.978(2) -0.307(4) -0.071(2) 0.0618 1.0000 Uiso  
H161.  0.860(3) -0.482(5) -0.063(3) 0.0730 1.0000 Uiso  
H171.  0.804(3) -0.512(5) 0.066(3) 0.0778 1.0000 Uiso  
H181.  0.861(3) -0.347(5) 0.195(2) 0.0744 1.0000 Uiso  
H221.  0.529(3) 0.063(5) -0.103(2) 0.0729 1.0000 Uiso  
H231.  0.640(3) 0.162(5) -0.171(2) 0.0759 1.0000 Uiso  
H241.  0.644(3) 0.458(5) -0.191(3) 0.0735 1.0000 Uiso  
H251.  0.534(3) 0.619(4) -0.161(2) 0.0678 1.0000 Uiso  
H261.  0.408(3) 0.665(5) -0.120(3) 0.0938 1.0000 Uiso  
H262.  0.384(3) 0.485(5) -0.045(3) 0.0938 1.0000 Uiso  
H263.  0.355(3) 0.515(6) -0.145(3) 0.0938 1.0000 Uiso  
H2.  0.949(2) -0.099(5) 0.245(2) 0.0500 1.0000 Uiso  
H6.  0.423(2) 0.251(4) -0.079(2) 0.0500 1.0000 Uiso  
H8.  1.023(2) -0.174(4) 0.058(2) 0.0500 1.0000 Uiso  
H9.  0.996(3) -0.048(4) 0.206(3) 0.0500 1.0000 Uiso  
H25.  0.998(2) -0.224(4) 0.272(2) 0.0500 1.0000 Uiso 
 
Bromanilic Acid : 4 Picoline, 1 : 1 

H1.  0.513(6) 0.525(7) 0.325(8) 0.00(2) 1.0000 Uiso 
H3.  0.208(6) -0.251(8) 0.077(7) 0.00(2) 1.0000 Uiso 
Br1.  0.33421(5) 0.16939(7) 0.33141(6) 0.01589(19) 1.0000 Uani  
Br2.  0.35842(5) 0.60836(7) 0.02358(6) 0.0164(2) 1.0000 Uani  
O4.  0.4682(4) 0.3621(6) 0.3727(5) 0.0195(13) 1.0000 Uani  
C18.  0.3373(5) 0.2915(7) 0.2413(7) 0.0141(17) 1.0000 Uani  
O1.  0.4773(4) 0.5330(5) 0.2589(5) 0.0171(13) 1.0000 Uani  
O2.  0.2214(4) 0.4238(6) -0.0212(5) 0.0165(13) 1.0000 Uani  
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O3.  0.2171(4) 0.2307(6) 0.0901(5) 0.0176(13) 1.0000 Uani  
H3A.  0.1879 0.2524 0.0283 0.026 1.0000 Uiso  
C15.  0.3514(5) 0.4841(6) 0.1110(6) 0.0104(15) 1.0000 Uani  
C16.  0.2787(6) 0.4066(7) 0.0672(7) 0.0155(18) 1.0000 Uani  
C13.  0.4077(5) 0.3674(7) 0.2844(6) 0.0131(16) 1.0000 Uani  
C17.  0.2749(5) 0.3020(7) 0.1344(6) 0.0121(16) 1.0000 Uani  
C14.  0.4088(6) 0.4663(7) 0.2094(7) 0.0153(18) 1.0000 Uani  
Br3.  0.41071(5) 0.07548(7) 0.08688(6) 0.0179(2) 1.0000 Uani  
Br4.  0.35206(6) -0.34572(8) 0.38002(7) 0.0238(2) 1.0000 Uani  
O8.  0.2687(4) -0.1044(5) 0.0353(5) 0.0184(13) 1.0000 Uani  
C21.  0.3140(6) -0.2059(8) 0.1991(8) 0.0193(19) 1.0000 Uani  
O7.  0.2442(4) -0.2643(6) 0.1434(6) 0.0226(14) 1.0000 Uani  
O6.  0.4952(4) -0.1669(6) 0.4411(5) 0.0201(13) 1.0000 Uani  
C22.  0.3668(5) -0.2233(7) 0.2992(7) 0.0138(17) 1.0000 Uani  
O5.  0.5154(4) 0.0147(5) 0.3313(4) 0.0151(12) 1.0000 Uani  
H5.  0.5405 -0.0076 0.3937 0.023 1.0000 Uiso calc R . . 
C19.  0.3972(6) -0.0411(7) 0.1763(7) 0.0148(18) 1.0000 Uani  
C23.  0.4433(6) -0.1523(7) 0.3512(7) 0.0130(17) 1.0000 Uani  
C24.  0.4544(6) -0.0496(7) 0.2826(8) 0.019(2) 1.0000 Uani  
C20.  0.3265(6) -0.1107(7) 0.1282(7) 0.0163(17) 1.0000 Uani  
N1.  0.1484(5) 0.8057(6) 0.3700(6) 0.0168(15) 1.0000 Uani  
C3.  0.1084(5) 0.9045(7) 0.1736(7) 0.0128(16) 1.0000 Uani  
C2.  0.0716(6) 0.7973(8) 0.1827(7) 0.0178(18) 1.0000 Uani  
H2.  0.0327 0.7592 0.1216 0.021 1.0000 Uiso calc R . . 
C4.  0.1641(6) 0.9589(8) 0.2650(8) 0.023(2) 1.0000 Uani  
H4.  0.1891 1.0295 0.2608 0.028 1.0000 Uiso calc R . . 
C6.  0.0843(6) 0.9571(9) 0.0637(8) 0.024(2) 1.0000 Uani  
H6A.  0.0444 0.9065 0.0098 0.036 1.0000 Uiso calc R . . 
H6B.  0.1317 0.9628 0.0525 0.036 1.0000 Uiso calc R . . 
H6C.  0.0615 1.0354 0.0592 0.036 1.0000 Uiso calc R . . 
C1.  0.0934(6) 0.7496(8) 0.2819(7) 0.0180(18) 1.0000 Uani 
H1A.  0.0701 0.6782 0.2881 0.022 1.0000 Uiso calc R . . 
C5.  0.1834(7) 0.9092(9) 0.3637(8) 0.025(2) 1.0000 Uani 
H5.  0.2206 0.9473 0.4260 0.031 1.0000 Uiso calc R . . 
C8.  0.1506(5) 0.4464(7) 0.2346(6) 0.0132(16) 1.0000 Uani  
H8.  0.1872 0.4865 0.2961 0.016 1.0000 Uiso calc R . . 
C7.  0.1319(6) 0.4945(8) 0.1365(7) 0.0182(18) 1.0000 Uani 
H7.  0.1556 0.5659 0.1312 0.022 1.0000 Uiso calc R . . 
C11.  0.0456(5) 0.3320(7) 0.0518(6) 0.0155(17) 1.0000 Uani  
H11.  0.0111 0.2922 -0.0110 0.019 1.0000 Uiso calc R . . 
C9.  0.1163(6) 0.3387(8) 0.2448(8) 0.0192(19) 1.0000 Uani  
N2.  0.0784(5) 0.4364(6) 0.0480(6) 0.0145(14) 1.0000 Uani 
C12.  0.1386(6) 0.2869(8) 0.3525(6) 0.0190(19) 1.0000 Uani  
H12A.  0.1760 0.3396 0.4070 0.029 1.0000 Uiso calc R . . 
H12B.  0.1640 0.2104 0.3587 0.029 1.0000 Uiso calc R . . 
H12C.  0.0903 0.2776 0.3610 0.029 1.0000 Uiso calc R . . 
C10.  0.0634(5) 0.2826(7) 0.1513(7) 0.0165(17) 1.0000 Uani 
H10.  0.0392 0.2107 0.1544 0.020 1.0000 Uiso calc R . . 
 
Bromanilic Acid : 4 Picoline, 1 : 2 

C1.  0.4281(2) 0.5693(3) 0.42464(10) 0.0160 1.0000 Uani  
C2.  0.5455(2) 0.3690(3) 0.43700(10) 0.0150 1.0000 Uani  
C3.  0.6118(2) 0.3196(3) 0.51063(10) 0.0165 1.0000 Uani  
Br4.  0.75109(2) 0.07117(3) 0.524928(11) 0.0189 1.0000 Uani  
O5.  0.57051(16) 0.26725(19) 0.37879(7) 0.0193 1.0000 Uani  
O6.  0.37844(16) 0.61446(19) 0.35800(7) 0.0198 1.0000 Uani  
C7.  0.1119(2) 0.4826(3) 0.66164(10) 0.0179 1.0000 Uani  
C8.  0.1774(2) 0.5631(3) 0.73151(11) 0.0204 1.0000 Uani  
C9.  0.2878(2) 0.4434(3) 0.77733(11) 0.0220 1.0000 Uani  
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N10.  0.3321(2) 0.2450(3) 0.75598(9) 0.0227 1.0000 Uani  
C11.  0.2733(2) 0.1598(3) 0.68921(11) 0.0219 1.0000 Uani  
C12.  0.1630(2) 0.2765(3) 0.64148(11) 0.0205 1.0000 Uani  
C13.  -0.0045(3) 0.6143(4) 0.60942(14) 0.0287 1.0000 Uani  
H81.  0.153(3) 0.702(3) 0.7470(12) 0.0241 1.0000 Uiso  
H91.  0.335(3) 0.494(3) 0.8230(12) 0.0239 1.0000 Uiso  
H111.  0.307(3) 0.019(3) 0.6774(12) 0.0239 1.0000 Uiso  
H121.  0.126(3) 0.220(3) 0.5978(12) 0.0240 1.0000 Uiso  
H131.  -0.082(3) 0.544(3) 0.5879(13) 0.0281 1.0000 Uiso  
H132.  -0.050(3) 0.734(3) 0.6351(12) 0.0281 1.0000 Uiso  
H133.  0.052(3) 0.687(3) 0.5721(13) 0.0281 1.0000 Uiso  
H3.  0.390(3) 0.183(4) 0.7847(15) 0.0500 1.0000 Uiso 
 
Bromanilic Acid : 2,3 lutidine 

C1.  0.6262(6) 0.29482(13) 0.0802(2) 0.0149 1.0000 Uani  
C2.  0.6782(6) 0.29436(13) 0.1907(2) 0.0158 1.0000 Uani  
C3.  0.5236(6) 0.33208(13) 0.2596(2) 0.0178 1.0000 Uani  
C4.  0.3186(6) 0.36856(13) 0.2014(2) 0.0171 1.0000 Uani  
C5.  0.2519(6) 0.37124(13) 0.0860(2) 0.0169 1.0000 Uani  
C6.  0.4243(6) 0.33413(13) 0.0197(2) 0.0169 1.0000 Uani  
O7.  0.3839(4) 0.33938(9) -0.08076(16) 0.0226 1.0000 Uani  
O8.  0.0653(4) 0.40101(9) 0.02924(16) 0.0235 1.0000 Uani  
Br9.  0.11293(6) 0.413336(14) 0.28552(2) 0.0238 1.0000 Uani  
O10.  0.5921(4) 0.32669(9) 0.36148(16) 0.0228 1.0000 Uani  
O11.  0.8656(4) 0.25999(10) 0.25003(16) 0.0228 1.0000 Uani  
Br12.  0.81829(6) 0.247085(14) -0.00351(2) 0.0201 1.0000 Uani  
C13.  0.6458(6) 0.43201(13) -0.2236(2) 0.0191 1.0000 Uani  
C14.  0.5128(6) 0.43488(13) -0.3346(2) 0.0170 1.0000 Uani  
C15.  0.5925(7) 0.39735(14) -0.4106(3) 0.0220 1.0000 Uani  
C16.  0.8044(7) 0.35829(15) -0.3772(3) 0.0250 1.0000 Uani  
C17.  0.9300(7) 0.35722(14) -0.2690(3) 0.0218 1.0000 Uani  
N18.  0.8492(5) 0.39346(12) -0.1953(2) 0.0211 1.0000 Uani  
C19.  0.2870(7) 0.47803(16) -0.3709(3) 0.0274 1.0000 Uani  
C20.  0.5753(7) 0.46964(16) -0.1336(3) 0.0253 1.0000 Uani  
H151.  0.492(6) 0.3999(13) -0.484(2) 0.0286 1.0000 Uiso  
H161.  0.861(6) 0.3292(13) -0.427(2) 0.0315 1.0000 Uiso  
H171.  1.068(6) 0.3315(13) -0.241(2) 0.0290 1.0000 Uiso  
H191.  0.200(6) 0.4747(13) -0.447(3) 0.0349 1.0000 Uiso  
H192.  0.353(6) 0.5159(14) -0.349(2) 0.0349 1.0000 Uiso  
H193.  0.134(6) 0.4701(13) -0.330(2) 0.0349 1.0000 Uiso  
H201.  0.679(6) 0.4631(14) -0.068(3) 0.0349 1.0000 Uiso  
H202.  0.564(6) 0.5089(14) -0.159(2) 0.0349 1.0000 Uiso  
H203.  0.393(6) 0.4619(13) -0.119(2) 0.0349 1.0000 Uiso  
H7.  0.928(6) 0.3956(15) -0.125(3) 0.0500 1.0000 Uiso  
H10.  0.862(7) 0.2665(16) 0.309(3) 0.0500 1.0000 Uiso 
 
Bromanilic Acid : 2,4 lutidine 

C1.  0.90439(16) 0.19216(11) 0.55354(10) 0.0140 1.0000 Uani  
C2.  1.02992(15) 0.18826(12) 0.49595(10) 0.0144 1.0000 Uani  
C3.  1.00553(15) 0.10940(11) 0.40708(9) 0.0130 1.0000 Uani  
C4.  0.85658(15) 0.05016(11) 0.38354(9) 0.0130 1.0000 Uani  
C5.  0.73824(15) 0.05279(11) 0.44134(9) 0.0125 1.0000 Uani  
C6.  0.77043(15) 0.12613(11) 0.53096(9) 0.0127 1.0000 Uani  
O7.  0.65620(12) 0.12713(9) 0.58358(8) 0.0175 1.0000 Uani  
O8.  0.60470(11) 0.00120(9) 0.42414(7) 0.0182 1.0000 Uani  
Br9.  0.811745(16) -0.039128(12) 0.269616(9) 0.0164 1.0000 Uani  
O10.  1.12007(11) 0.10674(8) 0.36237(7) 0.0161 1.0000 Uani  
O11.  1.15306(12) 0.24636(9) 0.51295(8) 0.0217 1.0000 Uani  
Br12.  0.933870(16) 0.293269(12) 0.657859(10) 0.0193 1.0000 Uani  
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C13.  0.47281(16) 0.23292(13) 0.31099(10) 0.0190 1.0000 Uani  
C14.  0.61209(17) 0.29593(14) 0.30823(12) 0.0231 1.0000 Uani  
C15.  0.67700(17) 0.37022(14) 0.38130(13) 0.0245 1.0000 Uani  
C16.  0.59599(17) 0.38271(13) 0.45804(13) 0.0235 1.0000 Uani  
C17.  0.45777(17) 0.32123(13) 0.45950(11) 0.0197 1.0000 Uani  
N18.  0.39968(14) 0.24881(11) 0.38723(9) 0.0158 1.0000 Uani  
C19.  0.8323(2) 0.43393(18) 0.38094(19) 0.0377 1.0000 Uani  
C20.  0.4001(2) 0.15064(17) 0.23506(12) 0.0277 1.0000 Uani  
H141.  0.655(2) 0.2852(15) 0.2586(13) 0.0298 1.0000 Uiso  
H161.  0.630(2) 0.4290(16) 0.5087(14) 0.0303 1.0000 Uiso  
H171.  0.399(2) 0.3235(14) 0.5103(13) 0.0251 1.0000 Uiso  
H191.  0.823(3) 0.5062(19) 0.4090(16) 0.0492 1.0000 Uiso  
H192.  0.915(3) 0.3983(17) 0.4275(16) 0.0492 1.0000 Uiso  
H193.  0.843(3) 0.4419(19) 0.3260(18) 0.0492 1.0000 Uiso  
H201.  0.476(2) 0.1158(16) 0.2106(14) 0.0354 1.0000 Uiso  
H202.  0.356(2) 0.0848(17) 0.2615(14) 0.0354 1.0000 Uiso  
H5.  0.321(3) 0.2108(18) 0.3893(16) 0.0500 1.0000 Uiso  
H7.  0.313(3) 0.1788(17) 0.1870(16) 0.0500 1.0000 Uiso  
H11.  0.585(3) 0.0879(18) 0.5645(16) 0.0500 1.0000 Uiso  
 
Bromanilic Acid : 2,5 lutidine 

C1.  0.4371(2) 0.16236(14) 0.00087(11) 0.0126 1.0000 Uani  
C2.  0.2819(2) 0.10049(14) -0.01685(10) 0.0123 1.0000 Uani  
C3.  0.2489(2) 0.04872(14) -0.10566(10) 0.0118 1.0000 Uani  
C4.  0.3629(2) 0.06041(14) -0.16561(10) 0.0119 1.0000 Uani  
C5.  0.5272(2) 0.11945(14) -0.14685(11) 0.0126 1.0000 Uani  
C6.  0.5642(2) 0.17565(15) -0.05707(11) 0.0144 1.0000 Uani  
O7.  0.70451(16) 0.22867(14) -0.04458(9) 0.0262 1.0000 Uani  
O8.  0.63916(15) 0.12864(12) -0.19702(8) 0.0192 1.0000 Uani  
Br9.  0.31638(2) -0.007105(16) -0.274220(11) 0.0155 1.0000 Uani  
O10.  0.09935(15) -0.00757(12) -0.12106(8) 0.0178 1.0000 Uani  
O11.  0.16422(16) 0.08354(12) 0.03184(8) 0.0200 1.0000 Uani  
Br12.  0.47839(2) 0.233092(15) 0.109386(11) 0.0153 1.0000 Uani  
C13.  1.0291(2) 0.28269(15) -0.23866(11) 0.0153 1.0000 Uani  
C14.  1.1652(2) 0.36306(16) -0.24366(12) 0.0178 1.0000 Uani  
C15.  1.2332(2) 0.42206(16) -0.17219(12) 0.0182 1.0000 Uani  
C16.  1.1677(2) 0.40251(16) -0.09346(12) 0.0168 1.0000 Uani  
C17.  1.0319(2) 0.32299(16) -0.09112(12) 0.0165 1.0000 Uani  
N18.  0.96688(18) 0.26690(14) -0.16205(9) 0.0154 1.0000 Uani  
C19.  1.2398(3) 0.4662(2) -0.01527(14) 0.0240 1.0000 Uani  
C20.  0.9481(3) 0.21598(19) -0.31251(13) 0.0220 1.0000 Uani  
H141.  1.207(3) 0.3746(19) -0.2973(14) 0.0233 1.0000 Uiso  
H151.  1.320(3) 0.4795(19) -0.1776(13) 0.0231 1.0000 Uiso  
H171.  0.978(3) 0.3044(18) -0.0431(13) 0.0211 1.0000 Uiso  
H191.  1.163(3) 0.454(2) 0.0293(14) 0.0300 1.0000 Uiso  
H192.  1.355(3) 0.424(2) -0.0013(14) 0.0300 1.0000 Uiso  
H193.  1.237(3) 0.553(2) -0.0248(15) 0.0300 1.0000 Uiso  
H201.  1.005(3) 0.232(2) -0.3572(14) 0.0272 1.0000 Uiso  
H4.  0.883(3) 0.221(2) -0.1561(16) 0.0500 1.0000 Uiso  
H13.  0.038(3) -0.010(2) -0.0764(17) 0.0500 1.0000 Uiso  
H17.  0.956(3) 0.135(3) -0.3007(17) 0.0500 1.0000 Uiso  
H19.  0.827(3) 0.258(2) -0.3251(16) 0.0500 1.0000 Uiso 
 
Bromanilic Acid : 3,5 lutidine 

C1.  0.15121(18) 0.03215(17) 0.38885(15) 0.0128 1.0000 Uani  
C2.  0.08214(17) 0.14144(17) 0.41329(14) 0.0123 1.0000 Uani  
C3.  0.14290(18) 0.24873(17) 0.49386(15) 0.0131 1.0000 Uani  
C4.  0.25927(17) 0.23342(17) 0.53944(15) 0.0117 1.0000 Uani  
C5.  0.32706(17) 0.12879(17) 0.51171(14) 0.0125 1.0000 Uani  
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C6.  0.26537(18) 0.02854(16) 0.42882(15) 0.0130 1.0000 Uani  
O7.  0.33428(13) -0.06403(12) 0.40040(12) 0.0168 1.0000 Uani  
O8.  0.43042(12) 0.10762(13) 0.55013(11) 0.0166 1.0000 Uani  
Br9.  0.328043(18) 0.354531(17) 0.649864(16) 0.0148 1.0000 Uani  
O10.  0.08038(12) 0.33994(12) 0.51248(11) 0.0176 1.0000 Uani  
O11.  -0.01997(12) 0.15509(13) 0.37328(11) 0.0184 1.0000 Uani  
Br12.  0.075664(18) -0.098738(17) 0.295329(16) 0.0167 1.0000 Uani  
C13.  0.35380(18) 0.67357(17) 0.55162(16) 0.0149 1.0000 Uani  
C14.  0.36248(19) 0.61039(19) 0.44674(16) 0.0159 1.0000 Uani  
C15.  0.26556(18) 0.56721(17) 0.37197(15) 0.0142 1.0000 Uani  
C16.  0.15909(19) 0.59052(18) 0.40496(16) 0.0152 1.0000 Uani  
N17.  0.15033(15) 0.65306(15) 0.50502(13) 0.0140 1.0000 Uani  
C18.  0.24403(19) 0.69348(17) 0.57821(16) 0.0146 1.0000 Uani  
C19.  0.2729(3) 0.4949(2) 0.26181(19) 0.0246 1.0000 Uani  
C20.  0.4571(2) 0.7156(2) 0.6361(2) 0.0233 1.0000 Uani  
H141.  0.4295(16) 0.5989(18) 0.4236(15) 0.005(5) 1.0000 Uiso  
H161.  0.0920(18) 0.5619(19) 0.3589(17) 0.017(6) 1.0000 Uiso  
H181.  0.2290(16) 0.7308(18) 0.6458(16) 0.008(5) 1.0000 Uiso  
H191.  0.215(2) 0.515(2) 0.197(2) 0.032(7) 1.0000 Uiso  
H192.  0.339(2) 0.511(2) 0.239(2) 0.032(8) 1.0000 Uiso  
H193.  0.2689(19) 0.414(2) 0.2700(19) 0.033(7) 1.0000 Uiso  
H201.  0.4561(18) 0.683(2) 0.708(2) 0.028(6) 1.0000 Uiso  
H202.  0.4617(16) 0.810(2) 0.6335(16) 0.014(5) 1.0000 Uiso  
H203.  0.519(2) 0.696(2) 0.615(2) 0.029(8) 1.0000 Uiso  
H7.  0.073(2) 0.667(2) 0.531(2) 0.051(8) 1.0000 Uiso  
H11.  0.403(2) -0.042(3) 0.444(2) 0.064(10) 1.0000 Uiso 
 
Bromanilic Acid : 2bromo, 3methylpyridine 

C1.  0.6948(8) 0.5219(3) 0.45322(19) 0.0138 1.0000 Uani  
C2.  0.6023(8) 0.5989(3) 0.4963(2) 0.0153 1.0000 Uani  
C3.  0.3986(8) 0.5712(3) 0.54446(19) 0.0143 1.0000 Uani  
O4.  0.3254(7) 0.6446(2) 0.58321(17) 0.0247 1.0000 Uani  
O5.  0.6710(6) 0.6861(2) 0.49645(15) 0.0245 1.0000 Uani  
Br6.  0.95526(9) 0.55600(4) 0.39595(2) 0.0184 1.0000 Uani  
C7.  0.3110(8) -0.0742(3) 0.4850(2) 0.0149 1.0000 Uani  
C8.  0.4677(9) -0.0838(3) 0.5434(2) 0.0159 1.0000 Uani  
C9.  0.6650(9) -0.0032(3) 0.5579(2) 0.0147 1.0000 Uani  
O10.  0.8075(6) -0.0120(2) 0.61070(16) 0.0204 1.0000 Uani  
O11.  0.4534(6) -0.1529(2) 0.58290(14) 0.0188 1.0000 Uani  
Br12.  0.06049(9) -0.17269(3) 0.47153(2) 0.0183 1.0000 Uani  
C13.  0.3389(8) 0.1754(4) 0.2549(2) 0.0181 1.0000 Uani  
C14.  0.3287(9) 0.2585(4) 0.2134(2) 0.0206 1.0000 Uani  
C15.  0.1497(10) 0.3298(4) 0.2290(2) 0.0246 1.0000 Uani  
C16.  0.0001(10) 0.3182(4) 0.2827(2) 0.0242 1.0000 Uani  
C17.  0.0311(10) 0.2337(4) 0.3211(2) 0.0234 1.0000 Uani  
N18.  0.1966(7) 0.1618(3) 0.30661(16) 0.0166 1.0000 Uani  
C19.  0.4981(12) 0.2722(5) 0.1567(3) 0.0309 1.0000 Uani  
Br20.  0.56859(10) 0.06826(4) 0.23907(2) 0.0284 1.0000 Uani  
H151.  0.139(9) 0.380(4) 0.200(2) 0.0331 1.0000 Uiso  
H161.  -0.106(10) 0.358(4) 0.297(2) 0.0311 1.0000 Uiso  
H171.  -0.069(9) 0.225(3) 0.355(2) 0.0292 1.0000 Uiso  
H191.  0.477(10) 0.335(4) 0.138(2) 0.0387 1.0000 Uiso  
H192.  0.652(10) 0.262(4) 0.166(3) 0.0387 1.0000 Uiso  
H193.  0.478(11) 0.244(4) 0.126(3) 0.0387 1.0000 Uiso  
H5.  0.382(11) 0.689(5) 0.572(3) 0.0500 1.0000 Uiso  
H15.  0.788(10) -0.062(4) 0.638(2) 0.0500 1.0000 Uiso 
 
Bromanilic Acid : 3bromo, 4methylpyridine 

C1.  0.2393(2) 0.2671(5) 0.91006(9) 0.0158 1.0000 Uani  



 
 

150

C2.  0.1454(2) 0.1215(5) 0.93341(9) 0.0164 1.0000 Uani  
C3.  0.0750(3) -0.0689(5) 0.89774(10) 0.0166 1.0000 Uani  
C4.  0.1033(2) -0.1087(5) 0.84607(10) 0.0160 1.0000 Uani  
C5.  0.2049(2) 0.0293(5) 0.82352(9) 0.0154 1.0000 Uani  
C6.  0.2692(2) 0.2395(5) 0.85634(10) 0.0154 1.0000 Uani  
O7.  0.34444(18) 0.3719(4) 0.83172(7) 0.0201 1.0000 Uani  
O8.  0.24267(18) -0.0146(4) 0.77845(6) 0.0202 1.0000 Uani  
Br9.  0.01729(3) -0.34999(5) 0.801722(10) 0.0188 1.0000 Uani  
O10.  -0.01434(19) -0.1956(4) 0.92112(7) 0.0219 1.0000 Uani  
O11.  0.11429(17) 0.1393(4) 0.98104(6) 0.0204 1.0000 Uani  
Br12.  0.31928(3) 0.51669(5) 0.954038(10) 0.0194 1.0000 Uani  
C13.  0.7095(2) 0.1138(5) 0.86032(10) 0.0171 1.0000 Uani  
C14.  0.6174(2) -0.0253(5) 0.88456(9) 0.0168 1.0000 Uani  
C15.  0.5526(3) -0.2020(6) 0.85252(10) 0.0201 1.0000 Uani  
C16.  0.5794(3) -0.2373(6) 0.79910(11) 0.0209 1.0000 Uani  
N17.  0.6659(2) -0.0951(5) 0.77742(9) 0.0203 1.0000 Uani  
C18.  0.7321(3) 0.0782(6) 0.80614(10) 0.0189 1.0000 Uani  
C19.  0.5895(3) 0.0144(7) 0.94257(11) 0.0238 1.0000 Uani  
Br20.  0.80540(3) 0.35720(6) 0.899664(11) 0.0233 1.0000 Uani  
H151.  0.494(3) -0.310(5) 0.8652(11) 0.0243 1.0000 Uiso  
H161.  0.538(3) -0.352(6) 0.7737(12) 0.0254 1.0000 Uiso  
H181.  0.785(3) 0.177(6) 0.7910(12) 0.0257 1.0000 Uiso  
H191.  0.530(3) -0.083(6) 0.9494(12) 0.0317 1.0000 Uiso  
H192.  0.665(3) -0.012(6) 0.9677(12) 0.0317 1.0000 Uiso  
H193.  0.558(3) 0.178(6) 0.9488(12) 0.0317 1.0000 Uiso  
H9.  0.678(4) -0.106(7) 0.7466(15) 0.0500 1.0000 Uiso  
H18.  -0.025(4) -0.141(7) 0.9489(15) 0.0500 1.0000 Uiso 
 


